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Foreword

This series of textbooks was begun in 1951 by the 
late Dr. James L. Meriam. At that time, the books 
represented a revolutionary transformation in un-
dergraduate mechanics education. They became the 
defi nitive textbooks for the decades that followed as 
well as models for other engineering mechanics texts 
that have subsequently appeared. Published under 
slightly different titles prior to the 1978 First Edi-
tions, this textbook series has always been charac-
terized by logical organization, clear and rigorous 
presentation of the theory, instructive sample prob-
lems, and a rich collection of real-life problems, all 
with a high standard of illustration. In addition to 
the U.S. versions, the books have appeared in SI ver-
sions and have been translated into many foreign 
languages. These textbooks collectively represent an 
international standard for undergraduate texts in 
mechanics.

The innovations and contributions of Dr. Meriam 
(1917–2000) to the fi eld of engineering mechanics 
cannot be overstated. He was one of the premier 
 engineering educators of the second half of the  twentieth 
century. Dr. Meriam earned the B.E., M.Eng., and 
Ph.D. degrees from Yale University. He had early in-
dustrial experience with Pratt and Whitney Aircraft 
and the General Electric Company. During the 
Second World War he served in the U.S. Coast Guard. 
He was a member of the faculty of the University of 
California—Berkeley, Dean of Engineering at Duke 
University, a faculty member at the California Poly-
technic State University, and visiting professor at 
the University of California—Santa Barbara, fi nally 
retiring in 1990. Professor Meriam always placed 
great emphasis on teaching, and this trait was recog-
nized by his students wherever he taught. He was 
the recipient of several teaching awards, including 
the Benjamin Garver Lamme Award, which is the 
highest annual national award of the American 
 Society of Engineering Education (ASEE).

Dr. L. Glenn Kraige, coauthor of the Engineering 
Mechanics series since the early 1980s, has also 
made signifi cant contributions to mechanics educa-
tion. Dr. Kraige earned his B.S., M.S., and Ph.D. de-
grees at the University of Virginia, principally in 
aerospace engineering, and he is Professor Emeritus 
of Engineering Science and Mechanics at Virginia 
Polytechnic Institute and State University. During the 
mid-1970s, I had the singular pleasure of chairing 

Professor Kraige’s graduate committee and take par-
ticular pride in the fact that he was the fi rst of my 
fi fty-four Ph.D. graduates. Professor Kraige was in-
vited by Professor Meriam to team with him, thereby 
ensuring that the Meriam legacy of textbook author-
ship excellence would be carried forward to future 
generations of engineers.

In addition to his widely recognized research 
and publications in the fi eld of spacecraft dynamics, 
Professor Kraige has devoted his attention to the 
teaching of mechanics at both introductory and 
 advanced levels. His outstanding teaching has been 
widely recognized and has earned him teaching 
awards at the departmental, college, university, 
state, regional, and national levels. These awards in-
clude the Outstanding Educator Award from the 
State Council of Higher Education for the Common-
wealth of Virginia. In 1996, the Mechanics Division 
of ASEE bestowed upon him the Archie Higdon Dis-
tinguished Educator Award. The Carnegie Founda-
tion for the Advancement of Teaching and the  Council 
for Advancement and Support of Education awarded 
him the distinction of Virginia Professor of the Year 
for 1997. In his teaching, Professor Kraige stresses 
the development of analytical capabilities along with 
the strengthening of physical insight and engineer-
ing judgment. Since the early 1980s, he has worked 
on personal-computer software designed to enhance 
the teaching∕learning process in statics, dynamics, 
strength of materials, and higher-level areas of 
 dynamics and vibrations.

Continuing as coauthor for this edition is Dr. 
 Jeffrey N. Bolton, Associate Professor of Mechanical 
Engineering Technology and Director of Digital 
 Learning at Bluefi eld State College. Dr. Bolton 
earned his B.S., M.S., and Ph.D. in Engineering 
Mechanics from Virginia Polytechnic Institute and 
State University. His research interests include 
automatic balancing of six-degree-of-freedom 
 elastically-mounted rotors. He has a wealth of teach-
ing experience, including at Virginia Tech, where he 
was the 2010 recipient of the Sporn Teaching Award 
for Engineering Subjects, which is primarily chosen 
by students. In 2014, Professor Bolton received the 
Outstanding Faculty Award from Bluefi eld State 
College. Professor Bolton was selected as the 2016 
West Virginia Professor of the Year by the Faculty 
Merit Foundation. He has the  unusual ability to set 
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high levels of rigor and achievement in the classroom 
while  establishing a high  degree of rapport with his 
 students. In addition to maintaining time-tested tra-
ditions for future generations of students, Dr. Bolton 
brings effective application of technology to this text-
book series.

The Ninth Edition of Engineering Mechanics con-
tinues the same high standards set by previous edi-
tions and adds new features of help and interest to 
students. It contains a vast collection of interesting 
and instructive problems. The faculty and students 
privileged to teach or study from the Meriam/Kraige/
Bolton Engineering Mechanics series will benefi t 
from several decades of investment by three highly 

accomplished educators. Following the pattern of the 
previous editions, this textbook stresses the applica-
tion of theory to actual engineering situations, and at 
this important task it remains the best.

JOHN L. JUNKINS
Distinguished Professor of Aerospace Engineering

Holder of the Royce E. Wisebaker ‘39 Chair in 

 Engineering Innovation

Texas A&M University

College Station, Texas
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Preface

Engineering mechanics is both a foundation and a 
framework for most of the branches of engineering. 
Many of the topics in such areas as civil, mechanical, 
aerospace, and agricultural engineering, and of 
course engineering mechanics itself, are based upon 
the subjects of statics and dynamics. Even in a dis-
cipline such as electrical engineering, practitioners, 
in the course of considering the electrical compon-
ents of a robotic device or a manufacturing process, 
may fi nd themselves fi rst having to deal with the 
mechanics involved.

Thus, the engineering mechanics sequence is 
critical to the engineering curriculum. Not only is 
this sequence needed in itself, but courses in engin-
eering mechanics also serve to solidify the student’s 
understanding of other important subjects, including 
applied mathematics, physics, and graphics. In addi-
tion, these courses serve as excellent settings in 
which to strengthen problem-solving abilities.

Philosophy
The primary purpose of the study of engineering 
mechanics is to develop the capacity to predict the 
effects of force and motion while carrying out the cre-
ative design functions of engineering. This capacity 
requires more than a mere knowledge of the physical 
and mathematical principles of mechanics; also re-
quired is the ability to visualize physical confi gura-
tions in terms of real materials, actual constraints, 
and the practical limitations which govern the beha-
vior of machines and structures. One of the primary 
objectives in a mechanics course is to help the stu-
dent develop this ability to visualize, which is so vital 
to problem formulation. Indeed, the construction of a 
meaningful mathematical model is often a more im-
portant experience than its solution. Maximum pro-
gress is made when the principles and their limita-
tions are learned together within the context of 
engineering application.

There is a frequent tendency in the presentation 
of mechanics to use problems mainly as a vehicle to 
illustrate theory rather than to develop theory for 
the purpose of solving problems. When the fi rst view 
is allowed to predominate, problems tend to become 
overly idealized and unrelated to engineering with 
the result that the exercise becomes dull, academic, 

and uninteresting. This approach deprives the stu-
dent of valuable experience in formulating problems 
and thus of discovering the need for and meaning of 
theory. The second view provides by far the stronger 
motive for learning theory and leads to a better 
 balance between theory and application. The crucial 
role played by interest and purpose in providing the 
strongest possible motive for learning cannot be 
overemphasized.

Furthermore, as mechanics educators, we should 
stress the understanding that, at best, theory can 
only approximate the real world of mechanics rather 
than the view that the real world approximates the 
theory. This difference in philosophy is indeed basic 
and distinguishes the engineering of mechanics from 
the science of mechanics.

Over the past several decades, several unfortu-
nate tendencies have occurred in engineering educa-
tion. First, emphasis on the geometric and physical 
meanings of prerequisite mathematics appears to 
have diminished. Second, there has been a signifi c-
ant reduction and even elimination of instruction in 
graphics, which in the past enhanced the visualiza-
tion and representation of mechanics problems. 
Third, in advancing the mathematical level of our 
treatment of mechanics, there has been a tendency 
to allow the notational manipulation of vector opera-
tions to mask or replace geometric visualization. 
Mechanics is inherently a subject which depends on 
geometric and physical perception, and we should in-
crease our efforts to develop this ability.

A special note on the use of computers is in order. 
The experience of formulating problems, where 
reason and judgment are developed, is vastly more 
important for the student than is the manipulative 
exercise in carrying out the solution. For this reason, 
computer usage must be carefully controlled. At 
present, constructing free-body diagrams and formu-
lating governing equations are best done with pencil 
and paper. On the other hand, there are instances in 
which the solution to the governing equations can 
best be carried out and displayed using the computer. 
Computer-oriented problems should be genuine in 
the sense that there is a condition of design or critic-
ality to be found, rather than “makework” problems 
in which some parameter is varied for no apparent 
reason other than to force artifi cial use of the com-
puter. These thoughts have been kept in mind during 
the design of the computer-oriented problems in the 
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Ninth Edition. To conserve adequate time for prob-
lem formulation, it is suggested that the student be 
assigned only a limited number of the computer- 
oriented problems.

As with previous editions, this Ninth Edition of 
Engineering Mechanics is written with the foregoing 
philosophy in mind. It is intended primarily for the 
fi rst engineering course in mechanics, generally 
taught in the second year of study. Engineering 
 Mechanics is written in a style which is both concise 
and friendly. The major emphasis is on basic prin-
ciples and methods rather than on a multitude of 
special cases. Strong effort has been made to show 
both the cohesiveness of the relatively few funda-
mental ideas and the great variety of problems which 
these few ideas will solve.

Organization
The logical division between particle dynamics (Part I) 
and rigid-body dynamics (Part II) has been pre-
served, with each part treating the kinematics prior 
to the kinetics. This arrangement promotes thorough 
and rapid progress in rigid-body dynamics with the 
prior benefit of a comprehensive introduction to 
particle dynamics.

In Chapter 1, the fundamental concepts neces-
sary for the study of dynamics are established.

Chapter 2 treats the kinematics of particle motion 
in various coordinate systems, as well as the subjects 
of relative and constrained motion.

Chapter 3 on particle kinetics focuses on the three 
basic methods: force-mass-acceleration (Section A), 
work-energy (Section B), and impulse-momentum 
(Section C). The special topics of impact, central-force 
motion, and relative motion are grouped together in a 
special applications section (Section D) and serve as 
optional material to be assigned according to instructor 
preference and available time. With this arrangement, 
the attention of the student is focused more strongly 
on the three basic approaches to kinetics.

Chapter 4 on systems of particles is an extension of 
the principles of motion for a single particle and devel-
ops the general relationships which are so basic to the 
modern comprehension of dynamics. This chapter also 
includes the topics of steady mass flow and variable 
mass, which may be considered as optional material.

In Chapter 5 on the kinematics of rigid bodies in 
plane motion, where the equations of relative velocity 
and relative acceleration are encountered, emphasis 
is placed jointly on solution by vector geometry and 
solution by vector algebra. This dual approach serves 
to reinforce the meaning of vector mathematics.

In Chapter 6 on the kinetics of rigid bodies, we 
place great emphasis on the basic equations which 
govern all categories of plane motion. Special em-
phasis is also placed on forming the direct equival-
ence between the actual applied forces and couples 
and their mā and Īα resultants. In this way the ver-
satility of the moment principle is emphasized, and 
the student is encouraged to think directly in terms 
of resultant dynamics effects.

Chapter 7, which may be treated as optional, 
provides a basic introduction to three-dimensional 
dynamics which is sufficient to solve many of the 
more common space-motion problems. For students 
who later pursue more advanced work in dynamics, 
Chapter 7 will provide a solid foundation. Gyroscopic 
motion with steady precession is treated in two ways. 
The first approach makes use of the analogy between 
the relation of force and linear-momentum vectors 
and the relation of moment and angular-momentum 
vectors. With this treatment, the student can under-
stand the gyroscopic phenomenon of steady preces-
sion and can handle most of the engineering  problems 
on gyroscopes without a detailed study of three- 
dimensional dynamics. The second approach employs 
the more general momentum equations for three- 
dimensional rotation where all components of mo-
mentum are accounted for.

Chapter 8 is devoted to the topic of vibrations. 
This full-chapter coverage will be especially useful 
for engineering students whose only exposure to vi-
brations is acquired in the basic dynamics course.

Moments and products of inertia of mass are 
presented in Appendix B. Appendix C contains a 
summary review of selected topics of elementary 
mathematics as well as several numerical techniques 
which the student should be prepared to use in 
 computer-solved problems. Useful tables of physical 
constants, centroids, moments of inertia, and conver-
sion factors are  contained in Appendix D.

Pedagogical Features
The basic structure of this textbook consists of an 
article which rigorously treats the particular sub-
ject matter at hand, followed by one or more sample 
problems. For the Ninth Edition, all homework 
problems have been moved to a special Student 
Problems section found after Appendix D near the 
end of the textbook. There is a Chapter Review at 
the end of each chapter which summarizes the 
main points in that chapter, and a corresponding 
Chapter Review Problem set found in the Student 
Problems section.
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  Preface ix

Problems
The 124 Sample Problems appear on specially de-
signed pages by themselves. The solutions to typical 
dynamics problems are presented in detail. In addi-
tion,  explanatory and cautionary notes (Helpful 
Hints) are number-keyed to the main  presentation.

There are 1277 homework exercises. The problem 
sets are divided into Introductory Problems and Repre-
sentative Problems. The fi rst section consists of simple, 
uncomplicated problems designed to help students 
gain confi dence with the new topic, while most of the 
problems in the second section are of  average diffi culty 
and length. The problems are generally arranged in 
order of increasing diffi culty. More diffi cult exercises 
appear near the end of the Representative Problems 
and are marked with the triangular symbol . Com-
puter-Oriented Problems, marked with an asterisk, ap-
pear throughout the problems and also in a special 
section at the conclusion of the Chapter Review Prob-
lems. Problems marked with the student-solution icon 

 have solutions available in the Enhanced eText 
and WileyPLUS. The answers to all problems have 
been provided in a special section near the end of the 
textbook.

In recognition of the need for emphasis on SI units, 
there are approximately two problems in SI units for 
every one in U.S. customary units. This  apportionment 
between the two sets of units permits anywhere from 
a 50–50 emphasis to a 100-percent SI treatment.

A notable feature of the Ninth Edition, as with 
all previous editions, is the wealth of interesting and 
important problems which apply to engineering 
design. Whether directly identifi ed as such or not, 
virtually all of the problems deal with principles and 
procedures inherent in the design and analysis of 
 engineering structures and mechanical systems.

Illustrations
In order to bring the greatest possible degree of real-
ism and clarity to the illustrations, the electronic ver-
sion of this textbook series continues to be produced in 
full color. It is  important to note that color is used con-
sistently for the identifi cation of certain quantities:

•  red for forces and moments

•  green for velocity and acceleration arrows

•  orange dashes for selected trajectories of moving 
points

Subdued colors are used for those parts of an 
 illustration which are not central to the problem at 

hand. Whenever possible, mechanisms or objects 
which commonly have a certain color will be portrayed 
in that color. All of the fundamental elements of tech-
nical illustration which have been an essential part of 
this Engineering Mechanics series of textbooks have 
been retained. The authors wish to restate the convic-
tion that a high standard of illustration is critical to 
any written work in the fi eld of mechanics.

Special Features
We have retained the following hallmark features of 
previous editions:

•  The main emphasis on the work-energy and 
 impulse-momentum equations is on the time-
order form, both for particles in Chapter 3 and 
 rigid bodies in Chapter 6.

•  Emphasis has been placed on three-part impulse- 
momentum diagrams, both for particles and rigid 
bodies. These diagrams are well integrated with 
the time-order form of the impulse-momentum 
equations.

•  Within-the-chapter photographs are provided in 
order to provide additional connection to actual 
situations in which dynamics has played a major 
role.

•  All Sample Problems are printed on specially de-
signed pages for quick identifi cation.

•  All theory portions have been reexamined in order 
to maximize rigor, clarity, readability, and level of 
friendliness.

•  Key Concepts areas within the theory presenta-
tion have been specially marked and highlighted.

•  The Chapter Reviews are highlighted and feature 
itemized summaries.

Resources and Formats
The following items have been prepared to comple-
ment this textbook:

Instructor and Student Resources
The following resources are available online at www.
wiley.com/college/meriam. There may be additional 
resources not listed.

WileyPLUS: A complete online learning sys-
tem to help prepare and present lectures, assign 
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and manage homework, keep track of student pro-
gress, and customize your course content and 
 delivery. Newly added materials for WileyPLUS 
include step-by-step video solutions for approxim-
ately 225 problems, all of which are similar to those 
found in the textbook. These author-generated 
videos illustrate clear and concise solution 
strategies for students, further emphasizing key 
concepts and demonstrating sound principles of 
problem solving in  mechanics.

Instructor’s Manual: Prepared by the authors 
and independently checked, fully worked solutions to 
all problems in the text are available to faculty by 
contacting their local Wiley representative.

All fi gures in the text are available in electronic 
format for use in creating lecture presentations.

All Sample Problems are available as electronic 
fi les for display and discussion in the classroom.

Formats
This Ninth Edition is available in a variety of 
formats, including conventional print, WileyPLUS 
standalone, standalone alone e-text (now with nu-
merous enhancements), and other bundled formats. 
Please contact a Wiley representative (www.wiley.
com/go/whosmyrep) for more information.
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CHAPTER 1
Introduction 
to Dynamics

1/1  History and Modern Applications
Dynamics is that branch of mechanics which deals with the motion of bodies 
under the action of forces. The study of dynamics in engineering usually fol-
lows the study of statics, which deals with the effects of forces on bodies at 
rest. Dynamics has two distinct parts: kinematics, which is the study of mo-
tion without reference to the forces which cause motion, and kinetics, which 
relates the action of forces on bodies to their resulting motions. A thorough 
comprehension of dynamics will provide one of the most useful and powerful 
tools for analysis in engineering.

History of Dynamics
Dynamics is a relatively recent subject compared with statics. The beginning 
of a rational understanding of dynamics is credited to Galileo (1564–1642), 
who made careful observations concerning bodies in free fall, motion on an 
inclined plane, and motion of the pendulum. He was largely responsible for 
bringing a scientifi c approach to the investigation of physical problems. 
 Galileo was continually under severe criticism for refusing to accept the es-
tablished beliefs of his day, such as the philosophies of Aristotle which held, 
for example, that heavy bodies fall more rapidly than light bodies. The lack 

CHAPTER OUTLINE

1/1 History and Modern Applications
1/2 Basic Concepts
1/3 Newton’s Laws
1/4 Units
1/5 Gravitation
1/6 Dimensions
1/7 Solving Problems in Dynamics
1/8 Chapter Review

3

©
 F

in
e 

A
rt

 I
m

ag
es

∕S
u

pe
rS

to
ck

Galileo Galilei
Portrait of Galileo Galilei 
(1564–1642) (oil on canvas), 
Sustermans, Justus 
(1597–1681) (school of)∕
Galleria Palatina, Florence, 
Italy∕Bridgeman Art Library.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


4 CHAPTER 1  Introduction to Dynamics

of accurate means for the measurement of time was a severe handicap to Galileo, 
and further signifi cant development in dynamics awaited the invention of the pen-
dulum clock by Huygens in 1657.

Newton (1642–1727), guided by Galileo’s work, was able to make an accurate 
formulation of the laws of motion and, thus, to place dynamics on a sound basis. 
Newton’s famous work was published in the fi rst edition of his Principia,* which is 
generally recognized as one of the greatest of all recorded contributions to 
 knowledge. In addition to stating the laws governing the motion of a particle, 
 Newton was the fi rst to correctly formulate the law of universal gravitation. Although 
his mathematical description was accurate, he felt that the concept of remote trans-
mission of gravitational force without a supporting medium was an absurd notion. 
Following Newton’s time, important contributions to mechanics were made by Euler, 
D’Alembert, Lagrange,  Laplace, Poinsot, Coriolis, Einstein, and others.

Applications of Dynamics
Only since machines and structures have operated with high speeds and apprecia-
ble accelerations has it been necessary to make calculations based on the principles 

of dynamics rather than on the principles of statics. The rapid technolog-
ical developments of the present day require increasing application of the 
principles of mechanics, particularly dynamics. These principles are basic 
to the analysis and design of moving structures, to fi xed structures sub-
ject to shock loads, to robotic devices, to automatic control systems, to 
rockets, missiles, and spacecraft, to ground and air transportation vehi-
cles, to electron ballistics of electrical devices, and to machinery of all 
types such as turbines, pumps, reciprocating engines, hoists, machine 
tools, etc.

Students with interests in one or more of these and many other activ-
ities will constantly need to apply the fundamental principles of dynamics.

1/2  Basic Concepts
The concepts basic to mechanics were set forth in Art. 1 ∕2 of Vol. 1 Statics. They are 
summarized here along with additional comments of special relevance to the study 
of dynamics.

Space is the geometric region occupied by bodies. Position in space is deter-
mined relative to some geometric reference system by means of linear and angular 
measurements. The basic frame of reference for the laws of Newtonian mechanics 
is the primary inertial system or astronomical frame of reference, which is an imag-
inary set of rectangular axes assumed to have no translation or rotation in space. 
Measurements show that the laws of Newtonian mechanics are valid for this refer-
ence system as long as any velocities involved are negligible compared with the 
speed of light, which is 300 000 km ∕s or 186,000 mi ∕sec. Measurements made with 
respect to this reference are said to be absolute, and this reference system may be 
considered “fi xed” in space.

A reference frame attached to the surface of the earth has a somewhat compli-
cated motion in the primary system, and a correction to the basic equations of 
 mechanics must be applied for measurements made relative to the reference frame 
of the earth. In the calculation of rocket and space-fl ight trajectories, for example, the 

W
E

N
N

 L
td

∕A
la

m
y 

S
to

ck
 P

h
ot

o

Artifi cial hand

*The original formulations of Sir Isaac Newton may be found in the translation of his Principia 
(1687), revised by F. Cajori, University of California Press, 1934.
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 Article  1/3 Newton’s Laws 5

absolute motion of the earth becomes an important parameter. For most engineering 
problems involving machines and structures which remain on the surface of the 
earth, the corrections are extremely small and may be neglected. For these problems 
the laws of mechanics may be applied directly with measurements made relative to 
the earth, and in a practical sense such measurements will be considered absolute.

Time is a measure of the succession of events and is considered an absolute 
quantity in Newtonian mechanics.

Mass is the quantitative measure of the inertia or resistance to change in mo-
tion of a body. Mass may also be considered as the quantity of matter in a body as 
well as the property which gives rise to gravitational attraction.

Force is the vector action of one body on another. The properties of forces have 
been thoroughly treated in Vol. 1 Statics.

A particle is a body of negligible dimensions. When the dimensions of a body are 
irrelevant to the description of its motion or the action of forces on it, the body may be 
treated as a particle. An airplane, for example, may be treated as a particle for the 
description of its fl ight path.

A rigid body is a body whose changes in shape are negligible compared with 
the overall dimensions of the body or with the changes in position of the body as a 
whole. As an example of the assumption of rigidity, the small fl exural movement of 
the wing tip of an airplane fl ying through turbulent air is clearly of no consequence 
to the description of the motion of the airplane as a whole along its fl ight path. For 
this purpose, then, the treatment of the airplane as a rigid body is an acceptable 
approximation. On the other hand, if we need to examine the internal stresses in 
the wing structure due to changing dynamic loads, then the deformation character-
istics of the structure would have to be examined, and for this purpose the airplane 
could no longer be considered a rigid body.

Vector and scalar quantities have been treated extensively in Vol. 1 Statics, 
and their distinction should be perfectly clear by now. Scalar quantities are printed 
in lightface italic type, and vectors are shown in boldface type. Thus, V denotes the 
scalar magnitude of the vector V. It is important that we use an identifying mark, 
such as an underline V, for all handwritten vectors to take the place of the boldface 
designation in print. For two nonparallel vectors recall, for example, that V1 + V2 
and V1 + V2 have two entirely different meanings.

We assume that you are familiar with the geometry and algebra of vectors 
through previous study of statics and mathematics. Students who need to review 
these topics will fi nd a brief summary of them in Appendix C along with other 
mathematical relations which fi nd frequent use in mechanics. Experience has 
shown that the geometry of mechanics is often a source of diffi culty for students. 
Mechanics by its very nature is geometrical, and students should bear this in mind 
as they review their mathematics. In addition to vector algebra, dynamics requires 
the use of vector calculus, and the essentials of this topic will be developed in the 
text as they are needed.

Dynamics involves the frequent use of time derivatives of both vectors and 
 scalars. As a notational shorthand, a dot over a symbol will frequently be used to in-
dicate a derivative with respect to time. Thus, ẋ means dx∕dt and ẍ stands for d2x∕dt2.

1/3  Newton’s Laws
Newton’s three laws of motion, stated in Art. 1 ∕4 of Vol. 1 Statics, are restated here 
because of their special signifi cance to dynamics. In modern terminology they are:

Law I. A particle remains at rest or continues to move with uniform velocity (in 
a straight line with a constant speed) if there is no unbalanced force acting on it.
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6 CHAPTER 1  Introduction to Dynamics

Law II. The acceleration of a particle is proportional to the resultant force 
acting on it and is in the direction of this force.*

Law III. The forces of action and reaction between interacting bodies are 
equal in magnitude, opposite in direction, and collinear.

These laws have been verifi ed by countless physical measurements. The fi rst 
two laws hold for measurements made in an absolute frame of reference, but are 
subject to some correction when the motion is measured relative to a reference 
system having acceleration, such as one attached to the surface of the earth.

Newton’s second law forms the basis for most of the analysis in dynamics. For 
a particle of mass m subjected to a resultant force F, the law may be stated as

F = ma (1 ∕1)

where a is the resulting acceleration measured in a nonaccelerating frame of 
 reference. Newton’s fi rst law is a consequence of the second law since there is no 
acceleration when the force is zero, and so the particle is either at rest or is moving 
with constant velocity. The third law constitutes the principle of action and reac-
tion with which you should be thoroughly familiar from your work in statics.

1/4  Units
Both the International System of metric units (SI) and the U.S. customary system 
of units are defi ned and used in Vol. 2 Dynamics, although a stronger emphasis is 
placed on the metric system because it is replacing the U.S. customary system. 
However, numerical conversion from one system to the other will often be needed 
in U.S. engineering practice for some years to come. To become familiar with each 
system, it is necessary to think directly in that system. Familiarity with the new 
system cannot be achieved simply by the conversion of numerical results from the 
old system.

Tables defi ning the SI units and giving numerical conversions between U.S. 
customary and SI units are included in Table D∕5 of Appendix D.

The four fundamental quantities of mechanics, and their units and symbols for 
the two systems, are summarized in the following table:

F = ma 

*To some it is preferable to interpret Newton’s second law as meaning that the resultant force 
acting on a particle is proportional to the time rate of change of momentum of the particle and 
that this change is in the direction of the force. Both formulations are equally correct when 
 applied to a particle of constant mass.

Quantity
Dimensional

Symbol

SI Units U.S. Customary Units

Unit Symbol Unit Symbol

Mass M
Base 

units

kilogram kg

Base 

units

slug —

Length L meter* m foot ft

Time T second s second sec

Force F newton N pound lb

*Also spelled metre.
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 Article  1/5 Gravitation 7

As shown in the table, in SI the units for mass, length, and time 
are taken as base units, and the units for force are derived from New-
ton’s second law of motion, Eq. 1 ∕1. In the U.S. customary system the 
units for force, length, and time are base units and the units for mass 
are derived from the second law.

The SI system is termed an absolute system because the standard 
for the base unit kilogram (a platinum-iridium cylinder kept at the 
International Bureau of Standards near Paris, France) is independent 
of the gravitational attraction of the earth. On the other hand, the 
U.S. customary system is termed a gravitational system because the 
standard for the base unit pound (the weight of a standard mass lo-
cated at sea level and at a latitude of 45°) requires the presence of the 
gravitational fi eld of the earth. This distinction is a fundamental dif-
ference between the two systems of units.

In SI units, by defi nition, one newton is that force which will give 
a one-kilogram mass an acceleration of one meter per second squared. 
In the U.S. customary system a 32.1740-pound mass (1 slug) will have 
an acceleration of one foot per second squared when acted on by a 
force of one pound. Thus, for each system we have from Eq. 1 ∕1
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The U.S. standard kilogram at the 
National Bureau of Standards.

In SI units, the kilogram should be used exclusively as a unit of mass and never 
force. Unfortunately, in the MKS (meter, kilogram, second) gravitational system, 
which has been used in some countries for many years, the kilogram has been com-
monly used both as a unit of force and as a unit of mass.

In U.S. customary units, the pound is unfortunately used both as a unit of force 
(lbf  ) and as a unit of mass (lbm). The use of the unit lbm is especially prevalent in 
the specifi cation of the thermal properties of liquids and gases. The lbm is the 
amount of mass which weighs 1 lbf under standard conditions (at a latitude of 45° 
and at sea level). In order to avoid the confusion which would be caused by the use 
of two units for mass (slug and lbm), in this textbook we use almost exclusively the 
unit slug for mass. This practice makes dynamics much simpler than if the lbm 
were used. In addition, this approach allows us to use the symbol lb to always mean 
pound force.

Additional quantities used in mechanics and their equivalent base units will be 
defi ned as they are introduced in the chapters which follow. However, for convenient 
reference these quantities are listed in one place in Table D∕5 of Appendix D.

Professional organizations have established detailed guidelines for the consis-
tent use of SI units, and these guidelines have been followed throughout this book. 
The most essential ones are summarized in Table D∕5 of Appendix D, and you 
should observe these rules carefully.

1/5  Gravitation
Newton’s law of gravitation, which governs the mutual attraction between bodies, is

 F = G  

m1m2 

r2 
 (1 ∕2)F = G

m1m2

r2  

SI Units U.S. Customary Units

(1 N) = (1 kg)(1 m ∕s2) (1 lb) = (1 slug)(1 ft ∕sec2)

N = kg ∙ m ∕s2 slug = lb ∙ sec2 ∕ft
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8 CHAPTER 1  Introduction to Dynamics

where F = the mutual force of attraction between two particles

 G = a universal constant called the constant of gravitation

 m1, m2 = the masses of the two particles

 r = the distance between the centers of the particles

The value of the gravitational constant obtained from experimental data is 
G = 6.673(10−11) m3 ∕(kg ∙s2). Except for some spacecraft applications, the only 
gravitational force of appreciable magnitude in engineering is the force due to the 
attraction of the earth. It was shown in Vol. 1 Statics, for example, that each of two 
iron spheres 100 mm in  diameter is attracted to the earth with a gravitational force 
of 37.1 N, which is called its weight, but the force of mutual attraction between 
them if they are just touching is only 0.000 000 095 1 N.

Because the gravitational attraction or weight of a body is a force, it should 
always be expressed in force units, newtons (N) in SI units and pounds force (lb) in 
U.S. customary units. To avoid confusion, the word “ weight” in this book will be 
restricted to mean the force of gravitational attraction.

Eff ect of Altitude
The force of gravitational attraction of the earth on a body depends on the position 
of the body relative to the earth. If the earth were a perfect homogeneous sphere, a 
body with a mass of exactly 1 kg would be attracted to the earth by a force of 9.825 N 
on the surface of the earth, 9.822 N at an altitude of 1 km, 9.523 N at an altitude of 
100 km, 7.340 N at an altitude of 1000 km, and 2.456 N at an altitude equal to the 
mean radius of the earth, 6371 km. Thus the variation in gravitational attraction 
of high-altitude rockets and spacecraft becomes a major consideration.

Every object which falls in a vacuum at a given height near the surface of the 
earth will have the same acceleration g, regardless of its mass. This result can be 
obtained by combining Eqs. 1 ∕1 and 1 ∕2 and canceling the term representing the 
mass of the falling object. This combination gives

g =
Gme

R2

where me is the mass of the earth and R is the radius of the earth.* The mass me 
and the mean radius R of the earth have been found through experimental mea-
surements to be 5.976(1024) kg and 6.371(106) m, respectively. These values,  together 
with the value of G already cited, when substituted into the expression for g, give 
a mean value of g = 9.825 m ∕s2.

The variation of g with altitude is easily determined from the gravitational law. 
If g0 represents the absolute acceleration due to gravity at sea level, the absolute 
value at an altitude h is

g = g0 
R2

(R + h)2

where R is the radius of the earth.

*It can be proved that the earth, when taken as a sphere with a symmetrical distribution of mass 
about its center, may be considered a particle with its entire mass concentrated at its center.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Article  1/5 Gravitation 9

Eff ect of a Rotating Earth
The acceleration due to gravity as determined from the gravitational law is the 
acceleration which would be measured from a set of axes whose origin is at the 
center of the earth but which does not rotate with the earth. With respect to these 
“fi xed” axes, then, this value may be termed the absolute value of g. Because the 
earth rotates, the acceleration of a freely falling body as measured from a position 
attached to the surface of the earth is slightly less than the absolute value.

Accurate values of the gravitational acceleration as measured relative to the 
surface of the earth account for the fact that the earth is a rotating oblate spheroid 
with fl attening at the poles. These values may be calculated to a high degree of 
accuracy from the 1980 International Gravity Formula, which is

g = 9.780 327(1 + 0.005 279 sin2 𝛾 + 0.000 023 sin4 𝛾 + ⋯)

where 𝛾 is the latitude and g is expressed in meters per second squared. The for-
mula is based on an ellipsoidal model of the earth and also accounts for the effect 
of the rotation of the earth.

The absolute acceleration due to gravity as determined for a nonrotating earth 
may be computed from the relative values to a close approximation by adding 
3.382(10−2) cos2 𝛾 m ∕s2, which removes the effect of the rotation of the earth. The 
variation of both the absolute and the relative values of g with latitude is shown in  
Fig. 1 ∕1 for sea-level conditions.*

g,
 f

t/
se

c2

g,
 m

/s
2

(Equator) Latitude, degrees

Relative to rotating earth
(International Gravity Formula)
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FIGURE 1/1

Standard Value of g
The standard value which has been adopted internationally for the gravitational 
acceleration relative to the rotating earth at sea level and at a latitude of 45° is 
9.806 65 m ∕s2 or 32.1740 ft ∕sec2. This value differs very slightly from that obtained 
by evaluating the International Gravity Formula for 𝛾 = 45°. The reason for the 

*You will be able to derive these relations for a spherical earth after studying relative motion in 
Chapter 3.
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10 CHAPTER 1  Introduction to Dynamics

small difference is that the earth is not exactly ellipsoidal, as assumed in the for-
mulation of the International Gravity Formula.

The proximity of large land masses and the variations in the density of the crust 
of the earth also infl uence the local value of g by a small but detectable amount. In 
almost all engineering applications near the surface of the earth, we can neglect the 
difference between the absolute and relative values of the gravitational accelera-
tion, and the effect of local variations. The values of 9.81 m ∕s2 in SI units and 
32.2 ft ∕sec2 in U.S. customary units are used for the sea-level value of g.

Apparent Weight
The gravitational attraction of the earth on a body of mass m may be calculated 
from the results of a simple gravitational experiment. The body is allowed to fall 
freely in a vacuum, and its absolute acceleration is measured. If the gravitational 
force of attraction or true weight of the body is W, then, because the body falls with 
an absolute acceleration g, Eq. 1 ∕1 gives

 W = mg (1 ∕3)

The apparent weight of a body as determined by a spring balance, calibrated to 
read the correct force and attached to the surface of the earth, will be slightly less 
than its true weight. The difference is due to the rotation of the earth. The ratio of 
the apparent weight to the apparent or relative acceleration due to gravity still 
gives the correct value of mass. The apparent weight and the relative acceleration 
due to gravity are, of course, the quantities which are measured in experiments 
conducted on the surface of the earth.

1/6  Dimensions
A given dimension such as length can be expressed in a number of different units 
such as meters, millimeters, or kilometers. Thus, a dimension is different from a 
unit. The principle of dimensional homogeneity states that all physical relations 
must be dimensionally homogeneous; that is, the dimensions of all terms in an 
equation must be the same. It is customary to use the symbols L, M, T, and F to 
stand for length, mass, time, and force, respectively. In SI units force is a derived 
quantity and from Eq. 1 ∕1 has the dimensions of mass times acceleration or

F = ML∕T2

One important use of the dimensional homogeneity principle is to check the 
dimensional correctness of some derived physical relation. We can derive the fol-
lowing expression for the velocity v of a body of mass m which is moved from rest a 
horizontal distance x by a force F:

Fx =
1
2 mv2

where the 12 is a dimensionless coeffi cient resulting from integration. This equation 
is dimensionally correct because substitution of L, M, and T gives

[MLT−2][L] = [M][LT−1]2

Dimensional homogeneity is a necessary condition for correctness of a physical 
relation, but it is not suffi cient, since it is possible to construct an equation which is 

W = mg 
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 Article  1/7 Solving Problems in Dynamics 11

dimensionally correct but does not represent a correct relation. You should perform 
a dimensional check on the answer to every problem whose solution is carried out 
in symbolic form.

1/7  Solving Problems in Dynamics
The study of dynamics concerns the understanding and description of the motions 
of bodies. This description, which is largely mathematical, enables predictions of 
dynamical behavior to be made. A dual thought process is necessary in formulating 
this description. It is necessary to think in terms of both the physical situation and 
the corresponding mathematical description. This repeated transition of thought 
between the physical and the mathematical is required in the analysis of every 
problem.

One of the greatest diffi culties encountered by students is the inability to make 
this transition freely. You should recognize that the mathematical formulation of a 
physical problem represents an ideal and limiting description, or model, which ap-
proximates but never quite matches the actual physical situation.

In Art. 1 ∕8 of Vol. 1 Statics we extensively discussed the approach to solving 
problems in statics. We assume therefore, that you are familiar with this approach, 
which we summarize here as applied to dynamics.

Approximation in Mathematical Models
Construction of an idealized mathematical model for a given engineering problem 
always requires approximations to be made. Some of these approximations may be 
mathematical, whereas others will be physical. For instance, it is often necessary to 
neglect small distances, angles, or forces compared with large distances, angles, or 
forces. If the change in velocity of a body with time is nearly uniform, then an as-
sumption of constant acceleration may be justifi ed. An interval of motion which 
cannot be easily described in its entirety is often divided into small increments, 
each of which can be approximated.

As another example, the retarding effect of bearing friction on the motion of a 
machine may often be neglected if the friction forces are small compared with the 
other applied forces. However, these same friction forces cannot be neglected if the 
purpose of the inquiry is to determine the decrease in effi ciency of the machine due 
to the friction process. Thus, the type of assumptions you make depends on what 
information is desired and on the accuracy required.

You should be constantly alert to the various assumptions called for in the 
formulation of real problems. The ability to understand and make use of the appro-
priate assumptions when formulating and solving engineering problems is cer-
tainly one of the most important characteristics of a successful engineer.

Along with the development of the principles and analytical tools needed for 
modern dynamics, one of the major aims of this book is to provide many opportuni-
ties to develop the ability to formulate good mathematical models. Strong emphasis 
is placed on a wide range of practical problems which not only require you to apply 
theory but also force you to make relevant assumptions.

Application of Basic Principles
The subject of dynamics is based on a surprisingly few fundamental concepts and 
principles which, however, can be extended and applied over a wide range of 
 conditions. The study of dynamics is valuable partly because it provides experience 
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12 CHAPTER 1  Introduction to Dynamics

in reasoning from fundamentals. This experience cannot be obtained merely by 
memorizing the kinematic and dynamic equations which describe various motions. It 
must be obtained through exposure to a wide variety of problem situations which 
require the choice, use, and extension of basic principles to meet the given conditions.

In describing the relations between forces and the motions they produce, it is 
essential to defi ne clearly the system to which a principle is to be applied. At times 
a single particle or a rigid body is the system to be isolated, whereas at other times 
two or more bodies taken together constitute the system.

The defi nition of the system to be analyzed is made clear by constructing its 
free-body diagram. This diagram consists of a closed outline of the external 
boundary of the system. All bodies which contact and exert forces on the system but 
are not a part of it are removed and replaced by vectors representing the forces they 
exert on the isolated system. In this way, we make a clear distinction between the 
action and reaction of each force, and all forces on and external to the system are 
accounted for. We assume that you are familiar with the technique of drawing free-
body diagrams from your prior work in statics.

Numerical versus Symbolic Solutions
In applying the laws of dynamics, we may use numerical values of the involved 
quantities, or we may use algebraic symbols and leave the answer as a formula. 
When numerical values are used, the magnitudes of all quantities expressed in 
their particular units are evident at each stage of the calculation. This approach is 
useful when we need to know the magnitude of each term.

The symbolic solution, however, has several advantages over the numerical 
solution:

 1. The use of symbols helps to focus attention on the connection between the 
physical situation and its related mathematical description.

Key Concepts  Method of Attack

An effective method of attack is essential in the solution 
of dynamics problems, as for all engineering problems. 
Development of good habits in formulating problems 
and in representing their solutions will be an invaluable 
asset. Each solution should proceed with a logical se-
quence of steps from hypothesis to conclusion. The fol-
lowing sequence of steps is useful in the construction of 
problem solutions.

 1. Formulate the problem:

(a) State the given data.

(b) State the desired result.

(c) State your assumptions and approximations.

 2. Develop the solution:

(a) Draw any needed diagrams, and include coor-
dinates which are appropriate for the problem 
at hand.

(b) State the governing principles to be applied to 
your solution.

(c) Make your calculations.

(d) Ensure that your calculations are consistent 
with the accuracy justifi ed by the data.

(e) Be sure that you have used consistent units 
throughout your calculations.

(f ) Ensure that your answers are reasonable in 
terms of magnitudes, directions, common 
sense, etc.

(g) Draw conclusions.

The arrangement of your work should be neat and 
orderly. This will help your thought process and enable 
others to understand your work. The discipline of doing 
orderly work will help you to develop skill in problem 
formulation and analysis. Problems which seem com-
plicated at fi rst often become clear when you approach 
them with logic and discipline.
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 Article  1/8 Chapter Review 13

 2. A symbolic solution enables you to make a dimensional check at every step, 
whereas dimensional homogeneity cannot be checked when only numerical 
values are used.

 3. We can use a symbolic solution repeatedly for obtaining answers to the same 
problem with different units or different numerical values.

Thus, facility with both forms of solution is essential, and you should practice each 
in the problem work.

In the case of numerical solutions, we repeat from Vol. 1 Statics our convention 
for the display of results. All given data are taken to be exact, and results are gen-
erally displayed to three signifi cant fi gures, unless the leading digit is a one, in 
which case four signifi cant fi gures are displayed. An exception to this rule occurs in 
the area of orbital mechanics, where answers will generally receive an additional 
signifi cant fi gure because of the necessity of increased precision in this discipline.

Solution Methods
Solutions to the various equations of dynamics can be obtained in one of three 
ways.

 1. Obtain a direct mathematical solution by hand calculation, using either al-
gebraic symbols or numerical values. We can solve the large majority of the 
problems this way.

 2. Obtain graphical solutions for certain problems, such as the determination of 
velocities and accelerations of rigid bodies in two-dimensional relative motion.

 3. Solve the problem by computer. A number of problems in Vol. 2 Dynamics are 
designated as Computer-Oriented Problems. They appear at the end of the Re-
view Problem sets and were selected to illustrate the type of problem for which 
solution by computer offers a distinct advantage.

The choice of the most expedient method of solution is an important aspect of the 
experience to be gained from the problem work. We emphasize, however, that the 
most important experience in learning mechanics lies in the formulation of problems, 
as distinct from their solution per se.

1/8  Chapter Review
This chapter has introduced the concepts, defi nitions, 
and units used in dynamics, and has given an overview 
of the approach used to formulate and solve problems in 
dynamics. Now that you have fi nished this chapter, you 
should be able to do the following:

 1. State Newton’s laws of motion.

 2. Perform calculations using SI and U.S. customary 
units.

 3. Express the law of gravitation and calculate the 
weight of an object.

 4. Discuss the effects of altitude and the rotation of 
the earth on the acceleration due to gravity.

 5. Apply the principle of dimensional homogeneity to 
a given physical relation.

 6. Describe the methodology used to formulate and 
solve dynamics problems.
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Just after liftoff, there is a  multitude 
of critical dynamic events taking 
place for this jetliner.
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14 CHAPTER 1  Introduction to Dynamics

HELPFUL HINTS
1  Our calculator indicates a result of 

3.108099 . . . slugs. Using the rules of 
signifi cant fi gure display used in this 
textbook, we round the written result to 
three signifi cant fi gures, or 3.11 slugs. 
Had the numerical result begun with 
the digit 1, we would have rounded the 
displayed answer to four signifi cant 
 fi gures.

2  A good practice with unit conversion is 
to multiply by a factor such as

 [
4.4482 N

1 lb ], which has a value of 1, 

 because the numerator and the denomi-
nator are equivalent. Be sure that can-
cellation of the units leaves the units 
desired—here the units of lb cancel, 
leaving the desired units of N.

3  Note that we are using a previously cal-
culated result (445 N). We must be sure 
that when a calculated number is 
needed in subsequent calculations, it is 
obtained in the calculator to its full ac-
curacy (444.82 . . .). If necessary, num-
bers must be stored in a calculator stor-
age register and then brought out of the 
register when needed. We must not 
merely punch 445 into our calculator 
and proceed to divide by 9.80665—this 
practice will result in loss of numerical 
accuracy. Some individuals like to place 
a small indication of the storage register 
used in the right margin of the work pa-
per, directly beside the number stored.

h = 200 mi

(c)
(b)

(a)

R

SAMPLE PROBLEM 1/1

A space-shuttle payload module weighs 100 lb when 
resting on the surface of the earth at a latitude of 45° 
north.

(a) Determine the mass of the module in both slugs and 
kilograms, and its surface-level weight in newtons.

(b) Now suppose the module is taken to an altitude of 
200 miles above the surface of the earth and released 
there with no velocity relative to the center of the earth. 
Determine its weight under these conditions in both 
pounds and newtons.

(c) Finally, suppose the module is fi xed inside the cargo bay of a space 
shuttle. The shuttle is in a circular orbit at an altitude of 200 miles 
above the surface of the earth. Determine the weight of the module in 
both pounds and newtons under these conditions.

 For the surface-level value of the acceleration of gravity relative to a 
rotating earth, use g = 32.1740 ft  ∕sec2 (9.80665 m ∕s2). For the absolute 
value relative to a nonrotating earth, use g = 32.234 ft ∕sec2 (9.825 m ∕s2). 
Round off all answers using the rules of this textbook.

Solution. (a) From relationship 1 ∕3, we have

 [W = mg]     m =
W
g

=
100 lb

32.1740 ft∕sec2 = 3.11 slugs 1  Ans.

Here we have used the acceleration of gravity relative to the rotating 
earth, because that is the condition of the module in part (a). Note that 
we are using more signifi cant fi gures in the acceleration of gravity than 
will normally be required in this textbook (32.2 ft ∕sec2 and 9.81 m ∕s2 
will normally suffi ce).
 From the table of conversion factors in Table D∕5 of Appendix D, 
we see that 1 pound is equal to 4.4482 newtons. Thus, the weight of the 
module in newtons is

 W = 100 lb [
4.4482 N

1 lb ] = 445 N 2  Ans.

Finally, its mass in kilograms is

[W = mg]     m =
W
g

=
445 N

9.80665 m∕s2 = 45.4 kg 3  Ans.

 As another route to the last result, we may convert from pounds 
mass to kilograms. Again using Table D∕5, we have

m = 100 lbm [
0.45359 kg

1 lbm ] = 45.4 kg

We recall that 1 lbm is the amount of mass which under standard con-
ditions has a weight of 1 lb of force. We rarely refer to the U.S. mass 
unit lbm in this textbook series, but rather use the slug for mass. The 
sole use of slug, rather than the unnecessary use of two units for mass, 
will prove to be powerful and simple.
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 Article  1/8 Chapter Review 15

(b) We begin by calculating the absolute acceleration of gravity (rela-
tive to the nonrotating earth) at an altitude of 200 miles.

[ g = g0  

R2

(R + h)2 ]  gh = 32.234 [
39592

(3959 + 200)2 ] = 29.2 ft∕sec2

The weight at an altitude of 200 miles is then

 Wh = mgh = 3.11(29.2) = 90.8 lb Ans.

We now convert Wh to units of newtons.

 Wh = 90.8 lb [
4.4482 N

1 lb ] = 404 N Ans.

 As an alternative solution to part (b), we may use Newton’s univer-
sal law of gravitation. In U.S. units,

[ F =
Gm1m2

r2 ]         Wh =  
Gmem

(R + h)2 =
[3.439(10−8)][4.095(1023)][3.11]

[(3959 + 200)(5280)]2

 =  90.8 lb

which agrees with our earlier result. We note that the weight of the 
module when at an altitude of 200 mi is about 90% of its surface-level 
weight—it is not weightless. We will study the effects of this weight on 
the motion of the module in Chapter 3.

(c) The weight of an object (the force of gravitational attraction) does 
not depend on the motion of the object. Thus the answers for part (c) are 
the same as those in part (b).

 Wh = 90.8 lb or 404 N Ans.

 This Sample Problem has served to eliminate certain commonly 
held and persistent misconceptions. First, just because a body is raised 
to a typical shuttle altitude, it does not become weightless. This is true 
whether the body is released with no velocity relative to the center of 
the earth, is inside the orbiting shuttle, or is in its own arbitrary 
 trajectory. And second, the acceleration of gravity is not zero at such 
altitudes. The only way to reduce both the acceleration of gravity and 
the corresponding weight of a body to zero is to take the body to an 
 infi nite distance from the earth.

SAMPLE PROBLEM 1/1 (CONTINUED)
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Even if this car maintains a constant speed 
along the winding road, it accelerates laterally, 
and this acceleration must be considered in the 
design of the car, its tires, and the roadway itself.
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CHAPTER 2
Kinematics of 
Particles

2/1  Introduction
Kinematics is the branch of dynamics which describes the motion of bodies without 
reference to the forces which either cause the motion or are generated as a result 
of the motion. Kinematics is often described as the “geometry of motion.” Some en-
gineering applications of kinematics include the design of cams, gears, linkages, 
and other machine elements to control or produce certain desired motions, and the 
calculation of fl ight trajectories for aircraft, rockets, and spacecraft. A thorough 
working knowledge of kinematics is a prerequisite to kinetics, which is the study 
of the relationships between motion and the corresponding forces which cause or 
accompany the motion.

Particle Motion
We begin our study of kinematics by fi rst discussing in this chapter the motions of 
points or particles. A particle is a body whose physical dimensions are so small com-
pared with the radius of curvature of its path that we may treat the motion of the 
particle as that of a point. For example, the wingspan of a jet transport fl ying be-
tween Los Angeles and New York is of no consequence compared with the radius of 
curvature of its fl ight path, and thus the treatment of the airplane as a particle or 
point is an acceptable approximation.

CHAPTER OUTLINE

2/1 Introduction
2/2 Rectilinear Motion
2/3 Plane Curvilinear Motion
2/4 Rectangular Coordinates (x-y)
2/5 Normal and Tangential Coordinates (n-t)
2/6 Polar Coordinates (r-𝜽)
2/7 Space Curvilinear Motion
2/8 Relative Motion (Translating Axes)
2/9 Constrained Motion of Connected Particles
2/10 Chapter Review
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 Article  2/2 Rectilinear Motion 17

We can describe the motion of a particle in a number of ways, and 
the choice of the most convenient or appropriate way depends a great 
deal on experience and on how the data are given. Let us obtain an 
overview of the several methods developed in this chapter by referring 
to Fig. 2∕1, which shows a particle P moving along some general path 
in space. If the particle is confi ned to a specifi ed path, as with a bead 
sliding along a fi xed wire, its motion is said to be constrained. If there 
are no physical guides, the motion is said to be unconstrained. A small 
rock tied to the end of a string and whirled in a circle undergoes con-
strained motion until the string breaks, after which instant its motion 
is unconstrained.

Choice of Coordinates
The position of particle P at any time t can be described by specifying 
its rectangular coordinates* x, y, z, its cylindrical coordinates r, 𝜃, z, or 
its spherical coordinates R, 𝜃, 𝜙. The motion of P can also be described 
by measurements along the tangent t and normal n to the curve. The 
direction of n lies in the local plane of the curve.† These last two mea-
surements are called path variables.

The motion of particles (or rigid bodies) can be described by using coordinates 
measured from fi xed reference axes (absolute-motion analysis) or by using 
 coordinates measured from moving reference axes (relative-motion analysis). Both 
descriptions will be developed and applied in the articles which follow.

With this conceptual picture of the description of particle motion in mind, we 
restrict our attention in the fi rst part of this chapter to the case of plane motion 
where all movement occurs in or can be represented as occurring in a single plane. 
A large proportion of the motions of machines and structures in engineering can be 
represented as plane motion. Later, in Chapter 7, an introduction to three- 
dimensional motion is presented. We begin our discussion of plane motion with 
rectilinear motion, which is motion along a straight line, and follow it with a de-
scription of motion along a plane curve.

2/2  Rectilinear Motion
Consider a particle P moving along a straight line, Fig. 2∕2. The 
position of P at any instant of time t can be specifi ed by its distance 
s measured from some convenient reference point O fi xed on 
the line. At time t + Δ t the particle has moved to P′ and its coordi-
nate becomes s + Δs. The change in the position coordinate during 
the interval Δ t is called the displacement Δs of the particle. The 
displacement would be negative if the particle moved in the nega-
tive s-direction.

BP
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r

y

x

z
n

t

z
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𝜙

𝜃

FIGURE 2/1

O

s

− s + s
P

s

Pʹ

Δ

FIGURE 2/2

*Often called Cartesian coordinates, named after René Descartes (1596–1650), a French 
mathematician who was one of the inventors of analytic geometry.
†This plane is called the osculating plane, which comes from the Latin word osculari meaning “to 
kiss.” The plane which contains P and the two points A and B, one on either side of P, becomes 
the osculating plane as the distances between the points approach zero.
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18 CHAPTER 2  Kinematics of Particles

Velocity and Acceleration
The average velocity of the particle during the interval Δt is the displacement divided 
by the time interval or vav = Δs∕Δt. As Δt becomes smaller and approaches zero in the 
limit, the average velocity approaches the instantaneous velocity of the particle, which

is v = lim
Δt→0

 

Δs
Δt

 or

 v =
ds
dt

= ṡ  (2∕1)

Thus, the velocity is the time rate of change of the position coordinate s. The velocity 
is positive or negative depending on whether the corresponding displacement is 
positive or negative.

The average acceleration of the particle during the interval Δ t is the change in 
its velocity divided by the time interval or aav = Δv∕Δ t. As Δ t becomes smaller and 
approaches zero in the limit, the average acceleration approaches the instantaneous 

acceleration of the particle, which is a = lim
Δt→0

 

Δv
Δt

 or

 a =
dv
dt

= v̇   or  a =
d2 s
dt2 = s̈ (2∕2)

The acceleration is positive or negative depending on whether the 
velocity is increasing or decreasing. Note that the acceleration would 
be positive if the particle had a negative velocity which was becoming 
less negative. If the particle is slowing down, the particle is said to be 
decelerating.

Velocity and acceleration are actually vector quantities, as we 
will see for curvilinear motion beginning with Art. 2∕3. For rectilin-
ear motion in the present article, where the direction of the motion 
is that of the given straight-line path, the sense of the vector along 
the path is described by a plus or minus sign. In our treatment of 
curvilinear motion, we will account for the changes in direction of 
the velocity and acceleration vectors as well as their changes in 
magnitude.

By eliminating the time dt between Eq. 2∕1 and the fi rst of Eqs. 2∕2, we obtain 
a differential equation relating displacement, velocity, and acceleration.* This 
equation is

 v dv = a ds  or  ṡ ds ̇ = s̈ ds (2∕3)

Equations 2∕1, 2∕2, and 2∕3 are the differential equations for the rectilinear 
motion of a particle. Problems in rectilinear motion involving fi nite changes in the 
motion variables are solved by integration of these basic differential relations. The 
position coordinate s, the velocity v, and the acceleration a are algebraic quantities, 
so that their signs, positive or negative, must be carefully observed. Note that the 
positive directions for v and a are the same as the positive direction for s.

v =
ds
dt

= ṡ  

a =
dv
dt

= v̇ a =
d2s
dt2 = s̈ 

v dv = a ds ṡ dṡ = s̈ ds 

*Differential quantities can be multiplied and divided in exactly the same way as other algebraic 
quantities.

This sprinter will undergo rectilinear 
acceleration until he reaches his 
terminal speed.
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 Article  2/2 Rectilinear Motion 19

Graphical Interpretations
Interpretation of the differential equations governing rectilinear 
motion is considerably clarifi ed by representing the relationships 
among s, v, a, and t graphically. Figure 2∕3a is a schematic plot of 
the variation of s with t from time t1 to time t2 for some given rec-
tilinear motion. By constructing the tangent to the curve at any 
time t, we obtain the slope, which is the velocity v = ds∕dt. Thus, 
the velocity can be determined at all points on the curve and plot-
ted against the corresponding time as shown in Fig. 2∕3b. Simi-
larly, the slope dv∕dt of the v-t curve at any instant gives the accel-
eration at that instant, and the a-t curve can therefore be plotted 
as in Fig. 2∕3c.

We now see from Fig. 2∕3b that the area under the v-t curve 
during time dt is v dt, which from Eq. 2∕1 is the displacement ds. 
Consequently, the net displacement of the particle during the inter-
val from t1 to t2 is the corresponding area under the curve, which is

∫s2

s1

 ds = ∫t2

 t1

 v dt  or  s2 − s1 = (area under v-t curve)

Similarly, from Fig. 2∕3c we see that the area under the a-t curve 
during time dt is a dt, which, from the fi rst of Eqs. 2∕2, is dv. Thus, 
the net change in velocity between t1 and t2 is the corresponding area 
under the curve, which is

∫v2

v1

 dv = ∫t2

 t1

 a dt  or  v2 − v1 = (area under a-t curve)

Note two additional graphical relations. When the acceleration a 
is plotted as a function of the position coordinate s, Fig. 2∕4a, the 
area under the curve during a displacement ds is a ds, which, from 
Eq. 2∕3, is v dv = d(v2∕2). Thus, the net area under the curve between 
position coordinates s1 and s2 is

∫v2

v1

 v dv = ∫s2

 s1

 a ds  or  1
2(v2

2 − v1
2) = (area under a-s curve)

When the velocity v is plotted as a function of the position coordinate 
s, Fig. 2∕4b, the slope of the curve at any point A is dv∕ds. By con-
structing the normal AB to the curve at this point, we see from the 
similar triangles that CB∕v  = dv∕ds. Thus, from Eq. 2∕3, CB = 
v(dv∕ds) = a, the acceleration. It is necessary that the velocity and 
position coordinate axes have the same numerical scales so that the 
acceleration read on the position coordinate scale in meters (or feet), 
say, will represent the actual acceleration in meters (or feet) per 
 second squared.

The graphical representations described are useful not only 
in visualizing the relationships among the several motion quanti-
ties but also in obtaining approximate results by graphical inte-
gration or differentiation. The latter case occurs when a lack of 
knowledge of the mathematical relationship prevents its expres-
sion as an explicit mathematical function which can be integrated 
or differentiated. Experimental data and motions which involve 
discontinuous relationships between the variables are frequently 
analyzed graphically.
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20 CHAPTER 2  Kinematics of Particles

Key Concepts  Analytical Integration

If the position coordinate s is known for all values of the 
time t, then successive mathematical or graphical differ-
entiation with respect to t gives the velocity v and accel-
eration a. In many problems, however, the functional re-
lationship between position coordinate and time is 
unknown, and we must determine it by successive inte-
gration from the acceleration. Acceleration is determined 
by the forces which act on moving bodies and is computed 
from the equations of kinetics discussed in subsequent 
chapters. Depending on the nature of the forces, the ac-
celeration may be specifi ed as a function of time, velocity, 
or position coordinate, or as a combined function of these 
quantities. The procedure for integrating the differential 
equation in each case is indicated as follows.

(a) Constant Acceleration. When a is constant, the 
fi rst of Eqs. 2∕2 and 2∕3 can be integrated directly. For 
simplicity with s = s0, v = v0, and t = 0 designated at the 
beginning of the interval, then for a time interval t the 
integrated equations become

 ∫v

v0

 dv = a ∫t

0
 dt  or    v = v0 + at

 ∫v

v0

 v dv = a ∫s

s0

 ds  or   v2 = v0 

2 + 2a(s − s0)

Substitution of the integrated expression for v into 
Eq. 2∕1 and integration with respect to t give

∫s

s0

 ds = ∫t

0
 (v0 + at) dt  or  s = s0 + v0 

t +
1
2 at2

These relations are necessarily restricted to the special 
case where the acceleration is constant. The integration 
limits depend on the initial and fi nal conditions, which 
for a given problem may be different from those used 
here. It may be more convenient, for instance, to begin 
the integration at some specifi ed time t1 rather than at 
time t = 0.

Caution: The foregoing equations have 
been integrated for constant acceleration 
only. A common mistake is to use these 
equations for problems involving variable 
acceleration, where they do not apply.

(b) Acceleration Given as a Function of Time, 
a = ƒ(t). Substitution of the function into the fi rst of 
Eqs. 2∕2 gives ƒ(t) = dv∕dt. Multiplying by dt separates the 
variables and permits integration. Thus,

∫v

v0

  dv = ∫t

0
 ƒ(t) dt  or  v = v0 + ∫t

0
 ƒ(t) dt

Caution: The foregoing equations have 
been integrated for constant acceleration 
only. A common mistake is to use these 
equations for problems involving variable 
acceleration, where they do not apply.

From this integrated expression for v as a function of t, 
the position coordinate s is obtained by integrating 
Eq. 2∕1, which, in form, would be

∫s

s0

 ds = ∫t

0
 v dt  or  s = s0 + ∫t

0
 v dt

If the indefi nite integral is employed, the end conditions 
are used to establish the constants of integration. The 
results are identical with those obtained by using the 
defi nite integral.

If desired, the displacement s can be obtained by a 
direct solution of the second-order differential equation 
s̈ = ƒ(t) obtained by substitution of ƒ(t) into the second 
of Eqs. 2∕2.

(c) Acceleration Given as a Function of Velocity, 
a = ƒ(v). Substitution of the function into the fi rst of 
Eqs. 2∕2 gives ƒ(v) = dv∕dt, which permits separating 
the variables and integrating. Thus,

t = ∫t

0
 dt = ∫v

v0

 
dv

ƒ(v)

This result gives t as a function of v. Then it would be 
necessary to solve for v as a function of t so that Eq. 2∕1 
can be integrated to obtain the position coordinate s as 
a function of t.

Another approach is to substitute the function a = 
ƒ(v) into the fi rst of Eqs. 2∕3, giving v dv = ƒ(v) ds. The 
variables can now be separated and the equation inte-
grated in the form

∫v

v0

 
v dv
ƒ(v)

= ∫s

s0

 ds  or  s = s0 + ∫v

v0

 
v dv
ƒ(v)

Note that this equation gives s in terms of v without 
 explicit reference to t.

(d) Acceleration Given as a Function of Displace-
ment, a = ƒ(s). Substituting the function into Eq. 2∕3 
and integrating give the form

∫v

v0

 v dv = ∫s

s0

 ƒ(s) ds or v2 = v0 

2 + 2 ∫s

s0

 ƒ(s) ds

Next we solve for v to give v = g(s), a function of s. Now 
we can substitute ds∕dt for v, separate variables, and 
integrate in the form

∫s

s0

 
ds

g(s)
= ∫t

0
 dt  or  t = ∫s

s0

 
ds

g(s)

which gives t as a function of s. Finally, we can rear-
range to obtain s as a function of t.

In each of the foregoing cases when the accelera-
tion varies according to some functional relationship, 
the possibility of solving the equations by direct mathe-
matical integration will depend on the form of the func-
tion. In cases where the integration is excessively awk-
ward or diffi cult, integration by graphical, numerical, or 
computer methods can be utilized.
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 Article  2/2 Rectilinear Motion 21

SAMPLE PROBLEM 2/1

The position coordinate of a particle which is confi ned to move along a 
straight line is given by s = 2t3 − 24t + 6, where s is measured in meters 
from a convenient origin and t is in seconds. Determine (a) the time 
required for the particle to reach a velocity of 72 m∕s from its initial 
condition at t = 0, (b) the acceleration of the particle when v = 30 m∕s, 
and (c) the net displacement of the particle during the interval from 
t = 1 s to t = 4 s.

Solution The velocity and acceleration are obtained by successive 
differentiation of s with respect to the time. Thus,

[v = ṡ]  v = 6 t2 − 24 m∕s

[a = v̇]   a = 12t m∕s2

(a) Substituting v = 72 m∕s into the expression for v gives us 72 = 
6t2 − 24, from which t = ±4 s. The negative root describes a mathemat-
ical solution for t before the initiation of motion, so this root is of no 
physical interest. 1  Thus, the desired result is

 t = 4 s Ans.

(b) Substituting v = 30 m∕s into the expression for v gives 30 = 6t2 − 24, 
from which the positive root is t = 3 s, and the corresponding accelera-
tion is

 a = 12(3) = 36 m∕s2 Ans.

(c) The net displacement during the specifi ed interval is

 Δs = s4 − s1  or

 Δs = [2(43) − 24(4) + 6] − [2(13) − 24(1) + 6]

  = 54 m  Ans.

which represents the net advancement of the particle along the s-axis 
from the position it occupied at t = 1 s to its position at t = 4 s. 2

 To help visualize the motion, the values of s, v, and a are plotted 
against the time t as shown. Because the area under the v-t curve rep-
resents displacement, we see that the net displacement from t = 1 s to 
t = 4 s is the positive area Δs2−4 less the negative area Δs1−2. 3

HELPFUL HINTS
1  Be alert to the proper choice of sign 

when taking a square root. When the 
situation calls for only one answer, the 
positive root is not always the one you 
may need.

2   Note carefully the distinction between 
italic s for the position coordinate and 
the vertical s for seconds.

3   Note from the graphs that the values for 
v are the slopes (ṡ) of the s-t curve and 
that the values for a are the slopes (v̇) 
of the v-t curve. Suggestion: Integrate 
v dt for each of the two intervals and 
check the answer for Δs. Show that the 
total distance traveled during the inter-
val t = 1 s to t = 4 s is 74 m.

s, m

t, s

t, s

t, s

a, m/s2

v, m/s

48

30

38

s2 − 4

72

36

3 4210
0

3 4210
0

6

−26

3 42
1

0
0

−24

Δ

s1 − 2Δ
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22 CHAPTER 2  Kinematics of Particles

SAMPLE PROBLEM 2/2

A particle moves along the x-axis with an initial velocity vx = 50 ft∕sec 
at the origin when t = 0. For the fi rst 4 seconds it has no acceleration, 
and thereafter it is acted on by a retarding force which gives it a con-
stant acceleration ax = −10 ft∕sec2. Calculate the velocity and the 
x- coordinate of the particle for the conditions of t = 8 sec and t = 12 sec 
and fi nd the maximum positive x-coordinate reached by the particle. 1

Solution The velocity of the particle after t = 4 sec is computed from

[∫ dv = ∫ a dt ]  ∫vx

50
 dvx = −10 ∫t

4
 dt  vx = 90 − 10t ft∕sec  2

and is plotted as shown. At the specifi ed times, the velocities are

 t = 8 sec,  vx = 90 − 10(8) = 10 ft∕sec

  t = 12 sec,   vx = 90 − 10(12) = −30 ft∕sec Ans.

The x-coordinate of the particle at any time greater than 4 seconds is 
the distance traveled during the fi rst 4 seconds plus the distance trav-
eled after the discontinuity in acceleration occurred. Thus,

[∫ ds = ∫ v dt ]  x = 50(4) + ∫t

4
 (90 − 10t) dt = −5t2 + 90t − 80 ft

For the two specifi ed times,

 t = 8 sec,  x = −5(82) + 90(8) − 80 = 320 ft

  t = 12 sec,   x = −5(122) + 90(12) − 80 = 280 ft Ans.

The x-coordinate for t = 12 sec is less than that for t = 8 sec since the 
motion is in the negative x-direction after t = 9 sec. The maximum pos-
itive x-coordinate is, then, the value of x for t = 9 sec which is

 xmax = −5(92) + 90(9) − 80 = 325 ft Ans.

These displacements are seen to be the net positive areas under the v-t 
graph up to the values of t in question. 3

HELPFUL HINTS
1  Learn to be fl exible with symbols. The 

position coordinate x is just as valid as s.

2   Note that we integrate to a general 
time t and then substitute specifi c 
 values.

3   Show that the total distance traveled by 
the particle in the 12 sec is 370 ft.

1

vx, ft/sec

t, sec

−10

50

00 4 8 12

−30
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SAMPLE PROBLEM 2/3

The spring-mounted slider moves in the horizontal guide with negli-
gible friction and has a velocity v0 in the s-direction as it crosses the 
mid-position where s = 0 and t = 0. The two springs together exert a 
retarding force to the motion of the slider, which gives it an accelera-
tion proportional to the displacement but oppositely directed and equal 
to a = −k2s, where k is constant. (The constant is arbitrarily squared 
for later convenience in the form of the expressions.) Determine the 
expressions for the displacement s and velocity v as functions of the 
time t.

Solution I Since the acceleration is specifi ed in terms of the dis-
placement, the differential relation v dv = a ds may be integrated. 
Thus,

∫ v dv = ∫ −k2s ds + C1 a constant, or 
v2

2
= −

k2s2

2
+ C1 1

When s = 0, v = v0, so that C1 = v0 

2∕2, and the velocity becomes

v = +√v0 

2 − k2s2

The plus sign of the radical is taken when v is positive (in the plus 
s-direction). This last expression may be integrated by substituting 
v = ds∕dt. Thus,

∫ 
ds

√v0 

2 − k2s2
= ∫ dt + C2 a constant, or 

1
k

 sin−1 
ks
v0

= t + C2 2

With the requirement of t = 0 when s = 0, the constant of integration 
becomes C2 = 0, and we may solve the equation for s so that

 s =
v0

k
 sin kt Ans.

The velocity is v = ṡ, which gives

 v = v0 cos kt Ans.

Solution II Since a = s̈, the given relation may be written at once as

s̈ + k2s = 0

This is an ordinary linear differential equation of second order for 
which the solution is well known and is

s = A sin Kt + B cos Kt

where A, B, and K are constants. Substitution of this expression into 
the differential equation shows that it satisfi es the equation, provided 
that K = k. The velocity is v = ṡ, which becomes

v = Ak cos kt − Bk sin kt

The initial condition v = v0 when t = 0 requires that A = v0∕k, and the 
condition s = 0 when t = 0 gives B = 0. Thus, the solution is

 s =
v0

k
 sin kt  and  v = v0 cos kt 3  Ans.

HELPFUL HINTS
1   We have used an indefi nite integral here 

and evaluated the constant of integra-
tion. For practice, obtain the same re-
sults by using the defi nite integral with 
the appropriate limits.

2   Again try the defi nite integral here as 
above.

3   This motion is called simple harmonic 
motion and is characteristic of all oscil-
lations where the restoring force, and 
hence the acceleration, is proportional 
to the displacement but opposite in sign.

s
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24 CHAPTER 2  Kinematics of Particles

SAMPLE PROBLEM 2/4

A freighter is moving at a speed of 8 knots when its engines are sud-
denly stopped. 1  If it takes 10 minutes for the freighter to reduce its 
speed to 4 knots, determine and plot the distance s in nautical miles 
moved by the ship and its speed v in knots as functions of the time t 
during this interval. The deceleration of the ship is proportional to the 
square of its speed, so that a = −kv2.

Solution The speeds and the time are given, so we may substitute the 
expression for acceleration directly into the basic defi nition a = dv∕dt 
and integrate. Thus,

−kv2 =
dv
dt
  

dv
v2 = −k dt  ∫v

8
 
dv
v2 = −k ∫t

0
 dt

− 

1
v

+
1
8

= −kt  v =
8

1 + 8kt
 2

 Now we substitute the end limits of v = 4 knots and t = 10
60 = 16 hour 

and get

 4 =
8

1 + 8k(1∕6)
  k =

3
4

 mi−1  v =
8

1 + 6t
 Ans.

The speed is plotted against the time as shown.
 The distance is obtained by substituting the expression for v into 
the defi nition v = ds∕dt and integrating. Thus,

 
8

1 + 6t
=

ds
dt
  ∫t

0
 

8 dt
1 + 6t

= ∫s

0
 ds  s =

4
3

 ln (1 + 6t) Ans.

The distance s is also plotted against the time as shown, and we see 
that the ship has moved through a distance s = 43 ln (1 +

6
6) = 43 ln 2 = 

0.924 mi (nautical) during the 10 minutes.

HELPFUL HINTS
1  Recall that one knot is the speed of one 

nautical mile (6076 ft) per hour. Work 
directly in the units of nautical miles 
and hours.

2  We choose to integrate to a general value 
of v and its corresponding time t so that we 
may obtain the variation of v with t.
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 Article  2/3 Plane Curvilinear Motion 25

2/3  Plane Curvilinear Motion
We now treat the motion of a particle along a curved path which lies in a single 
plane. This motion is a special case of the more general three-dimensional motion 
introduced in Art. 2∕1 and illustrated in Fig. 2∕1. If we let the plane of motion be 
the x-y plane, for instance, then the coordinates z and 𝜙 of Fig. 2∕1 are both zero, 
and R becomes the same as r. As mentioned previously, the vast majority of the 
motions of points or particles encountered in engineering practice can be repre-
sented as plane motion.

Before pursuing the description of plane curvilinear motion in any specifi c set 
of coordinates, we will fi rst use vector analysis to describe the motion, since the 
results will be independent of any particular coordinate system. What follows in 
this article constitutes one of the most basic concepts in dynamics, namely, the time 
derivative of a vector. Much analysis in dynamics utilizes the time rates of change 
of vector quantities. You are therefore well advised to master this topic at the out-
set because you will have frequent occasion to use it.

Consider now the continuous motion of a particle along a plane curve as repre-
sented in Fig. 2∕5. At time t the particle is at position A, which is located by the 
position vector r measured from some convenient fi xed origin O. If both the magni-
tude and direction of r are known at time t, then the position of the particle is 
completely specifi ed. At time t + Δt, the particle is at A′, located by the position 
vector r + Δr. We note, of course, that this combination is vector addition and not 
scalar addition. The displacement of the particle during time Δt is the vector Δr 
which represents the vector change of position and is clearly independent of the 
choice of origin. If an origin were chosen at some different location, the position 
vector r would be changed, but Δr would be unchanged. The distance actually trav-
eled by the particle as it moves along the path from A to A′ is the scalar length Δs 
measured along the path. Thus, we distinguish between the vector displacement Δr 
and the scalar distance Δs.

Velocity
The average velocity of the particle between A and A′ is defi ned as vav = Δr∕Δt, 
which is a vector whose direction is that of Δr and whose magnitude is the mag-
nitude of Δr divided by Δt. The average speed of the particle between A and A′ is 
the scalar quotient Δs∕Δt. Clearly, the magnitude of the average velocity and the 
speed approach one another as the interval Δt decreases and A and A′ become 
closer together.

r + Δr
Δr Δs Δv

v

v

a

r

O

A

A

Path of
particle

A

vʹ

vʹ

Aʹ

Aʹ

FIGURE 2/5
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26 CHAPTER 2  Kinematics of Particles

The instantaneous velocity v of the particle is defi ned as the limiting value of the 
average velocity as the time interval approaches zero. Thus,

v = lim
Δ t→0

 

Δr
Δt

We observe that the direction of Δr approaches that of the tangent to the path as 
Δt approaches zero and, thus, the velocity v is always a vector tangent to the path.

We now extend the basic defi nition of the derivative of a scalar quantity to in-
clude a vector quantity and write

 v =
dr
dt

= ṙ (2∕4)

The derivative of a vector is itself a vector having both a magnitude and a direction. 
The magnitude of v is called the speed and is the scalar

v = �v � =
ds
dt

= ṡ

At this point we make a careful distinction between the magnitude of the deriv-
ative and the derivative of the magnitude. The magnitude of the derivative can be 
written in any one of the several ways �dr∕dt� = � ṙ � = ṡ = �v� = v and represents the 
magnitude of the velocity, or the speed, of the particle. On the other hand, the deriv-
ative of the magnitude is written d�r�∕dt = dr∕dt = ṙ, and represents the rate at which 
the length of the position vector r is changing. Thus, these two derivatives have two 
entirely different meanings, and we must be extremely careful to distinguish be-
tween them in our thinking and in our notation. For this and other reasons, you are 
urged to adopt a consistent notation for handwritten work for all vector quantities to 
distinguish them from scalar quantities. For simplicity the underline v is recom-
mended. Other handwritten symbols such as v⇀, v∼,  and v̂ are sometimes used.

With the concept of velocity as a vector established, we return to Fig. 2∕5 and de-
note the velocity of the particle at A by the tangent vector v and the velocity at A′ by 
the tangent v′. Clearly, there is a vector change in the velocity during the time Δt. The 
velocity v at A plus (vectorially) the change Δv must equal the velocity at A′, so we can 
write v′ − v = Δv. Inspection of the vector diagram shows that Δv depends both on the 
change in magnitude (length) of v and on the change in direction of v. These two 
changes are fundamental characteristics of the derivative of a vector.

Acceleration
The average acceleration of the particle between A and A′ is defi ned as Δv∕Δt, which 
is a vector whose direction is that of Δv. The magnitude of this average acceleration 
is the magnitude of Δv divided by Δt.

The instantaneous acceleration a of the particle is defi ned as the limiting value 
of the average acceleration as the time interval approaches zero. Thus,

a = lim
Δ

 

t→0
 
Δv
Δt

By defi nition of the derivative, then, we write

 a =
dv
dt

= v̇ (2∕5)

v =
dr
dt

= ṙ 

a =
dv
dt

= v̇ 
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 Article  2/4 Rectangular Coordinates (x-y) 27

As the interval Δt becomes smaller and approaches zero, the direction of the change 
Δv approaches that of the differential change dv and, thus, of a. The acceleration a, 
then, includes the effects of both the change in magnitude of v and the change of 
direction of v. It is apparent, in general, that the direction of the acceleration of a 
particle in curvilinear motion is neither tangent to the path nor normal to the path. 
We do observe, however, that the acceleration component which is normal to the 
path points toward the center of curvature of the path.

Visualization of Motion
A further approach to the visualization of acceleration is shown in Fig. 2∕6, where 
the position vectors to three arbitrary positions on the path of the particle are 
shown for illustrative purpose. There is a velocity vector tangent to the path corre-
sponding to each position vector, and the relation is v = ṙ. If these velocity vectors 
are now plotted from some arbitrary point C, a curve, called the hodograph, is 
formed. The derivatives of these velocity vectors will be the acceleration vectors 
a = v̇ which are tangent to the hodograph. We see that the acceleration has the 
same relation to the velocity as the velocity has to the position vector.

The geometric portrayal of the derivatives of the position vector r and velocity 
vector v in Fig. 2∕5 can be used to describe the derivative of any vector quantity with 
respect to t or with respect to any other scalar variable. Now that we have used the 
defi nitions of velocity and acceleration to introduce the concept of the derivative of a 
vector, it is important to establish the rules for differentiating vector quantities. 
These rules are the same as for the differentiation of scalar quantities, except for the 
case of the cross product where the order of the terms must be preserved. These rules 
are covered in Art. C∕7 of Appendix C and should be reviewed at this point.

Three different coordinate systems are commonly used for describing the vector 
relationships for curvilinear motion of a particle in a plane: rectangular coordinates, 
normal and tangential coordinates, and polar coordinates. An important lesson to be 
learned from the study of these coordinate systems is the proper choice of a reference 
system for a given problem. This choice is usually revealed by the manner in which 
the motion is generated or by the form in which the data are specifi ed. Each of the 
three coordinate systems will now be developed and illustrated.

2/4  Rectangular Coordinates (x-y)
This system of coordinates is particularly useful for describing motions where the 
x- and y-components of acceleration are independently generated or determined. 
The resulting curvilinear motion is then obtained by a vector combination of the 
x- and y-components of the position vector, the velocity, and the acceleration.

r3

v3 v2

v1

v2 = r2

v3 = r3

a3 = v3 a2 = v2

a1 = v1

v1 = r1

r2

r1

O

C

Path

Hodograph

⋅

⋅

⋅

⋅ ⋅

⋅

FIGURE 2/6

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


28 CHAPTER 2  Kinematics of Particles

Vector Representation
The particle path of Fig. 2∕5 is shown again in Fig. 2∕7 along with 
x- and y-axes. The position vector r, the velocity v, and the acceleration 
a of the particle as developed in Art. 2∕3 are represented in Fig. 2∕7
 together with their x- and y-components. With the aid of the unit vectors 
i and j, we can write the vectors r, v, and a in terms of their x- and 
 y-components. Thus,

   r = xi + yj

  v =  ṙ = ẋi + ẏj  (2∕6)

 a =  v̇ = r̈ = ẍi + ÿj

As we differentiate with respect to time, we observe that the time derivatives of the 
unit vectors are zero because their magnitudes and directions remain constant. 
The scalar values of the components of v and a are merely vx = ẋ, vy = ẏ and ax =
v̇x = ẍ, ay = v̇y = ÿ. (As drawn in Fig. 2∕7, ax is in the negative x-direction, so that ẍ
would be a negative number.)

As observed previously, the direction of the velocity is always tangent to the 
path, and from the fi gure it is clear that

v2 = vx 

2 + vy 

2  v = √vx 

2 + vy 

2  tan 𝜃 =
vy

vx

a2 = ax 

2 + ay 

2  a = √ax 

2 + ay 

2

If the angle 𝜃 is measured counterclockwise from the x-axis to v for the confi gura-
tion of axes shown, then we can also observe that dy∕dx = tan 𝜃 = vy∕vx.

If the coordinates x and y are known independently as functions of time, x =
ƒ1(t) and y = ƒ2(t), then for any value of the time we can combine them to obtain r. 
Similarly, we combine their fi rst derivatives ẋ and ẏ to obtain v and their second 
derivatives ẍ and ÿ to obtain a. On the other hand, if the acceleration components 
ax and ay are given as functions of the time, we can integrate each one separately 
with respect to time, once to obtain vx and vy and again to obtain x = ƒ1(t) and y = ƒ2(t). 
Elimination of the time t between these last two parametric equations gives the 
equation of the curved path y = ƒ(x).

From the foregoing discussion we can see that the rectangular-coordinate rep-
resentation of curvilinear motion is merely the superposition of the components of 
two simultaneous rectilinear motions in the x- and y-directions. Therefore, every-
thing covered in Art. 2∕2 on rectilinear motion can be applied separately to the 
x-motion and to the y-motion.

Projectile Motion
An important application of two-dimensional kinematic theory is the problem of 
projectile motion. For a fi rst treatment of the subject, we neglect aerodynamic 
drag and the curvature and rotation of the earth, and we assume that the altitude 
change is small enough so that the acceleration due to gravity can be considered 
constant. With these assumptions, rectangular coordinates are useful for the tra-
jectory analysis.

For the axes shown in Fig. 2∕8, the acceleration components are

ax = 0  ay = −g

r = xi + yjyy

v = ṙ = ẋi + ẏjyy  

a = v̇ = r̈ = ẍi + ÿjyÿ
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Integration of these accelerations follows the results obtained previously in 
Art. 2∕2a for constant acceleration and yields

 vx = (vx)0  vy = (vy)0 − gt

 x = x0 + (vx)0 t   y = y0 + (vy)0 t −
1
2 gt2

 vy 

2 = (vy)0 

2 − 2 g( y − y0)

In all these expressions, the subscript zero denotes initial conditions, frequently 
taken as those at launch where, for the case illustrated, x0 = y0 = 0. Note that the 
quantity g is taken to be positive throughout this text.

We can see that the x- and y-motions are independent for the simple projectile 
conditions under consideration. Elimination of the time t between the x- and y- 
displacement equations shows the path to be parabolic (see Sample Problem 2∕6). 
If we were to introduce a drag force which depends on the speed squared (for exam-
ple), then the x- and y-motions would be coupled (interdependent), and the trajec-
tory would be nonparabolic.

When the projectile motion involves large velocities and high altitudes, to 
obtain accurate results we must account for the shape of the projectile, the vari-
ation of g with altitude, the variation of the air density with altitude, and the 
rotation of the earth. These factors introduce considerable complexity into the 
motion equations, and numerical integration of the acceleration equations is 
usually necessary.

v0

vy

vx

v

vy

vx

vg

x

y

(vx)0 = v0 cos 𝜃 

(vy)0 = 
v0 sin 𝜃 

𝜃

FIGURE 2/8

This stroboscopic photograph of a bouncing ping-pong ball suggests not only 
the parabolic nature of the path, but also the fact that the speed is lower near 
the apex.

A
n

dr
ew

 D
av

id
h

az
y

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


30 CHAPTER 2  Kinematics of Particles

SAMPLE PROBLEM 2/5

The curvilinear motion of a particle is defi ned by vx = 50 − 16t and 
y = 100 − 4t2, where vx is in meters per second, y is in meters, and t is 
in seconds. It is also known that x = 0 when t = 0. Plot the path of the 
particle and determine its velocity and acceleration when the position 
y = 0 is reached.

Solution The x-coordinate is obtained by integrating the expression 
for vx, and the x-component of the acceleration is obtained by differen-
tiating vx. Thus,

[∫ dx = ∫ vx 
 dt ]   ∫x

0
 dx = ∫t

0
 (50 − 16t) dt  x = 50t − 8t2

 m

[ax = v̇x]  ax =
d
dt

 (50 − 16t)    ax = −16 m∕s2

The y-components of velocity and acceleration are

[vy = ẏ]  vy =
d
dt

 (100 − 4t2)   vy = −8t m∕s

[ay = v̇y]  ay =
d
dt

 (−8t)     ay = −8 m∕s2

 We now calculate corresponding values of x and y for various val-
ues of t and plot x against y to obtain the path as shown.
 When y = 0, 0 = 100 − 4t2, so t = 5 s. For this value of the time, we 
have

 vx = 50 − 16(5) = −30 m∕s

 vy = −8(5) = −40 m∕s

 v = √(−30)2 + (−40)2 = 50 m∕s

 a = √(−16)2 + (−8)2 = 17.89 m∕s2

The velocity and acceleration components and their resultants are 
shown on the separate diagrams for point A, where y = 0. Thus, for this 
condition we may write

  v = −30i − 40j m∕s Ans.

  a = −16i − 8j m∕s2  Ans.

HELPFUL HINT
We observe that the velocity vector lies 
along the tangent to the path as it should, 
but that the acceleration vector is not tan-
gent to the path. Note especially that the 
acceleration vector has a component that 
points toward the inside of the curved path. 
We concluded from our diagram in Fig. 2∕5 
that it is impossible for the acceleration to 
have a component that points toward the 
outside of the curve.
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 SAMPLE PROBLEM 2/6

A team of engineering students designs a medium-size cata-
pult which launches 8-lb steel spheres. The launch speed is 
v0 = 80 ft∕sec, the launch angle is 𝜃 = 35° above the horizon-
tal, and the launch position is 6 ft above ground level. The 
students use an athletic fi eld with an adjoining slope topped 
by an 8-ft fence as shown. Determine:

(a) the time duration tƒ of the fl ight 

(b) the x-y coordinates of the point of fi rst impact

(c) the maximum height h above the horizontal fi eld attained 
by the ball

(d) the velocity (expressed as a vector) with which the projectile strikes 
the ground (or the fence)

Repeat part (b) for a launch speed of v0 = 75 ft∕sec.

Solution We make the assumptions of constant gravitational accel-
eration and no aerodynamic drag. 1  With the latter assumption, the 
8-lb weight of the projectile is irrelevant. Using the given x-y coordi-
nate system, we begin by checking the y-displacement at the horizontal 
position of the fence.

[x = x0 + (vx)0t]  100 + 30 = 0 + (80 cos 35°)t  t = 1.984 sec

[y = y0 + (vy)0t −
1
2 gt2]

y = 6 + 80 sin 35°(1.984) −  12 (32.2)(1.984)2 = 33.7 ft

(a) Because the y-coordinate of the top of the fence is 20 + 8 = 28 feet, 
the projectile clears the fence. We now fi nd the fl ight time by setting 
y = 20 ft:

HELPFUL HINTS
1  Neglecting aerodynamic drag is a poor 

assumption for projectiles with relatively 
high initial velocities, large sizes, and low 
weights. In a vacuum, a baseball thrown 
with an initial speed of 100 ft ∕sec at 45° 
above the horizontal will travel about 311 
feet over a horizontal range. In sea-level 
air, the baseball range is about 200 ft, 
while a typical beachball under the same 
conditions will travel about 10 ft.

2  As an alternative approach, we could 
fi nd the time at apex where vy = 0, then 
use that time in the y-displacement 
equation. Verify that the trajectory apex 
occurs over the 100-ft horizontal portion 
of the athletic fi eld.

𝜃 = 35°

x

y
v0 = 80 ft/sec

100ʹ

fence

30ʹ

6ʹ

8ʹ

20ʹ

[vy
2 = (vy)0

2 − 2g(y − y0)] 02 = (80 sin 35°)2 − 2(32.2)(h − 6)  h = 38.7 ft 2  Ans.

(d) For the impact velocity:

[vx = (vx)0]    vx =  80 cos 35° = 65.5 ft∕sec

[vy = (vy)0 − gt]   vy = 80 sin 35° − 32.2(2.50) = −34.7 ft∕sec

So the impact velocity is v = 65.5i − 34.7j ft∕sec. Ans.

If v0 = 75 ft∕sec, the time from launch to the fence is found by

[x = x0 + (vx)0t]  100 + 30 = (75 cos 35°)t  t = 2.12 sec

and the corresponding value of y is

[y = y0 + (vy)0   t −
1
2  gt2] y = 6 + 80 sin 35°(2.12) −

1
2 (32.2)(2.12)2 = 24.9 ft

For this launch speed, we see that the projectile hits the fence, and the 
point of impact is
 (x, y) = (130, 24.9) ft Ans.

[y = y0 + (vy)0t −
1
2  gt2]   20 = 6 + 80 sin 35°(tƒ) −

1
2 (32.2)tƒ

2 tƒ = 2.50 sec Ans.

[x = x0 + (vx)0t] x = 0 + 80 cos 35°(2.50) = 164.0 ft

(b) Thus the point of fi rst impact is (x, y) = (164.0, 20) ft. Ans.

(c) For the maximum height:
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32 CHAPTER 2  Kinematics of Particles

2/5  Normal and Tangential Coordinates (n-t)
As we mentioned in Art. 2∕1, one of the common descriptions of curvilinear motion 
uses path variables, which are measurements made along the tangent t and nor-
mal n to the path of the particle. These coordinates provide a very natural descrip-

tion for curvilinear motion and are frequently the most direct and 
convenient coordinates to use. The n- and t-coordinates are consid-
ered to move along the path with the particle, as seen in Fig. 2∕9
where the particle advances from A to B to C. The positive direction 
for n at any position is always taken toward the center of curvature 
of the path. As seen from Fig. 2∕9, the positive n-direction will shift 
from one side of the curve to the other side if the curvature changes 
direction.

Velocity and Acceleration
We now use the coordinates n and t to describe the velocity v and 
acceleration a which were introduced in Art. 2∕3 for the curvilinear 
motion of a particle. For this purpose, we introduce unit vectors en

in the n-direction and et in the t-direction, as shown in Fig. 2∕10a 
for the position of the particle at point A on its path. During a dif-
ferential increment of time dt, the particle moves a differential dis-
tance ds along the curve from A to A′. With the radius of curvature 
of the path at this position designated by 𝜌, we see that ds = 𝜌 d𝛽, 
where 𝛽 is in radians. It is unnecessary to consider the differential 
change in 𝜌 between A and A′ because a higher-order term would 
be introduced which disappears in the limit. Thus, the magnitude 
of the velocity can be written v = ds∕dt = 𝜌 d𝛽∕dt, and we can write 
the velocity as the vector

v = vet = 𝜌 �̇�et (2∕7)

The acceleration a of the particle was defi ned in Art. 2∕3 as a =
dv∕dt, and we observed from Fig. 2∕5 that the acceleration is a vec-
tor which refl ects both the change in magnitude and the change in 
direction of v. We now differentiate v in Eq. 2∕7 by applying the 
ordinary rule for the differentiation of the product of a scalar and a 
vector* and get

 a =
dv
dt

=
d(vet)

dt
= vėt + v̇et (2∕8)

where the unit vector et now has a nonzero derivative because its 
direction changes.

To fi nd ėt we analyze the change in et during a differential 
increment of motion as the particle moves from A to A′ in Fig. 
2∕10a. The unit vector et correspondingly changes to e′t, and the 
vector difference det is shown in part b of the fi gure. The vector 
det in the limit has a magnitude equal to the length of the arc 

v = vet = 𝜌�̇�et 

A

B

C
n

n n

t t

t

vʹ

v

v

Aʹ

A

n

C

Path
t
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dv

dvt
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ds = 𝜌 d𝛽

eʹt

e t

en

a t

an

a
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*See Art. C∕7 of Appendix C.
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�et� d𝛽 = d𝛽 obtained by swinging the unit vector et through the angle d𝛽  expressed 
in radians. The direction of det is given by en. Thus, we can write det = en d𝛽. 
Dividing by d𝛽 gives

det

d𝛽
= en

Dividing by dt gives det∕dt = (d𝛽∕dt)en, which can be written

ėt = �̇�en (2∕9)

With the substitution of Eq. 2∕9 and �̇� from the relation v = 𝜌�̇�, Eq. 2∕8 for the 
acceleration becomes

a =
v2

𝜌
 en + v̇et (2∕10)

where an = 
v2

 𝜌
= 𝜌�̇�2 = v�̇�

 at = v̇ = s̈

 a = √an 

2 + at 

2

We stress that at = v̇ is the time rate of change of the speed v. Finally, we 
note that at = v̇ = d(𝜌�̇�)∕dt = 𝜌�̈� + �̇�𝛽. This relation, however, fi nds little 
use because we seldom have reason to compute �̇�.

Geometric Interpretation
Full understanding of Eq. 2∕10 comes only when we clearly see the geom-
etry of the physical changes it describes. Figure 2∕10c shows the veloc-
ity vector v when the particle is at A and v′ when it is at A′. The vector 
change in the velocity is dv, which establishes the direction of the accel-
eration a. The n-component of dv is labeled dvn, and in the limit its magnitude 
equals the length of the arc generated by swinging the vector v as a radius through 
the angle d𝛽. Thus, �dvn� = v d𝛽 and the n- component of acceleration is an = �dvn�∕
dt = v(d𝛽∕dt) = v�̇� as before. The t-component of dv is labeled dvt, and its magni-
tude is simply the change dv in the magnitude or length of the velocity vector. 
Therefore, the t-component of acceleration is at = dv∕dt = v̇ = s̈ as before. The accel-
eration vectors resulting from the corresponding vector changes in velocity are 
shown in Fig. 2∕10c.

It is especially important to observe that the normal component of acceleration 
an is always directed toward the center of curvature C. The tangential component of 
acceleration, on the other hand, will be in the positive t-direction of motion if the 
speed v is increasing and in the negative t-direction if the speed is decreasing. In 
Fig. 2∕11 are shown schematic representations of the variation in the acceleration 
vector for a particle moving from A to B with (a) increasing speed and (b) decreas-
ing speed. At an infl ection point on the curve, the normal acceleration v2∕𝜌 goes to 
zero because 𝜌 becomes infi nite.

ėt = �̇�en 

a =
v2

𝜌
en + v̇et 

The paths of these airplanes strongly 
suggest the use of path coordinates 
such as a normal-tangential system.
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34 CHAPTER 2  Kinematics of Particles

Circular Motion
Circular motion is an important special case of plane curvilinear motion where the 
radius of curvature 𝜌 becomes the constant radius r of the circle and the angle 𝛽 is 
replaced by the angle 𝜃 measured from any convenient radial reference to OP, 
Fig. 2∕12. The velocity and the acceleration components for the circular motion of 
the particle P become

 v = r�̇�

  an = v2∕r = r�̇�2 = v�̇� (2∕11)

 at = v̇ = r�̈�

We fi nd repeated use for Eqs. 2∕10 and 2∕11 in dynamics, so these relations and 
the principles behind them should be mastered.

v = r�̇�

an = v2∕r = r�̇�2 = v�̇�

at = v̇ = r�̈�

An example of uniform circular motion is this car moving with constant speed around 
a wet skidpad (a circular roadway with a diameter of about 200 feet).
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 SAMPLE PROBLEM 2/7

To anticipate the dip and hump in the road, the driver of a car applies her 
brakes to produce a uniform deceleration. Her speed is 100 km∕  h at the 
bottom A of the dip and 50 km∕  h at the top C of the hump, which is 120 m 
along the road from A. If the passengers experience a total acceleration of 
3 m∕s2 at A and if the radius of curvature of the hump at C is 150 m, calcu-
late (a) the radius of curvature 𝜌 at A, (b) the acceleration at the infl ection 
point B, and (c) the total acceleration at C.

Solution The dimensions of the car are small compared with those of 
the path, so we will treat the car as a particle. 1  The velocities are

 vA =  (100 
km
h )( 1 h

3600 s)(1000 
m

km) = 27.8 m∕s

 vC =  50 
1000
3600

= 13.89 m∕s

We fi nd the constant deceleration along the path from

[∫  
v dv = ∫  at ds ]  ∫vC

vA

v dv = at ∫s

0
ds

at =
1
2s

 (vC 

2 − vA 

2) =
(13.89)2 − (27.8)2

2(120)
= −2.41 m∕s2

(a) Condition at A With the total acceleration given and at deter-
mined, we can easily compute an and hence 𝜌 from

[a2 = an 

2 + at 

2]  an 

2 = 32 − (2.41)2 = 3.19  an = 1.785 m∕s2

[an = v2∕𝜌]   𝜌 = v2∕an = (27.8)2∕1.785 = 432 m Ans.

(b) Condition at B Since the radius of curvature is infi nite at the 
infl ection point, an = 0 and

 a = at = −2.41 m∕s2 Ans.

(c) Condition at C The normal acceleration becomes

[an = v2∕𝜌]   an = (13.89)2∕150 = 1.286 m∕s2

With unit vectors en and et in the n- and t-directions, the acceleration 
may be written

a = 1.286en − 2.41et m∕s2

where the magnitude of a is

[a = √an 

2 + at 

2]   a = √(1.286)2 + (−2.41)2 = 2.73 m∕s2 Ans.

The acceleration vectors representing the conditions at each of 
the three points are shown for clarifi cation.

HELPFUL HINT
1  Actually, the radius of curvature to the 

road differs by about 1 m from that to 
the path followed by the center of mass 
of the passengers, but we have neglected 
this relatively small difference.

A

B

at = −2.41 m/s2 C

an = 1.785 m/s2

at = −2.41 m/s2

a = at = −2.41 m/s2

an = 1.286 m/s2

an = 2.73 m/s2

a = 3 m/s2

+n

+t

+t

+t

+n

150 m

60 m
60 m

B
A

C
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SAMPLE PROBLEM 2/8

A certain rocket maintains a horizontal attitude of its axis during the 
powered phase of its fl ight at high altitude. The thrust imparts a hor-
izontal component of acceleration of 20 ft∕sec2, and the downward ac-
celeration component is the acceleration due to gravity at that altitude, 
which is g = 30 ft∕sec2. At the instant represented, the velocity of the 
mass center G of the rocket along the 15° direction of its trajectory is 
12,000 mi∕ hr. For this position determine (a) the radius of curvature 
of the fl ight trajectory, (b) the rate at which the speed v is increasing, 
(c) the angular rate �̇� of the radial line from G to the center of curva-
ture C, and (d) the vector expression for the total acceleration a of the 
rocket.

Solution We observe that the radius of curvature appears in the ex-
pression for the normal component of acceleration, so we use n- and 
t-coordinates to describe the motion of G. The n- and t-components of 
the total acceleration are obtained by resolving the given horizontal 
and vertical accelerations into their n- and t-components and then com-
bining. 1  From the fi gure we get

 an = 30 cos 15° − 20 sin 15° = 23.8 ft∕sec2

 at = 30 sin 15° + 20 cos 15° = 27.1 ft∕sec2

(a) We may now compute the radius of curvature from

[an = v2∕𝜌]   𝜌 =
v2

an
=

[(12,000)(44∕30)]2

23.8
= 13.01(106) ft 2  Ans.

(b) The rate at which v is increasing is simply the t-component of 
 acceleration.

[v̇ = at] v̇ = 27.1 ft∕sec2 Ans.

(c) The angular rate �̇� of line GC depends on v and 𝜌 and is given by

[v = 𝜌�̇�]  �̇� = v∕𝜌 =
12,000(44∕30)

13.01(106)
= 13.53(10−4) rad∕sec Ans.

(d) With unit vectors en and et for the n- and t-directions, respectively, 
the total acceleration becomes

 a = 23.8en + 27.1et ft∕sec2 Ans.

HELPFUL HINTS
1  Alternatively, we could fi nd the resul-

tant acceleration and then resolve it 
into n- and t-components.

2  To convert from mi∕hr to ft∕sec, multi-

 ply by 
5280 ft∕mi

3600 sec∕  hr
 = 

44 ft∕sec
30 mi∕ hr

 which

 is easily remembered, as 30 mi∕  hr is the 
same as 44 ft∕sec.

n

G

v = 12,000 mi/hr

g = 30 ft/sec2

20 ft/sec2

Horiz.

t

15°

C

𝜌

15°
x

ax = 20 ft/sec2

a
g = 30 ft/sec2

⋅vat =

et

en

v2
—–an = 𝜌
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2/6  Polar Coordinates (r-𝜃)
We now consider the third description of plane curvilinear motion, namely, polar 
coordinates where the particle is located by the radial distance r from a fi xed point 
and by an angular measurement 𝜃 to the radial line. Polar coordinates are particu-
larly useful when a motion is constrained through the control of a radial distance 
and an angular position or when an unconstrained motion is observed by measure-
ments of a radial distance and an angular position.

Figure 2∕13a shows the polar coordinates r and 𝜃 which locate a particle trav-
eling on a curved path. An arbitrary fi xed line, such as the x-axis, is used as a ref-
erence for the measurement of 𝜃. Unit vectors er and e𝜃 are estab-
lished in the positive r- and 𝜃-directions, respectively. The position 
vector r to the particle at A has a magnitude equal to the radial 
distance r and a direction specifi ed by the unit vector er. Thus, we 
express the location of the particle at A by the vector

r = rer

Time Derivatives of the Unit Vectors
To differentiate this relation with respect to time to obtain v = ṙ 
and a = v̇, we need expressions for the time derivatives of both 
unit vectors er and e𝜃. We obtain ėr and ė𝜃 in exactly the same 
way we derived ėt in the preceding article. During time dt the 
coordinate directions rotate through the angle d𝜃, and the unit 
vectors also rotate through the same angle from er and e𝜃 to e′r 
and e′𝜃 , as shown in Fig. 2∕13b. We note that the vector change 
der is in the plus 𝜃-direction and that de𝜃 is in the minus r- 
direction. Because their magnitudes in the limit are equal to the 
unit vector as radius times the angle d𝜃 in radians, we can write 
them as der = e𝜃 d𝜃 and de𝜃 = −er d𝜃. If we  divide these  equations 
by d𝜃, we have

der

d𝜃
= e𝜃  and  

de𝜃

d𝜃
= −er

If, on the other hand, we divide them by dt, we have der∕dt = (d𝜃∕dt)e𝜃 and de𝜃∕dt = 
−(d𝜃∕dt)er, or simply

 ėr = �̇�e𝜃  and  ė𝜃 = −�̇�er (2∕12)

Velocity
We are now ready to differentiate r = rer with respect to time. Using the rule for 
differentiating the product of a scalar and a vector gives

v = ṙ = ṙer + rėr

With the substitution of ėr from Eq. 2∕12, the vector expression for the velocity becomes

 v = ṙer + r�̇�e𝜃 (2∕13)

ėr = �̇�e𝜃 and ė𝜃 = −�̇�er 

v = ṙer + r�̇�e𝜃 
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38 CHAPTER 2  Kinematics of Particles

where vr = ṙ

 v𝜃 = r𝜃

 v = √vr 

2 + v𝜃 

2

The r-component of v is merely the rate at which the vector r stretches. The 
𝜃-component of v is due to the rotation of r.

Acceleration
We now differentiate the expression for v to obtain the acceleration a = v̇. Note 
that the derivative of r𝜃e𝜃 will produce three terms, since all three factors are vari-
able. Thus,

a = v̇ = (r̈er + r ˙ėr) + (r ˙�̇�e𝜃 + r �̈�e𝜃 + r �̇�ė𝜃)

Substitution of ėr and ė𝜃 from Eq. 2∕12 and collecting terms give

a = (r̈ − r�̇�2)er + (r�̈� + 2ṙ�̇�)e𝜃 (2∕14)

where ar = r̈ − r𝜃2

 a𝜃 = r�̈� + 2ṙ�̇�

 a = √ar 

2 + a𝜃 

2

We can write the 𝜃-component alternatively as

a𝜃 =
1
r
 
d
dt

 (r2𝜃)

which can be verifi ed easily by carrying out the differentiation. 
This form for a𝜃 will be useful when we treat the angular momen-
tum of particles in the next chapter.

Geometric Interpretation
The terms in Eq. 2∕14 can be best understood when the geometry 
of the physical changes can be clearly seen. For this purpose, Fig. 
2∕14a is developed to show the velocity vectors and their r- and 
𝜃-components at position A and at position A′ after an infi nitesi-
mal movement. Each of these components undergoes a change in 
magnitude and direction as shown in Fig. 2∕14b. In this fi gure we 
see the following changes:

(a) Magnitude Change of vr This change is simply the increase 
in length of vr or dvr = dṙ, and the corresponding acceleration 
term is dṙ∕dt = r̈ in the positive r-direction.

(b) Direction Change of vr The magnitude of this change is 
seen from the fi gure to be vr d 𝜃 = ṙ d𝜃, and its contribution to 
the acceleration becomes ṙ d  𝜃∕dt = ṙ𝜃 which is in the positive 
𝜃-direction.
(c) Magnitude Change of v𝜽  This term is the change in 
length of v𝜃 or d(r𝜃), and its contribution to the acceleration is 
d(r�̇�)∕dt = r𝜃 + ṙ𝜃 and is in the positive 𝜃-direction.

a = (r̈ − r�̇�2)er + (r�̈� + 2ṙ�̇�)e𝜃 

d𝜃

d𝜃

d𝜃r𝜃  

v𝜃

v𝜃 vr

dvr

vr

vʹ

v

A

Path

Aʹ

vŕ
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(d) Direction Change of v𝜽  The magnitude of this change is v𝜃 d𝜃 = r�̇� d𝜃, 
and the corresponding acceleration term is observed to be r�̇�(d𝜃∕dt) = r�̇�2 in the 
negative r-direction.

Collecting terms gives ar = r̈ − r�̇�2 and a𝜃 = r𝜃 + 2ṙ𝜃 as obtained pre viously. We see 
that the term r̈ is the acceleration which the particle would have along the radius in the 
absence of a change in 𝜃. The term −r𝜃2 is the normal component of acceleration if r 
were constant, as in circular motion. The term r𝜃 is the tangential acceleration 
which the particle would have if r were constant, but is only a part of the accelera-
tion due to the change in magnitude of v𝜃 when r is variable. Finally, the term 2ṙ�̇� 
is composed of two effects. The fi rst effect comes from that portion of the change in 
magnitude d(r𝜃) of v𝜃 due to the change in r, and the second effect comes 
from the change in direction of vr. The term 2ṙ𝜃 represents, therefore, a 
combination of changes and is not so easily perceived as are the other 
acceleration terms.

Note the difference between the vector change dvr in vr and the 
change dvr in the magnitude of vr. Similarly, the vector change dv𝜃 is not 
the same as the change dv𝜃 in the magnitude of v𝜃. When we divide these 
changes by dt to obtain expressions for the derivatives, we see clearly 
that the magnitude of the derivative �dvr∕dt� and the derivative of the 
magnitude dvr∕dt are not the same. Note also that ar is not v̇r and that a𝜃 
is not v̇𝜃.

The total acceleration a and its components are represented in Fig. 
2∕15. If a has a component normal to the path, we know from our analysis 
of n- and t-components in Art. 2∕5 that the sense of the n-component must 
be toward the center of curvature.

Circular Motion
For motion in a circular path with r constant, the components of Eqs. 2∕13 and 2∕14 
become simply

 vr = 0  v𝜃 = r𝜃

 ar = −r𝜃2   a𝜃 = r𝜃

This description is the same as that obtained with n- and t-components, where 
the 𝜃- and t-directions coincide but the positive r-direction is in the negative n-
direction. Thus, ar = −an for circular motion centered at the origin of the polar 
coordinates.

The expressions for ar and a𝜃 in scalar form can also be obtained by direct 
differentiation of the coordinate relations x = r cos 𝜃 and y = r sin 𝜃 to obtain ax = ẍ 
and ay = ÿ. Each of these rectangular components of acceleration can then be 
 resolved into r- and 𝜃-components which, when combined, will yield the expres-
sions of Eq. 2∕14.
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SAMPLE PROBLEM 2/9

Rotation of the radially slotted arm is governed by 𝜃 = 0.2t + 0.02t3, 
where 𝜃 is in radians and t is in seconds. Simultaneously, the power 
screw in the arm engages the slider B and controls its distance from O 
according to r = 0.2 + 0.04t2, where r is in meters and t is in seconds. 
Calculate the magnitudes of the velocity and acceleration of the slider 
for the instant when t = 3 s.

Solution The coordinates and their time derivatives which appear in 
the expressions for velocity and acceleration in polar coordinates are 
obtained fi rst and evaluated for t = 3 s. 1

r = 0.2 + 0.04t2   r3 = 0.2 + 0.04(32) = 0.56 m

r̈ = 0.08  r̈3 = 0.08 m∕s2

𝜃 = 0.2t + 0.02t3  𝜃3 = 0.2(3) + 0.02(33) = 1.14 rad

                                                        or 𝜃3 = 1.14(180°∕𝜋) = 65.3°

�̇� = 0.2 + 0.06t2  �̇�3 = 0.2 + 0.06(32) = 0.74 rad∕s

𝜃 = 0.12t  �̈�3 = 0.12(3) = 0.36 rad∕s2

The velocity components are obtained from Eq. 2∕13 and for t = 3 s are

[vr = ṙ]  vr = 0.24 m∕s

[v𝜃 = r�̇�]  v𝜃 = 0.56(0.74) = 0.414 m∕s

[v = √vr 

2 + v𝜃 

2]  v = √(0.24)2 + (0.414)2 = 0.479 m∕s Ans.

The velocity and its components are shown for the specifi ed position of 
the arm.

The acceleration components are obtained from Eq. 2∕14 and for 
t = 3 s are

[ar = r̈ − r�̇�2]  ar = 0.08 − 0.56(0.74)2 = −0.227 m∕s2

[a𝜃 = r�̈� + 2ṙ�̇�]  a𝜃 = 0.56(0.36) + 2(0.24)(0.74) = 0.557 m∕s2

[a = √ar 

2 + a𝜃 

2]  a = √(−0.227)2 + (0.557)2 = 0.601 m∕s2 Ans.

