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Preface

Objectives

The main objective of a basic mechanics course should be to develop in the engineering student the
ability to analyze a given problem in a simple and logical manner and to apply to its solution a few
fundamental and well-understood principles. This text is designed for a course that combines statics and
mechanics of materials—or strength of materials—offered to engineering students in the sophomore
year.

General Approach

In this text, the study of statics and mechanics of materials is based on the understanding of a few basic
concepts and on the use of simplified models. This approach makes it possible to develop all the
necessary formulas in a rational and logical manner, and to clearly indicate the conditions under which
they can be safely applied to the analysis and design of actual engineering structures and machine
components.

Practical Applications Are Introduced Early. One of the characteristics of the
approach used in this text is that mechanics of particles is clearly separated from the mechanics of rigid
bodies. This approach makes it possible to consider simple, practical applications at an early stage and to
postpone the introduction of the more difficult concepts. As an example, statics of particles is treated
first (Chap. 2); after the rules of addition and subtraction of vectors are introduced, the principle of
equilibrium of a particle is immediately applied to practical situations involving only concurrent forces.
The statics of rigid bodies is considered in Chaps. 3 and 4. In Chap. 3, the vector and scalar products of
two vectors are introduced and used to define the moment of a force about a point and about an axis. The
presentation of these new concepts is followed by a thorough and rigorous discussion of equivalent
systems of forces, leading, in Chap. 4, to many practical applications involving the equilibrium of rigid
bodies under general force systems.

New Concepts Are Introduced in Simple Terms. Because this text is designed for the
first course in mechanics, new concepts are presented in simple terms and every step is explained in
detail. On the other hand, by discussing the broader aspects of the problems considered and by stressing
methods of general applicability, a definite maturity of approach is achieved. For example, the concepts
of partial constraints and statical indeterminacy are introduced early and are used throughout.

Fundamental Principles Are Placed in the Context of Simple Applications.
The fact that mechanics is essentially a deductive science based on a few fundamental principles is
stressed. Derivations have been presented in their logical sequence and with all the rigor warranted at
this level. However, the learning process being largely inductive, simple applications are considered
first.

As an example, the statics of particles precedes the statics of rigid bodies, and problems ~ “pyge i
involving internal forces are postponed until Chap. 6. In Chap. 4, equilibrium problems T
involving only coplanar forces are considered first and solved by ordinary algebra, while problems
involving three-dimensional forces and requiring the full use of vector algebra are discussed in the
second part of the chapter.

The first four chapters treating mechanics of materials (Chaps. 8, 9, 10, and 11) are devoted to the
analysis of the stresses and of the corresponding deformations in various structural members,

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

considering successively axial loading, torsion, and pure bending. The remaining five chapters (12
through 16) expand on what is learned in Chaps. 8 through 11. Chapter 12 begins with a discussion of
the shear and bending-moment diagrams and then addresses the design of beams based on the allowable
normal stress in the material used. The determination of the shearing stress in beams and thin-walled
members under transverse loadings is covered in Chap. 13. Chapter 14 is devoted to the transformation
of stresses and design of thin-walled pressure vessels. The determination of deflections in beams is
presented in Chap. 15. Chapter 16, which treats columns, contains material on the design of steel,
aluminum, and wood columns.

Each analysis is based on a few basic concepts, namely, the conditions of equilibrium of the forces
exerted on the member, the relations existing between stress and strain in the material, and the
conditions imposed by the supports and loading of the member. The study of each type of loading is
complemented by a large number of examples, sample problems, and problems to be assigned, all
designed to strengthen the students’ understanding of the subject.

The material presented in the text and most of the problems require no previous mathematical
knowledge beyond algebra, trigonometry, and elementary calculus; all the elements of vector algebra
necessary to the understanding of mechanics are carefully presented in Chaps. 2 and 3. In general, a
greater emphasis is placed on the correct understanding of the basic mathematical concepts involved
than on the nimble manipulation of mathematical formulas. In this connection, it should be mentioned
that the determination of the centroids of composite areas precedes the calculation of centroids by
integration, thus making it possible to establish the concept of the moment of an area firmly before
introducing the use of integration.

Free-Body Diagrams Are Used Extensively. Throughout the text, free-body diagrams

are used to determine external or internal forces. The use of “picture equations” will also help the
students understand the superposition of loadings and the resulting stresses and deformations.

Design Concepts Are Discussed Throughout the Text Whenever

Appropriate. A discussion of the application of the factor of safety to design can be found in Chap.
8, where the concept of allowable stress design is presented.

The SMART Problem-Solving Methodology Is Employed. Students are presented
with the SMART approach for solving engineering problems, whose acronym reflects the solution steps
of Strategy, Modeling, Analysis, and Reflect and Think. This methodology is used in all Sample
Problems, and it is intended that students will apply this in the solution of all assigned problems.

Case Studies. The principles developed in this text are used extensively in engineering Page xii
applications, particularly for design as well as for the analysis of failures. Much can be learned from the
historical successes and failures of past design, and unique insight can be gained by studying how
engineers developed different products and structures. To this end, real-world Case Studies have been
introduced in the text to provide relevancy and application to the principles of engineering mechanics
being discussed. These are developed using the SMART problem-solving methodology to present the
story behind each Case Study, as well as to analyze some aspects of the situation.

A Careful Balance Between SI and U.S. Customary Units Is Consistently

Maintained. Because it is essential that students be able to handle effectively both SI metric units
and U.S. customary units, half the examples, sample problems, and problems to be assigned have been
stated in SI units and half in U.S. customary units. Because a large number of problems are available,
instructors can assign problems using each system of units in whatever proportion they find most
desirable for their class.

It also should be recognized that using both SI and U.S. customary units entails more than the use
of conversion factors. Because the SI system of units is an absolute system based on the units of time,
length, and mass, whereas the U.S. customary system is a gravitational system based on the units of
time, length, and force, different approaches are required for the solution of many problems. For
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example, when SI units are used, a body is generally specified by its mass expressed in kilograms; in
most problems of statics it will be necessary to determine the weight of the body in newtons, and an
additional calculation will be required for this purpose. On the other hand, when U.S. customary units
are used, a body is specified by its weight in pounds and, in dynamics problems (such as would be
encountered in a follow-on course in dynamics), an additional calculation will be required to determine
its mass in slugs (or 1b-s%/ft). The authors, therefore, believe that problem assignments should include
both systems of units.
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Chapter Organization and Pedagogical Features

Each chapter begins with an introductory section setting the purpose and goals of the chapter and
describing in simple terms the material to be covered and its application to the solution of engineering
problems.

Chapter Lessons. The body of the text has been divided into units, each consisting of one or

several theory sections followed by sample problems and a large number of problems to be assigned.
Each unit corresponds to a well-defined topic and generally can be covered in one lesson.

Concept Applications and Sample Problems. Many theory sections include Concept
Applications designed to illustrate the material being presented and facilitate its understanding. The
Sample Problems provided after all lessons are intended to show some of the applications of the theory
to the solution of engineering problems. Because they have been set up in much the same form as
students will use in solving the assigned problems, the Sample Problems serve the double purpose of
amplifying the text and demonstrating the type of neat and orderly work students should cultivate in
their own solutions.

Homework Problem Sets. Most of the problems are of a practical nature and should _Page xiii
appeal to engineering students. They are primarily designed, however, to illustrate the material presented
in the text and help the students understand the basic principles used in engineering mechanics. The
problems have been grouped according to the portions of material they illustrate and have been arranged
in order of increasing difficulty. Answers to problems are given at the end of the book, except for those
with a number set in red italics.

Chapter Review and Summary. Each chapter ends with a review and summary of the

material covered in the chapter. Notes in the margin have been included to help the students organize
their review work, and cross references are provided to help them find the portions of material requiring
their special attention.

Review Problems. A set of review problems is included at the end of each chapter. These

problems provide students further opportunity to apply the most important concepts introduced in the
chapter.

New to the Third Edition

We’ve made some significant changes from the second edition of this text. The updates include:

e Case Studies. Case Studies have been added to all chapters to provide the student with real-
world engineering problems. These address how engineers approached the evaluation of
problems that occurred and how they developed new designs.

e Text Revisions. The authors have continued to edit the language to make the book easier to read
and more student-friendly.

e Photographs. We have updated many of the photos appearing in the third edition.
¢ Revised or New Problems. Over 20% of the problems are revised or new to this edition.

Acknowledgments
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her work in the checking and preparation of the solutions and answers of all the problems in this edition.

We also gratefully acknowledge the help, comments, and suggestions offered by the many users of
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Constant; distance; radius

Centroid

Constants of integration

Column stability factor
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Shearing force per unit length; shear flow
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1
Introduction

The tallest skyscraper in the Western Hemisphere, One
World Trade Center is a prominent feature of the New York
City skyline. From its foundation to its structural components
and mechanical systems, the design and operation of the
tower is based on the fundamentals of engineering
mechanics.

Objectives

e Define the science of mechanics and examine its
fundamental principles.

Page 2
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e Discuss and compare the International System of
Units and U.S. Customary Units.

e Discuss how to approach the solution of mechanics
problems, and introduce the SMART problem-
solving methodology.

e Examine factors that govern numerical accuracy in
the solution of a mechanics problem.

\ A
;- A
Introduction

1.1 WHAT IS MECHANICS?

1.2 FUNDAMENTAL CONCEPTS AND
PRINCIPLES

1.2A Mechanics of Rigid Bodies

1.2B Mechanics of Deformable Bodies

1.3 SYSTEMS OF UNITS

1.4 CONVERTING BETWEEN TWO
SYSTEMS OF UNITS

1.5 METHOD OF SOLVING PROBLEMS

1.6 NUMERICAL ACCURACY

% A

1.1  WHAT IS MECHANICS?

Mechanics is defined as the science that describes and predicts the conditions of rest or motion of bodies
under the action of forces. It consists of the mechanics of rigid bodies, mechanics of deformable bodies,
and mechanics of fluids.

The mechanics of rigid bodies is subdivided into statics and dynamics. Statics deals with bodies at
rest; dynamics deals with bodies in motion. In this text, we assume bodies are perfectly rigid. In fact,
actual structures and machines are never absolutely rigid; they deform under the loads to which they are
subjected. However, because these deformations are usually small, they do not appreciably affect the
conditions of equilibrium or the motion of the structure under consideration. They are important, though,
as far as the resistance of the structure to failure is concerned. Deformations are studied in a course in
mechanics of materials, which is part of the mechanics of deformable bodies. The third division of
mechanics, the mechanics of fluids, is subdivided into the study of incompressible fluids and of
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compressible fluids. An important subdivision of the study of incompressible fluids is hydraulics, which
deals with applications involving water.

Mechanics is a physical science, because it deals with the study of physical phenomena. However,
some teachers associate mechanics with mathematics, whereas many others consider it as an engineering
subject. Both of these views are justified in part. Mechanics is the foundation of most engineering
sciences and is an indispensable prerequisite to their study. However, it does not have the empiricism
found in some engineering sciences, i.e., it does not rely on experience or observation alone. The rigor
of mechanics and the emphasis it places on deductive reasoning makes it resemble mathematics.
However, mechanics is not an abstract or even a pure science; it is an applied science.

The purpose of mechanics is to explain and predict physical phenomena and thus to lay the
foundations for engineering applications. You need to know statics to determine how much force will be
exerted on a point in a bridge design and whether the structure can withstand that force. Determining the
force a dam needs to withstand from the water in a river requires statics. You need statics to calculate
how much weight a crane can lift, how much force a locomotive needs to pull a freight train, or how
much force a circuit board in a computer can withstand. The concepts of dynamics enable you to “page 3 ge 3
analyze the flight characteristics of a jet, design a building to resist earthquakes, and mitigate
shock and vibration to passengers inside a vehicle. The concepts of dynamics enable you to calculate
how much force you need to send a satellite into orbit, accelerate a 200,000-ton cruise ship, or design a
toy truck that doesn’t break. You will not learn how to do these things in this course, but the ideas and
methods you learn here will be the underlying basis for the engineering applications you will learn in
your work.

1.2 FUNDAMENTAL CONCEPTS AND
PRINCIPLES

1.2A Mechanics of Rigid Bodies

Although the study of mechanics goes back to the time of Aristotle (384-322 b.c.) and Archimedes
(287-212 b.c.), not until Newton (1642—-1727) did anyone develop a satisfactory formulation of its
fundamental principles. These principles were later modified by d’ Alembert, Lagrange, and Hamilton.
Their validity remained unchallenged until Einstein formulated his theory of relativity (1905).
Although its limitations have now been recognized, newtonian mechanics still remains the basis of
today’s engineering sciences.

The basic concepts used in mechanics are space, time, mass, and force. These concepts cannot be
truly defined; they should be accepted on the basis of our intuition and experience and used as a mental
frame of reference for our study of mechanics.

The concept of space is associated with the position of a point P. We can define the position of P
by providing three lengths measured from a certain reference point, or origin, in three given directions.
These lengths are known as the coordinates of P.

To define an event, it is not sufficient to indicate its position in space. We also need to specify the
time of the event.

We use the concept of mass to characterize and compare bodies on the basis of certain fundamental
mechanical experiments. Two bodies of the same mass, for example, are attracted by the earth in the
same manner; they also offer the same resistance to a change in translational motion.

A force represents the action of one body on another. A force can be exerted by actual contact, like
a push or a pull, or at a distance, as in the case of gravitational or magnetic forces. A force is
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characterized by its point of application, its magnitude, and its direction; a force is represented by a
vector (Sec. 2.1B).

In newtonian mechanics, space, time, and mass are absolute concepts that are independent of each
other. (This is not true in relativistic mechanics, where the duration of an event depends upon its
position and the mass of a body varies with its velocity.) On the other hand, the concept of force is not
independent of the other three. Indeed, one of the fundamental principles of newtonian mechanics listed
below is that the resultant force acting on a body is related to the mass of the body and to the manner in
which its velocity varies with time.

In this text, you will study the conditions of rest or motion of particles and rigid bodies in terms of
the four basic concepts we have introduced. By particle, we mean a very small amount of matter, which
we assume occupies a single point in space. A rigid body consists of a large number of particles “page 4 ge 4
occupying fixed positions with respect to one another. The study of the mechanics of particles is
clearly a prerequisite to that of rigid bodies. Besides, we can use the results obtained for a particle
directly in a large number of problems dealing with the conditions of rest or motion of actual bodies.

The study of elementary mechanics rests on six fundamental principles, based on experimental
evidence.

e The Parallelogram Law for the Addition of Forces. Two forces acting on a particle may be
replaced by a single force, called their resultant, obtained by drawing the diagonal of the
parallelogram with sides equal to the given forces (Sec. 2.1A).

e The Principle of Transmissibility. The conditions of equilibrium or of motion of a rigid body
remain unchanged if a force acting at a given point of the rigid body is replaced by a force of the
same magnitude and same direction, but acting at a different point, provided that the two forces
have the same line of action (Sec. 3.1B).

e Newton’s Three Laws of Motion. Formulated by Sir Isaac Newton in the late 17th century,
these laws can be stated as follows:

FIRST LAW. If the resultant force acting on a particle is zero, the particle remains at rest (if
originally at rest) or moves with constant speed in a straight line (if originally in motion) (Sec.
2.3B).

SECOND LAW. If the resultant force acting on a particle is not zero, the particle has an
acceleration proportional to the magnitude of the resultant and in the direction of this resultant
force.

This law can be stated as

(L.1)

where F, m, and a represent, respectively, the resultant force acting on the particle, the mass of
the particle, and the acceleration of the particle expressed in a consistent system of units.

THIRD LAW. The forces of action and reaction between bodies in contact have the same
magnitude, same line of action, and opposite sense (Chap. 6, Introduction).

e Newton’s Law of Gravitation. Two particles of mass M and m are mutually attracted with equal

and opposite forces F and —F of magnitude F (Fig. 1.1), given by the formula
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(1.2)
Mm

F=G

where r = the distance between the two particles and G = a universal constant called the

constant of gravitation. Newton’s law of gravitation introduces the idea of an action exerted at a
distance and extends the range of application of Newton’s third law: the action F and the reaction

—F in Fig. 1.1 are equal and opposite, and they have the same line of action.

@ m

e

-F

M
Fig. 1.1 From Newton’s law of gravitation, two particles of masses M
and m exert forces upon each other of equal magnitude, opposite
direction, and the same line of action. This also illustrates Newton’s
third law of motion.

A particular case of great importance is that of the attraction of the earth on a particle located on its
surface. The force F exerted by the earth on the particle is defined as the weight W of the particle.
Suppose we set M equal to the mass of the earth, m equal to the mass of the particle, and r equal to the
earth’s radius R. Then, introducing the constant

(1.3)
GM
9= R
we can express the magnitude W of the weight of a particle of mass m as’ Page 5
(1.4)
W =mg

The value of R in Eq. (1.3) depends upon the elevation of the point considered; it also depends upon its
latitude, because the earth is not truly spherical. The value of g therefore varies with the position of the
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point considered. However, as long as the point actually remains on the earth’s surface, it is sufficiently

accurate in most engineering computations to assume that g equals 9.81m /s? or 32.2 ft /s2.

The principles we have just listed will be introduced in the course of our study of mechanics as they
are needed. The statics of particles carried out in Chap. 2 will be based on the parallelogram law of
addition and on Newton’s first law alone. We introduce the principle of transmissibility in Chap. 3 as we
begin the study of the statics of rigid bodies, and we bring in Newton’s third law in Chap. 6 as we
analyze the forces exerted on each other by the various members forming a structure.

As noted earlier, the six fundamental principles listed previously are based on experimental
evidence. Except for Newton’s first law and the principle of transmissibility, they are independent
principles that cannot be derived mathematically from each other or from any other elementary physical
principle. On these principles rests most of the intricate structure of newtonian mechanics. For more than
two centuries, engineers have solved a tremendous number of problems dealing with the conditions of
rest and motion of rigid bodies, deformable bodies, and fluids by applying these fundamental principles.
Many of the solutions obtained could be checked experimentally, thus providing a further verification of
the principles from which they were derived. Only in the 20th century has Newton’s mechanics found to
be at fault, in the study of the motion of atoms and the motion of the planets, where it must be
supplemented by the theory of relativity. On the human or engineering scale, however, where velocities
are small compared with the speed of light, Newton’s mechanics have yet to be disproved.

Photo 1.1 When in orbit of the earth, people and objects are said to be
weightless, even though the gravitational force acting is
approximately 90% of that experienced on the surface of the earth.
This apparent contradiction can be resolved in a course on dynamics

when Newton’s second law is applied to the motion of particles.
Source: NASA
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1.2B Mechanics of Deformable Bodies

The concepts needed for mechanics of deformable bodies, also referred to as mechanics of materials, are
necessary for analyzing and designing various machines and load-bearing structures. These concepts
involve the determination of stresses and deformations.

In Chaps. 8 through 16, the analysis of stresses and the corresponding deformations will be
developed for structural members subject to axial loading, torsion, and bending. This requires the use of
basic concepts involving the conditions of equilibrium of forces exerted on the member, the relations
existing between stress and deformation in the material, and the conditions imposed by the supports and
loading of the member. Later chapters expand on these subjects, providing a basis for designing both
structures that are statically determinant and those that are indeterminant, i.e., structures in which the
internal forces cannot be determined from statics alone.

Page 6

1.3 SYSTEMS OF UNITS

Associated with the four fundamental concepts just discussed are the so-called kinetic units, i.e., the
units of length, time, mass, and force. These units cannot be chosen independently if Eq. (1.1) is to be
satisfied. Three of the units may be defined arbitrarily; we refer to them as basic units. The fourth unit,
however, must be chosen in accordance with Eq. (1.1) and is referred to as a derived unit. Kinetic units
selected in this way are said to form a consistent system of units.

International System of Units (SI Units)." In this system, which will be in universal use
after the United States has completed its conversion to SI units, the base units are the units of length,
mass, and time, and they are called, respectively, the meter (m), the kilogram (kg), and the second (5s).
All three are arbitrarily defined. The second was originally chosen to represent 1/86 400 of the mean
solar day, but it is now defined as the duration of 9 192 631 770 cycles of the radiation corresponding to
the transition between two levels of the fundamental state of the cesium-133 atom. The meter, originally
defined as one ten-millionth of the distance from the equator to either pole, is now defined as 1 650
763.73 wavelengths of the orange-red light corresponding to a certain transition in an atom of krypton-
86. (The newer definitions are much more precise and with today’s modern instrumentation, are easier to

verify as a standard.) The kilogram, which is approximately equal to the mass of 0.001 m? of water, is

defined as the mass of a platinum-iridium standard kept at the International Bureau of Weights and
Measures at Sevres, near Paris, France. The unit of force is a derived unit. It is called the newton (N)

and is defined as the force that gives an acceleration of 1 m/s? to a body of mass 1 kg (Fig. 1.2). From

Eq. (1.1), we have

(1.5)
1N =(1kg)(1m/s?)=1kgm/s?

The SI units are said to form an absolute system of units. This means that the three base units chosen are
independent of the location where measurements are made. The meter, the kilogram, and the second
may be used anywhere on the earth; they may even be used on another planet and still have the same
significance.
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a=1m/2
m=1kg | F=1N

Fig. 1.2 A force of 1 newton applied to a body of mass 1 kg provides

an acceleration of 1 m/s?.

The weight of a body, or the force of gravity exerted on that body, like any other force, should be
expressed in newtons. From Eq. (1.4), it follows that the weight of a body of mass 1 kg (Fig. 1.3) is

W =mg
= (1kg) (9.81 m/s?)
=9.81N

m:ltg

a =9.81 m/s2

W=9E8IN

Fig. 1.3 A body of mass 1 kg experiencing an acceleration due to

gravity of 9.81 m /s has a weight of 9.81 N,

Multiples and submultiples of the fundamental SI units are denoted through the use of the prefixes
defined in Table 1.1. The multiples and submultiples of the units of length, mass, and force most
frequently used in engineering are, respectively, the kilometer (km) and the millimeter (mm); the

megagram* (Mg) and the gram (g); and the kilonewton (kN). According to Table 1.1, we have

1 km=1000 m 1 mm=0.001m
1 Mg=1000 kg 1g=0.001kg
1 kN=1000 N

Table 1.1 Sl Prefixes Page 7
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Multiplication Factor Prefix' Symbol
1 000 000 000 000 = 10" tera E
1 000 000 000 = 10° giga G
1 000 000 = 10° mega M
1 000 = 10° kilo k
100 = 10° hecto® h
10 = 10' deka’ da
0.1=10" deci’ d
001 = 102 centi? c
0.001 = 107° milli m
0.000 001 = 10°° micro u
0.000 000 001 = 107° nano n
0.000 000 000 001 = 107" pico p
0.000 000 000 000 001 = 1075 femto f
0.000 000 000 000 000 001 = 1078 atto a

TThe first syllable of every prefix is accented, so that the prefix retains its identity. Thus, the preferred
pronunciation of kilometer places the accent on the first syllable, not the second.

*The use of these prefixes should be avoided, except for the measurement of areas and volumes and for the
nontechnical use of centimeter, as for body and clothing measurements.

The conversion of these units into meters, kilograms, and newtons, respectively, can be effected by
simply moving the decimal point three places to the right or to the left. For example, to convert 3.82 km
into meters, move the decimal point three places to the right:

3.82km = 3820 m

Similarly, to convert 47.2 mm into meters, move the decimal point three places to the left:

47.2mm = 0.0472 m

Using engineering notation, you can also write

3.82km = 3.82x 10°m
47.2mm = 47.2 x 10 % m

The multiples of the unit of time are the minute (min) and the hour (h). Because 1 min = 60 s and

1h = 60 min = 3600 s, these multiples cannot be converted as readily as the others.

By using the appropriate multiple or submultiple of a given unit, you can avoid writing very large
or very small numbers. For example, it is usually simpler to write 427.2 km rather than 427 200 m and

2.16 mm rather than 0.002 16 m."
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Units of Area and Volume. The unit of area is the square meter (m?), which represents the

area of a square of side 1 m; the unit of volume is the cubic meter (m3), which is equal to the volume of

a cube of side 1 m. To avoid exceedingly small or large numerical values when computing areas and
volumes, we use systems of subunits obtained by respectively squaring and cubing not only the
millimeter, but also two intermediate submultiples of the meter: the decimeter (dm) and the “Page 8
centimeter (cm). By definition, _

ldm=01m=10—1m

lcm=0.0lm=10"2m
Imm = 0.00lm = 10°m

Therefore, the submultiples of the unit of area are

1dm® = (1 dm)2 =

1cem? = (1 cm)2 =

Similarly, the submultiples of the unit of volume are

1dm’® = (1dm)* = (10 'm)’ = 107% m?

(102m)° = 1076 m?
3

lem? = (1 Cm)3

1 mm?® = (1 mm)3 = (1073111) = 10" m?

Note that when measuring the volume of a liquid, the cubic decimeter (dm3> is usually referred to as a

liter (L).

Table 1.2 shows other derived SI units used to measure the moment of a force, the work of a force,
etc. Although we will introduce these units in later chapters as they are needed, we should note an
important rule at this time: When a derived unit is obtained by dividing a base unit by another ~ “page 9
base unit, you may use a prefix in the numerator of the derived unit, but not in its denominator.
For example, the constant k of a spring that stretches 20 mm under a load of 100 N is expressed as
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100 N 100 N

k= =5000 N/m or k=5kN/m

= 20mm _ 0.020m

but never as k = 5 N/mm.

Table 1.2  Principal SI Units Used in Mechanics

Quantity Unit Symbaol Formula
Acceleration Meter per second squared e m's”
Angle Radian rad
Angular acceleration Radian per second squared rad/s’
Angular velocity Radian per second radfs
Area Square meter m”
Density Kilogram per cubic meter e kg/m®
Energy Joule ] N-m
Force Newton N kg-m/s”
Frequency Hertz Hz g
Impulse Newton-second S kg-m/s
Length Meter m i
Mass Kilogram kg i
Moment of a force Newton-meter i N-m
Power Watt W s
Pressure Pascal Pa N/m’
Stress Pascal Pa N/m’
Time Second 5 ¥
Velocity Meter per second m's
Volume

Liguids Liter i 10 m’

Solids Cubic meter e m’
Work Joule ] N-m

TSupplementary unit (1 revolution = 27 rad = 360°).

3;Base unit.

U.S. Customary Units. Most practicing American engineers still commonly use a system in
which the base units are those of length, force, and time. These units are, respectively, the foot (ft), the
pound (Ib), and the second (s). The second is the same as the corresponding SI unit. The foot is defined
as 0.3048 m. The pound is defined as the weight of a platinum standard, called the standard pound,
which is kept at the National Institute of Standards and Technology outside, Washington, D.C., the mass
of which is 0.453 592 43 kg. Because the weight of a body depends upon the earth’s gravitational
attraction, which varies with location, the standard pound should be placed at sea level and at a latitude
of 45° to properly define a force of 1 lb. Clearly the U.S. customary units do not form an absolute
system of units. Because they depend upon the gravitational attraction of the earth, they form a
gravitational system of units.

Although the standard pound also serves as the unit of mass in commercial transactions in the
United States, it cannot be used that way in engineering computations, because such a unit would not be
consistent with the base units defined in the preceding paragraph. Indeed, when acted upon by a force of
1 Ib—that is, when subjected to the force of gravity—the standard pound has the acceleration due to
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gravity, g = 32.2ft/ 52 (Fig. 1.4), not the unit acceleration required by Eq. (1.1). The unit of mass

consistent with the foot, the pound, and the second is the mass that receives an acceleration of 1 ft/ s2

when a force of 1 1b is applied to it (Fig. 1.5). This unit, sometimes called a slug, can be derived from

the equation F' = ma after substituting 1 Ib for F and 1 ft/ s? for a. We have

F=ma 1lb=(1 slug)(lft/s2>

This gives us

1.6
11b (1.6)

= 11b-s?/ft
1ft/s?

1slug =

m = 1 1b mass
a=13221 F=11h
Fig. 1.4 A body of 1 pound mass acted upon by a force of 1 pound

has an acceleration of 32.2 ft/ s,

d =

m=1slug
(= 1 1b-s31t)

Fig. 1.5 A force of 1 pound applied to a body of mass of 1 slug

produces an acceleration of 1 ft/ s°.

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

Comparing Figs. 1.4 and 1.5, we conclude that the slug is a mass 32.2 times larger than the mass of the
standard pound.

The fact that, in the U.S. customary system of units, bodies are characterized by their weight in
pounds rather than by their mass in slugs is convenient in the study of statics, where we constantly deal
with weights and other forces and only seldom deal directly with masses. However, in the study of
dynamics, where forces, masses, and accelerations are involved, the mass m of a body is expressed in
slugs when its weight W is given in pounds. Recalling Eq. (1.4), we write

(1.7)

m =

w
g

Page 10
where g is the acceleration due to gravity (g =32.21t/ s2> .

Other U.S. customary units frequently encountered in engineering problems are the mile (mi), equal
to 5280 ft; the inch (in.), equal to (1/12) ft; and the kilopound (kip), equal to 1000 Ib. The ton is often
used to represent a mass of 2000 b but, like the pound, must be converted into slugs in engineering
computations.

The conversion into feet, pounds, and seconds of quantities expressed in other U.S. customary units
is generally more involved and requires greater attention than the corresponding operation in SI units.

For example, suppose we are given the magnitude of a velocity v = 30 mi/h and want to convert it to

ft/s. First we write

Because we want to get rid of the unit miles and introduce instead the unit feet, we should multiply the
right-hand member of the equation by an expression containing miles in the denominator and feet in the
numerator. However, because we do not want to change the value of the right-hand side of the equation,

the expression used should have a value equal to unity. The quotient (5280 ft)/(1 mi) is such an

expression. Operating in a similar way to transform the unit hour into seconds, we have
i 280 ft 1h
v —(302L) (2280
h 1 mi 3600 s

Carrying out the numerical computations and canceling out units that appear in both the numerator and
the denominator, we obtain
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ft
v=44— =44 ft/s
S

1.4 CONVERTING BETWEEN TWO SYSTEMS
OF UNITS

In many situations, an engineer might need to convert into SI units a numerical result obtained in U.S.
customary units or vice versa. Because the unit of time is the same in both systems, only two kinetic
base units need be converted. Thus, because all other kinetic units can be derived from these base units,
only two conversion factors need be remembered.

Units of Length. By definition, the U.S. customary unit of length is

It follows that

or

Also,

or

Units of Force.
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1ft = 0.3048 m
1mi = 5280 ft = 5280(0.3048 m)= 1609 m
(1.9)
1mi—1.609km
Lin, = —f = — (0.3048 m)= 0.0254
m. = E = E . m)=— U. m
Page 11
(1.10)

lin.= 25.4mm

Recall that the U.S. customary unit of force (pound) is defined as the weight of the
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standard pound (of mass 0.4536 kg) at sea level and at a latitude of 45° (where g = 9.807 m/s?). Then,

using Eq. (1.4), we write

W =mg
11b =(0.4536 kg) (9.807 m/s?)= 4.448 kg-m /s

From Egq. (1.5), this reduces to

(1.11)
11b = 4.448N

Units of Mass. The U.S. customary unit of mass (slug) is a derived unit. Thus, using Egs. (1.6),
(1.8), and (1.11), we have

11b 4.448 N
1slug = 11b-s?/ft = = = 14.59 N-s?/m
1ft/s>  0.3048m/s?

Again, from Eq. (1.5),

(1.12)
1slug = 11b-s?/ft = 14.59 kg

Although it cannot be used as a consistent unit of mass, recall that the mass of the standard pound is, by
definition,

(1.13)
1 pound mass = 0.4536 kg

We can use this constant to determine the mass in SI units (kilograms) of a body that has been
characterized by its weight in U.S. customary units (pounds).

To convert a derived U.S. customary unit into SI units, simply multiply or divide by the appropriate

conversion factors. For example, to convert the moment of a force that is measured as M = 47 lb-in.

into SI units, use Egs. (1.10) and (1.11) and write
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M =471b-in. = 47(4.448 N)(25.4 mm)
=5310 N-mm = 5.31 N-m

You can also use conversion factors to convert a numerical result obtained in SI units into U.S.

customary units. For example, if the moment of a force is measured as M = 40 N-m, follow the

procedure at the end of Sec. 1.3 to write

11b 1ft
M =40 N-m =(40 N-m)
4.448 N 0.3048 m

- — = — . —

Photo 1.2 In 1999, The Mars Climate Orbiter entered orbit around

Mars at too low an altitude and disintegrated. Investigation showed
that the software on board the probe interpreted force instructions in
newtons, but the software at mission control on the earth was

generating those instructions in terms of pounds.
Source: NASA/JPL-Caltech

Carrying out the numerical computations and canceling out units that appear in both the numerator and
the denominator, you obtain

M = 29.51b-ft

The U.S. customary units most frequently used in mechanics are listed in Table 1.3 with their SI
equivalents. Page 12

Table 1.3 U.S. Customary Units and Their SI Equivalents
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Quantity U.S. Customary Unit S| Equivalent
Acceleration fi/s” 0.3048 m/s’

n./s" 0.0254 m/s’
Area fit? 0.0020 m?

in” 645.2 mm’
Energy fi-lb 1.356 ]
Farce kip 4,448 kN

Ib 4448 N

oz 02780 N
Impulse Ib-s 4,448 N-s
Length fit 0.3048 m

. 2540 mm

mi 1.609 km
Mass OZ Mass 2835 g

Ib mass 0.4536 kg

shag 14.59 kg

ton 07.2 kg
Moment of a force Ib-fi 1.356 N-m

Ib-in. 01130 N-m
Moment of inertia

Of an area in* 0.4162 x 10° mm*
Of a mass Ib-fi-5 1.356 kg-m®

Momentum Ib-s 4.448 kg-m's
Power fit-lb/'s 1.356 W

hp T45.T W
Pressure or stress I/ fit? 47.88 Pa

Ib/in® (psi) 6.895 kPa
WVelocity ft's 0.3048 m's

n.fs 0.0254 m's

mih (mph) 0.4470 m's

mi‘h (mph) 1.609 km'h
Volume ft’ 0.02832 m’

n’ 16.39 cm’
Ligquids gal 3TES L

qt 0.9464 L
Work fit-lb 1.356 T

1.5 METHOD OF SOLVING PROBLEMS

You should approach a problem in mechanics as you would approach an actual engineering situation. By
drawing on your own experience and intuition about physical behavior, you will find it easier to
understand and formulate the problem. Once you have clearly stated and understood the problem,

however, there is no place in its solution for arbitrary methodologies.

Every step you take in the solution must be justified on this basis. Strict rules must be followed, which
lead to the solution in an almost automatic fashion, leaving no room for your intuition or “feeling.” After

you have obtained an answer, you should check it. Here again, you may call upon your common_page 13
sense and personal experience. If you are not completely satisfied with the result, you should
carefully check your formulation of the problem, the validity of the methods used for its solution, and

the accuracy of your computations.
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In general, you can usually solve problems in several different ways; there is no one approach that
works best for everybody. However, we have found that students often find it helpful to have a general
set of guidelines to use for framing problems and planning solutions. In the Sample Problems throughout
this text, we use a four-step method for approaching problems, which we refer to as the SMART
methodology: Strategy, Modeling, Analysis, and Reflect and Think.

1. Strategy. The statement of a problem should be clear and precise, and it should contain the given
data and indicate what information is required. The first step in solving the problem is to decide
what concepts you have learned that apply to the given situation and to connect the data to the
required information. It is often useful to work backward from the information you are trying to
find: Ask yourself what quantities you need to know to obtain the answer, and if some of these
quantities are unknown, how you can find them from the given data.

2. Modeling. The first step in modeling is to define the system; that is, clearly define what you are
setting aside for analysis. After you have selected a system, draw a neat sketch showing all
quantities involved with a separate diagram for each body in the problem. For equilibrium
problems, indicate clearly the forces acting on each body along with any relevant geometrical data,
such as lengths and angles. (These diagrams are known as free-body diagrams and are detailed in
Sec. 2.3C and the beginning of Chap. 4.)

3. Analysis. After you have drawn the appropriate diagrams, use the fundamental principles of
mechanics listed in Sec. 1.2 to write equations expressing the conditions of rest or motion of the
bodies considered. Each equation should be clearly related to one of the free-body diagrams and
should be numbered. If you do not have enough equations to solve for the unknowns, try selecting
another system, or reexamine your strategy to see if you can apply other principles to the problem.
Once you have obtained enough equations, you can find a numerical solution by following the usual
rules of algebra, neatly recording each step and the intermediate results. Alternatively, you can
solve the resulting equations with your calculator or a computer. (For multipart problems, it is
sometimes convenient to present the Modeling and Analysis steps together, but they both are
essential parts of the overall process.)

4. Reflect and Think. After you have obtained the answer, check it carefully. Does it make sense in
the context of the original problem? For instance, the problem may ask for the force at a given point
of a structure. If your answer is negative, what does that mean for the force at the point?

