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Preface

In courses such as calculus or differential equations,
the content is fairly standardized, but the content of a
course entitled engineering mathematics often varies
considerably between two different academic
institutions. Therefore a text entitled Advanced
Engineering Mathematics is a compendium of many
mathematical topics, all of which are loosely related
by the expedient of either being needed or useful in
courses in science and engineering or in subsequent
careers in these areas. There is literally no upper
bound to the number of topics that could be included
in a text such as this. Consequently, this book
represents the author’s opinion of what constitutes
engineering mathematics.
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Content of the Text

For flexibility in topic selection this text is divided into
five major parts. As can be seen from the titles of
these various parts, it should be obvious that it is my
belief that the backbone of science/engineering-
related mathematics is the theory and applications of
ordinary and partial differential equations.

PART 1: Ordinary Differential
Equations (Chapters 1-6)

The six chapters in Part 1 constitute a complete short
course in ordinary differential equations. These
chapters, with some modifications, correspond to
Chapters 1, 2, 3,4, 5, 6, 7, and 9 in the text A First
Course in Differential Equations with Modeling
Applications, Eleventh Edition, by Dennis G. Zill
(Cengage Learning). In Chapter 2 the focus is on
methods for solving first-order differential equations
and their applications. Chapter 3 deals mainly with
linear second-order differential equations and their
applications. Chapter 4 is devoted to the solution of
differential equations and systems of differential
equations by the important Laplace transform.
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PART 2: Vectors, Matrices, and
Vector Calculus (Chapters 7-9)

Chapter 7, Vectors, and Chapter 9, Vector Calculus,
include the standard topics that are usually covered in
the third semester of a calculus sequence: vectors in
2- and 3-space, vector functions, directional
derivatives, line integrals, double and triple integrals,
surface integrals, Green’s theorem, Stokes’ theorem,
and the divergence theorem. In Section 7.6 the vector
concept is generalized; by defining vectors
analytically we lose their geometric interpretation but
keep many of their properties in n-dimensional and
infinite-dimensional vector spaces. Chapter 8,
Matrices, is an introduction to systems of algebraic
equations, determinants, and matrix algebra, with
special emphasis on those types of matrices that are
useful in solving systems of linear differential
equations. Optional sections on cryptography, error
correcting codes, the method of least squares, and
discrete compartmental models are presented as
applications of matrix algebra.
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PART 3: Systems of Differential
Equations (Chapters 10 and 11)

There are two chapters in Part 3. Chapter 10,
Systems of Linear Differential Equations, and
Chapter 11, Systems of Nonlinear Differential
Equations, draw heavily on the matrix material
presented in Chapter 8 of Part 2. In Chapter 10,
systems of linear first-order equations are solved
utilizing the concepts of eigenvalues and
eigenvectors, diagonalization, and by means of a
matrix exponential function. In Chapter 11, qualitative
aspects of autonomous linear and nonlinear systems
are considered in depth.

PART 4: Partial Differential
Equations (Chapters 12—-16)

The core material on Fourier series and boundary-
value problems involving second-order partial
differential equations was drawn from the text
Differential Equations with Boundary-Value
Problems, Ninth Edition, by Dennis G. Zill (Cengage
Learning). In Chapter 12, Fourier Series, the
fundamental topics of sets of orthogonal functions
and expansions of functions in terms of an infinite
series of orthogonal functions are presented. These
topics are then utilized in Chapters 13 and 14 where
boundary-value problems in rectangular, polar,
cylindrical, and spherical coordinates are solved using
the method of separation of variables. In Chapter 15,
Integral Transforms, boundary-value problems are
solved by means of the Laplace and Fourier integral
transforms.

Telegram: @uni_k
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PART 5: Complex Analysis
(Chapters 17-20)

The final four chapters of the hardbound text cover
topics ranging from the basic complex number system
through applications of conformal mappings in the
solution of Dirichlet’s problem. This material by itself
could easily serve as a one quarter introductory
course in complex variables. This material was taken
from Complex Analysis: A First Course with
Applications, Third Edition, by Dennis G. Zill and
Patrick D. Shanahan (Jones & Bartlett Learning).
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Design of the Text

For the benefit of those instructors and students who
have not used the preceding edition, a word about the
design of the text is in order. Each chapter opens with
its own table of contents and a brief introduction to
the material covered in that chapter. Because of the
great number of figures, definitions, and theorems
throughout this text, | use a double-decimal
numeration system. For example, the interpretation of
“Figure 1.2.3" is

Chapter Section of Chapter 1
1l

1.2.3 « Third figure in Section 1.2

| think that this kind of numeration makes it easier to
find, say, a theorem or figure when it is referred to in
a later section or chapter. In addition, to better link a
figure with the text, the first textual reference to each
figure is done in the same font style and color as the
figure number. For example, the first reference to the
second figure in Section 5.7 is given as FIGURE
5.7.2 and all subsequent references to that figure are
written in the traditional style Figure 5.7.2.
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Features of the Seventh Edition

= One of the goals of this revision was to emphasize
applications throughout the text. So, the
application problems contributed to previous
editions

Air Exchange, Exercises 2.7
Potassium-40 Decay, Exercises 2.9
Potassium—-Argon Dating, Exercises 2.9

Invasion of the Marine Toads, Chapter 2 in
Review

Temperature of a Fluid, Exercises 3.6
Blowing in the Wind, Exercises 3.9
The Paris Guns, Chapter 3 in Review

have been retained.

= Section 15.5, Finite Fourier Transforms, is new to
the text.

= New examples and many new problems
(conceptual and applied) have been added
throughout the text.

= New figures and photos have been added to
highlight some of the older problems and
discussions.

= New REMARKS have been added to some
sections, and some of the older REMARKS have
been expanded.

= A bit of history has been added following the
proper name of a person associated with a
certain differential equation or problem.

= Several application problems in chapter review
exercises have been moved to the appropriate
section exercises.

Telegram: @uni_k
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= Parts of several sections have been rewritten in
an attempt to improve clarity.
= Appendix A, Integral-Defined Functions, is new to

the text.
= The table of Laplace transforms in Appendix C
has been expanded.
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Supplements

For Instructors

Complete Solutions Manual (CSM) by Warren S.
Wright and Roberto Martinez

Test Bank

Slides in PowerPoint format

Image Bank

WebAssign: WebAssign is a flexible and fully
customizable online instructional system that puts
powerful tools in the hands of teachers, enabling
them to deploy assignments, instantly assess
individual student performance, and realize their
teaching goals. Much more than just a homework
grading system, WebAssign delivers secure online
testing, customizable precoded questions directly
from exercises in this textbook, and unparalleled
customer service. Instructors who adopt this
program for their classroom use will have access
to a digital version of this textbook. Students who
purchase an access code for WebAssign will also
have access to the digital version of the printed
text.

With WebAssign instructors can:

Create and distribute algorithmic assignments
using questions specific to this textbook

Grade, record, and analyze student responses
and performance instantly

Offer more practice exercises, quizzes, and
homework

Upload resources to share and communicate
with students seamlessly
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For more detailed information and to sign up for
free faculty access, please visit webassign.com. For
information on how students can purchase access to
WebAssign bundled with this textbook, please contact
your Jones & Bartlett account representative at
go.jblearning.com/findmyrep.

Designated instructor materials are for qualified
instructors only. Jones & Bartlett Learning reserves
the right to evaluate all requests. For detailed
information and to request access to instructor
resources, please visit:

go.jblearning.com/ZIIAEM7e.
For Students

= A WebAssign Student Access Code can be
bundled with a copy of this text at a discount when
requested by the adopting instructor. It may also
be purchased separately online when WebAssign
is required by the student’s instructor or institution.
The student access code provides the student
with access to his or her specific classroom
assignments in WebAssign and access to a digital
version of this text.

= A Student Solutions Manual (SSM) prepared by
Warren S. Wright and Roberto Martinez provides
solutions to selected problems from the text.

= Access to the Student Companion Website and
Projects Center, available at
go.jblearning.com/ZIIIAEM7e, is included with each
new copy of the text. This site includes the
following resources to enhance student learning:

Chapter 21 Probability
Chapter 22 Statistics
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. Additional projects and essays that

appeared in earlier editions of this text,
including:

Two Properties of the Sphere

Vibration Control: Vibration Isolation
Vibration Control: Vibration Absorbers
Minimal Surfaces

Road Mirages

Two Ports in Electrical Circuits

The Hydrogen Atom

Instabilities of Numerical Methods

A Matrix Model for Environmental Life
Cycle Assessment

Steady Transonic Flow Past Thin Airfoils
Making Waves: Convection, Diffusion, and
Traffic Flow

When Differential Equations Invaded
Geometry: Inverse Tangent Problem of the
17th Century

Tricky Time: The Isochrones of Huygens
and Leibniz

The Uncertainty Inequality in Signal
Processing

Traffic Flow

Temperature Dependence of Resistivity
Fraunhofer Diffraction by a Circular
Aperture

The Collapse of the Tacoma Narrow
Bridge: A Modern Viewpoint
Atmospheric Drag and the Decay of
Satellite Orbits

Forebody Drag of Bluff Bodies


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

Acknowledgments

The task of compiling a text this size is, to say the
least, difficult and many people have put much time
and energy into this revision. So | would like to take
this opportunity to express my sincerest appreciation
to everyone—most of them unknown to me—at Jones
& Bartlett Learning who were involved in the
publication of this edition. A special word of thanks
goes to my editor Laura Pagluica and production
editor Jennifer Risden for their guidance in putting all
the pieces of a large puzzle together.

Over the years | have been very fortunate to
receive valuable input, solicited and unsolicited, from
students and my academic colleagues. An occasional
word of support is always appreciated, but it is the
criticisms and suggestions for improvement that have
enhanced each edition. So it is fitting that | once
again recognize and thank the following reviewers for
sharing their expertise and insights:

Raul M. Aguilar
Massachusetts Maritime Academy

A. Alton
Augustana University

Yuri Antipov
Louisiana State University

Victor Argueta
Alma College

Mahboub Baccouch
University of Nebraska at Omaha


https://t.me/uni_k

www.konkur.in

Ken Bosworth
Idaho State University

Kristen Campbell
Elgin Community College

Han-Taw Chen
National Cheng Kung University

Larry Chien
Santa Clara University

John T. Van Cleve
Jacksonville State University

William Criminale
University of Washington

Juan F. Diaz, Jr.
Mount Aloysius College

Vlad Dobrushkin
University of Rhode Island

Jeff Dodd
Jacksonville State University

Victor Elias
University of Western Ontario

Robert E. Fennell
Clemson University

Seferino Fierroz
Oxbridge Academy

Franklin Fondjo Fotou
Langston University

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

Stan Friedlander
Bronx Community College

Michelle Ghrist
Gonzaga University

David Gilliam
Texas Tech University

Paul Goethals
United States Military Academy

Seckin Gokaltun
The College of New Jersey

Stewart Goldenberg
California Polytechnic State University

Herman Gollwitzer
Drexel University

Reinaldo J. Gonzalez
University of Houston

Ronald B. Gunther
Oregon State University

Daniel Hallinan, Jr.
Florida A&M University—Florida State University
College of Engineering

Noel Harbetson
California State University

Angela Hare
Messiah College

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

Parameswar Harikumar
University of Tulsa

Donald Hartig
California Polytechnic State University

Sonia Henckel
Lawrence Technological University

Robert W. Hunt
Humbolt State University

David Keyes
Columbia University

Mario Klaric
Midlands Technical College

Vuryl Klassen
California State University, Fullerton

Cecilia Knoll
Florida Institute of Technology

Daniel Kraus
SUNY Oswego

Myren Krom
California State University, Sacramento

Jeffrey J. Leader
Rose-Human Institute of Technology

David O. Lomen
University of Arizona

Maria Ludu
Embry-Riddle Aeronautical University


https://t.me/uni_k

www.konkur.in

Lewis D. Ludwig
Denison University

Tony Mastroberardino
Penn State Erie, The Behrend College

Osvaldo Mendez
University of Texas, El Paso

Kelley B. Mohrmann
U.S. Military Academy

James L. Moseley
West Virginia University

Dr. Lloyd Moyo
Henderson State University

Gregory E. Muleski
University of Missouri, Kansas City

Charles P. Neumann
Carnegie Mellon University

Evgeni Nikolaev
Rutgers University

Zulkifli Mohd Nopiah
University of Kebangsaan Malaysia

Justin Oelgoetz
Austin Peay State University

Bruce O’Neill
Milwaukee School of Engineering

Sang June Oh
California State University, Fullerton

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

Dale Peterson
US Air Force Academy

Christopher S. Raymond
University of Delaware

Geoffrey Recktenwald
Michigan State University

Thomas N. Roe
South Dakota State University

Gary Stout
Indiana University of Pennsylvania

Ahlam Tannouri
Morgan State University

Jeremy L. Thompson
US Air Force Academy

David Titley-Peloquin
McGill University

Benjamin Varela
Rochester Institute of Technology

Jun Xu
Tarleton State University

Tian-Shiang Yang
National Cheng Kung University

Bashkim Zendeli
Lawrence Technological University

Although many eyes have scanned the thousands of
symbols and hundreds of equations in the text, it is a


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

surety that some errors persist. | apologize for this in
advance and | would certainly appreciate hearing
about any errors that you may find, either in the text
proper or in the supplemental manuals. In order to
expedite their correction, contact my editor at:
EHinman@jblearning.com

Dennis G. Zill

Image credits: Contents header: ©
Pol.mch/Shutterstock, Chapter 1: © PhilipYb
Studio/Shutterstock, Chapter 2: © Songquan
Deng/Shutterstock, Chapter 3: © Alexander
Yakimov/Shutterstock, Chapter 4: ©
GreenBelka/Shutterstock, Chapter 5: © Andrey
Armyagov/Shutterstock, Chapter 6: ©
nikolansfoto/Shutterstock, Chapter 7: ©
iurii/Shutterstock, Chapter 8: ©
PabloLagarto/Shutterstock, Chapter 9: © Ryan
Fletcher/Shutterstock, Chapter 10: ©
ClarkandCompany/E+/Getty Images, Chapter 11: ©
2005 Daryl & Sharna Balfour/Gallo Images ROOTS
Collection/Getty images, Chapter 12: ©
grebeshkovmaxim/Shutterstock, Chapter 13: ©
Mitchell Krog/Getty Images, Chapter 14: ©
melnikof/Shutterstock, Chapter 15: ©
Wallenrock/Shutterstock, Chapter 16: ©
Hairem/Shutterstock, Chapter 17: ©
Uncredited/AP/Shutterstock, Chapter 18: ©
ThomasSaupe/iStock Unreleased/Getty Images,
Chapter 19: © Guitar photographer/Shutterstock,


mailto:EHinman@jblearning.com
https://t.me/uni_k

www.konkur.in

Chapter 20: © Dziobek/Shutterstock, Appendix: ©
Kamil Nureev/EyeEm/Getty Images. Preface header:
© simone tognon/Shutterstock.

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

Nuno Valente Fotografia/Shutterstock

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

PAR

=

Ordinary Differential
Equations

Introduction to Differential Equations
First-Order Differential Equations

Higher-Order Differential Equations

1

2

3

4. The Laplace Transform

5. Series Solutions of Linear Equations
6

. Numerical Solutions of Ordinary Differential
Equations

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

© Philip Yb Studio/Shutterstock

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

CHAPTER 1

Introduction to
Differential Equations

1.1 Definitions and Terminology
1.2 Initial-Value Problems
1.3 Differential Equations as Mathematical Models

Chapter 1 in Review

The purpose of this short chapter is twofold: to
introduce the basic terminology of differential
equations and to briefly examine how differential
equations arise in an attempt to describe or model
physical phenomena in mathematical terms.
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m Definitions and Terminology

INTRODUCTION

The words differential and equation certainly suggest
solving some kind of equation that contains
derivatives. But before you start solving anything, you
must learn some of the basic definitions and
terminology of the subject.

A Definition

The derivative dy/dx of a function y = ¢(x) is itself
another function ¢'(x) found by an appropriate rule.
For example, the function y = ¢21=" is differentiable
on the interval (—«, «), and its derivative is dy/dx =
0.2xe%*". If we replace °1=* in the last equation by
the symbol y, we obtain

Y- 02w (™)

dx
Now imagine that a friend of yours simply hands you
the differential equation in (1), and that you have no
idea how it was constructed. Your friend asks: “What
is the function represented by the symbol y?” You are
now face-to-face with one of the basic problems in a
course in differential equations:

How do you solve such an equation for the
unknown function y = ¢(x)?
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The problem is loosely equivalent to the familiar
reverse problem of differential calculus: Given a
derivative, find an antiderivative.

Before proceeding any further, let us give a more
precise definition of the concept of a differential
equation.

DEFINITION 1.1.1 Differential

Equation

An equation containing the derivatives of one or
more dependent variables, with respect to one or
more independent variables, is said to be a
differential equation (DE).

In order to talk about them, we will classify a
differential equation by type, order, and linearity.

Classification by Type

If a differential equation contains only ordinary
derivatives of one or more functions with respect to a
single independent variable it is said to be an
ordinary differential equation (ODE). An equation
involving only partial derivatives of one or more
functions of two or more independent variables is
called a partial differential equation (PDE). Our
first example illustrates several of each type of
differential equation.

S C\IHESN N Types of

Differential Equations


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

(a) The equations

an ODE can contain more
than one dependent variable

dy dv dy dAJ: d}J" (2)
— t+6y=e* 4+ — —12y=0, and — + — = 3x + 2y
ax YT gy TR WMy Ty T

are examples of ordinary differential equations.
(b) The equations

u  u 2 2 du gy
Puy U P du o NG
ox dy ax?  atr ot 9 x

are examples of partial differential equations.
Notice in the third equation that there are two
dependent variables and two independent
variables in the PDE. This indicates that u and
v must be functions of two or more
independent variables. =

Notation

Throughout this text, ordinary derivatives will be
written using either the Leibniz notation dy/dXx,
d2y/dx?, dBy/dx3, ... , or the prime notation y', y", y",
... . Using the latter notation, the first two differential
equations in (2) can be written a little more compactly
asy'+6y=eXand y"+ y'— 12y = 0, respectively.
Actually, the prime notation is used to denote only the
first three derivatives; the fourth derivative is written
y4) instead of y"". In general, the nth derivative is
dy/dx" or y(. Although less convenient to write and
to typeset, the Leibniz notation has an advantage
over the prime notation in that it clearly displays both
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the dependent and independent variables. For
example, in the differential equation d?x/df2 + 16x = 0,
it is immediately seen that the symbol x now
represents a dependent variable, whereas the
independent variable is t. You should also be aware
that in physical sciences and engineering, Newton’s
dot notation (derogatively referred to by some as
the “flyspeck” notation) is sometimes used to denote
derivatives with respect to time t. Thus the differential
equation d?s/df?2 = -32 becomes 5§ = —32. Partial
derivatives are often denoted by a subscript
notation indicating the independent variables. For
example, the first and second equations in (3) can be
written, in turn, as uyy + uyy, = 0 and uyyx = uy — Uy

Classification by Order

The order of a differential equation (ODE or PDE)
is the order of the highest derivative in the equation.

=20\ 188 Order of a

Differential Equation

The differential equations

highest order highest order

¥ 4
d’y dy'\? a*u  o’u

- + 5(—) —dy=¢", 2—F+-—=0
dx~ dx dx at-

are examples of a second-order ordinary
differential equation and a fourth-order partial
differential equation, respectively. =
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A first-order ordinary differential equation is
sometimes written in the differential form

M(x, yv)dx + N(x, v)dy = 0.

=2\ IMN=E Differential Form

of a First-Order ODE

If we assume that y is the dependent variable
in a first-order ODE, then recall from calculus
that the differential dy is defined to be

dy = y'dx.

(a) By dividing by the differential dx an
alternative form of the equation

(y —x)dx + 4xdyv = 0

is given by

y—x+ 4;::% = () or equivalently

o
X ty=x

(b) By multiplying the differential equation

6@%+11+}?1=0

by dx we see that the equation has the
alternative differential form

(x2 + y2) dx + 6xy dy = 0. =

In symbols, we can express an nth-order ordinary
differential equation in one dependent variable by the

Telegram: @uni_k
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general form

FX v,y ., M) =0, (4)

where F is a real-valued function of n + 2 variables: x,
v, ¥ ..., ¥, For both practical and theoretical
reasons, we shall also make the assumption
hereafter that it is possible to solve an ordinary
differential equation in the form (4) uniquely for the
highest derivative y{" in terms of the remaining n + 1
variables. The differential equation

d"y

- 'x:' » f,-"’ {"_]} L] 5
gon S &Y Y ) (5)
where fis a real-valued continuous function, is
referred to as the normal form of (4). Thus, when it
suits our purposes, we shall use the normal forms

dy 2

d-y
—~ = Nand — = f(x, y, y"
dx . ) dx* (. 3.5)

to represent general first- and second-order ordinary
differential equations.

=20\ 148 =¥:% Normal Form of an
ODE

(a) By solving for the derivative dy/dx the
normal form of the first-order differential
equation
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(b) By solving for the derivative y" the normal
form of the second-order differential
equation

y"_yl+ 6y=0isy"=yl_6y.

Classification by Linearity

An nth-order ordinary differential equation (4) is said
to be linear in the variable y if Fis lineariny, y', ...,
y{". This means that an nth-order ODE is linear when
(4) is

a (W™ + ay_ (™Y + -+ ay(x)y' + agx)y — g(x) =0
or

dn:l-" t,:]rﬂ—J}_.
a,(x) e + a,_,(x) !

dy
+ -+ a,(x) — + ay(x)y = g(6)
W olX) 8()

Two important special cases of (6) are linear first-
order (n = 1) and linear second-order (n = 2)
ODEs.

V
ai(x) —— + ag(x)y = glx) and
dx 7
d-y dy (

a,(x) — + a,(x) — + ag(x)yy = g(x)-
oAb 2 NS ol X ) g

In the additive combination on the left-hand side of (6)
we see that the characteristic two properties of a
linear ODE are

Remember these two characteristics of a linear ODE.

. The dependent variable y and all its derivatives
y' y" ..., ¥\ are of the first degree; that is,
the power of each term involving y is 1.
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« The coefficients ag, a1, ..., anof y, y', ..

., Y

depend at most on the independent variable x.

A nonlinear ordinary differential equation is simply

one that is not linear. If the coefficients of y, y/, ..

y{N) contain the dependent variable y or its derivatives
or if powers of y, y', ..., ¥, such as (y")2, appear in
the equation, then the DE is nonlinear. Also, nonlinear
functions of the dependent variable or its derivatives,

such as sin y or e¥', cannot appear in a linear
equation.

=S\ I8N Linear and

Nonlinear Differential

Equations

(a) The equations

(y —x)dx +34:a:dy =0,y — 20 +v=0,

d
x3—};—|—3.1:ﬁ—5}?=e‘
dx dx

are, in turn, examples of linear first-, second-,
and third-order ordinary differential equations.

We have just demonstrated in part (a) of

Example 3 that the first equation is linear in y

by writing it in the alternative form 4xy'+ y = x.
(b) The equations
nonlinear term: nonlinear term: nonlinear term:
coefficient depends on y nonlinear function of y power not 1
I 1 1
, . dy d'y =,
(1—yp' +2y=2¢e I + siny = 0, e + vy =0,
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are examples of nonlinear first-, second-, and
fourth-order ordinary differential equations,
respectively.

(c) By using the quadratic formula the
nonlinear first-order differential equation
(y')* + 2xy’ — y = 0 can be written as two
nonlinear first-order equations in normal
form

vV=—x+Vx*+y and v = —x—Vxi+

m'<

Solution

As stated before, one of our goals in this course is to
solve—or find solutions of—differential equations. The
concept of a solution of an ordinary differential
equation is defined next.

DEFINITION 1.1.2 Solution of

an ODE

Any function ¢, defined on an interval / and
possessing at least n derivatives that are
continuous on /, which when substituted into an
nth-order ordinary differential equation reduces
the equation to an identity, is said to be a
solution of the equation on the interval.

In other words, a solution of an nth-order ordinary
differential equation (4) is a function ¢ that possesses
at least n derivatives and

F(x, ¢(x), ¢'(x), ..., ¢{M(x)) = 0 for all x in /.

Telegram: @uni_k
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We say that ¢ satisfies the differential equation on /.
For our purposes, we shall also assume that a
solution ¢ is a real-valued function. In our initial
discussion we have already seen that y = % is a

solution of dy/dx = 0.2xy on the interval (—, «).

Occasionally it will be convenient to denote a
solution by the alternative symbol y(x).

Interval of Definition

You can't think solution of an ordinary differential
equation without simultaneously thinking interval. The
interval / in Definition 1.1.2 is variously called the
interval of definition, the interval of validity, or the
domain of the solution and can be an open interval
(a, b), a closed interval [a, b], an infinite interval (a,
«), and so on.

=2\ IMH=NW Verification of a

Solution

Verify that the indicated function is a solution of
the given differential equation on the interval

(=0, ).
(a) % — .1}’”1; }, — ll_ﬁxd-
(b) y"-2y'+ y=0;y=xe

SOLUTION

One way of verifying that the given function is
a solution is to see, after substituting, whether
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each side of the equation is the same for every
x in the interval (—, «),

(a) From
3 3
left-hand side: & — 4.5 -
dx 16 4
right-hand side:
4 172 2 3
W”l:x-(x—) :I.x_: X
16 4 47

we see that each side of the equation is the
same for every real number x. Note that y1/2 =
}‘xz is, by definition, the nonnegative square
root of {ex*.

(b) From the derivatives y' = xeX + eX and y"
= xeX + 2eX we have for every real number
X,

left-hand side: y" - 2y'+ y = (xeX + 2&X) -
2(xeX + &) + xeX =0
right-hand side: 0. =

Note, too, that in Example 6 each differential
equation possesses the constant solution y = 0,
defined on (—«, «). A solution of a differential
equation that is identically zero on an interval / is said
to be a trivial solution.

Solution Curve

The graph of a solution ¢ of an ODE is called a
solution curve. Since ¢ is a differentiable function, it
is continuous on its interval / of definition. Thus there
may be a difference between the graph of the
function ¢ and the graph of the solution ¢. Put
another way, the domain of the function ¢ does not

Telegram: @uni_k
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need to be the same as the interval / of definition (or
domain) of the solution ¢.

SN\ IMNSwA Function vs.

Solution

(a) Considered simply as a function, the
domain of y = 1/x is the set of all real
numbers x except 0. When we graph y =
1/x, we plot points in the xy-plane
corresponding to a judicious sampling of
numbers taken from its domain. The rational
function y = 1/x is discontinuous at 0, and its
graph, in a neighborhood of the origin, is
given in FIGURE 1.1.1(a). The function y =
1/x is not differentiable at x = 0 since the y-
axis (whose equation is x = 0) is a vertical
asymptote of the graph.

(b) Now y = 1/x is also a solution of the linear
first-order differential equation xy’' + y = 0
(verify). But when we say y = 1/x is a
solution of this DE we mean it is a function
defined on an interval / on which it is
differentiable and satisfies the equation. In
other words, y = 1/x is a solution of the DE
on any interval not containing 0, such as
(=3, =1), (3 10), (==, 0), or (0, «).
Because the solution curves defined by y =
1/x on the intervals (-3, —=1) and on (3, 10)
are simply segments or pieces of the
solution curves defined by y = 1/x on (=<,
0) and (0, =), respectively, it makes sense
to take the interval / to be as large as
possible. Thus we would take / to be either

Telegram: @uni_k
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(=<0, 0) or (0, «). The solution curve on the
interval (0, «) is shown in Figure 1.1.1(b).

(a) Function y=1/x, x # 0

y

—_

(b) Solution y = 1/x, (0, o)

FIGURE 1.1.1 Example 7 illustrates the difference between the
function y = 1/x and the solution y = 1/x

Explicit and Implicit Solutions

You should be familiar with the terms explicit and
implicit functions from your study of calculus. A
solution in which the dependent variable is expressed
solely in terms of the independent variable and
constants is said to be an explicit solution. For our
purposes, let us think of an explicit solution as an
explicit formula y = ¢(x) that we can manipulate,
evaluate, and differentiate using the standard rules.
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We have just seen in the last two examples that y =
& x4, y=xeX, and y = 1/x are, in turn, explicit
solutions of dy/dx = xy'2, y" - 2y'+ y =0, and xy' +
y = 0. Moreover, the trivial solution y = 0 is an explicit
solution of all three equations. We shall see when we
get down to the business of actually solving some
ordinary differential equations that methods of
solution do not always lead directly to an explicit
solution y = ¢(x). This is particularly true when
attempting to solve nonlinear first-order differential
equations. Often we have to be content with a
relation or expression G(x, y) = 0 that defines a
solution ¢ implicitly.

DEFINITION 1.1.3 Implicit

Solution of an ODE

A relation G(x, y) = 0 is said to be an implicit
solution of an ordinary differential equation (4) on
an interval / provided there exists at least one
function ¢ that satisfies the relation as well as the
differential equation on /.

It is beyond the scope of this course to investigate
the conditions under which a relation G(x, y) = 0
defines a differentiable function ¢. So we shall
assume that if the formal implementation of a method
of solution leads to a relation G(x, y) = 0, then there
exists at least one function ¢ that satisfies both the
relation (that is, G(x, ¢ (x)) = 0) and the differential
equation on an interval /. If the implicit solution G (x,
y) = 0 is fairly simple, we may be able to solve for y
in terms of x and obtain one or more explicit
solutions. See (iv) in the Remarks.
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=20\ )8 =W Verification of an

Implicit Solution

The relation x2 + y2 = 25 is an implicit solution
of the nonlinear differential equation

dy X
= (8)
X y
on the interval defined by -5 < x < 5. By
implicit differentiation we obtain

d 3+d 2 d250r2x+2 ay 0(9)
42,4 ._9 ay _
ax de)  dx Y dx

Solving the last equation in (9) for the symbol
dy/dx gives (8). Moreover, solving x2 + y2 = 25
for y in terms of x yields y = +V/25 — x2.
The two functions y=d¢,(x) =V25 — x?and
y=¢dy(x) = —V25 — x? satisfy the relation
(that is, x2 + 7 = 25 and x? + ¢7 = 25) and
are explicit solutions defined on the interval
(=5, 5). The solution curves given in FIGURE
1.1.2(b) and 1.1.2(c) are segments of the
graph of the implicit solution in Figure 1.1.2(a).
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et

-t
T
1

L=

|||||
||||||

\_5 -
(a) Implicit solution (b) Explicit solution (c) Explicit solution
x2+y2=25 M =V25 % -5<x<5  y,=—25-x%-5<x<5

FIGURE 1.1.2 An implicit solution and two explicit solutions in

Example 8

Any relation of the form x2 + y2 - ¢ = 0 formally
satisfies (8) for any constant c. However, it is
understood that the relation should always make
sense in the real number system; thus, for example,
we cannot say that x2 + y2 + 25 = 0 is an implicit
solution of the equation. Why not?