The acceleration and its components are also shown for the 65.3° 
position of the arm.

Plotted in the fi nal fi gure is the path of the slider B over 
the time interval 0 ≤ t ≤ 5 s. This plot is generated by varying 
t in the given expressions for r and 𝜃. Conversion from polar to 
rectangular coordinates is given by

x = r cos 𝜃  y = r sin 𝜃

HELPFUL HINT
1  We see that this problem is an example of constrained motion 

where the center B of the slider is mechanically constrained 
by the rotation of the slotted arm and by engagement with 
the turning screw.

ṙ = 0.08t  ṙ3 = 0.08(3) = 0.24 m∕s

 𝜃 = 65.3°

r = 0.56 m

O

v = 0.479 m/s

vr = 0.24 m/s

v𝜃 = 0.414 m/s
B

 𝜃 = 65.3°

O

a = 0.601 m/s2 ar = −0.227 m/s2

a𝜃 = 0.557 m/s2

B

−1.5 −1 −0.5 0
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 SAMPLE PROBLEM 2/10

A tracking radar lies in the vertical plane of the path of a rocket which 
is coasting in unpowered fl ight above the atmosphere. For the instant 
when 𝜃 = 30°, the tracking data give r = 25(104) ft, ṙ = 4000 ft∕sec, and 
𝜃 = 0.80 deg∕sec. The acceleration of the rocket is due only to gravita-
tional attraction and for its particular altitude is 31.4 ft∕sec2 vertically 
down. For these conditions determine the velocity v of the rocket and 
the values of r̈ and 𝜃.

Solution The components of velocity from Eq. 2∕13 are

[vr = ṙ]  vr = 4000 ft∕sec

[v𝜃 = r�̇�]  v𝜃 = 25(104)(0.80)( 𝜋

180) = 3490 ft∕sec 1

[v = √vr 

2 + v𝜃 

2]  v = √(4000)2 + (3490)2 = 5310 ft∕sec Ans.

Since the total acceleration of the rocket is g = 31.4 ft∕sec2 down, 
we can easily fi nd its r- and 𝜃-components for the given position. As 
shown in the  fi gure, they are

 ar = −31.4 cos 30° = −27.2 ft∕sec2 2

  a𝜃 = 31.4 sin 30° = 15.70 ft∕sec2

We now equate these values to the polar-coordinate expressions for ar 
and a𝜃 which contain the unknowns r̈ and �̈�. Thus, from Eq. 2∕14

[ar = r̈ − r�̇�2]  −27.2 = r̈ − 25(104)(0.80 
𝜋

180)
2

 3

      r̈ = 21.5 ft∕sec2 Ans.

[a𝜃 = r�̈� + 2ṙ 𝜃]  15.70 = 25(104)𝜃 + 2(4000)(0.80 
𝜋

180)
     𝜃 = −3.84(10−4) rad∕sec2 Ans.

HELPFUL HINTS
1  We observe that the angle 𝜃 in polar co-

ordinates need not always be taken pos-
itive in a counterclockwise sense.

2  Note that the r-component of accelera-
tion is in the negative r-direction, so it 
carries a minus sign.

3  We must be careful to convert 𝜃 from 
 deg∕sec to rad∕sec.

𝜃 = 30°

v = 5310 ft/sec

vr = 4000 ft/sec

v𝜃 = 3490 ft/sec

𝜃 = 30°

a = g = 31.4 ft/sec2

ar = –27.2 ft/sec2

a𝜃 = 15.70 ft/sec2

r

+r

+𝜃

𝜃
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2/7  Space Curvilinear Motion
The general case of three-dimensional motion of a particle along a space curve was 
introduced in Art. 2∕1 and illustrated in Fig. 2∕1. Three coordinate systems, rectan-

gular (x-y-z), cylindrical (r-𝜃-z), and spherical (R-𝜃-𝜙), are commonly 
used to describe this motion. These systems are indicated in Fig. 2∕16, 
which also shows the unit vectors for the three coordinate systems.*

Before describing the use of these coordinate systems, we note that 
a path-variable description, using n- and t-coordinates, which we de-
veloped in Art. 2∕5, can be applied in the osculating plane shown in 
Fig. 2∕1. We defi ned this plane as the plane which contains the curve 
at the location in question. We see that the velocity v, which is along 
the tangent t to the curve, lies in the osculating plane. The acceleration 
a also lies in the osculating plane. As in the case of plane motion, it has 
a component at = v̇ tangent to the path due to the change in magnitude 
of the velocity and a component an = v2∕𝜌 normal to the curve due to 
the change in direction of the velocity. As before, 𝜌 is the radius of cur-
vature of the path at the point in question and is measured in the os-
culating plane. This description of motion, which is natural and direct 
for many plane-motion problems, is awkward to use for space motion 
because the osculating plane continually shifts its orientation. We will 
confi ne our attention, therefore, to the three fi xed coordinate systems 
shown in Fig. 2∕16.

Rectangular Coordinates (x-y-z)
The extension from two to three dimensions offers no particular diffi culty. We 
merely add the z-coordinate and its two time derivatives to the two-dimensional 
expressions of Eqs. 2∕6 so that the position vector R, the velocity v, and the accelera-
tion a become

 R = xi + yj + zk

  v = Ṙ = ẋi + ẏj + żk (2∕15)

 a = v̇ = R̈ = ẍi + ÿj + z̈k

Note that in three dimensions we are using R in place of r for the position vector.

Cylindrical Coordinates (r-𝜃-z)
If we understand the polar-coordinate description of plane motion, then there 
should be no diffi culty with cylindrical coordinates because all that is required is 
the addition of the z-coordinate and its two time derivatives. The position vector R 
to the particle for cylindrical coordinates is simply

R = rer + zk

R = xi + yjyy + zk

v = Ṙ = ẋi + ẏjyy + żk 

a = v̇ = R̈ = ẍi + ÿjyÿ + z̈k

z

zR

P

k

i

j

er

eR

O r

x

y

R

e𝜙

e𝜃

e𝜃
𝜙

𝜙

𝜃

𝜃

FIGURE 2/16

*In a variation of spherical coordinates commonly used, angle 𝜙 is replaced by its complement.
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In place of Eq. 2∕13 for plane motion, we can write the velocity as

v = ṙer + r�̇�e𝜃 + żk (2∕16)

where vr = ṙ

 v𝜃 = r𝜃

 vz = ż

 v = √vr 

2 + v𝜃 

2 + vz 

2

Similarly, the acceleration is written by adding the z-component to Eq. 2∕14, which 
gives us

a = (r̈ − r𝜃2)er + (r�̈� + 2ṙ𝜃)e𝜃 + z̈ k (2∕17)

where ar = r̈ − r𝜃2

 a𝜃 = r𝜃 + 2ṙ �̇� =
1
r
 
d
dt

 (r2𝜃)

 az = z̈

 a = √ar 

2 + a𝜃 

2 + az 

2

Whereas the unit vectors er and e𝜃 have nonzero time derivatives due to the 
changes in their directions, we note that the unit vector k in the z-direction re-
mains fi xed in direction and therefore has a zero time derivative.

Spherical Coordinates (R-𝜃-𝜙)
Spherical coordinates R, 𝜃, 𝜙 are utilized when a radial distance and 
two angles are utilized to specify the position of a particle, as in the 
case of radar measurements, for example. Derivation of the expres-
sion for the velocity v is easily obtained, but the expression for the 
acceleration a is more complex because of the added geometry. Conse-
quently, only the results will be cited here.* First we designate unit 
vectors eR, e𝜃, e𝜙 as shown in Fig. 2∕16. Note that the unit vector eR is 
in the direction in which the particle P would move if R increases but 
𝜃 and 𝜙 are held constant. The unit vector e𝜃 is in the direction in 
which P would move if 𝜃 increases while R and 𝜙 are held constant. 
Finally, the unit vector e𝜙 is in the direction in which P would move if 
𝜙 increases while R and 𝜃 are held constant. The resulting expressions 
for v and a are

 v = vReR + v𝜃e𝜃 + v𝜙e𝜙 (2∕18)

where vR = Ṙ

 v𝜃 = R𝜃 cos 𝜙

 v𝜙 = R�̇�

v = ṙer + r�̇�e𝜃 + żk 

a = (r̈ − r𝜃2)er + (r�̈� + 2ṙ𝜃)e𝜃 + z̈k 

v = vReR + v𝜃e𝜃 + v𝜙e𝜙 

*For a complete derivation of v and a in spherical coordinates, see the fi rst author’s book 
Dynamics, 2nd edition, 1971, or SI Version, 1975 (John Wiley & Sons, Inc.).

With base rotation and ladder elevation, 
spherical coordinates would be a good 
choice for determining the acceleration 
of the upper end of the extending ladder.
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44 CHAPTER 2  Kinematics of Particles

and

a = aReR + a𝜃e𝜃 + a𝜙e𝜙 (2∕19)

where aR = R̈ − R�̇�2 − R𝜃2 cos2 𝜙

 a𝜃 = 
cos 𝜙

R
 
d
dt

 (R2𝜃) − 2R𝜃�̇� sin 𝜙 

 a𝜙 = 
1
R

 
d
dt

 (R2�̇�) + R𝜃2 sin 𝜙 cos 𝜙

Linear algebraic transformations between any two of the three coordinate- 
system expressions for velocity or acceleration can be developed. These transforma-
tions make it possible to express the motion component in rectangular coordinates, 
for example, if the components are known in spherical coordinates, or vice versa.* 
These transformations are easily handled with the aid of matrix algebra and a 
simple computer program.

a = aReR + a𝜃e𝜃 + a𝜙e𝜙 

*These coordinate transformations are developed and illustrated in the fi rst author’s book 
Dynamics, 2nd edition, 1971, or SI Version, 1975 (John Wiley & Sons, Inc.).

A portion of the track of this amusement-park ride is in the shape of a helix whose axis is 
horizontal.
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 SAMPLE PROBLEM 2/11

The power screw starts from rest and is given a rotational speed 𝜃 
which increases uniformly with time t according to 𝜃 = kt, where k is 
a constant. Determine the expressions for the velocity v and accelera-
tion a of the center of ball A when the screw has turned through one 
complete revolution from rest. The lead of the screw (advancement per 
revolution) is L.

Solution The center of ball A moves in a helix on the cylindrical 
 surface of radius b, and the cylindrical coordinates r, 𝜃, z are clearly 
indicated.
 Integrating the given relation for 𝜃 gives 𝜃 = Δ𝜃 = ∫  𝜃

 dt =
1
2 kt2. 

For one revolution from rest we have

2𝜋 =
1
2 kt2

giving

t = 2√𝜋∕k

Thus, the angular rate at one revolution is

𝜃 = kt = k(2√𝜋∕k) = 2√𝜋k

 The helix angle 𝛾 of the path followed by the center of the ball 
governs the relation between the 𝜃- and z-components of velocity and is 
given by tan 𝛾 = L∕(2𝜋b). 1  Now from the fi gure we see that v𝜃 = v cos 𝛾. 
Substituting v𝜃 = r𝜃 = b𝜃 from Eq. 2∕16 gives v = v𝜃∕cos 𝛾 = b𝜃∕cos 𝛾. 
With cos 𝛾 obtained from tan 𝛾 and with 𝜃 = 2√𝜋k, we have for the 
one-revolution position 2

 v = 2b√𝜋k 
√L2 + 4𝜋2b2

2𝜋b
= √k

𝜋
√L2 + 4𝜋2b2 Ans.

 The acceleration components from Eq. 2∕17 become

[ar = r̈ − r𝜃2]   ar = 0 − b(2√𝜋k)2 = −4b𝜋k  3

[a𝜃 = r𝜃 + 2r ̇𝜃 ]  a𝜃 = bk + 2(0)(2√𝜋k) = bk

[az = z̈ = v̇z]   az =
d
dt

 (vz) =
d
dt

 (v𝜃 tan 𝛾) =
d
dt

 (b𝜃  tan 𝛾)

     = (b tan 𝛾)𝜃 = b 
L

2𝜋b
 k =

kL
2𝜋

 Now we combine the components to give the magnitude of the 
 total acceleration, which becomes

a = √(−4b𝜋k)2 + (bk)2 + (kL
2𝜋)

2

  = bk√(1 + 16𝜋2) + L2∕(4𝜋2b2) Ans.

HELPFUL HINTS
1  We must be careful to divide the lead L 

by the circumference 2𝜋b and not the di-
ameter 2b to obtain tan 𝛾. If in doubt, 
unwrap one turn of the helix traced by 
the center of the ball.

2  Sketch a right triangle and recall that 
for tan 𝛽 = a∕b the cosine of 𝛽 becomes 
b∕√a2 + b2.

3  The negative sign for ar is consistent 
with our previous knowledge that the 
normal component of acceleration is di-
rected toward the center of curvature.

z

b

r
A

2r0

𝜃
⋅

r Aar

az

a𝜃

z

v

𝜃

𝛾

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


46 CHAPTER 2  Kinematics of Particles

SAMPLE PROBLEM 2/12

An aircraft P takes off at A with a velocity v0 of 250 km∕  h 
and climbs in the vertical y′-z′ plane at the constant 15° angle 
with an acceleration along its fl ight path of 0.8 m∕s2. Flight 
progress is monitored by radar at point O. (a) Resolve 
the velocity of P into cylindrical-coordinate components 
60 seconds after takeoff and fi nd ṙ, 𝜃, and ż for that instant. 
(b) Resolve the velocity of the aircraft P into  spherical-
coordinate components 60 seconds after takeoff and fi nd 
Ṙ, 𝜃, and �̇� for that instant.

Solution (a) The accompanying fi gure shows the veloc-
ity and acceleration vectors in the y′-z′ plane. The takeoff 
speed is

v0 =
250
3.6

= 69.4 m∕s

and the speed after 60 seconds is

v = v0 + at = 69.4 + 0.8(60) = 117.4 m∕s

The distance s traveled after takeoff is

s = s0 + v0 

t +
1
2

 at2 = 0 + 69.4(60) +
1
2

 (0.8)(60)2 = 5610 m

The y-coordinate and associated angle 𝜃 are

 y = 5610 cos 15° = 5420 m

 𝜃 = tan−1 
5420
3000

= 61.0°

From the fi gure (b) of x-y projections, we have

r = √30002 +  54202 = 6190 m

vxy = v cos 15° = 117.4 cos 15° = 113.4 m∕s

 vr = ṙ = vxy sin 𝜃 = 113.4 sin 61.0° = 99.2 m∕s Ans.

v𝜃 = r𝜃 = vxy cos 𝜃 = 113.4 cos 61.0° = 55.0 m∕s

So 𝜃 =
55.0
6190

= 8.88(10−3) rad∕s Ans.

Finally ż = vz = v sin 15° = 117.4 sin 15° = 30.4 m∕s Ans.

(b) Refer to the accompanying fi gure (c), which shows the 
x-y plane and various velocity components projected into 
the vertical plane containing r and R. Note that

z = y tan 15° = 5420 tan 15° = 1451 m

𝜙 = tan−1
 

z
r = tan−1

  

1451
6190

= 13.19°

R = √r2 + z2 = √61902 + 14512 = 6360 m

From the fi gure,

vR = Ṙ = 99.2 cos 13.19° + 30.4 sin 13.19° = 103.6 m∕s Ans.

 𝜃 = 8.88(10−3) rad∕s, as in part (a) Ans.

v𝜙 = R�̇� = 30.4 cos 13.19° − 99.2 sin 13.19° = 6.95 m∕s

 �̇� =
6.95
6360

= 1.093(10−3) rad∕s Ans.
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2/8  Relative Motion (Translating Axes)
In the previous articles of this chapter, we have described particle 
motion using coordinates referred to fi xed reference axes. The dis-
placements, velocities, and accelerations so determined are termed 
absolute. It is not always possible or convenient, however, to use a 
fi xed set of axes to describe or to measure motion. In addition, there 
are many engineering problems for which the analysis of motion is 
simplifi ed by using measurements made with respect to a moving 
reference system. These measurements, when combined with the ab-
solute motion of the moving coordinate system, enable us to deter-
mine the absolute motion in question. This approach is called a 
 relative-motion analysis.

Choice of Coordinate System
The motion of the moving coordinate system is specifi ed with  respect 
to a fi xed coordinate system. Strictly speaking, in Newtonian me-
chanics, this fi xed system is the primary inertial system, which is 
assumed to have no motion in space. For engineering purposes, the 
fi xed system may be taken as any system whose absolute motion is 
negligible for the problem at hand. For most earthbound engineer-
ing problems, it is suffi ciently precise to take for the fi xed reference 
system a set of axes attached to the earth, in which case we neglect 
the motion of the earth. For the motion of satellites around the earth, a nonro-
tating coordinate system is chosen with its origin on the axis of rotation of the 
earth. For interplanetary travel, a nonrotating coordinate system fi xed to the 
sun would be used. Thus, the choice of the fi xed system depends on the type of 
problem involved.

We will confi ne our attention in this article to moving reference systems which 
translate but do not rotate. Motion measured in rotating systems will be discussed 
in Art. 5∕7 of Chapter 5 on rigid-body kinematics, where this approach fi nds special 
but important application. We will also confi ne our attention here to relative- 
motion analysis for plane motion.

Vector Representation
Now consider two particles A and B which may have separate curvilin-
ear motions in a given plane or in parallel planes, Fig. 2∕17. We will 
 arbitrarily attach the origin of a set of translating (nonrotating) axes x-y 
to particle B and observe the motion of A from our moving position on B. 
The position vector of A as measured relative to the frame x-y is rA∕B = xi + 
yj, where the subscript notation “A∕B” means “A relative to B” or “A with 
respect to B.” The unit vectors along the x- and y-axes are i and j, and 
x and y are the coordinates of A measured in the x-y frame. The absolute 
position of B is defi ned by the vector rB measured from the origin of the 
fi xed axes X-Y. The absolute position of A is seen, therefore, to be deter-
mined by the vector

rA = rB + rA∕B

Relative motion is a critical issue in the 
midair refueling of aircraft.
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48 CHAPTER 2  Kinematics of Particles

We now differentiate this vector equation once with respect to time to obtain 
velocities and twice to obtain accelerations. Thus,

 ṙA = ṙB + ṙA∕B   or    vA = vB + vA∕B (2∕20)

 r̈A =  r̈B + r̈A∕B  or   aA = aB + aA∕B (2∕21)

In Eq. 2∕20 the velocity which we observe A to have from our position at B attached 
to the moving axes x-y is ṙA∕B = vA∕B = ẋi + ẏj. This term is the velocity of A with 
respect to B. Similarly, in Eq. 2∕21 the acceleration which we observe A to have 
from our nonrotating position on B is r̈A∕B = v̇A∕B = ẍi + ÿj. This term is the accel-
eration of A with respect to B. We note that the unit vectors i and j have zero deriv-
atives because their directions as well as their magnitudes remain unchanged. 
(Later when we discuss rotating reference axes, we must account for the deriva-
tives of the unit vectors when they change direction.)

Equation 2∕20 (or 2∕21) states that the absolute velocity (or acceleration) of A 
equals the absolute velocity (or acceleration) of B plus, vectorially, the velocity (or 
acceleration) of A relative to B. The relative term is the velocity (or acceleration) 
measurement which an observer attached to the moving coordinate system x-y 
would make. We can express the relative-motion terms in whatever coordinate sys-
tem is convenient—rectangular, normal and tangential, or polar—and the formula-
tions in the preceding articles can be used for this purpose. The appropriate fi xed 
system of the previous articles becomes the moving system in the present article.

Additional Considerations
The selection of the moving point B for attachment of the reference coordinate sys-
tem is arbitrary. As shown in Fig. 2∕18, point A could be used just as well for the 

attachment of the moving system, in which case the three corresponding 
 relative-motion equations for position, velocity, and acceleration are

rB = rA + rB∕A  vB = vA + vB∕A  aB = aA + aB∕A

It is seen, therefore, that rB∕A = −rA∕B, vB∕A = −vA∕B, and aB∕A = −aA∕B.
In relative-motion analysis, it is important to realize that the accelera-

tion of a particle as observed in a translating system x-y is the same as 
that observed in a fi xed system X-Y if the moving system has a constant 
velocity. This conclusion broadens the application of  Newton’s second law of 
motion (Chapter 3). We conclude, consequently, that a set of axes which has 
a constant absolute velocity may be used in place of a “fi xed” system for the 
determination of accelerations. A translating reference system which has no 
acceleration is called an  inertial system.

vAv = vBv + vAv ∕B 

aAa = aBa + aAa ∕B 
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 SAMPLE PROBLEM 2/13

Passengers in the jet transport A fl ying east at a speed of 800 km∕h ob-
serve a second jet plane B that passes under the transport in horizontal 
fl ight. Although the nose of B is pointed in the 45° northeast direction, 
plane B appears to the passengers in A to be moving away from the 
transport at the 60° angle as shown. Determine the true velocity of B.

Solution The moving reference axes x-y are attached to A, from 
which the relative observations are made. We write, therefore,

vB = vA + vB∕A 1

Next we identify the knowns and unknowns. The velocity vA is given in 
both magnitude and direction. The 60° direction of vB∕A, the velocity 
which B appears to have to the moving observers in A, is known, and the 
true velocity of B is in the 45° direction in which it is heading. 2  The 
two remaining unknowns are the magnitudes of vB and vB∕A. We may 
solve the vector equation in any one of three ways. 3

(I) Graphical We start the vector sum at some point P by drawing vA 
to a convenient scale and then construct a line through the tip of vA 
with the known direction of vB∕A. The known direction of vB is then 
drawn through P, and the intersection C yields the unique solution 
enabling us to complete the vector triangle and scale off the unknown 
magnitudes, which are found to be

 vB∕A = 586 km ∕  h  and  vB = 717 km ∕  h Ans.

(II) Trigonometric A sketch of the vector triangle is made to reveal 
the trigonometry, which gives

 
vB

sin 60°
=

vA

sin 75°
  vB = 800 

sin 60°
sin 75°

= 717 km ∕  h 4  Ans.

(III) Vector Algebra Using unit vectors i and j, we express the ve-
locities in vector form as

vA = 800i km ∕  h  vB = (vB cos 45°)i + (vB sin 45°)j

vB∕A = (vB∕A cos 60°)(−i) + (vB∕A sin 60°)j

Substituting these relations into the relative-velocity equation and 
solving separately for the i and j terms give

 (i-terms)   vB cos 45° = 800 − vB∕A cos 60°

 (j-terms)  vB sin 45° = vB∕A sin 60°

Solving simultaneously yields the unknown velocity magnitudes 5

 vB∕A = 586 km ∕  h  and  vB = 717 km ∕  h Ans.

It is worth noting the solution of this problem from the viewpoint of an 
observer in B. With reference axes attached to B, we would write vA = 
vB + vA∕B. The apparent velocity of A as observed by B is then vA∕B, 
which is the negative of vB∕A.

HELPFUL HINTS
1  We treat each airplane as a particle.
2  We assume no side slip due to cross 

wind.
3  Students should become familiar with 

all three solutions.

4  We must be prepared to recognize the 
appropriate trigonometric relation, which 
here is the law of sines.

5  We can see that the graphical or trigo-
nometric solution is shorter than the 
vector algebra solution in this particu-
lar problem.

60°

60°45°

45°

75°

60°

P
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A
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SAMPLE PROBLEM 2/14

Car A is accelerating in the direction of its motion at the rate of 3 ft∕sec2. 
Car B is rounding a curve of 440-ft radius at a constant speed of 30 mi∕hr. 
Determine the velocity and acceleration which car B appears to have 
to an observer in car A if car A has reached a speed of 45 mi∕hr for the 
positions represented.

Solution We choose nonrotating reference axes attached to car A 
since the motion of B with respect to A is desired.

Velocity The relative-velocity equation is

vB = vA + vB∕A

and the velocities of A and B for the position considered have the 
 magnitudes

vA = 45 
5280
602 = 45 

44
30

= 66 ft∕sec  vB = 30 
44
30

= 44 ft∕sec

The triangle of velocity vectors is drawn in the sequence required by 
the equation, and application of the law of cosines and the law of sines 
gives

 vB∕A = 58.2 ft∕sec  𝜃 = 40.9° 1  Ans.

Acceleration The relative-acceleration equation is

aB = aA + aB∕A

The acceleration of A is given, and the acceleration of B is normal to the 
curve in the n-direction and has the magnitude

[an = v2∕𝜌] aB = (44)2∕440 = 4.4 ft∕sec2

The triangle of acceleration vectors is drawn in the sequence required 
by the equation as illustrated. Solving for the x- and y-components of 
aB∕A gives us

              (aB∕A)x = 4.4 cos 30° − 3 = 0.810 ft∕sec2

  (aB∕A)y = 4.4 sin 30° = 2.2 ft∕sec2

 from which aB∕A = √(0.810)2 + (2.2)2 = 2.34 ft∕sec2 Ans.

The direction of aB∕A may be specifi ed by the angle 𝛽 which, by the law 
of sines, becomes

 
4.4

sin 𝛽
=

2.34
sin 30°

  𝛽 = sin−1 ( 4.4
2.34

 0.5) = 110.2° 2  Ans.

HELPFUL HINTS
1  Alternatively, we could use either 

a graphical or a vector algebraic 
solution.

2  Be careful to choose between the two val-
ues 69.8° and 180 − 69.8 = 110.2°.

 Suggestion: To gain familiarity with the 
manipulation of vector equations, it is 
suggested that the student rewrite the 
relative-motion equations in the form 
vB∕A = vB − vA and aB∕A = aB − aA and 
redraw the vector polygons to conform 
with these alternative relations.

 Caution: So far we are only prepared to 
handle motion relative to nonrotating 
axes. If we had attached the reference 
axes rigidly to car B, they would rotate 
with the car, and we would fi nd that 
the velocity and acceleration terms rela-
tive to the rotating axes are not the neg-
ative of those measured from the nonro-
tating axes moving with A. Rotating 
axes are treated in Art. 5∕7.

y

A

B

n

30°
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x

𝜃

𝛽

60°

30°
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2/9  Constrained Motion of Connected 
Particles
Sometimes the motions of particles are interrelated because of the constraints im-
posed by interconnecting members. In such cases it is necessary to account for 
these constraints in order to determine the respective motions of the particles.

One Degree of Freedom
Consider fi rst the very simple system of two interconnected particles A and B 
shown in Fig. 2∕19. It should be quite evident by inspection that the horizontal 
motion of A is twice the vertical motion of B. Nevertheless we will use this example 
to illustrate the method of analysis which applies to more complex situations where 
the results cannot be easily obtained by inspection. The motion of B is clearly the 
same as that of the center of its pulley, so we establish position coordinates y and 
x measured from a convenient fi xed datum. The total length of the  cable is

L = x +
𝜋r2

2
+ 2y + 𝜋r1 + b

With L, r2, r1, and b all constant, the fi rst and second time derivatives of the equa-
tion give

 0 = ẋ + 2ẏ  or   0 = vA + 2vB

 0 = ẍ + 2ÿ  or   0 = aA + 2aB

The velocity and acceleration constraint equations indicate that, for the coordi-
nates selected, the velocity of A must have a sign which is opposite to that of the 
velocity of B, and similarly for the accelerations. The constraint equations are valid 
for the motion of the system in either direction. We emphasize that vA = ẋ is posi-
tive to the left and that vB = ẏ is positive down.

Because the results do not depend on the lengths or pulley radii, 
we should be able to analyze the motion without considering them. In 
the lower-left portion of Fig. 2∕19 is shown an enlarged view of the 
horizontal diameter A′B′C′ of the lower pulley at an instant of time. 
Clearly, A′ and A have the same motion magnitudes, as do B and B′. 
During an infi nitesimal motion of A′, it is easy to see from the triangle 
that B′ moves half as far as A′ because point C as a point on the fi xed 
portion of the cable momentarily has no motion. Thus, with differenti-
ation by time in mind, we can obtain the velocity and acceleration mag-
nitude relationships by inspection. The pulley, in effect, is a wheel 
which rolls on the fi xed vertical cable. (The  kinematics of a rolling 
wheel will be treated more extensively in Chapter 5 on rigid-body mo-
tion.) The system of Fig. 2∕19 is said to have one degree of freedom since 
only one variable, either x or y, is needed to specify the positions of all 
parts of the system.

b

y

x

A

Aʹ CBʹ

B

r1

r2

FIGURE 2/19
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52 CHAPTER 2  Kinematics of Particles

Two Degrees of Freedom
The system with two degrees of freedom is shown in Fig. 2∕20. Here the 
positions of the lower cylinder and pulley C depend on the separate specifi -
cations of the two coordinates yA and yB. The lengths of the cables attached 
to cylinders A and B can be written, respectively, as

 LA = yA + 2yD + constant

 LB =  yB + yC + (yC − yD) + constant

and their time derivatives are

 0 = ẏA + 2ẏD   and   0 = ẏB + 2ẏC − ẏD

 0 = ÿA + 2ÿD  and  0 = ÿB + 2ÿC − ÿD

Eliminating the terms in ẏD and ÿD gives

 ẏA + 2ẏB + 4ẏC = 0   or   vA + 2vB + 4vC = 0

 ÿA + 2ÿB + 4ÿC = 0  or  aA + 2aB + 4aC = 0

It is clearly impossible for the signs of all three terms to be positive  simultaneously. 
So, for example, if both A and B have downward (positive) velocities, then C will 
have an upward (negative) velocity.

These results can also be found by inspection of the motions of the two pulleys 
at C and D. For an increment dyA (with yB held fi xed), the center of D moves up an 
amount dyA∕ 2, which causes an upward movement dyA∕4 of the center of C. For an 
increment dyB (with yA held fi xed), the center of C moves up a distance dyB∕ 2. A 
combination of the two movements gives an upward movement

−dyC =
dyA

4
+

dyB

2

so that −vC = vA∕4 + vB∕ 2 as before. Visualization of the actual geometry of the mo-
tion is an important ability.

A second type of constraint where the direction of the connecting member 
changes with the motion is illustrated in the second of the two sample problems 
which follow.

A
B

C

D

yAyB

yC

yD

FIGURE 2/20
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 SAMPLE PROBLEM 2/15

In the pulley confi guration shown, cylinder A has a downward velocity 
of 0.3 m∕s. Determine the velocity of B. Solve in two ways.

Solution (I) The centers of the pulleys at A and B are located by the 
coordinates yA and yB measured from fi xed positions. The total constant 
length of cable in the pulley system is

L = 3yB + 2yA + constants

where the constants account for the fi xed lengths of cable in contact 
with the circumferences of the pulleys and the constant vertical sepa-
ration between the two upper left-hand pulleys. 1  Differentiation 
with time gives

0 = 3ẏB + 2ẏA

Substitution of vA = ẏA = 0.3 m∕s and vB = ẏB gives

 0 = 3(vB) + 2(0.3)  or  vB = −0.2 m∕s 2  Ans.

Solution (II) An enlarged diagram of the pulleys at A, B, and C is 
shown. During a differential movement dsA of the center of pulley A, 
the left end of its horizontal diameter has no motion since it is attached 
to the fi xed part of the cable. Therefore, the right-hand end has a move-
ment of 2dsA as shown. This movement is transmitted to the left-hand 
end of the horizontal diameter of the pulley at B. Further, from pulley 
C with its fi xed center, we see that the displacements on each side are 
equal and opposite. Thus, for pulley B, the right-hand end of the diam-
eter has a downward displacement equal to the upward displacement 
dsB of its center. By inspection of the geometry, we conclude that

2dsA = 3dsB  or  dsB =
2
3 

dsA

Dividing by dt gives

 �vB � =
2
3 vA =

2
3 (0.3) = 0.2 m∕s (upward) Ans.

HELPFUL HINTS
1  We neglect the small angularity of the 

cables between B and C.
1  The negative sign indicates that the 

 velocity of B is upward.

C

B

yA

yB

A

dsA 2dsA

2dsA

dsB

(c)

(a)

(b)

dsB

dsB

dsB

 SAMPLE PROBLEM 2/16

The tractor A is used to hoist the bale B with the pulley arrangement 
shown. If A has a forward velocity vA, determine an expression for the 
upward velocity vB of the bale in terms of x.

Solution We designate the position of the tractor by the coordinate x 
and the position of the bale by the coordinate y, both measured from a 
fi xed reference. The total constant length of the cable is

L = 2(h − y) + l = 2(h − y) + √h2 + x2

Differentiation with time yields

0 = −2ẏ +
xẋ

√h2 + x2
 1

Substituting vA = ẋ and vB = ẏ gives

 vB =
1
2

 
xvA

√h2 + x2
 Ans.

h

y
B

l

A

x

HELPFUL HINT
1  Differentiation of the relation for a right 

triangle occurs frequently in mechanics.
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2/10  Chapter Review
In Chapter 2 we have developed and illustrated the 
 basic methods for describing particle motion. The con-
cepts developed in this chapter form the basis for much 
of dynamics, and it is important to review and master 
this material before proceeding to the following chapters.

By far the most important concept in Chapter 2 is the 
time derivative of a vector. The time derivative of a vector 
depends on direction change as well as magnitude change. 
As we proceed in our study of dynamics, we will need to 
examine the time derivatives of vectors other than position 
and velocity vectors, and the principles and procedures de-
veloped in Chapter 2 will be useful for this purpose.

Categories of Motion
The following categories of motion have been examined 
in this chapter:

 1. Rectilinear motion (one coordinate)

 2. Plane curvilinear motion (two coordinates)

 3. Space curvilinear motion (three coordinates)

In general, the geometry of a given problem enables us 
to identify the category readily. One exception to this 
categorization is encountered when only the mag-
nitudes of the motion quantities measured along the 
path are of interest. In this event, we can use the single 
distance coordinate measured along the curved path, 
together with its scalar time derivatives giving the 
speed � ṡ � and the tangential acceleration s̈.

Plane motion is easier to generate and control, par-
ticularly in machinery, than space motion, and thus a 
large fraction of our motion problems come under the 
plane curvilinear or rectilinear categories.

Use of Fixed Axes
We commonly describe motion or make motion measure-
ments with respect to fi xed reference axes (absolute 
 motion) and moving axes (relative motion). The accept-
able choice of the fi xed axes depends on the problem. Axes 
attached to the surface of the earth are suffi ciently “fi xed” 
for most engineering problems, although important ex-
ceptions include earth–satellite and interplanetary mo-
tion, accurate projectile trajectories, navigation, and other 
problems. The equations of relative motion discussed in 
Chapter 2 are restricted to translating reference axes.

Choice of Coordinates
The choice of coordinates is of prime importance. We 
have developed the description of motion using the fol-
lowing coordinates:

 1. Rectangular (Cartesian) coordinates (x-y) and (x-y-z)

 2. Normal and tangential coordinates (n-t)

 3. Polar coordinates (r-𝜃)

 4. Cylindrical coordinates (r-𝜃-z)

 5. Spherical coordinates (R-𝜃-𝜙)

When the coordinates are not specifi ed, the appropriate 
choice usually depends on how the motion is generated or 
measured. Thus, for a particle which slides radially along 
a rotating rod, polar coordinates are the natural ones to 
use. Radar tracking calls for polar or spherical  coordinates. 
When measurements are made along a curved path, nor-
mal and tangential coordinates are indicated. An x-y plot-
ter clearly involves rectangular coordinates.

Figure 2∕21 is a composite representation of the 
x-y, n-t, and r-𝜃 coordinate descriptions of the velocity v 
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Choice of Mathematical Method
We frequently have a choice of solution using scalar al-
gebra, vector algebra, trigonometric geometry, or graph-
ical geometry. All of these methods have been illus-
trated, and all are important to learn. The choice of 
method will depend on the geometry of the problem, 
how the motion data are given, and the accuracy de-
sired. Mechanics by its very nature is geometric, so you 
are encouraged to develop facility in sketching vector 
relationships, both as an aid to the disclosure of appro-
priate geometric and trigonometric relations and as a 
means of solving vector equations graphically. Geomet-
ric portrayal is the most direct representation of the 
vast majority of mechanics problems.

and acceleration a for curvilinear motion in a plane. It 
is frequently essential to transpose motion description 
from one set of coordinates to another, and Fig. 2∕21 
contains the information necessary for that transition.

Approximations
Making appropriate approximations is one of the most 
important abilities you can acquire. The assumption of 
constant acceleration is valid when the forces which 
cause the acceleration do not vary appreciably. When 
motion data are acquired experimentally, we must util-
ize the nonexact data to acquire the best possible de-
scription, often with the aid of graphical or numerical 
approximations.
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The designers of amusement-park rides such 
as this roller coaster must not rely upon the 
principles of equilibrium alone as they develop 
specifi cations for the cars and the supporting 
structure. The particle kinetics of each car must 
be considered in estimating the involved forces 
so that a safe system can be designed.
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CHAPTER 3
Kinetics of 
Particles

3/1  Introduction
According to Newton’s second law, a particle will accelerate when it is subjected to 
unbalanced forces. Kinetics is the study of the relations between unbalanced forces 
and the resulting changes in motion. In Chapter 3 we will study the kinetics of 
particles. This topic requires that we combine our knowledge of the properties of 
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forces, which we developed in statics, and the kinematics of particle motion just 
covered in Chapter 2. With the aid of Newton’s second law, we can combine these 
two topics and solve engineering problems involving force, mass, and motion.

The three general approaches to the solution of kinetics problems are: 
(A)  direct application of Newton’s second law (called the force-mass-acceleration 
method), (B) use of work and energy principles, and (C) solution by impulse and 
momentum methods. Each approach has its special characteristics and advan-
tages, and Chapter 3 is subdivided into Sections A, B, and C, according to these 
three methods of solution. In addition, a fourth section, Section D, treats special 
applications and combinations of the three basic approaches. Before proceeding, 
you should review carefully the defi nitions and concepts of Chapter 1,  because they 
are fundamental to the developments which follow.

SECTION A Force, Mass, and Acceleration

3/2  Newton’s Second Law
The basic relation between force and acceleration is found in Newton’s second law, 
Eq. 1 ∕1, the verifi cation of which is entirely experimental. We now describe the 
fundamental meaning of this law by considering an ideal experiment in which force 
and acceleration are assumed to be measured without error. We subject a mass 
particle to the action of a single force F1, and we measure the acceleration a1 of 
the particle in the primary inertial system.* The ratio F1 ∕a1 of the magnitudes of 
the force and the acceleration will be some number C1 whose value depends on the 
units used for measurement of force and acceleration. We then repeat the experi-
ment by subjecting the same particle to a different force F2 and measuring the cor-
responding acceleration a2. The ratio F2 ∕a2 of the magnitudes will again produce a 
number C2. The experiment is repeated as many times as desired.

We draw two important conclusions from the results of these  experiments. First, 
the ratios of applied force to corresponding acceleration all equal the same number, 
provided the units used for measurement are not changed in the experiments. Thus,

F1

a1
=

F2

a2
= ∙ ∙ ∙ =

F
 a

= C,  a constant

We conclude that the constant C is a measure of some invariable property of 
the particle. This property is the inertia of the particle, which is its resistance to 
rate of change of velocity. For a particle of high inertia (large C), the acceleration 
will be small for a given force F. On the other hand, if the inertia is small, the ac-
celeration will be large. The mass m is used as a quantitative measure of inertia, 
and therefore, we may write the expression C = km, where k is a constant intro-
duced to account for the units used. Thus, we may express the relation  obtained 
from the experiments as

 F = kma (3∕1)

where F is the magnitude of the resultant force acting on the particle of mass m, 
and a is the magnitude of the resulting acceleration of the particle.

*The primary inertial system or astronomical frame of reference is an imaginary set of reference 
axes which are assumed to have no translation or rotation in space. See Art. 1∕2, Chapter 1.
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58 CHAPTER 3  Kinetics of Particles

The second conclusion we draw from this ideal experiment is that the accelera-
tion is always in the direction of the applied force. Thus, Eq. 3 ∕1 becomes a vector 
relation and may be written

 F = kma (3∕2)

Although an actual experiment cannot be performed in the ideal manner 
 described, the same conclusions have been drawn from countless accurately 
 performed experiments. One of the most accurate checks is given by the precise 
prediction of the motions of planets based on Eq. 3 ∕2.

Inertial System
Although the results of the ideal experiment are obtained for measurements made 
relative to the “fi xed” primary inertial system, they are equally valid for measure-
ments made with respect to any nonrotating reference system which translates 
with a constant velocity with respect to the primary system. From our study of 
relative motion in Art. 2 ∕8, we know that the acceleration measured in a system 
translating with no acceleration is the same as that measured in the primary 
 system. Thus, Newton’s second law holds equally well in a nonaccelerating system, 
so that we may defi ne an inertial system as any system in which Eq. 3 ∕2 is valid.

If the ideal experiment described were performed on the surface of the earth and 
all measurements were made relative to a reference system attached to the earth, the 
measured results would show a slight discrepancy from those predicted by Eq. 3 ∕2, 
because the measured acceleration would not be the correct absolute acceleration. The 
discrepancy would disappear when we introduced the correction due to the accelera-
tion components of the earth. These corrections are negligible for most engineering 
problems which involve the motions of structures and machines on the surface of the 
earth. In such cases, the accelerations measured with respect to reference axes at-
tached to the surface of the earth may be treated as “absolute,” and Eq. 3 ∕2 may be 
applied with negligible error to experiments made on the surface of the earth.*

An increasing number of problems occur, particularly in the fi elds of rocket and 
spacecraft design, where the acceleration components of the earth are of primary 
concern. For this work it is essential that the fundamental basis of Newton’s second 
law be thoroughly understood and that the appropriate absolute acceleration com-
ponents be employed.

Before 1905 the laws of Newtonian mechanics had been verifi ed by innumera-
ble physical experiments and were considered the fi nal  description of the motion 
of bodies. The concept of time, considered an absolute quantity in the Newtonian 
 theory, received a basically different interpretation in the theory of relativity an-
nounced by Einstein in 1905. The new concept called for a complete reformulation 
of the  accepted laws of mechanics. The theory of relativity was subjected to early 
ridicule, but has been verifi ed by experiment and is now universally accepted by 
scientists. Although the difference between the mechanics of Newton and that of 

*As an example of the magnitude of the error introduced by neglect of the motion of the earth, 
consider a particle which is allowed to fall from rest (relative to earth) at a height h above the 
ground. We can show that the rotation of the earth gives rise to an eastward  acceleration 
(Coriolis acceleration) relative to the earth and, neglecting air resistance, that the particle falls to 
the ground a distance

x =
2
3

 𝜔 √2h3

g  cos 𝛾
east of the point on the ground directly under that from which it was dropped. The angular 
velocity of the earth is 𝜔 = 0.729(10−4) rad ∕s, and the latitude, north or south, is 𝛾. At a latitude of 
45° and from a height of 200 m, this eastward defl ection would be x = 43.9 mm.
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Einstein is basic, there is a practical difference in the results given by the two the-
ories only when velocities of the order of the speed of light (300 × 106 m  ∕s) are 
 encountered.*  Important problems dealing with atomic and nuclear particles, for 
 example, require calculations based on the theory of relativity.

Systems of Units
It is customary to take k equal to unity in Eq. 3 ∕2, thus putting the relation in the 
usual form of Newton’s second law

 F = ma [1∕1]

A system of units for which k is unity is known as a kinetic system. Thus, for a kinetic 
system the units of force, mass, and acceleration are not independent. In SI units, as 
explained in Art. 1 ∕4, the units of force (newtons, N) are derived by Newton’s second 
law from the base units of mass (kilograms, kg) times acceleration (meters per sec-
ond squared, m  ∕s2). Thus, N = kg ∙m∕s2. This system is known as an absolute system 
since the unit for force is dependent on the absolute value of mass.

In U.S. customary units, on the other hand, the units of mass (slugs) are de-
rived from the units of force (pounds force, lb) divided by acceleration (feet per 
second squared, ft  ∕sec2). Thus, the mass units are slugs = lb-sec2∕ ft. This system is 
known as a gravitational system since mass is derived from force as determined 
from gravitational attraction.

For measurements made relative to the rotating earth, the relative value of g 
should be used. The internationally accepted value of g relative to the earth at sea 
level and at a latitude of 45° is 9.806 65 m ∕s2. Except where greater precision is 
required, the value of 9.81 m ∕s2 will be used for g. For measurements relative to a 
nonrotating earth, the absolute value of g should be used. At a latitude of 45° and 
at sea level, the absolute value is 9.8236 m ∕s2. The sea-level variation in both the 
absolute and relative values of g with latitude is shown in Fig. 1 ∕1 of Art. 1 ∕5.

In the U.S. customary system, the standard value of g relative to the rotating 
earth at sea level and at a latitude of 45° is 32.1740 ft  ∕sec2. The corresponding value 
relative to a nonrotating earth is 32.2230 ft  ∕sec2.

Force and Mass Units
We need to use both SI units and U.S. customary units, so we must have a clear 
understanding of the correct force and mass units in each system. These units 
were explained in Art. 1 ∕4, but it will be helpful to illustrate them here using sim-
ple numbers before applying Newton’s second law. Consider, fi rst, the free-fall ex-
periment as depicted in Fig. 3 ∕1a where we release an object from rest near the 
surface of the earth. We allow it to fall freely under the infl uence of the force of 
gravitational attraction W on the body. We call this force the weight of the body. In 
SI units for a mass m = 1 kg, the weight is W = 9.81 N, and the corresponding 
downward acceleration a is g = 9.81 m ∕s2. In U.S. customary units for a mass m = 
1 lbm (1 ∕32.2 slug), the weight is W = 1 lbf and the resulting gravitational 

F = ma 

*The theory of relativity demonstrates that there is no such thing as a preferred primary inertial 
system and that measurements of time made in two coordinate systems which have a velocity 
relative to one another are different. On this basis, for example, the principles of relativity show 
that a clock carried by the pilot of a spacecraft traveling around the earth in a circular polar orbit 
of 644 km altitude at a velocity of 27 080 km ∕  h would be slow compared with a clock at the pole 
by 0.000 001 85 s for each orbit.
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1――
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1――
32.2 slug( ) (32.2 lbm)

FIGURE 3/1

 acceleration is g = 32.2 ft  ∕sec2. For a mass m = 1 slug (32.2 lbm), the weight is 
W = 32.2 lbf and the acceleration, of course, is also g = 32.2 ft  ∕sec2.

In Fig. 3 ∕1b we illustrate the proper units with the simplest example where we 
accelerate an object of mass m along the horizontal with a force F. In SI units (an 
absolute system), a force F = 1 N causes a mass m = 1 kg to accelerate at the rate 
a = 1 m ∕s2. Thus, 1 N = 1 kg ∙m∕s2 . In the U.S. customary system (a gravitational 
system), a force F = 1 lbf causes a mass m = 1 lbm (1 ∕32.2 slug) to accelerate at the 
rate a = 32.2 ft  ∕sec2, whereas a force F = 1 lbf causes a mass m = 1 slug (32.2 lbm) 
to accelerate at the rate a = 1 ft  ∕sec2.

We note that in SI units where the mass is expressed in kilograms (kg), the 
weight W of the body in newtons (N) is given by W = mg, where g = 9.81 m ∕s2. In 
U.S. customary units, the weight W of a body is expressed in pounds force (lbf ), and 
the mass in slugs (lbf-sec2∕ ft) is given by m = W∕g, where g = 32.2 ft  ∕sec2.

In U.S. customary units, we frequently speak of the weight of a body when we 
really mean mass. It is entirely proper to specify the mass of a body in pounds (lbm) 
which must be converted to mass in slugs before substituting into Newton’s second 
law. Unless otherwise stated, the pound (lb) is normally used as the unit of force (lbf ).

3/3  Equation of Motion and Solution 
of Problems
When a particle of mass m is subjected to the action of concurrent forces F1, F2, F3, . . . 
whose vector sum is ΣF, Eq. 1 ∕1 becomes

 ΣF = ma (3∕3)ΣF = ma 
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When applying Eq. 3 ∕3 to solve problems, we usually express it in scalar compo-
nent form with the use of one of the coordinate systems developed in Chapter 2. 
The choice of an appropriate coordinate system depends on the type of motion in-
volved and is a vital step in the formulation of any problem. Equation 3 ∕3, or any 
one of the component forms of the force-mass-acceleration equation, is usually 
called the equation of motion. The equation of motion gives the instantaneous 
value of the acceleration corresponding to the instantaneous values of the forces 
which are acting.

Two Types of Dynamics Problems
We encounter two types of problems when applying Eq. 3 ∕3. In the fi rst type, the 
acceleration of the particle is either specifi ed or can be determined directly from 
known kinematic conditions. We then determine the corresponding forces which 
act on the particle by direct substitution into Eq. 3 ∕3. This problem is generally 
quite straightforward.

In the second type of problem, the forces acting on the particle are specifi ed and 
we must determine the resulting motion. If the forces are constant, the acceleration 
is also constant and is easily found from Eq. 3 ∕3. When the forces are functions of 
time, position, or velocity, Eq. 3 ∕3 becomes a differential equation which must be 
integrated to determine the velocity and displacement.

Problems of this second type are often more formidable, as the integration may 
be diffi cult to carry out, particularly when the force is a mixed function of two or 
more motion variables. In practice, it is frequently necessary to resort to approxi-
mate integration techniques,  either numerical or graphical, particularly when ex-
perimental data are involved. The procedures for a mathematical integration of the 
acceleration when it is a function of the motion variables were developed in Art. 
2 ∕2, and these same procedures apply when the force is a specifi ed function of these 
same parameters, since force and acceleration differ only by the constant factor of 
the mass.

Constrained and Unconstrained Motion
There are two physically distinct types of motion, both described by Eq. 3 ∕3. The 
fi rst type is unconstrained motion where the particle is free of mechanical guides 
and follows a path determined by its initial motion and by the forces which are 
applied to it from external sources. An airplane or rocket in fl ight and an electron 
moving in a charged fi eld are examples of unconstrained motion.

The second type is constrained motion where the path of the particle is partially 
or totally determined by restraining guides. An ice-hockey puck is partially con-
strained to move in the horizontal plane by the surface of the ice. A train moving 
along its track and a collar sliding along a fi xed shaft are examples of more fully 
constrained motion. Some of the forces acting on a particle during constrained mo-
tion may be  applied from outside sources, and others may be the reactions on the 
particle from the constraining guides. All forces, both applied and reactive, which 
act on the particle must be accounted for in applying Eq. 3 ∕3.

The choice of an appropriate coordinate system is frequently indicated by the 
number and geometry of the constraints. Thus, if a particle is free to move in space, 
as is the center of mass of the airplane or rocket in free fl ight, the particle is said to 
have three degrees of freedom since three independent coordinates are required to 
specify the position of the particle at any instant. All three of the scalar components 
of the equation of motion would have to be integrated to obtain the space coordi-
nates as a function of time.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


62 CHAPTER 3  Kinetics of Particles

If a particle is constrained to move along a surface, as is the hockey puck or a 
marble sliding on the curved surface of a bowl, only two coordinates are needed to 
specify its position, and in this case it is said to have two degrees of freedom. If a 
particle is constrained to move along a fi xed linear path, as is the collar sliding 
along a fi xed shaft, its position may be specifi ed by the coordinate measured along 
the shaft. In this case, the particle would have only one degree of freedom.

Key Concepts  Free-Body Diagram

When applying any of the force-mass-acceleration equa-
tions of motion, you must account correctly for all forces 
acting on the particle. The only forces which we may 
neglect are those whose magnitudes are negligible com-
pared with other forces acting, such as the forces of 
 mutual attraction between two particles compared with 
their attraction to a celestial body such as the earth. 
The vector sum ΣF of Eq. 3 ∕3 means the vector sum of 
all forces acting on the particle in question. Likewise, 
the corresponding scalar force summation in any one of 
the component directions means the sum of the compo-
nents of all forces acting on the particle in that particu-
lar direction.

The only reliable way to account accurately and 
consistently for every force is to isolate the particle un-
der consideration from all  contacting and infl uencing 
bodies and replace the bodies removed by the forces 
they exert on the particle isolated. The resulting free-
body diagram is the means by which every force, known 
and unknown, which acts on the particle is represented 
and thus accounted for. Only after this vital step has 
been completed should you write the appropriate equa-
tion or equations of motion.

The free-body diagram serves the same key pur-
pose in dynamics as it does in statics. This purpose is 
simply to establish a thoroughly reliable method for the 
correct evaluation of the resultant of all actual forces 
acting on the particle or body in question. In statics this 
resultant equals zero, whereas in dynamics it is equated 
to the product of mass and acceleration. When you use 

the vector form of the equation of motion, remember 
that it represents several scalar equations and that 
 every equation must be satisfi ed.

Careful and consistent use of the free-body method 
is the most important single lesson to be learned in the 
study of engineering mechanics. When drawing a free-
body diagram, clearly indicate the coordinate axes and 
their positive directions. When you write the equations 
of motion, make sure all force summations are consis-
tent with the choice of these positive directions. As an 
aid to the identifi cation of external forces which act on 
the body in question, these forces are shown as heavy 
red vectors in the illustrations in this book. Sample 
Problems 3 ∕1 through 3 ∕5 in the next article contain fi ve 
examples of free-body diagrams. You should study these 
to see how the diagrams are constructed.

In solving problems, you may wonder how to get 
started and what sequence of steps to follow in arriv-
ing at the solution. This diffi culty may be minimized by 
forming the habit of fi rst recognizing some relationship 
between the desired unknown quantity in the problem 
and other quantities, known and unknown. Then deter-
mine additional relationships between these unknowns 
and other quantities, known and unknown. Finally, es-
tablish the dependence on the original data and develop 
the procedure for the analysis and computation. A few 
minutes spent organizing the plan of attack through 
recognition of the dependence of one quantity on an-
other will be time well spent and will usually prevent 
groping for the answer with irrelevant calculations.

3/4  Rectilinear Motion
We now apply the concepts discussed in Arts. 3 ∕2 and 3 ∕3 to problems in particle 
motion, starting with rectilinear motion in this article and treating curvilinear 
motion in Art. 3 ∕5. In both articles, we will  analyze the motions of bodies which can 
be treated as particles. This simplifi cation is possible as long as we are interested 
only in the motion of the mass center of the body. In this case we may treat the 
forces as concurrent through the mass center. We will account for the action of non-
concurrent forces on the motions of bodies when we discuss the  kinetics of rigid 
bodies in Chapter 6.
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If we choose the x-direction, for example, as the direction of the rectilinear mo-
tion of a particle of mass m, the accelerations in the y- and  z-directions will be zero 
and the scalar components of Eq. 3 ∕3 become

 ΣFx = max

  ΣFy = 0  (3∕4)

 ΣFz = 0

For cases where we are not free to choose a coordinate direction along the mo-
tion, we would have in the general case all three component equations

 ΣFx = max

  ΣFy = may (3∕5)

 ΣFz = maz

where the acceleration and resultant force are given by

 a = axi + ay j + azk

 a = √ax 

2 + ay 

2 + az 

2

 ΣF = ΣFxi + ΣFy j + ΣFzk

 � ΣF � = √(ΣFx)2 + (ΣFy)2 + (ΣFz)2
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This view of a car-collision test suggests that very large accelerations and 
accompanying large forces occur throughout the system of the two cars. The 
crash dummies are also subjected to large forces, primarily by the shoulder-
harness∕seat-belt restraints.
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SAMPLE PROBLEM 3/1

A 75-kg man stands on a spring scale in an elevator. During the fi rst 
3 seconds of motion from rest, the tension T in the hoisting cable is 
8300 N. Find the reading R of the scale in newtons during this interval 
and the upward velocity v of the elevator at the end of the 3 seconds. 
The total mass of the elevator, man, and scale is 750 kg.

Solution The force registered by the scale and the velocity both de-
pend on the acceleration of the elevator, which is constant during the 
interval for which the forces are constant. From the free-body diagram 
of the elevator, scale, and man taken together, the acceleration is found 
to be

[ΣFy = may]  8300 − 7360 = 750ay   ay = 1.257 m∕s2

The scale reads the downward force exerted on it by the man’s feet. The 
equal and opposite reaction R to this action is shown on the free-body 
diagram of the man alone together with his weight, and the equation of 
motion for him gives

[ΣFy = may]  R − 736 = 75(1.257)  R = 830 N 1  Ans.

The velocity reached at the end of the 3 seconds is

[Δv = ∫ a dt] v − 0 = ∫3

0
 1.257 dt  v = 3.77 m∕s Ans.

HELPFUL HINT
1  If the scale were calibrated in kilo grams, 

it would read 830∕9.81 = 84.6 kg which, 
of course, is not his true mass since the 
measurement was made in a noninertial 
(accelerating) system. Suggestion: 
 Rework this problem in U.S. customary 
units.

T = 8300 N

y

750(9.81) = 7360 N

75(9.81) = 736 N

y

R

ay
ay

SAMPLE PROBLEM 3/2

A small inspection car with a mass of 200 kg runs along the fi xed over-
head cable and is controlled by the attached cable at A. Determine the 
acceleration of the car when the control cable is horizontal and under a 
tension T = 2.4 kN. Also fi nd the total force P exerted by the supporting 
cable on the wheels.

Solution The free-body diagram of the car and wheels taken together 
and treated as a particle discloses the 2.4-kN tension T, the weight 
W = mg = 200(9.81) = 1962 N, and the force P exerted on the wheel 
assembly by the cable.
 The car is in equilibrium in the y-direction since there is no accel-
eration in this direction. Thus,

[ΣFy = 0]  P − 2.4( 5
13) − 1.962(12

13) = 0  P = 2.73 kN Ans.

In the x-direction the equation of motion gives 1

[ΣFx = max]  2400 (12
13 ) − 1962 ( 5

13) = 200a  a = 7.30 m∕s2 Ans.

HELPFUL HINT
1  By choosing our coordinate axes along and normal to the direction of the 

acceleration, we are able to solve the two equations independently. 
Would this be so if x and y were chosen as horizontal and vertical?

5
12

T
A

T = 2.4 kN

W = mg = 1962 N

x
a

y

P

5

5

12

12

G
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SAMPLE PROBLEM 3/3

The 250-lb concrete block A is released from rest in the position shown 
and pulls the 400-lb log up the 30° ramp. If the coeffi cient of kinetic 
friction  between the log and the ramp is 0.5, determine the velocity of 
the block as it hits the ground at B.

Solution The motions of the log and the block A are clearly  dependent. 
Although by now it should be evident that the acceleration of the log up 
the incline is half the downward acceleration of A, we may prove it 
formally. The constant total length of the cable is L = 2sC + sA + 
 constant, where the constant accounts for the cable portions wrapped 
around the pulleys. 1  Differentiating twice with respect to time gives 
0 = 2s̈C + s̈A, or

0 = 2aC + aA

 We assume here that the masses of the pulleys are negligible and 
that they turn with negligible friction. With these assumptions the 
free-body diagram of the pulley C discloses force and moment equilib-
rium. Thus, the tension in the cable attached to the log is twice that 
applied to the block. Note that the accelerations of the log and the cen-
ter of pulley C are identical.
 The free-body diagram of the log shows the friction force 𝜇k N for 
motion up the plane. Equilibrium of the log in the y-direction gives

[ΣFy = 0] N − 400 cos 30° = 0  N = 346 lb 2

and its equation of motion in the x-direction gives

[ΣFx = max] 0.5(346) − 2T + 400 sin 30° =
400
32.2

 aC

For the block in the positive downward direction, we have

[+ ↓ ΣF = ma] 250 − T =
250
32.2

 aA 3

Solving the three equations in aC, aA, and T gives us

aA = 5.83 ft∕sec2   aC = −2.92 ft∕sec2   T = 205 lb

For the 20-ft drop with constant acceleration, the block acquires a 
 velocity 4

[v2 = 2ax] vA = √2(5.83)(20) = 15.27 ft∕sec Ans.

HELPFUL HINTS
1   The coordinates used in expressing the 

fi nal kinematic constraint relationship 
must be consistent with those used for 
the kinetic equations of motion.

2   We can verify that the log will indeed 
move up the ramp by calculating the 
force in the cable necessary to initiate 
motion from the equilibrium condition. 
This force is 2T = 0.5N + 400 sin 30° = 
373 lb or T = 186.5 lb, which is less than 
the 250-lb weight of block A. Hence, the 
log will move up.

3    Note the serious error in assuming that 
T = 250 lb, in which case, block A would 
not accelerate.

4   Because the forces on this system re-
main constant, the resulting accelera-
tions also remain constant.

20ʹ 250 lb

B

A

C

400 lb

30°
𝜇k = 0.5

C

sC

250 lb

T

T

2T

2T

T
C

+

400 lb

0.5N

N

y

x

A

sA
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SAMPLE PROBLEM 3/4

The design model for a new ship has a mass of 10 kg and is tested in an 
 experimental towing tank to determine its resistance to motion through 
the water at various speeds. The test results are plotted on the accompa-
nying graph, and the resistance R may be closely approximated by the 
dashed parabolic curve shown. If the model is released when it has a 
speed of 2 m ∕s, determine the time t required for it to reduce its speed to 
1 m  ∕s and the corresponding travel distance x.

Solution We approximate  the resistance–velocity relation by R = 
kv2 and fi nd k by substituting R = 8 N and v = 2 m  ∕s into the equation, 
which gives k = 8 ∕22 = 2 N∙s2∕m2. Thus, R = 2v2.
 The only horizontal force on the model is R, so that

[ΣFx = max] −R = max  or  −2v2 = 10 
dv
dt

 1

We separate the variables and integrate to obtain

∫t

0
 dt = −5∫v

2
 
dv
v2  t = 5 (1

v
 −

1
2) s

Thus, when v = v0 ∕ 2 = 1 m  ∕s, the time is t = 5 (1
1 −

1
2 ) = 2.5 s. Ans.

The distance traveled during the 2.5 seconds is obtained by integrating 
v = dx ∕dt. Thus, v = 10 ∕ (5 + 2t) so that

 ∫x

0
 dx = ∫2.5

0
 

10
5 + 2t

 dt  x =
10
2

 ln (5 + 2t) ∣2.5

0

= 3.47 m 2  Ans.

SAMPLE PROBLEM 3/5

The collar of mass m slides up the vertical shaft under the action of a 
force F of constant magnitude but variable direction. If 𝜃 = kt where k 
is a constant and if the collar starts from rest with 𝜃 = 0, determine the 
magnitude F of the force which will result in the collar coming to rest 
as 𝜃 reaches 𝜋 ∕ 2. The coeffi cient of kinetic friction between the collar 
and shaft is 𝜇k.

Solution After drawing the free-body diagram, we apply the equa-
tion of  motion in the y-direction to get

[ΣFy = may] F cos 𝜃 − 𝜇k N − mg = m 
dv
dt

 1

where equilibrium in the horizontal direction requires N = F sin 𝜃. 
Substituting 𝜃 = kt and integrating fi rst between general limits give

∫t

0
 (F cos kt − 𝜇k F sin kt − mg) dt = m∫v

0
 dv

which becomes
F
k

 [sin kt + 𝜇k(cos kt − 1)] − mgt = mv

For 𝜃 = 𝜋 ∕ 2 the time becomes t = 𝜋 ∕2k, and v = 0 so that

 
F
k

 [1 + 𝜇k(0 − 1)] −
mg𝜋
2k

= 0  and  F =
mg𝜋

2(1 − 𝜇k)
 2  Ans.

HELPFUL HINTS
1  Be careful to observe the minus sign 

for R.
2  Suggestion: Express the distance x after 

release in terms of the velocity v and see 
if you agree with the resulting relation 
x = 5 ln (v0∕v).

1 2
0

2

4

6

8

0

v, m/s

R
, N

R

v0 = 2 m/s v

x

B = W

W

m

𝜇k

F

N

F

mg

𝜇kN 𝜃
𝜃

HELPFUL HINTS
1  If 𝜃 were expressed as a function of the 

vertical displacement y instead of the 
time t, the acceleration would become a 
function of the displacement and we 
would use v dv = a dy.

2  We see that the results do not depend 
on k, the rate at which the force changes 
direction.
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3/5  Curvilinear Motion
We turn our attention now to the kinetics of particles which move 
along plane curvilinear paths. In applying Newton’s second law, 
Eq. 3 ∕ 3, we will make use of the three coordinate descriptions of 
acceleration in curvilinear motion which we developed in Arts. 2 ∕4, 
2 ∕5, and 2 ∕6.

The choice of an appropriate coordinate system depends on the 
conditions of the problem and is one of the basic decisions to be made 
in solving curvilinear-motion problems. We now rewrite Eq. 3 ∕3 in 
three ways, the choice of which depends on which coordinate system 
is most appropriate.

Rectangular coordinates (Art. 2 ∕4, Fig. 2 ∕7)

 ΣFx = max 
(3∕6)

 ΣFy = may

where ax = ẍ  and  ay = ÿ

Normal and tangential coordinates (Art. 2 ∕5, Fig. 2 ∕10)

  ΣFn = man 
(3∕7)

 ΣFt = mat

where an = 𝜌�̇�2 = v2∕𝜌 = v�̇�,  at = v̇,  and  v = 𝜌�̇�

Polar coordinates (Art. 2 ∕6, Fig. 2 ∕15)

  ΣFr = mar 
(3∕8)

 ΣF𝜃 = ma𝜃

where ar = r̈ − r𝜃2  and  a𝜃 = r�̈� + 2ṙ 𝜃

In applying these motion equations to a body treated as a particle, you should 
follow the general procedure established in the previous  article on rectilinear 
 motion. After you identify the motion and choose the coordinate system, draw the 
free-body diagram of the body. Then obtain the appropriate force summations from 
this diagram in the usual way. The free-body diagram should be complete to avoid 
incorrect force summations.

Once you assign reference axes, you must use the expressions for both the 
forces and the acceleration which are consistent with that assignment. In the 
fi rst of Eqs. 3 ∕7, for example, the positive sense of the n-axis is toward the center 
of curvature, and so the positive sense of our force summation ΣFn must also be 
toward the center of curvature to agree with the positive sense of the acceleration 
an = v2 ∕𝜌.

ΣFxFF = max

ΣFyFF = maya

ΣFnFF = man

ΣFtFF = mat

ΣFrFF = mar

ΣF𝜃FF = ma𝜃

Because of the banking in the turn 
of this track, the normal reaction 
force provides most of the normal 
acceleration of the bobsled.
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SAMPLE PROBLEM 3/6

Determine the maximum speed v which the sliding block may have 
as it passes the topmost point A without losing contact with the lower 
 surface. Assume a slightly loose fi t between the slider and the con-
straint surfaces.

Solution The condition for loss of contact with the lower surface is 
that the normal force N which that surface exerts on the block goes to 
zero. Summing forces in the normal direction gives

[ΣFn = man] mg = m 

v2

𝜌  v = √g𝜌 Ans.

If the speed at A were less than √g𝜌, then an upward normal force 
exerted by the lower surface on the block would exist. In order for the 
block to have a speed at A which is greater than √g𝜌, contact would 
have to occur with the upper surface, which would provide downward 
force in addition to the weight.

SAMPLE PROBLEM 3/7

Small objects are released from rest at A and slide down the smooth cir-
cular surface of radius R to a conveyor B. Determine the expression for 
the normal contact force N between the guide and each object in terms 
of 𝜃 and specify the correct angular velocity 𝜔 of the conveyor pulley 
of radius r to prevent any sliding on the belt as the objects transfer to 
the conveyor.

Solution The free-body diagram of the object is shown together with 
the coordinate directions n and t. The normal force N depends on the 
n-component of the acceleration which, in turn, depends on the velocity. 
The velocity will be cumulative according to the tangential acceleration 
at. Hence, we will fi nd at fi rst for any general position.

[ΣFt = mat] mg cos 𝜃 = mat  at = g cos 𝜃
Now we can fi nd the velocity by integrating 1

[v dv = at ds] ∫v

0
 v dv = ∫𝜃

0
 g cos 𝜃 d(R𝜃)  v2 = 2gR sin 𝜃

We obtain the normal force by summing forces in the positive n- direction, 
which is the direction of the n-component of acceleration.

[ΣFn = man] N − mg sin 𝜃 = m 

v 

2

R
  N = 3mg sin 𝜃 Ans.

The conveyor pulley must turn at the rate v = r𝜔 for 𝜃 = 𝜋 ∕2, so that

 𝜔 = √2gR∕r Ans.

30°

A

𝜌

mg

n

t

N = 0 

HELPFUL HINT
1  It is essential here that we recognize 

the need to express the tangential ac-
celeration as a function of position so 
that v may be found by integrating the 
kinematical relation v dv = at ds, in which 
all quantities are measured along the 
path.

A R

B

r

𝜃

𝜔

mg

N

n

t

R
𝜃
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SAMPLE PROBLEM 3/8

A 1500-kg car enters a section of curved road in the horizontal plane 
and slows down at a uniform rate from a speed of 100 km ∕  h at A to a 
speed of 50 km ∕  h as it passes C. The radius of curvature 𝜌 of the road 
at A is 400 m and at C is 80 m. Determine the total horizontal force 
exerted by the road on the tires at positions A, B, and C. Point B is the 
infl ection point where the curvature changes direction.

Solution The car will be treated as a particle so that the effect of all 
forces exerted by the road on the tires will be treated as a single force. 
Since the motion is described along the direction of the road, normal 
and tangential coordinates will be used to specify the acceleration of 
the car. We will then determine the forces from the accelerations.
 The constant tangential acceleration is in the negative t-direction, 
and its magnitude is given by

[vC 

2 = vA
2 + 2at Δs]  at = ∣ (50∕3.6)2 − (100∕3.6)2

2(200) ∣ = 1.447 m∕s2 1

The normal components of acceleration at A, B, and C are

[an = v2∕𝜌] At A,   an =
(100∕3.6)2

400
= 1.929 m∕s2 2

 At B,   an = 0

 At C,   an =
(50∕3.6)2

80
= 2.41 m∕s2

 Application of Newton’s second law in both the n- and t-directions 
to the free-body diagrams of the car gives

[ΣFt = mat]       Ft = 1500(1.447) = 2170 N

[ΣFn = man]  At A,  Fn = 1500(1.929) = 2890 N 3

  At B,  Fn = 0

  At C,  Fn = 1500(2.41) = 3620 N

Thus, the total horizontal force acting on the tires becomes

 At A,   F = √Fn 

2 + Ft 

2 = √(2890)2 + (2170)2 = 3620 N Ans.

 At B,   F = Ft = 2170 N  Ans.

 At C,   F = √Fn 

2 + Ft 

2 = √(3620)2 + (2170)2 = 4220 N 4  Ans.

HELPFUL HINTS
1  Recognize the numerical value of the 

conversion factor from km ∕  h to m∕s as 
1000∕3600 or 1 ∕3.6.

2  Note that an is always directed toward 
the center of curvature.

4   The angle made by a and F with the 
 direction of the path can be computed 
if desired.

𝜌 = 400 m

𝜌 = 80 m

n

t

t

tA B

C

n

200 m

a

a

n

n

t

t

t(A) (B)

(C)
an

at
at

at

an

3  Note that the direction of Fn must agree 
with that of an.

n

t

t t

(A) F
(C)

n
F

(B)Fn

Fn

Ft

Ft

Ft
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SAMPLE PROBLEM 3/9

Compute the magnitude v of the velocity required for the spacecraft S 
to maintain a circular orbit of altitude 200 mi above the surface of the 
earth.

Solution The only external force acting on the spacecraft is the force 
of gravitational attraction to the earth (i.e., its weight), as shown in the 
free-body diagram. 1  Summing forces in the normal direction yields

[ΣFn = man] G 

mme

(R + h)2 = m 

v2

(R + h)
, v = √ Gme

(R + h)
= R √ g

(R + h)

where the substitution gR2 = Gme has been made. Substitution of 
 numbers gives

 v = (3959)(5280) √ 32.234
(3959 + 200)(5280)

= 25,326 ft∕sec Ans.

HELPFUL HINT
1  Note that, for observations made within an inertial frame of reference, there is no such quantity as “centrifugal force” 

acting in the minus n-direction. Note also that neither the spacecraft nor its occupants are “weightless,” because the 
weight in each case is given by Newton’s law of gravitation. For this altitude, the weights are only about 10 percent 
less than the earth-surface values. Finally, the term “zero-g” is also misleading. It is only when we make our obser-
vations with respect to a coordinate system which has an acceleration equal to the gravitational acceleration (such 
as in an orbiting spacecraft) that we appear to be in a “zero-g” environment. The quantity which does go to zero 
aboard orbiting spacecraft is the familiar normal force associated with, for example, an object in contact with a 
 horizontal surface within the spacecraft.

h

R
S

n

t

S

F = G
mme

(R + h)2
――――

SAMPLE PROBLEM 3/10

Tube A rotates about the vertical O-axis with a constant angular rate 
𝜃 = 𝜔 and contains a small cylindrical plug B of mass m whose radial 
position is controlled by the cord which passes freely through the tube 
and shaft and is wound around the drum of radius b. Determine the 
tension T in the cord and the horizontal component F𝜃 of force exerted 
by the tube on the plug if the constant angular rate of rotation of the 
drum is 𝜔0 fi rst in the direction for case (a) and second in the direction 
for case (b). Neglect friction.

Solution With r a variable, we use the polar-coordinate form of the 
equations of motion, Eqs. 3 ∕8. The free-body diagram of B is shown in 
the horizontal plane and discloses only T and F𝜃. The equations of 
 motion are

[ΣFr = mar]  −T = m(r̈ − r𝜃2)

[ΣF𝜃 = ma𝜃]    F𝜃 = m(r𝜃 + 2ṙ𝜃)

Case (a). With ṙ = +b𝜔0, r̈ = 0, and 𝜃 = 0, the forces become

 T = mr𝜔2  F𝜃 = 2mb𝜔0𝜔 Ans.

Case (b). With ṙ = −b𝜔0, r̈ = 0, and 𝜃 = 0, the forces become

 T = mr𝜔2  F𝜃 = −2mb𝜔0𝜔 1  Ans.

HELPFUL HINT
1  The minus sign shows that F𝜃 is in the 

direction opposite to that shown on the 
free-body diagram.

O

r

B
A r

+r

b

rO

T B

𝜃 = 𝜔⋅

𝜃 = 𝜔⋅

𝜔0

𝜔0

case (b)

case (a) +𝜃

F𝜃
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SECTION B Work and Energy

3/6  Work and Kinetic Energy
In the previous two articles, we applied Newton’s second law F = ma to various 
problems of particle motion to establish the instantaneous relationship between 
the net force acting on a particle and the resulting acceleration of the particle. 
When we needed to determine the change in velocity or the corresponding displace-
ment of the particle, we integrated the computed acceleration by using the appro-
priate kinematic equations.

There are two general classes of problems in which the cumulative effects of 
unbalanced forces acting on a particle are of interest to us. These cases involve 
(1) integration of the forces with respect to the displacement of the particle and 
(2) integration of the forces with respect to the time they are applied. We may in-
corporate the results of these integrations directly into the governing equations of 
motion so that it becomes unnecessary to solve directly for the acceleration. Inte-
gration with respect to displacement leads to the equations of work and energy, 
which are the subject of this article. Integration with respect to time leads to the 
equations of impulse and momentum, discussed in Section C.

Definition of Work
We now develop the quantitative meaning of the term “work.”* Figure 3 ∕2a 
shows a force F acting on a particle at A which moves along the path shown. 
The position vector r measured from some convenient origin O locates the 
particle as it passes point A, and dr is the differential displacement associ-
ated with an infi nitesimal movement from A to A′. The work done by the force 
F during the displacement dr is defi ned as

dU = F∙dr

The magnitude of this dot product is dU = F ds cos 𝛼, where 𝛼 is the angle 
between F and dr and where ds is the magnitude of dr. This expression 
may be interpreted as the displacement multiplied by the force component 
Ft = F cos 𝛼 in the direction of the displacement, as represented by the 
dashed lines in Fig. 3 ∕2b. Alternatively, the work dU may be interpreted 
as the force multiplied by the displacement component ds cos 𝛼 in the di-
rection of the force, as represented by the full lines in Fig. 3 ∕2b.

With this defi nition of work, it should be noted that the component 
Fn = F sin 𝛼 normal to the displacement does no work. Thus, the work dU 
may be written as

dU = Ft ds

Work is positive if the working component Ft is in the direction of the displacement 
and negative if it is in the opposite direction. Forces which do work are termed active 
forces. Constraint forces which do no work are termed reactive forces.

O

A
AʹF

r r + dr

dr

(a)

(b)

Ft = F cos 𝛼
ds = │dr│

ds cos 𝛼
F

Fn

𝛼

𝛼

FIGURE 3/2

*The concept of work was also developed in the study of virtual work in Chapter 7 of Vol. 1 
Statics.
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72 CHAPTER 3  Kinetics of Particles

Units of Work
The SI units of work are those of force (N) times displacement (m) or N∙m. This unit 
is given the special name joule (J), which is defi ned as the work done by a force of 
1 N acting through a distance of 1 m in the direction of the force. Consistent use of 
the joule for work (and energy) rather than the units N∙m will avoid possible ambi-
guity with the units of moment of a force or torque, which are also written N∙m.

In the U.S. customary system, work has the units of ft-lb. Dimensionally, work 
and moment are the same. In order to distinguish between the two quantities, it is 
recommended that work be expressed as foot pounds (ft-lb) and moment as pound 
feet (lb-ft). It should be noted that work is a scalar as given by the dot product and 
involves the product of a force and a distance, both measured along the same line. 
Moment, on the other hand, is a vector as given by the cross product and involves the 
product of force and distance measured at right angles to the force.

Calculation of Work
During a fi nite movement of the point of application of a force, the force does an 
amount of work equal to

U = ∫2

1
 F∙dr = ∫2

1
 (Fx dx + Fy dy + Fz dz)

or

U = ∫s2

s1

 Ft ds

In order to carry out this integration, it is necessary to know the relations be-
tween the force components and their respective coordinates or the relation 
between Ft and s. If the functional relationship is not known as a mathematical 
expression which can be integrated but is specifi ed in the form of approximate 
or experimental data, then we can compute the work by carrying out a numer-
ical or graphical integration as represented by the area under the curve of Ft 
versus s, as shown in Fig. 3 ∕ 3.

Examples of Work
When work must be calculated, we may always begin with the defi nition of work, 

U = ∫ F∙dr, insert appropriate vector expressions for the force F and the

differential displacement vector dr, and carry out the required integration. With some 
experience, simple work calculations, such as those associated with constant forces, 
may be performed by inspection. We now formally compute the work associated with 
three frequently occurring forces: constant forces, spring forces, and weights.

 1. Work Associated with a Constant External Force. Consider the con-
stant force P applied to the body as it moves from position 1 to position 2, Fig. 
3 ∕4. With the force P and the differential displacement dr written as vectors, 
the work done on the body by the force is

 U1-2 = ∫2

1
 F∙dr = ∫2

1
 [(P cos 𝛼)i + (P sin 𝛼)j]∙dx i

  = ∫x2

x1

 P cos 𝛼 dx = P cos 𝛼(x2 − x1) = PL cos 𝛼 (3∕9)

s

Ft

s1 s2

dU = Ft ds

FIGURE 3/3
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  As previously discussed, this work expression may be interpreted as the force 
component P cos 𝛼 times the distance L traveled. Should 𝛼 be between 90° and 
270°, the work would be negative. The force component P sin 𝛼 normal to the 
displacement does no work.

 2. Work Associated with a Spring Force. We consider here the common lin-
ear spring of stiffness k where the force required to stretch or compress the 
spring is proportional to the deformation x, as shown in Fig. 3 ∕5a. We wish to 
determine the work done on the body by the spring force as the body undergoes 
an arbitrary displacement from an initial position x1 to a fi nal position x2. The 
force exerted by the spring on the body is F = −kxi, as shown in Fig. 3 ∕5b. 
From the defi nition of work, we have

 U1-2 = ∫2

1
 F∙dr = ∫2

1
 (−kxi) ∙dx  i = − ∫x2

x1

 kx dx =
1
2 k(x1 

2 − x2 

2) (3∕10)

P

dr

x

y

L
1 2

𝛼

FIGURE 3/4

x

x1 x2
x

F = kx

kx

Undeformed
position

dr

Force F required to
stretch or compress spring

(a)

(b)

FIGURE 3/5
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74 CHAPTER 3  Kinetics of Particles

   If the initial position is the position of zero spring deformation so that x1 = 
0, then the work is negative for any fi nal position x2 ≠ 0. This is verifi ed by 
recognizing that if the body begins at the undeformed spring position and then 
moves to the right, the spring force is to the left; if the body begins at x1 = 0 
and moves to the left, the spring force is to the right. On the other hand, if 
we move from an arbitrary initial position x1 ≠ 0 to the undeformed fi nal 
position x2 = 0, we see that the work is positive. In any movement toward the 
undeformed spring position, the spring force and the displacement are in the 
same direction.

   In the general case, of course, neither x1 nor x2 is zero. The magnitude of the 
work is equal to the shaded trapezoidal area of Fig. 3 ∕5a. In calculating the 
work done on a body by a spring force, care must be taken to ensure that the 
units of k and x are consistent. If x is in meters (or feet), k must be in N∕ m (or 
lb ∕ft). In addition, be sure to recognize that the variable x represents a deforma-
tion from the unstretched spring length and not the total length of the spring.

   The expression F = kx is actually a static relationship which is true only 
when elements of the spring have no acceleration. The dynamic behavior of a 
spring when its mass is accounted for is a fairly complex problem which will 
not be treated here. We shall assume that the mass of the spring is small com-
pared with the masses of other accelerating parts of the system, in which case 
the linear static relationship will not involve appreciable error.

 3. Work Associated with Weight. Case (a) g = constant. If the altitude varia-
tion is suffi ciently small so that the acceleration of gravity g may be considered 
constant, the work done by the weight mg of the body shown in Fig. 3 ∕6a as 
the body is displaced from an arbitrary altitude y1 to a fi nal altitude y2 is

 U1-2 = ∫2

1
 F∙dr = ∫2

1
 (−mgj) ∙ (dxi + dyj)

  = −mg∫y2

y1

 dy = −mg( y2 − y1)  (3∕11)

Earth
me

1

2

2

1

r1 r2

y2

y1 

r

dr

dr

er

m

mg

m

(a)

(b)

Gmem—––—
r2

R

x

y

FIGURE 3/6
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  We see that horizontal movement does not contribute to this work. We also note 
that if the body rises (perhaps due to other forces not shown), then (y2 − y1) > 0 
and this work is negative. If the body falls, (y2 − y1) < 0 and the work is positive.

   Case (b) g ≠ constant. If large changes in altitude occur, then the weight (grav-
itational force) is no longer constant. We must therefore use the  gravitational law 

  (Eq. 1 ∕2) and express the weight as a variable force of magnitude F = 
Gme m

r 

2 , as 

  indicated in Fig. 3 ∕6b. Using the radial coordinate shown in the fi gure allows 
the work to be expressed as

 U1-2 = ∫2

1
 F∙dr = ∫2

1
 
−Gmem

r2  er ∙drer = −Gme m∫r2

r1

 
dr
r2

  = Gmem ( 1
r2

−
1
r1) = mgR2

 ( 1
r2

−
1
r1)  (3∕12)

  where the equivalence Gme = gR2 was established in Art. 1 ∕5, with g represent-
ing the acceleration of gravity at the earth’s surface and R representing the 
radius of the earth. The student should verify that if a body rises to a higher 
altitude (r2 > r1), this work is negative, as it was in case (a). If the body falls to a 
lower altitude (r2 < r1), the work is positive. Be sure to realize that r represents 
a radial distance from the center of the earth and not an altitude h = r − R above 
the surface of the earth. As in case (a), had we considered a transverse displace-
ment in addition to the radial displacement shown in Fig. 3 ∕6b, we would have 
concluded that the transverse displacement,  because it is perpendicular to the 
weight, does not contribute to the work.

Work and Curvilinear Motion
We now consider the work done on a particle of mass m, Fig. 3 ∕ 7, 
moving along a curved path under the action of the force F, which 
stands for the resultant ΣF of all forces acting on the particle. The 
position of m is specifi ed by the position vector r, and its displacement 
along its path during the time dt is represented by the change dr in 
its position vector. The work done by F during a fi nite movement of 
the particle from point 1 to point 2 is

U1-2 = ∫2

1
 F∙dr = ∫s2

s1

 Ft ds

where the limits specify the initial and fi nal end points of the motion.
When we substitute Newton’s second law F = ma, the expression 

for the work of all forces becomes

U1-2 = ∫2

1
 F∙dr = ∫2

1
 ma ∙dr

But a ∙dr = at ds, where at is the tangential component of the acceleration of m. In 
terms of the velocity v of the particle, Eq. 2  ∕3 gives at  ds = v dv. Thus, the expres-
sion for the work of F becomes

 U1-2 = ∫2

1
 F∙dr = ∫v2

v1

 mv dv =
1
2 m(v2 

2 − v1 

2) (3∕13)

Ft

Fn

F = ΣF

Path
1

2

x

s1

s2

z

t

n

m

dr

r
y

O

𝛼

FIGURE 3/7
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76 CHAPTER 3  Kinetics of Particles

where the integration is carried out between points 1 and 2 along the curve, at 
which points the velocities have the magnitudes v1 and v2, respectively.

Principle of Work and Kinetic Energy
The kinetic energy T of the particle is defi ned as

 T =
1
2 mv2 (3∕14)

and is the total work which must be done on the particle to bring it from a state of 
rest to a velocity v. Kinetic energy T is a scalar quantity with the units of N∙m or 
joules (J) in SI units and ft-lb in U.S. customary units. Kinetic energy is always 
positive, regardless of the direction of the velocity.

Equation 3 ∕13 may be restated as

 U1-2 = T2 − T1 = ΔT (3∕15)

which is the work-energy equation for a particle. The equation states that the total 
work done by all forces acting on a particle as it moves from point 1 to point 2 
equals the corresponding change in kinetic energy of the particle. Although T is 
 always positive, the change ∆T may be positive, negative, or zero. When written 
in this concise form, Eq. 3 ∕15 tells us that the work always results in a change of 
kinetic energy.

Alternatively, the work-energy relation may be expressed as the initial kinetic 
energy T1 plus the work done U1-2 equals the fi nal kinetic energy T2, or

 T1 + U1-2 = T2 (3∕15a)

When written in this form, the terms correspond to the natural sequence of events. 
Clearly, the two forms 3 ∕15 and 3 ∕15a are equivalent.

Advantages of the Work-Energy Method
We now see from Eq. 3 ∕15 that a major advantage of the method of work and en-
ergy is that it avoids the necessity of computing the acceleration and leads directly 
to the velocity changes as functions of the forces which do work. Further, the 
work-energy equation involves only those forces which do work and thus give rise 
to changes in the magnitudes of the velocities.

We consider now a system of two particles joined together by a connection 
which is frictionless and incapable of any deformation. The forces in the connection 
are equal and opposite, and their points of application necessarily have identical 
displacement components in the direction of the forces. Therefore, the net work 
done by these internal forces is zero during any movement of the system. Thus, 
Eq. 3 ∕15 is applicable to the entire system, where U1-2 is the total or net work done 
on the system by forces external to it and ∆T is the change, T2 − T1, in the total 
kinetic energy of the system. The total kinetic energy is the sum of the kinetic 
 energies of both elements of the system. We thus see that another advantage of the 
work-energy method is that it enables us to analyze a system of particles joined in 
the manner described without dismembering the system.

Application of the work-energy method requires isolation of the particle or sys-
tem under consideration. For a single particle you should draw a free-body diagram 

T =
1
2 mv2 

T1 + U1-2 = T2TT  
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showing all externally applied forces. For a system of particles rigidly connected 
without springs, draw an active-force diagram showing only those external forces 
which do work (active forces) on the entire system.*

Power
The capacity of a machine is measured by the time rate at which it can do work or 
deliver energy. The total work or energy output is not a measure of this capacity 
since a motor, no matter how small, can deliver a large amount of energy if given 
suffi cient time. On the other hand, a large and powerful machine is required to 
deliver a large amount of energy in a short period of time. Thus, the capacity of a 
machine is rated by its power, which is defi ned as the time rate of doing work.

Accordingly, the power P developed by a force F which does an 
amount of work U is P = dU∕dt = F∙dr∕dt. Because dr ∕dt is the velocity 
v of the point of application of the force, we have

 P = F∙v (3∕16)

Power is clearly a scalar quantity, and in SI it has the units of 
N∙m∕s = J∕s. The special unit for power is the watt (W), which equals 
one joule per second (J∕s). In U.S. customary units, the unit for me-
chanical power is the horsepower (hp). These units and their numeri-
cal equivalences are

 1 W = 1 J∕s

 1 hp = 550 ft-lb∕sec = 33,000 ft-lb∕min

 1 hp = 746 W = 0.746 kW

Eff iciency
The ratio of the work done by a machine to the work done on the ma-
chine during the same time interval is called the mechanical effi ciency 
em of the machine. This defi nition assumes that the machine operates 
uniformly so that there is no accumulation or depletion of energy 
within it. Effi ciency is always less than unity since every device oper-
ates with some loss of energy and since energy cannot be created 
within the machine. In mechanical devices which involve moving 
parts, there will always be some loss of energy due to the negative 
work of kinetic friction forces. This work is converted to heat energy which, in turn, 
is dissipated to the surroundings. The mechanical effi ciency at any instant of time 
may be expressed in terms of mechanical power P by

 em =
Poutput

Pinput
 (3∕17)

In addition to energy loss by mechanical friction, there may also be electrical 
and thermal energy loss, in which case, the electrical effi ciency ee and thermal effi -
ciency et are also involved. The overall effi ciency e in such instances is

e = emee et

P = F∙v 

*The active-force diagram was introduced in the method of virtual work in statics. See Chapter 7 
of Vol. 1 Statics.

©
 a

ge
 f

ot
os

to
ck

∕A
la

m
y 

L
im

it
ed

The power which must be produced 
by a bike rider depends on the 
bicycle speed and the propulsive force 
which is exerted by the supporting 
surface on the rear wheel. The driving 
force depends on the slope being 
negotiated.
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SAMPLE PROBLEM 3/11

Calculate the velocity v of the 50-kg crate when it reaches the bottom 
of the chute at B if it is given an initial velocity of 4 m ∕s down the chute 
at A. The coeffi cient of kinetic friction is 0.30.

Solution The free-body diagram of the crate is drawn and includes 
the normal force R and the kinetic friction force F calculated in the 
usual manner. The work done by the weight is positive, whereas that 
done by the friction force is negative. The total work done on the crate 
during the motion is

[U = Fs]   U1-2 = 50(9.81)(10 sin 15°) − 142.1(10) = −151.9 J 1

The work-energy equation gives

[T1 + U1-2 = T2]  12 
 
mv1 

2 + U1-2 =
1
2 

 
mv2 

2

  12 (50)(4)2 − 151.9 =
1
2 (50)v2 

2

  v2 = 3.15 m∕s Ans.

Since the net work done is negative, we obtain a decrease in the kinetic 
energy.

SAMPLE PROBLEM 3/12

The fl atbed truck, which carries an 80-kg crate, starts from rest and 
attains a speed of 72 km ∕  h in a distance of 75 m on a level road with 
constant acceleration. Calculate the work done by the friction force act-
ing on the crate during this interval if the static and kinetic coeffi cients 
of friction between the crate and the truck bed are (a) 0.30 and 0.28, 
respectively, or (b) 0.25 and 0.20, respectively.

Solution If the crate does not slip on the bed, its acceleration will be 
that of the truck, which is

[v2 = 2as] a =
v2

2s
=

(72∕3.6)2

2(75)
= 2.67 m∕s2

Case (a). This acceleration requires a friction force on the block of

[F = ma] F = 80(2.67) = 213 N

which is less than the maximum possible value of 𝜇sN = 0.30(80)(9.81) = 
235 N. Therefore, the crate does not slip and the work done by the ac-
tual static friction force of 213 N is 1

[U = Fs] U1-2 = 213(75) = 16 000 J  or  16 kJ Ans.

Case (b). For 𝜇s = 0.25, the maximum possible friction force is 
0.25(80)(9.81) = 196.2 N, which is slightly less than the value of 213 N 
required for no slipping. Therefore, we conclude that the crate slips, 
and the friction force is governed by the kinetic coeffi cient and is F = 
0.20(80)(9.81) = 157.0 N. The acceleration becomes

[F = ma] a = F∕m = 157.0∕80 = 1.962 m∕s2

The distances traveled by the crate and the truck are in proportion to their 
accelerations. Thus, the crate has a displacement of (1.962 ∕2.67)75 = 
55.2 m, and the work done by kinetic friction is

[U = Fs] U1-2 = 157.0(55.2) = 8660 J  or  8.66 kJ 2  Ans.

15°
50 kg

B

A10 m

50(9.81) N

R = 474 N

𝜇kR = 142.1 N

HELPFUL HINT
1  The work due to the weight depends 

only on the vertical distance traveled.

80(9.81) N

a
F

80(9.81) N

HELPFUL HINTS
1  We note that static friction forces do no 

work when the contacting surfaces are 
both at rest. When they are in motion, 
however, as in this problem, the static 
friction force acting on the crate does 
positive work and that acting on the 
truck bed does negative work.

2  This problem shows that a kinetic fric-
tion force can do positive work when the 
surface which supports the object and 
generates the friction force is in motion. 
If the supporting surface is at rest, then 
the kinetic friction force acting on the 
moving part always does negative work.
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SAMPLE PROBLEM 3/13

The 50-kg block at A is mounted on rollers so that it moves along the 
fi xed horizontal rail with negligible friction under the action of the con-
stant 300-N force in the cable. The block is released from rest at A, with 
the spring to which it is attached extended an initial amount x1 = 0.233 m. 
The spring has a stiffness k = 80 N∕m. Calculate the velocity v of the 
block as it reaches position B.

Solution It will be assumed initially that the stiffness of the spring 
is small enough to allow the block to reach position B. The active-force 
diagram for the system composed of both block and cable is shown for 
a general position. The spring force 80x and the 300-N tension are the 
only forces external to this system which do work on the system. The 
force exerted on the block by the rail, the weight of the block, and the 
reaction of the small pulley on the cable do no work on the system and 
are not included on the active-force diagram.
 As the block moves from x1 = 0.233 m to x2 = 0.233 + 1.2 = 1.433 m, 
the work done by the spring force acting on the block is

[U1-2 =
1
2 

 
k(x1 

2 − x2 

2)]  U1-2 =
1
2  80[0.2332 − (0.233 + 1.2)2] 1

  = −80.0 J

The work done on the system by the constant 300-N force in the cable 
is the force times the net horizontal movement of the cable over pulley 
C, which is √(1.2)2 + (0.9)2 − 0.9 = 0.6 m. Thus, the work done is 
300(0.6) = 180 J. We now apply the work-energy equation to the system 
and get

[T1 + U1-2 = T2] 0 − 80.0 + 180 =
1
2 (50)v2  v = 2.00 m∕s Ans.

 We take special note of the advantage to our choice of system. If 
the block alone had constituted the system, the horizontal component 
of the 300-N cable tension on the block would have to be integrated 
over the 1.2-m displacement. This step would require considerably 
more effort than was needed in the solution as presented. If there had 
been appreciable friction between the block and its guiding rail, we 
would have found it necessary to isolate the block alone in order to 
compute the variable normal force and, hence, the variable friction 
force. Integration of the friction force over the displacement would then 
be required to evaluate the negative work which it would do.

0.9 m

300 N

B

C

A

1.2 mx1

300 N

80x

System

x

HELPFUL HINT
1  Recall that this general formula is valid 

for any initial and fi nal spring defl ections 
x1 and x2, positive (spring in tension) or 
negative (spring in compression). In de-
riving the spring-work formula, we as-
sumed the spring to be linear, which is the 
case here.
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SAMPLE PROBLEM 3/14

The power winch A hoists the 800-lb log up the 30° incline at a constant 
speed of 4 ft  ∕sec. If the power output of the winch is 6 hp, compute the co-
effi cient of kinetic friction 𝜇k between the log and the incline. If the power 
is suddenly increased to 8 hp, what is the corresponding instantaneous 
acceleration a of the log?

Solution From the free-body diagram of the log, we get N = 
800 cos 30° = 693 lb, and the kinetic friction force becomes 693𝜇k. For 
constant speed, the forces are in equilibrium so that

[ΣFx = 0] T − 693𝜇k − 800 sin 30° = 0  T = 693𝜇k + 400

The power output of the winch gives the tension in the cable

[P = Tv] T = P∕v = 6(550)∕4 = 825 lb 1

Substituting T gives

 825 = 693𝜇k + 400  𝜇k = 0.613 Ans.

 When the power is increased, the tension momentarily becomes

[P = Tv] T = P∕v = 8(550)∕4 = 1100 lb

and the corresponding acceleration is given by

[ΣFx = max] 1100 − 693(0.613) − 800 sin 30° =
800
32.2

 a

 a = 11.07 ft∕sec2 2  Ans.

SAMPLE PROBLEM 3/15

A satellite of mass m is put into an elliptical orbit around the earth. At 
point A, its distance from the earth is h1 = 500 km and it has a velocity 
v1 = 30 000 km ∕  h. Determine the velocity v2 of the satellite as it reaches 
point B, a distance h2 = 1200 km from the earth.

Solution The satellite is moving outside of the earth’s atmosphere so 
that the only force acting on it is the gravitational attraction of the 
earth. For the large change in altitude of this problem, we cannot as-
sume that the acceleration due to gravity is constant. Rather, we must 
use the work expression, derived in this article, which accounts for 
variation in the gravitational acceleration with altitude. Put another 
way, the work expression accounts for the variation of the weight

F = 
Gmme

r2  with altitude. This work expression is

U1-2 = mgR2
 ( 1

r2
−

1
r1)

The work-energy equation T1 + U1-2 = T2 gives

1
2 mv1 

2 + mgR2
 ( 1

r2
−

1
r1) =

1
2 mv2 

2  v2 

2 = v1 

2 + 2gR2
 ( 1

r2
−

1
r1) 1

Substituting the numerical values gives 2

 v2 

2 = (30 000
3.6 )

2

+ 2(9.81)[(6371)(103)]2
 ( 10−3

6371 + 1200
−

10−3

6371 + 500)
 = 69.44(106) − 10.72(106) = 58.73(106)(m∕s)2

 v2 = 7663 m∕s  or  v2 = 7663(3.6) = 27 590 km∕h Ans.

A

4 ft/se
c

30°

T800 lb

30°
𝜇k N

N

x

HELPFUL HINTS
1  Note the conversion from horsepower to 

ft-lb∕sec.
2  As the speed increases, the acceleration 

will drop until the speed stabilizes at a 
value higher than 4 ft∕sec.

A

B

h1

v1

v2

h2

O
R

A

B
r

O

Fr2

r1

HELPFUL HINTS
1  Note that the result is independent of 

the mass m of the satellite.
2  Consult Table D∕2, Appendix D, to fi nd 

the radius R of the earth.
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3/7  Potential Energy
In the previous article on work and kinetic energy, we isolated a particle or a com-
bination of joined particles and determined the work done by gravity forces, spring 
forces, and other externally applied forces acting on the particle or system. We did 
this to evaluate U in the work-energy equation. In the present article we will intro-
duce the concept of potential energy to treat the work done by gravity forces and by 
spring forces. This concept will simplify the analysis of many problems.

Gravitational Potential Energy
We consider fi rst the motion of a particle of mass m in close proximity to the 
surface of the earth, where the gravitational attraction (weight) mg is essen-
tially constant, Fig. 3∕8a. The gravitational potential energy Vg of the particle 
is defi ned as the work mgh done against the gravitational fi eld to elevate the 
particle a distance h above some arbitrary reference plane (called a datum), 
where Vg is taken to be zero. Thus, we write the potential energy as

 Vg = mgh (3∕18)

This work is called potential energy because it may be converted into energy 
if the particle is allowed to do work on a supporting body while it returns to 
its lower original datum plane. In going from one level at h = h1 to a higher 
level at h = h2, the change in potential energy becomes

ΔVg = mg(h2 − h1) = mgΔh

The corresponding work done by the gravitational force on the particle is 
−mg∆h. Thus, the work done by the gravitational force is the negative of the 
change in potential energy.

When large changes in altitude in the fi eld of the earth are encountered, 
Fig. 3∕8b, the gravitational force Gmme ∕ r2 = mgR2∕ r2 is no longer constant. 
The work done against this force to change the radial position of the particle 
from r1 to r2 is the change (Vg)2 − (Vg)1 in gravitational potential energy, which is

∫r2

r1

 mgR2
 
dr
r2 = mgR2

 ( 1
r1

−
1
r2) = (Vg)2 − (Vg)1

It is customary to take (Vg)2 = 0 when r2 = ∞, so that with this datum we 
have

 Vg = − 

mgR2

r
 (3∕19)

In going from r1 to r2, the corresponding change in potential energy is

ΔVg = mgR2 
 ( 1

r1
−

1
r2)

which, again, is the negative of the work done by the gravitational force. We note 
that the potential energy of a given particle depends only on its position, h or r, and 
not on the particular path it followed in reaching that position.

VgVV = mgm h 

VgVV = −
mgm Rgg 2

r
 

Earth
me

r

m

R

(a)

(b)

Vg = 0

Vg = mgh

mg
h

Vg = − mgR2—––—
r

mgR2—––—
r2

FIGURE 3/8
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Elastic Potential Energy
The second example of potential energy occurs in the deformation of an elastic body, 
such as a spring. The work which is done on the spring to deform it is stored in the 
spring and is called its elastic potential energy Ve. This energy is recoverable in the 
form of work done by the spring on the body attached to its movable end during the 
release of the deformation of the spring. For the one-dimensional linear spring of stiff-
ness k, which we discussed in Art. 3 ∕ 6 and illustrated in Fig. 3 ∕5, the force supported 
by the spring at any deformation x, tensile or compressive, from its undeformed posi-
tion is F = kx. Thus, we defi ne the elastic potential energy of the spring as the work 
done on it to deform it an amount x, and we have

 Ve = ∫x

0
 kx dx =

1
2 

 kx2 (3∕20)

If the deformation, either tensile or compressive, of a spring increases from x1 
to x2 during the motion, then the change in potential energy of the spring is its fi nal 
value minus its initial value or

Δ  Ve =
1
2 

 
k(x2 

2 − x1 

2)

which is positive. Conversely, if the deformation of a spring decreases during the 
motion interval, then the change in potential energy of the spring becomes nega-
tive. The magnitude of these changes is represented by the shaded trapezoidal area 
in the F-x diagram of Fig. 3 ∕5a.

Because the force exerted on the spring by the moving body is equal and oppo-
site to the force F exerted by the spring on the body, it follows that the work done 
on the spring is the negative of the work done on the body. Therefore, we may re-
place the work U done by the spring on the body by −∆Ve, the negative of the po-
tential energy change for the spring, provided the spring is now included within 
the system.

Work-Energy Equation
With the elastic member included in the system, we now modify the work-energy 
equation to account for the potential-energy terms. If U′1-2 stands for the work of all 
external forces other than gravitational forces and spring forces, we may write 
Eq. 3 ∕15 as U′1-2 + (−∆Vg) + (−∆Ve) = ∆T or

 U′1-2 = ΔT + ΔV  (3∕21)

where ∆V is the change in total potential energy, gravitational plus elastic.
This alternative form of the work-energy equation is often far more convenient 

to use than Eq. 3 ∕15, since the work of both gravity and spring forces is accounted 
for by focusing attention on the end-point positions of the particle and on the end-
point lengths of the elastic spring. The path followed between these end-point posi-
tions is of no consequence in the evaluation of ∆Vg and ∆Ve.

Note that Eq. 3 ∕21 may be rewritten in the equivalent form

T1 + V1 + U′1-2 = T2 + V2 (3∕21a)

To help clarify the difference between the use of Eqs. 3 ∕15 and 3 ∕21, Fig. 3 ∕ 9
shows schematically a particle of mass m constrained to move along a fi xed path 

VeVV = ∫x

0
∫∫ kx dxdd =

1
2 kx2 

T1 + V1VV + U′1UU -2 = T2TT + V2VV  
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under the action of forces F1 and F2, the gravitational force W = mg, the spring force 
F, and the normal reaction N. In Fig. 3 ∕ 9b, the particle is isolated with its  free-body 
diagram. The work done by each of the forces F1, F2, W, and the spring force F = kx 
is evaluated, say, from A to B, and equated to the change ∆T in kinetic energy using 
Eq. 3 ∕15. The constraint reaction N, if normal to the path, will do no work. The al-
ternative approach is shown in Fig. 3 ∕ 9c, where the spring is included as a part of 
the isolated system. The work done during the interval by F1 and F2 is the 
U′1-2-term of Eq. 3 ∕ 21 with the changes in elastic and gravitational potential ener-
gies included on the energy side of the equation.

We note with the fi rst approach that the work done by F = kx could require a 
somewhat awkward integration to account for the changes in magnitude and di-
rection of F as the particle moves from A to B. With the second approach, however, 
only the initial and fi nal lengths of the spring are required to evaluate ∆Ve. This 
greatly simplifi es the calculation.

For problems where the only forces are gravitational, elastic, and nonworking 
constraint forces, the U′-term of Eq. 3 ∕ 21a is zero, and the energy equation 
 becomes

 T1 + V1 = T2 + V2  or  E1 = E2 (3∕22)

where E = T + V is the total mechanical energy of the particle and its attached 
spring. When E is constant, we see that transfers of energy between kinetic and 
potential may take place as long as the total mechanical energy T + V does not 
change. Equation 3 ∕ 22 expresses the law of conservation of dynamical energy.

System

(a)

(c)

h

N

F = kx
W = mg

U1-2 = ΔT

Uʹ1-2 = ΔT + ΔV

A

B
F1

F2

F1

F2

(b)

F1

F2

Vg = 0

Vg = mgh

FIGURE 3/9
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Conservative Force Fields*
We have observed that the work done against a gravitational or an elastic force 
depends only on the net change of position and not on the particular path followed 
in reaching the new position. Forces with this characteristic are associated with 
conservative force fi elds, which possess an important mathematical property.

Consider a force fi eld where the force F is a function of the coordinates, 
Fig. 3 ∕10. The work done by F during a displacement dr of its point of appli-
cation is dU = F∙dr. The total work done along its path from 1 to 2 is

U = ∫  F∙dr = ∫(Fx dx + Fy dy + Fz dz)

The integral ∫F∙dr is a line integral which depends, in general, on the 

particular path followed between any two points 1 and 2 in space. If, however, 
F∙dr is an exact differential†  −dV of some scalar function V of the coordi-
nates, then

 U1-2 = ∫V2

V1

 −dV = −(V2 − V1) (3∕23)

which depends only on the end points of the motion and which is thus independent 
of the path followed. The minus sign before dV is arbitrary but is chosen to agree 
with the customary designation of the sign of potential energy change in the grav-
ity fi eld of the earth.

If V exists, the differential change in V becomes

dV =
∂V
∂x

 dx +
∂V
∂y

 dy +
∂V
∂z

 dz

Comparison with −dV = F∙dr = Fx dx + Fy dy + Fz dz gives us

Fx = − 

∂V
∂x
  Fy = − 

∂V
∂y
  Fz = − 

∂V
∂z

The force may also be written as the vector

 F = −𝛁V  (3∕24)

where the symbol 𝛁 stands for the vector operator “del”, which is

𝛁 = i 
∂
∂x

+ j 
∂
∂y

+ k 
∂
∂z

The quantity V is known as the potential function, and the expression 𝛁V is known 
as the gradient of the potential function.

When force components are derivable from a potential as described, the force is 
said to be conservative, and the work done by F between any two points is indepen-
dent of the path followed.

1

2y

x

dr

r

F

z

FIGURE 3/10

*Optional.
†Recall that a function d𝛷 = P dx + Q dy + R dz is an exact differential in the coordinates x-y-z if

∂P
∂y

=
∂Q
∂x
  

∂P
∂z

=
∂R
∂x
  

∂Q
∂z

=
∂R
∂y
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SAMPLE PROBLEM 3/16

The 6-lb slider is released from rest at position 1 and slides with neg-
ligible friction in a vertical plane along the circular rod. The attached 
spring has a stiffness of 2 lb ∕in. and has an unstretched length of 24 in. 
Determine the velocity of the slider as it passes position 2.

Solution The work done by the weight and the spring force on the 
slider will be treated using potential-energy methods. The reaction of 
the rod on the slider is normal to the motion and does no work. Hence, 
U 

′1-2 = 0. We defi ne the datum to be at the level of position 1, so that the 
gravitational potential energies are 1

 V1 = 0

 V2 = −mgh = −6 (24
12) = −12 ft-lb

The initial and fi nal elastic (spring) potential energies are

 V1 =
1
2 

 
kx1 

2 =
1
2 (2)(12)(24

12)
2

= 48 ft-lb

 V2 =
1
2 

 
kx2 

2 =
1
2 (2)(12)(

24√2

12
−

24
12)

2

= 8.24 ft-lb

Substitution into the alternative work-energy equation yields

[T1 + V1 + U′1-2 = T2 + V2]   0 + 48 + 0 =
1
2

 ( 6
32.2)v2 

2 − 12 + 8.24

 v2 = 23.6 ft∕sec Ans.

SAMPLE PROBLEM 3/17

The 10-kg slider moves with negligible friction up the inclined guide. 
The attached spring has a stiffness of 60 N ∕m and is stretched 0.6 m 
in position A, where the slider is released from rest. The 250-N force is 
constant and the pulley offers negligible resistance to the motion of the 
cord. Calculate the velocity vC of the slider as it passes point C.

Solution The slider and inextensible cord together with the attached 
spring will be analyzed as a system, which permits the use of Eq. 3 ∕21a. 
The only nonpotential force doing work on this system is the 250-N 
tension applied to the cord. While the slider moves from A to C, the 
point of application of the 250-N force moves a distance of AB − BC or 
1.5 − 0.9 = 0.6 m.

U′A-C = 250(0.6) = 150 J 1  2

We defi ne a datum at position A so that the initial and fi nal gravita-
tional potential energies are

VA = 0  VC = mgh = 10(9.81)(1.2 sin 30°) = 58.9 J

The initial and fi nal elastic potential energies are

 VA =
1
2 

 
kxA 

2 =
1
2 (60)(0.6)2 = 10.8 J

 VC =
1
2 

 
kxB 

2 =
1
2 

 
60(0.6 + 1.2)2 = 97.2 J

Substitution into the alternative work-energy equation 3 ∕21a gives

[TA + VA + U′A-C = TC + VC]  0 + 10.8 + 150 =
1
2 (10)vC 

2 + 58.9 + 97.2

 vC = 0.974 m∕s Ans.

24ʺ

k = 2 lb/in.

6 lb

1

2 v2

24ʺ

HELPFUL HINT
1  Note that if we evaluated the work done 

by the spring force acting on the slider 
by means of the integral ∫F∙dr, it would 
necessitate a lengthy computation to ac-
count for the change in the magnitude of 
the force, along with the change in the 
angle between the force and the tangent 
to the path. Note further that v2 depends 
only on the end conditions of the motion 
and does not require knowledge of the 
shape of the path.

250 N

vC

0.9 m
B

30°

A

C

1.2 m

HELPFUL HINTS
1  Do not hesitate to use subscripts tailored 

to the problem at hand. Here we use A 
and C rather than 1 and 2.