You can often detect mistakes in reasoning by checking the units. For example, to determine the
moment of a force of 50 N about a point 0.60 m from its line of action, we write (Sec. 3.3A)

M = Fd =(30N)(0.60m)= 30 N-m

The unit N.-m obtained by multiplying newtons by meters is the correct unit for the moment of a force;

if you had obtained another unit, you would know that some mistake had been made. Page 14

You can often detect errors in computation by substituting the numerical answer into an
equation that was not used in the solution and verifying that the equation is satisfied. The importance of
correct computations in engineering cannot be overemphasized.
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@ Case Study 1.1

Located in Baltimore, Maryland, the Carrollton Viaduct is the oldest
railroad bridge in North America and continues in revenue service today.
Construction was completed and the bridge put into operation in 1829 by
the Baltimore & Ohio Railroad. The structure includes the stone masonry
arch shown in CS Photo 1.1, and spans 80 ft. Assuming that the span is

solid granite having a unit weight of 1701b/ ft3, and that its dimensions

can be approximated by those given in CS Fig. 1.1, let’s estimate the
weight of this span.

......

i o,

CS Photo 1.1 The Carrollton Viaduct in Baltimore, MD. AREA
Bulletin 732 Volume 92 (October 1991)

Courtesy of AREMA
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CS Fig. 1.1 Assumed arch span geometry.

STRATEGY: First calculate the volume of the span, and then _Page 15
multiply this volume by the unit weight.

MODELING: The span can be represented by a body where a
parabolic portion has been removed from a rectangular portion, as shown
in CS Fig. 1.2 (with both parts having a depth of 26 ft).

[ e
i -1/

| 00—
CS Fig. 1.2 Modeling the arch span.

ANALYSIS: Volume of the Span, V. Removing the parabolic region
from the rectangle,

2

V = |(80 ft)(45 ft)—-(80 £t) (37 £t) | (26 ft) = 42, 300 fit3

Weight of the Span, W. Multiplying the volume by the unit weight,
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174 :<170 1b/ft3X42,300 ft3) — 7.19 x 10%b

REFLECT and THINK: Though completed in 1829, regular

locomotive usage didn’t begin on this bridge until 1831 with the steam-
powered York, which weighed approximately 7000 1b. (Up to that point,
trains had been pulled by horses.) Then in 1832, there was initially concern
regarding the ability of the stone arch to support a newer and heavier

locomotive, the 13,000-1b Atlantic.” As our knowledge of engineering
mechanics has progressed since then, we better understand that a massive
arch like this can indeed sustain such loads quite easily. This is illustrated
by the modern-day coal cars shown crossing this same span in CS Photo
1.1, where each car has a rated weight of 263,000 Ib. Arches derive load-
carrying capacity through compression and are well suited for stone
masonry construction, because it provides high compressive strength. And
while trains traversing the bridge would tend to introduce other types of
effects into the span, the massiveness of the span itself (which we

estimated to be 7.19 x 10° Ib) far exceeds the car loads and therefore

keeps the barrel (or portal) of the arch in compression.

*Adapted from American Railway Engineering Association, Bulletin 732, October 1991, p. 221.

1.6 NUMERICAL ACCURACY

The accuracy of the solution to a problem depends on two items: (1) the accuracy of the given data and
(2) the accuracy of the computations performed. The solution cannot be more accurate than the less
accurate of these two items. Page 16

For example, suppose the loading of a bridge is known to be 75,000 1b with a possible error
of 100 Ib either way. The relative error that measures the degree of accuracy of the data is

1001b

—  =0.0013 =0.13%
75,000 1b

In computing the reaction at one of the bridge supports, it would be meaningless to record it as 14,322
Ib. The accuracy of the solution cannot be greater than 0.13%, no matter how precise the computations
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are, and the possible error in the answer may be as large as (0.13/100)(14, 322 1b)~ 20 lb. The answer

should be properly recorded as 14, 320 £ 20 Ib.

In engineering problems, the data are seldom known with an accuracy greater than 0.2%. It is,
therefore, seldom justified to write answers with an accuracy greater than 0.2%. A practical rule is to use
four figures to record numbers beginning with a “1” and three figures in all other cases. Unless
otherwise indicated, you should assume the data given in a problem are known with a comparable
degree of accuracy. A force of 40 Ib, for example, should be read as 40.0 Ib, and a force of 15 Ib should
be read as 15.00 lb.

Electronic calculators are widely used by practicing engineers and engineering students. The speed
and accuracy of these calculators facilitate the numerical computations in the solution of many
problems. However, you should not record more significant figures than can be justified merely because
you can obtain them easily. As noted previously, an accuracy greater than 0.2% is seldom necessary or
meaningful in the solution of practical engineering problems.

TA more accurate definition of the weight W should take into account the earth's rotation
TSI stands for Systeme International d'Unités (French).
*Also known as a metric ton.

T Note that when more than four digits appear on either side of the decimal point to express a quantity in S| units—as
in 427 000 m or 0.002 16 m—use spaces, hever commas, to separate the digits into groups of three. This practice
avoids confusion with the comma used in place of a decimal point, which is the convention in many countries.
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Digital Vision/Getty Images

Statics of Particles

Many engineering problems can be solved by considering the
equilibrium of a “particle.” In the case of this beam that is
being hoisted into position, a relation between the tensions in
the various cables involved can be obtained by considering
the equilibrium of the hook to which the cables are attached.

Page 18
Objectives

e Describe force as a vector quantity.

e Examine vector operations useful for the analysis
of forces.
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Determine the resultant of multiple forces acting
on a particle.

Resolve forces into components.

Add forces that have been resolved into rectangular
components.

Introduce the concept of the free-body diagram.

Use free-body diagrams to assist in the analysis of
planar and spatial particle equilibrium problems.

\
,
Introduction
2.1 ADDITION OF PLANAR FORCES
2.1A Force on a Particle: Resultant of Two Forces
2.1B Vectors
2.1C Addition of Vectors
2.1D Resultant of Several Concurrent Forces
2.1E Resolution of a Force into Components
2.2 ADDING FORCES BY COMPONENTS
2.2A Rectangular Components of a Force: Unit Vectors
2.2B Addition of Forces by Summing x and y Components
2.3 FORCES AND EQUILIBRIUM IN A
PLANE
2.3A Equilibrium of a Particle
2.3B Newton’s First Law of Motion
2.3C Free-Body Diagrams and Problem Solving
2.4 ADDING FORCES IN SPACE
2.4A Rectangular Components of a Force in Space
2.4B Force Defined by Its Magnitude and Two Points on Its
Line of Action
2.4C Addition of Concurrent Forces in Space
2.5 FORCES AND EQUILIBRIUM IN SPACE
.
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Introduction

In this chapter, you will study the effect of forces acting on particles. By the word “particle” we do not
mean only tiny bits of matter, like an atom or an electron. Instead, we mean that the sizes and shapes of
the bodies under consideration do not significantly affect the solutions of the problems. Another way of
saying this is that we assume all forces acting on a given body act at the same point. This does not mean
the object must be tiny—if you were modeling the mechanics of the Milky Way galaxy, for example,
you could treat the Sun and the entire Solar System as just a particle.

Our first step is to explain how to replace two or more forces acting on a given particle by a single
force having the same effect as the original forces. This single equivalent force is called the resultant of
the original forces. After this step, we will derive the relations among the various forces acting on a
particle in a state of equilibrium. We will use these relations to determine some of the forces acting on
the particle.

The first part of this chapter deals with forces contained in a single plane. Because two lines
determine a plane, this situation arises any time we can reduce the problem to one of a particle subjected
to two forces that support a third force, such as a crate suspended from two chains or a traffic light held
in place by two cables. In the second part of this chapter, we examine the more general case of forces in
three-dimensional space.

2.1 ADDITION OF PLANAR FORCES

Many important practical situations in engineering involve forces in the same plane. These include
forces acting on a pulley, projectile motion, and an object in equilibrium on a flat surface. We will
examine this situation first before looking at the added complications of forces acting in three-

dimensional space. Page 19

2.1A Force on a Particle: Resultant of Two
Forces

A force represents the action of one body on another. It is generally characterized by its point of
application, its magnitude, and its direction. Forces acting on a given particle, however, have the same
point of application. Thus, each force considered in this chapter is completely defined by its magnitude
and direction.

The magnitude of a force is characterized by a certain number of units. As indicated in Chap. 1, the

ST units used by engineers to measure the magnitude of a force are the newton (N) and its multiple the

kilonewton (kN), which is equal to 1000 N. The U.S. customary units used for the same purpose are the

pound (Ib) and its multiple the kilopound (kip), which is equal to 1000 Ib. We saw in Chap. 1 that a
force of 445 N is equivalent to a force of 100 Ib or that a force of 100 N equals a force of about 22.5 1Ib.

We define the direction of a force by its line of action and the sense of the force. The line of action
is the infinite straight line along which the force acts; it is characterized by the angle it forms with some
fixed axis (Fig. 2.1). The force itself is represented by a segment of that line; through the use of an
appropriate scale, we can choose the length of this segment to represent the magnitude of the force. We
indicate the sense of the force by an arrowhead. It is important in defining a force to indicate its sense.
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Two forces having the same magnitude and the same line of action but a different sense, such as the
forces shown in Fig. 2.1a and b, have directly opposite effects on a particle.

- Fixed axis - Fixed axis

la) (£
Fig. 2.1 The line of action of a force makes an angle with a given
fixed axis. (a) The sense of the 10-1b force is away from particle A;
(b) the sense of the 10-1b force is toward particle A.

Experimental evidence shows that two forces P and Q acting on a particle A (Fig. 2.2a) can be replaced
by a single force R that has the same effect on the particle (Fig. 2.2¢). This force is called the resultant
of the forces P and Q. We can obtain R, as shown in (Fig. 2.2b), by constructing a parallelogram, using

P and Q as two adjacent sides. The diagonal that passes through A represents the resultant. This

method for finding the resultant is known as the parallelogram law for the addition of two forces. This

law is based on experimental evidence; it cannot be proved or derived mathematically.

la)

Parzllelogram

Fig. 2.2 (a) Two forces P and Q act on particle A. (b) Draw a
parallelogram with P and Q as the adjacent sides and label the
diagonal that passes through A as R. (c) R is the resultant of the two
forces P and Q and is equivalent to their sum.
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2.1B Vectors

We have just seen that forces do not obey the rules of addition defined in ordinary arithmetic or algebra.
For example, two forces acting at a right angle to each other, one of 4 1b and the other of 3 Ib, add up to
a force of 5 Ib acting at an angle between them, not to a force of 7 1b. Forces are not the only ~ "page 20 ge 20
quantities that follow the parallelogram law of addition. As you will see later, displacements,

velocities, accelerations, and momenta are other physical quantities possessing magnitude and direction
that add according to the parallelogram law. All of these quantities can be represented mathematically
by vectors. Those physical quantities that have magnitude but not direction, such as volume, mass, or
energy, are represented by plain numbers often called scalars to distinguish them from vectors.

Photo 2.1 In its purest form, a tug-of-war pits two opposite and
almost-equal forces against each other. Whichever team can generate
the larger force, wins. As you can see, a competitive tug-of-war can

be quite intense.
DGB/Alamy Stock Photo

Vectors are defined as mathematical expressions possessing magnitude and direction, which
add according to the parallelogram law. Vectors are represented by arrows in diagrams and are
distinguished from scalar quantities in this text through the use of boldface type (P). In longhand

_>
writing, a vector may be denoted by drawing a short arrow above the letter used to represent it ( P >

The magnitude of a vector defines the length of the arrow used to represent it. In this text, we use italic
type to denote the magnitude of a vector. Thus, the magnitude of the vector P is denoted by P.

A vector used to represent a force acting on a given particle has a well-defined point of application
—namely, the particle itself. Such a vector is said to be a fixed, or bound, vector and cannot be moved
without modifying the conditions of the problem. Other physical quantities, however, such as couples
(see Chap. 3), are represented by vectors that may be freely moved in space; these vectors are called free
vectors. Still other physical quantities, such as forces acting on a rigid body (see Chap. 3), are
represented by vectors that can be moved along their lines of action; they are known as sliding vectors.

Two vectors that have the same magnitude and the same direction are said to be equal, regardless if
they have the same point of application (Fig. 2.3); equal vectors may be denoted by the same letter.
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Fig. 2.3 Equal vectors have the same magnitude and the same
direction, even if they have different points of application.

The negative vector of a given vector P is defined as a vector having the same magnitude as P and a

direction opposite to that of P (Fig. 2.4); the negative of the vector P is denoted by —P. The vectors P

and —P are commonly referred to as equal and opposite vectors. Clearly, we have

P +(—-P)

I
=

P
Fig. 2.4 The negative vector of a given vector has the same magnitude
but the opposite direction of the given vector.

2.1C Addition of Vectors

By definition, vectors add according to the parallelogram law. Thus, we obtain the sum of two vectors P
and Q by attaching the two vectors to the same point A and constructing a parallelogram, using P and Q
as two adjacent sides (Fig. 2.5). The diagonal that passes through A represents the sum of the vectors P

and Q, denoted by P + Q. The fact that the sign + is used for both vector and scalar addition should not

cause any confusion if vector and scalar quantities are always carefully distinguished. Note that the

magnitude of the vector P + Q is not, in general, equal to the sum P + @ of the magnitudes of the

vectors P and Q.
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Fig. 2.5 Using the parallelogram law to add two vectors.

Because the parallelogram constructed on the vectors P and Q does not depend on the order in
which P and Q are selected, we conclude that the addition of two vectors is commutative, and we write

(2.1)
P+Q=Q+P

From the parallelogram law, we can derive an alternative method for determining the sum of two
vectors, known as the triangle rule. Consider Fig. 2.5, where the sum of the vectors P and Q has been
determined by the parallelogram law. Because the side of the parallelogram opposite Q is equal “page 21
to Q in magnitude and direction, we could draw only half of the parallelogram (Fig. 2.6a). The
sum of the two vectors thus can be found by arranging P and Q in tip-to-tail fashion and then
connecting the tail of P with the tip of Q. If we draw the other half of the parallelogram, as in Fig.
2.6b, we obtain the same result, confirming that vector addition is commutative.

(b}

Fig. 2.6 The triangle rule of vector addition. (a) Adding vector Q to
vector P equals (b) adding vector P to vector Q.

We define subtraction of a vector as the addition of the corresponding negative vector. Thus, we

determine the vector P — Q, representing the difference between the vectors P and Q, by adding to P

the negative vector —Q (Fig. 2.7). We write
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(2.2)
P-Q=P=+-Q

(et} (b)

Fig. 2.7 Vector subtraction: (a) Subtracting vector Q from vector P is

the same as (b) adding vector —Q to vector P.

Here again we should observe that, although we use the same sign to denote both vector and scalar
subtraction, we avoid confusion by taking care to distinguish between vector and scalar quantities.

We now consider the sum of three or more vectors. The sum of three vectors P, Q, and S is, by
definition, obtained by first adding the vectors P and Q and then adding the vector S to the vector

P + Q. We write

(2.3)
P+Q+S=(P+Q)+S

Similarly, we obtain the sum of four vectors by adding the fourth vector to the sum of the first three. It
follows that we can obtain the sum of any number of vectors by applying the parallelogram law
repeatedly to successive pairs of vectors until all of the given vectors are replaced by a single vector.

If the given vectors are coplanar, i.e., if they are contained in the same plane, we can obtain their
sum graphically. For this case, repeated application of the triangle rule is simpler than applying the
parallelogram law. In Fig. 2.8a, we find the sum of three vectors P, Q, and S in this manner. The triangle

rule is first applied to obtain the sum P + Q of the vectors P and Q; we apply it again to obtain the sum

of the vectors P + Q and S. However, we could have omitted determining the vector P + Q and obtain

the sum of the three vectors directly, as shown in Fig. 2.8b, by arranging the given vectors in tip-to-
tail fashion and connecting the tail of the first vector with the tip of the last one. This is known as
the polygon rule for the addition of vectors. Page 22
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()
Fig. 2.8 Graphical addition of vectors. (a) Applying the triangle rule
twice to add three vectors; (b) the vectors can be added in one step by
the polygon rule; (c) vector addition is associative; (d) the order of
addition is immaterial.

The result would be unchanged if, as shown in Fig. 2.8c, we had replaced the vectors Q and S by

their sum Q + S. We may thus write

(2.4)
P+Q+S=P+Q)+S=P+(Q+8S)

which expresses the fact that vector addition is associative. Recalling that vector addition also has been
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shown to be commutative in the case of two vectors, we can write

P+Q+8=(P+Q)+S=S+(P+Q)
=S+(Q+P)=S+Q+P (25)

This expression, as well as others we can obtain in the same way, shows that the order in which several
vectors are added together is immaterial (Fig. 2.8d).

Product of a Scalar and a Vector. It is convenient to denote the sum P + P by 2P, the sum

P + P + P by 3P, and, in general, the sum of n equal vectors P by the product nP. Therefore, we define

the product nP of a positive integer n and a vector P as a vector having the same direction as P and the
magnitude nP. Extending this definition to include all scalars and recalling the definition of a negative
vector given earlier, we define the product kP of a scalar k and a vector P as a vector having the same
direction as P (if k is positive) or a direction opposite to that of P (if k is negative) and a magnitude
equal to the product of P and the absolute value of k (Fig. 2.9).

P 1.5P

.
Fig. 2.9 Multiplying a vector by a scalar changes the vector’s
magnitude, but not its direction (unless the scalar is negative, in which
case the direction is reversed).

2.1D Resultant of Several Concurrent Forces

Consider a particle A acted upon by several coplanar forces, i.e., by several forces contained in the same
plane (Fig. 2.10a). Because the forces all pass through A, they are also said to be concurrent. We can
add the vectors representing the forces acting on A by the polygon rule (Fig. 2.10b). Because the use of
the polygon rule is equivalent to the repeated application of the parallelogram law, the vector R obtained
in this way represents the resultant of the given concurrent forces. That is, the single force R has the
same effect on the particle A as the given forces. As before, the order in which we add the vectors P, Q,
and S representing the given forces is immaterial.

L5
=]
-]

(g2} ()
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Fig. 2.10 Concurrent forces can be added by the polygon rule.

2.1E Resolution of a Force into Components

We have seen that two or more forces acting on a particle may be replaced by a single force that has the
same effect on the particle. Conversely, a single force F acting on a particle may be replaced by two or
more forces that, together, have the same effect on the particle. These forces are called components of
the original force F, and the process of substituting them for F is called resolving the force F into
components.

Clearly, each force F can be resolved into an infinite number of possible sets of components. Sets of
two components P and Q are the most important as far as practical applications are concerned. However,
even then, the number of ways in which a given force F may be resolved into two components is
unlimited (Fig. 2.11). “Page 23

Fig. 2.11 Three possible sets of components for a given force vector
F.

In many practical problems, we start with a given vector F and want to determine a useful set of
components. Two cases are of particular interest:

1. One of the Two Components, P, Is Known. We obtain the second component, Q, by applying the

triangle rule and joining the tip of P to the tip of F (Fig. 2.12). We can determine the magnitude and
direction of Q graphically or by trigonometry. Once we have determined Q, both components P and
Q should be applied at A.

2. The Line of Action of Each Component Is Known. We obtain the magnitude and sense of the
components by applying the parallelogram law and drawing lines through the tip of F that are
parallel to the given lines of action (Fig. 2.13). This process leads to two well-defined components,
P and Q, which can be determined graphically or computed trigonometrically by applying the law
of sines.
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B F

Fig. 2.12 When component P is known, use the triangle rule to find
component Q.

Fig. 2.13 When the lines of action are known, use the parallelogram
rule to determine components P and Q.

You will encounter many similar cases; for example, you might know the direction of one component
while the magnitude of the other component is to be as small as possible (see Sample Prob. 2.2). In all
cases, you need to draw the appropriate triangle or parallelogram that satisfies the given conditions.

4 )
Sample Problem 2.1

Two forces P and Q act on a bolt A. Determine their resultant.

Q=60N

By P=40N

e

STRATEGY : Two lines determine a plane, so this is a problem of two coplanar forces.
You can solve the problem graphically or by trigonometry.

MODELING: Fora graphical solution, you can use the parallelogram rule or the
triangle rule for addition of vectors. For a trigonometric solution, you can use the law of cosines

and law of sines or use a right-triangle approach.

ANALYSIS:
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Graphical Solution. praw to scale a parallelogram with sides equal to P and Q

(Fig. 1). Measure the magnitude and direction of the resultant. They are

R=98N o= 35° R=98 N £35°

Fig. 1 Parallelogram law applied to add forces P and Q.

You can also use the triangle rule. Draw forces P and Q in tip-to-tail fashion (Fig. 2). Again
measure the magnitude and direction of the resultant. The answers should be the same.

R=08N a = 35° R =98 N 35

Fig. 2 Triangle rule applied to add forces P and Q.

Trigonometric Solution. Using the triangle rule again, you know two sides and
the included angle (Fig. 3). Apply the law of cosines.

R?’=P? + Q? — 2PQ cos B
= (40N)? + (60 N)? — 2(40 N)(60 N) cos 155°
R =97.73N

Fig. 3 Geometry of triangle rule applied to add forces P and Q.
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Now apply the law of sines: Page 24
sinA  sin B sinA  sin 155 (1)
Q@ R 60N  97.73N

Solving Eq. (1) for sin A, you obtain

(60 N) sin 155°
97.73N

sin A =

Using a calculator, compute this quotient, then obtain its arc sine:

A =15.04° a=20"+ A=35.04°

Use three significant figures to record the answer (cf. Sec. 1.6):

R=977TN £2350°

Alternative Trigonometric Solution. construct the right triangle BCD
(Fig. 4) and compute

CD =(60N)sin 25" = 25.36 N
BD =(60N) cos 25° = 54.38 N

Fig. 4 Alternative geometry of triangle rule applied to add forces
P and Q.

Then, using triangle ACD, you have
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¢ 25.36 N s SR
anA= —— — 15.
94.38 N
R = 2.5‘36 R =97.73N
sin A

Again,

a= 20"+ A =3504 R=977 N £35.0°

REFLECT and THINK: an analytical solution using trigonometry provides

for greater accuracy. However, it is helpful to use a graphical solution as a check. Page 25

(" )

SamPle Problem 2.2

Two tugboats are pulling a barge. If the resultant of the forces exerted by the tugboats is a 5000-1b
force directed along the axis of the barge, determine (a) the tension in each of the ropes, given that

a = 45°, (b) the value of a for which the tension in rope 2 is minimum.

STRATEGY : Thisisa problem of two coplanar forces. You can solve the first part

either graphically or analytically. In the second part, a graphical approach readily shows the
necessary direction for rope 2, and you can use an analytical approach to complete the solution.

MODELING: You can use the parallelogram law or the triangle rule to solve part a.
For part b, use a variation of the triangle rule.

ANALYSIS: a. Tension for o« = 45°.

Graphical Solution. use the parallelogram law. The resultant (the diagonal of the
parallelogram) is equal to 5000 Ib and is directed to the right. Draw the sides parallel to the ropes
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(Fig. 1). If the drawing is done to scale, you should measure

T, = 3700 Ib T, = 2600 Ib
T, N
A
{s]
m”ﬁﬁ“ﬁjbﬁf\\
: p

ard -
-

Fig. 1 Parallelogram law applied to add forces T; and T,

Trigonometric Solution. use the triangle rule. Note that the triangle in Fig. 2
represents half of the parallelogram shown in Fig. 1. Using the law of sines,

T 5000 1b

sin 105°

T B
sin 45°

sin 30°

Fig. 2 Triangle rule applied to add forces T; and T,.

With a calculator, compute and store the value of the last quotient. Multiply this value

successively by sin 45° and sin 30°, obtaining

T, = 36460 1b T3 = 2590 b

b. Value of a for Minimum T2 . To determine the value of « for which

the tension in rope 2 is minimum, use the triangle rule again. In Fig. 3, line 1-1" is the known

direction of T';. Several possible directions of T5 are shown by the lines 2-2'. The minimum
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value of 75 occurs when T'; and Ty are perpendicular (Fig. 4). Thus, the minimum value of 75 is

Fig. 3 Determination of direction of minimum T>.

T> =(50001b) sin 30" = 2500 1b

000 1b

Fig. 4 Triangle rule applied for minimum T,.

Corresponding values of T and «a are

Ty = (5000 1b) cos 30° = 4330 1b
a =90" —30°

REFLECT and THINK: rartaisa straightforward application of resolving a

vector into components. The key to part b is recognizing that the minimum value of 75 occurs
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P 26
when T; and T are perpendicular. s

Problems

2.1 and 2.2 Determine graphically the magnitude and direction of the resultant of the two
forces shown using (a) the parallelogram law, (b) the triangle rule.

600N
i

Fig. P2.1

-
X o

5001

Fig. P2.2

2.3 Two structural members B and C are bolted to bracket A. Knowing that both members

are in tension and that P = 10 kN and @ = 15 kN, determine graphically the

magnitude and direction of the resultant force exerted on the bracket using (a) the
parallelogram law, (b) the triangle rule.
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2.4

2.5

2.6

2.7
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Fig. P2.3 and P2.4

Two structural members B and C are bolted to bracket A. Knowing that both members

are in tension and that P = 6 kips and ) = 4 kips, determine graphically the

magnitude and direction of the resultant force exerted on the bracket using (a) the
parallelogram law, (b) the triangle rule.

A steel tank is to be positioned in an excavation. Knowing that & = 20°, determine by

trigonometry (a) the required magnitude of the force P if the resultant R of the two
forces applied at A is to be vertical, (b) the corresponding magnitude of R. Page 27

425 1b P

a}_LA | a

Fig. P2.5 and P2.6

A steel tank is to be positioned in an excavation. Knowing that the magnitude of P is

500 lb, determine by trigonometry (a) the required angle a if the resultant R of the two
forces applied at A is to be vertical, (b) the corresponding magnitude of R.

A trolley that moves along a horizontal beam is acted upon by two forces as shown. (a)

Knowing that a = 25°, determine by trigonometry the magnitude of the force P so that

the resultant force exerted on the trolley is vertical. (b) What is the corresponding
magnitude of the resultant?
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2.8

2.9

Fig. P2.7 and P2.11

A stake is being pulled out of the ground by means of two ropes, as shown. Knowing

that « = 30°, determine by trigonometry (a) the magnitude of the force P so that the

resultant force exerted on the stake is vertical, (b) the corresponding magnitude of the
resultant.

Fig. P2.8

Two forces are applied as shown to a hook support. Knowing that the magnitude of P is

35 N, determine by trigonometry (a) the required angle « if the resultant R of the two
forces applied to the support is to be horizontal, (b) the corresponding magnitude of R.

Fig. P2.9
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2.10

2.11

2.12

2.13

2.14
2.15

.

For the stake of Prob. 2.8, knowing that the tension in one rope is 120 N, determine by
trigonometry the magnitude and direction of the force P so that the resultant is a
vertical force of 160 N. Page 28

A trolley that moves along a horizontal beam is acted upon by two forces, as
shown. Determine by trigonometry the magnitude and direction of the force P so that
the resultant is a vertical force of 2500 N.

For the hook support shown, determine by trigonometry the magnitude and direction of
the resultant of the two forces applied to the hook.

3040 b

Fig. P2.12

The cable stays AB and AD help support pole AC. Knowing that the tension is 120 Ib in
AB and 40 1b in AD, determine by trigonometry the magnitude and direction of the
resultant of the forces exerted by the stays at A.

10 fi

! 8 fi | 6ft —

Fig. P2.13

Solve Prob. 2.4 by trigonometry.

For the steel tank of Prob. 2.5, determine by trigonometry (a) the magnitude and
direction of the smallest force P for which the resultant R of the two forces applied at A
is vertical, (b) the corresponding magnitude of R. Page 29

J
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2.2 ADDING FORCES BY COMPONENTS

In Sec. 2.1E, we described how to resolve a force into components. Here we discuss how to add forces
by using their components, especially rectangular components. This method is often the most convenient
way to add forces and, in practice, is the most common approach. (Note that we can readily extend the
properties of vectors established in this section to the rectangular components of any vector quantity,
such as velocity or momentum.)

2.2A Rectangular Components of a Force:
Unit Vectors

In many problems, it is useful to resolve a force into two components that are perpendicular to each

other. Figure 2.14 shows a force F resolved into a component F,, along the x axis and a component F,

along the y axis. The parallelogram drawn to obtain the two components is a rectangle, and F, and F,,

are called rectangular components.

Fig. 2.14 Rectangular components of a force F.

The x and y axes are usually chosen to be horizontal and vertical, respectively, as in Fig. 2.14; they
may, however, be chosen in any two perpendicular directions, as shown in Fig. 2.15. In determining the
rectangular components of a force, you should think of the construction lines shown in Figs. 2.14 and
2.15 as being parallel to the x and y axes, rather than perpendicular to these axes. This practice will help
avoid mistakes in determining oblique components, as in Sec. 2.1E.

“\

Fig. 2.15 Rectangular components of a force F for axes rotated away
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from horizontal and vertical.

Force in Terms of Unit Vectors. To simplify working with rectangular components, we

introduce two vectors of unit magnitude, directed respectively along the positive x and y axes. These
vectors are called unit vectors and are denoted by i and j, respectively (Fig. 2.16). Recalling the
definition of the product of a scalar and a vector given in Sec. 2.1C, note that we can obtain the Page 30

rectangular components F, and F,, of a force F by multiplying respectively the unit vectors i

and j by appropriate scalars (Fig. 2.17). We have

2.6)
and
@.7)
F = Fyi + Fj
¥

i kZMagnitude =1

i X

Fig. 2.16 Unit vectors along the x and y axes.

F,=F, j= Fsin 8j

F
A
| i F,

Fig. 2.17 Expressing the components of F in terms of unit vectors
with scalar multipliers.

I
I
I
|
I
I
2 X

= F,i=F cos 6i
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The scalars F, and F,, may be positive or negative, depending upon the sense of F, and of F, but their

absolute values are equal to the magnitudes of the component forces F, and F,, respectively. The

scalars F;, and F), are called the scalar components of the force F, whereas the actual component forces

F, and F, should be referred to as the vector components of F. However, when there exists no

possibility of confusion, we may refer to the vector as well as the scalar components of F as simply the

components of F. Note that the scalar component F, is positive when the vector component F', has the
same sense as the unit vector i (i.e., the same sense as the positive x axis) and is negative when F, has

the opposite sense. A similar conclusion holds for the sign of the scalar component F,.

Scalar Components. Denoting by F the magnitude of the force F and by 6 the angle
between F and the x axis, which is measured counterclockwise from the positive x axis (see Fig. 2.17),
we may express the scalar components of F as

(2.8)
F, = F cos 6 F,=Fsin6

These relations hold for any value of the angle 6 from 0° to 360°, and they define the signs and absolute

values of the scalar components F, and F.

4 )
Concept Application 2.1

A force of 800 N is exerted on a bolt A, as shown in Fig. 2.18a. Determine
the horizontal and vertical components of the force.

Solution
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To obtain the correct sign for the scalar components F,, and F;, we could

substitute the value 180° — 35° = 145° for 0 in Egs. (2.8). However, it is

often more practical to determine by inspection the signs of F,, and F,

(Fig. 2.18b) and then use the trigonometric functions of the angle

a = 35°. Therefore,

F, = —Fcosa =(800N)cos35° = —655 N
Fy=+Fsina =+(800N)sin35° = +459 N

Fig. 2.18 (a) Force F exerted on a bolt; (b) rectangular
components of F.

The vector components of F are thus

Telegram: @uni_k
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F, = — (665 N)i F, = +(459 N)j

and we may write F in the form

F = —(655 N)i +(459 N);

\ J
f Page

Concept Application 2.2

A man pulls with a force of 300 N on a rope attached to the top of a
building, as shown in Fig. 2.19a. What are the horizontal and vertical
components of the force exerted by the rope at point A?

Solution

You can see from Fig. 2.19b that

F; = +(300 N) cos a F, = —(300 N) sin

(a) (B)

Fig. 2.19 (a) A man pulls on a rope attached to a building; (b)
components of the rope’s force F.

Observing that AB = 10 m, we find from Fig. 2.19a

Telegram: @uni_k
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_8m_8m_4 . ~6m  6m 3
COosSa = AB = 10m = 5 Sin o = AB = 10m 5
We thus obtain
4 3
Fm:+(300N)E = +240N Fy:—(300N)g = 180N

This gives us a total force of

.

F =(240N)i —(180 N)j

Y

Direction of a Force. When a force F is defined by its rectangular components F, and F), (see

Fig. 2.17), we can find the angle 6 defining its direction from

s

2.9
R, (2.9)
tan 0 = —
X
We can obtain the magnitude F of the force by applying the Pythagorean theorem,
(2.10)
F=,/F2+F}
or by solving for F from one of the Egs. (2.8). Page 32
\

Concept Application 2.3

magnitude of the force and the angle 6 it forms with the horizontal.

Telegram: @uni_k

A force F =(700 1b)i + (1500 1b)j is applied to a bolt A. Determine the
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Solution

First draw a diagram showing the two rectangular components of the force
and the angle 0 (Fig. 2.20). From Eq. (2.9), you obtain

F, 1500 1b
tan 0 = — =
F 700 1b

Z

F, = (1500 Ib)

=

:HT

Fig. 2.20 Components of a force F exerted on a bolt.

Using a calculator, enter 1500 1b and divide by 700 lb; computing the

arc tangent of the quotient gives you # = 65.0°. Solve the second of Egs.

(2.8) for F to get

Fy 1500 1b

= — =16551b
sin 6 sin 65.0

F =

The last calculation is easier if you store the value of F,, when originally

entered; you may then recall it and divide it by sin 6.

J

\_

2.2B Addition of Forces by Summing x and y

Components
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We described in Sec. 2.1A how to add forces according to the parallelogram law. From this law, we
derived two other methods that are more readily applicable to the graphical solution of problems: the
triangle rule for the addition of two forces and the polygon rule for the addition of three or more forces.
We also explained that the force triangle used to define the resultant of two forces could be used to
obtain a trigonometric solution.

However, when we need to add three or more forces, we cannot obtain any practical trigonometric
solution from the force polygon that defines the resultant of the forces. In this case, the best approach is
to obtain an analytic solution of the problem by resolving each force into two rectangular components.

Consider, for instance, three forces P, Q, and S acting on a particle A (Fig. 2.21a). Their resultant R
is defined by the relation

(2.11)
R=P+Q+S
|
IS
q A
Q
(a)
Fig. 2.21 (a) Three forces acting on a particle.
Resolving each force into its rectangular components, we have
=(Pr + Qo+ S2)i+(Py + Qy+ Sy)j
From this equation, we can see that Page 33
(2.12)
or for short,
(2.13)
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We thus conclude that when several forces are acting on a particle, we obtain the scalar components

R, and R, of the resultant R by adding algebraically the corresponding scalar components of the

given forces. (Clearly, this result also applies to the addition of other vector quantities, such as
velocities, accelerations, or momenta.)

In practice, determining the resultant R is carried out in three steps, as illustrated in Fig. 2.21.

1. Resolve the given forces (Fig. 2.21a) into their x and y components (Fig. 2.21b).

Fig. 2.21 (b) Rectangular components of each force.

2. Add these components to obtain the x and y components of R (Fig. 2.21c).

A

(eh

Fig. 2.21 (c) Summation of the components.

3. Apply the parallelogram law to determine the resultant R = R, i + R,j (Fig. 2.214d).
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(d)

Fig. 2.21 (d) Determining the resultant from its components.

The procedure just described is most efficiently carried out if you arrange the computations in a
table (see Sample Prob. 2.3). Although this is the only practical analytic method for adding three or
more forces, it is also often preferred to the trigonometric solution in the case of adding two forces.

r

SamPle Problem 2.3

—

Four forces act on bolt A, as shown. Determine the resultant of the forces on the bolt.

¥
F,=80 N

o

STRATEGY : The simplest way to approach a problem of adding four forces is to

resolve the forces into components.

MODELING: as we mentioned, solving this kind of problem is usually easier if you

arrange the components of each force in a table. In the table here, we entered the x and y
components of each force as determined by trigonometry (Fig. 1). According to the convention
adopted in this section, the scalar number representing a force component is positive if the force
component has the same sense as the corresponding coordinate axis. Thus, x components acting to
the right and y components acting upward are represented by positive numbers.

(F; cos 207)j

I
—{F; sin 207)i

Y-Frai

Fig. 1 Rectangular components of each force.

F,= 190N
30°
F15° x
F:i: 100 N
F;=110N

(Fy sin 307) j

(F| cos 30%)

(F4cos 15%)i

—(F, sin 157}
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Force Magnhude, N X Component, N ¥ Compenent, N
F, 150 +129.9 +75.0
F. &0 =274 +75.2
F; 110 0 —110.0
F, 100 +06.6 -259
R = +199.1 R, = +14.3
Thus, the resultant R of the four forces is

You can now determine the magnitude and direction of the resultant. From the triangle shown
in Fig. 2, you have

R 14.3N 14.3N
y R —

- . - =199.6 N
R; 199.1 N sin a

R=1996N 4.1

C—
R,=(1431); JR,= (1991 M)

Fig. 2 Resultant of the given force system.

REFLECT and THINK: Arranging data in a table not only helps you keep

track of the calculations, but also makes things simpler for using a calculator on similar

computations. “Page35_
\_
( )
Problems
2.16 and 2.17 Determine the x and y components of each of the forces shown.
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800 —]

Dimensions
in mm BON _-

2|

=]
|
=

*—5150—*'-'—480—4
Fig. P2.16

29 Ib

5llb

|« 48 in~|
Fig. P2.17

2.18 and 2.19 Determine the x and y components of each of the forces shown.