Because the distinction between an explicit
solution and an implicit solution should be intuitively
clear, we will not belabor the issue by always saying,
“Here is an explicit (implicit) solution.”

Families of Solutions

The study of differential equations is similar to that of
integral calculus. When evaluating an antiderivative or
indefinite integral in calculus, we use a single constant
c of integration. Analogously, when solving a first-
order differential equation F(x, y, y') = 0, we usually
obtain a solution containing a single arbitrary constant
or parameter c. A solution containing an arbitrary
constant represents a set G(x, y, ¢) = 0 of solutions
called a one-parameter family of solutions. \When
solving an nth-order differential equation F(x, y, y/, ...,
y(n) = 0, we seek an n-parameter family of
solutions G(x, y, ¢1, C, ..., ¢y) = 0. This means that
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a single differential equation can possess an infinite
number of solutions corresponding to the unlimited
number of choices for the parameter(s). A solution of
a differential equation that is free of arbitrary
parameters is called a particular solution.

=20\ 1828 Particular Solution

(a) For all values of c, the one-parameter
family ¥ = c¢x — xcosx is an explicit solution
of the linear first-order differential equation

xy' —y=x*sinx
on the interval (—«, «). FIGURE 1.1.3 shows
the graphs of some particular solutions in this
family for various choices of c. The solution

Vv = —xcos x, the red curve in the figure, is a
particular solution corresponding to ¢ = 0.

FIGURE 1.1.3 Some solutions of DE in part (a) of Example 9

(b) The two-parameter family
y = c,e” + cyxe™ is an explicit solution of the
linear second-order differential equation

V=2 +y=0
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in part (b) of Example 6. FIGURE 1.1.4 shows
seven of the “double infinity” of solutions in this
family. The solution curves in red, green, and
blue are the graphs of the particular solutions
y =sxe’ (¢, = 0,¢, = 3),

y=3e"(c, =3,¢c,=0), and y = Se* — 2xe*
(¢, = 5, ¢, = —2) respectively. =

)\
A

FIGURE 1.1.4 Some solutions of DE in part (b) of Example 9

In all the preceding examples, we have used x
and y to denote the independent and dependent
variables, respectively. But you should become
accustomed to seeing and working with other
symbols to denote these variables. For example, we
could denote the independent variable by t and the
dependent variable by x.

N\ ILESNIIN Using Different

Symbols

The functions x = ¢ cos 4t and x = ¢2 sin 4,
where ¢1 and ¢, are arbitrary constants or

parameters, are both solutions of the linear
differential equation
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x"+ 16x = 0.

For x = ¢4 cos 4t, the first two derivatives with
respect to tare x' = -4c¢4 sin4tand x" = -16¢1
cos 4t. Substituting x" and x then gives

x"+ 16x = —=16¢1 cos 4t + 16(cq cos 4tf) = 0.

In like manner, for x = ¢y sin 4t we have x" =
—-16c¢5 sin 4t, and so

x"+ 16x = —=16¢7 sin 4t + 16(co sin 4f) = 0.

Finally, it is straightforward to verify that the
linear combination of solutions for the two-
parameter family x = ¢q cos 4t + ¢ sin 4tis
also a solution of the differential equation.

The next example shows that a solution of a

differential equation can be a piecewise-defined
function.

DCNILNNEE A Piecewise-

Defined Solution

You should verify that the one-parameter
family y = cx? is a one-parameter family of
solutions of the linear differential equation xy' —
4y = 0 on the interval (-, «). See FIGURE
1.1.5(a). The piecewise-defined differentiable
function

B {—f, x<0
x*, x=0
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X
C=—
xr<0

(b)

FIGURE 1.1.5 Some solutions of xy'— 4y = 0 in Example 11

is a particular solution of the equation but
cannot be obtained from the family y = c¢x* by
a single choice of c; the solution is constructed
from the family by choosing ¢ = -1 for x< 0
and ¢ = 1 for x 2 0. See FIGURE 1.1.5(b).

Singular Solution

Sometimes an nth-order differential equation
possesses a solution that is not a member of an n-
parameter family of solutions of the equation—that is,
a solution that cannot be obtained by specializing any
of the parameters in the family of solutions. Such a
solution is called a singular solution.”

S\ ILESN VA Singular Solution
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We saw on pages 6 and 7 that the functions y = ﬁx‘*
and y = 0 are solutions of the differential equation
dy/dx = xy?on (-, ). In Section 2.2 we shall

demonstrate, by actually solving it, that the differential
equation gy/dx = x}'% possesses the one-parameter
family of solutions y = (3x* + ¢)% ¢ = 0. Whenc =0
the resulting particular solution is y = {=x*. But the
trivial solution y = 0 is a singular solution since it is not
a member of the family y = (332 + ¢)?% there is no
way of assigning a value to the constant ¢ to obtain y
= 0. =

Systems of Differential
Equations

Up to this point we have been discussing single
differential equations containing one unknown
function. But often in theory, as well as in many
applications, we must deal with systems of
differential equations. A system of ordinary
differential equations is two or more equations
involving the derivatives of two or more unknown
functions of a single independent variable. For
example, if x and y denote dependent variables and ¢
the independent variable, then a system of two first-
order differential equations is given by

% = f(t,x,y)
dy _
— = g(t,x,y). (10)
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A solution of a system such as (10) is a pair of
differentiable functions x = ¢4(f), y = ¢2(t) defined on
a common interval / that satisfy each equation of the
system on this interval. See Problems 49 and 50 in
Exercises 1.1.

REMARKS

(i) It might not be apparent whether a first-
order ODE written in differential form M(x,
y) dx + N(x, y) dy = 0 is linear or nonlinear
because there is nothing in this form that
tells us which symbol denotes the
dependent variable. See Problems 11 and
12 in Exercises 1.1.

(i) We will see in the chapters that follow that
a solution of a differential equation may
involve an integral-defined function. One
way of defining a function F of a single
variable x by means of a definite integral is

F(x) = J g(f) dt. (11)

a

If the integrand g in (11) is continuous on
aninterval [a, b] and a < x < b, then the
derivative form of the Fundamental
Theorem of Calculus states that F is
differentiable on (a, b) and

F'(x) = %J gt)ydr=g(x). (12)

a

The integral in (11) is often
nonelementary, that is, an integral of a
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function g that does not have an
elementary-function antiderivative.
Elementary functions include the familiar
functions studied in a typical precalculus
course:

constant, polynomial, rational,
exponential, logarithmic,
trigonometric, and inverse
tfrigonometric functions,

as well as rational powers of these
functions, finite combinations of these
functions using addition, subtraction,
multiplication, division, and function
compositions. For example, even though

e~ \/1 + r3 and cos t are elementary
functions, the integrals [ =g, [

V1 + t*dr,and [ cos % dr are

nonelementary. See Problems 27-30 in
Exercises 1.1.

(iii) Although the concept of a solution of a

differential equation has been emphasized
in this section, you should be aware that a
DE does not necessarily have to possess a
solution. See Problem 51 in Exercises 1.1.
The question of whether a solution exists
will be touched on in the next section.

(iv) A few last words about implicit solutions

of differential equations are in order. In
Example 8 we were able to solve the
relation x2 + y2 = 25 for y in terms of x to

get two explicit solutions,

&,(x) = V25 — x2and
b, (x) = —\V/25 — x2, of the differential
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equation (8). But don't read too much into
this one example. Unless it is easy,
obvious, or important, or you are instructed
to, there is usually no need to try to solve
an implicit solution G(x, y) = 0 for y
explicitly in terms of x. Also do not
misinterpret the second sentence following
Definition 1.1.3. An implicit solution G(x, y)
= 0 can define a perfectly good
differentiable function ¢ that is a solution of
a DE, but yet we may not be able to solve
G(x, y) = 0 using analytical methods such
as algebra. The solution curve of ¢ may be
a segment or piece of the graph of G(x, y)
= 0. See Problems 57 and 58 in Exercises
1.1.

(v) If every solution of an nth-order ODE F(x,

Y,y ..., ¥™) = 0 on an interval / can be
obtained from an n-parameter family G(x,
y, €1, C2, ..., Cp) = 0 by appropriate choices
of the parameters ¢, i =1, 2, ..., n, we
then say that the family is the general
solution of the DE. In solving linear ODEs,
we shall impose relatively simple
restrictions on the coefficients of the
equation; with these restrictions one can be
assured that not only does a solution exist
on an interval but also that a family of
solutions yields all possible solutions.
Nonlinear equations, with the exception of
some first-order DEs, are usually difficult or
even impossible to solve in terms of familiar
elementary functions. Furthermore, if we
happen to obtain a family of solutions for a
nonlinear equation, it is not evident whether
this family contains all solutions. On a
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practical level, then, the designation
“general solution” is applied only to linear
DEs. Don't be concerned about this
concept at this point but store the words
general solution in the back of your mind—
we will come back to this notion in Section
2.3 and again in Chapter 3.

1.1 Exercises Answers to selected

odd-numbered
problems begin on page
ANS-1.

In Problems 1-10, state the order of the given
ordinary differential equation. Determine whether the
equation is linear or nonlinear by matching it with (6).

1.

2.

(1 - x)y"—4xy'+ 5y = cos x

d’y  (dy\*
x—‘—(—") +y=20

dx? dx
Py4 - By"+ 6y =0
d*u  du
St tu= cos(r + u)
dr dr
dz}, =4/1+ LAY
dx* dx
AR _ k.
dt? R?

(sin B)y" — (cos B)y' = 2

¥— (1 -3 +x=0

.(dy)_ N
sin dx =y+x
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dx 3 _
10. — + y°x = siny
dy

In Problems 11 and 12, determine whether the given
first-order differential equation is linear in the
indicated dependent variable by matching it with the
first differential equation given in (7).

1. (y2-1)dx+xdy=0;iny;inx

12. udv+ (v+uv—-ueY)du=0;inv;inu

In Problems 13-16, verify that the indicated function
is an explicit solution of the given differential equation.
Assume an appropriate interval / of definition for each
solution.

13. 2y'+y=0; y=ex2
dy
dt
15. y"-6y'+ 13y =0; y = e3 cos 2x

14. — +20y=24,y=5—5¢

16. y"+ y=tanx; y = —(cos x) In(sec x + tan x)

In Problems 17-20, verify that the indicated function y
= ¢(x) is an explicit solution of the given first-order
differential equation. Proceed as in Example 7, by
considering ¢ simply as a function, give its domain.
Then by considering ¢ as a solution of the differential
equation, give at least one interval / of definition.

17. y—xpy' =y —x+8 p=x+4Vx+2
18. y'=25+ y2; y = 5tan 5x
19. y'=2xy%; y = 1/(4 - x2)

Telegram: @uni_k
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20. 2y'=y3cos x; y=(1-sinx)"12

In Problems 21 and 22, verify that the indicated
expression is an implicit solution of the given first-
order differential equation. Find at least one explicit
solution y = ¢(x) in each case. Use a graphing utility
to obtain the graph of an explicit solution. Give an
interval I of definition of each solution ¢.

[0'¢

f2X— 1Y
21, E:(X—l)(l—ZX),ln(X_l)—r

22. 2xydx + (x2 - y)dy =0; =2x2y + y2 = 1

In Problems 23-26, verify that the indicated family of
functions is a solution of the given differential
equation. Assume an appropriate interval / of
definition for each solution.

dy c,e’
23. =0 P=——
2x+2ydx 0 1 + ce’
24, ix—y+4xy=8x3;y=2x2—l+c,e_1"z
d’y  dy
25. — = —4—= 44y =0:y=ce? + cxe?
dxl dx }' }, 1 ZI
d’ d
26. x3—§+h2—2—xﬂ+y=12xz;
dx dx dx

y=c1x 1+ cox + c3x In x + 4x2

In Problems 27-30, use (12) to verify that the
indicated function is a solution of the given differential
equation. Assume an appropriate interval / of
definition of each solution.
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27.

28.

29.

30.

31.

32.

dy Yot
x— —3xy = 1: v=e3‘J‘ dt
ax - : ot

dy “cos t
Zxa‘—y = 2xcosx; y z\/fjﬂdr

s Vi

dy 5 10 (’sint
x*— 4+ xy = 10 sin x; y=—+—J£df
dx X 1

Doy =1 4 o[ orar
— =1, y=e¢ e e
d-r w wt

Verify that the piecewise-defined function

v — {—xz, x<0

: x? x=0

is a solution of the differential equation xy' — 2y =
0 on the interval (=, ).

In Example 8 we saw that

y = ¢y(x) = V25 — x? and
y = do(x) = —\V/25 — 12 are solutions of dy/dx
= —=x/y on the interval (-5, 5). Explain why the
piecewise-defined function

V25 —x? —5<x<0
yz{—V%—¢{ 0=x<5
is not a solution of the differential equation on the
interval (-5, 5).

In Problems 33-36, find values of m so that the
function y = e™X is a solution of the given differential

equation.

33. y'+2y=0
34. 3y'=4y
35. y"-5y'+6y=0
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36. 2y"+9y' - 5y=0

In Problems 37—40, find values of m so that the
function y = x is a solution of the given differential

equation.

37. xy"+2y'=0

38. 4x%y"+y=0

39. x%y"-T7xy'+ 15y=0

40. x2y"-3xy"+3y'=0

In Problems 41-44, use the concept that y = ¢, —« <
X < «_is a constant function if and only if y' = 0 to

determine whether the given differential equation
possesses constant solutions.

41. 3xy'+ 5y =10
42. y'=y>’+2y-3
43. (y-1)y'=1

44. y"+4y'+6y=10

In Problems 4548, verify that the one-parameter
family is a solution of the given differential equation.
Find at least one singular solution of the DE.

dy\?
45. y=(x + o) (5) = 4y

. dy\*
46. y = 3sin(x + ¢)); (a) =9 —y?

dy
47. x — V16 —y?* =¢;; ya'-l— V16 —y2 =0
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dy dy

2
48. y=x—(x — ) (—) -2 tdy=d—

dx

In Problems 49 and 50, verify that the indicated pair
of functions is a solution of the given system of
differential equations on the interval (=, «).

49.

50.

d—x—x—|—3

dt '
av Sx + 3
dt

x=e "+ 3e”
y=—e "+ 5¢"
d*x
—1:4'\?4‘{?‘
y )

d*y

— = 4x — e}

d
x = cos2t + sin2t + e,
y = —cos 2t - sin 2t - 1!

Discussion Problems

51.

52.

53.

Make up a differential equation that does not
possess any real solutions.

Make up a differential equation that you feel
confident possesses only the trivial solution y =
0. Explain your reasoning.

What function do you know from calculus is such
that its first derivative is itself? Its first derivative
is a constant multiple k of itself? Write each
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54.

55.

56.

answer in the form of a first-order differential
equation with a solution.

What function (or functions) do you know from
calculus is such that its second derivative is
itself? Its second derivative is the negative of
itself? Write each answer in the form of a
second-order differential equation with a
solution.

Given that y = sin x is an explicit solution of the
first-order differential equation dy/dx = \/1 — y2
. Find an interval / of definition. [Hint. I'is not the
interval (—e0, «).]

Discuss why it makes intuitive sense to presume
that the linear differential equation y" + 2y' + 4y
= 5 sin t has a solution of the form y = Asint+ B
cos t, where A and B are constants. Then find
specific constants A and Bso that y=Asint+ B
cos tis a particular solution of the DE.

In Problems 57 and 58, the given figure represents
the graph of an implicit solution G(x, y) = 0 of a
differential equation dy/dx = f(x, y). In each case the
relation G(x, y) = 0 implicitly defines several solutions
of the DE. Carefully reproduce each figure on a piece
of paper. Use different colored pencils to mark off
segments, or pieces, on each graph that correspond
to graphs of solutions. Keep in mind that a solution ¢
must be a function and differentiable. Use the solution
curve to estimate the interval / of definition of each
solution ¢.
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57.

FIGURE 1.1.6 Graph for Problem 57

58.

FIGURE 1.1.7 Graph for Problem 58

59. The graphs of the members of the one-
parameter family x3 + y3 = 3cxy are called folia
of Descartes after the French mathematician
and inventor of analytic geometry, René
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Descartes (1596-1650). Verify that this family is
an implicit solution of the first-order differential
equation.

dy _y(y’ —2x")
dx  x(2y? —x%)

60. The graph in FIGURE 1.1.7 is the member of the
family of folia in Problem 59 corresponding to ¢
= 1. Discuss: How can the DE in Problem 59
help in finding points on the graph of x3 + y3 =
3xy where the tangent line is vertical? How does
knowing where a tangent line is vertical help in
determining an interval / of definition of a solution
¢ of the DE? Carry out your ideas and compare
with your estimates of the intervals in Problem
58.

61. In Example 8, the largest interval / over which
the explicit solutions y = ¢4(x) and y = ¢o(x) are
defined is the open interval (-5, 5). Why can'’t
the interval / of definition be the closed interval
[-5, 5]?

62. In Problem 23, a one-parameter family of
solutions of the DE P'= P(1 - P) is given. Does
any solution curve pass through the point (0, 3)?
Through the point (0, 1)?

63. Discuss, and illustrate with examples, how to

solve differential equations of the forms dy/dx =
f(x) and d2y/dx? = f(x).
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64.

65.

66.

The differential equation x(y')2 — 4y’ = 12x3 =0
has the form given in (4). Determine whether the
equation can be put into the normal form dy/dx =
(X, y).

The normal form (5) of an nth-order differential
equation is equivalent to (4) whenever both
forms have exactly the same solutions. Make up
a first-order differential equation for which F(x, y,
y') = 0 is not equivalent to the normal form dy/dx
= f(x, y).

Find a linear second-order differential equation
F(x, y, y', y" = 0 for which y = ¢1x + cox? is a
two-parameter family of solutions. Make sure
that your equation is free of the arbitrary
parameters ¢4 and c».

Quialitative information about a solution y = ¢(x) of a
differential equation can often be obtained from the
equation itself. Before working Problems 67-70,
recall the geometric significance of the derivatives
dy/dx and d?y/dx2.

67.

Consider the differential equation dy/dx = e™°.

(a) Explain why a solution of the DE must be an
increasing function on any interval of the x-
axis.

(b) What are 1im dy/dx and 1M dy/dx? What
does this suggest about a solution curve as x

— + ?
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(c) Determine an interval over which a solution
curve is concave down and an interval over
which the curve is concave up.

(d) Sketch the graph of a solution y = ¢(x) of
the differential equation whose shape is
suggested by parts (a)—(c).

68. Consider the differential equation dy/dx =5 - y.

(a) Either by inspection, or by the method
suggested in Problems 41-44, find a
constant solution of the DE.

(b) Using only the differential equation, find
intervals on the y-axis on which a
nonconstant solution y = ¢(x) is increasing.
Find intervals on the y-axis on which y = ¢(x)
is decreasing.

69. Consider the differential equation dy/dx = y(a -
by), where a and b are positive constants.

(a) Either by inspection, or by the method
suggested in Problems 41-44, find two
constant solutions of the DE.

(b) Using only the differential equation, find
intervals on the y-axis on which a
nonconstant solution y = ¢(x) is increasing.
On which y = ¢(x) is decreasing.

(c) Using only the differential equation, explain
why y = a/2b is the y-coordinate of a point of
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inflection of the graph of a nonconstant
solution y = ¢(x).

(d) On the same coordinate axes, sketch the
graphs of the two constant solutions found in
part (a). These constant solutions partition
the xy-plane into three regions. In each
region, sketch the graph of a nonconstant
solution y = ¢(x) whose shape is suggested
by the results in parts (b) and (c).

70. Consider the differential equation y' = y2 + 4.

(a) Explain why there exist no constant solutions
of the DE.

(b) Describe the graph of a solution y = ¢(x).
For example, can a solution curve have any
relative extrema?

(c) Explain why y = 0 is the y-coordinate of a
point of inflection of a solution curve.

(d) Sketch the graph of a solution y = ¢(x) of
the differential equation whose shape is
suggested by parts (a)—(c).

Computer Lab Assignments

In Problems 71 and 72, use a CAS to compute all
derivatives and to carry out the simplifications needed
to verify that the indicated function is a particular
solution of the given differential equation.
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71. y@) - 20y ™+ 158y" - 580y' + 841y = 0;
y = xe® cos 2x

72. x3y" + 2x2y" + 20xy' — 78y = 0;

cos (5Inx) ] sin (5 Inx)
X X

v =20

*There is a bit more to the definition of a singular solution, but it is beyond
the intended level of this text.
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EE] nitial-Value Problems

INTRODUCTION

We are often interested in problems in which we seek
a solution y(x) of a differential equation so that y(x)
satisfies prescribed side conditions—that is,
conditions that are imposed on the unknown y(x) or
on its derivatives. In this section we examine one
such problem called an initial-value problem.

Initial-Value Problem

On some interval / containing xp, the problem

H

d
Solve: =% = fx. .y, ..y (1)

Subject to:
yixg) = vo, ' (x9) =p, - .. ,,V{"_”(Iu) = Yn—1.

where yo, y1, ..., Yn-1 are arbitrarily specified real
constants, is called an initial-value problem (IVP).
The values of y(x) and its first n—1 derivatives at a

single point Xo: ¥(x0) = yo, ¥'(X0) = ¥1, ..., Y™ D(xo) =
Yn-1, are called initial conditions (IC).

First- and Second-Order IVPs

The problem given in (1) is also called an nth-order
initial-value problem. For example,
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1
Solve: — = flx.y)
- (2)
Subjectto: vixy) = v,
and
d?y _
Solve: — = f(x,y.y")
dx~ C (3)

Subjectto: v(xy) = vp. v'(x9) = 1

are first- and second-order initial-value problems,
respectively. These two problems are easy to
interpret in geometric terms. For (2) we are seeking
a solution of the differential equation on an interval /
containing xp so that a solution curve passes through
the prescribed point (xo, yo). See FIGURE 1.2.1. For
(3) we want to find a solution of the differential
equation whose graph not only passes through (xo,
yo) but passes through so that the slope of the curve
at this point is y1. See FIGURE 1.2.2. The term initial

condition derives from physical systems where the
independent variable is time t and where y(fy) = yo

and y'(to) = y41 represent, respectively, the position
and velocity of an object at some beginning, or initial,
time 1.

solutions of the DE

=

fe—— ] —>

FIGURE 1.2.1 First-order VP
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solutions of the DE

FIGURE 1.2.2 Second-order VP

Solving an nth-order initial-value problem
frequently entails using an n-parameter family of
solutions of the given differential equation to find n
specialized constants so that the resulting particular
solution of the equation also “fits"—that is, satisfies—
the n initial conditions.

2N IHS= B First-Order IVPs

(a) It is readily verified that y = ceX is a one-
parameter family of solutions of the simple first-
order equation y' = y on the interval (-, «). If
we specify an initial condition, say, y(0) = 3,
then substituting x = 0, y = 3 in the family
determines the constant 3 = ce® = ¢. Thus the
function y = 3eX is a solution of the initial-value
problem

y'=y, y(0)=3.

(b) Now if we demand that a solution of the
differential equation pass through the point (1,
—2) rather than (0, 3), then y(1) = -2 will yield
-2 = ce or ¢ = —2e~ 1. The function y = —2¢x~1
is a solution of the initial-value problem
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y'=y, y(1)=-2

The graphs of these two solutions are shown in
blue in FIGURE 1.2.3. =

(0, 3)

(1,-2)

FIGURE 1.2.3 Solutions of IVPs in Example 1

The next example illustrates another first-order
initial-value problem. In this example, notice how the
interval | of definition of the solution y(x) depends on
the initial condition y(xo) = yo.

=20\ 188 Interval / of

Definition of a Solution

In Problem 6 of Exercises 2.2 you will be
asked to show that a one-parameter family of
solutions of the first-order differential equation
y'+ 2xy2=01is y = 1/(x2 + ¢). If we impose
the initial condition y(0) = =1, then substituting
x =0 and y = -1 into the family of solutions
gives -1 =1/corc=-1. Thus, y = 1/(x2 = 1).
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We now emphasize the following three
distinctions.

. Considered as a function, the domain of y
= 1/(x2 = 1) is the set of real numbers x for
which y(x) is defined; this is the set of all
real numbers except x = -1 and x = 1. See
FIGURE 1.2.4(a).

. Considered as a solution of the differential
equation y' + 2xy? = 0, the interval / of
definition of y = 1/(x2 — 1) could be taken to
be any interval over which y(x) is defined
and differentiable. As can be seen in Figure
1.2.4(a), the largest intervals on which y =
1/(x2 — 1) is a solution are (-, —1), (-1,
1), and (1, «).

. Considered as a solution of the initial-
value problem y' + 2xy? = 0, y(0) = -1, the
interval / of definition of y = 1/(x2 - 1) could
be taken to be any interval over which y(x)
is defined, differentiable, and contains the
initial point x = O; the largest interval for
which this is true is (-1, 1). See Figure
1.2.4(b).

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

| ; I
I ) [
I T |
I |
I |
I 1 |
I |
I |
ol |
T T
I |
I |
I |
I |
I [
I 1 |
I [
I |
(a) Function defined for all x
except x = %1
y
+ I
1 =
(0.-1)

(b) Solution defined on interval
containing x =0

FIGURE 1.2.4 Graphs of function and solution of IVP in
Example 2

See Problems 3—6 in Exercises 1.2 for a continuation
of Example 2.

2\ IHN=E Second-Order IVP

In Example 10 of Section 1.1 we saw that x =
C1 Cos 4t + ¢ sin 4t is a two-parameter family
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of solutions of x" + 16x = 0. Find a solution of
the initial-value problem

x"+16x =0, x(m/2) = -2, x'(m/2) = 1. (4)

SOLUTION

We first apply x(17/2) = -2 to the given family
of solutions: ¢q cos 21 + ¢2 sin 2im = —2. Since
cos 2 =1 and sin 2 = 0, we find that ¢4 =
—-2. We next apply x'(11/2) = 1 to the one-
parameter family x(f) = —2 cos 4t + co sin 4t.
Differentiating and then setting t = /2 and x' =
1 gives 8 sin 21T + 4¢5 cos 2 = 1, from which
we see that ¢co = }. Hence

x = —2 cos 4t + §sin 4z is a solution of (4). =

Existence and Uniqueness

Two fundamental questions arise in considering an
initial-value problem:

Does a solution of the problem exist? If a
solution exists, is it unique?

For a first-order initial-value problem such as (2), we
ask:

" Does the differential equation dy/dx = f(x, y) possess solutions?

Existence . .
l Do any of the solution curves pass through the point (xg, yp)?

When can we be certain that there is precisely one solution curve passing

Uniqueness .
through the point (xy. vy)?

Note that in Examples 1 and 3, the phrase “a solution”
is used rather than “the solution” of the problem. The
indefinite article “a” is used deliberately to suggest
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the possibility that other solutions may exist. At this
point it has not been demonstrated that there is a
single solution of each problem. The next example
illustrates an initial-value problem with two solutions.

2N 148=¥:" An IVP Can Have

Several Solutions

Each of the functions y = 0 and y = {.x*
satisfies the differential equation dy/dx = xy2
and the initial condition y(0) = 0, and so the
initial-value problem dy/dx = xy'2, y(0) = 0,
has at least two solutions. As illustrated in
FIGURE 1.2.5, the graphs of both functions
pass through the same point (0, 0). =

y| y=x*16

yZo  |©.0
FIGURE 1.2.5 Two solutions of the same IVP in Example 4

Within the safe confines of a formal course in
differential equations one can be fairly confident that
most differential equations will have solutions and that
solutions of initial-value problems will probably be
unique. Real life, however, is not so idyllic. Thus it is
desirable to know in advance of trying to solve an
initial-value problem whether a solution exists and,
when it does, whether it is the only solution of the
problem. Since we are going to consider first-order
differential equations in the next two chapters, we
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state here without proof a straightforward theorem
that gives conditions that are sufficient to guarantee
the existence and uniqueness of a solution of a first-
order initial-value problem of the form given in (2). We
shall wait until Chapter 3 to address the question of
existence and uniqueness of a second-order initial-
value problem.

THEOREM 1.2.1 Existence of

a Unique Solution

Let R be a rectangular region in the xy-plane
defined by a< x < b, ¢ < y < d, that contains the
point (xo, yo) in its interior. If f(x, y) and of/dy are
continuous on R, then there exists some interval
lo: (xo — h, xo + h), h > 0, contained in [a, b], and
a unique function y(x) defined on [y that is a
solution of the initial-value problem (2).

The foregoing result is one of the most popular
existence and uniqueness theorems for first-order
differential equations, because the criteria of
continuity of f(x, y) and df/dy are relatively easy to
check. The geometry of Theorem 1.2.1 is illustrated
in FIGURE 1.2.6.
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FIGURE 1.2.6 Rectangular region R

2. C\ILESCN Example 4

Revisited

We saw in Example 4 that the differential
equation dy/dx = xy'2 possesses at least two
solutions whose graphs pass through (0, 0).
Inspection of the functions

X

of
=xy'?and — = —5

shows that they are continuous in the upper
half-plane defined by y > 0. Hence Theorem
1.2.1 enables us to conclude that through any
point (Xo, ¥0), Yo > 0, in the upper half-plane
there is some interval centered at xg on which
the given differential equation has a unique
solution. Thus, for example, even without
solving it we know that there exists some
interval centered at 2 on which the initial-value
problem dy/dx =xy'2, y(2) = 1, has a unique
solution. =

Telegram: @uni_k
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In Example 1, Theorem 1.2.1 guarantees that
there are no other solutions of the initial-value
problems y'=y, y(0) = 3, and y'=y, y(1) = -2, other
than y = 3eX and y = -2e*~1, respectively. This
follows from the fact that f(x, y) = y and df/dy = 1 are
continuous throughout the entire xy-plane. It can be
further shown that the interval / on which each
solution is defined is (=<, ).