2  The reactions of the guides on the slider 
are normal to the direction of motion 
and do no work.
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SAMPLE PROBLEM 3/18

The system shown is released from rest with the lightweight slender bar 
OA in the vertical position shown. The torsional spring at O is undefl ected 
in the initial position and exerts a restoring moment of magnitude kT 𝜃 on 
the bar, where 𝜃 is the counterclockwise angular defl ection of the bar. The 
string S is attached to point C of the bar and slips without friction 
through a vertical hole in the support surface. For the values mA = 2 kg, 
mB = 4 kg, L = 0.5 m, and kT = 13 N∙m∕rad:

(a) Determine the speed vA of particle A when 𝜃 reaches 90°.
(b)  Plot vA as a function of 𝜃 over the range 0 ≤ 𝜃 ≤ 90°. Identify the max-

imum value of vA and the value of 𝜃 at which this maximum occurs.

Solution (a) We begin by establishing a general relationship for the 
potential energy associated with the defl ection of a torsional spring. 
 Recalling that the change in potential energy is the work done on the 
spring to deform it, we write

Ve = ∫𝜃

0
 kT 𝜃 d𝜃 =

1
2

 kT 𝜃2

We also need to establish the relationship between vA and vB when 𝜃 = 90°. 
Noting that the speed of point C is always vA ∕2, and further noting that the 
speed of cylinder B is one-half the speed of point C at 𝜃 = 90°, we conclude 
that at 𝜃 = 90°, vB = vA∕4.
 Establishing datums at the initial altitudes of bodies A and B, and 
with state 1 at 𝜃 = 0 and state 2 at 𝜃 = 90°, we write

[T1 + V1 + U′1-2 = T2 + V2]  

0 + 0 + 0 =
1
2

  mAvA 

2 +
1
2

  mBvB 

2 − mA 
gL − mB 

 g  (
L√2

4 ) +
1
2

  kT 

 (𝜋

2)
2

 1

With numbers:

0 =
1
2

 (2)vA 

2 +
1
2

 (4)(
vA

4 )
2

− 2(9.81)(0.5) − 4(9.81)(
0.5√2

4 ) +
1
2

 (13)(𝜋

2)
2

Solving, vA = 0.794 m∕s Ans.

(b) We leave our defi nition of the initial state 1 as is, but now redefi ne 
state 2 to be associated with an arbitrary value of 𝜃. From the accom-
panying diagram constructed for an arbitrary value of 𝜃, we see that 
the speed of cylinder B can be written as

 vB =
1
2

 ∣ d
dt

 (C′C ″) ∣ =
1
2 ∣ d

dt [ 2  

L
2

  sin (90° − 𝜃

2 )]∣  2

=
1
2

 ∣L  (− 

 �̇�
2 ) cos  (90° − 𝜃

2 )∣ =
L�̇�

4
  cos  (90° − 𝜃

2 )
Finally, because vA = L𝜃,  vB =

vA

4
  cos  (90° − 𝜃

2 )
[T1 + V1 + U′1-2 = T2 + V2]

0 + 0 + 0 =
1
2

  mAvA 

2 +
1
2

   mB   [
vA

4
  cos(90° − 𝜃

2 )]  

2

 − mA gL(1 − cos 𝜃)

−  mB g  (1
2)[

L√2

2
− 2 

L
2

   sin  (90° − 𝜃

2 )] +
1
2

  kT 𝜃2

Upon substitution of the given quantities, we vary 𝜃 to produce the plot 
of vA versus 𝜃. The maximum value of vA is seen to be

 (vA)max = 1.400 m∕s at 𝜃 = 56.4° Ans.

B

O

S

C

mB

A
mA

kT

L
—
2

L
—
2

𝜃

OCʺ

(top of hole)

Cʹ

C

90° − 𝜃
 —–—––

 2

90° − 𝜃
 —–—––

 2

L
—
2L

—
2

L
—
2

𝜃

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 90

𝜃, deg

v A
, m

/s

(vA)max = 1.400 m/s
at 𝜃 = 56.4°

HELPFUL HINTS
1  Note that mass B will move downward 

by one-half of the length of string ini-
tially above the supporting surface. This 
downward distance is 

 
1
2

 (L
2

√2) =
L√2

4
.

2  The absolute-value signs refl ect the fact 
that vB is known to be positive.
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SECTION C Impulse and Momentum

3/8  Introduction
In the previous two articles, we focused attention on the equations of work and 
energy, which are obtained by integrating the equation of motion F = ma with re-
spect to the displacement of the particle. We found that the velocity changes could 
be expressed directly in terms of the work done or in terms of the overall changes 
in energy. In the next two articles, we will integrate the equation of motion with 
respect to time rather than displacement. This approach leads to the equations of 
impulse and momentum. These equations greatly facilitate the solution of many 
problems in which the applied forces act during extremely short periods of time (as 
in impact problems) or over specifi ed intervals of time.

3/9  Linear Impulse and Linear Momentum
Consider again the general curvilinear motion in space of a particle of 
mass m, Fig. 3 ∕11, where the particle is located by its position vector 
r measured from a fi xed origin O. The velocity of the particle is v = ṙ
and is tangent to its path (shown as a dashed line). The resultant ΣF 
of all forces on m is in the direction of its acceleration v̇. We may now 
write the basic equation of motion for the particle, Eq. 3 ∕3, as

 ΣF = mv̇ =
d
dt

 (mv)  or   ΣF = Ġ (3∕25)

where the product of the mass and velocity is defined as the linear 
momentum G = mv of the particle. Equation 3 ∕25 states that the 
resultant of all forces acting on a particle equals its time rate of 
change of linear momentum. In SI the units of linear momentum 
mv are seen to be kg ∙m∕s, which also equals N∙s. In U.S. customary 
units, the units of linear momentum mv are [lb ∕(ft  ∕sec2)][ft  ∕sec] = 
lb-sec.

Because Eq. 3 ∕25 is a vector equation, we recognize that, in addition to the 
equality of the magnitudes of ΣF and Ġ, the direction of the resultant force coin-
cides with the direction of the rate of change in linear momentum, which is the 
direction of the rate of change in velocity. Equation 3 ∕25 is one of the most useful 
and important relationships in dynamics, and it is valid as long as the mass m of 
the particle is not changing with time. The case where m changes with time is dis-
cussed in Art. 4 ∕7 of Chapter 4.

We now write the three scalar components of Eq. 3 ∕25 as

ΣFx = Ġx  ΣFy = Ġy  ΣFz = Ġz (3∕26)

These equations may be applied independently of one another.

The Linear Impulse-Momentum Principle
All that we have done so far in this article is to rewrite Newton’s second law in an 
alternative form in terms of momentum. But we are now able to describe the effect 
of the resultant force ΣF on the linear momentum of the particle over a fi nite period 

ΣF = Ġ 

Path

ΣF

r2

r1

v1 t1

v2

r
y

m

O

x

v = r

G = mv

G v

z

t2

⋅ ⋅
⋅

FIGURE 3/11
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88 CHAPTER 3  Kinetics of Particles

of time simply by integrating Eq. 3 ∕25 with respect to the time t. Multiplying the 
equation by dt gives ΣF dt = dG, which we integrate from time t1 to time t2 to 
obtain

 ∫t2

t1

 ΣF dt = G2 − G1 = ΔG (3∕27)

Here the linear momentum at time t2 is G2 = mv2 and the linear momentum at time 
t1 is G1 = mv1. The product of force and time is defi ned as the linear impulse of the 
force, and Eq. 3 ∕27 states that the total linear impulse on m equals the corresponding 
change in linear momentum of m.

Alternatively, we may write Eq. 3 ∕27 as

 G1 + ∫t2

t1

 ΣF dt = G2 (3∕27a)

which says that the initial linear momentum of the body plus the linear impulse 
applied to it equals its fi nal linear momentum.

The impulse integral is a vector which, in general, may involve changes in both 
magnitude and direction during the time interval. Under these conditions, it will 
be necessary to express ΣF and G in component form and then combine the inte-
grated components. The components of Eq. 3 ∕27a are the scalar equations

 m(v1)x + ∫t2

t1

 ΣFx dt = m(v2)x

 m(v1)y + ∫t2

t1

 ΣFy dt = m(v2)y (3∕27b)

 m(v1)z + ∫t2

t1

 ΣFz dt = m(v2)z

These three scalar impulse-momentum equations are completely independent.
Whereas Eq. 3 ∕27 clearly stresses that the external linear impulse causes a 

change in the linear momentum, the order of the terms in Eqs. 3 ∕27a and 3 ∕27b
corresponds to the natural sequence of events. While the form of Eq. 3 ∕27 may be 
best for the experienced dynamicist, the form of Eqs. 3 ∕27a and 3 ∕27b is very effec-
tive for the beginner.

We now introduce the concept of the impulse-momentum diagram. Once the 
body to be analyzed has been clearly identifi ed and isolated, we construct three 
drawings of the body as shown in Fig. 3∕12. In the fi rst drawing, we show the ini-
tial momentum mv1, or components thereof. In the second or middle drawing, we 
show all the external linear impulses (or components thereof). In the fi nal drawing, 
we show the fi nal linear momentum mv2 (or its components). The writing of the 
impulse- momentum equations 3 ∕27b then follows directly from these drawings, 
with a clear one-to-one correspondence between diagrams and equation terms.

G1 + ∫t2

t
∫∫

1

ΣF dt = G2 

ΣF dt
t1

t2

G1 = mv1

G2 = mv2

+ =

∫

FIGURE 3/12
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We note that the center diagram is very much like a free-body 
diagram, except that the impulses of the forces appear rather than 
the forces themselves. As with the free-body diagram, it is necessary 
to include the effects of all forces acting on the body, except those 
forces whose magnitudes are negligible.

In some cases, certain forces are very large and of short duration. 
Such forces are called impulsive forces. An example is a force of sharp 
impact. We frequently assume that impulsive forces are constant over 
their time of  duration, so that they can be brought outside the linear- 
impulse integral. In addition, we frequently assume that nonimpulsive 
forces can be neglected in comparison with impulsive forces. An example 
of a nonimpulsive force is the weight of a baseball during its collision with 
a bat—the weight of the ball (about 5 oz) is small compared with the force 
(which could be several hundred pounds in magnitude) exerted on the ball 
by the bat.

There are cases where a force acting on a particle varies with the 
time in a manner determined by experimental measurements or 
by other approximate means. In this case a graphical or numerical 
 integration must be performed. If, for example, a force F acting on a 
particle in a given direction varies with the time t as indicated in

Fig. 3 ∕13, then the impulse, ∫t2

t1

 F dt, of this force from t1 to t2 is

the shaded area under the curve.

Conservation of Linear Momentum
If the resultant force on a particle is zero during an interval of time, 
we see that Eq. 3 ∕25 requires that its linear momentum G remain 
constant. In this case, the linear momentum of the particle is said to 
be conserved. Linear momentum may be conserved in one coordinate 
direction, such as x, but not necessarily in the y- or z-direction. A careful examina-
tion of the impulse-momentum diagram of the particle will disclose whether the 
total linear impulse on the particle in a particular direction is zero. If it is, the 
corresponding linear momentum is unchanged (conserved) in that direction.

Consider now the motion of two particles a and b which interact during an inter-
val of time. If the interactive forces F and −F between them are the only unbalanced 
forces acting on the particles during the interval, it follows that the linear impulse on 
particle a is the negative of the linear impulse on particle b. Therefore, from Eq. 3 ∕27, 
the change in linear momentum ∆Ga of particle a is the negative of the change ∆Gb 
in linear momentum of particle b. So we have ∆Ga = −∆Gb or ∆(Ga + Gb) = 0. Thus, 
the total linear momentum G = Ga + Gb for the system of the two particles remains 
constant during the interval, and we write

 ΔG = 0  or  G1 = G2 (3∕28)

Equation 3 ∕28 expresses the principle of conservation of linear momentum.

ΔG = 0 or G1 = G2

The impact force exerted by the bat on 
this ball will usually be much larger 
than the weight of the ball.
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90 CHAPTER 3  Kinetics of Particles

SAMPLE PROBLEM 3/19

A tennis player strikes the tennis ball with her racket when the ball 
is at the uppermost point of its trajectory as shown. The horizontal 
velocity of the ball just before impact with the racket is v1 = 
50 ft  ∕sec, and just after impact its velocity is v2 = 70 ft  ∕sec directed 
at the 15° angle as shown. If the 2-oz ball is in contact with the 
racket for 0.02 sec, determine the magnitude of the average force R 
exerted by the racket on the ball. Also determine the angle 𝛽 made 
by R with the horizontal.

Solution We construct the impulse-momentum diagrams for the ball 
as follows:

∫

∫
x

y

15°
Rx dt

mv2
mv1 + =

mg dt

Ry dt

t1

t2

t1

t2

t1

t2∫

 1

 [m(vx 
)1 + ∫t2

t1

ΣFx dt = m(vx 
)2]

 −  

2∕16
32.2

 (50) + Rx(0.02) =
2∕16
32.2

 (70 cos 15°)  2

[m(vy 
)1 + ∫t2

t1

ΣFy dt = m(vy 
)2]

 
2∕16
32.2

 (0) + Ry(0.02) − (2∕16)(0.02) =
2∕16
32.2

 (70 sin 15°)

We can now solve for the impact forces as 

 Rx = 22.8 lb

 Ry = 3.64 lb

We note that the impact force Ry = 3.64 lb is considerably larger 
than the 0.125-lb weight of the ball. Thus, the weight mg, a nonimpul-
sive force, could have been neglected as small in comparison with Ry. 
Had we neglected the weight, the computed value of Ry would have 
been 3.52 lb.
 We now determine the magnitude and direction of R as

 R = √Rx
2 + Ry

2 = √22.82 + 3.642 = 23.1 lb Ans.

 𝛽 = tan−1 
Ry

Rx
 = tan−1 

3.64
22.8

= 9.06° Ans.

15°
v1

v2

HELPFUL HINTS
1  Recall that for the impulse-momentum dia-

grams, initial linear momentum goes in 
the fi rst diagram, all external linear im-
pulses go in the second diagram, and fi -
nal linear momentum goes in the third 
diagram.

2  For the linear impulse ∫t2

t1

 Rx dt, the

 average impact force Rx is a cons-
tant,  so  that it can be brought outside 
the integral sign, resulting in 

 Rx ∫t2

t1

 dt = Rx(t2 − t1) = Rx ∆t. The linear

 impulse in the y-direction has been sim-
ilarly treated.
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 Article  3/9 Linear Impulse and Linear Momentum 91

SAMPLE PROBLEM 3/20

A 2-lb particle moves in the vertical y-z plane (z up, y horizontal) under 
the action of its weight and a force F which varies with time. The linear 
momentum of the particle in pound-seconds is given by the expression 
G = 32 (t2 + 3)j −2

3(t3 − 4)k, where t is the time in seconds. Determine F 
and its magnitude for the instant when t = 2 sec.

Solution The weight expressed as a vector is −2k lb. Thus, the force- 
momentum equation becomes

[ΣF = Ġ]  F − 2k =
d
dt

 [ 
3
2 (t2 + 3)j −

2
3 (t3 − 4)k ] 1

              = 3tj − 2t2k

For t = 2 sec,            F = 2k + 3(2)j −  2(22)k =  6j − 6k lb Ans.

Thus,            F = √62 + 62 = 6√2 lb Ans.

SAMPLE PROBLEM 3/21

A particle with a mass of 0.5 kg has a velocity of 10 m ∕s in the x-direction 
at time t = 0. Forces F1 and F2 act on the particle, and their magnitudes 
change with time according to the graphical schedule shown. Determine 
the velocity v2 of the particle at the end of the 3-s interval. The motion 
occurs in the horizontal x-y plane.

Solution First, we construct the impulse-momentum diagrams as 
shown.

m(v1)y = 0

m(v2)x

m(v2)y

m(v1)x =
0.5 (10) kg · m/s

F1 dt

F2 dt

t1

t2

t1

t2

+ =
∫

∫

Then the impulse-momentum equations follow as

[m(v1)x + ∫t2

t1

ΣFx dt = m(v2)x]  0.5(10) − [4(1) + 2(3 − 1)] = 0.5(v2)x  1

  (v2)x = −6 m∕s

[m(v1)y + ∫t2

t1

ΣFy dt = m(v2)y]  0.5(0) + [1(2) + 2(3 − 2)] = 0.5(v2)y

 (v2)y = 8 m∕s

Thus,

 v2 = −6i + 8j m∕s  and  v2 = √62 + 82 = 10 m∕s

 𝜃x = tan−1 
8

−6
= 126.9° Ans.

 Although not called for, the path of the particle for the fi rst 3 sec-
onds is plotted in the fi gure. The velocity at t = 3 s is shown together 
with its components.

−2k lb

F

Up

z

y

HELPFUL HINT
1  Don’t forget that ΣF includes all  external 

forces acting on the particle, including 
the weight.

F1

F1

F2

F2

10 m/s

y

x

0

2

4
F, N

321
t, s

0

t = 1 s

t = 2 s

t = 3 s

8

8j m/s

−6i m/s

6

4

2

0
0 2

x, m

y, m

4 6

v2 = 10 m/s
𝜃x = 126.9°

HELPFUL HINT
1  The impulse in each direction is the cor-

responding area under the force-time 
graph. Note that F1 is in the negative 
x-direction, so its impulse is negative.
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92 CHAPTER 3  Kinetics of Particles

SAMPLE PROBLEM 3/22

The loaded 150-kg skip is rolling down the incline at 4 m ∕s when a 
force P is applied to the cable as shown at time t = 0. The force P is in-
creased uniformly with the time until it reaches 600 N at t = 4 s, after 
which time it remains constant at this value. Calculate (a) the time t′  
at which the skip reverses its direction and (b) the velocity v of the skip 
at t = 8 s. Treat the skip as a particle.

Solution The stated variation of P with the time is plotted, and the 
impulse-momentum diagrams of the skip are drawn.

150(4) kg · m/s
30° 30° 30°

150(9.81) dt
x

150v2
2P dt

N1 dt
N2 dt

+ =

∫
∫

∫
∫

Part (a). The skip reverses direction when its velocity becomes zero. We 
will  assume that this condition occurs at t = 4 + ∆t s. The impulse- 
momentum equation applied consistently in the positive x-direction gives

[ m(v1 
)x + ∫ ΣFx dt = m(v2 

)x 

]

150(−4) +
1
2 (4)(2)(600) + 2(600)Δt − 150(9.81) sin 30°(4 + Δt) = 150(0)  1

 Δt = 2.46 s  t′ = 4 + 2.46 = 6.46 s Ans.

Part (b). Applying the momentum equation to the entire 8-s interval:

[ m(v1 
)x + ∫ ΣFx dt = m(v2 

)x 

]

150(−4) +
1
2 (4)(2)(600) + 4(2)(600) − 150(9.81) sin 30°(8) = 150(v2)x

 (v2)x = 4.76 m∕s Ans.

The same result is obtained by analyzing the interval from t′ to 8 s.

v1 = 4 m/s

P

30°
P, N

t, s

600

00 4 8tʹ
Δt

HELPFUL HINT
1  The impulse-momentum diagram keeps 

us from making the error of using the 
impulse of P rather than 2P or of forget-
ting the impulse of the component of the 
weight. The fi rst term in the linear im-
pulse is the triangular area of the P-t 
relation for the fi rst 4 s, doubled for the 
force of 2P.

SAMPLE PROBLEM 3/23

The 50-g bullet traveling at 600 m ∕s strikes the 4-kg block centrally and 
is embedded within it. If the block slides on a smooth horizontal plane 
with a velocity of 12 m ∕s in the direction shown prior to impact, deter-
mine the velocity v2 of the block and embedded bullet immediately after 
impact.

Solution Since the force of impact is internal to the system composed 
of the block and bullet and since there are no other external forces act-
ing on the system in the plane of motion, it follows that the linear mo-
mentum of the system is conserved. Thus,

[G1 = G2]  0.050(600j) + 4(12)(cos 30°i + sin 30°j) = (4 + 0.050)v2 1

 v2 = 10.26i + 13.33j m∕s Ans.

The fi nal velocity and its direction are given by

[v = √vx 

2 + vy 

2] v2 = √(10.26)2 + (13.33)2 = 16.83 m∕s Ans.

[tan 𝜃 = vy ∕vx] tan 𝜃 =
13.33
10.26

= 1.299  𝜃 = 52.4° Ans.

30°
x

y

12 m/s
4 kg

600 m/s0.050 kg

x

16.83 m/s
𝜃 = 52.4°

HELPFUL HINT
1  Working with the vector form of the 

principle of conservation of linear mo-
mentum is clearly equivalent to work-
ing with the component form.
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3/10  Angular Impulse and Angular 
Momentum
In addition to the equations of linear impulse and linear momen-
tum, there exists a parallel set of equations for angular impulse and 
angular momentum. First, we defi ne the term angular momentum. 
Figure 3 ∕14a shows a particle P of mass m moving along a curve in 
space. The particle is located by its position vector r with respect to 
a convenient fi xed origin O of coordinates x-y-z. The velocity of the 
particle is v = ṙ, and its linear momentum is G = mv. The moment 
of the linear momentum vector mv about the origin O is defi ned as 
the angular momentum HO of P about O and is given by the 
cross-product relation for the moment of a vector

HO = r × mv (3∕29)

The angular momentum then is a vector perpendicular to the plane A 
defi ned by r and v. The sense of HO is clearly defi ned by the right-
hand rule for cross products.

The scalar components of angular momentum may be obtained 
from the expansion

HO = r × mv = m(vz  
y − vy 

 z)i + m(vx 
 z − vz 

 x)j + m(vy 
 x − vx 

 y)k

HO = m   ⃒
i j k
x y z
vx vy vz

⃒ (3∕30)

so that

Hx = m(vz 
 y − vy 

 z)  Hy = m(vx 
 z − vz 

 x)  Hz = m(vy 
 x − vx 

 y)

Each of these expressions for angular momentum may be checked easily from 
Fig. 3 ∕15, which shows the three linear-momentum components, by taking the mo-
ments of these components about the respective axes.

To help visualize angular momentum, we show in Fig. 3 ∕14b a two- dimensional 
representation in plane A of the vectors shown in part a of the fi gure. The motion 
is viewed in plane A defi ned by r and v. The magnitude of the moment of mv about 
O is simply the linear momentum mv times the moment arm r sin 𝜃 or mvr sin 𝜃, 
which is the magnitude of the cross product HO = r × mv.

Angular momentum is the moment of linear momentum and must not be con-
fused with linear momentum. In SI units, angular momentum has the units 
kg∙ (m∕s) ∙m = kg ∙m2∕s = N∙m∙s. In the U.S. customary system, angular momen-
tum has the units [lb ∕(ft  ∕sec2)][ft  ∕sec][ft] = lb-ft-sec.

Rate of Change of Angular Momentum
We are now ready to relate the moment of the forces acting on the particle P to its 
angular momentum. If ΣF represents the resultant of all forces acting on the par-
ticle P of Fig. 3 ∕14, the moment MO about the origin O is the vector cross product

ΣMO = r × ΣF = r × mv̇

HO = r × mv 

A

H O = r × mv P

P

r

r

O

z

y

x

 mv 

 View in plane A

 (a)

 (b)

  HO = mvr sin 𝜃

r sin 𝜃

mv

𝜃

𝜃
𝜃

FIGURE 3/14
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 mvz 
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94 CHAPTER 3  Kinetics of Particles

where Newton’s second law ΣF = mv̇ has been substituted. We now differentiate 
Eq. 3 ∕29 with time, using the rule for the differentiation of a cross product (see 
item 9, Art. C ∕7, Appendix C) and obtain

ḢO = ṙ × mv + r × mv̇ = v × mv + r × mv̇

The term v × mv is zero since the cross product of parallel vectors is identically 
zero. Substitution into the expression for ΣMO gives

 ΣMO = ḢO (3∕31)

Equation 3 ∕31 states that the moment about the fi xed point O of all forces acting on 
m equals the time rate of change of angular momentum of m about O. This relation, 
particularly when extended to a system of particles, rigid or nonrigid, provides one 
of the most powerful tools of analysis in dynamics.

Equation 3 ∕31 is a vector equation with scalar components

 ΣMOx
= ḢOx

  ΣMOy
= ḢOy

  ΣMOz
= ḢOz

 (3∕32)

The Angular Impulse-Momentum Principle
Equation 3 ∕31 gives the instantaneous relation between the moment and the time 
rate of change of angular momentum. To obtain the effect of the moment ΣMO on 
the angular momentum of the particle over a fi nite period of time, we integrate 
Eq. 3 ∕31 from time t1 to time t2. Multiplying the equation by dt gives ΣMO dt = dHO, 
which we integrate to obtain

 ∫t2

t1

ΣMO dt = (HO)2 − (HO)1 = ΔHO (3∕33)

where (HO)2 = r2 × mv2 and (HO)1 = r1 × mv1. The product of moment and time is 
defi ned as angular impulse, and Eq. 3 ∕33 states that the total angular impulse on 
m about the fi xed point O equals the corresponding change in angular momentum 
of m about O.

Alternatively, we may write Eq. 3 ∕33 as

 (HO)1 + ∫t2

t1

ΣMO dt = (HO)2 (3∕33a)

which states that the initial angular momentum of the particle plus the angular 
impulse applied to it equals its fi nal angular momentum. The units of angular 
 impulse are clearly those of angular momentum, which are N∙m∙s or kg ∙m2∕s in 
SI units and lb-ft-sec in U.S. customary units.

As in the case of linear impulse and linear momentum, the equation of angular 
impulse and angular momentum is a vector equation where changes in direction as 
well as magnitude may occur during the interval of integration. Under these condi-
tions, it is necessary to express ΣMO and HO in component form and then combine 
the integrated components. The x-component of Eq. 3 ∕33a is

(HOx
)1 + ∫t2

t1

 ΣMOx
 dt = (HOx

)2

or m(vz 
 y − vy 

 z)1 + ∫t2

t1

 ΣMOx
 dt = m(vz y − vy 

 z)2 (3∕33b)

ΣMO = ḢO 

(HO)1 + ∫t2

t
∫∫

1

ΣMO dt = (HO)2 
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where the subscripts 1 and 2 refer to the values of the respective quantities at times 
t1 and t2. Similar expressions exist for the y- and z-components of the angular 
 impulse-momentum equation.

Plane-Motion Applications
The foregoing angular-impulse and angular-momentum relations have been devel-
oped in their general three-dimensional forms. Most of the applications of interest 
to us, however, can be analyzed as plane-motion problems where moments are 
taken about a single axis normal to the plane of motion. In this case, the angular 
momentum may change magnitude and sense, but the direction of the vector re-
mains unaltered.

Thus, for a particle of mass m moving along a curved path in the x-y plane, 
Fig. 3 ∕16, the angular momenta about O at points 1 and 2 have the magnitudes 
(HO)1 = �r1 × mv1 |  = mv1d1 and (HO)2 = |r2 × mv2| = mv2d2, respectively. In the 
illustration both (HO)1 and (HO)2 are represented in the counterclockwise sense in 
accord with the direction of the moment of the linear momentum. The scalar form 
of Eq. 3 ∕33a applied to the motion between points 1 and 2 during the time interval 
t1 to t2 becomes

(HO)1 + ∫t2

t1

 ΣMO dt = (HO)2  or mv1d1 + ∫t2

t1

 ΣFr sin 𝜃 dt = mv2d2

This example should help clarify the relation between the scalar and vector forms 
of the angular impulse-momentum relations.

Whereas Eq. 3 ∕33 clearly stresses that the external angular impulse causes a 
change in the angular momentum, the order of the terms in Eqs. 3 ∕33a and 3 ∕33b 
corresponds to the natural sequence of events. Equation 3 ∕33a is analogous to 
Eq. 3 ∕27a, just as Eq. 3 ∕31 is analogous to Eq. 3 ∕25.

As was the case for linear-momentum problems, we encounter  impulsive (large 
magnitude, short duration) and nonimpulsive forces in angular-momentum prob-
lems. The treatment of these forces was discussed in Art. 3 ∕9.

ΣMO = ΣFr sin𝜃

ΣF

r1

r2 d2

d1

O

r

(HO)1 = mv1d1

(HO)2 = mv2d2

 mv2

x

2

 mv1

1

y

𝜃

FIGURE 3/16
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96 CHAPTER 3  Kinetics of Particles

Equations 3 ∕25 and 3 ∕31 add no new basic information since they are merely 
alternative forms of Newton’s second law. We will discover in subsequent chapters, 
however, that the motion equations expressed in terms of the time rate of change 
of momentum are applicable to the motion of rigid and nonrigid bodies and provide 
a very general and powerful approach to many problems. The full generality of 
Eq. 3 ∕31 is usually not required to describe the motion of a single particle or the 
plane motion of rigid bodies, but it does have important use in the analysis of the 
space motion of rigid bodies introduced in Chapter 7.

Conservation of Angular Momentum
If the resultant moment about a fi xed point O of all forces acting on a particle is 
zero during an interval of time, Eq. 3 ∕31 requires that its angular momentum HO

about that point remain constant. In this case, the angular momentum of the par-
ticle is said to be conserved.  Angular momentum may be conserved about one axis 
but not about another axis. A careful examination of the free-body diagram of the 
particle will disclose whether the moment of the resultant force on the particle 
about a fi xed point is zero, in which case, the angular momentum about that point 
is unchanged (conserved).

Consider now the motion of two particles a and b which interact during an in-
terval of time. If the interactive forces F and −F between them are the only unbal-
anced forces acting on the particles during the interval, it follows that the moments 
of the equal and opposite forces about any fi xed point O not on their line of action 
are equal and opposite. If we apply Eq. 3 ∕33 to particle a and then to particle b and 
add the two equations, we obtain ∆Ha + ∆Hb = 0 (where all angular momenta are 
referred to point O). Thus, the total angular momentum for the system of the two 
particles remains constant during the interval, and we write

 ΔHO = 0 or (HO)1 = (HO)2 (3∕34)

which expresses the principle of conservation of angular momentum.

ΔHO = 0 or (HO)1 = (HO)2 
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SAMPLE PROBLEM 3/24

A small sphere has the position and velocity indicated in the 
fi gure and is acted upon by the force F. Determine the angular 
momentum HO about point O and the time derivative ḢO.

Solution We begin with the defi nition of angular momentum 
and write

 HO = r × mv

 = (3i + 6j + 4k) × 2(5j)

  = −40i + 30k N∙m∕s Ans.

From Eq. 3 ∕31,  Ḣ
 O = M

 O

 = r × F

 = (3i + 6j + 4k) × 10k

  = 60i − 30j N∙m  Ans.

As with moments of forces, the position vector must run from the refer-
ence point (O in this case) to the line of action of the linear momentum 
mv. Here r runs directly to the particle.

SAMPLE PROBLEM 3/25

A comet is in the highly eccentric orbit shown in the fi gure. Its 
speed at the most distant point A, which is at the outer edge 
of the solar system, is vA = 740 m ∕s. Determine its speed at the 
point B of closest approach to the sun.

Solution Because the only signifi cant force acting on the 
comet, the gravitational force exerted on it by the sun, is central 
(points to the sun center O), angular momentum about O is 
 conserved.

 (HO)A = (HO)B

 mrAvA = mrBvB

 vB =
rAvA

rB
=

6000(106
 )740

75(106
 )

  vB = 59 200 m∕s  Ans.

z

x

y

O

3 m

4 m

2 kg

6 m

F = 10 N

v = 5 m/s

B
O

A

6000(106) km

75(106) km (Not to scale)
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98 CHAPTER 3  Kinetics of Particles

SAMPLE PROBLEM 3/26

The assembly of the light rod and two end masses is at rest when 
it is struck by the falling wad of putty traveling with speed v1 
as shown. The putty adheres to and travels with the right-hand 
end mass. Determine the angular velocity 𝜃2 of the assembly 
just after impact. The pivot at O is frictionless, and all three 
masses may be assumed to be particles.

Solution If we ignore the angular impulses associated with 
the weights during the collision process, then system angular 
momentum about O is conserved during the impact.

(HO 
)1 = (HO 

)2

mv1l = (m + 2m)(l𝜃2 
)l + 4m(2l𝜃2 

)2l

 𝜃2 =
v1

19l
  CW Ans.

Note that each angular-momentum term is written in the form mvd, 
and the fi nal transverse velocities are expressed as radial distances 
times the common fi nal angular velocity 𝜃2.

SAMPLE PROBLEM 3/27

A small mass particle is given an initial velocity v0 tangent to the hor-
izontal rim of a smooth hemispherical bowl at a radius r0 from the 
vertical centerline, as shown at point A. As the particle slides past point 
B, a distance h below A and a distance r from the vertical centerline, 
its velocity v makes an angle 𝜃 with the horizontal tangent to the bowl 
through B. Determine 𝜃.

Solution The forces on the particle are its weight and the normal 
reaction exerted by the smooth surface of the bowl. Neither force exerts 
a moment about the axis O-O, so that angular momentum is conserved 
about that axis. Thus,

[(HO)1 = (HO)2]  mv0 r0 = mvr cos 𝜃 1

Also, energy is conserved so that E1 = E2. Thus

[T1 + V1 = T2 + V2]  12 mv0 

2 + mgh =
1
2 mv2 + 0

 v = √v0 

2 + 2gh

Eliminating v and substituting r2 = r0 

2 − h2 give

 v0 r0 = √v0 

2 + 2gh√r0 

2 − h2 cos 𝜃

  𝜃 = cos−1 
1

√1 +
2gh

v0
2  √1 −

h2

r0
2

 Ans.

HELPFUL HINT
1  The angle 𝜃 is measured in the plane 

tangent to the hemispherical surface 
at B.

2m

2l

O

m

l

4m

v1

𝜃

A

O

O

B

h
r

r0

v0

v
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SECTION D Special Applications

3/11  Introduction
The basic principles and methods of particle kinetics were developed and illus-
trated in the fi rst three sections of this chapter. This treatment included the direct 
use of Newton’s second law, the equations of work and energy, and the equations of 
impulse and momentum. We paid special attention to the kind of problem for which 
each of the approaches was most appropriate.

Several topics of specialized interest in particle kinetics will be briefl y treated 
in Section D:

 1. Impact

 2. Central-force motion

 3. Relative motion

These topics involve further extension and application of the fundamental 
principles of dynamics, and their study will help to broaden your background in 
mechanics.

3/12  Impact
The principles of impulse and momentum have important use in describing the 
behavior of colliding bodies. Impact refers to the collision between two bodies and 
is characterized by the generation of relatively large contact forces which act over 
a very short interval of time. It is important to realize that an impact is a very 
complex event involving material deformation and recovery and the generation of 
heat and sound. Small changes in the impact conditions may cause large changes 
in the impact process and thus in the conditions immediately following the im-
pact. Therefore, we must be careful not to rely heavily on the results of impact 
calculations.

Direct Central Impact
As an introduction to impact, we consider the collinear motion of two 
spheres of masses m1 and m2, Fig. 3 ∕17a, traveling with velocities v1 
and v2. If v1 is greater than v2, collision occurs with the contact forces 
directed along the line of centers. This condition is called direct cen-
tral impact.

Following initial contact, a short period of increasing deforma-
tion takes place until the contact area between the spheres ceases to 
increase. At this instant, both spheres, Fig. 3 ∕17b, are moving with 
the same velocity v0. During the remainder of contact, a period of 
restoration occurs during which the contact area decreases to zero. 
In the fi nal condition shown in part c of the fi gure, the spheres now 
have new  velocities v1′ and v2′, where v1′ must be less than v2′. All 
velocities are arbitrarily assumed positive to the right, so that with 
this scalar notation a velocity to the left would carry a negative sign. 

m2

m2m1

m2m1

m1

v1

v0

v2

Before
impact

(a) 

Maximum
deformation
during impact

(b) 

After impact(c) 

>

<v1ʹ v2ʹ

FIGURE 3/17
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100 CHAPTER 3  Kinetics of Particles

If the impact is not overly severe and if the spheres are highly elastic, they will 
regain their original shape following the restoration. With a more severe impact 
and with less elastic bodies, a permanent deformation may result.

Because the contact forces are equal and opposite during impact, the linear 
momentum of the system remains unchanged, as discussed in Art. 3 ∕9. Thus, we 
apply the law of conservation of linear momentum and write

 m1 v1 + m2 v2 = m1 v1′ + m2 v2′ (3∕35)

We assume that any forces acting on the spheres during impact, other than the 
large internal forces of contact, are relatively small and produce negligible im-
pulses compared with the impulse associated with each internal impact force. In 
addition, we assume that no appreciable change in the positions of the mass cen-
ters occurs during the short  duration of the impact.

Coeff icient of Restitution
For given masses and initial conditions, the momentum equation contains two 
 unknowns, v1′ and v2′. Clearly, we need an additional relationship to fi nd the fi nal 
velocities. This relationship must refl ect the capacity of the contacting bodies to 
recover from the impact and can be expressed by the ratio e of the magnitude of the 

restoration impulse to the magnitude of the deformation impulse. 
This ratio is called the coeffi cient of restitution.

Let Fr and Fd represent the magnitudes of the contact forces 
during the restoration and deformation periods, respectively, as 
shown in Fig. 3 ∕18. For particle 1 the defi nition of e together with 
the impulse-momentum equation give us

e =

∫t

t0

 Fr dt

∫t0

0
 Fd dt

=
m1[−v1′ − (−v0 

)]
m1[−v0 − (−v1 

)]
=

v0 − v1′
v1 − v0

Similarly, for particle 2 we have

e =

∫t

t0

 Fr dt

∫t0

0
 Fd dt

=
m2 (v2′ − v0 

)
m2 (v0 − v2 

)
=

v2′ − v0

v0 − v2

We are careful in these equations to express the change of momentum (and there-
fore ∆v) in the same direction as the impulse (and thus the force). The time for the 
deformation is taken as t0 and the total time of contact is t. Eliminating v0 between 
the two expressions for e gives us

 e =
v2′ − v1′
v1 − v2

=
|relative velocity of separation|
|relative velocity of approach|

 (3∕36)

If the two initial velocities v1 and v2 and the coeffi cient of restitution e are 
known, then Eqs. 3 ∕35 and 3 ∕36 give us two equations in the two unknown fi nal 
velocities v1′ and v2′.

Fd
Deformation

period

v1 v2

m1 m2

Fr
Restoration

period

v0 v0

v1ʹ v2ʹ
m1 m2

FIGURE 3/18
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 Article  3/12 Impact 101

Energy Loss During Impact
Impact phenomena are almost always accompanied by energy loss, which may be 
calculated by subtracting the kinetic energy of the system just after impact from 
that just before impact. Energy is lost through the generation of heat during the 
localized inelastic deformation of the material, through the generation and dissi-
pation of elastic stress waves within the bodies, and through the generation of 
sound energy.

According to this classical theory of impact, the value e = 1 
means that the capacity of the two particles to recover equals their 
tendency to deform. This condition is one of elastic impact with no 
energy loss. The value e = 0, on the other hand, describes inelastic or 
plastic impact where the particles cling together after collision and 
the loss of energy is a maximum. All impact conditions lie some-
where between these two extremes.

Also, it should be noted that a coeffi cient of restitution must be 
 associated with a pair of contacting bodies. The coeffi cient of restitu-
tion is frequently considered a constant for given geometries and a 
given combination of contacting materials. Actually, it depends on 
the impact velocity and approaches unity as the impact velocity ap-
proaches zero as shown schematically in Fig. 3 ∕19. A handbook 
value for e is generally unreliable.

Oblique Central Impact
We now extend the relationships developed for direct central impact to the case where 
the initial and fi nal velocities are not parallel, Fig. 3 ∕20. Here spherical particles of 
mass m1 and m2 have initial velocities v1 and v2 in the same plane and approach each 
other on a collision course, as shown in part a of the fi gure. The directions of the veloc-
ity vectors are measured from the direction tangent to the contacting surfaces, 
Fig. 3 ∕20b. Thus, the initial velocity components along the t- and n-axes are (v1)n = 
−v1 sin 𝜃1, (v1)t = v1 cos 𝜃1, (v2)n = v2 sin 𝜃2, and (v2)t = v2 cos 𝜃2. Note that (v1)n is a neg-
ative quantity for the particular coordinate system and initial velocities shown.

The fi nal rebound conditions are shown in part c of the fi gure. The impact 
forces are F and −F, as seen in part d of the fi gure. They vary from zero to their 
peak value during the deformation portion of the impact and back again to zero 

(b) (c) (d) (e)(a)

n

n

m1

v1

v2
v2ʹ

F

0
0 t0

Time, t
t

│F│

−F

v1ʹm1

m2

𝜃2

𝜃1

𝜃2ʹ
𝜃1ʹ

m2

t

Perfectly elastic

Glass on glass

Steel on steel

Lead on lead
Perfectly plastic

Relative impact velocity

1

0
0

Coefficient of
restitution, e

FIGURE 3/19

FIGURE 3/20
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102 CHAPTER 3  Kinetics of Particles

during the restoration period, as indicated in part e of the fi gure where t is the 
duration of the impact interval.

For given initial conditions of m1, m2, (v1)n, (v1)t, (v2)n, and (v2)t, there will be 
four unknowns, namely, (v1′ )n, (v1′ )t , (v2′ )n, and (v2′ )t . The four needed equations 
are obtained as follows:

(1) Momentum of the system is conserved in the n-direction. This gives

m1(v1 
)n + m2(v2 

)n = m1(v1′ )n + m2(v2′ )n

(2) and (3) The momentum for each particle is conserved in the t-direction since 
there is no impulse on either particle in the t-direction. Thus,

 m1(v1 
)t = m1(v1′ )t

 m2(v2 
)t = m2(v2′ )t

(4) The coeffi cient of restitution, as in the case of direct central impact, is the 
positive ratio of the recovery impulse to the deformation impulse. Equation 3 ∕36 
applies, then, to the velocity components in the n-direction. For the notation adopted 
with Fig. 3 ∕20, we have

e =
(v2′ )n − (v1′ )n

(v1 
)n − (v2 

)n

Once the four fi nal velocity components are found, the angles 𝜃1′ and 𝜃2′ of 
Fig. 3 ∕20 may be easily determined.

The motion of pool balls after impact is easily investigated with 
the principles of direct and oblique central impact.

K
u

n
st

ga
le

ri
e 

A
qu

ar
iu

s∕
G

et
ty

 I
m

ag
es

, I
n

c.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k
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SAMPLE PROBLEM 3/28

The ram of a pile driver has a mass of 800 kg and is released from rest 
2 m above the top of the 2400-kg pile. If the ram rebounds to a height of 
0.1 m after impact with the pile, calculate (a) the velocity vp′ of the pile 
immediately after impact, (b) the coeffi cient of restitution e, and (c) the 
percentage loss of energy due to the impact.

Solution Conservation of energy during free fall gives the initial and 
fi nal velocities of the ram from v = √2gh. Thus,

vr = √2(9.81)(2) = 6.26 m∕s  vr′ = √2(9.81)(0.1) = 1.401 m∕s

(a) Conservation of momentum (G1 = G2) for the system of the ram and 
pile gives 1

 800(6.26) + 0 = 800(−1.401) + 2400vp′  vp′ = 2.55 m∕s Ans.

(b) The coeffi cient of restitution yields

 e =
|rel. vel. separation|

|rel. vel. approach|
  e =

2.55 + 1.401
6.26 + 0

= 0.631 Ans.

(c) The kinetic energy of the system just before impact is the same as 
the potential energy of the ram above the pile and is

T = Vg = mgh = 800(9.81)(2) = 15 700 J

The kinetic energy T′ just after impact is

T′ =
1
2 (800)(1.401)2 +

1
2 (2400)(2.55)2 = 8620 J

The percentage loss of energy is, therefore,

 
15 700 − 8620

15 700
 (100% ) = 45.1%  Ans.

SAMPLE PROBLEM 3/29

A ball is projected onto the heavy plate with a velocity of 50 ft  ∕sec at the 
30° angle shown. If the effective coeffi cient of restitution is 0.5, compute 
the rebound velocity v′ and its angle 𝜃′.

Solution Let the ball be denoted body 1 and the plate body 2. The 
mass of the heavy plate may be considered infi nite and its correspond-
ing velocity zero after impact. The coeffi cient of restitution is applied to 
the velocity components normal to the plate in the direction of the im-
pact force and gives

e =
(v2′)n − (v1′)n

(v1 
)n − (v2 

)n
  0.5 =

0 − (v1′)n

−50 sin 30° − 0
  (v1′)n = 12.5 ft∕sec

Momentum of the ball in the t-direction is unchanged since, with as-
sumed smooth surfaces, there is no force acting on the ball in that 
 direction. 1  Thus,

m(v1 
)t = m(v1′)t  (v1′)t = (v1)t = 50 cos 30° = 43.3 ft∕sec

The rebound velocity v′ and its angle 𝜃′ are then

 v′ = √(v1′)n 

2 + (v1′)t 

2 = √12.52 + 43.32 = 45.1 ft∕sec Ans.

 𝜃′ = tan−1 (
(v1′)n

(v1′)t
) = tan−1 (12.5

43.3) = 16.10° Ans.

2 m drop

0.1 m
rebound

Before
impact

ram

pile

y

Immediately
after

impact

vr

vp = 0

vrʹ

vpʹ

HELPFUL HINT
1  The impulses of the weights of the ram 

and pile are very small compared with 
the impulses of the impact forces and 
thus are neglected during the impact.

2

30°

vʹ1

50 ft/sec

t

n

𝜃ʹ

Fimpact

W << Fimpact

HELPFUL HINT
1  We observe here that for infi nite mass 

there is no way of applying the principle 
of conservation of momentum for the 
system in the n-direction. From the free-
body diagram of the ball during impact, 
we note that the impulse of the weight 
W is neglected since W is very small 
compared with the impact force.
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SAMPLE PROBLEM 3/30

Spherical particle 1 has a velocity v1 = 6 m ∕s in the direction shown 
and collides with spherical particle 2 of equal mass and diameter and 
initially at rest. If the coeffi cient of restitution for these conditions is 
e = 0.6, determine the resulting motion of each particle following im-
pact. Also calculate the percentage loss of energy due to the impact.

Solution The geometry at impact indicates that the normal n to the 
contacting surfaces makes an angle 𝜃 = 30° with the direction of v1, as 
indicated in the fi gure. 1  Thus, the initial velocity components are 
(v1)n = v1 cos 30° = 6 cos 30° = 5.20 m ∕s, (v1)t = v1 sin 30° = 6 sin 30° = 
3 m ∕s, and (v2)n = (v2)t = 0.
 Momentum conservation for the two-particle system in the  n-direction 
gives

m1(v1 
)n + m2(v2 

)n = m1(v1′)n + m2(v2′)n

or, with m1 = m2,

 5.20 + 0 = (v1′)n + (v2′)n (a)

The coeffi cient-of-restitution relationship is

 e =
(v2′)n − (v1′)n

(v1 
)n − (v2 

)n
  0.6 =

(v2′)n − (v1′)n

5.20 − 0
 (b)

Simultaneous solution of Eqs. a and b yields 2  

(v1′)n = 1.039 m∕s  (v2′)n = 4.16 m∕s

Conservation of momentum for each particle holds in the t-direction 
because, with assumed smooth surfaces, there is no force in the 
 t-direction. Thus for particles 1 and 2, we have

 m1(v1 
)t = m1(v1′)t    (v1′)t = (v1 

)t = 3 m∕s

  m2(v2 
)t = m2(v2′)t   (v2′)t = (v2 

)t = 0 3

The fi nal speeds of the particles are

  v1′ = √(v1′)n 

2 + (v1′)t 

2 = √(1.039)2 + 32 = 3.17 m∕s Ans.

  v2′ = √(v2′)n 

2 + (v2′)t 

2 = √(4.16)2 + 02 = 4.16 m∕s  Ans.

The angle 𝜃′ which v1′ makes with the t-direction is

 𝜃′ = tan−1 (
(v1′)n

(v1′)t
) = tan−1 (1.039

3 ) = 19.11° Ans.

The kinetic energies just before and just after impact, with m = m1 = 
m2, are

T =
1
2 m1v1 

2 +
1
2 m2v2 

2 =
1
2 m(6)2 + 0 = 18m

T′ =
1
2 m1v1′  

2 +
1
2 m2v2′  

2 =
1
2 m(3.17)2 +

1
2 m(4.16)2 = 13.68m

The percentage energy loss is then

|ΔE|

E
 (100% ) =

T − T′
T

 (100% ) =
18m − 13.68m

18m
 (100% ) = 24.0%  Ans.

1

2

v1

n

r

v1

2r

n

30°

1

2

2ʹ
1ʹ

t

v1

v2ʹ
v1ʹ 𝜃1ʹ

n

1

2 t
F

F

𝜃

HELPFUL HINTS
1  Be sure to set up n- and t-coordinates 

which are, respectively, normal to and 
tangent to the contacting surfaces. Calcu-
lation of the 30° angle is critical to all that 
follows.

2  Note that, even though there are four 
equations in four unknowns for the 
standard problem of oblique central im-
pact, only one pair of the equations is 
coupled.

3  We note that particle 2 has no initial 
or fi nal velocity component in the 
t-direction. Hence, its fi nal velocity v2′ is 
restricted to the n-direction.
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3/13  Central-Force Motion
When a particle moves under the infl uence of a force directed  toward a fi xed center 
of attraction, the motion is called central-force motion. The most common example of 
central-force motion is the orbital movement of planets and satellites. The laws 
which govern this motion were deduced from observation of the motions of the plan-
ets by J. Kepler (1571–1630). An understanding of central-force motion is required 
to design high-altitude rockets, earth satellites, and space vehicles.

Motion of a Single Body
Consider a particle of mass m, Fig. 3 ∕21, moving under the action of 
the central gravitational attraction

F = G 

mm0

r2

where m0 is the mass of the attracting body, which is assumed to be 
fi xed, G is the universal gravitational constant, and r is the distance 
between the centers of the masses. The particle of mass m could rep-
resent the earth moving about the sun, the moon moving about the 
earth, or a satellite in its orbital motion about the earth above the 
 atmosphere.

The most convenient coordinate system to use is polar coordinates in the plane 
of motion since F will always be in the negative r-direction and there is no force in 
the 𝜃-direction.

Equations 3 ∕8 may be applied directly for the r- and 𝜃-directions to give

 −G  

mm0

r2 = m(r̈ − r�̇�2)

  0 = m(r�̈� + 2ṙ𝜃) 
(3∕37)

The second of the two equations when multiplied by r∕m is seen to be the same as 
d(r2�̇�)∕dt = 0, which is integrated to give

 r2�̇� = h,  a constant (3∕38)

The physical signifi cance of Eq. 3 ∕38 is made clear when we note that the 
angular momentum r  ×  mv of m about m0 has the magnitude mr2�̇�. Thus, Eq. 
3 ∕38 merely states that the angular momentum of m about m0 remains constant 
(is conserved). This statement is  easily deduced from Eq. 3 ∕31, which shows that 
the angular momentum HO remains constant (is conserved) if there is no moment 
acting on the particle about a fi xed point O.

We observe that during time dt, the radius vector sweeps out an area, shaded 
in Fig. 3 ∕21, equal to dA = (1

2 r)(r d𝜃). Therefore, the rate at which area is swept by 

the radius vector is Ȧ =
1
2 r2�̇�, which is constant according to Eq. 3 ∕38. This conclusion 

is expressed in Kepler’s second law of planetary motion, which states that the areas 
swept through in equal times are equal.

The shape of the path followed by m may be obtained by solving the fi rst of Eqs. 
3 ∕37, with the time t eliminated through combination with Eq. 3 ∕38. To this end the 
mathematical substitution r = 1 ∕u is useful. Thus, ṙ = −(1 ∕u2)u̇, which from Eq. 3 ∕38 
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106 CHAPTER 3  Kinetics of Particles

becomes ṙ = −h(u̇∕�̇�) or ṙ = −h(du ∕d𝜃). The second time derivative is r̈ = 
−h(d2u ∕d𝜃2)�̇�, which by combining with Eq. 3 ∕38, becomes r̈ = −h2u2(d2u ∕d𝜃2). Sub-
stitution into the fi rst of Eqs. 3 ∕37 now gives

−Gm0u2 = −h2 u2
 

d2 u
d𝜃2 −

1
u

 h2u4

or

 
d2 u
d𝜃2 + u =

Gm0

h2  (3∕39)

which is a nonhomogeneous linear differential equation.
The solution of this familiar second-order equation may be verifi ed by direct 

substitution and is

u =
1
r

= C cos (𝜃 + 𝛿) +
Gm0

h2

where C and 𝛿 are the two integration constants. The phase angle 𝛿 may be elimi-
nated by choosing the x-axis so that r is a minimum when 𝜃 = 0. Thus,

 
1
r

= C cos 𝜃 +
Gm0

h2  (3∕40)

Conic Sections
The interpretation of Eq. 3 ∕40 requires a knowledge of the equations for conic 
 sections. We recall that a conic section is formed by the locus of a point which moves 
so that the ratio e of its distance from a point (focus) to a line (directrix) is constant. 
Thus, from Fig. 3 ∕21, e = r ∕(d − r cos 𝜃), which may be rewritten as

 
1
r

=
1
d

 cos 𝜃 +
1
ed

 (3∕41)

which is the same form as Eq. 3 ∕40. Thus, we see that the motion 
of m is along a conic section with d = 1 ∕C and ed = h2∕(Gm0), or

 e =
h2 C
Gm0

 (3∕42)

The three cases to be investigated correspond to e < 1 (el-
lipse), e = 1 (parabola), and e > 1 (hyperbola). The trajectory for 
each of these cases is shown in Fig. 3 ∕22.

Case 1: ellipse (e < 1). From Eq. 3 ∕41 we deduce that r is a min-
imum when 𝜃 = 0 and is a maximum when 𝜃 = 𝜋. Thus,

2a = rmin + rmax =
ed

1 + e
+

ed
1 − e

  or  a =
ed

1 − e2

With the distance d expressed in terms of a, Eq. 3 ∕41 and the max-
imum and minimum values of r may be written as

 
1
r

=
1 + e cos 𝜃
a(1 − e2)

 

 rmin = a(1 − e)  rmax = a(1 + e) 
(3∕43)
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 Article  3/13 Central-Force Motion 107

In addition, the relation b = a√1 − e2, which comes from the geometry of the el-
lipse, gives the expression for the semiminor axis. We see that the ellipse becomes 
a circle with r = a when e = 0. Equation 3 ∕43 is an expression of Kepler’s fi rst law, 
which says that the planets move in elliptical orbits around the sun as a focus.

The period 𝜏 for the elliptical orbit is the total area A of the ellipse divided by 
the constant rate Ȧ at which the area is swept through. Thus, from Eq. 3 ∕38,

𝜏 =
A

Ȧ
=

𝜋ab
1
2 r2𝜃  or  𝜏 =

2𝜋ab
h

We can eliminate reference to �̇� or h in the expression for 𝜏 by substi-
tuting Eq. 3 ∕42, the identity d = 1 ∕C, the geometric relationships 
a = ed ∕(1 − e2) and b = a√1 − e2 for the ellipse, and the equivalence 
Gm0 = gR2. The result after simplifi cation is

 𝜏 = 2𝜋 
a3∕2

R√g
 (3∕44)

In this equation note that R is the mean radius of the central attract-
ing body and g is the absolute value of the acceleration due to gravity 
at the surface of the attracting body.

Equation 3 ∕44 expresses Kepler’s third law of planetary motion, 
which states that the square of the period of motion is proportional to 
the cube of the semimajor axis of the orbit.

Case 2: parabola (e = 1). Equations 3 ∕41 and 3 ∕42 become

1
r

=
1
d

 (1 + cos 𝜃)  and  h2C = Gm0

The radius vector becomes infi nite as 𝜃 approaches 𝜋, so the dimension 
a is infi nite.

Case 3: hyperbola (e > 1). From Eq. 3 ∕41 we see that the radial 
distance r becomes infi nite for the two values of the polar angle 𝜃1 and 
−𝜃1 defi ned by cos 𝜃1 = −1 ∕e. Only branch I corresponding to −𝜃1 < 
𝜃 < 𝜃1, Fig. 3 ∕23, represents a physically possible motion. Branch II 
corresponds to angles in the remaining sector (with r negative). For 
this branch, positive r’s may be used if 𝜃 is replaced by 𝜃 − 𝜋 and −r by 
r. Thus, Eq. 3 ∕41 becomes

1
−r

=
1
d

 cos (𝜃 − 𝜋) +
1
ed
  or  

1
r

= −
1
ed

 +
cos 𝜃

d

But this expression contradicts the form of Eq. 3 ∕40 where Gm0 ∕h2 is nec-
essarily positive. Thus branch II does not exist (except for repulsive forces).

Energy Analysis
Now consider the energies of particle m. The system is conservative, 
and the constant energy E of m is the sum of its kinetic energy T and 
potential energy V. The kinetic energy is T = 1

2 mv2 = 1
2  m (ṙ2 + r2�̇�2) 

and the potential energy from Eq. 3 ∕19 is V = −mgR2∕r.

𝜏 = 2𝜋 a3∕2

R√g√√√
 

The James Webb Space Telescope is 
scheduled for launch in 2018. Depicted 
here is its segmented 6.5-meter 
mirror, which is much larger than the 
2.4-meter mirror of the Hubble Space 
Telescope. The JWST will be located at 
the second Lagrange point (L2) of the 
sun-earth system, meaning that it will 
always be about 1.5 million kilometers 
from the earth, outside the earth’s 
orbit.
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108 CHAPTER 3  Kinetics of Particles

Recall that g is the absolute acceleration due to gravity measured at the surface 
of the attracting body, R is the radius of the attracting body, and Gm0 = gR2. Thus,

E =
1
2 

 
m (ṙ2 + r2�̇�2) −

mgR2

r

This constant value of E can be determined from its value at 𝜃 = 0, where ṙ = 0, 
1 ∕r = C + gR2∕h2 from Eq. 3 ∕40, and r�̇� = h ∕r from Eq. 3 ∕38. Substituting this into 
the expression for E and simplifying yield

2E
m

= h2C2 −
g2R4

h2

Now C is eliminated by substitution of Eq. 3 ∕42, which may be written as h2C =
egR2, to obtain

e = +√1 +
2Eh2

mg2R4 (3∕45)

The plus value of the radical is mandatory since by defi nition e is positive. We 
now see that for the

 elliptical orbit e < 1, E is negative

 parabolic orbit e = 1, E is zero

 hyperbolic orbit e > 1, E is positive

These conclusions, of course, depend on the arbitrary selection of the datum condi-
tion for zero potential energy (V = 0 when r = ∞).

The expression for the velocity v of m may be found from the energy equation, 
which is

1
2  mv2 −

mgR2

r
= E

The total energy E is obtained from Eq. 3 ∕45 by combining Eq. 3 ∕42 and 1 ∕C = d =
a(1 − e2) ∕e to give for the elliptical orbit

E = −
gR2m

2a
 (3∕46)

Substitution into the energy equation yields

 v2 = 2gR2 (1
r

−
1

2a) (3∕47)

from which the magnitude of the velocity may be computed for a particular orbit in 
terms of the radial distance r.

Next, combining the expressions for rmin and rmax corresponding to perigee and 
apogee, Eq. 3 ∕43, with Eq. 3 ∕47 results in a pair of expressions for the respective 
velocities at these two positions for the elliptical orbit:

 vP = R √g
a

 √1 + e
1 − e

= R √g
a

 √rmax

rmin
 (3∕48)

vA = R √g
a

 √1 − e
1 + e

= R √g
a

 √rmin

rmax

v2 = 2g2 Rgg 2 (1
r

−
1

2a) 

vP = R√g√√√a√ √1 + e√1 − e√ = R√g√√√a√ √rmax√rmin
√  

vA = R√g√√√a√ √1 − e√1 + e√ = R√g√√√a√ √rmin√rmax
√
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 Article  3/13 Central-Force Motion 109

Selected numerical data pertaining to the solar system are included in Appen-
dix D and are useful in applying the foregoing relationships to problems in plane-
tary motion.

Summary of Assumptions
The foregoing analysis is based on three assumptions:

 1. The two bodies possess spherical mass symmetry so that they may be treated 
as if their masses were concentrated at their centers, that is, as if they were 
 particles.

 2. There are no forces present except the gravitational force which each mass 
exerts on the other.

 3. Mass m0 is fi xed in space.

Assumption (1) is excellent for bodies which are distant from the central at-
tracting body, which is the case for most heavenly bodies. A signifi cant class of prob-
lems for which assumption (1) is poor is that of artifi cial satellites in the very near 
vicinity of oblate planets. As a comment on assumption (2), we note that aerody-
namic drag on a low- altitude earth satellite is a force which usually cannot be ig-
nored in the orbital analysis. For an artifi cial satellite in earth orbit, the error of 
 assumption (3) is negligible because the ratio of the mass of the satellite to that of 
the earth is very small. On the other hand, for the earth–moon system, a small but 
signifi cant error is introduced if assumption (3) is invoked—note that the lunar 
mass is about 1 ∕81 times that of the earth.

Perturbed Two-Body Problem
We now account for the motion of both masses and allow the presence of other 
forces in addition to those of mutual attraction by considering the perturbed two-
body problem. Figure 3 ∕24 depicts the major mass m0, the minor mass m, their 
respective position vectors r1 and r2 measured relative to an inertial frame, the 
gravitation forces F and −F, and a non-two-body force P which is exerted on mass 
m. The force P may be due to aerodynamic drag, solar pressure, the presence of a 
third body, on-board thrusting activities, a nonspherical gravitational fi eld, or a 
combination of these and other sources.

Application of Newton’s second law to each mass results in

G 
mm0

r3  r = m0 r̈1  and  −G 
mm0

r3  r + P = mr̈2

P

r
r1

r2

P

F = G          r

−F

mm0——––
r3

m0

m
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110 CHAPTER 3  Kinetics of Particles

Dividing the fi rst equation by m0, the second equation by m, and subtracting the 
fi rst equation from the second give

−G 
(m0 + m)

r3  r +
P
m

= r̈2 − r̈1 = r̈

or

 r̈ + G 
(m0 + m)

r3  r =
P
m

 (3∕49)

Equation 3 ∕49 is a second-order differential equation which, when solved, yields 
the relative position vector r as a function of time. Numerical techniques are usually 
required for the integration of the scalar differential equations which are equiva-
lent to the vector equation 3 ∕49, especially if P is nonzero.

Restricted Two-Body Problem
If m0 >> m and P = 0, we have the restricted two-body problem, the equation of 
motion of which is

 r̈ + G 
m0

r3  r = 0 (3∕49a)

With r and r̈ expressed in polar coordinates, Eq. 3 ∕49a becomes

(r̈ − r�̇�2)er + (r�̈� + 2ṙ �̇�)e𝜃 + G 
m0

r3  (rer) = 0

When we equate coeffi cients of like unit vectors, we recover Eqs. 3 ∕37.
Comparison of Eq. 3 ∕49 (with P = 0) and Eq. 3 ∕49a enables us to relax the as-

sumption that mass m0 is fi xed in space. If we replace m0 by (m0 + m) in the expres-
sions derived with the assumption of m0 fi xed, then we obtain expressions which 
account for the motion of m0. For  example, the corrected expression for the period 
of elliptical motion of m about m0 is, from Eq. 3 ∕44,

 𝜏 = 2𝜋 
a3∕2

√G(m0 + m)
 (3∕49b)

where the equality R2g = Gm0 has been used.
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SAMPLE PROBLEM 3/31

An artifi cial satellite is launched from point B on the equator by its car-
rier rocket and inserted into an elliptical orbit with a perigee altitude 
of 2000 km. If the apogee altitude is to be 4000 km, compute (a) the 
necessary perigee velocity vP and the corresponding apogee velocity vA, 
(b) the velocity at point C where the altitude of the satellite is 2500 km, 
and (c) the period τ for a complete orbit.

Solution (a) The perigee and apogee velocities for specifi ed altitudes 
are given by Eqs. 3 ∕48, where

  rmax = 6371 + 4000 = 10 371 km 1

 rmin = 6371 + 2000 = 8371 km

 a = (rmin + rmax 
)∕2 = 9371 km

Thus,

 vP = R √g
a

 √rmax

rmin
= 6371(103) √ 9.825

9371(103)
 √10 371

8371

  = 7261 m∕s  or  26 140 km∕h Ans.

 vA = R √g
a

 √rmin

rmax
= 6371(103) √ 9.825

9371(103)
 √ 8371

10 371

  = 5861 m∕s  or  21 099 km∕h Ans.

(b) For an altitude of 2500 km the radial distance from the center of 
the earth is r = 6371 + 2500 = 8871 km. From Eq. 3 ∕47 the velocity at 
point C becomes

 vC 

2 = 2gR2 (1
r −

1
2a) = 2(9.825)[(6371)(103)]2 ( 1

8871
−

1
18 742) 

1
103 2

  = 47.353(106)(m∕s)2

 vC = 6881 m∕s  or  24 773 km∕h Ans.

(c) The period of the orbit is given by Eq. 3 ∕44, which becomes

  𝜏 = 2𝜋 
a3∕2

R√g
= 2𝜋 

[(9371)(103)]3∕2

(6371)(103)√9.825
= 9026 s 3

  or  𝜏 = 2.507 h Ans.

A P

vP

vA

C

B

12 742 km
4000
km

2000 km

2a

2500 km

O

R
𝜃

HELPFUL HINTS
1  The mean radius of 12 742∕2 = 6371 km 

from Table D∕2 in Appendix D is used. 
Also the absolute acceleration due to 
gravity g = 9.825 m∕s2 from Art. 1∕5 will 
be used.

2  We must be careful with units. It is  often 
safer to work in base units, meters in 
this case, and convert later.

3  We should observe here that the time 
 interval between successive overhead 
transits of the satellite as recorded by an 
observer on the equator is longer than 
the period calculated here since the ob-
server will have moved in space because 
of the counterclockwise rotation of the 
earth, as seen looking down on the north 
pole.
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3/14  Relative Motion
Up to this point in our development of the kinetics of particle motion, we have ap-
plied Newton’s second law and the equations of work-energy and impulse- 
momentum to problems where all measurements of motion were made with respect 
to a reference system which was considered fi xed. The nearest we can come to a 
“fi xed” reference system is the primary inertial system or astronomical frame of 
reference, which is an imaginary set of axes attached to the fi xed stars. All other 
reference systems then are considered to have motion in space, including any 
 reference  system attached to the moving earth.

The acceleration of points attached to the earth as measured in the primary 
system are quite small, however, and we normally neglect them for most earth-sur-
face measurements. For example, the acceleration of the center of the earth in its 
near-circular orbit around the sun considered fi xed is 0.00593 m ∕s2 (or 0.01946 
ft  ∕sec2), and the acceleration of a point on the equator at sea level with respect to 
the center of the earth considered fi xed is 0.0339 m ∕s2 (or 0.1113 ft  ∕sec2). Clearly, 
these accelerations are small compared with g and with most other signifi cant ac-
celerations in engineering work. Thus, we make only a small error when we assume 
that our earth-attached reference axes are equivalent to a fi xed reference system.

Relative-Motion Equation
We now consider a particle A of mass m, Fig. 3 ∕25, whose motion is 
observed from a set of axes x-y-z which translate with respect to a 
fi xed reference frame X-Y-Z. Thus, the x-y-z directions always remain 
parallel to the X-Y-Z directions. We postpone discussion of motion rel-
ative to a rotating reference system until Arts. 5 ∕7 and 7∕7. The accel-
eration of the origin B of x-y-z is aB. The acceleration of A as observed 
from or  relative to x-y-z is arel = aA/B = r̈A/B, and by the relative- motion 
principle of Art. 2 ∕8, the absolute acceleration of A is

aA = aB + arel

Thus, Newton’s second law ΣF = maA becomes

 ΣF = m(aB + arel) (3∕50)

We can identify the force sum ΣF, as always, by a complete free-
body diagram. This diagram will appear the same to an observer in 
x-y-z or to one in X-Y-Z as long as only the real forces acting on the 
particle are represented. We can conclude immediately that Newton’s 
second law does not hold with respect to an accelerating system since ΣF ≠ marel.

D’Alembert’s Principle
The particle acceleration we measure from a fi xed set of axes X-Y-Z, Fig. 3 ∕26a, is its 
absolute acceleration a. In this case the familiar relation ΣF = ma applies. When we 
observe the particle from a moving system x-y-z attached to the particle, Fig. 3 ∕26b, 
the particle necessarily appears to be at rest or in equilibrium in x-y-z. Thus, the 
observer who is accelerating with x-y-z concludes that a force −ma acts on the 
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particle to balance ΣF. This point of view, which allows the treatment of a dynam-
ics problem by the methods of statics, was an outgrowth of the work of  D’Alembert 
contained in his Traité de Dynamique published in 1743.

The foregoing approach merely amounts to rewriting the equation of motion as ΣF − ma = 0, which assumes the form of a zero force summation if −ma is treated as a 
force. This fi ctitious force is known as the inertia force, and the artifi cial state of equi-
librium created is known as dynamic equilibrium. The apparent transformation of a 
problem in  dynamics to one in statics has become known as D’Alembert’s principle.

Opinion differs concerning the original interpretation of D’Alembert’s principle, 
but the principle in the form in which it is generally known is regarded in this 
book as being mainly of historical interest. It evolved when understanding and 
experience with dynamics were extremely limited and was a means of explaining 
dynamics in terms of the principles of statics, which were more fully understood. 
This excuse for using an artifi cial situation to describe a real one is no longer jus-
tifi ed, as today a wealth of knowledge and experience with dynamics strongly sup-
ports the direct approach of thinking in terms of dynamics rather than statics. It 
is somewhat diffi cult to understand the long persistence in the acceptance of stat-
ics as a way of understanding dynamics, particularly in view of the continued 
search for the understanding and description of physical phenomena in their most 
direct form.

We cite only one simple example of the method known as D’Alembert’s princi-
ple. The conical pendulum of mass m, Fig. 3 ∕27a, is swinging in a 
horizontal circle, with its radial line r having an angular velocity 𝜔. In 
the straightforward application of the equation of motion ΣF = man in 
the direction n of the acceleration, the free-body diagram in part b of 
the fi gure shows that T sin 𝜃 = mr𝜔2. When we apply the equilibrium 
requirement in the y-direction, T cos 𝜃 − mg = 0, we can fi nd the un-
knowns T and 𝜃. But if the reference axes are attached to the particle, 
the particle will appear to be in equilibrium relative to these axes. 
 Accordingly, the inertia force −ma must be added, which amounts to 
visualizing the application of mr𝜔2 in the direction opposite to the 
 acceleration, as shown in part c of the fi gure. With this pseudo free-
body diagram, a zero force summation in the n-direction gives T sin 𝜃 − 
mr𝜔2 = 0 which, of course, gives us the same result as before.

We may conclude that no advantage results from this alternative 
formulation. The authors recommend against using it since it intro-
duces no simplifi cation and adds a nonexistent force to the diagram. 
In the case of a particle moving in a circular path, this hypothetical 
inertia force is known as the centrifugal force since it is directed away 
from the center and is opposite to the direction of the acceleration. You 
are urged to recognize that there is no actual centrifugal force acting 
on the particle. The only actual force which may properly be called 
centrifugal is the horizontal component of the tension T exerted by the 
particle on the cord.

Constant-Velocity, Nonrotating Systems
In discussing particle motion relative to moving reference systems, we should note 
the special case where the reference system has a  constant velocity and no rotation. 
If the x-y-z axes of Fig. 3 ∕25 have a constant velocity, then aB = 0 and the accelera-
tion of the particle is aA = arel. Therefore, we may write Eq. 3 ∕50 as

 ΣF = marel (3∕51)

which tells us that Newton’s second law holds for measurements made in a system 
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114 CHAPTER 3  Kinetics of Particles

moving with a constant velocity. Such a system is known as an inertial system or 
as a Newtonian frame of reference. Observers in the moving system and in the 
fi xed system will also agree on the designation of the resultant force acting on the 
particle from their identical free-body diagrams, provided they avoid the use of any 
so-called “inertia forces.”

We will now examine the parallel question concerning the validity 
of the work-energy equation and the impulse-momentum equation 
 relative to a constant-velocity, nonrotating system. Again, we take the 
x-y-z axes of Fig. 3 ∕25 to be moving with a constant velocity vB = ṙB

relative to the fi xed axes X-Y-Z. The path of the particle A relative to 
x-y-z is governed by rrel and is represented schematically in Fig. 3 ∕28. 
The work done by ΣF relative to x-y-z is dUrel = ΣF∙drrel. But ΣF = maA = 
marel since aB = 0. Also arel∙drrel = vrel∙dvrel for the same reason that 
at ds = v dv in Art. 2 ∕5 on curvilinear motion. Thus, we have

dUrel = marel∙drrel = mvrel dvrel = d(1
2 mvrel 

2)

We define the kinetic energy relative to x-y-z as Trel = 1
2 mvrel 

2 so 
that we now have

 dUrel = dTrel  or  Urel = ΔTrel (3∕52)

which shows that the work-energy equation holds for measurements made relative 
to a constant-velocity, nonrotating system.

Relative to x-y-z, the impulse on the particle during time dt is ΣF dt = maA dt = 
marel dt. But marel dt = m dvrel = d(mvrel) so

ΣF dt = d(mvrel)

We defi ne the linear momentum of the particle relative to x-y-z as Grel = mvrel, which 
gives us ΣF dt = dGrel. Dividing by dt and integrating give

 ΣF = Ġrel  and  ∫ ΣF dt = ΔGrel (3∕53)

Thus, the impulse-momentum equations for a fi xed reference system also hold for 
measurements made relative to a constant-velocity, nonrotating system.

Finally, we defi ne the relative angular momentum of the particle about a point 
in x-y-z, such as the origin B, as the moment of the  relative linear momentum. 
Thus, (HB)rel = rrel × Grel. The time derivative gives (ḢB)rel = ṙrel × Grel + rrel × Ġrel.
The fi rst term is nothing more than vrel × mvrel = 0, and the second term becomes 
rrel × ΣF = ΣMB, the sum of the moments about B of all forces on m. Thus, we have

ΣMB = (ḢB)rel (3∕54)

which shows that the moment-angular momentum relation holds with respect to a 
constant-velocity, nonrotating system.

Although the work-energy and impulse-momentum equations hold relative to 
a system translating with a constant velocity, the individual expressions for work, 
kinetic energy, and momentum differ between the fi xed and the moving systems. 

UrUU el = ΔTrTT el dUrUU el = dTrTT el

∫ ΣF dt = ΔGrel ΣF = Ġrel

ΣMBM = (ḢBH )rel 

vrel

rrel

aA = arel

drrel

z

y

m
Path relative

to x-y-z

x

Z

Y
O B

X

ΣF

FIGURE 3/28
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Thus,

 (dU = ΣF∙drA) ≠ (dUrel = ΣF∙drrel)

 (T =
1
2 mvA 

2) ≠ (Trel =
1
2 mvrel 

2)

 (G = mvA) ≠ (Grel = mvrel)

Equations 3 ∕51 through 3 ∕54 are formal proof of the validity of the Newtonian 
equations of kinetics in any constant-velocity, nonrotating system. We might have 
surmised these conclusions from the fact that ΣF = ma depends on acceleration 
and not velocity. We are also ready to conclude that there is no experiment which 
can be conducted in and relative to a constant-velocity, nonrotating system (New-
tonian frame of reference) which discloses its absolute velocity. Any mechanical 
experiment will achieve the same results in any Newtonian system.

Relative motion is a critical issue during aircraft-carrier landings.
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116 CHAPTER 3  Kinetics of Particles

SAMPLE PROBLEM 3/32

A simple pendulum of mass m and length r is mounted on the fl atcar, 
which has a constant horizontal acceleration a0 as shown. If the pen-
dulum is released from rest relative to the fl atcar at the position 𝜃 = 0, 
determine the expression for the tension T in the supporting light rod 
for any value of 𝜃. Also fi nd T for 𝜃 = 𝜋 ∕2 and 𝜃 = 𝜋.

Solution We attach our moving x-y coordinate system to the trans-
lating car with origin at O for convenience. Relative to this system, 
n- and t-coordinates are the natural ones to use since the motion is 
circular within x-y. The acceleration of m is given by the relative- 
acceleration equation

a = a0 + arel

where arel is the acceleration which would be measured by an observer 
riding with the car. He would measure an n-component equal to r𝜃2 and 
a t-component equal to r𝜃. The three components of the absolute accel-
eration of m are shown in the separate view.
 First, we apply Newton’s second law to the t-direction and get

[ΣFt = mat]  mg cos 𝜃 = m(r𝜃 − a0 sin 𝜃)  1

  r𝜃 = g cos 𝜃 + a0 sin 𝜃
Integrating to obtain 𝜃 as a function of 𝜃 yields

 [𝜃 d𝜃 = 𝜃 d𝜃]  ∫𝜃

0
 𝜃 d𝜃 = ∫𝜃

0
 

1
r
 ( g cos 𝜃 + a0 sin 𝜃) d𝜃 2

  
𝜃2

2
=

1
r
 [g sin 𝜃 + a0(1 − cos 𝜃)]

We now apply Newton’s second law to the n-direction, noting that the 
n-component of the absolute acceleration is r𝜃2 − a0 cos 𝜃.

[ΣFn = man]   T − mg sin 𝜃 = m(r𝜃2 − a0 cos 𝜃)

 = m[2g sin 𝜃 + 2a0(1 − cos 𝜃) − a0 cos 𝜃]

 T = m[3g sin 𝜃 + a0(2 − 3 cos 𝜃)] Ans.

For 𝜃 = 𝜋 ∕2 and 𝜃 = 𝜋, we have

  T𝜋∕2 = m[3g(1) + a0 (2 − 0)] = m(3g + 2a0) Ans.

  T𝜋 = m[3g(0) + a0 (2 − 3[−1])] = 5ma0 Ans.

O

r
m

a0

𝜃

y

O x

a0

t

T

mg

Free-body
diagram

Acceleration
components

n r𝜃2

r𝜃

𝜃

𝜃

⋅

⋅⋅

HELPFUL HINTS
1  We choose the t-direction fi rst since the 

n-direction equation, which contains 
the unknown T, will involve 𝜃2, which, 
in turn, is obtained from an integra-
tion of 𝜃.

2  Be sure to recognize that 𝜃 d𝜃 = 𝜃 d𝜃 
may be obtained from v dv = at ds by 
dividing by r2.
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SAMPLE PROBLEM 3 /33

The fl atcar moves with a constant speed v0 and carries a winch which 
produces a constant tension P in the cable attached to the small car-
riage. The carriage has a mass m and rolls freely on the horizontal sur-
face starting from rest relative to the fl atcar at x = 0, at which instant 
X = x0 = b. Apply the work-energy equation to the carriage, fi rst, as 
an observer moving with the frame of reference of the car and, sec-
ond, as an observer on the ground. Show the compatibility of the two 
 expressions.

Solution To the observer on the fl atcar, the work done by P is

Urel = ∫x

0
 P dx = Px  for constant P 1

The change in kinetic energy relative to the car is

ΔTrel =
1
2 m(ẋ2 − 0)

The work-energy equation for the moving observer becomes

[Urel = ΔTrel] Px =
1
2 mẋ2

To the observer on the ground, the work done by P is

U = ∫X

b
 P dX = P(X − b)

The change in kinetic energy for the ground measurement is

ΔT =
1
2 m(Ẋ 2 − v0 

2) 2

The work-energy equation for the fi xed observer gives

[U = ΔT] P(X − b) =
1
2 m(Ẋ 2 − v0 

2)

To reconcile this equation with that for the moving observer, we 
can make the following substitutions:

X = x0 + x,  Ẋ = v0 + ẋ,  Ẍ = ẍ

Thus,

 P(X − b) = Px + P(x0 − b) = Px + mẍ (x0 − b)

  = Px + mẍ v0t = Px + mv0 ẋ 3

and

Ẋ 

2 − v0 

2 = (v0 

2 + ẋ2 + 2v0 ẋ − v0 

2) = ẋ2 + 2v0 ẋ

The work-energy equation for the fi xed observer now becomes

Px + mv0 ẋ =
1
2 mẋ2 + mv0 ẋ

which is merely Px = 1
2 mẋ2, as concluded by the moving observer. We 

see, therefore, that the difference between the two work-energy expres-
sions is

U − Urel = T − Trel = mv0 ẋ

v0

m
P

x0 x
X

x0 x

x = 0

X

b

HELPFUL HINTS
1  The only coordinate which the moving 

observer can measure is x.

2  To the ground observer, the initial  velocity 
of the carriage is v0, so its initial kinetic 
energy is 12 mv0 

2.

3  The symbol t stands for the time of mo-
tion from x = 0 to x = x. The displace-
ment x0 − b of the carriage is its velocity 
v0 times the time t or x0 − b = v0t. Also, 
since the constant acceleration times the 
time equals the velocity change, ẍt = ẋ.
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118 CHAPTER 3  Kinetics of Particles

3/15  Chapter Review
In Chapter 3 we have developed the three basic meth-
ods of solution to problems in particle kinetics. This ex-
perience is central to the study of dynamics and lays the 
foundation for the subsequent study of rigid-body and 
nonrigid-body dynamics. These three methods are sum-
marized as follows:

1. Direct Application of Newton’s Second Law
First, we applied Newton’s second law ΣF   =   ma to de-
termine the instantaneous relation between forces and 
the acceleration they produce. With the background of 
Chapter 2 for identifying the kind of motion and with 
the aid of our familiar free-body diagram to be certain 
that all forces are accounted for, we were able to solve a 
large variety of problems using x-y, n-t, and r-𝜃 coordin-
ates for plane-motion problems and x-y-z, r-𝜃-z, and 
R-𝜃-𝜙 coordinates for space problems.

2. Work-Energy Equations
Next, we integrated the basic equation of motion ΣF   =   ma with respect to displacement and derived the 
scalar equations for work and energy. These equations 
enable us to relate the initial and fi nal velocities to the 
work done during an interval by forces external to our 
defi ned system. We expanded this approach to include 
potential energy, both elastic and gravitational. With 
these tools we discovered that the energy approach is 
especially valuable for conservative systems, that is, 
systems wherein the loss of energy due to friction or 
other forms of dissipation is negligible.

3. Impulse-Momentum Equations
Finally, we rewrote Newton’s second law in the form of 
force equals time rate of change of linear momentum and 
moment equals time rate of change of angular mo-
mentum. Then we integrated these relations with re-
spect to time and derived the impulse and momentum 
equations. These equations were then applied to motion 
intervals where the forces were functions of time. We also 
investigated the interactions between particles under 
conditions where the linear momentum is conserved and 
where the angular momentum is conserved.

In the fi nal section of Chapter 3, we employed these 
three basic methods in specifi c application areas as 
 follows:

 1.  We noted that the impulse-momentum method is 
convenient in developing the relations governing 
particle impacts.

 2.  We observed that the direct application of  Newton’s 
second law enables us to determine the trajec-
tory properties of a particle under central-force 
 attraction.

 3.  Finally, we saw that all three basic methods may be 
applied to particle motion relative to a translating 
frame of reference.

Successful solution of problems in particle kinetics 
depends on knowledge of the prerequisite particle kin-
ematics. Furthermore, the principles of particle kinetics 
are required to analyze particle systems and rigid bodies, 
which are covered in the remainder of Dynamics.
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Kinetics of 
Systems of 
Particles

4/1  Introduction
In the previous two chapters, we have applied the principles of dynamics to the 
motion of a particle. Although we focused primarily on the kinetics of a single par-
ticle in Chapter 3, we mentioned the motion of two particles, considered together as 
a system, when we discussed work-energy and impulse-momentum.

Our next major step in the development of dynamics is to extend these princi-
ples, which we applied to a single particle, to describe the motion of a general 
system of particles. This extension will unify the remaining topics of dynamics and 
enable us to treat the motion of both rigid bodies and nonrigid systems.

Recall that a rigid body is a solid system of particles wherein the distances 
between particles remain essentially unchanged. The overall motions found with 
machines, land and air vehicles, rockets and spacecraft, and many moving struc-
tures provide examples of rigid-body problems. On the other hand, we may need to 
study the time-dependent changes in the shape of a nonrigid, but solid, body due 
to elastic or inelastic deformations. Another example of a nonrigid body is a de-
fi ned mass of liquid or gaseous particles fl owing at a specifi ed rate. Examples are 
the air and fuel fl owing through the turbine of an aircraft engine, the burned 
gases issuing from the nozzle of a rocket motor, or the water passing through a 
rotary pump.

CHAPTER OUTLINE

4/1 Introduction
4/2 Generalized Newton’s Second Law
4/3 Work-Energy
4/4 Impulse-Momentum
4/5 Conservation of Energy and Momentum
4/6 Steady Mass Flow
4/7 Variable Mass
4/8 Chapter Review
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The forces of interaction between the rotating 
blades of this jet engine and the air which passes 
over them is a  subject which is introduced in this 
chapter.
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120 CHAPTER 4  Kinetics of Systems of Particles

Although we can extend the equations for single-particle motion to a general 
system of particles without much diffi culty, it is diffi cult to understand the gener-
ality and signifi cance of these extended principles without considerable problem 
experience. For this reason, you should frequently review the general results ob-
tained in the following articles during the remainder of your study of dynamics. In 
this way, you will understand how these broader principles unify dynamics.

mi

F1

f1

F2

f2

F3

f3

mi

𝛒i

ri

O

G

System boundary

r–

FIGURE 4/1

*It was shown in Art. 3 ∕14 that any nonrotating and nonaccelerating set of axes constitutes a 
Newtonian reference system in which the principles of Newtonian mechanics are valid.

Key Concepts  

4/2  Generalized 
Newton’s Second Law
We now extend Newton’s second law of motion to 
cover a general mass system which we model by 
considering n mass particles bounded by a closed 
surface in space, Fig. 4 ∕1. This bounding enve-
lope, for example, may be the exterior surface of 
a given rigid body, the bounding surface of an 
arbitrary portion of the body, the exterior sur-
face of a rocket containing both rigid and fl owing 
particles, or a particular volume of fl uid parti-
cles. In each case, the system to be considered is 
the mass within the envelope, and that mass 
must be clearly defi ned and isolated.

Figure 4 ∕1 shows a representative particle of 
mass mi of the system isolated with forces F1, F2, 

F3, . . . acting on mi from sources external to the 
envelope, and forces f1, f2, f3, . . . acting on mi from 
sources internal to the system boundary. The ex-
ternal forces are due to contact with external bod-
ies or to external gravitational, electric, or mag-
netic effects. The internal forces are forces of 
reaction with other mass particles within the 
boundary. The particle of mass mi is located by its 
position vector ri measured from the nonacceler-
ating origin O of a Newtonian set of reference 
axes.* The center of mass G of the isolated system 
of particles is located by the position vector r 
which, from the defi nition of the mass center as 
covered in statics, is given by

mr = Σmiri

where the total system mass is m = Σmi. The sum-
mation sign Σ represents the summation Σn

i=1 over 
all n particles.

Newton’s second law, Eq. 3 ∕3, when applied to 
mi gives

F1 + F2 + F3 + ∙ ∙ ∙ + f1 + f2 + f3 + ∙ ∙ ∙ = mir̈i

where r̈i is the acceleration of mi. A similar equa-
tion may be written for each of the particles of the 
system. If these equations written for all particles 
of the system are added together, the result is

ΣF + Σf = Σmir̈i 

The term ΣF then becomes the vector sum of 
all forces acting on all particles of the isolated sys-
tem from sources external to the system, and Σf 
becomes the vector sum of all forces on all parti-
cles produced by the internal actions and reac-
tions between particles. This last sum is identi-
cally zero since all internal forces occur in pairs of 
equal and opposite actions and reactions. By dif-
ferentiating the equation defi ning r twice with 
time, we have mr̈ = Σmir̈i where m has a zero time 

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Article  4/3 Work-Energy 121

4/3  Work-Energy
In Art. 3 ∕6 we developed the work-energy relation for a single particle, and we noted 
that it applies to a system of two joined particles. Now consider the general system of 
Fig. 4 ∕1, where the work-energy relation for the representative particle of mass mi

is (U1-2)i = ΔTi. Here (U1-2)i is the work done on mi during an interval of motion by all 
forces F1 + F2 + F3 + ∙ ∙ ∙  applied from sources external to the system and by all forces 
f1 + f2 + f3 + ∙ ∙ ∙  applied from sources internal to the system. The kinetic energy of 

mi is Ti = 12  mivi 

2, where vi is the magnitude of the particle velocity vi = ṙi.

Work-Energy Relation
For the entire system, the sum of the work-energy equations written for all parti-
cles is Σ(U1-2)i = ΣΔTi, which may be represented by the same expressions as 
Eqs. 3 ∕15 and 3 ∕15a of Art. 3 ∕6, namely,

 U1-2 = ΔT  or  T1 + U1-2 = T2  (4 ∕2)

where U1-2 = Σ(U1-2)i, the work done by all forces, external and internal, on all parti-
cles, and ΔT is the change in the total kinetic energy T = ΣTi of the system.

For a rigid body or a system of rigid bodies joined by ideal frictionless connec-
tions, no net work is done by the internal interacting forces or moments in the 
connections. We see that the work done by all pairs of internal forces, labeled here 

U1-2 = ΔT or T1 + U1-2 = T2TT  

*If m is a function of time, a more complex situation develops; this situation is discussed in Art. 4∕7 
on variable mass.

 acceleration need not represent the acceleration 
of any particular particle. Note also that Eq. 4 ∕1 
holds for each instant of time and is therefore an 
instantaneous relationship. Equation 4 ∕1 for the 
mass system had to be proved, as it cannot be in-
ferred directly from Eq. 3 ∕3 for a single particle.

Equation 4 ∕1 may be expressed in component 
form using x-y-z coordinates or whatever coordi-
nate system is most convenient for the problem at 
hand. Thus,

 ΣFx = max  ΣFy = may  ΣFz = maz (4 ∕1a)

Although Eq. 4 ∕1, as a vector equation, re-
quires that the acceleration vector a have the 
same direction as the resultant external force ΣF, 
it does not follow that ΣF necessarily passes 
through G. In general, in fact, ΣF does not pass 
through G, as will be shown later.

derivative as long as mass is not entering or leav-
ing the system.* Substitution into the summation 
of the equations of motion gives

ΣF = mr̈   or  F = ma  (4 ∕1)

where a is the acceleration r̈ of the center of mass 
of the system.

Equation 4 ∕1 is the generalized Newton’s sec-
ond law of motion for a mass system and is called 
the equation of motion of m. The equation states 
that the resultant of the external forces on any 
system of masses equals the total mass of the sys-
tem times the acceleration of the center of mass. 
This law expresses the so-called principle of mo-
tion of the mass center.

Observe that a is the acceleration of the 
mathematical point which represents instanta-
neously the position of the mass center for the 
given n particles. For a nonrigid body, this 

ΣF = mr̈   or  F = ma  
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122 CHAPTER 4  Kinetics of Systems of Particles

as fi and −fi, at a typical connection, Fig. 4 ∕2, in the system is zero 
since their points of application have identical displacement compo-
nents while the forces are equal but opposite. For this situation U1-2

becomes the work done on the system by the external forces only.
For a nonrigid mechanical system which includes elastic mem-

bers capable of storing energy, a part of the work done by the external 
forces goes into changing the internal elastic potential energy Ve. 
Also, if the work done by the gravity forces is excluded from the work 
term and is accounted for instead by the changes in gravitational po-

tential energy Vg, then we may equate the work U′1-2 done on the system during an 
interval of motion to the change ΔE in the total mechanical energy of the system. 
Thus, U′1-2 = ΔE or

U′1-2 = ΔT + ΔV  (4 ∕3)

or

T1 + V1 + U′1-2 = T2 + V2 (4 ∕3a)

which are the same as Eqs. 3 ∕21 and 3 ∕21a. Here, as in Chapter 3, V = Vg + Ve rep-
resents the total potential energy.

Kinetic Energy Expression
We now examine the expression T = Σ  

1
2 mivi 

2 for the kinetic energy of the mass sys-
tem in more detail. By our principle of relative motion discussed in Art. 2 ∕8, we may 
write the velocity of the representative particle as

vi = v + 𝛒i˙
where v is the velocity of the mass center G and 𝛒i˙  is the velocity of mi with respect 
to a translating reference frame moving with the mass center G. We recall the iden-
tity vi 

2 = vi ∙vi and write the kinetic energy of the system as

 T = Σ1
2 mivi ∙vi = Σ1

2 mi(v + 𝛒 i) ∙ (v + 𝛒 i)

 = Σ1
2 miv 

2 + Σ1
2 mi� 𝛒i �2 + Σmiv ∙ 𝛒i

Because 𝛒i is measured from the mass center, Σmi𝛒i = 0 and the third term

is v∙Σmi �̇�i = v ∙
d
dt

 Σ(mi𝛒i) = 0. Also Σ1
2  miv 

2 = 1
2 v 

2 Σmi = 1
2 mv 

2. Therefore, the

total kinetic energy becomes

 T =
1
2 mv 

2 + Σ1
2 mi�𝛒i �2 (4 ∕4)

This equation expresses the fact that the total kinetic energy of a mass system 
equals the kinetic energy of mass-center translation of the system as a whole plus 
the kinetic energy due to motion of all particles relative to the mass center.

4/4  Impulse-Momentum
We now develop the concepts of momentum and impulse as applied to a system of 
particles.

U′1UU -2 = ΔT + ΔV  

T1 + V1VV + U′1UU -2 = T2TT + V2VV  

T =
1
2 mv2 + Σ1

2 mi�𝛒i �2 

fi

−fi

FIGURE 4/2
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Linear Momentum
From our defi nition in Art. 3 ∕8, the linear momentum of the representative particle 
of the system depicted in Fig. 4 ∕1 is Gi = mivi where the velocity of mi is vi = ṙi.

The linear momentum of the system is defi ned as the vector sum of the linear 
momenta of all of its particles, or G = Σmivi. By substituting the relative-velocity 
relation vi = v +𝛒i and noting again that Σmi𝛒i = m𝛒 = 0, we obtain

 G = Σmi(v + 𝛒 i) = Σmi v +
d
dt

Σmi 

 
𝛒i

 =  v Σmi +
d
dt

 (0)

or

 G = mv (4 ∕5)

Thus, the linear momentum of any system of constant mass is the product of the 
mass and the velocity of its center of mass.

The time derivative of G is mv̇ = ma, which by Eq. 4 ∕1 is the resultant external 
force acting on the system. Thus, we have

 ΣF = G  ̇   (4 ∕6)

which has the same form as Eq. 3 ∕25 for a single particle. Equation 4 ∕6 states that 
the resultant of the external forces on any mass system equals the time rate of 
change of the linear momentum of the system. It is an alternative form of the gen-
eralized second law of motion, Eq. 4 ∕1. As was noted at the end of the last article, ΣF, 
in general, does not pass through the mass center G. In deriving Eq. 4 ∕6, we differ-
entiated with respect to time and assumed that the total mass is constant. Thus, 
the equation does not apply to systems whose mass changes with time.

Angular Momentum
We now determine the angular momentum of our general mass system about the 
fi xed point O, about the mass center G, and about an arbitrary point P, shown in 
Fig. 4 ∕3, which may have an acceleration aP = r̈P.

G = mv 

ΣF = Ġ  

O (fixed)
P (arbitrary)rP

ri

f1

f2

f3

F3
F2

F1

mi

mi

r–

–

G System
boundary

𝛒i

𝛒í

𝛒

FIGURE 4/3
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124 CHAPTER 4  Kinetics of Systems of Particles

About a Fixed Point O. The angular momentum of the mass system about 
the point O, fi xed in the Newtonian reference system, is defi ned as the vector 
sum of the moments of the linear momenta about O of all particles of the system 
and is

HO = Σ (ri × mivi)

The time derivative of the vector product is ḢO = Σ (ṙi × mivi) + Σ (ri × miv̇i). The 
fi rst summation vanishes since the cross product of two parallel vectors ṙi and mivi is 
zero. The second summation is Σ(ri × miai) = Σ(ri × Fi), which is the vector sum of the 
moments about O of all forces acting on all particles of the system. This moment 
sum ΣMO represents only the moments of forces external to the system, since the 
internal forces cancel one another and their moments add up to zero. Thus, the 
moment sum is

 ΣMO = ḢO (4 ∕7)

which has the same form as Eq. 3 ∕31 for a single particle.
Equation 4 ∕7 states that the resultant vector moment about any fi xed point 

of all external forces on any system of mass equals the time rate of change of 
angular momentum of the system about the fi xed point. As in the linear-
momentum case, Eq. 4 ∕7 does not apply if the total mass of the system is changing 
with time.

About the Mass Center G. The angular momentum of the mass system about 
the mass center G is the sum of the moments of the linear momenta about G of all 
particles and is

 HG = Σ𝛒i × mi ṙi (4 ∕8)

We may write the absolute velocity ṙi as (ṙ + 𝛒i) so that HG becomes

HG = Σ𝛒i × mi(ṙ + 𝛒 i) = Σ𝛒i × miṙ +Σ𝛒i × mi𝛒i

The fi rst term on the right side of this equation may be rewritten as −ṙ ×Σmi 𝛒i, 
which is zero because Σmi𝛒i = 0 by defi nition of the mass center. Thus, we have

 HG = Σ𝛒i × mi𝛒i (4 ∕8a)

The expression of Eq. 4 ∕8 is called the absolute angular momentum because the 
absolute velocity ṙi is used. The expression of Eq. 4 ∕8a is called the relative angular 
momentum because the relative velocity 𝛒i is used. With the mass center G as a refer-
ence, the absolute and relative angular momenta are seen to be identical. We will see 
that this identity does not hold for an arbitrary reference point P; there is no distinc-
tion for a fi xed reference point O.

Differentiating Eq. 4 ∕8 with respect to time gives

ḢG = Σ𝛒i × mi(ṙ + 𝛒 i) +Σ𝛒i × mir̈i

The fi rst summation is expanded as Σ𝛒i × mi ṙ +Σ𝛒i̇ × mi𝛒. The fi rst term may be

rewritten as −ṙ ×Σmi𝛒i = −ṙ × d
dt
Σmi𝛒i, which is zero from the defi nition of the

mass center. The second term is zero because the cross product of parallel vectors 
is zero. With Fi representing the sum of all external forces acting on mi and fi the 
sum of all internal forces acting on mi, the second summation by Newton’s second 
law becomes Σ𝛒i × (Fi + fi) = Σ𝛒i × Fi = ΣMG, the sum of all external moments about 

ΣMO = ḢO 
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point G. Recall that the sum of all internal moments Σ𝛒i × fi is zero. Thus, we are 
left with

 ΣMG = ḢG (4 ∕9)

where we may use either the absolute or the relative angular momentum.
Equations 4 ∕7 and 4 ∕9 are among the most powerful of the governing equations 

in dynamics and apply to any defi ned system of constant mass—rigid or nonrigid.

About an Arbitrary Point P. The angular momentum about an arbitrary 
point P (which may have an acceleration r̈P) will now be expressed with the nota-
tion of Fig. 4 ∕3. Thus,

HP = Σ𝛒′i × miṙi = Σ (𝛒 + 𝛒i) × miṙi

The fi rst term may be written as 𝛒 ×Σmi ṙi = 𝛒 ×Σmivi = 𝛒 × mv. The second term 
is Σ𝞀i × miṙi = HG. Thus, rearranging gives

 HP = HG + 𝛒 × mv (4 ∕10)

Equation 4 ∕10 states that the absolute angular momentum about any 
point P equals the angular momentum about G plus the moment about P of 
the linear momentum mv of the system considered concentrated at G.

We now make use of the principle of moments developed in our study 
of statics where we represented a force system by a resultant force 
through any point, such as G, and a corresponding couple. Figure 4 ∕4 
represents the resultants of the external forces acting on the system ex-
pressed in terms of the resultant force ΣF through G and the correspond-
ing couple ΣMG. We see that the sum of the moments about P of all forces 
external to the system must equal the moment of their resultants. There-
fore, we may write

ΣMP = ΣMG + 𝛒 ×ΣF

which, by Eqs. 4 ∕9 and 4 ∕6, becomes

 ΣMP = ḢG + 𝛒 × ma (4 ∕11)

Equation 4 ∕11 enables us to write the moment equation about any convenient mo-
ment center P and is easily visualized with the aid of Fig. 4 ∕4. This equation forms 
a rigorous basis for much of our treatment of planar rigid-body kinetics in Chapter 6.

We may also develop similar momentum relationships by using the momentum 
relative to P. Thus, from Fig. 4 ∕3

(HP)rel = Σ𝛒′i × mi𝛒′˙i

where 𝛒′i is the velocity of mi relative to P. With the substitution 𝛒′i = 𝛒 + 𝛒i and 
𝛒′i = �̇� + �̇�i we may write

(HP)rel = Σ𝛒 × mi �̇� +Σ𝛒 × mi𝛒i +Σ𝛒i × mi�̇� +Σ𝛒i × mi𝛒i

The fi rst summation is 𝛒 × mvrel. The second summation is 𝛒 × d
dt
Σmi 𝛒i and the

third summation is −�̇� ×Σmi 𝛒i where both are zero by defi nition of the mass center. 
The fourth summation is (HG)rel. Rearranging gives us

 (HP)rel = (HG)rel + 𝛒 × mvrel (4 ∕12)

ΣMG = ḢG 

HPH = HG + 𝛒 × mv 

ΣMPM = ḢG + 𝛒 × ma 

G

P

ΣF = ma–

–

ΣMG = HG
⋅

𝛒

FIGURE 4/4
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126 CHAPTER 4  Kinetics of Systems of Particles

where (HG)rel is the same as HG (see Eqs. 4 ∕8 and 4 ∕8a). Note the similarity of 
Eqs. 4 ∕12 and 4 ∕10.

The moment equation about P may now be expressed in terms of the angular 
momentum relative to P. We differentiate the defi nition (HP)rel = Σ𝛒′i × mi𝛒′i  with 
time and make the substitution r̈i = r̈P + 𝛒 ′i  to obtain

(Ḣp)rel = Σ𝛒′i × mi𝛒′i + Σ𝛒′i × mir̈i − Σ𝛒′i × mir̈P

The fi rst summation is identically zero, and the second summation is the sum ΣMP

of the moments of all external forces about P. The third summation becomes 
Σ𝛒′i × miaP = −aP × Σmi𝛒′i = −aP × m𝛒 = 𝛒 × maP. Substituting and rearranging 
terms give

ΣMP = (ḢP)rel + 𝛒 × maP (4 ∕13)

The form of Eq. 4 ∕13 is convenient when a point P whose acceleration is known is 
used as a moment center. The equation reduces to the simpler form

ΣMP = (ḢP)rel if  

1. aP = 0 (equivalent to Eq. 4∕7)

2. 𝛒 = 0 (equivalent to Eq. 4∕9)

3. 𝛒 and aP are parallel aP directed
 toward or away from G

4/5  Conservation of Energy 
and Momentum
Under certain common conditions, there is no net change in the total mechanical 
energy of a system during an interval of motion. Under other conditions, there is no 
net change in the momentum of a system. These conditions are treated separately 
as follows.

Conservation of Energy
A mass system is said to be conservative if it does not lose energy by virtue of inter-
nal friction forces which do negative work or by virtue of inelastic members which 
dissipate energy upon cycling. If no work is done on a conservative system during 
an interval of motion by external forces (other than gravity or other potential 
forces), then none of the energy of the system is lost. For this case, U′1-2 = 0 and we 
may write Eq. 4 ∕3 as

ΔT + ΔV = 0 (4 ∕14)

or

T1 + V1 = T2 + V2 (4 ∕14a)

which expresses the law of conservation of dynamical energy. The total energy E =
T + V is a constant, so that E1 = E2. This law holds only in the ideal case where in-
ternal kinetic friction is suffi ciently small to be neglected.

ΣMPM = (ḢPH )rel + 𝛒 × maPa  






(
)

ΔT + ΔV = 0 

T1 + V1VV = T2TT + V2VV  
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Conservation of Momentum
If, for a certain interval of time, the resultant external force ΣF acting on a conserva-
tive or nonconservative mass system is zero, Eq. 4 ∕6 requires that Ġ = 0, so that 
during this interval

 G1 = G2 (4 ∕15)

which expresses the principle of conservation of linear momentum. Thus, in the 
absence of an external impulse, the linear momentum of a system remains un-
changed.

Similarly, if the resultant moment about a fi xed point O or about the mass 
center G of all external forces on any mass system is zero, Eq. 4 ∕7 or 4 ∕9 requires, 
respectively, that

 (HO)1 = (HO)2   or  (HG)1 = (HG)2  (4 ∕16)

These relations express the principle of conservation of angular momentum for 
a general mass system in the absence of an angular impulse. Thus, if there is no 
angular impulse about a fi xed point (or about the mass center), the angular momen-
tum of the system about the fi xed point (or about the mass center) remains un-
changed. Either equation may hold without the other.

We proved in Art. 3 ∕14 that the basic laws of Newtonian mechanics hold for 
measurements made relative to a set of axes which translate with a constant veloc-
ity. Thus, Eqs. 4 ∕1 through 4 ∕16 are valid provided all quantities are expressed 
relative to the translating axes.

Equations 4 ∕1 through 4 ∕16 are among the most important of the basic de-
rived laws of mechanics. In this chapter we have derived these laws for the most 
general system of constant mass to establish the generality of these laws. Common 
applications of these laws are specifi c mass systems such as rigid and nonrigid 
solids and certain fl uid systems, which are discussed in the following articles. Study 
these laws carefully and compare them with their more restricted forms encoun-
tered earlier in Chapter 3.

G1 = G2 

(HO)1 = (HO)2 or (HG)1 = (HG)2  

The principles of particle-system kinetics form the foundation for 
the study of the forces associated with the water-spraying equipment 
of this fi refi ghting boat.

ag
e 

fo
to

st
oc

k∕
ag

e 
fo

to
st

oc
k∕

S
u

pe
rS

to
ck

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


128 CHAPTER 4  Kinetics of Systems of Particles

SAMPLE PROBLEM 4/1

The system of four particles has the indicated particle masses, 
positions, velocities, and external forces. Determine r, ṙ, r̈, T, G, 
HO, ḢO, HG, and ḢG.

Solution The position of the mass center of the system is

 r =
Σmiri

Σmi
=

m(2di − 2dj) + 2m(dk) + 3m(−2di) + 4m(dj)
m + 2m + 3m + 4m

 1

      = d(−0.4i + 0.2j + 0.2k)  Ans.

 r 

.
=

Σmiṙi

Σmi
=  

m(−vi + vj) + 2m(vj) + 3m(vk) + 4m(vi)
10m

     = v(0.3i + 0.3j + 0.3k)  Ans.

r̈ =
ΣF
Σmi

=
Fi + Fj

10m
=

F
10m

 (i + j)  Ans.

T = Σ 12 mivi
2 =

1
2

 [ m(√2v)2 + 2mv2 + 3mv2 + 4mv2 ] =
11
2

mv2 Ans.

G = (Σmi)r
.

= 10m(v)(0.3i + 0.3j + 0.3k) = mv(3i + 3j + 3k)  Ans.

 HO = Σri × mi 

 r
.
i = 0 − 2mvdi + 3mv(2d)j − 4mvdk 2

 =  mvd(−2i + 6j − 4k)  Ans.

HO˙ = ΣMO = −2dFk + Fdj = Fd( j − 2k)  Ans.

For HG, we use Eq. 4 ∕10:

[HG = HO + 𝛒 × mv ] 3

 HG = mvd(−2i + 6j − 4k) − d(−0.4i + 0.2j + 0.2k) ×

 10mv(0.3i + 0.3j + 0.3k) = mvd(−2i + 4.2j − 2.2k)  Ans.

For ḢG, we could use Eq. 4 ∕9 or Eq. 4 ∕11 with P replaced by O. Using 
the latter, we have

[ḢG = ΣMO − 𝛒 × ma ]

  ḢG = Fd( j − 2k) − d(−0.4i + 0.2j + 0.2k) × 10m( F
10m) (i + j) 4

  =  Fd(0.2i + 0.8j −  1.4k)  Ans.

HELPFUL HINTS
1  All summations are from i = 1 to 4, and 

all are performed in order of the mass 
numbers in the given fi gure.

2  Because of the simple geometry, the cross 
products are performed by inspection.

3  Using Eq. 4 ∕10 with P replaced by O is 
more expedient than using Eq. 4 ∕8 or 
4 ∕8a. The m in Eq. 4 ∕10 is the total 
mass, which is 10m in this example. The 
quantity 𝛒 in Eq. 4 ∕10, with P replaced 
by O, is r.

4  We again recognize that 𝛒 = r here and 
that the mass of this system is 10m.

z
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O
F
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3
2
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HELPFUL HINTS
1  We note that the result depends only on 

the magnitude and direction of F and not 
on b, which locates the line of action of F.

Grel

O

⋅

⋅

⋅
𝜃

𝜃

𝜃

2  Although �̇� is initially zero, we need the 
expression for HO = HG in order to get 
ḢG. We observe also that �̈� is indepen-
dent of the motion of O.

F

y

x

rr

r

m m

m

120°

120°

b

O

Weld

SAMPLE PROBLEM 4/3

Consider the same conditions as for Sample Problem 4 ∕2, except that 
the spokes are freely hinged at O and so do not constitute a rigid system. 
Explain the difference between the two problems.

Solution The generalized Newton’s second law holds for any mass 
system, so that the acceleration a  of the mass center G is the same as 
with Sample Problem 4 ∕2, namely,

 a =
F

3m
 i Ans.

Although G coincides with O at the instant represented, the mo-
tion of the hinge O is not the same as the motion of G since O will not 
remain the center of mass as the angles between the spokes change.

Both ∑MG and  H  ̇ G have the same values for the two problems at 
the instant represented. However, the angular motions of the spokes in 
this problem are all different and are not easily determined. 1

HELPFUL HINT
1  This present system could be dismembered 

and the motion equations written for each 
of the parts, with the unknowns elimi-
nated one by one. Or a more sophisticated 
method using the equations of Lagrange 
could be employed. (See the fi rst author’s 
Dynamics, 2nd Edition, SI Version, 1975, 
for a discussion of this approach.)

F

y

x

rr

r

m m

m

120°

120°

b

O

Hinge

SAMPLE PROBLEM 4/2

Each of the three balls has a mass m and is welded to the rigid equian-
gular frame of negligible mass. The assembly rests on a smooth horizon-
tal surface. If a force F is suddenly applied to one bar as shown, deter-
mine (a) the acceleration of point O and (b) the angular acceleration �̈� 
of the frame.

Solution (a) Point O is the mass center of the system of the three 
balls, so that its acceleration is given by Eq. 4 ∕1.

[ΣF = ma ] Fi = 3ma  a = aO =
F

3m
 i 1  Ans.

(b) We determine �̈� from the moment principle, Eq. 4 ∕9. To fi nd HG we 
note that the velocity of each ball relative to the mass center O as mea-
sured in the nonrotating axes x-y is r𝜃, where 𝜃 is the common angular 
velocity of the spokes. The angular momentum of the system about O 
is the sum of the moments of the relative linear momenta as shown by 
Eq. 4 ∕8, so it is expressed by

 HO = HG = 3(mr𝜃)r = 3mr2𝜃

Equation 4 ∕9 now gives

[ΣMG = ḢG]  Fb =
d
dt

(3mr2 𝜃) = 3mr2 �̈� so �̈� =
Fb

3mr2 2  Ans.
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130 CHAPTER 4  Kinetics of Systems of Particles

HELPFUL HINTS
1  The velocity v of the shell at the top of 

its trajectory is, of course, the constant 
horizontal component of its initial veloc-
ity u, which becomes u(3 ∕5).