¥

&0 Ib

Fig. P2.18
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120 N

150 N

Fig. P2.19

2.20 Member BD exerts on member ABC a force P directed along line BD. Knowing that P

must have a 300-1b horizontal component, determine (a) the magnitude of the force P,
(b) its vertical component.

Page 36
c\e Yol b
."-( -'__/
35-::}({})"
F, ,"ff
B/
AgE—
|Q
Fig. P2.20
2.21 Member BC exerts on member AC a force P directed along line BC. Knowing that P

must have a 325-N horizontal component, determine (a) the magnitude of the force P,
(b) its vertical component.

A

s NG —
Cra
P
S
£
V4 T20 mm
/S

=B

l—-t—ﬁ.‘Il Mm —=|

Fig. P2.21
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2.22 Cable AC exerts on beam AB a force P directed along line AC. Knowing that P must

have a 350-1b vertical component, determine (a) the magnitude of the force P, (b) its
horizontal component.

=
55
A
Lo ) Ba
'1I.r' B
Fig. P2.22
2.23 The guy wire BD exerts on the telephone pole AC a force P directed along BD.

Knowing that P must have a 720-N component perpendicular to the pole AC, determine
(a) the magnitude of the force P, (b) its component along line AC.

Tm
24 m
Fig. P2.23

2.24 Determine the resultant of the three forces of Prob. 2.16. Page 37
2.25 Determine the resultant of the three forces of Prob. 2.17.

2.26 Determine the resultant of the three forces of Prob. 2.18.

2.27 Determine the resultant of the three forces of Prob. 2.19.

2.28 A collar that can slide on a vertical rod is subjected to the three forces shown.

Determine (a) the required value of « if the resultant of the three forces is to be
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2.29

2.30

2.31

Telegram: @uni_k

horizontal, (b) the corresponding magnitude of the resultant.

g

110N

B5 N

Fig. P2.28

Page 38
A hoist trolley is subjected to the three forces shown. Knowing that o = 40°, R

determine (a) the required magnitude of the force P if the resultant of the three forces is
to be vertical, (b) the corresponding magnitude of the resultant.

© 53
\g./ P
[

400 b 200 1b

ay

Fig. P2.29 and P2.30

A hoist trolley is subjected to the three forces shown. Knowing that P = 250 Ib,

determine (a) the required value of « if the resultant of the three forces is to be vertical,
(b) the corresponding magnitude of the resultant.

For the post loaded as shown, determine (a) the required tension in rope AC if the
resultant of the three forces exerted at point C is to be horizontal, (b) the corresponding
magnitude of the resultant.
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Fig. P2.31

\. J

2.3 FORCES AND EQUILIBRIUM IN A PLANE

Now that we have seen how to add forces, we can proceed to one of the key concepts in this course: the
equilibrium of a particle. The connection between equilibrium and the sum of forces is very direct: a
particle can be in equilibrium only when the sum of the forces acting on it is zero.

ﬂ‘r
A E.’..._‘_JI -

Photo 2.2 Forces acting on the carabiner include the weight of the girl
and her harness, and the force exerted by the pulley attachment.
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Treating the carabiner as a particle, it is in equilibrium because the

resultant of all forces acting on it is zero.
Michael Doolittle/Alamy Stock Photo

2.3A Equilibrium of a Particle

In the preceding sections, we discussed methods for determining the resultant of several forces acting on
a particle. Although it has not occurred in any of the problems considered so far, it is quite possible for
the resultant to be zero. In such a case, the net effect of the given forces is zero, and the particle is said to
be in equilibrium. We thus have the definition:

When the resultant of all the forces acting on a particle is zero, the particle is in equilibrium.

A particle acted upon by two forces is in equilibrium if the two forces have the same magnitude and
the same line of action but opposite sense. The resultant of the two forces is then zero, as shown in Fig.
2.22.

=1

100 1k
Fig. 2.22 When a particle is in equilibrium, the resultant of all forces
acting on the particle is zero.

Another case of equilibrium of a particle is represented in Fig. 2.23a, where four forces are shown acting
on particle A. In Fig. 2.23b, we use the polygon rule to determine the resultant of the given forces.

Starting from point O with F; and arranging the forces in tip-to-tail fashion, we find that the tip of F4

coincides with the starting point O. Thus, the resultant R of the given system of forces is zero, and the
particle is in equilibrium.

Fy= 400 b
F;=3001b
100 o
g F,=17321b
F,=3001b
—D
A Fy= 400 Ib
Fi=2001b o F.—=200 b
Y F,= 17321

(a) (B)
Fig. 2.23 (a) Four forces acting on particle A; (b) using the polygon
law to find the resultant of the forces in (a), which is zero because the
particle is in equilibrium.
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The closed polygon drawn in Fig. 2.23b provides a graphical expression of the equilibrium of A. To
express algebraically the conditions for the equilibrium of a particle, we write

(2.14)
Equilibrium of a particle R =YF =0
Resolving each force F into rectangular components, we have Page 39
S(Fi+Fj)=0 o (SF)i+(SF)j=0
We conclude that the necessary and sufficient conditions for the equilibrium of a particle are
Equilibrium of a particle (scalar equations)
(2.15)

SF, =0 $F, =0

Returning to the particle shown in Fig. 2.23, we can check that the equilibrium conditions are satisfied.
We have

$F, =3001b —(2001b) sin 30° —(400 Ib) sin 30°
=3001b —1001b —2001b =0

Y F,=-173.21b —(2001b) cos 30° +(4001b) cos 30°
=—-173.21b — 173.21b 4+ 346.41b =0

F, = 400 Ib

Fig. 2.23a (repeated)

2.3B Newton’s First Law of Motion

As we discussed in Sec. 1.2, Sir Isaac Newton formulated three fundamental laws upon which the
science of mechanics is based. The first of these laws can be stated as:
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If the resultant force acting on a particle is zero, the particle will remain at rest (if originally
at rest) or will move with constant speed in a straight line (if originally in motion).

From this law and from the definition of equilibrium just presented, we can see that a particle in
equilibrium is either at rest or moving in a straight line with constant speed. If a particle does not behave
in either of these ways, it is not in equilibrium, and the resultant force on it is not zero. In the following
section, we consider various problems concerning the equilibrium of a particle.

Note that most of statics involves using Newton’s first law to analyze an equilibrium situation. In
practice, this means designing a bridge or a building that remains stable and does not fall over. It also
means understanding the forces that might act to disturb equilibrium, such as a strong wind or a flood of
water. The basic idea is pretty simple, but the applications can be quite complicated.

2.3C Free-Body Diagrams and Problem
Solving

In practice, a problem in engineering mechanics is derived from an actual physical situation. A sketch
showing the physical conditions of the problem is known as a space diagram.

The methods of analysis discussed in the preceding sections apply to a system of forces acting on a
particle. A large number of problems involving actual structures, however, can be reduced to problems
concerning the equilibrium of a particle. The method is to choose a significant particle and draw a
separate diagram showing this particle and all the forces acting on it. Such a diagram is called a "page 40 ge 40
free-body diagram. (The name derives from the fact that when drawing the chosen body, or
particle, it is “free” from all other bodies in the actual situation.)

As an example, consider the 75-kg crate shown in the space diagram of Fig. 2.24a. This crate was
lying between two buildings, and is now being lifted onto a truck, which will remove it. The crate is
supported by a vertical cable that is joined at A to two ropes, which pass over pulleys attached to the
buildings at B and C. We want to determine the tension in each of the ropes AB and AC.

N\ 20° \Tan
5 \
N7 A '.
INAD sen|
80°/ '\
T3 \ H:Ir. Ii "
NV
L~ T,
() Free-body diagram () Force triangle
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Fig. 2.24 (a) The space diagram shows the physical situation of the
problem; (b) the free-body diagram shows one central particle and the
forces acting on it; (c) the force triangle can be solved with the law of
sines. Note that the forces form a closed triangle because the particle
is in equilibrium and the resultant force is zero.

To solve this problem, we first draw a free-body diagram showing a particle in equilibrium. Because we
are interested in the rope tensions, the free-body diagram should include at least one of these tensions or,
if possible, both tensions. You can see that point A is a good free body for this problem. The free-body
diagram of point A is shown in Fig. 2.24b. It shows point A and the forces exerted on A by the vertical
cable and the two ropes. The force exerted by the cable is directed downward, and its magnitude is equal
to the weight W of the crate. Recalling Eq. (1.4), we write

W = mg =(75kg)(9.81 m/s?)= 736 N

and indicate this value in the free-body diagram. The forces exerted by the two ropes are not known.
Because they are respectively equal in magnitude to the tensions in rope AB and rope AC, we denote

them by T 4 and T 4 and draw them away from A in the directions shown in the space diagram. No
other detail is included in the free-body diagram.
Because point A is in equilibrium, the three forces acting on it must form a closed triangle when

drawn in tip-to-tail fashion. We have drawn this force triangle in Fig. 2.24c. The values T 5 and T 4¢

of the tensions in the ropes may be found graphically if the triangle is drawn to scale, or they may be
found by trigonometry. If we choose trigonometry, we use the law of sines:

Tyg  Tac _ 736N
sin60°  sin40°  sin 80°
Tup = 647N Tyc = 480N
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Photo 2.3 As illustrated in Fig. 2.24, it is possible to determine the
tensions in the cables supporting the precast concrete panel shown by
treating the hook as a particle and then applying the equations of

equilibrium to the forces acting on the hook.
Mack?7777/iStock/Getty Images

When a particle is in equilibrium under three forces, you can solve the problem by drawing a force
triangle. When a particle is in equilibrium under more than three forces, you can solve the problem
graphically by drawing a force polygon. If you need an analytic solution, you should solve the
equations of equilibrium given in Sec. 2.3A:

(2.15)

These equations can be solved for no more than two unknowns. Similarly, the force triangle used in the
case of equilibrium under three forces can be solved for only two unknowns.

The most common types of problems are those in which the two unknowns represent (1) the two
components (or the magnitude and direction) of a single force or (2) the magnitudes of two forces, each
of known direction. Problems involving the determination of the maximum or minimum value of the
magnitude of a force are also encountered (see Probs. 2.43 through 2.47). “Page 41

N

-
Sample Problem 2.4

In a ship-unloading operation, a 3500-1b automobile is supported by a cable. A worker ties a rope
to the cable at A and pulls on it to center the automobile over its intended position on the dock. At
the moment illustrated, the automobile is stationary, the angle between the cable and the vertical is

2°, and the angle between the rope and the horizontal is 30°. What are the tensions in the rope and

cable?

T@ ”ffﬂ\

STRATE GY: This is a problem of equilibrium under three coplanar forces. You can
treat point A as a particle and solve the problem using a force triangle.
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MODELING and ANALYSIS:
Free-Body Diagram. Choose point A as the particle and draw the complete free-

body diagram (Fig. 1). T'4 g is the tension in the cable AB, and T'4¢ is the tension in the rope.

Tyn
™ 90
A
3:.&
Tac
Y
3500 Ib

Fig. 1 Free-body diagram of particle A.

qulillb]."lllm Condition. Because only three forces act on point A, draw a force

triangle to express that it is in equilibrium (Fig. 2). Using the law of sines,

3500 Ib

120°

T.i.i.' R

Fig. 2 Force triangle of the forces acting on particle A.

Tys Tac  35001b

sin120°  sin2°  sin58°

With a calculator, compute and store the value of the last quotient. Multiplying this value

successively by sin 120° and sin 2°, you obtain
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T,z = 35701b T, = 1441b

REFLECT and THINK: This is a common problem of knowing one force in a

three-force equilibrium problem and calculating the other forces from the given geometry. This
basic type of problem will occur often as part of more complicated situations in this text. “page 42

_J
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Sample Problem 2.5

Determine the magnitude and direction of the smallest force F that maintains the 30-kg package
shown in equilibrium. Note that the force exerted by the rollers on the package is perpendicular to
the incline.

STRATEGY : This is an equilibrium problem with three coplanar forces that you can

solve with a force triangle. The new wrinkle is to determine a minimum force. You can approach
this part of the solution in a way similar to Sample Prob. 2.2.

MODELING and ANALYSIS:
F]."EE-BOdy Diagram. Choose the package as a free body, assuming that it can be

treated as a particle. Then draw the corresponding free-body diagram (Fig. 1).

_| - 294N
1.

Fig. 1 Free-body diagram of package, treated as a particle.

l‘w = (30 kg)(9.81 m/s2)

ir

quﬂllbl‘lum Condition. Because only three forces act on the free body, draw a
force triangle to express that it is in equilibrium (Fig. 2). Line 1-1' represents the known direction
of P. To obtain the minimum value of the force F, choose the direction of F to be perpendicular to
that of P. From the geometry of this triangle,



https://t.me/uni_k

www.konkur.in

\ J

F =(294N)sin15° = 76.1N o =15
a
Fy F=761Nx&15°
159
204N | fp

Y

Illli

Fig. 2 Force triangle of the forces acting on package.

REFLECT and THINK: Determining maximum and minimum forces to

maintain equilibrium is a common practical problem. Here, the force needed is about 25% of the

weight of the package, which seems reasonable for an incline of 15°.

é )

Sample Problem 2.6

For a new sailboat, a designer wants to determine the drag force that may be expected at a given
speed. To do so, she places a model of the proposed hull in a test channel and uses three cables to
keep its bow on the centerline of the channel. Dynamometer readings indicate that for a given
speed, the tension is 40 1b in cable AB and 60 Ib in cable AE. Determine the drag force exerted on

the hull and the tension in cable AC.

-~ T ft— |=—1.51ft
Bl Lo

~—~ 8 T

2 4{&
[=—s S

Flow A f

4{&
E

STRATE GY: The cables all connect at point A, so you can treat that as a particle in

equilibrium. Because four forces act at A (tensions in three cables and the drag force), you should
use the equilibrium conditions and sum forces by components to solve the unknown forces.

MODELING and ANALYSIS: Pegeds

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

Determining the Angles. First, determine the angles a and 3 defining the
direction of cables AB and AC:

ft 1.5ft
tan o = 7— =1.75 tan 8 = L =0.375
4 ft 4 ft
a=60.26" B =20.56"

F]."EE-BOdy Diagram. Choosing point A as a free body, draw the free-body
diagram (Fig. 1). It includes the forces exerted by the three cables on the hull, as well as the drag

force Fp exerted by the flow.

a = 60,267
T,g=401b

T.'tf = f{i 1

Fig. 1 Free-body diagram of particle A.

Equilibrium Condition. Because point A is in equilibrium, the resultant of all

forces is zero:

(1)

R=Tu+Tuac+Tae+Fp=0

Because more than three forces are involved, resolve the forces into x and y components (Fig. 2):

Fig. 2 Rectangular components of forces acting on particle A.
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T 2= —(401b) sin 60.26°i +(401b) cos 60.26°j
— —(34.731b)i +(19.84 1b)j
T 40 =Ty sin20.56 °i + Ty cos 20.56°j
—0.3512T ¢ + 0.9363T4cj
Tap=—(601b)j
Fp=Fpi

Substituting these expressions into Eq. (1) and factoring the unit vectors i and j, you have

(—34.731b + 0.3512T 4 + Fp)i+(19.841b + 0.9363T 4 — 60 Ib)j = 0

This equation is satisfied if, and only if, the coefficients of i and j are each equal to zero. You
obtain the following two equilibrium equations, which express, respectively, that the sum of the x
components and the sum of the y components of the given forces must be zero.

SF,=0: —34.731b+ 0.3512T4¢c + Fp = 0 (2)

YF,=0: 19.841b +0.9363T4c — 601b =0 (3)

From Eq. (3), you find
Tpro=+4291b

Substituting this value into Eq. (2) yields
Fp = +19.661b

REFLECT and THINK: i drawing the free-body diagram, you assumed a

sense for each unknown force. A positive sign in the answer indicates that the assumed sense is

correct. You can draw the complete force polygon (Fig. 3) to check the results. Page 44
Fp=19.661b
T.J.l." = _1.2 9 1b
A =12056 ”| ~, T= 60 1b
: — g = &0.26
Tu_, = 40 I

Fig. 3 Force polygon of forces acting on particle A.
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@ Case Study 2.1

Completed in 1980, the atrium of the Hyatt Regency Crown Center in
Kansas City, Missouri, featured three suspended walkways. As shown in
CS Fig. 2.1, the second- and fourth-floor walkways were supported by the
same hanger system, while the third-floor walkway was independently
supported. A dance competition was held in the atrium on July 17, 1981,
with many guests congregating on the main floor as well as the three
suspended walkways. Suddenly, the fourth-floor walkway connections
failed, causing this walkway to fall onto the second-floor walkway, with
both then crashing onto the main floor (see CS Photo 2.1). Tragically, 113
people lost their lives and another 186 were injured; in terms of human
casualties, this was the worst structural failure in U.S. history up to that
time.*

—— 4th-floor
walkway
3rd-floor : ',i

walkway |/
_ I
! n

2nd-floor

walkway

CS Fig. 2.1 Schematic of the atrium walkways."

*Source: Marshall, R. D., Pfrang, E. O., Leyendecker, E. V., Woodward, K. A., Reed, R. P., Kasen, M. B., and
Shives, T. R. NBS Building Science Series 143: Investigation of the Kansas City Hyatt Regency Walkways
Collapse. Washington, DC: US Department of Commerce, National Institute of Standards and Technology, May
1982.

Telegram: @uni_k



https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

AR, i A5
CS Photo 2.1 Wreckage of walkway collapse. Note that the

third-floor walkway remained intact.
Pete Leabo/AP Images

The support system of each walkway consisted of transverse beams,
which were then attached to the hanger rods depicted in CS Fig. 2.1. Also
shown is the critical fastener that was involved in the connection failure.
The initial connection design for the fourth-floor walkway is illustrated in
CS Fig. 2.2a, where the support hanger would continue uninterrupted to
the second-floor walkway. This would require turning the fastener on the
threaded hanger rod all the way from the second-floor end to the  page 45
fourth-floor level. During construction, it was realized that this
would be impractical, and a new connection detail was implemented in the
field, as shown in CS Fig. 2.2b. Let’s apply a static equilibrium analysis to
determine the effect of this design change on the fastener.
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/\’\ thﬂf’_‘.’f

Critical Critical
fastener fastener

(a) (B)
CS Fig. 2.2 Typical fourth-floor walkway support (a) original
design, (b) as built.

STRATEGY : First, identify the loads involved. Then, treating the
fastener and a small portion of the hanger as a particle, draw a free-body
diagram and perform an equilibrium analysis.

MODELING: Free-Body Diagram. The loads involved are shown in
CS Fig. 2.2. The hanger system supports a portion of the second-floor and

fourth-floor walkways, and the resulting loads are identified as F geck o and

F4eck 4- The force developed in the hanger extending from the fourth floor

to the ceiling is denoted as Fpanger- In both cases, this hanger must carry

the loads of both walkways to the ceiling, or

Fhanger - Fdeck 2 + Fdeck 4

Telegram: @uni_k
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Treating the critical fastener and a small portion of the hanger as a particle,
the free-body diagrams in each case are shown in CS Fig. 2.3. Page 46

FFHn;\-.'r Fhan._:-.'r

F ()
‘fazener

F..‘;:-:l: 2
(a) (B)

CS Fig. 2.3 Free-body diagram of critical fastener (a) as built, (b)
original design.

ANALYSIS: As-Built Connection. From CS Fig. 2.3q,

+ T ZF?J =0: Fhanger B Ffegsa:c()aner =0

(F deck2 T+ F, deck 4) _Ff;(,mstc)sner -

F{) =+ (Faeacr + Faecks)  FL)  =(Faecks + Foees) |

fastener

Original Connection Design. From CS Fig. 2.3b,

b
+ T EFy =0: Fhanger - Ff;ist)ener - Fdeck2 =0
(Fdeck2 + Fdeck 4)_F}§:t)ezner — Fgeck2 =0
F®) = 4 Fyecka ngsbt)ener — Fldeck4 l

fastener

Comparing the force exerted on the fastener in each case, it is apparent that
the as-built design requires the fastener to support loads from both
walkways, whereas the original design subjects the fastener to loads only

from the fourth-floor walkway.
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REFLECT and THINK: The change in the connection, completed

“on the fly,” resulted in the unintended consequence of subjecting the
critical fastener to loads from two floors instead of just one. In the same
manner, one should avoid shortcuts in analyzing engineering mechanics
problems, and instead employ the complete SMART methodology, even
for very simple situations like the one considered here. It should also be
noted that there were other important factors that contributed to this
tragedy besides the circumstance examined in this Case Study. Along with
the report cited earlier, these factors have been discussed in a number of
other publications as well. The reader is strongly encouraged to study

Telegram: @uni_k

further. Page 47
\.
(
Problems
2.32 Two cables are tied together at C and are loaded as shown. Knowing that « = 30°,

determine the tension (a) in cable AC, (b) in cable BC.

55:. G kN

Fig. P2.32

2.33 and 2.34 Two cables are tied together at C and are loaded as shown. Determine the

tension (a) in cable AC, (b) in cable BC.

\
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400 1b
Fig. P2.33
Fig. P2.34
2.35 Two cables are tied together at C and loaded as shown. Determine the tension (a) in

cable AC, (b) in cable BC.

! 12t 75/ _J

Fig. P2.35

2.36 Two cables are tied together at C and are loaded as shown. Knowing that Page 48

P = 500N and o = 60°, determine the tension (a) in cable AC, (b) in cable BC.

Telegram: @uni_k
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2.37

2.38

2.39
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Fig. P2.36

Two forces P and Q are applied as shown to a bracket in a spacecraft frame. Knowing
that the connection is in equilibrium and that the tensions in rods A and B are

T4 = 2401b and T'’s = 500 1b, determine the magnitudes of P and Q.

Q ..-". _..": £
f s &
:I_:" -L;‘,J.- ﬂ]':'
Fi
?ﬂl:l F. i
[ [ S—
= -|._L__ql___ ————

i

w | T

Fig. P2.37 and P2.38

Two forces P and Q are applied as shown to a bracket in a spacecraft frame. Knowing

that the connection is in equilibrium and that P = 6001b and @ = 800 b, determine

the tension in rods A and B.

A welded connection is in equilibrium under the action of the four forces shown.

Knowing that Fy = 8 kN and Fg = 16 kN, determine the magnitudes of the other two

forces.
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2.40

2.41
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Fig. P2.39

Two forces P and Q are applied as shown to an aircraft connection. Knowing that the

connection is in equilibrium and that P = 500 1b and ) = 650 1b, determine the

magnitudes of the forces exerted on the rods A and B.

F,

N
\/\

"
'\.

Fyg _ SEF'

é i
P

I"_.-'T

+j"

e

SV
fi=]

Fig. P2.40

A sailor is being rescued using a boatswain’s chair that is suspended froma  _Page49
pulley that can roll freely on the support cable ACB and is pulled at a constant speed by

cable CD. Knowing that « = 30° and 8 = 10" and that the combined weight of the

boatswain’s chair and the sailor is 200 Ib, determine the tension (a) in the support cable
ACB, (b) in the traction cable CD.
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2.42

2.43

2.44

2.45

Telegram: @uni_k

Fig. P2.41 and P2.42

A sailor is being rescued using a boatswain’s chair that is suspended from a pulley that
can roll freely on the support cable ACB and is pulled at a constant speed by cable CD.

Knowing that o = 25° and 8 = 15° and that the tension in cable CD is 20 Ib,

determine (a) the combined weight of the boatswain’s chair and the sailor, (b) the
tension in the support cable ACB.

For the cables of Prob. 2.32, find the value of a for which the tension is as small as

possible (a) in cable BC, (b) in both cables simultaneously. In each case, determine the
tension in each cable.

For the cables of Prob. 2.36, it is known that the maximum allowable tension is 600 N

in cable AC and 750 N in cable BC. Determine (a) the maximum force P that can be
applied at C, (b) the corresponding value of a.

Two cables tied together at C are loaded as shown. Knowing that the maximum
allowable tension in each cable is 800 N, determine (a) the magnitude of the largest
force P that can be applied at C, (b) the corresponding value of a.

Al

Fig. P2.45 and P2.46
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2.46 Two cables tied together at C are loaded as shown. Knowing that the maximum

allowable tension is 1200 N in cable AC and 600 N in cable BC, determine (a) the
magnitude of the largest force P that can be applied at C, (b) the corresponding value of
a.

2.47 Two cables tied together at C are loaded as shown. Determine the range of values of Q
for which the tension will not exceed 60 1b in either cable.

P=75lb

Fig. P2.47

2.48 Collar A is connected as shown to a 50-1b load and can slide on a frictionless _Page 50
horizontal rod. Determine the magnitude of the force P required to maintain the

equilibrium of the collar when (a) z = 4.5 in., (b) z = 15 in.

S
B )
20 in
50 b
P F
| I _t
A
Fig. P2.48 and P2.49
2.49 Collar A is connected as shown to a 50-1b load and can slide on a frictionless horizontal

Telegram: @uni_k
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rod. Determine the distance x for which the collar is in equilibrium when P = 48 Ib.

2.50 A cable loop of length 1.5 m is placed around a crate. Knowing that the mass of the
crate is 300 kg, determine the tension in the cable for each of the arrangements shown.

|——30'0mm—-|£

(a) (®)
Fig. P2.50

2.51 A 600-Ib crate is supported by several rope-and-pulley arrangements, as Page 51
shown. Determine for each arrangement the tension in the rope. (Hint: The tension in
the rope is the same on each side of a simple pulley. This can be proved by the methods

of Chap. 4.)
o T 1 } T
) T 4
--“:Jl s |
T 1
{a) (B) () id) (e)
Fig. P2.51
2.52 Solve parts b and d of Prob. 2.51, assuming that the free end of the rope is attached to
the crate.
2.53 A 200-kg crate is to be supported by the rope-and-pulley arrangement, shown.

Determine the magnitude and direction of the force P that must be exerted on the free
end of the rope to maintain equilibrium. (See the hint for Prob. 2.51.)

Telegram: @uni_k
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Fig. P2.53

2.54 A load Q is applied to pulley C, which can roll on cable ACB. The pulley is held in the
position shown by a second cable CAD, which passes over pulley A and supports a load

P. Knowing that P = 750 IV, determine (a) the tension in cable ACB, (b) the magnitude

of load Q.
B
250
Fig. P2.54 and P2.55
2.55 An 1800-N load Q is applied to pulley C, which can roll on cable ACB. The pulley is

held in the position shown by a second cable CAD, which passes over pulley A and
supports a load P. Determine (a) the tension in cable ACB, (b) the magnitude of load P.

G J
Page 52

2.4 ADDING FORCES IN SPACE

The problems considered in the first part of this chapter involved only two dimensions; they were
formulated and solved in a single plane. In the last part of this chapter, we discuss problems involving
the three dimensions of space.
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24A Rectangular Components of a Force in
Space

Consider a force F acting at the origin O of the system of rectangular coordinates x, y, and z. To define
the direction of F, we draw the vertical plane OBAC containing F (Fig. 2.25a). This plane passes

through the vertical y axis; its orientation is defined by the angle ¢ it forms with the xy plane. The
direction of F within the plane is defined by the angle 6, that F forms with the y axis. We can resolve the

force F into a vertical component F,, and a horizontal component Fy; this operation, shown in Fig.

2.25b, is carried out in plane OBAC according to the rules developed earlier. The corresponding scalar
components are

(2.16)
F, = F cos 6, Fj, = Fsin0,

Telegram: @uni_k
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4,
{a)
¥
B k-~
F, -
s, F w4
ok ____|
-
F,
c
(b}
¥
B
F,
F,
o
F ] D =
F.'J
/E =

@
Fig. 2.25 (a) A force F in an xyz coordinate system; (b) components
of F along the y axis and in the xz plane; (¢) components of F along
the three rectangular axes.

However, we can also resolve F';, into two rectangular components F; and F', along the x and z axes,

respectively. This operation, shown in Fig. 2.25c, is carried out in the xz plane. We obtain the following
expressions for the corresponding scalar components:

(2.17)
F, = F} cos ¢ = F'sin 6, cos ¢

F, = F}, sin ¢ = F'sin 0, cos ¢
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The given force F thus has been resolved into three rectangular vector components F, F, F,, which

are directed along the three coordinate axes.
We can now apply the Pythagorean theorem to the triangles OAB and OCD of Fig. 2.25:

2 _ 2 _ 2 2
F? = (0A)" = (0B)" + (BA)" = F} + F?
F2 = (0C)® = (OD)* + (DC)* = F2 + F2

Eliminating Fh2 from these two equations and solving for F, we obtain the following relation between

the magnitude of F and its rectangular scalar components:

Magnitude of a force in space F= \/ F? + Fy2 + F? (2.18)

The relationship between the force F and its three components F, F,, and F, is more easily

visualized if we draw a “box” having F, F,, and F, for edges, as shown in Fig. 2.26. The force F is

then represented by the main diagonal OA of this box. Figure 2.26b shows the right triangle OAB used to

Page 53
derive the first of the formulas (2.16): F;, = F cos 6,,. In Fig. 2.26a and c, two other right —EE2s

triangles have also been drawn: OAD and OAE. These triangles occupy positions in the box comparable

with that of triangle OAB. Denoting by 6, and 6, respectively, the angles that F forms with the x and z

axes, we can derive two formulas similar to F, = F cos Gy. We thus write

() ()
Fig. 2.26 (a) Force F in a three-dimensional box, showing its angle
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with the x axis; (b) force F and its angle with the y axis; (c) force F
and its angle with the z axis.

Scalar components
of a force F

(2.19)
F, = F cosf, Fy= Fcosby F, = F cos @,

The three angles 6,, 6,, and 6, define the direction of the force F; they are more commonly used for this

purpose than the angles 6, and ¢ introduced at the beginning of this section. The cosines of 6,, 6,, and

0, are known as the direction cosines of the force F.

Introducing the unit vectors i, j, and k, which are directed respectively along the x, y, and z axes
(Fig. 2.27), we can express F in the form

Vector expression

of a force F
(2.20)
F=F,i+Fj+FK
¥
A
J
Fig. 2.27 The three unit vectors 1, j, k lie along the three coordinate
axes X, y, z, respectively.
Page 54

where the scalar components F, F,, and F’, are defined by the relations in Eq. (2.19).
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4 ™
Concept Application 2.4

A force of 500 N forms angles of 60°, 45°, and 120 °, respectively, with

the x, y, and z axes. Find the components F,, Fy, and F’, of the force and

express the force in terms of unit vectors.

Solution

Substitute F' = 500N, 8, =60, 6, = 45", and 6, = 120" into formulas

(2.19). The scalar components of F are then

F, =(500 N) cos 60° = +250 N
Fy, =(500 N) cos 45° = +354 N
F, =(500 N) cos 120° = —250 N

Carrying these values into Eq. (2.20), you have

F =(250 N)i +(354 N)j — (250 N)k

As in the case of two-dimensional problems, a plus sign indicates that the
component has the same sense as the corresponding axis, and a minus sign

indicates that it has the opposite sense.
G J

The angle a force F forms with an axis should be measured from the positive side of the axis and is

always between 0 and 180°. An angle 6, smaller than 90° (acute) indicates that F (assumed attached to

O) is on the same side of the yz plane as the positive x axis; cos 6, and F}, are then positive. An angle 6,
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larger than 90° (obtuse) indicates that F is on the other side of the yz plane; cos 8, and F, are then
negative. In Concept Application 2.4, the angles 6, and 6, are acute and 6, is obtuse; consequently, F,

and F,, are positive and F, is negative.

Substituting into Eq. (2.20) the expressions obtained for F, F;, and F,, in Eq. (2.19), we have

(2.21)
F = F(cos 0,1+ cos 6, + cos sz)

This equation shows that the force F can be expressed as the product of the scalar F and the vector

(2.22)
A = cos 0,i + cos 0,j + cos 0,k

Clearly, the vector A is a vector whose magnitude is equal to 1 and whose direction is the same as that of
F (Fig. 2.28). The vector A is referred to as the unit vector along the line of action of F. It follows from
Eq. (2.22) that the components of the unit vector A are respectively equal to the direction cosines of the
line of action of F:

(2.23)
Ay = cosf, Ay = cos b, A, =cosf,

Page 55

A Magnimde = 1)
cos 8,

cos 8k

Fk

Fig. 2.28 Force F can be expressed as the product of its magnitude F
and a unit vector A in the direction of F. Also shown are the
components of F and its unit vector.
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Note that the values of the three angles 6, 6,, and 6,, are not independent. Recalling that the sum

of the squares of the components of a vector is equal to the square of its magnitude, we can write

MN+N+A=1

Substituting for A\;, Ay, and A, from Eqg. (2.23), we obtain
Relationship among
direction cosines

(2.24)
cos? 0, + cos? 0, + cos? 6, =1

In Concept Application 2.4, for instance, once the values 6, = 60° and 6, = 45" have been selected, the

value of 6,, must be equal to 60° or 120° to satisfy the identity in Eq. (2.24).

When the components F;;, F,, and F, of a force F are given, we can obtain the magnitude F of the

force from Eq. (2.18). We can then solve relations in Eq. (2.19) for the direction cosines as

(2.25)
T F, Yy z
cos 0, = N3 cosfy = §a cosf, = 7
From the direction cosines, we can find the angles 6,, 6, and 6, characterizing the direction of F.
4 )

Concept Application 2.5

A force F has the components F,, = 201b, F;, = —301b, and F, = 60 1b.
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Determine its magnitude F and the angles 8, 0,, and 6, it forms with the

coordinate axes.

Solution

You can obtain the magnitude of F from formula (2.18):

F=,/F}+F2+F?

— 1/(201b)% + (~301b)? + (60 Ib)’
— /290015 = 70 1b

Substituting the values of the components and magnitude of F into Egs.
(2.25), the direction cosines are

Fe 201b
F 701b

cosf, = cosly = — = cos 0, =

Calculating each quotient and its arc cosine gives you

01; ES 73-40 oy = 115.40 ez = 31-00

These computations can be carried out easily with a calculator. Page 56
\ —)

2.4B Force Defined by Its Magnitude and Two
Points on Its Line of Action

In many applications, the direction of a force F is defined by the coordinates of two points,

—
M (z1,y1,21) and N(z2,y2, 22), located on its line of action (Fig. 2.29). Consider the vector /f N
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joining M and N and of the same sense as a force F. Denoting its scalar components by d, d,, and d,,

respectively, we write

(2.26)
—
MN = dyi + dyj +d k

JH(I[._}'[.Z]J

)
/ X
z

Fig. 2.29 A case where the line of action of force F is determined by
the two points M and N. We can calculate the components of F and its

ffx=.1'2— x|

—
direction cosines from the vector MN.

We can obtain a unit vector A along the line of action of F (i.e., along the line MN) by dividing the
— —
vector M N by its magnitude MN. Substituting for M N from Eq. (2.26) and observing that MN is equal

to the distance d from M to N, we have

—
MN 1
MN

— (dei + dyj + d:k) (2.27)

Recalling that F is equal to the product of F and A, we have

(2.28)

F=F\= F
N - d

(dei + dyj + d k)

It follows that the scalar components of F are, respectively,
Scalar components

Telegram: @uni_k
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of force F

(2.29)

The relations in Eq. (2.29) considerably simplify the determination of the components of a force F
of given magnitude F when the line of action of F is defined by two points M and N. The calculation
consists of first subtracting the coordinates of M from those of N, and then determining the Page 57

—
components of the vector M N and the distance d from M to N. Thus,

dy = 2 — 21 dy=y2—1n d: =2 -2
d=./d?+d2+d?
Substituting for F and for d, d,, d,, and d into the relations in Eq. (2.29), we obtain the components F,,

F,, and F, of the force.

We can then obtain the angles 6, 6,, and 6, that F forms with the coordinate axes from Egs. (2.25).

Comparing Egs. (2.22) and (2.27), we can write

Direction cosines
of force F

(2.30)

COS 9:1: = 7‘” COSQy — 7 CcoS ez - =

In other words, we can determine the angles 6, 6,, and 8, directly from the components and the

—
magnitude of the vector M N.

2.4C Addition of Concurrent Forces in Space

Telegram: @uni_k
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We can determine the resultant R of two or more forces in space by summing their rectangular
components. Graphical or trigonometric methods are generally not practical in the case of forces in
space.

The method followed here is similar to that used in Sec. 2.2B with coplanar forces. Setting

R=%F

we resolve each force into its rectangular components:

=(SF)i+(ZF)j +(EF)k

From this equation, it follows that

Rectangular components
of the resultant

(2.31)

The magnitude of the resultant and the angles 6,, 6,, and 6, that the resultant forms with the coordinate

axes are obtained using the method discussed earlier in this section. We end up with

Resultant of concurrent
forces in space

(2.32)

R=,/R2+ R+ R?
\/“’ v (2.33)

cos 0, :% cos 0, = ?y cosf, = =

4 “Page %y
Sample Problem 2.7

A tower guy wire is anchored by means of a bolt at A. The tension in the wire is 2500 N.

Determine (a) the components F,, F,, and F,, of the force acting on the bolt and (b) the angles 6,

6, and 6, defining the direction of the force.