Interval of Existence/Uniqueness

Suppose y(x) represents a solution of the initial-value
problem (2). The following three sets on the real x-
axis may not be the same: the domain of the function
y(x), the interval | over which the solution y(x) is
defined or exists, and the interval Iy of existence and
uniqueness. In Example 7 of Section 1.1 we
illustrated the difference between the domain of a
function and the interval I of definition. Now suppose
(xo0, Yo) is a point in the interior of the rectangular
region R in Theorem 1.2.1. It turns out that the
continuity of the function f(x,y) on R by itself is
sufficient to guarantee the existence of at least one
solution of dy/dx = f(x, y), y(xo) = yo, defined on
some interval I. The interval I of definition for this
initial-value problem is usually taken to be the largest
interval containing xo over which the solution y(x) is
defined and differentiable. The interval / depends on
both f(x, y) and the initial condition y(xp) = yo. See
Problems 31-34 in Exercises 1.2. The extra condition
of continuity of the first partial derivative df/dy on R
enables us to say that not only does a solution exist
on some interval Iy containing X, but it also is the
only solution satisfying y(xg) = yo. However, Theorem
1.2.1 does not give any indication of the sizes of the
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intervals [ and [y; the interval | of definition need not
be as wide as the region R, and the interval Iy of
existence and uniqueness may not be as large as |I.
The number h > 0 that defines the interval Ip: (xo — h,
Xo + h), could be very small, and so it is best to think
that the solution y(x) is unique in a local sense, that
is, a solution defined near the point (xg, yo). See
Problem 50 in Exercises 1.2.

REMARKS

(i) The conditions in Theorem 1.2.1 are
sufficient but not necessary. When f(x, y)
and df/dy are continuous on a rectangular
region R, it must always follow that a
solution of (2) exists and is unique
whenever (Xo, yo) is a point interior to R.
However, if the conditions stated in the
hypotheses of Theorem 1.2.1 do not hold,
then anything could happen: Problem (2)
may still have a solution and this solution
may be unique, or (2) may have several
solutions, or it may have no solution at all.
A rereading of Example 4 reveals that the
hypotheses of Theorem 1.2.1 do not hold
on the line y = 0 for the differential equation
dy/dx = xy'2, and so it is not surprising, as
we saw in Example 4 of this section, that
there are two solutions defined on a
common interval (—h, h) satisfying y(0) = 0.
On the other hand, the hypotheses of
Theorem 1.2.1 do not hold on the line y = 1
for the differential equation dy/dx = |y — 1].
Nevertheless, it can be proved that the
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solution of the initial-value problem dy/dx =
ly = 1], y(0) = 1, is unique. Can you guess
this solution?

(ii) You are encouraged to read, think about,
work, and then keep in mind Problem 49 in
Exercises 1.2.

1.2 Exercises Answers to selected
odd-numbered
problems begin on page
ANS-1.

In Problems 1 and 2, y = 1/(1 + c1€7¥) is a one-
parameter family of solutions of the first-order DE y’
= y - y2. Find a solution of the first-order IVP
consisting of this differential equation and the given
initial condition.

1. »(0) = -3
2. y(-1)=2

In Problems 3-6, y = 1/(x2 + ¢) is a one-parameter
family of solutions of the first-order DE y' + 2xy< = 0.
Find a solution of the first-order IVP consisting of this
differential equation and the given initial condition.
Give the largest interval I over which the solution is
defined.

3. ¥(2)=3
4. y(-2)=}
5. y(0) = 1

6. y(3) =—4
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In Problems 7-10, x = ¢4 cos t+ ¢y sin tis a two-

parameter family of solutions of the second-order DE
x"+ x = 0. Find a solution of the second-order VP
consisting of this differential equation and the given
initial conditions.

7. x(0)=-1,x'0)=28

8. x(m/2) =0, x(r/2) =1

9. x(m/6) =1, x(m/6) =0
10. x(11/4) = \/2, x(11/4) = 2~/2

In Problems 11-14, y = c1eX + coe™* is a two-
parameter family of solutions of the second-order DE
y" =y = 0. Find a solution of the second-order IVP

consisting of this differential equation and the given
initial conditions.

1. y(0) =1, y(0)
12. y(1) =0, y'(1)
13. y(-1)=5, y(-1) = -5
14. y(0)=0, y(0) =0

2
e

In Problems 15 and 16, determine by inspection at
least two solutions of the given first-order I\VP.

15. y'=3y?3, y(0)=0
16. xy'=2y, y(0)=0

In Problems 17-24, determine a region of the xy-
plane for which the given differential equation would
have a unique solution whose graph passes through a
point (Xxo, yo) in the region.
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17.

18.

19.

20.

21.
22.
23.
24,

In

v o
dx_y
dy
o= Vo
dy
X—=1y
dx
dy

2 =%
ax y

(4 _ },E)Fr — xz
(4 _ },E)Fr — xz
(IE + },2)},: — }’1

(y—x)y' =y +x

Problems 25-28, determine whether Theorem

1.2.1 guarantees that the differential equation

.v.l'

— \/y2 — 9 possesses a unique solution through

the giveﬁ point.

25.

26
27
28

29.

(1,4)
. (5, 3)
. (2, -3)
. (-1, 1)

(a) By inspection, find a one-parameter family
of solutions of the differential equation xy' =
y. Verify that each member of the family is a
solution of the initial-value problem xy' =y,
y(0) = 0.

(b) Explain part (a) by determining a region R in
the xy-plane for which the differential
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30.

31.

equation xy' = y would have a unique solution
through a point (xo, yo) in R.

(c) Verify that the piecewise-defined function
00 x<0
Y= {:r, x=0
satisfies the condition y(0) = 0. Determine
whether this function is also a solution of the
initial-value problem in part (a).

(a) Verify that y = tan (x + ¢) is a one-
parameter family of solutions of the
differential equation y' = 1 + y2.

(b) Since f(x, y) =1 + y2 and ofldy = 2y are
continuous everywhere, the region R in
Theorem 1.2.1 can be taken to be the entire
xy-plane. Use the family of solutions in part
(a) to find an explicit solution of the first-
order initial-value problem y' = 1 + y2, y(0) =
0. Even though xg = 0 is in the interval (-2,
2), explain why the solution is not defined on
this interval.

(c) Determine the largest interval / of definition
for the solution of the initial-value problem in
part (b).

(a) Verify that y = —1/(x + c¢) is a one-
parameter family of solutions of the
differential equation y' = y2.
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(b) Since f(x, y) = y2 and ofldy = 2y are
continuous everywhere, the region R in
Theorem 1.2.1 can be taken to be the entire
xy-plane. Find a solution from the family in
part (a) that satisfies y(0) = 1. Find a
solution from the family in part (a) that
satisfies y(0) = —1. Determine the largest
interval / of definition for the solution of each
initial-value problem.

(a) Find a solution from the family in part (a) of
Problem 31 that satisfies y’' = y2, y(0) = yo,
where yo # 0. Explain why the largest interval
| of definition for this solution is either (— «,
1/y0) or (1/y0, ).

(b) Determine the largest interval / of definition
for the solution of the first-order initial-value
problem y' = y2, y(0) = 0.

(a) Verify that 3x2 — y2 = ¢ is a one-parameter
family of solutions of the differential equation
ydy/dx = 3x.

(b) By hand, sketch the graph of the implicit
solution 3x2 - y2 = 3. Find all explicit
solutions y = ¢(x) of the DE in part (a)
defined by this relation. Give the interval | of
definition of each explicit solution.
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34.

(c) The point (-2, 3) is on the graph of 3x2 — y2
= 3, but which of the explicit solutions in part
(b) satisfies y(-2) = 37

(a) Use the family of solutions in part (a) of
Problem 33 to find an implicit solution of the
initial-value problem ydy/dx = 3x, y(2) = —4.
Then, by hand, sketch the graph of the
explicit solution of this problem and give its
interval | of definition.

(b) Are there any explicit solutions of ydy/dx =
3x that pass through the origin?

In Problems 35-38, the graph of a member of a
family of solutions of a second-order differential
equation d?y/dx2 = f(x, y, y') is given. Match the
solution curve with at least one pair of the
following initial conditions.

(a) y(1) =1, y(1)=-2

(b) ¥(-1)=0, y(-1) = -4

(c) y(1) =1, y(1)
(d) ¥(0) = -1, y(0) = 2
(e) y(0)=-1,y(0)=0
(f) y(0) = -4, y(0) = -2
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36.

FIGURE 1.2.8 Graph for Problem 36
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37.

FIGURE 1.2.9 Graph for Problem 37

FIGURE 1.2.10 Graph for Problem 38

38.

In Problems 39-44, y = ¢q cos 3x + ¢ sin3x is a
two-parameter family of solutions of the second-order
DE y" + 9y = 0. If possible, find a solution of the
differential equation that satisfies the given side
conditions. The conditions specified at two different
points are called boundary conditions.

39. y(0) =0, y(r7/6) = -1
40. y(0)=0,y(m) =0
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41.
42.
43.
44,

y'(0) =0, y(rr/l4) =0
y(0)=1,y(m) =23
y(0) =0, y(m) =4
y'(rml3) =1, y(m) =0

Discussion Problems

In Problems 45 and 46, use Problem 63 in Exercises
1.1 and (2) and (3) of this section.

45.

46.

47.

Find a function y = f(x) whose graph at each
point (x, y) has the slope given by 8e2* + 6x and
has the y-intercept (0, 9).

Find a function y = f(x) whose second derivative
is y" = 12x — 2 at each point (x, y) on its graph
and y = —x + 5 is tangent to the graph at the
point corresponding to x = 1.

Consider the initial-value problem y'= x — 2y,
¥(0) = 1. Determine which of the two curves
shown in FIGURE 1.2.11 is the only plausible
solution curve. Explain your reasoning.


https://t.me/uni_k

www.konkur.in

FIGURE 1.2.11 Graph for Problem 47

48. Without attempting to solve the initial-value
problem y’' = x2 + y2, y(0) = 1, find the values of
y'(0) and y"(0).

49. Suppose that the first-order differential equation
dyl/dx = f(x, y) possesses a one-parameter
family of solutions and that f(x, y) satisfies the
hypotheses of Theorem 1.2.1 in some
rectangular region R of the xy-plane. Explain why
two different solution curves cannot intersect or
be tangent to each other at a point (xo, yo) in R.

50. The functions

) = fext, —o0 <x < oo

and

) 0, x<0
x:
Y =xt x=0

have the same domain but are clearly different.
See FIGURES 1.2.12(a) and 1.2.12(b),
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respectively. Show that both functions are
solutions of the initial-value problem dy/dx =
xy'2, y(2) = 1 on the interval (- «, «). Resolve
the apparent contradiction between this fact and
the last sentence in Example 5.

L@ @

(a) (b)

FIGURE 1.2.12 Two solutions of the IVP in Problem 50

51. Show that

¥
1
X = | ———dt
L\x’ﬁ + 1
is an implicit solution of the initial-value problem
dzy 2 '
22273 =0, y0) =0y =1

Assume that ¥ = 0. [Hint. The integral is
nonelementary. See (i) in the Remarks at the
end of Section 1.1.]

Telegram: @uni_k
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Differential Equations as
Mathematical Models

INTRODUCTION

In this section we introduce the notion of a
mathematical model. Roughly speaking, a
mathematical model is a mathematical description of
something. This description could be as simple as a
function. For example, Leonardo da Vinci (1452—
1519) was able to deduce the speed v of a falling
body by examining a sequence. Leonardo allowed
water drops to fall, at equally spaced intervals of
time, between two boards covered with blotting
paper. When a spring mechanism was disengaged,
the boards were clapped together. See FIGURE
1.3.1. By carefully examining the sequence of water
blots, Leonardo discovered that the distances
between consecutive drops increased in “a
continuous arithmetic proportion.” In this manner he
discovered the formula v = gt.
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FIGURE 1.3.1 Da Vinci’s apparatus for determining the speed of falling
body

Although there are many kinds of mathematical
models, in this section we focus only on differential
equations and discuss some specific differential-
equation models in biology, physics, and chemistry.
Once we have studied some methods for solving
DEs, in Chapters 2 and 3 we return to, and solve,
some of these models.

Mathematical Models

It is often desirable to describe the behavior of some
real-life system or phenomenon, whether physical,
sociological, or even economic, in mathematical
terms. The mathematical description of a system or a
phenomenon is called a mathematical model and is
constructed with certain goals in mind. For example,
we may wish to understand the mechanisms of a
certain ecosystem by studying the growth of animal
populations in that system, or we may wish to date
fossils by means of analyzing the decay of a
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radioactive substance either in the fossil or in the
stratum in which it was discovered.

Construction of a mathematical model of a system
starts with identification of the variables that are
responsible for changing the system. We may choose
not to incorporate all these variables into the model at
first. In this first step we are specifying the level of
resolution of the model. Next, we make a set of
reasonable assumptions or hypotheses about the
system we are trying to describe. These assumptions
will also include any empirical laws that may be
applicable to the system.

For some purposes it may be perfectly within
reason to be content with low-resolution models. For
example, you may already be aware that in modeling
the motion of a body falling near the surface of the
Earth, the retarding force of air friction is sometimes
ignored in beginning physics courses; but if you are a
scientist whose job it is to accurately predict the flight
path of a long-range projectile, air resistance and
other factors such as the curvature of the Earth have
to be taken into account.

Since the assumptions made about a system
frequently involve a rate of change of one or more of
the variables, the mathematical depiction of all these
assumptions may be one or more equations involving
derivatives. In other words, the mathematical model
may be a differential equation or a system of
differential equations.

Once we have formulated a mathematical model
that is either a differential equation or a system of
differential equations, we are faced with the not
insignificant problem of trying to solve it. If we can
solve it, then we deem the model to be reasonable if
its solution is consistent with either experimental data
or known facts about the behavior of the system. But
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if the predictions produced by the solution are poor,
we can either increase the level of resolution of the
model or make alternative assumptions about the
mechanisms for change in the system. The steps of
the modeling process are then repeated as shown in
FIGURE 1.3.2.

Assumptions > Express assumptions Mathematical
and hypotheses in terms of DEs formulation
A

If necessary,
alter assumptions
or increase resolution
of the model

Y
Solve the DEs

A
L 4
Check model Display predictions .
- . - Obtain
predictions with «— of the model - .
) ) solutions
known facts (e.g., graphically)

FIGURE 1.3.2 Steps in the modeling process

Of course, by increasing the resolution we add to the
complexity of the mathematical model and increase
the likelihood that we cannot obtain an explicit
solution.

A mathematical model of a physical system will
often involve the variable time t. A solution of the
model then gives the state of the system,; in other
words, for appropriate values of £, the values of the
dependent variable (or variables) describe the system
in the past, present, and future.

Population Dynamics

One of the earliest attempts to model human
population growth by means of mathematics was
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by the English economist Thomas Robert Malthus
(1776-1834) in 1798. Basically, the idea of the
Malthusian model is the assumption that the rate at
which a population of a country grows at a certain
time is proportional” to the total population of the
country at that time. In other words, the more people
there are at time ¢, the more there are going to be in
the future. In mathematical terms, if P(f) denotes the
total population at time ¢, then this assumption can be
expressed as

—ox P or — = kP, (1)

where k is a constant of proportionality. This simple
model, which fails to take into account many factors
(immigration and emigration, for example) that can
influence human populations to either grow or decline,
nevertheless turned out to be fairly accurate in
predicting the population of the United States during
the years 1790-1860. Populations that grow at a rate
described by (1) are rare; nevertheless, (1) is still
used to model growth of small populations over short
intervals of time, for example, bacteria growing in a
petri dish.

Radioactive Decay

The nucleus of an atom consists of combinations of
protons and neutrons. Many of these combinations of
protons and neutrons are unstable; that is, the atoms
decay or transmute into the atoms of another
substance. Such nuclei are said to be radioactive. For
example, over time, the highly radioactive radium, Ra-
226, transmutes into the radioactive gas radon, Rn-
222. In modeling the phenomenon of radioactive
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decay, it is assumed that the rate dA/dt at which the
nuclei of a substance decay is proportional to the
amount (more precisely, the number of nuclei) A(f) of
the substance remaining at time t.

da AordA—m (2)
dt & da

Of course equations (1) and (2) are exactly the
same; the difference is only in the interpretation of the
symbols and the constants of proportionality. For
growth, as we expect in (1), k> 0, and in the case of
(2) and decay, k < 0.

The model (1) for growth can be seen as the
equation dS/dt = rS, which describes the growth of
capital S when an annual rate of interest ris
compounded continuously. The model (2) for decay
also occurs in a biological setting, such as
determining the half-life of a drug—the time that it
takes for 50% of a drug to be eliminated from a body
by excretion or metabolism. In chemistry, the decay
model (2) appears as the mathematical description of
a first-order chemical reaction. The point is this:

A single differential equation can serve as a
mathematical model for many different
phenomena.

Mathematical models are often accompanied by
certain side conditions. For example, in (1) and (2)
we would expect to know, in turn, an initial population
Py and an initial amount of radioactive substance Ag
that is on hand. If this initial point in time is taken to
be t = 0, then we know that P(0) = Py and A(0) = Ao.
In other words, a mathematical model can consist of
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either an initial-value problem or, as we shall see later
in Section 3.9, a boundary-value problem.

Newton’s Law of
Cooling/Warming

According to Newton’s empirical law of cooling—or
warming—the rate at which the temperature of a
body changes is proportional to the difference
between the temperature of the body and the
temperature of the surrounding medium, the so-called
ambient temperature. If T(f) represents the
temperature of a body at time t, T, the temperature
of the surrounding medium, and dT7/dt the rate at
which the temperature of the body changes, then
Newton’s law of cooling/warming translates into the
mathematical statement

dTr dT
—xT—-T,0—=kT—-1T,)

df o m dr mdi= (3)
where k is a constant of proportionality. In either
case, cooling or warming, if T, is a constant, it

stands to reason that k < 0.

Spread of a Disease

A contagious disease—for example, a flu virus—is
spread throughout a community by people coming
into contact with other people. Let x(f) denote the
number of people who have contracted the disease
and y(t) the number of people who have not yet been
exposed. It seems reasonable to assume that the
rate dx/dt at which the disease spreads is
proportional to the number of encounters or
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interactions between these two groups of people. If
we assume that the number of interactions is jointly
proportional to x(f) and y(f), that is, proportional to
the product xy, then

X o, (4)

dt
where k is the usual constant of proportionality.
Suppose a small community has a fixed population of
n people. If one infected person is introduced into this
community, then it could be argued that x(f) and y({)
are related by x + y = n + 1. Using this last equation
to eliminate y in (4) gives us the model

%=h{n+]—x). (5)

An obvious initial condition accompanying equation (5)
is x(0) = 1.

Chemical Reactions

The disintegration of a radioactive substance,
governed by the differential equation (2), is said to be
a first-order reaction. In chemistry, a few reactions
follow this same empirical law: If the molecules of
substance A decompose into smaller molecules, it is
a natural assumption that the rate at which this
decomposition takes place is proportional to the
amount of the first substance that has not undergone
conversion; that is, if X(f) is the amount of substance
A remaining at any time, then dX/dt = kX, where k is
a negative constant since X is decreasing. An
example of a first-order chemical reaction is the
conversion of t-butyl chloride into t-butyl alcohol:
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(CHz)3CCl + NaOH — (CH3)3COH + NaCl.

Only the concentration of the t-butyl chloride controls
the rate of reaction. But in the reaction

CHa3Cl + NaOH — CH3OH + NaCl,

for every molecule of methyl chloride, one molecule of
sodium hydroxide is consumed, thus forming one
molecule of methyl alcohol and one molecule of
sodium chloride. In this case the rate at which the
reaction proceeds is proportional to the product of
the remaining concentrations of CH3Cl and of NaOH.
If X denotes the amount of CH30H formed and a and
B are the given amounts of the first two chemicals A
and B, then the instantaneous amounts not converted
to chemical C are a — X and 8 — X, respectively.
Hence the rate of formation of C is given by

dX

= k(a — X)(B — X), 6
= ke =X (6)

where k is a constant of proportionality. A reaction
whose model is equation (6) is said to be second
order.

Mixtures

The mixing of two salt solutions of differing
concentrations gives rise to a first-order differential
equation for the amount of salt contained in the
mixture. Let us suppose that a large mixing tank
initially holds 300 gallons of brine (that is, water in
which a certain number of pounds of salt has been
dissolved). Another brine solution is pumped into the
large tank at a rate of 3 gallons per minute; the
concentration of the salt in this inflow is 2 pounds of
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salt per gallon. When the solution in the tank is well
stirred, it is pumped out at the same rate as the
entering solution. See FIGURE 1.3.3. If A(f) denotes
the amount of salt (measured in pounds) in the tank
at time t, then the rate at which A(f) changes is a net
rate:

a4 (input rate) B (output rate) R R (T
of salt ofsalt / 7" i {7)

T
The input rate R;j, at which the salt enters the tank is
the product of the inflow concentration of salt and the
inflow rate of fluid. Note that Rj, is measured in

pounds per minute:

concentration

of salt input rate input rate
in inflow of brine of salt
\ l 4

R;, = (2 1b/gal) - (3 gal/min) = (6 Ib/min).

input rate of brine
3 gal/min

constant <
300 gal

£

output rate of brine

3 gal/min

FIGURE 1.3.3 Mixing tank

Now, since the solution is being pumped out of the
tank at the same rate that it is pumped in, the number
of gallons of brine in the tank at time t is a constant
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300 gallons. Hence the concentration of the salt in the
tank, as well as in the outflow, is c(f) = A(f)/300
Ib/gal, and so the output rate Ry of salt is

concentration

of salt output rate output rate
in outflow of brine of salt
4 ¥ +

Alt Alt
R, = ({—} lbfgal) - (3 gal/min) = AW Ib/min.
300 100

The net rate (7) then becomes

dA A dA 1
it % 100" @ Tt T ()
If ri» and rous denote general input and output rates

of the brine solutions,” respectively, then there are
three possibilities: rin = rout, fin > rout, and rin < royt. In
the analysis leading to (8) we have assumed that ri, =
rout- In the latter two cases, the number of gallons of
brine in the tank is either increasing (rin > roy) or
decreasing (rin < rout) at the net rate rip — rout. See
Problems 10-12 in Exercises 1.3.

Draining a Tank

Evangelista Torricelli (1608—1647) was an Italian
physicist who invented the barometer and was a
student of Galileo Galilei. In hydrodynamics,
Torricelli’s law states that the speed v of efflux of
water through a sharp-edged hole at the bottom of a
tank filled to a depth h is the same as the speed that
a body (in this case a drop of water) would acquire in
falling freely from a height h; that is, y = \/20h,

where g is the acceleration due to gravity. This last
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expression comes from equating the kinetic energy }
mv2 with the potential energy mgh and solving for v.
Suppose a tank filled with water is allowed to drain
through a hole under the influence of gravity. We
would like to find the depth h of water remaining in
the tank at time . Consider the tank shown in
FIGURE 1.3.4. If the area of the hole is Ap, (in ft2) and

the speed of the water leaving the tank is y = \/2gh

(in ft/s), then the volume of water leaving the tank per
second is 4,\/2gh (in ft3/s). Thus if V() denotes the

volume of water in the tank at time f,

av
E = _Ah \% Zgh, (9)

‘mh__“’_#f/T
h

Ap
f""ﬂ-.—\&?_'_hh“\

FIGURE 1.3.4 Water draining from a tank

where the minus sign indicates that V is decreasing.
Note here that we are ignoring the possibility of
friction at the hole that might cause a reduction of the
rate of flow there. Now if the tank is such that the
volume of water in it at time t can be written W(f) =
Ayh, where Ay, (in ft2) is the constant area of the
upper surface of the water (see Figure 1.3.4), then
dV/dt = Aydh/dt. Substituting this last expression into
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(9) gives us the desired differential equation for the
height of the water at time t.

dh A,
— — /2.
. Aw\/ g (10)

It is interesting to note that (10) remains valid even
when A, is not constant. In this case we must
express the upper surface area of the water as a
function of h; that is, Ay = A(h). See Problem 14 in
Exercises 1.3.

Series Circuits

The mathematical analysis of electrical circuits and
networks is relatively straightforward, using two laws
formulated by the German physicist Gustav Robert
Kirchhoff (1824—1887) in 1845 while he was still a
student. Consider the single-loop LRC-series circuit
containing an inductor, resistor, and capacitor shown
in FIGURE 1.3.5(a). The current in a circuit after a
switch is closed is denoted by i(f); the charge on a
capacitor at time t is denoted by q(t). The letters L,
R, and C are known as inductance, resistance, and
capacitance, respectively, and are generally
constants. Now according to Kirchhoff’s second
law, the impressed voltage E(f) on a closed loop
must equal the sum of the voltage drops in the loop.
Figure 1.3.5(b) also shows the symbols and the
formulas for the respective voltage drops across an
inductor, a resistor, and a capacitor. Since current i(f)
is related to charge q(f) on the capacitor by i = dq/dft,
by adding the three voltage drops
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(a) LK C-series circuit

Inductor
inductance L: henrys (h)
voltage drop across: L%

L

Resistor

resistance R: ohms (£2)

voltage drop across: iR

i —=

Capacitor
capacitance C: farads (f)
l dI - L
voltage drop across: cq

| |
i — | |
C

(b) Symbols and voltage drops

FIGURE 1.3.5 Current i(t) and charge q(f) are measured in amperes (A)
and coulombs (C), respectively

Telegram: @uni_k
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Inductor Resistor Capacitor

di _ dq d 1
L—=1L . IR =R—, —

dt dt’ i ¢

and equating the sum to the impressed voltage, we
obtain a second-order differential equation
d’q dg 1
L— +R—+ —q = E(1)- 11
a> " Car ¢ )
We will examine a differential equation analogous
to (11) in great detail in Section 3.8.

Falling Bodies

In constructing a mathematical model of the motion of
a body moving in a force field, one often starts with
Newton’s second law of motion. Recall from
elementary physics that Newton’s first law of
motion states that a body will either remain at rest or
will continue to move with a constant velocity unless
acted upon by an external force. In each case this is
equivalent to saying that when the sum of the forces
F = > Fr—that is, the net or resultant force—acting on
the body is zero, then the acceleration a of the body
is zero. Newton’s second law of motion indicates
that when the net force acting on a body is not zero,
then the net force is proportional to its acceleration a,
or more precisely, F = ma, where m is the mass of
the body.

Now suppose a rock is tossed upward from a roof
of a building as illustrated in FIGURE 1.3.6. What is
the position s(t) of the rock relative to the ground at
time {? The acceleration of the rock is the second
derivative d?s/df2. If we assume that the upward

direction is positive and that no force acts on the rock
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other than the force of gravity, then Newton’s second
law gives
d’s d’s

ground

FIGURE 1.3.6 Position of rock measured from ground level

In other words, the net force is simply the weight F =
F1 = —W of the rock near the surface of the Earth.
Recall that the magnitude of the weight is W = mg,
where m is the mass of the body and g is the
acceleration due to gravity. The minus sign in (12) is
used because the weight of the rock is a force
directed downward, which is opposite to the positive
direction. If the height of the building is sg and the
initial velocity of the rock is vy, then s is determined
from the second-order initial-value problem

dzj' _ ! _

il s s(0) =59, s'(0) = . (13)

Although we have not stressed solutions of the
equations we have constructed, we note that (13) can
be solved by integrating the constant —g twice with
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respect to t. The initial conditions determine the two
constants of integration. You might recognize the
solution of (13) from elementary physics as the
formula s(t) = —1 g2 + vot + so.

Falling Bodies and Air
Resistance

Prior to the famous experiment by Italian
mathematician and physicist Galileo Galilei (1564—
1642) from the Leaning Tower of Pisa, it was
generally believed that heavier objects in free fall,
such as a cannonball, fell with a greater acceleration
than lighter objects, such as a feather. Obviously a
cannonball and a feather, when dropped
simultaneously from the same height, do fall at
different rates, but it is not because a cannonball is
heavier. The difference in rates is due to air
resistance. The resistive force of air was ignored in
the model given in (13). Under some circumstances a
falling body of mass m—such as a feather with low
density and irregular shape—encounters air
resistance proportional to its instantaneous velocity v.
If we take, in this circumstance, the positive direction
to be oriented downward, then the net force acting on
the mass is given by F = F; + F» = mg — kv, where
the weight F1 = mg of the body is a force acting in
the positive direction and air resistance Fo = —kv is a
force, called viscous damping, or drag, acting in the
opposite or upward direction. See FIGURE 1.3.7.
Now since v is related to acceleration a by a = dv/dft,
Newton’s second law becomes F = ma = mdv/dt. By
equating the net force to this form of Newton’s
second law, we obtain a first-order differential
equation for the velocity v(f) of the body at time t,
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dv
m-— = me — kv. 14
o g (14)
kv
positive A
direction air resistance
gravity
mg

FIGURE 1.3.7 Falling body of mass m

Here k is a positive constant of proportionality called
the drag coefficient. If s(1) is the distance the body
falls in time t from its initial point of release, then v =
ds/dt and a = dv/dt = d?s/df2. In terms of s, (14) is a

second-order differential equation

d’s ds d’s ds
m-—=mg—k—0'm—+k—=mg (15
dt? & dt dr? dt g (19)

Suspended Cables

Suppose a flexible cable, wire, or heavy rope is
suspended between two vertical supports. Physical
examples of this could be a long telephone wire
strung between two posts as shown in red in FIGURE
1.3.8(a), or one of the two cables supporting the
roadbed of a suspension bridge shown in red in
Figure 1.3.8(b). Our goal is to construct a
mathematical model that describes the shape that
such a cable assumes.


https://t.me/uni_k

www.konkur.in

1l

(a) Telephone wires

Dt

(b) Suspension bridge

FIGURE 1.3.8 Cables suspended between vertical supports

To begin, let’'s agree to examine only a portion or
element of the cable between its lowest point P4 and
any arbitrary point P2. As drawn in blue in FIGURE
1.3.9, this element of the cable is the curve in a
rectangular coordinate system with the y-axis chosen
to pass through the lowest point P4 on the curve and

the x-axis chosen a units below P4. Three forces are
acting on the cable: the tensions T4 and T» in the
cable that are tangent to the cable at P; and P»,
respectively, and the portion W of the total vertical
load between the points Pq and P». Let T1 = |T4|, T»
= |To|, and W = |W| denote the magnitudes of these
vectors. Now the tension T2 resolves into horizontal
and vertical components T> cos 6 and T sin 6.
Because of static equilibrium, we can write

Ty = Thcos@ and W = T,sinf.