2  We note that the mass center of the 
three fragments while still in fl ight 
continues to follow the same trajectory 
which the shell would have followed if it 
had not exploded.

z

y

x

h

45°

4000 m
Q

O

3

4u 
=

 3
00

 m
/s

C

B
A

vB

vC

vA

P

SAMPLE PROBLEM 4/4

A shell with a mass of 20 kg is fi red from point O, with a velocity u = 
300 m ∕s in the vertical x-z plane at the inclination shown. When it 
reaches the top of its trajectory at P, it explodes into three fragments 
A, B, and C. Immediately after the explosion, fragment A is observed 
to rise vertically a distance of 500 m above P, and fragment B is seen 
to have a horizontal velocity vB and eventually lands at point Q. When 
recovered, the masses of the fragments A, B, and C are found to be 5, 
9, and 6 kg, respectively. Calculate the velocity which fragment C has 
immediately after the explosion. Neglect atmospheric resistance.

Solution From our knowledge of projectile motion, the time required 
for the shell to reach P and its vertical rise are

   t =  uz ∕g = 300(4∕5)∕9.81 = 24.5 s

 h =  
uz 

2

2g
=

[(300)(4∕5)]2

2(9.81)
= 2940 m

The velocity of A has the magnitude

vA = √2ghA = √2(9.81)(500) = 99.0 m∕s

With no z-component of velocity initially, fragment B requires 24.5 s 
to return to the ground. Thus, its horizontal velocity, which remains 
constant, is

vB = s∕t = 4000∕24.5 = 163.5 m∕s

Since the force of the explosion is internal to the system of the 
shell and its three fragments, the linear momentum of the system 
remains unchanged during the explosion. Thus,

[G1 = G2]    mv =  mAvA + mBvB + mCvC 1

       20(300)(3
5)i =  5(99.0k) + 9(163.5)(i cos 45° + j sin 45°) + 6vC

        6vC = 2560i − 1040j − 495k

       vC = 427i − 173.4j − 82.5k m∕s 2

       vC = √(427)2 + (173.4)2 + (82.5)2 = 468 m∕s       Ans.
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 SAMPLE PROBLEM 4/5

The 32.2-lb carriage A moves horizontally in its guide with a speed of 
4 ft ∕sec and carries two assemblies of balls and light rods which rotate 
about a shaft at O in the carriage. Each of the four balls weighs 3.22 lb. 
The assembly on the front face rotates counterclockwise at a speed of 
80 rev ∕min, and the assembly on the back side rotates clockwise at a 
speed of 100 rev ∕min. For the entire system, calculate (a) the kinetic 
energy T, (b) the magnitude G of the linear momentum, and (c) the 
magnitude HO of the angular momentum about point O.

Solution (a) Kinetic energy The velocities of the balls with respect 
to O are

[� �̇�
i
� = vrel = r�̇�]   (vrel)1,2 =

18
12

 
80(2𝜋)

60
= 12.57 ft∕sec

         (vrel)3,4 =
12
12

 
100(2𝜋)

60
= 10.47 ft∕sec

The kinetic energy of the system is given by Eq. 4 ∕4. The translational 
part is

1
2 mv 

2 =
1
2 (32.2

32.2
+ 4 

3.22
32.2)(42) = 11.20 ft-lb 1

The rotational part of the kinetic energy depends on the squares of the 
relative velocities and is

 Σ 12 mi �𝛒i �2 = 2 [
1
2

 
3.22
32.2

 (12.57)2 ](1,2)
+ 2 [

1
2

 
3.22
32.2

(10.47)2 ](3,4)
 2

  = 15.80 + 10.96 = 26.8 ft-lb

The total kinetic energy is

 T =
1
2 mv 

2 + Σ 12 mi� 𝛒i �2 = 11.20 + 26.8 = 38.0 ft-lb Ans.

(b) Linear momentum The linear momentum of the system by 
Eq. 4 ∕5 is the total mass times vO, the velocity of the center of mass. 
Thus,

[G = mv ] G = (32.2
32.2

+ 4 
3.22
32.2) (4) = 5.6 lb-sec 3  Ans.

(c) Angular momentum about O The angular momentum about O 
is due to the moments of the linear momenta of the balls. Taking coun-
terclockwise as positive, we have

 HO = Σ�ri × mivi �

 HO = [ 2(3.22
32.2) (18

12) (12.57) ](1,2)
− [ 2(3.22

32.2) (12
12) (10.47) ](3,4)

  4

 = 3.77 − 2.09 = 1.676 ft-lb-sec Ans.

HELPFUL HINTS
1  Note that the mass m is the total mass, 

carriage plus the four balls, and that v is 
the velocity of the mass center O, which is 
the carriage velocity.

2  Note that the direction of rotation, clock-
wise or counterclockwise, makes no differ-
ence in the calculation of kinetic energy, 
which depends on the square of the ve-
locity.

3  There is a temptation to overlook the 
contribution of the balls since their 
linear momenta relative to O in each 
pair are in opposite directions and cancel. 
However, each ball also has a velocity 
component v and hence a momentum 
component miv.

4  Contrary to the case of kinetic energy 
where the direction of rotation was im-
material, angular momentum is a vector 
quantity and the direction of rotation 
must be accounted for.

4 ft/sec
18ʺ

18ʺ

1

2

4

3

12ʺ

12ʺ

A
O

100 rev/min

80 rev/min
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4/6  Steady Mass Flow
The momentum relation developed in Art. 4 ∕4 for a general system of mass provides 
us with a direct means of analyzing the action of mass fl ow where a change of mo-
mentum occurs. The dynamics of mass fl ow is of great importance in the description 
of fl uid machinery of all types including turbines, pumps, nozzles, air-breathing jet 
engines, and rockets. The treatment of mass fl ow in this article is not intended to 
take the place of a study of fl uid mechanics, but merely to present the basic princi-
ples and equations of momentum which fi nd important use in fl uid mechanics and 
in the general fl ow of mass whether the form be liquid, gaseous, or granular.

One of the most important cases of mass fl ow occurs during steady-fl ow condi-
tions where the rate at which mass enters a given volume equals the rate at which 
mass leaves the same volume. The volume in question may be enclosed by a rigid 
container, fi xed or moving, such as the nozzle of a jet aircraft or rocket, the space 
between blades in a gas turbine, the volume within the casing of a centrifugal pump, 
or the volume within the bend of a pipe through which a fl uid is fl owing at a steady 
rate. The design of such fl uid machines depends on the analysis of the forces and 
moments associated with the corresponding momentum changes of the fl owing mass.

Analysis of Flow Through a Rigid Container
Consider a rigid container, shown in section in Fig. 4 ∕5a, into which mass fl ows in 
a steady stream at the rate m′ through the entrance section of area A1. Mass leaves 
the container through the exit section of area A2 at the same rate, so that there is 
no accumulation or depletion of the total mass within the container during the 
period of observation. The velocity of the entering stream is v1 normal to A1 and 
that of the leaving stream is v2 normal to A2. If 𝜌1 and 𝜌2 are the respective densi-
ties of the two streams, conservation of mass requires that

 𝜌1A1v1 = 𝜌2 A2v2 = m′ (4 ∕17)

To describe the forces which act, we isolate either the mass of 
fl uid within the container or the entire container and the fl uid 
within it. We would use the fi rst approach if the forces between the 
container and the fl uid were to be described, and we would adopt 
the second approach when the forces external to the container are 
desired.

The latter situation is our primary interest, in which case, the 
system isolated consists of the fi xed structure of the container and 
the fl uid within it at a particular instant of time. This isolation is 
described by a free-body diagram of the mass within a closed volume 
defi ned by the exterior surface of the container and the entrance 
and exit surfaces. We must account for all forces applied externally 
to this system, and in Fig. 4 ∕5a the vector sum of this external 
force system is denoted by ΣF. Included in ΣF are

 1.  the forces exerted on the container at points of its attachment to 
other structures, including attachments at A1 and A2, if present,

 2.  the forces acting on the fl uid within the container at A1 and A2 
due to any static pressure which may exist in the fl uid at these 
positions, and

 3. the weight of the fl uid and structure if appreciable.

d2

d1

O

A1

A2

v2

v1

ΣF

ΣF

(a)

(b)

Δm
Time t

ΣF Δm

Time t + Δt

FIGURE 4/5
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The resultant ΣF of all of these external forces must equal Ġ, the time rate of 
change of the linear momentum of the isolated system. This statement follows from 
Eq. 4 ∕6, which was developed in Art. 4 ∕4 for any systems of constant mass, rigid or 
nonrigid.

Incremental Analysis
The expression for Ġ may be obtained by an incremental analysis. Figure 4 ∕5b
illustrates the system at time t when the system mass is that of the container, the 
mass within it, and an increment Δm about to enter during time Δt. At time t + Δt
the same total mass is that of the container, the mass within it, and an equal incre-
ment Δm which leaves the container in time Δt. The linear momentum of the con-
tainer and mass within it between the two sections A1 and A2 remains unchanged 
during Δt so that the change in momentum of the system in time Δt is

ΔG = (Δm)v2 − (Δm)v1 = Δm(v2 − v1)

Division by Δt and passage to the limit yield Ġ = m′Δv, where

m′ = lim
Δt→0

 (Δm
Δt ) =

dm
dt

Thus, by Eq. 4 ∕6

 ΣF = m′Δv (4 ∕18)

Equation 4 ∕18 establishes the relation between the resultant force on 
a steady-fl ow system and the corresponding mass fl ow rate and vector 
velocity increment.*

Alternatively, we may note that the time rate of change of linear 
momentum is the vector difference between the rate at which linear 
momentum leaves the system and the rate at which linear momen-
tum enters the system. Thus, we may write Ġ = m′v2 − m′v1 = m′Δv, 
which agrees with the foregoing result.

We can now see one of the powerful applications of our general 
force-momentum equation which we derived for any mass system. 
Our system here includes a body which is rigid (the structural con-
tainer for the mass stream) and particles which are in motion (the 
fl ow of mass). By defi ning the boundary of the system, the mass within 
which is constant for steady-fl ow conditions, we are able to utilize the 
generality of Eq. 4 ∕6. However, we must be very careful to account for 
all external forces acting on the system, and they become clear if our 
free-body diagram is correct.

Angular Momentum in Steady-Flow Systems
A similar formulation is obtained for the case of angular momentum in steady-fl ow 
systems. The resultant moment of all external forces about some fi xed point O on 

ΣF = m′Δv 

The blades of a helicopter impart 
downward momentum to a column of 
air, thereby creating the forces neces-
sary for hovering and maneuvering.
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*We must be careful not to interpret dm∕dt as the time derivative of the mass of the isolated 
system. That derivative is zero since the system mass is constant for a steady-fl ow process. To help 
avoid confusion, the symbol m′ rather than dm∕dt is used to represent the steady mass fl ow rate.
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134 CHAPTER 4  Kinetics of Systems of Particles

or off the system, Fig. 4 ∕5a, equals the time rate of change of angular momentum 
of the system about O. This fact was established in Eq. 4 ∕7 which, for the case of 
steady fl ow in a single plane, becomes

 ΣMO = m′ (v2 d2 −  v1d1) (4 ∕19)

When the velocities of the incoming and outgoing fl ows are not in the same plane, 
the equation may be written in vector form as

 ΣMO = m′ (d2 × v2 − d1 × v1) (4 ∕19a)

where d1 and d2 are the position vectors to the centers of A1 and A2 from the fi xed 
reference O. In both relations, the mass center G may be used alternatively as a 
moment center by virtue of Eq. 4 ∕9.

Equations 4 ∕18 and 4 ∕19a are very simple relations which fi nd important use 
in describing relatively complex fl uid actions. Note that these equations relate 
external forces to the resultant changes in momentum and are independent of the 
fl ow path and momentum changes internal to the system.

The foregoing analysis may also be applied to systems which move with con-
stant velocity by noting that the basic relations ΣF = Ġ and ΣMO = ḢO or ΣMG = 
ḢG apply to systems moving with constant velocity as discussed in Arts. 3 ∕12 and 
4 ∕4. The only restriction is that the mass within the system remain constant with 
respect to time.

Three examples of the analysis of steady mass fl ow are given in the following 
sample problems, which illustrate the application of the principles embodied in 
Eqs. 4 ∕18 and 4 ∕19a.

ΣMO = m′ (d2 × v2 − d1 × v1) 

The principles of steady mass fl ow are critical to the 
design of this hovercraft.
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 SAMPLE PROBLEM 4/6

The smooth vane shown diverts the open stream of fl uid of cross-
sectional area A, mass density 𝜌, and velocity v. (a) Determine the 
force components R and F required to hold the vane in a fi xed position. 
(b) Find the forces when the vane is given a constant velocity u less 
than v and in the direction of v.

Solution Part (a) The free-body diagram of the vane together with 
the fl uid portion undergoing the momentum change is shown. The mo-
mentum equation may be applied to the isolated system for the change 
in motion in both the x- and y-directions. With the vane stationary, the 
magnitude of the exit velocity v′ equals that of the entering velocity v 
with fl uid friction neglected. The changes in the velocity components 
are then

Δvx = v′ cos 𝜃 − v = −v(1 − cos 𝜃) 1

and

Δvy = v′ sin 𝜃 − 0 = v sin 𝜃

The mass rate of fl ow is m′ = 𝜌Av, and substitution into Eq. 4 ∕18 gives

[ΣFx = m′Δvx]  −F = 𝜌Av[−v(1 − cos 𝜃)]

  F = 𝜌Av2(1 − cos 𝜃)  Ans.

[ΣFy = m′Δvy]  R = 𝜌Av[v sin 𝜃]

  R = 𝜌Av2 sin 𝜃  Ans.

Part (b) In the case of the moving vane, the fi nal velocity v′ of the fl uid 
upon exit is the vector sum of the velocity u of the vane plus the velocity 
of the fl uid relative to the vane v − u. This combination is shown in the 
velocity diagram to the right of the fi gure for the exit conditions. The 
x-component of v′ is the sum of the components of its two parts, so v′x = 
(v − u) cos 𝜃 + u. The change in x-velocity of the stream is

Δvx = (v − u) cos 𝜃 + (u − v) = −(v − u)(1 − cos 𝜃)

The y-component of v′ is (v − u) sin 𝜃, so that the change in the y-velocity 
of the stream is Δvy = (v − u) sin 𝜃.

The mass rate of fl ow m′ is the mass undergoing momentum 
change per unit of time. This rate is the mass fl owing over the vane 
per unit time and not the rate of issuance from the nozzle. Thus,

m′ = 𝜌A(v − u)

The impulse-momentum principle of Eq. 4 ∕18 applied in the posi-
tive coordinate directions gives

[ΣFx = m′Δvx]  −F = 𝜌A(v − u)[−(v − u)(1 − cos 𝜃)] 2

  F = 𝜌A(v − u)2(1 − cos 𝜃)  Ans.

[ΣFy = m′Δvy] R = 𝜌A(v − u)2 sin 𝜃 Ans.

HELPFUL HINTS
1  Be careful with algebraic signs when us-

ing Eq. 4 ∕18. The change in vx is the fi nal 
value minus the  initial value measured 
in the positive x-direction. Also we must 
be careful to write −F for ∑Fx.

2  Observe that for given values of u and v, 
the angle for maximum force F is 𝜃 = 
180°.

v

y

x
F

R

Fixed vane

vʹ

𝜃

v

y

F x
u

R

Moving vane

v − uv − u

u

vʹ

𝜃
𝜃
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136 CHAPTER 4  Kinetics of Systems of Particles

HELPFUL HINT
1  The result here applies to a single vane 

only. In the case of multiple vanes, such 
as the blades on a turbine disk, the rate 
at which fl uid issues from the nozzles is 
the same rate at which fl uid is undergo-
ing momentum change. Thus, m′ = 𝜌Av 
rather than 𝜌A(v − u). With this change, 
the optimum value of u turns out to be 
u = v ∕2.

SAMPLE PROBLEM 4/7

For the moving vane of Sample Problem 4 ∕6, determine the optimum 
speed u of the vane for the generation of maximum power by the action 
of the fl uid on the vane.

Solution The force R shown with the fi gure for Sample Problem 4 ∕6 
is normal to the velocity of the vane so it does no work. The work done 
by the force F shown is negative, but the power developed by the force 
(reaction to F ) exerted by the fl uid on the moving vane is

[P = Fu] P = 𝜌A(v − u)2u(1 − cos 𝜃)

The velocity of the vane for maximum power for the one blade in the 
stream is specifi ed by

[
dP
du

= 0 ]  𝜌A(1 − cos 𝜃)(v2 − 4uv + 3u2) = 0

 (v − 3u)(v − u) = 0  u =
v
3

 1  Ans.

The second solution u = v gives a minimum condition of zero power. 
An angle 𝜃 = 180° completely reverses the fl ow and clearly produces 
both maximum force and maximum power for any value of u.

SAMPLE PROBLEM 4/8

The offset nozzle has a discharge area A at B and an inlet area A0 at C. 
A liquid enters the nozzle at a static gage pressure p through the fi xed 
pipe and issues from the nozzle with a velocity v in the direction shown. 
If the constant density of the liquid is 𝜌, write expressions for the 
tension T, shear Q, and bending moment M in the pipe at C.

Solution The free-body diagram of the nozzle and the fl uid within it 
shows the tension T, shear Q, and bending moment M acting on the 
fl ange of the nozzle where it attaches to the fi xed pipe. The force pA0 on 
the fl uid within the nozzle due to the static pressure is an additional 
external force.

Continuity of fl ow with constant density requires that

Av = A0v0

where v0 is the velocity of the fl uid at the entrance to the nozzle. The 
momentum principle of Eq. 4 ∕18 applied to the system in the two coor-
dinate directions gives

[ΣFx = m′Δvx]  pA0 − T = 𝜌Av(v cos 𝜃 − v0) 1

  T = pA0 + 𝜌Av2 ( A
A0

− cos 𝜃) Ans.

[ΣFy = m′Δvy]  −Q = 𝜌Av(−v sin 𝜃 − 0) 1

  Q = 𝜌Av2 sin 𝜃  Ans.

The moment principle of Eq. 4 ∕19 applied in the clockwise sense gives

[ΣMO = m′(v2 d2 − v1d1)]  M = 𝜌Av(va cos 𝜃 + vb sin 𝜃 − 0)

  M = 𝜌Av2(a cos 𝜃 + b sin 𝜃) 2  Ans.

HELPFUL HINTS
1  Again, be careful to observe the correct 

algebraic signs of the terms on both 
sides of Eqs. 4 ∕18 and 4 ∕19.

2  The forces and moment acting on the 
pipe are equal and opposite to those 
shown acting on the nozzle.

av
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 SAMPLE PROBLEM 4/9

An air-breathing jet aircraft of total mass m fl ying with a constant speed 
v consumes air at the mass rate m′a and exhausts burned gas at the mass 
rate m′g with a velocity u relative to the aircraft. Fuel is consumed at the 
constant rate m′ƒ. The total aerodynamic forces acting on the aircraft are 
the lift L, normal to the direction of fl ight, and the drag D, opposite to the 
direction of fl ight. Any force due to the static pressure across the inlet 
and exhaust surfaces is assumed to be included in D. Write the equation 
for the motion of the aircraft and identify the thrust T.

Solution The free-body diagram of the aircraft together with the air, 
fuel, and exhaust gas within it is given and shows only the weight, lift, 
and drag forces as defi ned. 1  We attach axes x-y to the aircraft and 
apply our momentum equation relative to the moving system. 2

The fuel will be treated as a steady stream entering the aircraft 
with no velocity relative to the system and leaving with a relative veloc-
ity u in the exhaust stream. We now apply Eq. 4 ∕18 relative to the ref-
erence axes and treat the air and fuel fl ows separately. For the air fl ow, 
the change in velocity in the x-direction relative to the moving system is

Δva = −u − (−v) = −(u − v) 3

and for the fuel fl ow the x-change in velocity relative to x-y is

Δvƒ = −u − (0) = −u

Thus, we have

[ΣFx = m′Δvx]  −mg sin 𝜃 − D = −m′a(u − v) − m′ƒ u

   = −m′g u + m′av

where the substitution m′g = m′a + m′ƒ has been made. Changing signs 
gives

m′gu − m′av = mg sin 𝜃 + D

which is the equation of motion of the system.
If we modify the boundaries of our system to expose the interior 

surfaces on which the air and gas act, we will have the simulated model 
shown, where the air exerts a force m′av on the interior of the turbine and 
the exhaust gas reacts against the interior surfaces with the force m′g u.

The commonly used model is shown in the fi nal diagram, where 
the net effect of air and exhaust momentum changes is replaced by a 
simulated thrust

 T = m′g u − m′av 4  Ans.

applied to the aircraft from a presumed external source.
Inasmuch as m′ƒ is generally only 2 percent or less of m′a, we can 

use the approximation m′g ≅ m′a and express the thrust as

 T ≅ m′g(u − v)  Ans.

We have analyzed the case of constant velocity. Although our 
Newtonian principles do not generally hold relative to accelerating axes, 
it can be shown that we may use the F = ma equation for the simulated 
model and write T − mg sin 𝜃 − D = mv̇ with virtually no error.

HELPFUL HINTS
1  Note that the boundary of the system 

cuts across the air stream at the en-
trance to the air scoop and across the 
exhaust stream at the nozzle.

2  We are permitted to use moving axes 
which translate with constant velocity. 
See Arts. 3 ∕14 and 4 ∕2.

3  Riding with the aircraft, we observe the 
air entering our system with a velocity 
−v measured in the plus x-direction and 
leaving the system with an x-velocity of 
−u. The fi nal value minus the initial one 
gives the expression cited, namely, −u − 
(−v) = −(u − v).

4  We now see that the “thrust” is, in real-
ity, not a force external to the entire air-
plane shown in the fi rst fi gure but can 
be modeled as an external force.
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138 CHAPTER 4  Kinetics of Systems of Particles

4/7  Variable Mass
In Art. 4 ∕4 we extended the equations for the motion of a particle to include a sys-
tem of particles. This extension led to the very general expressions ΣF = Ġ, ΣMO =
ḢO, and ΣMG = ḢG, which are Eqs. 4 ∕6, 4 ∕7, and 4 ∕9, respectively. In their deriva-
tion, the summations were taken over a fi xed collection of particles, so that the 
mass of the system to be analyzed was constant.

In Art. 4 ∕6 these momentum principles were extended in Eqs. 4 ∕18 and 4 ∕19a
to describe the action of forces on a system defi ned by a geometric volume through 
which passes a steady fl ow of mass. Therefore, the amount of mass within this 
volume was constant with respect to time and thus we were able to use Eqs. 4 ∕6, 
4 ∕7, and 4 ∕9. When the mass within the boundary of a system under consideration 
is not constant, the foregoing relationships are no longer valid.*

Equation of Motion
We will now develop the equation for the linear motion of a system whose mass 
varies with time. Consider fi rst a body which gains mass by overtaking and swal-
lowing a stream of matter, Fig. 4 ∕6a. The mass of the body and its velocity at any 
instant are m and v, respectively. The stream of matter is assumed to be moving in 
the same direction as m with a constant velocity v0 less than v. By virtue of 
Eq. 4 ∕18, the force exerted by m on the particles of the stream to accelerate them 
from a velocity v0 to a greater velocity v is R = m′(v − v0) = ṁu, where the time rate 
of increase of m is m′ = ṁ and where u is the magnitude of the relative velocity 
with which the particles approach m. In addition to R, all other forces acting on m
in the direction of its motion are denoted by ΣF. The equation of motion of m from 
Newton’s second law is, therefore, ΣF − R = mv̇ or

 ΣF = mv̇ + ṁu (4 ∕20)ΣF = mv̇ + ṁu 

*In relativistic mechanics the mass is found to be a function of velocity, and its time derivative 
has a meaning different from that in Newtonian mechanics.

R

ΣF

ΣF

R

ΣF

v0
v

v0

v0

m

m m expels mass (v > v0)

m
m0

m swallows mass (v > v0)

m expels mass (v > v0)

(a)

(b)

(c)

v

v

FIGURE 4/6
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Similarly, we now consider a body which loses mass by expelling it 
rearward so that its velocity v0 is less than v, Fig. 4 ∕6b. The force R 
required to decelerate the particles from a velocity v to a lesser velocity 
v0 is R = m′(−v0 − [−v]) = m′(v − v0). But m′ = −ṁ since m is decreas-
ing. Also, the relative velocity with which the particles leave m is u = 
v − v0. Thus, the force R becomes R = −ṁu. If ΣF denotes the resultant 
of all other forces acting on m in the direction of its motion, Newton’s 
second law requires that ΣF + R = mv̇ or

ΣF = mv̇ + ṁu

which is the same relationship as in the case where m is gaining mass. 
We may use Eq. 4 ∕20, therefore, as the equation of motion of m, 
whether it is gaining or losing mass.

A frequent error in the use of the force-momentum equation is to 
express the partial force sum ∑F as

ΣF =
d
dt

 (mv) = mv̇ + ṁv

From this expansion we see that the direct differentiation of the linear 
momentum gives the correct force ΣF only when the body picks up 
mass initially at rest or when it expels mass which is left with zero 
absolute velocity. In both instances, v0 = 0 and u = v.

Alternative Approach
We may also obtain Eq. 4 ∕20 by a direct differentiation of the momentum from the 
basic relation ΣF = Ġ, provided a proper system of constant total mass is chosen. To 
illustrate this approach, we take the case where m is losing mass and use Fig. 4 ∕6c, 
which shows the system of m and an arbitrary portion m0 of the stream of ejected 
mass. The mass of this system is m + m0 and is constant.

The ejected stream of mass is assumed to move undisturbed once separated 
from m, and the only force external to the entire system is ΣF, which is applied di-
rectly to m as before. The reaction R = −ṁu is internal to the system and is not 
disclosed as an external force on the system. With constant total mass, the momen-
tum principle ΣF = Ġ is applicable and we have

ΣF =
d
dt

 (mv + m0v0) = mv̇ + ṁv + ṁ0v0 + m0v̇0

Clearly, ṁ0 = −ṁ, and the velocity of the ejected mass with respect to m is u = 
v − v0. Also v̇0 = 0 since m0 moves undisturbed with no acceleration once free of m. 
Thus, the relation becomes

ΣF = mv̇ + ṁu

which is identical to the result of the previous formulation, Eq. 4 ∕20.

The Super Scooper is a fi refi ghting 
airplane which can quickly ingest water 
from a lake by skimming across the sur-
face with just a bottom-mounted scoop 
entering the water. The mass within 
the aircraft boundary varies during the 
scooping operation as well as during the 
dumping operation shown.
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140 CHAPTER 4  Kinetics of Systems of Particles

Application to Rocket Propulsion
The case of m losing mass is clearly descriptive of rocket propulsion. Figure 4 ∕7a 
shows a vertically ascending rocket, the system for which is the mass within the 
volume defi ned by the exterior surface of the rocket and the exit plane across the 
nozzle. External to this system, the free-body diagram discloses the instantaneous 
values of gravitational attraction mg, aerodynamic resistance R, and the force pA 
due to the average static pressure p across the nozzle exit plane of area A. The rate 
of mass fl ow is m′ = −ṁ. Thus, we may write the equation of motion of the rocket, 
ΣF = mv̇ + ṁu, as pA − mg − R = mv̇ + ṁu, or

 m′u + pA − mg − R = mv̇ (4 ∕21)

Equation 4 ∕21 is of the form “ΣF = ma” where the fi rst term in “ΣF” is the 
thrust T = m′u. Thus, the rocket may be simulated as a body to which an 
external thrust T is applied, Fig. 4 ∕7b, and the problem may then be ana-
lyzed like any other F = ma problem, except that m is a function of time.

Observe that, during the initial stages of motion when the magnitude of 
the velocity v of the rocket is less than the relative exhaust velocity u, the 
absolute velocity v0 of the exhaust gases will be directed rearward. On the 
other hand, when the rocket reaches a velocity v whose magnitude is greater 
than u, the absolute velocity v0 of the exhaust gases will be directed forward. 
For a given mass rate of fl ow, the rocket thrust T depends only on the relative 
exhaust velocity u and not on the magnitude or on the direction of the abso-
lute velocity v0 of the exhaust gases.

In the foregoing treatment of bodies whose mass changes with time, we 
have assumed that all elements of the mass m of the body were moving with 
the same velocity v at any instant of time and that the particles of mass added 
to or expelled from the body underwent an abrupt transition of velocity upon 
entering or leaving the body. Thus, this velocity change has been modeled as 
a mathematical discontinuity. In reality, this change in velocity cannot be 
discontinuous even though the transition may be rapid. In the case of a rocket, 
for example, the velocity change occurs continuously in the space between the 
combustion zone and the exit plane of the exhaust nozzle. A more general 
analysis* of variable-mass dynamics removes this restriction of discontinu-
ous velocity change and introduces a slight correction to Eq. 4 ∕20.

*For a development of the equations which describe the general motion of a time-dependent 
system of mass, see Art. 53 of the fi rst author’s Dynamics, 2nd Edition, SI Version, 1975, John 
Wiley & Sons, Inc.
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 SAMPLE PROBLEM 4/10

The end of a chain of length L and mass 𝜌 per unit length which is piled 
on a platform is lifted vertically with a constant velocity v by a variable 
force P. Find P as a function of the height x of the end above the plat-
form. Also fi nd the energy lost during the lifting of the chain.

Solution I (Variable-Mass Approach) Equation 4 ∕20 will be used 
and applied to the moving part of the chain of length x which is gaining 
mass. The force summation ∑F includes all forces acting on the moving 
part except the force exerted by the particles which are being attached. 
From the diagram we have

ΣFx = P − 𝜌gx

The velocity is constant so that v̇ = 0. The rate of increase of mass is 
ṁ = 𝜌v, and the relative velocity with which the attaching particles 
approach the moving part is u = v − 0 = v. Thus, Eq. 4 ∕20 becomes

[ΣF = mv̇ + ṁu]  P − 𝜌gx = 0 + 𝜌v(v)  P = 𝜌(gx + v2) 1  Ans.

We now see that the force P consists of the two parts, 𝜌gx, which is the 
weight of the moving part of the chain, and 𝜌v2, which is the added 
force required to change the momentum of the links on the platform 
from a condition at rest to a velocity v.

Solution II (Constant-Mass Approach) The principle of impulse 
and momentum for a system of particles expressed by Eq. 4 ∕6 will be ap-
plied to the entire chain considered as the system of constant mass. The 
free-body diagram of the system shows the unknown force P, the total 
weight of all links 𝜌gL, and the force 𝜌g(L − x) exerted by the platform on 
those links which are at rest on it. The momentum of the system at any 
position is Gx = 𝜌xv and the momentum equation gives

[ ΣFx =
dGx

dt ]   P + 𝜌g(L − x) − 𝜌gL =
d
dt

 (𝜌 xv)  P = 𝜌(gx + v2) 2  Ans.

Again the force P is seen to be equal to the weight of the portion 
of the chain which is off the platform plus the added term which ac-
counts for the time rate of increase of momentum of the chain.

Energy Loss Each link on the platform acquires its velocity abruptly 
through an impact with the link above it, which lifts it off the platform. 
The succession of impacts gives rise to an energy loss ΔE (negative work

−ΔE) so that the work-energy equation becomes U′1-2 = ∫  P dx − ΔE =
ΔT + ΔVg, where 3

  ∫ P dx = ∫L

0
 ( 𝜌gx + 𝜌v2)dx =

1
2 𝜌gL2 + 𝜌v2L

 ΔT =
1
2 𝜌Lv2  ΔVg = 𝜌gL

L
2

=
1
2 

𝜌gL2

Substituting into the work-energy equation gives

 1
2 𝜌gL2 + 𝜌v2L − ΔE =

1
2 𝜌Lv2 +

1
2 𝜌gL2  ΔE =

1
2 𝜌Lv2 Ans.

HELPFUL HINTS
1  The model of Fig. 4 ∕6a shows the mass 

being added to the leading end of the 
moving part. With the chain the mass is 
added to the trailing end, but the effect 
is the same.

𝜌g(L − x)

P P

Solution
I

Solution
II

𝜌gL𝜌gx

2  We must be very careful not to use ∑F = 
Ġ for a system whose mass is changing. 
Thus, we have taken the total chain as 
the system since its mass is constant.

3  Note that U′1-2 includes work done by 
internal nonelastic forces, such as the 
link-to-link impact forces, where this 
work is converted into heat and acousti-
cal energy loss ΔE.
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SAMPLE PROBLEM 4/11

Replace the open-link chain of Sample Problem 4 ∕10 by a fl exible but 
inextensible rope or bicycle-type chain of length L and mass 𝜌 per unit 
length. Determine the force P required to elevate the end of the rope 
with a constant velocity v and determine the corresponding reaction R 
between the coil and the platform.

Solution The free-body diagram of the coil and moving portion of the 
rope is shown in the left-hand fi gure. Because of some resistance to 
bending and some lateral motion, the transition from rest to vertical 
velocity v will occur over an appreciable segment of the rope. 1  Nev-
ertheless, assume fi rst that all moving elements have the same velocity 
so that Eq. 4 ∕6 for the system gives

[ ΣFx =
dGx

dt ]  P + R − 𝜌gL =
d
dt

 (𝜌 xv)  P + R = 𝜌v2 + 𝜌gL 2

We assume further that all elements of the coil of rope are at rest on the 
platform and transmit no force to the platform other than their weight, 
so that R = 𝜌g(L − x). Substitution into the foregoing relation gives

P + 𝜌g(L − x) = 𝜌v2 + 𝜌gL  or  P = 𝜌v2 + 𝜌gx

which is the same result as that for the chain in Sample Problem 4 ∕10.
The total work done on the rope by P becomes

U′1-2 = ∫ P dx = ∫x

0
 ( 𝜌v2 + 𝜌gx) dx = 𝜌v2x +

1
2 𝜌gx2

Substitution into the work-energy equation gives

[U′1-2 = ΔT + ΔVg]  𝜌v2x +
1
2 𝜌gx2 = ΔT + 𝜌gx

x
2
  ΔT = 𝜌 xv2

which is twice the kinetic energy 1
2 𝜌 xv2 of vertical motion. Thus, an 

equal amount of kinetic energy is unaccounted for. 3  This conclusion 
largely negates our assumption of one-dimensional x-motion.

In order to produce a one-dimensional model which retains the inex-
tensibility property assigned to the rope, it is necessary to impose a phys-
ical constraint at the base to guide the rope into vertical motion and at 
the same time preserve a smooth transition from rest to upward velocity 
v without energy loss. 4  Such a guide is included in the free-body dia-
gram of the entire rope in the middle fi gure and is represented schemati-
cally in the middle free-body diagram of the right-hand fi gure.

For a conservative system, the work-energy equation gives

[dU′ = dT + dVg]   P dx = d(1
2 𝜌 xv2) + d(𝜌gx 

x
2) 5

            P =
1
2 𝜌v2 + 𝜌gx

Substitution into the impulse-momentum equation ∑Fx = Ġx gives

1
2 𝜌v2 + 𝜌gx + R − 𝜌gL = 𝜌v2  R =

1
2 𝜌v2 + 𝜌g(L − x)

Although this force, which exceeds the weight by 1
2 𝜌v2, is unrealistic 

experimentally, it would be present in the idealized model.
Equilibrium of the vertical section requires

T0 = P − 𝜌gx =
1
2 𝜌v2 + 𝜌gx − 𝜌gx =

1
2 𝜌v2

Because it requires a force of 𝜌v2 to change the momentum of the rope 
elements, the restraining guide must supply the balance F = 1

2 𝜌v2 
which, in turn, is transmitted to the platform.

HELPFUL HINTS
1  Perfect fl exibility would not permit any 

resistance to bending.

2  Remember that v is constant and equals 
ẋ. Also note that this same relation ap-
plies to the chain of Sample Problem 4 ∕10.

3  This added term of unaccounted-for 
kinetic energy exactly equals the energy 
lost by the chain during the impact of its 
links.

4  This restraining guide may be visual-
ized as a canister of negligible mass 
rotating within the coil with an angular 
velocity v∕r and connected to the plat-
form through its shaft. As it turns, it 
feeds the rope from a rest position to an 
upward velocity v, as indicated in the 
accompanying fi gure.

5  Note that the mass center of the section 
of length x is a distance x ∕2 above the 
base.

r

𝜔 = v/r

P

R

𝜌gL

P

R

𝜌gL

P

𝜌gx
vx

T0

T0

F

R

𝜌g(L − x)
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 SAMPLE PROBLEM 4/12

A rocket of initial total mass m0 is fi red vertically up from the north 
pole and accelerates until the fuel, which burns at a constant rate, is ex-
hausted. The relative nozzle velocity of the exhaust gas has a constant 
value u, and the nozzle exhausts at atmospheric pressure throughout 
the fl ight. If the residual mass of the rocket structure and machinery 
is mb when burnout occurs, determine the expression for the maximum 
velocity reached by the rocket. Neglect atmospheric resistance and the 
variation of gravity with altitude.

Solution I (F = ma Solution) We adopt the approach illustrated 
with Fig. 4 ∕7b and treat the thrust as an external force on the rocket. 
With the neglect of the back pressure p across the nozzle and the atmo-
spheric resistance R, Eq. 4 ∕21 or Newton’s second law gives 1

T − mg = mv̇

But the thrust is T = m′u = −ṁu so that the equation of motion becomes

−ṁu − mg = mv̇

Multiplication by dt, division by m, and rearrangement give

dv = −u 
dm
m − g dt

which is now in a form which can be integrated. The velocity v corre-
sponding to the time t is given by the integration

∫v

0
 dv = −u∫m

m0

 
dm
m − g ∫t

0
 dt

or

v = u ln 
m0

m − gt

Since the fuel is burned at the constant rate m′ = −ṁ, the mass at 
any time t is m = m0 + ṁt. If we let mb stand for the mass of the rocket 
when burnout occurs, then the time at burnout becomes tb = (mb − m0) ∕ṁ 
= (m0 − mb) ∕(−ṁ). This time gives the condition for maximum velocity, 
which is

 vmax = u ln 
m0

mb
+

g
ṁ

 (m0 −  mb) 2  Ans.

The quantity ṁ is a negative number since the mass decreases with 
time.

Solution II (Variable-Mass Solution) If we use Eq. 4 ∕20, then ∑F = 
−mg and the equation becomes

[ΣF = mv̇ + ṁu] −mg = mv̇ + ṁu

But ṁu = −m′u = −T so that the equation of motion becomes

T − mg = mv̇

which is the same as formulated with Solution I.

HELPFUL HINTS
1  The neglect of atmospheric resistance 

is not a bad assumption for a fi rst ap-
proximation inasmuch as the velocity of 
the ascending rocket is smallest in the 
dense part of the atmosphere and great-
est in the rarefi ed region. Also for an al-
titude of 320 km, the acceleration due to 
gravity is 91 percent of the value at the 
surface of the earth.

2  Vertical launch from the north pole is 
taken only to eliminate any complica-
tion due to the earth’s rotation in fi gur-
ing the absolute trajectory of the rocket.

T

mg

v
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144 CHAPTER 4  Kinetics of Systems of Particles

4/8  Chapter Review
In this chapter we have extended the principles of 
dynamics for the motion of a single mass particle to the 
motion of a general system of particles. Such a system 
can form a rigid body, a nonrigid (elastic) solid body, or 
a group of separate and unconnected particles, such as 
those in a defi ned mass of liquid or gaseous particles. 
The following summarizes the principal results of 
Chapter 4.

 1. We derived the generalized form of Newton’s  second 
law, which is expressed as the principle of motion of 
the mass center, Eq. 4 ∕1 in Art. 4 ∕2. This principle 
states that the vector sum of the external forces 
acting on any system of mass particles equals the 
total system mass times the acceleration of the cen-
ter of mass.

 2. In Art. 4 ∕3, we established a work-energy principle 
for a system of particles, Eq. 4 ∕3a, and showed that 
the total kinetic energy of the system equals the 
energy of the mass-center translation plus the 
energy due to motion of the particles relative to 
the mass center.

 3. The resultant of the external forces acting on any 
system equals the time rate of change of the linear 
momentum of the system, Eq. 4 ∕6 in Art. 4 ∕4.

 4. For a fi xed point O and the mass center G, the 
resultant vector moment of all external forces 
about the point equals the time rate of change of 
angular momentum about the point, Eq. 4 ∕7 and 
Eq. 4 ∕9 in Art. 4 ∕4. The principle for an arbitrary 

point P, Eqs. 4 ∕11 and 4 ∕13, has an additional term 
and thus does not follow the form of the equations 
for O and G.

 5. In Art. 4 ∕5 we developed the law of conservation 
of dynamical energy, which applies to a system in 
which the internal kinetic friction is negligible.

 6. Conservation of linear momentum applies to a sys-
tem in the absence of an external linear impulse. 
Similarly, conservation of angular momentum ap-
plies when there is no external angular impulse.

 7. For applications involving steady mass fl ow, we 
developed a relation, Eq. 4 ∕18 in Art. 4 ∕6, between 
the resultant force on a system, the corresponding 
mass fl ow rate, and the change in fl uid velocity 
from entrance to exit.

 8. Analysis of angular momentum in steady mass fl ow 
resulted in Eq. 4 ∕19a in Art. 4 ∕6, which is a relation 
between the resultant moment of all external forces 
about a fi xed point O on or off the system, the mass 
fl ow rate, and the incoming and outgoing velocities.

 9. Finally, in Art. 4 ∕7 we developed the equation of 
linear motion for variable-mass systems, Eq. 4 ∕20. 
Common examples of such systems are rockets and 
fl exible chains and ropes.

The principles developed in this chapter enable us 
to treat the motion of both rigid and nonrigid bodies 
in a unifi ed manner. In addition, the developments in 
Arts. 4 ∕2–4 ∕5 will serve to place on a rigorous basis the 
treatment of rigid-body kinetics in Chapters 6 and 7.
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Rigid-body kinematics describes the relationships
between the linear and angular motions of 
 bodies without regard to the forces and moments 
 associated with such motions. The designs of 
gears, cams, connecting links, and many other 
moving machine parts are largely kinematic 
problems.
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CHAPTER 5
Plane Kinematics 
of Rigid Bodies

5/1  Introduction
In Chapter 2 on particle kinematics, we developed the relationships governing the 
displacement, velocity, and acceleration of points as they moved along straight or 
curved paths. In rigid-body kinematics we use these same relationships but must 
also account for the rotational motion of the body. Thus rigid-body kinematics in-
volves both  linear and angular displacements, velocities, and accelerations.

We need to describe the motion of rigid bodies for two important reasons. First, 
we frequently need to generate, transmit, or control certain motions by the use of 
cams, gears, and linkages of various types. Here we must analyze the displacement, 
velocity, and acceleration of the motion to determine the design geometry of the 
mechanical parts. Furthermore, as a result of the motion generated, forces may be 
developed which must be accounted for in the design of the parts.

Second, we must often determine the motion of a rigid body caused by the 
forces applied to it. Calculation of the motion of a rocket under the infl uence of its 
thrust and gravitational attraction is an example of such a problem.

We need to apply the principles of rigid-body kinematics in both situations. This 
chapter covers the kinematics of rigid-body motion which may be analyzed as occur-
ring in a single plane. In Chapter 7 we will present an introduction to the kinematics 
of motion in three dimensions.

CHAPTER OUTLINE

5/1 Introduction
5/2 Rotation
5/3 Absolute Motion
5/4 Relative Velocity
5/5 Instantaneous Center of Zero Velocity
5/6 Relative Acceleration
5/7 Motion Relative to Rotating Axes
5/8 Chapter Review
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148 CHAPTER 5  Plane Kinematics of Rigid Bodies

Rigid-Body Assumption
In the previous chapter we defi ned a rigid body as a system of particles for which 
the distances between the particles remain unchanged. Thus, if each particle of 
such a body is located by a position vector from reference axes attached to and 
 rotating with the body, there will be no change in any position vector as measured 
from these axes. This is, of course, an ideal case since all solid materials change 
shape to some  extent when forces are applied to them.

Nevertheless, if the movements associated with the changes in shape are 
very small compared with the movements of the body as a whole, then the as-
sumption of rigidity is usually acceptable. The displacements due to the fl utter 
of an aircraft wing, for instance, do not affect the description of the fl ight path of 
the aircraft as a whole, and thus the rigid-body assumption is clearly acceptable. 
On the other hand, if the problem is one of describing, as a function of time, the 
internal wing stress due to wing fl utter, then the relative motions of  portions of 
the wing cannot be neglected, and the wing may not be considered a rigid body. 
In this and the next two chapters, almost all of the material is based on the as-
sumption of rigidity.

Plane Motion
A rigid body executes plane motion when all parts of the body move in parallel 
planes. For convenience, we generally consider the plane of motion to be the plane 
which contains the mass center, and we treat the body as a thin slab whose motion 
is confi ned to the plane of the slab. This idealization adequately describes a very 
large category of rigid-body motions encountered in engineering.

The plane motion of a rigid body may be divided into several categories, as 
represented in Fig. 5 ∕1.

Translation is defi ned as any motion in which every line in the body remains 
parallel to its original position at all times. In translation there is no rotation of any 
line in the body. In rectilinear translation, part a of Fig. 5 ∕1, all points in the body 

move in parallel straight lines. In curvilinear translation, part b, all 
points move on congruent curves. We note that in each of the two 
cases of translation, the motion of the body is completely specifi ed by 
the motion of any point in the body, since all points have the same 
motion. Thus, our earlier study of the motion of a point (particle) in 
Chapter 2 enables us to describe completely the translation of a rigid 
body.

Rotation about a fi xed axis, part c of Fig. 5 ∕1, is the angular 
motion about the axis. It follows that all particles in a rigid body move 
in circular paths about the axis of rotation, and all lines in the body 
which are perpendicular to the axis of rotation (including those which 
do not pass through the axis) rotate through the same angle in the 
same time. Again, our discussion in Chapter 2 on the circular motion 
of a point enables us to describe the motion of a rotating rigid body, 
which is treated in the next article.

General plane motion of a rigid body, part d of Fig. 5 ∕1, is a 
combination of translation and rotation. We will utilize the princi-
ples of relative motion covered in Art. 2 ∕8 to describe general plane 
motion.

Note that in each of the examples cited, the actual paths of all 
particles in the body are projected onto the single plane of motion 
as represented in each figure.

These nickel microgears are only 150 
micrometers (150(10−6) m) thick and 
have potential application in micro-
scopic robots.

D
av

id
 P

ar
ke

r∕
P

h
ot

o 
R

es
ea

rc
h

er
s

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Article  5/2 Rotation 149

Analysis of the plane motion of rigid bodies is accomplished either by di-
rectly calculating the absolute displacements and their time derivatives from 
the geometry involved or by utilizing the principles of relative motion. Each 
method is important and useful and will be covered in turn in the articles 
which follow.

5/2  Rotation
The rotation of a rigid body is described by its angular motion.  Figure 5 ∕2 
shows a rigid body which is rotating as it undergoes plane motion in the plane 
of the figure. The angular positions of any two lines 1 and 2 attached to the 
body are specified by 𝜃1 and 𝜃2 measured from any convenient fixed reference 
direction. Because the angle 𝛽 is invariant, the relation 𝜃2 = 𝜃1 + 𝛽 upon dif-
ferentiation with respect to time gives �̇�2 = �̇�1 and �̈�2 = �̈�1 or, during a finite 
interval, ∆𝜃2 = ∆𝜃1. Thus, all lines on a rigid body in its plane of motion have 
the same angular displacement, the same angular velocity, and the same an-
gular acceleration.

Note that the angular motion of a line depends only on its angular position 
with respect to any arbitrary fi xed reference and on the time derivatives of the 
displacement. Angular motion does not require the presence of a fi xed axis, nor-
mal to the plane of motion, about which the line and the body rotate.

B

A

Bʹ

Aʹ

B

A

Bʹ

Aʹ

B

A

B

A

Bʹ

Bʹ

Aʹ

(a)
Rectilinear
translation

Type of Rigid-Body Plane Motion Example

Rocket test sled

Parallel-link swinging plate

Compound pendulum

(b)
Curvilinear
translation

(c)
Fixed-axis
rotation

(d)
General

plane motion
Connecting rod in a
reciprocating engine

𝜃

FIGURE 5/1

1
2

𝜃1

𝜃2

𝛽

FIGURE 5/2
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150 CHAPTER 5  Plane Kinematics of Rigid Bodies

Key Concepts  Angular-Motion Relations

The angular velocity 𝜔 and angular acceleration 𝛼 of a 
rigid body in plane rotation are, respectively, the fi rst 
and second time derivatives of the angular position co-
ordinate 𝜃 of any line in the plane of motion of the body. 
These defi nitions give

𝜔 =
d𝜃
dt

= �̇�

  𝛼 =
d𝜔
dt

= �̇�  or  𝛼 =
d2𝜃
dt2 

= �̈� (5∕1)

 𝜔 d𝜔 = 𝛼 d𝜃  or  �̇� d�̇� = �̈� d𝜃
The third relation is obtained by eliminating dt from 
the fi rst two. In each of these relations, the positive di-
rection for 𝜔 and 𝛼, clockwise or counterclockwise, is the 
same as that chosen for 𝜃. Equations 5 ∕1 should be 
 recognized as analogous to the defi ning equations for 
the rectilinear motion of a particle, expressed by Eqs. 
2 ∕1, 2 ∕2, and 2 ∕3. In fact, all relations which were de-
scribed for rectilinear motion in Art. 2 ∕2 apply to the 
case of rotation in a plane if the linear quantities s, v, 
and a are replaced by their respective equivalent angu-
lar quantities 𝜃, 𝜔, and 𝛼. As we proceed further with 
rigid-body dynamics, we will fi nd that the analogies be-
tween the relationships for linear and angular motion 
are almost complete throughout kinematics and ki netics. 
These relations are important to recognize, as they help 
to demonstrate the symmetry and unity found through-
out mechanics.

For rotation with constant angular acceleration, 
the integrals of Eqs. 5 ∕1 become

 𝜔 = 𝜔0 + 𝛼t

 𝜔2 = 𝜔0 

2 + 2𝛼(𝜃 − 𝜃0)

 𝜃 = 𝜃0 + 𝜔0t +
1
2 𝛼t2

Here 𝜃0 and 𝜔0 are the values of the angular position 
coordinate and angular velocity, respectively, at t = 0, 
and t is the duration of the motion considered. You 
should be able to carry out these integrations easily, 
as they are completely analogous to the corresponding 
equations for rectilinear motion with constant accelera-
tion covered in Art. 2 ∕2.

The graphical relationships described for s, v, a, 
and t in Figs. 2 ∕3 and 2 ∕4 may be used for 𝜃, 𝜔, and 𝛼 
merely by substituting the  corresponding symbols. You 
should sketch these graphical relations for plane rota-
tion. The mathematical procedures for obtaining recti-
linear velocity and displacement from rectilinear accel-
eration may be applied to rotation by merely replacing 
the linear quantities by their corresponding angular 
quantities.

𝜔 =
d𝜃
dt

= �̇�

𝛼 =
d𝜔
dt

= �̇� or 𝛼 =
d2𝜃
dt2 = �̈� 

𝜔 d𝜔 = 𝛼 d𝜃 or �̇� d�̇� = �̈�d𝜃

Rotation about a Fixed Axis
When a rigid body rotates about a fi xed axis, all points 
other than those on the axis move in concentric circles 
about the fi xed axis. Thus, for the rigid body in Fig. 5 ∕3 
rotating about a fi xed axis normal to the plane of the 
fi gure through O, any point such as A moves in a circle 
of radius r. From the previous discussion in Art. 2 ∕5, 
you should already be familiar with the relationships 
between the linear motion of A and the angular mo-
tion of the line normal to its path, which is also the 
angular motion of the rigid body. With the notation 
𝜔 = �̇� and 𝛼 = �̇� = �̈� for the angular velocity and 
 angular acceleration, respectively, of the body we have 
Eqs. 2 ∕11, rewritten as

 v = r𝜔
  an = r𝜔2 = v2∕r = v𝜔 (5∕2)

 at = r𝛼

v = r𝜔
an = r𝜔2 = v2∕2 r∕∕ = v𝜔 

at = r𝛼

These quantities may be expressed alternatively 
using the cross-product relationship of vector nota-
tion. The vector formulation is especially important in 
the analysis of three-dimensional motion. The angular 
 velocity of the rotating body may be expressed by the 
vector 𝛚 normal to the plane of rotation and having 
a sense governed by the right-hand rule, as shown in 
Fig. 5 ∕4a. From the defi nition of the vector cross prod-
uct, we see that the vector v is obtained by crossing 𝛚 
into r. This cross product gives the correct magnitude 
and direction for v and we write

v = ṙ = 𝛚 × r

The order of the vectors to be crossed must be retained. 
The reverse order gives r × 𝛚 = −v.

O

A

t

v = r𝜔
at = r𝛼

an = r𝜔2
n

r

𝛼𝜔

FIGURE 5/3
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A
A

O

v

r

(a)

O

v = 𝛚 × r  

(b)

at = 𝛂 × r

𝛚

𝜃
⋅

𝛚

𝛂 = 𝛚⋅

an = 𝛚 × (𝛚 × r)

FIGURE 5/4

Here 𝛂 = �̇� stands for the angular ac-
celeration of the body. Thus, the vec-
tor equivalents to Eqs. 5 ∕2 are

 v = 𝛚 × r

  an = 𝛚 × (𝛚 × r) (5∕3)

 at = 𝛂 × r

and are shown in Fig. 5 ∕4b.
For three-dimensional motion 

of a rigid body, the angular-velocity 
 vector 𝛚 may change direction as 
well as magnitude, and in this case, 

the angular acceleration, which is the time derivative 
of angular velocity, 𝛂 = �̇�, will no longer be in the same 
direction as 𝛚.The acceleration of point A is obtained by differen-

tiating the cross-product expression for v, which gives

 a = v̇ = 𝛚 × ṙ + �̇� × r

 =  𝛚 × (𝛚 × r) + �̇� × r

 =  𝛚 × v + 𝛂 × r
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A camshaft-drive system for an internal-
combustion engine.
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Cable-pulley systems are an integral component in many transportation 
systems, including this ski-resort chairlift.
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152 CHAPTER 5  Plane Kinematics of Rigid Bodies

SAMPLE PROBLEM 5/1

A fl ywheel rotating freely at 1800 rev ∕min clockwise is subjected to 
a variable counterclockwise torque which is fi rst applied at time t = 
0. The torque produces a counterclockwise angular acceleration 𝛼 = 
4t rad ∕s2, where t is the time in seconds during which the torque is 
applied. Determine (a) the time required for the fl ywheel to reduce its 
clockwise angular speed to 900 rev ∕min, (b) the time required for the 
fl ywheel to reverse its direction of rotation, and (c) the total number 
of revolutions, clockwise plus counterclockwise, turned by the fl ywheel 
during the fi rst 14 seconds of torque application.

Solution The counterclockwise direction will be taken arbitrarily 
as positive.

(a) Since 𝛼 is a known function of the time, we may integrate it to obtain 
angular velocity. With the initial angular velocity of −1800(2𝜋) ∕60 = 
−60𝜋 rad∕s, we have

[d𝜔 = 𝛼 dt]   ∫𝜔

−60𝜋

 d𝜔 = ∫t

0
  4t dt  𝜔 = −60𝜋 + 2t2 1

Substituting the clockwise angular speed of 900 rev ∕min or 𝜔 = 
−900(2𝜋) ∕60 = −30𝜋 rad∕s gives

 −30𝜋 = −60𝜋 + 2t2  t2 = 15𝜋  t = 6.86 s Ans.

(b) The fl ywheel changes direction when its angular velocity is mo-
mentarily zero. Thus,

 0 = −60𝜋 + 2t2  t2 = 30𝜋  t = 9.71 s Ans.

(c) The total number of revolutions through which the fl ywheel turns 
during 14 seconds is the number of clockwise turns N1 during the fi rst 
9.71 seconds, plus the number of counterclockwise turns N2 during the 
remainder of the interval. Integrating the expression for 𝜔 in terms of t 
gives us the angular displacement in radians. Thus, for the fi rst  interval

[d𝜃 = 𝜔 dt]  ∫𝜃1 

0
d𝜃 = ∫9.71

0
 (−60𝜋 + 2t2) dt

                        𝜃1 = [−60𝜋t +
2
3 t3]9.71

0
= −1220 rad 2

or N1 = 1220 ∕2𝜋 = 194.2 revolutions clockwise.
For the second interval

  ∫𝜃2

0
 d𝜃 = ∫14

9.71
 (−60𝜋 + 2t2) dt

                    𝜃2 = [−60𝜋t +
2
3 t3]14

9.71
= 410 rad 3

or N2 = 410 ∕2𝜋 = 65.3 revolutions counterclockwise. Thus, the total 
number of revolutions turned during the 14 seconds is

 N = N1 + N2 = 194.2 + 65.3 = 259 rev Ans.

We have plotted 𝜔 versus t and we see that 𝜃1 is represented by the 
negative area and 𝜃2 by the positive area. If we had integrated over 
the entire interval in one step, we would have obtained ∣𝜃2∣ − ∣𝜃1∣.

HELPFUL HINTS
1  We must be very careful to be consistent 

with our algebraic signs. The lower limit 
is the negative (clockwise) value of the 
initial angular velocity. Also we must 
convert revolutions to radians since 𝛼 is 
in  radian units.

Angular
velocity
𝜔, rad/s

CCW

−60𝜋

64.8𝜋

0
0

142 10 126 84

6.86 9.71

−30𝜋

𝜃1

𝜃2

Time t, s

2  Again note that the minus sign signifi es 
clockwise in this problem.

3  We could have converted the original 
 expression for 𝛼 into the units of rev ∕s2, 
in which case our integrals would have 
come out directly in  revolutions.
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SAMPLE PROBLEM 5/2

The pinion A of the hoist motor drives gear B, which is attached to the 
hoisting drum. The load L is lifted from its rest position and acquires 
an upward velocity of 3 ft  ∕sec in a vertical rise of 4 ft with constant 
acceleration. As the load passes this position, compute (a) the accel-
eration of point C on the cable in contact with the drum and (b) the 
angular velocity and angular acceleration of the pinion A.

Solution (a) If the cable does not slip on the drum, the vertical veloc-
ity and acceleration of the load L are, of necessity, the same as the 
tangential velocity v and tangential acceleration at of point C. For the 
rectilinear motion of L with constant acceleration, the n- and t-compo-
nents of the acceleration of C become

[v2 = 2as]  a = at = v2∕2s = 32∕[2(4)] = 1.125 ft∕sec2

[an = v2∕r]  an = 32∕(24∕12) = 4.5 ft∕sec2 1

[a = √an 

2 + at 

2]  aC = √(4.5)2 + (1.125)2 = 4.64 ft∕sec2 Ans.

(b) The angular motion of gear A is determined from the angular mo-
tion of gear B by the velocity v1 and tangential acceleration a1 of their 
common point of  contact. First, the angular motion of gear B is deter-
mined from the motion of point C on the attached drum. Thus,

[v = r𝜔]  𝜔B = v∕r = 3∕(24∕12) = 1.5 rad∕sec

[at = r𝛼]  𝛼B = at ∕r = 1.125∕(24∕12) = 0.562 rad∕sec2

Then from v1 = rA𝜔A = rB𝜔B and a1 = rA𝛼A = rB𝛼B, we have

  𝜔A =
rB

rA

 𝜔B =
18∕12
6∕12

1.5 = 4.5 rad∕sec CW  Ans.

  𝛼A =
rB

rA

 𝛼B =
18∕12
6∕12

0.562 = 1.688 rad∕sec2 CW Ans.

C

B

A

12ʺ

36ʺ 48ʺ

L

4ʹ

3 ft /sec

HELPFUL HINT
1  Recognize that a point on the cable changes 

the direction of its velocity after it contacts 
the drum and acquires a normal component 
of acceleration.

C

B

A
6ʺ

18ʺ

v = 3 ft /sec

a = 1.125 ft/sec2

at = 1.125 ft/sec2

𝛼A

𝛼B

𝜔A
v1

a1

aC
𝜔B an = 4.5 ft /sec2

SAMPLE PROBLEM 5/3

The right-angle bar rotates clockwise with an angular velocity which is 
decreasing at the rate of 4 rad∕s2. Write the vector expressions for the 
velocity and acceleration of point A when 𝜔 = 2 rad∕s.

Solution Using the right-hand rule gives

𝛚 = −2k rad∕s  and  𝛂 = +4k rad∕s2

The velocity and acceleration of A become

[v = 𝛚 × r]  v = −2k × (0.4i + 0.3j) = 0.6i − 0.8j m∕s  Ans.

[an = 𝛚 × (𝛚 × r)]  an = −2k × (0.6i − 0.8j) = −1.6i − 1.2j m∕s2

[at = 𝛂 × r]  at = 4k × (0.4i + 0.3j) = −1.2i + 1.6j m∕s2

[a = an + at]  a = −2.8i + 0.4j m∕s2  Ans.

The magnitudes of v and a are

v = √0.62 + 0.82 = 1 m∕s  and  a = √2.82 + 0.42 = 2.83 m∕s2

x

y

A

0.4 m

0.3 m

𝜔
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5/3  Absolute Motion
We now develop the approach of absolute-motion analysis to describe the plane 
kinematics of rigid bodies. In this approach, we make use of the geometric relations 
which defi ne the confi guration of the body involved and then proceed to take 
the time derivatives of the defi ning geometric relations to obtain velocities and 
accelerations.

In Art. 2 ∕9 of Chapter 2 on particle kinematics, we introduced the application 
of absolute-motion analysis for the constrained motion of connected particles. For 
the pulley confi gurations treated, the relevant velocities and accelerations were 
determined by successive differentiation of the lengths of the connecting cables. In 
this earlier treatment, the geometric relations were quite simple, and no angular 
quantities had to be considered. Now that we will be dealing with rigid-body mo-
tion, however, we fi nd that our defi ning geometric relations include both linear and 
angular variables and, therefore, the time derivatives of these quantities will 

 involve both linear and angular velocities and linear and angular 
 accelerations.

In absolute-motion analysis, it is essential that we be consistent 
with the mathematics of the description. For example, if the angular 
position of a moving line in the plane of motion is specifi ed by its coun-
terclockwise angle 𝜃 measured from some convenient fi xed reference 
axis, then the positive sense for both angular velocity �̇� and angular 
acceleration �̈� will also be counterclockwise. A negative sign for either 
quantity will, of course, indicate a clockwise angular motion. The de-
fi ning relations for linear motion, Eqs. 2 ∕1, 2 ∕2, and 2 ∕3, and the rela-
tions involving angular motion, Eqs. 5 ∕1 and 5 ∕2 or 5 ∕3, will fi nd 
 repeated use in the motion analysis and should be mastered.

The absolute-motion approach to rigid-body kinematics is quite 
straightforward, provided the confi guration lends itself to a geometric 
description which is not overly complex. If the geometric confi guration 
is awkward or complex, analysis by the principles of relative motion 
may be preferable. Relative-motion analysis is treated in this chapter 
beginning with Art. 5 ∕4. The choice between absolute- and relative- 
motion analyses is best made after experience has been gained with 
both approaches.

The next three sample problems illustrate the application of 
 absolute-motion analysis to three commonly encountered situations. 
The kinematics of a rolling wheel, treated in Sample Problem 5 ∕4, is 
especially important and will be useful in much of the problem work 
because the rolling wheel in various forms is such a common element 
in mechanical systems.

This piston and connecting-rod 
 assembly is an example of a slider-
crank mechanism.

©
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g 
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SAMPLE PROBLEM 5/4

A wheel of radius r rolls on a fl at surface without slipping. Determine 
the angular motion of the wheel in terms of the linear motion of its 
center O. Also determine the acceleration of a point on the rim of the 
wheel as the point comes into contact with the surface on which the 
wheel rolls.

Solution The fi gure shows the wheel rolling to the right from the 
dashed to the full position without slipping. The linear displacement of 
the center O is s, which is also the arc length C′A along the rim on 
which the wheel rolls. The radial line CO rotates to the new position 
C′O′ through the angle 𝜃, where 𝜃 is measured from the vertical direc-
tion. If the wheel does not slip, the arc C′A must equal the distance s. 
Thus, the displacement relationship and its two time derivatives give

  s = r𝜃

  vO = r𝜔 Ans.

  aO = r𝛼 1

where vO = ṡ, aO = v̇O = s̈, 𝜔 = 𝜃, and 𝛼 = �̇� = �̈�. The angle 𝜃, of course, 
must be in radians. The acceleration aO will be directed in the sense 
opposite to that of vO if the wheel is slowing down. In this event, the 
angular acceleration 𝛼 will have the sense opposite to that of 𝜔.

The origin of fi xed coordinates is taken arbitrarily but conve-
niently at the point of contact between C on the rim of the wheel and 
the ground. When point C has moved along its cycloidal path to C′, its 
new coordinates and their time derivatives become

 x = s − r sin 𝜃 = r(𝜃 − sin 𝜃)  y = r − r cos 𝜃 = r(1 − cos 𝜃)

 ẋ = r �̇�(1 − cos 𝜃) = vO(1 − cos 𝜃)   ẏ = r�̇�
 sin 𝜃 = vO sin 𝜃

 ẍ = v̇O(1 − cos 𝜃) + vO𝜃
 sin 𝜃  ÿ = v̇O sin 𝜃 + vO 𝜃

 cos 𝜃

 = aO(1 − cos 𝜃) + r𝜔2 sin 𝜃  = aO sin 𝜃 + r𝜔2 cos 𝜃

For the desired instant of contact, 𝜃 = 0 and

 ẍ = 0  and  ÿ = r𝜔2 2  Ans.

Thus, the acceleration of the point C on the rim at the instant of con-
tact with the ground depends only on r and 𝜔 and is directed toward 
the center of the wheel. If desired, the velocity and acceleration of C at 
any position 𝜃 may be obtained by writing the expressions v = ẋi + ẏj 
and a = ẍi + ÿj.

Application of the kinematic relationships for a wheel which rolls 
without slipping should be recognized for various confi gurations of 
rolling wheels such as those illustrated on the right. If a wheel slips as 
it rolls, the foregoing relations are no longer valid.

C
s

x

y

vO aO
r

s A

s

Cʹ

OʹO

𝜔 𝛼

𝜃

HELPFUL HINTS
1  These three relations are not entirely 

unfamiliar at this point, and their appli-
cation to the rolling wheel should be 
mastered thoroughly.

C

O

CC O O

C

O

2  Clearly, when 𝜃 = 0, the point of contact 
has zero velocity so that ẋ = ẏ = 0. The 
acceleration of the contact point on the 
wheel will also be obtained by the prin-
ciples of relative motion in Art. 5 ∕6.
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SAMPLE PROBLEM 5/5

The load L is being hoisted by the pulley-and-cable arrangement shown. 
Each cable is wrapped securely around its respective pulley so it does 
not slip. The two pulleys to which L is attached are fastened together to 
form a single rigid body. Calculate the velocity and acceleration of the 
load L and the corresponding angular velocity 𝜔 and angular accelera-
tion 𝛼 of the double pulley under the following conditions:

Case (a) Pulley 1: 𝜔1 = �̇�1 = 0 (pulley at rest)
 Pulley 2: 𝜔2 = 2 rad∕sec, 𝛼2 = �̇�2 = −3 rad∕sec2

Case (b) Pulley 1: 𝜔1 = 1 rad∕sec, 𝛼1 = �̇�1 = 4 rad∕sec2

 Pulley 2: 𝜔2 = 2 rad∕sec, 𝛼2 = �̇�2 = −2 rad∕sec2

Solution The tangential displacement, velocity, and acceleration of a 
point on the rim of pulley 1 or 2 equal the corresponding vertical mo-
tions of point A or B since the cables are assumed to be inextensible.

Case (a) With A momentarily at rest, line AB rotates to AB′ through 
the angle d𝜃 during time dt. From the diagram we see that the dis-
placements and their time derivatives give

 dsB = AB d𝜃   vB = AB𝜔   (aB)t = AB𝛼

        dsO = AO d𝜃  vO = AO𝜔  aO = AO𝛼 1

With vD = r2𝜔2 = 4(2) = 8 in. ∕sec and aD = r2𝛼2 = 4(−3) = −12 in. ∕sec2, 
we have for the angular motion of the double pulley

  𝜔 = vB ∕AB = vD ∕AB = 8∕12 = 2∕3 rad∕sec(CCW)  Ans.

  𝛼 = (aB)t ∕AB = aD ∕AB = −12∕12 = −1 rad∕sec2(CW) 2  Ans.

The corresponding motion of O and the load L is

  vO = AO𝜔 = 4(2∕3) = 8∕3 in.∕sec Ans.

  aO = AO𝛼 = 4(−1) = −4 in.∕sec2 3  Ans.

Case (b) With point C, and hence point A, in motion, line AB moves 
to A′B′ during time dt. From the diagram for this case, we see that the 
displacements and their time derivatives give

 dsB − dsA = AB d𝜃   vB − vA = AB𝜔   (aB)t − (aA)t = AB𝛼

 dsO − dsA = AO d𝜃   vO − vA = AO𝜔     aO − (aA)t = AO𝛼

With  vC = r1𝜔1 = 4(1) = 4 in.∕sec   vD = r2𝜔2 = 4(2) = 8 in.∕sec

 aC = r1𝛼1 = 4(4) = 16 in.∕sec2   aD = r2𝛼2 = 4(−2) = −8 in.∕sec2

we have for the angular motion of the double pulley

  𝜔 =
vB − vA

AB
=

vD − vC

AB
=

8 − 4
12

= 1∕3 rad∕sec (CCW)  Ans.

  𝛼 =
(aB)t − (aA)t

AB
=

aD − aC

AB
=

−8 − 16
12

= −2 rad∕sec2(CW) 4  Ans.

The corresponding motion of O and the load L is

  vO = vA + AO𝜔 = vC + AO𝜔 = 4 + 4(1∕3) = 16∕3 in.∕sec Ans.

  aO = (aA)t + AO𝛼 = aC + AO𝛼 = 16 + 4(−2) = 8 in.∕sec2 Ans.

HELPFUL HINTS
1  Recognize that the inner pulley is a 

wheel rolling along the fi xed line of the 
left-hand cable. Thus, the expressions of 
Sample Problem 5 ∕4 hold.

d𝜃

A O B

Case (a)

dsO

dsB vO

aO

(aB)t

vB

Bʹ

2  Since B moves along a curved path, in 
addition to its tangential component of 
acceleration (aB)t, it will also have a nor-
mal component of acceleration toward O 
which does not affect the angular accel-
eration of the pulley.

3  The diagrams show these quantities and 
the simplicity of their linear relation-
ships. The visual picture of the motion of 
O and B as AB rotates through the  angle 
d𝜃 should clarify the analysis.

A O B

Case (b)

dsA

dsO
dsB

d𝜃 vA

vO

vB

aO

(aB)t

(aA)t

Aʹ
Bʹ

4  Again, as in case (a), the differential rota-
tion of line AB as seen from the fi gure 
establishes the relation between the an-
gular velocity of the pulley and the linear 
velocities of points A, O, and B. The 
 negative sign for (aB)t = aD produces the 
acceleration diagram shown but does not 
destroy the linearity of the relationships.

L

A
O

C D

1 + +

r1 = 4ʺ r2 = 4ʺ

2

B

8ʺ4ʺ

𝜔2𝜔1
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SAMPLE PROBLEM 5/6

Motion of the equilateral triangular plate ABC in its plane is controlled 
by the hydraulic cylinder D. If the piston rod in the cylinder is moving 
upward at the constant rate of 0.3 m ∕s during an interval of its motion, 
calculate for the instant when 𝜃 = 30° the velocity and acceleration of 
the center of the roller B in the horizontal guide and the angular veloc-
ity and angular acceleration of edge CB.

Solution With the x-y coordinates chosen as shown, the given motion 
of A is vA = ẏ = 0.3 m ∕s and aA = ÿ = 0. The accompanying motion of B 
is given by x and its time derivatives, which may be obtained from x2 + 
y2 = b2. Differentiating gives

  xẋ + yẏ = 0   ẋ = − 

y
x

  ẏ 1

  xẍ + ẋ2 + yÿ + ẏ2 = 0  ẍ = − 

ẋ2 + ẏ2

x
−  

y
x

 ÿ

With y = b sin 𝜃, x = b cos 𝜃, and ÿ = 0, the expressions become

  vB = ẋ = −vA tan 𝜃

  aB = ẍ = − 

vA 

2

b
 sec3 𝜃

Substituting the numerical values vA = 0.3 m ∕s and 𝜃 = 30° gives

  vB = −0.3 ( 1

√3) = −0.1732 m∕s Ans.

  aB = − 

(0.3)2(2∕√3)3

0.2
= −0.693 m∕s2 Ans.

The negative signs indicate that the velocity and acceleration of B are 
both to the right since x and its derivatives are positive to the left.

The angular motion of CB is the same as that of every line on the 
plate, including AB. Differentiating y = b sin 𝜃 gives

ẏ = b𝜃 cos 𝜃  𝜔 = �̇� =
vA

b
 sec 𝜃

The angular acceleration is

𝛼 = �̇� =
vA

b
 𝜃 ˙ sec 𝜃 tan 𝜃 =

vA 

2

b2  sec2 𝜃 tan 𝜃

Substitution of the numerical values gives

  𝜔 =
0.3
0.2

 
2

√3
= 1.732 rad∕s Ans.

  𝛼 =
(0.3)2

(0.2)2 ( 2

√3)
2 1

√3
= 1.732 rad∕s2 Ans.

Both 𝜔 and 𝛼 are counterclockwise since their signs are positive in the 
sense of the positive measurement of 𝜃.

x

y

B

C

A

b

b

b = 0.2 m

D
x

y
𝜃

HELPFUL HINT
1  Observe that it is simpler to differe-

ntiate a product than a quotient. Thus, 
differentiate xẋ + yẏ = 0 rather than ẋ = 
− yẏ∕x.
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5/4  Relative Velocity
The second approach to rigid-body kinematics is to use the principles of relative 
motion. In Art. 2 ∕8 we developed these principles for motion relative to translating 
axes and applied the relative-velocity equation

 vA = vB + vA∕B [2∕20]

to the motions of two particles A and B.

Relative Velocity Due to Rotation
We now choose two points on the same rigid body for our two particles. The conse-
quence of this choice is that the motion of one point as seen by an observer trans-
lating with the other point must be circular since the radial distance to the  observed 
point from the reference point does not change. This observation is the key to the 
successful understanding of a large majority of problems in the plane motion of 
rigid bodies.

This concept is illustrated in Fig. 5 ∕5a, which shows a rigid body moving in the 
plane of the fi gure from position AB to A′B′ during time ∆t. This movement may be 
visualized as occurring in two parts. First, the body translates to the parallel posi-
tion A″B′ with the displacement ∆rB. Second, the body rotates about B′ through the 
angle ∆𝜃. From the nonrotating reference axes x′-y′ attached to the reference point 
B′, you can see that this remaining motion of the body is one of simple rotation 
about B′, giving rise to the displacement ∆rA ∕B of A with respect to B. To the nonro-
tating observer attached to B, the body appears to undergo fi xed-axis rotation 
about B with A executing circular motion as emphasized in Fig. 5 ∕5b. Therefore, 
the relationships developed for circular motion in Arts. 2 ∕5 and 5 ∕2 and cited as 
Eqs. 2 ∕11 and 5 ∕2 (or 5 ∕3) describe the relative portion of the motion of point A.

Point B was arbitrarily chosen as the reference point for attachment of our 
nonrotating reference axes x-y. Point A could have been used just as well, in which 
case we would observe B to have circular motion about A considered fi xed as shown 
in Fig. 5 ∕5c. We see that the sense of the rotation, counterclockwise in this  example, 

Y

X

B

(a) (b)
Motion relative to B Motion relative to A

(c)

B

ΔrB

Δ rA Δ rB

Δ rA/B

Δ rA/ B

Δ rB/A

A A

x

r
r

r

y

Bʹ

Aʹ

Aʹ

yʹ

xʹ

Aʺ

B

A

r

Bʹ

Δ𝜃

Δ𝜃

Δ𝜃

FIGURE 5/5
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is the same whether we choose A or B as the reference, and we see that ∆rB ∕A =
−∆rA ∕B.

With B as the reference point, we see from Fig. 5 ∕5a that the total displace-
ment of A is

ΔrA = ΔrB + ΔrA∕B

where ∆rA ∕B has the magnitude r∆𝜃 as ∆𝜃 approaches zero. We note that the 
relative linear motion ∆rA ∕B is accompanied by the absolute  angular motion ∆𝜃, as 
seen from the translating axes x′-y′. Dividing the expression for ∆rA by the corre-
sponding time interval ∆t and passing to the limit, we obtain the relative-velocity 
equation

 vA = vB + vA∕B (5∕4)

This expression is the same as Eq. 2 ∕20, with the one restriction that the distance 
r between A and B remains constant. The magnitude of the relative velocity is thus 
seen to be vA ∕B = lim

Δ t→0
(|∆rA ∕B|∕∆t) = lim

Δ t→0
(rΔ𝜃∕Δt) which, with 𝜔 = �̇�, becomes

 vA∕B = r𝜔 (5∕5)

Using r to represent the vector rA ∕B from the fi rst of Eqs. 5 ∕3, we may write the 
relative velocity as the vector

 vA∕B = 𝛚 × r (5∕6)

where 𝛚 is the angular-velocity vector normal to the plane of the motion in the 
sense determined by the right-hand rule. A critical observation seen from Figs. 5 ∕5b 
and c is that the relative linear velocity is always perpendicular to the line joining 
the two points in question.

Interpretation of the Relative-Velocity Equation
We can better understand the application of Eq. 5 ∕4 by visualizing the separate 
translation and rotation components of the equation. These components are empha-
sized in Fig. 5 ∕6, which shows a rigid body in plane motion. With B chosen as the 

vAv = vBv + vAv ∕B 

vA∕B = r𝜔 

vAv ∕B = 𝛚 × r

Path
of APath

of B

B

A

r
vB

vA

B

A

vB

vB

vB

vA

vA / B

vA / B

B

A

r= + 𝜔

FIGURE 5/6
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reference point, the velocity of A is the vector sum of the translational portion vB, 
plus the rotational portion vA ∕B = 𝛚 × r, which has the magnitude vA ∕B = r𝜔, where
∣𝛚∣ = �̇�, the absolute angular velocity of AB. The fact that the relative linear  velocity 
is always perpendicular to the line joining the two points in question is an important 
key to the solution of many problems. To reinforce your understanding of this con-
cept, you should draw the equivalent diagram where point A is used as the reference 
point rather than B.

Equation 5 ∕4 may also be used to analyze constrained sliding contact between 
two links in a mechanism. In this case, we choose points A and B as coincident 
points, one on each link, for the instant under consideration. In contrast to the pre-
vious example, in this case, the two points are on different bodies so they are not a 
fi xed distance apart. This second use of the relative-velocity equation is illustrated 
in  Sample Problem 5 ∕10.

Solution of the Relative-Velocity Equation
Solution of the relative-velocity equation may be carried out by scalar or vector 
algebra, or a graphical analysis may be employed. A sketch of the vector polygon 
which represents the vector equation should always be made to reveal the physical 
relationships involved. From this sketch, you can write scalar component equations 
by projecting the vectors along convenient directions. You can usually avoid solv-
ing  simultaneous equations by a careful choice of the projections. Alternatively, 
each term in the relative-motion equation may be written in terms of its i- and 
j- components, from which you will obtain two scalar equations when the equality 
is applied, separately, to the coeffi cients of the i- and j-terms.

Many problems lend themselves to a graphical solution, particularly when the 
given geometry results in an awkward mathematical expression. In this case, we 
fi rst construct the known vectors in their correct positions using a convenient scale. 
Then we construct the  unknown vectors which complete the polygon and satisfy 
the vector equation. Finally, we measure the unknown vectors directly from the 
drawing.

The choice of method to be used depends on the particular problem at hand, the 
accuracy required, and individual preference and experience. All three approaches 
are illustrated in the sample problems which follow.

Regardless of which method of solution we employ, we note that the single 
vector equation in two dimensions is equivalent to two scalar equations, so that 
at most two scalar unknowns can be determined. The unknowns, for instance, 
might be the magnitude of one vector and the direction of another. We should 
make a systematic identifi cation of the knowns and unknowns before attempting 
a solution.
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SAMPLE PROBLEM 5/7

The wheel of radius r = 300 mm rolls to the right without slipping and 
has a velocity vO = 3 m ∕s of its center O. Calculate the velocity of point 
A on the wheel for the instant represented.

Solution I (Scalar-Geometric) The center O is chosen as the refer-
ence point for the relative-velocity equation since its motion is given. 
We therefore write

vA = vO + vA∕O

where the relative-velocity term is observed from the translating axes 
x-y attached to O. The angular velocity of AO is the same as that of the 
wheel which, from Sample Problem 5 ∕4, is 𝜔 = vO ∕r = 3 ∕0.3 = 10 rad∕s. 
Thus, from Eq. 5 ∕5 we have

[vA∕O = r0 𝜃] vA∕O = 0.2(10) = 2 m∕s

which is normal to AO as shown.  1  The vector sum vA is shown on 
the diagram and may be calculated from the law of cosines. Thus,

vA 

2 = 32 + 22 + 2(3)(2) cos 60° = 19 (m∕s)2  vA = 4.36 m∕s  2  Ans.

The contact point C momentarily has zero velocity and can be 
used alternatively as the reference point, in which case, the relative-
velocity equation  becomes vA = vC + vA ∕C = vA ∕C where

vA∕C = AC𝜔 =
 AC 

OC
 vO =

0.436
0.300

 (3) = 4.36 m∕s  vA = vA∕C = 4.36 m∕s

The distance AC = 436 mm is calculated separately. We see that vA is 
normal to AC since A is momentarily rotating about point C. 3

Solution II (Vector) We will now use Eq. 5 ∕6 and write

vA = vO + vA∕O = vO + 𝛚 × r0

where

  𝛚 = −10k rad∕s 4

  r0 = 0.2(−i cos 30° + j sin 30°) = −0.1732i + 0.1j m

  vO = 3i m∕s

We now solve the vector equation

  vA = 3i + ⃒
i
0

−0.1732

j
0

0.1

k
−10

0 ⃒ = 3i + 1.732j + i

   =  4i + 1.732j m∕s Ans.

The magnitude vA = √42 + (1.732)2 = √19 = 4.36 m∕s and direction 
agree with the previous solution.

𝜃 = 30°

r = 300 mm

r0 = 200 mm
vO = 3 m/s

A

O

HELPFUL HINTS
1  Be sure to visualize vA ∕O as the velocity 

which A appears to have in its circular 
motion relative to O.

2  The vectors may also be laid off to scale 
graphically and the magnitude and di-
rection of vA measured directly from the 
diagram.

3  The velocity of any point on the wheel is 
easily determined by using the contact 
point C as the reference point. You 
should construct the velocity vectors for 
a number of points on the wheel for 
practice.

4  The vector 𝛚 is directed into the paper 
by the right-hand rule, whereas the pos-
itive z-direction is out from the paper; 
hence, the minus sign.

O

C

A

r

r0
vO

vAvA/O

y
x

60°
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SAMPLE PROBLEM 5/8

Crank CB oscillates about C through a limited arc, causing crank OA 
to oscillate about O. When the linkage passes the position shown with 
CB horizontal and OA vertical, the angular velocity of CB is 2 rad∕s 
counterclockwise. For this instant, determine the angular velocities of 
OA and AB.

Solution I (Vector) The relative-velocity equation vA = vB + vA ∕B is 
rewritten as

𝛚OA × rA = 𝛚CB × rB + 𝛚AB × rA∕B 1

where

 𝛚OA = 𝜔OAk  𝛚CB = 2k rad∕s  𝛚AB = 𝜔ABk

 rA = 100j mm   rB = −75i mm   rA∕B = −175i + 50j mm

Substitution gives

 𝜔OAk × 100j = 2k × (−75i) + 𝜔ABk × (−175i + 50j)

 −100𝜔OAi = −150j −  175𝜔AB j −  50𝜔ABi

Matching coeffi cients of the respective i- and j-terms gives

−100𝜔OA + 50𝜔AB = 0  25(6 + 7𝜔AB) = 0

the solutions of which are

 𝜔AB = −6∕7 rad∕s  and  𝜔OA = −3∕7 rad∕s 2  Ans.

Solution II (Scalar-Geometric) Solution by the scalar geometry of 
the vector triangle is particularly simple here since vA and vB are at 
right angles for this special position of the linkages. First, we compute 
vB, which is

[v = r𝜔] vB = 0.075(2) = 0.150 m∕s

and represent it in its correct direction as shown. The vector vA ∕B must 
be perpendicular to AB, and the angle 𝜃 between vA ∕B and vB is also 
the angle made by AB with the horizontal direction. This angle is 
given by

tan 𝜃 =
100 −  50
250 −  75

=
2
7

The horizontal vector vA completes the triangle for which we have 3

 vA∕B = vB∕cos 𝜃 = 0.150∕cos 𝜃

 vA = vB tan 𝜃 = 0.150(2∕7) = 0.30∕7 m∕s

The angular velocities become

[𝜔 = v∕r]   𝜔AB =
  vA∕B 

AB
=

0.150
cos 𝜃

 
cos 𝜃

0.250 −  0.075

 = 6∕7 rad∕s CW Ans.

[𝜔 = v∕r]  𝜔OA =
  vA  

OA
=

0.30
7

 
1

0.100
= 3∕7 rad∕s CW Ans.

HELPFUL HINTS
1  We are using here the fi rst of Eqs. 5 ∕3

and Eq. 5 ∕6.

2  The minus signs in the answers indicate 
that the vectors 𝛚AB and 𝛚OA are in the 
negative k-direction. Hence, the angular 
velocities are clockwise.

vB = 150 mm/s

vA

vA/B

𝜃

3  Always make certain that the sequence 
of vectors in the vector polygon agrees 
with the equality of vectors specifi ed by 
the vector  equation.

x

250 mm

50 mm

75 mm

B
rA

rA/B

rB

𝜔CB

O

A

C

y

100 mm
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SAMPLE PROBLEM 5/9

The common confi guration of a reciprocating engine is that of the 
 slider-crank mechanism shown. If the crank OB has a clockwise rota-
tional speed of 1500 rev∕min, determine for the position where 𝜃 = 60° 
the velocity of the piston A, the velocity of point G on the connecting 
rod, and the angular velocity of the connecting rod.

Solution The velocity of the crank pin B as a point on AB is easily 
found, so that B will be used as the reference point for determining the 
velocity of A. The relative-velocity equation may now be written

vA = vB + vA∕B

The crank-pin velocity is

[v = r𝜔] vB =
5

12
 
1500 (2𝜋)

60
= 65.4 ft∕sec 1

and is normal to OB. The direction of vA is, of course, along the horizon-
tal cylinder axis. The direction of vA∕B must be perpendicular to the line 
AB as explained in the present article and as indicated in the lower 
diagram, where the reference point B is shown as fi xed. We obtain this 
direction by computing angle 𝛽 from the law of sines, which gives

5
sin 𝛽

=
14

sin 60°
  𝛽 = sin−1 0.309 = 18.02°

We now complete the sketch of the velocity triangle, where the angle be-
tween vA∕B and vA is 90° − 18.02° = 72.0° and the third angle is 180° − 
30° − 72.0° = 78.0°. Vectors vA and vA∕B are shown with their proper 
sense such that the head-to-tail sum of vB and vA∕B equals vA. The mag-
nitudes of the unknowns are now calculated from the trigonometry of 
the vector triangle or are scaled from the diagram if a graphical solu-
tion is used. Solving for vA and vA∕B by the law of sines gives

  
vA

sin 78.0°
=

65.4
sin 72.0°

 vA = 67.3 ft∕sec 2  Ans.

  
vA∕B

sin 30°
=

65.4
sin 72.0°

   vA∕B = 34.4 ft∕sec

The angular velocity of AB is counterclockwise, as revealed by the 
sense of vA∕B, and is

[𝜔 = v∕r] 𝜔AB =
 vA∕B 

AB
=

34.4
14∕12

= 29.5 rad∕sec Ans.

We now determine the velocity of G by writing

 vG = vB + vG∕B

where vG∕B = GB𝜔AB =
 GB 

AB
 vA∕B =

4
14

(34.4) = 9.83 ft∕sec

As seen from the diagram, vG∕B has the same direction as vA∕B. The 
vector sum is shown on the last diagram. We can calculate vG with 
some geometric labor or simply measure its magnitude and direction 
from the velocity diagram drawn to scale. For simplicity we adopt the 
latter procedure here and obtain

 vG = 64.1 ft∕sec Ans.

As seen, the diagram may be superposed directly on the fi rst velocity 
diagram.

A
O

B

G
r = 5ʺ

4ʺ

10ʺ
𝜔𝜃𝛽

HELPFUL HINTS
1  Remember always to convert 𝜔 to  radians 

per unit time when using v = r𝜔.

30°

𝜃 = 60°

vA/B

vA

v B
 = 65.4 ft/

sec

78.0°

18.02°

r = 5ʺ

A O

B
vB

vA

72.0°

14ʺ
𝜔

2  A graphical solution to this problem is 
the quickest to achieve, although its 
 accuracy is limited. Solution by vector 
 algebra can, of course, be used but would 
involve somewhat more labor in this 
problem.

10ʺ

4ʺ

A

P

G B

vA/B

vG/B

vG/B

v B
 = 65.4 ft/

sec

vG

𝜔AB
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SAMPLE PROBLEM 5/10

The power screw turns at a speed which gives the threaded collar C a 
velocity of 0.8 ft  ∕sec vertically down. Determine the angular velocity of 
the slotted arm when 𝜃 = 30°.

Solution The angular velocity of the arm can be found if the velocity 
of a point on the arm is known. We choose a point A on the arm coinci-
dent with the pin B of the collar for this purpose. 1  If we use B as our 
reference point and write vA = vB + vA∕B, we see from the diagram, 
which shows the arm and points A and B an instant before and an in-
stant after coincidence, that vA∕B has a direction along the slot away 
from O.

The magnitudes of vA and vA∕B are the only unknowns in the  vector 
equation, so that it may now be solved. 2  We draw the known vector 
vB and then obtain the intersection P of the known directions of vA∕B 
and vA. The solution gives

 vA = vB cos 𝜃 = 0.8 cos 30° = 0.693 ft∕sec

[𝜔 = v∕r]  𝜔 =
  vA  

OA
=

0.693

(
18
12 )∕cos 30°

  = 0.400 rad∕sec CCW  Ans.

We note the difference between this problem of constrained sliding 
contact  between two links and the three preceding sample problems 
of relative velocity, where no sliding contact occurred and where the 
points A and B were located on the same rigid body in each case.

HELPFUL HINTS
1  Physically, of course, this point does not 

exist, but we can imagine such a point in 
the middle of the slot and attached to 
the arm.

A
B

A

O

B

𝜔

2  Always identify the knowns and un-
knowns before attempting the solution 
of a vector equation.

P

vA vB = 0.8 ft/sec 30°

vA/B

18ʺ

O

C

B

𝜃 = 30°
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5/5  Instantaneous Center of Zero Velocity
In the previous article, we determined the velocity of a point on a rigid body in 
plane motion by adding the relative velocity due to rotation about a convenient 
reference point to the velocity of the reference point. We now solve the problem by 
choosing a unique reference point which momentarily has zero velocity. As far as 
velocities are concerned, the body may be considered to be in pure rotation about 
an axis, normal to the plane of motion, passing through this point. This axis is 
called the instantaneous axis of zero velocity, and the intersection of this axis with 
the plane of motion is known as the instantaneous center of zero velocity. This ap-
proach provides us with a valuable means for visualizing and analyzing velocities 
in plane motion.

Locating the Instantaneous Center
The existence of the instantaneous center is easily shown. For the body in Fig. 5∕7, 
assume that the directions of the absolute velocities of any two points A and B on 
the body are known and are not parallel. If there is a point about which A has ab-
solute circular motion at the instant considered, this point must lie on the normal 
to vA through A. Similar reasoning applies to B, and the intersection of the two 
perpendiculars fulfi lls the requirement for an absolute center of rotation at the in-
stant considered. Point C is the instantaneous center of zero  velocity and may lie on 
or off the body. If it lies off the body, it may be visualized as lying on an imaginary 
extension of the body. The instantaneous center need not be a fi xed point in the 
body or a fi xed point in the plane.

If we also know the magnitude of the velocity of one of the points, say, vA, we 
may easily obtain the angular velocity ω of the body and the linear velocity of every 
point in the body. Thus, the angular velocity of the body, Fig. 5∕7a, is

𝜔 =
vA

rA

which, of course, is also the angular velocity of every line in the body. Therefore, 
the velocity of B is vB = rB 𝜔 = (rB ∕rA)vA. Once the instantaneous center is located, 
the direction of the instantaneous velocity of every point in the body is readily 
found since it must be perpendicular to the radial line joining the point in ques-
tion with C.

C

C

C

A
A A

B
B

B

rA

vA
vA

vA

vB

vB

vB

rB

(a) (b) (c)

FIGURE 5/7
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If the velocities of two points in a body having plane motion are parallel, 
Fig. 5∕7b or 5∕7c, and the line joining the points is perpendicular to the direction 
of the velocities, the instantaneous center is located by direct proportion as shown. 
We can readily see from Fig. 5∕7b that as the parallel velocities become equal in 
magnitude, the instantaneous center moves farther away from the body and 
 approaches infi nity in the limit as the body stops rotating and translates only.

Motion of the Instantaneous Center
As the body changes its position, the instantaneous center C also changes its posi-
tion both in space and on the body. The locus of the instantaneous centers in space 
is known as the space centrode, and the locus of the positions of the instantaneous 
centers on the body is known as the body centrode. At the instant considered, the 
two curves are tangent at the position of point C. It can be shown that the body-
centrode curve rolls on the space-centrode curve during the motion of the body, as 
indicated schematically in Fig. 5∕8.

Although the instantaneous center of zero velocity is momentarily at rest, its 
acceleration generally is not zero. Thus, this point may not be used as an instanta-
neous center of zero acceleration in a manner analogous to its use for fi nding veloc-
ity. An instantaneous center of zero acceleration does exist for bodies in general 
plane motion, but its location and use represent a specialized topic in mechanism 
kinematics and will not be treated here.

C

Body centrode

Space centrode

FIGURE 5/8
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This valve gear of a steam locomotive provides an interesting (albeit not cutting-
edge) study in rigid-body kinematics.
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SAMPLE PROBLEM 5/11

The wheel of Sample Problem 5∕7, shown again here, rolls to the right 
without slipping, with its center O having a velocity vO = 3 m∕s. Locate 
the instantaneous center of zero velocity and use it to fi nd the velocity 
of point A for the position indicated.

Solution The point on the rim of the wheel in contact with the 
ground has no velocity if the wheel is not slipping; it is, therefore, 
the instantaneous center C of zero velocity. The angular velocity of the 
wheel becomes

[𝜔 = v∕r] 𝜔 = vO∕OC = 3∕0.300 = 10 rad∕s

The distance from A to C is

AC = √(0.300)2 + (0.200)2 − 2(0.300)(0.200) cos 120° = 0.436 m 1

The velocity of A becomes

[v = r𝜔] vA = AC𝜔 = 0.436(10) = 4.36 m∕s Ans.

The direction of vA is perpendicular to AC as shown. 2

𝜃 = 30°

r = 300 mm

r0 = 200 mm
vO = 3 m/s

A

O

O
0.200 m

0.300 m

vA

A

C

120°

HELPFUL HINTS
1  Be sure to recognize that the cosine of 

120° is itself negative.

2  From the results of this problem, you 
should be able to visualize and sketch 
the velocities of all points on the wheel.

SAMPLE PROBLEM 5/12

Arm OB of the linkage has a clockwise angular velocity of 10 rad∕sec 
in the position shown where 𝜃 = 45°. Determine the velocity of A, the 
velocity of D, and the angular velocity of link AB for the position shown.

Solution The directions of the velocities of A and B are tangent to 
their circular paths about the fi xed centers O′ and O as shown. The 
intersection of the two perpendiculars to the velocities from A and B 
locates the instantaneous center C for the link AB. 1  The distances 
AC, BC, and DC shown on the diagram are computed or scaled from 
the drawing. The angular velocity of BC, considered a line on the body 
extended, is equal to the angular velocity of AC, DC, and AB and is

[𝜔 = v∕r]  𝜔BC =
  vB  

BC
=

OB𝜔OB

BC
=

6√2(10)

14√2

   = 4.29 rad∕sec CCW Ans.

Thus, the velocities of A and D are

[v = r𝜔]  vA =
14
12

 (4.29) = 5 ft∕sec  Ans.

  vD =
15.23

12
 (4.29) = 5.44 ft∕sec Ans.

in the directions shown.

𝜃 = 45°

A D

O

B6ʺ

6ʺ

8ʺ

2 ʺ6

Oʹ

Body extended

C

A

Oʹ O

D B

14ʺ

15.23ʺ

2ʺ14

vA
vD

vB

 45°

HELPFUL HINT
1  For the instant depicted, we should visu-

alize link AB and its body extended to be 
rotating as a single unit about point C.
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5/6  Relative Acceleration
Consider the equation vA = vB + vA ∕B, which describes the relative velocities of two 
points A and B in plane motion in terms of nonrotating reference axes. By differen-
tiating the equation with respect to time, we may obtain the relative-acceleration 
equation, which is v̇A = v̇B + v̇A∕B or

 aA = aB + aA∕B (5∕7)

In words, Eq. 5 ∕7 states that the acceleration of point A equals the  vector sum of the 
acceleration of point B and the acceleration which A appears to have to a nonrotat-
ing observer moving with B.

Relative Acceleration Due to Rotation
If points A and B are located on the same rigid body and in the plane of motion, the 
distance r between them remains constant so that the observer moving with B per-
ceives A to have circular motion about B, as we saw in Art. 5 ∕4 with the relative- 
velocity relationship. Because the relative motion is circular, it follows that the 
relative-acceleration term will have both a normal component directed from A to-
ward B due to the change of direction of vA ∕B and a tangential component perpen-
dicular to AB due to the change in magnitude of vA ∕B. These acceleration compo-
nents for circular motion, cited in Eqs. 5 ∕2, were covered earlier in Art. 2 ∕5 and 
should be thoroughly familiar by now.

Thus we may write

 aA = aB + (aA∕B)n + (aA∕B)t (5∕8)

where the magnitudes of the relative-acceleration components are

  (aA∕B)n = vA∕B 

2∕r = r𝜔2 
(5∕9)

  (aA∕B)t = v̇A∕B = r𝛼  

In vector notation the acceleration components are

  (aA∕B)n = 𝛚 × (𝛚 × r) 
(5∕9a)

  (aA∕B)t = 𝛂 × r  

In these relationships, 𝛚 is the angular velocity and 𝛂 is the angu-
lar acceleration of the body. The vector locating A from B is r. It is 
important to observe that the relative acceleration terms depend 
on the respective absolute angular velocity and absolute angular 
acceleration.

Interpretation of the Relative-Acceleration 
Equation
The meaning of Eqs. 5 ∕8 and 5 ∕9 is illustrated in Fig. 5∕9, which 
shows a rigid body in plane motion with points A and B moving 

aAa = aBa + aAa ∕B 

aAa = aBa + (aAa ∕B)n + (aAa ∕B)t 

(aAa ∕B)n = vA∕B
2∕r = r𝜔2

(aAa ∕B)t = v̇A∕B = r𝛼

(aAa ∕B)n = 𝛚 × (𝛚 × r)

(aAa ∕B)t = 𝛂 × r

A

A A

B

Path
of A

Path
of B

=

+

r

aA

aB

B B
aB

aB
aA/B

aA/B

aA

aB

(aA/B)t

(aA/B)n

(aA/B)n

(aA/B)t

t

n𝜔

𝛼

FIGURE 5/9
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along separate curved paths with absolute accelerations aA and aB. Contrary to the 
case with velocities, the accelerations aA and aB are, in general, not tangent to the 
paths described by A and B when these paths are curvilinear. The fi gure shows the 
acceleration of A to be composed of two parts: the acceleration of B and the accel-
eration of A with respect to B. A sketch showing the reference point as fi xed is 
useful in disclosing the correct sense of each of the two components of the relative- 
acceleration term.

Alternatively, we may express the acceleration of B in terms of the acceleration 
of A, which puts the nonrotating reference axes on A rather than B. This order 
gives

aB = aA + aB∕A

Here aB ∕A and its n- and t-components are the negatives of aA ∕B and its n- and 
t-components. To understand this analysis better, you should make a sketch cor-
responding to Fig. 5 ∕9 for this choice of terms.

Solution of the Relative-Acceleration Equation
As in the case of the relative-velocity equation, we can handle the solution to 
Eq. 5 ∕8 in three different ways, namely, by scalar algebra and geometry, by vector 
algebra, or by graphical construction. It is helpful to be familiar with all three tech-
niques. You should make a sketch of the vector polygon representing the vector 
equation and pay close attention to the head-to-tail combination of vectors so that 
it agrees with the equation. Known vectors should be added fi rst, and the unknown 
vectors will become the closing legs of the vector polygon. It is vital that you visu-
alize the vectors in their geometrical sense, as only then can you understand the 
full signifi cance of the acceleration equation.

Before attempting a solution, identify the knowns and unknowns, keeping in 
mind that a solution to a vector equation in two dimensions can be carried out 
when the unknowns have been reduced to two scalar quantities. These quantities 
may be the magnitude or direction of any of the terms of the equation. When both 
points move on curved paths, there will, in general, be six scalar quantities to ac-
count for in Eq. 5 ∕8.

Because the normal acceleration components depend on velocities, it is gener-
ally necessary to solve for the velocities before the acceleration calculations can be 
made. Choose the reference point in the relative-acceleration equation as some point 
on the body in question whose acceleration is either known or can be easily found. 
Be careful not to use the instantaneous center of zero velocity as the reference 
point unless its acceleration is known and accounted for.

An instantaneous center of zero acceleration exists for a rigid body in 
general plane motion, but will not be discussed here since its use is somewhat 
specialized.
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SAMPLE PROBLEM 5/13

The wheel of radius r rolls to the left without slipping and, at the in-
stant considered, the center O has a velocity vO and an acceleration aO 
to the left. Determine the acceleration of points A and C on the wheel 
for the instant considered.

Solution From our previous analysis of Sample Problem 5 ∕4, we 
know that the angular velocity and angular acceleration of the wheel 
are

𝜔 = vO∕r  and  𝛼 = aO∕r

The acceleration of A is written in terms of the given acceleration of O. 
Thus,

aA = aO + aA∕O = aO + (aA∕O)n + (aA∕O)t

The relative-acceleration terms are viewed as though O were fi xed, 
and for this relative circular motion they have the magnitudes

  (aA∕O)n = r0𝜔2 = r0 (
vO

r )
2

  (aA∕O)t = r0𝛼 = r0 (
aO

r )
and the directions shown. 1

Adding the vectors head-to-tail gives aA as shown. In a numeri-
cal problem, we may obtain the combination algebraically or graphi-
cally. The algebraic expression for the magnitude of aA is found from 
the square root of the sum of the squares of its components. If we use 
n- and t-directions, we have

  aA = √(aA)n 

2 + (aA)t 

2  

  = √[aO cos 𝜃 + (aA∕O)n]2 + [aO sin 𝜃 + (aA∕O)t]2 

 = √(r𝛼 cos 𝜃 + r0𝜔2)2 + (r𝛼 sin 𝜃 + r0𝛼)2
 2  Ans.

The direction of aA can be computed if desired.
The acceleration of the instantaneous center C of zero velocity, 

considered a point on the wheel, is obtained from the expression

aC = aO + aC∕O

where the components of the relative-acceleration term are (aC∕O)n = 
rω2 directed from C to O and (aC  ∕ O)t = r𝛂 directed to the right because 
of the counterclockwise angular acceleration of line CO about O. The 
terms are added together in the lower diagram and it is seen that

 aC = r𝜔2
 3  Ans.

HELPFUL HINTS
1  The counterclockwise angular accelera-

tion 𝛂 of OA determines the positive di-
rection of (aA∕O)t. The normal component 
(aA∕O)n is, of course, directed toward the 
reference center O.

2  If the wheel were rolling to the right 
with the same velocity vO but still had 
an acceleration aO to the left, note that 
the solution for aA would be unchanged.

3  We note that the acceleration of the instan-
taneous center of zero velocity is indepen-
dent of 𝛂 and is directed toward the center 
of the wheel. This conclusion is a useful 
result to remember.

O

C

A

r 

r0vO aO 

𝛼

𝜔

𝜃

O

O

C

A

t

t
n

n

n

t

(aA/O)t = r0𝛼

(aA/O)t

aA

(aC/O)t = r𝛼

(aC/O)t = r𝛼

aO = r𝛼

(aA/O)n

aO

(aC/O)n = r𝜔2

(aC/O)n = r𝜔2 aC = r𝜔2

(aA/O)n = r0𝜔2

𝜃

𝜃
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SAMPLE PROBLEM 5/14

The linkage of Sample Problem 5 ∕8 is repeated here. Crank CB has a 
constant counterclockwise angular velocity of 2 rad ∕s in the position 
shown during a short interval of its motion. Determine the angular 
acceleration of links AB and OA for this position. Solve by using vector 
algebra.

Solution We fi rst solve for the velocities which were obtained in 
Sample Problem 5 ∕8. They are

𝜔AB = −6∕7 rad∕s  and  𝜔OA = −3∕7 rad∕s

where the counterclockwise direction (+k-direction) is taken as positive. 
The acceleration equation is

aA = aB + (aA∕B)n + (aA∕B)t

where, from Eqs. 5 ∕3 and 5 ∕9a, we may write

 aA = 𝛂OA × rA + 𝛚OA × (𝛚OA × rA) 1

 = 𝛼OAk × 100j + (−3
7 k) × (−3

7 k × 100j)

 = −100𝛼OAi − 100(3
7)

2
j mm∕s2

 aB = 𝛂CB × rB + 𝛚CB × (𝛚CB × rB)

 = 0 + 2k × (2k × [−75i])

 = 300i mm∕s2

 (aA∕B)n = 𝛚AB × (𝛚AB × rA∕B)

 = −
6
7 k × [(−6

7 k) × (−175i + 50j)] 2

 = (6
7)

2
(175i − 50j) mm∕s2

 (aA∕B)t = 𝛂AB × rA∕B

 = 𝛼ABk × (−175i + 50j)

 = −50𝛼ABi − 175𝛼AB  

j mm∕s2

We now substitute these results into the relative-acceleration equation 
and equate separately the coeffi cients of the i-terms and the coeffi cients 
of the j-terms to give

  −100𝛼OA = 429 − 50𝛼AB

  −18.37 = −36.7 − 175𝛼AB

The solutions are

 𝛼AB = −0.1050 rad∕s2  and  𝛼OA = −4.34 rad∕s2 Ans.

Since the unit vector k points out from the paper in the positive 
z-direction, we see that the angular accelerations of AB and OA are 
both clockwise (negative).

It is recommended that the student sketch each of the acceleration 
vectors in its proper geometric relationship according to the relative-
acceleration equation to help clarify the meaning of the solution.

x

250 mm

50 mm

75 mm

B
rA

rA/B

rB

𝜔CB

O

A

C

y

100 mm

HELPFUL HINTS
1  Remember to preserve the order of the 

factors in the cross products.

2  In expressing the term aA∕B be certain 
that rA∕B is written as the  vector from B 
to A and not the reverse.
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SAMPLE PROBLEM 5/15

The slider-crank mechanism of Sample Problem 5 ∕9 is repeated here. 
The crank OB has a constant clockwise angular speed of 1500 rev ∕min. 
For the instant when the crank angle 𝜃 is 60°, determine the accel-
eration of the piston A and the angular acceleration of the connecting 
rod AB.

Solution The acceleration of A may be expressed in terms of the ac-
celeration of the crank pin B. Thus,

aA = aB + (aA∕B)n + (aA∕B)t

Point B moves in a circle of 5-in. radius with a constant speed so that 
it has only a normal component of acceleration directed from B to O. 1

[an = r𝜔2] aB =
5

12 (1500[2𝜋]
60 )

2

= 10,280 ft∕sec2

The relative-acceleration terms are visualized with A rotating in a 
circle relative to B, which is considered fi xed, as shown. From  Sample 
Problem 5 ∕9, the angular velocity of AB for these same conditions is 
𝜔AB = 29.5 rad∕sec so that

[an = r𝜔2] (aA∕B)n =
14
12

 (29.5)2 = 1015 ft∕sec2
 2

directed from A to B. The tangential component (aA ∕B)t is known in 
direction only since its magnitude depends on the unknown angular 
acceleration of AB. We also know the direction of aA since the piston 
is confi ned to move along the horizontal axis of the cylinder. There are 
now only two scalar unknowns left in the equation, namely, the mag-
nitudes of aA and (aA ∕B)t, so the solution can be carried out.

If we adopt an algebraic solution using the geometry of the accelera-
tion polygon, we fi rst compute the angle 𝛽 between AB and the horizon-
tal. With the law of sines, this angle becomes 18.02°. Equating separately 
the horizontal components and the vertical components of the terms in 
the acceleration equation, as seen from the acceleration polygon, gives

 aA = 10,280 cos 60° + 1015 cos 18.02° − (aA∕B)t sin 18.02°

 0 = 10,280 sin 60° − 1015 sin 18.02° − (aA∕B)t cos 18.02°

The solution to these equations gives the magnitudes

 (aA∕B)t = 9030 ft∕sec2  and  aA = 3310 ft∕sec2 Ans.

With the sense of (aA ∕B)t also determined from the diagram, the an-
gular acceleration of AB is seen from the fi gure representing rotation 
relative to B to be

[𝛼 = at ∕r]  𝛼AB = 9030∕(14∕12) = 7740 rad∕sec2 clockwise Ans.

If we adopt a graphical solution, we begin with the known vectors 
aB and (aA ∕B)n and add them head-to-tail using a convenient scale. Next 
we construct the direction of (aA ∕B)t through the head of the last vector. 
The solution of the equation is obtained by the intersection P of this 
last line with a horizontal line through the starting point representing 
the known direction of the vector sum aA. Scaling the magnitudes from 
the diagram gives values which agree with the calculated results. 3

 aA = 3310 ft∕sec2  and  (aA∕B)t = 9030 ft∕sec2 Ans.

HELPFUL HINTS
1  If the crank OB had an angular 

 acceleration, aB would also have a tan-
gential component of acceleration.

2  Alternatively, the relation an = v2∕r may be 
used for calculating (aA∕B)n, provided the 
relative velocity vA∕B is used for v. The 
equivalence is easily seen when it is re-
called that vA∕B = rω.

t

n

A

PaA

(aA/B)t

(aA/B)n

𝛼AB(aA/B)t

(aA/B)n = 1015 ft/sec2

B

18.02°

18.02°

60°

aB = 10,280
ft/sec2

𝜔AB = 29.5
rad/sec

3  Except where extreme accuracy is re-
quired, do not hesitate to use a graphi-
cal solution, as it is quick and reveals 
the physical relationships among the 
vectors. The known  vectors, of course, 
may be added in any order as long as the 
governing equation is satisfi ed.

A
O

B

G
r = 5ʺ

4ʺ

10ʺ
𝜔𝜃𝛽
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5/7  Motion Relative to Rotating Axes
In our discussion of the relative motion of particles in Art. 2 ∕8 and in our use of the 
relative-motion equations for the plane motion of rigid bodies in this present chap-
ter, we have used nonrotating reference axes to describe relative velocity and rela-
tive acceleration. Use of rotating reference axes greatly facilitates the solution of 
many problems in kinematics where motion is generated within a system or ob-
served from a system which itself is rotating. An example of such a motion is the 
movement of a fl uid particle along the curved vane of a centrifugal pump, where 
the path relative to the vanes of the impeller becomes an important design 
consideration.