Telegram: @uni_k
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STRATE GY: From the given distances, we can determine the length of the wire and
the direction of a unit vector along it. From that, we can find the components of the tension and
the angles defining its direction.

MODELING and ANALYSIS:
d. Components of the Force. The line of action of the force acting on

the bolt passes through points A and B, and the force is directed from A to B. The components of

—
the vector 4 B, which has the same direction as the force, are

The total distance from A to B is
AB=d=,/d2+d2+d?=94.3m

Denoting the unit vectors along the coordinate axes by i, j, and k, you have

AB = —(40m)i (80 m)j +(30m)k

Introducing the unit vector A = AB/AB (Fig. 1), you can express F in terms of AB as

Telegram: @uni_k
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AB  2500N —
F—F\=F_" — AB

AB  94.3m

Fig. 1 Cable force acting on bolt at A, and its unit vector.

—
Substituting the expression for AB gives you

2500 N
©94.3m
= — (1060 N)i + (2120 N)j +(795 N)k

[—(40 m)i +(80 m)j +(30 m)k|

The components of F, therefore, are

F,=—1060N  F,=+2120N  F,=+795N

b. Direction of the Force. Using Egs. (2.25), you can write the direction
cosines directly (Fig. 2):

g F,  —1060N g E, _ 42120N
€OSPz = "B T ToR00N STy = TE T To500N
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o F, 479N
*  F  2500N

?/ .
/é?/ *

4

Fig. 2 Direction angles for cable AB.

Calculating each quotient and its arc cosine, you obtain Page 59
0, =115.1° 6, = 32.0° 9, =715

(Note: You could have obtained this same result by using the components and magnitude of the

—
vector AB rather than those of the force F.)

REFLECT and THINK: it makes sense that, for a given geometry, only a

certain set of components and angles characterize a given resultant force. The methods in this
section allow you to translate back and forth between forces and geometry.

@ )

Sample Problem 2.8

A wall section of precast concrete is temporarily held in place by the cables shown. If the tension
is 840 1b in cable AB and 1200 1b in cable AC, determine the magnitude and direction of the
resultant of the forces exerted by cables AB and AC on stake A.
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STRATEGY : Thisisa problem in adding concurrent forces in space. The simplest

approach is to first resolve the forces into components and to then sum the components and find
the resultant.

MODELING and ANALYSIS:
C Omponents of the Forces. First resolve the force exerted by each cable on

stake A into x, y, and z components. To do this, determine the components and magnitude of the
vectors AB and A B, measuring them from A toward the wall section (Fig. 1). Denoting the unit

vectors along the coordinate axes by i, j, k, these vectors are

AB = —(16ft)i +(8ft)j +(11ft)k AB = 21ft
AC = —(16ft)i +(8ft)j — (16 ft)k AC = 24 ft

C

y JT_{,_- = (1200 1b) A, -

Fig. 1 Cable forces acting on stake at A, and their unit vectors.

Page 60
Denoting by A4 p the unit vector along AB, the tension in AB is —E=

Telegram: @uni_k
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—
AB 8401bﬁ
AB  21ft

Tap=TuapAap = TaB

—
Substituting the expression found for AB, the tension becomes

8401b
21 ft
Tup = —(650 Ib)i (320 1b)j +(440 Ib)k

AB = [— (16 £t)i +(8 ft)j +(11 ft)k]

Similarly, denoting by A 4¢ the unit vector along AC, the tension in AC is

AC  12001b —
Tac = Tacrac = Tac 0 - 9iR AC

Tac = —(800 1b)i +(4001b)j —(800 Ib) k

Resultant of the Forces. The resultant R of the forces exerted by the two cables

1S

R =T p + Tac = —(14401b)i +(7201b)j —(360Ib)k

You can now determine the magnitude and direction of the resultant as

R= /R + R+ R = V/ (~1440)° + (720)? + (~300)°

The direction cosines come from Egs. (2.33):

R =16501b
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R, —14401b R, +7201b
cosl, = — = ——— costy = — = ———
R 16501b R 1650 1b

R, —3601b

cosl,=— = ——

R 1650 1b

Calculating each quotient and its arc cosine, the angles are

0, = 150.8° 6, = 64.1° 6, =102.6°

REFLECT and THINK: Based on visual examination of the cable forces, you

might have anticipated that 6,, for the resultant should be obtuse and 6, should be acute. The

outcome of §, was not as apparent.

G

Page 61

J

Problems

2.56 Determine (a) the x, y, and z components of the 500-N force, (b) the angles 6,, 6, and

0, that the force forms with the coordinate axes.

pooN ¥
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2.57

2.58

2.59

2.60

Telegram: @uni_k

Fig. P2.56 and P2.57

Determine (a) the x, y, and z components of the 800-N force, (b) the angles 6,, 6,, and

6., that the force forms with the coordinate axes.

The end of the coaxial cable AE is attached to the pole AB, which is strengthened by the
guy wires AC and AD. Knowing that the tension in wire AC is 120 Ib, determine (a) the

components of the force exerted by this wire on the pole, (b) the angles 6,, 6,, and 6,

that the force forms with the coordinate axes.

Fig. P2.58 and P2.59

The end of the coaxial cable AE is attached to the pole AB, which is strengthened by the
guy wires AC and AD. Knowing that the tension in wire AD is 85 lb, determine (a) the

components of the force exerted by this wire on the pole, (b) the angles 6., 6, and 6.,

that the force forms with the coordinate axes.

A gun is aimed at a point A located 35° east of north. Knowing that the barrel of the

gun forms an angle of 40° with the horizontal and that the maximum recoil force is 400
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N, determine (a) the x, y, and z components of that force, (b) the values of the angles 6,

, 0, and 6, defining the direction of the recoil force. (Assume that the x, y, and z axes

are directed, respectively, east, up, and south.)

2.61 Solve Prob. 2.60, assuming that point A is located 15° north of west and that the barrel

of the gun forms an angle of 25° with the horizontal.

2.62 Determine the magnitude and direction of the force

F =(6901b)i-+(3001b)j — (580 Ib)K.

2.63 Determine the magnitude and direction of the force
Page 62
F =(260N)i —(320N)j + (800 N)K.
2.64 A force acts at the origin of a coordinate system in a direction defined by the angles

0, = 69.3° and 8, = 57.9°. Knowing that the y component of the force is —174.01b,

determine (a) the angle 6y, (b) the other components and the magnitude of the force.

2.65 A force acts at the origin of a coordinate system in a direction defined by the angles

0, = 70.9" and 6, = 144.9°. Knowing that the z component of the force is —52.0 Ib,

determine (a) the angle 6, (b) the other components and the magnitude of the force.

2.66 A force acts at the origin of a coordinate system in a direction defined by the angles

6, = 55" and 6, = 45°. Knowing that the x component of the force is —500 Ib,

determine (a) the angle 6,, (b) the other components and the magnitude of the force.

2.67 A force F of magnitude 1200 N acts at the origin of a coordinate system. Knowing that

0, =65",0, =40, and F, > 0, determine (a) the components of the force, (b) the

Telegram: @uni_k



https://t.me/uni_k

www.konkur.in

2.68

2.69

2.70

2.71

Telegram: @uni_k

angle 6, .

Two cables BG and BH are attached to frame ACD, as shown. Knowing that the tension

in cable BG is 540 N, determine the components of the force exerted by cable BG on
the frame at B.

Fig. P2.68 and P2.69

Two cables BG and BH are attached to frame ACD, as shown. Knowing that the tension

in cable BH is 750 N, determine the components of the force exerted by cable BH on
the frame at B.

To move a wrecked truck, two cables are attached at A and pulled by winches B and C,

as shown. Knowing that the tension in cable AB is 2 kips, determine the components of
the force exerted at A by the cable.

Fig. P2.70 and P2.71

To move a wrecked truck, two cables are attached at A and pulled by winches B and C,

as shown. Knowing that the tension in cable AC is 1.5 kips, determine the components
of the force exerted at A by the cable.



https://t.me/uni_k

www.konkur.in

2.72

2.73

2.74

2.75

2.76
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Fig. P2.71 and P2.71

Find the magnitude and direction of the resultant of the two forces shown knowing that

Page 63

P = 300N and Q = 400 N.

Find the magnitude and direction of the resultant of the two forces shown knowing that

P = 400N and Q = 300 N.

Knowing that the tension is 425 Ib in cable AB and 510 1b in cable AC, determine the
magnitude and direction of the resultant of the forces exerted at A by the two cables.

¥

Ny

Fig. P2.74 and P2.75

Knowing that the tension is 510 1b in cable AB and 425 Ib in cable AC, determine the
magnitude and direction of the resultant of the forces exerted at A by the two cables.

A frame ABC is supported in part by cable DBE that passes through a frictionless ring

at B. Knowing that the tension in the cable is 385 N, determine the magnitude and
direction of the resultant of the forces exerted by the cable at B.
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Fig. P2.76
2.77 For the frame of Prob. 2.68, determine the magnitude and direction of the resultant of
the forces exerted by the cables at B knowing that the tension is 540 N in cable BG and
750 N in cable BH.
2.78 The boom OA carries a load P and is supported by two cables, as shown. Knowing that

the tension in cable AB is 183 lb and that the resultant of the load P and of the forces
exerted at A by the two cables must be directed along OA, determine the tension in

cable AC.
Fig. P2.78
2.79 For the boom and loading of Prob. 2.78, determine the magnitude of the load _Page 64
P.

. _/
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2.5 FORCES AND EQUILIBRIUM IN SPACE

According to the definition given in Sec. 2.3, a particle A is in equilibrium if the resultant of all the

forces acting on A is zero. The components R, R,, and R, of the resultant of forces in space are given

by Egs. (2.31); when the components of the resultant are zero, we have

(2.34)
$F,=0 XF,=0 XF,=0

Egs. (2.34) represent the necessary and sufficient conditions for the equilibrium of a particle in space.
We can use them to solve problems dealing with the equilibrium of a particle involving no more than
three unknowns.

The first step in solving three-dimensional equilibrium problems is to draw a free-body diagram
showing the particle in equilibrium and all of the forces acting on it. You can then write the equations of
equilibrium (2.34) and solve them for three unknowns. In the more common types of problems, these
unknowns will represent (1) the three components of a single force or (2) the magnitude of three forces,
each of known direction.

Photo 2.4 Although we cannot determine the tension in the four
cables supporting the car by using the three equilibrium equations
(Egs. [2.34]), we can obtain a relation among the tensions by
analyzing the equilibrium of the hook.
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Page b

-
SamPle Problem 2.9

A 200-kg cylinder is hung by means of two cables AB and AC that are attached to the top of a
vertical wall. A horizontal force P perpendicular to the wall holds the cylinder in the position
shown. Determine the magnitude of P and the tension in each cable.

STRATEGY : connection point A is acted upon by four forces, including the weight of

the cylinder. You can use the given geometry to express the force components of the cables and
then apply equilibrium conditions to calculate the tensions.

MODELING and ANALYSIS:
Free-BOdy Diagram. Choose point A as a free body; this point is subjected to four

forces, three of which are of unknown magnitude. Introducing the unit vectors i, j, and k, resolve
each force into rectangular components (Fig. 1):

P ="Pi M
W = —mgj = —(200 kg)(9.81 m/s?)j = —(1962 N)j

Fig. 1 Free-body diagram of particle A.
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For T 4p and T 4, it is first necessary to determine the components and magnitudes of e

— —
the vectors AB and AC. Denoting the unit vector along AB by, A 4 you can write T 45 as

—
AB=—(12m)i +(10 m)j +(8m)k AB = 12.862m

—
AD
Aip = — 22 0.09330i + 0.7775] + 0.6220k
48 = 19 862m ! .
. . (2)
Tup = TapAup = —0.09330T 51 + 0.7775T 45 + 0.6220T 45

Similarly, denoting the unit vector along AC by A 4¢, you have for T 4¢

AC = —(1.2m)i +(10 m)j —(10 m)k AC =14.193 m

—
AC
Ao = — 2% 0.084551 + 0.7046 — 0.7046k
A0 = 74193 m ! -
) ) 3)
Tao = TueAag — —0.08455T i + 0.7046 T § — 0.7046 T4 ok

Equilibrium Condition. Because A is in equilibrium, you must have

YF =0: Tap+Tac+P+W=0

or substituting from Egs. (1), (2), and (3) for the forces and factoring i, j, and k, you have
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(—0.09330T 'y — 0.08455T 4 + P)i
+(0.7775T 4 g + 0.7046 Ty — 1962 N)j
+(0.6220T'yg — 0.7046 T4 )k = 0

Setting the coefficients of i, j, and k equal to zero, you can write three scalar equations, which
express that the sums of the x, y, and z components of the forces are respectively equal to zero.

YF, =0: —0.093307'yp — 0.08455T'4c + P =0
YF,=0: +0.7775T 'y g + 0.7046T4c — 1962 N = 0
YF,=0: +0.62207T 4y — 0.7046T'4c = 0

Solving these equations, you obtain

REFLECT and THINK: The solution of the three unknown forces yielded

positive results, which is completely consistent with the physical situation of this problem.
Conversely, if one of the cable force results had been negative, thereby reflecting compression

P=235N T,p=1402N T, =1

Determine the weight W of the container, knowing that the tension in cable AB is 6 kN.

Telegram: @uni_k

instead of tension, you should recognize that the solution is in error. Page 67
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Problems
2.80 A container is supported by three cables that are attached to a ceiling, as shown.
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2.81

2.82

2.83
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Fig. P2.80 and P2.81

A container is supported by three cables that are attached to a ceiling, as shown.

Determine the weight W of the container, knowing that the tension in cable AD is 4.3
kN.

Three cables are used to tether a balloon, as shown. Knowing that the balloon exerts an
800-N vertical force at A, determine the tension in each cable.

¥

Fig. P2.82

A crate is supported by three cables, as shown. Determine the weight W of the crate,
knowing that the tension in cable AB is 1378 Ib.
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2.84

2.85

2.86
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Fig. P2.83

A 12-Ib circular plate of 7-in. radius is supported as shown by three wires, each_Page 68

of 25-in. length. Determine the tension in each wire, knowing that « = 30°.

Fig. P2.84

Solve Prob. 2.84, knowing that o = 45°.

Three wires are connected at point D, which is located 18 in. below the T-shaped pipe

support ABC. Determine the tension in each wire when a 180-1b cylinder is suspended
from point D, as shown.
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Fig. P2.86

2.87 A 36-1b triangular plate is supported by three wires, as shown. Determine the tension in

each wire, knowing that a = 6 in.

B
16in.
8l
Z

Fig. P2.87

2.88 A rectangular plate is supported by three cables, as shown. Knowing that the tension in
cable AC is 60 N, determine the weight of the plate. Page 69
Fig. P2.88 and P2.89
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2.89

2.90

2.91

2.92
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A rectangular plate is supported by three cables, as shown. Knowing that the tension in
cable AD is 520 N, determine the weight of the plate.

In trying to move across a slippery icy surface, a 175-1b man uses two ropes AB and
AC. Knowing that the force exerted on the man by the icy surface is perpendicular to
that surface, determine the tension in each rope.

¥

cjm

Fig. P2.90

Solve Prob. 2.90, assuming that a friend is helping the man at A by pulling on him with

a force P = —(451b)k.

Three cables are connected at A, where the forces P and Q are applied as shown.

Knowing that Q = 0, find the value of P for which the tension in cable AD is 305 N.

Fig. P2.92 and P2.93
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2.93 Three cables are connected at A, where the forces P and Q are applied as Page 70
shown. Knowing that P = 1200 N, determine the values of Q for which cable AD is
taut.

2.94 A container of weight W is suspended from ring A. Cable BAC passes through the ring

and is attached to fixed supports at B and C. Two forces P = Pi and Q = QK are

applied to the ring to maintain the container in the position shown. Knowing that

W = 376 N, determine P and Q. (Hint: The tension is the same in both portions of

cable BAC.)
¥
150 mm
160 mm _
>
~ o
- I
130 mm | 240 mui
|
Z |
| x
l 400 mm
A
1 P
Q d.:r ~1
W
Fig. P2.94
2.95 For the system of Prob. 2.94, determine W and Q knowing that P = 164 N.
2.96 Cable BAC passes through a frictionless ring A and is attached to fixed supports at B

and C, while cables AD and AE are both tied to the ring and are attached, respectively,
to supports at D and E. Knowing that a 200-1b vertical load P is applied to ring A,
determine the tension in each of the three cables.

Telegram: @uni_k
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2.97

2.98

2.99
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Fig. P2.96

Knowing that the tension in cable AE of Prob. 2.96 is 75 Ib, determine (a) the
magnitude of the load P, (b) the tension in cables BAC and AD. Page 71

A container of weight W is suspended from ring A, to which cables AC and AE

are attached. A force P is applied to the end F of a third cable that passes over a pulley
at B and through ring A and that is attached to a support at D. Knowing that

W = 1000 N, determine the magnitude of P. (Hint: The tension is the same in all

portions of cable FBAD.)

0.86 m)\ 0.40 m
.WK

L30m

Fig. P2.98

Using two ropes and a roller chute, two workers are unloading a 200-1b cast iron

counterweight from a truck. Knowing that at the instant shown the counterweight is
kept from moving and that the positions of points A, B, and C are, respectively, A(0,

—20 in., 40 in.), B(—40 in., 50 in., 0), and C(45 in., 40 in., 0), and assuming that no
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friction exists between the counterweight and the chute, determine the tension in each
rope. (Hint: Because there is no friction, the force exerted by the chute on the
counterweight must be perpendicular to the chute.)

Fig. P2.99

2.100 Collars A and B are connected by a 25-in.-long wire and can slide freely on Page 72
frictionless rods. If a 60-1b force Q is applied to collar B, as shown, determine (a) the

tension in the wire when 2 = 9 in., (b) the corresponding magnitude of the force P

required to maintain the equilibrium of the system.

¥

Fig. P2.100 and P2.101

2.101 Collars A and B are connected by a 25-in.-long wire and can slide freely on frictionless
rods. Determine the distances x and z for which the equilibrium of the system is

maintained when P = 120 1b and Q = 60 Ib.

2.102 Collars A and B are connected by a 525-mm-long wire and can slide freely on

Telegram: @uni_k
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2.103 Solve Prob. 2.102 assuming that y = 275 mm.

frictionless rods. If a force P =(341 N)j is applied to collar A, determine (a) the

tension in the wire when y = 155 mm, (b) the magnitude of the force Q required to

maintain the equilibrium of the system.

U

Fig. P2.102

Page 73
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Review and Summary

In this chapter, we have studied the effect of forces on particles, i.e., on bodies of such shape and
size that we may assume all forces acting on them apply at the same point.

Resultant of Two Forces

Forces are vector quantities; they are characterized by a point of application, a magnitude, and a
direction, and they add according to the parallelogram law (Fig. 2.30). We can determine the
magnitude and direction of the resultant R of two forces P and Q either graphically or by
trigonometry using the law of cosines and the law of sines [Sample Prob. 2.1].
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Fig. 2.30

Components of a Force

Any given force acting on a particle can be resolved into two or more components, i.e., it can be
replaced by two or more forces that have the same effect on the particle. A force F can be resolved
into two components P and Q by drawing a parallelogram with F for its diagonal; the components
P and Q are then represented by the two adjacent sides of the parallelogram (Fig. 2.31). Again, we
can determine the components either graphically or by trigonometry [Sec. 2.1E].

Fig. 2.31

Rectangular Components; Unit Vectors

A force F is resolved into two rectangular components if its components F, and F, are

perpendicular to each other and are directed along the coordinate axes (Fig. 2.32). Introducing the
unit vectors i and j along the x and y axes, respectively, we can write the components and the
vector as [Sec. 2.2A]

Fig. 2.32
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(2.6)

and

2.7)
F = F,i+ F,j

where F,, and F,, are the scalar components of F. These components, which can be positive or

negative, are defined by the relations

(2.8)
F, = Fcosf F, = Fsin 6

Page 74

When the rectangular components F, and F), of a force F are given, we can obtain —e
the angle 6 defining the direction of the force from

2.9

R, (2.9)
tan 0 = —
F,

Z

We can obtain the magnitude F of the force by solving one of the Egs. (2.8) for F or by applying
the Pythagorean theorem:

(2.10)

F=,/F+F?

Resultant of Several Coplanar Forces

When three or more coplanar forces act on a particle, we can obtain the rectangular components of
their resultant R by adding the corresponding components of the given forces algebraically [Sec.
2.2B]:

(2.13)

The magnitude and direction of R then can be determined from relations similar to Egs. (2.9) and
(2.10) [Sample Prob. 2.3].
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Forces in Space

A force F in three-dimensional space can be resolved into rectangular components F,, F,, and F,

[Sec. 2.4A]. Denoting by 6,, 6, and 6, respectively, the angles that F forms with the x, y, and z

axes (Fig. 2.33), we have

(2.19)
F,=Fcos#, F, = Fcos 0, F,=Fcosf,
¥ ¥ ¥
B B B
F.'F F)' x“"\ F-.-
=4 A
T 3 >
o . } o £ = o =
F, D x F, D x F. F, D
¥ F, 8
L T
/E Pad / E Pad /E C
z z z
(a) B (c)
Fig. 2.33

Direction Cosines

The cosines of 8, 6, and 8, are known as the direction cosines of the force F. Introducing the unit

vectors i, j, and k along the coordinate axes, we can write F as

(2.20)

or

.21
F = F(cos 0,i + cos 6, + cos 0.k)

This last equation shows (Fig. 2.34) that F is the product of its magnitude F and the unit Page 75
vector expressed by
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A = cos 0,i + cos 6j + cos 0,k

cos 6, j

cos 8k

Fig. 2.34

Because the magnitude of A is equal to unity, we must have

(2.24)
cos? 0, + cos? 0y + cos? 6, =1

When we are given the rectangular components F, Fy, and F, of a force F, we can find the

magnitude F of the force by

(2.18)
F= \/sz—i—Fyz o
and the direction cosines of F are obtained from Egs. (2.19). We have
(2.25)
F, a3 Fy F, z
cos 0, = N cosf, = 5 cos 0, = a

When a force F is defined in three-dimensional space by its magnitude F and two points M
and N on its line of action [Sec. 2.4B], we can obtain its rectangular components by first
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—
expressing the vector M N joining points M and N in terms of its components d,;, d, and d., (Fig.

2.35):
(2.26)
H 3 0
MN = d,i+d,j+dk
¥
N{;Iﬂshszﬂ}
dy=y1- 1
n'z= -5 <0
)
Mixy, ¥, 21)
o x
£
Fig. 2.35

—
We next determine the unit vector A along the line of action of F by dividing M IV by its magnitude

MN =d:

(2.27)
MN 1
Recalling that F is equal to the product of F and A, we have
o (2.28)
F=F\= z(dmi+dyj+d2k)

From this equation it follows [Sample Probs. 2.7 and 2.8] that the scalar components of Fpage 76
are, respectively,



https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

(2.29)

When two or more forces act on a particle in three-dimensional space, we can obtain the
rectangular components of their resultant R by adding the corresponding components of the given
forces algebraically [Sec. 2.4C]. We have

.31)

We can then determine the magnitude and direction of R from relations similar to Egs. (2.18) and
(2.25) [Sample Prob. 2.8].

A particle is said to be in equilibrium when the resultant of all the forces acting on it is zero [Sec.
2.3A]. The particle remains at rest (if originally at rest) or moves with constant speed in a straight
line (if originally in motion) [Sec. 2.3B].

To solve a problem involving a particle in equilibrium, first draw a free-body diagram of the
particle showing all of the forces acting on it [Sec. 2.3C]. If only three coplanar forces act on the
particle, you can draw a force triangle to express that the particle is in equilibrium. Using graphical
methods of trigonometry, you can solve this triangle for no more than two unknowns [Sample
Prob. 2.4]. If more than three coplanar forces are involved, you should use the equations of
equilibrium:

(2.15)
SF, =0 $F,=0

These equations can be solved for no more than two unknowns [Sample Prob. 2.6].

When a particle is in equilibrium in three-dimensional space [Sec. 2.5], use the three equations of
equilibrium:

(2.34)
SF,=0 YF,=0 XF, =0

These equations can be solved for no more than three unknowns [Sample Prob. 2.9].
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(
Review Problems
2.104 Two structural members A and B are bolted to a bracket, as shown. Knowing that both
members are in compression and that the force is 15 kN in member A and 10 kN in
member B, determine by trigonometry the magnitude and direction of the resultant of
the forces applied to the bracket by members A and B.
Dﬁ_——p-l-e-_mn
A I
AW s &
‘~:\\:§t I B rj,-jl" "
b*\' I
", FiJi
x‘x\ s __J."lr
Fig. P2.104
2.105 Determine the x and y components of each of the forces shown.
y
. 24in.| 28in. |
| I
L i T
! S
[ 45 in.
T‘: Ib 106 Ib }
w00~ [0 *
30 in.
- |
|-.— 40 in. —=
Fig. P2.105
2.106 The hydraulic cylinder BC exerts on member AB a force P directed along line BC. This
force develops due to the moment M applied at A, as shown; the concept of moments
will be introduced in Chap. 3. Knowing that P must have a 600-N component
perpendicular to member AB, determine (a) the magnitude of the force P, (b) its
component along line AB.
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Fig. P2.106
2.107 Knowing that o = 40°, determine the resultant of the three forces shown.
&0 1b
120 It
Fig. P2.107

. Page 78
2.108 Knowing that o = 20°, determine the tension (a) in cable AC, (b) intope BC. ~—

Fig. P2.108

2.109 Two cables are tied together at C and loaded, as shown. Knowing that P = 360 N,

determine the tension (a) in cable AC, (b) in cable BC.
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250 mm

Fig. P2.109

2.110 Three forces are applied to a bracket, as shown. The directions of the two 150-N forces

may vary, but the angle between these forces is always 50°. Determine the range of

values of « for which the magnitude of the resultant of the forces acting at A is less than

600 N.
S00M ]
S g
al -
150NN, 4
150N
Fig. P2.110

2.111 Cable AB is 65 ft long, and the tension in that cable is 3900 lb. Determine (a) the x, y,

and z components of the force exerted by the cable on the anchor B, (b) the angles 6,,,

6, and 6, defining the direction of that force.
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Fig. P2.111

2.112 Three cables are used to tether a balloon, as shown. Determine the vertical _Page79

force P exerted by the balloon at A, knowing that the tension in cable AB is 259 N.

¥

240 m
-4
Fig. P2.112 and P2.113
2.113 Three cables are used to tether a balloon, as shown. Determine the vertical force P

exerted by the balloon at A, knowing that the tension in cable AC is 444 N.

2.114 A transmission tower is held by three guy wires attached to a pin at A and anchored by

bolts at B, C, and D. If the tension in wire AB is 630 b, determine the vertical force P
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exerted by the tower on the pin at A.

Fig. P2.114 and P2.115

2.115 A transmission tower is held by three guy wires attached to a pin at A and anchored by
bolts at B, C, and D. If the tension in wire AC is 920 lb, determine the vertical force P
exerted by the tower on the pin at A.

\
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St Petersburg Times/Zumapress/Newscom

3
Rigid Bodies: Equivalent Systems of

Forces

Four tugboats work together to free the oil tanker Coastal
Eagle Point that ran aground while attempting to navigate a
channel in Tampa Bay. It will be shown in this chapter that
the forces exerted on the ship by the tugboats could be
replaced by an equivalent force exerted by a single, more

powerful, tugboat. Page 81
\ —

Objectives

e Discuss the principle of transmissibility that
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enables a force to be treated as a sliding vector.
Define the moment of a force about a point.

Examine vector and scalar products, useful in
analysis involving moments.

Apply Varignon’s theorem to simplify certain
moment analyses.

Define the mixed triple product and use it to
determine the moment of a force about an axis.

Define the moment of a couple, and consider the
particular properties of couples.

Resolve a given force into an equivalent force-
couple system at another point.

Reduce a system of forces into an equivalent force-
couple system.

Examine circumstances where a system of forces
can be reduced to a single force.

\
,
Introduction
3.1 FORCES AND MOMENTS
3.1A External and Internal Forces
3.1B Principle of Transmissibility: Equivalent Forces
3.1C Vector Products
3.1D Rectangular Components of Vector Products
3.1E Moment of a Force about a Point
3.1F Rectangular Components of the Moment of a Force
3.2 MOMENT OF A FORCE ABOUT AN
AXIS
3.2A Scalar Products
3.2B Mixed Triple Products
3.2C Moment of a Force about a Given Axis
3.3 COUPLES AND FORCE-COUPLE
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SYSTEMS
3.3A Moment of a Couple
3.3B Equivalent Couples
3.3C Addition of Couples
3.3D Couple Vectors

3.3E Resolution of a Given Force into a Force at O and a
Couple

3.4 SIMPLIFYING SYSTEMS OF FORCES

3.4A Reducing a System of Forces to a Force-Couple System

3.4B Equivalent and Equipollent Systems of Forces

3.4C Further Reduction of a System of Forces

., A
Introduction

In Chap. 2, we assumed that each of the bodies considered could be treated as a single particle. Such a
view, however, is not always possible. In general, a body should be treated as a combination of a large
number of particles. In this case, we need to consider the size of the body as well as the fact that forces
act on different parts of the body and thus have different points of application.

Most of the bodies considered in elementary mechanics are assumed to be rigid. We define a rigid
body as one that does not deform. Actual structures and machines are never absolutely rigid and deform
under the loads to which they are subjected. However, these deformations are usually small and do not
appreciably affect the conditions of equilibrium or the motion of the structure under consideration. They
are important, though, as far as the resistance of the structure to failure is concerned and are considered
in the study of mechanics of materials.

In this chapter, you will study the effect of forces exerted on a rigid body, and you will learn how to
replace a given system of forces by a simpler equivalent system. This analysis rests on the fundamental
assumption that the effect of a given force on a rigid body remains unchanged if that force is moved
along its line of action (principle of transmissibility). It follows that forces acting on a rigid body can be
represented by sliding vectors, as indicated in Sec. 2.1B. “Page 82

Two important concepts associated with the effect of a force on a rigid body are the
moment of a force about a point (Sec. 3.1E) and the moment of a force about an axis (Sec. 3.2C). The
determination of these quantities involves computing vector products and scalar products of two vectors;
so in this chapter, we introduce the fundamentals of vector algebra and apply them to the solution of
problems involving forces acting on rigid bodies.

Another concept introduced in this chapter is that of a couple, i.e., the combination of two forces
that have the same magnitude, parallel lines of action, and opposite sense (Sec. 3.3A). As you will see,
we can replace any system of forces acting on a rigid body by an equivalent system consisting of one
force acting at a given point and one couple. This basic combination is called a force-couple system. In
the case of concurrent, coplanar, or parallel forces, we can further reduce the equivalent force-couple
system to a single force, called the resultant of the system, or to a single couple, called the resultant
couple of the system.
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3.1 FORCES AND MOMENTS

The basic definition of a force does not change if the force acts on a point or on a rigid body. However,
the effects of the force can be very different, depending on factors such as the point of application or line
of action of that force. As a result, calculations involving forces acting on a rigid body are generally
more complicated than situations involving forces acting on a point. We begin by examining some
general classifications of forces acting on rigid bodies.

3.1A External and Internal Forces

Forces acting on rigid bodies can be separated into two groups: (1) external forces and (2) internal
forces.

1. External forces are exerted by other bodies on the rigid body under consideration. They are

entirely responsible for the external behavior of the rigid body, either causing it to move or ensuring
that it remains at rest. We shall be concerned only with external forces in this chapter and in Chaps.
4 and 5.

2. Internal forces hold together the particles forming the rigid body. If the rigid body is structurally

composed of several parts, the forces holding the component parts together are also defined as
internal forces. We will consider internal forces in Chaps. 6 and 7.

As an example of external forces, consider the forces acting on a disabled truck that three people
are pulling forward by means of a rope attached to the front bumper (Fig. 3.1a). The external forces
acting on the truck are shown in a free-body diagram (Fig. 3.1b). Note that this free-body diagram
shows the entire object, not just a particle representing the object. Let us first consider the weight of the
truck. Although it embodies the effect of the earth’s pull on each of the particles forming the truck, the
weight can be represented by the single force W. The point of application of this force—that “page 83~
is, the point at which the force acts—is defined as the center of gravity of the truck. (In Chap. ~
5, we will show how to determine the location of centers of gravity.) The weight W tends to make the
truck move vertically downward. In fact, it would actually cause the truck to move downward, i.e., to
fall, if it were not for the presence of the ground. The ground opposes the downward motion of the truck

by means of the reactions R, and R,. These forces are exerted by the ground on the truck and must

therefore be included among the external forces acting on the truck.

L e ) =

(1)

-
- " A F
: ._J;-.
Yw
R

R,

(B
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Fig. 3.1 (a) Three people pulling on a truck with a rope; (b) free-body
diagram of the truck, shown as a rigid body instead of a particle.

The people pulling on the rope exert the force F. The point of application of F is on the front
bumper. The force F tends to make the truck move forward in a straight line; the force actually makes it
move, because no external force opposes this motion. (We are ignoring rolling resistance here for
simplicity.) This forward motion of the truck, during which each straight line keeps its original
orientation (the floor of the truck remains horizontal, and the walls remain vertical), is known as a
translation. Other forces might cause the truck to move differently. For example, the force exerted by a
jack placed under the front axle would cause the truck to pivot about its rear axle. Such a motion is a
rotation. We conclude, therefore, that each external force acting on a rigid body can, if unopposed,
impart to the rigid body a motion of translation or rotation, or both.

3.1B Principle of Transmissibility: Equivalent
Forces

The principle of transmissibility states that the conditions of equilibrium or motion of a rigid body

remain unchanged if a force F acting at a given point of the rigid body is replaced by a force F’ of the

same magnitude and same direction, but acting at a different point, provided that the two forces have the

same line of action (Fig. 3.2). The two forces F and F’ have the same effect on the rigid body and are

said to be equivalent forces. This principle, which states that the action of a force may be transmitted
along its line of action, is based on experimental evidence. It cannot be derived from the properties
established so far in this text and therefore must be accepted as an experimental law. Therefore, our
study of the statics of rigid bodies is based on the three principles introduced so far: the parallelogram
law of vector addition, Newton’s first law, and the principle of transmissibility.

Fig. 3.2 Two forces F and F’ are equivalent if they have the same

magnitude and direction and the same line of action, even if they act
at different points.
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We indicated in Chap. 2 that we could represent the forces acting on a particle by vectors. These
vectors had a well-defined point of application—namely, the particle itself—and were therefore fixed, or
bound, vectors. In the case of forces acting on a rigid body, however, the point of application of the
force does not matter, as long as the line of action remains unchanged. Thus, forces acting on a rigid
body must be represented by a different kind of vector, known as a sliding vector, because forces are
allowed to slide along their lines of action. Note that all of the properties we derive in the following
sections for the forces acting on a rigid body are valid more generally for any system of sliding vectors.
To keep our presentation more intuitive, however, we will carry it out in terms of physical forces rather
than in terms of mathematical sliding vectors.

Returning to the example of the truck, we first observe that the line of action of the force F is a
horizontal line passing through both the front and rear bumpers of the truck (Fig. 3.3). Using the Page 84

principle of transmissibility, we can therefore replace F by an equivalent force F' acting on the

rear bumper. In other words, the conditions of motion are unaffected, and all of the other external forces

acting on the truck (W, R, R) remain unchanged if the people push on the rear bumper instead of

pulling on the front bumper.

l_ Equivalent _|
F

L - : F foroes

W W

Fig. 3.3 Force F’ is equivalent to force F, so the motion of the truck is

the same whether you pull it or push it.

The principle of transmissibility and the concept of equivalent forces have limitations. Consider, for
example, a short bar AB acted upon by equal and opposite axial forces P and P, as shown in Fig. 3.4a.
According to the principle of transmissibility, we can replace force P, by a force P, having the same

magnitude, the same direction, and the same line of action but acting at A instead of B (Fig. 3.4b). The

forces P and P4 acting on the same particle can be added according to the rules of Chap. 2, and

because these forces are equal and opposite, their sum is equal to zero. Thus, in terms of the external
behavior of the bar, the original system of forces shown in Fig. 3.4a is equivalent to no force at all (Fig.
3.4c).
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L) (B (c)

— P —

P P - A
(d) (e} LF)
Fig. 3.4 (a—) A set of equivalent forces acting on bar AB; (d—f)
another set of equivalent forces acting on bar AB. Both sets produce
the same external effect (equilibrium in this case) but different
internal forces and deformations.

Consider now the two equal and opposite forces P; and P> acting on the bar AB as shown in Fig.
3.4d. We can replace the force P2 by a force P2 having the same magnitude, the same direction, and the

same line of action but acting at B instead of at A (Fig. 3.4e). We can add forces P; and P%, and their

sum is again zero (Fig. 3.4f). From the point of view of the mechanics of rigid bodies, the systems
shown in Fig. 3.4a and d are thus equivalent. However, the internal forces and deformations produced
by the two systems are clearly different. The bar of Fig. 3.4a is in tension and, if not absolutely rigid,
increases in length slightly; the bar of Fig. 3.4d is in compression and, if not absolutely rigid, decreases
in length slightly. Thus, although we can use the principle of transmissibility to determine the conditions

of motion or equilibrium of rigid bodies and to compute the external forces acting on these Page 85
bodies, it should be avoided, or at least used with care, in determining internal forces and
deformations.