Telegram: @uni_k
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FIGURE 1.3.9 Element of cable

By dividing the last equation by the first, we eliminate
T> and get tan 6 = W/T4. But since dy/dx = tan 6, we

arrive at

dy W 16
dx B Tl. ( )
This simple first-order differential equation serves as
a model for both the shape of a flexible wire, such as
a telephone wire hanging under its own weight, as
well as the shape of the cables that support the
roadbed. We will come back to equation (16) in
Exercises 2.2 and in Section 3.11.

REMARKS

Except for equation (16), the differential equations
derived in this section have described a dynamical
system—a system that changes or evolves over
time. Since the study of dynamical systems is a
branch of mathematics currently in vogue, we shall
occasionally relate the terminology of that field to
the discussion at hand.
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In more precise terms, a dynamical system
consists of a set of time-dependent variables,
called state variables, together with a rule that
enables us to determine (without ambiguity) the
state of the system (this may be past, present, or
future states) in terms of a state prescribed at
some time fp. Dynamical systems are classified as
either discrete-time systems or continuous-time
systems. In this course we shall be concerned
only with continuous-time dynamical systems—
systems in which all variables are defined over a
continuous range of time. The rule or the
mathematical model in a continuous-time
dynamical system is a differential equation or a
system of differential equations. The state of the
system at a time t is the value of the state
variables at that time; the specified state of the
system at a time fp is simply the initial conditions
that accompany the mathematical model. The
solution of the initial-value problem is referred to
as the response of the system. For example, in
the preceding case of radioactive decay, the rule
is dA/dt= kA. Now if the quantity of a radioactive
substance at some time fy is known, say A(fy) =
Ao, then by solving the rule, the response of the
system for t 2 ty is found to be A(f) = Agel 0 (see
Section 2.7). The response A(f) is the single-state
variable for this system. In the case of the rock
tossed from the roof of the building, the response
of the system, the solution of the differential
equation d?s/dt2 = —g subject to the initial state
s(0) = so, s'(0) = vy, is the function s(t) = —1 g2 +
vot + Sg, 0 <t < T, where the symbol T represents
the time when the rock hits the ground. The state
variables are s(f) and s'(f), which are,
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respectively, the vertical position of the rock
above ground and its velocity at time t. The
acceleration s'(f) is not a state variable since we
only have to know any initial position and initial
velocity at a time fy to uniquely determine the
rock’s position s(f) and velocity s'(f) = v(f) for any
time in the interval [tp, T]. The acceleration s"(f) =
a(f) is, of course, given by the differential equation
s(t)=-g9,0<t<T

One last point: Not every system studied in
this text is a dynamical system. We shall also
examine some static systems in which the model
is a differential equation.

1.3 Exercises Answers to selected
odd-numbered
problems begin on page
ANS-1.

Population Dynamics

1. Under the same assumptions underlying the

model in (1), determine a differential equation
governing the growing population P(t) of a
country when individuals are allowed to
immigrate into the country at a constant rate r >
0. What is the differential equation for the
population P(t) of the country when individuals
are allowed to emigrate at a constant rate r > 07?

2. The population model given in (1) fails to take

death into consideration; the growth rate equals
the birth rate. In another model of a changing
population of a community, it is assumed that the
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rate at which the population changes is a net rate
—that is, the difference between the rate of
births and the rate of deaths in the community.
Determine a model for the population P(t) if both
the birth rate and the death rate are proportional
to the population present at time ¢

Using the concept of a net rate introduced in
Problem 2, determine a differential equation
governing a population P(f) if the birth rate is
proportional to the population present at time t
but the death rate is proportional to the square of
the population present at time ¢

Modify the model in Problem 3 for the net rate at

which the population P(t) of a certain kind of fish

changes by also assuming that the fish are
harvested at a constant rate h > 0.

Newton’s Law of Cooling/Warming

5. A cup of coffee cools according to Newton’s law

of cooling (3). Use data from the graph of the
temperature T(t) in FIGURE 1.3.10 to estimate
the constants T,,, Tp, and k in a model of the

form of the first-order initial-value problem

ar
— =k(T—T,), T(0) =T,
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200

150

|
0 50 100 1t
min

FIGURE 1.3.10 Cooling curve in Problem 5

The ambient temperature T, in (3) could be a
function of time t. Suppose that in an artificially
controlled environment, T (f) is periodic with a
24-hour period, as illustrated in FIGURE 1.3.11.
Devise a mathematical model for the
temperature T(t) of a body within this
environment.

T(1)
120}
100

80
60
40t
20

0 12 24 36 48 |
Midnight Noon Midnight Noon Midnight

FIGURE 1.3.11 Ambient temperature in Problem 6
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Spread of a Disease/Technology

7. Suppose a student carrying a flu virus returns to
an isolated college campus of 1000 students.
Determine a differential equation governing the
number of students x(f) who have contracted the
flu if the rate at which the disease spreads is
proportional to the number of interactions
between the number of students with the flu and
the number of students who have not yet been
exposed to it.

8. At atime t= 0, a technological innovation is
introduced into a community with a fixed
population of n people. Determine a differential
equation governing the number of people x(f)
who have adopted the innovation at time tif it is
assumed that the rate at which the innovation
spreads through the community is jointly
proportional to the number of people who have
adopted it and the number of people who have
not adopted it.

Mixtures

9. Suppose that a large mixing tank initially holds
300 gallons of water in which 50 pounds of salt
has been dissolved. Pure water is pumped into
the tank at a rate of 3 gal/min, and when the
solution is well stirred, it is pumped out at the

Telegram: @uni_k
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10.

11.

12.

same rate. Determine a differential equation for
the amount A(t) of salt in the tank at time t. What
is A(0)?

Suppose that a large mixing tank initially holds
300 gallons of water in which 50 pounds of salt
has been dissolved. Another brine solution is
pumped into the tank at a rate of 3 gal/min, and
when the solution is well stirred, it is pumped out
at a slower rate of 2 gal/min. If the concentration
of the solution entering is 2 Ib/gal, determine a
differential equation for the amount A(f) of salt in
the tank at time t.

What is the differential equation in Problem 10 if
the well-stirred solution is pumped out at a faster
rate of 3.5 gal/min?

Generalize the model given in (8) of this section
by assuming that the large tank initially contains
No number of gallons of brine, rj; and ryyt are the
input and output rates of the brine, respectively
(measured in gallons per minute), cj, is the
concentration of the salt in the inflow, c(f) is the
concentration of the salt in the tank as well as in
the outflow at time t (measured in pounds of salt
per gallon), and A(t) is the amount of salt in the
tank at time t.

Draining a Tank
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13. Suppose water is leaking from a tank through a

14.

circular hole of area A at its bottom. When
water leaks through a hole, friction and
contraction of the stream near the hole reduce
the volume of the water leaving the tank per
second to ¢4, \/2¢h Where ¢(0 < ¢ < 1) is an
empirical constant. Determine a differential
equation for the height h of water at time ¢ for
the cubical tank in FIGURE 1.3.12. The radius of
the hole is 2 in. and g = 32 ft/s2.

FIGURE 1.3.12 Cubical tank in Problem 13

The right-circular conical tank shown in FIGURE
1.3.13 loses water out of a circular hole at its
bottom. Determine a differential equation for the
height of the water h at time . The radius of the
hole is 2 in., g = 32 ft/s?, and the
friction/contraction factor introduced in Problem
13 is ¢ = 0.6.
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FIGURE 1.3.13 Conical tank in Problem 14

Series Circuits

15. A series circuit contains a resistor and an
inductor as shown in FIGURE 1.3.14. Determine
a differential equation for the current i(f) if the
resistance is R, the inductance is L, and the
impressed voltage is E(1).

®

FIGURE 1.3.14 LR-series circuit in Problem 15

16. A series circuit contains a resistor and a
capacitor as shown in FIGURE 1.3.15.
Determine a differential equation for the charge
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q(f) on the capacitor if the resistance is R, the
capacitance is C, and the impressed voltage is
E(?).

(&

s T

FIGURE 1.3.15 RC-series circuit in Problem 16

Falling Bodies and Air Resistance

17. For high-speed motion through the air—such as
the skydiver shown in FIGURE 1.3.16 falling
before the parachute is opened—air resistance
is closer to a power of the instantaneous velocity
v(f). Determine a differential equation for the
velocity v(f) of a falling body of mass m if air
resistance is proportional to the square of the
instantaneous velocity.

Telegram: @uni_k
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FIGURE 1.3.16 Air resistance proportional to square of velocity in

Problem 17

Newton’s Second Law and
Archimedes’ Principle

18. A cylindrical barrel s ft in diameter of weight w Ib

is floating in water as shown in FIGURE
1.3.17(a). After an initial depression, the barrel
exhibits an up-and-down bobbing motion along a
vertical line. Using Figure 1.3.17(b), determine a
differential equation for the vertical displacement
y(?) if the origin is taken to be on the vertical axis
at the surface of the water when the barrel is at
rest. Assume the downward direction is positive,
that the weight density of the water is 62.4 Ib/ft3,
and that there is no resistance between the
barrel and the water. Use Archimedes’
principle: Buoyancy, or the upward force of the
water on the barrel, is equal to the weight of the
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water displaced. Archimedes of Syracuse (287
BCE—212 BCE) was arguably one of the greatest
scientists/mathematicians of antiquity. Using his
approximation of the number 17, he found the
area of a circle as well as the surface area and
volume of a sphere.

f ¢ surface _ 0 _j } Y1)

FIGURE 1.3.17 Bobbing motion of floating barrel in Problem 18

Newton’s Second Law and
Hooke’s Law

19. After a mass m is attached to a spring, it

stretches s units and then hangs at rest in the
equilibrium position as shown in FIGURE
1.3.18(b). After the spring/mass system has
been set in motion, let x(t) denote the directed
distance of the mass beyond the equilibrium
position. As indicated in Figure 1.3.18(c),
assume that the downward direction is positive,
that the motion takes place in a vertical straight
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20.

line through the center of gravity of the mass,
and that the only forces acting on the system are
the weight of the mass and the restoring force of
the stretched spring. Use Hooke’s law: The
restoring force of a spring is proportional to its
total elongation. Determine a differential equation
for the displacement x(t) at time t.

unstretched gr x(f)<0
spring ) ——L———- --+-x=n
x(f)=0
equilibrium _l:
position m S
(a) (b) (©)

FIGURE 1.3.18 Spring/mass system in Problem 19

In Problem 19, what is a differential equation for
the displacement x(f) if the motion takes place in
a medium that imparts a damping force on the
spring/mass system that is proportional to the
instantaneous velocity of the mass and acts in a
direction opposite to that of motion?
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Newton’s Second Law and
Variable Mass

When the mass m of a body moving through a force
field is variable, Newton’s second law of motion
takes on the following form: If the net force acting on
a body is not zero, then the net force F is equal to the
time rate of change of momentum of the body. That
is,

d R
F - { 1\] ’ 17
7 m (17)

where mv is momentum. Use this formulation of
Newton’'s second law in Problems 21 and 22.

21. Consider a single-stage rocket that is launched
vertically upward as shown in the accompanying
photo. Let m(f) denote the total mass of the
rocket at time t (which is the sum of three
masses: the constant mass of the payload, the
constant mass of the vehicle, and the variable
amount of fuel). Assume that the positive
direction is upward, air resistance is proportional
to the instantaneous velocity v of the rocket, and
R is the upward thrust or force generated by the
propulsion system. Use (17) to find a
mathematical model for the velocity v(f) of the
rocket.
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Rocket in Problem 2

22. In Problem 21, suppose m(t) = mp + my + m{)
where my, is constant mass of the payload, m, is
the constant mass of the vehicle, and mgt) is the

variable amount of fuel.

(a) Show that the rate at which the total mass
of the rocket changes is the same as the
rate at which the mass of the fuel changes.

(b) If the rocket consumes its fuel at a constant
rate A, find m(f). Then rewrite the differential
equation in Problem 21 in terms of A and the
initial total mass m(0) = my.

(c) Under the assumption in part (b), show that
the burnout time t, > 0 of the rocket, or the
time at which all the fuel is consumed, is t, =
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mg0)/\, where m40) is the initial mass of the
fuel.

Newton’s Second Law and the Law
of Universal Gravitation

23. By Newton’s law of universal gravitation, the
free-fall acceleration a of a body, such as the
satellite shown in FIGURE 1.3.19, falling a great
distance to the surface is not the constant g.
Rather, the acceleration a is inversely
proportional to the square of the distance from
the center of the Earth, a = k/r2, where k is the
constant of proportionality. Use the fact that at
the surface of the Earthr= Rand a = g to
determine k. If the positive direction is upward,
use Newton’s second law and his universal law
of gravitation to find a differential equation for
the distance r.

Telegram: @uni_k


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

satellite of 5 .
mass m S=5H

;

eﬁﬁ%ﬁ 1

L

Earth of mass M

FIGURE 1.3.19 Satellite in Problem 23

24. Suppose a hole is drilled through the center of
the Earth and a bowling ball of mass m is
dropped into the hole, as shown in FIGURE
1.3.20. Construct a mathematical model that
describes the motion of the ball. At time tlet r
denote the distance from the center of the Earth
to the mass m, M denote the mass of the Earth,
M, denote the mass of that portion of the Earth
within a sphere of radius r, and & denote the
constant density of the Earth.
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surface

FIGURE 1.3.20 Hole through Earth in Problem 24

Additional Mathematical Models

25.

26.

27.

Learning Theory In the theory of learning, the
rate at which a subject is memorized is assumed
to be proportional to the amount that is left to be
memorized. Suppose M denotes the total
amount of a subject to be memorized and A(?) is
the amount memorized in time t. Determine a
differential equation for the amount A(?).

Forgetfulness In Problem 25, assume that the
rate at which material is forgotten is proportional
to the amount memorized in time t. Determine a
differential equation for A(f) when forgetfulness
is taken into account.

Infusion of a Drug A drug is infused into a
patient’s bloodstream at a constant rate of r
grams per second. Simultaneously, the drug is
removed at a rate proportional to the amount x({)
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28.

29.

of the drug present at time t. Determine a
differential equation governing the amount x({).

Tractrix A motorboat starts at the origin and
moves in the direction of the positive x-axis,
pulling a waterskier along a curve C called a
tractrix. See FIGURE 1.3.21. The waterskier,
initially located on the y-axis at the point (0, s), is
pulled by keeping a rope of constant length s,
which is kept taut throughout the motion. At time
t > 0 the waterskier is at the point P(x, y). Find
the differential equation of the path of motion C.

motorboat

FIGURE 1.3.21 Tractrix curve in Problem 28

Reflecting Surface Assume that when the plane
curve C shown in FIGURE 1.3.22 is revolved
about the x-axis it generates a surface of
revolution with the property that all light rays L
parallel to the x-axis striking the surface are
reflected to a single point O (the origin). Use the
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fact that the angle of incidence is equal to the
angle of reflection to determine a differential
equation that describes the shape of the curve
C. Such a curve C is important in applications
ranging from construction of telescopes to
satellite antennas, automobile headlights, and
solar collectors. [Hint. Inspection of the figure
shows that we can write ¢ = 26. Why? Now use
an appropriate trigonometric identity.]

tangent

FIGURE 1.3.22 Reflecting surface in Problem 29
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Satellite dish antenna

Discussion Problems

30.

31.

32.

Reread Problem 53 in Exercises 1.1 and then
give an explicit solution P(f) for equation (1). Find
a one-parameter family of solutions of (1).
Reread the sentence following equation (3) and
assume that T, is a positive constant. Discuss
why we would expect k < 0 in (3) in both cases
of cooling and warming. You might start by
interpreting, say, T(t) > T, in a graphical
manner.

Reread the discussion leading up to equation (8).
If we assume that initially the tank holds, say, 50
Ib of salt, it stands to reason that since salt is
being added to the tank continuously for ¢ > 0,
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33.

34.

that A(f) should be an increasing function.
Discuss how you might determine from the DE,
without actually solving it, the number of pounds
of salt in the tank after a long period of time.

Population Model The differential equation
dP/dt = (k cos t)P, where k is a positive
constant, is a model of human population P(t) of
a certain community. Discuss an interpretation
for the solution of this equation; in other words,
what kind of population do you think the
differential equation describes?

Rotating Fluid As shown in FIGURE 1.3.23(a),
a right-circular cylinder partially filled with fluid is
rotated with a constant angular velocity w about
a vertical y-axis through its center. The rotating
fluid is a surface of revolution S. To identify S,
we first establish a coordinate system consisting
of a vertical plane determined by the y-axis and
an x-axis drawn perpendicular to the y-axis such
that the point of intersection of the axes (the
origin) is located at the lowest point on the
surface S. We then seek a function y = f(x),
which represents the curve C of intersection of
the surface S and the vertical coordinate plane.
Let the point P(x, y) denote the position of a
particle of the rotating fluid of mass m in the
coordinate plane. See Figure 1.3.23(b).
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(a) At P, there is a reaction force of magnitude
F due to the other particles of the fluid, which
is normal to the surface S. By Newton'’s
second law the magnitude of the net force
acting on the particle is mw?2x. What is this
force? Use Figure 1.3.23(b) to discuss the
nature and origin of the equations

F cos 8 = mg, F sin 8 = mw?x.

(b) Use part (a) to find a first-order differential
equation that defines the function y = f(x).

¥
curve C of intersection
of xy-plane and
surface of revolution

l

}

VO
IRV

tangent line to
curve Cat P

|

(a) (b)

FIGURE 1.3.23 Rotating fluid in Problem 34

35. Falling Body In Problem 23, suppose r= R + s,
where s is the distance from the surface of the
Earth to the falling body. What does the
differential equation obtained in Problem 23
become when s is very small compared to R?

36. Raindrops Keep Falling In meteorology, the
term virga refers to falling raindrops or ice
particles that evaporate before they reach the
ground. Assume that a typical raindrop is

Telegram: @uni_k
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spherical in shape. Starting at some time, which
we can designate as t = 0, the raindrop of radius
ro falls from rest from a cloud and begins to

evaporate.

(a) If it is assumed that a raindrop evaporates
in such a manner that its shape remains
spherical, then it also makes sense to
assume that the rate at which the raindrop
evaporates—that is, the rate at which it
loses mass—is proportional to its surface
area. Show that this latter assumption
implies that the rate at which the radius r of
the raindrop decreases is a constant. Find
r(f). [Hint. See Problem 63 in Exercises 1.1.]

(b) If the positive direction is downward,
construct a mathematical model for the
velocity v of the falling raindrop at time t.
Ignore air resistance. [Hint. Use the form of
Newton’s second law as givenin (17).]

37. Let It Snow The “snowplow problem” is a
classic and appears in many differential
equations texts but was probably made famous
by Ralph Palmer Agnew:

One day it started snowing at a heavy
and steady rate. A snowplow started out
at noon, going 2 miles the first hour and

Telegram: @uni_k
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38.

39.

1 mile the second hour. What time did it
start snowing?

If possible, find the text Differential Equations,
Ralph Palmer Agnew, McGraw-Hill, and then
discuss the construction and solution of the
mathematical model.

© aetb/iStock/Thinkstock

Snowplow in Problem 37

Reread this section and classify each
mathematical model as linear or nonlinear.

Population Dynamics Suppose that P(f) = 0.15
P(t) represents a mathematical model for the
growth of a certain cell culture, where P(f) is the
size of the culture (measured in millions of cells)
at time t (measured in hours). How fast is the
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culture growing at the time t when the size of the
culture reaches 2 million cells?

40. Radioactive Decay Suppose that
A'(t) = —0.0004332 A(t)

represents a mathematical model for the decay
of radium-226, where A(f) is the amount of
radium (measured in grams) remaining at time t
(measured in years). How much of the radium
sample remains at time t when the sample is
decaying at a rate of 0.002 grams per year?

*If two quantities v and v are proportional, we write u « v. This means

one quantity is a constant multiple of the other: u = kv.

*Don’t confuse these symbols with Rj, and Rout, which are input and

output rates of sal.

*Note that when m is constant, this is the same as F = ma.

Telegram: @uni_k
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1 Chapter in Review Answers to
selected odd-

numbered problems begin
on page ANS-1.

In Problems 1 and 2, fill in the blank and then write
this result as a linear first-order differential equation
that is free of the symbol ¢4 and has the form dy/dx =

f(x, y). The symbols ¢4 and k represent constants.

d
1. —c e =
c,e

d
2, E(S + e ™) =

In Problems 3 and 4, fill in the blank and then write
this result as a linear second-order differential
equation that is free of the symbols ¢4 and ¢; and has

the form F(y, y") = 0. The symbols ¢4, ¢, and k
represent constants.

d2
e (cycoskx + cy8inkx) =
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d2
4. = (¢, coshkx + ¢,sinhkx) =

In Problems 5 and 6, compute y' and y" and then
combine these derivatives with y as a linear second-
order differential equation that is free of the symbols
¢1 and ¢ and has the form F(y, y', y") = 0. The

symbols ¢4 and ¢, represent constants.

5. y=ce" + cxe*

6. v = ce'cosx + ce’sinx

In Problems 7—-12, match each of the given
differential equations with one or more of these
solutions:

(@) y=0, (b) y =2, (c) y = 2x, (d) y = 2x2.

7. xy'=2y

8. y'=2

9. y'=2y-4
10. xy'=y

11. y"+9y =18
12. xy"-y'=0

In Problems 13 and 14, determine by inspection at
least one solution of the given differential equation.

13. y"=y
14. y'=y(y - 3)
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In Problems 15 and 16, interpret each statement as a
differential equation.

15. On the graph of y = ¢(x), the slope of the
tangent line at a point P(x, y) is the square of the
distance from P(x, y) to the origin.

16. On the graph of y = ¢(x), the rate at which the
slope changes with respect to x at a point P(x,
y) is the negative of the slope of the tangent line
at P(x, y).

17. (@) Give the domain of the function y = x2/3,

(b) Give the largest interval I of definition over
which y = x23 is a solution of the differential
equation 3xy' - 2y = 0.

18. (a) Verify that the one-parameter family y= — 2y
= x2 - x + ¢ is an implicit solution of the
differential equation (2y — 2)y' = 2x — 1.

(b) Find a member of the one-parameter family
in part (a) that satisfies the initial condition
y(0) = 1.

(c) Use your result in part (b) to find an explicit
function y = &(x) that satisfies y(0) = 1. Give
the domain of &. Is y = ¢(x) a solution of
the initial-value problem? If so, give its
interval I of definition; if not, explain.

19. Giventhat y = _E + x is a solution of the DE xy’
-’ X

+ y = 2x. Find xo and the largest interval / for


https://t.me/uni_k

www.konkur.in

which y(x) is a solution of the IVP
w' +yv=2xvy(x,) = 1.

20. Suppose that y(x) denotes a solution of the
initial-value problem y' = x2 + y2, y(1) = =1 and
that y(x) possesses at least a second derivative
at x = 1. In some neighborhood of x = 1, use the
DE to determine whether y(x) is increasing or
decreasing, and whether the graph y(x) is
concave up or concave down.

21. A differential equation may possess more than
one family of solutions.

(a) Plot different members of the families y = ¢
1(x) = x2 + c1and y = do(x) = =x% + c2.

(b) Verify that y = ¢1(x) and y = ¢o(x) are two
solutions of the nonlinear first-order
differential equation (y")2 = 4x2.

(c) Construct a piecewise-defined function that
is a solution of the nonlinear DE in part (b)
but is not a member of either family of
solutions in part (a).

22. What is the slope of the tangent line to the graph
of the solution of y' = 6\/y + 5x3 that passes
through (-1, 4)?

In Problems 23-26, verify that the indicated function

is an explicit solution of the given differential equation.
Give an interval of definition / for each solution.

Telegram: @uni_k
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23.
24,
25.

26.

y"+y=2cosx—2sinx; y=xsinx+ xcos x
y"+y=secx; y=xsinx + (cos x) In(cos x)
x2y" + xy'+ y = 0; y = sin(In x)

x2y" + xy' + y = sec(In x);

y = cos(In x) In(cos(In x)) + (In x) sin(In x)

In Problems 27-30, use (12) of Section 1.1 to verify
that the indicated function is a solution of the given
differential equation. Assume an appropriate interval /
of definition of each solution.

27.

28.

29.

30.

dy _ o
; + (sinx)y =x; y= e"“”L te “' dt
dy ¥
——2xy=e" y= exEJ e dt
—i

x5y =y + (1 —x)y=0; y= IJ ETdr
1

X x
y' o+ y= 6’2; y = sinxJ efcostdt — cost et’sin t dt
0

In Problems 31-34, verify that the indicated
expression is an implicit solution of the given
differential equation.

31.

32.

33.
34.

Telegram: @uni_k

d_}’+ —_ 1 3..3 3 5
X— V=" XV =X +
dx -~ yl Y

dy\? 1
=] +1=— -7 +y*=1
(dx) y? @

y"=2y(y")3 y3+ 3y =2 - 3x
(1+xy)y' +y>=0;y=e-
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35. Find a constant ¢4 such that y = ¢1 + cos 3xis a
solution of the differential equation y" + 9y = 5.

36. Find constants ¢4 and co such that y = ¢4 + cox is
a solution of the differential equation y' + 2y =
3X.

37. |If cis an arbitrary constant, find a first-order
differential equation for which y = ce™ + 4x - 6
is a solution. [Hint. Differentiate and eliminate ¢
between the two equations.]

38. Find a function y = f(x) whose graph passes
through (0, 0) and whose slope at any point (x,
y) in the xy-plane is 6 — 2x.

In Problems 39-42, y = c,e ™™ + c,e* + 4xis a two-
parameter family of the second-order differential
equation y" + 2y" — 3y = —12x + 8. Find a solution
of the second-order initial-value problem consisting of
this differential equation and the given initial
conditions.

39. y(0) =0, y(0) =0

40. y(0) =5, y'(0) = —11

41. y(1) = -2, y'(1) =4

42. y(—-1) =1, y'(-1) =1

In Problems 43 and 44, verify that the function
defined by the definite integral is a particular solution

of the given differential equation. In both problems,
use Leibniz’s rule for the derivative of an integral:

d " dv du J"‘"a
— F(x, Hdt = F(x, v(x))— — F(x, u(x))— + —F(x, n)dt.
Lﬂ (x, 1) (x, v(x)) I (x, u(x)) a (x, 1)
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43.

44,

45.

46.

y"+ 9y = f(x); v(x) = %J‘ f(t) sin 3(x — t) dt
2Jo

'y —xy=0;, y= J- e* " dt [Hint. After
0
computing ¥’ use integration by parts with

respect to t]

The graph of a solution of a second-order initial-
value problem d2y/dx? = f(x, y, y), ¥(2) = yo,
y'(2) = y1, is given in FIGURE 1.R.1. Use the
graph to estimate the values of yg and yx.

y

FIGURE 1.R.1 Graph for Problem 45

A tank in the form of a right-circular cylinder of

radius 2 ft and height 10 ft is standing on end. If
the tank is initially full of water, and water leaks
from a circular hole of radius } in. at its bottom,
determine a differential equation for the height h
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47.

of the water at time t. Ignore friction and
contraction of water at the hole.

A uniform 10-foot-long heavy rope is coiled
loosely on the ground. As shown in FIGURE
1.R.2 one end of the rope is pulled vertically
upward by means of a constant force of 5 Ib.
The rope weighs 1 Ib/ft. Use Newton’s second
law in the form given in (17) in Exercises 1.3 to
determine a differential equation for the height
x(f) of the end above ground level at time t.
Assume that the positive direction is upward.
51b

upward
force

!

x(f)

FIGURE 1.R.2 Rope pulled upward in Problem 47
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CHAPTER 2

First-Order Differential
Equations

2.1 Solution Curves Without a Solution

2.2 Separable Equations

2.3 Linear Equations

2.4 Exact Equations

2.5 Solutions by Substitutions

2.6 A Numerical Method

2.7 Linear Models

2.8 Nonlinear Models

2.9 Modeling with Systems of First-Order DEs

Chapter 2 in Review

We begin our study of differential equations (DESs)
with first-order equations. In this chapter we illustrate
the three different ways DEs can be studied:
qualitatively (Section 2.1), analytically (Sections 2.2—
2.5), and numerically (Section 2.6). The chapter ends
with an introduction to mathematical modeling with
DEs (Sections 2.7-2.9).
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Solution Curves Without a
Solution

INTRODUCTION

Some differential equations do not possess any
solutions. For example, there is no real function that
satisfies (y')2 + 1 = 0. Some differential equations
possess solutions that can be found analytically, that
is, solutions in explicit or implicit form found by
implementing an equation-specific method of solution.
These solution methods may involve certain
manipulations, such as a substitution, and
procedures, such as integration. Some differential
equations possess solutions, but the differential
equation cannot be solved analytically. In other
words, when we say that a solution of a DE exists,
we do not mean that there also exists a method of
solution that will produce explicit or implicit solutions.
Over a time span of centuries, mathematicians have
devised ingenious procedures for solving some very
specialized equations, so there are, not surprisingly, a
large number of differential equations that can be
solved analytically. Although we shall study some of
these methods of solution for first-order equations in
the subsequent sections of this chapter, let us
imagine for the moment that we have in front of us a
first-order differential equation in normal form dy/dx =
f(x, y), and let us further imagine that we can neither
find nor invent a method for solving it analytically. This
is not as bad a predicament as one might think, since
the differential equation itself can sometimes “tell” us
specifics about how its solutions “behave.” We have
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seen in Section 1.2 that whenever f(x, y) and df/dy
satisfy certain continuity conditions, qualitative
questions about existence and uniqueness of
solutions can be answered. In this section we shall
see that other qualitative questions about properties
of solutions—such as, How does a solution behave
near a certain point? or How does a solution behave
as x — ~x?—can often be answered when the
function f depends solely on the variable y.