We begin the description of motion using rotating axes by considering 
the plane motion of two particles A and B in the fi xed X-Y plane, Fig. 5 ∕10a. 
For the time being, we will consider A and B to be moving independently of 
one another for the sake of generality. We observe the motion of A from a 
moving reference frame x-y which has its origin attached to B and which 
rotates with an angular velocity ω = �̇�. We may write this angular velocity 
as the vector 𝛚 = 𝜔k = �̇�k, where the vector is normal to the plane of motion 
and where its positive sense is in the positive z-direction (out from the 
 paper), as established by the right-hand rule. The absolute position vector 
of A is given by

rA = rB + r = rB + (xi + yj) (5∕10)

where i and j are unit vectors attached to the x-y frame and r = xi + yj 
stands for rA ∕B, the position vector of A with respect to B.

Time Derivatives of Unit Vectors
To obtain the velocity and acceleration equations we must successively dif-
ferentiate the position-vector equation with respect to time. In contrast to 
the case of translating axes treated in Art. 2 ∕8, the unit vectors i and j are 
now rotating with the x-y axes and, therefore, have time derivatives which 
must be evaluated. These derivatives may be seen from Fig. 5 ∕10b, which 
shows the infi nitesimal change in each unit vector during time dt as the 
reference axes rotate through an angle d𝜃 = 𝜔 dt. The differential change in i 
is di, and it has the direction of j and a magnitude equal to the angle d𝜃 
times the length of the vector i, which is unity. Thus, di = d𝜃 j.

Similarly, the unit vector j has an infi nitesimal change dj which points in the 
negative x-direction, so that dj = −d𝜃 i. Dividing by dt and replacing di ∕dt by i̇, 
dj ∕dt by j̇, and d𝜃 ∕dt by �̇� = 𝜔 result in

i̇ = 𝜔j  and  j̇ = −𝜔i

By using the cross product, we can see from Fig. 5 ∕10c that 𝛚 × i = 𝜔j and 𝛚 × j =
−𝜔i. Thus, the time derivatives of the unit vectors may be written as

i̇ = 𝛚 × i  and  j̇ = 𝛚 × j (5∕11)i̇ = 𝛚 × i and j̇ = 𝛚 × j 

r = rA/B

rA

rB

Y

X
O

B

A

x

y

y

j

i

i

k

𝛚 × j

𝛚 × i

j

x

x

y

z

d𝜃

d𝜃

di = d𝜃j

dj = −d𝜃i
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(b)

(c)

⋅
𝜔 = 𝜃

𝜃
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Relative Velocity
We now use the expressions of Eqs. 5 ∕11 when taking the time derivative of the 
position-vector equation for A and B to obtain the relative-velocity relation. Differ-
entiation of Eq. 5 ∕10 gives

 ṙA = ṙB +
d
dt

 (xi + yj)

 = ṙB + (x i̇ + y j̇) + (ẋi + ẏj)

But xi̇ + yj̇ = 𝛚 × xi + 𝛚 × yj = 𝛚 × (xi + yj) = 𝛚 × r. Also, since the observer in 
x-y measures velocity components ẋ and ẏ, we see that ẋi + ẏj = vrel, which is the 
velocity relative to the x-y frame of reference. Thus, the relative-velocity equation 
becomes

 vA = vB + 𝛚 × r + vrel (5∕12)

Comparison of Eq. 5 ∕12 with Eq. 2 ∕20 for nonrotating reference axes 
shows that vA ∕B = 𝛚 × r + vrel, from which we conclude that the term 
𝛚 × r is the difference between the relative velocities as measured 
from nonrotating and rotating axes.

To illustrate further the meaning of the last two terms in Eq. 5 ∕12, 
the motion of particle A relative to the rotating x-y plane is shown in 
Fig. 5 ∕11 as taking place in a curved slot in a plate which represents 
the rotating x-y reference system. The velocity of A as measured rela-
tive to the plate, vrel, would be tangent to the path fi xed in the x-y
plate and would have a magnitude ṡ, where s is measured along the 
path. This relative velocity may also be viewed as the velocity vA ∕P

relative to a point P attached to the plate and coincident with A at the 
instant under consideration. The term 𝛚 × r has a magnitude r�̇� and 
a direction normal to r and is the velocity relative to B of point P as 
seen from nonrotating axes attached to B.

The following comparison will help establish the equivalence of, and clarify the 
differences between, the relative-velocity equations written for rotating and nonro-
tating reference axes:

 vA = vB + 𝛚 × r + vrel

vA = vB +    vP∕B + vA∕P 
(5∕12a)

vA =     vP     + vA∕P

vA = vB +    vA∕B

In the second equation, the term vP ∕B is measured from a nonrotating position—
otherwise, it would be zero. The term vA ∕P is the same as vrel and is the velocity of 
A as measured in the x-y frame. In the third equation, vP is the absolute velocity of 
P and represents the effect of the moving coordinate system, both translational and 
rotational. The fourth equation is the same as that developed for nonrotating axes, 
Eq. 2 ∕20, and it is seen that vA ∕B = vP ∕B + vA ∕P = 𝛚 × r + vrel.

vAv = vBv + 𝛚 × r + vrel 

r

s

rB

Y

X
O

B
Path of A

x

y
vA/B

P (fixed to path
and coincident

with A)
A

vrel =
vA/P

𝛚 × r =
vP/B

𝜔
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Transformation of a Time Derivative
Equation 5 ∕12 represents a transformation of the time derivative of the position 
vector between rotating and nonrotating axes. We may easily generalize this result 
to apply to the time derivative of any vector quantity V = Vxi + Vyj. Accordingly, the 
total time derivative with respect to the X-Y system is

(dV
dt )

XY
= (V̇xi + V̇y 

j) + (Vxi̇ + Vy j̇)

The fi rst two terms in the expression represent that part of the total derivative of 
V which is measured relative to the x-y reference system, and the second two terms 
represent that part of the derivative due to the rotation of the reference system.

With the expressions for i̇ and j̇ from Eqs. 5 ∕11, we may now write

 (dV
dt )

XY
= (dV

dt )
xy

+  𝛚 × V (5∕13)

Here 𝛚 × V represents the difference between the time derivative of the vector as 
measured in a fi xed reference system and its time derivative as measured in the ro-
tating reference system. As we will see in Art. 7 ∕2, where three-dimensional motion 
is introduced, Eq. 5 ∕13 is valid in three dimensions, as well as in two dimensions.

The physical signifi cance of Eq. 5 ∕13 is illustrated in Fig. 5 ∕12, 
which shows the vector V at time t as observed both in the fi xed axes 
X-Y and in the rotating axes x-y. Because we are dealing with the ef-
fects of rotation only, we may draw the vector through the coordinate 
origin without loss of generality. During time dt, the vector swings to 
position V′, and the observer in x-y measures the two components (a) 
dV due to its change in magnitude and (b) V d𝛽 due to its rotation d𝛽 
relative to x-y. To the rotating observer, then, the derivative (dV∕dt)xy 
which the observer measures has the components dV ∕dt and V d𝛽 ∕dt = 
V�̇�. The remaining part of the total time derivative not measured by 
the rotating observer has the magnitude V d𝜃 ∕dt and, expressed as a 
vector, is 𝛚 × V. Thus, we see from the diagram that

(V̇)XY = (V̇)xy + 𝛚 × V

which is Eq. 5 ∕13.

Relative Acceleration
The relative-acceleration equation may be obtained by differentiating the relative-
velocity relation, Eq. 5 ∕12. Thus,

aA = aB + �̇� × r + 𝛚 × ṙ + v̇rel

In the derivation of Eq. 5 ∕12 we saw that

 ṙ =
d
dt

 (xi + yj) = (xi̇ + yj̇) + (ẋi + ẏj)

 = 𝛚 × r + vrel

(dV
dt )

X
))

YXX
= (dV

dt )
x

))
yx

+ 𝛚 × V 

Y
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Therefore, the third term on the right side of the acceleration equation becomes

𝛚 × ṙ = 𝛚 × (𝛚 × r + vrel) = 𝛚 × (𝛚 × r) + 𝛚 × vrel

With the aid of Eqs. 5 ∕11, the last term on the right side of the equation for aA

 becomes

 v̇rel =
d
dt

 (ẋi + ẏj) = (ẋi̇ + ẏj̇) + (ẍi + ÿj)

 = 𝛚 × (ẋi + ẏj) + (ẍi + ÿj)

 = 𝛚 × vrel + arel

Substituting this into the expression for aA and collecting terms, we obtain

 aA = aB + �̇� × r + 𝛚 × (𝛚 × r) + 2𝛚 × vrel + arel (5∕14)

Equation 5 ∕14 is the general vector expression for the absolute 
acceleration of a particle A in terms of its acceleration arel mea-
sured relative to a moving coordinate system which rotates with an 
angular velocity 𝛚 and an angular acceleration �̇�. The terms �̇� × r
and 𝛚 × (𝛚 × r) are shown in Fig. 5 ∕13. They represent, respec-
tively, the tangential and normal components of the acceleration 
aP ∕B of the coincident point P in its circular motion with respect to 
B. This motion would be observed from a set of nonrotating axes 
moving with B. The magnitude of �̇� × r is r�̈� and its direction is 
tangent to the circle. The magnitude of 𝛚 × (𝛚 × r) is r𝜔

2 and its 
direction is from P to B along the normal to the circle.

The acceleration of A relative to the plate along the path, arel, 
may be expressed in rectangular, normal and tangential, or polar 
coordinates in the rotating system. Frequently, n- and t-components 
are used, and these components are depicted in Fig. 5  ∕13. The tan-
gential component has the magnitude (arel)t = s̈, where s is the 

 distance measured along the path to A. The normal component has the magnitude 
(arel)n = vrel 

2∕𝜌, where 𝜌 is the radius of curvature of the path as measured in x-y. 
The sense of this vector is always toward the center of curvature.

Coriolis Acceleration
The term 2𝛚 × vrel, shown in Fig. 5 ∕13, is called the Coriolis acceleration.* It rep-
resents the difference between the acceleration of A relative to P as measured from 
nonrotating axes and from rotating axes. The direction is always normal to the 
vector vrel, and the sense is established by the right-hand rule for the cross product.

The Coriolis acceleration aCor = 2𝛚 × vrel is diffi cult to visualize because it is 
composed of two separate physical effects. To help with this visualization, we will 
consider the simplest possible motion in which this term appears. In Fig. 5 ∕14a we 
have a rotating disk with a radial slot in which a small particle A is confi ned to 
slide. Let the disk turn with a constant angular velocity 𝜔 = �̇� and let the particle 
move along the slot with a constant speed vrel = ẋ relative to the slot. The 
velocity of A has the two components (a) ẋ due to motion along the slot and (b) x𝜔 
due to the rotation of the slot. The changes in these two velocity components due to 

aAa = aBa + �̇� × r + 𝛚 × (𝛚 × r) + 2𝛚 × vrel + arel

r
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Path of A

x

y

P

t

A

(arel)t
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2𝛚 × vrel

𝛚 × (𝛚 × r)

·

·
𝜔, 𝜔

𝛚 × r

FIGURE 5/13

*Named after the French military engineer G. Coriolis (1792–1843), who was the fi rst to call 
attention to this term.
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the rotation of the disk are shown in part b of the fi gure for the inter-
val dt, during which the x-y axes rotate with the disk through the 
angle d𝜃 to x′-y′.

The velocity increment due to the change in direction of vrel is ẋ 
d𝜃 and that due to the change in magnitude of x𝜔 is 𝜔 dx, both being 
in the y-direction normal to the slot. Dividing each increment by dt 
and adding give the sum 𝜔ẋ + ẋ𝜔 = 2ẋ𝜔, which is the magnitude of 
the Coriolis acceleration 2𝛚 × vrel.

Dividing the remaining velocity increment x𝜔 d𝜃 due to the 
change in direction of x𝜔 by dt gives x𝜔 �̇� or x𝜔2, which is the accel-
eration of a point P fi xed to the slot and momentarily coincident with 
the particle A.

We now see how Eq. 5 ∕14 fi ts these results. With the origin B in 
that equation taken at the fi xed center O, aB = 0. With constant 
 angular velocity, �̇� × r = 0. With vrel constant in magnitude and no 
curvature to the slot, arel = 0. We are left with

aA = 𝛚 × (𝛚 × r) + 2𝛚 × vrel

Replacing r by xi, 𝛚 by 𝜔k, and vrel by ẋi gives

aA = −x𝜔2i + 2 ẋ𝜔j

which checks our analysis from Fig. 5 ∕14.
We also note that this same result is contained in our polar- 

coordinate analysis of plane curvilinear motion in Eq. 2 ∕14 when we 
let r̈ = 0 and �̈� = 0 and replace r by x and �̇� by 𝜔. If the slot in the disk 
of Fig. 5 ∕14 had been curved, we would have had a normal compo-
nent of acceleration relative to the slot so that arel would not be zero.

Rotating versus Nonrotating Systems
The following comparison will help to establish the equivalence of, 
and clarify the differences between, the relative-acceleration equa-
tions written for rotating and nonrotating reference axes:

  aA = aB + �̇� × r + 𝛚 × (𝛚 × r) + 2𝛚 ×  vrel + arel

  aA = aB +  aP∕B + aA∕P 
(5∕14a)

  aA =  aP + aA∕P

  aA = aB +  aA∕B

The equivalence of aP ∕B and �̇� × r + 𝛚 × (𝛚 × r), as shown in the 
second equation, has already been described. From the third equa-
tion where aB + aP ∕B has been combined to give aP, it is seen that 
the relative-acceleration term aA ∕P, unlike the corresponding 
 relative-velocity term, is not equal to the relative acceleration arel 
measured from the rotating x-y frame of reference.

The Coriolis term is, therefore, the difference between the 
 acceleration aA ∕P of A relative to P as measured in a nonrotating 
system and the acceleration arel of A relative to P as measured in a 
rotating system. From the fourth equation, it is seen that the 
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The relative motion of one airplane with 
respect to an observer fi xed in the other 
translating and rotating airplane is a subject 
treated in this  article.
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178 CHAPTER 5  Plane Kinematics of Rigid Bodies

 acceleration aA ∕B of A with respect to B as measured in a nonrotating system, 
Eq. 2 ∕21, is a combination of the last four terms in the fi rst equation for the rotat-
ing system.

The results expressed by Eq. 5 ∕14 may be visualized somewhat more simply by 
writing the acceleration of A in terms of the acceleration of the coincident point P. 
Because the acceleration of P is aP = aB + �̇� × r + 𝛚 × (𝛚 × r), we may rewrite 
Eq. 5 ∕14 as

 aA = aP + 2𝛚 × vrel + arel (5∕14b)

When the equation is written in this form, point P may not be picked at random 
because it is the one point attached to the rotating reference frame coincident with 
A at the instant of analysis. Again, reference to Fig. 5 ∕13 should be made to clarify 
the meaning of each of the terms in Eq. 5 ∕14 and its equivalent, Eq. 5 ∕14b.

aAa = aPa + 2𝛚 × vrel + arel 

Key Concepts

In summary, once we have chosen our rotating reference system, we must recognize the 
following quantities in Eqs. 5 ∕12 and 5 ∕14:

 vB = absolute velocity of the origin B of the rotating axes

 aB = absolute acceleration of the origin B of the rotating axes

 r = position vector of the coincident point P measured from B

 𝛚 = angular velocity of the rotating axes

 �̇� = angular acceleration of the rotating axes

 vrel = velocity of A measured relative to the rotating axes

 arel = acceleration of A measured relative to the rotating axes

Also, keep in mind that our vector analysis depends on the consistent use of a 
right-handed set of coordinate axes. Finally, note that Eqs. 5 ∕12 and 5 ∕14, developed 
here for plane motion, hold equally well for space motion. The extension to space 
motion will be covered in Art. 7 ∕6.
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SAMPLE PROBLEM 5/16

At the instant represented, the disk with the radial slot is rotating 
about O with a counterclockwise angular velocity of 4 rad ∕sec which 
is decreasing at the rate of 10 rad∕sec2. The motion of slider A is sep-
arately controlled, and at this instant, r = 6 in., ṙ = 5 in. ∕sec, and r̈ = 
81 in. ∕sec2. Determine the absolute velocity and acceleration of A for 
this position.

Solution We have motion relative to a rotating path, so that a rotat-
ing coordinate system with origin at O is indicated. We attach x-y axes 
to the disk and use the unit vectors i and j.

Velocity With the origin at O, the term vB of Eq. 5 ∕12 disappears and 
we have

vA = 𝛚 × r + vrel 1

The angular velocity as a vector is 𝛚 = 4k rad∕sec, where k is the unit 
 vector  normal to the x-y plane in the +z-direction. 2  Our relative- 
velocity equation  becomes

 vA = 4k × 6i + 5i = 24j + 5i in.∕sec Ans.

in the direction indicated and has the magnitude

 vA = √(24)2 + (5)2 = 24.5 in.∕sec Ans.

Acceleration Equation 5 ∕14 written for zero acceleration of the 
 origin of the rotating coordinate system is

aA = 𝛚 × (𝛚 × r) + �̇� × r + 2𝛚 × vrel + arel

The terms become

 𝛚 × (𝛚 × r) = 4k × (4k × 6i) = 4k × 24j = −96i in.∕sec2

  �̇� × r = −10k × 6i = −60j in.∕sec2 3

 2𝛚 × vrel = 2(4k) × 5i = 40j in.∕sec2

 arel = 81i in.∕sec2

The total acceleration is, therefore,

 aA = (81 − 96)i + (40 − 60)j = −15i − 20j in.∕sec2 Ans.

in the direction indicated and has the magnitude

 aA = √(15)2 + (20)2 = 25 in.∕sec2 Ans.

Vector notation is certainly not essential to the solution of this problem. 
The student should be able to work out the steps with scalar notation 
just as easily. The correct direction of the Coriolis-acceleration term can 
always be found by the direction in which the head of the vrel vector 
would move if rotated about its tail in the sense of 𝛚 as shown.

HELPFUL HINTS
1  This equation is the same as vA = vP + 

vA∕P, where P is a point attached to the 
disk coincident with A at this instant.

2  Note that the x-y-z axes chosen consti-
tute a right-handed system.

3  Be sure to recognize that 𝛚 × (𝛚 × r) and 
�̇� × r represent the normal and tangen-
tial components of acceleration of a 
point P on the disk coincident with A. 
This description becomes that of 
Eq. 5∕14b.

rO

A
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𝜔 = 10 rad/sec2⋅
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O
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𝜔
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𝛚 × (𝛚 × r)

𝛚 × r
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SAMPLE PROBLEM 5/17

The pin A of the hinged link AC is confi ned to move in the rotating slot 
of link OD. The angular velocity of OD is 𝜔 = 2 rad∕s clockwise and is 
constant for the interval of motion concerned. For the position where 
𝜃 = 45° with AC horizontal, determine the velocity of pin A and the 
velocity of A relative to the rotating slot in OD.

Solution Motion of a point (pin A) along a rotating path (the slot) 
suggests the use of rotating coordinate axes x-y attached to arm OD. 
With the origin at the fi xed point O, the term vB of Eq. 5 ∕12 vanishes, 
and we have vA = 𝛚 × r + vrel.

The velocity of A in its circular motion about C is

vA = 𝛚CA × rCA = 𝜔CAk × (225∕√2)(−i − j) = (225∕√2)𝜔CA (i − j)

where the angular velocity 𝛚CA is arbitrarily assigned in a clockwise 
sense in the positive z-direction (+k). 1

 The angular velocity 𝛚 of the rotating axes is that of the arm OD 
and, by the right-hand rule, is 𝛚 = 𝜔k = 2k rad∕s. The vector from the 
origin to the point P on OD coincident with A is r = OPi =

√(450 −  225)2 + (225)2 i = 225√2i mm. Thus,

𝛚 × r = 2k × 225√2i = 450√2j mm∕s

 Finally, the relative-velocity term vrel is the velocity measured by 
an observer attached to the rotating reference frame and is vrel = ẋi. 
Substitution into the relative-velocity equation gives

(225∕√2)𝜔CA (i −  j) = 450√2j + ẋi

Equating separately the coeffi cients of the i and j terms yields

(225∕√2)𝜔CA = ẋ  and  −(225∕√2)𝜔CA = 450√2

giving

 𝜔CA = −4 rad∕s  and  ẋ = vrel = −450√2 mm∕s Ans.

With a negative value for 𝜔CA, the actual angular velocity of CA is coun-
terclockwise, so the velocity of A is up with a magnitude of

 vA = 225(4) = 900 mm∕s 2  Ans.

 Geometric clarifi cation of the terms is helpful and is easily shown. 
Using the equivalence between the third and the fi rst of Eqs. 5 ∕12a 
with vB = 0 enables us to write vA = vP + vA ∕P, where P is the point on 
the rotating arm OD coincident with A. Clearly, vP = OP𝜔 = 225√2(2) = 
450√2 mm ∕s and its direction is normal to OD. The relative velocity 
vA ∕P, which is the same as vrel, is seen from the fi gure to be along the 
slot toward O. This conclusion becomes clear when it is observed that A 
is approaching P along the slot from below before coincidence and is 
receding from P upward along the slot following coincidence. The veloc-
ity of A is tangent to its circular arc about C. The vector equation can 
now be satisfi ed since there are only two remaining scalar unknowns, 
namely, the magnitude of vA ∕P and the magnitude of vA. For the 45° 
position, the fi gure requires vA ∕P = 450√2 mm ∕s and vA = 900 mm ∕s, 
each in its direction shown. The angular velocity of AC is

[𝜔 = v∕r] 𝜔AC = vA ∕ AC = 900∕225 = 4 rad∕s counterclockwise

 A direct conversion between the two 
 reference systems is obtained from the 
geometry of the unit circle and gives

  i = I cos 𝜃 −  J sin 𝜃
 and   j = I sin 𝜃 + J cos 𝜃

Y
y

x

O

i

j

I

J

X

𝜃
𝜃𝜃

HELPFUL HINTS
1  It is clear enough physically that CA will 

have a counterclockwise angular velocity 
for the conditions specifi ed, so we antici-
pate a negative value for 𝜔CA.

2  Solution of the problem is not restricted to 
the reference axes used. Alternatively, the 
origin of the x-y axes, still attached to OD, 
could be chosen at the coincident point P 
on OD. This choice would merely replace 
the 𝛚 × r term by its equal, vP. As a further 
selection, all vector quantities could be ex-
pressed in terms of X-Y components using 
unit vectors I and J.
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SAMPLE PROBLEM 5/18

For the conditions of Sample Problem 5 ∕17, determine the angular ac-
celeration of AC and the acceleration of A relative to the rotating slot 
in arm OD.

Solution We attach the rotating coordinate system x-y to arm OD 
and use Eq. 5 ∕14. With the origin at the fi xed point O, the term aB 
 becomes zero so that

aA = �̇� × r + 𝛚 × (𝛚 × r) + 2𝛚 × vrel + arel

From the solution to Sample Problem 5 ∕17, we make use of the values 
𝛚 = 2k rad∕s, 𝛚CA = −4k rad∕s, and vrel = −450√2i mm ∕s and write

 aA = �̇�CA × rCA + 𝛚CA × (𝛚CA × rCA)

 = �̇�CAk × 225

√2
 (−i − j) − 4k × (−4k × 225

√2
 [ − i − j])

 �̇� × r = 0 since 𝛚 = constant

 𝛚 × (𝛚 × r) = 2k × (2k × 225√2i) = −900√2i mm∕s2

 2𝛚 × vrel = 2(2k) × (−450√2i) = −1800√2 j mm∕s2

  arel = ẍi 1

Substitution into the relative-acceleration equation yields

1

√2
 (225�̇�CA + 3600) i +

1

√2
 (−225�̇�CA + 3600)j = −900√2i − 1800√2j + ẍi

Equating separately the i and j terms gives

(225�̇�CA + 3600)∕√2 = −900√2 + ẍ

and (−225�̇�CA + 3600)∕√2 = −1800√2

Solving for the two unknowns gives

 �̇�CA = 32 rad∕s2  and  ẍ = arel = 8910 mm∕s2 Ans.

If desired, the acceleration of A may also be written as

 aA = (225∕√2)(32)(i − j) + (3600∕√2)(i + j) = 7640i − 2550j mm∕s2

 We make use here of the geometric representation of the relative- 
acceleration equation to further clarify the problem. The geometric ap-
proach may be used as an alternative solution. Again, we introduce 
point P on OD coincident with A. The equivalent scalar terms are

  (aA)t = ��̇�CA × rCA � = r�̇�CA = r𝛼CA normal to CA, sense unknown

 (aA)n = �𝛚CA × (𝛚CA × rCA) � = r𝜔CA 

2 from A to C

 (aP)n = �𝛚 × (𝛚 × r) � = OP𝜔2 from P to O

 (aP)t = ��̇� × r � = r�̇� = 0 since 𝜔 = constant

 �2𝛚 × vrel � = 2𝜔vrel directed as shown

 arel = ẍ along OD, sense unknown

We start with the known vectors and add them head-to-tail for each side 
of the equation beginning at R and ending at S, where the intersection of 
the known directions of (aA)t and arel establishes the solution. Closure of 
the polygon determines the sense of each of the two unknown vectors, 
and their magnitudes are easily calculated from the fi gure geometry. 2

HELPFUL HINTS
1  If the slot had been curved with a radius 

of curvature 𝜌, the term arel would have 
had a component vrel

2∕𝜌 normal to the 
slot and directed toward the center of 
curvature in addition to its component 
along the slot.

2  It is always possible to avoid a simulta-
neous solution by projecting the vectors 
onto the perpendicular to one of the 
 unknowns.
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SAMPLE PROBLEM 5/19

Aircraft B has a constant speed of 150 m ∕s as it passes the 
bottom of a circular loop of 400-m radius. Aircraft A fl ying 
 horizontally in the plane of the loop passes 100 m directly 
below B at a constant speed of 100 m ∕s. (a) Determine the 
instantaneous velocity and acceleration which A appears to 
have to the pilot of B, who is fi xed to his rotating aircraft. 
(b) Compare your results for part (a) with the case of errone-
ously treating the pilot of aircraft B as nonrotating.

Solution (a) We begin by clearly defi ning the rotating coor-
dinate system x-y-z which best helps us to answer the ques-
tions. With x-y-z attached to aircraft B as shown, the terms vrel 
and arel in Eqs. 5 ∕12 and 5 ∕14 will be the desired results. The 
terms in Eq. 5 ∕12 are

vA = 100i m∕s

vB = 150i m∕s

𝛚 =
vB

𝜌
 k =

150
400

  k = 0.375k rad∕s 1

r = rA∕B = −100j m

Eq. 5∕12:  vA = vB + 𝛚 × r + vrel

100i = 150i + 0.375k × (−100j) + vrel

Solving for vrel gives vrel = −87.5i m∕s Ans.

The terms in Eq. 5 ∕14, in addition to those listed above, are

aA = 0

aB =
vB

2

𝜌
 j =

1502

400
 j = 56.2 j m∕s2

�̇� = 0

Eq. 5∕14: aA = aB + �̇� × r + 𝛚 × (𝛚 × r) + 2𝛚 × vrel + arel

 0 = 56.2 j + 0 × (−100j) + 0.375k × [0.375k × (−100j)]

  + 2[0.375k × (−87.5i)] + arel

Solving for arel gives arel = −4.69k m∕s2 Ans.

(b) For motion relative to translating frames, we use Eqs. 2 ∕20 and 
2 ∕21 of Chapter 2:

 vA∕B = vA − vB = 100i − 150i = −50i m∕s

 aA∕B = aA − aB = 0 − 56.2 j = −56.2 j m∕s2

Again, we see that vrel ≠ vA∕B and arel ≠ aA∕B. The rotation of pilot B 
makes a difference in what he observes!

 The scalar result 𝜔 =
vB

𝜌
 can be obtained by considering a complete

circular motion of aircraft B, during which it rotates 2𝜋 radians in a 

time t = 
2𝜋𝜌

vB
:

𝜔 =
2𝜋

2𝜋𝜌∕vB
=

vB

𝜌

Because the speed of aircraft B is constant, there is no tangential accel-
eration and thus the angular acceleration 𝛂 = �̇� of this aircraft is zero.

HELPFUL HINT
1  Because we choose the rotating frame 

x-y-z to be fi xed to aircraft B, the angu-
lar velocity of the aircraft and the term 
𝛚 in Eqs. 5∕12 and 5∕14 are identical.

100 m

B

A

y

z

x

𝜌 = 400 m

100 m
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5/8  Chapter Review
In Chapter 5 we have applied our knowledge of basic 
kinematics from Chapter 2 to the plane motion of rigid 
bodies. We approached the problem in two ways.

1. Absolute-Motion Analysis
First, we wrote an equation which describes the general 
geometric confi guration of a given problem in terms 
of knowns and unknowns. Then we differentiated this 
equation with respect to time to obtain velocities and 
accelerations, both linear and angular.

2. Relative-Motion Analysis
We applied the principles of relative motion to rigid 
bodies and found that this approach enables us to solve 
many problems which are too awkward to handle by 
mathematical differentiation. The relative-velocity equa-
tion, the instantaneous center of zero velocity, and the 
relative-acceleration equation all require that we visu-
alize clearly and analyze correctly the case of circular 
motion of one point around another point, as viewed 
from nonrotating axes.

Solution of the Velocity and Acceleration 
Equations
The relative-velocity and relative-acceleration relation-
ships are vector equations which we may solve in any 
one of three ways:

 1. by a scalar-geometric analysis of the vector  polygon,

 2. by vector algebra, or

 3. by a graphical construction of the vector polygon.

Rotating Coordinate Systems
Finally, in Chapter 5 we introduced rotating coordin-
ate systems which enable us to solve problems where 
the motion is observed relative to a rotating frame of 
reference. Whenever a point moves along a path which 
itself is turning, analysis by rotating axes is indic-
ated if a relative-motion approach is used. In deriving 
Eq. 5 ∕12 for velocity and Eq. 5 ∕14 for acceleration, 
where the relative terms are measured from a rotating 
reference system, it was necessary for us to account for 
the time derivatives of the unit vectors i and j fi xed to 
the rotating frame. Equations 5 ∕12 and 5 ∕14 also apply 
to spatial motion, as will be shown in Chapter 7.

An important result of the analysis of rotating 
 coordinate systems is the identifi cation of the Coriolis 
 acceleration. This acceleration represents the fact that 
the absolute velocity vector may have changes in both 
direction and magnitude due to rotation of the relative-
velocity vector and change in position of the particle 
along the rotating path.

In Chapter 6 we will study the kinetics of rigid 
 bodies in plane motion. There we will fi nd that the  ability 
to analyze the linear and angular accelerations of rigid 
bodies is necessary in order to apply the force and 
 moment equations which relate the applied forces to the 
associated motions. Thus, the material of Chapter 5 is 
essential to that in Chapter 6.
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The principles of this chapter must be applied 
during the design of the massive blades of large 
wind turbines. 
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CHAPTER 6
Plane Kinetics 
of Rigid Bodies

6/1  Introduction
The kinetics of rigid bodies treats the relationships between the external forces 
acting on a body and the corresponding translational and rotational motions of the 
body. In Chapter 5 we developed the kinematic relationships for the plane motion 
of rigid bodies, and we will use these relationships extensively in this present chap-
ter, where the effects of forces on the two-dimensional motion of rigid bodies are 
examined.

For our purpose in this chapter, a body which can be approximated as a thin 
slab with its motion confi ned to the plane of the slab will be considered to be in 
plane motion. The plane of motion will contain the mass center, and all forces which 
act on the body will be projected onto the plane of motion. A body which has appre-
ciable dimensions normal to the plane of motion but is symmetrical about that 
plane of motion through the mass center may be treated as having plane motion. 
These idealizations clearly fi t a very large category of rigid-body motions.

CHAPTER OUTLINE

6/1 Introduction

SECTION A Force, Mass, and Acceleration

6/2 General Equations of Motion
6/3 Translation
6/4 Fixed-Axis Rotation
6/5 General Plane Motion

SECTION B Work and Energy

6/6 Work-Energy Relations
6/7 Acceleration from Work-Energy; Virtual Work

SECTION C Impulse and Momentum

6/8 Impulse-Momentum Equations
6/9 Chapter Review
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Background for the Study of Kinetics
In Chapter 3 we found that two force equations of motion were required to defi ne 
the motion of a particle whose motion is confi ned to a plane. For the plane motion 
of a rigid body, an additional equation is needed to specify the state of rotation of 
the body. Thus, two force equations and one moment equation or their equivalent 
are required to determine the state of rigid-body plane motion.

The kinetic relationships which form the basis for most of the analysis of rigid-
body motion were developed in Chapter 4 for a general system of particles. Fre-
quent reference will be made to these equations as they are further developed in 
Chapter 6 and applied specifi cally to the plane motion of rigid bodies. You should 
refer to Chapter 4 frequently as you study Chapter 6. Also, before proceeding make 
sure that you have a fi rm grasp of the calculation of velocities and accelerations as 
developed in Chapter 5 for rigid-body plane motion. Unless you can determine ac-
celerations correctly from the principles of kinematics, you frequently will be un-
able to apply the force and moment principles of kinetics. Consequently, you should 
master the necessary kinematics, including the calculation of relative  accelerations, 
before proceeding.

Successful application of kinetics requires that you isolate the body or system 
to be analyzed. The isolation technique was illustrated and used in Chapter 3 for 
particle kinetics and will be employed consistently in the present chapter. For prob-
lems involving the instantaneous relationships among force, mass, and accelera-
tion, the body or system should be explicitly defi ned by isolating it with its free-
body diagram. When the principles of work and energy are employed, an active-force 
diagram which shows only those external forces which do work on the system may 
be used in lieu of the free-body diagram. The impulse-momentum diagram should 
be constructed when impulse-momentum methods are used. No solution of a prob-
lem should be attempted without fi rst defi ning the complete external boundary of 
the body or system and identifying all external forces which act on it.

In the kinetics of rigid bodies which have angular motion, we must introduce a 
property of the body which accounts for the radial distribution of its mass with re-
spect to a particular axis of rotation normal to the plane of motion. This property is 
known as the mass moment of inertia of the body, and it is essential that we be able 
to calculate this property in order to solve rotational problems. We assume that you 
are familiar with the calculation of mass moments of inertia. Appendix B treats 
this topic for those who need instruction or review.

Organization of the Chapter
Chapter 6 is organized in the same three sections in which we treated the kinetics 
of particles in Chapter 3. Section A relates the forces and moments to the instanta-
neous linear and angular accelerations. Section B treats the solution of problems 
by the method of work and energy. Section C covers the methods of impulse and 
momentum.

Virtually all of the basic concepts and approaches covered in these three sections 
were treated in Chapter 3 on particle kinetics. This repetition will help you with the 
topics of Chapter 6, provided you understand the kinematics of rigid-body plane mo-
tion. In each of the three sections, we will treat three types of motion: translation, 
fi xed-axis rotation, and general plane motion.
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186 CHAPTER 6  Plane Kinetics of Rigid Bodies

SECTION A Force, Mass, and Acceleration

6/2  General Equations of Motion
In Arts. 4 ∕2 and 4 ∕4 we derived the force and moment vector equations of motion 
for a general system of mass. We now apply these results by starting, fi rst, with a 
general rigid body in three dimensions. The force equation, Eq. 4 ∕1,

 ΣF = ma [4 ∕1]

tells us that the resultant ΣF of the external forces acting on the body equals the 
mass m of the body times the acceleration a of its mass center G. The moment 
equation taken about the mass center, Eq. 4 ∕9,

 ΣMG = ḢG [4 ∕9]

shows that the resultant moment about the mass center of the external forces on the 
body equals the time rate of change of the angular momentum of the body about the 
mass center.

Recall from our study of statics that a general system of forces acting on a rigid 
body may be replaced by a resultant force applied at a chosen point and a correspond-
ing couple. By replacing the external forces by their equivalent force-couple system 
in which the resultant force acts through the mass center, we may visualize the ac-
tion of the forces and the corresponding dynamic response of the body with the aid 
of Fig. 6 ∕1. Part a of the fi gure shows the relevant free-body diagram. Part b of the 
fi gure shows the equivalent force-couple system with the resultant force applied 
through G. Part c of the fi gure is a kinetic diagram, which represents the resulting 
dynamic effects as specifi ed by Eqs. 4 ∕1 and 4 ∕9. The equivalence between the free-
body diagram and the kinetic diagram enables us to clearly visualize and easily re-
member the separate translational and rotational effects of the forces applied to a 
rigid body. We will express this equivalence mathematically as we apply these results 
to the treatment of rigid-body plane motion.

Equivalent Force-
Couple System

(b)

Free-Body Diagram

(a)

Kinetic Diagram

(c)

ma–

F1

F2

F3

F4

ΣF

ΣMG HG

GGG ≡ ≡

⋅

FIGURE 6/1
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Plane-Motion Equations
We now apply the foregoing relationships to the case of plane motion. Figure 6 ∕2
represents a rigid body moving with plane motion in the x-y plane. The mass cen-
ter G has an acceleration a, and the body has an angular velocity 𝛚 = 𝜔k and an 
angular acceleration 𝛂 = 𝛼k, both taken positive in the z-direction. Because the 
z-direction of both 𝛚 and 𝛂 remains perpendicular to the plane of motion, we may 
use scalar notation 𝜔 and 𝛼 = �̇� to represent the angular velocity and angular 
acceleration.

The angular momentum about the mass center for the general sys-
tem was expressed in Eq. 4 ∕8a as HG = Σ𝛒i × mi𝛒i where 𝛒i is the position 
vector relative to G of the representative particle of mass mi. For our rigid 
body, the velocity of mi relative to G is 𝛒i = 𝛚 × 𝛒i, which has a magnitude 
𝜌i𝜔, lies in the plane of motion, and is normal to 𝛒i. The product 𝛒i × 𝛒i is 
then a vector normal to the x-y plane in the sense of 𝛚, and its magnitude 
is 𝜌i 

2
𝜔. Thus, the magnitude of HG becomes HG = Σ𝜌i 

2mi𝜔 = 𝜔Σ𝜌i 

2mi. The 
summation, which may also be written as ∫ 𝜌2 dm, is defi ned as the mass 
moment of inertia I  of the body about the z-axis through G. (See Appendix B 
for a discussion of the calculation of mass moments of inertia.)

We may now write

HG = I𝜔

where I  is a constant property of the body. This property is a measure of 
the rotational inertia, which is the resistance to change in rotational ve-
locity due to the radial distribution of mass around the z-axis through G. 
With this substitution, our moment equation, Eq. 4 ∕9, becomes

ΣMG = ḢG = I �̇� = I𝛼

where 𝛼 = �̇� is the angular acceleration of the body.
We may now express the moment equation and the vector form of the general-

ized Newton’s second law of motion, Eq. 4 ∕1, as

  ΣF = ma
 (6 ∕1)

 ΣMG = I𝛼

Equations 6 ∕1 are the general equations of motion for a rigid body in plane motion. 
In applying Eqs. 6 ∕1, we express the vector force equation in terms of its two scalar 
components using x-y, n-t, or r-𝜃 coordinates, whichever is most convenient for the 
problem at hand.

Alternative Derivation
It is instructive to use an alternative approach to derive the moment equa-
tion by referring directly to the forces which act on the representative parti-
cle of mass mi, as shown in Fig. 6 ∕3. The acceleration of mi equals the vector 
sum of a and the relative terms 𝜌i𝜔

2 and 𝜌i𝛼, where the mass center G is 
used as the reference point. It follows that the resultant of all forces on mi 
has the components mi a, mi𝜌i𝜔

2, and mi𝜌i𝛼 in the directions shown. The sum 
of the moments of these force components about G in the sense of 𝛼 becomes

MGi
= mi 𝜌i 

2
𝛼 + (mi  a sin 𝛽)xi − (mi  a cos 𝛽)yi

ΣF = ma
 

ΣMGMM = I𝛼
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188 CHAPTER 6  Plane Kinetics of Rigid Bodies

Similar moment expressions exist for all particles in the body, and the sum of 
these moments about G for the resultant forces acting on all particles may be 
 written as

ΣMG = Σmi 𝜌i 

2
𝛼 + a sin 𝛽 Σmi xi − a cos 𝛽 Σmi yi

But the origin of coordinates is taken at the mass center, so that Σmixi = mx = 0 and 
Σmiyi = my = 0. Thus, the moment sum becomes

ΣMG = Σmi 𝜌i 

2
𝛼 = I𝛼

as before. The contribution to ΣMG of the forces internal to the body is, of course, 
zero since they occur in pairs of equal and opposite forces of action and reaction 
between interacting particles. Thus, ΣMG, as before, represents the sum of moments 
about the mass center G of only the external forces acting on the body, as disclosed 
by the free-body diagram.

We note that the force component mi𝜌i𝜔
2 has no moment about G and conclude, 

therefore, that the angular velocity 𝜔 has no infl uence on the moment equation 
about the mass center.

The results embodied in our basic equations of motion for a rigid body in plane 
motion, Eqs. 6 ∕1, are represented diagrammatically in Fig. 6 ∕4, which is the two- 
dimensional counterpart of parts a and c of Fig. 6 ∕1 for a general three-dimensional 
body. The free-body diagram discloses the forces and moments appearing on the left-
hand side of our equations of motion. The kinetic diagram discloses the resulting 
 dynamic response in terms of the translational term ma and the rotational term 
I𝛼 which appear on the right-hand side of Eqs. 6 ∕1.

As previously mentioned, the translational term ma will be expressed by its x-y, 
n-t, or r-𝜃 components once the appropriate inertial reference system is designated. 
The equivalence depicted in Fig. 6 ∕4 is basic to our understanding of the kinetics of 
plane motion and will be employed frequently in the solution of problems.

Representation of the resultants ma and I𝛼 will help ensure that the force and 
moment sums determined from the free-body diagram are equated to their proper 
resultants.

Alternative Moment Equations
In Art. 4 ∕4 of Chapter 4 on systems of particles, we developed a general equation 
for moments about an arbitrary point P, Eq. 4 ∕11, which is

 ΣMP = ḢG + 𝛒 × ma [4 ∕11]
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G
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where 𝛒 is the vector from P to the mass center G and a is the mass-center accelera-
tion. As we have shown earlier in this article, for a rigid body in plane motion ḢG

becomes I𝛼. Also, the cross product 𝛒 × ma is simply the moment of magnitude mad
of ma about P. Therefore, for the two-dimensional body illustrated in Fig. 6 ∕5 with 
its free-body diagram and kinetic diagram, we may rewrite Eq. 4 ∕11 simply as

ΣMP = I𝛼 + mad (6 ∕2)

Clearly, all three terms are positive in the counterclockwise sense for the exam-
ple shown, and the choice of P eliminates reference to F1 and F3.

If we had wished to eliminate reference to F2 and F3, for example, by choosing 
their intersection as the reference point, then P would lie on the opposite side of the 
ma vector, and the clockwise moment of ma about P would be a negative term in 
the equation. Equation 6 ∕2 is easily remembered as it is merely an expression of the 
familiar principle of moments, where the sum of the moments about P equals the 
combined moment about P of their sum, expressed by the resultant couple ΣMG = 
I𝛼 and the resultant force ΣF = ma.

In Art. 4 ∕4 we also developed an alternative moment equation about P, 
Eq. 4 ∕13, which is

 ΣMP = (ḢP)rel + 𝛒 × maP [4 ∕13]

For rigid-body plane motion, if P is chosen as a point fi xed to the body, then in scalar 
form (ḢP)rel becomes IP 𝛼, where IP is the mass moment of inertia about an axis 
through P and 𝛼 is the angular acceleration of the body. So we may write the 
equation as

 ΣMP = IP 𝛂 + 𝛒 × maP (6 ∕3)

where the acceleration of P is aP and the position vector from P to G is 𝛒.
When 𝛒 = 0, point P becomes the mass center G, and Eq. 6 ∕3 reduces to the scalar 

form ΣMG = I𝛼, previously derived. When point P becomes a point O fi xed in an iner-
tial reference system and attached to the body (or body extended), then aP = 0, and 
Eq. 6 ∕3 in scalar form reduces to

 ΣMO = IO𝛼 (6 ∕4)

Equation 6 ∕4 then applies to the rotation of a rigid body about a nonaccelerating 
point O fi xed to the body and is the two-dimensional simplifi cation of Eq. 4 ∕7.

ΣMPM = I𝛼 + madd 

ΣMPM = IPI 𝛂 + 𝛒 × maPa  

ΣMOMM = IOII 𝛼 

a–

G

P

d

ma–
P

G

–

≡

F1

F2

F3

Free-Body Diagram Kinetic Diagram

𝛼

I
–
𝛼

𝝆

FIGURE 6/5

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


190 CHAPTER 6  Plane Kinetics of Rigid Bodies

Unconstrained and Constrained Motion
The motion of a rigid body may be unconstrained or constrained. The rocket moving 
in a vertical plane, Fig. 6 ∕6a, is an example of unconstrained motion as there are 
no physical confi nements to its motion. The two components ax and ay of the mass-
center acceleration and the angular acceleration 𝛼 may be determined indepen-
dently of one another by direct application of Eqs. 6 ∕1.

The bar in Fig. 6 ∕6b, on the other hand, undergoes a constrained motion, 
where the vertical and horizontal guides for the ends of the bar impose a kinematic 
relationship between the acceleration components of the mass center and the an-
gular acceleration of the bar. Thus, it is necessary to determine this kinematic re-
lationship from the principles established in Chapter 5 and to combine it with the 
force and moment equations of motion before a solution can be carried out.

In general, dynamics problems which involve physical constraints to motion 
require a kinematic analysis relating linear to angular acceleration before the force 
and moment equations of motion can be solved. It is for this reason that an under-
standing of the principles and methods of Chapter 5 is so vital to the work of 
 Chapter 6.

Systems of Interconnected Bodies
Upon occasion, in problems dealing with two or more connected rigid bodies whose 
motions are related kinematically, it is convenient to analyze the bodies as an en-
tire system.

Figure 6 ∕7 illustrates two rigid bodies hinged at A and subjected to the  external 
forces shown. The forces in the connection at A are internal to the system and are 
not disclosed. The resultant of all external forces must equal the vector sum of the 
two resultants m1a1 and m2a2, and the sum of the moments about some arbitrary 
point such as P of all external forces must equal the moment of the resultants, 
I1𝛼1 + I2𝛼2 + m1a1d1 + m2a2d2. Thus, we may state

 ΣF = Σma
 (6∕5)

 ΣMP = ΣI𝛼 + Σmad

where the summations on the right-hand side of the equations represent as many 
terms as there are separate bodies.
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If there are more than three remaining unknowns in a system, however, the 
three independent scalar equations of motion, when applied to the system, are not 
suffi cient to solve the problem. In this case, more advanced methods such as virtual 
work (Art. 6 ∕7) or Lagrange’s equations (not discussed in this book*) could be em-
ployed, or else the system could be dismembered and each part analyzed separately 
with the resulting equations solved simultaneously.

Key Concepts  Analysis Procedure

In the solution of force-mass-acceleration problems for 
the plane motion of rigid bodies, the following steps 
should be taken once you understand the conditions and 
requirements of the problem:

1. Kinematics. First, identify the class of motion and 
then solve for any needed linear and angular accelera-
tions which can be determined solely from given kin-
ematic information. In the case of constrained plane 
motion, it is usually necessary to establish the relation 
between the linear acceleration of the mass center and 
the angular acceleration of the body by fi rst solving the 
appropriate relative-velocity and relative-acceleration 
equations. Again, we emphasize that success in working 
force-mass-acceleration problems in this chapter is con-
tingent on the ability to describe the necessary kinemat-
ics, so that frequent review of Chapter 5 is recommended.

2. Diagrams. Always draw the complete free-body di-
agram of the body to be analyzed. Assign a convenient 

inertial coordinate system and label all known and 
 unknown quantities. The kinetic diagram should also 
be constructed so as to clarify the equivalence between 
the applied forces and the resulting dynamic response.

3. Equations of Motion. Apply the three equations of 
motion from Eqs. 6 ∕1, being consistent with the alge-
braic signs in relation to the choice of reference axes. 
Equation 6 ∕2 or 6 ∕3 may be employed as an alternative 
to the second of Eqs. 6 ∕1. Combine these relations with 
the results from any needed kinematic analysis. Count 
the number of unknowns and be certain that there are 
an equal number of independent equations available. 
For a solvable rigid-body problem in plane motion, there 
can be no more than the fi ve scalar unknowns which can 
be determined from the three scalar equations of motion, 
obtained from Eqs. 6 ∕1, and the two scalar component 
relations which come from the relative-acceleration 
 equation.

*When an interconnected system has more than one degree of freedom, that is, requires more 
than one coordinate to specify completely the confi guration of the system, the more advanced 
equations of Lagrange are generally used. See the fi rst author’s Dynamics, 2nd Edition, SI 
Version, 1975, John Wiley & Sons, for a treatment of Lagrange’s equations.

In the following three articles the foregoing developments will be applied to 
three cases of motion in a plane: translation, fi xed-axis rotation, and general plane 
motion.
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192 CHAPTER 6  Plane Kinetics of Rigid Bodies

6/3  Translation
Rigid-body translation in plane motion was described in Art. 5 ∕1 and illustrated in 
Figs. 5 ∕1a and 5 ∕1b, where we saw that every line in a translating body remains 
parallel to its original position at all times. In rectilinear translation all points move 
in straight lines, whereas in curvilinear translation all points move on congruent 
curved paths. In either case, there is no angular motion of the translating body, so 
that both 𝜔 and 𝛼 are zero. Therefore, from the moment relation of Eqs. 6 ∕1, we see 
that all reference to the moment of inertia is eliminated for a translating body.

For a translating body, then, our general equations for plane motion, Eqs. 6 ∕1, 
may be written

 ΣF = ma
 (6 ∕6)

 ΣMG = I𝛼 = 0

ΣF = ma
 

ΣMGMM = I𝛼 = 0
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For rectilinear translation, illustrated in Fig. 6 ∕8a, if the x-axis is chosen in the 
direction of the acceleration, then the two scalar force equations become ΣFx = 
max and ΣFy = may = 0. For curvilinear translation, Fig. 6 ∕8b, if we use n-t coor-
dinates, the two scalar force equations become ΣFn = man and ΣFt = mat. In both 
cases, ΣMG = 0.

We may also employ the alternative moment equation, Eq. 6 ∕2, with the aid of 
the kinetic diagram. For rectilinear translation we see that ΣMP = mad and ΣMA = 
0. For curvilinear translation the kinetic diagram permits us to write ΣMA = mandA 
in the clockwise sense and ΣMB = mat dB in the counterclockwise sense. Thus, we 
have complete freedom to choose a convenient moment center.
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The methods of this article apply to this motorcycle if its roll (lean) angle is 
constant for an interval of time. 
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194 CHAPTER 6  Plane Kinetics of Rigid Bodies

SAMPLE PROBLEM 6/1

The pickup truck weighs 3220 lb and reaches a speed of 30 mi ∕  hr from 
rest in a distance of 200 ft up the 10-percent incline with constant ac-
celeration. Calculate the normal force under each pair of wheels and 
the friction force under the rear driving wheels. The effective coeffi cient 
of friction between the tires and the road is known to be at least 0.80.

Solution We will assume that the mass of the wheels is negligible 
compared with the total mass of the truck. 1  The truck may now be 
simulated by a single rigid body in rectilinear translation with an ac-
celeration of

[v2 = 2as] a =
(44)2

2(200)
= 4.84 ft∕sec2 2

 The free-body diagram of the complete truck shows the normal 
forces N1 and N2, the friction force F in the direction to oppose the 
slipping of the driving wheels, and the weight W represented by its two 
components. With 𝜃 = tan−1 1 ∕ 10 = 5.71°, these components are W cos 𝜃 = 
3220 cos 5.71° = 3200 lb and W sin 𝜃 = 3220 sin 5.71° = 320 lb. The ki-
netic diagram shows the resultant, which passes through the mass cen-
ter and is in the direction of its acceleration. Its magnitude is

ma =
3220
32.2

(4.84) = 484 lb

 Applying the three equations of motion, Eqs. 6 ∕1, for the three 
 unknowns gives

[ΣFx = max]    F − 320 = 484  F = 804 lb 3  Ans.

[ΣFy = may = 0]    N1 + N2 − 3200 = 0 (a)

[ΣMG = I𝛼 = 0]   60N1 + 804(24) − N2(60) = 0 (b)

Solving (a) and (b) simultaneously gives

 N1 = 1441 lb  N2 = 1763 lb Ans.

 In order to support a friction force of 804 lb, a coeffi cient of friction 
of at least F ∕N2 = 804 ∕1763 = 0.46 is required. Since our coeffi cient of 
friction is at least 0.80, the surfaces are rough enough to support the 
calculated value of F so that our result is correct.

Alternative Solution From the kinetic diagram we see that N1 and 
N2 can be obtained independently of one another by writing separate 
moment equations about A and B.

[ΣMA = mad]  120N2 − 60(3200) − 24(320) = 484(24) 4

  N2 = 1763 lb  Ans.

[ΣMB = mad]  3200(60) − 320(24) − 120N1 = 484(24)

  N1 = 1441 lb  Ans.

60ʺ
10

1

24ʺ

60ʺ

G

HELPFUL HINTS
1  Without this assumption, we would be 

obliged to account for the relatively 
small additional forces which produce 
moments to give the wheels their angu-
lar acceleration.

2  Recall that 30 mi ∕  hr is 44 ft ∕sec.

3  We must be careful not to use the fric-
tion equation F = 𝜇N here since we do 
not have a case of slipping or impending 
slipping. If the given coeffi cient of fric-
tion were less than 0.46, the friction 
force would be 𝜇N2, and the car would 
be unable to attain the acceleration of 
4.84 ft ∕sec2. In this case, the unknowns 
would be N1, N2, and a.

4  The left-hand side of the equation is 
evaluated from the free-body diagram, 
and the right-hand side from the kinetic 
diagram. The positive sense for the mo-
ment sum is arbitrary but must be the 
same for both sides of the equation. In 
this problem, we have taken the clock-
wise sense as positive for the moment of 
the resultant force about B.
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SAMPLE PROBLEM 6/2

The vertical bar AB has a mass of 150 kg with center of mass G midway 
between the ends. The bar is elevated from rest at 𝜃 = 0 by means of the 
parallel links of negligible mass, with a constant couple M = 5 kN∙m 
applied to the lower link at C. Determine the angular acceleration 𝛼 of 
the links as a function of 𝜃 and fi nd the force B in the link DB at the 
instant when 𝜃 = 30°.

Solution The motion of the bar is seen to be curvilinear translation 
since the bar itself does not rotate during the motion. With the circular 
motion of the mass center G, we choose n- and t-coordinates as the most 
convenient description. 1  With negligible mass of the links, the tan-
gential component At of the force at A is obtained from the free-body 
diagram of AC, where ΣMC ≅ 0 and At = M∕AC = 5 ∕1.5 = 3.33 kN. 2  
The force at B is along the link. All applied forces are shown on the free-
body diagram of the bar, and the kinetic diagram is also indicated, 
where the ma resultant is shown in terms of its two components.
 The sequence of solution is established by noting that An and B 
depend on the n-summation of forces and, hence, on mr𝜔2 at 𝜃 = 30°. 
The value of 𝜔 depends on the variation of 𝛼 = �̈� with 𝜃. This depen-
dency is established from a force summation in the t-direction for a 
general value of 𝜃, where at = (at)A = AC𝛼. Thus, we begin with

[ΣFt = mat] 3.33 − 0.15(9.81) cos 𝜃 = 0.15(1.5𝛼)

 𝛼 = 14.81 − 6.54 cos 𝜃 rad∕s2  Ans.

With 𝛼 a known function of 𝜃, the angular velocity 𝜔 of the links is ob-
tained from

[𝜔 d𝜔 = 𝛼 d𝜃]  ∫𝜔

0
 𝜔 d𝜔 = ∫𝜃

0
 (14.81 − 6.54 cos 𝜃) d𝜃

 𝜔2 = 29.6𝜃 − 13.08 sin 𝜃

Substitution of 𝜃 = 30° gives

(𝜔2)30° = 8.97 (rad∕s)2  𝛼30° = 9.15 rad∕s2

and

 mr𝜔2 = 0.15(1.5)(8.97) = 2.02 kN

 mr𝛼 = 0.15(1.5)(9.15) = 2.06 kN

 The force B may be obtained by a moment summation about A, 
which eliminates An and At and the weight. Or a moment summation 
may be taken about the intersection of An and the line of action of mr𝛼, 
which eliminates An and mr𝛼. Using A as a moment center gives

[ΣMA = mad]  1.8 cos 30° B = 2.02(1.2) cos 30° + 2.06(0.6)

  B = 2.14 kN  Ans.

The component An could be obtained from a force summation in the 
n-direction or from a moment summation about G or about the inter-
section of B and the line of action of mr𝛼.
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HELPFUL HINTS
1  Generally speaking, the best choice of 

reference axes is to make them coincide 
with the directions in which the compo-
nents of the mass-center acceleration are 
expressed. Examine the consequences of 
choosing horizontal and vertical axes.

2  The force and moment equations for 
a body of negligible mass become the 
same as the equations of equilibrium. 
Link BD, therefore, acts as a two-force 
member in equilibrium.
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6/4  Fixed-Axis Rotation
Rotation of a rigid body about a fi xed axis O was described in Art. 5 ∕2 
and illustrated in Fig. 5 ∕1c. For this motion, we saw that all points in 
the body describe circles about the rotation axis, and all lines of the 
body in the plane of motion have the same angular velocity 𝜔 and 
angular acceleration 𝛼.

The acceleration components of the mass center for circular mo-
tion are most easily expressed in n-t coordinates, so we have an = r𝜔2

and at = r𝛼, as shown in Fig. 6 ∕9a for rotation of the rigid body about 
the fi xed axis through O. Part b of the fi gure represents the free-body 
diagram, and the equivalent kinetic diagram in part c of the fi gure 
shows the force resultant ma in terms of its n- and t-components and 
the resultant couple I𝛼.

Our general equations for plane motion, Eqs. 6 ∕1, are directly ap-
plicable and are repeated here.

  ΣF = ma
 [6 ∕1]

 ΣMG = I𝛼

Thus, the two scalar components of the force equation become ΣFn = 
mr𝜔2 and ΣFt = mr𝛼. In applying the moment equation about G, we 
must account for the moment of the force applied to the body at O, so 
this force must not be omitted from the free-body diagram.

For fi xed-axis rotation, it is generally useful to apply a moment 
equation directly about the rotation axis O. We derived this equation 
previously as Eq. 6 ∕4, which is repeated here.

 ΣMO = IO𝛼 [6 ∕4]

From the kinetic diagram in Fig. 6 ∕9c, we may obtain Eq. 6 ∕4 very easily by evalu-
ating the moment of the resultants about O, which becomes ΣMO = I𝛼 + matr. Appli-
cation of the parallel-axis theorem for mass moments of inertia, IO = I  + mr 

2, gives 
ΣMO = (IO − mr 

2)𝛼 + mr 

2
𝛼 = IO𝛼.

For the common case of rotation of a rigid body about a fi xed axis through its 
mass center G, clearly, a = 0, and therefore ΣF = 0. The resultant of the applied 
forces then is the couple I𝛼.

We may combine the resultant-force component mat and resultant couple I𝛼 by 
moving mat to a parallel position through point Q on line OG, Fig. 6 ∕10, located by 
mr𝛼q = I𝛼 + mr𝛼(r). Using the parallel-axis theorem and IO = kO 

2m gives q = 
kO 

2∕  r.
Point Q is called the center of percussion and has the unique property that the 

resultant of all forces applied to the body must pass through it. It follows that the 
sum of the moments of all forces about the center of percussion is always zero, 
ΣMQ = 0.

ΣF = ma
 

ΣMGMM = I𝛼

ΣMOMM = IOII 𝛼 
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SAMPLE PROBLEM 6/3

The concrete block weighing 644 lb is elevated by the hoisting mech-
anism shown, where the cables are securely wrapped around the re-
spective drums. The drums, which are fastened together and turn as 
a single unit about their mass center at O, have a combined weight of 
322 lb and a radius of gyration about O of 18 in. If a constant tension 
P = 400 lb is maintained by the power unit at A, determine the vertical 
acceleration of the block and the resultant force on the bearing at O.

Solution I The free-body and kinetic diagrams of the drums and con-
crete block are drawn showing all forces which act, including the com-
ponents Ox and Oy of the bearing reaction. 1  The resultant of the force 
system on the drums for centroidal rotation is the couple I𝛼 = IO𝛼, 
where

[I = k2m] I = IO = (18
12)

2 322
32.2

= 22.5 lb-ft-sec2 2

 Taking moments about the mass center O for the pulley in the 
sense of the angular acceleration 𝛼 gives

[ΣMG = I𝛼] 400 (24
12) − T (12

12) = 22.5𝛼 (a)

 The acceleration of the block is described by

[ΣFy = may] T − 644 =
644
32.2

a (b)

From at = r𝛼, we have a = (12 ∕12)𝛼. With this substitution, Eqs. (a) and 
(b) are combined to give

 T = 717 lb  𝛼 = 3.67 rad∕sec2  a = 3.67 ft∕sec2 Ans.

The bearing reaction is computed from its components. Since 
a = 0, we use the equilibrium equations

[ΣFx = 0]  Ox − 400 cos 45° =  0  Ox = 283 lb

[ΣFy = 0]  Oy − 322 − 717 − 400 sin 45° = 0  Oy = 1322 lb

  O = √(283)2 + (1322)2 = 1352 lb Ans.

Solution II We may use a more condensed approach by drawing the 
free-body diagram of the entire system, thus eliminating reference to 
T, which becomes internal to the new system. From the kinetic dia-
gram for this system, we see that the moment sum about O must equal 
the resultant couple I𝛼 for the drums, plus the moment of the resul-
tant ma for the block. Thus, from the principle of Eq. 6 ∕5 we have

[ΣMO = ΣI𝛼 +Σmad]   400 (24
12) − 644 (12

12) = 22.5𝛼 +
644
32.2

 𝛼(12
12)

With a = (12 ∕12)𝛼, the solution gives, as before, a = 3.67 ft ∕sec2.
 We may equate the force sums on the entire system to the sums of 
the resultants. Thus,

[ΣFy = Σmay]   Oy − 322 − 644 − 400 sin 45° =
322
32.2

(0) +
644
32.2

(3.67)

  Oy = 1322 lb

[ΣFx = Σmax]  Ox − 400 cos 45° = 0  Ox = 283 lb

HELPFUL HINTS
1  Be alert to the fact that the tension T is 

not 644 lb. If it were, the block would not 
accelerate.

2  Do not overlook the need to express kO 
in feet when using g in ft∕sec2.

ma
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Oy

O O

x

a
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45°

322 lb

644 lb
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≡
I
–
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24ʺ 12ʺ
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SAMPLE PROBLEM 6/4

The pendulum has a mass of 7.5 kg with center of mass at G and has 
a radius of gyration about the pivot O of 295 mm. If the pendulum is 
released from rest at 𝜃 = 0, determine the total force supported by 
the bearing at the instant when 𝜃 = 60°. Friction in the bearing is 
negligible.

Solution The free-body diagram of the pendulum in a general posi-
tion is shown along with the corresponding kinetic diagram, where the 
components of the resultant force have been drawn through G. 1

 The normal component On is found from a force equation in the 
n-direction, which involves the normal acceleration r𝜔2. Since the an-
gular velocity 𝜔 of the pendulum is found from the integral of the angu-
lar acceleration and since Ot depends on the tangential acceleration r𝛼, 
it follows that 𝛼 should be obtained fi rst. To this end with IO = kO 

2m, 
the moment equation about O gives

[ΣMO = IO𝛼]  7.5(9.81)(0.25) cos 𝜃 = (0.295)2(7.5)𝛼 2

  𝛼 = 28.2 cos 𝜃 rad∕s2

and for 𝜃 = 60°

[𝜔 d𝜔 = 𝛼 d𝜃]  ∫𝜔

0
 𝜔 d𝜔 = ∫𝜋∕3

0
 28.2 cos 𝜃 d𝜃

  𝜔2 = 48.8 (rad∕s)2

The remaining two equations of motion applied to the 60° position 
yield

[ΣFn = mr𝜔2]  On − 7.5(9.81) sin 60° = 7.5(0.25)(48.8) 3

  On = 155.2 N

[ΣFt = mr𝛼]  −Ot + 7.5(9.81) cos 60° = 7.5(0.25)(28.2) cos 60°

  Ot = 10.37 N

  O = √(155.2)2 + (10.37)2 = 155.6 N  Ans.

The proper sense for Ot may be observed at the outset by applying the 
moment equation ΣMG = I𝛼, where the moment about G due to Ot must 
be clockwise to agree with 𝛼. The force Ot may also be obtained initially 
by a moment equation about the center of percussion Q, shown in the 
lower fi gure, which avoids the necessity of computing 𝛼. First, we must 
obtain the distance q, which is

[q = kO 

2∕ r ]  q =
(0.295)2

0.250
= 0.348 m

[ΣMQ = 0] Ot(0.348) − 7.5(9.81)(cos 60°)(0.348 − 0.250) = 0

 Ot = 10.37 N Ans.

r _ =
 250 m

m

O

G

𝜃

HELPFUL HINTS
1  The acceleration components of G are, 

of course, an = r𝜔2 and at  =  r𝛼.

2  Review the theory again and satisfy 
yourself that ΣMO = IO𝛼 = I𝛼 + mr 

2
𝛼=

mr𝛼q.

3  Note especially here that the force sum-
mations are taken in the positive direc-
tion of the acceleration components of 
the mass center G.

n

t

7.5(9.81) N
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6/5  General Plane Motion
The dynamics of a rigid body in general plane motion combines translation and 
rotation. In Art. 6 ∕2 we represented such a body in Fig. 6 ∕4 with its free-body dia-
gram and its kinetic diagram, which discloses the dynamic resultants of the ap-
plied forces. Figure 6 ∕4 and Eqs. 6 ∕1, which apply to general plane motion, are 
repeated here for convenient reference.

  ΣF = ma
 [6∕1] ΣMG = I𝛼

Direct application of these equations expresses the equivalence between the exter-
nally applied forces, as disclosed by the free-body diagram, and their force and 
moment resultants, as represented by the kinetic diagram.

ΣF = ma
 

ΣMGMM = I𝛼

Key Concepts  Solving Plane-Motion Problems

Keep in mind the following considerations when solving 
plane-motion problems.

Choice of Coordinate System. The force equation 
of Eq. 6 ∕1 should be expressed in whatever coordinate 
 system most readily describes the acceleration of the 
mass center. You should consider rectangular, normal-
tangential, and polar coordinates.

Choice of Moment Equation. In Art. 6 ∕2 we also 
showed, with the aid of Fig. 6 ∕5, the application of the 
alternative relation for moments about any point P, 
Eq. 6 ∕2. This fi gure and this equation are also repeated 
here for easy reference.

 ΣMP = I𝛼 + mad [6∕2]

In some instances, it may be more convenient to use the 
alternative moment relation of Eq. 6 ∕3 when moments 
are taken about a point P whose acceleration is known. 
Note also that the equation for moments about a nonac-
celerating point O on the body, Eq. 6 ∕4, constitutes still 

ΣMPM = I𝛼 + mad 

another alternative moment relation and at times may 
be used to advantage.

Constrained versus Unconstrained Motion. In 
working a problem in general plane motion, we fi rst ob-
serve whether the motion is unconstrained or constrained, 
as illustrated in the examples of Fig. 6 ∕6. If the  motion 
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200 CHAPTER 6  Plane Kinetics of Rigid Bodies

Consistency of Assumptions. In formulating the 
solution to a problem, we recognize that the directions 
of certain forces or accelerations may not be known at 
the outset, so that it may be necessary to make initial 
assumptions whose validity will be proved or disproved 
when the solution is carried out. It is essential, how-
ever, that all assumptions made be consistent with 
the principle of action and reaction and with any kin-
ematic requirements, which are also called conditions 
of  constraint.

Thus, for example, if a wheel is rolling on a hori-
zontal surface, its center is constrained to move on a 
horizontal line. Furthermore, if the unknown linear ac-
celeration a of the center of the wheel is assumed posi-
tive to the right, then the unknown angular acceleration 
𝛼 will be positive in a clockwise sense in order that a = 
+r𝛼, if we assume the wheel does not slip. Also, we note 
that, for a wheel which rolls without slipping, the static 
friction force between the wheel and its supporting sur-
face is generally less than its maximum value, so that 
F ≠ 𝜇sN. But if the wheel slips as it rolls, a ≠ r𝛼, and 
a kinetic friction force is generated which is given by 
F = 𝜇kN. It may be necessary to test the validity of either 
assumption, slipping or no slipping, in a given problem. 
The difference between the coeffi cients of static and ki-
netic friction, 𝜇s and 𝜇k, is sometimes ignored, in which 
case, 𝜇 is used for either or both coeffi cients.

is constrained, we must account for the kinematic re-
lationship between the linear and the angular accel-
erations and incorporate it into our force and moment 
equations of motion. If the motion is unconstrained, the 
accelerations can be determined independently of one 
another by direct application of the three motion equa-
tions, Eqs. 6 ∕1.

Number of Unknowns. In order for a rigid-body 
problem to be solvable, the number of unknowns can-
not exceed the number of independent equations avail-
able to describe them, and a check on the suffi ciency of 
the relationships should always be made. At the most, 
for plane motion we have three scalar equations of 
motion and two scalar components of the vector rel-
ative-acceleration equation for constrained  motion. 
Thus, we can handle as many as fi ve unknowns for 
each rigid body.

Identifi cation of the Body or System. We empha-
size the importance of clearly choosing the body to be 
isolated and representing this isolation by a correct 
free-body diagram. Only after this vital step has been 
completed can we properly evaluate the equivalence be-
tween the external forces and their resultants.

Kinematics. Of equal importance in the analysis of 
plane motion is a clear understanding of the kinematics 
involved. Very often, the diffi culties experienced at this 
point have to do with kinematics, and a thorough review 
of the relative-acceleration relations for plane motion 
will be most helpful.
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Look ahead to Prob. 6/85 to see a special-case problem involving a dummy 
such as the one in this car undergoing an impact test. 
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SAMPLE PROBLEM 6/5

A metal hoop with a radius r = 6 in. is released from rest on the 20° 
 incline. If the coeffi cients of static and kinetic friction are 𝜇s = 0.15 and 
𝜇k = 0.12, determine the angular acceleration 𝛼 of the hoop and the 
time t for the hoop to move a distance of 10 ft down the incline.

Solution The free-body diagram shows the unspecifi ed weight mg, the 
normal force N, and the friction force F acting on the hoop at the contact 
point C with the incline. The kinetic diagram shows the resultant force 
ma through G in the direction of its acceleration and the couple I𝛼. The 
counterclockwise angular acceleration requires a counterclockwise 
 moment about G, so F must be up the incline.
 Assume that the hoop rolls without slipping, so that a = r𝛼. Appli-
cation of the components of Eqs. 6 ∕1 with x- and y-axes assigned gives

[ΣFx = max]  mg sin 20° − F = ma

[ΣFy = may = 0]  N − mg cos 20° = 0

[ΣMG = I𝛼]  Fr = mr2
𝛼 1

Elimination of F between the fi rst and third equations and substitution 
of the kinematic assumption a = r𝛼 give

a =
g
2

 sin 20° =
32.2

2
 (0.342) = 5.51 ft∕sec2 2

 Alternatively, with our assumption of a = r𝛼 for pure rolling, a 
moment sum about C by Eq. 6 ∕2 gives a directly. Thus,

[ΣMC = I𝛼 + mad]  mgr sin 20° = mr2 
a
r + mar  a =

g
2

 sin 20°

 To check our assumption of no slipping, we calculate F and N and 
compare F with its limiting value. From the above equations,

 F = mg sin 20° − m 
g
2

 sin 20° = 0.1710mg

 N = mg cos 20° = 0.940mg

But the maximum possible friction force is

[Fmax = 𝜇sN] Fmax = 0.15(0.940mg) = 0.1410mg

Because our calculated value of 0.1710mg exceeds the limiting value of 
0.1410mg, we conclude that our assumption of pure rolling was wrong. 
Therefore, the hoop slips as it rolls and a ≠ r𝛼. The friction force then 
becomes the kinetic value

[F = 𝜇kN] F = 0.12(0.940mg) = 0.1128mg

The motion equations now give

[ΣFx = max] mg sin 20° − 0.1128mg = ma

  a = 0.229(32.2) = 7.38 ft∕sec2

[ΣMG = I𝛼]   0.1128mg(r) = mr2
𝛼 3

  𝛼 =
0.1128(32.2)

6∕12
= 7.26 rad∕sec2 Ans.

The time required for the center G of the hoop to move 10 ft from rest 
with constant acceleration is

[x =
1
2 at2] t = √2x

a
= √2(10)

7.38
= 1.646 sec Ans.

HELPFUL HINTS
1  Because all of the mass of a hoop is a 

distance r from its center G, its moment 
of inertia about G must be mr2.

2  Note that a is independent of both m 
and r.
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6ʺ
G
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𝜇k = 0.12
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3  Note that 𝛼 is independent of m but 
 dependent on r.
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SAMPLE PROBLEM 6/6

The drum A is given a constant angular acceleration 𝛼0 of 3 rad∕s2 and 
causes the 70-kg spool B to roll on the horizontal surface by means of 
the connecting cable, which wraps around the inner hub of the spool. 
The radius of gyration k of the spool about its mass center G is 250 mm, 
and the coeffi cients of friction between the spool and the horizontal 
surface are 𝜇s = 0.25 and 𝜇k = 0.20. Determine the tension T in the cable 
and the friction force F exerted by the horizontal surface on the spool.

Solution The free-body diagram and the kinetic diagram of the spool 
are drawn as shown. The correct direction of the friction force may be 
assigned in this problem by observing from both diagrams that with 
counterclockwise angular acceleration, a moment sum about point G 
(and also about point D) must be counterclockwise. A point on the con-
necting cable has an acceleration at = r𝛼 = 0.25(3) = 0.75 m ∕s2, which is 
also the horizontal component of the acceleration of point D on the 
spool. It will be assumed initially that the spool rolls without slipping, 
in which case it has a counterclockwise angular acceleration 𝛼 = 
(aD)x∕DC = 0.75 ∕0.30 = 2.5 rad∕s2. 1  The acceleration of the mass 
center G is, therefore, a = r𝛼 = 0.45(2.5) = 1.125 m ∕s2.
 With the kinematics determined, we now apply the three equa-
tions of motion, Eqs. 6 ∕1,

[ΣFx = max] F − T = 70(−1.125) (a)

[ΣFy = may] N − 70(9.81) = 0  N = 687 N

[ΣMG = I𝛼]  F(0.450) − T(0.150) = 70(0.250)2(2.5) 2  (b)

Solving (a) and (b) simultaneously gives

 F = 75.8 N  and  T = 154.6 N Ans.

To establish the validity of our assumption of no slipping, we see that 
the surfaces are capable of supporting a maximum friction force Fmax = 
𝜇sN = 0.25(687) = 171.7 N. Since only 75.8 N of friction force is re-
quired, we conclude that our assumption of rolling without slipping is 
valid.
 If the coeffi cients of static and kinetic friction had been 0.10 and 
0.08, respectively, for example, then the friction force would have been 
limited to 0.10(687) = 68.7 N, which is less than 75.8 N, and the spool 
would slip. In this event, the kinematic relation a = r𝛼 would no longer 
hold. With (aD)x known, the angular acceleration would be 𝛼 = [a − 
(aD)x]∕GD. 3  Using this relation along with F = 𝜇kN = 0.08(687) = 
54.9 N, we would then re-solve the three equations of motion for the 
unknowns T, a, and 𝛼.
 Alternatively, with point C as a moment center in the case of pure 
rolling, we may use Eq. 6 ∕2 and obtain T directly. Thus,

[ΣMC = I𝛼 + mar]  0.3T = 70(0.25)2(2.5) + 70(1.125)(0.45)

  T = 154.6 N Ans.

where the previous kinematic results for no slipping have been incor-
porated. We could also write a moment equation about point D to ob-
tain F directly. 4

HELPFUL HINTS
1  The relation between a and 𝛼 is the 

 kinematic constraint which accompa-
nies the assumption that the spool rolls 
without slipping.

2  Be careful not to make the mistake of 
using 1

2 mr2 for I  of the spool, which is 
not a uniform circular disk.

4  The fl exibility in the choice of moment 
centers provided by the kinetic diagram 
can usually be employed to simplify the 
analysis.

3  Our principles of relative acceleration 
are a necessity here. Hence, the relation 
(aG ∕D)t = GD𝛼 should be recognized.
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SAMPLE PROBLEM 6/7

The slender bar AB weighs 60 lb and moves in the vertical plane, 
with its ends constrained to follow the smooth horizontal and vertical 
guides. If the 30-lb force is applied at A with the bar initially at rest in 
the position for which 𝜃 = 30°, calculate the resulting angular accelera-
tion of the bar and the forces on the small end rollers at A and B.

Solution The bar undergoes constrained motion, so that we must es-
tablish the relationship between the mass-center acceleration and the 
angular acceleration. The relative-acceleration equation aA = aB + aA ∕B 
must be solved fi rst, and then the equation a = aG = aB + aG ∕B is next 
solved to obtain expressions relating a and 𝛼. 1  With 𝛼 assigned in its 
clockwise physical sense, the acceleration polygons which represent 
these equations are shown, and their solution gives

 ax = a cos 30° = 2𝛼 cos 30° = 1.732𝛼 ft∕sec2

 ay = a sin 30° = 2𝛼 sin 30° = 1.0𝛼 ft∕sec2

 Next we construct the free-body diagram and the kinetic diagram 
as shown. With ax and ay now known in terms of 𝛼, the remaining un-
knowns are 𝛼 and the forces A and B. We now apply Eqs. 6 ∕1, which give

[ΣMG = I𝛼]

30(2 cos 30°) − A(2 sin 30°) + B(2 cos 30°) =
1
12

 
60

32.2
 (42)𝛼 2

[ΣFx = max]  30 − B =
60

32.2
 (1.732𝛼)

[ΣFy = may]  A − 60 =
60

32.2
 (1.0𝛼)

Solving the three equations simultaneously gives us the results

 A = 68.2 lb  B = 15.74 lb  𝛼 = 4.42 rad∕sec2 Ans.

 As an alternative solution, we can use Eq. 6 ∕2 with point C as the 
moment center and avoid the necessity of solving three equations 
 simultaneously. This choice eliminates reference to forces A and B and 
gives 𝛼 directly. Thus,

[ΣMC = I𝛼 + Σmad]

30(4 cos 30°) − 60(2 sin 30°) =  
1
12

 
60

32.2
 (42)𝛼

+ 
60

32.2
 (1.732𝛼)(2 cos 30°) +

60
32.2

 (1.0𝛼)(2 sin 30°) 3

 43.9 = 9.94𝛼  𝛼 = 4.42 rad∕sec2 Ans.

 With 𝛼 determined, we can now apply the force equations indepen-
dently and get

[ΣFy = may]  A − 60 =
60

32.2
 (1.0)(4.42)  A = 68.2 lb  Ans.

[ΣFx = max]  30 − B =
60

32.2
 (1.732)(4.42)   B = 15.74 lb Ans.

HELPFUL HINTS
1  If the application of the relative- 

acceleration equations is not perfectly 
clear at this point, then review Art. 5 ∕6. 
Note that the relative normal accelera-
tion term is absent since there is no 
 angular velocity of the bar.

2  Recall that the moment of inertia of a 
slender rod about its center is 1

12 ml2.
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3  From the kinetic diagram, Σmad = 
maxdy + maydx. Since both terms of the 
sum are clockwise, in the same sense as 
I𝛼, they are positive.
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SAMPLE PROBLEM 6/8

A car door is inadvertently left slightly open when the brakes are ap-
plied to give the car a constant rearward acceleration a. Derive expres-
sions for the angular velocity of the door as it swings past the 90° posi-
tion and the components of the hinge reactions for any value of 𝜃. The 
mass of the door is m, its mass center is a distance r from the hinge axis 
O, and the radius of gyration about O is kO.

Solution Because the angular velocity 𝜔 increases with 𝜃, we need to 
fi nd how the angular acceleration 𝛼 varies with 𝜃 so that we may inte-
grate it over the interval to obtain 𝜔. We obtain 𝛼 from a moment equa-
tion about O. First, we draw the free-body diagram of the door in the 
horizontal plane for a general position 𝜃. The only forces in this plane 
are the components of the hinge reaction shown here in the x- and y-
directions. On the kinetic diagram, in addition to the resultant couple 
I𝛼 shown in the sense of 𝛼, we represent the resultant force ma in terms 
of its components by using an equation of relative acceleration with 
 respect to O. 1  This equation becomes the kinematic equation of con-
straint and is

a = aG = aO + (aG∕O)n + (aG∕O)t

The magnitudes of the ma components are then

maO = ma  m(aG∕O)n = mr𝜔2  m(aG∕O)t = mr𝛼 2

where 𝜔 = 𝜃 and 𝛼 = 𝜃.
 For a given angle 𝜃, the three unknowns are 𝛼, Ox, and Oy. We can 
eliminate Ox and Oy by a moment equation about O, which gives

[ΣMO = I𝛼 + Σmad]   0 = m(kO 

2 − r 
2)𝛼 + mr𝛼(r) − ma(r sin 𝜃) 3

Solving for 𝛼 gives     𝛼 =
ar
kO 

2 sin 𝜃 4

Now we integrate 𝛼 fi rst to a general position and get

[𝜔 d𝜔 = 𝛼 d𝜃]  ∫𝜔

0
 𝜔 d𝜔 = ∫𝜃

0
 

ar
kO 

2 sin 𝜃 d𝜃

  𝜔2 =
2ar
kO 

2  (1 − cos 𝜃)

For 𝜃 = 𝜋∕2,  𝜔 =
1
kO

√2ar  Ans.

 To fi nd Ox and Oy for any given value of 𝜃, the force equations give

[ΣFx = max] Ox = ma − mr𝜔2 cos 𝜃 − mr𝛼 sin 𝜃 5

  = m[ a −
2ar 

2

kO 

2  (1 − cos 𝜃) cos 𝜃 −
ar 

2

kO 

2 sin2 
𝜃]

  = ma[ 1 −
r 

2

kO 

2 (1 + 2 cos 𝜃 − 3 cos2 
𝜃) ]  Ans.

[ΣFy = may]  Oy = mr𝛼 cos 𝜃 − mr𝜔2 sin 𝜃

  = mr 
ar
kO 

2 sin 𝜃 cos 𝜃 − mr 
2ar
kO 

2  (1 − cos 𝜃) sin 𝜃

  =
mar 

2

kO 

2  (3 cos 𝜃 − 2) sin 𝜃  Ans.

HELPFUL HINTS
1  Point O is chosen because it is the only 

point on the door whose acceleration is 
known.

2  Be careful to place mr𝛼 in the sense 
of positive 𝛼 with respect to rotation 
about O.

3  The free-body diagram shows that there 
is zero moment about O. We use the 
transfer-of-axis theorem here and sub-
stitute kO 

2 = k2 + r 

2. If this relation is 
not totally familiar, review Art. B ∕1 in 
Appendix B.

4  We may also use Eq. 6 ∕3 with O as a 
 moment center

 ΣMO = IO𝛂 + 𝛒 × maO

 where the scalar values of the terms are 
IO𝛼 = mkO 

2
𝛼 and 𝛒 × maO becomes 

−rma sin 𝜃.
5  The kinetic diagram shows clearly the 

terms which make up max and may.

a

O 𝜃

𝜔

–r

Ox

Oy

G

x

y

G ≡

O
mao =

ma
𝜃

I
–
𝛼

mr–

mr–

𝛼

𝜔
2
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SECTION B Work and Energy

6/6  Work-Energy Relations
In our study of the kinetics of particles in Arts. 3 ∕6 and 3 ∕7, we developed the prin-
ciples of work and energy and applied them to the motion of a particle and to  selected 
cases of connected particles. We found that these principles were especially useful in 
describing motion which resulted from the cumulative effect of forces acting through 
distances. Furthermore, when the forces were conservative, we were able to deter-
mine velocity changes by analyzing the energy conditions at the beginning and end 
of the motion interval. For fi nite displacements, the work-energy method eliminates 
the necessity for determining the acceleration and integrating it over the interval to 
obtain the velocity change. These same advantages are realized when we extend the 
work-energy principles to describe rigid-body motion.

Before carrying out this extension, you should review the defi nitions and con-
cepts of work, kinetic energy, gravitational and elastic  potential energy, conserva-
tive forces, and power treated in Arts. 3 ∕6 and 3 ∕7 because we will apply them to 
rigid-body problems. You should also review Arts. 4 ∕3 and 4 ∕4 on the kinetics of 
systems of particles, in which we extended the principles of Arts. 3 ∕6 and 3 ∕7 to 
encompass any general system of mass particles, which includes rigid bodies.

Work of Forces and Couples
The work done by a force F has been treated in detail in Art. 3 ∕6 and is given by

U = ∫ F∙dr  or  U = ∫ (F cos 𝛼) ds

where dr is the infi nitesimal vector displacement of the point of application of F, 
as shown in Fig. 3 ∕2a. In the equivalent scalar form of the integral, 𝛼 is the angle 
between F and the direction of the displacement, and ds is the magnitude of the 
vector displacement dr.

We frequently need to evaluate the work done by a couple M which acts on a 
rigid body during its motion. Figure 6 ∕11 shows a couple M = Fb acting on a rigid 
body which moves in the plane of the couple. During time dt the body rotates 
through an angle d𝜃, and line AB moves to A′B′. We may consider this motion in 
two parts, fi rst a translation to A′B″ and then a rotation d𝜃 about A′. We see imme-
diately that during the translation the work done by one of the forces cancels that 

b d𝜃

≡

M
F

d𝜃

F

F
F

A

B

b

Bʺ

Bʹ

Aʹ

d𝜃

FIGURE 6/11
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206 CHAPTER 6  Plane Kinetics of Rigid Bodies

done by the other force, so that the net work done is dU = F(b d𝜃) = M d𝜃 due to 
the rotational part of the motion. If the couple acts in the sense opposite to the 
rotation, the work done is negative. During a fi nite rotation, the work done by a 
couple M whose plane is parallel to the plane of motion is, therefore,

U = ∫ M d𝜃

Kinetic Energy
We now use the familiar expression for the kinetic energy of a particle to develop 
expressions for the kinetic energy of a rigid body for each of the three classes of 
rigid-body plane motion illustrated in Fig. 6 ∕12.

(a) Translation. The translating rigid body of Fig. 6 ∕12a has a mass m and 
all of its particles have a common velocity v. The kinetic energy of any particle 
of mass mi of the body is Ti = 12 miv2, so for the entire body T = Σ  

1
2 miv2 = 12 v2

Σmi 
or

 T =
1
2 mv2 (6∕7)

This expression holds for both rectilinear and curvilinear translation.

(b) Fixed-axis rotation. The rigid body in Fig. 6 ∕12b rotates with an angular 
velocity 𝜔 about the fi xed axis through O. The kinetic energy of a representative 
particle of mass mi is Ti = 12 mi(ri𝜔)2. Thus, for the entire body T = 12 𝜔

2
Σmiri 

2. But 
the moment of inertia of the body about O is IO = Σmiri 

2, so

 T =
1
2 IO 𝜔

2 (6∕8)

Note the similarity in the forms of the kinetic energy expressions for translation 
and rotation. You should verify that the dimensions of the two expressions are 
identical.

(c) General plane motion. The rigid body in Fig. 6 ∕12c executes plane motion 
where, at the instant considered, the velocity of its mass center G is v and its angu-
lar velocity is 𝜔. The velocity vi of a representative particle of mass mi may be ex-
pressed in terms of the mass-center velocity v and the velocity 𝜌i𝜔 relative to the 
mass center as shown. With the aid of the law of cosines, we write the kinetic en-
ergy of the body as the sum ΣTi of the kinetic energies of all its particles. Thus,

T = Σ  
1
2 mivi 

2 = Σ  
1
2 mi(v 

2 + 𝜌i 

2
𝜔

2 + 2v𝜌i𝜔 cos 𝜃)

Because 𝜔 and v appear for every i in the third summation term, we may factor them 
out. Thus, the third term in the expression for T becomes

𝜔 v Σmi𝜌i cos 𝜃 = 𝜔 v Σmi yi = 0

since Σmi yi = my = 0. The kinetic energy of the body is then T = 
1
2 

 v 

2
Σmi + 12 𝜔 

2
Σmi𝜌i 

2 or

 T =
1
2 mv  

2 +
1
2 I𝜔2 (6∕9)

T =
1
2 mv2 

T =
1
2 IOII 𝜔

2 

T =
1
2 mv 2 +

1
2 I𝜔2 

v

Motion

G
–v

–v

Rotation

vi = ri𝜔

G

O 𝜔

vi = vmi

mi 

ri 

mi 

yi 𝜌i 

𝜌i𝜔 

𝜔

vi 

𝜃

𝜃

(a) Translation

(b) Fixed-Axis

(c) General Plane

FIGURE 6/12
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where I  is the moment of inertia of the body about its mass center. This expression 
for kinetic energy clearly shows the separate contributions to the total kinetic 
 energy resulting from the translational velocity v of the mass center and the rota-
tional velocity 𝜔 about the mass center.

The kinetic energy of plane motion may also be expressed in terms of the rota-
tional velocity about the instantaneous center C of zero velocity. Because C momen-
tarily has zero velocity, the proof leading to Eq. 6 ∕8 for the fi xed point O holds equally 
well for point C, so that, alternatively, we may write the kinetic energy of a rigid body 
in plane motion as

 T =
1
2 IC 𝜔

2 (6∕10)

In Art. 4 ∕3 we derived Eq. 4 ∕4 for the kinetic energy of any system of mass. We 
now see that this expression is equivalent to Eq. 6 ∕9 when the mass system is rigid. 
For a rigid body, the quantity �̇�i in Eq. 4 ∕4 is the velocity of the representative 
 particle relative to the mass center and is the vector 𝛚 × 𝛒i, which has the  magnitude 
𝜌i𝜔. The summation term in Eq. 4 ∕4 becomes Σ  

1
2 mi(𝜌i𝜔)2 = 12 𝜔

2
 Σmi 𝜌i 

2 = 12 I𝜔 

2, which 
brings Eq. 4 ∕4 into agreement with Eq. 6 ∕9.

Potential Energy and the Work-Energy Equation
Gravitational potential energy Vg and elastic potential energy Ve were covered in 
detail in Art. 3 ∕7. Recall that the symbol U′ (rather than U) is used to denote the 
work done by all forces except the weight and elastic forces, which are accounted 
for in the potential-energy terms.

The work-energy relation, Eq. 3 ∕15a, was introduced in Art. 3 ∕6 for particle 
motion and was generalized in Art. 4 ∕3 to include the motion of a general system of 
particles. This equation

T1 + U1-2 = T2 [4∕2]

applies to any mechanical system. For application to the motion of a single rigid 
body, the terms T1 and T2 must include the effects of translaton and rotation as 
given by Eqs. 6 ∕7, 6 ∕8, 6 ∕9, or 6 ∕10, and U1-2 is the work done by all external forces. 
On the other hand, if we choose to  express the effects of weight and springs by 
means of potential energy rather than work, we may rewrite the above equation as

T1 + V1 + U 
′1-2 = T2 + V2 [4∕3a]

where the prime denotes the work done by all forces other than weight and spring 
forces.

When applied to an interconnected system of rigid bodies, Eq. 4 ∕3a includes 
the effect of stored elastic energy in the connections, as well as that of gravita-
tional potential energy for the various members. The term U′1-2 includes the work 
of all forces external to the system (other than gravitational forces), as well as 
the negative work of internal friction forces, if any. The terms T1 and T2 are the 
initial and fi nal kinetic energies of all moving parts over the interval of motion 
in question.

When the work-energy principle is applied to a single rigid body, either a free-
body diagram or an active-force diagram should be used. In the case of an 

T =
1
2 ICII 𝜔

2 

T1 + U1-2 = T2TT  

T1 + V1VV + U′1UU -2 = T2TT + V2VV  
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208 CHAPTER 6  Plane Kinetics of Rigid Bodies

 interconnected system of rigid bodies, an active-force diagram of the entire system 
should be drawn in order to isolate the system and disclose all forces which do work 
on the system. Diagrams should also be drawn to disclose the initial and fi nal posi-
tions of the system for the given interval of motion.

The work-energy equation provides a direct relationship between the forces 
which do work and the corresponding changes in the motion of a mechanical sys-
tem. However, if there is appreciable internal mechanical friction, then the system 
must be dismembered in order to  disclose the kinetic-friction forces and account 
for the negative work which they do. When the system is dismembered, however, 
one of the primary advantages of the work-energy approach is automatically lost. 
The work-energy method is most useful for analyzing conservative systems of in-
terconnected bodies, where energy loss due to the negative work of friction forces 
is negligible.

Power
The concept of power was discussed in Art. 3 ∕6, which treated work-energy for par-
ticle motion. Recall that power is the time rate at which work is performed. For a 
force F acting on a rigid body in plane motion, the power developed by that force at 
a given instant is given by Eq. 3 ∕16 and is the rate at which the force is doing work. 
The power is given by

P =
dU
dt

=
F∙dr

dt
= F∙v

where dr and v are, respectively, the differential displacement and the velocity of 
the point of application of the force.

Similarly, for a couple M acting on the body, the power developed by the couple 
at a given instant is the rate at which it is doing work, and is given by

P =
dU
dt

=
M d𝜃

dt
= M𝜔

where d𝜃 and 𝜔 are, respectively, the differential angular displacement and the 
angular velocity of the body. If the senses of M and 𝜔 are the same, the power is 
positive and energy is supplied to the body. Conversely, if M and 𝜔 have opposite 
senses, the power is negative and  energy is removed from the body. If the force F 
and the couple M act  simultaneously, the total instantaneous power is

P = F∙v + M𝜔

We may also express power by evaluating the rate at which the total mechanical 
energy of a rigid body or a system of rigid bodies is changing. The work-energy re-
lation, Eq. 4 ∕3, for an infi nitesimal displacement is

dU′= dT + dV

where dU′ is the work of the active forces and couples applied to the body or to the 
system of bodies. Excluded from dU′ are the work of gravitational forces and that 
of spring forces, which are accounted for in the dV term. Dividing by dt gives the 
total power of the active forces and couples as

P =
dU′

dt
= Ṫ + V̇ =

d
dt

 (T + V)
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Many cars are now using regenerative braking, which means that the 
overall kinetic energy of the car is captured via generators attached to 
the wheels rather than being wasted through heat energy as is the case 
with conventional friction brakes.

Thus, we see that the power developed by the active forces and couples equals the 
rate of change of the total mechanical energy of the body or system of bodies.

We note from Eq. 6 ∕9 that, for a given body, the fi rst term may be written

 Ṫ =
dT
dt

=
d
dt

 (1
2

 mv ∙v +
1
2

 I𝜔2)
 =

1
2

 m(a ∙v + v ∙a) + I𝜔�̇�

 = ma ∙v + I𝛼(𝜔) = R∙v + M𝜔

where R is the resultant of all forces acting on the body and M is the resultant 
moment about the mass center G of all forces. The dot product accounts for the case 
of curvilinear motion of the mass center, where a and v are not in the same 
 direction.
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210 CHAPTER 6  Plane Kinetics of Rigid Bodies

SAMPLE PROBLEM 6/9

The wheel rolls up the incline on its hubs without slipping and is pulled 
by the 100-N force applied to the cord wrapped around its outer rim. 
If the wheel starts from rest, compute its angular velocity 𝜔 after its 
 center has moved a distance of 3 m up the incline. The wheel has a 
mass of 40 kg with center of mass at O and has a centroidal radius of 
gyration of 150 mm. Determine the power input from the 100-N force 
at the end of the 3-m motion interval.

Solution Of the four forces shown on the free-body diagram of the 
wheel, only the 100-N pull and the weight of 40(9.81) = 392 N do work. 
The friction force does no work as long as the wheel does not slip. 1  
By use of the concept of the instantaneous center C of zero velocity, we 
see that a point A on the cord to which the 100-N force is applied has a 
velocity vA = [(200 + 100) ∕100]v. Hence, point A on the cord moves a 
distance of (200 + 100) ∕100 = 3 times as far as the center O. Thus, with 
the effect of the weight included in the U-term, the work done on the 
wheel becomes

U1-2 = 100 
200 + 100

100
 (3) − (392 sin 15°)(3) = 595 J 2

 The wheel has general plane motion, so that the initial and fi nal 
kinetic energies are

[T =
1
2 mv 

2 +
1
2 I𝜔2]  T1 = 0   T2 =

1
2 40(0.10𝜔)2 +

1
2 40(0.15)2

𝜔
2 3

 = 0.650𝜔2

The work-energy equation gives

[T1 + U1-2 = T2]  0 + 595 = 0.650𝜔2  𝜔 = 30.3 rad∕s

Alternatively, the kinetic energy of the wheel may be written

[T =
1
2 IC𝜔

2]  T =
1
2 40[(0.15)2 + (0.10)2]𝜔2 = 0.650𝜔2 4

The power input from the 100-N force when 𝜔 = 30.3 rad∕s is

[P = F∙v]  P100 = 100(0.3)(30.3) = 908 W 5  Ans.

HELPFUL HINTS
1  Since the velocity of the instantaneous 

center C on the wheel is zero, it follows 
that the rate at which the friction force 
does work is continuously zero. Hence, F 
does no work as long as the wheel does 
not slip. If the wheel were rolling on a 
moving platform, however, the friction 
force would do work, even if the wheel 
were not slipping.

2  Note that the component of the weight 
down the plane does negative work.

3  Be careful to use the correct radius in 
the expression v = r𝜔 for the velocity of 
the center of the wheel.

4  Recall that IC = I  + mOC 
2, where I  = IO = 

mkO 

2.
5  The velocity here is that of the applica-

tion point of the 100-N force.

15°

100 mm200 mm

100 N

O

15°

3 m

392 N

100 mm

200
m

m

100 N

O

A

C
F

N

v

v

vA

𝜔
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SAMPLE PROBLEM 6/10

The 4-ft slender bar weighs 40 lb with mass center at B and is released 
from rest in the position for which 𝜃 is essentially zero. Point B is con-
fi ned to move in the smooth vertical guide, while end A moves in the 
smooth horizontal guide and compresses the spring as the bar falls. 
Determine (a) the angular  velocity of the bar as the position 𝜃 = 30° is 
passed and (b) the velocity with which B strikes the horizontal surface 
if the stiffness of the spring is 30 lb ∕in.

Solution With the friction and mass of the small rollers at A and B 
neglected, the system may be treated as being conservative.

Part (a) For the fi rst interval of motion from 𝜃 = 0 (state 1) to 𝜃 = 30° 
(state 2), the spring is not engaged, so that there is no Ve term in the 
energy equation. If we adopt the alternative of treating the work of the 
weight in the Vg term, then there are no other forces which do work, 
and U 

′1-2 = 0. 1

 Since we have a constrained plane motion, there is a kinematic 
relation between the velocity vB of the center of mass and the angular 
velocity 𝜔 of the bar. This relation is easily obtained by using the in-
stantaneous center C of zero velocity and noting that vB = CB𝜔. Thus, 
the kinetic energy of the bar in the 30° position becomes

[T =
1
2 mv 

2 +
1
2 I𝜔2] T =

1
2

 
40

32.2
 (12

12
 𝜔)

2

+
1
2

 ( 1
12

 
40

32.2
 42)

 

𝜔
2 = 1.449𝜔2

With a datum established at the initial position of the mass center B, 
our initial and fi nal gravitational potential energies are

V1 = 0  V2 = 40(2 cos 30° − 2) = −10.72 ft-lb

We now substitute into the energy equation and obtain

[T1 + V1 + U 
′1-2 = T2 + V2]    0 + 0 + 0 = 1.449𝜔2 − 10.72

  𝜔 = 2.72 rad∕sec Ans.

Part (b) We defi ne state 3 as that for which 𝜃 = 90°. The initial and 
fi nal spring potential energies are

[Ve =
1
2 kx2] V1 = 0  V3 =

1
2

 (30)(24 − 18)2 
1

12
= 45 ft-lb 2

 In the fi nal horizontal position, point A has no velocity, so that the 
bar is, in effect, rotating about A. Hence, its fi nal kinetic energy is

[T =
1
2 IA𝜔

2] T3 =
1
2

 (1
3

 
40

32.2
 42)(

vB

24∕12)
2

= 0.828vB 

2

The fi nal gravitational potential energy is

[Vg = Wh] V3 = 40(−2) = −80 ft-lb

 Substituting into the energy equation gives

[T1 + V1 + U′1-3 = T3 + V3]  0 + 0 + 0 = 0.828vB 

2 + 45 − 80

  vB = 6.50 ft∕sec Ans.

 Alternatively, if the bar alone constitutes the system, the active-
force  diagram shows the weight, which does positive work, and the 
spring force kx, which does negative work. We would then write

[T1 + U1-3 = T3] 80 − 45 = 0.828vB 

2

which is identical with the previous result.

40 lb

(Alternative Active-Force
Diagram)

kx

D

A

24
ʺ

24
ʺ

18ʺ
k

B

𝜃

BC

A

24
 ʺ

12ʺ

D

vA

vB

30°

𝜔

HELPFUL HINTS
1  We recognize that the forces acting on 

the bar at A and B are normal to the re-
spective directions of motion and, hence, 
do no work.

2  If we convert k to lb ∕ft, we have

  Ve =  
1
2

 (30 
lb
in.) (12 

in.
ft ) (24 − 18

12
  ft)

2

  =  45 ft-lb

 Always check the consistency of your 
units.
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212 CHAPTER 6  Plane Kinetics of Rigid Bodies

SAMPLE PROBLEM 6/11

In the mechanism shown, each of the two wheels has a mass of 30 kg 
and a centroidal radius of gyration of 100 mm. Each link OB has a 
mass of 10 kg and may be treated as a slender bar. The 7-kg collar at 
B slides on the fi xed vertical shaft with negligible friction. The spring 
has a stiffness k = 30 kN ∕m and is contacted by the bottom of the collar 
when the links reach the horizontal position. If the collar is released 
from rest at the position 𝜃 = 45° and if friction is suffi cient to prevent 
the wheels from slipping, determine (a) the velocity vB of the collar as 
it fi rst strikes the spring and (b) the maximum deformation x of the 
spring.

Solution The mechanism executes plane motion and is conservative 
with the neglect of kinetic friction losses. We defi ne states 1, 2, and 3 to 
be at 𝜃 = 45°, 𝜃 = 0, and maximum spring defl ection, respectively. The 
datum for zero gravitational potential energy Vg is conveniently taken 
through O as shown.

(a) For the interval from 𝜃 = 45° to 𝜃 = 0, we note that the initial and 
fi nal kinetic energies of the wheels are zero since each wheel starts 
from rest and momentarily comes to rest at 𝜃 = 0. Also, at position 2, 
each link is merely rotating about its point O so that

 T2 = [
 
2 ( 

1
2 

 
IO𝜔

2
 )] 

links
+ [  

1
2 

 
mv2 ]

collar

 =
1
3

 10(0.375)2
 
 (

vB

0.375)
2

+
1
2

 7vB 

2 = 6.83vB 

2

The collar at B drops a distance 0.375∕√2 = 0.265 m so that

V1 = 2(10)(9.81) 
0.265

2
+ 7(9.81)(0.265) = 44.2 J  V2 = 0

Also, U′1-2 = 0. 1  Hence,

[T1 + V1 + U′1-2 = T2 + V2]   0 + 44.2 + 0 = 6.83vB 

2 + 0

 vB = 2.54 m∕s  Ans.

(b) At the condition of maximum deformation x of the spring, all parts 
are momentarily at rest, which makes T3 = 0. Thus,

[T1 + V1 + U′1-3 = T3 + V3]   0 + 2(10)(9.81) 
0.265

2
+ 7(9.81)(0.265) + 0

 =  0 − 2(10)(9.81)(x
2) − 7(9.81)x +

1
2 (30)(103)x2

Solution for the positive value of x gives

 x = 60.1 mm Ans.

 It should be noted that the results of parts (a) and (b) involve a 
very simple net energy change despite the fact that the mechanism has 
undergone a fairly complex sequence of motions. Solution of this and 
similar problems by other than a work-energy approach is not an invit-
ing prospect.

HELPFUL HINT
1  With the work of the weight of the collar 

B included in the potential-energy 
terms, there are no other forces external 
to the system which do work. The fric-
tion force acting under each wheel does 
no work since the wheel does not slip, 
and, of course, the normal force does no 
work here. Hence, U′1-2 = 0.

OO

A

B

A

Vg=0

k

vB

v = vO

375 mm375 m
m

150
mm

150
mm

𝜃 𝜃
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6/7  Acceleration from Work-Energy; 
Virtual Work
In addition to using the work-energy equation to determine the  velocities due to 
the action of forces acting over fi nite displacements, we may also use the equation 
to establish the instantaneous accelerations of the members of a system of inter-
connected bodies as a result of the active forces applied. We may also modify the 
equation to determine the confi guration of such a system when it undergoes a con-
stant acceleration.

Work-Energy Equation for Diff erential Motions
For an infi nitesimal interval of motion, Eq. 4∕3 becomes

dU′ = dT + dV

The term dU ′ represents the total work done by all active nonpotential forces acting 
on the system under consideration during the infi nitesimal displacement of the 
system. The work of potential forces is included in the dV-term. If we use the subscript 
i to denote a representative body of the interconnected system, the differential 
change in kinetic energy T for the entire system becomes

dT = d(Σ  

1
2 

mivi 

2 +Σ  

1
2 Ii𝜔i 

2) =Σmivi dvi +ΣIi𝜔i d𝜔i

where dvi and d𝜔i are the respective changes in the magnitudes of the velocities 
and where the summation is taken over all bodies of the system. But for each body, 
mivi  dvi = miai ∙dsi and Ii𝜔i  d𝜔i = Ii𝛼i d𝜃i, where d si represents the infi nitesimal 
linear displacement of the center of mass and where d𝜃i represents the infi nitesi-
mal angular displacement of the body in the plane of motion. We note that ai ∙dsi is 
identical to (ai)t dsi, where (ai)t is the component of ai along the tangent to the 
curve described by the mass center of the body in question. Also 𝛼i represents �̈�i, 
the angular acceleration of the representative body. Consequently, for the entire 
system

dT = Σmiai ∙dsi +ΣIi𝛼i  d𝜃i

This change may also be written as

dT = ΣRi ∙dsi +ΣMGi
∙ d𝛉i

where Ri and MGi
 are the resultant force and resultant couple acting on body i 

and where d𝛉i = d𝜃ik. These last two equations merely show us that the differ-
ential change in kinetic energy equals the differential work done on the system 
by the resultant forces and resultant couples acting on all the bodies of the 
system.

The term dV represents the differential change in the total gravitational po-
tential energy Vg and the total elastic potential energy Ve and has the form

dV = d(Σmighi + Σ  
1
2 

 
kj xj 

2) = Σmig dhi + Σkj xj  dxj

where hi represents the vertical distance of the center of mass of the representative 
body of mass mi above any convenient datum plane and where xj stands for the 
deformation, tensile or compressive, of a representative elastic member of the 
 system (spring) whose stiffness is kj.
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214 CHAPTER 6  Plane Kinetics of Rigid Bodies

The complete expression for dU ′ may now be written as

dU′ = Σmiai ∙dsi + ΣIi𝛼i d𝜃i + Σmi g dhi + Σkj xj dxj (6∕11)

When Eq. 6∕11 is applied to a system of one degree of freedom, the terms miai ∙dsi

and Ii𝛼i d𝜃i will be positive if the accelerations are in the same direction as the 
respective displacements and negative if they are in the opposite direction. Equa-
tion 6∕11 has the advantage of relating the accelerations to the active forces 
 directly, which eliminates the need for dismembering the system and then elimi-
nating the internal forces and reactive forces by simultaneous solution of the 
force-mass-acceleration equations for each member.

Virtual Work
In Eq. 6∕11 the differential motions are differential changes in the real or actual 
displacements which occur. For a mechanical system which assumes a steady-state 
confi guration during constant acceleration, we often fi nd it convenient to introduce 
the concept of virtual work. The concepts of virtual work and virtual displacement 

were introduced and used to establish equilibrium confi gurations 
for static systems of interconnected bodies (see Chapter 7 of Vol. 1 
Statics).

A virtual displacement is any assumed and arbitrary displace-
ment, linear or angular, away from the natural or actual position. 
For a system of connected bodies, the virtual displacements must 
be consistent with the constraints of the system. For example, 
when one end of a link is hinged about a fi xed pivot, the virtual 
displacement of the other end must be normal to the line joining 
the two ends. Such requirements for displacements consistent with 
the constraints are purely kinematic and provide what are known 
as the equations of constraint.

If a set of virtual displacements satisfying the equations of con-
straint and therefore consistent with the constraints is assumed 
for a mechanical system, the proper relationship between the 
 coordinates which specify the confi guration of the system will be 
determined by applying the work-energy relationship of Eq. 6∕11, 
expressed in terms of virtual changes. Thus,

 𝛿U′ = Σmiai ∙𝛿si +ΣIi𝛼i 𝛿𝜃i +Σmi g 𝛿hi +Σkj xj 𝛿xj (6∕11a)

It is customary to use the differential symbol d to refer to differen-
tial changes in the real displacements, whereas the symbol 𝛿 is 
used to signify virtual changes, that is, differential changes which 
are assumed rather than real.

dU′ = Σmiai ∙dsi + ΣIi𝛼i d𝜃i + Σmig dhi + Σkjk xjx dxjx  

The kinetics of this elevated work 
platform are best analyzed using the 
principles of virtual work.
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SAMPLE PROBLEM 6/12

The movable rack A has a mass of 3 kg, and rack B is fi xed. The gear 
has a mass of 2 kg and a radius of gyration of 60 mm. In the position 
shown, the spring, which has a stiffness of 1.2 kN ∕m, is stretched a 
distance of 40 mm. For the instant represented, determine the accel-
eration a of rack A under the action of the 80-N force. The plane of the 
fi gure is vertical.

Solution The given fi gure represents the active-force diagram for 
the entire system, which is conservative. 1

 During an infi nitesimal upward displacement dx of rack A, the 
work dU′ done on the system is 80 dx, where x is in meters, and this 
work equals the sum of the corresponding changes in the total energy 
of the system. These changes, which appear in Eq. 6 ∕11, are as follows:

[dT = Σmiai∙dsi +ΣIi𝛼i  d𝜃i]

 dTrack = 3a dx

 dTgear = 2 
a
2

 
dx
2

+ 2(0.06)2
 
a∕2
0.08

dx∕2
0.08

= 0.781a dx 2

 The change in potential energies of the system, from Eq. 6 ∕11, 
 becomes

[dV = Σmi g dhi +Σkj xj  dxj]

 dVrack = 3g dx = 3(9.81) dx = 29.4 dx

 dVgear = 2g(dx∕2) = g dx = 9.81 dx

 dVspring = kj xj  dxj = 1200(0.04) dx∕2 = 24 dx 3

Substitution into Eq. 6 ∕11 gives us

80 dx = 3a dx + 0.781a dx + 29.4 dx + 9.81 dx + 24 dx

Canceling dx and solving for a give

 a = 16.76∕3.78 = 4.43 m∕s2 Ans.