3.1C Vector Products

To gain a better understanding of the effect of a force on a rigid body, we need to introduce a new
concept, the moment of a force about a point. However, this concept is more clearly understood and is
applied more effectively if we first add to the mathematical tools at our disposal the vector product of
two vectors.

The vector product of two vectors P and Q is defined as the vector V that satisfies the following
conditions.

1. The line of action of V is perpendicular to the plane containing P and Q (Fig. 3.5q).
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from P to () thomb

l
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Fig. 3.5 (a) The vector product V has the magnitude PQ sin 0 and is

perpendicular to the plane of P and Q; (b) you can determine the

direction of V by using the right-hand rule.

The magnitude of V is the product of the magnitudes of P and Q and of the sine of the angle 0
formed by P and Q (the measure of which is always 180° or less). We thus have

Magnitude of a
vector product

3.1
V = PQsin 6 G

The direction of V is obtained from the right-hand rule. Close your right hand and hold it so that

your fingers are curled in the same sense as the rotation through 6 that brings the vector P in line
with the vector Q. Your thumb then indicates the direction of the vector V (Fig. 3.5 b). Note that if
P and Q do not have a common point of application, you should first redraw them from the same
point. The three vectors P, Q, and V—taken in that order—are said to form a right-handed triad."

As stated previously, the vector V satisfying these three conditions (which define it uniquely) is

referred to as the vector product of P and Q. It is represented by the mathematical expression

Vector product

(3.2)
V=PxQ

Because of this notation, the vector product of two vectors P and Q is also referred to as the cross
product of P and Q.

It follows from Eq. (3.1) that if the vectors P and Q have either the same direction or opposite

directions, their vector product is zero. In the general case when the angle 6 formed by the two vectors is
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neither 0° nor 1807, Eqg. (3.1) has a simple geometric interpretation: The magnitude V of the vector

product of P and Q is equal to the area of the parallelogram that has P and Q for sides (Fig. 3.6). The

Page 86
vector product P x Q is therefore unchanged if we replace Q by a vector Q' that is coplanar —E=
with P and Q such that the line joining the tips of Q and Q’ is parallel to P:

3.3)

V=PxQ=PxQ

Fig. 3.6 The magnitude of the vector product V equals the area of the

parallelogram formed by P and Q. If you change Q to Q' in such a

way that the parallelogram changes shape but P and the area are still
the same, then the magnitude of V remains the same.

From the third condition used to define the vector product V of P and Q—namely, that P, Q, and V
must form a right-handed triad—it follows that vector products are not commutative; i.e., Q x P is not
equal to P x Q. Indeed, we can easily check that Q x P is represented by the vector —V, which is

equal and opposite to V:

(3.4)
QxP=—(PxQ)
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Let us compute the vector product V = P x Q, where the vector P is of

magnitude 6 and lies in the zx plane at an angle of 30° with the x axis, and

where the vector Q is of magnitude 4 and lies along the x axis (Fig. 3.7).

¥

Fig. 3.7 Two vectors P and Q with a 30” angle between them.

It follows immediately from the definition of the vector product that the
vector V must lie along the y axis, directed upward, with the magnitude

V = PQ sin § =(6)(4) sin 30° = 12

We saw that the commutative property does not apply to vector products. However, it can be
demonstrated that the distributive property

(3.5)
Px(Q;+Qy)=PxQ; +PxQ,

does hold.
A third property, the associative property, does not apply to vector products; we have in general

(3.6)
(PxQ)xS#P x(Q x8S)
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3.1D Rectangular Components of Vector
Products

Before we turn back to forces acting on rigid bodies, let’s look at a more convenient way to express
vector products using rectangular components. To do this, we use the unit vectors i, j, and k that were
defined in Chap. 2.

Consider first the vector product i x j (Fig. 3.8a). Because both vectors have a magnitude equal to

1 and because they are at a right angle to each other, their vector product is also a unit vector. This unit
vector must be k, because the vectors i, j, and k are mutually perpendicular and form a right- Page 87
handed triad. Similarly, it follows from the right-hand rule given in Sec. 3.1C that the product

j x iis equal to —k (Fig. 3.8b). Finally, note that the vector product of a unit vector with itself, such as

i x i, is equal to zero, because both vectors have the same direction. Thus, we can list the vector

products of all the various possible pairs of unit vectors:

ixi=0 jxi=-k kxi=j
ixj=k ixj=0 kxj =—i (3.7)
ixk=-j jxk=i kxk=0

1]

(5)
Fig. 3.8 (a) The vector product of the i and j unit vectors is the k unit
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vector; (b) the vector product of the j and i unit vectors is the —k unit

vector.

We can determine the sign of the vector product of two unit vectors simply by arranging them in a circle
and reading them in the order of the multiplication (Fig. 3.9). The product is positive if they follow each
other in counterclockwise order and is negative if they follow each other in clockwise order.

Unit vector Unit vector
products read products read
in this direction in this direction
are positive aTe negative

Fig. 3.9 Arrange the three letters i, j, and k in a counterclockwise
circle. You can use the order of letters for the three unit vectors in a
vector product to determine its sign.

We can now easily express the vector product V of two given vectors P and Q in terms of the
rectangular components of these vectors. Resolving P and Q into components, we first write

V =P x Q =(Pii+ Py + Pk)x (Qoi+ Qyj + Q:k)

Making use of the distributive property, we express V as the sum of vector products, such as Pyi x QJ.

We find that each of the expressions obtained is equal to the vector product of two unit vectors, such as

i x j, multiplied by the product of two scalars, such as P, Q. Recalling the identities of Eq. (3.7) and

factoring out i, j, and k, we obtain

V =(P,Q: — P-Qy)i H(P:Qs — P2Q:)j +(P:Qy — PyQ:)k (3.8)

Thus, the rectangular components of the vector product V are

Rectangular components
of a vector product
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Vm :Psz _PzQy
Vy = P.Q. — P.Q. (3.9)
Vz:PmQy _Pme

Returning to Eq. (3.8), notice that the right-hand side represents the expansion of a determinant. Page 88
Thus, we can express the vector product V in the following form, which is more easily
memorized:"

Rectangular components
of a vector product (determinant form)

i j k
V=|P P, P, (3.10)
Q: Qy Q:

3.1E Moment of a Force about a Point

We are now ready to consider a force F acting on a rigid body (Fig. 3.10a). As we know, the force F is
represented by a vector that defines its magnitude and direction. However, the effect of the force on the
rigid body depends also upon its point of application A. The position of A can be conveniently defined
by the vector r that joins the fixed reference point O with A; this vector is known as the position vector
of A. The position vector r and the force F define the plane shown in Fig. 3.10a.

\Ma y

X ;\/};'z&ﬂ

(1)

M,
Fingers curl \ Vector Mg

in the direction points in the
fromr o F direction of
the thumb

(b)
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Fig. 3.10 Moment of a force about a point. (a) The moment My is the

vector product of the position vector r and the force F; (b) a right-

hand rule indicates the sense of M.

We define the moment of F about O as the vector product of r and F:

Moment of a force
about a point O

(3.11)
Mo=rxF

According to the definition of the vector product given in Sec. 3.1C, the moment M must be

perpendicular to the plane containing O and force F. The sense of M is defined by the sense of the

rotation that will bring vector r in line with vector F; this rotation is observed as counterclockwise by an

observer located at the tip of M. Another way of defining the sense of M is furnished by a variation

of the right-hand rule: Close your right hand and hold it so that your fingers curl in the sense of the

rotation that F would impart to the rigid body about a fixed axis directed along the line of action of M.

This way, your thumb indicates the sense of the moment My, (Fig. 3.10b).

Finally, denoting by 0 the angle between the lines of action of the position vector r and the force F,
we find that the magnitude of the moment of F about O is

Magnitude of the
moment of a force

(3.12)
Mo =rF sinf = Fd

where d represents the perpendicular distance from O to the line of action of F (see Fig. 3.10). "page 89
Experimentally, the tendency of a force F to make a rigid body rotate about a fixed axis T
perpendicular to the force depends upon the distance of F from that axis, as well as upon the magnitude
of F. For example, a child’s breath can exert enough force to make a toy propeller spin (Fig. 3.11a), but
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a wind turbine requires the force of a substantial wind to rotate the blades and generate electrical power
(Fig. 3.11b). However, the perpendicular distance between the rotation point and the line of action of the
force (often called the moment arm) is just as important. If you want to apply a small moment to turn a
nut on a pipe without breaking it, you might use a small pipe wrench that gives you a small “Page 90 ge 90
moment arm (Fig. 3.11c). But if you need a larger moment, you could use a large wrench with a

long moment arm (Fig. 3.11d). Therefore,

() Small force (b Lange force
darkobd123RF Image Source/Getty Images

(d) Large moment arm

(c) Small moment arm
\ialery Vioenmyy/Alamy Stock Photo Monty Rakusen/Cultura/Getty Images

Fig. 3.11 (a, b) The moment of a force depends on the magnitude of
the force; (c, d) it also depends on the length of the moment arm.
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The magnitude of M o measures the tendency of the force F to make the rigid body rotate about

a fixed axis directed along M .

In the SI system of units, where a force is expressed in newtons (N) and a distance in meters (m),

the moment of a force is expressed in newton-meters (N-m). In the U.S. customary system of units,

where a force is expressed in pounds and a distance in feet or inches, the moment of a force is expressed

inlb-ft orlb-in.

Note that although the moment M, of a force about a point depends upon the magnitude, the line

of action, and the sense of the force, it does not depend upon the actual position of the point of

application of the force along its line of action. Conversely, the moment M, of a force F does not

characterize the position of the point of application of F.

However, as we will see shortly, the moment M, of a force F of a given magnitude and direction

completely defines the line of action of F. Indeed, the line of action of F must lie in a plane through O

perpendicular to the moment M p; its distance d from O must be equal to the quotient M/ F of the

magnitudes of M and F; and the sense of M determines whether the line of action of F occurs on one

side or the other of the point O.

Recall from Sec. 3.1B that the principle of transmissibility states that two forces F and F’ are

equivalent (i.e., have the same effect on a rigid body) if they have the same magnitude, same direction,
and same line of action. We can now restate this principle:

Two forces F and F’ are equivalent if, and only if, they are equal (i.e., have the same

magnitude and same direction) and have equal moments about a given point O.

The necessary and sufficient conditions for two forces F and F' to be equivalent are thus
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(3.13)
F=F’ and My =M,

We should observe that if the relations of Egs. (3.13) hold for a given point O, they hold for any other
point.

Two-Dimensional Problems. Many applications in statics deal with two-dimensional structures. Such
structures have length and breadth but only negligible depth. Often, they are subjected to forces
contained in the plane of the structure. We can easily represent two-dimensional structures and the
forces acting on them on a sheet of paper or on a blackboard. Their analysis is therefore considerably
simpler than that of three-dimensional structures and forces.

Consider, for example, a rigid slab acted upon by a force F in the plane of the slab (Fig. 3.12). The

moment of F about a point O, which is chosen in the plane of the figure, is represented by a vector M

perpendicular to that plane and of magnitude Fd. In the case of Fig. 3.12a, the vector M points out of

the page, whereas in the case of Fig. 3.12b, it points into the page. As we look at the figure, we observe
in the first case that F tends to rotate the slab counterclockwise and in the second case that it tends to
rotate the slab clockwise. Therefore, it is natural to refer to the sense of the moment of F about "page 91 ge 91
O in Fig. 3.12a as counterclockwise O and in Fig. 3.12b as clockwise O.

F

&

M, .
o

(a) M=+ Fd

o
df

;D §

M,

(B)My,=-Fd
Fig. 3.12 (a) A moment that tends to produce a counterclockwise

rotation is positive; (b) a moment that tends to produce a clockwise
rotation is negative.

Because the moment of a force F acting in the plane of the figure must be perpendicular to that
plane, we need only specify the magnitude and the sense of the moment of F about O. We do this by

assigning to the magnitude M of the moment a positive or negative sign according to whether the
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vector M points out of or into the page.

3.1F Rectangular Components of the Moment
of a Force

We can use the distributive property of vector products to determine the moment of the resultant of

several concurrent forces. If several forces F1, F, ... are applied at the same point A (Fig. 3.13) and if

we denote by r the position vector of A, it follows immediately from Eq. (3.5) that

(3.14)
1‘X(F1+F2+"~):I‘><F1+I‘><F2+"'

Fy

/OC‘ ’
Fig. 3.13 Varignon’s theorem says that the moment about point O of
the resultant of these four forces equals the sum of the moments about

point O of the individual forces.

In words,

The moment about a given point O of the resultant of several concurrent forces is equal to the
sum of the moments of the various forces about the same point O.

This property, which was originally established by the French mathematician Pierre Varignon (1654—
1722) long before the introduction of vector algebra, is known as Varignon’s theorem.

The relation in Eq. (3.14) makes it possible to replace the direct determination of the moment of a
force F by determining the moments of two or more component forces. As you will see shortly, F is
generally resolved into components parallel to the coordinate axes. However, it may be more
expeditious in some instances to resolve F into components that are not parallel to the coordinate axes
(see Sample Prob. 3.3).

In general, determining the moment of a force in space is considerably simplified if the force and
the position vector of its point of application are resolved into rectangular x, y, and z components.
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Consider, for example, the moment Mg about O of a force F whose components are F;, Fy, and F, and

that is applied at a point A with coordinates x, y, and z (Fig. 3.14). Because the components of the
position vector r are respectively equal to the coordinates x, y, and z of the point A, we can write r and F
as

(3.15)
r=zxi+yj+zk

(3.16)
F = F,i+ F,j+ Fk

7

Fig. 3.14 The moment Mg about point O of a force F applied at point

A is the vector product of the position vector r and the force F, which
can both be expressed in rectangular components.

Substituting for r and F from Egs. (3.15) and (3.16) into

(3.11)
MO =rxF

and recalling Egs. (3.8) and (3.9), we can write the moment M, of F about O in the form

(3.17)
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Page 92
where the components M,,, M,, and M, are defined by the relations —E=

Rectangular components of a moment

M, = 2F, — zF, (3.18)

As you will see in Sec. 3.2C, the scalar components M, M,, and M, of the moment M measure the

tendency of the force F to impart to a rigid body a rotation about the x, y, and z axes, respectively.

Substituting from Eq. (3.18) into Eq. (3.17), we can also write M, in the form of the determinant, as

i

M, — (3.19)

o F

j
z oy
F, F,

To compute the moment Mg about an arbitrary point B of a force F applied at A (Fig. 3.15), we

must replace the position vector r in Eq. (3.11) by a vector drawn from B to A. This vector is the

position vector of A relative to B, denoted by r 4 /5. Observing that r 4,5 can be obtained by subtracting

rg from r4, we write

(3.20)
Mp =ryp x F =(rg —rp)xF
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Fig. 3.15 The moment Mg about the point B of a force F applied at

point A is the vector product of the position vector r4 g and force F.

or using the determinant form,

i Jj k
Mp = |ZA/B YA/B ?A/B (3.21)
F, F, F,

where x4/, y4/B, and z4,p denote the components of the vector ry4 g:

LA/B = %A~ TB Ya/B = YA — YB ZA/B = %A — ZB

In the case of two-dimensional problems, we can assume without loss of generality that the force F

lies in the xy plane (Fig. 3.16). Setting z = 0 and F, = 0 in Eq. (3.19), we obtain

Mo z(wa — ny)k
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Fig. 3.16 In a two-dimensional problem, the moment M, of a force F

applied at A in the xy plane reduces to the z component of the vector
product of r with F.

We can verify that the moment of F about O is perpendicular to the plane of the figure and that it is
completely defined by the scalar

(3.22)

As noted earlier, a positive value for M indicates that the vector M points out of the paper (the force

F tends to rotate the body counterclockwise about O), and a negative value indicates that the vector M

points into the paper (the force F tends to rotate the body clockwise about O).

To compute the moment about B(x g, yB) of a force lying in the xy plane and applied at A(z4,y4)

(Fig. 3.17), we set z4 /g = 0 and F; = 0 in Eq. (3.21) and note that the vector Mp is perpendicular to

the xy plane and is defined in magnitude and sense by the scalar

(3.23)
Mp =(x4 — xB)Fy —(ya — yB)F:
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Fig. 3.17 In a two-dimensional problem, the moment Mg about a

point B of a force F applied at A in the xy plane reduces to the z

component of the vector product of r, g with F.

Page@ﬁ_

-
SamPle Problem 3.1

A 100-Ib vertical force is applied to the end of a lever, which is attached to a shaft at O. Determine
(a) the moment of the 100-1b force about O; (b) the horizontal force applied at A that creates the
same moment about O; (c) the smallest force applied at A that creates the same moment about O;
(d) how far from the shaft a 240-1b vertical force must act to create the same moment about O; (e)
whether any one of the forces obtained in parts b, c, or d is equivalent to the original force.

STRATEGY : The calculations asked for all involve variations on the basic defining

equation of a moment, My = Fd.

MODELING and ANALYSIS:
a. Moment about O. The perpendicular distance from O to the line of action
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of the 100-1b force (Fig. 1) is

d =(24in) cos 60° = 12in,

Fig. 1 Determination of the moment of the 100-1b force about O
using perpendicular distance d.

The magnitude of the moment about O of the 100-1b force is
Mgy = Fd =(1001b)(12in) = 1200 1b-in.

Because the force tends to rotate the lever clockwise about O, represent the moment by a vector

M, perpendicular to the plane of the figure and pointing into the paper. You can express this fact

with the notation

Mo = 12001b-in. O

b. Horizontal Force. in this case, you have (Fig. 2)

d =(24in) sin60° = 20.8 in.

; 24 in. .

V4

I_,."'I .i..l,rﬂ:.n
1N
Mui}f_f
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Fig. 2 Determination of horizontal force at A that creates same
moment about O.

Because the moment about O must be 1200 Ib-in., you obtain

My = Fd F=57.71b —
1200 1b-in. = F(20.8 in)

F=5771b

c. Smallest Force. Because Mo = Fd, the smallest value of F occurs when d is

maximum. Choose the force perpendicular to OA and note that d = 24 in. (Fig. 3); thus

Mo=Fd - F=501b%30°
1200 1b-in. = F(24in))

F=501b

Fig. 3 Determination of smallest force at A that creates same
moment about O.

d. 240-1b Vertical Force. Page 94

In this case (Fig. 4), Mp = F'd yields

1200 Ib-in. =(240 1b) d d = 5in.
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but

OBcos60° =d

SO

VA

Brr/
% 240 b

mﬂ'

L’U

OB = 10in.

Fig. 4 Position of vertical 240-1b force that creates same moment

about O.

e. Equivalency Check. None of the forces considered in parts b, ¢, or d are

equivalent to the original 100-1b force. Although they have the same moment about O, they have
different x and y components. In other words, although each force tends to rotate the shaft in the

same direction, each causes the lever to pull on the shaft in a different way.

REFLECT and THINK: Various combinations of force and lever arm can

produce equivalent moments, but the system of force and moment produces a different overall

effect in each case.

\_
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SamPle Problem 3.2

A force of 800 N acts on a bracket as shown. Determine the moment of the force about B.

A

.

160 mm

L

L_m.m_,.

800 N

&0°



https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

STRATEGY : vou can resolve both the force and the position vector from B to A into
rectangular components and then use a vector approach to complete the solution.

MODELING and ANALYSIS: obtain the moment Mp of the force F

about B by forming the vector product

MB :rA/B x F

where r 4, p is the vector drawn from B to A (Fig. 1). Resolving r 4 s and F into rectangular

components, you have
r4/p=—(0.2m)i +(0.16 m)j

F = (800N) cos60°i +(800 N) sin60°j
= (400 N)i +(693 N)j

LR = (400 N)i

+(0.16 m}j |

(02 m)i

Fig. 1 The moment Mg is determined from the vector product of

position vector r,, g and force vector F.

Recalling the relations in Eq. (3.7) for the cross products of unit vectors (Sec. 3.5), you obtain
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Mp=ry/px F =[—(0.2m)i +(0.16 m)j] x[(400N)i +-(693N)j] =~ Mp =203 N-m O
=—(138.6 N-m )k —(64.0 N-m )k
=—(202.6N-m )k

The moment M p is a vector perpendicular to the plane of the figure and pointing into the page.

REFLECT and THINK: Page 95

We can also use a scalar approach to solve this problem using the components for the force F and

the position vector r 4 5. Following the right-hand rule for assigning signs, we have

+ O Mg = Mg = ©Fd = —(400 N)(0.16 m)— (693 N)(0.2 m)= —202.6 N-m

Mp =203 N-m O

\ J

-
Sample Problem 3.3

A 30-1b force acts on the end of the 3-ft lever, as shown. Determine the moment of the force about
O.

STRATE GY: Resolving the force into components that are perpendicular and parallel
to the axis of the lever greatly simplifies the moment calculation.

MODELING and ANALYSIS: Replace the force by two components:

one component P in the direction of OA and the other component Q perpendicular to OA (Fig. 1).
Because O is on the line of action of P, the moment of P about O is zero. Thus, the moment of the
30-1b force reduces to the moment of Q, which is clockwise and can be represented by a negative
scalar.

Q = (301b) sin20° = 10.26 Ib
Mp = —Q(3 ft)= —(10.26 Ib)(3 ft)= —30.8Ib-ft
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M, Qf‘
Fig. 1 Thirty-pound force at A resolved into components P and Q

to simplify the determination of the moment M.

Because the value obtained for the scalar My, is negative, the moment M points into the page.

You can write it as

Mo = 30.81b-ft O

REFLECT and THINK: Always be alert for simplifications that can reduce

the amount of computation.

\_

Y,

r

Sample Problem 3.4

\

A rectangular plate is supported by brackets at A and B and by a wire CD. If the tension in the
wire is 200 N, determine the moment about A of the force exerted by the wire on point C.
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STRATEGY : The solution requires resolving the tension in the wire and the position
vector from A to C into rectangular components. You will need a unit vector approach to
determine the force components.

MODELING and ANALYSIS: obtain the moment M 4 about A of the
force F exerted by the wire on point C by forming the vector product

(1)

My=rg/axF

where r, 4 is the vector from A to C DEdECC6R

()

—
rc/a = AC =(0.3m)i +(0.08 m)k

and F is the 200-N force directed along CD (Fig. 1). Introducing the unit vector

—
A =CD/CD,
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Fig. 1 The moment M, is determined from position vector r¢,/4

and force vector F.

you can express F as

) 3)
CD
F = FA=(200N)

-
Resolving the vector C'D into rectangular components, you have

—
CD = —(0.3m)i +(0.24m)j —(0.32m)k CD = 0.50m

Substituting into (3) gives you

F- 3(;%1 (0.3 m)i +(0.24 m)j —(0.32m)K
_ _(120N)i+(96N)j —(128 N)k (4)

Substituting for r¢/ 4 and F from (2) and (4) into (1) and recalling the relations in Eq. (3.7) of Sec.

3.1D, you obtain (Fig. 2)
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My =rgs x F =(0.3i + 0.08k)x (—120i + 96j — 128k)
= (0.3Y96)k +(0.3Y—128) —j)+(0.08—120)j +(0.08)(96) —i)

My =—(7.68 N-m) i +(28.8 N-m) j+ (28.8 N-m) &

(28.8 N-m)j

— (7.68 N-m)i

F = {200 N) i
R

(288N-mk =

Fig. 2 Components of moment M, applied at A.

Alternative Solution. As indicated in Sec. 3.1F, you can also express the moment

M in the form of a determinant:

i j k i j k
Mg=|Tc—ZA Ye—YA 2c—24|=1] 03 0 0.08
F, Fy F, —120 96 —128

M, = —(7.68N-m) i+(28.8N-m) j +(28.8 N-m) k
REFLECT " ( m) i+( m) j +( m)

and

THINK: Two-dimensional problems often are solved easily using a scalar approach, but
the versatility of a vector analysis is quite apparent in a three-dimensional problem such as this.

\_ J

Page 9

Problems
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3.1 An 8-1b force P is applied to a shift lever. Determine the moment of P about B when a

is equal to 25°.
P
a A
{ o

22 im,

~—8 in.—

Fig. P3.1 and P3.2

3.2 For the shift lever shown, determine the magnitude and the direction of the smallest
force P that has a 210-1b-in. clockwise moment about B.

3.3 A 300-N force P is applied at point A of the bell crank shown. (a) Compute the

moment of the force P about O by resolving it into horizontal and vertical components.
(b) Using the result of part a, determine the perpendicular distance from O to the line of

action of P.
P
?ﬂﬂ
/f" A
B@ /4
N y
\“‘3:\\ _:cil':f:://'
o N L L
120 mm L\; .:,‘,"__é_ 200 mm
Fig. P3.3 and P3.4
3.4 A 400-N force P is applied at point A of the bell crank shown. (a) Compute the

moment of the force P about O by resolving it into components along line OA and in a
direction perpendicular to that line. (b) Determine the magnitude and direction of the
smallest force Q applied at B that has the same moment as P about O.

3.5 A 300-N force is applied at A, as shown. Determine (a) the moment of the 300-N force
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3.6
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3.7 and 3.8 The tailgate of a car is supported by the hydraulic lift BC. If the lift

about D, (b) the smallest force applied at B that creates the same moment about D.

|=— 100 MA-‘-iEIII mm——+
@p
125 mm
200 mm
- ol
2574 4 B
300 N
Fig. P3.5 and P3.6

A 300-N force is applied at A, as shown. Determine (a) the moment of the 300-N force
about D, (b) the magnitude and sense of the horizontal force applied at C that creates
the same moment about D, (c) the smallest force applied at C that creates the same

moment about D.
Page 98

exerts a 125-1b force directed along its centerline on the ball and socket at B, determine
the moment of the force about A.

Fig. P3.7
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3.9 and 3.10

Telegram: @uni_k

3.11

Fig. P3.8

force about C.

A.;fé\l'
I ! 576in.
O —
R 224in.
o—-=
"
168 in.
Fig. P3.9
v
=
.-'::'I.f.::ll| 352 in.
/0 £
V7€ 224
A"
168 in.
Fig. P3.10

1350 N and that ¢ = 360 mm, determine the moment about B of the force exerted by

the cord at point A by resolving that force into horizontal and vertical components

applied (a) at point A, (b) at point C.

It is known that the connecting rod AB exerts on the crank BC a 500-1b force
directed down and to the left along the centerline of AB. Determine the moment of the

Rod AB is held in place by the cord AC. Knowing that the tension in the cord is _Page 99
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3.12

3.13

3.14

3.15

240 mm

450 mm

Fig. P3.11 and P3.12

Rod AB is held in place by the cord AC. Knowing that ¢ = 840 mm and that the

moment about B of the force exerted by the cord at point A is 756 N-m, determine the
tension in the cord.

Determine the moment about the origin O of the force F = 4i — 3j + 5k that acts at a

point A. Assume that the position vector of A is

(a)r =2i+3j— 4k, (b)r = —8i+ 6j — 10k, (c) r = 8i — 6j + 5k.

Determine the moment about the origin O of the force F = 4i + 10j + 6k that acts at a

point A. Assume that the position vector of A is

(a)r =2i —3j+ 4k, (b) r = 2i +6j+ 3k, (c) r = 2i + 5j + 6k.

A 6-ft-long fishing rod AB is securely anchored in the sand of a beach. After a fish takes

the bait, the resulting force in the line is 6 Ib. Determine the moment about A of the
force exerted by the line at B.
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Fig. P3.15

3.16 The wire AE is stretched between the corners A and E of a bent plate. Knowing that the

tension in the wire is 435 N, determine the moment about O of the force exerted by the
wire (a) on corner A, (b) on corner E.

¥
A |\90 mm |
e

160 mm

Fig. P3.16

3.17 The 12-ft boom AB has a fixed end A. A steel cable is stretched from the free end B of

the boom to a point C located on the vertical wall. If the tension in the cable is 380 1b,
determine the moment about A of the force exerted by the cable at B.

¥

Fig. P3.17

3.18 A wooden board AB, which is used as a temporary prop to support a small _Page 100

roof, exerts at point A of the roof a 57-1b force directed along BA. Determine the
moment about C of that force.
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Fig. P3.18

3.19

Before the trunk of a large tree is felled, cables AB and BC are attached as shown.
Knowing that the tensions in cables AB and BC are 555 N and 660 N, respectively,
determine the moment about O of the resultant force exerted on the tree by the cables at
B.

Fig. P3.19

3.20

A small boat hangs from two davits, one of which is shown in the figure. The tension in
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line ABAD is 82 1Ib. Determine the moment about C of the resultant force R 4 exerted

on the davit at A.

Fig. P3.20
3.21 In Prob. 3.15, determine the perpendicular distance from point A to a line drawn through
points B and C.
3.22 In Prob. 3.16, determine the perpendicular distance from point O to wire AE.
3.23 In Prob. 3.17, determine the perpendicular distance from point A to cable BC.
3.24 Determine the perpendicular distance from point A to the line of action of the 200-N
force.
¥

Fig. P3.24

G J
Page 101
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3.2 MOMENT OF A FORCE ABOUT AN AXIS

We want to extend the idea of the moment about a point to the often useful concept of the moment about
an axis. However, first we need to introduce another tool of vector mathematics. We have seen that the
vector product multiplies two vectors together and produces a new vector. Here we examine the scalar
product, which multiplies two vectors together and produces a scalar quantity.

3.2A Scalar Products

The scalar product of two vectors P and Q is defined as the product of the magnitudes of P and Q and
of the cosine of the angle 6 formed between them (Fig. 3.18). The scalar product of P and Q is denoted

by P . Q.

Scalar product

(3.24)
P-Q = PQcosb

ey

Q _fl'#’

F d

1JH
ki
Fig. 3.18 Two vectors P and Q and the angle 0 between them.

Note that this expression is not a vector but a scalar, which explains the name scalar product. Because

of the notation used, P - Q is also referred to as the dot product of the vectors P and Q.
It follows from its very definition that the scalar product of two vectors is commutative, i.e., that

P.Q_Q.P (3.25)

It can also be proven that the scalar product is distributive, as shown by

(3.26)
P.-(Q +Qy)=P-Q +P-Q,

As far as the associative property is concerned, this property cannot apply to scalar products. Indeed,
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(P - Q)-S has no meaning, because P + Q is not a vector but a scalar.

We can also express the scalar product of two vectors P and Q in terms of their rectangular
components. Resolving P and Q into components, we first write

P-Q=(Pi+Pj+Pk)- (Qi+Q, +Q.k)

Making use of the distributive property, we express P - Q as the sum of scalar products, such as

P,i-Q,iand P,i- Q,j. However, from the definition of the scalar product, it follows that the scalar

products of the unit vectors are either zero or one.

i-j=0 j-k=0 k-i=0 (3.27)

Thus, the expression for P - Q reduces to

Scalar product

(3.28)

P-Q :PwQa: +PyQy+PzQz
In the particular case when P and Q are equal, we note that Page 102
(3.29)

P.P=P2+ P2+ P?=P2

Applications of the Scalar Product

1. Angle formed by two given vectors. Let two vectors be given in terms of their components:

Q=Q:i+Qy +Q:k
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To determine the angle formed by the two vectors, we equate the expressions obtained in Egs.
(3.24) and (3.28) for their scalar product,

PQcost + P,Q, + P,Q, + P,Q,

Solving for cos 6, we have

(3.30)
PxQx +PyQy+PzQz

PQ

cosf =

Projection of a vector on a given axis. Consider a vector P forming an angle 6 with an axis, or
directed line, OL (Fig. 3.19a). We define the projection of P on the axis OL as the scalar

(3.31)
Por, = Pcosf
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()

(b)

Fig. 3.19 (a) The projection of vector P at an angle 0 to a line OL; (b)
the projection of P and a vector Q along OL; (c) the projection of P, a
unit vector A along OL, and the angles of OL with the coordinate axes.

The projection Py, is equal in absolute value to the length of the segment OA. It is positive if OA has

the same sense as the axis OL—that is, if 0 is acute—and negative otherwise. If P and OL are at a right
angle, the projection of P on OL is zero.

Now consider a vector Q directed along OL and of the same sense as OL (Fig. 3.19b). We can
express the scalar product of P and Q as

(3.32)
P-.-Q=PQcosb=Pp;Q
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from which it follows that

(3.33)
P P'Q Pwa+PyQy+PzQz
OL prm— prm—
Q Q
In the particular case when the vector selected along OL is the unit vector A (Fig. 3.19¢), we have
(3.34)

Pop =P-A

Recall from Sec. 2.4A that the components of A along the coordinate axes are respectively equal to the
direction cosines of OL. Resolving P and A into rectangular components, we can express the projection
of P on OL as

(3.35)
Por, = P, cos0, + P,cosf, + P,cost,

“Page 103_

where 6,,0,, and 0, denote the angles that the axis OL forms with the coordinate axes.

3.2B Mixed Triple Products

We have now seen both forms of multiplying two vectors together: the vector product and the scalar
product. Here we define the mixed triple product of the three vectors S, P, and Q as the scalar
expression

Mixed triple product

(3.36)
S-(PxQ)

This is obtained by forming the scalar product of S with the vector product of P and Q.
The mixed triple product of S, P, and Q has a simple geometrical interpretation (Fig. 3.20a). Recall

from Sec. 3.4 that the vector P x Q is perpendicular to the plane containing P and Q and that its

magnitude is equal to the area of the parallelogram that has P and Q for sides. Also, Eq. (3.32) indicates

that we can obtain the scalar product of S and P x Q by multiplying the magnitude of P x Q (i.e., the
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area of the parallelogram defined by P and Q) by the projection of S on the vector P x Q (i.e., by the

projection of S on the normal to the plane containing the parallelogram). The mixed triple product is
thus equal, in absolute value, to the volume of the parallelepiped having the vectors S, P, and Q for sides
(Fig. 3.20b). The sign of the mixed triple product is positive if S, P, and Q form a right-handed triad and

negative if they form a left-handed triad. [That is, S - (P x Q) is negative if the rotation that brings P

into line with Q is observed as clockwise from the tip of S.] The mixed triple product is zero if S, P, and
Q are coplanar.

(h)
Fig. 3.20 (a) The mixed triple product is equal to the magnitude of the
cross product of two vectors multiplied by the projection of the third
vector onto that cross product; (b) the result equals the volume of the
parallelepiped formed by the three vectors.

Because the parallelepiped defined in this way is independent of the order in which the three
vectors are taken, the six mixed triple products that can be formed with S, P, and Q all have the same
absolute value, although not the same sign. It is easily shown that

S-(PxQ)=P-(Qx8)=Q-(SxP)
=-S.(QxP)=-P.-(SxQ)=-Q- (P x8) (3.37)

Arranging the letters representing the three vectors counterclockwise in a circle (Fig. 3.21), we observe
that the sign of the mixed triple product remains unchanged if the vectors are permuted in such a way
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that they still read in counterclockwise order. Such a permutation is said to be a circular permutation. It
also follows from Eq. (3.37) and from the commutative property of scalar products that the mixed triple

product of S, P, and Q can be defined equally wellas S+ (P x Q) or (S x P) - Q.

Fig. 3.21 Counterclockwise arrangement for determining the sign of
the mixed triple product of three vectors: P, Q, and S.

We can also express the mixed triple product of the vectors S, P, and Q in terms of the rectangular

components of these vectors. Denoting P x Q by V and using Eq. (3.28) to express the scalar product

of S and V, we have

Substituting from the relations in Eq. (3.9) for the components of V, we obtain

(3.38)
S« (P x Q)= S:(PyQ: — P.Qy)+S5,(P:Qs — PoQ:)+5:(P:Qy — PyQs)
We can write this expression in a more compact form if we observe that it represents the Page 104
expansion of a determinant:
Mixed triple product, determinant form
Sz Sy S
Q: Qy Q-

By applying the rules governing the permutation of rows in a determinant, we could easily verify the
relations in Eq. (3.37), which we derived earlier from geometrical considerations.

3.2C Moment of a Force about a Given Axis
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Now that we have the necessary mathematical tools, we can introduce the concept of moment of a force

about an axis. Consider again a force F acting on a rigid body and the moment M, of that force about O

(Fig. 3.22). Let OL be an axis through O.

We define the moment My, of F about OL as the projection OC of the moment M, onto the

axis OL.

Fig. 3.22 The moment My, of a force F about the axis OL is the

projection on OL of the moment M . The calculation involves the

unit vector A along OL and the position vector r from O to A, the
point upon which the force F acts.