We begin our study of first-order differential
equations with two ways of analyzing a DE
qualitatively. Both these ways enable us to determine,
in an approximate sense, what a solution curve must
look like without actually solving the equation.
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2.1.1 Direction Fields

Slope

We begin with a simple concept from calculus: A
derivative dy/dx of a differentiable function y = y(x)
gives slopes of tangent lines at points on its graph.
Because a solution y = y(x) of a first-order differential
equation dy/dx = f(x, y) is necessarily a differentiable
function on its interval / of definition, it must also be
continuous on /. Thus the corresponding solution
curve on | must have no breaks and must possess a
tangent line at each point (x, y(x)). The slope of the
tangent line at (x, y(x)) on a solution curve is the
value of the first derivative dy/dx at this point, and this
we know from the differential equation f(x, y(x)). Now
suppose that (x, y) represents any point in a region of
the xy-plane over which the function f is defined. The
value f(x, y) that the function f assigns to the point
represents the slope of a line, or as we shall envision
it, a line segment called a lineal element. For
example, consider the equation dy/dx = 0.2xy, where
f(x, y) = 0.2xy. At, say, the point (2, 3), the slope of a
lineal element is (2, 3) = 0.2(2)(3) = 1.2.FIGURE
2.1.1(a) shows a line segment with slope 1.2 passing
through (2, 3). As shown in Figure 2.1.1(b), if a
solution curve also passes through the point (2, 3), it
does so tangent to this line segment; in other words,
the lineal element is a miniature tangent line at that
point.
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(a) f(2,3)=1.2 is slope of
lineal element at (2, 3)

y solution
1 curve

(2, 3)

tangent

(b) A solution curve
passing through (2, 3)

FIGURE 2.1.1 Solution curve is tangent to lineal element at (2, 3)

Direction Field

If we systematically evaluate f over a rectangular grid
of points in the xy-plane and draw a lineal element at
each point (x, y) of the grid with slope f(x, y), then the
collection of all these lineal elements is called a
direction field or a slope field of the differential
equation dy/dx = f(x, y). Visually, the direction field
suggests the appearance or shape of a family of
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solution curves of the differential equation, and
consequently it may be possible to see at a glance
certain qualitative aspects of the solutions—regions in
the plane, for example, in which a solution exhibits an
unusual behavior. A single solution curve that passes
through a direction field must follow the flow pattern
of the field; it is tangent to a lineal element when it
intersects a point in the grid.

2 GV IHSN N Direction Field

The direction field for the differential equation
dy/dx = 0.2xy shown in FIGURE 2.1.2(a) was
obtained using computer software in whicha 5 x 5
grid of points (mh, nh), m and n integers, was
defined by letting -5<m<5,-5<n<5and h =
1. Notice in Figure 2.1.2(a) that at any point along
the x-axis (y = 0) and the y-axis (x = 0) the slopes
are f(x, 0) = 0 and f(0, y) = 0, respectively, so the
lineal elements are horizontal. Moreover, observe
in the first quadrant that for a fixed value of x, the
values of f(x, y) = 0.2xy increase as y increases;
similarly, for a fixed y, the values of f(x, y) = 0.2xy
increase as x increases. This means that as both
x and y increase, the lineal elements become
almost vertical and have positive slope (f(x, y) =
0.2xy > 0 for x> 0, y > 0). In the second
quadrant, |f(x, y)| increases as |x| and y increase,
and so the lineal elements again become almost
vertical but this time have negative slope (f(x, y) =
0.2xy < 0 for x < 0, y > 0). Reading left to right,
imagine a solution curve starts at a point in the
second quadrant, moves steeply downward,
becomes flat as it passes through the y-axis, and
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then as it enters the first quadrant moves steeply
upward—in other words, its shape would be
concave upward and similar to a horseshoe. From
this it could be surmised that y — o0 as x — o0,
Now in the third and fourth quadrants, since f(x, y)
= 0.2xy > 0 and f(x, y) = 0.2xy < 0, respectively,
the situation is reversed; a solution curve
increases and then decreases as we move from
left to right.
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(b) Some solution curves in the
family y = ce01%*

FIGURE 2.1.2 Direction field and solution curves in Example 1

We saw in (1) of Section 1.1 that y = ¢%*" is

an explicit solution of the differential equation
dy/dx = 0.2xy; you should verify that a one-
parameter family of solutions of the same
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equation is given by y = ce®'*. For purposes of
comparison with Figure 2.1.2(a) some
representative graphs of members of this family
are shown in Figure 2.1.2(b). =

=20\ IMN=8 Direction Field

Use a direction field to sketch an approximate
solution curve for the initial-value problem dy/dx =

siny, y(0) = -1

SOLUTION

Before proceeding, recall that from the continuity
of f(x, y) = sin y and of/dy = cos y, Theorem 1.2.1
guarantees the existence of a unique solution
curve passing through any specified point (xo, yo)
in the plane. Now we set our computer software
again for a 5 x 5 rectangular region and specify
(because of the initial condition) points in that
region with vertical and horizontal separation of 1
unit—that is, at points (mh, nh), h=1%, mand n
integers such that -10 < m <10, -10 < n < 10.
The result is shown in FIGURE 2.1.3. Since the
right-hand side of dy/dx = sin yis 0 at y = 0 and
at y = —m, the lineal elements are horizontal at all
points whose second coordinates are y =0 or y =
—17. It makes sense then that a solution curve
passing through the initial point (0, — 1) has the
shape shown in color in the figure. =
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FIGURE 2.1.3 Direction field for dy/dx = sin y in Example 2

Increasing/Decreasing

Interpretation of the derivative dy/dx as a function
that gives slope plays the key role in the construction
of a direction field. Another telling property of the first
derivative will be used next, namely, if dy/dx > 0 (or
dyl/dx < Q) for all x in an interval /, then a
differentiable function y = y(x) is increasing (or
decreasing) on /.

REMARKS

Sketching a direction field by hand is
straightforward but time consuming; it is probably
one of those tasks about which an argument can
be made for doing it once or twice in a lifetime,
but it is overall most efficiently carried out by
means of computer software. Prior to calculators,
PCs, and software, the method of isoclines was
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used to facilitate sketching a direction field by
hand. For the DE dy/dx = f(x, y), any member of
the family of curves f(x, y) = ¢, ¢ a constant, is
called an isocline. Lineal elements drawn through
points on a specific isocline, say, f(x, y) = ¢4, all
have the same slope c¢1. In Problem 15 in
Exercises 2.1, you have your two opportunities to
sketch a direction field by hand.
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2.1.2 Autonomous First-Order
DEs

DEs Free of the Independent
Variable

In Section 1.1 we divided the class of ordinary
differential equations into two types: linear and
nonlinear. We now consider briefly another kind of
classification of ordinary differential equations, a
classification that is of particular importance in the
qualitative investigation of differential equations. An
ordinary differential equation in which the independent
variable does not appear explicitly is said to be
autonomous. If the symbol x denotes the
independent variable, then an autonomous first-order
differential equation can be written in general form as
F(y, y) = 0 or in normal form as

dy

I F(y). (1)
We shall assume throughout the discussion that
follows that fin (1) and its derivative f' are continuous
functions of y on some interval . The first-order
equations

J(y) fx,y)

} !
ﬁ -1+ ,2 d ﬁ = 0.2xv
dx yooae gy T Y

are autonomous and nonautonomous, respectively.
Many differential equations encountered in

applications, or equations that are models of physical

laws that do not change over time, are autonomous.
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As we have already seen in Section 1.3, in an applied
context, symbols other than y and x are routinely
used to represent the dependent and independent
variables. For example, if t represents time, then
inspection of

dd dx dT dA 1

kd, —=lxin+1—-x), —=kKT—-T,), —=6——A41,
dr ar e m’ a0 T 100

where k, n, and T, are constants, shows that each

equation is time-independent. Indeed, all of the first-
order differential equations introduced in Section 1.3
are time-independent and so are autonomous.

Critical Points

The zeros of the function fin (1) are of special
importance. We say that a real number c is a critical
point of the autonomous differential equation (1) if it
is a zero of f, that is, f(c) = 0. A critical point is also
called an equilibrium point or stationary point.
Now observe that if we substitute the constant
function y(x) = c into (1), then both sides of the
equation equal zero. This means

If ¢ is a critical point of (1), then y(x) = cis a
constant solution of the autonomous
differential equation.

A constant solution y(x) = ¢ of (1) is called an
equilibrium solution; equilibria are the only constant
solutions of (1).

As already mentioned, we can tell when a
nonconstant solution y = y(x) of (1) is increasing or
decreasing by determining the algebraic sign of the
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derivative dy/dx; in the case of (1) we do this by
identifying the intervals on the y-axis over which the
function f(y) is positive or negative.

=2.0\\IMH=E An Autonomous
DE

The differential equation

dP
— = P(a — bP),
dt

where a and b are positive constants, has the
normal form dP/dt = f(P), which is (1) with t and P
playing the parts of x and y, respectively, and
hence is autonomous. From f(P) = P(a — bP) = 0,
we see that 0 and a/b are critical points of the
equation and so the equilibrium solutions are P(f)
= 0 and P(f) = a/b. By putting the critical points on
a vertical line, we divide the line into three
intervals defined by -0 < P<0,0< P<alb, alb
< P < . The arrows on the line shown in
FIGURE 2.1.4 indicate the algebraic sign of f(P) =
P(a — bP) on these intervals and whether a
nonconstant solution P(f) is increasing or
decreasing on an interval. The following table
explains the figure.

Interval Sign of f(P)

(=00, 0) minus decreasing points down
(0, a/b) plus increasing points up

(alb, o0) minus decreasing points down

Telegram: @uni_k
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P-axis

FIGURE 2.1.4 Phase portrait for Example 3

Figure 2.1.4 is called a one-dimensional phase
portrait, or simply phase portrait, of the
differential equation dP/dt = P(a — bP). The
vertical line is called a phase line.

Solution Curves

Without solving an autonomous differential equation,
we can usually say a great deal about its solution
curves. Since the function fin (1) is independent of
the variable x, we can consider f defined for —= < x
< o or for 0 £ x < . Also, since f and its derivative f'
are continuous functions of y on some interval / of the
y-axis, the fundamental results of Theorem 1.2.1 hold
in some horizontal strip or region R in the xy-plane
corresponding to /, and so through any point (xo, yo)
in R there passes only one solution curve of (1). See
FIGURE 2.1.5 (a). For the sake of discussion, let us
suppose that (1) possesses exactly two critical
points, ¢1 and c2, and that ¢4 < ¢2. The graphs of the
equilibrium solutions y(x) = ¢1 and y(x) = ¢ are
horizontal lines, and these lines partition the region R
into three subregions R4, R2, and R3 as illustrated in
Figure 2.1.5(b). Without proof, here are some
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conclusions that we can draw about a nonconstant
solution y(x) of (1):

}.'
A
R
I\
W}
X
L ]
(a) Region R
}:'
A
y(x)=cy %
R
I\ :
W]
Y™=a | N
X
¥ R

(b) Subregions Ry, R;, and R;

FIGURE 2.1.5 Lines y(x) = ¢1 and y(x) = c2 partition R into three
horizontal subregions

« If (xo, yo) is ina subregion R;, i =1, 2, 3, and
y(x) is a solution whose graph passes through
this point, then y(x) remains in the subregion R;

for all x. As illustrated in Figure 2.1.5(b), the
solution y(x) in R2 is bounded below by ¢4 and
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above by co; that is, ¢1 < y(x) < ¢ for all x.
The solution curve stays within R, for all x
because the graph of a nonconstant solution of
(1) cannot cross the graph of either equilibrium
solution y(x) = ¢4 or y(x) = c2. See Problem 33
in Exercises 2.1.

By continuity of f we must then have either f(y)
>0 orf(y) <0 forall xina subregion R, i = 1,
2, 3. In other words, f(y) cannot change signs
in a subregion. See Problem 33 in Exercises
2.1.

Since dy/dx = f(y(x)) is either positive or
negative in a subregion R;, i =1, 2, 3, a
solution y(x) is strictly monotonic—that is, y(x)
is either increasing or decreasing in a
subregion R;. Therefore y(x) cannot be
oscillatory, nor can it have a relative extremum
(maximum or minimum). See Problem 33 in
Exercises 2.1.

If y(x) is bounded above by a critical point c1
(as in subregion R1 where y(x) < ¢4 for all x),
then the graph of y(x) must approach the
graph of the equilibrium solution y(x) = ¢4
either as x — oo or as x — —oa. If y(x) is
bounded, that is, bounded above and below by
two consecutive critical points (as in subregion
R> where ¢1 < y(x) < ¢ for all x), then the
graph of y(x) must approach the graphs of the
equilibrium solutions y(x) = ¢4 and y(x) = co,
one as x — oo and the other as x — —c<. If
y(x) is bounded below by a critical point (as in
subregion R3 where ¢» < y(x) for all x), then
the graph of y(x) must approach the graph of
the equilibrium solution y(x) = c» either as x —
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o0 Or as x — —oo. See Problem 34 in
Exercises 2.1.

With the foregoing facts in mind, let us reexamine the
differential equation in Example 3.

GV E Example 3

Revisited

The three intervals determined on the P-axis or
phase line by the critical points P=0 and P = a/b
now correspond in the tP-plane to three
subregions:

R1: -0 < P <0, Ro2: 0 < P < alb, Rs: alb

< P< o0,

where —> < t < o0, The phase portrait in Figure
2.1.4 tells us that P(f) is decreasing in Ry,
increasing in Ry, and decreasing in Rs. If P(0) =
Po is an initial value, then in Rq, R2, and R3, we
have, respectively, the following:

(i) For Py < 0, P(f) is bounded above. Since
P(t) is decreasing, P(t) decreases without
bound for increasing t and so P(f) — 0 as ¢
— —o0, This means the negative t-axis, the
graph of the equilibrium solution P(f) = 0, is
a horizontal asymptote for a solution curve.

(i) For 0 < Py < alb, P(t) is bounded. Since
P(t) is increasing, P(t) — a/lb as t —» > and
P(t) — 0 as t — —=c. The graphs of the two
equilibrium solutions, P(f) = 0 and P(t) =
alb, are horizontal lines that are horizontal
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asymptotes for any solution curve starting
in this subregion.

(i) For Py > alb, P(t) is bounded below. Since
P(t) is decreasing, P(t) — alb as t — .
The graph of the equilibrium solution P(f) =
alb is a horizontal asymptote for a solution
curve.

In FIGURE 2.1.6, the phase line is the P-axis
in the tP-plane. For clarity, the original phase line
from Figure 2.1.4 is reproduced to the left of the
plane in which the subregions R4, Rp, and R3 are
shaded. The graphs of the equilibrium solutions
P(t) = a/lb and P(t) = 0 (the t-axis) are shown in
the figure as blue dashed lines; the solid graphs
represent typical graphs of P({) illustrating the
three cases just discussed.

P

N
! decreasing Fo \
a

P

40 T t
«142':'11.@.-;1511mh Ry
phase line tP-plane

FIGURE 2.1.6 Phase portrait and solution curves in each of the
three subregions in Example 4

In a subregion such as R1 in Example 4, where
P(t) is decreasing and unbounded below, we must
necessarily have P(f) — —oc. Do not interpret this last
statement to mean P(f) —» —~ as t —» >; we could
have P(t) - —> ast— T, where T > 0 is a finite
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number that depends on the initial condition P(fy) =
Po. Thinking in dynamic terms, P(t) could “blow up” in
finite time; thinking graphically, P(f) could have a
vertical asymptote at t = T > 0. A similar remark
holds for the subregion Rs.

The differential equation dy/dx = sin y in Example
2 is autonomous and has an infinite number of critical
points since sin y = 0 at y = nm, n an integer.
Moreover, we now know that because the solution
y(x) that passes through (0, -3) is bounded above
and below by two consecutive critical points (-1 <
y(x) < 0) and is decreasing (sin y < 0 for -m < y < 0),
the graph of y(x) must approach the graphs of the
equilibrium solutions as horizontal asymptotes: y(x) —
—mmas x — o and y(x) —» 0 as x —» —o.

=0\ 18 =W Solution Curves of

an Autonomous DE

The autonomous equation dy/dx = (y — 1)2
possesses the single critical point 1. From the
phase portrait in FIGURE 2.1.7(a), we conclude
that a solution y(x) is an increasing function in the
subregions defined by —cc < y<1and 1 <y < oo,
where —o < x < 0. For an initial condition y(0) =
Yo < 1, a solution y(x) is increasing and bounded
above by 1, and so y(x) — 1 as x — o¢; for y(0) =
Yo > 1, a solution y(x) is increasing and
unbounded.

Now y(x) =1 - 1/(x + c) is a one-parameter
family of solutions of the differential equation.
(See Problem 4 in Exercises 2.2.) A given initial
condition determines a value for c. For the initial
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conditions, say, y(0) =-1<1and y(0) =2 > 1,
we find, in turn, that y(x) = 1 - 1/(x + }) and so
y(x) =1-1/(x—-1). As shown in Figure 2.1.7(b)
and 2.1.7(c), the graph of each of these rational
functions possesses a vertical asymptote. But
bear in mind that the solutions of the IVPs

%=@—n%mn=ﬂ and
vy _ 2 _
=0 D20 =2

are defined on special intervals. The two solutions
are, respectively,
1 1 1

,——=<x<oco and yvx)=1— ,
x + é— 2 ’ xr—1

vix)y=1-—

The solution curves are the portions of the
graphs in Figures 2.1.7(b) and 2.1.7(c) shown in
blue. As predicted by the phase portrait, for the
solution curve in Figure 2.1.7(b), y(x) — 1 as x —
o0; for the solution curve in Figure 2.1.7(c), y(x) —
> as X — 1 from the left.

¥ v v

A |ncrcaqu | 0.2) /
y=1 ——/ v=1

+1

T T T T / T T T |x T T T T T IX
increasing (0, -1) 1
x=-1 i— +x=10
(a) Phase line (b) xy-plane (c) xy-plane
vl <1 y(0)>1

FIGURE 2.1.7 Behavior of solutions near y = 1 in Example 5
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Attractors and Repellers

Suppose y(x) is a nonconstant solution of the
autonomous differential equation given in (1) and that
c is a critical point of the DE. There are basically
three types of behavior y(x) can exhibit near c. In
FIGURE 2.1.8 we have placed c on four vertical
phase lines. When both arrowheads on either side of
the dot labeled ¢ point foward c, as in Figure 2.1.8(a),
all solutions y(x) of (1) that start from an initial point
(xo0, Yo) sufficiently near ¢ exhibit the asymptotic
behavior limy_, «cy(Xx) = ¢. For this reason the critical
point ¢ is said to be asymptotically stable. Using a
physical analogy, a solution that starts near c is like a
charged particle that, over time, is drawn to a particle
of opposite charge, and so c is also referred to as an
attractor. When both arrowheads on either side of
the dot labeled ¢ point away from ¢, as in Figure
2.1.8(b), all solutions y(x) of (1) that start from an
initial point (xo, yo) move away from c¢ as x increases.
In this case the critical point ¢ is said to be unstable.
An unstable critical point is also called a repeller, for
obvious reasons. The critical point c illustrated in
Figures 2.1.8(c) and 2.1.8(d) is neither an attractor
nor a repeller. But since ¢ exhibits characteristics of
both an attractor and a repeller—that is, a solution
starting from an initial point (xo, yo) sufficiently near ¢
is attracted to ¢ from one side and repelled from the
other side—we say that the critical point ¢ is semi-
stable. In Example 3, the critical point a/b is
asymptotically stable (an attractor) and the critical
point O is unstable (a repeller). The critical point 1 in
Example 5 is semi-stable.
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oy oy

(a) (b) (c) (d)

FIGURE 2.1.8 Critical point c is an attractor in (a), a repeller in (b), and

semi-stable in (c) and (d)

2D\ ILENN Classifying Critical

Points

Locate and classify all critical points of

dy ;
: V=

SOLUTION

Rewriting the differential equation as

% =y4—-y)=y2 -2 +y

we see fromy(2 - y)(2+ y)=0thaty =0, y = 2,
and y = — 2 are critical points of the DE.

Now by examining, in turn, the algebraic signs of
dy/dx on intervals of the y-axis determined by the
critical points, we see from the phase portrait in
FIGURE 2.1.9 that:
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f!_\‘ff.f.l' =10 ff_\‘fsf.l.' <)

—

(—oo, —=2),(—2,0). implies vy = —2 is asymptotically stable (attractor),

dvldy <0 dylde >0

£
(—2.0), (0.2), implies v = 0 is unstable (repeller).

dvidx =0 dvidx < 0

(0,2), (2.00), implies v = 2 is asymptotically stable (attractor).

Yy
1 2

FIGURE 2.1.9 Phase portrait of DE in Example 6

See Problems 21-28 in Exercises 2.1.

Autonomous DEs and Direction
Fields

If a first-order differential equation is autonomous,
then we see from the right-hand side of its normal
form dy/dx = f(y) that slopes of lineal elements
through points in the rectangular grid used to
construct a direction field for the DE depend solely on
the y-coordinate of the points. Put another way, lineal
elements passing through points on any horizontal
line must all have the same slope and therefore are
parallel; slopes of lineal elements along any vertical
line will, of course, vary. These facts are apparent
from inspection of the horizontal gray strip and
vertical blue strip in FIGURE 2.1.10. The figure
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exhibits a direction field for the autonomous equation
dyl/dx = 2(y — 1). The red lineal elements in Figure
2.1.10 have zero slope because they lie along the
graph of the equilibrium solution y = 1.

slopes of lineal

elements on a

vertical line vary

y b

NEEEERREEERFIEE
slopesoflineal |# # 1 # ¢+ £ 4 0 F 4 F 1 1H
elements on a fFrrrrrefrrrErt
horizontalline |/ / f # F A F L PP PP LY
urea]lﬂlesami:—w'.#ff/ffjffff/!.ﬂf
J?:—i- 4444444444444444
T L T T T T
BB T T
1B R R
IBEEEEERE A REREER!
BN EEE R

O T R T T T A

(R T T T T N R
I I T A T

L T T Y R U R N NN N |

FIGURE 2.1.10 Direction field for an autonomous DE

Translation Property

Recall from precalculus mathematics that the graph
of a function y = f(x — k), where k is a constant, is the
graph of y = f(x) rigidly translated or shifted
horizontally along the x-axis by an amount |k|; the
translation is to the right if kK > 0 and to the left if k <
0.

It turns out that under the assumptions stated
after equation (1), solution curves of an autonomous
first-order DE are related by the concept of
translation. To see this, let’s consider the differential
equation dy/dx = y(3 — y), which is a special case of
the autonomous equation considered in Examples 3
and 4. Since y = 0 and y = 3 are equilibrium solutions
of the DE, their graphs divide the xy-plane into
subregions R4, Rp, and R3, defined by the three

inequalities:
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Ry: -0 <y <, R2:0<y<3, R3:3<y<

|:)'\|_| .

In FIGURE 2.1.11 we have superimposed on a
direction field of the DE six solution curves. The figure
illustrates that all solution curves of the same color,
that is, solution curves lying within a particular
subregion R;, all look alike. This is no coincidence but
is a natural consequence of the fact that lineal
elements passing through points on any horizontal line
are parallel. That said, the following translation
property of an autonomous DE should make sense:

If y(x) is a solution of an autonomous
differential equation dy/dx = f(y), then y1(x) =
y(x — k), k a constant, is also a solution.

y
Vb VR OR YRV
LT T T S T T T [
h\\n\\hm
L R A T N
y=3|-= =t~ =
P AV & o s
J"z‘)’/_!/ o
FAN A ! !
s rr ’ ry
%/‘f 4 4
Y A -
:"-D\\Lx*:\ <"
LRI T \
VR AT 4
P | i

FIGURE 2.1.11 Translated solution curves of an autonomous DE

Hence, if y(x) is a solution of the initial-value problem
dyldx = f(y), y(0) = yo, then y1(x) = y(x = Xo) is a
solution of the IVP dy/dx = f(y), y(xo) = yo. For
example, it is easy to verify that y(x) = eX, —0 < x <
0, is a solution of the IVP dy/dx = y, y(0) = 1 and so
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a solution y4(x) of, say, dyldx =y, y(4) = 1is y(x) =
eX translated 4 units to the right:

y1(X) = y(x — 4) = ¥4, —00 < X < 00,

2.1 Exercises Answers to selected
odd-numbered
problems begin on page
ANS-2.

2.1.1 Direction Fields

In Problems 1—-4, reproduce the given computer-
generated direction field. Then sketch, by hand, an
approximate solution curve that passes through each
of the indicated points. Use different colored pencils
for each solution curve.

1. ﬂ:_;[:1—],;2
dx

(a) y(-2) = 1
(b) ¥(3) =0
(c) y(0) =2

(d) ¥(0) =0
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FIGURE 2.1.12 Direction field for Problem 1

2. d_}‘ = ¢ 00y’

(a) y(-6) =0

(b) ¥(0) =1

(c) y(0)=-4

(d) ¥(8) = -4
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FIGURE 2.1.13 Direction field for Problem 2

3. Yoy
(a) ¥(0) = 0
(b) y(-1) = 0
(€) ¥(2) = 2
(d) ¥(0) = -4
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FIGURE 2.1.14 Direction field for Problem 3

dy _

4.

(sinx) cosy

dx

(a) y(0) =1

0

(b) ¥(1)

(c) ¥(3) =3

(d) ¥(0) = -3
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FIGURE 2.1.15 Direction field for Problem 4

In Problems 5-12, use computer software to obtain a
direction field for the given differential equation. By
hand, sketch an approximate solution curve passing
through each of the given points.

5. y'=x
(a) ¥(0) =0

(b) y(0) = -3
6. y'=x+y

() y(-2) =2

(b) y(1) = -3
v _
7. yﬁ_ X
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10.

11.

12.
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In Problems 13 and 14, the given figures represent
the graph of f(y) and f(x), respectively. By hand,
sketch a direction field over an appropriate grid for
dyldx = f(y) (Problem 13) and then for dy/dx = f(x)
(Problem 14).

13.

FIGURE 2.1.16 Graph for Problem 13

V)

FIGURE 2.1.17 Graph for Problem 14

14.

Telegram: @uni_k
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15.

In parts (a) and (b) sketch isoclines f(x, y) = ¢
(see the Remarks on page 36) for the given
differential equation using the indicated values of
c. Construct a direction field over a grid by
carefully drawing lineal elements with the
appropriate slope at chosen points on each
isocline. In each case, use this rough direction
field to sketch an approximate solution curve for
the IVP consisting of the DE and the initial
condition y(0) = 1.

(a) dy/dx = x + y; ¢ an integer satisfying -5<c¢ <
5

(b) dy/dx=x2+y% c=1c=1,¢c=}c=4

Discussion Problems

16.

(a) Consider the direction field of the differential
equation dy/dx = x(y — 4)? - 2, but do not
use technology to obtain it. Describe the
slopes of the lineal elements on the lines x =
0,y=3,y=4,and y = 5.

(b) Consider the IVP dy/dx = x(y — 4)2 - 2, y(0)
= yo, Where yp < 4. Can a solution y(x) — =~
as x — oo? Based on the information in part
(a), discuss.
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17.

18.

For a first-order DE dy/dx = f(x, y), a curve in
the plane defined by f(x, y) = 0 is called a
nulicline of the equation, since a lineal element
at a point on the curve has zero slope. Use
computer software to obtain a direction field
over a rectangular grid of points for dy/dx = x2 —
2y, and then superimpose the graph of the
nulicline y = }sz over the direction field. Discuss
the behavior of solution curves in regions of the
plane defined by y < 1x? and by y > 1x2. Sketch
some approximate solution curves. Try to
generalize your observations.

(a) Identify the nuliclines (see Problem 17) in
Problems 1, 3, and 4. With a colored pencil,
circle any lineal elements in FIGURES
2.1.12, 2.1.14, and 2.1.15 that you think may
be a lineal element at a point on a nullcline.

(b) What are the nuliclines of an autonomous
first-order DE?

2.1.2 Autonomous First-Order DEs

19. Consider the autonomous first-order differential

equation dy/dx = y — y3 and the initial condition
y(0) = yo. By hand, sketch the graph of a typical
solution y(x) when yg has the given values.

(@) yo>1
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(b)) O<yp<1
() -1<y<0

(d) yo < -1

20. Consider the autonomous first-order differential
equation dy/dx = y2 - y* and the initial condition
y(0) = yo. By hand, sketch the graph of a typical
solution y(x) when yg has the given values.

(a) yo> 1
(b)) O<yp<1
() -1<y<0

(d) yo < -1

In Problems 21-28, find the critical points and phase
portrait of the given autonomous first-order
differential equation. Classify each critical point as
asymptotically stable, unstable, or semi-stable. By
hand, sketch typical solution curves in the regions in
the xy-plane determined by the graphs of the
equilibrium solutions.

d

y

21. — =y -3
ax
dy

22. — = y2 3
&ir ' w
Vv

23. — — _ )t
e (¥ )

Telegram: @uni_k
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24,

25.

26.

27.

28.

10 + 3y — y*

=y*4 — y?)
=¥2 -4 -y

=vlin(y + 2)
e’ — Oy

e?