 We see that using the work-energy method for an infi nitesimal 
displacement has given us the direct relation between the applied force 
and the resulting acceleration. It was unnecessary to dismember the 
system, draw two free-body diagrams, apply ΣF = ma twice, apply ΣMG = 
I𝛼 and F = kx, eliminate unwanted terms, and fi nally solve for a.

80 N

80
mm

A
B

HELPFUL HINTS
1  Note that none of the remaining forces 

external to the system do any work. The 
work done by the weight and by the 
spring is accounted for in the potential-
energy terms.

2  Note that ai for the gear is its mass- 
center acceleration, which is half that 
for the rack A. Also, its displacement is 
dx∕2. For the rolling gear, the angular 
acceleration from a = r𝛼 becomes 𝛼i = 
(a∕2)∕0.08, and the angular displacement 
from ds = r d𝜃 becomes d𝜃i = (dx∕2)∕0.08.

3  Note here that the displacement of the 
spring is one-half that of the rack. 
Hence, xi = x∕2.
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216 CHAPTER 6  Plane Kinetics of Rigid Bodies

SAMPLE PROBLEM 6/13

A constant force P is applied to end A of the two identical and uniform 
links and causes them to move to the right in their vertical plane with 
a horizontal acceleration a. Determine the steady-state angle 𝜃 made 
by the bars with one another.

Solution The fi gure constitutes the active-force diagram for the 
 system. To fi nd the steady-state confi guration, consider a virtual dis-
placement of each bar from the natural position assumed during the 
acceleration. Measurement of the displacement with respect to end A 
eliminates any work done by force P during the virtual displacement. 
Thus,

𝛿U′ = 0 1

The terms involving acceleration in Eq. 6 ∕11a reduce to 2

 ma∙𝛿s = ma(−𝛿s1) + ma(−𝛿s2)

  = −ma [𝛿 (l
2

 sin 
𝜃

2) + 𝛿 (3l
2

 sin 
𝜃

2) ]  3

 = −ma (l cos 
𝜃

2
 𝛿𝜃)

We choose the horizontal line through A as the datum for zero po-
tential energy. 4  Thus, the potential energy of the links is

Vg = 2mg (− 

l
2

 cos 
𝜃

2)
and the virtual change in potential energy becomes

𝛿Vg = 𝛿 (−2mg 
l
2

 cos 
𝜃

2) =
mgl

2
 sin 

𝜃

2
 𝛿𝜃

Substitution into the work-energy equation for virtual changes, 
Eq. 6 ∕11a, gives

0 = −mal cos 
𝜃

2
 𝛿𝜃 +

mgl
2

 sin 
𝜃

2
 𝛿𝜃

from which

 𝜃 = 2 tan−1 
2a
g

 Ans.

Again, in this problem we see that the work-energy approach obvi-
ated the necessity for dismembering the system, drawing separate 
free-body diagrams, applying motion equations, eliminating unwanted 
terms, and solving for 𝜃.

HELPFUL HINTS
1  Note that we use the symbol 𝛿 to refer to 

an assumed or virtual differential change 
rather than the symbol d, which refers 
to an infi nitesimal change in the real 
 displacement.

2  Here we are evaluating the work done 
by the resultant forces and couples in 
the virtual displacement. Note that 𝛼 = 
0 for both bars.

3  We have chosen to use the angle 𝜃 to 
 describe the confi guration of the links, 
although we could have used the 
 distance between the two ends of the 
links just as well.

4  The last two terms in Eq. 6∕11a express 
the virtual changes in gravitational and 
elastic potential energy.

s2

Vg = 0

s1 A
P

a
l/2l/2

l/2l/2
𝜃
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SECTION C Impulse and Momentum

6/8  Impulse-Momentum Equations
The principles of impulse and momentum were developed and used in Articles 3 ∕9 
and 3 ∕10 for the description of particle motion. In that treatment, we observed that 
those principles were of particular importance when the applied forces were ex-
pressible as functions of the time and when interactions between particles occurred 
during short periods of time, such as with impact. Similar advantages result when 
the impulse-momentum principles are applied to the motion of rigid bodies.

In Art. 4 ∕2 the impulse-momentum principles were extended to cover any de-
fi ned system of mass particles without restriction as to the connections between 
the particles of the system. These extended relations all apply to the motion of a 
rigid body, which is merely a special case of a general system of mass. We will now 
apply these equations directly to rigid-body motion in two dimensions.

Linear Momentum
In Art. 4 ∕4 we defi ned the linear momentum of a mass system as the vector sum of 
the linear momenta of all its particles and wrote G = Σmivi. With ri representing 
the position vector to mi, we have vi = ṙi and G = Σmiṙi which, for a system whose 
total mass is constant, may be written as G = d(Σmiri) ∕dt. When we substitute the 
principle of moments mr = Σmiri to locate the mass center, the momentum becomes 
G = d(mr)∕dt= mṙ, where ṙ is the velocity v of the mass center. Therefore, as 
 before, we fi nd that the linear momentum of any mass system, rigid or nonrigid, is

G = mv [4∕5]

In the derivation of Eq. 4 ∕5, we note that it was unnecessary to employ the 
kinematic condition for a rigid body, Fig. 6∕13, which is vi = v + 𝛚 × 𝛒i. In that 
case, we obtain the same result by writing G = Σmi(v + 𝛚 × 𝛒i). The fi rst sum is 
v Σmi = mv, and the second sum becomes 𝛚 × Σmi𝛒i = 𝛚 × m𝛒 = 0 since 𝛒i is 
measured from the mass center, making 𝛒 zero.

Next in Art. 4 ∕4 we rewrote Newton’s generalized second law as Eq. 4 ∕6. 
This equation and its integrated form are

ΣF = Ġ and G1 + ∫t2

t1

ΣF dt = G2 (6∕12)

Equation 6 ∕12 may be written in its scalar-component form, which, for plane 
motion in the x-y plane, gives

ΣFx = Ġx
  and  

(Gx)1 +∫t2

t1

ΣFx dt = (Gx)2

ΣFy = Ġy (Gy)1 +∫t2

t1

ΣFy dt = (Gy)2

(6∕12a)

In words, the fi rst of Eqs. 6 ∕12 and 6 ∕12a states that the resultant force equals the 
time rate of change of momentum. The integrated form of Eqs. 6 ∕12 and 6 ∕12a
states that the initial linear momentum plus the linear impulse acting on the body 
equals the fi nal linear momentum.

G = mv 

ΣF = Ġ G1 + ∫t2

t
∫∫

1

ΣF dt = G2 

ΣFxFF = ĠxG
 

ΣFyFF = ĠyG

(GxG )1 +∫t2

t
∫∫

1

ΣFxFF dt = (GxG )2

(GyG )1 +∫t2

t
∫∫

1

ΣFyFF dt = (GyG )2

vi = ri

 –     –v = rG

–v

–r

ri

O

mi

𝜔

𝛒i = 𝛚 × 𝛒i
⋅ ⋅

⋅

𝛒i

FIGURE 6/13
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218 CHAPTER 6  Plane Kinetics of Rigid Bodies

As in the force-mass-acceleration formulation, the force summations in 
Eqs. 6 ∕12 and 6 ∕12a must include all forces acting externally on the body consid-
ered. We emphasize again, therefore, that in the use of the impulse-momentum 
equations, it is essential to construct the complete impulse-momentum diagrams 
so as to disclose all external impulses. In contrast to the method of work and en-
ergy, all forces exert impulses, whether they do work or not.

Angular Momentum
Angular momentum is defi ned as the moment of linear momentum. 
In Art. 4 ∕4 we expressed the angular momentum about the mass 
 center of any prescribed system of mass as HG = Σ𝛒i × mivi, which is 
merely the vector sum of the moments about G of the linear momenta 
of all particles. We showed in Art. 4 ∕4 that this vector sum could also 
be written as HG = Σ𝛒i × mi𝛒i, where 𝛒i is the velocity of mi with re-
spect to G.

Although we have simplifi ed this expression in Art. 6 ∕2 in the 
course of deriving the moment equation of motion, we will pursue this 
same expression again for sake of emphasis by using the rigid body in 
plane motion represented in Fig. 6 ∕13. The relative velocity becomes 
𝛒i = 𝛚 × 𝛒i, where the angular velocity of the body is 𝛚 = 𝜔k. The unit 
vector k is directed into the paper for the sense of 𝛚 shown. Because 
𝛒i, 𝛒i, and 𝛚 are at right angles to one another, the magnitude of 𝛒i is 
𝜌i𝜔, and the magnitude of 𝛒i × mi𝛒i is 𝜌i 

2
𝜔mi. Thus, we may write 

HG = Σ𝜌i 

2mi𝜔k = I𝜔k, where I  = Σmi𝜌i 

2 is the mass moment of iner-
tia of the body about its mass center.

Because the angular-momentum vector is always normal to the 
plane of motion, vector notation is generally unnecessary, and we 
may write the angular momentum about the mass center as the 
scalar

 HG = I𝜔 (6∕13)

This angular momentum appears in the moment-angular-momentum relation, 
Eq. 4 ∕9, which in scalar notation for plane motion, along with its integrated form, is

 ΣMG = ḢG  and  (HG)1 + ∫t2

t1

 ΣMG dt = (HG)2 (6∕14)

In words, the fi rst of Eqs. 6 ∕14 states that the sum of the moments about the mass 
center of all forces acting on the body equals the time rate of change of angular 
momentum about the mass center. The integrated form of Eq. 6 ∕14 states that the 
initial angular momentum about the mass center G plus the external angular im-
pulse about G equals the fi nal angular momentum about G.

The sense for positive rotation must be clearly established, and the algebraic 
signs of ΣMG, (HG)1, and (HG)2 must be consistent with this choice. The impulse-
momentum diagram (see Art. 3 ∕9) is again essential. See the Sample Problems 
which accompany this article for examples of these diagrams.

With the moments about G of the linear momenta of all particles accounted for 
by HG = I𝜔, it follows that we may represent the linear momentum G = mv as a 
vector through the mass center G, as shown in Fig. 6 ∕14a. Thus, G and HG have 
vector properties analogous to those of the resultant force and couple.

HGHH = I𝜔 

(HGHH )1 + ∫t2

t
∫∫

1

ΣMGMM dt = (HGHH )2

This ice skater can effect a large 
increase in angular speed about a 
vertical axis by drawing his arms closer 
to the center of his body.   
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With the establishment of the linear- and angular-momentum  resultants in 
Fig. 6 ∕14a, which represents the momentum diagram, the angular momentum 
HO about any point O is easily written as

HO = I𝜔 + mvd (6∕15)

This expression holds at any particular instant of time about O, which may be a 
fi xed or moving point on or off the body.

When a body rotates about a fi xed point O on the body or body  extended, as 
shown in Fig. 6 ∕14b, the relations v = r𝜔 and d = r may be substituted into the 
expression for HO, giving HO = (I𝜔 + mr 

2
𝜔). But I + mr 

2 = IO so that

 HO = IO𝜔 (6∕16)

In Art. 4 ∕2 we derived Eq. 4 ∕7, which is the moment-angular- momentum 
equation about a fi xed point O. This equation, written in scalar notation for 
plane motion along with its integrated form, is

 ΣMO = ḢO  and  (HO)1 + ∫t2

t1

 ΣMO dt = (HO)2 (6∕17)

Note that you should not add linear momentum and angular momentum for the 
same reason that force and moment cannot be added directly.

Interconnected Rigid Bodies
The equations of impulse and momentum may also be used for a system of inter-
connected rigid bodies since the momentum principles are applicable to any gen-
eral system of constant mass. Figure 6 ∕15 shows the combined free-body diagram 
and momentum diagram for two interconnected bodies a and b. Equations 4 ∕6 and 
4 ∕7, which are ΣF = Ġ and ΣMO = ḢO where O is a fi xed reference point, may be 
written for each member of the system and added. The sums are

  ΣF = Ġa + Ġ b + ⋯  
(6∕18)

 ΣMO = (ḢO)a + (ḢO)b + ⋯

HOHH = I𝜔 + mvdd 

HOHH = IOII 𝜔 

ΣMOMM = ḢOHH (HOHH )1 + ∫t2

t
∫∫

1

ΣMOMM dt = (HOHH )2

O

O

G

HG = I
_

G = mv
_

d

v
_

G

(b)

(a)

G = mv
_ v

_

r
_

𝜔

𝜔

𝜔

HG = I
_

𝜔

FIGURE 6/14

F1

Ga
Gb

F6

F4

F5

F3

Ga = mav
_

a Gb = mbv
_

b

F2

a
b

(HG)a = I
_

a𝜔a (HG)b = I
_

b𝜔b

O

FIGURE 6/15
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220 CHAPTER 6  Plane Kinetics of Rigid Bodies

In integrated form for a fi nite time interval, these expressions become

∫t2

t1

 ΣF dt = (ΔG)system  ∫t2

t1

ΣMO dt = (ΔHO)system (6∕19)

We note that the equal and opposite actions and reactions in the connections are 
internal to the system and cancel one another so they are not involved in the 
force and moment summations. Also, point O is one fi xed reference point for the 
entire system.

Conservation of Momentum
In Art. 4 ∕5, we expressed the principles of conservation of momentum for a general 
mass system by Eqs. 4 ∕15 and 4 ∕16. These principles are applicable to either a 
 single rigid body or a system of interconnected rigid bodies. Thus, if ΣF = 0 for a 
given interval of time, then

 G1 = G2 [4∕15]

which says that the linear-momentum vector undergoes no change in the absence of 
a resultant linear impulse. For the system of interconnected rigid bodies, there may 
be linear-momentum changes of individual parts of the system during the interval, 
but there will be no resultant momentum change for the system as a whole if there 
is no resultant linear  impulse.

Similarly, if the resultant moment about a given fi xed point O or about the 
mass center is zero during a particular interval of time for a single rigid body or for 
a system of interconnected rigid bodies, then

 (HO)1 = (HO)2  or  (HG)1 = (HG)2 [4∕16]

which says that the angular momentum either about the fi xed point or about the 
mass center undergoes no change in the absence of a corresponding resultant  angular 
impulse. Again, in the case of the interconnected system, there may be angular-
momentum changes of individual components during the interval, but there will be 
no resultant angular-momentum change for the system as a whole if there is no 
resultant angular impulse about the fi xed point or the mass center. Either of 
Eqs. 4 ∕16 may hold without the other.

In the case of an interconnected system, the system center of mass is generally 
inconvenient to use.

As was illustrated previously in Articles 3 ∕9 and 3 ∕10 in the chapter on particle 
motion, the use of momentum principles greatly facilitates the analysis of situa-
tions where forces and couples act for very short periods of time.

Impact of Rigid Bodies
Impact phenomena involve a fairly complex interrelationship of energy and 
 momentum transfer, energy dissipation, elastic and plastic deformation, relative 
impact velocity, and body geometry. In Art. 3 ∕12 we treated the impact of bodies 
modeled as particles and considered only the case of central impact, where the 
contact forces of impact passed through the mass centers of the bodies, as would 
always happen with colliding smooth spheres, for example. To relate the conditions 
after impact to those before impact required the introduction of the so-called 

G1 = G2 

(HO)1 = (HO)2 (HG)1 = (HG)2
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 Article  6/8 Impulse-Momentum Equations 221

 coeffi cient of restitution e or impact coeffi cient, which compares the relative sepa-
ration  velocity with the relative approach velocity measured along the direction of 
the contact forces. Although in the classical theory of impact, e was considered a 
constant for given materials, more modern investigations show that e is highly 
dependent on geometry and impact velocity as well as on materials. At best, even 
for spheres and rods under direct central and longitudinal impact, the coeffi cient of 
restitution is a complex and variable factor of limited use.

Any attempt to extend this simplifi ed theory of impact utilizing a coeffi cient of 
restitution for the noncentral impact of rigid bodies of varying shape is a gross 
oversimplifi cation which has little practical value. For this reason, we do not in-
clude such an exercise in this book, even though such a theory is easily developed 
and appears in certain references. We can and do, however, make full use of the 
principles of conservation of linear and angular momentum when they are applica-
ble in discussing impact and other interactions of rigid bodies.

There are small reaction wheels inside the Hubble Space Telescope which make 
precision attitude control possible. The principles of angular momentum are 
fundamental to the design and operation of such a control system.
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222 CHAPTER 6  Plane Kinetics of Rigid Bodies

SAMPLE PROBLEM 6/14

The force P, which is applied to the cable wrapped around the central 
hub of the symmetrical wheel, is increased slowly according to P = 1.5t, 
where P is in pounds and t is the time in seconds after P is fi rst applied. 
Determine the angular velocity 𝜔2 of the wheel 10 seconds after P is 
applied if the wheel is rolling to the left with a velocity of its center of 
3 ft ∕sec at time t = 0. The wheel weighs 120 lb with a radius of gyration 
about its center of 10 in. and rolls without slipping.

Solution The impulse-momentum diagram of the wheel discloses the 
initial linear and angular momenta at time t1 = 0, all external impulses, 
and the fi nal linear and angular momenta at time t2 = 10 sec. The cor-
rect direction of the friction force F is that to oppose the slipping which 
would occur without friction. 1

Application of the linear impulse-momentum equation and the angular 
impulse-momentum equation over the entire interval gives

[ (Gx)1 + ∫t2

t1

 ΣFx  dt = (Gx)2] 
120
32.2

(−3) + ∫10

0
 (1.5t − F) dt =

120
32.2 [

18
12

𝜔2]  2

[(HG)1 + ∫t2

t1

 ΣMG  dt = (HG)2]
 
120
32.2 (10

12)
2

(− 

3
18∕12) + ∫10

0 [
18
12

 F −
9
12

(1.5t)]  dt =
120
32.2 (10

12)
2

[𝜔2]  3

 Since the force F is variable, it must remain under the integral sign. 
We eliminate F between the two equations by multiplying the second one 
by 12

18 and adding to the fi rst one. Integrating and solving for 𝜔2 give

 𝜔2 = 3.13 rad∕sec clockwise Ans.

Alternative Solution We could avoid the necessity of a simultaneous 
solution by applying the second of Eqs. 6 ∕17 about a fi xed point O on the 
horizontal surface. The moments of the 120-lb weight and the equal and 
opposite force N cancel one another, and F is eliminated since its moment 
about O is zero. Thus, the angular momentum about O becomes HO = I𝜔 + 
mvr = mk2

𝜔 + mr2
𝜔 = m(k2 +  r2)𝜔, where k is the centroidal radius of 

gyration and r is the 18-in. rolling radius. Thus, we see that HO = HC since 
k2 + r2 = kC 

2 and HC = IC 𝜔 = mkC 

2
𝜔. Equation 6 ∕17 now gives

[(HO)1 + ∫t2

t1

 ΣMO dt = (HO)2]
120
32.2 [(10

12)
2

+ (18
12)

2

][ − 

3
18∕12 ] + ∫10

0
 1.5t(18 − 9

12 ) dt

=
120
32.2

 [(10
12)

2

+ (18
12)

2

][𝜔2]
Solution of this one equation is equivalent to the simultaneous solution 
of the two previous equations.

G P

v
_

1 = 3 ft/sec 9ʺ
18ʺ

HELPFUL HINTS
1  Also, we note the clockwise imbalance of 

moments about C, which causes a clock-
wise angular acceleration as the wheel 
rolls without slipping. Since the mo-
ment sum about G must also be in the 
clockwise sense of 𝛼, the friction force 
must act to the left to provide it.

2  Note carefully the signs of the momen-
tum terms. The fi nal linear velocity is 
assumed in the positive x-direction, so 
(Gx)2 is positive. The initial linear veloc-
ity is negative, so (Gx)1 is negative.

3  Since the wheel rolls without slipping, a 
positive x-velocity requires a clockwise 
angular velocity, and vice versa.

mg dt

N dt
F dt

P dt

+ =
G

CO

I
_

1 I
_

𝜔2𝜔1

mv
_

1

t1 = 0 t2 = 10 sec

mv
_

2

y

x

+

G

18ʺ
9ʺ

G

∫

∫

∫

∫

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Article  6/8 Impulse-Momentum Equations 223

SAMPLE PROBLEM 6/15

The sheave E of the hoisting rig shown has a mass of 30 kg and a cent-
roidal radius of gyration of 250 mm. The 40-kg load D which is carried 
by the sheave has an initial downward velocity v1 = 1.2 m ∕s at the 
instant when a clockwise torque is applied to the hoisting drum A to 
maintain essentially a constant force F = 380 N in the cable at B. Com-
pute the angular velocity 𝜔2 of the sheave 5 seconds after the torque is 
applied to the drum and fi nd the tension T in the cable at O during the 
interval. Neglect all friction.

Solution The load and the sheave taken together constitute the 
 system, and its impulse-momentum diagram is shown. The tension T 
in the cable at O and the fi nal angular velocity 𝜔2 of the sheave are the 
two unknowns. We eliminate T initially by applying the moment- 
angular-momentum equation about the fi xed point O, taking counter-
clockwise as positive.

[(HO)1 + ∫t2

t1

ΣMO dt = (HO)2]
 ∫t2

t1

ΣMO  dt = ∫5

0
 [380(0.750) − (30 + 40)(9.81)(0.375)] dt

 = 137.4 N∙m∙s

 (HO)1 = −(mE +  mD)v1d − I𝜔1

 = −(30 + 40)(1.2)(0.375) − 30(0.250)2
 ( 1.2

0.375)
 = −37.5 N∙m∙s 1

 (HO)2 = (mE + mD)v2d + I𝜔2

 = +(30 + 40)(0.375𝜔2)(0.375) + 30(0.250)2
𝜔2

 = 11.72𝜔2

Substituting into the momentum equation gives

− 37.5 + 137.4 = 11.72𝜔2

 𝜔2 = 8.53 rad∕s counterclockwise Ans.

The linear-impulse-momentum equation is now applied to the 
 system to determine T. With the positive direction up, we have

[G1 + ∫t2

t1

 ΣF dt = G2]
 70(−1.2) + ∫5

0
 [T + 380 − 70(9.81)] dt = 70[0.375(8.53)]

 5T = 1841  T = 368 N Ans.

If we had taken our moment equation around the center C of the 
sheave instead of point O, it would contain both unknowns T and 𝜔, 
and we would be obliged to solve it simultaneously with the foregoing 
force equation, which would also contain the same two unknowns.

O

A

B

E 375 mm

v1 = 1.2 m/s

C

D

O

C

F dt

T dt

mtot g dt

+ =

mtotv1

mtotv2

375 mm

C C

I
_

1𝜔1 I
_

𝜔2

∫

∫

∫

HELPFUL HINT
1  The units of angular momentum, which 

are those of angular impulse, may also 
be written as kg∙m2∕s.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


224 CHAPTER 6  Plane Kinetics of Rigid Bodies

SAMPLE PROBLEM 6/16

The uniform rectangular block of dimensions shown is sliding to the 
left on the horizontal surface with a velocity v1 when it strikes the 
small step at O. Assume negligible rebound at the step and compute 
the minimum value of v1 which will permit the block to pivot freely 
about O and just reach the standing position A with no velocity. Com-
pute the percentage energy loss n for b = c.

Solution We break the overall process into two subevents: the colli-
sion (I) and the subsequent rotation (II).

I. Collision With the assumption that the weight mg is nonimpul-
sive, angular momentum about O is conserved. 1  The initial angular 
momentum of the block about O just before impact is the moment 
about O of its linear momentum and is (HO)1 = mv1(b ∕2). The angular 
momentum about O just after impact when the block is starting its 
rotation about O is 2

[HO = IO𝜔]  (HO)2 = { 1
12

m(b2 + c2) + m [(c
2)

2

+ (b
2)

2

] }𝜔2 3

  =
m
3

(b2 + c2)𝜔2

Conservation of angular momentum gives

[(HO)1 = (HO)2]   mv1 
b
2

=
m
3

 (b2 + c2)𝜔2  𝜔2 =
3v1b

2(b2 +  c2)

II. Rotation about O With the assumptions that the rotation is like 
that about a fi xed frictionless pivot and that the location of the  effective 
pivot O is at ground level, mechanical energy is conserved during the 
rotation according to

[T2 + V2 = T3 + V3]  
1
2 IO𝜔2 

2 + 0 = 0 + mg [√(b
2)

2

+ (c
2)

2

−
b
2 ]  4

1
2

m
3

(b2 + c2) [
3v1b

2(b2 + c2) ]
2

=
mg
2

(√b2 + c2 − b)

 v1 = 2√g
3 (1 +

c2

b2) (√b2 + c2 − b) Ans.

The percentage loss of energy during the impact is

 n =
	ΔE 	

E
=

1
2mv1

2 −
1
2IO𝜔2

2

1
2 mv1

2
= 1 −

kO
2
𝜔2

2

v1
2 = 1 − (b2 + c2

3 )[
3b

2(b2 + c2) ]
2

 = 1 −
3

4 (1 +
c2

b2)
    n = 62.5%  for b = c Ans.

Ox dt

mv1 

mg dt

Oy dt

+ =G
O

_
r

c

bG

O

mv2 

G

O

IO𝜔2

∫

∫

∫

O

A

b

c
v1

HELPFUL HINTS
1  If the corner of the block struck a spring 

instead of the rigid step, then the time of 
the interaction during compression of 
the spring could become appreciable, 
and the angular impulse about the fi xed 
point at the end of the spring due to the 
moment of the weight would have to be 
accounted for.

2  Notice the abrupt change in direction 
and magnitude of the velocity of G dur-
ing the impact.

3  Be sure to use the transfer theorem IO = 
I  + mr 

2 correctly here.

4  The datum is taken at the initial alti-
tude of the mass center G. State 3 is 
taken to be the standing position A, at 
which the diagonal of the block is 
 vertical.
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6/9  Chapter Review
In Chapter 6 we have made use of essentially all the 
elements of dynamics studied so far. We noted that a 
knowledge of kinematics, using both absolute- and relative-
motion analysis, is an essential part of the solution to 
problems in rigid-body kinetics. Our approach in 
Chapter 6 paralleled Chapter 3, where we developed 
the kinetics of particles using force-mass-acceleration, 
work-energy, and impulse-momentum methods.

The following is a summary of the important con-
siderations in the solution of rigid-body kinetics prob-
lems in plane motion:

 1.  Identifi cation of the body or system. It is es-
sential to make an unambiguous decision as to 
which body or system of bodies is to be analyzed 
and then isolate the selected body or system by 
drawing the free-body and kinetic diagrams, the 
active-force diagram, or the impulse-momentum 
diagram, whichever is appropriate.

 2.  Type of motion. Next identify the category of 
 motion as rectilinear translation, curvilinear 
translation, fi xed-axis rotation, or general plane 
motion. Always make sure that the kinematics of 
the problem is properly described before attempt-
ing to solve the kinetic equations.

 3.  Coordinate system. Choose an appropriate co-
ordinate system. The geometry of the particular 
motion involved is usually the deciding factor. 
Designate the positive sense for moment and force 
summations and be consistent with the choice.

 4.  Principle and method. If the instantaneous re-
lationship between the applied forces and the ac-
celeration is desired, then the equivalence between 
the forces and their ma and I𝛼 resultants, as dis-
closed by the free-body and kinetic diagrams, will 
indicate the most direct approach to a solution.

When motion occurs over an interval of dis-
placement, the work-energy approach is indicated, 
and we relate initial to fi nal velocities without cal-
culating the acceleration. We have seen the advant-
age of this approach for interconnected mechanical 
systems with negligible internal friction.

If the interval of motion is specifi ed in terms 
of time rather than displacement, the impulse- 
momentum approach is indicated. When the angu-
lar motion of a rigid body is suddenly changed, the 
principle of conservation of angular momentum 
may apply.

 5.  Assumptions and approximations. By now you 
should have acquired a feel for the practical signif-
icance of certain assumptions and approximations, 
such as treating a rod as an ideal slender bar and 
neglecting friction when it is minimal. These and 
other idealizations are important to the process of 
obtaining solutions to real problems.
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CHAPTER 7
Introduction to 
Three-
Dimensional 
Dynamics of 
Rigid Bodies

7/1  Introduction
Although a large percentage of dynamics problems in engineering can be solved by 
the principles of plane motion, modern developments have focused increasing 
 attention on problems which call for the analysis of motion in three dimensions. 

CHAPTER OUTLINE

7/1 Introduction

SECTION A Kinematics

7/2 Translation
7/3 Fixed-Axis Rotation
7/4 Parallel-Plane Motion
7/5 Rotation about a Fixed Point
7/6 General Motion

SECTION B Kinetics

7/7 Angular Momentum
7/8 Kinetic Energy
7/9 Momentum and Energy Equations of Motion
7/10 Parallel-Plane Motion
7/11 Gyroscopic Motion: Steady Precession
7/12 Chapter Review
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This robot executes a variety of three-
dimensional motions as it spot-welds a car 
suspension unit.
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 Article  7/3 Fixed-Axis Rotation 227

Inclusion of the third dimension adds considerable complexity to the kinematic and 
kinetic relationships. Not only does the added dimension introduce a third compo-
nent to vectors which represent force, linear velocity, linear acceleration, and linear 
momentum, but the introduction of the third dimension also adds the possibility of 
two additional components for vectors representing angular quantities including 
moments of forces, angular velocity, angular acceleration, and angular momentum. It 
is in three-dimensional motion that the full power of vector analysis is utilized.

A good background in the dynamics of plane motion is extremely useful in the 
study of three-dimensional dynamics, where the approach to problems and many 
of the terms are the same as or analogous to those in two dimensions. If the study of 
three-dimensional dynamics is undertaken without the benefi t of prior study of 
plane-motion dynamics, more time will be required to master the principles and to 
become familiar with the approach to problems.

The treatment presented in Chapter 7 is not intended as a complete develop-
ment of the three-dimensional motion of rigid bodies but merely as a basic intro-
duction to the subject. This introduction should, however, be suffi cient to solve 
many of the more common problems in three-dimensional motion and also to lay 
the foundation for more advanced study. We will proceed as we did for particle mo-
tion and for rigid-body plane motion by fi rst examining the necessary kinematics 
and then proceeding to the kinetics.

SECTION A Kinematics

7/2  Translation
Figure 7∕1 shows a rigid body translating in three-dimensional space. Any two 
points in the body, such as A and B, will move along parallel straight lines if the 
motion is one of rectilinear translation or will move along congruent curves if 
the motion is one of curvilinear translation. In either case, every line in the 
body, such as AB, remains parallel to its original position.

The position vectors and their fi rst and second time derivatives are

rA = rB + rA∕B  vA = vB  aA = aB

where rA ∕B remains constant, and therefore its time derivative is zero. Thus, all 
points in the body have the same velocity and the same acceleration. The kine-
matics of translation presents no special diffi culty, and further elaboration is 
unnecessary.

7/3  Fixed-Axis Rotation
Consider now the rotation of a rigid body about a fi xed axis n-n in space with an 
angular velocity 𝛚, as shown in Fig. 7∕2. The angular velocity is a vector in the di-
rection of the rotation axis with a sense established by the familiar right-hand rule. 
For fi xed-axis rotation, 𝛚 does not change its direction since it lies along the axis. 
We choose the origin O of the fi xed coordinate system on the rotation axis for con-
venience. Any point such as A which is not on the axis moves in a circular arc in a 
plane normal to the axis and has a velocity

 v = 𝛚 × r (7∕1)v = 𝛚 × r 

FIGURE 7/1

z

y

x

B

A

rA

rB

rA/B
vA
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228 CHAPTER 7  Introduction to Three-Dimensional Dynamics of Rigid Bodies

which may be seen by replacing r by h + b and noting that 𝛚 × h = 0.
The acceleration of A is given by the time derivative of Eq. 7∕1. Thus,

 a = �̇� × r + 𝛚 × (𝛚 × r) (7∕2)

where ṙ has been replaced by its equal, v = 𝛚 × r. The normal and tangential 
 components of a for the circular motion have the familiar magnitudes an = �𝛚 × (𝛚 × r)� 
= b𝜔2 and at = � �̇� × r � = b𝛼, where 𝛼 = �̇�. Inasmuch as both v and a are perpendic-
ular to 𝛚 and �̇�, it follows that v ∙𝛚 = 0, v ∙�̇� = 0, a ∙𝛚 = 0, and a∙�̇� = 0 for fi xed-axis 
rotation.

7/4  Parallel-Plane Motion
When all points in a rigid body move in planes which are parallel to a fi xed 
plane P, Fig. 7∕3, we have a general form of plane motion. The reference 
plane is customarily taken through the mass center G and is called the 
plane of motion. Because each point in the body, such as A′, has a motion 
identical with the motion of the corresponding point (A) in plane P, it fol-
lows that the kinematics of plane motion covered in Chapter 5 provides a 
complete description of the motion when applied to the reference plane.

7/5  Rotation about a Fixed Point
When a body rotates about a fi xed point, the angular-velocity vector no longer 
remains fi xed in direction, and this change calls for a more general concept of 
rotation.

Rotation and Proper Vectors
We must fi rst examine the conditions under which rotation vectors obey the paral-
lelogram law of addition and may, therefore, be treated as proper vectors. Consider 

a = �̇� × r + 𝛚 × (𝛚 × r) 

n n

O

A

n

n

A

b

h

r
v = 𝛚 × r

a

z

y

x

Fixed
axis an = 𝛚 × (𝛚 × r)

at = 𝛚 × r⋅

𝛚 = 𝛂⋅

𝛚

FIGURE 7/2
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a solid sphere, Fig. 7∕4, which is cut from a rigid body confi ned to rotate about the 
fi xed point O.

1,213

3

yx

z

yx

z

2

OO

𝜃x then 𝜃y 𝜃y then 𝜃x

(a) (b)

FIGURE 7/4

The x-y-z axes here are taken as fi xed in space and do not rotate 
with the body. In part a of the fi gure, two successive 90° rotations of 
the sphere about, fi rst, the x-axis and, second, the y-axis result in 
the motion of a point which is initially on the y-axis in position 1, 
to positions 2 and 3, successively. On the other hand, if the order of 
the rotations is reversed, the point undergoes no motion during the 
y-rotation but moves to point 3 during the 90° rotation about the 
x-axis. Thus, the two cases do not produce the same fi nal position, 
and it is evident from this one special example that fi nite rotations 
do not generally obey the parallelogram law of vector addition and 
are not commutative. Thus, fi nite rotations may not be treated as 
proper vectors.

Infi nitesimal rotations, however, do obey the parallelogram law 
of vector addition. This fact is shown in Fig. 7∕5, which represents 
the combined effect of two infi nitesimal rotations d𝛉1 and d𝛉2 of a 
rigid body about the respective axes through the fi xed point O. As a 
result of d𝛉1, point A has a displacement d𝛉1 × r, and likewise d𝛉2 
causes a displacement d𝛉2 × r of point A. Either order of addition of these infi nites-
imal displacements clearly produces the same resultant displacement, which is 
d𝛉1 × r + d𝛉2 × r = (d𝛉1 + d𝛉2) × r. Thus, the two rotations are equivalent to the 
single rotation d𝛉 = d𝛉1 + d𝛉2. It follows that the angular velocities 𝛚1 = �̇�1 
and 𝛚2 = �̇�2 may be added vectorially to give 𝛚 = �̇� = 𝛚1 + 𝛚2. We con-
clude, therefore, that at any instant of time a body with one fi xed point 
is rotating instantaneously about a particular axis passing through the 
fi xed point.

Instantaneous Axis of Rotation
To aid in visualizing the concept of the instantaneous axis of rotation, 
we will cite a specifi c example. Figure 7∕6 represents a solid cylindrical 
rotor made of clear plastic containing many black particles embedded in 
the plastic. The rotor is spinning about its shaft axis at the steady rate 
𝜔1, and its shaft, in turn, is rotating about the fi xed vertical axis at the 
steady rate 𝜔2, with rotations in the directions indicated. If the rotor is 

d𝛉1

d𝜃1

d𝛉2

d𝜃2

d𝛉

O

A

r

d𝜃

d𝛉1 × r

d𝛉2 × r

d𝛉 × r

𝛚 = 𝛉
⋅

FIGURE 7/5
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230 CHAPTER 7  Introduction to Three-Dimensional Dynamics of Rigid Bodies

photographed at a certain instant during its motion, the resulting 
picture would show one line of black dots sharply defi ned, indicat-
ing that, momentarily, their velocity was zero. This line of points 
with no velocity establishes the instantaneous position of the axis 
of rotation O-n. Any dot on this line, such as A, would have equal 
and opposite velocity components, v1 due to 𝜔1 and v2 due to 𝜔2. All 
other dots, such as the one at P, would appear blurred, and their 
movements would show as short streaks in the form of small circu-
lar arcs in planes normal to the axis O-n. Thus, all particles of the 
body, except those on line O-n, are momentarily rotating in circular 
arcs about the instantaneous axis of rotation.

If a succession of photographs were taken, we would observe in each photograph 
that the rotation axis would be defi ned by a new series of sharply-defi ned dots and that 
the axis would change position both in space and relative to the body. For rotation of a 
rigid body about a fi xed point, then, it is seen that the rotation axis is, in general, not a 
line fi xed in the body.

Body and Space Cones
Relative to the plastic cylinder of Fig. 7∕6, the instantaneous axis of rotation 
O-A-n generates a right-circular cone about the cylinder axis called the body 
cone. As the two rotations continue and the cylinder swings around the vertical 
axis, the instantaneous axis of rotation also generates a right-circular cone 
about the vertical axis called the space cone. These cones are shown in Fig. 7∕ 7
for this particular example.

We see that the body cone rolls on the space cone and that the angular 
 velocity 𝛚 of the body is a vector which lies along the common element of the two 
cones. For a more general case where the rotations are not steady, the space and 
body cones are not right-circular cones, Fig. 7∕ 8, but the body cone still rolls on 
the space cone.

Angular Acceleration
The angular acceleration 𝛂 of a rigid body in three-dimensional motion is 
the time derivative of its angular velocity, 𝛂 = �̇�. In contrast to the case of 
rotation in a single plane where the scalar 𝛼 measures only the change in 
magnitude of the angular velocity, in three-dimensional motion the vector 𝛂
refl ects the change in direction of 𝛚 as well as its change in magnitude. 
Thus in Fig. 7∕ 8 where the tip of the angular velocity vector 𝛚 follows the 
space curve p and changes in both magnitude and direction, the angular 
acceleration 𝛂 becomes a vector tangent to this curve in the direction of the 
change in 𝛚.

When the magnitude of 𝛚 remains constant, the angular acceleration 
𝛂 is normal to 𝛚. For this case, if we let 𝛀 stand for the angular velocity 
with which the vector 𝛚 itself rotates (precesses) as it forms the space cone, 
the angular acceleration may be written

 𝛂 = 𝛀 × 𝛚 (7∕3)

This relation is easily seen from Fig. 7∕ 9. The upper part of the fi gure re-
lates the velocity of a point A on a rigid body to its position vector from O
and the angular velocity of the body. The vectors 𝛂, 𝛚, and 𝛀 in the lower 
fi gure bear exactly the same relationship to each other as do the vectors v, 
r, and 𝛚 in the upper fi gure.

𝛂 = 𝛀 × 𝛚 

𝛚

A

n

O

Space cone

Body cone

FIGURE 7/7
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If we use Fig. 7∕ 2 to represent a rigid body rotating about a fi xed point O with 
the instantaneous axis of rotation n-n, we see that the velocity v and acceleration 
a = v̇ of any point A in the body are given by the same expressions as apply to the 
case in which the axis is fi xed, namely,

 v = 𝛚 × r  (7∕1)

 a = �̇� × r + 𝛚 × (𝛚 × r) (7∕2)

The one difference between the case of rotation about a fi xed axis and rotation 
about a fi xed point lies in the fact that for rotation about a fi xed point, the angular 
acceleration 𝛂 = �̇� will have a component normal to 𝛚 due to the change in direc-
tion of 𝛚, as well as a component in the direction of 𝛚 to refl ect any change in the 
magnitude of 𝛚. Although any point on the rotation axis n-n momentarily will 
have zero velocity, it will not have zero acceleration as long as 𝛚 is changing its 
direction. On the other hand, for rotation about a fi xed axis, 𝛂 = �̇� has only the one 
component along the fi xed axis to refl ect the change in the magnitude of 𝛚. Fur-
thermore, points which lie on the fi xed rotation axis clearly have no velocity or 
acceleration.

Although the development in this article is for the case of rotation about a fi xed 
point, we observe that rotation is a function solely of angular change, so that the 
expressions for 𝛚 and 𝛂 do not depend on the fi xity of the point around which rota-
tion occurs. Thus, rotation may take place independently of the linear motion of the 
rotation point. This conclusion is the three-dimensional counterpart of the concept 
of rotation of a rigid body in plane motion described in Art. 5 ∕2 and used  throughout 
Chapters 5 and 6.

v = 𝛚 × r  

a = �̇� × r + 𝛚 × (𝛚 × r) 

The engine∕propeller units at the wingtips of this V-22 Osprey can tilt from a 
vertical takeoff position to a horizontal position for forward fl ight.
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232 CHAPTER 7  Introduction to Three-Dimensional Dynamics of Rigid Bodies

SAMPLE PROBLEM 7/1

The 0.8-m arm OA for a remote-control mechanism is pivoted about the 
horizontal x-axis of the clevis, and the entire assembly rotates about 
the z-axis with a constant speed N = 60 rev ∕min. Simultaneously, the 
arm is being raised at the constant rate �̇� = 4 rad∕s. For the position 
where 𝛽 = 30°, determine (a) the angular velocity of OA, (b) the angular 
acceleration of OA, (c) the velocity of point A, and (d) the acceleration of 
point A. If, in addition to the motion described, the vertical shaft and 
point O had a linear motion, say, in the z-direction, would that motion 
change the angular velocity or angular acceleration of OA?

Solution (a) Since the arm OA is rotating about both the x- and the 
z-axes, it has the components 𝜔x = �̇� = 4 rad∕s and 𝜔z = 2𝜋N∕60 = 
2𝜋(60)∕60 = 6.28 rad∕s. The angular velocity is

 𝛚 = 𝛚x + 𝛚z = 4i + 6.28k rad∕s Ans.

(b) The angular acceleration of OA is

𝛂 = �̇� = �̇�x + �̇�z

Since 𝛚z is not changing in magnitude or direction, �̇�z = 0. But 𝛚x is 
changing direction and thus has a derivative which, from Eq. 7∕3, is

�̇�x = 𝛚z × 𝛚x = 6.28k × 4i = 25.1j rad∕s2

Therefore,

 𝛂 = 25.1j + 0 = 25.1j rad∕s2 1  Ans.

(c) With the position vector of A given by r = 0.693j + 0.4k m, the ve-
locity of A from Eq. 7∕1 becomes

  v = 𝛚 × r =  ⃒
i
4
0

j
0

0.693

k
6.28
0.4 ⃒ = −4.35i + 1.60j + 2.77k m∕s Ans.

(d) The acceleration of A from Eq. 7∕2 is

  a = �̇� × r + 𝛚 × (𝛚 × r)

  = 𝛂 × r + 𝛚 × v

=  ⃒
i
0
0

j
25.1

0.693

k
0

0.4 ⃒ +  ⃒
i
4

−4.35

j
0

−1.60

k
6.28
2.77 ⃒

  = (10.05i) + (10.05i − 38.4j − 6.40k)

  = 20.1i − 38.4j − 6.40k m∕s2 2  Ans.

The angular motion of OA depends only on the angular changes N and 
�̇�, so any linear motion of O does not affect 𝛚 and 𝛂.

HELPFUL HINTS
1  Alternatively, consider axes x-y-z to be 

attached to the vertical shaft and clevis 
so that they rotate. The derivative of 𝛚x 
becomes �̇�x = 4 i̇. But from Eq. 5∕11, we 
have i̇ = 𝛚z × i = 6.28k × i = 6.28j. Thus, 
𝛂 = �̇�x = 4(6.28)j = 25.1j rad∕s2 as  before.

2  To compare methods, it is suggested that 
these results for v and a be obtained by 
applying Eqs. 2∕18 and 2∕19 for particle 
motion in spherical coordinates, chang-
ing symbols as necessary.

O

N

0.8 m

x
y

A

z

𝛽 = 30°

𝛚z

𝛚x

O

x y

z

𝛚

(𝜔x = 𝛽)
⋅

𝛂 = 𝛚⋅
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SAMPLE PROBLEM 7/2

The electric motor with an attached disk is running at a constant low 
speed of 120 rev∕min in the direction shown. Its housing and mounting 
base are initially at rest. The entire assembly is next set in rotation 
about the vertical Z-axis at the constant rate N = 60 rev∕min with a 
fi xed angle γ of 30°. Determine (a) the angular velocity and angular 
acceleration of the disk, (b) the space and body cones, and (c) the veloc-
ity and acceleration of point A at the top of the disk for the instant 
shown.

Solution The axes x-y-z with unit vectors i, j, k are attached to the 
motor frame, with the z-axis coinciding with the rotor axis and the 
x-axis coinciding with the horizontal axis through O about which 
the motor tilts. The Z-axis is vertical and carries the unit vector K = 
j cos γ + k sin γ.

(a) The rotor and disk have two components of angular velocity: 
𝜔0 = 120(2𝜋) ∕60 = 4𝜋 rad∕sec about the z-axis and 𝛺 = 60(2𝜋) ∕60 = 
2𝜋 rad∕sec about the Z-axis. Thus, the angular velocity becomes

 𝛚 = 𝛚0 + Ω = 𝜔0k + 𝛺K 1

 = 𝜔0k + 𝛺( j cos 𝛾 + k sin 𝛾) = (𝛺 cos 𝛾) j + (𝜔0 + 𝛺 sin 𝜃)k

 = (2𝜋 cos 30°)j + (4𝜋 + 2𝜋 sin 30°)k = 𝜋(√3j + 5.0k) rad∕sec Ans.

The angular acceleration of the disk from Eq. 7∕3 is

  𝛂 = �̇� = 𝛀 × 𝛚 2

 = 𝛺( j cos 𝛾 + k sin 𝛾) × [(𝛺 cos 𝛾)j + (𝜔0 + 𝛺  sin 𝛾)k]

  = 𝛺(𝜔0 cos 𝛾 + 𝛺 sin 𝛾 cos 𝛾)i − (𝛺2 sin 𝛾 cos 𝛾)i

  = (𝛺 𝜔0 cos 𝛾)i = i(2𝜋)(4𝜋) cos 30° = 68.4i rad∕sec2 3  Ans.

(b) The angular velocity vector 𝛚 is the common element of the space 
and body cones, which may now be constructed as shown.

(c) The position vector of point A for the instant considered is

r = 5j + 10k in.

From Eq. 7∕1 the velocity of A is

 v = 𝛚 × r = ⃒
i

0

0

j

√3𝜋

5

k

5𝜋

10
⃒= −7.68𝜋 i in.∕sec Ans.

From Eq. 7∕2 the acceleration of point A is

 a = �̇� × r + 𝛚 × (𝛚 × r) = 𝛂 × r + 𝛚 × v

 = 68.4i × (5 j + 10k) + 𝜋(√3j + 5k) × (−7.68𝜋 i)

  = −1063 j + 473k in.∕sec2  Ans.

HELPFUL HINTS
1  Note that 𝛚0 + Ω = 𝛚 = 𝛚y + 𝛚z as shown 

on the vector diagram.

2  Remember that Eq. 7∕3 gives the com-
plete expression for 𝛂 only for steady 
precession where �𝛚� is constant, which 
applies to this problem.

3  Since the magnitude of 𝛚 is constant, 𝛂 
must be tangent to the base circle of 
the space cone, which puts it in the plus 
x-direction in agreement with our calcu-
lated conclusion.

x

z
y

Z

A

C

O

N

𝜔0

OC = 10ʺ
CA = 5ʺ

𝛾

𝛺 = 2𝜋
rad/sec

𝜔z = 5𝜋 rad/sec
𝜔0 = 4𝜋 rad/sec

Z

y z

z

O

O

Z

Space
cone

Body cone

𝛚

𝜔y =   3𝜋
rad/sec

𝛾 = 30°

𝛚
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7/6  General Motion
The kinematic analysis of a rigid body which has general three-dimensional motion 
is best accomplished with the aid of our principles of relative motion. We have ap-
plied these principles to problems in plane motion and now extend them to space 
motion. We will make use of both translating axes and rotating reference axes.

Translating Reference Axes
Figure 7∕10 shows a rigid body which has an angular velocity 𝛚. We 
may choose any convenient point B as the origin of a translating refer-
ence system x-y-z. The velocity v and acceleration a of any other point 
A in the body are given by the relative-velocity and relative-accelera-
tion expressions

  vA = vB + vA∕B [5 ∕4]

  aA = aB + aA∕B [5 ∕7]

which were developed in Arts. 5∕4 and 5∕6 for the plane motion of 
rigid bodies. These expressions also hold in three dimensions, where 
the three vectors for each of the equations are also coplanar.

In applying these relations to rigid-body motion in space, we note 
from Fig. 7∕10 that the distance AB remains constant. Thus, from an 
observer’s position on x-y-z, the body appears to rotate about the point 
B and point A appears to lie on a spherical surface with B as the cen-
ter. Consequently, we may view the general motion as a translation of 
the body with the motion of B plus a rotation of the body about B.

The relative-motion terms represent the effect of the rotation 
about B and are identical to the velocity and acceleration expressions 
discussed in the previous article for rotation of a rigid body about a 
fi xed point. Therefore, the relative-velocity and relative-acceleration 
equations may be written

  vA = vB + 𝛚 × rA∕B
 (7∕4)

 aA = aB + �̇� × rA∕B + 𝛚 × (𝛚 × rA∕B)

where 𝛚 and �̇� are the instantaneous angular velocity and angular 
acceleration of the body, respectively.

The selection of the reference point B is quite arbitrary in theory. 
In practice, point B is chosen for convenience as some point in the 
body whose motion is known in whole or in part. If point A is chosen 
as the reference point, the relative-motion equations become

 vB = vA + 𝛚 × rB∕A

 aB = aA + �̇� × rB∕A + 𝛚 × (𝛚 × rB∕A)

where rB ∕A = −rA ∕B. It should be clear that 𝛚 and, thus, �̇� are the same 
vectors for either formulation since the absolute angular motion of 
the body is independent of the choice of reference point. When we 
come to the kinetic equations for general motion, we will see that the 
mass center of a body is frequently the most convenient reference 
point to choose.

vAv = vBv + 𝛚 × rAr ∕B
 

aAa = aBa + �̇� × rAr ∕B + 𝛚 × (𝛚 × rAr ∕B)

Z

rA

rB

rA/B

z

Y

A

B

O y

x

X

𝛚

FIGURE 7/10

By proper management of the 
 hydraulic cylinders which support 
and move this aircraft fl ight simulator, 
a variety of three-dimensional 
translational and rotational 
accelerations can be produced.
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 Article  7/6 General Motion 235

If points A and B in Fig. 7∕10 represent the ends of a rigid control link in a 
spatial mechanism where the end connections act as ball-and-socket joints (as in 
Sample Problem 7∕3), it is necessary to impose certain kinematic requirements. 
Clearly, any rotation of the link about its own axis AB does not affect the action of 
the link. Thus, the angular velocity 𝛚n whose vector is normal to the link describes 
its action. It is necessary, therefore, that 𝛚n and rA ∕B be at right angles, and this 
condition is satisfi ed if 𝛚n∙rA∕B = 0.

Similarly, it is only the component 𝛂n* of the angular acceleration of the link 
normal to AB which affects its action, so that 𝛂n∙rA∕B = 0 must also hold.

Rotating Reference Axes
A more general formulation of the motion of a rigid body in space calls for 
the use of reference axes which rotate as well as translate. The descrip-
tion of Fig. 7∕10 is modifi ed in Fig. 7∕11 to show reference axes whose 
origin is attached to the reference point B as before, but which rotate 
with an absolute angular velocity 𝛀 which may be different from the 
absolute angular velocity 𝛚 of the body.

We now make use of Eqs. 5 ∕11, 5 ∕12, 5 ∕13, and 5 ∕14 developed in  
Art. 5 ∕7 for describing the plane motion of a rigid body with the use of ro-
tating axes. The extension of these relations from two to three dimensions 
is easily accomplished by merely including the z-component of the vectors, 
and this step is left to the student to carry out. Replacing 𝛚 in these equa-
tions by the angular velocity 𝛀 of our rotating x-y-z axes gives us

 i̇ = 𝛀 × i  j̇ = 𝛀 × j  k̇ = 𝛀 × k (7∕5)

for the time derivatives of the rotating unit vectors attached to x-y-z. The 
expressions for the velocity and acceleration of point A become

 vA = vB + 𝛀 × rA∕B + vrel

  aA = aB + �̇� × rA∕B + 𝛀 × (𝛀 × rA∕B) + 2𝛀 × vrel + arel 
(7∕6)

where vrel = ẋi + ẏj + żk and arel = ẍi + ÿj + z̈k are, respectively, the velocity and 
acceleration of point A measured relative to x-y-z by an observer attached to x-y-z.

We again note that 𝛀 is the angular velocity of the axes and may be different 
from the angular velocity 𝛚 of the body. Also we note that rA ∕B remains constant in 
magnitude for points A and B fi xed to a rigid body, but it will change direction with 
respect to x-y-z when the angular velocity 𝛀 of the axes is different from the angu-
lar velocity 𝛚 of the body. We observe further that, if x-y-z are rigidly attached to the 
body, 𝛀 = 𝛚 and vrel and arel are both zero, which makes the equations identical to 
Eqs. 7∕4.

In Art. 5 ∕7 we also developed the relationship (Eq. 5∕13) between the time de-
rivative of a vector V as measured in the fi xed X-Y system and the time derivative 
of V as measured relative to the rotating x-y system. For our three-dimensional 
case, this relation becomes

 (dV
dt )

XYZ
= (dV

dt )
xyz

+ 𝛀 × V (7∕7)

i̇ = 𝛀 × i j̇ = 𝛀 × j k̇ = 𝛀 × k 

vAv = vBv + 𝛀 × rAr ∕B + vrel

aAa = aBa + �̇� × rAr ∕B + 𝛀 × (𝛀 × rAr ∕B) + 2𝛀 × vrel + arel

Z

rA

rB

rA/B Y

A

B

O

X

𝛀 (Axes)

𝛚 (Body)
z

y

x

FIGURE 7/11

*It may be shown that 𝛂n = �̇�n if the angular velocity of the link about its own axis is not  changing. 
See the fi rst author’s Dynamics, 2nd Edition, SI Version, 1975, John Wiley & Sons, Art. 37.
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236 CHAPTER 7  Introduction to Three-Dimensional Dynamics of Rigid Bodies

When we apply this transformation to the relative-position vector rA ∕B = rA − rB for 
our rigid body of Fig. 7∕11, we obtain

(
drA

dt )
XYZ

= (
drB

dt )
XYZ

+ (
drA∕B

dt )
xyz

+ 𝛀 × rA∕B

or

vA = vB + vrel + 𝛀 × rA∕B

which gives us the fi rst of Eqs. 7∕6.
Equations 7∕6 are particularly useful when the reference axes are attached to 

a moving body within which relative motion occurs.
Equation 7∕7 may be recast as the vector operator

 (d[ ]
dt )

XYZ
= (d[ ]

dt )
xyz

+ 𝛀 × [ ] (7∕7a)

where [ ] stands for any vector V expressible both in X-Y-Z and in x-y-z. If we apply 
the operator to itself, we obtain the second time derivative, which becomes

 (d2[ ]
dt2 )

XYZ
=  (d2[ ]

dt2 )
xyz

+ �̇� × [ ] + 𝛀 × (𝛀 × [ ])

  + 2𝛀 × (d[ ]
dt )

xyz
 (7∕7b)

This exercise is left to the student. Note that the form of Eq. 7∕7b is the same as 
that of the second of Eqs. 7∕6 expressed for aA∕B = aA − aB.
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SAMPLE PROBLEM 7/3

Crank CB rotates about the horizontal axis with an angular velocity 
𝜔1 = 6 rad∕s which is constant for a short interval of motion which 
includes the position shown. The link AB has a ball-and-socket fi tting 
on each end and connects crank DA with CB. For the instant shown, 
determine the angular velocity 𝜔2 of crank DA and the angular velocity 
𝛚n of link AB.

Solution The relative-velocity relation, Eq. 7∕4, will be solved fi rst 
using translating reference axes attached to B. 1  The equation is

 vA = vB + 𝛚n × rA∕B

where 𝛚n is the angular velocity of link AB taken normal to AB. 2  
The velocities of A and B are

[v = r𝜔]  vA = 50𝜔2 j  vB =  100(6)i = 600i mm∕s

Also rA ∕B = 50i + 100j + 100k mm. Substitution into the velocity rela-
tion gives

50𝜔2 j = 600i + ⃒
i

𝜔nx

50

j

𝜔ny

100

k

𝜔nz

100
⃒

Expanding the determinant and equating the coeffi cients of the i, j, k 
terms give

 −6 =     + 𝜔ny
− 𝜔nz

 𝜔2 = −2𝜔nx
    

 + 𝜔nz

 0 =     2𝜔nx
− 𝜔ny

These equations may be solved for 𝜔2, which becomes

 𝜔2 = 6 rad∕s Ans.

As they stand, the three equations incorporate the fact that 𝛚n is nor-
mal to vA ∕B, but they cannot be solved until the requirement that 𝛚n be 
normal to rA ∕B is included. 3  Thus,

[𝛚n ∙rA∕B = 0]  50𝜔nx
+ 100𝜔ny

+ 100𝜔nz
= 0

Combination with two of the three previous equations yields the solutions

𝜔nx
= −

4
3 rad∕s  𝜔ny

= −
8
3 rad∕s  𝜔nz

=
10
3  rad∕s

Thus,

 𝛚n =
2
3 (−2i − 4j + 5k) rad∕s Ans.

HELPFUL HINTS
1  We select B as the reference point since 

its motion can easily be determined from 
the given angular velocity 𝜔1 of CB.

2  The angular velocity 𝛚 of AB is taken as 
a vector 𝛚n normal to AB since any rota-
tion of the link about its own axis AB 
has no infl uence on the behavior of the 
linkage.

3  The relative-velocity equation may be 
written as vA − vB = vA∕B = 𝛚n × rA∕B, 
which requires that vA∕B be perpendicu-
lar to both 𝛚n and rA∕B. This equation 
alone does not incorporate the addi-
tional requirement that 𝛚n be perpen-
dicular to rA∕B. Thus, we must also 
 satisfy 𝛚n ∙rA∕B = 0.

D

A
z

x
y

C

𝜔2

50 mm

100 mm

100 mm

vA

vB

100 mm

B

𝜔1
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238 CHAPTER 7  Introduction to Three-Dimensional Dynamics of Rigid Bodies

SAMPLE PROBLEM 7/4

Determine the angular acceleration �̇�2 of crank AD in Sample Problem 7∕3 
for the conditions cited. Also fi nd the angular acceleration �̇�n of link 
AB.

Solution The accelerations of the links may be found from the  second 
of Eqs. 7∕4, which may be written

aA = aB + �̇�n × rA∕B + 𝛚n × (𝛚n × rA∕B)

where 𝛚n, as in Sample Problem 7∕3, is the angular velocity of AB taken 
normal to AB. The angular acceleration of AB is written as �̇�n. 1

In terms of their normal and tangential components, the accelera-
tions of A and B are

 aA = 50𝜔2 

2i + 50�̇�2 j = 1800i + 50�̇�2 j mm∕s2

 aB = 100𝜔1 

2k + (0)i = 3600k mm∕s2

Also

 𝛚n × (𝛚n × rA∕B) = −𝜔n 

2 rA∕B = −20(50i + 100j + 100k) mm∕s2

  �̇�n × rA∕B = (100�̇�ny
− 100 �̇�nz

)i

  + (50�̇�nz
− 100�̇�nx

) j + (100�̇�nx
− 50�̇�ny

)k

Substitution into the relative-acceleration equation and equating re-
spective coeffi cients of i, j, k give

 28 =   �̇�ny  − �̇�nz

 �̇�2 + 40 = −2�̇�nx
 

 
   +  �̇�nz

 −32 = 2�̇�nx
−  �̇�ny

Solution of these equations for v̇2 gives

 �̇�2 = −36 rad∕s2 Ans.

The vector �̇�n is normal to rA ∕B but is not normal to vA ∕B, as was 
the case with 𝛚n. 2

[�̇�n ∙rA∕B = 0]  2�̇�nx
+ 4�̇�ny

+ 4�̇�nz
= 0

which, when combined with the preceding relations for these same 
quantities, gives

�̇�nx
= −8 rad∕s2  �̇�ny

= 16 rad∕s2  �̇�nz
= −12 rad∕s2

Thus,

 �̇�n = 4(−2i + 4j − 3k) rad∕s2 Ans.

and

��̇�n| = 4√22 + 42 + 32 = 4√29 rad∕s2

HELPFUL HINTS
1  If the link AB had an angular velocity 

component along AB, then a change in 
both magnitude and direction of this 
component could occur which would 
contribute to the actual angular accel-
eration of the link as a rigid body. How-
ever, since any rotation about its own 
axis AB has no infl uence on the motion 
of the cranks at C and D, we will con-
cern ourselves only with �̇�n.

2  The component of �̇�n which is not nor-
mal to vA∕B gives rise to the change in 
direction of vA∕B.
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SAMPLE PROBLEM 7/5

The motor housing and its bracket rotate about the Z-axis at the constant 
rate 𝛺 = 3 rad∕s. The motor shaft and disk have a constant angular veloc-
ity of spin p = 8 rad∕s with respect to the motor housing in the direction 
shown. If 𝛾 is constant at 30°, determine the velocity and acceleration of 
point A at the top of the disk and the angular acceleration 𝛂 of the disk.

Solution The rotating reference axes x-y-z are attached to the motor 
housing, and the rotating base for the motor has the momentary orien-
tation shown with respect to the fi xed axes X-Y-Z. 1  We will use both 
X-Y-Z components with unit vectors I, J, K and x-y-z components with 
unit vectors i, j, k. The angular velocity of the x-y-z axes becomes 𝛀 = 
𝛺K = 3K rad∕s.

Velocity The velocity of A is given by the fi rst of Eqs. 7∕6

vA = vB + 𝛀 × rA∕B + vrel

where

 vB = 𝛀 × rB = 3K × 0.350J = −1.05I = −1.05i m∕s

  𝛀 × rA∕B = 3K × (0.300j + 0.120k) 2

 = (−0.9 cos 30°)i + (0.36 sin 30°)i = −0.599i m∕s

 vrel = p × rA∕B = 8j × (0.300j + 0.120k) = 0.960i m∕s

Thus,

 vA = −1.05i − 0.599i + 0.960i = −0.689i m∕s Ans.

Acceleration The acceleration of A is given by the second of Eqs. 7∕6

 aA = aB + �̇� × rA∕B + 𝛀 × (𝛀 × rA∕B) + 2𝛀 × vrel + arel

where

  aB = 𝛀 × (𝛀 × rB) = 3K × (3K × 0.350J) = −3.15J

  = 3.15(−j cos 30° + k sin 30°) = −2.73j + 1.575k m∕s2

  �̇� = 0

  𝛀 × (𝛀 × rA∕B) = 3K × [3K × (0.300j + 0.120k)] 2

  = 3K × (−0.599i) = −1.557j + 0.899k m∕s2

  2𝛀 × vrel = 2(3K) × 0.960i = 5.76J

  = 5.76( j cos 30° − k sin 30°) = 4.99 j − 2.88k m∕s2

  arel = p × (p × rA∕B) = 8j × [8j × (0.300j + 0.120k)]

  = −7.68k m∕s2

Substituting into the expression for aA and collecting terms give us

aA = 0.703j − 8.09k m∕s2

and  aA =  √(0.703)2 +  (8.09)2 = 8.12 m∕s2 Ans.

Angular Acceleration Since the precession is steady, we may use 
Eq. 7∕3 to give us

 𝛂 = �̇� = 𝛀 × 𝛚 = 3K × (3K + 8 j)

  = 0 + (−24 cos 30°)i = −20.8i rad∕s2 Ans.

HELPFUL HINTS
1  This choice for the reference axes pro-

vides a simple description for the mo-
tion of the disk relative to these axes.

2  Note that K × i = J = j cos γ − 
k sin γ, K × j = −i cos γ, and K × k = 
i sin γ.
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SECTION B Kinetics

7/7  Angular Momentum
The force equation for a mass system, rigid or nonrigid, Eq. 4 ∕1 or 4 ∕6, is the gen-
eralization of Newton’s second law for the motion of a particle and should require 
no further explanation. The moment equation for three-dimensional motion, how-

ever, is not nearly as simple as the third of Eqs. 6 ∕1 for plane motion since the 
change of angular momentum has a number of additional components which 
are absent in plane motion.

We now consider a rigid body moving with any general motion in space, 
Fig. 7∕12a. Axes x-y-z are attached to the body with origin at the mass center 
G. Thus, the angular velocity 𝛚 of the body becomes the angular velocity of 
the x-y-z axes as observed from the fi xed reference axes X-Y-Z. The absolute 
angular momentum HG of the body about its mass center G is the sum of the 
moments about G of the linear momenta of all elements of the body and was 
expressed in Art. 4 ∕4 as HG =Σ(𝛒i × mivi), where vi is the absolute velocity of 
the mass element mi.

But for the rigid body, vi = v + 𝛚 × 𝛒i, where 𝛚 × 𝛒i is the relative velocity 
of mi with respect to G as seen from nonrotating axes. Thus, we may write

HG = −v ×Σmi 𝛒i + Σ[ 𝛒i × mi(𝛚 × 𝛒i)]

where we have factored out v from the fi rst summation terms by reversing 
the order of the cross product and changing the sign. With the origin at the 
mass center G, the fi rst term in HG is zero since Σmi𝛒i = m𝛒 = 0. The second 
term with the substitution of dm for mi and 𝛒 for 𝛒i gives

 HG = ∫[𝛒 × (𝛚 × 𝛒)] dm (7∕ 8)

Before expanding the integrand of Eq. 7∕8, we consider also the case of a 
rigid body rotating about a fi xed point O, Fig. 7∕12b. The x-y-z axes are at-
tached to the body, and both body and axes have an angular velocity 𝛚. The 
angular momentum about O was expressed in Art. 4 ∕4 and is HO = Σ(ri × mivi), 
where, for the rigid body, vi = 𝛚 × ri. Thus, with the substitution of dm for mi 
and r for ri, the angular momentum is

 HO = ∫[r × (𝛚 × r)] dm (7∕9)

Moments and Products of Inertia
We observe now that for the two cases of Figs. 7∕12a and 7∕12b, the position 
vectors 𝛒i and ri are given by the same expression xi + yj + zk. Thus, Eqs. 7∕8 and 
7∕9 are identical in form, and the symbol H will be used here for either case. We 
now carry out the expansion of the integrand in the two expressions for angular 
momentum, recognizing that the components of 𝛚 are invariant with respect to 
the integrals over the body and thus become constant multipliers of the integrals. 
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The cross-product expansion applied to the triple vector product gives, upon col-
lection of terms,

 dH = i[(y2 + z2)𝜔x     −xy𝜔y     −xz𝜔z] dm

 +j[  −yx𝜔x + (z2 + x2)𝜔y     −yz𝜔z] dm

 +k[  −zx𝜔x     −zy𝜔y + (x2 + y2)𝜔z] dm

Now let

 Ixx = ∫(y2 +  z2) dm  Ixy = ∫xy dm

 Iyy = ∫(z2 +  x2) dm   Ixz = ∫xz dm (7∕10)

 Izz = ∫(x2 + y2) dm  Iyz = ∫yz dm

The quantities Ixx, Iyy, Izz are called the moments of inertia of the body about the 
respective axes, and Ixy, Ixz, Iyz are the products of inertia with respect to the coordi-
nate axes. These quantities describe the manner in which the mass of a rigid body 
is distributed with respect to the chosen axes. The calculation of moments and 
products of inertia is explained fully in Appendix B. The double subscripts for the 
moments and products of inertia preserve a symmetry of notation which has spe-
cial meaning in their description by tensor notation.*

Observe that Ixy = Iyx, Ixz = Izx, and Iyz = Izy. With the substitutions of Eqs. 7∕10, 
the expression for H becomes

H = (   Ixx𝜔x − Ixy𝜔y − Ixz𝜔z)i

  + (−Iyx𝜔x + Iyy𝜔y − Iyz𝜔z)j  (7∕11)

  + (−Izx𝜔x − Izy𝜔y + Izz𝜔z)k

and the components of H are clearly

 Hx = Ixx𝜔x − Ixy𝜔y  − Ixz𝜔z

  Hy = −Iyx𝜔x  + Iyy𝜔y  − Iyz𝜔z (7∕12)

 Hz = −Izx𝜔x  −  Izy𝜔y + Izz𝜔z

Equation 7∕11 is the general expression for the angular momentum either about 
the mass center G or about a fi xed point O for a rigid body rotating with an instan-
taneous angular velocity 𝛚.

Remember that in each of the two cases represented, the reference axes x-y-z 
are attached to the rigid body. This attachment makes the moment-of-inertia inte-
grals and the product-of-inertia integrals of Eqs. 7∕10 invariant with time. If 
the x-y-z axes were to rotate with respect to an irregular body, then these inertia 

IxII xxx = ∫(y2 + z2) dm IxII yx = ∫xyx dm

IyII yyy = ∫(z2 + x2) dm IxII zxx = ∫xzxx dm 

IzII z = ∫(x2 + y2) dm IyII z = ∫yz dm

H = ( IxII xxx 𝜔x − IxII yx 𝜔y𝜔 − IxII zxx 𝜔z)i

+ (−IyII x𝜔x + IyII yyy 𝜔y𝜔 − IyII z𝜔z)j  

+ (−IzII x𝜔x − IzII yz 𝜔y𝜔 + IzII z𝜔z)k

HxHH = IxII xxx 𝜔x − IxII yx 𝜔y𝜔 − IxII zxx 𝜔z

HyHH = −IyII x𝜔x + IyII yyy 𝜔y𝜔 − IyII z𝜔z 

HzHH = −IzII x𝜔x − IzII yz 𝜔y𝜔 + IzII z𝜔z

*See, for example, the fi rst author’s Dynamics, 2nd Edition, SI Version, 1975, John Wiley & Sons, 
Art. 41.
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integrals would be functions of the time, which would introduce an undesirable 
complexity into the angular-momentum relations. An important exception occurs 
when a rigid body is spinning about an axis of symmetry, in which case, the inertia 
integrals are not affected by the angular position of the body about its spin axis. 
Thus, for a body rotating about an axis of symmetry, it is frequently convenient to 
choose one axis of the reference system to coincide with the axis of rotation and 
allow the other two axes not to turn with the body. In addition to the momentum 
components due to the angular velocity 𝛀 of the reference axes, then, an added 
 angular-momentum component along the spin axis due to the relative spin about 
the axis would have to be accounted for.

Principal Axes
The array of moments and products of inertia

Ixx

[−Iyx

−Izx

−Ixy

Iyy

−Izy

−Ixz

−Iyz

Izz
]

which appear in Eq. 7∕12 is called the inertia matrix or inertia tensor. As we change 
the orientation of the axes relative to the body, the moments and products of inertia 
will also change in value. It can be shown* that there is one unique orientation of 
axes x-y-z for a given origin for which the products of inertia vanish and the mo-
ments of inertia Ixx, Iyy, Izz take on stationary values. For this orientation, the  inertia 
matrix takes the form

[
Ixx

0
0

0
Iyy

0

0
0
Izz

]
and is said to be diagonalized. The axes x-y-z for which the products of inertia vanish 
are called the principal axes of inertia, and Ixx, Iyy, and Izz are called the principal 
moments of inertia. The principal moments of inertia for a given origin represent the 
maximum, the minimum, and an intermediate value of the moments of inertia.

If the coordinate axes coincide with the principal axes of inertia, Eq. 7∕11 for 
the angular momentum about the mass center or about a fi xed point becomes

 H = Ixxvxi + Iyyvy j + Izzvzk (7∕13)

It is always possible to locate the principal axes of inertia for a general three- 
dimensional rigid body. Thus, we can express its angular momentum by Eq. 7∕13, 
although it may not always be convenient to do so for geometric reasons. Except 
when the body rotates about one of the principal axes of inertia or when Ixx = Iyy = 
Izz, the vectors H and 𝛚 have different directions.

Transfer Principle for Angular Momentum
The momentum properties of a rigid body may be represented by the resultant 
linear-momentum vector G = mv through the mass center and the resultant 

H = IxII xxx vxi + IyII yyy vyv j + IzII zvzk 

*See, for example, the fi rst author’s Dynamics, 2nd Edition, SI Version, 1975, John Wiley & Sons, 
Art. 41.
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 angular-momentum vector HG about the mass center, as shown in 
Fig. 7∕13. Although HG has the properties of a free vector, we represent it 
through G for convenience.

These vectors have properties analogous to those of a force and a cou-
ple. Thus, the angular momentum about any point P equals the free vector 
HG plus the moment of the linear-momentum vector G about P. Therefore, 
we may write

HP = HG + r × G (7∕14)

This relation, which was derived previously in Chapter 4 as Eq. 4 ∕10, also 
applies to a fi xed point O on the body or body extended, where O merely 
replaces P. Equation 7∕14 constitutes a transfer theorem for angular 
 momentum.

7/8  Kinetic Energy
In Art. 4 ∕3 on the dynamics of systems of particles, we developed the expression for 
the kinetic energy T of any general system of mass, rigid or nonrigid, and obtained 
the result

 T =
1
2 mv 

2 + Σ  

1
2 mi� �̇�i�2 [4 ∕4]

where v is the velocity of the mass center and 𝛒i is the position vector of a represen-
tative element of mass mi with respect to the mass center. We identifi ed the fi rst 
term as the kinetic energy due to the translation of the system and the second term 
as the kinetic energy associated with the motion relative to the mass center. The 
translational term may be written alternatively as

1
2 mv2 =

1
2 mṙ∙ ṙ =

1
2v ∙G

where ṙ is the velocity v of the mass center and G is the linear momentum of the 
body.

For a rigid body, the relative term becomes the kinetic energy due to rotation 
about the mass center. Because 𝛒i is the velocity of the representative particle with 
respect to the mass center, then for the rigid body we may write it as 𝛒i = 𝛚 × 𝞀i, 
where 𝛚 is the angular velocity of the body. With this substitution, the relative term 
in the kinetic energy expression becomes

Σ  

1
2 mi� �̇�i�2 = Σ  

1
2 mi(𝛚 × 𝛒i) ∙ (𝛚 × 𝛒i)

If we use the fact that the dot and the cross may be interchanged in the triple 
scalar product, that is, P × Q ∙R = P ∙Q × R, we may write

(𝛚 × 𝛒i) ∙ (𝛚 × 𝛒i) = 𝛚∙𝛒i × (𝛚 × 𝛒i)

Because 𝛚 is the same factor in all terms of the summation, it may be factored out 
to give

Σ
1
2mi� �̇�i�2 =

1
2𝛚 ∙Σ𝛒i × mi(𝛚 × 𝛒i) =

1
2𝛚∙HG

HPH = HG + r × G 
P

G

HG

G = mvr

FIGURE 7/13
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where HG is the same as the integral expressed by Eq. 7∕8. Thus, the general ex-
pression for the kinetic energy of a rigid body moving with mass-center velocity v
and angular velocity 𝛚 is

T =
1
2 v ∙G +

1
2 𝛚 ∙HG (7∕15)

Expansion of this vector equation by substitution of the expression for HG writ-
ten from Eq. 7∕11 yields

 T =
1
2 mv 

2 +
1
2 (Ixx𝜔x 

2 + Iyy𝜔y 

2 + Izz𝜔z 

2)

 −(Ixy𝜔x𝜔y + Ixz𝜔x𝜔z + Iyz𝜔y𝜔z)  (7∕16)

If the axes coincide with the principal axes of inertia, the kinetic energy is merely

T =
1
2 mv 

2 +
1
2 (Ixx𝜔x 

2 + Iyy𝜔y 

2 + Izz𝜔z 

2) (7∕17)

When a rigid body is pivoted about a fi xed point O or when there is a point O
in the body which momentarily has zero velocity, the kinetic energy is T = Σ  

1
2miṙi ∙ ṙi.

This expression reduces to

 T =
1
2 𝛚 ∙HO (7∕18)

where HO is the angular momentum about O, as may be seen by replacing 𝛒i in the 
previous derivation by ri, the position vector from O. Equations 7∕15 and 7∕18 are 
the three-dimensional counterparts of Eqs. 6 ∕9 and 6 ∕8 for plane motion.

T =
1
2 v ∙G +

1
2𝛚 ∙HG 

T =
1
2𝛚 ∙HO 

M
ed
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 B
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y

Portions of the landing gear for a large 
aircraft undergo three-dimensional 
motion during retraction and 
deployment.
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SAMPLE PROBLEM 7/6

The bent plate has a mass of 70 kg per square meter of surface area 
and revolves about the z-axis at the rate 𝜔 = 30 rad∕s. Determine 
(a) the angular momentum H of the plate about point O and (b) the 
kinetic energy T of the plate. Neglect the mass of the hub and the thick-
ness of the plate compared with its surface dimensions.

Solution The moments and products of inertia are written with the 
aid of Eqs. B ∕3 and B ∕9 in Appendix B by transfer from the parallel 
centroidal axes for each part. 1  First, the masses of the parts are mA = 
(0.100)(0.125)(70) = 0.875 kg and mB = (0.075)(0.150)(70) = 0.788 kg.

Part A

[Ixx = Ixx + md2] Ixx =
0.875

12
[(0.100)2 + (0.125)2]

  + 0.875[(0.050)2 + (0.0625)2] = 0.007 47 kg∙m2

[Iyy =
1
3 ml2]  Iyy =

0.875
3

(0.100)2 = 0.002 92 kg∙m2

[Izz =
1
3 ml2]  Izz =

0.875
3

(0.125)2 = 0.004 56 kg∙m2

[Ixy = ∫xy dm,  Ixz = ∫xz dm]  Ixy = 0  Ixz = 0

[Iyz = Iyz + mdydz]  Iyz = 0 + 0.875(0.0625)(0.050) = 0.002 73 kg∙m2

Part B

[Ixx = Ixx +  md2]  Ixx =
0.788

12
(0.150)2 + 0.788[(0.125)2 + (0.075)2]

  = 0.018 21 kg∙m2

[Iyy = Iyy + md2]  Iyy =
0.788

12
[(0.075)2 + (0.150)2]

  + 0.788[(0.0375)2 + (0.075)2] = 0.007 38 kg∙m2

[Izz = Izz + md2]  Izz =
0.788

12
(0.075)2 + 0.788[(0.125)2 + (0.0375)2]

  = 0.013 78 kg∙m2

[Ixy = Ixy + mdxdy]  Ixy = 0 + 0.788(0.0375)(0.125) = 0.003 69 kg∙m2

[Ixz = Ixz + mdxdz]  Ixz = 0 + 0.788(0.0375)(0.075) = 0.002 21 kg∙m2

[Iyz = Iyz + mdydz]  Iyz = 0 + 0.788(0.125)(0.075) = 0.007 38 kg∙m2

The sum of the respective inertia terms gives for the two plates together

  Ixx = 0.0257 kg∙m2  Ixy = 0.003 69 kg∙m2

  Iyy = 0.010 30 kg∙m2  Ixz = 0.002 21 kg∙m2

  Izz = 0.018 34 kg∙m2   Iyz = 0.010 12 kg∙m2

(a) The angular momentum of the body is given by Eq. 7∕11, where 
𝜔z = 30 rad∕s and 𝜔x and 𝜔y are zero. Thus,

 HO = 30(−0.002 21i − 0.010 12j + 0.018 34k) N∙m∙s 2  Ans.

(b) The kinetic energy from Eq. 7∕18 becomes

  T =
1
2𝛚 ∙HO =

1
2 (30k) ∙30(−0.002 21i − 0.010 12 j + 0.018 34k)

  = 8.25 J Ans.

HELPFUL HINTS
1  The parallel-axis theorems for transfer-

ring moments and products of inertia 
from centroidal axes to parallel axes are 
explained in Appendix B and are most 
useful relations.

2  Recall that the units of angular momen-
tum may also be written in the base 
units as kg∙m2∕s.
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7/9   Momentum and Energy Equations 
of Motion

With the description of angular momentum, inertial properties, and kinetic energy 
of a rigid body established in the previous two articles, we are ready to apply the 
general momentum and energy equations of motion.

Momentum Equations
In Art. 4 ∕4 of Chapter 4, we established the general linear- and angular-momentum 
equations for a system of constant mass. These equations are

 ΣF = Ġ [4 ∕6]

 ΣM = Ḣ [4 ∕ 7] or [4 ∕ 9]

The general moment relation, Eq. 4 ∕7 or 4 ∕9, is expressed here by the single equa-
tion ΣM = Ḣ, where the terms are taken either about a fi xed point O or about the 
mass center G. In the derivation of the moment principle, the derivative of H was 
taken with respect to an absolute coordinate system. When H is expressed in terms 
of components measured relative to a moving coordinate system x-y-z which has an 
angular velocity 𝛀, then by Eq. 7∕7 the moment relation becomes

 ΣM = (dH
dt )

xyz
+ 𝛀 × H

 = (Ḣxi + Ḣy j + Ḣzk) + 𝛀 × H

The terms in parentheses represent that part of Ḣ due to the change in magnitude 
of the components of H, and the cross-product term represents that part due to the 
changes in direction of the components of H. Expansion of the cross product and 
rearrangement of terms give

 ΣM = (Ḣx − Hy𝛺z + Hz𝛺y)i

  + (Ḣy − Hz𝛺x + Hx𝛺z)j  (7∕19)

  + (Ḣz − Hx𝛺y + Hy𝛺x)k

Equation 7∕19 is the most general form of the moment equation about a fi xed point 
O or about the mass center G. The 𝛺’s are the angular velocity components of rotation 
of the reference axes, and the H-components in the case of a rigid body are as defi ned 
in Eq. 7∕ 12, where the 𝜔’s are the components of the angular velocity of the body.

We now apply Eq. 7∕ 19 to a rigid body where the coordinate axes are attached 
to the body. Under these conditions, when expressed in the x-y-z coordinates, the 
moments and products of inertia are invariant with time, and 𝛀 = 𝛚. Thus, for axes 
attached to the body, the three scalar components of Eq. 7∕ 19 become

 ΣMx = Ḣx −  Hy𝜔z + Hz𝜔y

  ΣMy = Ḣy − Hz𝜔x + Hx𝜔z (7∕ 20)

 ΣMz = Ḣz − Hx𝜔y + Hy𝜔x

ΣF = Ġ 

ΣM = Ḣ 

ΣM = (ḢxHH − HyHH 𝛺z𝛺 + HzHH 𝛺y𝛺 )i

+ (ḢyHH − HzHH 𝛺x𝛺 + HxHH 𝛺z𝛺 )j  

+ (ḢzHH − HxHH 𝛺y + HyHH 𝛺x𝛺 )k

ΣMxMM = ḢxHH − HyHH 𝜔z + HzHH 𝜔y𝜔

ΣMyMM = ḢyHH − HzHH 𝜔x + HxHH 𝜔z 

ΣMzMM = ḢzHH − HxHH 𝜔y𝜔 + HyHH 𝜔x
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Equations 7∕ 20 are the general moment equations for rigid-body motion with axes 
attached to the body. They hold with respect to axes through a fi xed point O or 
through the mass center G.

Key Concepts  

In Art. 7∕ 7 it was mentioned that, in general, for any or-
igin fi xed to a rigid body, there are three principal axes of 
inertia with respect to which the products of inertia van-
ish. If the reference axes coincide with the principal axes 
of inertia with origin at the mass center G or at a point 
O fi xed to the body and fi xed in space, the factors Ixy, Iyz, 
Ixz will be zero, and Eqs. 7∕ 20 become

 ΣMx = Ixx�̇�x − (Iyy − Izz)𝜔y𝜔z

  ΣMy = Iyy�̇�y − (Izz − Ixx)𝜔z𝜔x (7∕ 21)

 ΣMz = Izz�̇�z − (Ixx − Iyy)𝜔x𝜔y

These relations, known as Euler’s equations,* are ex-
tremely useful in the study of rigid-body motion.

Energy Equations
The resultant of all external forces acting on a rigid body may be replaced by the 
resultant force ΣF acting through the mass center and a resultant couple ΣMG 
acting about the mass center. Work is done by the resultant force and the resultant 
couple at the respective rates ΣF∙v and ΣMG∙𝛚, where v is the linear velocity of 
the mass center and 𝛚 is the angular velocity of the body. Integration over the time 
from condition 1 to condition 2 gives the total work done during the time interval. 
Equating the works done to the respective changes in kinetic energy as expressed 
in Eq. 7∕ 15 gives

 ∫t2

t1

ΣF∙v dt =
1
2

 v ∙G ∣2

1
  ∫t2

t1

ΣMG∙𝛚 dt =
1
2

 𝛚∙HG∣2

1
 (7∕ 22)

These equations express the change in translational kinetic energy and the change 
in rotational kinetic energy, respectively, for the interval during which ΣF or ΣMG 
acts, and the sum of the two expressions equals ∆T.

The work-energy relationship, developed in Chapter 4 for a general system of 
particles and given by

 U′1-2 = ΔT + ΔV  [4 ∕ 3]

was used in Chapter 6 for rigid bodies in plane motion. The equation is equally 
applicable to rigid-body motion in three dimensions. As we have seen previously, 
the work-energy approach is of great advantage when we analyze the initial and 
fi nal end-point conditions of motion. Here the work U′1-2 done during the interval 
by all active forces external to the body or system is equated to the sum of the 
corresponding changes in kinetic energy ∆T and potential energy ∆V. The 
 potential-energy change is determined in the usual way, as described previously 
in Art. 3 ∕7.

We will limit our application of the equations developed in this article to two prob-
lems of special interest, parallel-plane motion and gyroscopic motion, discussed in the 
next two articles.

*Named after Leonhard Euler (1707–1783), a Swiss mathematician.
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7/10  Parallel-Plane Motion
When all particles of a rigid body move in planes which are parallel to a fi xed plane, 
the body has a general form of plane motion, as described in Art. 7∕4 and pictured 
in Fig. 7∕ 3. Every line in such a body which is normal to the fi xed plane remains 
parallel to itself at all times. We take the mass center G as the origin of coordinates 
x-y-z which are attached to the body, with the x-y plane coinciding with the plane of 
motion P. The components of the angular velocity of both the body and the attached 
axes become 𝜔x = 𝜔y = 0, 𝜔z ≠ 0. For this case, the angular-momentum components 
from Eq. 7∕ 12 become

Hx = −Ixz𝜔z  Hy = −Iyz𝜔z  Hz = Izz𝜔z

and the moment relations of Eqs. 7∕ 20 reduce to

 ΣMx = −Ixz�̇�z + Iyz𝜔z 

2

  ΣMy = −Iyz�̇�z − Ixz𝜔z 

2 (7∕23)

 ΣMz = Izz�̇�z

We see that the third moment equation is equivalent to the second of Eqs. 6∕ 1, 
where the z-axis passes through the mass center, or to Eq. 6 ∕4 if the z-axis passes 
through a fi xed point O.

Equations 7∕ 23 hold for an origin of coordinates at the mass center, as shown 
in Fig. 7∕ 3, or for any origin on a fi xed axis of rotation. The three independent force 
equations of motion which also apply to parallel-plane motion are clearly

ΣFx = max  ΣFy = may  ΣFz = 0

Equations 7∕ 23 fi nd special use in describing the effect of dynamic imbalance 
in rotating machinery and in rolling bodies.

ΣMxMM = −IxII zxx �̇�z + IyII z𝜔z
2

ΣMyMM = −IyII z�̇�z − IxII zxx 𝜔z
2 

ΣMzMM = IzII z�̇�z
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HELPFUL HINTS
1  We must be very careful to observe the 

correct sign for each of the coordinates 
of the mass element dm which make up 
the product xz.

2  When the plane of the curved bar is not 
horizontal, the normal forces under the 
disks are no longer equal.

SAMPLE PROBLEM 7/7

The two circular disks, each of mass m1, are connected by the curved 
bar bent into quarter-circular arcs and welded to the disks. The bar has 
a mass m2. The total mass of the assembly is m = 2m1 + m2. If the disks 
roll without slipping on a horizontal plane with a constant velocity v of 
the disk centers, determine the value of the friction force under each 
disk at the instant represented when the plane of the curved bar is 
horizontal.

Solution The motion is identifi ed as parallel-plane motion since the 
planes of motion of all parts of the system are parallel. The free-body 
diagram shows the normal forces and friction forces at A and B and the 
total weight mg acting through the mass center G, which we take as 
the origin of coordinates which rotate with the body.

We now apply Eqs. 7∕ 23, where Iyz = 0 and �̇�z = 0. The moment 
equation about the y-axis requires determination of Ixz. From the dia-
gram showing the geometry of the curved rod and with 𝜌 standing for 
the mass of the rod per unit length, we have

[Ixz = ∫ xz dm]   Ixz =  ∫𝜋∕2

0
 (r sin 𝜃)(−r + r cos 𝜃)𝜌r d𝜃

  +∫𝜋∕2

0
 (−r sin 𝜃)(r − r cos 𝜃)𝜌r d𝜃 1

Evaluating the integrals gives

 Ixz = −𝜌r3∕2 − 𝜌r3∕2 = −𝜌r3 = − 

m2r2

𝜋

The second of Eqs. 7∕23 with 𝜔z = v∕r and �̇�z = 0 gives

[ΣMy = −Ixz𝜔z 

2]   FAr + FBr = −(− 

m2 r2

𝜋 ) v2

r2

 FA + FB =
m2v2

𝜋r

But with v = v constant, ax = 0 so that

[ΣFx = 0]  FA −  FB =  0  FA =  FB

Thus,

 FA = FB =
m2v2

2𝜋r
 Ans.

We also note for the given position that with Iyz = 0 and �̇�z = 0, the 
moment equation about the x-axis gives

[ΣMx = 0]  −NAr + NBr = 0  NA = NB = mg∕2 2

B

r

v

y

G

x

z
r

A

r

r

r

x

z

dm

G

r

y

B

NB FA NA

FB

z

Amg

G

x

𝜃

𝜃
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7/11   Gyroscopic Motion: Steady 
Precession

One of the most interesting of all problems in dynamics is that of gyroscopic motion. 
This motion occurs whenever the axis about which a body is spinning is itself rotating 
about another axis. Although the complete description of this motion involves consid-
erable complexity, the most common and useful examples of gyroscopic motion occur 
when the axis of a rotor spinning at constant speed turns (precesses) about another 
axis at a steady rate. Our discussion in this article will focus on this special case.

The gyroscope has important engineering applications. With a mounting in 
 gimbal rings (see Fig. 7∕ 19b), the gyro is free from external moments, and its axis will 
retain a fi xed direction in space regardless of the rotation of the structure to which it 
is attached. In this way, the gyro is used for inertial guidance systems and other direc-
tional control devices. With the addition of a pendulous mass to the inner gimbal ring, 
the earth’s rotation causes the gyro to precess so that the spin axis will always point 
north, and this action forms the basis of the gyro compass. The gyroscope has also 
found important use as a stabilizing device. The controlled precession of a large gyro 
mounted in a ship is used to produce a gyroscopic moment to counteract the rolling of 
a ship at sea. The gyroscopic effect is also an extremely important consideration in the 
design of bearings for the shafts of rotors which are subjected to forced precessions.

We will fi rst describe gyroscopic action with a simple physical approach which 
relies on our previous experience with the vector changes encountered in particle 
kinetics. This approach will help us gain a direct physical insight into gyroscopic 
action. Next, we will make use of the general momentum relation, Eq. 7∕ 19, for a 
more complete description.

Simplified Approach
Figure 7∕ 14 shows a symmetrical rotor spinning about the z-axis with a large 
 angular velocity p, known as the spin velocity. If we apply two forces F to the rotor 
axle to form a couple M whose vector is directed along the x-axis, we will fi nd that 
the rotor shaft rotates in the x-z plane about the y-axis in the sense indicated, with 
a relatively slow angular velocity 𝛺 = �̇� known as the precession velocity. Thus, we 
identify the spin axis (p), the torque axis (M), and the precession axis (V), where 
the usual right-hand rule identifi es the sense of the rotation vectors. The rotor 
shaft does not turn about the x-axis in the sense of M, as it would if the rotor were 

not spinning. To aid understanding of this phenomenon, a direct 
analogy may be made between the rotation vectors and the familiar 
vectors which describe the curvilinear motion of a particle.

Figure 7∕ 15a shows a particle of mass m moving in the x-z 
plane with constant speed �v� = v. The application of a force F nor-
mal to its linear momentum G = mv causes a change dG = d(mv) in 
its momentum. We see that dG, and thus dv, is a vector in the direc-
tion of the normal force F according to Newton’s second law F = Ġ, 
which may be written as F dt = dG. From Fig. 7∕ 15b we see that, in 
the limit, tan d𝜃 = d𝜃 = F dt ∕ mv or F = mv�̇�. In vector notation with 
𝛚 = �̇�j, the force becomes

F = m𝛚 × v

which is the vector equivalent of our familiar scalar relation Fn = 
man for the normal force on the particle, as treated extensively in 
Chapter 3.

Spin
axis

Precession
axis

Torque
axis

y

F

F

M

p
z

x

│𝛀│= 𝜓
⋅

𝜓

FIGURE 7/14
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With these relations in mind, we now turn to our problem of ro-
tation. Recall now the analogous equation M = Ḣ which we devel-
oped for any prescribed mass system, rigid or nonrigid, referred to its 
mass center (Eq. 4 ∕9) or to a fi xed point O (Eq. 4 ∕ 7). We now apply 
this relation to our symmetrical rotor, as shown in Fig. 7∕ 15c. For a 
high rate of spin p and a low precession rate 𝛀 about the y-axis, the 
angular momentum is represented by the vector H = Ip, where 
I = Izz is the moment of inertia of the rotor about the spin axis.

Initially, we neglect the small component of angular momentum 
about the y-axis which accompanies the slow precession. The appli-
cation of the couple M normal to H causes a change dH = d(Ip) in 
the angular momentum. We see that dH, and thus dp, is a vector in 
the direction of the couple M since M = Ḣ, which may also be written 
M dt = dH. Just as the change in the linear-momentum vector of the 
particle is in the direction of the applied force, so is the change in the 
angular-momentum vector of the gyro in the direction of the couple. 
Thus, we see that the vectors M, H, and dH are analogous to the 
vectors F, G, and dG. With this insight, it is no longer strange to see 
the rotation vector undergo a change which is in the direction of M, 
thereby causing the axis of the rotor to precess about the y-axis.

In Fig. 7∕ 15d we see that during time dt the angular- 
momentum vector Ip has swung through the angle d𝜓, so that in 
the limit with tan d𝜓 = d𝜓, we have

d𝜓 =
M dt

Ip
  or  M = I 

d𝜓
dt

 p

Substituting 𝛺 = d𝜓∕dt for the magnitude of the precession veloc-
ity gives us

 M = I𝛺p (7∕ 24)

We note that M, 𝛀, and p as vectors are mutually perpendicular, 
and that their vector relationship may be represented by writing 
the equation in the cross-product form

 M = I𝛀 × p (7∕ 24a)

which is completely analogous to the foregoing relation F = m𝛚 × v 
for the curvilinear motion of a particle as developed from 
Figs. 7∕ 15a and b. Equations 7∕24 and 7∕24a apply to moments 
taken about the mass center or about a fi xed point on the axis of rotation.

The correct spatial relationship among the three vectors may be remembered 
from the fact that dH, and thus dp, is in the direction of M, which establishes the 
correct sense for the precession 𝛀. Therefore, the spin vector p always tends to 
 rotate toward the torque vector M. Figure 7∕ 16 represents three orientations of 
the three vectors which are consistent with their correct order. Unless we establish 
this order correctly in a given problem, we are likely to arrive at a conclusion di-
rectly opposite to the correct one. Remember that Eq. 7∕ 24, like F = ma and M = I𝛼, 
is an equation of motion, so that the couple M represents the couple due to all 
forces acting on the rotor, as disclosed by a correct free-body diagram of the rotor. 
Also note that, when a rotor is forced to precess, as occurs with the turbine in a ship 
which is executing a turn, the motion will generate a gyroscopic couple M which 
obeys Eq. 7∕ 24a in both magnitude and sense.

M = I𝛺II p𝛺  

M = I𝛀II × p 

FIGURE 7/15
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In the foregoing discussion of gyroscopic motion, it was assumed that the spin 
was large and the precession was small. Although we can see from Eq. 7∕ 24 that for 
given values of I and M, the precession 𝛺 must be small if p is large, let us now 
examine the infl uence of 𝛺 on the momentum relations. Again, we restrict our at-
tention to steady precession, where 𝛀 has a constant magnitude.

Figure 7∕ 17 shows our same rotor again. Because it has a moment of inertia 
about the y-axis and an angular velocity of precession about this axis, there will be 
an additional component of angular momentum about the y-axis. Thus, we have the 
two components Hz = Ip and Hy = I0𝛺, where I0 stands for Iyy and, again, I stands 
for Izz. The total angular momentum is H as shown. The change in H remains dH =
M dt as previously, and the precession during time dt is the angle d𝜓 = M dt∕Hz =
M dt∕(Ip) as before. Thus, Eq. 7∕ 24 is still valid and for steady precession is an exact 
description of the motion as long as the spin axis is perpendicular to the axis around 
which precession occurs.

Consider now the steady precession of a symmetrical top, Fig. 7∕ 18, spinning 
about its axis with a high angular velocity p and supported at its point O. Here the 
spin axis makes an angle 𝜃 with the vertical Z-axis around which precession occurs. 
Again, we will neglect the small angular-momentum component due to the preces-
sion and consider H equal to Ip, the angular momentum about the axis of the top 
associated with the spin only. The moment about O is due to the weight and is 
mgr sin 𝜃, where r is the distance from O to the mass center G. From the diagram, 
we see that the angular-momentum vector HO has a change dHO = MO dt in the 
direction of MO during time dt and that 𝜃 is unchanged. The increment in preces-
sional angle around the Z-axis is

d𝜓 =  
MO dt

Ip sin 𝜃

Substituting the values MO = mgr sin 𝜃 and 𝛺 = d𝜓∕dt gives

mgr sin 𝜃 = I𝛺p sin 𝜃  or  mgr = I𝛺p

which is independent of 𝜃. Introducing the radius of gyration so that 
I  = mk2 and solving for the precessional velocity give

 𝛺 =
gr

k2p
 (7∕ 25)

Unlike Eq. 7∕ 24, which is an exact description for the rotor of 
Fig. 7∕ 17 with precession confi ned to the x-z plane, Eq. 7∕ 25 is an 
approximation based on the assumption that the angular mo-
mentum associated with 𝛺 is negligible compared with that asso-
ciated with p. We will see the amount of the error associated with 
this approximation when we reconsider steady-state precession 
later in this article. On the basis of our analysis, the top will have 
a steady precession at the constant angle 𝜃 only if it is set in mo-
tion with a value of 𝛺 which satisfi es Eq. 7∕ 25. When these condi-
tions are not met, the precession becomes unsteady, and 𝜃 may 
oscillate with an amplitude which increases as the spin velocity 
decreases. The corresponding rise and fall of the rotation axis is 
called nutation.

More Detailed Analysis
We now make direct use of Eq. 7∕ 19, which is the general angular-
momentum equation for a rigid body, by applying it to a body 

𝛺 =
gr

k2p2  
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spinning about its axis of rotational symmetry. This equation is valid for 
rotation about a fi xed point or for rotation about the mass center. A spin-
ning top, the rotor of a gyroscope, and a spacecraft are examples of bodies 
whose motions can be described by the equations for rotation about a point. 
The general moment equations for this class of problems are fairly complex, 
and their complete solutions involve the use of elliptic integrals and some-
what lengthy computations. However, a large fraction of engineering prob-
lems where the motion is one of rotation about a point involves the steady 
precession of bodies of revolution which are spinning about their axes of 
symmetry. These conditions greatly simplify the equations and thus facili-
tate their solution.

Consider a body with axial symmetry, Fig. 7∕ 19a, rotating about a fi xed 
point O on its axis, which is taken to be the z-direction. With O as origin, the 
x- and y-axes automatically become principal axes of inertia along with the 
z-axis. This same description may be used for the rotation of a similar sym-
metrical body about its center of mass G, which is taken as the origin of coor-
dinates as shown with the gimbaled gyroscope rotor of Fig. 7∕ 19b. Again, the 
x- and y-axes are principal axes of inertia for point G. The same description 
may also be used to represent the rotation about the mass center of an axially 
symmetric body in space, such as the spacecraft in Fig. 7∕ 19c. In each case, 
we note that, regardless of the rotation of the axes or of the body relative to 
the axes (spin about the z-axis), the moments of inertia about the x- and y-axes 
remain constant with time. The principal moments of inertia are again desig-
nated Izz = I and Ixx = Iyy = I0. The products of inertia are, of course, zero.

Before applying Eq. 7∕ 19, we introduce a set of coordinates which pro-
vide a natural description for our problem. These coordinates are shown in 
Fig. 7∕ 20 for the example of rotation about a fi xed point O. The axes X-Y-Z 
are fi xed in space, and plane A contains the X-Y axes and the fi xed point O 
on the rotor axis. Plane B contains point O and is always normal to the rotor 
axis. Angle 𝜃 measures the inclination of the rotor axis from the vertical 
Z-axis and is also a measure of the angle between planes A and B. The inter-
section of the two planes is the x-axis, which is located by the angle 𝜓 from 
the X-axis. The y-axis lies in plane B, and the z-axis coincides with the rotor 
axis. The angles 𝜃 and 𝜓 completely specify the position of the rotor axis. The 
angular displacement of the rotor with respect to axes x-y-z is specifi ed by 
the angle 𝜙 measured from the x-axis to the x′-axis, which is attached to the 
rotor. The spin velocity becomes p = 𝜙.
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The components of the angular velocity 𝛚 of the rotor and the angular velocity 
𝛀 of the axes x-y-z from Fig. 7∕ 20 become

 𝛺x = 𝜃  𝜔x = 𝜃

 𝛺y = 𝜓 ˙ sin 𝜃   𝜔y = �̇�
 sin 𝜃

 𝛺z = 𝜓 ˙ cos 𝜃  𝜔z = �̇�
 cos 𝜃 + p

It is important to note that the axes and the body have identical x- and y-compo-
nents of angular velocity, but that the z-components differ by the relative angular 
velocity p.

The angular-momentum components from Eq. 7∕ 12 become

 Hx = Ixx𝜔x = I0�̇�

 Hy = Iyy𝜔y = I0𝜓 ˙ sin 𝜃

 Hz = Izz𝜔z = I(�̇� cos 𝜃 + p)

Substitution of the angular-velocity and angular-momentum components into 
Eq. 7∕ 19 yields

 ΣMx = I0(�̈� − �̇�
2 sin 𝜃 cos 𝜃) + I�̇�(𝜓 ˙ cos 𝜃 + p) sin 𝜃

 ΣMy = I0(�̈� sin 𝜃 + 2𝜓 ˙ �̇� cos 𝜃) − I�̇�(𝜓 cos 𝜃 + p) (7∕ 26)

 ΣMz = I 
d
dt

(𝜓 ˙ cos 𝜃 + p)

Equations 7∕ 26 are the general equations of rotation of a symmetrical body about 
either a fi xed point O or the mass center G. In a given problem, the solution to the 
equations will depend on the moment sums applied to the body about the three 
coordinate axes. We will confi ne our use of these equations to two particular cases 
of rotation about a point which are described in the following sections.

Steady-State Precession
We now examine the conditions under which the rotor precesses at a steady rate ċ 
at a constant angle 𝜃 and with constant spin velocity p. Thus,

 �̇� = constant,   �̈� = 0

 𝜃 = constant,  �̇� = �̈� = 0

 p = constant,  ṗ = 0

and Eqs. 7∕ 26 become

 ΣMx = �̇�
 sin 𝜃[I(�̇� cos 𝜃 + p) − I0 �̇�

 cos 𝜃]

  ΣMy = 0  (7∕ 27)

 ΣMz = 0

From these results, we see that the required moment acting on the rotor about O
(or about G) must be in the x-direction since the y- and z-components are zero. Fur-
thermore, with the constant values of 𝜃, �̇�, and p, the moment is constant in 

ΣMxMM = I0II (�̈� − �̇�
2 sin 𝜃 cos 𝜃) + I�̇�(�̇� cos 𝜃 + p) sin 𝜃

ΣMyMM = I0II (�̈� sin 𝜃 + 2�̇� �̇� cos 𝜃) − I�̇�(𝜓 cos 𝜃 + p) 

ΣMzMM = I
d
dt

(�̇� cos 𝜃 + p)

ΣMxMM = �̇� sin 𝜃[I(�̇� cos 𝜃 + p) − I0II �̇� cos 𝜃]

ΣMyMM = 0  

ΣMzMM = 0
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 magnitude. It is also important to note that the moment axis is perpendicular to 
the plane defi ned by the precession axis (Z-axis) and the spin axis (z-axis).

We may also obtain Eqs. 7∕ 27 by recognizing that the components of H remain 
constant as observed in x-y-z so that (Ḣ)xyz = 0. Because in general ΣM = (Ḣ)xyz + 
V × H, we have for the case of steady precession

 ΣM = 𝛀 × H (7∕ 28)

which reduces to Eqs. 7∕ 27 upon substitution of the values of V and H.
By far the most common engineering examples of gyroscopic motion occur 

when precession takes place about an axis which is normal to the rotor axis, as in 
Fig. 7∕ 14. Thus with the substitution 𝜃 = 𝜋∕ 2, 𝜔z = p, ċ = 𝛺, and ΣMx = M, we have 
from Eqs. 7∕ 27

 M = I𝛺p [7∕ 24]

which we derived initially in this article from a direct analysis of this special case.
Now let us examine the steady precession of the rotor (symmetrical top) of 

Fig. 7∕ 20 for any constant value of 𝜃 other than 𝜋 ∕ 2. The moment ΣMx about the 
x-axis is due to the weight of the rotor and is mgr sin 𝜃. Substitution into Eqs. 7∕ 27 
and rearrangement of terms give us

mgr = I�̇�p − (I0 − I)�̇�2 cos 𝜃

We see that ċ is small when p is large, so that the second term on the right-
hand side of the equation becomes very small compared with Iċp. If we neglect this 
smaller term, we have ċ = mgr∕(Ip) which, upon use of the previous substitution 
𝛺 = ċ and mk2 = I, becomes

 𝛺 =
gr

k2p
 [7∕ 25]

We derived this same relation earlier by assuming that the angular momentum 
was entirely along the spin axis.

Steady Precession with Zero Moment
Consider now the motion of a symmetrical rotor with no external moment 
about its mass center. Such motion is encountered with spacecraft and pro-
jectiles which both spin and precess during fl ight.

Figure 7∕ 21 represents such a body. Here the Z-axis, which has a fi xed 
direction in space, is chosen to coincide with the direction of the angular mo-
mentum HG, which is constant since ΣMG = 0. The x-y-z axes are attached in 
the manner described in Fig. 7∕ 20. From Fig. 7∕ 21 the three components of 
momentum are HGx

 = 0, HGy
 = HG sin 𝜃, HGz

 = HG cos 𝜃. From the defi ning 
relations, Eqs. 7∕ 12, with the notation of this article, these components are 
also given by HGx

 = I0𝜔x, HGy
 = I0𝜔y, HGz

 = I𝜔z. Thus, 𝜔x = 𝛺x = 0 so that 𝜃 is 
constant. This result means that the motion is one of steady precession about 
the constant HG vector.

With no x-component, the angular velocity 𝛚 of the rotor lies in the y-z 
plane along with the Z-axis and makes an angle 𝛽 with the z-axis. The relation-
ship between 𝛽 and 𝜃 is obtained from tan 𝜃 = HGy

 ∕HGz
 = I0𝜔y∕(I𝜔z), which is

tan 𝜃 =
I0

I
 tan 𝛽 (7∕ 29)

ΣM = 𝛀 × H 

𝜔z

𝜔y

HGz
HGy

HG
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y
z

x
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𝛚
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256 CHAPTER 7  Introduction to Three-Dimensional Dynamics of Rigid Bodies

Thus, the angular velocity 𝛚 makes a constant angle 𝛽 with the spin axis.
The rate of precession is easily obtained from Eq. 7∕ 27 with M = 0, which gives

 �̇� =
Ip

(I0 − I) cos 𝜃
 (7∕ 30)

It is clear from this relation that the direction of the precession depends on the 
relative magnitudes of the two moments of inertia.

p
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G

Z

Body
cone

Space cone
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Z

Space cone

Body cone

Direct precession I0 > I

(a)

Retrograde precession I0 < I

(b)

𝛚

𝜃

𝜓
⋅

𝜓
⋅

𝛚

𝛽

𝜃

𝛽

FIGURE 7/22

If I0 > I, then 𝛽 < 𝜃, as indicated in Fig. 7∕ 22a, and the precession 
is said to be direct. Here the body cone rolls on the outside of the space 
cone.

If I > I0, then 𝜃 < 𝛽, as indicated in Fig. 7∕ 22b, and the precession 
is said to be retrograde. In this instance, the space cone is internal to 
the body cone, and ċ and p have opposite signs.

If I = I0, then 𝜃 = 𝛽 from Eq. 7∕ 29, and Fig. 7∕ 22 shows that both 
angles must be zero to be equal. For this case, the body has no preces-
sion and merely rotates with an angular velocity p. This condition 
 occurs for a body with point symmetry, such as with a homogeneous 
sphere.

This toy top is useful in demonstrating 
the principles of this article.
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 SAMPLE PROBLEM 7/8

The turbine rotor in a ship’s power plant has a mass of 1000 kg, 
with center of mass at G and a radius of gyration of 200 mm. The 
rotor shaft is mounted in bearings A and B with its axis in the hor-
izontal fore-and-aft direction and turns counterclockwise at a speed 
of 5000 rev∕min when viewed from the stern. Determine the ver-
tical components of the bearing reactions at A and B if the ship is 
making a turn to port (left) of 400-m radius at a speed of 25 knots 
(1 knot = 0.514 m∕s). Does the bow of the ship tend to rise or fall be-
cause of the gyroscopic action?

Solution The vertical component of the bearing reactions will equal 
the static reactions R1 and R2 due to the weight of the rotor, plus or 
minus the increment ∆R due to the gyroscopic effect. The moment prin-
ciple from statics easily gives R1 = 5890 N and R2 = 3920 N. The given 
directions of the spin velocity p and the precession velocity 𝛀 are 
shown with the free-body diagram of the rotor. 1  Because the spin 
axis always tends to rotate toward the torque axis, we see that the 
torque axis M points in the starboard direction as shown. The sense of 
the ∆R’s is, therefore, up at B and down at A to produce the couple M. 
Thus, the bearing reactions at A and B are

 RA = R1 − ΔR  and  RB = R2 + ΔR

The precession velocity 𝛺 is the speed of the ship divided by the 
radius of its turn.

[v = 𝜌𝛺] 𝛺 =
25(0.514)

400
= 0.0321 rad∕s

Equation 7∕ 24 is now applied around the mass center G of the rotor to 
give

[M = I𝛺p]  1.500(ΔR) = 1000(0.200)2(0.0321) [
5000(2𝜋)

60 ]

  ΔR = 449 N

The required bearing reactions become

 RA = 5890 − 449 = 5440 N and RB = 3920 + 449 = 4370 N Ans.