Suppose we denote the unit vector along OL by A and use the Egs. (3.34) and (3.11) for the projection of

a vector on a given axis and for the moment M of a force F. Then, we can express Moy, as

Moment about an axis through the origin

(3.40)
Mor =A-Mp =A:(r xF)

P 105
This shows that the moment My, of F about the axis OL is the scalar obtained by B
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forming the mixed triple product of A, r, and F. We can also express My, in the form of a determinant,

>
Q

(3.41)

where \;, Ay, A, =direction cosines of axis OL
x, Yy, z=coordinates of point of application of F

F,, F,, F,=components of force F

The physical significance of the moment My, of a force F about a fixed axis OL becomes more

apparent if we resolve F into two rectangular components F; and F,, with F; parallel to OL and F5

lying in a plane P perpendicular to OL (Fig. 3.23). Resolving r similarly into two components r; and ry

and substituting for F and r into Eq. (3.40), we get

Mor=A-[(r1 +r2) x(F1 + F3)]
= °(I‘1 X F1)+A °(I‘1 X Fg)—f—A °(I‘2 X F1)= A'(I‘g X Fz)

Fig. 3.23 By resolving the force F into components parallel to the axis
OL and in a plane perpendicular to the axis, we can show that the

moment M, of F about OL measures the tendency of F to rotate the

rigid body about the axis.
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Note that all of the mixed triple products except the last one are equal to zero because they involve
vectors that are coplanar when drawn from a common origin (Sec. 3.2B). Therefore, this expression
reduces to

(3.42)
Mor, = A +(r2 x Fy)

The vector product ry x Fy is perpendicular to the plane P and represents the moment of the component
F, of F about the point Q where OL intersects P. Therefore, the scalar M, which is positive if ro x Fq
and OL have the same sense and is negative otherwise, measures the tendency of Fy to make the rigid

body rotate about the fixed axis OL. The other component F'; of F does not tend to make the body rotate

about OL, because F and OL are parallel. Therefore, we conclude that

The moment My, of F about OL measures the tendency of the force F to impart to the rigid

body a rotation about the fixed axis OL.
From the definition of the moment of a force about an axis, it follows that the moment of F about a

coordinate axis is equal to the component of M along that axis. If we substitute each of the unit vectors

i, j, and k for A in Eq. (3.40), we obtain expressions for the moments of F about the coordinate axes.
These expressions are respectively equal to those obtained earlier for the components of the moment

M, of F about O:

Just as the components F,, F, and F, of a force F acting on a rigid body measure, respectively, the
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tendency of F to move the rigid body in the x, y, and z directions, the moments M, M,, and M, of F

about the coordinate axes measure the tendency of F to impart to the rigid body a rotation about the x, y,
and z axes, respectively. Page 106

More generally, we can obtain the moment of a force F applied at A about an axis that
does not pass through the origin by choosing an arbitrary point B on the axis (Fig. 3.24) and determining

the projection on the axis BL of the moment Mp of F about B. The equation for this projection is given

next.

Fig. 3.24 The moment of a force about an axis or line L can be found
by evaluating the mixed triple product at a point B on the line. The
choice of B is arbitrary, because using any other point on the line,
such as C, yields the same result.

Moment about an arbitrary axis

(3.43)
Mpr, =A-Mp= A\ ‘(rA/B X F)

where r 4 /B = T'4 — rp Tepresents the vector drawn from B to A. Expressing M gy, in the form of a

determinant, we have

e Ay A
Mpr, = |TA/B YA/B ZA/B (3.44)
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where Ay, Ay, A, = direction cosines of axis BL

LA/B—=%A—TB YA/B=YA—YB  Z4/B— %A ZB

F,, F,, F, = components of force F

Note that this result is independent of the choice of the point B on the given axis. Indeed, denoting by

M, the moment obtained with a different point C, we have

Mg =X-[(rq —rc) ¥F]
=A-|[(ra—rp) X F]+A [(rg —r¢) X F]

However, because the vectors A and rg — r lie along the same line, the volume of the parallelepiped

having the vectors A\, rp — r¢, and F for sides is zero, as is the mixed triple product of these three

vectors (Sec. 3.2B). The expression obtained for My, thus reduces to its first term, which is the

expression used earlier to define Mp; . In addition, it follows from Sec. 3.1E that, when computing the

moment of F about the given axis, A can be any point on the line of action of F. Page 107

~

-
SamPle Problem 3.5

A cube of side a is acted upon by a force P along the diagonal of a face, as shown. Determine the
moment of P (a) about A, (b) about the edge AB, (c) about the diagonal AG of the cube. (d) Using
the result of part ¢, determine the perpendicular distance between AG and FC.

D C__
B
A a
P
| _t
&
E F

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

STRATEGY : use the equations presented in this section to compute the moments
asked for. You can find the distance between AG and FC from the expression for the moment

M yq.

MODELING and ANALYSIS:
a. Moment about A.

Choosing x, y, and z axes as shown (Fig. 1), resolve into rectangular components the force P and

—
the vectorrp, 4 = AF drawn from A to the point of application F of P.

rpja=ai—aj = a(i—j)

P=(P/v2)i —(P/v2)k=(P/v2)(i— k)

Fig. 1 Position vector rg, 4 and force vector P relative to chosen
coordinate system.

The moment of P about A is the vector product of these two vectors:

My =rpaxP=a(i-j) x(P/V2) -k My= (aP/ﬂ) i+j+k)

b. Moment about AB.
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You want the projection of M 4 on AB:
Map=i-My =i{aP/v2)(i+j+k) Myp=aP/y2

) ) , ) Page 108
You can verify that because AB is parallel to the x axis, M 4p is also the x component of

the moment M 4.

c. Moment about Diagonal AG.

You obtain the moment of P about AG by projecting M 4 on AG. If you denote the unit vector

along AG by A (Fig. 2), the calculation looks like this:
AG i j —ak
ai—aj—a
= = =(1/v/3)i—-j—k
4G o3 (1/v3) G- -¥) M, = —aP/\/6
Mg = A= Mg =(1/V3) (i —j — k){(aP/v2) (i +]+K)

Mg = (a,P/\/E)(l —1-1)

A

“

Fig. 2 Unit vector A used to determine moment of P about AG.

Alternative Method. vou can also calculate the moment of P about AG from the

determinant form:
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e A A

1/v3 -1/v3 -1/V/3
Myg = |Tr/a YF/A ZF/A|=

=| a —a 0 = —aP//6
F, F, F, 0 P/V2 —P/V2

d. Perpendicular Distance between AG and FC.

First note that P is perpendicular to the diagonal AG. You can check this by forming the scalar
product P - A and verifying that it is zero:

P.A :(P/\/i)(j—k)-(l/\/g>(i—j—k) :<P\/§)(O—1+1) ~0

You can then express the moment M 4 as —Pd, where d is the perpendicular distance from AG to

FC (Fig. 3). (The negative sign is needed because the rotation imparted to the cube by P appears

as clockwise to an observer at G.) Using the value found for My« in part c,

Myq = —Pd = —aP/+\/6

d=a/\V6

Fig. 3 Perpendicular distance d from AG to FC.

them and also recognize the geometric relationships between them.
\

[

REFLECT and THINK: problem like this, it is important to visualize the

forces and moments in three dimensions so you can choose the appropriate equations for finding

_/
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3.25

3.26

3.27

Telegram: @uni_k

Problems

Given the vectors P = 3i — j + 2k, Q = 4i + 5j — 3k, and S = —2i + 3j — k,

compute the scalar products P-Q, P-S, and Q-S.

Form the scalar product B-C and use the result obtained to prove the identity

cos(a — B): cosacosfd + sinasin 3
Y B
C
F
. \ a
X

Fig. P3.26

Knowing that the tension in cable AC is 1260 N, determine (a) the angle between cable

AC and the boom AB, (b) the projection on AB of the force exerted by cable AC at point

A.
Fig. P3.27 and P3.28
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3.28 Knowing that the tension in cable AD is 405 N, determine (a) the angle between cable
AD and the boom AB, (b) the projection on AB of the force exerted by cable AD at point
A.
3.29 Three cables are attached to the top of the tower at A. Determine the angle Page 110
formed by cables AB and AC.
¥

Fig. P3.29 and P3.30
3.30 Three cables are attached to the top of the tower at A. Determine the angle formed by
cables AD and AB.
3.31 The 20-in. tube AB can slide along a horizontal rod. The ends A and B of the tube are

connected by elastic cords to the fixed point C. For the position corresponding to

z = 11in., determine the angle formed by the two cords (a) using Eq. (3.30), (b)

applying the law of cosines to triangle ABC.

¥

Fig. P3.31
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3.32

3.33

3.34

3.35

Solve Prob. 3.31 for the position corresponding to z = 4 in.

Determine the volume of the parallelepiped of Fig. 3.20b when

(@) P=4i—3j+2k,Q=—2i—5j+k, andS = 7i +j — k,
()P =5i—j+6k,Q=2i+3j+k, andS = —3i — 2j + 4k.

Given the vectors P = 3i — j+ k,Q = 4i + Q,j — 2k, and S = 2i — 2j + 2k,
determine the value of @, for which the three vectors are coplanar.
Knowing that the tension in cable AB is 570 N, determine the moment about each of the

coordinate axes of the force exerted on the plate at B.

¥

92 mm

/\( 900 mm

<

Fig. P3.35 and P3.36

3.36

3.37

Knowing that the tension in cable AC is 1065 N, determine the moment about each of
the coordinate axes of the force exerted on the plate at C.

A farmer uses cables and winch pullers B and E to plumb one side of a small _Page 111

barn. If it is known that the sum of the moments about the x axis of the forces exerted
by the cables on the barn at points A and D is equal to 4728 lb-ft, determine the

magnitude of T pg when Typ = 2551b.
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Fig. P3.37
3.38 Solve Prob. 3.37 when the tension in cable AB is 306 Ib.
3.39 To lift a heavy crate, a man uses a block and tackle attached to the bottom of an I-beam

at hook B. Knowing that the moments about the y and z axes of the force exerted at B

by portion AB of the rope are, respectively, 120 N-m and — 460 N-m, determine the

distance a.
¥
/
Z X
Fig. P3.39 and P3.40
3.40 To lift a heavy crate, a man uses a block and tackle attached to the bottom of an I-beam

at hook B. Knowing that the man applies a 195-N force to end A of the rope and that the

moment of that force about the y axis is 132 N-m, determine the distance a.
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3.41 To loosen a frozen valve, a force F with a magnitude of 70 Ib is applied to the _Page 112

handle of the valve. Knowing that § = 25", M, = —611b-ft, and M, = —431b-ft,

determine ¢ and d.

Fig. P3.41 and P3.42

3.42 When a force F is applied to the handle of the valve shown, its moments about the x and

z axes are M, = —77 lb-ft and M, = —811b-ft , respectively. Ford = 27 in.,
determine the moment A/, of F about the y axis.

3.43 A sign erected on uneven ground is guyed by cables EF and EG. If the force exerted by

cable EF at E is 46 b, determine the moment of that force about the line joining points
A and D.
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Fig. P3.43 and P3.44

3.44 A sign erected on uneven ground is guyed by cables EF and EG. If the force exerted by

cable EG at E is 54 1b, determine the moment of that force about the line joining points
Aand D.

3.45 The frame ACD is hinged at A and D and is supported by a cable that passes _Page 113

through a ring at B and is attached to hooks at G and H. Knowing that the tension in the

cable is 450 N, determine the moment about the diagonal AD of the force exerted on the
frame by portion BH of the cable.
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Fig. P3.45

3.46 In Prob. 3.45, determine the moment about the diagonal AD of the force exerted on the
frame by portion BG of the cable.

3.47 A force P of magnitude 520 1b acts on the frame shown at point E. Determine the
moment of P about a line joining points O and D.

Fig. P3.47 and P3.48

3.48 A force P acts on the frame shown at point E. Knowing that the absolute value of the

moment of P about a line joining points F and B is 300 lb-ft, determine the magnitude

of the force P.

. J
Page 114
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3.3 COUPLES AND FORCE-COUPLE
SYSTEMS

Now that we have studied the effects of forces and moments on a rigid body, we can ask if it is possible
to simplify a system of forces and moments without changing these effects. It turns out that we can
replace a system of forces and moments with a simpler and equivalent system. One of the key ideas used
in such a transformation is called a couple.

3.3A Moment of a Couple

Two forces F and —F, having the same magnitude, parallel lines of action, and opposite sense, are said

to form a couple (Fig. 3.25). Clearly, the sum of the components of the two forces in any direction is
zero. The sum of the moments of the two forces about a given point, however, is not zero. The two
forces do not cause the body on which they act to move along a line (translation), but they do tend to

make it rotate.
A*’;E://
,/Fﬂ

Fig. 3.25 A couple consists of two forces with equal magnitude,
parallel lines of action, and opposite sense.

Let us denote the position vectors of the points of application of F and - F by r 4 and rp,

respectively (Fig. 3.26). The sum of the moments of the two forces about O is

raxF+rp x(—F)=(ra —rB)xF
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Fig. 3.26 The moment M of the couple about O is the sum of the

moments of F and of —F about O.

Setting r 4 — rp = r, where r is the vector joining the points of application of the two forces, we
conclude that the sum of the moments of F and —F about O is represented by the vector

(3.45)
M=rxF

The vector M is called the moment of the couple. It is perpendicular to the plane containing the two
forces, and its magnitude is

(3.46)
M = rF sin 0 = Fd

where d is the perpendicular distance between the lines of action of F and —F, and 6 is the angle

between F (or —F) and r. The sense of M is defined by the right-hand rule.
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Photo 3.1 The parallel upward and downward forces of equal
magnitude exerted on the arms of the lug nut wrench are an example

of a couple.
Lucinda Dowell/McGraw-Hill Education

Note that the vector r in Eq. (3.45) is independent of the choice of the origin O of the coordinate

axes. Therefore, we would obtain the same result if the moments of F and —F had been computed about

a different point O’. Thus, the moment M of a couple is a free vector (Sec. 2.1B), which can be applied

at any point (Fig. 3.27).

Fig. 3.27 The moment M of a couple equals the product of F and d, is
perpendicular to the plane of the couple, and may be applied at any
point of that plane.

From the definition of the moment of a couple, it also follows that two couples—one Page 115

consisting of the forces ¥; and —F', the other of the forces F'2 and —F' (Fig. 3.28)—have

equal moments if

(3.47)
Fidi = Fado

provided that the two couples lie in parallel planes (or in the same plane) and have the same sense (i.e.,
clockwise or counterclockwise).
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Fig. 3.28 Two couples have the same moment if they lie in parallel

planes, have the same sense, and if F;d; = F,d5.

3.3B Equivalent Couples

Imagine that three couples act successively on the same rectangular box (Fig. 3.29). As we have just
seen, the only motion a couple can impart to a rigid body is a rotation. Because each of the three couples

shown has the same moment M (same direction and same magnitude M = 120 lb-in. ), we can expect

each couple to have the same effect on the box.

v

a:
|

e T
4

L (a) (&) (e)

Fig. 3.29 Three equivalent couples. (a) A couple acting on the bottom
of the box, acting counterclockwise viewed from above; (b) a couple
in the same plane and with the same sense but larger forces than in

(a); (c) a couple acting in a different plane but same sense.

As reasonable as this conclusion appears, we should not accept it hastily. Although intuition is of
great help in the study of mechanics, it should not be accepted as a substitute for logical reasoning.
Before stating that two systems (or groups) of forces have the same effect on a rigid body, we should
prove that fact on the basis of the experimental evidence introduced so far. This evidence consists of the
parallelogram law for the addition of two forces (Sec. 2.1A) and the principle of transmissibility (Sec.
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3.1B). Therefore, we state that two systems of forces are equivalent (i.e., they have the same effect on
a rigid body) if we can transform one of them into the other by means of one or several of the
following operations: (1) replacing two forces acting on the same particle by their resultant; (2)
resolving a force into two components; (3) canceling two equal and opposite forces acting on the same
particle; (4) attaching to the same particle two equal and opposite forces; and (5) moving a force along
its line of action. Each of these operations is easily justified on the basis of the parallelogram law or the
principle of transmissibility.

Let us now prove that two couples having the same moment M are equivalent. First, consider
two couples contained in the same plane, and assume that this plane coincides with the plane of p;ge 116

the figure (Fig. 3.30). The first couple consists of the forces F; and —F; of magnitude F},
located at a distance d; from each other (Fig. 3.30a). The second couple consists of the forces Fy and

—F 5 of magnitude F, located at a distance dy from each other (Fig. 3.30d). Because the two couples

have the same moment M, which is perpendicular to the plane of the figure, they must have the same
sense (assumed here to be counterclockwise), and the relation

(3.47)
Fidi = Fado

must be satisfied. To prove that they are equivalent, we shall show that the first couple can be
transformed into the second by means of the operations listed previously.

() 23] (el )
Fig. 3.30 Four steps in transforming one couple to another couple in
the same plane by using simple operations. (a) Starting couple; (b)
label points of intersection of lines of action of the two couples; (c)
resolve forces from first couple into components; (d) final couple.

Let us denote by A, B, C, and D the points of intersection of the lines of action of the two couples.

We first slide the forces F; and —F; until they are attached, respectively, at A and B, as shown in Fig.
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3.30b. We then resolve force F; into a component P along line AB and a component Q along AC (Fig.

3.30c). Similarly, we resolve force —F'; into —P along AB and —Q along BD. The forces P and —P

have the same magnitude, the same line of action, and opposite sense; we can move them along their
common line of action until they are applied at the same point and may then be canceled. Thus, the

couple formed by F; and —F; reduces to a couple consisting of Q and —Q.

We now show that the forces Q and —Q are respectively equal to the forces —F5 and F,. We

obtain the moment of the couple formed by Q and —Q by computing the moment of Q about B.

Similarly, the moment of the couple formed by F; and —F; is the moment of F'; about B. However, by

Varignon’s theorem, the moment of F; is equal to the sum of the moments of its components P and Q.

Because the moment of P about B is zero, the moment of the couple formed by Q and —Q must be equal

to the moment of the couple formed by F; and —F;. Recalling Eq. (3.47), we have

Qd2 == F1d1 == F2d2 and Q = FQ

Thus, the forces Q and —Q are respectively equal to the forces —F5 and F5, and the couple of Fig.

3.30a is equivalent to the couple of Fig. 3.30d.

Now consider two couples contained in parallel planes P; and P,. We prove that they are

equivalent if they have the same moment. In view of the preceding discussion, we can assume that the
couples consist of forces of the same magnitude F acting along parallel lines (Fig. 3.31a and d). We

propose to show that the couple contained in plane P; can be transformed into the couple contained in

plane P, by means of the standard operations listed previously.
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Fig. 3.31 Four steps in transforming one couple to another couple in a
parallel plane by using simple operations. (a) Initial couple; (b) add a
force pair along the line of intersection of two diagonal planes; (c)
replace two couples with equivalent couples in the same planes; (d)
final couple.

p 117
Let us consider the two diagonal planes defined respectively by the lines of action of F; —E
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and —F5 and by those of —F; and F5 (Fig. 3.31b). At a point on their line of intersection, we attach two
forces F'3 and —F 3, which are respectively equal to F; and —F;. The couple formed by F; and —Fj3
can be replaced by a couple consisting of F3 and —F5 (Fig. 3.31c), because both couples clearly have
the same moment and are contained in the same diagonal plane. Similarly, the couple formed by —F;
and F'5 can be replaced by a couple consisting of —F3 and F5. Canceling the two equal and opposite

forces F3 and —F5, we obtain the desired couple in plane P (Fig. 3.31d). Thus, we conclude that two

couples having the same moment M are equivalent, whether they are contained in the same plane or in
parallel planes.

The property we have just established is very important for the correct understanding of the
mechanics of rigid bodies. It indicates that when a couple acts on a rigid body, it does not matter where
the two forces forming the couple act or what magnitude and direction they have. The only thing that
counts is the moment of the couple (magnitude and direction). Couples with the same moment have the
same effect on the rigid body.

3.3C Addition of Couples

Consider two intersecting planes P; and P, and two couples acting respectively in P; and Ps. Recall

that each couple is a free vector in its respective plane and can be represented within this plane by any
combination of equal, opposite, and parallel forces and of perpendicular distance of separation that
provides the same sense and magnitude for this couple. Thus, we can assume, without any loss of

generality, that the couple in P; consists of two forces F; and —F'; perpendicular to the line of

intersection of the two planes and acting respectively at A and B (Fig. 3.32a). Similarly, we can assume

that the couple in P, consists of two forces Fy and —F5 perpendicular to AB and acting respectively at A

and B. It is clear that the resultant R of F; and F'5 and the resultant —R of —F; and —F5 form a couple.

Denoting the vector joining B to A by r and recalling the definition of the moment of a couple (Sec.
3.3A), we express the moment M of the resulting couple as

M:er:rx(F1+F2)
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Lia)

(b)
Fig. 3.32 (a) We can add two couples, each acting in one of two
intersecting planes, to form a new couple. (b) The moment of the
resultant couple is the vector sum of the moments of the component
couples.

By Varignon’s theorem, we can expand this expression as

M=rxF{+r x Fy

The first term in this expression represents the moment M; of the couple in Pj, and the second term
represents the moment My> of the couple in P». Therefore, we have

(3.48)
M =M; + My

We conclude that the sum of two couples of moments M and My is a couple of moment M equal to the

vector sum of M; and M (Fig. 3.32b). We can extend this conclusion to state that any number of
couples can be added to produce one resultant couple, as

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

M = XM = %(r x F)

3.3D Couple Vectors

We have seen that couples with the same moment, whether they act in the same plane or in parallel
planes, are equivalent. Therefore, we have no need to draw the actual forces forming a given couple in
order to define its effect on a rigid body (Fig. 3.33a). It is sufficient to draw an arrow equal in  "page 118~
magnitude and direction to the moment M of the couple (Fig. 3.33b). We have also seen that ~—
the sum of two couples is itself a couple and that we can obtain the moment M of the resultant couple by

forming the vector sum of the moments M; and M, of the given couples. Thus, couples obey the law of

addition of vectors, so the arrow used in Fig. 3.33b to represent the couple defined in Fig. 3.33a truly
can be considered a vector.

¥ ¥ ,\‘1 o ¥ ¥

a7z e g 4M M,

{a) (b () ()
Fig. 3.33 (a) A couple formed by two forces can be represented by (b)
a couple vector, oriented perpendicular to the plane of the couple. (¢)
The couple vector is a free vector and can be moved to other points of
application, such as the origin. (d) A couple vector can be resolved
into components along the coordinate axes.

The vector representing a couple is called a couple vector. Note that, in Fig. 3.33, we use a red
arrow to distinguish the couple vector, which represents the couple itself, from the moment of the
couple, which was represented by a green arrow in earlier figures. Also note that we added the symbol ©
to this red arrow to avoid any confusion with vectors representing forces. A couple vector, like the
moment of a couple, is a free vector. Therefore, we can choose its point of application at the origin of
the system of coordinates, if so desired (Fig. 3.33c). Furthermore, we can resolve the couple vector M

into component vectors M, My, and M, that are directed along the coordinate axes (Fig. 3.33d). These

component vectors represent couples acting, respectively, in the yz, zx, and xy planes.

3.3E Resolution of a Given Force into a Force
at O and a Couple
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Consider a force F acting on a rigid body at a point A defined by the position vector r (Fig. 3.34a).
Suppose that for some reason it would simplify the analysis to have the force act at point O instead.
Although we can move F along its line of action (principle of transmissibility), we cannot move it to a
point O that does not lie on the original line of action without modifying the action of F on the rigid

body.
E I M .
A F F A
- A8 §. Q
Do T _— og T s .
- - o

fa) () (c)
Fig. 3.34 Replacing a force with a force and a couple. (a) Initial force
F acting at point A; (b) attaching equal and opposite forces at O; (c)
force F acting at point O and a couple.

Page 119
We can, however, attach two forces at point O, one equal to F and the other equal to —F, B

without modifying the action of the original force on the rigid body (Fig. 3.34b). As a result of this
transformation, we now have a force F applied at O; the other two forces form a couple of moment

Mo =r x F. Thus,

Any force F acting on a rigid body can be moved to an arbitrary point O provided that we
add a couple whose moment is equal to the moment of F about O.

The couple tends to impart to the rigid body the same rotational motion about O that force F tended to

produce before it was transferred to O. We represent the couple by a couple vector My that is

perpendicular to the plane containing r and F. Because M is a free vector, it may be applied anywhere;

for convenience, however, the couple vector is usually attached at O together with F. This combination
is referred to as a force-couple system (Fig. 3.34c).
If we move force F from A to a different point O’ (Fig. 3.35a and c), we have to compute the

moment Mo = r’ x F of F about O’ and add a new force-couple system consisting of F and the couple

vector M at O'. We can obtain the relation between the moments of F about O and O’ as
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Mp=r'xF=(r+s)xF=rxF+sxF

(3.49)
Mo =Mp+s xF

where s is the vector joining O’ to O. Thus, we obtain the moment M, of F about O’ by adding to the

moment M of F about O the vector product s x F, representing the moment about O’ of the force F

applied at O.

M,

A
|
4>
]
=)

1 L |
ot

M,

i) (B) i)
Fig. 3.35 Moving a force to different points. (a) Initial force F acting

at a; (b) force F acting at O and a couple; (c) force F acting at O" and

a different couple.

We also could have established this result by observing that, in order to transfer to O’ the force-
couple system attached at O (Fig. 3.35b and c), we could freely move the couple vector My to O’.
However, to move force F from O to O’, we need to add to F a couple vector whose moment is equal to
the moment about O’ of force F applied at O. Thus, the couple vector M, must be the sum of My and

the vectors x F.

As noted here, the force-couple system obtained by transferring a force F from a point A to a point
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O consists of F and a couple vector M perpendicular to F. Conversely, any force-couple system

consisting of a force F and a couple vector M, that are mutually perpendicular can be replaced by a

single equivalent force. This is done by moving force F in the plane perpendicular to M until its

moment about O is equal to the moment of the couple being replaced.

Photo 3.2 The force exerted by each hand on the wrench could be

replaced with an equivalent force-couple system acting on the nut.
© Steve Hix

Page 1 )
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SamPle Problem 3.6

Determine the components of the single couple equivalent to the two couples shown.

STRATEGY : ook for ways to add equal and opposite forces to the diagram that,

along with already known perpendicular distances, will produce new couples with moments along
the coordinate axes. These can be combined into a single equivalent couple.
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MODELING: You can simplify the computations by attaching two equal and opposite

20-1b forces at A (Fig. 1). This enables you to replace the original 20-1b-force couple by two new
20-1b-force couples: one lying in the zx plane and the other in a plane parallel to the xy plane.

/QV "::'
. = g
" D 201b

Fig. 1 Placing two equal and opposite 20-1b forces at A to
simplify calculations.

ANALYSIS: You can represent these three couples by three couple vectors M, M,

and M, directed along the coordinate axes (Fig. 2). The corresponding moments are

M, = —(301b)(18 in.)= —540 Ib-in.
M, = +(201b)12 in.)= +240 Ib-in.
M,=+(201b)9 in.)= +180 1b-in.

M, = +(240 Ib-in.)j &

M, = (5340 Ib-in :-i_

_~ "M, = +(180 Ib-in )k
i

Fig. 2 The three couples represented as couple vectors.

These three moments represent the components of the single couple M equivalent to the two given
couples. You can write M as



https://t.me/uni_k

www.konkur.in

M = —(540 Ib-in) i-+(2401b-in) j+(1801b-in) k

REFLECT and THINK: vou can also obtain the components of the equivalent

single couple M by computing the sum of the moments of the four given forces about an arbitrary
point. Selecting point D, the moment is (Fig. 3)

M = Mp =(18in) j x (—301b)k +[(9in.)j — (12 in.)k]x (—20 Ib)i

After computing the various cross products, you get the same result, as

M = — (540 Ib-in) i +(2401b-in) j+(1801b-in) k

Fig. 3 Using the given force system, the equivalent single couple
can also be determined from the sum of moments of the forces
about any point, such as point D.

\_ J
4 “Page 1Y
SamPle Problem 3.7 -

Replace the couple and force shown by an equivalent single force applied to the lever. Determine
the distance from the shaft to the point of application of this equivalent force.
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——(60N-m) k

r
_______{%;

Py
VA |

force-couple at O.
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STRATEGY: First, replace the given force and couple by an equivalent force-couple

system at O. By moving the force of this force-couple system a distance that creates the same
moment as the couple, you can then replace the system with one equivalent force.

MODELING and ANALYSIS: 1o replace the given force and couple,

move the force F = — (400 N)j to O, and at the same time, add a couple of moment My, that is

equal to the moment about O of the force in its original position (Fig. 1). Thus,

—
Mo = OB x F =[(0.150m)i -+(0.260 m)j] x (—400 N);

o s
P Ay,

._I'.
i/
vy
—_ iy
— P

)
rd
w _,.-"".:'f
o/ )
Sl o Nk
—(24 N-m)k | (60 N-m)k

¥ —(400 N)j

Fig. 1 Replacing given force and couple with an equivalent

When you add this new couple to the couple of moment —(24 N-m) k formed by the two 200-N

forces, you obtain a couple of moment —(84 N-m) k (Fig. 2). You can replace this last couple by

applying F at a point C chosen in such a way that
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—
—(84N-m) k=0C x F
=[(OC)cos60°i +(OC)sin60°j] x (—400 N)j
=—(0OC)cos60°(400N) k

The result is

(OC)cos60° = 0.210 m = 210 mm OC = 420 mm
F .,—"':
;f f"}r’f
,-’/,r’rr P
-"I.r — -"'I .r’rlri
"y iy
// S/~ (400 N)j
S A-(B4N-m)k _:'II; &0°
o:s;r’i ﬁﬁf
¥ (400 N)j

Fig. 2 Resultant couple eliminated by moving force F.

REFLECT and THINK: Because the effect of a couple does not depend on its

location, you can move the couple of moment — (24 N-m) k to B, obtaining a force-couple system

at B (Fig. 3). Now you can eliminate this couple by applying F at a point C chosen in such a way

that

—
—(24N-m) k=BC x F
= —(BC)cos60° (400 N) k
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—(24 N-m)k
Bl Bi/
.’_.r -;_.- ) :
— (24 N-m) k )
F 4 Vi | 400 N) 1 ¥ 3 ___.-"_ (400 M) i
150 mm
TR-4N-mk kS

B, fa/ B?_- i

/- (400 N)j
o/

o
Fig. 3 Couple can be moved to B with no change in effect. This
couple can then be eliminated by moving force F.

The conclusion is

(BC)cos60° = 0.060 m = 60 mm BC =120 mm OC = 420 mm
OC = 0B+ BC = 300 mm + 120 mm

\_ J
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@ Case Study 3.1

The Vlooybergtoren tower in Tielt-Winge, Belgium, was constructed to
provide a distinctive and unique platform for visitors to view the
Kabouterbos “fairytale forest” (CS Photo 3.1). The staircase and
observation deck is supported by a structural steel frame (CS Photo 3.2)
that is clad in weathering steel (which oxidizes to produce the reddish-
orange hue shown, forming a protective layer that inhibits further
corrosion). Overall, this cantilever structure rises 11.3 m above the ground
and weighs approximately 130 kN.* The base of the tower is supported
against overturning by the anchor points shown in CS Photo 3.2.
Considering only the self-weight of the tower, let’s estimate the resulting
equivalent force-couple applied at the support that prevents uplift (i.e., the
anchor toward the rear of the tower). We will then use this equivalent
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force-couple to determine the total uplift force acting on the support.

CS Photo 3.1 Vlooybergtoren Tower in Tielt-Winge, Belgium.

Top: Kris Van den Bosch; Bottom: Courtesy of Yves Willem

Forwand — wplift
anchor  anchar

CS Photo 3.2 Tower under construction, showing steel frame and
anchor supports.

Courtesy of Yves Willem
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STRATEGY : Use a two-dimensional model to represent the tower,
and simple supports (a pin and a roller) to model the actual base
conditions. Replace the self-weight load with an equivalent force-couple at
the uplift anchor support. Then, by replacing the moment of the couple
with vertical forces applied at the two support locations, the overall uplift
force can be determined.

MODELING: CS Fig. 3.1 provides the geometry assumed for the
tower, with supports A and B located at the tower’s base and below the
ground surface as shown. (Support A reflects the anchorage subject to
uplift.) The 135-kIN dead load is applied at the structure’s center of gravity,
a concept that will be examined in detail in Chap. 5. (For Page 123
demonstration purposes, we will assume a center of gravity G
approximated as shown in CS Fig. 3.1. It has been positioned closer to the
left end than the right because the supporting structure becomes
increasingly heavier toward the base of the tower.)

11.9m

A s i K

—-1. l—15m
CS Fig. 3.1 Tower model.

21.5m

ANALYSIS:
a. Force-Couple System at A.

To replace the given 135-kN force, move the force F = —(135 kN)j to A,

and at the same time, add a couple of moment M 4 that is equal to the

moment about A of the force in its original position (CS Fig. 3.2a):
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—
My =AG x F =[(8.6 m)i +(4.7m)j]x (—135kN)j
— —(1161kN-m) k

b. Vertical Forces Equivalent to Moment of Couple

M,.

To replace the moment of couple M 4, with two equal and opposite vertical

forces at support locations A and B, separated by perpendicular distance
d = 1.5 m, divide M, by this perpendicular distance. The resulting
magnitude of each force is

My  1161kN-m
d  15m

F = = 774 kN

These forces are directed as shown in CS Fig. 3.2b.

J___.-’%- — _z/zg — j_.-’%‘
E — —_— &
—( 1161 K- mik o | i I;H J
i F,z"' - & * 1"')-"
A B A B A B
—(135 kN)j | |
{ i — cM g
+{T74 EN)j (T74 kN)j 15 m
15m

(a) (b) (c)
CS Fig. 3.2 (a) Equivalent force-couple at A, (b) moment of the
couple replaced by two vertical forces at A and B, (c) the overall
equivalent system of vertical forces applied at supports A and B.
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c. Uplift Force at Anchor A.

Combining the forces acting at A in CS Fig. 3.2b, the result shown in CS
Fig. 3.2c is obtained. Being a complete system that is equivalent to the
original load, the pair of forces in CS Fig. 3.2c represents the total load
exerted by the tower’s self-weight on these supports. Thus, the total uplift
exerted on the anchorage at A is the equivalent force at this point, or

639 kN 1

(Because the structural frame consists of two equal sides, this total uplift
force would be divided equally over both sides.) Page 124

REFLECT and THINK: The equivalent forces exerted on the

supports, as shown in CS Fig. 3.2c, are equal and opposite to the support
reactions acting on the structure at these points. Such reactions can be
determined more directly by the principles of rigid-body equilibrium that
we will examine in Chap. 4.

“Source: "What's Cool in Steel?" Modern Steel Construction, Chicago, IL: The American Institute of Steel
Construction, August 2016, pp. 42—43.

J
4 Page 125\
Problems
3.49 Two parallel 60-N forces are applied to a lever as shown. Determine the moment of the

couple formed by the two forces (a) by resolving each force into horizontal and vertical
components and adding the moments of the two resulting couples, (b) by using the
perpendicular distance between the two forces, (¢) by summing the moments of the two
forces about point A.
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360 mm

Fig. P3.49

3.50

A plate in the shape of a parallelogram is acted upon by two couples. Determine (a) the

moment of the couple formed by the two 21-1b forces, (b) the perpendicular distance
between the 12-1b forces if the resultant of the two couples is zero, (c) the value of «a if
the resultant couple is 72 lb-in. clockwise and d is 42 in.

D 21b o
7

= \$ 12 1b 16 im.

‘ 21 1b B

I d

Fig. P3.50

3.51

Two parallel 60-N forces are applied as shown to the corners A and C of a 200-mm
square plate. Determine the moment of the couple formed by the two forces (a) by
multiplying their magnitude by their perpendicular distance, (b) by resolving each force

into horizontal and vertical components and adding the moments of the two resulting
couples.

200 mm
60N g0
L

=200 mm—

Fig. P3.51

3.52 A piece of plywood in which several holes are being drilled successively has _Page 126
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been secured to a workbench by means of two nails. Knowing that the drill exerts a

12-N-m couple on the piece of plywood, determine the magnitude of the resulting

forces applied to the nails if they are located (a) at A and B, (b) at B and C, (c) at A and

C.
240 mm
45'] T \/ ‘»‘_‘_‘_H/
Fig. P3.52
1
3.53 Four 15-111. -diameter pegs are attached to a board as shown. Two strings are passed

around the pegs and pulled with the forces indicated. (a) Determine the resultant couple
acting on the board. (b) If only one string is used, around which pegs should it pass and
in what directions should it be pulled to create the same couple with the minimum
tension in the string? (c¢) What is the value of that minimum tension?

40 I

&l b

&0 1

_ 12 in.
40 1b

Fig. P3.53 and P3.54

Four pegs of the same diameter are attached to a board, as shown. Two strings are
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3.56

3.57
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passed around the pegs and pulled with the forces indicated. Determine the diameter of

the pegs knowing that the resultant couple applied to the board is 1132.5 1b-in.

counterclockwise.

In a manufacturing operation, three holes are drilled simultaneously in a workpiece. If

the holes are perpendicular to the surfaces of the workpiece, replace the couples applied
to the drills with a single equivalent couple, specifying its magnitude and the direction
of its axis.

¥

L L75N-m
1.5 N-m1 2, [

:uﬂ/ L .‘ ™S

/ 1 "'~ .N-m X

Fig. P3.55

The two shafts of a speed-reducer unit are subjected to couples of magnitude _Page 127

M; = 151b-ft and M> = 3 Ib-ft, respectively. Replace the two couples with a single

equivalent couple, specifying its magnitude and the direction of its axis.

Fig. P3.56

The two couples shown are to be replaced with a single equivalent couple. Determine

(a) the couple vector representing the equivalent couple, (b) the two forces acting at B
and C that can be used to form that couple.
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3.59

3.60
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Fig. P3.57

Solve part a of Prob. 3.57, assuming that two 15-N vertical forces have been added, one

acting upward at A and the other downward at C.