FISE[SRISEISRIS

In Problems 29 and 30, consider the autonomous
differential equation dy/dx = f(y), where the graph of f
is given. Use the graph to locate the critical points of
each differential equation. Sketch a phase portrait of
each differential equation. By hand, sketch typical
solution curves in the subregions in the xy-plane
determined by the graphs of the equilibrium solutions.

29.

Telegram: @uni_k

FIGURE 2.1.18 Graph for Problem 29
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30.

FIGURE 2.1.19 Graph for Problem 30

Discussion Problems

31.

32.

33.

Consider the autonomous DE dy/dx = (2/m)y -
sin y. Determine the critical points of the
equation. Discuss a way of obtaining a phase
portrait of the equation. Classify the critical
points as asymptotically stable, unstable, or
semi-stable.

A critical point ¢ of an autonomous first-order DE
is said to be isolated if there exists some open
interval that contains ¢ but no other critical point.
Discuss: Can there exist an autonomous DE of
the form given in (1) for which every critical point
is nonisolated? Do not think profound thoughts.

Suppose that y(x) is a nonconstant solution of
the autonomous equation dy/dx = f(y) and that ¢
is a critical point of the DE. Discuss: Why can't
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34.

35.

36.

the graph of y(x) cross the graph of the
equilibrium solution y = ¢? Why can't f(y) change
signs in one of the subregions discussed on
page 387 Why can't y(x) be oscillatory or have a
relative extremum (maximum or minimum)?

Suppose that y(x) is a solution of the
autonomous equation dy/dx = f(y) and is
bounded above and below by two consecutive
critical points ¢1 < ¢p, as in subregion Ry of
Figure 2.1.5(b). If f(y) > O in the region, then
limy_, ~oy(X) = c2. Discuss why there cannot exist
a number L < ¢ such that limy_, ~cy(x) = L. As
part of your discussion, consider what happens
to y'(x) as x — <.

Using the autonomous equation (1), discuss how
it is possible to obtain information about the
location of points of inflection of a solution curve.

Consider the autonomous DE dy/dx = y2 — y — 6.
Use your ideas from Problem 35 to find intervals
on the y-axis for which solution curves are
concave up and intervals for which solution
curves are concave down. Discuss why each
solution curve of an initial-value problem of the
form dy/dx = y2 = y — 6, y(0) = yo, where -2 <
Yo < 3, has a point of inflection with the same y-
coordinate. What is that y-coordinate? Carefully
sketch the solution curve for which y(0) = -1.
Repeat for y(2) = 2.
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37.

Suppose the autonomous DE in (1) has no
critical points. Discuss the behavior of the
solutions.

Mathematical Models

38.

39.

40.

Population Model  The differential equation
in Example 3 is a well-known population model.
Suppose the DE is changed to

av F—
dt

where a and b are positive constants. Discuss

what happens to the population P as time ¢

increases.

Population Model  Another population model
is given by

dP

—=kP—h
dt ’

where h > 0 and k > 0 are constants. For what
initial values P(0) = Py does this model predict
that the population will go extinct?

Terminal Velocity =~ The autonomous
differential equation

dv
m— = me — kv,
dt £
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41.

where k is a positive constant of proportionality
called the drag coefficient and g is the
acceleration due to gravity, is a model for the
instantaneous velocity v of a body of mass m
that is falling under the influence of gravity.
Because the term —kv represents air resistance
or drag, the velocity of a body falling from a
great height does not increase without bound as
time t increases. Use a phase portrait of the
differential equation to find the limiting, or
terminal, velocity of the body. Explain your
reasoning. See page 24.

Terminal Velocity In Problem 17 of
Exercises 1.3, we indicated that for high-speed
motion of a body, air resistance is taken to be
proportional to a power of its instantaneous
velocity v. If we take air resistance to be
proportional to v2, then the mathematical model
for the instantaneous velocity of a falling body of
mass m in Problem 40 becomes

dv 2
m = mgo — -,
a8

where k > 0. Use a phase portrait to find the
terminal velocity of the body. Explain your
reasoning. See page 27.
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42. Chemical Reactions When certain kinds of

chemicals are combined, the rate at which a new
compound is formed is governed by the
differential equation

dX
— = k(a — X)(B — X),
= ka = X)(8 = X)

where k > 0 is a constant of proportionality and
B > a> 0. Here X(f) denotes the number of
grams of the new compound formed in time .
See pages 21 and 22.

(a) Use a phase portrait of the differential
equation to predict the behavior of X as t — .

(b) Consider the case when a = 8. Use a phase
portrait of the differential equation to predict the
behavior of X as t — = when X(0) < a. When
X(0) > a.

(c) Verify that an explicit solution of the DE in the
case when k=1and a= Bis X(t) = a—- 1/(t + c).
Find a solution satisfying X(0) = a/2. Find a
solution satisfying X(0) = 2a. Graph these two
solutions. Does the behavior of the solutions as ¢
— 00 ggree with your answers to part (b)?
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m Separable Equations

INTRODUCTION

Consider the first-order equations dy/dx = f(x, y).
When f does not depend on the variable y, that is, f(x,
y) = g(x), the differential equation

% = g(x) (1)

can be solved by integration. If g(x) is a continuous
function, then integrating both sides of (1) gives the
solution y = [ g(x) dx = G(x) + ¢, where G(x) is an
antiderivative (indefinite integral) of g(x). For
example, if dy/dx =1 + €2, theny =] (1 + 2X) dx or
y=2x+ ,13331 + ¢ defined on (—o0, ).

A Definition

Equation (1), as well as its method of solution, is just
a special case when fin dy/dx = f(x, y) is a product
of a function of x and a function of y.

DEFINITION 2.2.1 Separable

Equation

A first-order differential equation of the form

Y _ ch)
dx_gx y
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is said to be separable or to have separable
variables.

For example, the differential equations

and — =y + cosx
dx

are separable and nonseparable, respectively. To see
this, note that in the first equation we can factor

fx,y) = x%yte™ > as
g(x)  h(y)
A —

) = Xy e = (eHyyte )

but in the second equation there is no way of writing y
+ cos x as a product of a function of x times a
function of y.

Method of Solution

Observe that by dividing by the function h(y), a
separable equation can be written as

POy = ) (2)

where, for convenience, we have denoted 1/h(y) by
p(y). From this last form we can see immediately that
(2) reduces to (1) when h(y) = 1.

Now if y = ¢(x) represents a solution of (2), we
must have p(¢(x))¢'(x) = g(x), and therefore,


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

Jp(oﬁ(x)w'(x) dx = j g(x) dx. (3)
But dy = ¢'(x) dx, and so (3) is the same as
’P@} dy = ’g(x} dx or H(y) = G(x) + c, (4)

where H(y) and G(x) are antiderivatives of p(y) =
1/h(y) and g(x), respectively.

Equation (4) indicates the procedure for solving
separable equations. A one-parameter family of
solutions, usually given implicitly, is obtained by
integrating both sides of the differential form p(y) dy
= g(x) dx.

In solving first-order DEs, use only one
constant.

There is no need to use two constants in the
integration of a separable equation, because if we
write H(y) + ¢1 = G(x) + c¢o, then the difference ¢y -
c1 can be replaced by a single constant c, as in (4).
In many instances throughout the chapters that follow,
we will relabel constants in a manner convenient to a
given equation. For example, multiples of constants or
combinations of constants can sometimes be
replaced by a single constant.

GV IHNNE Solving a

Separable DE

Solve (1 + x)dy—ydx=0.
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SOLUTION

Dividing by (1 + x)y, we can write dy/y = dx/(1 +
x), from which it follows that

[5 =)
¥ 14 x

Inly| = In|l + x| + ¢

a_ﬂdﬁg"“*"'“"" = e+l po « laws of exponents
{|1+_r|=1+_1‘. x=—1

_ | A
=1 + xle® H+xl=—(1+x), x<—I

vy = Xl + x).

Relabeling ¢ by ¢ then gives y = ¢(1 + x)
defined on (-0, ©0).

In the solution of Example 1, because each
integral results in a logarithm, a judicious choice for
the constant of integration is In |c| rather than c.
Rewriting the second line of the solution as In |y] = In
|1 + x| + In|c| enables us to combine the terms on
the right-hand side by the properties of logarithms.
FromIn|y| = In|c(1 + x)|, we immediately get y = ¢(1
+ X). Even if the indefinite integrals are not all
logarithms, it may still be advantageous to use In |c]|.
However, no firm rule can be given.

In Section 1.1 we have already seen that a
solution curve may be only a segment or an arc of the
graph of an implicit solution G(x, y) = 0.

=2.0:\/1x8 =8 Solution Curve

d
Solve the initial-value problem d—v = —

x
X y
y4) = —3.

I


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

SOLUTION
By rewriting the equation as y dy = —x dx we get
2 2
y X

We can write the result of the integration as x2 +
y2 = ¢2 by replacing the constant 2¢4 by ¢2. This
solution of the differential equation represents a
one-parameter family of concentric circles
centered at the origin.

Now when x =4, y=-3,sothat 16 + 9 = 25 =
c2. Thus the initial-value problem determines the
circle x* + y* = 25 with radius 5. Because of its
simplicity, we can solve this implicit solution for an
explicit solution that satisfies the initial condition.
We have seen this solution as y = ¢o(x) or

vy = —\/25 — x% —5 < x < 5 in Example 8 of
Section 1.1. A solution curve is the graph of a
differentiable function. In this case the solution
curve is the lower semicircle, shown in blue in
FIGURE 2.2.1, that contains the point (4, —3).

¥

] T T T T 1

FIGURE 2.2.1 Solution curve for IVP in Example 2
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SN IZNSxN Initial-Value

Problem

Solve the initial-value problem

dy

—=1+y? 0) = 0.

SOLUTION

Rewriting the equation as 1 iy ; = dx we see
y

that

J b lzjdx gives tan~'y = x + c.
1 +y

Now y(0) = 0 in the last equation gives tan™10 = 0
+ ¢ and so ¢ = 0. The solution is tan™1 y = x or
V = tan x with interval of definition (—=/2, 7/2)

Most of us would write the solution tan™1 y = x
+ ¢ in Example 3 as y = tan(x + c¢). But we have to
be a bit careful here. If we simply specify a value
of ¢, then y = tan(x + ¢) actually defines an infinite
number of particular solutions corresponding to an
infinite number of intervals of definition. For
example, forc =10

...y = tanx, (—3m/2, —m/2),
y = tanx, (—a/2, w/2), ¥ = cie*cosx + c,e*sinx

are solutions of the differential equation. See
FIGURE 2.2.2. Only the red graph is the solution
of the VP in Example 3.

Telegram: @uni_k
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y=tanx

X

3w

7

FIGURE 2.2.2 Solutions of DE in Example 3
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2
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|
|

Losing a Solution

Some care should be exercised when separating
variables, since the variable divisors could be zero at
a point. Specifically, if r is a zero of the function h(y),
then substituting y = r into dy/dx = g(x)h(y) makes
both sides zero; in other words, y = ris a constant
solution of the differential equation. But after
separating variables, observe that the left side of
dy/h(y) = g(x)dx is undefined at r. As a consequence,
y = r may not show up in the family of solutions
obtained after integration and simplification. Recall,
such a solution is called a singular solution.

SN\ ILEW:8 | osing a Solution

Solveﬁ= yc — 4,

dx

SOLUTION

We put the equation in the form


https://t.me/uni_k

www.konkur.in

dy :d.IOI'[ % — % ]dy:dx. (5)
y:—4 y—2 y+2

The second equation in (5) is the result of using
partial fractions on the left side of the first
equation. Integrating and using the laws of
logarithms gives

i, y—2
yra| B Te o T

dr+o,

1 1
Zln|y—2|—zln[v+2|=x+cl or In =e

Here we have replaced 4c¢4 by c». Finally, after

replacing % by ¢ and solving the last equation for
y, we get the one-parameter family of solutions

1 + ce®

1 — ce™

y=2 (6)
Now if we factor the right side of the
differential equation as dy/dx = (y — 2)(y + 2), we
know from the discussion in Section 2.1 that y = 2
and y = -2 are two constant (equilibrium)
solutions. The solution y = 2 is a member of the
family of solutions defined by (6) corresponding to
the value ¢ = 0. However, y = -2 is a singular
solution; it cannot be obtained from (6) for any
choice of the parameter c. This latter solution was
lost early on in the solution process. Inspection of
(5) clearly indicates that we must preclude y = £2
in these steps. =

2 CVNHESN An Initial-Value

Problem

Solve the initial-value problem

Telegram: @uni_k
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cos x(e? — }')% = ¢” sin 2x, y(0) = 0.

SOLUTION
Dividing the equation by e¥ cos x gives
e? —y sin 2x
e’ ay = COS X .

Before integrating, we use termwise division on
the left side and the trigonometric identity sin 2x =
2 sin x cos x on the right side. Then

integration by parts — [{f-" —ye V)dv =2 |’ sin x df7)

yields
el +yve M+ eV = —2cosx + c.

The initial condition y = 0 when x = 0 implies ¢ =
4. Thus a solution of the initial-value problem is

e’ +ye P+ e =4— 2cosx. (8) =

Use of Computers

In the Remarks at the end of Section 1.1 we
mentioned that it may be difficult to use an implicit
solution G(x, y) = 0 to find an explicit solution y =
@(x). Equation (8) shows that the task of solving for y
in terms of x may present more problems than just
the drudgery of symbol pushing—it simply can't be
done! Implicit solutions such as (8) are somewhat
frustrating; neither the graph of the equation nor an
interval over which a solution satisfying y(0) = 0 is
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defined is apparent. The problem of “seeing” what an
implicit solution looks like can be overcome in some
cases by means of technology. One way of
proceeding is to use the contour plot application of a
CAS. Recall from multivariate calculus that for a
function of two variables z = G(x, y) the two-
dimensional curves defined by G(x, y) = ¢, where ¢
is constant, are called the /level curves of the
function. With the aid of a CAS we have illustrated in
FIGURE 2.2.3 some of the level curves of the
function G(x, y) = e¥Y + ye¥V + e¥ + 2 cos x. The
family of solutions defined by (7) are the level curves
G(x, y) = c. FIGURE 2.2.4 illustrates, in blue, the
level curve G(x, y) = 4, which is the particular solution
(8). The red curve in Figure 2.2.4 is the level curve
G(x, y) = 2, which is the member of the family G(x, y)
= ¢ that satisfies y(m7/2) = 0.

FIGURE 2.2.3 Level curves G(x, y) = ¢, where G(x, y) = €Y+ ye Y+ e7¥
+ 2 cos x
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y
2_‘ I T T | T I |_|
1+ c=4 .
\ /2, 0)
0,0 x
B c=2 ©.0) |
1k i
_2 _I 1 1 1 1 1 1 I_
2 -1 1 2

FIGURE 2.2.4 Levelcurvesc=2andc =4

If an initial condition leads to a particular solution
by finding a specific value of the parameter c in a
family of solutions for a first-order differential
equation, it is a natural inclination for most students
(and instructors) to relax and be content. However, a
solution of an initial-value problem may not be unique.
We saw in Example 4 of Section 1.2 that the initial-
value problem

dy — 1/2 =
—=n' 0 =0, 9)
has at least two solutions, y = 0 and y = %x“. We are
now in a position to solve the equation.

Separating variables and integrating },—% dy = x dx
gives 2y? = 1x? + ¢,. Solving for y and replacing —3
by the symbol ¢ yields

y = Gx* + o (10)
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Each of the functions in the family given in (10) is
a solution of equation (9) on the interval (—oo, o)
provided we take ¢ = 0. See Problem 56 in Exercises
2.2. Now when we substitute x =0, y = 0in (10) we
see that ¢ = 0. Therefore y = {¢x* is a solution of the
I\VP. But note that the solution y = 0 is not a member
of the family of solutions (10). This singular solution
was lost in the solution process by dividing by },%. The
initial-value problem (9) actually possesses many
more solutions, since for any choice of the parameter
a 2 0 the piecewise-defined function

0, X<a
Y= Lx2—a®? x=a

satisfies both the differential equation and the initial
condition. See FIGURE 2.2.5.

YI a=0 a0

(0,0)

FIGURE 2.2.5 Piecewise-defined solutions of (9)

An Integral-Defined Function

In (ii) of the Remarks at the end of Section 1.1 it was
pointed out that a solution method for a certain kind
of differential equation may lead to an integral-defined
function. This is especially true for separable
differential equations because integration is the
method of solution. For example, if g is continuous on
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some interval / containing xo and x, then a solution of
the simple initial-value problem dy/dx = g(x), y(xo) =
yo defined on /is given by

X

yx) = yo + J g(t) dt.

*p

To see this, we have immediately from (12) of
Section 1.1 that dy/dx = g(x) and y(xo) = yo because

j:u "g(r)dt = 0. When [ g(t) dt is nonelementary, that is,
cannot be expressed in terms of elementary
functions, the form y(x) = y, + J:, g(t) dt may be the

best we can do in obtaining an explicit solution of an
IVP. The next example illustrates this idea.

D CVIHSCN An Initial-Value

Problem
Solve % =e™™, y(2) =6
SOLUTION

The function g(x) = ¢~* is continuous on the
interval (—oo, oo) but its antiderivative is not an
elementary function. Using t as a dummy variable
of integration, we integrate both sides of the given
differential equation:


https://t.me/uni_k

www.konkur.in

X X

dy o
[—u’! = | e " di
, d Ja

_1‘{."]]': = | e "ar

vix)y = w2 = | e “dt

v(x) = v(2) + |’ e " dr.

4

Using the initial condition y(2) = 6 we obtain the
solution y(x) = 6 + [Je "dr. =

The procedure illustrated in Example 6 works
equally well on separable equations dy/dx = g(x)f(y)
where, say, f(y) possesses an elementary
antiderivative but g(x) does not possess an
elementary antiderivative. See Problems 31-34 in
Exercises 2.2.

REMARKS

In some of the preceding examples we saw that
the constant in the one-parameter family of
solutions for a first-order differential equation can
be relabeled when convenient. Also, it can easily
happen that two individuals solving the same
equation correctly arrive at dissimilar expressions
for their answers. For example, by separation of
variables, we can show that one-parameter
families of solutions for the DE (1 + y2) dx + (1 +

x2) dy = 0 are

Telegram: @uni_k
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x+y
1 —xy

arctan x + arctany = ¢ or = C.

As you work your way through the next several
sections, keep in mind that families of solutions
may be equivalent in the sense that one family
may be obtained from another by either relabeling
the constant or applying algebra and trigonometry.
See Problems 27 and 28 in Exercises 2.2.

2.2 Exercises Answers to selected
odd-numbered
problems begin on page
ANS-2,

In Problems 1-22, solve the given differential
equation by separation of variables.

1. Y

" dx yea

2.ﬂ=u+w
dx

3. dx+e¥dy=0
dy —(y — 1)’dx =0

dy

5. x— =14
xa'x Y
dy

6. —+209°=0
ax

7. D _ ey
dx

8. ey % =e 7+ e ¥
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+ 1)?
9.y1nx@::(}F )

dy h'e

d 2y + 332
m.iz(y )
dx 4 + 5

1. cscydx + sec’xdy = 0

12. sin3xdx + 2y cos’3xdy = 0

13. (& + 1)Y’edx + (¢* + 1)’e "dy =0
14. x(1 + y)Vdx = y(1 + xH)ay

ds

15. — =kS
ar
ag

16. = = k(O — 70
= k@~ 170)
dP

17. — =p — p?
dt
dN

18. — + N = Nre'*?
dt

dp  xy+3x—y—3
de  xy—2x+4y — 8
dy  xy+2y—x—2

19.

20. — =
dx xy—3y+x—3
dy
21, = =xV1 —y?
dx )
dy
22. (¢ 4+ %) — = y?
( )dx )

In Problems 23-30, find an explicit solution of the
given initial-value problem.
23. z—: =4(x2 + 1), x(11/4) =1

dy y'—1
de x*—1
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d
25:£+2W=2¢ﬂ4):4

dy
26. — +2y=1,y0)=1
dr v y(0) = 4

27. \/1 — y2dx — V1 — x2dy = 0, ¥(0) = \/3/2
28. (1+x*)dy+x(1+4y?)dx=0,y(1)=0

dy
29. —=1+y?% y0) =0

i dy y(0)

v

30. inh y— = coshy, 1) =10

X sin ydx coshy, (1)

In Problems 31-34, proceed as in Example 6 and find
an explicit solution of the given initial-value problem.

day 2

1. =~ =vye™, y4) =1
Foial y(4)
dy .

32. azylsmxz, y(—2) =3

dy
33. — =1+ yHVI1 +cosx?, yl)=1

2
dy e “sinx
34, —=—"" w0 =0
dx 1 4+ x? y©)

In Problems 35-38, find an explicit solution of the
given initial-value problem. Determine the exact
interval | of definition of each solution by analytical
methods. Use a graphing utility to plot the graph of
each solution.

dy 2x+ 1
dx 2y

dy
36. 2y — Z)a‘ = 3x? + 4x + 2, y(l) = -2

35. y(—2) = —1

37. &dx — e Fdy =0, y0)=0

Telegram: @uni_k
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38. sinxdx +ydy =0, y0) =1

39. (a) Find a solution of the initial-value problem
consisting of the differential equation in
Example 4 and the initial conditions y(0) = 2,
y(0) = -2, y(3) = 1.

(b) Find the solution of the differential equation
in Example 4 when In ¢4 is used as the
constant of integration on the left-hand side
in the solution and 4 In ¢4 is replaced by In c.
Then solve the same initial-value problems in

part (a).

v
40. Find a solution of x di = y? — y that passes
X

through the indicated points.
(a) (0, 1)
(b) (0, 0)
(c) (3 3)
(d) (2, §)
41. Find a singular solution of Problem 21. Of
Problem 22.

42. Show that an implicit solution of
2x sin? y dx — (x2+ 10)cos y dy =0

is given by In(x2 + 10) csc y = c¢. Find the
constant solutions, if any, that were lost in the
solution of the differential equation.
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Often a radical change in the form of the solution of a
differential equation corresponds to a very small
change in either the initial condition or the equation
itself. In Problems 43—46, find an explicit solution of
the given initial-value problem. Use a graphing utility
to plot the graph of each solution. Compare each
solution curve in a neighborhood of (0, 1).

dy

43. xa':yz—}‘, y0) =1

44, xj—i:yz—y, y(0) = 1.01
45, i:(y— 1+ 001, »0)=0
46. j::(y— 1)> +0.01, »0)=0

47. Every autonomous first-order equation dy/dx =
f(y) is separable. Find explicit solutions y4(x),
yo(x), ya(x), and y4(x) of the differential equation
dyldx = y — y3 that satisfy, in turn, the initial
conditions y1(0) = 2, y2(0) = 1, y3(0) = -}, and
y4(0) = —2. Use a graphing utility to plot the
graphs of each solution. Compare these graphs
with those predicted in Problem 19 of Exercises
2.1. Give the exact interval of definition for each
solution.

48. (a) The autonomous first-order differential
equation dy/dx = 1/(y — 3) has no critical
points. Nevertheless, place 3 on a phase line
and obtain a phase portrait of the equation.
Compute d2y/dx? to determine where
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solution curves are concave up and where
they are concave down (see Problems 35
and 36 in Exercises 2.1). Use the phase
portrait and concavity to sketch, by hand,
some typical solution curves.

(b) Find explicit solutions y4(x), y2(x), ya(x), and
y4(x) of the differential equation in part (a)
that satisfy, in turn, the initial conditions y4(0)
=4, y2(0) = 2, y3(1) = 2, and y4(-1) = 4.
Graph each solution and compare with your
sketches in part (a). Give the exact interval
of definition for each solution.

In Problems 49-54, use a technique of integration or
a substitution to find an explicit solution of the given
differential equation or initial-value problem.

49.

50.

51.

52.

53.

54.

dy 1
dx 1+ sinx

ﬂ_sin'\/;
dy
(\/;+I)§=\/i+}?

d_y:vzﬂf?’—'\‘;

Pl )

b _ " (1) = 4
ax y T

dy xtan'x

= = . y(0) =3
i y y(0)

Discussion Problems



https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

55.

56.

57.

58.

(a) Explain why the interval of definition of the
explicit solution y = ¢2(x) of the initial-value
problem in Example 2 is the open interval
(-5, 5).

(b) Can any solution of the differential equation
cross the x-axis? Do you think that x2 + y2 =
1 is an implicit solution of the initial-value
problem dy/dx = =xly, y(1) = 0?

On page 48 we showed that a one-parameter
family of solutions of the first-order differential
equation dyix = xyris y = (;x* + ¢)*for c 2 0.
Each solution in this family is defined on the
interval (— o0, o0). The last statement is not true if
we choose ¢ to be negative. For ¢ = -1, explain
why y = (3x* — 1)? is not a solution of the DE on
(=00, o). Find an interval of definition / on which
y = (3x* — 1)?is a solution of the DE.

In Problems 47 and 48 we saw that every
autonomous first-order differential equation
dyl/dx = f(y) is separable. Does this fact help in
the solution of the initial-value problem

av
di =\ + };Eginz}!._' y(O) = %7 Discuss. Sketch,
X

by hand, a plausible solution curve of the
problem.

(a) Solve the two initial-value problems:
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59.

60.

b (0) =1 d b + Y (e) =1
— = = and — = e) = 1.
ax V7 & 2 xlnx”’

(b) Show that there are more than 1.65 million
digits in the y-coordinate of the point of
intersection of the two solution curves in part (a).

Find a function whose square plus the square of
its derivative is 1.

(a) The differential equation in Problem 27 is
equivalent to the normal form

dy  [1—y?
dc N 1-—x2

in the square region in the xy-plane defined by

|x] <1, |yl < 1. But the quantity under the radical
is nonnegative also in the regions defined by |x|
> 1, |yl > 1. Sketch all regions in the xy-plane for
which this differential equation possesses real
solutions.

(b) Solve the DE in part (a) in the regions
defined by |x| > 1, |y| > 1. Then find an implicit
and an explicit solution of the differential equation
subject to y(2) = 2.

Mathematical Models

61.

Hawking Radiation = According to the English
theoretical physicist Stephen Hawking (1942—
2018), the mass m(t) of a black hole decreases
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over time due to radiation. A model for the mass
is given by

dm __k

d  m?
Solve for m(f) when m(0) = my.

62. Hanging Chain = Suppose a flexible steel
chain is hanging under its own weight and its
ends are attached at the same height. See the
photo below.

(a) When determining the shape of the chain,
one has to first solve the differential equation

Y
where a is a constant. Solve for u(x) when u(0)
= 0.
(b) The function u(x) found in part (a) is related
to the shape of the chain y(x) by the differential
equation

dy

—— = .
dx

Solve for y(x) when y(0) = 1/a. Identify the
shape of the hanging chain.

Telegram: @uni_k
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Hanging chain in Problem 62

63. Tautochrone Problem The tautochrone

problem consists of finding a curve C such that
the time of descent of a bead sliding without
friction on C to its lowest point is independent of
its starting point. If the curve C in FIGURE 2.2.6
is a tautochrone, then the three beads starting
from different positions corresponding to x-
coordinates x1, x2, and x3 will reach the origin (0O,
0) in the same time. The Dutch mathematician
and astronomer Christiaan Huygens (1629—-
1695) was the first to publish the solution of the
tautochrone problem in 1673.

In determining such a curve, the following
differential equation must be solved:

1+ (d—x)z _ 2
dy y
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where a is a constant. Find parametric equations
for C by solving the DE in the form
a—y

dx = —dy.
y @

Use the substitution y = a sin? ¢.

¥

(0, 0) Xy Xa X3

FIGURE 2.2.6 Tautochrone in Problem 63

64. Chemical Reaction In a certain second-
order chemical reaction involving a single
reactant, the rate of reaction is given by

a4 k(A )
_ = —_— x
dt ’

where k and A are constants and x(f) is the
number of grams of the new chemical formed in
time t. Solve for x(f) when x(0) = 0.

65. Suspension Bridge In (16) of Section 1.3
we saw that a mathematical model for the shape
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of a flexible cable strung between two vertical
supports is

o _ 7 11
dx_qu ( )

where W denotes the portion of the total vertical
load between the points P4 and P, shown in
Figure 1.3.9. The DE (11) is separable under the
following conditions that describe a suspension
bridge.

Let us assume that the x- and y-axes are as
shown in FIGURE 2.2.7—that is, the x-axis runs
along the horizontal roadbed, and the y-axis
passes through (0, a), which is the lowest point
on one cable over the span of the bridge,
coinciding with the interval [-L/2, L/2]. In the
case of a suspension bridge, the usual
assumption is that the vertical load in (11) is only
a uniform roadbed distributed along the
horizontal axis. In other words, it is assumed that
the weight of all cables is negligible in
comparison to the weight of the roadbed and
that the weight per unit length of the roadbed
(say, pounds per horizontal foot) is a constant r.
Use this information to set up and solve an
appropriate initial-value problem from which the
shape (a curve with equation y = ¢(x)) of each
of the two cables in a suspension bridge is
determined. Express your solution of the IVP in
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cable

AN

L2 - Li2 T >
i .

I

roadbed (load)

FIGURE 2.2.7 Shape of a cable in Problem 65

Computer Lab Assignments

66.

67.

(a) Use a CAS and the concept of level curves
to plot representative graphs of members of

the family of solutions of the differential
dy 8 + 5

equation Ix = _3}‘2 1
different numbers of level curves as well as
various rectangular regions defined by a < x
<b,csy<d.

. Experiment with

(b) On separate coordinate axes plot the
graphs of the particular solutions
corresponding to the initial conditions: y(0) =

=1; ¥(0) = 2; y(-1) = 4; y(-1) = -3.

(a) Find an implicit solution of the IVP
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2y + 2)dy — (4x° + 6x)dx = 0, y(0) = —3.

(b) Use part (a) to find an explicit solution y = ¢
(x) of the IVP.

(c) Consider your answer to part (b) as a
function only. Use a graphing utility or a CAS
to graph this function, and then use the graph
to estimate its domain.