We now observe that the forces just computed are those exerted 
on the rotor shaft by the structure of the ship. Consequently, from the 
principle of action and reaction, the equal and opposite forces are ap-
plied to the ship by the rotor shaft, as shown in the bottom sketch. 2

Therefore, the effect of the gyroscopic couple is to generate the incre-
ments ∆R shown, and the bow will tend to fall and the stern to rise 
(but only slightly).

600 

mm

900 

mm

Port
(left)

p

A

RA

RB

B

G

Starboard
(right)

Forward

M

M

p

y

z

x

B

A

1000(9.81) N

R1

R1

ΔR

ΔR

R2

R2

ΔR

ΔR

G

𝛀

HELPFUL HINTS
1  If the ship is making a left turn, the 

 rotation is counterclockwise as viewed 
from above, and the precession vector 
𝛀 is up by the right-hand rule.

2  After fi guring the correct sense of M on 
the rotor, the common mistake is to apply 
it to the ship in the same sense, forget-
ting the action- and-reaction principle. 
Clearly, the results are then reversed. 
(Be certain not to make this mistake 
when operating a vertical gyro stabilizer 
in your yacht to counteract its roll!)
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HELPFUL HINT
1  Our theory is based on the assumption 

that Ixx = Iyy = the moment of inertia 
about any axis through G perpendicular 
to the z-axis. Such is the case here, and 
you should prove it to your own satis-
faction.

SAMPLE PROBLEM 7/9

A proposed space station is closely approximated by four uniform 
spherical shells, each of mass m and radius r. The mass of the con-
necting structure and internal equipment may be neglected as a fi rst 
approximation. If the station is designed to rotate about its z-axis at 
the rate of one revolution every 4 seconds, determine (a) the number n 
of complete cycles of precession for each revolution about the z-axis if 
the plane of rotation deviates only slightly from a fi xed orientation, and 
(b) fi nd the period 𝜏 of precession if the spin axis z makes an angle of 
20° with respect to the axis of fi xed orientation about which precession 
occurs. Draw the space and body cones for this latter condition.

Solution (a) The number of precession cycles or wobbles for each 
revolution of the station about the z-axis would be the ratio of the pre-
cessional velocity �̇� to the spin velocity p, which, from Eq. 7∕ 30, is

 
�̇�

p =
I

(I0 − I) cos 𝜃

The moments of inertia are

  Izz = I = 4[23 mr2 + m(2r)2] =
56
3  mr2

  Ixx = I0 = 2(2
3)mr2 +  2[23 mr2 + m(2r)2] =

32
3  mr2 1

 With 𝜃 very small, cos 𝜃 ≅ 1, and the ratio of angular rates becomes

 n =
�̇�

p =

56
3

32
3 −

56
3

= − 

7
3

 Ans.

The minus sign indicates retrograde precession where, in the present 
case, ċ and p are essentially of opposite sense. Thus, the station will 
make seven wobbles for every three revolutions.

(b) For 𝜃 = 20° and p = 2𝜋∕4 rad∕s, the period of precession or wobble is 
𝜏 = 2𝜋∕ ��̇� �, so that from Eq. 7∕ 30

 𝜏 =
2𝜋

2𝜋∕4 ∣ I0 − I
I

cos 𝜃∣ = 4(3
7) cos 20° = 1.611 s Ans.

 The precession is retrograde, and the body cone is external to the 
space cone as shown in the illustration where the body-cone angle, from 
Eq. 7∕ 29, is

 tan 𝛽 =
I
I0

 tan 𝜃 =
56∕3
32∕3

 (0.364) = 0.637  𝛽 = 32.5°

O

z
x

r
2r

O

z

p

𝜓
⋅

𝜃 = 20°

𝛽 = 32.5°
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7/12  Chapter Review
In Chapter 7 we have studied the three-dimensional dy-
namics of rigid bodies. Motion in three dimensions adds 
considerable complexity to the kinematic and kinetic re-
lationships. Compared with plane motion, there is now 
the possibility of two additional components of the vectors 
describing angular quantities such as moment, angular 
velocity, angular momentum, and angular acceleration. 
For this reason, the full power of vector analysis becomes 
apparent in the study of three-dimensional dynamics.

We divided our study of three-dimensional dynamics 
into kinematics, which is covered in Section A of the 
chapter, and kinetics, which is treated in Section B.

Kinematics
We arranged our coverage of three-dimensional kin-
ematics in order of increasing complexity of the type of 
motion. These types are:

 1.  Translation. As in plane motion, covered in 
Chapter 5 (Plane Kinematics of Rigid Bodies), any 
two points on a rigid body have the same velocity 
and acceleration.

 2.  Fixed-Axis Rotation. In this case the angular- 
velocity vector does not change orientation, and 
the expressions for the velocity and acceleration 
of a point are easily obtained as Eqs. 7∕ 1 and 7∕ 2, 
which are identical in form to the corresponding 
plane-motion equations in Chapter 5.

 3.  Parallel-Plane Motion. This case occurs when 
all points in a rigid body move in planes which are 
parallel to a fi xed plane. Thus, in each plane, the 
results of Chapter 5 hold.

 4.  Rotation about a Fixed Point. In this case, both 
the magnitude and the direction of the angular- 
velocity vector may vary. Once the angular accelera-
tion is established by careful differentiation of the 
angular-velocity vector, Eqs. 7∕ 1 and 7∕ 2 may be used 
to determine the velocity and acceleration of a point.

 5.  General Motion. The principles of relative mo-
tion are useful in analyzing this type of motion. 
Relative velocity and relative acceleration are ex-
pressed in terms of translating reference axes by 
Eqs. 7∕4. When rotating reference axes are used, the 
unit vectors of the reference system have nonzero 
time derivatives. Equations 7∕6 express the veloc-
ity and acceleration in terms of quantities referred 
to rotating axes; these equations are identical in 
form to the corresponding results for plane motion, 
Eqs. 5 ∕ 12 and 5 ∕ 14. Equations 7∕ 7a and 7∕ 7b are 
the expressions relating the time derivatives of a 
vector as measured in a fi xed system and as mea-
sured relative to a rotating system. These expres-
sions are useful in the analysis of general motion.

Kinetics
We applied momentum and energy principles to ana-
lyze three-dimensional kinetics, as follows.

 1.  Angular Momentum. In three dimensions the 
vector expression for angular momentum has nu-
merous additional components which are absent 
in plane motion. The components of angular mo-
mentum are expressed by Eqs. 7∕ 12 and depend on 
both moments and products of inertia. There is a 
unique set of axes, called principal axes, for which 
the products of inertia are zero and the moments 
of inertia have stationary values. These values are 
called the principal moments of inertia.

 2.  Kinetic Energy. The kinetic energy of three- 
dimensional motion can be expressed either in 
terms of the motion of and about the mass center 
(Eq. 7∕ 15) or in terms of the motion about a fi xed 
point (Eq. 7∕18).

 3.  Momentum Equations of Motion. By using the 
principal axes we may simplify the momentum 
equations of motion to obtain Euler’s equations, 
Eqs. 7∕ 21.

 4.  Energy Equations. The work-energy principle for 
three-dimensional motion is identical to that for 
plane motion.

Applications
In Chapter 7 we studied two applications of special in-
terest, namely, parallel-plane motion and gyroscopic 
motion.

 1.  Parallel-Plane Motion. In such motion all points 
in a rigid body move in planes which are paral-
lel to a fi xed plane. The equations of motion are 
Eqs. 7∕ 23. These equations are useful for analyzing 
the effects of dynamic imbalance in rotating machin-
ery and in bodies which roll along straight paths.

 2.  Gyroscopic Motion. This type of motion occurs 
whenever the axis about which the body is spinning 
is itself rotating about another axis. Common appli-
cations include inertial guidance systems, stabilizing 
devices, spacecraft attitude motion, and any situa-
tion in which a rapidly spinning rotor (such as that 
of an aircraft engine) is being reoriented. In the case 
where an external torque is present, a basic analy-
sis can be based upon the equation M = Ḣ. For the 
case of torque-free motion of a body spinning about 
its axis of symmetry, the axis of symmetry is found 
to execute a coning motion about the fi xed angular-
momentum vector.
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The damper and coil spring of this race-car 
suspension must be carefully selected to provide 
optimal vehicle handling. 
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CHAPTER 8
Vibration and 
Time Response

8/1  Introduction
An important and special class of problems in dynamics concerns the linear and 
angular motions of bodies which oscillate or otherwise respond to applied distur-
bances in the presence of restoring forces. A few examples of this class of dynamics 
problems are the response of an engineering structure to earthquakes, the vibra-
tion of an unbalanced rotating machine, the time response of the plucked string of 
a musical instrument, the wind-induced vibration of power lines, and the fl utter of 
aircraft wings. In many cases, excessive vibration levels must be reduced to accom-
modate material limitations or human factors.

In the analysis of every engineering problem, we must represent the system 
under scrutiny by a physical model. We may often represent a continuous or 
 distributed-parameter system (one in which the mass and spring elements are con-
tinuously spread over space) by a discrete or lumped-parameter model (one in 
which the mass and spring elements are separate and concentrated). The resulting 
simplifi ed model is especially accurate when some portions of a continuous system 
are relatively massive in comparison with other portions. For example, the physical 
model of a ship propeller shaft is often assumed to be a massless but twistable rod 
with a disk rigidly attached to each end—one disk representing the turbine and the 
other representing the propeller. As a second example, we observe that the mass of 
springs may often be neglected in comparison with that of attached bodies.

Not every system is reducible to a discrete model. For example, the transverse 
vibration of a diving board after the departure of the diver is a somewhat diffi cult 
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problem of distributed-parameter vibration. In this chapter, we will begin the study 
of discrete systems, limiting our discussion to those whose confi gurations may be 
described with one displacement variable. Such systems are said to possess one 
degree of freedom. For a more detailed study which includes the treatment of two or 
more degrees of freedom and continuous systems, you should consult one of the 
many textbooks devoted solely to the subject of vibrations.

The remainder of Chapter 8 is divided into four sections: Article 8 ∕2 treats the 
free vibration of particles and Art. 8 ∕3 introduces the forced vibration of particles. 
Each of these two articles is subdivided into undamped- and damped-motion cate-
gories. In Art. 8 ∕4 we discuss the vibration of rigid bodies. Finally, an energy ap-
proach to the solution of vibration problems is presented in Art. 8 ∕5.

The topic of vibrations is a direct application of the principles of kinetics as 
developed in Chapters 3 and 6. In particular, construction of a complete free-body 
diagram drawn for an arbitrary positive value of the displacement variable, fol-
lowed by application of the appropriate governing equations of dynamics, will yield 
the equation of motion. From this equation of motion, which is a second-order ordi-
nary differential equation, you can obtain all information of interest, such as the 
motion frequency, period, or the motion itself as a function of time.

8/2  Free Vibration of Particles
When a spring-mounted body is disturbed from its equilibrium posi-
tion, its ensuing motion in the absence of any imposed external forces 
is termed free vibration. In every actual case of free vibration, there 
exists some retarding or damping force which tends to diminish the 
motion. Common damping forces are those due to mechanical and 
fl uid friction. In this article we fi rst consider the ideal case where the 
damping forces are small enough to be neglected. Then we treat the 
case where the damping is appreciable and must be  accounted for.

Equation of Motion for Undamped Free Vibration
We begin by considering the horizontal vibration of the simple fric-
tionless spring-mass system of Fig. 8 ∕1a. Note that the variable x 
denotes the displacement of the mass from the equilibrium position, 
which, for this system, is also the position of zero spring defl ection. 
Figure 8 ∕1b shows a plot of the force Fs necessary to defl ect the 
spring versus the corresponding spring defl ection for three types of 
springs. Although nonlinear hard and soft springs are useful in some 
applications, we will restrict our attention to the linear spring. Such 
a spring exerts a restoring force −kx on the mass—that is, when the 
mass is displaced to the right, the spring force is to the left, and vice 
versa. We must be careful to distinguish between the forces of magni-
tude Fs which must be applied to both ends of the massless spring to 
cause tension or compression and the force F = −kx of equal magnitude which the 
spring exerts on the mass. The constant of proportionality k is called the spring 
constant, modulus, or stiffness and has the units N ∕m or lb ∕ft.

The equation of motion for the body of Fig. 8 ∕1a is obtained by fi rst drawing 
its free-body diagram. Applying Newton’s second law in the form ΣFx = mẍ gives

 −kx = mẍ  or  mẍ + kx = 0 (8∕1)

m

mgx

N

x

Fs

kx

k

Equilibrium
position

Hard

Linear Fs = kx 

Soft

(a)

(b)

FIGURE 8/1
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The oscillation of a mass subjected to a linear restoring force as described by this 
equation is called simple harmonic motion and is characterized by acceleration 
which is proportional to the displacement but of opposite sign. Equation 8 ∕1 is 
 normally written as

ẍ + 𝜔n 

2x = 0 (8∕2)

where

𝜔n = √k∕m (8∕3)

is a convenient substitution whose physical signifi cance will be  clarifi ed shortly.

Solution for Undamped Free Vibration
Because we anticipate an oscillatory motion, we look for a solution which gives x as 
a periodic function of time. Thus, a logical choice is

x = A cos 𝜔nt + B sin 𝜔nt (8∕4)

or, alternatively,

x = C sin (𝜔nt + 𝜓) (8∕5)

Direct substitution of these expressions into Eq. 8 ∕2 verifi es that each expression 
is a valid solution to the equation of motion. We determine the constants A and B, 
or C and 𝜓, from knowledge of the initial displacement x0 and initial velocity ẋ0 of 
the mass. For example, if we work with the solution form of Eq. 8 ∕4 and evaluate x
and ẋ at time t = 0, we obtain

x0 = A  and  ẋ0 = B𝜔n

Substitution of these values of A and B into Eq. 8 ∕4 yields

 x = x0 cos 𝜔nt +
ẋ0

𝜔n
 sin 𝜔nt (8∕6)

The constants C and 𝜓 of Eq. 8 ∕5 can be determined in terms of given initial 
conditions in a similar manner. Evaluation of Eq. 8 ∕5 and its fi rst time derivative 
at t = 0 gives

x0 = C sin 𝜓  and  ẋ0 = C𝜔n cos 𝜓

Solving for C and 𝜓 yields

C = √x0
2 + (ẋ0∕𝜔n)2  𝜓 = tan−1(x0𝜔n∕ẋ0)

Substitution of these values into Eq. 8 ∕5 gives

 x = √x0
2 + (ẋ0∕𝜔n)2 sin [𝜔nt + tan−1(x0𝜔n∕ẋ0)] (8∕7)

Equations 8 ∕6 and 8 ∕7 represent two different mathematical expressions for the 
same time-dependent motion. We observe that C = √A2 + B2 and 𝜓 = tan−1(A ∕B).

ẍ + 𝜔n
2x2 = 0 

𝜔n = √k√√ ∕m√  
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Graphical Representation of Motion
The motion may be represented graphically, Fig. 8 ∕2, where x is seen to be the 
projection onto a vertical axis of the rotating vector of length C. The vector rotates 
at the constant angular velocity 𝜔n = √k∕m, which is called the natural circular 
frequency and has the units  radians per second. The number of complete cycles per 
unit time is the natural frequency ƒn = 𝜔n ∕2𝜋 and is expressed in hertz (1 hertz (Hz) = 
1 cycle per second). The time required for one complete motion cycle (one rotation 
of the reference vector) is the period of the motion and is given by 𝜏 = 1 ∕ƒn = 2𝜋 ∕𝜔n.

𝜓

𝜔nt

𝜔nt
C

A
B

x

t

+x

−x

−C

C
x

0
0

x0

2𝜋
—‒
𝜔n

=𝜏

FIGURE 8/2

We also see from the fi gure that x is the sum of the projections onto the vertical 
axis of two perpendicular vectors whose magnitudes are A and B and whose vector 
sum C is the amplitude. Vectors A, B, and C rotate together with the constant an-
gular velocity 𝜔n. Thus, as we have already seen, C = √A2 + B2  and 𝜓 = tan−1(A ∕B).

Equilibrium Position as Reference
As a further note on the free undamped vibration of particles, we see that, if the 
system of Fig. 8 ∕1a is rotated 90° clockwise to obtain the system of Fig. 8 ∕3 where 
the motion is vertical rather than horizontal, the equation of motion (and therefore 
all system properties) is unchanged if we continue to defi ne x as the displacement 
from the equilibrium position. The equilibrium position now involves a nonzero 
spring defl ection 𝛿st. From the free-body diagram of Fig. 8 ∕3,  Newton’s second law 
gives

−k(𝛿st + x) + mg = mẍ

At the equilibrium position x = 0, the force sum must be zero, so 
that

−k𝛿st + mg = 0

Thus, we see that the pair of forces −k𝛿st and mg on the left side of 
the motion equation cancel, giving

mẍ + kx = 0

which is identical to Eq. 8 ∕1.

m

m

k

x

mg

k(𝛿st + x)
𝛿st

Equilibrium
position

FIGURE 8/3
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The lesson here is that by defi ning the displacement variable to be zero at 
equilibrium rather than at the position of zero spring defl ection, we may ignore 
the equal and opposite forces associated with equilibrium.*

Equation of Motion for Damped Free Vibration
Every mechanical system possesses some inherent degree of friction, 
which dissipates mechanical energy. Precise mathematical models of 
the dissipative friction forces are usually complex. The dashpot or 
 viscous damper is a device intentionally added to systems for the pur-
pose of limiting or retarding vibration. It consists of a cylinder fi lled 
with a viscous fl uid and a piston with holes or other passages by which 
the fl uid can fl ow from one side of the piston to the other. Simple dash-
pots arranged as shown schematically in Fig. 8 ∕4a exert a force Fd

whose magnitude is proportional to the velocity of the mass, as de-
picted in Fig. 8 ∕4b. The constant of proportionality c is called the 
viscous damping coeffi cient and has units of N∙s∕m or lb-sec ∕ft. The 
direction of the damping force as applied to the mass is opposite that 
of the velocity ẋ. Thus, the force on the mass is −cẋ.

Complex dashpots with internal fl ow-rate-dependent one-way 
valves can produce different damping coeffi cients in extension and in 
compression; nonlinear characteristics are also possible. We will re-
strict our attention to the simple linear dashpot.

The equation of motion for the body with damping is determined 
from the free-body diagram as shown in Fig. 8 ∕4a. Newton’s second 
law gives

−kx − cẋ = mẍ  or  mẍ + cẋ + kx = 0 (8∕8)

In addition to the substitution 𝜔n = √k∕m, it is convenient, for rea-
sons which will shortly become evident, to introduce the combination 
of  constants

𝜁 = c∕(2m𝜔n)

The quantity 𝜁 (zeta) is called the viscous damping factor or damping ratio and is 
a measure of the severity of the damping. You should verify that 𝜁 is nondimen-
sional. Equation 8 ∕8 may now be written as

 ẍ + 2𝜁𝜔nẋ + 𝜔n
2x = 0 (8∕9)

Solution for Damped Free Vibration
In order to solve the equation of motion, Eq. 8 ∕9, we assume solutions of the form

x = Ae𝜆t 

Substitution into Eq. 8 ∕9 yields

𝜆
2 + 2𝜁𝜔n𝜆 + 𝜔n

2 = 0

ẍ + 2𝜁𝜔nẋ + 𝜔n
2x2 = 0 

k

x

c m

Equilibrium
position

(a)

(b)

Fd

kx

cx

mg

N

⋅

x⋅

FIGURE 8/4

*For nonlinear systems, all forces, including the static forces associated with equilibrium, should 
be included in the analysis.
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which is called the characteristic equation. Its roots are

𝜆1 = 𝜔n(−𝜁 + √𝜁
2 − 1)  𝜆2 = 𝜔n(−𝜁 − √𝜁

2 − 1)

Linear systems have the property of superposition, which means that the general 
solution is the sum of the individual solutions each of which corresponds to one root 
of the characteristic equation. Thus, the general solution is

 x = A1e𝜆1 t + A2 e𝜆2 t

  = A1e(−𝜁+√𝜁
2−1)𝜔n t + A2 e(−𝜁−√𝜁

2−1)𝜔nt  (8∕10)

Categories of Damped Motion
Because 0 ≤ 𝜁 ≤ ∞, the radicand (𝜁2 − 1) may be positive, negative, or even zero, 
giving rise to the following three categories of damped motion:

 I. 𝛇 > 1 (overdamped). The roots 𝜆1 and 𝜆2 are distinct, real, and negative num-
bers. The motion as given by Eq. 8 ∕10 decays so that x approaches zero for large 
values of time t. There is no oscillation and therefore no period associated with 
the motion.

 II. 𝛇 = 1 (critically damped). The roots 𝜆1 and 𝜆2 are equal, real, and negative 
numbers (𝜆1 = 𝜆2 = −𝜔n). The solution to the differential equation for the spe-
cial case of equal roots is given by

x = (A1 + A2t)e−𝜔nt

  Again, the motion decays with x approaching zero for large time, and the mo-
tion is nonperiodic. A critically damped system, when excited with an initial 
velocity or displacement (or both), will approach equilibrium faster than will 
an overdamped system. Figure 8 ∕5 depicts actual responses for both an over-
damped and a critically damped system to an initial displacement x0 and no 
initial velocity (ẋ0 = 0).

 III. 𝛇 < 1 (underdamped). Noting that the radicand (𝜁2 − 1) is negative and recall-
ing that e(a+b) = eaeb, we may rewrite Eq. 8 ∕10 as

x = {A1 ei√1−𝜁2
𝜔nt + A2 

e−i√1−𝜁2
𝜔nt} e−𝜁𝜔nt

  where i = √−1. It is convenient to let a new variable 𝜔d represent the  combination 
𝜔n√1 − 𝜁

2. Thus,

x = {A1ei𝜔d t + A2 

e−i𝜔d t} e−𝜁𝜔nt 

c = 15 N · s/m (𝜁 = 2.5), overdamped

c = 6 N · s/m (𝜁 = 1), critically damped

Conditions: m = 1 kg, k = 9 N/m
x0 = 30 mm, x0 = 0

x, mm

t, s

30

20

10

0
10 2 3 4

⋅
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266 CHAPTER 8  Vibration and Time Response

  Use of the Euler formula e±ix = cos x ± i sin x allows the previous equation to 
be written as

  x = {A1(cos 𝜔dt + i sin 𝜔dt) + A2(cos 𝜔dt − i sin 𝜔dt)}e−𝜁𝜔nt 

  = {(A1 + A2) cos 𝜔d t + i(A1 − A2) sin 𝜔dt}e−𝜁𝜔nt 

  = {A3 cos 𝜔dt + A4 sin 𝜔d t} e−𝜁𝜔nt  (8∕11)

  where A3 = (A1 + A2) and A4 = i(A1 − A2). We have shown with Eqs. 8 ∕4 and 
8 ∕5 that the sum of two equal-frequency harmonics, such as those in the 
braces of Eq. 8 ∕11, can be replaced by a single trigonometric function which 
involves a phase angle. Thus, Eq. 8 ∕11 can be written as

x = {C sin (𝜔d t + 𝜓)} e−𝜁𝜔nt

or

 x = Ce−𝜁𝜔n t sin (𝜔d t + 𝜓) (8∕12)

  Equation 8 ∕12 represents an exponentially decreasing harmonic function, as 
shown in Fig. 8 ∕6 for specifi c numerical values. The frequency

𝜔d = 𝜔n√1 − 𝜁
2

  is called the damped natural frequency. The damped period is given by 𝜏d = 
2𝜋 ∕𝜔d = 2𝜋∕(𝜔n √1 − 𝜁

2).

It is important to note that the expressions developed for the constants C and 𝜓 
in terms of initial conditions for the case of no damping are not valid for the case of 
damping. To fi nd C and 𝜓 if damping is present, you must begin anew, setting the 
general displacement expression of Eq. 8 ∕12 and its fi rst time derivative, both eval-
uated at time t = 0, equal to the initial displacement x0 and initial velocity ẋ0, 
 respectively.

Conditions: m = 1 kg, k = 36 N/m

x, mm

t, s

c = 1 N · s/m (𝜁 = 0.0833)

−30

−20

−10

10

20

30

1 2 30
0 4

𝜏d

Ce−𝜁𝜔nt

−Ce−𝜁𝜔nt

x0 = 30 mm, x0 = 0⋅
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www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Article  8/2 Free Vibration of Particles 267

t

x

t1 t2

x = Ce−𝜁𝜔nt sin (𝜔dt + 𝜓)

x1

x2

2𝜋
—‒
𝜔d

𝜏d =

FIGURE 8/7

Determination of Damping by Experiment
We often need to experimentally determine the value of the damping ratio 𝜁 for an 
underdamped system. The usual reason is that the value of the viscous damping 
coeffi cient c is not otherwise well known. To determine the damping, we may excite 
the system by initial conditions and obtain a plot of the displacement x versus time 
t, such as that shown schematically in Fig. 8 ∕7. We then measure two successive 
amplitudes x1 and x2 a full cycle apart and compute their ratio

x1

x2
=

Ce−𝜁𝜔nt1

Ce−𝜁𝜔n(t1+𝜏d) = e𝜁𝜔n𝜏d

The logarithmic decrement 𝛿 is defi ned as

𝛿 = ln (
x1

x2) = 𝜁𝜔n𝜏d = 𝜁𝜔n 
2𝜋

𝜔n√1 − 𝜁
2

=
2𝜋𝜁

√1 − 𝜁
2
 

From this equation, we may solve for 𝜁 and obtain

𝜁 =
𝛿

√(2𝜋)2 + 𝛿
2

For a small damping ratio, x1 ≅ x2 and 𝛿 << 1, so that 𝜁 ≅ 𝛿 ∕2𝜋. If x1 and x2 are so 
close in value that experimental distinction between them is impractical, the above 
analysis may be modifi ed by using two observed amplitudes which are n cycles 
apart.
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SAMPLE PROBLEM 8/1

A body weighing 25 lb is suspended from a spring of constant k = 160 
lb ∕ft. At time t = 0, it has a downward velocity of 2 ft  ∕sec as it passes 
through the position of static equilibrium. Determine

(a) the static spring defl ection 𝛿st

(b) the natural frequency of the system in both rad∕sec (𝜔n) and 
cycles ∕sec (ƒn)

(c) the system period 𝜏

(d) the displacement x as a function of time, where x is measured from 
the position of static equilibrium

(e) the maximum velocity vmax attained by the mass

(ƒ) the maximum acceleration amax attained by the mass.

Solution (a) From the spring relationship Fs = kx, we see that at 
 equilibrium

 mg = k𝛿st   𝛿st =
mg
k

=
25

160
= 0.1562 ft or 1.875 in. 1  Ans.

(b) 𝜔n = √ k
m

= √ 160
25∕32.2

= 14.36 rad∕sec Ans.

 ƒn = (14.36)( 1
2𝜋) = 2.28 cycles∕sec Ans.

(c) 𝜏 =
1
ƒn

=
1

2.28
= 0.438 sec Ans.

(d) From Eq. 8 ∕6:

  x =  x0 cos 𝜔nt +
ẋ0

𝜔n
 sin 𝜔nt 2

  = (0) cos 14.36t +
2

14.36
 sin 14.36t

  =  0.1393 sin 14.36t ft  Ans.

 As an exercise, let us determine x from the alternative Eq. 8 ∕7:

  x = √x0
2 + (ẋ0∕𝜔n)2 sin [𝜔nt + tan−1 (

x0𝜔n

ẋ0 )]
  = √02 + ( 2

14.36)
2

 sin [ 14.36t + tan−1 ( (0)(14.36)
2 )]

  = 0.1393 sin 14.36t ft

(e) The velocity is ẋ = 14.36(0.1393) cos 14.36t = 2 cos 14.36t ft ∕sec. 
Because the cosine function cannot be greater than 1 or less than −1, 
the maximum velocity vmax is 2 ft  ∕sec, which, in this case, is the initial 
velocity. Ans.

(ƒ) The acceleration is

ẍ = −14.36(2) sin 14.36t = −28.7 sin 14.36t ft∕sec2

The maximum acceleration amax is 28.7 ft  ∕sec2. Ans.

HELPFUL HINTS
1  You should always exercise extreme 

caution in the matter of units. In the 
subject of vibrations, it is quite easy to 
commit errors due to mixing of feet and 
inches, cycles and radians, and other 
pairs which frequently enter the calcu-
lations.

2  Recall that when we refer the motion to 
the position of static equilibrium, the 
equation of motion, and therefore its 
solution, for the present system is iden-
tical to that for the horizontally vibrat-
ing system.

k = 160 lb /ft

W = 25 lb

Equilibrium
position

mg

mg

kx

≡

x

Fs = k𝛿st

k(𝛿st + x)
𝛿st
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SAMPLE PROBLEM 8/2

The 8-kg body is moved 0.2 m to the right of the equilibrium position 
and released from rest at time t = 0. Determine its displacement at time 
t = 2 s. The viscous damping coeffi cient c is 20 N∙s∕m, and the spring 
stiffness k is 32 N ∕m.

Solution We must fi rst determine whether the system is under-
damped, critically damped, or overdamped. For that purpose, we com-
pute the damping ratio 𝜁.

𝜔n = √k∕m = √32∕8 = 2 rad∕s  𝜁 =
c

2m𝜔n
=

20
2(8)(2)

= 0.625

Since 𝜁 < 1, the system is underdamped. The damped natural fre-
quency is 𝜔d = 𝜔n√1 − 𝜁

2 = 2√1 − (0.625)2  = 1.561 rad∕s. The motion 
is given by Eq. 8 ∕12 and is

x = Ce−𝜁𝜔nt sin (𝜔dt + 𝜓) = Ce−1.25t sin (1.561t + 𝜓)

The velocity is then

ẋ = −1.25Ce−1.25t sin (1.561t + 𝜓) + 1.561Ce−1.25t cos (1.561t + 𝜓)

Evaluating the displacement and velocity at time t = 0 gives

x0 = C sin 𝜓 = 0.2  ẋ0 = −1.25C sin 𝜓 + 1.561C cos 𝜓 = 0

Solving the two equations for C and 𝜓 yields C = 0.256 m and 𝜓 = 0.896 
rad. Therefore, the displacement in meters is

x = 0.256e−1.25t sin (1.561t + 0.896) m

Evaluation for time t = 2 s gives x2 = −0.01616 m. 1

SAMPLE PROBLEM 8/3

The two fi xed counterrotating pulleys are driven at the same angular 
speed 𝜔0. A round bar is placed off center on the pulleys as shown. 
Determine the natural frequency of the resulting bar motion. The coef-
fi cient of kinetic friction between the bar and pulleys is 𝜇k.

Solution The free-body diagram of the bar is constructed for an arbi-
trary displacement x from the central position as shown. The governing 
equations are

[ΣFx = mẍ ]  𝜇k NA − 𝜇k NB = mẍ 

[ΣFy = 0]  NA + NB − mg = 0

[ΣMA = 0]  aNB − (a
2

+ x) mg = 0 1

Eliminating NA and NB from the fi rst equation yields

ẍ +
2𝜇k g

a
 x = 0 2

We recognize the form of this equation as that of Eq. 8 ∕2, so that the 
natural frequency in radians per second is 𝜔n = √2𝜇k  g∕a  and the nat-
ural frequency in cycles per second is

 ƒn =
1

2𝜋
 √2𝜇k g∕a  Ans.

HELPFUL HINT
1  We note that the exponential factor 

e−1.25t is 0.0821 at t = 2 s. Thus, 
𝜁 = 0.625 represents severe damping, 
although the motion is still oscillatory.

k

x
c

8 kg

x

Equilibrium
position

mg

N

cx = 20x

kx = 32x

⋅ ⋅

HELPFUL HINTS
1  Because the bar is slender and does not 

rotate, the use of a moment equilibrium 
equation is justifi ed.

2  We note that the angular speed 𝜔0 does 
not enter the equation of motion. The 
reason for this is our assumption that 
the kinetic friction force does not depend 
on the relative velocity at the contacting 
surface.

a
𝜔0 𝜔0

Central
position

y

a
―
2

a
―
2x

A BG

NA NBmg

𝜇k NA 𝜇k NB
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8/3  Forced Vibration of Particles
Although there are many signifi cant applications of free vibrations, 
the most important class of vibration problems is that where the mo-
tion is continuously excited by a disturbing force. The force may be 
externally applied or may be generated within the system by such 
means as unbalanced rotating parts. Forced vibrations may also be 
excited by the motion of the system foundation.

Harmonic Excitation
Various forms of forcing functions F = F(t) and foundation displace-
ments xB = xB(t) are depicted in Fig. 8 ∕8. The harmonic force shown in 
part a of the fi gure occurs frequently in engineering practice, and the 
understanding of the analysis associated with harmonic forces is a 
necessary fi rst step in the study of more complex forms. For this 
 reason, we will focus our attention on harmonic excitation.

We fi rst consider the system of Fig. 8 ∕9a, where the body is 
 subjected to the external harmonic force F = F0 sin 𝜔t, in which F0 is 
the force amplitude and 𝜔 is the driving frequency (in radians per 
 second). Be sure to distinguish between 𝜔n = √k∕m, which is a prop-

erty of the system, and 𝜔, which is a property of the force applied to the system. We 
also note that for a force F = F0 cos 𝜔t, one merely substitutes cos 𝜔t for sin 𝜔t in 
the results about to be developed.
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An automobile undergoing vibration 
testing of its suspension system.

F(t) or xB(t)

(a) Harmonic

(b) Periodic Nonharmonic

(c) Nonperiodic

t
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t

F(t) or xB(t)
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From the free-body diagram of Fig. 8 ∕9a, we may apply Newton’s 
second law to obtain

−kx − cẋ + F0 sin 𝜔t = mẍ

In standard form, with the same variable substitutions made in 
Art. 8 ∕2, the equation of motion becomes

ẍ + 2𝜁𝜔n ẋ + 𝜔n
2

 x =
F0 sin 𝜔t

m
 (8∕13)

Base Excitation
In many cases, the excitation of the mass is due not to a directly ap-
plied force but to the movement of the base or foundation to which the 
mass is connected by springs or other compliant mountings. Exam-
ples of such applications are seismographs, vehicle suspensions, and 
structures shaken by earthquakes.

Harmonic movement of the base is equivalent to the direct appli-
cation of a harmonic force. To show this, consider the system of 
Fig. 8 ∕9b where the spring is attached to the movable base. The free-
body diagram shows the mass displaced a distance x from the neutral 
or equilibrium position it would have if the base were in its neutral 
position. The base, in turn, is assumed to have a harmonic movement xB = b sin 𝜔t. 
Note that the spring defl ection is the difference between the inertial displacements 
of the mass and the base. From the free-body diagram, Newton’s second law gives

−k(x − xB) − cẋ = mẍ

or ẍ + 2𝜁𝜔n ẋ + 𝜔n 

2
 x =

kb sin 𝜔t
m

 (8∕14)

We see immediately that Eq. 8 ∕14 is exactly the same as our basic equation of 
 motion, Eq. 8 ∕13, in that F0 is replaced by kb. Consequently, all the results about to 
be developed apply to either Eq. 8 ∕13 or 8 ∕14.

Undamped Forced Vibration
First, we treat the case where damping is negligible (c = 0). Our basic equation of 
motion, Eq. 8 ∕13, becomes

 ẍ + 𝜔n
2

 x =
F0

m
 sin 𝜔t (8∕15)

The complete solution to Eq. 8 ∕15 is the sum of the complementary solution xc, 
which is the general solution of Eq. 8 ∕15 with the right side set to zero, and the 
particular solution xp, which is any solution to the complete equation. Thus, x = 
xc + xp. We developed the complementary solution in Art. 8 ∕2. A particular solution is 
investigated by  assuming that the form of the response to the force should resemble 
that of the force term. To that end, we assume

xp = X sin 𝜔t (8∕16)

ẍ + 2𝜁𝜔nẋ + 𝜔n
2x =

F0FF sin 𝜔t
m

 

ẍ + 2𝜁𝜔nẋ + 𝜔n
2x =

kb sin 𝜔t
m

 

ẍ + 𝜔n
2x =

F0FF
m

sin 𝜔t 

x

kc
m

F = F0 sin 𝜔t

F0 sin 𝜔t

(a)

(b)

m kx

x

k
B

Neutral
position

xB = b sin 𝜔t

c
m

m k(x − xB)cx⋅

cx⋅

FIGURE 8/9
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where X is the amplitude (in units of length) of the particular solution. Substituting 
this expression into Eq. 8 ∕15 and solving for X yield

 X =
F0 ∕k

1 − (𝜔∕𝜔n)2 (8∕17)

Thus, the particular solution becomes

 xp =
F0 ∕k

1 − (𝜔∕𝜔n)2 sin 𝜔t (8∕18)

The complementary solution, known as the transient solution, is of no special 
interest here since, with time, it dies out with the small amount of damping which is 
always unavoidably present. The particular solution xp describes the continuing mo-
tion and is called the steady-state solution. Its period is 𝜏 = 2𝜋 ∕𝜔, the same as that of 
the forcing function.

Of primary interest is the amplitude X of the motion. If we let 𝛿st stand for the 
magnitude of the static defl ection of the mass under a static load F0, then 𝛿st = F0 ∕k, 
and we may form the ratio

 M =
X
𝛿st

 =
1

1 − (𝜔∕𝜔n)2 (8∕19)

The ratio M is called the amplitude ratio or magnifi cation factor and is a measure of 
the severity of the vibration. We especially note that M approaches infi nity as 𝜔 
approaches 𝜔n. Consequently, if the system possesses no damping and is excited by 
a harmonic force whose frequency 𝜔 approaches the natural frequency 𝜔n of the sys-
tem, then M, and thus X, increase without limit. Physically, this means that the 
motion amplitude would reach the limits of the attached spring, which is a condi-
tion to be avoided.

The value 𝜔n is called the resonant or critical frequency of the system, and 
the condition of 𝜔 being close in value to 𝜔n with the resulting large displacement 
amplitude X is called resonance. For 𝜔 < 𝜔n, the magnifi cation factor M is posi-
tive, and the vibration is in phase with the force F. For 𝜔 > 𝜔n, the magnifi cation 
factor is negative, and the  vibration is 180° out of phase with F. Figure 8 ∕10 
shows a plot of the absolute value of M as a function of the driving-frequency 
ratio 𝜔 ∕𝜔n.

Damped Forced Vibration
We now reintroduce damping in our expressions for forced vibra-
tion. Our basic differential equation of motion is

 ẍ + 2𝜁𝜔nẋ + 𝜔n
2

 x =
F0 sin 𝜔t

m
 [8∕13]

Again, the complete solution is the sum of the complementary solu-
tion xc, which is the general solution of Eq. 8 ∕13 with the right side 
equal to zero, and the particular solution xp, which is any solution to 
the complete equation. We have already developed the complemen-
tary solution xc in Art. 8 ∕2. When damping is present, we fi nd that a 
single sine or cosine term, such as we were able to use for the un-
damped case, is not suffi ciently general for the particular solution. 
So we try

xp = X1 cos 𝜔t + X2 sin 𝜔t  or  xp = X sin (𝜔t − 𝜙)

0

6
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4

3

2

1

0
1 2 3

│M│

𝜔/𝜔n

FIGURE 8/10
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Substitute the latter expression into Eq. 8 ∕13, match coeffi cients of sin 𝜔t and cos 𝜔t, 
and solve the resulting two equations to obtain

  X =
F0 ∕k

{[1 − (𝜔∕𝜔n)2]2 + [2𝜁𝜔∕𝜔n]2}1∕2 (8∕20)

  𝜙 =  tan−1 [
2𝜁𝜔∕𝜔n

1 − (𝜔∕𝜔n)2 ]  (8∕21)

The complete solution is now known, and for underdamped systems it can be 
 written as

 x = Ce−𝜁𝜔nt sin (𝜔d 

t + 𝜓) + X sin (𝜔t − 𝜙) (8∕22)

Because the fi rst term on the right side diminishes with time, it is known as 
the transient solution. The particular solution xp is the steady-state solution and is 
the part of the solution in which we are primarily interested. All quantities on the 
right side of Eq. 8 ∕22 are properties of the system and the applied force, except for 
C and 𝜓 (which are determinable from initial conditions) and the running time 
variable t.

Key Concepts  Magnification Factor and Phase Angle

Near resonance the magnitude X of the steady-state 
solution is a strong function of the damping ratio 𝜁 and 
the nondimensional frequency ratio 𝜔 ∕𝜔n. It is again 
convenient to form the nondimensional ratio M = 
X ∕(F0 ∕k), which is called the amplitude ratio or magnifi -
cation  factor

 M =
1

{[1 − (𝜔∕𝜔n)2 ]2 + [2𝜁𝜔∕𝜔n]2}1∕2 (8∕23)

An accurate plot of the magnifi cation factor M 
 versus the frequency ratio 𝜔 ∕𝜔n for various values of 
the damping ratio 𝜁 is shown in Fig. 8 ∕11. This fi gure 
reveals the most essential information pertinent to the 
forced vibration of a single-degree-of-freedom system 

under harmonic excitation. It is clear from the graph 
that, if a motion amplitude is excessive, two possi-
ble remedies would be to (a) increase the damping 
(to obtain a larger value of 𝜁) or (b) alter the driving 
frequency so that 𝜔 is farther from the resonant fre-
quency 𝜔n. The addition of damping is most effective 
near resonance. Figure 8 ∕11 also shows that,  except for 
𝜁 = 0, the magnifi cation-factor curves do not actually 
peak at 𝜔 ∕𝜔n = 1. The peak for any given value of 𝜁 can 
be calculated by fi nding the maximum value of M from 
Eq. 8 ∕23.

The phase angle 𝜙, given by Eq. 8 ∕21, can vary from 
0 to 𝜋 and represents the part of a cycle (and thus the 
time) by which the response xp lags the forcing func-
tion F. Figure 8 ∕12 shows how the phase angle 𝜙 varies 
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with the frequency ratio for various values 
of the damping ratio 𝜁. Note that the value 
of 𝜙 when 𝜔 ∕𝜔n = 1 is 90° for all values of 𝜁. 
To further illustrate the phase difference 
between the response and the forcing func-
tion, we show in Fig. 8 ∕13 two examples 
of the variation of F and xp with 𝜔t. In the 
fi rst example, 𝜔 < 𝜔n and 𝜙 is taken to be 
𝜋 ∕4. In the second example, 𝜔 > 𝜔n and 𝜙 
is taken to be 3𝜋 ∕4.

F, xp

FX

X

Fxp

xp

F

xp

0 2𝜋 3𝜋
𝜔t

𝜔t
𝜔t

F, xp

0

F
F0

F0

xp
𝜙

𝜙

𝜙

𝜔t
𝜋

2𝜋 3𝜋𝜋

𝜙

𝜔 < 𝜔n , 𝜙 = 𝜋/4

𝜔 > 𝜔n , 𝜙 = 3𝜋/4 FIGURE 8/13

Applications
Vibration-measuring instruments such as seismometers and acceler-
ometers are frequently encountered applications of harmonic excita-
tion. The elements of this class of instruments are shown in Fig. 
8 ∕14a. We note that the entire system is subjected to the motion xB of 
the frame. Letting x denote the position of the mass relative to the 
frame, we may apply Newton’s second law and obtain

−cẋ − kx = m 
d2

dt2 (x + xB)  or  ẍ +
c
m

 ẋ +
k
m

 x = −ẍB 

where (x + xB) is the inertial displacement of the mass. If xB = b sin 𝜔t, 
then our equation of motion with the usual notation is

ẍ + 2𝜁𝜔n ẋ + 𝜔n
2

 x = b𝜔2 sin 𝜔t

which is the same as Eq. 8 ∕13 if b𝜔2 is substituted for F0 ∕m.
Again, we are interested only in the steady-state solution xp. Thus, 

from Eq. 8 ∕20, we have

xp =
b(𝜔∕𝜔n)2

{[1 − (𝜔∕𝜔n)2 ]2 + [2𝜁𝜔∕𝜔n]2}1∕2 sin (𝜔t − 𝜙)

If X represents the amplitude of the relative response xp, then the 
nondimensional ratio X ∕b is

X∕b = (𝜔∕𝜔n)2M

where M is the magnifi cation ratio of Eq. 8 ∕23. A plot of X ∕b as a function of the 
driving-frequency ratio 𝜔 ∕𝜔n is shown in Fig. 8 ∕14b. The similarities and differ-
ences between the magnifi cation ratios of Figs. 8 ∕14b and 8 ∕11 should be noted.

If the frequency ratio 𝜔 ∕𝜔n is large, then X ∕b ≅ 1 for all values of the damping 
ratio 𝜁. Under these conditions, the displacement of the mass relative to the frame is 
approximately the same as the absolute displacement of the frame, and the instru-
ment acts as a displacement meter. To obtain a high value of 𝜔 ∕𝜔n, we need a small 
value of 𝜔n = √k∕m, which means a soft spring and a large mass. With such a 

The seismograph is a useful application 
of the principles of this article.
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 Article  8/3 Forced Vibration of Particles 275

 combination, the mass will tend to stay inertially fi xed. Displacement meters gen-
erally have very light damping.

On the other hand, if the frequency ratio 𝜔 ∕𝜔n is small, then M approaches 
unity (see Fig. 8 ∕11) and X ∕b ≅ (𝜔 ∕𝜔n)2 or X ≅ b(𝜔 ∕𝜔n)2. But b𝜔2 is the maximum 
acceleration of the frame. Thus, X is proportional to the maximum acceleration of 
the frame, and the instrument may be used as an accelerometer. The damping ratio 
is generally selected so that M approximates unity over the widest possible range 
of 𝜔 ∕𝜔n. From Fig. 8 ∕11, we see that a damping factor somewhere between 𝜁 = 0.5 
and 𝜁 = 1 would meet this criterion.

Electric Circuit Analogy
An important analogy exists between electric circuits and mechanical spring-mass 
systems. Figure 8 ∕15 shows a series circuit consisting of a voltage E which is a 
function of time, an inductance L, a capacitance C, and a resistance R. If we denote 
the charge by the symbol q, the equation which governs the charge is

 Lq̈ + Rq̇ +
1
C

 q = E (8∕24)

This equation has the same form as the equation for the mechanical system. Thus, 
by a simple interchange of symbols, the behavior of the electrical circuit may be 
used to predict the behavior of the mechanical system, or vice versa. The mechani-
cal and electrical equivalents in the following table are worth noting:

0.1

0.2

0.5

0

6

5

4

3

2

1

0
1

X/b

(b)(a)

2 3

m m

kx
k

c
x

Neutral
position

Equilibrium
position

xB = b sin 𝜔t

cx⋅

𝜔/𝜔n

𝜁 = 0

𝜁 = 1

FIGURE 8/14

E

C

L R

FIGURE 8/15

Mechanical-Electrical Equivalents

Mechanical Electrical

Quantity Symbol SI Unit Quantity Symbol SI Unit

Mass m kg Inductance L H henry

Spring stiff ness k N∕m 1∕Capacitance 1∕C 1∕F 1∕farad

Force F N Voltage E V volt

Velocity ẋ m∕s Current I A ampere

Displacement x m Charge q C coulomb

Viscous damping constant c N ∙ s∕m Resistance R Ω ohm
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276 CHAPTER 8  Vibration and Time Response

SAMPLE PROBLEM 8/4

A 50-kg instrument is supported by four springs, each of stiffness 7500 
N ∕m. If the instrument foundation undergoes harmonic motion given 
in meters by xB = 0.002 cos 50t, determine the amplitude of the steady-
state motion of the instrument. Damping is negligible.

Solution For harmonic oscillation of the base, we substitute kb for F0 
in our particular-solution results, so that, from Eq. 8 ∕17, the steady-
state amplitude becomes

X =
b

1 − (𝜔∕𝜔n)2 1

The resonant frequency is 𝜔n = √k∕m = √4(7500)∕50 = 24.5 rad∕s, 
and the impressed frequency 𝜔 = 50 rad∕s is given. Thus,

 X =
0.002

1 − (50∕24.5)2 = −6.32(10−4) m or −0.632 mm 2  Ans.

Note that the frequency ratio 𝜔 ∕𝜔n is approximately 2, so that the con-
dition of resonance is avoided.

SAMPLE PROBLEM 8/5

The spring attachment point B is given a horizontal motion xB = 
b cos 𝜔t. Determine the critical driving frequency 𝜔c for which the 
 oscillations of the mass m tend to become excessively large. Neglect the 
friction and mass associated with the pulleys. The two springs have the 
same stiffness k.

Solution The free-body diagram is drawn for arbitrary positive dis-
placements x and xB. The motion variable x is measured downward from 
the position of sta tic equilibrium defi ned as that which exists when xB = 
0. The additional stretch in the upper spring, beyond that which exists at 
static equilibrium, is 2x − xB. 1  Therefore, the dynamic spring force 
in the upper spring, and hence the dynamic tension T in the cable, is 
k(2x − xB). 2  Summing forces in the x-direction gives

[ΣFx = mẍ] −2k(2x − xB) − kx = mẍ

which becomes

ẍ +
5k
m

 x =
2kb cos 𝜔t

m

The natural frequency of the system is 𝜔n = √5k∕m. Thus,

 𝜔c = 𝜔n = √5k∕m Ans.

HELPFUL HINTS
1  Note that either sin 50t or cos 50t can be 

used for the forcing function with this 
same result.

2  The minus sign indicates that the mo-
tion is 180° out of phase with the applied 
excitation.

xB

HELPFUL HINTS
1  If a review of the kinematics of con-

strained motion is necessary, see Art. 2∕9.

2  We learned from the discussion in 
Art. 8∕2 that the equal and opposite 
forces associated with the position of 
static equilibrium may be omitted from 
the analysis. Our use of the terms dy-
namic spring force and dynamic tension 
stresses that only the force increments 
in addition to the static values need be 
considered.

xB = b cos 𝜔t

k

k

B

T T

Equilibrium
position

Neutral position

x m

kx
(Dynamic forces only)

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Article  8/3 Forced Vibration of Particles 277

SAMPLE PROBLEM 8/6

The 100-lb piston is supported by a spring of modulus k = 200 lb ∕in. A 
dashpot of damping coeffi cient c = 85 lb-sec ∕ft acts in parallel with the 
spring. A fl uctuating pressure p = 0.625 sin 30t in lb ∕in.2 acts on the 
piston, whose top surface area is 80 in.2 Determine the steady-state 
displacement as a function of time and the maximum force transmitted 
to the base.

Solution We begin by computing the system natural frequency and 
damping ratio:

 𝜔n = √ k
m

= √(200)(12)
100∕32.2

= 27.8 rad∕sec

 𝜁 =  
c

2m𝜔n
=

85

2 ( 100
32.2)(27.8)

= 0.492 (underdamped)

The steady-state amplitude, from Eq. 8 ∕20, is

 X =  
F0∕k

{[1 − (𝜔∕𝜔n)2]2 + [2𝜁𝜔∕𝜔n]2}1∕2

 =  
(0.625)(80)∕[(200)(12)]

{[1 − (30∕27.8)2]2 + [2(0.492)(30∕27.8)]2}1∕2

  =  0.01938 ft 1

The phase angle, from Eq. 8 ∕21, is

 𝜙 = tan−1 [
2𝜁𝜔∕𝜔n

1 − (𝜔∕𝜔n)2 ]
  = tan−1 [

2(0.492)(30∕27.8)

1 − (30∕27.8)2 ]  2

 = 1.724 rad

The steady-state motion is then given by the second term on the right 
side of Eq. 8 ∕22:

 xp = X sin (𝜔t − 𝜙) = 0.01938 sin (30t − 1.724) ft Ans.

The force Ftr transmitted to the base is the sum of the spring and 
damper forces, or

Ftr = kxp + cẋp = kX sin (𝜔t − 𝜙) + c𝜔X cos (𝜔t − 𝜙)

The maximum value of Ftr is

 (Ftr)max  =  √(kX)2 + (c𝜔X)2 = X√k2 + c2
𝜔

2 

 = 0.01938√[(200)(12)]2 + (85)2(30)2

  = 67.9 lb 1   Ans.

k

W

p = p0 sin 𝜔t

c

Equilibrium
position

kx

x

(Dynamic forces only)
cx⋅

F = p0 A sin 𝜔t

HELPFUL HINTS
1  You are encouraged to repeat these cal-

culations with the damping coeffi cient c 
set to zero so as to observe the infl uence 
of the relatively large amount of damp-
ing present.

2  Note that the argument of the inverse 
tangent expression for 𝜙 has a positive 
numerator and a negative denominator 
for the case at hand, thus placing 𝜙 in 
the second quadrant. Recall that the de-
fi ned range of 𝜙 is 0 ≤ 𝜙 ≤ 𝜋.
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278 CHAPTER 8  Vibration and Time Response

8/4  Vibration of Rigid Bodies
The subject of planar rigid-body vibrations is entirely analogous to that of particle 
vibrations. In particle vibrations, the variable of interest is one of translation (x), 
while in rigid-body vibrations, the variable of primary concern may be one of rota-
tion (𝜃). Thus, the principles of rotational dynamics play a central role in the devel-
opment of the equation of motion.

We will see that the equation of motion for rotational vibration of rigid bodies 
has a mathematical form identical to that developed in Arts. 8 ∕2 and 8 ∕3 for trans-
lational vibration of particles. As was the case with particles, it is convenient to 
draw the free-body diagram for an arbitrary positive value of the displacement 
variable, because a negative displacement value easily leads to sign errors in the 
equation of motion. The practice of measuring the displacement from the position 
of static equilibrium rather than from the position of zero spring defl ection contin-
ues to simplify the formulation for linear systems because the equal and opposite 
forces and moments associated with the static equilibrium position cancel from the 
analysis.

Rather than individually treating the cases of (a) free vibration, undamped 
and damped, and (b) forced vibrations, undamped and damped, as was done with 
particles in Arts. 8 ∕2 and 8 ∕3, we will go  directly to the damped, forced problem.

Rotational Vibration of a Bar
As an illustrative example, consider the rotational vibration of the uni-
form slender bar of Fig. 8 ∕16a. Figure 8 ∕16b depicts the free-body 
diagram associated with the horizontal position of static equilibrium. 
Equating to zero the moment sum about O yields

−P ( l
2

+
l
6) + mg ( l

6) = 0  P =
mg
4

where P is the magnitude of the static spring force.
Figure 8 ∕16c depicts the free-body diagram associated with an 

 arbitrary positive angular displacement 𝜃. Using the equation of rota-
tional motion ΣMO = IO�̈� as developed in Chapter 6, we write

 (mg)( l
6

 cos 𝜃) − (cl
3

 �̇� cos 𝜃)( l
3

 cos 𝜃) − (P + k 
2l
3

 sin 𝜃)(2l
3

 cos 𝜃)
   + (F0 cos 𝜔t) ( l

3
 cos 𝜃) =

1
9

 ml2
 �̈�

where IO = I + md2 = ml2∕12 + m(l ∕6)2 = ml2∕9 is obtained from the 
parallel-axis theorem for mass moments of inertia.

For small angular defl ections, the approximations sin 𝜃 ≅ 𝜃 and 
cos 𝜃 ≅ 1 may be used. With P = mg∕4, the equation of motion, upon 
 rearrangement and simplifi cation, becomes

 �̈� +
c
m

 �̇� + 4 
k
m

 𝜃 =
(F0 l∕3) cos 𝜔t

ml2∕9
 (8∕25)

The right side has been left unsimplifi ed in the form M0(cos 𝜔t) ∕IO, 
where M0 = F0 l ∕3 is the magnitude of the moment about point O of the 
externally applied force. Note that the two equal and opposite moments 

Oʹy

Oʹx = 0

Oy

O

mg

mgP

(c)

(b)

(a)

Ox

P + k sin 𝜃2l
—
3

c ) =( cos 𝜃d
—
dt

l
—
3

cl
—
3

sin 𝜃

F0 cos 𝜔t

l
—
3

l
—
3

l
—
3

l
—
2

l
–‒
6

k c
m

O

F0 cos 𝜔t

𝜃

𝜃
⋅

FIGURE 8/16
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 Article  8/4 Vibration of Rigid Bodies 279

associated with static equilibrium forces canceled on the left side of 
the equation of motion. Thus, it is not necessary to include the static- 
equilibrium forces and moments in the analysis.

Rotational Counterparts of Translational 
Vibration
At this point, we observe that Eq. 8 ∕25 is identical in form to Eq. 8 ∕13 
for the translational case, so we may write

 �̈� + 2𝜁𝜔n �̇� + 𝜔n
2
𝜃 =

M0 cos 𝜔t
IO

 (8∕26)

Thus, we may use all of the relations developed in Arts. 8 ∕2 and 8 ∕3 
merely by replacing the translational quantities with their rota-
tional counterparts. The following table shows the results of this 
procedure as applied to the rotating bar of Fig. 8 ∕16:

Translational Angular (for current problem)

ẍ +
c
m

 ẋ +
k
m

 x =
F0 cos 𝜔t

m
�̈� +

c
m

 �̇� +
4k
m

 𝜃 =
M0 cos 𝜔t

IO

𝜔n = √k∕m 𝜔n = √4k∕m = 2√k∕m

𝜁 =
c

2m𝜔n
=

c

2√km
𝜁 =

c
2m𝜔n

=
c

4√km

𝜔d = 𝜔n√1 − 𝜁
2 =

1
2m

 √4km − c2
𝜔d = 𝜔n√1 − 𝜁

2 =
1

2m
 √16km − c2

xc = Ce−𝜁𝜔nt sin (𝜔dt + 𝜓) 𝜃c = Ce−𝜁𝜔nt sin (𝜔dt + 𝜓)

xp = X cos (𝜔t − 𝜙) 𝜃p = Θ cos (𝜔t − 𝜙)

X = M (
F0

k ) Θ = M (
M0

k𝜃 ) = M 

F0(l∕3)
4
9 

kl2
= M 

3F0

4kl

In the preceding table, the variable k𝜃 in the expression for Θ represents the equiv-
alent torsional spring constant of the system of Fig. 8 ∕16 and is determined by 
writing the restoring moment of the spring. For a small angle 𝜃, this moment about 
O is

Mk = −[k(2l∕3) sin 𝜃][(2l∕3) cos 𝜃] ≅ −(4
9 kl2)𝜃

Thus, k𝜃 = 4
9 kl2. Note that M0 ∕k𝜃 is the static angular defl ection which would be 

produced by a constant external moment M0.
We conclude that an exact analogy exists between particle vibration and the 

small angular vibration of rigid bodies. Furthermore, the utilization of this analogy 
can save the labor of complete rederivation of the governing relationships for a given 
problem of general rigid-body vibration.

As in the case of the chapter-opening 
photograph, the spring and damper are 
coaxial in this multi-link automobile 
suspension.

S
ci

en
ce

 P
h

ot
o 

L
ib

ra
ry

∕S
u

pe
rS

to
ck

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


280 CHAPTER 8  Vibration and Time Response

SAMPLE PROBLEM 8/7

A simplifi ed version of a pendulum used in impact tests is shown in 
the fi gure. Derive the equation of motion and determine the period 
for small oscillations about the pivot. The mass center G is located a 
distance r = 0.9 m from O, and the radius of gyration about O is kO = 
0.95 m. The friction of the bearing is negligible.

Solution We draw the free-body diagram for an arbitrary, positive 
value of the angular-displacement variable 𝜃, which is measured counter-
clockwise for the coordinate system chosen. Next we apply the governing 
equation of motion to obtain

[ΣMO = IO𝜃 ] −mgr sin 𝜃 = mkO
2

 𝜃 1

or 𝜃 +
gr

kO
2 sin 𝜃 = 0 Ans.

Note that the governing equation is independent of the mass. When 
𝜃 is small, sin 𝜃 ≅ 𝜃, and our equation of motion may be written as

𝜃 +
gr

kO
2 𝜃 = 0

The frequency in cycles per second and the period in seconds are 2

 ƒn =
1

2𝜋
 √ gr

k 2
O
  𝜏 =

1
ƒn

= 2𝜋√k 2
O

gr
 Ans.

For the given properties: 𝜏 = 2𝜋√ (0.95)2

(9.81)(0.9)
= 2.01 s Ans.

SAMPLE PROBLEM 8/8

The uniform bar of mass m and length l is pivoted at its center. The 
spring of constant k at the left end is attached to a stationary surface, 
but the right-end spring, also of constant k, is attached to a support 
which undergoes a harmonic motion given by yB = b sin 𝜔t. Determine 
the driving frequency 𝜔c which causes resonance.

Solution We use the moment equation of motion about the fi xed 
point O to obtain

− (k 
l
2

 sin 𝜃) 
l
2

 cos 𝜃 − k ( l
2

 sin 𝜃 − yB) 
l
2

 cos 𝜃 =
1

12
 ml2

 𝜃  1

Assuming small defl ections and simplifying give us

𝜃 +
6k
m

 𝜃 =
6kb
ml

 sin 𝜔t

The natural frequency should be recognized from the now-familiar 
form of the equation to be 2

𝜔n = √6k∕m

Thus, 𝜔c = 𝜔n = √6k∕m  will result in resonance (as well as violation of 
our small-angle assumption!). Ans.

HELPFUL HINTS
1  With our choice of point O as the mo-

ment center, the bearing reactions Ox 
and Oy never enter the equation of 
 motion.

2  For large angles of oscillation, determin-
ing the period for the pendulum 
requires the evaluation of an elliptic 
 integral.

G

O

Oy

Ox

r–

mg

r–

𝜃𝜃

2  The standard form here is 𝜃 + 𝜔n
2
𝜃 = 

 
M0 sin 𝜔t

IO
, where M0 = 

klb
2

 and IO = 

 1
12  ml2. The natural frequency 𝜔n of a 
system does not depend on the external 
disturbance.

Oy

mg

Ox

k )(
l
—
2

sin 𝜃
k − y

B)(
l
—
2

sin 𝜃

𝜃

yB = b sin 𝜔t

O

B

m
k

l
—
2

l
—
2

k

HELPFUL HINTS
1  As previously, we consider only the 

changes in the forces due to a movement 
away from the equilibrium  position.
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 Article  8/4 Vibration of Rigid Bodies 281

SAMPLE PROBLEM 8/9

Derive the equation of motion for the homogeneous circular cylinder, 
which rolls without slipping. If the cylinder mass is 50 kg, the cylinder 
radius 0.5 m, the spring constant 75 N ∕m, and the damping coeffi cient 
10 N∙s∕m, determine

(a) the undamped natural frequency

(b) the damping ratio

(c) the damped natural frequency

(d) the period of the damped system.

In addition, determine x as a function of time if the cylinder is released 
from rest at the position x = −0.2 m when t = 0.

Solution We have a choice of motion variables in that either x or the 
angular displacement 𝜃 of the cylinder may be used. 1  Since the prob-
lem statement involves x, we draw the free-body diagram for an arbi-
trary, positive value of x and write the two motion equations for the 
 cylinder as

[ΣFx = mẍ]  −cẋ − kx + F = mẍ 2

[ΣMG = I 𝜃]  −Fr =
1
2 mr2

 𝜃

The condition of rolling with no slip is ẍ  = r𝜃. Substitution of this con-
dition into the moment equation gives F = − 

1
2 mẍ . Inserting this expres-

sion for the friction force into the force equation for the x-direction yields

−cẋ − kx −
1
2

 mẍ = mẍ   or  ẍ +
2
3

 
c
m

 ẋ +
2
3

 
k
m

 x = 0

Comparing the above equation with that for the standard damped 
 oscillator, Eq. 8 ∕9, allows us to state directly

(a)   𝜔n
2 =

2
3

 
k
m
   𝜔n = √2

3
 
k
m

= √2
3

 
75
50

= 1 rad∕s  Ans.

(b)   2𝜁𝜔n =
2
3

 
c
m
    𝜁 =

1
3

 
c

m𝜔n
=

10
3(50)(1)

= 0.0667 Ans.

Hence, the damped natural frequency and the damped period are

(c)   𝜔d = 𝜔n√1 − 𝜁
2 = (1)√1 − (0.0667)2 = 0.998 rad∕s Ans.

(d)   𝜏d = 2𝜋∕𝜔d = 2𝜋∕0.998 = 6.30 s  Ans.

From Eq. 8 ∕12, the underdamped solution to the equation of motion is

x = Ce−𝜁𝜔nt sin (𝜔dt + 𝜓) = Ce− (0.0667)(1)t sin (0.998t + 𝜓)

The velocity is  ẋ = −0.0667Ce−0.0667t sin (0.998t + 𝜓)

      +0.998Ce−0.0667t cos (0.998t + 𝜓)

At time t = 0, x and ẋ  become

 x0 = C sin 𝜓 = −0.2

 ẋ0 = −0.0667C sin 𝜓 + 0.998C cos 𝜓 = 0

The solution to the two equations in C and 𝜓 gives

C = −0.200 m  𝜓 = 1.504 rad

Thus, the motion is given by

 x = −0.200e−0.0667t sin (0.998t + 1.504) m Ans.

x

m
k cr

F

O

N

mg

Equilibrium
position

kx

x
+𝜃

cx⋅

HELPFUL HINTS
1  The angle 𝜃 is taken positive clockwise 

to be kinematically consistent with x.
2  The friction force F may be assumed in 

either direction. We will fi nd that the 
 actual direction is to the right for x > 0 
and to the left for x < 0; F = 0 when x = 0.
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282 CHAPTER 8  Vibration and Time Response

8/5  Energy Methods
In Arts. 8 ∕2 through 8 ∕4 we derived and solved the equations of motion for vibrat-
ing bodies by isolating the body with a free-body diagram and applying Newton’s 
second law of motion. With this approach, we were able to account for the actions of 
all forces acting on the body, including frictional damping forces. There are many 
problems where the effect of damping is small and may be neglected, so that the 
total energy of the system is essentially conserved. For such systems, we fi nd that 
the principle of conservation of energy may frequently be applied with considerable 
advantage in establishing the equation of motion and, when the motion is simple 
harmonic, in determining the frequency of vibration.

Determining the Equation of Motion
To illustrate this alternative approach, consider fi rst the simple case of the 
body of mass m attached to the spring of stiffness k and  vibrating in the ver-
tical direction without damping, Fig. 8 ∕17. As previously, we fi nd it conve-
nient to measure the motion variable x from the equilibrium position. With 
this datum, the total potential energy of the system, elastic plus gravitational, 
becomes

V = Ve + Vg =
1
2 k(x + 𝛿st)2 −

1
2 k𝛿st

2 − mgx

where 𝛿st = mg∕k is the initial static displacement. Substituting k𝛿st = mg and 
simplifying give

V =
1
2 kx2

Thus, the total energy of the system becomes

T + V =
1
2 mẋ2 +

1
2 kx2

Because T + V is constant for a conservative system, its time derivative is zero. 
Consequently,

d
dt

 (T + V) = mẋ ẍ + kx ẋ = 0

Canceling ẋ gives us our basic differential equation of motion

mẍ + kx = 0

which is identical to Eq. 8 ∕1 derived in Art. 8 ∕2 for the same system of Fig. 8 ∕3.

Determining the Frequency of Vibration
Conservation of energy may also be used to determine the period or frequency of 
vibration for a linear conservative system, without having to derive and solve the 
equation of motion. For a system which oscillates with simple harmonic motion 
about the equilibrium position, from which the displacement x is measured, the 
energy changes from maximum kinetic and zero potential at the equilibrium posi-
tion x = 0 to zero kinetic and maximum potential at the position of maximum dis-
placement x = xmax. Thus, we may write

Tmax = Vmax 

m

m

k

x
Equilibrium

position

𝛿st

FIGURE 8/17
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The maximum kinetic energy is 12 m(ẋmax)2, and the maximum potential energy is 
1
2 k(xmax)2.

For the harmonic oscillator of Fig. 8 ∕17, we know that the displacement may 
be written as x = xmax sin (𝜔nt + 𝜓), so that the maximum velocity is ẋmax = 𝜔nxmax. 
Thus, we may write

1
2 m(𝜔n xmax)2 =

1
2 k(xmax)2

where xmax is the maximum displacement, at which the potential energy is a maxi-
mum. From this energy balance, we easily obtain

𝜔n = √k∕m 

This method of directly determining the frequency may be used for any linear 
 undamped vibration.

The main advantage of the energy approach for the free vibration of conserva-
tive systems is that it becomes unnecessary to dismember the system and account 
for all of the forces which act on each member. In Art. 3 ∕7 of Chapter 3 and in 
Arts. 6 ∕6 and 6 ∕7 of Chapter 6, we learned for a system of interconnected bodies 
that an active-force diagram of the complete system enabled us to evaluate the 
work U′ of the external active forces and to equate it to the change in the total 
mechanical energy T + V of the system.

Thus, for a conservative mechanical system of interconnected parts with a 
 single degree of freedom where U′ = 0, we may obtain its equation of motion simply 
by setting the time derivative of its constant total mechanical energy to zero, giving

d
dt

 (T + V) = 0

Here V = Ve + Vg is the sum of the elastic and gravitational potential energies of 
the system.

Also, for an interconnected mechanical system, as for a single body, the natural 
frequency of vibration is obtained by equating the expression for its maximum total 
kinetic energy to the expression for its maximum potential energy, where the po-
tential energy is taken to be zero at the equilibrium position. This approach to the 
determination of natural frequency is valid only if it can be determined that the 
system  vibrates with simple harmonic motion.
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SAMPLE PROBLEM 8/10

The small sphere of mass m is mounted on the light rod pivoted at O 
and supported at end A by the vertical spring of stiffness k. End A is 
displaced a small distance y0 below the horizontal equilibrium position 
and released. By the energy method, derive the differential equation of 
motion for small oscillations of the rod and determine the expression 
for its natural frequency 𝜔n of vibration. Damping is negligible.

Solution With the displacement y of the end of the bar measured 
from the equilibrium position, the potential energy in the displaced 
position for small values of y becomes

V = Ve + Vg =
1
2

 k(y + 𝛿st)2 −
1
2

 k𝛿st
2 − mg (b

l
 y) 1

where 𝛿st is the static defl ection of the spring at equilibrium. But the 
force in the spring in the equilibrium position, from a zero moment 
sum about O, is (b∕l)mg = k𝛿st. Substituting this value in the expression 
for V and simplifying yield

V =
1
2

 ky2  2

The kinetic energy in the displaced position is

T =
1
2

 m (b
l
 ẏ)

2

where we see that the vertical displacement of m is (b∕l)y. Thus, with 
the energy sum constant, its time derivative is zero, and we have

d
dt

 (T + V) =
d
dt [

1
2

 m (b
l
 ẏ)

2

+
1
2

 ky2 ] = 0

which yields

 ÿ +
l2

b2 
k
m

 y = 0 Ans.

when ẏ is canceled. By analogy with Eq. 8 ∕2, we may write the motion 
 frequency directly as

 𝜔n =
l
b

 √k∕m  Ans.

 Alternatively, we can obtain the frequency by equating the maxi-
mum kinetic energy, which occurs at y = 0, to the maximum potential 
energy, which occurs at y = y0 = ymax, where the defl ection is a maxi-
mum. Thus,

Tmax = Vmax   gives  
1
2

 m (b
l
 ẏmax)

2

=
1
2

 kymax
2

Knowing that we have a harmonic oscillation, which can be expressed 
as y = ymax sin 𝜔nt, we have ẏmax = ymax𝜔n. Substituting this relation into 
our energy balance gives us

 
1
2

 m(b
l
 ymax𝜔n)

2

=
1
2

 kymax
2  so that 𝜔n =

l
b

 √k∕m Ans.

as before.

m

O

A

k

y

Equilibrium
position

yb
—
l

𝛿st

m
O

A

kb

l

HELPFUL HINTS
1  For large values of y, the circular motion 

of the end of the bar would cause our ex-
pression for the defl ection of the spring 
to be in error.

2  Here again, we note the simplicity of the 
expression for potential energy when 
the displacement is measured from the 
equilibrium position.
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SAMPLE PROBLEM 8/11

Determine the natural frequency 𝜔n of vertical vibration of the 3-kg 
collar to which are attached the two uniform 1.2-kg links, which may 
be treated as slender bars. The stiffness of the spring, which is attached 
to both the collar and the foundation, is k = 1.5 kN∕ m, and the bars are 
both horizontal in the equilibrium position. A small roller on end B of 
each link permits end A to move with the collar. Frictional retardation 
is negligible.

Solution In the equilibrium position, the compression P in the spring 
equals the weight of the 3-kg collar, plus half the weight of each link or 
P = 3(9.81) + 2(1

2)(1.2)(9.81) = 41.2 N. The corresponding static defl ec-
tion of the spring is 𝛿st = P∕k = 41.2 ∕1.5(103) = 27.5(10−3) m. With the 
displacement variable y measured downward from the equilibrium po-
sition, which becomes the position of zero potential energy, the poten-
tial energy for each member in the displaced position is

 (Spring) Ve =
1
2

 k(y + 𝛿st)2 −
1
2

 k𝛿st
2 =

1
2

 ky2 + k𝛿st y

 =  
1
2

 (1.5)(103)y2 + 1.5(103)(27.5)(10−3)y

 =  750y2 + 41.2y J

 (Collar) Vg = −mc gy = −3(9.81)y = −29.4y J

  (Each link) Vg = −ml g 
y
2

= −1.2(9.81) 
y
2

= −5.89y J 1

The total potential energy of the system then becomes

V = 750y2 + 41.2y − 29.4y − 2(5.89)y = 750y2 J 2 

 The maximum kinetic energy occurs at the equilibrium position, 
where the velocity ẏ of the collar has its maximum value. In that posi-
tion, in which links AB are horizontal, end B is the instantaneous cen-
ter of zero velocity for each link, and each link rotates with an angular 
velocity ẏ∕0.3. 3  Thus, the kinetic  energy of each part is

 (Collar) T =
1
2

 mc  ẏ2 =
3
2

 ẏ2 J

 (Each link) T =
1
2

 IB𝜔
2 =

1
2

 (1
3

 ml l2)(ẏ∕l)2 =
1
6

 ml ẏ2

 =
1
6

 (1.2)ẏ2 = 0.2ẏ2 

Thus, the kinetic energy of the collar and both links is

T =
3
2

 ẏ2 + 2(0.2ẏ2) = 1.9ẏ2 

With the harmonic motion expressed by y = ymax sin 𝜔nt, we have ẏmax = 
ymax𝜔n, so that the energy balance Tmax = Vmax with ẏ = ẏmax becomes 4

 1.9(ymax𝜔n)2 = 750ymax
2  or 𝜔n = √750∕1.9 = 19.87 rad∕s 5  Ans.

HELPFUL HINTS
1  Note that the mass center of each link 

moves down only half as far as the 
 collar.

2  We note again that measurement of the 
motion variable y from the equilibrium 
position results in the total potential 
energy being simply V = 12 ky2.

3  Our knowledge of rigid-body kinematics 
is essential at this point.

4  To appreciate the advantage of the 
work-energy method for this and simi-
lar problems of interconnected systems, 
you are encouraged to explore the steps 
required for solution by the force and 
moment equations of motion of the sep-
arate parts.

5  If the oscillations were large, we would 
fi nd that the angular velocity of each 
link in its general position would equal 
ẏ∕√0.09 − y2, which would cause a non-
linear response no longer described by 
y = ymax sin 𝜔t.

B
A

y

1.2 kg

300
mm

1.2 kg

k = 1.5 kN/m

A
B

300
mm

3 kg
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8/6  Chapter Review
In studying the vibrations of particles and rigid bodies in 
Chapter 8, we have observed that the subject is simply 
a direct application of the fundamental principles of 
 dynamics as presented in Chapters 3 and 6. However, in 
these previous chapters, we determined the dynamic 
behavior of a body only at a particular instant of time or 
found the changes in motion resulting from only fi nite 
intervals of displacement or time. Chapter 8, on the 
other hand, has treated the solution of the defi ning dif-
ferential equations of motion, so that the linear or angu-
lar displacement can be fully expressed as a function of 
time.

Particle Vibration
We divided our study of the time response of particles 
into the two categories of free and forced motion, with 
the further subdivisions of negligible and signifi cant 
damping. We saw that the damping ratio 𝜁 is a conveni-
ent parameter for determining the nature of unforced 
but viscously damped vibrations.

The prime lesson associated with harmonic forcing 
is that driving a lightly damped system with a force 
whose frequency is near the natural frequency can 
cause motion of excessively large amplitude—a condi-
tion called resonance, which usually must be carefully 
avoided.

Rigid-Body Vibration
In our study of rigid-body vibrations, we observed that 
the equation of small angular motion has a form 

identical to that for particle  vibrations. Whereas particle 
vibrations may be described completely by the equations 
governing translational motion, rigid-body vibrations 
usually require the equations of rotational  dynamics.

Energy Methods
In the fi nal article of Chapter 8, we saw how the energy 
method can facilitate the determination of the natural 
frequency 𝜔n in free vibration problems where damping 
may be neglected. Here the total mechanical energy of 
the system is assumed to be constant. Setting its fi rst 
time derivative to zero leads directly to the differential 
equation of motion for the system. The energy approach 
permits the analysis of a conservative system of inter-
connected parts without dismembering the system.

Degrees of Freedom
Throughout the chapter, we have restricted our atten-
tion to systems having one degree of freedom, where the 
position of the system can be specifi ed by a single vari-
able. If a system possesses n degrees of freedom, it has 
n natural frequencies. Thus, if a harmonic force is ap-
plied to such a system which is lightly damped, there 
are n driving frequencies which can cause motion of 
large amplitude. By a process called modal analysis, a 
complex system with n degrees of freedom can be re-
duced to n single-degree-of-freedom systems. For this 
reason, the thorough understanding of the material of 
this chapter is vital for the further study of vibrations.
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See Appendix A of Vol. 1 Statics for a treatment of the theory and calculation of 
area moments of inertia. Because this quantity plays an important role in the de-
sign of structures, especially those dealt with in statics, we present only a brief 
defi nition in this Dynamics volume so that the student can appreciate the basic 
differences between area and mass moments of inertia.

The moments of inertia of a plane area A about the x- and y-axes in its plane and 
about the z-axis normal to its plane, Fig. A    ∕1, are defi ned by

Ix =  ∫ y2 dA  Iy =  ∫ x2 dA  Iz =  ∫ r2 dA

where dA is the differential element of area and r2 = x2 + y2. Clearly, 
the polar moment of inertia Iz equals the sum Ix + Iy of the rectangular 
moments of inertia. For thin fl at plates, the area moment of inertia is 
useful in the calculation of the mass moment of inertia, as explained 
in Appendix B.

The area moment of inertia is a measure of the distribution of 
area about the axis in question and, for that axis, is a constant prop-
erty of the area. The dimensions of area moment of inertia are (dis-
tance)4  expressed in m4 or mm4 in SI units and ft4 or in.4 in U.S. cus-
tomary units. In contrast, mass moment of inertia is a measure of the 
distribution of mass about the axis in question, and its dimensions 
are (mass)(distance)2, which are expressed in kg∙m2 in SI units and in 
lb-ft-sec2 or lb-in.-sec2 in U.S. customary units.

FIGURE A/1

y

x

A

dA

O

x

r y
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APPENDIX OUTLINE

B/1 Mass Moments of Inertia about an Axis
B/2 Products of Inertia

B/1  Mass Moments of Inertia about an Axis
The equation of rotational motion about an axis normal to the plane of motion for 
a rigid body in plane motion contains an integral which depends on the distribution 
of mass with respect to the moment axis. This integral occurs whenever a rigid 
body has an angular acceleration about its axis of rotation. Thus, to study the dy-
namics of rotation, you should be thoroughly familiar with the calculation of mass 
moments of inertia for rigid bodies.

Consider a body of mass m, Fig. B∕1, rotating about an axis O-O with an an-
gular acceleration 𝛼. All particles of the body move in parallel planes which are 
normal to the rotation axis O-O. We may choose any one of the planes as the plane 
of motion, although the one containing the center of mass is usually the one so 
designated. An element of mass dm has a component of acceleration tangent to its 
circular path equal to r𝛼, and by Newton’s second law of motion the resultant tan-
gential force on this element equals r𝛼 dm. The moment of this force about the 
axis O-O is r2

𝛼 dm, and the sum of the moments of these forces for all elements is 
∫r2

𝛼 dm.
For a rigid body, 𝛼 is the same for all radial lines in the body and we may take it 

outside the integral sign. The remaining integral is called the mass moment of iner-
tia I of the body about the axis O-O and is

 I = ∫ r2 dm (B∕1)

This integral represents an important property of a body and is involved in the 
analysis of any body which has rotational acceleration about a given axis. Just 
as the mass m of a body is a measure of the  resistance to translational accelera-
tion, the moment of inertia I is a measure of resistance to rotational acceleration 
of the body.

The moment-of-inertia integral may be expressed alternatively as

 I = Σ  ri 

2mi (B∕1a)

where ri is the radial distance from the inertia axis to the representative particle of 
mass mi and where the summation is taken over all particles of the body.

O

O

m

dmr

r𝛼 dm

𝛼

FIGURE B/1
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If the density 𝜌 is constant throughout the body, the moment of inertia 
becomes

I = 𝜌 ∫ r2 dV

where dV is the element of volume. In this case, the integral by itself defi nes a 
purely geometrical property of the body. When the density is not constant but is 
expressed as a function of the coordinates of the body, it must be left within the 
integral sign and its effect accounted for in the integration process.

In general, the coordinates which best fi t the boundaries of the body should be 
used in the integration. It is particularly important that we make a good choice of 
the element of volume dV. To simplify the integration, an element of lowest possible 
order should be chosen, and the correct expression for the moment of inertia of the 
element about the axis involved should be used. For example, in fi nding the moment 
of inertia of a solid right-circular cone about its central axis, we may choose an ele-
ment in the form of a circular slice of infi nitesimal thickness, Fig. B ∕ 2a. The differ-
ential moment of inertia for this element is the expression for the moment of inertia 
of a circular cylinder of infi nitesimal altitude about its central axis. (This expression 
will be obtained in Sample Problem B ∕1.)

Alternatively, we could choose an element in the form of a cylindrical shell of 
infi nitesimal thickness as shown in Fig. B ∕2b. Because all of the mass of the ele-
ment is at the same distance r from the inertia axis, the differential moment of 
inertia for this element is merely r2 dm where dm is the differential mass of the 
elemental shell.

From the defi nition of mass moment of inertia, its dimensions are (mass)(dis-
tance)2 and are expressed in the units kg∙m2 in SI units and lb-ft-sec2 in U.S. cus-
tomary units.

Radius of Gyration
The radius of gyration k of a mass m about an axis for which the moment of inertia 
is I is defi ned as

k = √ I
m
  or  I = k2m (B∕2)

Thus, k is a measure of the distribution of mass of a given body about the axis in 
question, and its defi nition is analogous to the defi nition of the radius of gyration 
for area moments of inertia. If all the mass m of a body could be concentrated at a 
distance k from the axis, the moment of inertia would be unchanged.

k = √ I√m√ or I = k2m 

r

(a) (b)

FIGURE B/2
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290 APPENDIX B  Mass Moments of Inertia

The moment of inertia of a body about a particular axis is frequently indicated 
by specifying the mass of the body and the radius of gyration of the body about the 
axis. The moment of inertia is then calculated from Eq. B ∕2.

Transfer of Axes
If the moment of inertia of a body is known about an axis passing through the mass 
center, it may be determined easily about any parallel axis. To prove this statement, 
consider the two parallel axes in Fig. B ∕3, one being an axis through the mass cen-
ter G and the other a parallel axis through some other point C. The radial distances 
from the two axes to any element of mass dm are r0 and r, and the separation of the 

axes is d. Substituting the law of cosines r2 = r0 

2 + d2 + 2r0 d cos 𝜃 into 
the defi nition for the moment of inertia about the axis through C gives

 I =  ∫ r2 dm = ∫ (r0 

2 + d2 + 2r0 d cos 𝜃) dm

 =  ∫ r0 

2 dm + d2 ∫ dm + 2d ∫ u dm

The fi rst integral is the moment of inertia I  about the mass-center 
axis, the second term is md2, and the third integral equals zero, since 
the u-coordinate of the mass center with respect to the axis through 
G is zero. Thus, the parallel-axis theorem is

I = I + md2 (B∕3)

Remember that the transfer cannot be made unless one axis passes through the 
center of mass and unless the axes are parallel.

When the expressions for the radii of gyration are substituted in Eq. B ∕3, there 
results

k2 = k2 + d2 (B∕3a)

Equation B ∕3a is the parallel-axis theorem for obtaining the radius of gyration k
about an axis which is a distance d from a parallel axis through the mass center, 
for which the radius of gyration is k.

For plane-motion problems where rotation occurs about an axis normal 
to the plane of motion, a single subscript for I is suffi cient to designate the 
inertia axis. Thus, if the plate of Fig. B ∕4 has plane  motion in the x-y plane, 
the moment of inertia of the plate about the z-axis through O is designated 
IO. For three-dimensional motion, however, where components of rotation 
may occur about more than one axis, we use a double subscript to preserve 
notational symmetry with product-of-inertia terms, which are described in 
Art. B ∕2. Thus, the moments of inertia about the x-, y-, and z-axes are la-
beled Ixx, Iyy, and Izz, respectively, and from Fig. B ∕5 we see that they become

  Ixx =  ∫ rx 

2 dm = ∫ (y2 + z2) dm

  Iyy =  ∫ ry 

2 dm = ∫ (z2 + x2) dm (B∕4)

 Izz =  ∫ rz 

2 dm = ∫ (x2 + y2) dm

I = I + md2 

k2 = k2 + d2 

IxII xxx = ∫ rxr 2 dm = ∫ (y2 + z2) dm

IyII yyy = ∫ ryr 2 dm = ∫ (z2 + x2) dm 

IzII z = ∫ rzr 2 dm = ∫ (x2 + y2) dm

dm
m

r r0

u
u

d OC

G
𝜃

FIGURE B/3

x
xt

O

dm

z

y

yr

FIGURE B/4
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These integrals are cited in Eqs. 7∕10 of Art. 7∕ 7 on angular momentum in 
three-dimensional rotation.

The defi ning expressions for mass moments of inertia and area 
 moments of inertia are similar. An exact relationship between the two 
moment-of-inertia expressions exists in the case of fl at plates. Consider 
the fl at plate of uniform thickness in Fig. B ∕4. If the constant thickness is 
t and the density is 𝜌, the mass moment of inertia Izz of the plate about the 
z-axis normal to the plate is

 Izz = ∫ r2 dm = 𝜌t ∫ r2 dA = 𝜌tIz (B∕5)

Thus, the mass moment of inertia about the z-axis equals the mass per 
unit area 𝜌t times the polar moment of inertia Iz of the plate area about 
the z-axis. If t is small compared with the dimensions of the plate in its plane, the 
mass moments of inertia Ixx and Iyy of the plate about the x- and y-axes are closely 
approximated by

 Ixx = ∫ y2 dm = 𝜌t ∫ y2 dA = 𝜌tIx

  Iyy = ∫ x2 dm = 𝜌t ∫ x2 dA = 𝜌tIy 
(B∕6)

Thus, the mass moments of inertia equal the mass per unit area 𝜌t times the corre-
sponding area moments of inertia. The double subscripts for mass moments of iner-
tia distinguish these quantities from area  moments of inertia.

Inasmuch as Iz = Ix + Iy for area moments of inertia, we have

 Izz = Ixx + Iyy (B∕7)

which holds only for a thin fl at plate. This restriction is observed from Eqs. B ∕6, 
which do not hold true unless the thickness t or the z-coordinate of the element is 
negligible compared with the distance of the element from the corresponding x- or 
y-axis. Equation B ∕7 is very useful when dealing with a differential mass ele-
ment taken as a fl at slice of differential thickness, say, dz. In this case, Eq. B ∕7 
holds exactly and becomes

 dIzz = dIxx + dIyy (B∕7a)

for axes x and y in the plane of the plate.

Composite Bodies
As in the case of area moments of inertia, the mass moment of inertia of a compos-
ite body is the sum of the moments of inertia of the individual parts about the same 
axis. It is often convenient to treat a composite body as defi ned by positive volumes 
and negative volumes. The moment of inertia of a negative element, such as the 
material removed to form a hole, must be considered a negative quantity.

A summary of some of the more useful formulas for mass moments of inertia of 
various masses of common shape is given in Table D ∕4,  Appendix D.

The problems provided as exercises for the student are divided into the catego-
ries Integration Exercises and Composite and Parallel-Axis Exercises. The parallel-
axis theorem will also be useful in some of the problems in the fi rst category.

FIGURE B/5
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SAMPLE PROBLEM B/1

Determine the moment of inertia and radius of gyration of a homoge-
neous right-circular cylinder of mass m and radius r about its central 
axis O-O.

Solution An element of mass in cylindrical coordinates is dm = 
𝜌 dV = 𝜌tr0 dr0 d𝜃, where 𝜌 is the density of the cylinder. 1  The 
 moment of inertia about the axis of the cylinder is

 I = ∫ r0 

2 dm = 𝜌t ∫2𝜋

0
 ∫r

0
 r0 

3 dr0 d𝜃 = 𝜌t 
𝜋r4

2
=

1
2 mr2 2  Ans.

The radius of gyration is

 k = √ I
m

=
r

√2
 Ans.

HELPFUL HINTS
1  If we had started with a cylindrical shell 

of radius r0 and axial length t as our 
mass element dm, then dI = r0 

2 dm di-
rectly. You should evaluate the integral.

2  The result I = 1
2 mr2 applies only to a 

solid homogeneous circular cylinder and 
cannot be used for any other wheel of 
circular periphery.

t

O

O

dr0

r0

r

d𝜃

SAMPLE PROBLEM B/2

Determine the moment of inertia and radius of gyration of a homoge-
neous solid sphere of mass m and radius r about a diameter.

Solution A circular slice of radius y and thickness dx is chosen as the 
 volume element. From the results of Sample Problem B ∕1, the moment 
of inertia about the x-axis of the elemental cylinder is

 dIxx =
1
2 (dm)y2 =

1
2 (𝜋𝜌y2 dx)y2 =

𝜋𝜌

2
 (r2 − x2)2 dx 1

where 𝜌 is the constant density of the sphere. The total moment of 
 inertia about the x-axis is

 Ixx =
𝜋𝜌

2
 ∫r

−r
 (r2 − x2)2 dx =

8
15 𝜋𝜌r5 =

2
5 mr2 Ans.

The radius of gyration about the x-axis is

 kx = √Ixx

m
= √2

5
 r Ans.

HELPFUL HINT
1  Here is an example where we  utilize a 

previous result to express the  moment 
of inertia of the chosen  element, which in 
this case is a right-circular cylinder of 
differential axial length dx. It would be 
foolish to start with a third-order ele-
ment, such as 𝜌 dx dy dz, when we can 
easily solve the problem with a fi rst-
order element.

y

r

x

x dx

y
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SAMPLE PROBLEM B/3

Determine the moments of inertia of the homogeneous rectangular 
parallelepiped of mass m about the centroidal x0- and z-axes and about 
the x-axis through one end.

Solution A transverse slice of thickness dz is selected as the element 
of volume. The moment of inertia of this slice of infi nitesimal thickness 
equals the moment of inertia of the area of the section times the mass 
per unit area 𝜌 dz. Thus, the moment of inertia of the transverse slice 
about the y′-axis is

 dIy′y′ = (𝜌 dz)( 1
12 ab3)

and that about the x′-axis is

 dIx′x′ = (𝜌 dz)( 1
12 a3b) 1

As long as the element is a plate of differential thickness, the principle 
given by Eq. B ∕7a may be applied to give

 dIzz = dIx′x′ + dIy′y′ = (𝜌 dz) 
ab
12

 (a2 + b2)

These expressions may now be integrated to obtain the desired results.
 The moment of inertia about the z-axis is

 Izz = ∫ dIzz =
𝜌ab
12

 (a2 + b2) ∫l

0
 dz =

1
12 m(a2 + b2) Ans.

where m is the mass of the block. By interchange of symbols, the 
 moment of inertia about the x0-axis is

 Ix0 x0
=

1
12 m(a2 + l2) Ans.

The moment of inertia about the x-axis may be found by the  parallel-axis 
theorem, Eq. B ∕3. Thus,

 Ixx = Ix0 x0
+ m( l

2)
2

=
1

12 m(a2 + 4l2) Ans.

This last result may be obtained by expressing the moment of inertia of 
the  elemental slice about the x-axis and integrating the expression 
over the length of the bar. Again, by the parallel-axis theorem

 dIxx = dIx′x′ + z2 dm = (𝜌 dz)( 1
12 a3b) + z2

𝜌ab dz = 𝜌ab ( a2

12
+ z2) dz

Integrating gives the result obtained previously:

 Ixx = 𝜌ab ∫l

0
 ( a2

12
+ z2) dz =

𝜌abl
3

 (l2 +
a2

4 ) =
1

12 m(a2 + 4l2)

The expression for Ixx may be simplifi ed for a long prismatic bar or 
 slender rod whose transverse dimensions are small compared with the 
length. In this case, a2 may be neglected compared with 4l2, and the 
moment of inertia of such a slender bar about an axis through one end 
normal to the bar becomes I = 13 ml2. By the same approximation, the 
moment of inertia about a centroidal axis normal to the bar is I = 
1

12 ml2.

HELPFUL HINT
1  Refer to Eqs. B∕6 and recall the expres-

sion for the area moment of inertia of a 
rectangle about an axis through its 
 center parallel to its base.

l/2
z

dz
x0

y0

xʹ

x

y

yʹ z

a

b

G

l/2
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294 APPENDIX B  Mass Moments of Inertia

SAMPLE PROBLEM B/4

The upper edge of the thin homogeneous plate of mass m is parabolic 
with a vertical slope at the origin O. Determine its mass moments of 
inertia about the x-, y-, and z-axes.

Solution We begin by clearly establishing the function associated 
with the upper boundary. From y = k√x evaluated at (x, y) = (b, h),

we fi nd that k = h∕√b so that y =
h

√b
√x. 1  We choose a transverse

slice of thickness dx for the integrations leading to Ixx and Iyy. The 
mass of this slice is

 dm = 𝜌ty dx

and the total mass of the plate is

 m = ∫dm = ∫𝜌ty dx = ∫b

0
𝜌t 

h

√b
√x  dx =

2
3 

𝜌thb 2

The moment of inertia of the slice about the x-axis is

 dIxx =
1
3 dm y2 =

1
3(𝜌ty dx)y2 =

1
3𝜌ty3 dx 3

For the entire plate, we have

 Ixx = ∫dIxx = ∫b

0
 13𝜌t ( h

√b
 √x)

3

 dx =
2

15𝜌th3b

In terms of the mass m:

 Ixx =
2

15𝜌th3b( m
2
3𝜌thb) =

1
5mh2 4  Ans.

The moment of inertia of the element about the y-axis is

 dIyy = dm x2 = (𝜌ty dx)x2 = (𝜌t 
h

√b
 √x dx) x2 = 𝜌t 

h

√b
 x5∕2 dx

For the entire plate,

 Iyy = ∫dIyy = ∫b

0
 𝜌t 

h

√b
 x5∕2 dx =

2
7𝜌thb3 ( m

2
3𝜌thb) =

3
7mb2 5  Ans.

For thin plates which lie in the x-y plane,

 Izz = Ixx + Iyy =
1
5mh2 +

3
7mb2 

  Izz = m(h2

5
+

3b2

7 ) Ans.

HELPFUL HINTS
1  If we have y = kx2, saying that “y gets 

large faster than x” helps establish that 
the parabola opens upward. Here, we 
have y2 = k2x, which says that “x gets 
large faster than y”, helping establish 
that the parabola opens rightward.

2  For a full b by h rectangular plate of 
thickness t, the mass would be 𝜌thb 
(density times volume). So the factor of 
2
3 for the parabolic plate makes sense.

3  Recall that for a slender rod of mass m 
and length l, the moment of inertia 
about an axis perpendicular to the rod 
and passing through one end is 13ml2.

4  Note that Ixx is independent of the 
width b.

5  Note that Iyy is independent of the 
height h.

O b

dx
x

x

h

Parabolic

z

y

y

t
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SAMPLE PROBLEM B/5

The radius of the homogeneous solid of revolution is proportional to the 
square of its x-coordinate. If the mass of the body is m, determine its 
mass moments of inertia about the x- and y-axes.

Solution We begin by writing the boundary in the x-y plane as 
y = kx2. The constant k is determined by evaluating this equation at

the point (x, y) = (h, r): r = kh2, which gives k = r∕h2, so that y =
r
h2 x2.

 As is usually convenient for bodies with axial symmetry, we choose 
a disk-shaped slice as our differential element, as shown in the given 
fi gure. The mass of this element is

 dm = 𝜌𝜋y2 dx 1

where 𝜌 represents the density of the body. The moment of inertia of 
the element about the x-axis is

 dIxx =
1
2 dm y2 =

1
2(𝜌𝜋y2 dx) y2 =

1
2𝜌𝜋y4 dx 2

The mass of the entire body is

 m = ∫dm = ∫h

0
𝜌𝜋y2 dx = ∫h

0
 𝜌𝜋 ( r

h2 x2)
2 

dx = 𝜌𝜋 
r2

h4 
x5

5
 ∣

h

0
 =

1
5 𝜌𝜋r2h 3

and the moment of inertia of the entire body is

 Ixx = ∫dIxx = ∫h

0
 12𝜌𝜋y4 dx = ∫h

0
 12𝜌𝜋 ( r

h2 x2)
4

 dx =
1

18𝜌𝜋r4h

All that remains is to express Ixx more conventionally in terms of its 
mass. We do so by writing

 Ixx =
1

18𝜌𝜋r4h (
m

1
5𝜌𝜋r2h) =

5
18 

mr2 4  5  Ans.

 By the parallel-axis theorem, the moment of inertia of the disk-
shaped  element about the y-axis is

 dIyy = dIy′y′ + x2 dm =
1
4 dm y2 + x2 dm

 = dm (1
4( r

h2 x2)
2

+ x2) = 𝜌𝜋y2 dx (1
4

 
r2

h4 x4 + x2)
 = 𝜌𝜋 ( r

h2 x2)
2

 (1
4

 
r2

h4 x4 + x2) dx = 𝜌𝜋 
r2

h4 (1
4

 
r2

h4 x8 + x6) dx

For the entire body, we have

 Iyy = ∫dIyy = ∫h

0
𝜌𝜋 

r2

h4 (1
4

 
r2

h4 x8 + x6) dx = 𝜌𝜋 
r2

h4 (1
4

 
r2

h4 
x9

9
+

x7

7 )∣
h

0

 = 𝜌𝜋r2h ( r2

36
+

h2

7 )
Finally, we multiply by the same unit expression as above to obtain a 
result in terms of the body mass m.

 Iyy = 𝜌𝜋r2h ( r2

36
+

h2

7 )(
m

1
5 𝜌𝜋r2h) = 5m ( r2

36
+

h2

7 ) Ans.

HELPFUL HINTS
1  The volume of a disk is the area of its 

face times its thickness. Then density 
times volume gives mass.

2  From Sample Problem B∕1, the mass 
moment of inertia of a uniform cylinder 
(or disk) about its longitudinal axis is 
1
2 mr2.

3  Remember to regard an integral opera-
tion as an infi nite summation.

4  The parenthetical expression here is 
unity, because its numerator and de-
nominator are equal.

5  We note that Ixx is independent of h. So 
the body could be compressed to h ≅ 0 
or elongated to a large value of h with no 
resulting change in Ixx. This is true be-
cause no particle of the body would be 
changing its distance from the x-axis.

y

yʹ

z
xdx r

h

O

x

y
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296 APPENDIX B  Mass Moments of Inertia

B/2  Products of Inertia
For problems in the rotation of three-dimensional rigid bodies, the expression for 
angular momentum contains, in addition to the moment-of-inertia terms, 
product-of-inertia terms defi ned as

 Ixy =  Iyx = ∫ xy dm

  Ixz =  Izx = ∫ xz dm (B∕8)

 Iyz =  Izy = ∫ yz dm

These expressions were cited in Eqs. 7 ∕10 in the expansion of the expression for 
angular momentum, Eq. 7 ∕9.

The calculation of products of inertia involves the same basic procedure which 
we have followed in calculating moments of inertia and in evaluating other volume 
integrals as far as the choice of element and the limits of integration are concerned. 
The only special precaution we need to observe is to be doubly watchful of the alge-
braic signs in the expressions. Whereas moments of inertia are always positive, 
products of inertia may be either positive or negative. The units of products of 
 inertia are the same as those of moments of inertia.

We have seen that the calculation of moments of inertia is often simplifi ed by 
using the parallel-axis theorem. A similar theorem exists for transferring products 

of inertia, and we prove it easily as follows. In Fig. B ∕6 is shown the x-y view 
of a rigid body with parallel axes x0-y0 passing through the mass center G 
and located from the x-y axes by the distances dx and dy. The product of 
 inertia about the x-y axes by defi nition is

 Ixy =  ∫ xy dm = ∫ (x0 + dx)(y0 + dy) dm

 =  ∫ x0  y0 dm + dx dy ∫ dm + dx ∫ y0 dm + dy ∫ x0 dm

 =  Ix0  y0
+ mdx dy

The last two integrals vanish since the fi rst moments of mass about the mass 
 center are necessarily zero.

Similar relations exist for the remaining two product-of-inertia terms. Drop-
ping the zero subscripts and using the bar to designate the mass-center quantity, 
we obtain

 Ixy =  Ixy + mdxdy

  Ixz =  Ixz + mdxdz (B∕9)

 Iyz =  Iyz + mdydz

These transfer-of-axis relations are valid only for transfer to or from parallel axes 
through the mass center.

With the aid of the product-of-inertia terms, we can calculate the moment of 
inertia of a rigid body about any prescribed axis through the coordinate origin. For 

FIGURE B/6

dx

dm

y

G

O
x

x0

x0

y0

y0

dy
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 Article  B/2 Products of Inertia 297

the rigid body of Fig. B ∕7, suppose we must determine the moment of inertia about 
axis O-M. The direction cosines of O-M are l, m, n, and a unit vector 𝛌 along O-M 
may be written 𝛌 = li + mj + nk. The moment of inertia about O-M is

IM = ∫ h2 dm = ∫ (r × 𝛌) ∙ (r × 𝛌) dm

where | r × 𝛌 | = r sin 𝜃 = h. The cross product is

(r × 𝛌) = (yn − zm)i + (zl − xn)j + (xm − yl)k

and, after we collect terms, the dot-product expansion gives

 (r × 𝛌) ∙ (r × 𝛌) = h2 = (y2 + z2)l2 + (x2 + z2)m2 + (x2 + y2)n2

 − 2 xylm − 2 xzln − 2 yzmn

Thus, with the substitution of the expressions of Eqs. B ∕4 and B ∕8, we have

 IM = Ixxl2 + Iyym2 + Izzn2 − 2Ixylm − 2Ixzln − 2Iyzmn (B∕10)

This expression gives the moment of inertia about any axis O-M in terms of the 
direction cosines of the axis and the moments and  products of inertia about the 
coordinate axes.

Principal Axes of Inertia
As noted in Art. 7 ∕7, the array

Ixx

[−Iyx

−Izx

−Ixy

Iyy

−Izy

−Ixz

−Iyz

Izz
]

whose elements appear in the expansion of the angular-momentum expression, 
Eq. 7 ∕11, for a rigid body with attached axes, is called the  inertia matrix or inertia 
tensor. If we examine the moment- and  product-of-inertia terms for all possible 
orientations of the axes with respect to the body for a given origin, we will fi nd in 
the general case an orientation of the x-y-z axes for which the product-of-inertia 
terms vanish and the array takes the diagonalized form

[
Ixx

0
0

0
Iyy

0

0
0
Izz

]
Such axes x-y-z are called the principal axes of inertia, and Ixx, Iyy, and Izz are called 
the principal moments of inertia and represent the maximum, minimum, and in-
termediate values of the moments of inertia for the particular origin chosen.

It may be shown* that for any given orientation of axes x-y-z the solution of the 
determinant equation

 ⃒
Ixx − I

−Iyx

−Izx

−Ixy

Iyy − I
−Izy

−Ixz

−Iyz

Izz − I ⃒ = 0 (B∕11)

IMI = IxII xxx l2 + IyII yyy m2 + IzII zn2 − 2IxII yx lm − 2IxII zxx ln − 2IyII zmn 

FIGURE B/7

r

y
O

x

dm
h

M

z
𝜃

𝛌

*See, for example, the fi rst author’s Dynamics, SI Version, 1975, John Wiley & Sons, Art. 41.
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298 APPENDIX B  Mass Moments of Inertia

for I yields three roots I1, I2, and I3 of the resulting cubic equation which are the 
three principal moments of inertia. Also, the direction cosines l, m, and n of a prin-
cipal inertia axis are given by

 (Ixx − I)l − Ixym − Ixzn = 0

  −Iyxl + (Iyy − I)m − Iyzn = 0 (B∕12)

 −Izxl − Izym + (Izz − I)n = 0

These equations along with l2 + m2 + n2 = 1 will enable a solution for the direction 
cosines to be made for each of the three I ’s.

To assist with the visualization of these conclusions, consider the rectangular 
block, Fig. B ∕8, having an arbitrary orientation with respect to the x-y-z axes. For 
simplicity, the mass center G is located at the origin of the coordinates. If the mo-
ments and products of inertia for the block about the x-y-z axes are known, then 
solution of Eq. B ∕11 would give the three roots, I1, I2, and I3, which are the principal 
moments of inertia. Solution of Eq. B ∕12 using each of the three I’s, in turn, along 
with l2 + m2 + n2 = 1, would give the direction cosines l, m, and n for each of the 
respective principal axes, which are always mutually perpendicular. From the pro-
portions of the block as drawn, we see that I1 is the maximum moment of inertia, 
I2 is the intermediate value, and I3 is the minimum value.

FIGURE B/8

31

2

3 1

2G
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SAMPLE PROBLEM B/6

The bent plate has a uniform thickness t which is negligible compared 
with its other dimensions. The density of the plate material is 𝜌. Deter-
mine the products of inertia of the plate with respect to the axes as 
chosen.

Solution Each of the two parts is analyzed separately.

Rectangular part In the separate view of this part, we introduce 
parallel axes x0-y0 through the mass center G and use the transfer-of-
axis theorem. 1  By symmetry, we see that Ixy = Ix0  y0

 = 0 so that

[Ixy = Ixy + mdxdy]  Ixy = 0 + 𝜌tab(− 

a
2)(b

2) = − 

1
4

 𝜌ta2b2

 Because the z-coordinate of all elements of the plate is zero, it 
 follows that Ixz = Iyz = 0.

Triangular part In the separate view of this part, we locate the 
mass center G and construct x0-, y0-, and z0-axes through G. Since the 
x0-coordinate of all elements is zero, it follows that Ixy = Ix0  y0

 = 0 and 
Ixz = Ix0 z0

 = 0. The transfer-of-axis theorems then give us

[Ixy = Ixy + mdxdy]   Ixy = 0 + 𝜌t 
b
2

 c(−a)(2b
3 ) = − 

1
3

 𝜌tab2c

[Ixz = Ixz + mdxdz]   Ixz = 0 + 𝜌t 
b
2

 c(−a)(c
3) = − 

1
6

 𝜌tabc2

 We obtain Iyz by direct integration, noting that the distance a of 
the plane of the triangle from the y-z plane in no way affects the y- and 
z-coordinates. With the mass element dm = 𝜌t dy dz, we have

[ Iyz = ∫ yz dm ]  Iyz = 𝜌t ∫b

0
 ∫cy∕b

0
 yz dz dy = 𝜌t ∫b

0
 y [

z2

2 ]
cy∕b

0
 dy 2

 =
𝜌tc2

2b2  ∫b

0
 y3 dy =

1
8

 𝜌tb2c2

 Adding the expressions for the two parts gives

  Ixy = − 

1
4 𝜌ta2b2  − 

1
3 𝜌tab2c =  − 

1
12 𝜌tab2(3a + 4c) Ans.

  Ixz =   0  − 

1
6 𝜌tabc2 =  − 

1
6 𝜌tabc2  Ans.

  Iyz =  0  +1
8 𝜌tb2c2 =  +1

8 𝜌tb2c2  Ans.

c

a b

y

x

z

2  We choose to integrate with respect to z 
fi rst, where the upper limit is the vari-
able height z = cy∕b. If we were to inte-
grate fi rst with respect to y, the limits of 
the fi rst integral would be from the vari-
able y = bz∕c to b.

2c/3

c/3

b/3

2b/3 z

a

G

y0

x0

y

x

G

y0

z0

dm

x0 y

x

HELPFUL HINTS
1  We must be careful to preserve the same 

sense of the coordinates. Thus, plus x0 
and y0 must agree with plus x and y.
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300 APPENDIX B  Mass Moments of Inertia

SAMPLE PROBLEM B/7

The angle bracket is made from aluminum plate with a mass of 13.45 
kg per square meter. Calculate the principal moments of inertia 
about the origin O and the direction cosines of the principal axes of 
inertia. The thickness of the plate is small compared with the other 
dimensions.

Solution The masses of the three parts are

  m1 = 13.45(0.21)(0.1) = 0.282 kg

  m2 = −13.45𝜋(0.035)2 = −0.0518 kg 1

  m3 = 13.45(0.12)(0.11) = 0.1775 kg

Part 1

  Ixx =
1
3 mb2 =

1
3 (0.282)(0.1)2 = 9.42(10−4) kg∙m2

  Iyy =
1
3 m(a2 + b2) =

1
3 (0.282)[(0.21)2 + (0.1)2] = 50.9(10−4) kg∙m2 2

  Izz =
1
3 ma2 =

1
3 (0.282)(0.21)2 = 41.5(10−4) kg∙m2

  Ixy = 0  Iyz = 0

  Ixz = Ixz + mdx dz

  = 0 + m 
a
2

 
b
2

= 0.282(0.105)(0.05) = 14.83(10−4) kg∙m2

Part 2

  Ixx =
1
4 mr2 + mdz 

2 = −0.0518 [
(0.035)2

4
+ (0.050)2 ]

  = −1.453(10−4) kg∙m2

  Iyy =
1
2 mr2 + m(dx 

2 + dz 

2)

  = −0.0518 [
(0.035)2

2
+ (0.16)2 + (0.05)2 ]

  = −14.86(10−4) kg∙m2

  Izz =
1
4 mr2 + mdx 

2 = −0.0518 [
(0.035)2

4
+ (0.16)2 ]

  = −13.41(10−4) kg∙m2

  Ixy = 0  Iyz = 0

  Ixz = Ixz + mdxdz = 0 − 0.0518(0.16)(0.05) = −4.14(10−4) kg∙m2

HELPFUL HINTS
1  Note that the mass of the hole is treated 

as a negative number.

z

O

x
y

160

110
120

50

50

70
50

Dimensions in millimeters

2  You can easily derive this formula. Also 
check Table D∕4.

z

x

O

y

z

O

x
y

2

1

3

r = 35

b = 100

a = 210

c = 110

dz = 50

dx = 160

d = 120
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SAMPLE PROBLEM B/7 (CONTINUED)

Part 3

  Ixx =
1
3 md2 =

1
3 (0.1775)(0.12)2 = 8.52(10−4) kg∙m2

  Iyy =
1
3 mc2 =

1
3 (0.1775)(0.11)2 = 7.16(10−4) kg∙m2

  Izz =
1
3 m(c2 + d2) =

1
3 (0.1775)[(0.11)2 + (0.12)2]

  = 15.68 (10−4) kg∙m2

  Ixy = Ixy + mdx dy

 = 0 + m 
c
2

 (−d
2 ) = 0.1775(0.055)(−0.06) = −5.86(10−4) kg∙m2

  Iyz = 0  Ixz = 0

Totals

  Ixx = 16.48(10−4) kg∙m2   Ixy = −5.86(10−4) kg∙m2

  Iyy = 43.2(10−4) kg∙m2   Iyz = 0

  Izz = 43.8(10−4) kg∙m2   Ixz = 10.69(10−4) kg∙m2

 Substitution into Eq. B ∕11, expansion of the determinant, and sim-
plifi cation yield

 I3 − 103.5(10−4)I2 + 3180(10−8)I − 24 800(10−12) = 0

Solution of this cubic equation yields the following roots, which are the 
principal moments of inertia. 3

  I1 = 48.3(10−4) kg∙m2

  I2 = 11.82(10−4) kg∙m2 Ans.