Shafts A and B connect the gear box to the wheel assemblies of a tractor, and shaft C
connects it to the engine. Shafts A and B lie in the vertical yz plane, while shaft C is
directed along the x axis. Replace the couples applied to the shafts by a single
equivalent couple, specifying its magnitude and the direction of its axis.

200 Ib-fi

Fig. P3.59

If P = 20 lb, replace the three couples with a single equivalent couple, specifying its

magnitude and the direction of its axis.

Fig. P3.60
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3.61 A 30-1b vertical force P is applied at A to the bracket shown, which is held by _Page 128

screws at B and C. (a) Replace P with an equivalent force-couple system at B. (b) Find
the two horizontal forces at B and C that are equivalent to the couple obtained in part a.

L D T
¥
A 21in.
BE:L-. ...... '
3 in.
C’E-\.. ..... - 1

Fig. P3.61

3.62 The force P has a magnitude of 250 N and is applied at the end C of a 500-mm rod AC

attached to a bracket at A and B. Assuming o = 30° and 8 = 60°, replace P with (a) an

equivalent force-couple system at B, (b) an equivalent system formed by two parallel
forces applied at A and B.

Fig. P3.62

3.63 Solve Prob. 3.62, assuming o = 8 = 25°.

3.64 A crane column supports a 16-kip load as shown. Replace the load with an equivalent
system consisting of an axial force along AB and a couple.
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3.65

3.66

A Sm g Tin

i 16 kips

v

Fig. P3.64
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A dirigible is tethered by a cable attached to its cabin at B. If the tension in the cable is
1040 N, replace the force exerted by the cable at B with an equivalent system formed

by two parallel forces applied at A and C.

Fig. P3.65

A force and couple act as shown on a square plate of side & = 25 in. Knowing

Page 129

that P = 601b,Q = 401b, and o = 50°, replace the given force and couple by a

single force applied at a point located (a) on line AB, (b) on line AC. In each case
determine the distance from A to the point of application of the force.

P
Q A o B [
; |
[
2 |
==}
C o
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3.69

Fig. P3.66

3.67 Replace the 250-kN force P by an equivalent force-couple system at G.

Fig. P3.67

3.68

An antenna is guyed by three cables, as shown. Knowing that the tension in cable AB is

288 b, replace the force exerted at A by cable AB with an equivalent force-couple
system at the center O of the base of the antenna.

¥

A= )
T

Fig. P3.68 and P3.69

An antenna is guyed by three cables, as shown. Knowing that the tension in cable AD is

270 Ib, replace the force exerted at A by cable AD with an equivalent force-couple
system at the center O of the base of the antenna.

3.70

Telegram: @uni_k

To keep a door closed, a wooden stick is wedged between the floor and the Page 130
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doorknob. The stick exerts at B a 175-N force directed along line AB. Replace that force
with an equivalent force-couple system at C.

A
\/ X
1040 mm
Z
Fig. P3.70
3.71 A 2.6-kip force is applied at point D of the cast-iron post shown. Replace that force with

an equivalent force-couple system at the center A of the base section.

Fig. P3.71
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3.72 A 110-N force acting in a vertical plane parallel to the yz plane is applied to the 220-

mm-long horizontal handle AB of a socket wrench. Replace the force with an equivalent
force-couple system at the origin O of the coordinate system.

110N

15°

150 mm

-

Fig. P3.72

_ V.
Page 131

3.4 SIMPLIFYING SYSTEMS OF FORCES

We saw in the preceding section that we can replace a force acting on a rigid body with a force-couple
system that may be easier to analyze. However, the true value of a force-couple system is that we can
use it to replace not just one force but a system of forces to simplify analysis and calculations.

3.4A Reducing a System of Forces to a Force-
Couple System

Consider a system of forces F, F2, F3,.. ., acting on a rigid body at the points A;, A,, As, . . ., defined
by the position vectors ry, r2, r3, etc. (Fig. 3.36a). As seen in the preceding section, we can move F;

from A; to a given point O if we add a couple of moment M equal to the moment r; x F; of F; about

O. Repeating this procedure with Fo, F'3, . . ., we obtain the system shown in Fig. 3.36b, which consists
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of the original forces, now acting at O, and the added couple vectors. Because the forces are now
concurrent, they can be added vectorially and replaced by their resultant R. Similarly, the couple vectors

M;,M,, M3, ... can be added vectorially and replaced by a single couple vector Mg. Thus,

We can reduce any system of forces, however complex, to an equivalent force-couple system
acting at a given point O.

F; ry F; R
!’I’I'\l R
Ay AE 2 F_; M5
E | o g
iy Ty 3 F| o) o]
r - o — ]
¥

M,
{a) (B) (c)
Fig. 3.36 Reducing a system of forces to a force-couple system. (a)
Initial system of forces; (b) all the forces moved to act at point O,
with couple vectors added; (c) all the forces reduced to a resultant
force vector and all the couple vectors reduced to a resultant couple
vector.

Note that, although each of the couple vectors M, My, M3, ... in Fig. 3.36b is perpendicular to its

corresponding force, the resultant force R and the resultant couple vector Mg shown in Fig. 3.36¢ are

not, in general, perpendicular to each other.
The equivalent force-couple system is defined by

Force-couple system

(3.50)
R=3F M{=3%Mp=23(rxF)

These equations state that we obtain force R by adding all of the forces of the system, whereas we obtain

the moment of the resultant couple vector M %, called the moment resultant of the system, by adding

the moments about O of all the forces of the system. Page 132

Once we have reduced a given system of forces to a force and a couple at a point O, we
can replace it with a force and a couple at another point O'. The resultant force R will remain
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unchanged, whereas the new moment resultant M2 will be equal to the sum of Mg and the moment
about O of force R attached at O (Fig. 3.37). We have

(3.51)
ME =ME+sxR

ME

S

o

ME.
o \
o
Fig. 3.37 Once a system of forces has been reduced to a force-couple
system at one point, we can replace it with an equivalent force-couple
system at another point. The force resultant stays the same, but we

have to add the moment of the resultant force about the new point to
the resultant couple vector.

In practice, the reduction of a given system of forces to a single force R at O and a couple vector

Mg is carried out in terms of components. Resolving each position vector r and each force F of the

system into rectangular components, we have

(3.52)
r=zi+yj+zk

(3.53)
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Substituting for r and F in Eq. (3.50) and factoring out the unit vectors i, j, and k, we obtain R and M}O?‘

in the form

(3.54)
R=R,i+Rj+Rk  MZ=MFEF+ME+ MFk

The components R,, R, and R, represent, respectively, the sums of the x, y, and z components of the

given forces and measure the tendency of the system to impart to the rigid body a translation in the x, y,

or z direction. Similarly, the components M, MR, and M represent, respectively, the sum of the

moments of the given forces about the x, y, and z axes and measure the tendency of the system to impart
to the rigid body a rotation about the x, y, or z axis.

If we need to know the magnitude and direction of force R, we can obtain them from the

components R;, R, and R, by means of the relations in Egs. (2.18) and (2.19) of Sec. 2.4A. Similar

computations yield the magnitude and direction of the couple vector Mg.

3.4B Equivalent and Equipollent Systems of
Forces

We have just seen that any system of forces acting on a rigid body can be reduced to a force-couple
system at a given point O. This equivalent force-couple system characterizes completely the effect of the
given force system on the rigid body.

Two systems of forces are equivalent if they can be reduced to the same force-couple system
at a given point O.

Recall that the force-couple system at O is defined by the relations in Eq. (3.50). Therefore, we can state
that

Two systems of forces, Fy, F5, F3,...,and F/, F) F/, ..., thatacton the same rigid body

are equivalent if, and only if, the sums of the forces and the sums of the moments about a
given point O of the forces of the two systems are, respectively, equal.

Mathematically, the necessary and sufficient conditions for the two systems of forces to be equivalent
are
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Conditions for equivalent systems of forces

(3.55)
SF = XF’ and ©Mp = M,

Note that to prove that two systems of forces are equivalent, we must establish the second of =~ “page 133
the relations in Eq. (3.55) with respect to only one point O. It will hold, however, with respect
to any point if the two systems are equivalent.

Resolving the forces and moments in Egs. (3.55) into their rectangular components, we can express
the necessary and sufficient conditions for the equivalence of two systems of forces acting on a rigid
body as

YF,=%F] XF,=%F, XF,=%F]
M, =¥XM} XM,=3XM) XM,=3IM] (3.56)

These equations have a simple physical significance. They express that

Two systems of forces are equivalent if they tend to impart to the rigid body (1) the same
translation in the x, y, and z directions, respectively, and (2) the same rotation about the x, y,
and z axes, respectively.

In general, when two systems of vectors satisfy Eq. (3.55) or (3.56), i.e., when their resultants and
their moment resultants about an arbitrary point O are respectively equal, the two systems are said to be
equipollent. The result just established can thus be restated as follows:

If two systems of forces acting on a rigid body are equipollent, they are also equivalent.

It is important to note that this statement does not apply to any system of vectors. Consider, for example,
a system of forces acting on a set of independent particles that do not form a rigid body. A different
system of forces acting on the same particles may happen to be equipollent to the first one; i.e., it may
have the same resultant and the same moment resultant. Yet, because different forces now act on the
various particles, their effects on these particles are different; the two systems of forces, while
equipollent, are not equivalent.
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Photo 3.3 The forces exerted by the children upon the wagon can be
replaced with an equivalent force-couple system when analyzing the

motion of the wagon.
Ingram Publishing/Getty Images

3.4C Further Reduction of a System of Forces

We have now seen that any given system of forces acting on a rigid body can be reduced to an
equivalent force-couple system at O, consisting of a force R equal to the sum of the forces of the system,

and a couple vector Mg of moment equal to the moment resultant of the system.

When R = 0, the force-couple system reduces to the couple vector Mg. The given system of

forces then can be reduced to a single couple called the resultant couple of the system.

What are the conditions under which a given system of forces can be reduced to a single force? It
follows from the preceding section that we can replace the force-couple system at O by a single force R
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acting along a new line of action if R and Mg are mutually perpendicular. The systems of forces that

can be reduced to a single force, or resultant, are therefore the systems for which force R and the couple

vector M}O?‘ are mutually perpendicular. This condition is generally not satisfied by systems of forces in

space, but it is satisfied by systems consisting of (1) concurrent forces, (2) coplanar forces, or (3)
parallel forces. Let’s look at each case separately.

1. Concurrent forces act at the same point; therefore, we can add them directly to obtain their

resultant R. Thus, they always reduce to a single force. Concurrent forces were discussed in detail
in Chap. 2.

2. Coplanar forces act in the same plane, which we assume to be the plane of the figure Page 134
(Fig. 3.38a). The sum R of the forces of the system also lies in the plane of the figure, whereas the

moment of each force about O and thus the moment resultant Mg are perpendicular to that plane.

The force-couple system at O consists, therefore, of a force R and a couple vector Mg that are

mutually perpendicular (Fig. 3.38b)." We can reduce them to a single force R by moving R in the

plane of the figure until its moment about O becomes equal to Mg. The distance from O to the line

of action of R is d = M} /R (Fig. 3.38¢).

= .III:.'.: % = |
F, 0 X 0 X 7 )\

g4

Ld=MER
() () ()
Fig. 3.38 Reducing a system of coplanar forces. (a) Initial system of
forces; (b) equivalent force-couple system at O; (c) moving the
resultant force to a point A such that the moment of R about O equals
the couple vector.
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As noted earlier, the reduction of a system of forces is considerably simplified if we resolve the
forces into rectangular components. The force-couple system at O is then characterized by the
components (Fig. 3.39a):

'—7'Il{
"v.'['.'. | =

{aa)

)]

ME =ME=3xM,

X =ME/R,

(3.57)

y=-MZR,

(c)

Fig. 3.39 Reducing a system of coplanar forces by using rectangular
components. (a) From Fig. 3.38b, resolve the resultant into
components along the x and y axes; (b) determining the x intercept of
the final line of action of the resultant; (c¢) determining the y intercept
of the final line of action of the resultant.

To reduce the system to a single force R, the moment of R about O must be equal to

Page 135

Mg. If we denote the coordinates of the point of application of the resultant by x and y

and apply Eq. (3.22) of Sec. 3.1F, we have

This represents the equation of the line of action of R. We can also determine the x and y

intercepts of the line of action of the resultant directly by noting that Mg must be equal to the

moment about O of the y component of R when R is attached at B (Fig. 3.39b) and to the moment
of its x component when R is attached at C (Fig. 3.39¢).

Parallel forces have parallel lines of action and may or may not have the
same sense. Assuming here that the forces are parallel to the y axis (Fig.
3.40 a), we note that their sum R is also parallel to the y axis.

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

F R
. R A
= = - M === = /_f/j:/
3 X "y, e X 3 X
ik SN 77 v
E / .".I

lal (k) (c)
Fig. 3.40 Reducing a system of parallel forces. (a) Initial system of
forces; (b) equivalent force-couple system at O, resolved into
components; (¢) moving R to point A, chosen so that the moment of R
about O equals the resultant moment about O.

On the other hand, because the moment of a given force must be perpendicular to that force, the

moment about O of each force of the system and thus the moment resultant Mg lie in the zx

plane. The force-couple system at O consists, therefore, of a force R and a couple vector Mg that

are mutually perpendicular (Fig. 3.40b). We can reduce them to a single force R (Fig. 3.40c¢) or, if

R =0, to a single couple of moment M.

In practice, the force-couple system at O is characterized by the components

(3.58)
R,=%F, ME=%xM, ME=3M,

The reduction of the system to a single force can be carried out by moving R to a new point of

application A(x, 0, z), which is chosen so that the moment of R about O is equal to Mg.

r><R:Mg2

(zi + 2k)x Ryj = MFi + MFk

By computing the vector products and equating the coefficients of the corresponding unit vectors in both
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sides of the equation, we obtain two scalar equations that define the coordinates of A:

—zR,=M}E and zR,=MfL

These equations express the fact that the moments of R about the x and z axes must be equal,

respectively, to M and ML,

Photo 3.4 The parallel wind forces acting on the highway signs can
be reduced to a single equivalent force. Determining this force can
simplify the calculation of the forces acting on the supports of the

frame to which the signs are attached.
Images-USA/Alamy Stock Photo
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SamPle Problem 3.8

A 4.80-m-long beam is subjected to the forces shown. Reduce the given system of forces to (a) an
equivalent force-couple system at A, (b) an equivalent force-couple system at B, (c) a single force
or resultant. Note: Because the reactions at the supports are not included in the given system of
forces, the given system will not maintain the beam in equilibrium.

150 N 600 N 100 N 250N

Lt t 4
Lode i

STRATEGY : The force part of an equivalent force-couple system is simply the sum of

the forces involved. The couple part is the sum of the moments caused by each force relative to
the point of interest. Once you find the equivalent force-couple at one point, you can transfer it to
any other point by a moment calculation.
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MODELING and ANALYSIS:
a. Force-Couple System at A.

The force-couple system at A equivalent to the given system of forces consists of a force R and a

couple Mi defined as (Fig. 1)

R=YF
= (150 N)j — (600 N)j +(100 N)j — (250 N)j = —(600 N)j
MZE=%(r x F)
= (1.61)x (—6007)+(2.81) x (100j)+(4.81) x (—250j)
=—(1880N-m) k

150 j —600j 100j -250 j
)
A B
| 16i] ‘
2.8i {
4.8
—(600 M) j
[ ]
A B
— (1880 N-m) k

Fig. 1 Force-couple system at A that is equivalent to given
system of forces.

The equivalent force-couple system at A is thus

R = 600 N M/} = 1880 N-m O

b. Force-Couple System at B.

You want to find a force-couple system at B equivalent to the force-couple system at A determined

in part a. The force R is unchanged, but you must determine a new couple M £, the moment of

which is equal to the moment about B of the force-couple system determined in part a (Fig. 2).
You have
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—
ME=M% + BA xR
— —(1880 N-m) k +(—4.8m)i x(—600 N);]
= —(1880N-m) k +(2880 N-m) k = +(1000N-m) k

—(1BB0MN-m) k _':[_J:'lw:lj
{AI |B§
! A48 m ![Eﬂhﬂ M-m)k
—(600 N} j
[ ] )
A B
(1000 N-m) k

Fig. 2 Finding force-couple system at B equivalent to that
determined in part a.

The equivalent force-couple system at B is thus

R=600N | MZ = 1000 N-m O

C. Single Force or Resultant. The resultant of the given system of

forces is equal to R, and its point of application must be such that the moment of R about A is

equal to Mﬁ (Fig. 3). This equality of moments leads to

rx R =Mj
zi x(—600N) j = — (1880 N-m)

k
—z(600N) k = —(1880 N-m) k

Fig. 3 Single force that is equivalent to given system of forces.
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Page 137
Solving for x, you get x = 3.13 m. Thus, the single force equivalent to the given

system is defined as

R =600N | z=3.13m

REFLECT and THINK: This reduction of a given system of forces to a single

equivalent force uses the same principles that you will use later for finding centers of gravity and
centers of mass, which are important parameters in engineering mechanics.

- _J

4 )
SamPle Problem 3.9

Four tugboats are bringing an ocean liner to its pier. Each tugboat exerts a 5000-1b force in the
direction shown. Determine (a) the equivalent force-couple system at the foremast O, (b) the point
on the hull where a single, more powerful tugboat should push to produce the same effect as the
original four tugboats.

STRATEGY : The equivalent force-couple system is defined by the sum of the given

forces and the sum of the moments of those forces at a particular point. A single tugboat could
produce this system by exerting the resultant force at a point of application that produces an
equivalent moment.

MODELING and ANALYSIS:
a. Force-Couple System at O.

Resolve each of the given forces into components, as in Fig. 1 (kip units are used). The force-
couple system at O equivalent to the given system of forces consists of a force R and a couple

Mg defined as
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R=3F
= (2.50i — 4.33j)+(3.00i — 4.00§)-+(—5.005)+(3.54i + 3.54j)
=9.04i — 9.79j

ME=3%(r x F)
= (—90i + 50j)
+(100i + 70j
+(400i + 70j) x (—5.00])
+(300i — 70j)x (3.54i + 3.54j)
= (390 — 125 — 400 — 210 — 2000 + 1062 + 248) k
= 1035k

X

(2.50i — 4.333)
x (3.00i — 4.003)
X

~— ~— —

433 g, 4 -5
F, 433 F, 1 F.“lr
l 250 $ iy 1
son |90 100 100 | 100", 70 fi
T <12 N i -
i ol & R | & |
110 ft —
.".:"-'1-I?

Fo 354j

Fig. 1 Given forces resolved into components.

The equivalent force-couple system at O is thus (Fig. 2)

R =(9.04kips)i —(9.79 kips)j ~ ME = —(1035kip-ft) k

or

R = 13.33kips £47.3° MZE = 1035 kip-ft O

MI= 1035k

}"“ 9041

-9.79]

Fig. 2 Equivalent force-couple system at O.
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Remark: Because all the forces are contained in the plane of the figure, you would Page 138
expect the sum of their moments to be perpendicular to that plane. Note that you could
obtain the moment of each force component directly from the diagram by first forming the product
of its magnitude and perpendicular distance to O and then assigning to this product a positive or a
negative sign, depending upon the sense of the moment.

b. Slngle Tugboat. The force exerted by a single tugboat must be equal to R,

and its point of application A must be such that the moment of R about O is equal to Mg (Fig. 3).

Observing that the position vector of A is

r = zi + 70j

you have

I‘XR:Mg r=41.1ft

(zi + 70§) x(9.04i — 9.79j)= —1035k
—2(9.79)k — 633k = —1035k

Fig. 3 Point of application of single tugboat to create same effect
as given force system.

REFLECT and THINK: Reducing the given situation to that of a single force

makes it easier to visualize the overall effect of the tugboats in maneuvering the ocean liner. But
in practical terms, having four boats applying force allows for greater control in slowing and
turning a large ship in a crowded harbor.

J

( )

SamPle Problem 3.10

Three cables are attached to a bracket as shown. Replace the forces exerted by the cables with an
equivalent force-couple system at A.
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L ]
E(150 mm, —50 mm, 100 mm)

STRATE GY: First determine the relative position vectors drawn from point A to the
points of application of the various forces and resolve the forces into rectangular components.

Then, sum the forces and moments.

MODELING and ANAL YSIS: Note that F; —(700 N)Agp where

BE  75i— 1505 + 50k

App — —
BE = BE 175

Using meters and newtons, the position and force vectors are

—

rp/a = AB = 0.075i + 0.050k F = 300i — 600j + 200k
—

ro/a = AC = 0.075i — 0.050k Fo = 707i — 707k
—

rp/a = AD = 0.100i — 0.100; Fp = 600i + 1039j

The force-couple system at A equivalent to the given forces consists of a force R = XF and a

couple Mﬁ = X(r x F). Obtain the force R by adding respectively the x, y, and z components of

the forces:

R = SF =(1607 N)i +(439 N)j —(507 N)k
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“Page 139
The computation of Mﬁ is facilitated by expressing the moments of the forces in the

form of determinants (Sec. 3.1F). Thus,

i j k
rpaxFp=[0.075 0  0.050 | =30 —45k
300 —600 200
i i k

roa xFo=]0.075 0 —0.050 =  17.68j
707 0 -707

j k
rpja x Fp=|0.100 —0.100 0 |= 163.9k
600 1039 0

i

Adding these expressions, you have

M% = %(r x F)=(30 N-m)i +(17.68 N-m)j +(118.9 N-m )k

Figure 1 shows the rectangular components of the force R and the couple Mi.

d
(17.68 N-m}j , f
(439 NJj &

(118.9 N-m)k
i m ?4‘#-_-—.;.&

Fig. 1 Rectangular components of equivalent force-couple
system at A.

REFLECT and THINK: The determinant approach to calculating moments

shows its advantages in a general three-dimensional problem such as this.
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SamPle Problem 3.11

A square foundation mat supports the four columns shown. Determine the magnitude and point of
application of the resultant of the four loads.

STRATE GY: Start by reducing the given system of forces to a force-couple system at

the origin O of the coordinate system. Then, reduce the system further to a single force applied at
a point with coordinates x, z. Page 140

MODELING: the force-couple system consists of a force R and a couple

vector Mg defined as

R =YF Mg = S(r x F)

ANALYSIS: after determining the position vectors of the points of application of the

various forces, you may find it convenient to arrange the computations in tabular form. The results
are shown in Fig. 1.

r,ft F, kips r x F, kipft
0 40 0
101 —12j — 120k
10i + Sk —8j 401 - 80k
4i + 10k —20j 200i — 80k
R = —80j ME — 240i — 280k
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— (B0 kips)j

—(280 k—ip'ﬁ:l]i ? (240 J'Ci.p-ﬂ:li

Fig. 1 Force-couple system at O that is equivalent to given force
system.

The force R and the couple vector Mg are mutually perpendicular, so you can reduce the

force-couple system further to a single force R. Select the new point of application of R in the

plane of the mat and in such a way that the moment of R about O is equal to Mg. Denote the

position vector of the desired point of application by r and its coordinates by x and z (Fig. 2). Then

rx R=M¢
(zi + zK) x (—80j) = 240i — 280k
—80zk -+ 8021 = 240i — 280k

It follows that

—80x = —280 80z = 240
x = 3.50ft z = 3.00 ft

The resultant of the given system of forces is

R = 80kips | at x = 3.50 ft, z = 3.00 ft
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Fig. 2 Single force that is equivalent to given force system.

—(80 kips)j

REFLECT and THINK: The fact that the given forces are all parallel

simplifies the calculations, so the final step becomes just a two-dimensional analysis.

3.73

3.74

Telegram: @uni_k

Problems
A 4-m-long beam is subjected to a variety of loadings. (a) Replace each loading with an
equivalent force-couple system at end A of the beam. (b) Which of the loadings are
equivalent?
400 N 4m 200 M 600 N 900 N
A - 200 N-m -
) ) )
A . .. A/ A A/
1300 N-m 4500 N-ng
@) (&) 0K (©)
400 N 400 N 200N B0 N
2300 N-m 300 N-m 300 N-m
) ( ) C )
i B A i . B .
B0 N 24y N-m 400 N-m 0N
e (&) (f)
LN BOO M IO N 300N
2400 N-m
(| > ( \|
LA A NA A J/
200 N-m 4000 N-m 300 N-m
9] (hy
Fig. P3.73
A 4-m-long beam is loaded as shown. Determine the loading of Prob. 3.73 that is

equivalent to this loading.

Page 14 !
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3.75

3.76

3.77
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Fig. P3.74

Determine the single equivalent force and the distance from point A to its line of action
for the beam and loading of (a) Prob. 3.73b, (b) Prob. 3.73d, (c) Prob. 3.73e.

The weights of two children sitting at ends A and B of a seesaw are 84 1b and 64 1b,

respectively. Where should a third child sit so that the resultant of the weights of the
three children will pass through C if the third child weighs (a) 60 Ib, (b) 52 1b?

45fr-""”]"n
- B
A

L

Fig. P3.76

Three stage lights are mounted on a pipe, as shown. The lights at A and B each _Page 142

weigh 4.1 1b, while the one at C weighs 3.5 1b. (a) If d = 25 in., determine the distance

from D to the line of action of the resultant of the weights of the three lights. (b)

Determine the value of d so that the resultant of the weights passes through the
midpoint of the pipe.
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Fig. P3.77

3.78

Five separate force-couple systems act at the corners of a piece of sheet metal, which
has been bent into the shape shown. Determine which of these systems is equivalent to

a force F =(101b)i and a couple of moment M =(15 lb-ft)j +(15 lb-ft )k located at

the origin.

Fig. P3.78

3.79

A beam supports three loads of given magnitude and a fourth load whose _Page 143

magnitude is a function of position. If b = 1.5 m and the loads are to be replaced with a

Telegram: @uni_k
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single equivalent force, determine (a) the value of a so that the distance from support A
to the line of action of the equivalent force is maximum, (b) the magnitude of the
equivalent force and its point of application on the beam.

| 9 m

=1

|
1300N | W0N|] |s0ON ‘
|

A B

A0EN
. b

[T

Fig. P3.79

3.80 A 32-1b motor is mounted on the floor. Find the resultant of the weight and the forces

exerted on the belt, and determine where the line of action of the resultant intersects the
floor.

Fig. P3.80

3.81 A 6 x 12-in. plate is subjected to four loads, as shown. Find the resultant of the four

loads and the two points at which the line of action of the resultant intersects the edge
of the plate.

40 b

F : NE i3

Fig. P3.81
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3.82 Gear C is rigidly attached to arm AB. If the forces and couple shown can be reduced to a
single equivalent force at A, determine the equivalent force and the magnitude of the

couple M.
16 im-
ll] in.
221 m

....--"q-

Jae

Eia = 251b
::J: :f : E—f ﬁsl 40 b
.(:’ A ; !
"..;:"__._I_ - I\) I 2 I.I_'I
g
Fig. P3.82
3.83 A machine component is subjected to the forces and couples shown. The component is

to be held in place by a single rivet that can resist a force but not a couple. For P = 0,

determine the location of the rivet hole if it is to be located (a) on line FG, (b) on line

GH.
120 N
240 mm
| 0':!
Ifl':l‘:l'_ l--t:!-
.'Ilnmle 47 M- l'.l]-‘ 0N
h,
520 mm N,
c P
} | 40M-m J 18]+mm
(el "
m J By
I —_— mim
&40 mmJ
Fig. P3.83

3.84 Solve Prob. 3.83, assuming that P = 60 N.

3.85 As an adjustable brace BC is used to bring a wall into plumb, the force-couple _Page 144
system shown is exerted on the wall. Replace this force-couple system with an

equivalent force-couple system at A if R = 21.21b and M = 13.25 1b-ft.

Telegram: @uni_k
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3.86
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3.87

:

96 in.

X

Fig. P3.85

As plastic bushings are inserted into a 60-mm-diameter cylindrical sheet metal
enclosure, the insertion tools exert the forces shown on the enclosure. Each of the
forces is parallel to one of the coordinate axes. Replace these forces with an equivalent

force-couple system at C.

Fig. P3.86

Two 150-mm-diameter pulleys are mounted on line shaft AD. The belts at B and C lie in
vertical planes parallel to the yz plane. Replace the belt forces shown with an equivalent
force-couple system at A.
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Fig. P3.87

3.88

A mechanic uses a crowfoot wrench to loosen a bolt at C. The mechanic holds _Page 145
the socket wrench handle at points A and B and applies forces at these points. Knowing
that these forces are equivalent to a force-couple system at C consisting of the force

C = —(81b)i +(41b)k and the couple M =(3601b-in )i, determine the forces

applied at A and at Bwhen A, = 2 1b.

Fig. P3.88
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3.89 To unscrew the tapped faucet A, a plumber uses two pipe wrenches as shown. By

exerting a 40-1b force on each wrench, at a distance of 10 in. from the axis of the pipe
and in a direction perpendicular to the pipe and to the wrench, he prevents the pipe
from rotating, and thus avoids loosening or further tightening the joint between the pipe
and the tapped elbow C. Determine (a) the angle 6 that the wrench at A should form
with the vertical if elbow C is not to rotate about the vertical, (b) the force-couple
system at C equivalent to the two 40-1b forces when this condition is satisfied.

40 |¥

L~
) 18 m\-\"/" E
Fig. P3.89
3.90 Assuming § = 60° in Prob. 3.89, replace the two 40-Ib forces with an equivalent force-

couple system at D and determine whether the plumber’s action tends to tighten or

loosen the joint between (a) pipe CD and elbow D, (b) elbow D and pipe DE. Assume
all threads to be right-handed.

3.91 Four forces are applied to the machine component ABDE, as shown. Replace _Page 146
these forces with an equivalent force-couple system at A.
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Fig. P3.91

3.92 Four signs are mounted on a frame spanning a highway, and the magnitudes of the
horizontal wind forces acting on the signs are as shown. Determine the magnitude and

the point of application of the resultant of the four wind forces when a = 1 ft and

b=12ft.

35ft
e

-~
Fig. P3.92 and P3.93
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3.93 Four signs are mounted on a frame spanning a highway, and the magnitudes of the
horizontal wind forces acting on the signs are as shown. Determine a and b so that the
point of application of the resultant of the four forces is at G.

3.94 A concrete foundation mat of 5-m radius supports four equally spaced Page 147
columns, each of which is located 4 m from the center of the mat. Determine the
magnitude and the point of application of the resultant of the four loads.

¥
125 kN
100 kN 3 kN
T5kN| ¢
LY
. ; 11
“5 I:_Il}// *
Fig. P3.94
3.95 Three children are standing on a 5 x 5—m raft. If the weights of the children at points A,
B, and C are 375 N, 260 N, and 400 N, respectively, determine the magnitude and the
point of application of the resultant of the three weights.
¥
0.5 m
w m
2m tﬂ "
-2 Z -
G
AR 3
z c x
025 K F\>‘0.25 m
Fig. P3.95 and P3.96
3.96 Three children are standing on a 5 x 5-m raft. The weights of the children at points A,
B, and C are 375 N, 260 N, and 400 N, respectively. If a fourth child of weight 425 N
climbs onto the raft, determine where she should stand if the other children remain in
the positions shown and the line of action of the resultant of the four weights is to pass
through the center of the raft.

J
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Page 143

In this chapter, we presented the effects of forces exerted on a rigid body. We began by
distinguishing between external and internal forces [Sec. 3.1A]. We then explained that,
according to the principle of transmissibility, the effect of an external force on a rigid body
remains unchanged if we move that force along its line of action [Sec. 3.1B]. In other words, two
forces F and F' acting on a rigid body at two different points have the same effect on that body if
they have the same magnitude, same direction, and same line of action (Fig. 3.41). Two such
forces are said to be equivalent.

Fig. 3.41

Before proceeding with the discussion of equivalent systems of forces, we introduced the concept
of the vector product of two vectors [Sec. 3.1C]. We defined the vector product

V=PxQ

of the vectors P and Q as a vector perpendicular to the plane containing P and Q (Fig. 3.42) with a
magnitude of

(3.1)
V = PQsin 0

and directed in such a way that a person located at the tip of V will observe the rotation to be
counterclockwise through 0, bringing the vector P in line with the vector Q. The three vectors P,
Q, and V—taken in that order—are said to form a right-handed triad. It follows that the vector

products Q x P and P x Q are represented by equal and opposite vectors:

Telegram: @uni_k
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(3.4)
QxP=-(PxQ)

(a)

(&)

Fig. 3.42

It also follows from the definition of the vector product of two vectors that the vector products of
the unit vectors i, j, and k are

ixi=0 ixj=k jxi=-k

and so on. You can determine the sign of the vector product of two unit vectors by arranging in a
circle and in counterclockwise order the three letters representing the unit vectors (Fig. 3.43): The
vector product of two unit vectors is positive if they follow each other in counterclockwise order
and negative if they follow each other in clockwise order.

Fig. 3.43

Rectangular Components of Vector Product

The rectangular components of the vector product V of two vectors P and Q are expressed
[Sec. 3.1D] as
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Vm - Psz - PzQy
Vy - PzQa: - PxQz (3'9)

Vz:Pwa_Pwa

We can also express the components of a vector product as a determinant: Page 149
i j k
V=|P, P, P, (3.10)
Q: Qy Q.

Moment of a Force about a Point

We defined the moment of a force F about a point O [Sec. 3.1E] as the vector product

(3.11)
MO =rxF

where r is the position vector drawn from O to the point of application A of the force F (Fig. 3.44).
Denoting the angle between the lines of action of r and F as 6, we found that the magnitude of the
moment of F about O is

(3.12)
Mo =rFsinf = Fd

where d represents the perpendicular distance from O to the line of action of F.

Fig. 3.44

Rectangular Components of Moment
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The rectangular components of the moment M, of a force F [Sec. 3.1F] are

My = ZF.Z‘ - CL’FZ

(3.18)

where x, y, and z are the components of the position vector r (Fig. 3.45). Using a determinant form,
we also wrote

i j k
Mpo=|2 y =z (3-19)
F, F, F,
¥
Fuj
A
vi i :A[r,y,zl
i F,i
Ly
o xi
X
F. k
zk -

/

Fig. 3.45

In the more general case of the moment about an arbitrary point B of a force F applied at A, we had

i j k
Mp = |TA/B YA/B ZA/B (3.21)
F, F, F,

where z4/B, Y4/B, and z4,p denote the components of the vector r4,p:

Telegram: @uni_k
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TA/B=TA —TB YA/B= YA — YB ZA/B = ZA — 2B

In the case of problems involving only two dimensions, we can assume the force F lies in the xy

plane. Its moment M g about a point B in the same plane is perpendicular to that plane (Fig. 3.46)

and is completely defined by the scalar

(3.23)
Mp =(x4 — z)Fy —(ya — yB)F:

Various methods for computing the moment of a force about a point were illustrated in Sample
Probs. 3.1 through 3.4.

Fig. 3.46

Scalar Product of Two Vectors

The scalar product of two vectors P and Q [Sec. 3.2A], denoted by P - Q, is defined as the scalar

quantity

(3.24)
P-Q = PQcosb

where 6 is the angle between P and Q (Fig. 3.47). By expressing the scalar product of P Page 150
and Q in terms of the rectangular components of the two vectors, we determined that

(3.28)
P'Q :P:L'Q:l: +PyQy+PzQz
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Fig. 3.47

Projection of a Vector on an Axis

We obtain the projection of a vector P on an axis OL (Fig. 3.48) by forming the scalar product of
P and the unit vector A along OL. We have

(3.34)
Por =P-A

Using rectangular components, this becomes

(3.35)
Por, = P, cosO; + Pycosfy+ P,cos0,

where 6, 6y, and 0, denote the angles that the axis OL forms with the coordinate axes.

Fig. 3.48

Mixed Triple Product of Three Vectors

We defined the mixed triple product of the three vectors S, P, and Q as the scalar expression

(3.36)
S-(PxQ)

obtained by forming the scalar product of S with the vector product of P and Q [Sec. 3.2B]. We
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showed that

S: Sy S.
S PxQ=|P, P, P, (3-39)
Qz @y Q:

where the elements of the determinant are the rectangular components of the three vectors.

Moment of a Force about an Axis
We defined the moment of a force F about an axis OL [Sec. 3.2C] as the projection OC on OL of

the moment M, of the force F (Fig. 3.49), i.e., as the mixed triple product of the unit vector A, the

position vector r, and the force F:

(3.40)
MOL = A'MO = A'(l‘ X F)
¥
Fig. 3.49

The determinant form for the mixed triple product is Page 151

Az Ay A
Mor=|z y =2 (3.41)

B
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where A, Ay, A, = direction cosines of axis OL
x, Yy, 2= components of F

F,, F,, F,=components of F

An example of determining the moment of a force about a skew axis appears in Sample Prob.
3.5.

Two forces F and —F having the same magnitude, parallel lines of action, and opposite sense are

said to form a couple [Sec. 3.3A]. The moment of a couple is independent of the point about
which it is computed; it is a vector M perpendicular to the plane of the couple and equal in
magnitude to the product of the common magnitude F of the forces and the perpendicular distance
d between their lines of action (Fig. 3.50).