(d) With the aid of a root-finding application of a
CAS, determine the approximate largest
interval | of definition of the solution y = &(x)
in part (b). Use a graphing utility or a CAS to
graph the solution curve for the IVP on this
interval.

68. (a) Use a CAS and the concept of level curves
to plot representative graphs of members of

the family of solutions of the differential
dy  x(1—x) . .
equation — = . Experiment with
dx v(—2+Yy)
different numbers of level curves as well as
various rectangular regions in the xy-plane

until your result resembles FIGURE 2.2.8.

(b) On separate coordinate axes, plot the
graph of the implicit solution corresponding
to the initial condition y(0) = }. Use a colored
pencil to mark off that segment of the graph
that corresponds to the solution curve of a
solution ¢ that satisfies the initial condition.
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With the aid of a root-finding application of a
CAS, determine the approximate largest
interval | of definition of the solution &. [Hint.
First find the points on the curve in part (a)
where the tangent is vertical.]

(c) Repeat part (b) for the initial condition y(0)
= -2.

FIGURE 2.2.8 Level curves in Problem 68

*In Section 2.6 we discuss several other ways of proceeding that are
based on the concept of a numerical solver.
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m Linear Equations

INTRODUCTION

We continue our search for solutions of first-order
DEs by next examining linear equations. Linear
differential equations are an especially “friendly”
family of differential equations in that, given a linear
equation, whether first-order or a higher-order kin,
there is always a good possibility that we can find
some sort of solution of the equation that we can look
at.

A Definition

The form of a linear first-order DE was given in (7) of
Section 1.1. This form, the case when n = 1 in (6) of
that section, is reproduced here for convenience.

DEFINITION 2.3.1 Linear

Equation

A first-order differential equation of the form
Y+ o)y = (1)
a,(x) i ag(X)y = g(x)

is said to be a linear equation in the dependent
variable y.
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When g(x) = 0, the linear equation (1) is said to
be homogeneous; otherwise, it is
nonhomogeneous.

Standard Form

By dividing both sides of (1) by the lead coefficient
a1(x) we obtain a more useful form, the standard

form, of a linear first-order equation
Y, p 2)
— (x)y = f(x).
I y =Jf

We seek a solution of (2) on an interval / for which
both functions P and f are continuous.

In the discussion that follows, we illustrate a
property and a procedure and end up with a formula
representing the form that every solution of (2) must
have. But more than the formula, the property and the
procedure are important, because these two
concepts carry over to linear equations of higher
order.

The Property

The differential equation (2) has the property that its
solution is the sum of the two solutions, y = y¢ + yp,
where y. is a solution of the associated
homogeneous equation

jx—” + Py =0 3)

and yp is a particular solution of the nonhomogeneous
equation (2). To see this, observe
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(,f n'l_‘.'t. . {r"_‘l.'J,, . )
H[,\-L. +y,] + POy, + y,] = W + P(x)y. o + Py, | = f(x).
\_V_} \*/_}

0 flx)

+

The Homogeneous DE

The homogeneous equation (3) is also separable.
This fact enables us to find y. by writing (3) as

i—erP(x)dr:O

and integrating. Solving for y gives y. = ce~P(X)ax_ For
convenience let us write y; = cy1(x), where yq = e~
JP(x) dx_The fact that dy1/dx + P(x)y1 = 0 will be used
next to determine yp.

The Nonhomogeneous DE

We can now find a particular solution of equation (2)
by a procedure known as variation of parameters.
The basic idea here is to find a function u so that

Vp = u(x)yi(x) = u(x)e ¥4 is a solution of (2). In
other words, our assumption for y, is the same as y.
= cy1(x) except that c is replaced by the “variable
parameter” u. Substituting y, = uy1 into (2) gives

Product Rule Ze1ro
! !
dy, du . dy, du
u—+ v, —+ Pxuy, =f(x) or u|l—+ Py, |+ v,— =f(x)
dx 7 dx : : cx : Tdy
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so that
du f(x)
vy — = f(X).
M
Separating variables and integrating then gives
X 2
duzﬂ)dx and md—5=—mg
y1(x) dr?

From the definition of y1(x), we see 1/y;(x) = e/PXx)dx,
Therefore

Y, =, = ( J ;(2) dx)e_mdx _ i J (PO L)

ar:;;d: y. + }’P — ce — [P(x) dx 14 e—_,l'P{x}dee.fP{xl dxf(x) fi](4)

Hence if (2) has a solution, it must be of form (4).
Conversely, it is a straightforward exercise in
differentiation to verify that (4) constitutes a one-
parameter family of solutions of equation (2).

You should not memorize the formula given in (4).
There is an equivalent but easier way of solving (2). If
(4) is multiplied by

EfPtxJ dx (5)
and then ISPy — oy JEIP{x}dxf(x)dx (6)
s differentiated, | e axy) _ o fpeoacp ) (7)

dx

we getemﬂdx% + P(I)E'rﬂx}d"j' — e_FP{J:] dxf(x)_ (8)
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Dividing the last result by elPX)dx gives (2).

Method of Solution

The recommended method of solving (2) actually
consists of (6)—(8) worked in reverse order. In other
words, if (2) is multiplied by (5), we get (8). The left
side of (8) is recognized as the derivative of the
product of elPx)dx and y. This gets us to (7). We then
integrate both sides of (7) to get the solution (6).
Because we can solve (2) by integration after
multiplication by ,/Px dx we call this function an
integrating factor for the differential equation. For
convenience we summarize these results. We again
emphasize that you should not memorize formula (4)
but work through the following two-step procedure
each time.

Guidelines for Solving a Linear

First-Order Equation

(i) Put a linear first-order equation of form (1)
into standard form (2) and then determine
P(x) and the integrating factor e/P(x)dx,

(i) Multiply (2) by the integrating factor. The
left side of the resulting equation is
automatically the derivative of the product
of the integrating factor and y. Write

g [E.I'Ptx} dx}l.] _ E.FP[.r] d_rf{ x)

and then integrate both sides of this
equation.
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D\ ILESNE Solving a Linear
DE

Solve o 3y = 6.
dx

SOLUTION

This linear equation can be solved by separation
of variables. Alternatively, since the equation is
already in the standard form (2), we see that the
integrating factor is /-3)9x = e=3x_ We multiply the
equation by this factor and recognize that

3‘3‘% — 3¢ ¥y =6e** s the same as

d
I e ™ y] = 673,

Integrating both sides of the last equation,

J% [e  *y] = Jﬁe‘hdx

gives e3X y = =2¢=3X + ¢. Thus a solution of the
differential equationis y = —2 + ce™,
—00 < X < 00.

When a4, ag, and g in (1) are constants, the
differential equation is autonomous. In Example 1,
you can verify from the normal form dy/dx = 3(y + 2)
that —2 is a critical point and that it is unstable and a
repeller. Thus a solution curve with an initial point

Telegram: @uni_k
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either above or below the graph of the equilibrium
solution y = -2 pushes away from this horizontal line
as x increases.

Constant of Integration

Notice in the general discussion and in Example 1 we
disregarded a constant of integration in the evaluation
of the indefinite integral in the exponent of e/P(X)dx_|f
you think about the laws of exponents and the fact
that the integrating factor multiplies both sides of the
differential equation, you should be able to answer
why writing JP(x) dx + ¢ is unnecessary. See Problem
55 in Exercises 2.3.

General Solution

Suppose again that the functions P and fin (2) are
continuous on a common interval /. In the steps
leading to (4) we showed that if (2) has a solution on
I, then it must be of the form given in (4). Conversely,
it is a straightforward exercise in differentiation to
verify that any function of the form givenin (4) is a
solution of the differential equation (2) on /. In other
words, (4) is a one-parameter family of solutions of
equation (2), and every solution of (2) defined on /is
a member of this family. Consequently, we are
justified in calling (4) the general solution of the
differential equation on the interval . Now by writing
(2) in the normal form y' = F(x, y) we can identify F(x,
y) = —P(x)y + f(x) and oF/dy = —P(x). From the
continuity of P and f on the interval /, we see that F
and dF/dy are also continuous on /. With Theorem
1.2.1 as our justification, we conclude that there
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exists one and only one solution of the first-order
initial-value problem

d 1
d_: + P(x)y = f(x).  ¥(x) = Yo (9)

defined on some interval Iy containing xp. But when xg
is in /, finding a solution of (9) is just a matter of
finding an appropriate value of c in (4); that is, for
each xgp in | there corresponds a distinct c. In other
words, the interval Iy of existence and uniqueness in
Theorem 1.2.1 for the initial-value problem (9) is the
entire interval /.

=20\ 14828 General Solution

Solve xﬂ — 4y = x®”.
dx
SOLUTION
By dividing by x we get the standard form
d}' 4 . I |
X y = x’e", (10)

From this form we identify P(x) = —4/x and f(x) =
x°eX and observe that P and f are continuous on
the interval (0, o). Hence the integrating factor is

we can use In x instead of In lx| since x = ()

— o — -4 —
e dfdxfx _ e dlnx _ {)lﬂ.'l.' =y 4.
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Here we have used the basic identity plez.¥ = N, N
> 0. Now we multiply (10) by x4,

4y

X == 4x_5y = xe*, and obtain
d d
e [x %] = xe™.

It follows from integration by parts that

J’Iexdl‘ — ye* — e¢*¥and so

J% [x %] = Jxe*‘dx

gives x %y = xeX — e* + ¢. Thus the general
solution defined on (0, 0o ) IS
y=xe* —x'e” + ex”.

Singular Points

Except in the case when the lead coefficient is 1, the
recasting of equation (1) into the standard form (2)
requires division by a1(x). Values of x for which a4(x)
= 0 are called singular points of the equation.
Singular points are potentially troublesome.
Specifically in (2), if P(x) (formed by dividing ag(x) by
a1(x)) is discontinuous at a point, the discontinuity
may carry over to functions in the general solution of
the differential equation.

2.\ IMN=E General Solution
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dy -

Find the general solution of ¢*y e er + e

SOLUTION

We write the differential equation in standard form

I
dc  xX—0°

=0 (11)

and identify P(x) = x/(x2 — 9). Although P is
continuous on (—co, =3), on (-3, 3), and on (3, ),
we shall solve the equation on the first and third
intervals. On these intervals the integrating factor
is

xdx/(x*=9) _ _Lrov dv/ivie 1 »
(;f / = e 2xdx/(x"-9) — erlnx?=9 _ .T2 — 9.

After multiplying the standard form (11) by this
factor, we get

% [Vx? — 9y] = 0 and integrating gives
x? -9y =c.
Thus on either (o, =3) or (3, o), the general
solution of the equationis y = ¢/\/x? — 9. =

Notice in the preceding example that x = 3 and
x = =3 are singular points of the equation and that
every function in the general solution
y = ¢/Vx?* — 9 is discontinuous at these points. On
the other hand, x = 0 is a singular point of the
differential equation in Example 2, but the general
solution y = x%¢* — x4e* + cx? is noteworthy in that
every function in this one-parameter family is
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continuous at x = 0 and is defined on the interval
(—o0, o) and not just on (0, ) as stated in the
solution. However, the family y = x%eX — x%eX + cx4
defined on (-, =) cannot be considered the
general solution of the DE, since the singular point
x = 0 still causes a problem. See Problems 50
and 51 in Exercises 2.3. We will study singular
points for linear differential equations in greater
depth in Section 5.2.

S CVIHNEN An Initial-Value

Problem

Solve the initial-value problem

%—Fy:x, y0) = 4.

SOLUTION

The equation is in standard form, and P(x) = 1
and f(x) = x are continuous on the interval (—o0, o
). The integrating factor is eldx = ex and so
integrating

Lleny] = xe*
£ = Xxe
ax' €Y

gives eX¥ = xeX — eX + ¢. Solving this last equation
for y yields the general solution

v =y — | + ce . But from the initial condition
we know that y = 4 when x = 0. Substituting these
values in the general solution implies ¢ = 5. Hence
the solution of the problem on the interval (—oo, o)
is
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y=x-1+05e™* (12) =

Recall that the general solution of every linear
first-order differential equation is a sum of two special
solutions: y., the general solution of the associated
homogeneous equation (3), and yp, a particular
solution of the nonhomogeneous equation (2). In
Example 4 we identify y, = ce™™ and y, = x — 1.
FIGURE 2.3.1, obtained with the aid of a graphing
utility, shows (12) in blue along with other
representative solutions in the family y = x - 1 + ce™.
It is interesting to observe that as x gets large, the
graphs of all members of the family are close to the
graph of yp, = x — 1, which is shown in green in Figure
2.3.1. This is because the contribution of y, = ce™* to
the values of a solution becomes negligible for
increasing values of x. We say that y. = ce X is a
transient term since y, — 0 as x — oc. While this
behavior is not a characteristic of all general solutions
of linear equations (see Example 2), the notion of a
transient is often important in applied problems.

c=0

i, ]|
c<0
—4f c=0

FIGURE 2.3.1 Some solutions of the DE in Example 4

Piecewise-Linear Differential
Equation

Telegram: @uni_k
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In the construction of mathematical models
(especially in the biological sciences and engineering)
it can happen that one or more coefficients in a
differential equation is a piecewise-defined function.
In particular, when either P(x) or f(x) in (2) is a
piecewise-defined function the equation is then
referred to as a piecewise-linear differential
equation. In the next example, f(x) is piecewise
continuous on the interval [0, o) with a single jump
discontinuity at x = 1. The basic idea is to solve the
initial-value problem in two parts corresponding to the
two intervals over which f(x) is defined; each part
consists of a linear equation solvable by the method
of this section. As we will see, it is then possible to
piece the two solutions together at x = 1 so that y(x)
is continuous on [0, o). See Problems 33-38 in
Exercises 2.3.

D CVIHNSEE An Initial-Value

Problem
Solvedy+y= fx), yoy=0 Where
B |.x O0=x=1
J® =30, x>1.
SOLUTION

The graph of the discontinuous function f is shown
in FIGURE 2.3.2. We solve the DE for y(x) first on
the interval [0, 1] and then on the interval (1, o).
For 0 < x <1 we have

. _ d
% +y=1 or equivalently, —[e%y] = e~
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v

] +—e

T o1

FIGURE 2.3.2 Discontinuous f(x) in Example 5

Integrating this last equation and solving for y
gives y = 1 + c1e*. Since y(0) = 0, we must have
c1 = -1, and therefore y=1-eX*, 0<x<1.
Then for x > 1, the equation

leads to y = coe™*. Hence we can write

B {1 —et, 0=x=1
~ lee™, x> 1.

By appealing to the definition of continuity at a
point it is possible to determine ¢ so that the

foregoing function is continuous at x = 1. The
requirement that lim,_,;+ y(x) = y(1) implies that
coe'=1-e"1orc,=e-1. As seenin FIGURE
2.3.3, the piecewise defined function

1 —e™, D=x=1
}?:

(e — 1e™, x=1 (13)

is continuous on the interval [0, ).
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i T T : =X

1

FIGURE 2.3.3 Graph of function in (13) of Example 5

It is worthwhile to think about (13) and Figure
2.3.3 a little bit; you are urged to read and answer
Problem 53 in Exercises 2.3.

Error Function

In mathematics, science, and engineering, some
important functions are defined in terms of
nonelementary integrals. Two such special functions
are the error function and complementary error
function:

See Appendix A.
2 [f ‘dt and 2 [~ (a4)
erf(x) = —J e 'dt and erfc(x) = J e
V’?T 0 \/ﬂ' Y

From the known result [°e~"dt = /m/2, we can
write (2/V/7) [¢e "dt = 1. Using the additive interval
property of definite integrals [ = [; + [ we can
rewrite the last result in the alternative form

erf(x) erfc(x)

A, A
f \ r 3\

- ro = r g+ r ~dr (115)
- (& i = ——1 € . e € i = 1.
0 0 \/';x
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It is seen from (15) that the error function erf(x) and
complementary error function erfc(x) are related by
the identity

erf(x) + erfc(x) = 1. (16)

Because of its importance in probability, statistics,
and applied partial differential equations, the error
function has been extensively tabulated. Note that
erf(0) = 0 is one obvious function value. Numerical
values of erf(x) can also be found using a CAS such
as Mathematica.

If we are solving an initial-value problem (9) and
recognize that indefinite integration of the right-hand
side of (7) would lead to a nonelementary integral,
then as we saw in Example 6 of Section 2.2 it is
convenient to use instead definite integration over the
interval [xg, x]. The last example illustrates that this
procedure automatically incorporates the initial
condition at xg into the solution of the DE, in other
words, we do not have to solve for the constant ¢ in
its general solution.

2.\ IMN=® The Error Function

Solve the initial-value problem
dy
2 =2 Y0

SOLUTION

The differential equation is already in standard
form, and so we see that the integrating factor is
el(-2xdx) = g=x* Multiplying both sides of the
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equation by this factor then gives

e‘fa — 2xe~*'y = 2¢~*, which is the same as
S (17)
— e =2¢7*.
a7

Because indefinite integration of both sides of
equation (17) leads to the nonelementary integral
[ e dx, we identify xo = 0 and use definite
integration over the interval [0, x]:

X

J%{e_'zy(r)] dt = 2Le—f“d: or e y(x) — y(0) = 2Le—'2 dt.
(1]

Using the initial condition y(0) = 1 the last
expression yields the solution

X

y=e* + ZE‘EJ e "dt. (18)

0

Then by inserting the factor \/#/~\/# into this
solution in the following manner:

erf(x)

——
y=e* + Zex'J' e Vdt = ex'[l + \/;( J' e_"dr)]
0 Vo

we see from (14) that (18) can be rewritten in
terms of the error function as

y = e*[1 + Varerf(x))]- (19)

The graph of solution (19), shown in FIGURE
2.3.4, was obtained with the aid of a CAS.
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Y
2t .
1k (0,1
X
1t 4
2L 4
-3 -2 -1 1 2 3

FIGURE 2.3.4 Graph of (19) in Example 6

See Problems 41-48 in Exercises 2.3.

Use of Computers

Some computer algebra systems are capable of
producing explicit solutions for some kinds of
differential equations. For example, to solve the
equation y' + 2y = x, we use the input commands

DSolve[y'[x] + 2 y[x] == x, ¥[x], x] (in Mathematica)
and dsolve(diff(y(x), x) + 2¥y(x) = x, y(x)); (in Maple)

Translated into standard symbols, the output of each
programis y = —; + sx + ce .

REMARKS

(/) Occasionally a first-order differential equation
is not linear in one variable but is linear in the
other variable. For example, the differential
equation

day 1

de  x+y?
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is not linear in the variable y. But its reciprocal

dx +v2  or dx + y?
= =
dy Y dy Y

Is recognized as linear in the variable x. You
should verify that the integrating factor e/(-1d = -
Y and integration by parts yield an implicit solution
of the first equation: x = —y2 — 2y — 2 + ceY.

(ii) Because mathematicians thought they were
appropriately descriptive, certain words were
“adopted” from engineering and made their own.
The word transient, used earlier, is one of these
terms. In future discussions the words input and
output will occasionally pop up. The function fin
(2) is called the input or driving function; a
solution of the differential equation for a given
input is called the output or response.

(iif) The term special functions mentioned in
conjunction with the error function on page 58 also
applies to the sine integral function and the
Fresnel sine integral function introduced in
Problems 47 and 48 in Exercises 2.3. “Special
Functions” is actually a well-defined field of study
in mathematics. The Fresnel sine integral function
is one of two such special integral functions that
the French engineer/physicist Augustin-Jean
Fresnel (1788-1827) encountered in his study of
optics. More special functions are studied in
Section 5.3.

2.3 Exercises Answers to selected
odd-numbered
problems begin on page
ANS-2,
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In Problems 1-24, find the general solution of the
given differential equation. Give the largest interval
over which the general solution is defined. Determine
whether there are any transient terms in the general

solution.
dy
1. — =5
dx Y
dy
2. — +2y=
a
3. d—y—l—y—el‘
dx
dy
4. 4 pry =0
I (x)y
5 y +3xly=x"
6. y + 2xy=1x’
7. vy + xy=x’
8. yy=2y+x*+5
9. x— —y=x%sinx
dx
dy
10. — = 5x + 3y;
dt

1". xd—y—l—éty:x — X
dx
12. _kdy
dx

13. x%y' + x(x +2)y = é€”

14. xy" + (1 + x)y = e *sin2x
15. ydx — 4(x + y°)dy = 0
16. vydx = (yve’ — 2x)dy

Telegram: @uni_k
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17.

18.

19.

20.

21.

22.

23.

24,

YD | (sinxy = 1
COsSX — SINxX )y =
dx v

J pld(x)d'(x) dx = J g(x) dkx.

(+l)@+(+2) 2xe™™
X X = 2xe
dx v

dy
(x+2)1§=5—8y—4xy

’
— 4+ rsecl = cosé@

dae

dP

— 4+ 2P =P+ 4t — 2

dt
@+B+U ﬂ
X— X y—==¢€
dx ‘

2 __ @ — 2
(x l)dx+2y (x+ 1)

In Problems 25-32, solve the given initial-value
problem. Give the largest interval / over which the
solution is defined.

25.
26.

27.

28.

29.

30.

xy'+y=e" y0) =1

dx 2y2, y(1) = 5
y— —x =2y ¥l) =
fd}} w e

Lg L Ri=Ei0) =iy L, R E and iy

constants

dy
u+@a=mﬂm=mKnﬁmR
constants

dy
(x + l)d; +y = Inx, s'(0) = v

y' + (tanx)y = cos’x, y(x) = L.
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-x
31, (u)@: L y(0) =1

Vx Jdy
de -1 —
32, (l+r)a+x=tan t, y0) =1

[Hint. In your solution let y(x,) = 1..]

In Problems 33—-36, proceed as in Example 5 to solve
the given initial-value problem. Use a graphing utility
to graph the continuous function y(x).

dy
33. a + 2y = f(x), ¥(0) = 0, where

I, 0=x=3

ﬂx):{u x>3

dy
34. a + vy = f(x), y(0)= 1, where

I, 0=x=1

) = {—1 x> 1

dy
35. a + 2xy = f(x), y(0) = 2, where

x, 0=x<1
- {

0, x=1

d
36. (1 +x? Y
dx

+ 2xy = f(x), y(0) = 0, where

X, D=x<1
o=

—-x, x=1

In Problems 37 and 38, proceed as in Example 5 to
solve the given initial-value problem. Use a graphing

Telegram: @uni_k
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utility to graph the continuous function y(x).

37. zx—y + P(x)y = 4x, y(0) = 3, where

2, D=x=1

P = x> 1

-

38. g + P(x)y = 0, y(0) = 4, where

I, 0=x=2
PO =15 x>2

In Problems 39 and 40, the given differential equation
is not linear in y. Nevertheless, find a general solution
of the equation.

39. dx = (x+yady
40. ydx + (2x +xy —3)dy =0

In Problems 41 and 42, proceed as in Example 6 and
express the solution of the given initial-value problem

in terms of erf(x) (Problem 41) and erfc(x) (Problem

42).

B _ o — _
M. -2y =1y =1

dy _ _
42. 2y =1 y0) = V)2

In Problems 43—46, proceed as in Example 6 and
express the solution of the given initial-value problem
in terms of an integral-defined function.
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43.

44,

45.

46.
47.

48.

4y +ey=1, y0)=1
E‘r’ = . 'i'} =
E w w

ldy 3 (1) 0
x——y=x7, yl)=

dx -~ :
Y + 0y =2
- Xy = COosXx, Y ==

/ g /

inh @ h (1)=20
Xsmny—=cosny, Y -
' dx - ~
The sine integral function is defined as
X . I_
Si(x) = J S,
o I

where the integrand is defined to be 1 at x = 0.
Express the solution of the initial-value problem

dy _
x3a' + 2x%y = 10sinx, y(1) =0

in terms of Si(x).
The Fresnel sine integral function is defined

S(x) = Lsin(%rz) dr.

Express the solution of the initial-value problem

as

— — (sinx?)y = 0) =
sinx“)y = 0, y(0 5
E A )

in terms of S(x).

Discussion Problems
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49.

50.

51.

52.

53.

54.

Reread the discussion following Example 1.
Construct a linear first-order differential equation
for which all nonconstant solutions approach the
horizontal asymptote y = 4 as x — <.

Reread Example 2 and then discuss, with
reference to Theorem 1.2.1, the existence and
uniqueness of a solution of the initial-value
problem consisting of xy' — 4y = x8¢X and the
given initial condition.

(a) (0)=0

(b) y(0)=yo, Y0 >0

(c) ¥(x0) = Y0, X0>0, yo>0

Reread Example 3 and then find the general
solution of the differential equation on the interval
(-3, 3).

Reread the discussion following Example 4.
Construct a linear first-order differential equation
for which all solutions are asymptotic to the line y
=3x—-5as x — .

Reread Example 5 and then discuss why it is
technically incorrect to say that the function in
(13) is a solution of the IVP on the interval [0,
).

(a) Construct a linear first-order differential
equation of the form xy' + ag(x)y = g(x) for which
Ye = ¢/x3 and y, = x3. Give an interval on which y
= x3 + ¢/x3 is the general solution of the DE.
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55.

(b) Give an initial condition y(xg) = yo for the DE
found in part (a) so that the solution of the IVP is
y = x3 — 1/x3. Repeat if the solution is y = x3 +
2/x3. Give an interval / of definition of each of
these solutions. Graph the solution curves. Is
there an initial-value problem whose solution is
defined on the interval (—co, o0)?

(c) Is each IVP found in part (b) unique? That is,
can there be more than one IVP for which, say, y
= x3 = 1/x3, x in some interval / is the solution?

In determining the integrating factor (5), there is
no need to use a constant of integration in the
evaluation of [P(x) dx. Explain why using [P(x) dx
+ ¢ has no effect on the solution of (2).

Mathematical Models

56. Radioactive Decay Series The following

system of differential equations is encountered in
the study of the decay of a special type of
radioactive series of elements:

dx

— = —AX,
dt !
day

where A1 and Ay are constants. Discuss how to
solve this system subject to x(0) = xg, y(0) = yo.
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57.

Carry out your ideas.

Heart Pacemaker A heart pacemaker
consists of a switch, a battery of constant
voltage Egp, a capacitor with constant
capacitance C, and the heart as a resistor with
constant resistance R. When the switch is
closed, the capacitor charges; when the switch
is open, the capacitor discharges, sending an
electrical stimulus to the heart. During the time
the heart is being stimulated, the voltage E
across the heart satisfies the linear differential
equation

dE_ 1,
dt ~ RC

Solve the DE subject to E(4) = Ep.

Computer Lab Assignments

58.

59.

(a) Use a CAS to graph the solution curve of the
initial-value problem in Problem 42 on the interval
(—o0,00).

(b) Use tables or a CAS to find the value y(2).
(a) Use a CAS to graph the solution curve of the
initial-value problem in Problem 47 on the interval
[0, oo).

(b) Use a CAS to find the value of the absolute
maximum of the solution y(x) on the interval.
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60. (a) Use a CAS to graph the solution curve of the
initial-value problem in Problem 48 on the interval
(—oo,00).

(b) It is known that Fresnel sine integral S(x) — 3
as x — oo and §(x) —» —3 asx — —oo. What
does the solution y(x) approach as x — oco? As

X — —oo?

(c) Use a CAS to find the values of the absolute
maximum and the absolute minimum of the
solution y(x) on the interval.

Telegram: @uni_k
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m Exact Equations

INTRODUCTION

Although the simple differential equation y dx + x dy =
0 is separable, we can solve it in an alternative
manner by recognizing that the left-hand side is
equivalent to the differential of the product of x and y;
that is, y dx + x dy = d(xy). By integrating both sides
of the equation we immediately obtain the implicit
solution xy = c.

Differential of a Function of Two
Variables

If z=f(x, y) is a function of two variables with
continuous first partial derivatives in a region R of the
xy-plane, then its differential (also called the total
differential) is

Y
dz = - dx + aydy- (1)
Now if f(x, y) = c, it follows from (1) that
L/
&Ierraydy—O. (2)

In other words, given a one-parameter family of
curves f(x, y) = ¢, we can generate a first-order
differential equation by computing the differential. For
example, if X2 — 5xy + y3 = ¢, then (2) gives
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(2x = 5y) dx + (=5x + 3y?) dy = 0. (3)

For our purposes it is more important to turn the
problem around; namely, given a first-order DE such
as (3), can we recognize that it is equivalent to the
differential d(x2 — 5xy + y3) = 0?

DEFINITION 2.4.1 Exact

Equation

A differential expression M(x, y) dx + N(x, y) dy is
an exact differential in a region R of the xy-plane
if it corresponds to the differential of some
function f(x, y). A first-order differential equation
of the form

M(x,v)dx + N(x,y)dy =0

is said to be an exact equation if the expression
on the left side is an exact differential.

For example, the equation x2y3 dx + x3y2 dy = 0 is
exact, because the left side is d(3x3y3) = x2y3 dx +
x3y2 dy. Notice that if M(x, y) = x2y3 and N(x, y) =
x3y2, then OM/dy = 3x2y? = ON/dx. Theorem 2.4.1

shows that the equality of these partial derivatives is
no coincidence.

THEOREM 2.4.1 Criterion for

an Exact Differential

Let M(x, y) and N(x, y) be continuous and have
continuous first partial derivatives in a rectangular


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

region Rdefined by a<x<b,c<y<d. Thena
necessary and sufficient condition that M(x, y) dx
+ N(x, y) dy be an exact differential is
dM  oN
gy ox’

(4)

PROOF: (Proof of the Necessity) For simplicity let us
assume that M(x, y) and N(x, y) have continuous first
partial derivatives for all (x, y). Now if the expression
M(x, y) dx + N(x, y) dy is exact, there exists some
function f such that for all x in R,

dy . L _
_r _|_ SIHI — x? — ecu&x I-e CDSIdI
Ir (sin x)y y

Therefore, Mx.y) = _f NG, Y) =

M _o(df)_ S (af) _oN
dy  dy\ox dyox  dx\dy ax
The equality of the mixed partials is a consequence of

the continuity of the first partial derivatives of M(x, y)
and N(x, y). =

The sufficiency part of Theorem 2.4.1 consists of
showing that there exists a function f for which df/ox =
M(x, y) and df/dy = N(x, y) whenever (4) holds. The
construction of the function f actually reflects a basic
procedure for solving exact equations.