Fig. 3.50

Two couples having the same moment M are equivalent, i.e., they have the same effect on a given
rigid body [Sec. 3.3B]. The sum of two couples is itself a couple [Sec. 3.3C], and we can obtain

the moment M of the resultant couple by adding vectorially the moments M; and M, of the

original couples [Sample Prob. 3.6]. It follows that we can represent a couple by a vector, called a
couple vector, equal in magnitude and direction to the moment M of the couple [Sec. 3.3D]. A
couple vector is a free vector that can be attached to the origin O if so desired and resolved into
components (Fig. 3.51).

M

M M,

: /ﬁ x 5
M,
: - -""15 X

(a) (B (ch ()

Fig. 3.51
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Force-Couple System
Any force F acting at a point A of a rigid body can be replaced by a force-couple system at an

P 152
arbitrary point O consisting of the force F applied at O and a couple of moment M, e s

which is equal to the moment about O of the force F in its original position [Sec. 3.3E]. Note that

the force F and the couple vector M are always perpendicular to each other (Fig. 3.52).

Fig. 3.52

Reduction of a System of Forces to a Force-Couple
System

It follows [Sec. 3.4A] that any system of forces can be reduced to a force-couple system at a given
point O by first replacing each of the forces of the system by an equivalent force-couple system at
O (Fig. 3.53) and then adding all of the forces and all of the couples to obtain a resultant force R

and a resultant couple vector Mg [Sample Probs. 3.8 through 3.11]. In general, the resultant R and

the couple vector Mg will not be perpendicular to each other.

M5 -

|
]

(a) (5) (c)
Fig. 3.53

Equivalent Systems of Forces
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We concluded [Sec. 3.4B] that, as far as rigid bodies are concerned, two systems of forces, F{, F5,
Fs,...andF |, F,, F,, ..., are equivalent if, and only if

, (3.55)
SF = ©F and SMo = M,

Further Reduction of a System of Forces

If the resultant force R and the resultant couple vector Mg are perpendicular to each other, we can

further reduce the force-couple system at O to a single resultant force [Sec. 3.4C]. This is the case
for systems consisting of (a) concurrent forces (cf. Chap. 2), (b) coplanar forces [Sample Probs.
3.8 and 3.9], or (c) parallel forces [Sample Prob. 3.11]. If the resultant R and the couple vector

Mg are not perpendicular to each other, the system cannot be reduced to a single force.

\_ J
- TS,

Review Problems

3.97 It is known that a vertical force of 200 Ib is required to remove the nail at C from the

board. As the nail first starts moving, determine (a) the moment about B of the force
exerted on the nail, (b) the magnitude of the force P that creates the same moment

about B if o = 10°, (c) the smallest force P that creates the same moment about B.
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Fig. P3.97

3.98 Consider the volleyball net shown. Determine the angle formed by guy wires AB and
AC.

Fig. P3.98

3.99 A crane is oriented so that the end of the 25-m boom AO lies in the yz plane. At the

instant shown, the tension in cable AB is 4 kN. Determine the moment about each of the
coordinate axes of the force exerted on A by cable AB.
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Fig. P3.99 and P3.100

3.100 The 25-m crane boom AO lies in the yz plane. Determine the maximum permissible

tension in cable AB if the absolute value of moments about the coordinate axes of the
force exerted on A by cable AB must be as follows:

|M;| < 60kN-m, |M,| < 12kN-m, [M,| < 8kN-m.

3.101 A single force P acts at C in a direction perpendicular to the handle BC of the _Page 154

crank shown. Determine the moment M, of P about the x axis when § = 65°, knowing

that My, = —15 N-m and M, = —36 N-m.

Fig. P3.101

3.102 While tapping a hole, a machinist applies the horizontal forces shown to the handle of

the tap wrench. Show that these forces are equivalent to a single force, and specify, if
possible, the point of application of the single force on the handle.
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Fig. P3.102

3.103 A 500-N force is applied to a bent plate as shown. Determine (a) an equivalent force-
couple system at B, (b) an equivalent system formed by a vertical force at A and a force

at B.
Fig. P3.103
3.104 A force and a couple are applied as shown to the end of a cantilever beam. (a) Replace

this system with a single force F applied at point C, and determine the distance d from
C to a line drawn through points D and E. (b) Solve part a if the directions of the two
360-N forces are reversed.
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3.105

3.106

3.107
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Fig. P3.104

Slider P can move along rod OA. An elastic cord PC is attached to the slider _Page 155
and to the vertical member BC. Knowing that the distance from O to P is 6 in. and that
the tension in the cord is 3 Ib, determine (a) the angle between the elastic cord and the
rod OA, (b) the projection on OA of the force exerted by cord PC at point P.

AP
s

o
-

P

151

z

Fig. P3.105 and P3.106

Slider P can move along rod OA. An elastic cord PC is attached to the slider and to the

vertical member BC. Determine the distance from O to P for which cord PC and rod
OA are perpendicular.

Pulleys A and B are mounted on bracket CDEF. The tension on each side of the two

belts is as shown. Replace the four forces with a single equivalent force, and determine
where its line of action intersects the bottom edge of the bracket.
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r=2in r= 1 in,

i’}"'c j{ \/ 150 Ib
7 | ]

" \25°

[ |F | |

1 in.

12016 180 1b

Fig. P3.107

3.108 A regular tetrahedron has six edges of length a. A force P is directed as shown along
edge BC. Determine the moment of P about edge OA.

¥

Fig. P3.108

\_

TNote that the X, ¥, and z axes used in Chap. 2 form a right-handed system of orthogonal axes and that the unit
vectors i, j, and k defined in Sec. 2.4A form a right-handed orthogonal triad.

TAny determinant consisting of three rows and three columns can be evaluated by repeating the first and second
columns and forming products along each diagonal line. The sum of the products obtained along the red lines is then
subtracted from the sum of the products obtained along the black lines.

TBecause the couple vector Mg is perpendicular to the plane of the figure, we represent it by the symbol ©. A

counterclockwise couple O represents a vector pointing out of the page and a clockwise couple O represents a vector
pointing into the page.
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4
Equilibrium of Rigid Bodies
The Tianjin Eye is a Ferris wheel that straddles a bridge over
the Hai River in China. The structure is designed so that the
support reactions at the wheel bearings, as well as those at
the base of the frame, maintain equilibrium under the effects
of vertical gravity and horizontal wind forces.

Page 157
Objectives

e Analyze the static equilibrium of rigid bodies in
two and three dimensions.

e Consider the attributes of a properly drawn free-
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body diagram, an essential tool for the equilibrium
analysis of rigid bodies.

Examine rigid bodies supported by statically
indeterminate reactions and partial constraints.

Study two cases of particular interest: the
equilibrium of two-force and three-force bodies.

Examine the laws of dry friction and use these to
consider the equilibrium of rigid bodies where
friction exists at contact surfaces.

\
p
Introduction
Free-Body Diagrams

4.1 EQUILIBRIUM IN TWO DIMENSIONS
4.1A Reactions for a Two-Dimensional Structure

4.1B Rigid-Body Equilibrium in Two Dimensions

4.1C Statically Indeterminate Reactions and Partial Constraints
4.2 TWO SPECIAL CASES

4.2A Equilibrium of a Two-Force Body

4.2B Equilibrium of a Three-Force Body

4.3 EQUILIBRIUM IN THREE DIMENSIONS
4.3A Rigid-Body Equilibrium in Three Dimensions

4.3B Reactions for a Three-Dimensional Structure

4.4 FRICTION FORCES

4.4A The Laws of Dry Friction

4.4B Coefficients of Friction

4.4C Angles of Friction

4.4D Problems Involving Dry Friction

\

Introduction
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We saw in Chap. 3 how to reduce the external forces acting on a rigid body to a force-couple system at
some arbitrary point O. When the force and the couple are both equal to zero, the external forces form a
system equivalent to zero, and the rigid body is said to be in equilibrium.

We can obtain the necessary and sufficient conditions for the equilibrium of a rigid body by setting

R and Mf equal to zero in the relations of Eq. 3.50) of Sec. 3.4A:

@.1)
SF =0 SMp = 2(r x F)=0

Resolving each force and each moment into its rectangular components, we can replace these vector
equations for the equilibrium of a rigid body with the following six scalar equations:

4.2)
YF, =0 $F, =0 SF, =0 (4.3)

YM, =0 M, =0 SM, =0

We can use these equations to determine unknown forces applied to the rigid body or unknown reactions
exerted on it by its supports. Note that Egs. (4.2) express the fact that the components of the external
forces in the x, y, and z directions are balanced; Egs. (4.3) express the fact that the moments of the
external forces about the x, y, and z axes are balanced. Therefore, for a rigid body in equilibrium, the
system of external forces imparts no translational or rotational motion to the body.

To write the equations of equilibrium for a rigid body, we must first identify all of the forces acting
on that body and then draw the corresponding free-body diagram. In this chapter, we first consider the
equilibrium of two-dimensional structures subjected to forces contained in their planes and study how to
draw their free-body diagrams. In addition to the forces applied to a structure, we must also consider the
reactions exerted on the structure by its supports. A specific reaction is associated with each type of
support. You will see how to determine whether the structure is properly supported, so that you page 158 ge 158
can know in advance whether you can solve the equations of equilibrium for the unknown
forces and reactions.

Later in this chapter, we consider the equilibrium of three-dimensional structures, and we provide
the same kind of analysis to these structures and their supports. This will be followed by a discussion of
equilibrium of rigid bodies supported on surfaces in which friction acts to restrain motion of one surface
with respect to the other.

Free-Body Diagrams

In solving a problem concerning a rigid body in equilibrium, it is essential to consider all of the forces
acting on the body. It is equally important to exclude any force that is not directly applied to the body.
Omitting a force or adding an extraneous one would destroy the conditions of equilibrium. Therefore,
the first step in solving the problem is to draw a free-body diagram of the rigid body under
consideration.

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

Body weight
|
B T:ractm' weight
e Boom weight Load
Body \
Re heel tion, h '-.11<> &
ar wheel reaction, horizontal i
T X
Re ar wheel reaction, vertical Fr{:nt w heel reaction
Reactions

Photo 4.1 A tractor supporting a bucket load. As shown, its free-body

diagram should include all external forces acting on the tractor.
Lucinda Dowell/McGraw-Hill Education
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Photo 4.2 Tractor bucket and boom. In Chap. 6, we will see how to
determine the internal forces associated with interconnected members
such as these using free-body diagrams like the one shown.

Lucinda Dowell/McGraw-Hill Education

We have already used free-body diagrams on many occasions in Chap. 2. However, in view of their

importance to the solution of equilibrium problems, we summarize here the steps you must follow in
drawing a correct free-body diagram.

1.

Start with a clear decision regarding the choice of the free body to be analyzed. Mentally, you need

to detach this body from the ground and separate it from all other bodies. Then, you can sketch the
contour of this isolated body. Page 159

Indicate all external forces on the free-body diagram. These forces represent the actions exerted on
the free body by the ground and by the bodies that have been detached. In the diagram, apply these
forces at the various points where the free body was supported by the ground or was connected to
the other bodies. Generally, you should include the weight of the free body among the external
forces, because it represents the attraction exerted by the earth on the various particles forming the
free body. You will see in Chap. 5 that you should draw the weight so it acts at the center of gravity
of the body. If the free body is made of several parts, do not include the forces the various parts
exert on each other among the external forces. These forces are internal forces as far as the free
body is concerned.

Clearly mark the magnitudes and directions of the known external forces on the free-body diagram.

Recall that when indicating the directions of these forces, the forces are those exerted on, and not
by, the free body. Known external forces generally include the weight of the free body and forces
applied for a given purpose.

Unknown external forces usually consist of the reactions through which the ground and other

bodies oppose a possible motion of the free body. The reactions constrain the free body to remain in
the same position; for that reason, they are sometimes called constraining forces. Reactions are
exerted at the points where the free body is supported by or connected to other bodies; you should
clearly indicate these points. Reactions are discussed in detail in Secs. 4.1 and 4.3.

The free-body diagram should also include dimensions, because these may be needed for
computing moments of forces. Any other detail, however, should be omitted.

4.1 EQUILIBRIUM IN TWO DIMENSIONS

In the first part of this chapter, we consider the equilibrium of two-dimensional structures; i.e., we
assume that the structure being analyzed and the forces applied to it are contained in the same plane.
Clearly, the reactions needed to maintain the structure in the same position are also contained in this
plane.

41A Reactions for a Two-Dimensional
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The reactions exerted on a two-dimensional structure fall into three categories that correspond to three
types of supports or connections.

1. Reactions Equivalent to a Force with a Known Line of Action. Supports and connections
causing reactions of this type include rollers, rockers, frictionless surfaces, short links and cables,
collars on frictionless rods, and frictionless pins in slots. Each of these supports and connections
can prevent motion in one direction only. Figure 4.1 shows these supports and connections together
with the reactions they produce. Each reaction involves one unknown—specifically, the magnitude
of the reaction. In problem solving, you should denote this magnitude by an appropriate letter. The
line of action of the reaction is known and should be indicated clearly in the free-body diagram.

Page 160
: i Number of
Support or Connection Reaction ik
A f;f f,r’l /f 8 This rocker bearing
& f/ supports the weight
g“ 4 2 < | of a bridge. The
? convex surface of
Frictionlkess Force with known lJ'u: rocker allows the
Rollers Rocker e Tine of action bridge to move
pctrpcnlc_lt:_cu.lar ' slightly horizontally.
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= T — Links are often used
o = ‘\C-:_'__..---" | to support suspended
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Fig. 4.1 Reactions of supports and connections in two dimensions.

Courtesy Godden Collection. National Information Service for Earthquake Engineering, University of California,
Berkeley

Courtesy Michigan Department of Transportation

Lucinda Dowell/McGraw-Hill Education

Courtesy Michigan Department of Transportation
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Richard Ellis/Alamy Stock Photo

The sense of the reaction must be as shown in Fig. 4.1 for cases of a frictionless surface
(toward the free body) or a cable (away from the free body). The reaction can be directed either
way in the cases of double-track rollers, links, collars on rods, or pins in slots. Generally, we
assume that single-track rollers and rockers are reversible, so the corresponding reactions can be
directed either way. “Page 161

2. Reactions Equivalent to a Force of Unknown Direction and Magnitude. Supports and
connections causing reactions of this type include frictionless pins in fitted holes, hinges, and rough
surfaces. They can prevent translation of the free body in all directions, but they cannot prevent the
body from rotating about the connection. Reactions of this group involve two unknowns and are
usually represented by their x and y components. In the case of a rough surface, the component
normal to the surface must be directed away from the surface.

3. Reactions Equivalent to a Force and a Couple. These reactions are caused by fixed supports that
oppose any motion of the free body and thus constrain it completely. Fixed supports actually
produce forces over the entire surface of contact; these forces, however, form a system that can be
reduced to a force and a couple. Reactions of this group involve three unknowns usually consisting
of the two components of the force and the moment of the couple.

When the sense of an unknown force or couple is not readily apparent, do not attempt to determine
it. Instead, arbitrarily assume the sense of the force or couple; the sign of the answer will indicate
whether the assumption is correct or not. (A positive answer means the assumption is correct, while a
negative answer means the assumption is incorrect.)

4.1B Rigid-Body Equilibrium in Two
Dimensions

The conditions stated in Sec. 4.1A for the equilibrium of a rigid body become considerably simpler for
the case of a two-dimensional structure. Choosing the x and y axes to be in the plane of the structure, we
have

for each of the forces applied to the structure. Thus, the six equations of equilibrium stated in Sec. 4.1
reduce to three equations:

4.4)
SF, =0 SF, =0 SMp =0

Because X M, = 0 must be satisfied regardless of the choice of the origin O, we can write the equations
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of equilibrium for a two-dimensional structure in the more general form:
Equations of equilibrium in two dimensions

(4.5)
YF, =0 $F, =0 My =0

where A is any point in the plane of the structure. These three equations can be solved for no more than
three unknowns.

You have just seen that unknown forces include reactions and that the number of unknowns
corresponding to a given reaction depends upon the type of support or connection causing that reaction.
Referring to Fig. 4.1, note that you can use equilibrium Egs. (4.5) to determine the reactions associated
with two rollers and one cable, or one fixed support, or one roller and one pin in a fitted hole, etc.

For example, consider Fig. 4.2a, in which the truss shown is in equilibrium and is subjected to the
given forces P, Q, and S. The truss is held in place by a pin at A and a roller at B. The pin prevents point

A from moving by exerting a force on the truss that can be resolved into the components A, and A,,.

The roller keeps the truss from rotating about A by exerting the vertical force B. The free-body diagram

Page 162
of the truss is shown in Fig. 4.2b; it includes the reactions A, A, and B, as well as the —aee >

applied forces P, Q, and S (in x and y component form) and the weight W of the truss.

Y

(B)
Fig. 4.2 (a) A truss supported by a pin and a roller; (b) free-body
diagram of the truss.

Because the truss is in equilibrium, the sum of the moments about A of all of the forces shown in
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Fig. 4.2b is zero, or XM 4 = 0. We can use this equation to determine the magnitude B because the

equation does not contain A, or A,. Then, because the sum of the x components and the sum of the y

components of the forces are zero, we write the equations ¥ F,, = 0 and £F, = 0. From these equations,

we can obtain the components A, and A,, respectively.

We could obtain an additional equation by noting that the sum of the moments of the external forces

about a point other than A is zero. We could write, for instance, > Mp = 0. This equation, however,

does not contain any new information, because we have already established that the system of forces
shown in Fig. 4.2b is equivalent to zero. The additional equation is not independent and cannot be used
to determine a fourth unknown. It can be useful, however, for checking the solution obtained from the
original three equations of equilibrium.

Although the three equations of equilibrium cannot be augmented by additional equations, any of
them can be replaced by another equation. Properly chosen, the new system of equations still describes
the equilibrium conditions but may be easier to work with. For example, an alternative system of
equations for equilibrium is

(4.6)
YF,=0 YMyp=0 XMp =0

Here, the second point about which the moments are summed (in this case, point B) cannot lie on the
line parallel to the y axis that passes through point A (Fig. 4.2b). These equations are sufficient
conditions for the equilibrium of the truss. The first two equations indicate that the external forces must
reduce to a single vertical force at A. Because the third equation requires that the moment of this force
be zero about a point B that is not on its line of action, the force must be zero, and the rigid body is in
equilibrium.

A third possible set of equilibrium equations is

4.7)
My =0 Mg =0 SMg =0

where the points A, B, and C do not lie in a straight line (Fig. 4.2b). The first equation requires that the
external forces reduce to a single force at A; the second equation requires that this force pass through B;
and the third equation requires that it pass through C. Because the points A, B, and C do not lie in a
straight line, the force must be zero, and the rigid body is in equilibrium.

Notice that the equation XM, = 0, stating that the sum of the moments of the forces about pin A is

zero, possesses a more definite physical meaning than either of the other two equations [Eqgs. (4.7)].
These two equations express a similar idea of balance but with respect to points about which the rigid
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body is not actually hinged. They are, however, as useful as the first equation. The choice of equilibrium
equations should not be unduly influenced by their physical meaning. Indeed, in practice, it is desirable
to choose equations of equilibrium containing only one unknown, because this eliminates the necessity
of solving simultaneous equations. You can obtain equations containing only one unknown by summing
moments about the point of intersection of the lines of action of two unknown forces or, if these forces
are parallel, by summing force components in a direction perpendicular to their common direction.

For example, in Fig. 4.3, in which the truss shown is held by rollers at A and B and a short link at D,
we can eliminate the reactions at A and B by summing x components. We can eliminate the ~ "page 163
reactions at A and D by summing moments about C, and the reactions at B and D by summing ~
moments about D. The resulting equations are

SF, =0 SM. =0 SM, =0
| of, Q 4 57
C "\‘ //(:’/ D
¢ i
\\\ /////
B \-.\ x_/;/ I
T :&
(a)
E Q 8
] | d Qx S,
e — -
C : y D
b, W ///"/
o P
W
4 \\}/7
| A B
(k)

Fig. 4.3 (a) A truss supported by two rollers and a short link; (b) free-
body diagram of the truss.

Each of these equations contains only one unknown.

4.1C Statically Indeterminate Reactions and
Partial Constraints

In the two examples considered in Figs. 4.2 and 4.3, the types of supports used were such that the rigid
body could not possibly move under the given loads or under any other loading conditions. In such
cases, the rigid body is said to be completely constrained. Recall that the reactions corresponding to
these supports involved three unknowns and could be determined by solving the three equations of
equilibrium. When such a situation exists, the reactions are said to be statically determinate.

Consider Fig. 4.4a, in which the truss shown is held by pins at A and B. These supports provide
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more constraints than are necessary to keep the truss from moving under the given loads or under any
other loading conditions. Note from the free-body diagram of Fig. 4.4b that the corresponding reactions
involve four unknowns. We pointed out in Sec. 4.1B that only three independent equilibrium equations
are available; therefore, in this case, we have more unknowns than equations. As a result, we cannot

determine all of the unknowns. The equations XM 4 = 0 and ¥ Mp = 0 yield the vertical components

B, and A,, respectively, but the equation X F,, = 0 gives only the sum A, + B, of the horizontal

components of the reactions at A and B. The components A, and B, are statically indeterminate. We

could determine their magnitudes by considering the deformations produced in the truss by the given
loading, but this method is beyond the scope of statics and belongs to the study of mechanics of
materials.

P 0 5
C N o =1 D
\\C\ -,..'
o, L
L y
- Y/
\I7;
A 3 S B
(e}
P Q 8
P Q. <]
cls 1 _j,' D
\\:\_\ /_,"f
W
/.
A, |la Nl g||B

(&)
Fig. 4.4 (a) Truss with statically indeterminate reactions; (b) free-
body diagram.

Let’s consider the opposite situation. The supports holding the truss shown in Fig. 4.5a consist of
rollers at A and B. Clearly, the constraints provided by these supports are not sufficient to keep the truss
from moving. Although they prevent any vertical motion, the truss is free to move horizontally. The

truss is said to be partially constrained.” From the free-body diagram in Fig. 4.5b, note that the
reactions at A and B involve only two unknowns. Because three equations of equilibrium must still be
satisfied, we have fewer unknowns than equations. In such a case, one of the equilibrium equations will

not be satisfied in general. The equations ¥ M4 = 0 and ¥ Mp = 0 can be satisfied by a proper choice
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of reactions at A and B, but the equation ¥ F, = 0 is not satisfied unless the sum of the horizontal

components of the applied forces happens to be zero. We thus observe that the equilibrium of the truss
of Fig. 4.5 cannot be maintained under general loading conditions.

P ) e
CE = D
L ‘e
'\'\\ 4
\.\" "’.—’

% Y,
B, A
h e,
W, o
L
Alg St ¥R
= =
(e)
P ) S
g 0 )
Ry -
T Ihs, 2D
\" /__.
Fa
W, ’ W g
‘ WY ry
L '
L '
i o [ B

(b

Fig. 4.5 (a) Truss with partial constraints; (b) free-body diagram.

From these examples, it would appear that, if a rigid body is to be completely constrained and if the
reactions at its supports are to be statically determinate, there must be as many unknowns as there are
equations of equilibrium. When this condition is not satisfied, we can be certain that either the rigid
body is not completely constrained or that the reactions at its supports are not statically “Page 164 ge 164
determinate. It is also possible that the rigid body is not completely constrained and that the
reactions are statically indeterminate.

You should note, however, that, although this condition is necessary, it is not sufficient. In other
words, the fact that the number of unknowns is equal to the number of equations is no guarantee that a
body is completely constrained or that the reactions at its supports are statically determinate. Consider
Fig. 4.6a, which shows a truss held by rollers at A, B, and E. We have three unknown reactions A, B,

and E (Fig. 4.6b), but the equation £ F,, = ( is not satisfied unless the sum of the horizontal components

of the applied forces happens to be zero. Although there are a sufficient number of constraints, these
constraints are not properly arranged, so the truss is free to move horizontally. We say that the truss is
improperly constrained. Because only two equilibrium equations are left for determining three
unknowns, the reactions are statically indeterminate. Thus, improper constraints also produce static
indeterminacy.
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supports are statically indeterminate. On the other hand, we note that the equation ¥ M, = 0 cannot be

satisfied under general loading conditions, because the lines of action of the reactions B and C pass
through A. We conclude that the truss can rotate about A and that it is improperly constrained.”
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Fig. 4.6 (a) Truss with improper constraints; (b) free-body diagram.

The truss shown in Fig. 4.7 is another example of improper constraints—and of static
indeterminacy. This truss is held by a pin at A and by rollers at B and C, which altogether involve four
unknowns. Because only three independent equilibrium equations are available, the reactions at the
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Fig. 4.7 (a) Truss with improper constraints; (b) free-body diagram.
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The examples of Figs. 4.6 and 4.7 lead us to conclude that

A rigid body is improperly constrained whenever the supports (even though they may
provide a sufficient number of reactions) are arranged in such a way that the reactions must

be either concurrent or parallel.*

In summary, to be sure that a two-dimensional rigid body is completely constrained and that the
reactions at its supports are statically determinate, you should verify that the reactions involve three—
and only three—unknowns and that the supports are arranged in such a way that they do not require the
reactions to be either concurrent or parallel.

Supports involving statically indeterminate reactions should be used with care in the design of
structures and only with a full knowledge of the problems they may cause. On the other hand, the
analysis of structures possessing statically indeterminate reactions often can be partially carried out by
the methods of statics. In the case of the truss of Fig. 4.4, for example, we can determine the vertical
components of the reactions at A and B from the equilibrium equations.

For obvious reasons, supports producing partial or improper constraints should be avoided in the
design of stationary structures. However, a partially or improperly constrained structure will not
necessarily collapse; under particular loading conditions, equilibrium can be maintained. For example,
the trusses of Figs. 4.5 and 4.6 will be in equilibrium if the applied forces P, Q, and S are vertical.
Besides, structures designed to move should be only partially constrained. A railroad car, for instance,
would be of little use if it were completely constrained by having its brakes applied permanently.

Page=hQs

-
Sample Problem 4.1

A fixed crane has a mass of 1000 kg and is used to lift a 2400-kg crate. It is held in place by a pin
at A and a rocker at B. The center of gravity of the crane is located at G. Determine the
components of the reactions at A and B.

=

{.—-’
A =6 >
. MkHD

STRATEGY : prawa free-body diagram to show all of the forces acting on the crane,
then use the equilibrium equations to calculate the values of the unknown forces.

MODELING:
Fl"ee-BOdy Diagram. By multiplying the masses of the crane and of the crate by

9g=1981lm/ sz, you obtain the corresponding weights—that is, 9810 N or 9.81 kN, and 23 500 N

or 23.5 kN (Fig. 1). The reaction at pin A is a force of unknown direction; you can represent it by
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components A, and A,,. The reaction at the rocker B is perpendicular to the rocker surface; thus,

it is horizontal. Assume that A, A, and B act in the directions shown.

-

o)
:[;*

Y
235 kN
1%::1 /!/
—Hﬁ's 9.81 kN

B L |
2 m-—=| 4 m

Fig. 1 Free-body diagram of crane.

ANALYSIS:
Determination of B. The sum of the moments of all external forces about point A

is zero. The equation for this sum contains neither A, nor A,, because the moments of A, and A,

about A are zero. Multiplying the magnitude of each force by its perpendicular distance from A,
you have

+ O XMy =0: +B(1.5m)—(9.81kN)(2m)—(23.5kN)(6 m)=
B =HOT1N B = 107.1kN —

Because the result is positive, the reaction is directed as assumed.

Determination of A,

Determine the magnitude of A, by setting the sum of the horizontal components of all external

forces to zero.
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+¥F, =0: A +B=0

A + 107.1kN =0

A, =-107.1kN
A, = 107.1kN «

Because the result is negative, the sense of A, is opposite to that assumed originally.

Determination of A e

The sum of the vertical components must also equal zero. Therefore,

+T2Fy=0: Ay—9.81kN—23.5kN=0

Ay:+33.3kN Ay _ 33.3kNT

Adding the components A, and A, vectorially, you can find that the reaction at A is 112.2

kN x 17.3°.

REFLECT and THINK : You can check the values obtained for the reactions

by recalling that the sum of the moments of all the external forces about any point must be zero.
For example, considering point B (Fig. 2), you can show

+ O IM, = —(9.81 kN) (2 m)—(23.5 kN)(6 m)+(107.1kN)(1.5m)= 0

°F  981kN
07.1 kN |2 |
2 m—~{ 4 m

Fig. 2 Free-body diagram of crane with solved reactions.

-
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Sample Problem 4.2

Three loads are applied to a beam, as shown. The beam is supported by a roller at A and by a pin

at B. Neglecting the weight of the beam, determine the reactions at A and B when P = 15 kips.

JP ﬁklpsl lt-' kips

AT ﬂﬁ

STRATEGY : prawa free-body diagram of the beam, then write the equilibrium
equations, first summing forces in the x direction and then summing moments at A and at B.

MODELING:
Fl"ee-BOdy Diagram. The reaction at A is vertical and is denoted by A (Fig. 1).

Represent the reaction at B by components B, and B,. Assume that each component acts in the

direction shown.

llﬁ kip=s Eklpsl 16 kips

A'T B B,
A
B,
6 fi

T T T L

Fig. 1 Free-body diagram of beam.

ANALYSIS:
Equilibrium Equations. Write the three equilibrium equations and solve for the

reactions indicated:

+3F, = 0: B, =0
E B, =0
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+O M, =0:
—~(15kips)(3 ft)+B, (9 ft)-(6 kips)(11 ft)—(6 kips) (13 ft)= 0

B, =+21.0 kips .
B, = 21.0kips |

+O XMy = 0:
— A(9 ft)+(15 kips)(6 ft)—(6 kips) (2 ft)—(6 kips)(4 ft)= 0

A= +6.00kips A = 6.00kips 1

REFLECT and THINK: check the results by adding the vertical components

of all of the external forces:

+ T XF, = +6.00 kips — 15 kips +21.0 kips — 6 kips — 6 kips =0

Remark. In this problem, the reactions at both A and B are vertical; however, these

reactions are vertical for different reasons. At A, the beam is supported by a roller; hence, the
reaction cannot have any horizontal component. At B, the horizontal component of the reaction is

zero, because it must satisfy the equilibrium equation ¥ F,, = 0, and none of the other forces

acting on the beam have a horizontal component.
You might have noticed at first glance that the reaction at B was vertical and dispensed with

the horizontal component B . This, however, is bad practice. In following it, you run the risk of
forgetting the component B, when the loading conditions require such a component (i.e., when a
horizontal load is included). Also, you found the component B, to be zero by using and solving

an equilibrium equation, ¥F, = 0. By setting B, equal to zero immediately, you might not

realize that you actually made use of this equation. Thus, you might lose track of the number of
equations available for solving the problem.

- _J

Page 1

(Sample Problem 4.3
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A loading car is at rest on a track forming an angle of 25° with the vertical. The gross weight of
the car and its load is 5500 lb, and it acts at a point 30 in. from the track, halfway between the two
axles. The car is held by a cable attached 24 in. from the track. Determine the tension in the cable
and the reaction at each pair of wheels.

STRATEGY : prawa free-body diagram of the car to determine the unknown forces,

and write equilibrium equations to find their values, summing moments at A and B and then
summing forces.

MODELING:

Free-Body Dlagram. The reaction at each wheel is perpendicular to the track, and
the tension force T is parallel to the track. Therefore, for convenience, choose the x axis parallel to
the track and the y axis perpendicular to the track (Fig. 1). Then, resolve the 5500-1b weight into x
and y components.

25 in
.
X
Fig. 1 Free-body diagram of car.
+(55001b) cos 25° = +49801b

W, =
W, = =(55001b) sin 25° = - 23201b
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ANALYSIS:
qulillb]."lllm Equations. Take moments about A to eliminate T and R; from the

computation.

+OIM, =0:  —(23201b)(25in.)—(4980Ib)(6 in.)+ R, (50 in.)=0

- 1
Ry = +17581b R, = 17581b

Then, take moments about B to eliminate T and Ry from the computation.

+O IM, = 0: (2320 1b) (25 in.)—(4980 1b)(6 in.)- R, (50 in.)= 0

= 15621
By =+s62lb R, = 5621b

Determine the value of T by summing forces in the x direction.
+NYF = 0: +49801b -T =0

T = +49801b T = 49801Ib N\

Figure 2 shows the computed values of the reactions.
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Fig. 2 Free-body diagram of car with solved reactions.

REFLECT and THINK: vou can verify the computations by summing forces

in the y direction.
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+7LF, = +5621b +17581b —23201b =0

You could also check the solution by computing moments about any point other than A or B.
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Sample Problem 4.4

The frame shown supports part of the roof of a small building. Knowing that the tension in the
cable is 150 kN, determine the reaction at the fixed end E.

. o1 =
RERER.

3.75m
20 kN 20 kN 20 kN 20 kN
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STRATEGY : prawa free-body diagram of the frame and of the cable BDF. The

support at E is fixed, so the reactions here include a moment. To determine its value, sum
moments about point E.

MODELING:
Free-Body Diagram. Represent the reaction at the fixed end E by the force

components E; and E, and the couple M g (Fig. 1). The other forces acting on the free body are

the four 20-kN loads and the 150-kN force exerted at end F of the cable.

y

20 kN 20 kN 20 kN 20 kN
. | I

Fig. 1 Free-body diagram of frame.
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ANALYSIS:
Equilibrium Equations. First note that

DF = /(45m)*+ (6m)’ =7.5m

Then, you can write the three equilibrium equations and solve for the reactions at E.

4.5
+XF, =0: E,+—(150kN)=0
— 7.5

E =-90.0kN
' E, = 900kN «

f— . 6 f—
#T2F,=0: B, ~4(20kN)~——(150kN)= 0

Ey =+200 kN
E, = 200kN 1

+OIM,=0:  (20kN)(7.2m)+(20 kN) (5.4 m)+(20 kN)(3.6 m)
+(20kN) (1.8 m)—%(lSO kN)(4.5m)+M, =0

M, = +180.0 kN'm
Mg = 180.0kN-m O

REFLECT and THINK: The cable provides a fourth constraint, making this

situation statically indeterminate. This problem therefore gave us the value of the cable tension,
which would have been determined by means other than statics. We could then use the three
available independent static equilibrium equations to solve for the remaining three reactions.
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SamPle Problem 4.5

A 400-1b weight is attached at A to the lever shown. The constant of the spring BC is

k = 2501b/in., and the spring is unstretched when 6 = 0. Determine the position of equilibrium.
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STRATEGY : brawa free-body diagram of the lever and cylinder to show all forces
acting on the body (Fig. 1), then sum moments about O. Your final answer should be the angle 6.

Unstretched
[position

MODELING:
Free-Body Diagram. Denote by s the deflection of the spring from its unstretched

position and note that s = 6. Then, F' = ks = kr6.

ANALYSIS:
Equilibrlum Equation. Sum the moments of W and F about O to eliminate the

reactions supporting the cylinder. The result is

k 2
+ O XMy =0: Wl sin@ — r(kr)= 0 sinf = %0

Substituting the given data yields
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(250 Ib/in.)(3in.)?
sin @ = 0 sinf=10.70360
(400 Ib)(8 in. )

Solving by trial and error, the angle is 0=0 6 = 80.3°

REFLECT and THINK: The weight could

represent any vertical force acting on the lever. The key to the problem is to express the spring
force as a function of the angle 6.
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@ Case Stud_y 4.1

The Mianus River Bridge in Greenwich, Connecticut, is a 24-span
highway structure completed in 1958 that carries Interstate 95 over the
Mianus River. Using separate northbound and southbound roadways, each
direction includes two 100-ft-long skewed suspended spans that are
supported by cantilevered girders at either end (CS Fig. 4.1). The
suspended spans themselves contain two girders, with each attached to the
cantilevered support girders using pillow-block bearings (which function
as pin supports) at one end and twin hangers at the other end. CS Fig. 4.2
depicts the hanger connection, which functions as a link support. On June
28, 1983, one of the northbound suspended spans collapsed, with two
automobiles and two trucks plunging into the void (CS Photo 4.1), killing
three people and seriously injuring three more. The cause was determined
to be corrosion-induced lateral displacement of the lower pin cap that
secured the hangers onto the pin supporting the south girder, causing one
of the hangers to work itself off the pin and transferring all load at this
corner to the remaining hanger. The resulting increase in loading on the
two pins eventually caused the upper pin to fracture, leading to the collapse
of the entire span. The corrosion was accelerated by water and deicing
agents draining through the deck expansion joint and regularly wetting the
hanger connection. Compounding the situation was an inadequate routine
inspection program that resulted in the severely compromised hanger
condition remaining undetected before failing.*
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CS Fig. 4.1 Diagram of suspended span.
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CS Fig. 4.2 Hanger support of suspended span.

CS Photo 4.1 View of Mianus River Bridge collapse.

Hank Morgan/The LIFE Images Collection/Getty Images
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Among the loads that the bridge was designed to support is a live load
consisting of a standard truck, as shown in CS Fig. 4.3, placed in each of
the three lanes of travel. Considering this live load (and Page 171
disregarding any effects of the skewed deck), let’s determine the
maximum value of the resulting support reaction at the failed hanger
connection.

32 kips 32 kips 8 kips
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CS Fig. 4.3 Standard de51gn 