Method of Solution
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Given an equation of the form M(x, y) dx + N(x, y) dy
= 0, determine whether the equality in (4) holds. If it
does, then there exists a function f for which

af B
o Mx,y).

We can find f by integrating M(x, y) with respect to x,
while holding y constant:

fex,y) = J M(x, y) dx + g(y), (5)

where the arbitrary function g(y) is the “constant” of
integration. Now differentiate (5) with respect to y
and assume df/dy = N(x, y):

a_Jc_iJM(x )dx + g'(y) = N(x, y)
Jy  dy Y 80 = Mx.»
This gives g,(y) = N(x, },) _ %JM(I’ }1) dx. (6)

Finally, integrate (6) with respect to y and substitute
the result in (5). The implicit solution of the equation is
f(x, y) = c.

Some observations are in order. First, it is
important to realize that the expression N(x, y) — (d/
dy) I M(x, y) dx in (6) is independent of x, because

vy = 2 a =2 2(2 ) = - M
ax x ) dy x, ) ~ox ay\ex x.3) Cax ey

Second, we could just as well start the foregoing
procedure with the assumption that of/dy = N(x, y).
After integrating N with respect to y and then
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differentiating that result, we would find the analogues
of (5) and (6) to be, respectively,

Jy) = J N(x,y)dy + h(x) and

W) = M, y) - ;—J NG, y) dy.

If you find that integration of df/ox = M(x, y) with
respect to x is difficult, then try integrating of/dy =
N(x, y) with respect to y. In either case none of these
formulas should be memorized.

SIS ESNE Solving an Exact
DE

Solve 2xy dx + (x2 - 1) dy = 0.

SOLUTION

With M(x, y) = 2xy and N(x, y) = x2 = 1 we have
M _ . _ N
ay dx

Thus the equation is exact, and so, by Theorem
2.4.1, there exists a function f(x, y) such that

of
- = and — =x?-1.
dx 2xy

From the first of these equations we obtain, after
integrating,

fix, y) = x2y + g(y).
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Taking the partial derivative of the last expression
with respect to y and setting the result equal to
N(x, y) gives

g _

x2 4+ o'(v) = x* — 1. « N(x.v)
o g’ (x.

It follows théy) = -1 and  g(y) = -y.

Hence, f(x, y) = x2y — y, and so the solution of the
equation in implicit formis 2y — v = . The
explicit form of the solution is easily seen to be y

= ¢/(x2 = 1) and is defined on any interval not
containing either x = 1 or x = —-1.

Note the form of the solution. It is f(x, y) = c.

The solution of the DE in Example 1 is not f(x, y) =
x2y — y. Rather it is f(x, y) = ¢, or if a constant is used
in the integration of g'(y), we can then write the
solution as f(x, y) = 0. Note, too, that the equation
could be solved by separation of variables.

2\ NYE Solving an Exact
DE

Solve (6% — y cos xy) dx + (2xe?¥ — x cos xy +
2y) dy = 0.

SOLUTION

The equation is exact because
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%_262}14- Sinxy — cos _ N
o xysinxy =

Hence a function f(x, y) exists for which

d d
M(x,y) = &;.}Ir and N(x.y) = B_ﬂ;"

Now for variety we shall start with the assumption
that of/dy = N(x, y);

: d
that is, L) = 2xe¥ — xcosxy + 2y

oy
y =Y, + }:P = ce —[P(x) dx + E—J'P{IMKJEIP(I) dxf(_x) dx.

Remember, the reason x can come out in front of
the symbol | is that in the integration with respect
to y, x is treated as an ordinary constant. It
follows that

fx,y) = xe® — sinxy + y* + h(x)

a_f—(sz}'—.\ .\—'—Ir‘—z."'_.\ y -w--
P VCOSXY 1(x) =e ycosxy <« M(x,y)
and so h'(x) = 0 or h(x) = c. A family of solutions
is xe® — sinxy + y* + ¢ = 0.

DG IHNxE An Initial-Value

Problem
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Solve the initial-value problem

dy ryl — COSXsinx

ax 5o YO =2
y(l — x7)

SOLUTION

By writing the differential equation in the form
(cos xsinx — xy2) dx+ y(1-x2)dy=0

we recognize that the equation is exact because

dM aN

— = -y =—

dy dx

of ,

Now — =yl —x)
dy -
_ y2 i
S y) = (1 — &%) + hix)

df

— = —xy* + h'(x) = cosxsinx — xy”.
ax

The last equation implies that h'(x) = cos x sin x.
Integrating gives

|
hix) = —-[{::ﬂsx}{— sinxdx) = 5 cos?x.

Tlﬁlﬁ

—xZ]—Ecnsx—c, or y*(1 — x*) — cos’x =(d)

where 2c1 has been replaced by c. The initial
condition y = 2 when x = 0 demands that 4(1) -
cos? (0) = ¢ and so ¢ = 3. An implicit solution of
the problem is then y*(1 — x*) — cos’x =3. =

The solution curve of the IVP in Example 3 is part

of an interesting family of curves and is the curve
drawn in blue in FIGURE 2.4.1. The graphs of the

Telegram: @uni_k
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members of the one-parameter family of solutions
given in (7) can be obtained in several ways, two of
which are using software to graph level curves as
discussed in the last section, or using a graphing
utility and carefully graphing the explicit functions
obtained for various values of ¢ by solving y = (¢ +

cos? x)/(1 - x2) for y.

FIGURE 2.4.1 Some solution curves in the family (7)

Integrating Factors

Recall from the last section that the left-hand side of
the linear equation y' + P(x)y = f(x) can be
transformed into a derivative when we multiply the
equation by an integrating factor. The same basic
idea sometimes works for a nonexact differential
equation M(x, y) dx + N(x, y) dy = 0. That is, it is
sometimes possible to find an integrating factor u(x,
y) so that after multiplying, the left-hand side of

p(x, y) M(x, y) dx + u(x, y) N(x, y) dy=0 (8)

is an exact differential. In an attempt to find y we turn
to the criterion (4) for exactness. Equation (8) is
exact if and only if (uM), = (uN)x, where the
subscripts denote partial derivatives. By the Product
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Rule of differentiation the last equation is the same as
uMy + gy M= uNy + i N or

pxN = pyM = (My, = Ny)u. (9)

Although M, N, My, Ny are known functions of x and
y, the difficulty here in determining the unknown u(x,
y) from (9) is that we must solve a partial differential
equation. Since we are not prepared to do that we
make a simplifying assumption. Suppose yu is a
function of one variable; say that y depends only upon
x. In this case uy = du/dx and (9) can be written as

du_ M1

i N (10)

We are still at an impasse if the quotient (M, = Ny)/N
depends upon both x and y. However, if after all
obvious algebraic simplifications are made, the
quotient (My, — Ny)/N turns out to depend solely on
the variable x, then (10) is a first-order ordinary
differential equation. We can finally determine u
because (10) is separable as well as linear. It follows
from either Section 2.2 or Section 2.3 that u(x) = e
J(M,—Ng/N)dx_ |n like manner it follows from (9) that if y
depends only on the variable y, then

dp _ N~ M,
dy M

M- (11)

In this case, if (Nx — My)/M is a function of y, only
then we can solve (11) for p.

We summarize the results for the differential
equation

M(x, y) dx + N(x, y) dy = 0. (12)
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If (M, = Ny)/N is a function of x alone, then an
integrating factor for equation (12) is

M, —N,
J ' N dx (1 3)

px) = e-
If (Nx = My)/M is a function of y alone, then an

integrating factor for equation (12) is

.N,— M,
v D (14)

p(y) = e

=2\ IHN=F'W A Nonexact DE

Made Exact

The nonlinear first-order differential equation xy dx
+ (2x2 + 3y2 - 20) dy = 0 is not exact. With the
identifications M = xy, N = 2x2 + 3y2 — 20 we find
the partial derivatives My, = x and Ny = 4x. The
first quotient from (13) gets us nowhere since

M, — N, X — 4x B —3x
N  2x*+3p2 =20 2%+ 3y? =120

depends on x and y. However (14) yields a
quotient that depends only on y:

Ne=M, 4x-x_ 3x_3
y

M _x}r ]

The integrating factor is then
e 3y = p3ny — Iy’ _ _1*3. After multiplying
the given DE by u(y) = y3 the resulting equation is
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xy*dx + (2x2y3 + 3y - 20y3) dy = 0.

You should verify that the last equation is now
exact as well as show, using the method of this
section, that a family of solutions is

éxE}-A + ;Jy}-‘ﬁ — 5y =

REMARKS

(/) When testing an equation for exactness, make
sure it is of the precise form M(x, y) dx + N(x, y)
dy = 0. Sometimes a differential equation is
written G(x, y) dx = H(x, y) dy. In this case, first
rewrite it as G(x, y) dx — H(x, y) dy = 0, and then
identify M(x, y) = G(x, y) and N(x, y) = —H(x, y)
before using (4).

(7/) In some texts on differential equations the
study of exact equations precedes that of linear
DEs. If this were so, the method for finding
integrating factors just discussed can be used to
derive an integrating factor for y' + P(x)y = f(x).
By rewriting the last equation in the differential
form (P(x)y — f(x)) dx + dy = 0 we see that

M, — N,
: N = P(x).

From (13) we arrive at the already familiar
integrating factor e/P®)9 used in Section 2.3.

2.4 Exercises Answers to selected
odd-numbered
problems begin on page
ANS-2,
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In Problems 1-20, determine whether the given
differential equation is exact. If it is exact, solve it.

(2x-1)dx+ 3y +7)dy=0
(2x+y)dx—-(x+6y)dy=0

(5x + 4y) dx + (4x — 8y3) dy =0

(siny—ysinx)dx+ (cosx+xcosy—-y)dy=0
(2xy2 = 3) dx + (2x2y +4) dy =0

o a k0N =

2y — L 4 cos3 d—y+1—43+2 in3x = 0
y =3 T cos3x o+ 7 —4x + 3ysindx =
7. (X2-y2)dx+ (x2-2xy)dy=0
y
8. (l+lnx—|—;)dx=(l—lnx)dy
9. (x—y3+ y2sinx) dx = (3xy2 + 2y cos x) dy
10. (x3+ y3) dx+ 3xy2dy=0
1
1. (ylny — e ?)dx + (;+xlny)dy=[ﬁl
12. (Bx2y+eY)dx+ (x3+xe¥ - 2y)dy=0

13. x— = 2xe* —y + 6x?
dx

3 dy 3
14. — — —_ = = —
(1 _1»‘+x)dr+y . 1

1 dx
15. i — +xy? =
(xly 1+9x1) *Y
16. (S5y - 2x)y'-2y =0

17. (tanx —sinxsiny)dx+cosxcosydy=0

v

18. (2ysinxcosx —y+ 2y%e™)dx = (x — sin®x — 4xye™ ) dy

19. 4By - 152 - y) dt+ (4 +3y2-1)dy=0

Telegram: @uni_k
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| 1 y |
20. | —+ — — = dt + | ver + )dvz[)
(I IZ IZ + yi‘.) (_, IZ + FZ "

In Problems 21-26, solve the given initial-value
problem.

21. (x+y)2dx+(2xy+x2-1)dy=0, y(1) =1
22. (eX+y)dx+(2+x+ye¥)dy=0, y(0) =1

23. (4y+2t-5)dt+ By +4t—1)dy=0, y(-1) =2
24, (3yz'f:)d—y+L=u,y(1)=1

y>  Jar 2yt
25. (y?cos x = 3x%y = 2x) dx + (2y sinx = x> + In y)
dy=0,y0)=¢e
26. (I "!}'2 + cosx — zw)?—l = y(y + sinx), Y(0) = 1

In Problems 27 and 28, find the value of k so that the
given differential equation is exact.

27. (y3 + kxy* — 2x) dx + (3xy2 + 20x%y3) dy =0
28. (6xy3 + cos y) dx + (2kx?y2 = x siny) dy =0
In Problems 29-32, verify that the given differential
equation is not exact. Multiply the given differential

equation by the indicated integrating factor u(x, y)
and verify that the new equation is exact. Solve.

29. (—xysin x + 2y cos x) dx + 2x cos x dy = 0;
p(x, y) = xy
30. (x2+ 2xy — y2) dx + (y2 + 2xy — x2) dy = 0;
piX, y) = (x +y)2
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31. (X3y2+y)dx+xdy=0; ux y) = 1/x2y2

32. xdx+(y=-x2-y3)dy=0; ux, y)=1/(x2+
y?)

In Problems 33-38, solve the given differential

equation by finding, as in Example 4, an appropriate

integrating factor.

33. (2)2+3x)dx+2xydy=0

34. y(x+y+1)dx+(x+2y)dy=0

35. 6xydx+ (4y+9x2) dy=0

36. cosxdx + (I + %)ﬁnxd}’ =0

37. (10-6y+e¥)dx-2dy=0

38. (Y2+xy3)dx+ (5y2-xy+y3siny)dy=0

In Problems 39 and 40, solve the given initial-value

problem by finding, as in Example 4, an appropriate

integrating factor.

39. xdx+ (xX3y+4y)dy=0, y(4)=0

40. (x2+ y2-5)dx=(y+ xy)dy, y(0) =1

41. (a) Show that a one-parameter family of
solutions of the equation

(4xy + 3x2) dx + (2y + 2x2) dy =0

is x3 + 2x2y + y2 = ¢,
(b) Show that the initial conditions y(0) = -2 and
y(1) = 1 determine the same implicit solution.

Telegram: @uni_k
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(c) Find explicit solutions y4(x) and y2(x) of the
differential equation in part (a) such that y41(0) =
-2 and y»(1) = 1. Use a graphing utility to graph
y1(x) and y2(x).

Discussion Problems

42.

43.

44,

45.

Consider the concept of an integrating factor
used in Problems 29-40. Are the two equations

Mdx+ Ndy=0and uMdx+ uNdy =20

necessarily equivalent in the sense that a
solution of one is also a solution of the other?
Discuss.

Reread Example 3 and then discuss why we can
conclude that the interval of definition of the
explicit solution of the IVP (the blue curve in
Figure 2.4.1) is (-1, 1).

Discuss how the functions M(x, y) and N(x, y)
can be found so that each differential equation is
exact. Carry out your ideas.

1
(@) M(x, y) dx + (xe‘?+2.1}?+ ;)dyz(]

X
(b) (x—lf2y1f1 o v)dx + N(x,y)dy =0

Differential equations are sometimes solved by
having a clever idea. Here is a little exercise in
cleverness: Although the differential equation


https://t.me/uni_k

www.konkur.in

Telegram: @uni_k

46.

x —Vx*+yHde+ydy =0

is not exact, show how the rearrangement

xdx + ydy
— = dx

x* + }'2
and the observation } d(x? + y?) = x dx + y dy
can lead to a solution.
True or False: Every separable first-order

equation dy/dx = g(x)h(y) is exact.

Mathematical Model

47.

Falling Chain A portion of a uniform chain of
length 8 ft is loosely coiled around a peg at the
edge of a high horizontal platform and the
remaining portion of the chain hangs at rest over
the edge of the platform. See FIGURE 2.4.2.
Suppose the length of the overhang is 3 ft, that
the chain weighs 2 Ib/ft, and that the positive
direction is downward. Starting at f = 0 seconds,
the weight of the overhanging portion causes the
chain on the table to uncoil smoothly and fall to
the floor. If x(f) denotes the length of the chain
overhanging the table at time t> 0O, then v =
dx/dt is its velocity. When all resistive forces are
ignored, it can be shown that a mathematical
model relating v and x is
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dv )
xv— 4+ v- = 32x.
dx

(a) Rewrite the model in differential form.
Proceed as in Problems 33—-38 and solve the DE
by finding an appropriate integrating factor. Find
an explicit solution v(x).

(b) Determine the velocity with which the chain
leaves the platform.

platform edge

FIGURE 2.4.2 Uncoiling chain in Problem 47

Computer Lab Assignment

48. Streamlines (a) The solution of the
differential equation

vi — x2
1 + ——— dv = 0
}‘2}']'

2x
24 Sdx + -
(x~ +

{IE + FE}-

is a family of curves that can be interpreted as
streamlines of a fluid flow around a circular
object whose boundary is described by the
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equation x2 + y2 = 1. Solve this DE and note the
solution f(x, y) = ¢ for ¢ = 0.

(b) Use a CAS to plot the streamlines for ¢ = 0,
+0.2, £0.4, £0.6, and +0.8 in three different
ways. First, use the contourplot of a CAS.
Second, solve for x in terms of the variable y.
Plot the resulting two functions of y for the given
values of ¢, and then combine the graphs. Third,
use the CAS to solve a cubic equation for y in
terms of x.
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m Solutions by Substitutions

INTRODUCTION

We usually solve a differential equation by recognizing
it as a certain kind of equation (say, separable) and
then carrying out a procedure, consisting of equation-
specific mathematical steps, that yields a function
that satisfies the equation. Often the first step in
solving a given differential equation consists of
transforming it into another differential equation by
means of a substitution. For example, suppose we
wish to transform the first-order equation dy/dx = f(x,
y) by the substitution y = g(x, u), where u is regarded
as a function of the variable x.

If g possesses first-partial derivatives, then the
Chain Rule gives

v _ + oy
fir - g.l'(.x! u) g”{l, H} dx

By replacing dy/dx by f(x, y) and y by g(x, u) in the
foregoing derivative, we get the new first-order
differential equation

du
flx, gx, u)) = gx, u) + g,(x, u) o

which, after solving for du/dx, has the form du/dx =
F(x, u). If we can determine a solution u = ¢(x) of this
second equation, then a solution of the original
differential equation is y = g(x, ¢(x)).
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Homogeneous Equations

If a function f possesses the property
f(tx, tv) = 1“f(x, v) for some real number a, then

fis said to be a homogeneous function of degree
a. For example, f(x, y) = x3 + y3 is a homogeneous
function of degree 3 since

f(tx, ty) = (&x)° + (ty)> = BOC + y°) = Bf(x, y),

whereas f(x, y) = x3 + y3 + 1 is seen not to be
homogeneous. The functions
x—2 1

e

are homogeneous of degrees 0 and -1, respectively,
because

ix—2ty tx—2y) x—12y
3rx+ty_r(3x+y)_3.1:+y

fax, ty) = = 1'f(x.y)

I

—_ '_'.f_l

I I
glex, ty) = = = =17 'g(x,y).
Viex? + 15y tVxt+y? x? + y?

A first-order DE written in differential form

M(x,y)dx + N(x,y)dy =0 (1)

is said to be a homogeneous equation if the
coefficient functions M(x, y) and N(x, y) are
homogeneous functions of the same degree. In other
words, (1) is a homogeneous equation if

M(tx, ty) = CM(x, y) and  N(tx, ty) = BN(x, y).
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A linear first-order DE aqy' + agy = g(x) is
homogeneous when g(x) = 0.

The word homogeneous as used here does not mean
the same as it does when applied to linear differential
equations. See Sections 2.3 and 3.1.

If M and N are homogeneous functions of degree
a, we can also write

M(x, y) = xX2M(1, u) and  N(x, y) = xXON(1, u)
where u = y/ (2)
yIX,
andl(x, y) = y°M(v, 1) and  N(x, y) = y*N(v, 1)3
where v = x/y. (3)

See Problem 33 in Exercises 2.5. Properties (2) and
(3) suggest the substitutions that can be used to
solve a homogeneous differential equation.
Specifically, either of the substitutions

v =uxorx = vy, where u and v are new dependent
variables, will reduce a homogeneous equation to a
separable first-order differential equation. To show
this, observe that as a consequence of (2) a
homogeneous equation M(x, y) dx + N(x, y) dy =0
can be rewritten as

XSM, u)dx+ x* N(1, u)ydy=0 or M1, u) dx
+ N(1, u) dy = 0,

where u = y/x or y = ux. By substituting the
differential dy = u dx + x du into the last equation and
gathering terms, we obtain a separable DE in the
variables u and x:

M(1, u) dx + N(1, u)[u dx + xdu] = 0
IM(1, u) + uN(1, u)] dx + xN(1, u) du = 0
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N(1, u)d
or dx+ (1, u)du

x | M(L.u) + uN(Lu)

We hasten to point out that the preceding formula
should not be memorized; rather, the procedure
should be worked through each time. The proof that
the substitutions x = vy and dx = v dy + y dv also
lead to a separable equation follows in an analogous
manner from (3).

S CVIHNNE Solving a

Homogeneous DE

Solve (x2 + y2) dx + (x2 = xy) dy = 0.

SOLUTION

Inspection of M(x, y) = x2 + y2 and N(x, y) = x2 -
xy shows that these coefficients are
homogeneous functions of degree 2. If we let y =
ux, then dy = u dx + x du so that, after
substituting, the given equation becomes

2+ uxPydy + (X2 = ux®udx + xdu) =0
XX+ wydx + x3(1 —w)du =0

1l — u dx

du +—=20
| + u X
2 dx
—1 + du +—=0. < long division
1 + u X

After integration the last line gives
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—u+2In|l +ul +Inlx|=In|c|

y y
——=+ 2In(l + = + Infx| = In|¢|. < resubstituting u = y/x
X X ‘

Using the properties of logarithms, we can write
the preceding solution as

|G+ )

n _ Y
cx

T x

or (x +y)? = cxe’™

Although either of the indicated substitutions can
be used for every homogeneous differential equation,
in practice we try x = vy whenever the function M(x,
y) is simpler than N(x, y). Also it could happen that
after using one substitution, we may encounter
integrals that are difficult or impossible to evaluate in
closed form; switching substitutions may result in an
easier problem.

Bernoulli’s Equation
The differential equation

dy
— + P(x)y = f(x)y", (4)
ax

where n is any real number, is called Bernoulli’s
equation after the Swiss mathematician Jacob
Bernoulli (1654-1705), who studied the equation
around 1695. Note that for n = 0 equation (4) is
linear, and for n = 1 equation (4) is separable and
linear. In 1696 the German polymath Gottfried
Wilhelm Leibniz (1646—1716) showed that for n # 0
and n # 1, any differential equation of the form given
in (4) can be reduced to a linear equation by means
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of the substitution 4 = y' ~". The next example
illustrates this substitution method.

2\ NVE Solving a Bernoulli
DE

dy
Solve y — 4+ v = 2
x o ty=xy

SOLUTION

We begin by rewriting the differential equation in
the form given in (4) by dividing by x:

@y 1

v -+ xy = xy-.
Withn =2 and u = y~1, we next substitute y = v
and

dy _, du _
— = —u “— <— Chain Rule
dx dx
into the given equation and simplify. The result is
du 1 _
dv - xu = —X.
The integrating factor for this linear equation on,
say, (0, =) is

t,-j'd.tfx = ¢ INX = ‘,,Ilur'I = x-!

, d. _
Integrating —[x"u] = —1

dx

Telegram: @uni_k
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gives x lu=-x+ coru=-x2+ cx. Since u=y"
we have y = 1/u, and so a solution of the given
equationis y = 1/(—x? + cx). =

Note that we have not obtained the general
solution of the original nonlinear differential equation in
Example 2, since y = 0 is a singular solution of the
equation.

Reduction to Separation of
Variables

A differential equation of the form

d‘.
d‘l = f(Ax + By + C) (5)

can always be reduced to an equation with separable
variables by means of the substitution u = Ax + By +
C, B # 0. Example 3 illustrates the technique.

D CVIHNKE An Initial-Value

Problem

Solve the initial-value problem @y (-2x + y)?

dx

SOLUTION

If we let u=-2x + y, then du/dx = -2 + dy/dXx,
and so the differential equation is transformed into
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du du
—+2=y*-7 OF —

—_ 2
o dr_u 0.

The last equation is separable. Using partial
fractions,

it = dr or L I .
(4 = 3)u +3) 6lu—3 u+3

du = dx

and integrating, then yields

<« replace €°“ by ¢

Solving the last equation for u and then
resubstituting gives the solution

i

3(1 + ce®) B 3(1 + ce™)
1 —ce™ or y=2x+ 1 — ce™ .(6)
Finally, applying the initial condition y(0) = 0O to the
last equation in (6) gives ¢ = —1. With the aid of a
graphing utility we have shown in FIGURE 2.5.1
the graph of the particular solution

3(1 — e™)

= 2x +
Y 1 + e

in blue along with the graphs of some other
members of the family solutions (6).
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FIGURE 2.5.1 Some solutions of the DE in Example 3

2.5 Exercises Answers to selected
odd-numbered
problems begin on page
ANS-3.

Each DE in Problems 1-14 is homogeneous.

In Problems 1-10, solve the given differential
equation by using an appropriate substitution.

(x-y)dx+xdy=0
(x+y)dx+xdy=0
xdx+(y—-2x)dy=0
ydx=2(x+y)dy
(y2+ yx)dx-x2dy=0

o g kWb

(y2+ yx)dx+ x2dy=0

Telegram: @uni_k
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dy -
7 & _y-x
dx v+x
8 dy _x+3y
" dx x4y

9. —ydx+ (x+ Vaydy=0
10. x@=}-‘+ Vxl—=yhx>0

dx
In Problems 11-14, solve the given initial-value
problem.
11. x% =y+Vx?—1yLx>0

12, (x* + Eyz}d—x =xy, y—=1)=1

dy
13. (x+ ye¥X) dx - xe¥*dy =0, y(1) =0
14. ydx+x(Inx-Iny-1)dy=0,y(1)=e

Each DE in Problems 15-22 is a Bernoulli equation.

In Problems 15-20, solve the given differential
equation by using an appropriate substitution.

dy 1
15. IE-F}J:}E

dy ,
16. 2 _ ) = oxy2
dx y=e€y

17. ?I=}'[A}'3—I)
18. .r‘—{v—{l+.t']_1.‘=.\'_1.~z
dx
10, ¥ 4oy
a7 A
dy
20. 301 + rl)jr =2y(y* — 1)

In Problems 21 and 22, solve the given initial-value
problem.

Telegram: @uni_k
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21. If—x—m 3%, 0, 00).

dy
22. },md_ + y¥ =1, y0) =4
X

Each DE in Problems 23-30 is of the form given in
(5).

In Problems 23-28, solve the given differential
equation by using an appropriate substitution.

23. g=u+}-+n*
dy 1 —x-—
24. =Y
x+_v

25.

= tan’(x + y)

dx
d}
26. F’W. = sin(x + y)
dx
dy

=2+V 2x + 3
dx y-

28. Y _ tan’(x + y)
dx

27.

In Problems 29 and 30, solve the given initial-value
problem.

29. j”_ cos(x+y), y(0)=ml4

d} 3x + 2y .
30. o S+ 2y 42 y(=1) = -1

Discussion Problems

Some second-order differential equations can be
reduced to a first-order equation by means of a
substitution. In Problems 31 and 32, use the
substitution u = y' to reduce the given differential
equation to a first-order equation, and then solve that
equation by a method discussed in this section. Then
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use u = y'again to find the solution y of the given
equation.

31.

32.
33.

34.

35.

y"+(y)?=0
y"=2y'=4x
(a) Show that it is always possible to express

any homogeneous differential equation M(x, y)
dx + N(x, y) dy = 0 in the form

dy [y
dx F(r)'
(b) Show that the substitution u = y/x in the last

differential equation in part (a) yields a separable
equation.

Put the homogeneous differential equation
(5x2 + 2y?) dx = xy dy =0

in the form dy/dx = F(y/x) given in part (a) of
Problem 33. Then solve the equation using the
substitution u = y/x.

(a) Determine two singular solutions of the DE in
Problem 10.

(b) If the initial condition y(5) = 0 is as
prescribed in Problem 10, then what is the
largest interval / over which the solution is
defined? Use a graphing utility to plot the solution
curve for the IVP.
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36.

37.

In Example 3, the solution y(x) becomes
unbounded as x — oo, Nevertheless y(x) is
asymptotic to a curve as x —» —oc and to a
different curve as x — cc. Find the equations of
these curves.

The differential equation
dy )
—— = P(x) + Q(x)y + R(x)y~
dx

is called a Riccati equation after the Venetian
jurist and mathematician Jacopo Francesco
Riccati (1676—-1754) who was able to solve
several DEs of this type.
(a) A Riccati equation can be solved by a
succession of two substitutions provided we
know a particular solution y1 of the equation.
Show that the substitution y = y4 + u reduces
Riccati’'s equation to a Bernoulli equation (4) with
n = 2. The Bernoulli equation can then be
reduced to a linear equation by the substitution w
=y,
(b) Find a one-parameter family of solutions for
the differential equation

dy 4 1

_:__q.__"r?+"r’2,
dx xX- X "

where y1 = 2/x is a known solution of the
equation.
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38.

Devise an appropriate substitution to solve

xy' =y In(xy).

Mathematical Models

39.

40.

Population Growth In the study of population
dynamics one of the most famous models for a
growing but bounded population is the logistic
equation

dP

i P(a — bP),
where a and b are positive constants. Although
we will come back to this equation and solve it
by an alternative method in Section 2.8, solve
the DE this first time using the fact that it is a
Bernoulli equation.

Falling Chain  In Problem 47 in Exercises 2.4
we saw that a mathematical model for the
velocity v of a chain slipping off the edge of a
high horizontal platform is

D=3
xv— + v = 32x.
dx
In that problem you were asked to solve the DE
by converting it into an exact equation using an
integrating factor. This time solve the DE using

the fact that it is a Bernoulli equation.
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m A Numerical Method

INTRODUCTION

In Section 2.1 we saw that we could glean qualitative
information from a first-order DE about its solutions
even before we attempted to solve the equation. In
Sections 2.2-2.5 we examined first-order DEs
analytically; that is, we developed procedures for
actually obtaining explicit and implicit solutions. But
many differential equations possess solutions and yet
these solutions cannot be obtained analytically. In this
case we “solve” the differential equation numerically;
this means that the DE is used as the cornerstone of
an algorithm for approxima