  I3 = 43.4(10−4) kg∙m2

 The direction cosines of each principal axis are obtained by substi-
tuting each root, in turn, into Eq. B ∕12 and using l2 + m2 + n2 = 1. The 
results are

  l1 = 0.357  l2 = 0.934  l3 = 0.01830

  m1 = 0.410  m2 = −0.1742   m3 = 0.895  Ans.

  n1 = −0.839   n2 = 0.312  n3 = 0.445

The bottom fi gure shows a pictorial view of the bracket and the orien-
tation of its principal axes of inertia.

3  A computer program for the solution of a 
cubic equation may be used, or an alge-
braic solution using the formula cited in 
item 4 of Art. C∕4, Appendix C, may be 
employed.

z

x

O

y

z

O

x
y

2

1

3

r = 35

b = 100

a = 210

c = 110

dz = 50

dx = 160

d = 120

z3

1

y

x

O

2

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


302

APPENDIX C

Selected Topics of 
Mathematics

C/2  Plane Geometry
 1. When two intersect-

ing lines are, respec-
tively, perpendicular 
to two other lines, 
the angles formed by 
the two pairs are equal.

 2. Similar triangles

  
x
b

=
h − y

h
 

 3. Any triangle

  Area =
1
2bh

 4. Circle

  Circumference = 2𝜋r
  Area = 𝜋r2

  Arc length s = r𝜃

  Sector area =
1
2 r2

𝜃

 5. Every triangle inscribed 
within a semicircle is 
a right triangle.

 6. Angles of a triangle

  𝜃1 + 𝜃2 + 𝜃3 = 180°
  𝜃4 = 𝜃1 + 𝜃2

𝜃1 = 𝜃2

𝜃1

𝜃2

x y

h

b

h

b

r
s

𝜃

𝜃1 𝜃2

𝜃1 + 𝜃2 = 𝜋/2

𝜃2

𝜃1 𝜃3 𝜃4

C/1  Introduction
Appendix C contains an abbreviated summary and reminder of selected topics in 
 basic mathematics which fi nd frequent use in mechanics. The relationships are cited 
without proof. The student of mechanics will have frequent occasion to use many of 
these relations, and he or she will be handicapped if they are not well in hand. Other 
topics not listed will also be needed from time to time.

As the reader reviews and applies mathematics, he or she should bear in mind 
that mechanics is an applied science descriptive of real bodies and actual motions. 
Therefore, the geometric and physical interpretation of the applicable mathematics 
should be kept clearly in mind during the development of theory and the formula-
tion and solution of problems.
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C/3  Solid Geometry
 1. Sphere

  Volume =
4
3𝜋r3

  Surface area = 4𝜋r2

 2. Spherical wedge

  Volume =
2
3 r3

𝜃

 3. Right-circular cone

  Volume =
1
3 𝜋r2h

  Lateral area = 𝜋rL

  L = √r2 + h2

 4. Any pyramid or cone

  Volume =
1
3 Bh

  where B = area of base

r

r
𝜃

r

hL

B

h

C/4  Algebra
 1. Quadratic equation

  ax2 + bx + c = 0

  x =
−b ± √b2 − 4ac

2a
, b2 ≥ 4ac for real roots

 2. Logarithms

  bx = y, x =  log b y

  Natural logarithms

   b = e = 2.718 282
   ex = y, x =  log e y = ln  y
  log (ab) = log a + log b
  log (a∕b) = log a − log b
  log (1∕n) = −log n
  log an = n log a
  log 1 = 0
  log10 x = 0.4343 ln x

 3. Determinants

  2nd order

  ∣a1

a2

b1

b2∣ = a1b2 − a2b1

  3rd order

  ⃒
a1

a2

a3

b1

b2

b3

c1

c2

c3
⃒ = +a1b2c3 + a2b3c1 + a3b1c2

−a3b2c1 − a2b1c3 − a1b3c2

 4. Cubic equation

  x3 = Ax + B

  Let p = A∕3, q = B∕2.

 Case I: q2 − p3 negative (three roots real and
  distinct)

 cos u = q∕(p√p), 0 < u < 180°

 x1 = 2√p cos (u∕3)

 x2 = 2√p cos (u∕3 + 120°)

 x3 = 2√p cos (u∕3 + 240°)

 Case II: q2 − p3 positive (one root real, two
  roots imaginary)

x1 = (q + √q2 − p3)1∕3 + (q − √q2 − p3)1∕3

 Case III: q2 − p3 = 0 (three roots real, two
  roots equal)

x1 = 2q1∕3, x2 = x3 = −q1∕3

  For general cubic equation

x3 + ax2 + bx + c = 0

  Substitute x = x0 − a∕3 and get x0 

3 = Ax0 + B. 
Then proceed as above to fi nd values of x0 from 
which x = x0 − a∕3.
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C/5  Analytic Geometry
 1. Straight line

  

m

x x

y y

1a

a

b

y = a + mx
x
―

a
y
―

b
+ = 1

 2. Circle

  

x

x

yy

r r

b

ax2 + y2 = r2

(x – a)2 + (y – b)2 = r2

 3. Parabola

  

b

b

a
a

y

x

x

y

x2
—

a2
y = b

y2
—

b2
x = a

 4. Ellipse

  

x

y

a

b

x2
—

a2

y2
—

b2
+ = 1

 5. Hyperbola

a
a a

y

x x
b

x2
—

a2

y2
—

b2
− = 1

y

xy = a2

C/6  Trigonometry
 1. Defi nitions

  sin 𝜃 = a∕c   csc 𝜃 = c∕a
  cos 𝜃 = b∕c   sec 𝜃 = c∕b
  tan 𝜃 = a∕b  cot 𝜃 = b∕a

 2. Signs in the four quadrants

  

(+)

(+)

I
(+)

(−)

II

(−)

(−)III

(+)

(−) IV

𝜃 𝜃 𝜃
𝜃

a
c

b

𝜃

I II III IV

sin 𝜃 

cos 𝜃 

tan 𝜃 

csc 𝜃 

sec 𝜃 

cot 𝜃 

+ + − −

+ − − +

+ − + −

+ + − −

+ − − +

+ − + −
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 3. Miscellaneous relations

  sin2 𝜃 + cos2 𝜃 = 1
  1 + tan2 𝜃 = sec2 𝜃
  1 + cot2 𝜃 = csc2 𝜃

   sin 

𝜃

2
= √1

2 (1 − cos 𝜃)

   cos 

𝜃

2
= √1

2 (1 + cos 𝜃)

  sin 2𝜃 = 2 sin 𝜃 cos 𝜃
  cos 2𝜃 = cos2 𝜃 − sin2 𝜃
  sin (a ± b) = sin a cos b ± cos a sin b
  cos (a ± b) = cos a cos b ∓ sin a sin b

 4. Law of sines

  
a
b

=
sin A
sin B

 5. Law of cosines

  c2 = a2 + b2 − 2ab cos C

  c2 = a2 + b2 + 2ab cos D

A C D

B

c

b

a

C/7  Vector Operations
 1. Notation. Vector quantities are printed in boldface type, and scalar  quantities 

appear in lightface italic type. Thus, the vector quantity V has a scalar magni-
tude V. In longhand work vector quantities should always be consistently indi-
cated by a symbol such as V or V

→
 to distinguish them from scalar quantities.

 2. Addition
  Triangle addition P + Q = R
  Parallelogram addition P + Q = R
  Commutative law P + Q = Q + P
  Associative law P + (Q + R) = (P + Q) + R

 3. Subtraction
P − Q = P + (−Q)

 4. Unit vectors  i, j, k
 V = Vxi + Vy j + Vzk

 where  �V � = V = √Vx 

2 + Vy 

2 + Vz 

2

 5. Direction cosines  l, m, n are the cosines of the angles between V and the x-, 
y-, z-axes. Thus,

l = Vx∕V   m = Vy∕V  n = Vz∕V

 so that V = V(li + mj + nk)

 and l2 + m2 + n2 = 1

P
Q

P

P

Q

R

R

Q

P

−QP − Q

V

k

i

j

z

x

y

kVz

iVx

jVy
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6. Dot or scalar product

P · Q = PQ cos 𝜃

  This product may be viewed as the magnitude of P multiplied by the 
component Q cos 𝜃 of Q in the direction of P, or as the magnitude of Q 
multiplied by the component P cos 𝜃 of P in the direction of Q.

Commutative law  P · Q = Q · P

 From the defi nition of the dot product

 i · i = j · j = k · k = 1

 i · j = j · i = i · k = k · i = j · k = k · j = 0

 P · Q = (Pxi + Pyj + Pzk) · (Qxi + Qyj + Qzk)

 = PxQx + PyQy + PzQz

 P · P = Px 

2 + Py 

2 + Pz 

2

   It follows from the defi nition of the dot product that two vectors P and Q 
are perpendicular when their dot product vanishes, P · Q = 0.

   The angle 𝜃 between two vectors P1 and P2 may be found from their dot 
product expression P1 · P2 = P1P2 cos 𝜃, which gives

cos 𝜃 =
P1 · P2

P1P2
=

P1x
P2x

+ P1y
P2y

+ P1z
P2z

P1P2
= l1l2 + m1m2 + n1n2

where l, m, n stand for the respective direction cosines of the vectors. It is also 
observed that two vectors are perpendicular to each other when their direction 
cosines obey the relation l1l2 + m1m2 + n1n2 = 0.

Distributive law  P · (Q + R) = P · Q + P · R

 7. Cross or vector product.  The cross product P × Q of the two vectors P and Q 
is defi ned as a vector with a magnitude

�P × Q � = PQ sin 𝜃

and a direction specifi ed by the right-hand rule as shown. Reversing the vector 
order and using the right-hand rule give Q × P = −P × Q.

Distributive law  P × (Q + R) = P × Q + P × R

 From the defi nition of the cross product, using a right-handed coordinate 
system, we get

i × j = k  j × k = i  k × i = j

j × i = −k  k × j = −i  i × k = −j

i × i = j × j = k × k = 0

P

P P

Q

Q cos 𝜃 P cos 𝜃
Q Q

𝜃
𝜃

𝜃

Q

Q

P

P

P × Q

Q × P = −P × Q

𝜃

𝜃

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Article  C/7 Vector Operations 307

With the aid of these identities and the distributive law, the vector product may 
be written

 P × Q = (Pxi + Pyj + Pzk) × (Qxi + Qyj + Qzk)

 = (PyQz − PzQy)i + (PzQx − PxQz)j + (PxQy − PyQx)k

The cross product may also be expressed by the determinant

P × Q = ⃒
i
Px

Qx

j
Py

Qy

k
Pz

Qz
⃒

 8. Additional relations
  Triple scalar product (P × Q) · R = R · (P × Q). The dot and cross may be inter-

changed as long as the order of the vectors is maintained. Parentheses are un-
necessary since P × (Q · R) is meaningless because a vector P cannot be crossed 
into a scalar Q · R. Thus, the expression may be written

P × Q · R = P · Q × R

  The triple scalar product has the determinant expansion

P × Q · R = ⃒
Px

Qx

Rx

Py

Qy

Ry

Pz

Qz

Rz
⃒

  Triple vector product (P × Q) × R = −R × (P × Q) = R × (Q × P). Here we 
note that the parentheses must be used since an expression P × Q × R would 
be ambiguous because it would not identify the vector to be crossed. It may be 
shown that the triple vector product is equivalent to

 (P × Q) × R = R · PQ − R · QP
or  P × (Q × R) = P · RQ − P · QR

  The fi rst term in the fi rst expression, for example, is the dot product R · P, a 
scalar, multiplied by the vector Q.

 9. Derivatives of vectors obey the same rules as they do for scalars.

 
dP
dt

= Ṗ = Ṗxi + Ṗyj + Ṗzk

 
d(Pu)

dt
= Pu̇ + Ṗu

 
d(P · Q)

dt
= P · Q̇ + Ṗ · Q

 
d(P × Q)

dt
= P × Q̇ + Ṗ × Q

 10. Integration of vectors. If V is a function of x, y, and z and an el ement of 
 volume is d𝜏 = dx dy dz, the integral of V over the volume may be written as 
the vector sum of the three integrals of its com ponents. Thus,

∫ V d𝜏 = i ∫ Vx d𝜏 + j ∫ Vy d𝜏 + k ∫ Vz d𝜏
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C/8  Series
(Expression in brackets following a series indicates the range of convergence.)

 (1 ± x)n = 1 ± nx +
n(n − 1)

2!
 x2 ±

n(n − 1)(n − 2)
3!

 x3 + · · ·   [x2 < 1]

 sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · ·      [x2 < ∞]

 cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ · · ·  [x2 < ∞]

 sinh x =
ex − e−x

2
= x +

x3

3!
+

x5

5!
+

x7

7!
+ · · ·  [x2 < ∞]

 cosh x =
ex + e−x

2
= 1 +

x2

2!
+

x4

4!
+

x6

6!
+ · · ·         [x2 < ∞]

 ƒ(x) =
a0

2
+ ∑

∞

n=1
an cos 

n𝜋x
l

+ ∑

∞

n=1
bn sin 

n𝜋x
l

 where an =
1
l
 ∫l

−l
 ƒ(x) cos 

n𝜋x
l

 dx,  bn =
1
l
 ∫l

−l
 ƒ(x) sin 

n𝜋x
l

 dx

[Fourier expansion for −l < x < l]

C/9  Derivatives

dxn

dx
= nxn−1,  

d(uv)
dx

= u 
dv
dx

+ v 
du
dx

,  
d(u

v)
dx

=

v 
du
dx

− u 
dv
dx

v2

lim
Δx →0 

sin Δx = sin dx = tan dx = dx

lim
Δx →0

 cos Δx = cos dx = 1

d sin x
dx

= cos x,  
d cos x

dx
= −sin x,  

d tan x
dx

= sec2 x

d sinh x
dx

= cosh x,  
d cosh x

dx
= sinh x,  

d tanh x
dx

= sech2 x
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C/10  Integrals

∫ xn dx =
xn+1

n + 1

∫ 
dx
x

= ln x

∫√a + bx dx =
2

3b
 √(a + bx)3

∫ x√a + bx dx =
2

15b2 (3bx − 2a)√(a + bx)3

∫ x2√a + bx dx =
2

105b3 (8a2 − 12abx + 15b2x2)√(a + bx)3

∫ 
dx

√a + bx
=

2√a + bx
b

∫ 
√a + x

√b − x
 dx = −√a + x √b − x + (a + b) sin−1 √a + x

a + b

∫ 
x dx

a + bx
=

1
b2 [a + bx − a ln (a + bx)]

∫ 
x dx

(a + bx)n =
(a + bx)1−n

b2  (a + bx
2 − n

−
a

1 − n)

∫ 
dx

a + bx2 =
1

√ab
 tan−1 

x√ab
a
  or  

1

√−ab
 tanh−1 

x√−ab
a

∫ 
x dx

a + bx2 =
1

2b
 ln (a + bx2)

∫ √x2 ± a2 dx =
1
2[x√x2 ± a2 ± a2 ln (x + √x2 ± a2)]

∫ √a2 − x2 dx =
1
2 (x√a2 − x2 + a2 sin−1 

x
a)

∫ x√a2 − x2 dx = − 
1
3√(a2 − x2)3

∫ x2√a2 − x2 dx = − 

x
4

√(a2 − x2)3 +
a2

8
 (x√a2 − x2 + a2 sin−1 

x
a)

∫ x3√a2 − x2 dx = − 
1
5 (x2 +

2
3a2)√(a2 − x2)3

∫ 
dx

√a + bx + cx2
=

1

√c
 ln (√a + bx + cx2 + x√c +

b

2√c) or 
−1

√−c
 sin−1 ( b + 2cx

√b2 − 4ac)

∫ dx

√x2 ± a2
= ln (x + √x2 ± a2)
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∫ 
dx

√a2 − x2
= sin−1 

x
a

∫ 
x dx

√x2 − a2
= √x2 − a2

∫ 
x dx

√a2 ± x2
= ±√a2 ± x2

∫ x√x2 ± a2 dx =
1
3 √(x2 ± a2)3

∫ x2√x2 ± a2 dx =
x
4

√(x2 ± a2)3 ∓ 
a2

8
 x√x2 ± a2 −

a4

8
 ln (x + √x2 ± a2)

∫ sin x dx = −cos x

∫ cos x dx = sin x

∫ sec x dx =
1
2

 ln 
1 + sin x
1 − sin x

∫ sin2 
 x dx =

x
2

−
sin 2x

4

∫ cos2 
 x dx =

x
2

+
sin 2x

4

∫ sin x cos x dx =
sin2 x

2

∫ sinh x dx = cosh x

∫ cosh x dx = sinh x

∫ tanh x dx = ln cosh x

∫ ln x dx = x ln x − x

∫ eax dx =
eax

a

∫ xeax dx =
eax

a2  (ax − 1)

∫ eax sin px dx =
eax(a sin px − p cos px)

a2 + p2

∫ eax cos px dx =
eax(a cos px + p sin px)

a2 + p2
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∫ eax sin2 x dx =
eax

4 + a2 (a sin2 x − sin 2x +
2
a)

∫ eax cos2 x dx =
eax

4 + a2 (a cos2 x + sin 2x +
2
a)

∫ eax sin x cos x dx =
eax

4 + a2 (a
2

 sin 2x − cos 2x)
∫ sin3 x dx = − 

cos x
3

 (2 + sin2 x)

∫ cos3 x dx =
sin x

3
 (2 + cos2 x)

∫ cos5 x dx = sin x −
2
3 sin3 x +

1
5 sin5 x

∫ x sin x dx = sin x − x cos x

∫ x cos x dx = cos x + x sin x

∫ x2 sin x dx = 2x sin x − (x2 − 2) cos x

∫ x2 cos x dx = 2x cos x + (x2 − 2) sin x

Radius of    

𝜌xy =
[ 1 + (

dy
dx)

2

]
3∕2

d2y

dx2

curvature   

𝜌r𝜃
=

[ r2 + (dr
d𝜃)

2

]
3∕2

r2 + 2(dr
d𝜃)

2

− r 
d2r
d𝜃

2
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C/11  Newton’s Method for Solving 
Intractable Equations
Frequently, the application of the fundamental principles of mechanics leads to an 
algebraic or transcendental equation which is not solvable (or easily solvable) in 
closed form. In such cases, an iterative technique, such as Newton’s method, can be 
a powerful tool for obtaining a good estimate to the root or roots of the equation.

Let us place the equation to be solved in the form ƒ(x) = 0. Part a of the accom-
panying fi gure depicts an arbitrary function ƒ(x) for values of x in the vicinity of the 
desired root xr. Note that xr is merely the value of x at which the function crosses the 

ƒ(x)

x

Tangent to
ƒ(x) at x = x1

(a)

ƒ(x)

x1x2x3xr

𝜃

ƒ(x)

x
x1 x2

xr2
xr1

(b)

x1x2 xr

ƒ(x)

x

(c)

x-axis. Suppose that we have available (perhaps via a hand-drawn plot) a rough esti-
mate x1 of this root. Provided that x1 does not closely correspond to a maximum or 
minimum value of the function ƒ(x), we may obtain a better estimate of the root xr by 
extending the tangent to ƒ(x) at x1 so that it intersects the x-axis at x2. From the 
 geometry of the fi gure, we may write

tan 𝜃 = ƒ′ (x1) =
ƒ(x1)

x1 − x2

where ƒ′(x1) denotes the derivative of ƒ(x) with respect to x evaluated at x = x1. 
 Solving the above equation for x2 results in

x2 = x1 −
ƒ(x1)
ƒ′ (x1)

The term −ƒ(x1)∕ƒ′(x1) is the correction to the initial root estimate x1. Once x2 is 
calculated, we may repeat the process to obtain x3, and so forth.

Thus, we generalize the above equation to

xk+1 = xk −
ƒ(xk)
ƒ′ (xk)

where

 xk+1 = the (k + 1)th estimate of the desired root xr

 xk = the kth estimate of the desired root xr

  ƒ(xk) = the function ƒ(x) evaluated at x = xk

 ƒ′ (xk) = the function derivative evaluated at x = xk

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Article  C/11 Newton’s Method for Solving Intractable Equations 313

This equation is repeatedly applied until ƒ(xk+1) is suffi ciently close to zero and 
xk+1 ≅ xk. The student should verify that the equation is valid for all possible sign 
combinations of xk, ƒ(xk), and ƒ′(xk).

Several cautionary notes are in order:

 1. Clearly, ƒ′(xk) must not be zero or close to zero. This would mean, as restricted 
above, that xk exactly or approximately corresponds to a minimum or maxi-
mum of ƒ(x). If the slope ƒ′(xk) is zero, then the tangent to the curve never 
 intersects the x-axis. If the slope ƒ′(xk) is small, then the correction to xk may be 
so large that xk+1 is a worse root estimate than xk. For this reason, experienced 
engineers usually limit the size of the correction term; that is, if the absolute 
value of ƒ(xk)∕ƒ′(xk) is larger than a preselected maximum value, that maximum 
value is used.

 2. If there are several roots of the equation ƒ(x) = 0, we must be in the vicinity of 
the desired root xr in order that the algorithm actually converges to that root. 
Part b of the fi gure depicts the condition when the initial estimate x1 will result 
in convergence to xr2

 rather than xr1
.

 3. Oscillation from one side of the root to the other can occur if, for example, the 
function is antisymmetric about a root which is an infl ection point. The use of 
one-half of the correction will usually prevent this behavior, which is depicted in 
part c of the accompanying fi gure.

Example: Beginning with an initial estimate of x1 = 5, estimate the single root of 
the equation ex − 10 cos x − 100 = 0.

 The table below summarizes the application of Newton’s method to the given 
equation. The iterative process was terminated when the absolute value of the cor-
rection −ƒ(xk)∕ƒ′(xk) became less than 10−6.

k xk ƒ(xk) ƒ′(xk) xk+1 − xk = − 

ƒ(xk)
ƒ′ (xk)

1 5.000 000 45.576 537 138.823 916 −0.328 305
2 4.671 695 7.285 610 96.887 065 −0.075 197
3 4.596 498 0.292 886 89.203 650 −0.003 283
4 4.593 215 0.000 527 88.882 536 −0.000 006
5 4.593 209 −2(10−8) 88.881 956 2.25(10−10)
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C/12  Selected Techniques for Numerical 
Integration

1. Area determination. Consider the problem of determining the shaded 
area under the curve y = ƒ(x) from x = a to x = b, as depicted in part a of the 
fi gure, and suppose that analytical integration is not feasible. The function may 
be known in tabular form from experimental measurements, or it may be known 
in analytical form. The function is taken to be continuous within the interval 
a < x < b. We may divide the area into n vertical strips, each of width Δx = 
(b − a)∕n, and then add the areas of all strips to obtain A = ∫ y dx. A representa-
tive strip of area Ai is shown with darker shading in the fi gure. Three useful 
numerical approximations are cited. In each case the greater the number of 
strips, the more accurate becomes the approximation geometrically. As a gen-
eral rule, one can begin with a relatively small number of strips and increase 
the number until the resulting changes in the area approxima tion no longer 
improve the accuracy obtained.

xi

yi

xxi + 1

yi + 1

xn − 1

y = ƒ(x)

= a
xnx3x2

y2y1y0 y3

x1x0
= b

y

(a)

Δx

yn − 1Ai

yn

yi + 1 ymyi

(b)

Rectangular

Ai
Ai = ymΔx

A =∫y dx ≅ ΣymΔx

Δx

I. Rectangular [Figure (b)] The areas of the strips are taken to be rectangles, as 
shown by the representative strip whose height ym is chosen visually so that the 
small cross-hatched areas are as nearly equal as possible. Thus, we form the sum Σym 
of the effective heights and multiply by Δx. For a function known in analytical form, 
a value for ym equal to that of the function at the midpoint xi + Δx∕2 may be calcu-
lated and used in the summation.

II. Trapezoidal [Figure (c)] The areas of the strips are taken to be trapezoids, as 
shown by the representative strip. The area Ai is the average height (yi + yi + 1)∕2 times 
Δx. Adding the areas gives the area approximation as tabulated. For the example with 
the curvature shown, clearly the approximation will be on the low side. For the reverse 
curvature, the approximation will be on the high side.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Article  C/12 Selected Techniques for Numerical Integration 315

Δx

yi + 1yi

(c)

Trapezoidal
 yi + yi + 1 
–——––––‑

2
Ai =

y0 
— + y1 + y2 + … 

+ yn – 1 + 2
 yn
—

 2 
A =   y dx

( )

Δx

Δx
Ai

≅

Parabolic

yi

(d)

yi + 1 yi + 2

1
―

3
ΔA = ( yi + 4yi + 1 + yi + 2)

A =   y dx 1
―

3
( y0 + 4y1 + 2y2 + 4y3 + 2y4

+ … 
+ 2yn − 2 + 4yn − 1 + yn)Δx

Δx

Δx Δx

ΔA
≅

III. Parabolic [Figure (d)] The area between the chord and the curve (neglected 
in the trapezoidal solution) may be accounted for by approximating the function by 
a parabola passing through the points defi ned by three successive values of y. This 
area may be calculated from the geometry of the parabola and added to the trape-
zoidal area of the pair of strips to give the area ΔA of the pair as cited. Adding all 
of the ΔA’s produces the tabulation shown, which is known as Simpson’s rule. To 
use Simpson’s rule, the number n of strips must be even.

Example: Determine the area under the curve y = x √1 + x2 from x = 0 to x = 2. (An 
integrable function is chosen here so that the three approximations can be com-
pared with the exact value, which is A = ∫2

0  x√1 + x2 dx = 1
3(1 + x2)3∕2�20 = 

1
3(5√5 − 1) = 3.393 447).

Number of 
Subintervals

Area Approximations
Rectangular Trapezoidal Parabolic

4 3.361 704 3.456 731 3.392 214
10 3.388 399 3.403 536 3.393 420
50 3.393 245 3.393 850 3.393 447

100 3.393 396 3.393 547 3.393 447
1000 3.393 446 3.393 448 3.393 447
2500 3.393 447 3.393 447 3.393 447

Note that the worst approximation error is less than 2 percent, even with only 
four strips.

2. Integration of fi rst-order ordinary differential equations. The 
 application of the fundamental principles of mechanics frequently results in dif-
ferential relationships. Let us consider the fi rst-order form dy∕dt = ƒ(t), where the 
function ƒ(t) may not be readily integrable or may be known only in tabular form. 
We may numerically integrate by means of a simple slope-projection technique, 
known as Euler integration, which is illustrated in the fi gure.
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t1

y1
y2

y3

y4

t
t2 t3 t4

y(t)
y(t)

Accumulated
algorithmic
error

etc.

Slope = ƒ(t3)

Slope = ƒ(t2)

Slope = ƒ(t1)

dy
―

dt
Slope   = ƒ(t)

Beginning at t1, at which the value y1 is known, we project the slope over a 
horizontal subinterval or step (t2 − t1) and see that y2 = y1 + ƒ(t1)(t2 − t1). At t2, the 
process may be repeated beginning at y2, and so forth until the desired value of t is 
reached. Hence, the general expression is

yk+1 = yk + ƒ(tk)(tk+1 − tk)

If y versus t were linear, i.e., if ƒ(t) were constant, the method would be exact, 
and there would be no need for a numerical approach in that case. Changes in the 
slope over the subinterval introduce error. For the case shown in the fi gure, the 
 estimate y2 is clearly less than the true value of the function y(t) at t2. More accurate 
integration techniques (such as Runge-Kutta methods) take into account changes in 
the slope over the subinterval and thus provide better results.

As with the area-determination techniques, experience is helpful in the selec-
tion of a subinterval or step size when dealing with analytical functions. As a rough 
rule, one begins with a relatively large step size and then steadily decreases the step 
size until the corresponding changes in the integrated result are much smaller than 
the desired accuracy. A step size which is too small, however, can result in increased 
error due to a very large number of computer operations. This type of error is gener-
ally known as “round-off error,” while the error which results from a large step size 
is known as algorithm error.

Example: For the differential equation dy∕dt = 5t with the initial condition y = 2 
when t = 0, determine the value of y for t = 4.

Application of the Euler integration technique yields the following results:

Number of 
Subintervals Step Size y at t = 4 Percent Error

10 0.4 38 9.5
100 0.04 41.6 0.95
500 0.008 41.92 0.19

1000 0.004 41.96 0.10

This simple example may be integrated analytically. The result is  y = 42  (exactly).
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APPENDIX D

Coefficients of Friction

(The coeffi cients in the following table represent typical values under normal 
 working conditions. Actual coeffi cients for a given situation will depend on the 
 exact nature of the contacting surfaces. A variation of 25 to 100 percent or more 
from these values could be expected in an actual application, depending on prevailing 
conditions of cleanliness, surface fi nish, pressure, lubrication, and velocity.)

Typical Values of 
Coefficient of Friction

Contacting Surface Static, 𝝁s Kinetic, 𝝁k

Steel on steel (dry) 0.6 0.4

Steel on steel (greasy) 0.1 0.05

Teflon on steel 0.04 0.04

Steel on babbitt (dry) 0.4 0.3

Steel on babbitt (greasy) 0.1 0.07

Brass on steel (dry) 0.5 0.4

Brake lining on cast iron 0.4 0.3

Rubber tires on smooth pavement (dry) 0.9 0.8

Wire rope on iron pulley (dry) 0.2 0.15

Hemp rope on metal 0.3 0.2

Metal on ice 0.02

TABLE D/1  Physical Properties

Density (kg/m3) and specific weight (lb/ft3)

kg/m3 lb/ft3 kg/m3 lb/ft3

Air* 1.2062 0.07530 Lead 11 370 710

Aluminum 2 690 168 Mercury 13 570 847

Concrete (av.) 2 400 150 Oil (av.) 900 56

Copper 8 910 556 Steel 7 830 489

Earth (wet, av.) 1 760 110 Titanium 4 510 281

 (dry, av.) 1 280 80 Water (fresh) 1 000 62.4

Glass 2 590 162  (salt) 1 030 64

Gold 19 300 1205 Wood (soft pine) 480 30

Ice 900 56  (hard oak) 800 50

Iron (cast) 7 210 450

*At 20°C (68°F) and atmospheric pressure
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TABLE D/2  Solar System Constants

 Universal gravitational constant  G = 6.673(10−11) m3/(kg · s2)
     = 3.439(10−8) ft4/(lb-sec4)
 Mass of Earth me = 5.976(1024) kg
     = 4.095(1023) lb-sec2/ft
 Period of Earth’s rotation (1 sidereal day)    = 23 h 56 min 4 s
     = 23.9344 h
 Angular velocity of Earth   𝜔 = 0.7292(10−4) rad/s
 Mean angular velocity of Earth–Sun line  𝜔′ = 0.1991(10−6) rad/s
 Mean velocity of Earth’s center about Sun    = 107 200 km/h
     = 66,610 mi/hr

Body

Mean 
Distance 

to Sun 
km (mi)

Eccentricity 
of Orbit 

e

Period 
of Orbit 

solar days

Mean 
Diameter 
km (mi)

Mass 
Relative 
to Earth

Surface 
Gravitational 
Acceleration 
m/s2 (ft/sec2)

Escape 
Velocity 

km/s 
(mi/sec)

Sun — — — 1 392 000
(865 000)

333 000 274
(898)

616
(383)

Moon 384 3981

(238 854)1
0.055 27.32 3 476

(2 160)
0.0123 1.62

(5.32)
2.37

(1.47)
Mercury 57.3 × 106

(35.6 × 106)
0.206 87.97 5 000

(3 100)
0.054 3.47

(11.4)
4.17

(2.59)
Venus 108 × 106

(67.2 × 106)
0.0068 224.70 12 400

(7 700)
0.815 8.44

(27.7)
10.24
(6.36)

Earth 149.6 × 106

(92.96 × 106)
0.0167 365.26   12 7422

(7 918)2
1.000 9.8213

(32.22)3
11.18
(6.95)

Mars 227.9 × 106

(141.6 × 106)
0.093 686.98 6 788

(4 218)
0.107 3.73

(12.3)
5.03

(3.13)

Jupiter4 778 × 106

(483 × 106)
0.0489 4333 139 822

(86 884)
317.8 24.79

(81.3)
59.5

(36.8)

1Mean distance to Earth (center-to-center)
2 Diameter of sphere of equal volume, based on a spheroidal Earth with a polar diameter of 12 714 km (7900 mi) and an equatorial 
diameter of 12 756 km (7926 mi)

3For nonrotating spherical Earth, equivalent to absolute value at sea level and latitude 37.5°
4Note that Jupiter is not a solid body.
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TABLE D/3  Properties of Plane Figures

Figure Centroid
Area Moments of 

Inertia

Arc Segment ‾r
C

r
𝛼
𝛼 r =

r sin 𝛼
𝛼

—

y

Quarter and Semicircular Arcs

‾

CC
r y =

2r
𝜋

—

Circular Area
r

y

C
x

 —
Ix = Iy =

𝜋r4

4

Iz =
𝜋r4

2

Semicircular
Area

C

r ‾y

y

x

y =
4r
3𝜋

Ix = Iy =
𝜋r4

8

Ix = (𝜋

8
−

8
9𝜋)r4

Iz =
𝜋r4

4

Quarter-Circular
Area r

‾y

‾x

x

y

C x = y =
4r
3𝜋

Ix = Iy =
𝜋r4

16

Ix = Iy = ( 𝜋

16
−

4
9𝜋)r4

Iz =
𝜋r4

8

Area of Circular
Sector

‾x

r

x
C

y

𝛼
𝛼 x =

2
3

 
r sin 𝛼

𝛼

Ix =
r4

4
 (𝛼 −

1
2

 sin 2𝛼)
Iy =

r4

4 (𝛼 +
1
2

 sin 2𝛼)
Iz =

1
2

 r4𝛼
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TABLE D/3  Properties of Plane Figures Continued

Figure Centroid
Area Moments 

of Inertia
Rectangular Area

x

x0

y0

h C

b

—

Ix =
bh3

3
 

Ix =
bh3

12

Iz =
bh
12

 (b2
+ h2)

Triangular Area

x1

x

y
hC

b

a

‾y
‾x

x =
a + b

3

y =
h
3

Ix =
bh3

12

Ix =
bh3

36

Ix1
=

bh3

4

Area of Elliptical
Quadrant

y

x

Cb

a
‾y

‾x

x =
4a
3𝜋

y =
4b
3𝜋

Ix =
𝜋ab3

16
, Ix = ( 𝜋

16
−

4
9𝜋)ab3

Iy =
𝜋a3b
16

, Iy = ( 𝜋

16
−

4
9𝜋)a3b

Iz =
𝜋ab
16

 (a2
+ b2)

Subparabolic Area

x

y

b

a
‾y

‾x C

y = kx2 = x2b
—
a2

ab
—
3

Area A = 

x =
3a
4

y =
3b
10

Ix =
ab3

21

Iy =
a3b
5

Iz = ab(a2

5
+

b2

21)

Parabolic Area

x

y

b

a

‾y

‾x C

y = kx2 = x2b
—
a2

2ab
–―
3

Area A =

x =
3a
8

y =
3b
5

 Ix =
2ab3

7

 Iy =
2a3b
15

 Iz = 2ab( a2

15
+

b2

7 )
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TABLE D/4  Properties of Homogeneous Solids

(m = mass of body shown)

Body
Mass 

Center
Mass Moments 

of Inertia

Circular
Cylindrical

Shell

x1

z

x

y

G

l–
2

l–
2

r
—

 Ixx =
1
2

 mr2
+

1
12

 ml2

 Ix1x1
=

1
2

 mr2
+

1
3

 ml2

 Izz = mr2

Half
Cylindrical 

Shell

x1

z

x

y

G

l–
2

l–
2

r

y1 x =
2r
𝜋

 Ixx = Iyy

 =
1
2

 mr2
+

1
12

 ml2

 Ix1x1
= Iy1y1

 =
1
2

 mr2
+

1
3

 ml2

 Izz = mr2

 Izz = (1 −
4
𝜋2)mr2

Circular
Cylinder

x1

z

x

G

l–
2

l–
2

r

—

 Ixx =
1
4

 mr2
+

1
12

 ml2

 Ix1x1
=

1
4

 mr2
+

1
3

 ml2

 Izz =
1
2

 mr2

Semicylinder

x1

z

x

y

G

l–
2

l–
2

r

y1 x =
4r
3𝜋

 Ixx = Iyy

 =
1
4

 mr2
+

1
12

 ml2

 Ix1x1
= Iy1y1

 =
1
4

 mr2
+

1
3

 ml2

 Izz =
1
2

 mr2

 Izz = (1
2

−
16
9𝜋2) mr2

Rectangular
Parallelepipedz

x

y

y2

y1

G

l–
2

l–
2

b

a
—

 Ixx =
1

12
 m(a2

+ l2)

 Iyy =
1

12
 m(b2

+ l2)

 Izz =
1

12
 m(a2

+ b2)

 Iy1y1
=

1
12

 mb2
+

1
3

 ml2

 Iy2
 y2

=
1
3

 m(b2
+ l2)
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TABLE D/4  Properties of Homogeneous Solids Continued

(m = mass of body shown)

Body Mass Center
Mass Moments 

of Inertia

Spherical
Shellr

G

z
—  Izz =

2
3

 mr2

Hemispherical
Shell

z

x

G

r

y x =
r
2

 Ixx = Iyy = Izz =
2
3

 mr2

 Iyy = Izz =
5

12
 mr2

Sphere
r

G

z
—  Izz =

2
5

 mr2

Hemisphere

z

x

G

r

y x =
3r
8

 Ixx = Iyy = Izz =
2
5

 mr2

 Iyy = Izz =
83

320
 mr2

Uniform
Slender Rod

y
G

l
–

2
l
–

2

y1

—
 Iyy =

1
12

 ml2

 Iy1
 y1

=
1
3

 ml2
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TABLE D/4  Properties of Homogeneous Solids Continued

(m = mass of body shown)

Body
Mass 

Center
Mass Moments 

of Inertia

Quarter-
Circular Rod

y

‾y

‾x

z

x

r

G

 x = y

 =
2r
𝜋

 Ixx = Iyy =
1
2

 mr2

 Izz = mr2

Elliptical
Cylinderz

x

G

l–
2

l–
2

y1 y

b

a

—

 Ixx =
1
4

 ma2
+

1
12

 ml2

 Iyy =
1
4

 mb2
+

1
12

 ml2

 Izz =
1
4

 m(a2
+ b2)

 Iy1 y1
=

1
4

 mb2
+

1
3

 ml2

Conical
Shell

z

y1

y

G

h

r

z =
2h
3

 Iyy =
1
4

 mr2
+

1
2

 mh2

 Iy1 y1
=

1
4

 mr2
+

1
6

 mh2

 Izz =
1
2

 mr2

 Iy y =
1
4

 mr2
+

1
18

 mh2

Half
Conical
Shell

y1

yh

z

x

r
x1

G

x =
4r
3𝜋

z =
2h
3

 Ixx = Iyy

 =
1
4

 mr2
+

1
2

 mh2

 Ix1x1
= Iy1y1

 =
1
4

 mr2
+

1
6

 mh2

 Izz =
1
2

 mr2

 Izz = (1
2

−
16
9𝜋2 )mr2

Right
Circular

Cone

z

y1

y

G

h

r

z =
3h
4

 Iyy =
3

20
 mr2

+
3
5

 mh2

 Iy1y1
=

3
20

 mr2
+

1
10

 mh2

 Izz =
3

10
 mr2

 Iyy =
3

20
 mr2

+
3

80
 mh2
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TABLE D/4  Properties of Homogeneous Solids Continued

(m = mass of body shown)

Body Mass Center
Mass Moments 

of Inertia

Half Cone

y1

yh

z

x

r
x1

G
 x =

r
𝜋

 z =
3h
4

 Ixx = Iyy

 =
3

20
 mr2

+
3
5

 mh2

 Ix1x1
= Iy1y1

 =
3

20
 mr2

+
1

10
 mh2

 Izz =
3

10
 mr2

 Izz = ( 3
10

−
1
𝜋2)mr2

Semiellipsoidy

zG

x

a

b

c

x2
—
a2

y2
—
b2

+
z2
—
c2

+ = 1

z =
3c
8

 Ixx =
1
5

 m(b2
+  c2)

 Iyy =
1
5

 m(a2
+ c2)

 Izz =
1
5

 m(a2
+ b2)

 Ixx =
1
5

 m(b2
+

19
64

 c2)
 Iyy =

1
5

 m(a2
+

19
64

 c2)

Elliptic
Paraboloid

x

z

G

y

b

a

c

x2
—
a2

y2
—
b2

+
z
–
c

=

z =
2c
3

 Ixx =
1
6

 mb2
+

1
2

 mc2

 Iyy =
1
6

 ma2
+

1
2

 mc2

 Izz =
1
6

 m(a2
+ b2)

 Ixx =
1
6

 m(b2
+

1
3

 c2)
 Iyy =

1
6

 m(a2
+

1
3

 c2)

Rectangular
Tetrahedronx

y

b

a

c

z

G

x =
a
4

y =
b
4

z =
c
4

 Ixx =
1

10
 m(b2

+ c2)

 Iyy =
1

10
 m(a2

+ c2)

 Izz =
1

10
 m(a2

+ b2)

 Ixx =
3

80
 m(b2

+ c2)

 Iyy =
3

80
 m(a2

+ c2)

 Izz =
3

80
 m(a2

+ b2)

y

z
x

G

R
Ra

Half Torus x =
a2

+ 4R2

2𝜋R

 Ixx = Iyy =
1
2

 mR2
+

5
8

 ma2

 Izz = mR2
+

3
4

 ma2

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Useful Tables 325

TABLE D/5  Conversion Factors; SI Units

Conversion Factors
U.S. Customary Units to SI Units

To convert from To Multiply by

(Acceleration)
 foot/second2 (ft/sec2)
 inch/second2 (in./sec2)

meter/second2 (m/s2)
meter/second2 (m/s2)

3.048 × 10−1*
2.54 × 10−2*

(Area)
 foot2 (ft2)
 inch2 (in.2)

meter2 (m2)
meter2 (m2)

9.2903 × 10−2

6.4516 × 10−4*

(Density)
 pound mass/inch3 (lbm/in.3)
 pound mass/foot3 (lbm/ft3)

kilogram/meter3 (kg/m3)
kilogram/meter3 (kg/m3)

2.7680 × 104

1.6018 × 10

(Force)
 kip (1000 lb)
 pound force (lb)

newton (N)
newton (N)

4.4482 × 103

4.4482

(Length)
 foot (ft)
 inch (in.)
 mile (mi), (U.S. statute)
 mile (mi), (international nautical)

meter (m)
meter (m)
meter (m)
meter (m)

3.048 × 10−1*
2.54 × 10−2*
1.6093 × 103

1.852 × 103*

(Mass)
 pound mass (lbm)
 slug (lb-sec2/ft)
 ton (2000 lbm)

kilogram (kg)
kilogram (kg)
kilogram (kg)

4.5359 × 10−1

1.4594 × 10
9.0718 × 102

(Moment of force)
 pound-foot (lb-ft)
 pound-inch (lb-in.)

newton-meter (N · m)
newton-meter (N · m)

1.3558
0.1129 8

(Moment of inertia, area)
 inch4 meter4 (m4) 41.623 × 10−8

(Moment of inertia, mass)
 pound-foot-second2 (lb-ft-sec2) kilogram-meter2 (kg · m2) 1.3558

(Momentum, linear)
 pound-second (lb-sec) kilogram-meter/second (kg · m/s) 4.4482

(Momentum, angular)
 pound-foot-second (lb-ft-sec) newton-meter-second (kg · m2/s) 1.3558

(Power)
 foot-pound/minute (ft-lb/min)
 horsepower (550 ft-lb/sec)

watt (W)
watt (W)

2.2597 × 10−2

7.4570 × 102

(Pressure, stress)
 atmosphere (std)(14.7 lb/in.2)
 pound/foot2 (lb/ft2)
 pound/inch2 (lb/in.2 or psi)

newton/meter2 (N/m2 or Pa)
newton/meter2 (N/m2 or Pa)
newton/meter2 (N/m2 or Pa)

1.0133 × 105

4.7880 × 10
6.8948 × 103

(Spring constant)
 pound/inch (lb/in.) newton/meter (N/m) 1.7513 × 102

(Velocity)
 foot/second (ft/sec)
 knot (nautical mi/hr)
 mile/hour (mi/hr)
 mile/hour (mi/hr)

meter/second (m/s)
meter/second (m/s)
meter/second (m/s)
kilometer/hour (km/h)

3.048 × 10−1*
5.1444 × 10−1

4.4704 × 10−1*
1.6093

(Volume)
 foot3 (ft3)
 inch3 (in.3)

meter3 (m3)
meter3 (m3)

2.8317 × 10−2

1.6387 × 10−5

(Work, Energy)
 British thermal unit (BTU)
 foot-pound force (ft-lb)
 kilowatt-hour (kw-h)

joule (J)
joule (J)
joule (J)

1.0551 × 103

1.3558
3.60 × 106*

*Exact value
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326 APPENDIX D Useful Tables

SI Units Used in Mechanics

Quantity Unit SI Symbol

(Base Units)
 Length
 Mass
 Time

meter*
kilogram
second

m
kg
s

(Derived Units)
 Acceleration, linear
 Acceleration, angular
 Area
 Density
 Force
 Frequency
 Impulse, linear
 Impulse, angular
 Moment of force
 Moment of inertia, area
 Moment of inertia, mass
 Momentum, linear
 Momentum, angular
 Power
 Pressure, stress
 Product of inertia, area
 Product of inertia, mass
 Spring constant
 Velocity, linear
 Velocity, angular
 Volume
 Work, energy

meter/second2

radian/second2

meter2

kilogram/meter3

newton
hertz
newton-second
newton-meter-second
newton-meter
meter4

kilogram-meter2

kilogram-meter/second
kilogram-meter2/second
watt
pascal
meter4

kilogram-meter2

newton/meter
meter/second
radian/second
meter3

joule

m/s2

rad/s2

m2

kg/m3

N (= kg · m/s2)
Hz (= 1/s)
N · s
N · m · s
N · m
m4

kg · m2

kg · m/s (= N · s)
kg · m2/s (= N · m · s)
W (= J/s = N · m/s)
Pa (= N/m2)
m4

kg · m2

N/m
m/s
rad/s
m3

J (= N · m)

(Supplementary and Other Acceptable Units)
 Distance (navigation)
 Mass
 Plane angle
 Plane angle
 Speed
 Time
 Time
 Time

nautical mile
ton (metric)
degrees (decimal)
radian
knot
day
hour
minute

(= 1.852 km)
t (= 1000 kg)
°
—
(1.852 km/h)
d
h
min

*Also spelled metre.

TABLE D/5  Conversion Factors; SI Units Continued

SI Unit Prefixes

Multiplication Factor Prefix Symbol

1 000 000 000 000 = 1012

1 000 000 000 = 109

1 000 000 = 106

1 000 = 103

100 = 102

10 = 10
0.1 = 10−1

0.01 = 10−2

0.001 = 10−3

0.000 001 = 10−6

0.000 000 001 = 10−9

0.000 000 000 001 = 10−12

tera
giga
mega
kilo
hecto
deka
deci
centi
milli
micro
nano
pico

T
G
M
k
h
da
d
c
m
𝜇
n
p

Selected Rules for Writing Metric Quantities
1. (a) Use prefi xes to keep numerical values generally between 0.1 and 1000.
 (b) Use of the prefi xes hecto, deka, deci, and centi should generally be avoided 

except for certain areas or volumes where the numbers would be awkward 
otherwise.

 (c) Use prefi xes only in the numerator of unit combinations. The one exception 
is the base unit kilogram. (Example: write kN/m not N/mm; J/kg not mJ/g)

 (d) Avoid double prefi xes. (Example: write GN not kMN)
2. Unit designations
 (a) Use a dot for multiplication of units. (Example: write N · m not Nm)
 (b) Avoid ambiguous double solidus. (Example: write N/m2 not N/m/m)
 (c) Exponents refer to entire unit. (Example: mm2 means (mm)2)
3. Number grouping
 Use a space rather than a comma to separate numbers in groups of three, 

counting from the decimal point in both directions. (Example: 4 607 321.048 72) 
Space may be omitted for numbers of four digits. (Example: 4296 or 0.0476)
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Chapter 1
* Computer-oriented problem

 Diffi cult problem
 Student solution available in WileyPLUS

Problems

P-1

Problems for Articles 1/1–1/8
(Refer to Table D ∕2 in Appendix D for relevant solar-
system values.)

1/1 Determine your mass in slugs. Convert your weight 
to newtons and calculate the corresponding mass in 
 kilograms.

1/2 Determine the weight in newtons of a car which has a 
mass of 1500 kg. Convert the given mass of the car to slugs 
and calculate the corresponding weight in pounds.

m = 1500 kg

PROBLEM 1/2

1/3  For the given vectors V1 and V2, determine V1 + V2, 
V1 + V2, V1 − V2, V1 × V2, V2 × V1, and V1 ∙  V2. Consider 
the vectors to be nondimensional.

30°

V2 = 15

V1 = 12

y

x

4

3

PROBLEM 1/3

1/4 The weight of one dozen apples is 5 lb. Determine the 
average mass of one apple in both SI and U.S. units and the 
average weight of one apple in SI units. In the present case, 
how applicable is the “rule of thumb” that an average apple 
weighs 1 N?

1/5 Two uniform spheres are positioned as shown. Deter-
mine the gravitational force which the titanium sphere 
 exerts on the copper sphere. The value of R is 40 mm.

Titanium

35°

6R

Coppery

x
R

2R

PROBLEM 1/5

1/6  At what altitude h above the north pole is the weight 
of an object reduced to one-half of its earth-surface value? 
Assume a spherical earth of radius R and express h in 
terms of R.

1/7 Determine the absolute weight and the weight relative 
to the rotating earth of a 60-kg woman if she is standing on 
the surface of the earth at a latitude of 35°.

1/8  A space shuttle is in a circular orbit at an altitude of 150 
mi. Calculate the absolute value of g at this altitude and 
determine the corresponding weight of a shuttle passenger 
who weighs 200 lb when standing on the surface of the earth 
at a latitude of 45°. Are the terms “zero-g” and “weightless,” 
which are sometimes used to describe conditions aboard or-
biting spacecraft, correct in the absolute sense?

1/9  Determine the distance h for which the spacecraft 
S will experience equal attractions from the earth and from 
the sun. Use Table D ∕2 of Appendix D as needed.

Not to scale

Sun

Earth

200 000 km

h

S

PROBLEM 1/9

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


P-2  Problems for Articles 1/1–1/8

1/10 Determine the angle 𝜃 at which a particle in 
Jupiter’s circular orbit experiences equal attractions from 
the sun and from Jupiter. Use Table D ∕2 of Appendix D as 
needed.

Not to scale

Sun

Jupiter

m

𝜃

PROBLEM 1/10

1/11 Determine the ratio RA of the force exerted by the sun 
on the moon to that exerted by the earth on the moon for 
position A of the moon. Repeat for moon position B.

Sunlight

A B

PROBLEM 1/11

1/12 Determine the base units of the expression

E = ∫t2

t1

mgr dt

 in both SI and U.S. units. The variable m represents mass, 
g is the acceleration due to gravity, r is distance, and t is 
time.

1/13 Determine the dimensions of the quantity

Q =
1
2  𝜌v2

where 𝜌 is density and v is speed.
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 Problems for Articles 2/1–2/2 P-3

Problems for Articles 2/1–2/2
Introductory Problems
Problems 2 ∕1 through 2 ∕6 treat the motion of a particle 
which moves along the s-axis shown in the fi gure.

−1 0 1 2 3
+ s, ft or m

PROBLEMS 2/1–2/6

2/1  The velocity of a particle is given by v = 20t2 − 
100t + 50, where v is in meters per second and t is in sec-
onds. Plot the velocity v and acceleration a versus time for 
the fi rst 6 seconds of motion and evaluate the velocity when 
a is zero.

2/2 The position of a particle is given by s = 0.27t3 − 
0.65t2 − 2.35t + 4.4, where s is in feet and the time t is in 
seconds. Plot the displacement, velocity, and acceleration 
as functions of time for the fi rst 5 seconds of motion. 
 Determine the positive time when the particle changes its 
direction.

2/3 The velocity of a particle which moves along the s-axis 
is given by v =  2 +  5t3∕2, where t is in seconds and v is in 
meters per second. Evaluate the displacement s, velocity v, 
and acceleration a when t =  4 s. The particle is at the ori-
gin s = 0 when t = 0.

2/4 The acceleration of a particle is given by a = 2t − 10, 
where a is in meters per second squared and t is in seconds. 
Determine the velocity and displacement as functions of 
time. The initial displacement at t = 0 is s0 = −4 m, and the 
initial velocity is v0 = 3 m ∕s.

2/5 The acceleration of a particle is given by a = −ks2, 
where a is in meters per second squared, k is a constant, 
and s is in meters. Determine the velocity of the particle as 
a function of its position s. Evaluate your expression for s = 
5 m if k = 0.1 m−1s−2 and the initial conditions at time t = 0 
are s0 = 3 m and v0 = 10 m ∕s.

2/6 The acceleration of a particle is given by a = c1 + c2v, 
where a is in millimeters per second squared, the 
velocity v is in millimeters per second, and c1 and c2 are 
constants. If the particle position and velocity at 
t = 0 are s0 and v0, respectively, determine expressions for 
the position s of the particle in terms of the velocity v and 
time t.

2/7   During a braking test, a car is brought to rest be-
ginning from an initial speed of 60 mi∕hr in a distance of 
120 ft. With the same constant deceleration, what would be 
the stopping distance s from an initial speed of 80 mi∕hr?

2/8 A particle in an experimental apparatus has a velocity 
given by v = k√s, where v is in millimeters per second, the 
position s is millimeters, and the constant k = 0.2 mm1 ∕2s−1. 
If the particle has a velocity v0 = 3 mm ∕s at t = 0, determine 
the particle position, velocity, and acceleration as functions 
of time, and compute the time, position, and acceleration of 
the particle when the velocity reaches 15 mm ∕s.

2/9 Ball 1 is launched with an initial vertical velocity 
v1 = 160 ft∕sec. Three seconds later, ball 2 is launched with 
an initial vertical velocity v2. Determine v2 if the balls are 
to collide at an altitude of 300 ft. At the instant of collision, 
is ball 1 ascending or descending?

v1, v2
1

2

PROBLEM 2/9

2/10 Experimental data for the motion of a particle along a 
straight line yield measured values of the velocity v for 
various position coordinates s. A smooth curve is drawn 
through the points as shown in the graph. Determine the 
acceleration of the particle when s = 20 ft.

8

10 15 20 25 30
s, ft

v,
 f

t/
se

c

6

4

2

0

PROBLEM 2/10

Chapter 2
* Computer-oriented problem

 Diffi cult problem
 Student solution available in WileyPLUS
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P-4  Problems for Articles 2/1–2/2

and the aircraft has a near-constant acceleration of 0.4g. If 
the takeoff speed is 200 km ∕  h, calculate the distance s and 
time t from rest to takeoff.

Representative Problems
2/15 During an 8-second interval, the velocity of a particle 
moving in a straight line varies with time as shown. Within 
reasonable limits of accuracy, determine the amount Δa by 
which the acceleration at t = 4 s exceeds the average ac-
celeration during the interval. What is the displacement 
Δs during the interval?

14

12

10

8

6

4

2

0
0 2 4

t, s

v, m/s

6 8

PROBLEM 2/15

2/16 In the fi nal stages of a moon landing, the lunar mod-
ule descends under retrothrust of its descent engine to 
within h = 5 m of the lunar surface where it has a down-
ward velocity of 2 m ∕s. If the descent engine is cut off 
abruptly at this point, compute the impact velocity of the 

landing gear with the moon. Lunar gravity is 1
6 of the 

earth’s gravity.

2/17 A girl rolls a ball up an incline and allows it to return 
to her. For the angle 𝜃 and ball involved, the acceleration of 
the ball along the incline is constant at 0.25g, directed 
down the incline. If the ball is released with a speed of 
4 m ∕s, determine the distance s it moves up the incline 
 before reversing its direction and the total time t required 
for the ball to return to the child’s hand.

s

𝜃

PROBLEM 2/17

2/11  In the pinewood-derby event shown, the car is 
released from rest at the starting position A and then rolls 
down the incline and on to the fi nish line C. If the constant 
acceleration down the incline is 2.75 m ∕s2 and the speed 
from B to C is essentially constant, determine the time du-
ration tAC for the race. The effects of the small transition 
area at B can be neglected.

20°
A

B C

4 m

3 m

PROBLEM 2/11

2/12 A ball is thrown vertically upward with an initial 
speed of 80 ft∕sec from the base A of a 50-ft cliff. Determine 
the distance h by which the ball clears the top of the cliff 
and the time t after release for the ball to land at B. Also, 
calculate the impact velocity vB. Neglect air resistance and 
the small horizontal motion of the ball.

B

h

50ʹ

A

v0

PROBLEM 2/12

2/13 The car is traveling at a constant speed v0 = 100 
km∕h on the level portion of the road. When the 6-percent 
(tan 𝜃 = 6∕100) incline is encountered, the driver does not 
change the throttle setting and consequently the car decel-
erates at the constant rate g sin 𝜃. Determine the speed of 
the car (a) 10 seconds after passing point A and (b) when 
s = 100 m.

A

sv0

𝜃

PROBLEM 2/13

2/14 The pilot of a jet transport brings the engines to full 
takeoff power before releasing the brakes as the aircraft is 
standing on the runway. The jet thrust remains constant, 
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 Problems for Articles 2/1–2/2 P-5

B

A

80 mi/hr

1 miTrain

Car

50
 m

i/
hr 1.

3 
m

i

PROBLEM 2/20

2/21 Small steel balls fall from rest through the opening 
at A at the steady rate of two per second. Find the vertical 
separation h of two consecutive balls when the lower one 
has dropped 3 meters. Neglect air resistance.

h

A

PROBLEM 2/21

2/22 Car A is traveling at a constant speed vA = 130 km ∕  h 
at a location where the speed limit is 100 km ∕  h. The police 
offi cer in car P observes this speed via radar. At the mo-
ment when A passes P, the initially stationary police car 
begins to accelerate at the constant rate of 6  m∕s2 until a 
speed of 160 km ∕  h is achieved, and that speed is then 
maintained. Determine the distance required for the police 
offi cer to overtake car A. Neglect any nonrectilinear motion 
of P.

A vA

P 

PROBLEM 2/22

2/18 At a football tryout, a player runs a 40-yard dash 
in 4.25 seconds. If he reaches his maximum speed at the 
16-yard mark with a constant acceleration and then main-
tains that speed for the remainder of the run, determine his 
acceleration over the fi rst 16 yards, his maximum speed, and 
the time duration of the acceleration.

t = 0 t = 4.25 sec
24 yd16 yd

PROBLEM 2/18

2/19 A motorcycle starts from rest with an initial accelera-
tion of 3 m∕s2, and the acceleration then changes with dis-
tance s as shown. Determine the velocity v of the motorcy-
cle when s = 200 m. At this point also determine the value 

of the derivative 
dv
ds

.

0
0

2

4

6

100
s, m

a,
 m

/s
2

200

PROBLEM 2/19

2/20 A train which is traveling at 80 mi ∕hr applies its 
brakes as it reaches point A and slows down with a con-
stant deceleration. Its decreased velocity is observed to be 
60 mi ∕  hr as it passes a point 1 ∕2 mi beyond A. A car moving 
at 50 mi ∕  hr passes point B at the same instant that the 
train reaches point A. In an unwise effort to beat the train 
to the crossing, the driver “steps on the gas.” Calculate the 
constant acceleration a that the car must have in order to 
beat the train to the crossing by 4 seconds and fi nd the 
 velocity v of the car as it reaches the crossing.
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P-6  Problems for Articles 2/1–2/2

h

0.85 m/s

3 m/s2

PROBLEM 2/25

2/26 An electric car is subjected to acceleration tests along 
a straight and level test track. The resulting v-t data are 
closely modeled over the fi rst 10 seconds by the function 
v = 24 t − t2 + 5√t, where t is the time in seconds and v is 
the velocity in feet per second. Determine the displacement 
s as a function of time over the interval 0 ≤ t ≤ 10 sec and 
specify its value at time t = 10 sec.

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10
t, sec

v,
 f

t/
se

c

PROBLEM 2/26

2/23 A toy helicopter is fl ying in a straight line at a con-
stant speed of 4.5 m ∕s. If a projectile is launched vertically 
with an initial speed of v0 = 28 m ∕s, what horizontal dis-
tance d should the helicopter be from the launch site S if 
the projectile is to be traveling downward when it strikes 
the helicopter? Assume that the projectile travels only in 
the vertical  direction.

20 m

4.5 m/s

d
S

v0

PROBLEM 2/23

2/24 A particle moving along a straight line has an accel-
eration which varies according to position as shown. If 
the velocity of the particle at the position x = −5 ft is v = 4 
ft ∕sec, determine the velocity when x = 9 ft.

a, ft/sec2

5

x, ft
4

−5

−3

7 90
0

PROBLEM 2/24

2/25 A model rocket is launched from rest with a constant 
upward acceleration of 3 m ∕s2 under the action of a small 
thruster. The thruster shuts off after 8 seconds, and the 
rocket continues upward until it reaches its apex. At apex, 
a small chute opens which ensures that the rocket falls at 
a constant speed of 0.85 m ∕s until it impacts the ground. 
Determine the maximum height h attained by the rocket 
and the total fl ight time. Neglect aerodynamic drag during 
ascent, and assume that the mass of the rocket and the ac-
celeration of gravity are both constant.
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 Problems for Articles 2/1–2/2 P-7

 surface of the moon. (a) First assume a constant gravita-
tional acceleration gm0

= 5.32 ft∕sec2 and (b) then account 
for the variation of gm with altitude (refer to Art. 1∕5).

2160 mi h

A

PROBLEM 2/31

*2/32 The falling object has a speed v0 when it strikes and 
subsequently deforms the foam arresting material until it 
comes to rest. The resistance of the foam material to defor-
mation is a function of penetration depth y and object speed 
v so that the acceleration of the object is a = g − k1v − k2 y, 
where v is the particle speed in inches per second, y is the 
penetration depth in inches, and k1 and k2 are positive con-
stants. Plot the penetration depth y and velocity v of the 
object as functions of time over the fi rst fi ve seconds for 
k1 = 12 sec−1, k2 = 24 sec−2, and v0 = 25 in. ∕sec. Determine 
the time when the penetration depth reaches 95% of its 
 fi nal value.

v0

y

PROBLEM 2/32

2/33 A projectile is fi red downward with initial speed v0 in 
an experimental fl uid and experiences an acceleration 
a = 𝜎 − 𝜂v2, where 𝜎 and 𝜂 are positive constants and v is the 
projectile speed. Determine the distance traveled by the pro-
jectile when its speed has been reduced to one-half of the ini-
tial speed v0. Also, determine the terminal velocity of the pro-
jectile. Evaluate for 𝜎 = 0.7 m ∕s2, 𝜂 = 0.2 m−1, and v0 = 4 m ∕s.

y v0

PROBLEM 2/33

2/27 A vacuum-propelled capsule for a high-speed tube 
transportation system of the future is being designed for 
operation between two stations A and B, which are 10 km 
apart. If the acceleration and deceleration are to have a 
limiting magnitude of 0.6g and if velocities are to be limit-
ed to 400 km ∕  h, determine the minimum time t for the cap-
sule to make the 10-km trip.

10 kmA B

PROBLEM 2/27

2/28 The 230,000-lb space-shuttle orbiter touches down at 
about 220 mi ∕  hr. At 200 mi ∕  hr its drag parachute deploys. 
At 35 mi ∕  hr, the chute is jettisoned from the orbiter. If the 
deceleration in feet per second squared during the time 
that the chute is deployed is −0.0003v2 (speed v in feet per 
second), determine the corresponding distance traveled by 
the orbiter. Assume no braking from its wheel brakes.

PROBLEM 2/28

2/29 Reconsider the rollout of the space-shuttle orbiter of the 
previous problem. The drag chute is deployed at 200 mi ∕  hr, 
the wheel brakes are applied at 100 mi ∕  hr until wheelstop, 
and the drag chute is jettisoned at 35 mi ∕  hr. If the drag 
chute results in a deceleration of −0.0003v2 (in feet per 
second squared when the speed v is in feet per second) and 
the wheel brakes cause a constant deceleration of 5 ft∕sec2, 
determine the distance traveled from 200 mi ∕  hr to 
 wheelstop.

2/30 The cart impacts the safety barrier with speed v0 = 
3.25 m ∕s and is brought to a stop by the nest of nonlinear 
springs which provide a deceleration a = −k1x − k2x3, where 
x is the amount of spring defl ection from the undeformed 
position and k1 and k2 are positive constants. If the maxi-
mum spring defl ection is 475 mm and the velocity at half-
maximum defl ection is 2.85 m ∕s, determine the values and 
corresponding units for the constants k1 and k2.

x

Undeformed position

v0

PROBLEM 2/30

2/31   Compute the impact speed of body A which is 
released from rest at an altitude h = 750 mi above the 
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P-8  Problems for Articles 2/1–2/2

A10ʹ

PROBLEM 2/37

2/38 Repeat Prob. 2 ∕37, except now include the effects of 
aerodynamic drag. The drag force causes an acceleration 
component in ft ∕sec2 of 0.005v2 in the direction opposite the 
velocity vector, where v is in ft ∕sec.

2/39 On its takeoff roll, the airplane starts from rest and 
accelerates according to a = a0 − kv2, where a0 is the con-
stant acceleration resulting from the engine thrust and 
−kv2 is the acceleration due to aerodynamic drag. If 
a0 = 2 m∕s2, k = 0.00004 m−1, and v is in meters per sec-
ond, determine the design length of runway required for 
the airplane to reach the takeoff speed of 250 km ∕h if the 
drag term is (a) excluded and (b) included.

s

v0 = 0 v = 250 km/h

PROBLEM 2/39

2/40  A test projectile is fi red horizontally into a vis-
cous  liquid with a velocity v0. The retarding force is propor-
tional to the square of the velocity, so that the acceleration 
becomes a = −kv2. Derive expressions for the distance D 
traveled in the liquid and the corresponding time t required 
to reduce the velocity to v0∕2. Neglect any vertical motion.

x

vv0

PROBLEM 2/40

2/34  The cone falling with a speed v0 strikes and pene-
trates the block of packing material. The acceleration of the 
cone after impact is a =  g −  cy2, where c is a positive con-
stant and y is the penetration distance. If the maximum 
penetration depth is observed to be ym, determine the 
 constant c.

y

v0

PROBLEM 2/34

2/35 When the effect of aerodynamic drag is included, the 
y-acceleration of a baseball moving vertically upward is 
au = −g − kv2, while the acceleration when the ball is mov-
ing downward is ad = −g + kv2, where k is a positive con-
stant and v is the speed in meters per second. If the ball is 
thrown upward at 30 m ∕s from essentially ground level, 
compute its maximum height h and its speed vƒ upon im-
pact with the ground. Take k to be 0.006 m−1 and assume 
that g is constant.

30 m/s

y

h

au = −g − kv2 ad = −g + kv2

PROBLEM 2/35

2/36 For the baseball of Prob. 2 ∕35 thrown upward with an 
initial speed of 30 m ∕s, determine the time tu from ground 
to apex and the time td from apex to ground.

2/37 The stories of a tall building are uniformly 10 feet in 
height. A ball A is dropped from the rooftop position shown. 
Determine the times required for it to pass the 10 feet of 
the fi rst, tenth, and one-hundredth stories (counted from 
the top). Neglect aerodynamic drag.
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amount of stretch (or compression) in the spring at any 
given location in the motion. Use the values m = 5 kg, 
k = 150 N ∕m, 𝜇 = 0.40, and x0 = 200 mm and determine the 
fi nal spring stretch (or compression) xƒ when the block 
comes to a complete stop.

m

x
k

Unstretched spring
position

x0

𝜇

PROBLEM 2/43

2/44 The situation of Prob. 2 ∕43 is repeated here. This 
time, use the values m = 5 kg, k = 150 N ∕m, 𝜇 = 0.40, and 
x0 = 500 mm and determine the fi nal spring stretch (or 
compression) xƒ when the block comes to a complete stop. 
(Note: The sign on the 𝜇g term is dictated by the direction 
of motion for the block and always acts in the direction 
 opposite velocity.)

2/45 A projectile is fi red vertically from point A with an 
initial speed of 255 ft ∕sec. Relative to an observer located at 
B, at what times will the line of sight to the projectile make 
an angle of 30° with the horizontal? Compute the magni-
tude of the speed of the projectile at each time, and  ignore 
the effect of aerodynamic drag on the projectile.

30°
255 ft/sec

A
B

C

375ʹ

PROBLEM 2/45

2/46 Repeat Prob. 2 ∕45 for the case where aerodynamic 
drag is included. The magnitude of the drag deceleration is 
kv2, where k = 3.5(10−3) ft−1 and v is the speed in feet per 
second. The direction of the drag is opposite the motion of 
the projectile throughout the fl ight (when the projectile is 
moving upward, the drag is directed downward, and when 
the projectile is moving downward, the drag is directed 
 upward).

2/41 A bumper, consisting of a nest of three springs, is used 
to arrest the horizontal motion of a large mass which is 
traveling at 40 m ∕s as it contacts the bumper. The two 
 outer springs cause a deceleration proportional to the 
spring deformation. The center spring increases the decel-
eration rate when the compression exceeds 0.5 m as shown 
on the graph. Determine the maximum compression x of 
the outer springs.

x, m

Deceleration
m/s2

40 m/s

0 0.5 1

3000
2000
1000

0

PROBLEM 2/41

2/42 Car A travels at a constant speed of 100 km ∕  h. When 
in the position shown at time t = 0, car B has a speed of 
40 km ∕  h and accelerates at a constant rate of 0.1g along its 
path until it reaches a speed of 100 km ∕  h, after which it 
travels at that constant speed. What is the steady-state 
 position of car A with respect to car B?

100 m

A

B

PROBLEM 2/42

2/43 A block of mass m rests on a rough horizontal surface 
and is attached to a spring of stiffness k. The coeffi cients of 
both static and kinetic friction are 𝜇. The block is displaced 
a distance x0 to the right of the unstretched position of the 
spring and released from rest. If the value of x0 is large 
enough, the spring force will overcome the maximum avail-
able static friction force and the block will slide toward 
the unstretched position of the spring with an 

acceleration a = 𝜇 g −
k
m

 x, where x represents the 
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Problems for Articles 2/3–2/4
(In the following problems where motion as a projectile 
in air is involved, neglect air resistance unless otherwise 
stated and use g = 9.81 m ∕s2 or g = 32.2 ft ∕sec2.)

Introductory Problems
2/47 At time t = 0, the position vector of a particle moving 
in the x-y plane is r = 5i m. By time t = 0.02 s, its position 
vector has become 5.1i + 0.4 j m. Determine the  magnitude 
vav of its average velocity during this interval and the angle 𝜃 
made by the average velocity with the positive x-axis.

2/48 A particle moving in the x-y plane has a velocity at 
time t =  6 s given by 4i +  5j m∕s, and at t =  6.1 s its 
velocity has become 4.3i +  5.4j m∕s. Calculate the magni-
tude aav of its average acceleration during the 0.1-s  interval 
and the angle 𝜃 it makes with the x-axis.

2/49 At time t = 0, a particle is at rest in the x-y plane at 
the coordinates (x0, y0) = (6, 0) in. If the particle is then 
subjected to the acceleration components ax = 0.5 − 0.35t 
in. ∕sec2 and ay = 0.15t − 0.02t2 in. ∕sec2, determine the coor-
dinates of the particle position when t = 6 sec. Plot the path 
of the particle during this time period.

2/50 The x- and y-motions of guides A and B with right-
angle slots control the curvilinear motion of the connecting 
pin P, which slides in both slots. For a short interval, the 
motions are governed by x = 20 + 1

4t2 and y = 15 − 1
6t3, 

where x and y are in millimeters and t is in seconds. Calcu-
late the magnitudes of the velocity v and acceleration a of 
the pin for t = 2s. Sketch the direction of the path and 
 indicate its curvature for this instant.

x

y

P

B

A

PROBLEM 2/50

2/51 A rocket runs out of fuel in the position shown and 
continues in unpowered fl ight above the atmosphere. If its 

velocity in this position was 600 mi∕hr, calculate the maxi-
mum additional altitude h acquired and the corresponding 
time t to reach it. The gravitational acceleration during 
this phase of its fl ight is 30.8 ft∕sec2.

30°

v = 600 mi/hr

Vertical

PROBLEM 2/51

2/52 Prove the well-known result that, for a given launch 
speed v0, the launch angle 𝜃 = 45° yields the maximum 
horizontal range R. Determine the maximum range. (Note 
that this result does not hold when aerodynamic drag is 
included in the analysis.)

2/53 Calculate the minimum possible magnitude u of the 
muzzle velocity which a projectile must have when fi red 
from point A to reach a target B on the same horizontal 
plane 12 km away.

A

u

B

12 km

PROBLEM 2/53

2/54 The water nozzle ejects water at a speed v0 = 45 
ft∕sec at the angle 𝜃 = 40°. Determine where, relative to 
the wall base point B, the water lands. Neglect the effects 
of the thickness of the wall.

60ʹ

Not to scale

1ʹ

A 3ʹ

v0

B

𝜃

PROBLEM 2/54
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to cross one-half of the gap between the plates. Also fi nd 
the distance s.

𝜃

s

A

E b/2

b/2
Electron

path

−

+

Electron
source

u

PROBLEM 2/57

2/58 A boy tosses a ball onto the roof of a house. For the launch 
conditions shown, determine the slant distance s to the point 
of impact. Also, determine the angle 𝜃 which the velocity of the 
ball makes with the roof at the moment of impact.

1.75 m

12.5 m/s

4 m

5
12

50°

9 m

s
𝜃

PROBLEM 2/58

2/59 As part of a circus performance, a man is attempting 
to throw a dart into an apple which is dropped from an 
overhead platform. Upon release of the apple, the man has 
a refl ex delay of 215 milliseconds before throwing the dart. 
If the dart is released with a speed v0 = 14 m ∕s, at what 
distance d below the platform should the man aim if the 
dart is to strike the apple before it hits the ground?

v0

11 m

9 m

d

1.65 m

PROBLEM 2/59

2/55 A fi reworks show is choreographed to have two shells 
cross paths at a height of 160 feet and explode at an apex 
of 200 feet under normal weather conditions. If the shells 
have a launch angle 𝜃 = 60° above the horizontal, deter-
mine the common launch speed v0 for the shells, the sepa-
ration distance d between the launch points A and B, and 
the time from launch at which the shells explode.

d

A B

160ʹ

40ʹ

v0 v0

𝜃 𝜃

PROBLEM 2/55

2/56 The center of mass G of a high jumper follows the 
trajectory shown. Determine the component v0, measured 
in the vertical plane of the fi gure, of his takeoff velocity and 
angle 𝜃 if the apex of the trajectory just clears the bar at A. 
(In general, must the mass center G of the jumper clear the 
bar during a successful jump?)

1.06 m

1 m
v0

A

G

1.06 m

𝜃

PROBLEM 2/56

Representative Problems
2/57 Electrons are emitted at A with a velocity u at the 
angle 𝜃 into the space between two charged plates. The 
electric fi eld between the plates is in the direction E and 
repels the electrons approaching the upper plate. The fi eld 
produces an acceleration of the electrons in the E-direction of 
eE ∕m, where e is the electron charge and m is its mass. De-
termine the fi eld strength E which will permit the  electrons 
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11.7 ms

0.9 m

2.55 m

A

v

𝜃

PROBLEM 2/63

2/64 A golfer is attempting to reach the elevated green by 
hitting his ball under a low-hanging branch in one tree A, 
but over the top of a second tree B. For v0 = 115 mi ∕  hr and 
𝜃 = 18°, where does the golf ball land fi rst?

B
A

15
yd

10
yd

10
yd

70 yd

24ʹ
60ʹ

30ʹ

75 yd

v0

𝜃

PROBLEM 2/64

2/65 An outfi elder experiments with two different trajecto-
ries for throwing to home plate from the position shown: 
(a) v0 = 42 m ∕s with 𝜃 = 8° and (b) v0 = 36 m ∕s with 𝜃 = 12°. 
For each set of initial conditions, determine the time t re-
quired for the baseball to reach home plate and the altitude 
h as the ball crosses the plate.

h

B

A

2.3 m

60 m

𝜃

v0

PROBLEM 2/65

2/66 A ski jumper has the takeoff conditions shown. Deter-
mine the inclined distance d from the takeoff point A to the 
location where the skier fi rst touches down in the landing 
zone, and the total time tƒ during which the skier is in the 
air. For simplicity, assume that the landing zone BC is 
straight.

8°

115 km/h

BC = 45 m

C

B

A

30 m

60 m

Landing Zone

37.5°

PROBLEM 2/66

2/60 The pilot of an airplane carrying a package of mail to 
a remote outpost wishes to release the package at the right 
moment to hit the recovery location A. What angle 𝜃 with 
the horizontal should the pilot’s line of sight to the target 
make at the instant of release? The airplane is fl ying hori-
zontally at an altitude of 100 m with a velocity of 200 km ∕  h.

200 km/h

100 m

A

𝜃

PROBLEM 2/60

2/61  A football player attempts a 30-yd fi eld goal. If 
he is able to impart a velocity u of 100 ft∕sec to the ball, 
compute the minimum angle 𝜃 for which the ball will clear 
the crossbar of the goal. (Hint: Let m =  tan 𝜃.)

u

30 yd

10ʹ
𝜃

PROBLEM 2/61

2/62 A particle is launched from point A with a horizontal 
speed u and subsequently passes through a vertical opening of 
height b as shown. Determine the distance d which will allow 
the landing zone for the particle to also have a width b. Addi-
tionally, determine the range of u which will allow the projec-
tile to pass through the vertical opening for this value of d.

b

A

d

3b

b

b

u

PROBLEM 2/62

2/63 If the tennis player serves the ball horizontally (𝜃 = 0), 
calculate its velocity v if the center of the ball clears the 
0.9-m net by 150 mm. Also fi nd the distance s from the net 
to the point where the ball hits the court surface. Neglect 
air resistance and the effect of ball spin.
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2/70 A projectile is launched with an initial speed of 200 
m∕s at an angle of 60° with respect to the horizontal. Com-
pute the range R as measured up the incline.

R
60°

20°A

B

200 m/s

PROBLEM 2/70

2/71  A team of engineering students is designing a 
catapult to launch a small ball at A so that it lands in the 
box. If it is known that the initial velocity vector makes a 
30° angle with the horizontal, determine the range of 
launch speeds v0 for which the ball will land inside the box.

v0

300
mm

200
mm

30°A

3.5 m

600
mm

PROBLEM 2/71

2/72 A projectile is fi red with a velocity u at right angles to 
the slope, which is inclined at an angle 𝜃 with the horizon-
tal. Derive an expression for the distance R to the point of 
impact.

u

R

𝜃

PROBLEM 2/72

2/67 A projectile is launched with a speed v0 = 25 m∕s 
from the fl oor of a 5-m-high tunnel as shown. Determine 
the maximum horizontal range R of the projectile and the 
corresponding launch angle 𝜃.

5 m

A

v0 = 25 m/s

𝜃

PROBLEM 2/67

2/68 A boy throws a ball upward with a speed v0 = 12 m ∕s. 
The wind imparts a horizontal acceleration of 0.4 m ∕s2 to 
the left. At what angle 𝜃 must the ball be thrown so that it 
returns to the point of release? Assume that the wind does 
not affect the vertical motion.

Wind
v0

A

𝜃

PROBLEM 2/68

2/69 A projectile is launched from point O with the initial 
conditions shown. Determine the impact coordinates for 
the projectile if (a) v0 = 60 ft ∕sec and 𝜃 = 40° and (b) v0 = 85 
ft ∕sec and 𝜃 = 15°.

x

y

O

v0

40ʹ
20ʹ

100ʹ60ʹ80ʹ

𝜃

PROBLEM 2/69
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2/75 A projectile is launched with speed v0 from point A. 
Determine the launch angle 𝜃 which results in the 
 maximum range R up the incline of angle 𝛼 (where 
0 ≤ 𝛼 ≤ 90°). Evaluate your results for 𝛼 = 0, 30°, and 45°.

v0

RA

B

𝛼

𝜃

PROBLEM 2/75

2/76 A projectile is ejected into an experimental fl uid at 
time t = 0. The initial speed is v0 and the angle to the hori-
zontal is 𝜃. The drag on the projectile results in an accel-
eration term aD = −kv, where k is a constant and v is the 
velocity of the projectile. Determine the x- and y- components 
of both the velocity and displacement as functions of time. 
What is the terminal velocity? Include the effects of gravi-
tational acceleration.

y

x

v0

𝜃

PROBLEM 2/76

2/73 A projectile is launched from point A with an initial 
speed v0 = 100 ft ∕sec. Determine the minimum value of the 
launch angle 𝛼 for which the projectile will land at point B.

A

B

v0 = 100 ft/sec

280ʹ

360ʹ

80ʹ

𝛼

PROBLEM 2/73

2/74 An experimental fi reworks shell is launched verti-
cally from point A with an initial velocity of magnitude 
v0 =  100 ft∕sec. In addition to the acceleration due to 
gravity, an internal thrusting mechanism causes a con-
stant acceleration component of 2g in the 60° direction 
shown for the fi rst 2 seconds of fl ight, after which the 
thruster ceases to function. Determine the maximum 
height h achieved, the total fl ight time, and the net hori-
zontal displacement from point A. Plot the entire  trajectory. 
Neglect any acceleration due to aerodynamics.

v0

2g

60°

A

PROBLEM 2/74
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Problems for Article 2/5

v
a1

a2

a3
a4

a5

a6

PROBLEM 2/79

2/80 Determine the maximum speed for each car if the 
normal acceleration is limited to 0.88g. The roadway is 
 unbanked and level.

21 m

16 m

BA

PROBLEM 2/80

2/81  An accelerometer C is mounted to the side of the 
roller-coaster car and records a total acceleration of 3.5g as 
the empty car passes the bottommost position of the track 
as shown. If the speed of the car at this position is 215 km ∕  h 
and is decreasing at the rate of 18 km ∕  h every second, deter-
mine the radius of curvature 𝜌 of the track at the position 
shown.

0.8 m

C

v

𝜌

PROBLEM 2/81

Introductory Problems
2/77   A bicycle is placed on a service rack with its wheels 
hanging free. As part of a bearing test, the front wheel is 
spun at the rate N = 45 rev ∕ min. Assume that this rate is 
constant and determine the speed v and magnitude a of the 
acceleration of point A.

N

A

O 30°
27ʺ

PROBLEM 2/77

2/78 A test car starts from rest on a horizontal circular 
track of 80-m radius and increases its speed at a uniform 
rate to reach 100 km ∕ h in 10 seconds. Determine the mag-
nitude a of the total acceleration of the car 8 seconds after 
the start.

v

80 m

PROBLEM 2/78

2/79  Six acceleration vectors are shown for the car whose 
velocity vector is directed forward. For each acceleration 
vector describe in words the instantaneous motion of the 
car.
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2/85 A train enters a curved horizontal section of track at 
a speed of 100 km ∕  h and slows down with constant decelera-
tion to 50 km ∕  h in 12 seconds. An accelerometer mounted 
inside the train records a horizontal acceleration of 
2 m∕s2 when the train is 6 seconds into the curve.  Calculate 
the radius of curvature 𝜌 of the track for this instant.

2/86 A particle moves on a circular path of radius r = 0.8 m 
with a constant speed of 2 m ∕s. The velocity undergoes a 
vector change ∆v from A to B. Express the magnitude of ∆v 
in terms of v and ∆𝜃 and divide it by the time interval ∆t 
between A and B to obtain the magnitude of the average 
acceleration of the particle for (a) ∆𝜃 = 30°, (b) ∆𝜃 = 15°, and 
(c) ∆𝜃 = 5°. In each case, determine the percentage differ-
ence from the instantaneous value of acceleration.

vB

vBvA

vA

r = 0.8 m
B

A

Δv

Δ𝜃
Δ𝜃

PROBLEM 2/86

Representative Problems
2/87 The speed of a car increases uniformly with time from 
50 km ∕  h at A to 100 km ∕  h at B during 10 seconds. The ra-
dius of curvature of the hump at A is 40 m. If the magni-
tude of the total acceleration of the mass center of the car 
is the same at B as at A, compute the radius of curvature 
𝜌B of the dip in the road at B. The mass center of the car is 
0.6 m from the road.

0.6 m
A

B

40 m

𝜌B

PROBLEM 2/87

2/82 The driver of the truck has an acceleration of 0.4g as 
the truck passes over the top A of the hump in the road at 
constant speed. The radius of curvature of the road at the 
top of the hump is 98 m, and the center of mass G of the 
driver (considered a particle) is 2 m above the road. Calcu-
late the speed v of the truck.

2 m

A
GG

PROBLEM 2/82

2/83  A particle moves along the curved path shown. 
The particle has a speed vA = 12 ft ∕sec at time tA and a 
speed vB = 14 ft ∕sec at time tB. Determine the average val-
ues of the normal and tangential accelerations of the parti-
cle between points A and B.

vA

vB

tB = 2.62 sec

tA = 2.4 sec
15°

25°B

A

PROBLEM 2/83

2/84 A sprinter practicing for the 200-m dash accelerates 
uniformly from rest at A and reaches a top speed of 
40 km ∕  h at the 60-m mark. He then maintains this speed 
for the next 70 meters before uniformly slowing to a fi nal 
speed of 35 km ∕ h at the fi nish line. Determine the maxi-
mum horizontal acceleration which the sprinter experi-
ences during the run. Where does this maximum accelera-
tion value occur?

39.9 m

Finish line

A

PROBLEM 2/84
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A
C

PROBLEM 2/90

2/91 At the bottom A of the vertical inside loop, the magni-
tude of the total acceleration of the airplane is 3g. If the 
airspeed is 800 km ∕  h and is increasing at the rate of 
20 km ∕  h per second, calculate the radius of curvature 𝜌 of 
the path at A.

A

PROBLEM 2/91

2/92 A golf ball is launched with the initial conditions 
shown in the fi gure. Determine the radius of curvature of 
the trajectory and the time rate of change of the speed of 
the ball (a) just after launch and (b) at apex. Neglect aero-
dynamic drag.

165 mi/hr

12°

PROBLEM 2/92

*2/93 If the golf ball of Prob. 2 ∕92 is launched at time t = 0, 
determine the two times when the radius of curvature of 
the trajectory has a value of 1800 ft.

2/88  The design of a camshaft-drive system of a four- 
cylinder automobile engine is shown. As the engine is 
revved up, the belt speed v changes uniformly from 3 m∕s 
to 6 m∕s over a two-second interval. Calculate the magni-
tudes of the accelerations of points P1 and P2 halfway 
through this time interval.

v

P2

P1

60 mm

Camshaft
sprocket

Crankshaft
sprocket

Intermediate
sprocket

Drive belt
tensioner

PROBLEM 2/88

2/89 Consider the polar axis of the earth to be fi xed in 
space and compute the magnitudes of the velocity and ac-
celeration of a point P on the earth’s surface at latitude 40° 
north. The mean diameter of the earth is 12 742 km and its 
angular velocity is 0.7292(10−4) rad∕s.

N

S

P

40°

PROBLEM 2/89

2/90 The car C increases its speed at the constant rate of 
1.5 m∕s2 as it rounds the curve shown. If the magnitude of 
the total acceleration of the car is 2.5 m∕s2 at point A where 
the radius of curvature is 200 m, compute the speed v of the 
car at this point.
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P

B

A

100 mm

150 mm

PROBLEM 2/96

2/97 A football player releases a ball with the initial condi-
tions shown in the fi gure. Determine the radius of curva-
ture 𝜌 of the path and the time rate of change v̇ of the speed 
at times t = 1 sec and t = 2 sec, where t = 0 is the time of 
 release from the quarterback’s hand.

v0 = 80 ft/sec

 𝜃 = 35°

PROBLEM 2/97

2/98 The particle P starts from rest at point A at time t = 0 
and changes its speed thereafter at a constant rate of 2g as 
it follows the horizontal path shown. Determine the magni-
tude and direction of its total acceleration (a) just before it 
passes point B, (b) just after it passes point B, and (c) as it 
passes point C. State your directions relative to the x-axis 
shown (CCW positive).

x

A BP

C

3 m

3.5 m

PROBLEM 2/98

2/94 A spacecraft S is orbiting Jupiter in a circular path 
1000 km above the surface with a constant speed. Using 
the gravitational law, calculate the magnitude v of its 
 orbital velocity with respect to Jupiter. Use Table D ∕2 of 
Appendix D as needed.

S

1000 km

PROBLEM 2/94

2/95  Two cars travel at constant speeds through a 
curved portion of highway. If the front ends of both cars 
cross line CC at the same instant, and each driver mini-
mizes his or her time in the curve, determine the distance 𝛿 
which the second car has yet to go along its own path to 
reach line DD at the instant the fi rst car reaches there. The 
maximum horizontal acceleration for car A is 0.60g and 
that for car B is 0.76g. Which car crosses line DD fi rst?

C

A

B

D

D

C

60°

300ʹ

320ʹ

PROBLEM 2/95

2/96  The direction of motion of a fl at tape in a  numerical-
control device is changed by the two pulleys A and B shown. 
If the speed of the tape increases uniformly from 2 m∕s to 
18 m∕s while 8 meters of tape pass over the pulleys, calcu-
late the magnitude of the acceleration of point P on the 
tape in contact with pulley B at the instant when the tape 
speed is 3 m∕s.
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 radius of curvature 𝜌 of the path at this position. Verify 
your result by computing 𝜌 from the expression cited in 
 Appendix C ∕10.

10ʺ

Fixed
parabolic

slot

x

10ʺ

P

x

PROBLEM 2/101

2/102 In a handling test, a car is driven through the sla-
lom course shown. It is assumed that the car path is sinu-
soidal and that the maximum lateral acceleration is 0.7g. If 
the testers wish to design a slalom through which the max-
imum speed is 80 km ∕  h, what cone spacing L should be 
used?

Sinusoidal

v

L

3 m
3 m

PROBLEM 2/102

2/103 A particle which moves with curvilinear motion 
has coordinates in meters which vary with time t in  seconds 
according to x = 2t2 + 3t − 1 and y = 5t − 2. Determine the 
coordinates of the center of curvature C at time t = 1 s.

*2/104 A projectile is launched at time t = 0 with the ini-
tial conditions shown in the fi gure. If the wind imparts a 
constant leftward acceleration of 5 m ∕s2, plot the n- and t- 
components of acceleration and the radius of curvature 𝜌 of 
the trajectory for the time the projectile is in the air. State 
the maximum magnitude of each acceleration component 
along with the time at which it occurs. Additionally, 
 determine the minimum radius of curvature for the  trajectory 
and its corresponding time.

120 m/s

35°

Wind

O x

y

PROBLEM 2/104

2/99 In the design of a timing mechanism, the motion of 
pin P in the fi xed circular slot is controlled by the guide A, 
which is being elevated by its lead screw. Guide A starts 
from rest with pin P at the lowest point in the circular slot, 
and accelerates upward at a constant rate until it reaches 
a speed of 175 mm ∕s at the halfway point of its vertical 
displacement. The guide then decelerates at a constant 
rate and comes to a stop with pin P at the uppermost point 
in the circular slot. Determine the n- and t-components of 
acceleration of pin P once the pin has traveled 30° around 
the slot from the starting position.

P

A

250 mm

20°

PROBLEM 2/99

2/100 An earth satellite which moves in the elliptical equa-
torial orbit shown has a velocity v in space of 17 970 km ∕  h 
when it passes the end of the semi-minor axis at A. The 
earth has an absolute surface value of g of 9.821 m ∕s2 and 
has a radius of 6371 km. Determine the radius of curvature 
𝜌 of the orbit at A.

16 000 km

13 860 km

8000
km

A

r

v

PROBLEM 2/100

2/101 In the design of a control mechanism, the vertical 
 slotted guide is moving with a constant velocity ẋ = 15 in. ∕sec 
during the interval of motion from x = −8 in. to x = +8 in. 
For the instant when x = 6 in., calculate the n- and t-compo-
nents of acceleration of the pin P, which is confi ned to move 
in the parabolic slot. From these results, determine the 
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Problems for Article 2/6
Introductory Problems
2/105 A car P travels along a straight road with a constant 
speed v = 65 mi∕  hr. At the instant when the angle 𝜃 = 60°, 
determine the values of ṙ in ft ∕sec and 𝜃 in deg ∕sec.

r

O

100ʹ

v

x

y

P

𝜃

PROBLEM 2/105

2/106 The sprinter begins from rest at position A and ac-
celerates along the track. If the stationary tracking camera 
at O is rotating counterclockwise at the rate of 12.5 deg ∕s 
when the sprinter passes the 60-m mark, determine the 
speed v of the sprinter and the value of ṙ.

40 m
10 m

O

A
r𝜃

PROBLEM 2/106

2/107 A drone fl ies over an observer O with constant speed 
in a straight line as shown. Determine the signs (plus, mi-
nus, or zero) for r, ṙ, r̈, 𝜃, �̇�, and 𝜃 for each of the positions 
A, B, and C.

x

y

B

O

r

AvC

𝜃

PROBLEM 2/107

2/108  The sphere P travels in a straight line with speed 
v =  10 m∕s. For the instant depicted, determine the 
 corresponding values of ṙ and �̇� as measured relative to the 
fi xed Oxy coordinate system.

x

y

P

r

O

4 m

5 m

30°

v

𝜃

PROBLEM 2/108

2/109  If the 10-m∕s speed of the previous problem is con-
stant, determine the values of r̈ and �̈� at the instant shown.

2/110 Rotation of bar OA is controlled by the lead screw 
which imparts a horizontal velocity v to collar C and causes 
pin P to travel along the smooth slot. Determine the values 
of ṙ and 𝜃, where r = OP, if h = 160 mm, x = 120 mm, and 
v = 25 mm ∕s at the instant represented.

x

C
A

P

h

O

v

𝜃

PROBLEM 2/110
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2/115 The nozzle shown rotates with constant angular 
speed 𝛺 about a fi xed horizontal axis through point O. Be-
cause of the change in diameter by a factor of 2, the water 
speed relative to the nozzle at A is v, while that at B is 4v. 
The water speeds at both A and B are constant. Determine 
the velocity and acceleration of a water particle as it passes 
(a) point A and (b) point B.

l

A
O B

2d

l

r

d

𝜃

𝛺

PROBLEM 2/115

2/116 A helicopter starts from rest at point A and travels 
along the straight-line path with a constant acceleration a. 
If the speed v = 28 m ∕s when the altitude of the helicopter 
is h = 40 m, determine the values of ṙ, r̈, �̇�, and �̈� as mea-
sured by the tracking device at O. At this instant, 𝜃 = 40°, 
and the distance d = 160 m. Neglect the small height of the 
tracking device above the ground.

d

r
h

A
O

v

𝜃

PROBLEM 2/116

2/111  For the bar of Prob. 2 ∕110, determine the val-
ues of r̈ and 𝜃 if the velocity of collar C is decreasing at a 
rate of 5 mm ∕s2 at the instant in question. Refer to the 
printed answers for Prob. 2 ∕110 as needed.

2/112 The boom OAB pivots about point O, while section 
AB simultaneously extends from within section OA. Deter-
mine the velocity and acceleration of the center B of the 
pulley for the following conditions: 𝜃 = 20°, 𝜃 = 5 deg ∕sec, 
𝜃 = 2 deg ∕sec2, l = 7 ft, l̇ = 1.5 ft ∕sec, l̈ = −4 ft ∕sec2. The 
quantities l̇ and l̈ are the fi rst and second time derivatives, 
respectively, of the length l of section AB.

24ʹ

l

A

O

B
r

𝜃

𝜃

PROBLEM 2/112

2/113 A particle moving along a plane curve has a position 
vector r, a velocity v, and an acceleration a. Unit vectors in 
the r- and 𝜃-directions are er and e𝜃, respectively, and both 
r and 𝜃 are changing with time. Explain why each of the 
following statements is correctly marked as an inequality.

ṙ ≠ v r̈ ≠ a ṙ ≠ ṙer

ṙ ≠ v r̈ ≠ a r̈ ≠ r̈er

ṙ ≠ v r̈ ≠ a ṙ ≠ r 𝜃e𝜃

2/114 Consider the portion of an excavator shown. At the 
instant under consideration, the hydraulic cylinder is ex-
tending at a rate of 6 in. ∕sec, which is decreasing at the 
rate of 2 in. ∕sec every second. Simultaneously, the cylinder 
is rotating about a horizontal axis through O at a constant 
rate of 10 deg ∕sec. Determine the velocity v and accelera-
tion a of the clevis attachment at B.

O

A

B

r

3.5
ʹ

2.5
ʹ

40°

𝜃

PROBLEM 2/114
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A
x

275ʹ

350ʹ

P

ry

O
𝜃

PROBLEM 2/119

2/120 For the fi reworks shell of Prob. 2 ∕119, determine the 
values of r̈ and �̈� when the shell reaches an altitude y = 175 ft. 
Refer to the printed answers for Prob. 2 ∕119 as needed.

2/121  The rocket is fi red vertically and tracked by the 
radar station shown. When 𝜃 reaches 60°, other correspond-
ing measurements give the values r = 9 km, r̈ = 21 m∕s2, 
and �̇� = 0.02 rad∕s. Calculate the magnitudes of the veloc-
ity and acceleration of the rocket at this position.

r

a

v

𝜃

PROBLEM 2/121

2/117 The slider P can be moved inward by means of 
the string S, while the slotted arm rotates about point O. 
The angular position of the arm is given by 

𝜃 = 0.8t −
t2

20
, where 𝜃 is in radians and t is in seconds. 

The slider is at r = 1.6 m when t = 0 and thereafter is 
drawn inward at the constant rate of 0.2 m ∕s. Determine 
the magnitude and direction (expressed by the angle 𝛼 
relative to the x-axis) of the velocity and acceleration of the 
slider when t = 4 s.

r P

x

S

O

y

𝜃

PROBLEM 2/117

Representative Problems
2/118 Cars A and B are both moving with constant speed v 
on the straight and level highway. They are side-by-side in 
adjacent lanes as shown. If the radar unit attached to the 
stationary police car P measures “line-of-sight” velocity, 
what speed v′ will be observed for each car? Use the values 
v = 110 km ∕  h, L = 60 m, and D = 7 m.

A 

B 
D 

D 

L

P

v

v

PROBLEM 2/118

2/119 A fi reworks shell P is launched upward from point A 
and explodes at its apex at an altitude of 275 ft. Relative to 
an observer at O, determine the values of ṙ and �̇� when the 
shell reaches an altitude y = 175 ft. Neglect aerodynamic 
drag.
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2/124 In addition to the information supplied in the previ-
ous problem, the sensors at O indicate that r̈ = 14 ft∕sec2. 
Determine the corresponding acceleration a of the aircraft 
and the value of �̈�.

2/125  At the bottom of a loop in the vertical (r-𝜃) plane 
at an altitude of 400 m, the airplane P has a horizontal veloc-
ity of 600 km ∕  h and no horizontal acceleration. The radius of 
curvature of the loop is 1200 m. For the radar tracking at O, 
determine the recorded values of r̈ and �̈� for this instant.

1000 m

r

O

P

400 m

600 km/h

𝜃

PROBLEM 2/125

2/126  The robot arm is elevating and extending simulta-
neously. At a given instant, 𝜃 = 30°, �̇� = 10 deg∕s = 
 constant, l = 0.5 m, l̇ = 0.2 m∕s, and l̈ = −0.3 m∕s2. Com-
pute the magnitudes of the velocity v and acceleration a of 
the gripped part P. In addition, express v and a in terms of 
the unit vectors i and j.

l

0.75 m

y

P

O x
𝜃

PROBLEM 2/126

2/127  A projectile is launched from point A with the initial 
conditions shown. With the conventional defi nitions of r- 
and 𝜃-coordinates relative to the Oxy coordinate system, 
determine r, 𝜃, ṙ, �̇�, r̈, and �̈� at the instant just after launch. 
Neglect aerodynamic drag.

x

y

v0

O A

d 𝛼

PROBLEM 2/127

*2/122 The diver leaves the platform with an initial up-
ward speed of 2.5 m ∕s. A stationary camera on the ground 
is programmed to track the diver throughout the dive by 
rotating the lens to keep the diver centered in the captured 
image. Plot �̇� and �̈� as functions of time for the camera over 
the entire dive and state the values of �̇� and �̈� at the in-
stant the diver enters the water. Treat the diver as a par-
ticle which has only vertical motion. Additionally, state the 
maximum magnitudes of �̇� and �̈� during the dive and the 
times at which they occur.

x

y

r

2.5 m/s

O

6 m

2 m

10 m

𝜃

PROBLEM 2/122

2/123 Instruments located at O are part of the ground- 
traffi c control system for a major airport. At a certain in-
stant during the takeoff roll of the aircraft P, the sensors 
indicate the angle 𝜃 = 50° and the range rate ṙ = 140 ft∕sec. 
Determine the corresponding speed v of the aircraft and the 
value of �̇�.

20°

x

500ʹ

O

s

r

P

S

v

𝜃

PROBLEM 2/123
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𝜃

16 km

12 km

3 km
r

P

C

O

v
y

x

PROBLEM 2/130

2/131 At time t = 0, the baseball player releases a ball 
with the initial conditions shown in the fi gure. Determine 
the quantities r, ṙ, r̈, 𝜃, �̇�, and �̈�, all relative to the x-y coor-
dinate system shown, at time t = 0.5 sec.

6ʹ

𝛼 = 30°

v0 = 100 ft/sec

y

x

PROBLEM 2/131

2/132 The racing airplane is beginning an inside loop in 
the vertical plane. The tracking station at O records the 
following data for a particular instant: r = 90 m, 
ṙ = 15.5 m∕s, r̈ = 74.5 m∕s2, 𝜃 = 30°, �̇� = 0.53 rad∕s, and 
�̈� = −0.29 rad∕s2. Determine the values of v, v̇, 𝜌, and 𝛽 at 
this instant.

r

O

v, ⋅v
𝜌

𝛽

𝜃

PROBLEM 2/132

2/128 An earth satellite traveling in the elliptical orbit 
shown has a velocity v = 12,149 mi∕  hr as it passes the end 
of the semiminor axis at A. The acceleration of the satellite 
at A is due to gravitational attraction and is 
32.23[3959∕8400]2

= 7.159 ft∕sec2 directed from A to O. For 
position A calculate the values of ṙ, r̈, �̇�, and �̈�.

8400 mi

7275 mi

4200
mi

A

P
O

r

v

𝜃

PROBLEM 2/128

2/129 A meteor P is tracked by a radar observatory on the 
earth at O. When the meteor is directly overhead (𝜃 = 90°), 
the following observations are recorded: r = 80 km, ṙ = −20 
km ∕s, and �̇� = 0.4 rad ∕s. (a) Determine the speed v of the 
meteor and the angle 𝛽 which its velocity vector makes 
with the horizontal. Neglect any effects due to the earth’s 
rotation. (b) Repeat with all given quantities remaining the 
same, except that 𝜃 = 75°.

y

v
r

x

P

O
𝜃

𝛽

PROBLEM 2/129

2/130 The low-fl ying aircraft P is traveling at a constant 
speed of 360 km ∕  h in the holding circle of radius 3 km. For 
the instant shown, determine the quantities r, ṙ, r̈, 𝜃, �̇�, and 
�̈� relative to the fi xed x-y coordinate system, which has its 
origin on a mountaintop at O. Treat the system as two- 
dimensional.
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Problems for Article 2/7
Introductory Problems
2/133  The velocity and acceleration of a particle are 
given for a certain instant by v = 6i − 3j + 2k m∕s and 
a = 3i − j − 5k m∕s2. Determine the angle 𝜃 between v and 
a, v̇, and the radius of curvature 𝜌 in the osculating plane.

2/134 A projectile is launched from point O with an initial 
speed v0 = 600 ft∕sec directed as shown in the fi gure. Com-
pute the x-, y-, and z-components of position, velocity, and 
acceleration 20 seconds after launch. Neglect aerodynamic 
drag.

60°

20°

v0

z

yx

O

PROBLEM 2/134

2/135 An amusement ride called the “corkscrew” takes the 
passengers through the upside-down curve of a horizontal 
cylindrical helix. The velocity of the cars as they pass posi-
tion A is 15 m ∕s, and the component of their acceleration 
measured along the tangent to the path is g cos 𝛾 at this 
point. The effective radius of the cylindrical helix is 5 m, and 
the helix angle is 𝛾 = 40°. Compute the magnitude of the 
acceleration of the passengers as they pass position A.

𝛾 = 40°

5 m

Vert.

AHoriz. Horiz.

PROBLEM 2/135

2/136 The radar antenna at P tracks the jet aircraft A, 
which is fl ying horizontally at a speed u and an altitude h 
above the level of P. Determine the expressions for the 
components of the velocity in the spherical coordinates of 
the antenna motion.

z

hy

x

b

u

A

P

𝜃

𝜙

PROBLEM 2/136

2/137  The rotating element in a mixing chamber is 
given a periodic axial movement z = z0 sin 2𝜋nt while it is 
rotating at the constant angular velocity 𝜃 = 𝜔. Determine 
the expression for the maximum magnitude of the acceler-
ation of a point A on the rim of radius r. The frequency n of 
vertical oscillation is constant.

A

r

z

z = z0 sin 2𝜋nt𝜔

PROBLEM 2/137
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2/141 An industrial robot is being used to position a small 
part P. Calculate the magnitude of the  acceleration a of P 
for the instant when 𝛽 = 30° if �̇� = 10 deg∕s and �̈� = 20 deg ∕s2 
at this same  instant. The base of the robot is revolving at 
the constant rate 𝜔 = 40 deg ∕s. During the motion arms AO 
and AP remain perpendicular.

200 m
m

300 mm

P

A

O 𝛽

𝜔

PROBLEM 2/141

2/142 The car A is ascending a parking-garage ramp in the 
form of a cylindrical helix of 24-ft radius rising 10 ft for 
each half turn. At the position shown the car has a speed of 
15 mi ∕  hr, which is decreasing at the rate of 2 mi ∕  hr per sec-
ond. Determine the r-, 𝜃-, and z-components of the accelera-
tion of the car.

z

A

10ʹ
24ʹ

r

𝜃

PROBLEM 2/142

Representative Problems
2/138 A helicopter starts from rest at point A and travels 
along the indicated path with a constant acceleration a. If 
the helicopter has a speed of 60 m ∕s when it reaches B, 
determine the values of Ṙ, 𝜃, and �̇� as measured by the 
radar tracking device at O at the instant when h = 100 m.

O

A

z

y

x

B

C

R

h

200 m

400 m

500 m

v, a

𝜙

𝜃

PROBLEM 2/138

2/139 For the helicopter of Prob. 2 ∕138, fi nd the values of R̈, 
𝜃, and �̈� for the radar tracking device at O at the instant 
when h = 100 m. Refer to the printed answers for Prob. 
2 ∕138 as needed.

2/140 The vertical shaft of the industrial robot rotates at 
the constant rate 𝜔. The length h of the vertical shaft has a 
known time history, and this is true of its time derivatives 
ḣ and ḧ as well. Likewise, the values of l, l̇, and l̈  are 
known. Determine the magnitudes of the velocity and ac-
celeration of point P. The lengths h0 and l0 are fi xed.

h

z

h0

P

l0
l

𝜔

PROBLEM 2/140
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2/145 Beginning with Eq. 2 ∕18, the expression for parti-
cle velocity in spherical coordinates, derive the acceleration 
components in Eq. 2 ∕19. (Note: Start by writing the unit 
vectors for the R-, 𝜃-, and 𝜙-coordinates in terms of the 
fi xed unit vectors i, j, and k.)

2/146 In the design of an amusement-park ride, the cars 
are attached to arms of length R which are hinged to a 
central rotating collar which drives the assembly about the 
vertical axis with a constant angular rate 𝜔 = 𝜃. The cars 
rise and fall with the track according to the relation 
z = (h∕2)(1 − cos 2𝜃) . Find the R-, 𝜃-, and 𝜙-components of 
the velocity v of each car as it passes the position 
𝜃 = 𝜋∕4 rad.

y v

h R z

x

h 

𝜔 𝜃

𝜙

PROBLEM 2/146

2/147 The particle P moves down the spiral path which 
is wrapped around the surface of a right circular cone of 
base radius b and altitude h. The angle 𝛾 between the tan-
gent to the curve at any point and a horizontal tangent to 
the cone at this point is constant. Also the motion of the 
particle is controlled so that 𝜃 is constant. Determine the 
expression for the radial acceleration ar of the particle for 
any value of 𝜃.

x
y

z

r

P

h

b
𝜃

PROBLEM 2/147

2/143  In a design test of the actuating mechanism for a 
telescoping antenna on a spacecraft, the supporting shaft 
rotates about the fi xed z-axis with an angular rate �̇�. De-
termine the R-, 𝜃-, and 𝜙-components of the acceleration a 
of the end of the antenna at the instant when L =  1.2 m 
and 𝛽 =  45° if the rates �̇� =  2 rad∕s, �̇� =  32 rad∕s, and 
L̇ =  0.9 m∕s are constant during the motion.

𝛽

L

R

y

x

z

⋅

𝜃

𝜃

𝜙

𝜃

PROBLEM 2/143

2/144 The rod OA is held at the constant angle 𝛽 = 30° 
while it rotates about the vertical with a constant angular 
rate 𝜃 = 120 rev ∕min. Simultaneously, the sliding ball P 
oscillates along the rod with its distance in millimeters 
from the fi xed pivot O given by R = 200 + 50 sin 2𝜋nt, 
where the frequency n of oscillation along the rod is a con-
stant 2 cycles per second and where t is the time in seconds. 
Calculate the magnitude of the acceleration of P for an in-
stant when its velocity along the rod from O toward A is a 
maximum.

O

R

P

A

𝛽

𝜃
⋅

PROBLEM 2/144
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z

y

x

P

B

R

A

O

𝜙

𝜃

𝜔

PROBLEM 2/148

2/148 The disk A rotates about the vertical z-axis with a 
constant speed 𝜔 = 𝜃 = 𝜋 ∕ 3 rad ∕s. Simultaneously, the 
hinged arm OB is elevated at the constant rate �̇� = 2𝜋 ∕ 3 
rad ∕s. At time t = 0, both 𝜃 = 0 and 𝜙 = 0. The angle 𝜃 is 
measured from the fi xed reference x-axis. The small sphere 
P slides out along the rod according to R = 50 + 200t2, 
where R is in millimeters and t is in seconds. Determine 
the magnitude of the total acceleration a of P when t = 12 s.
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Problems for Article 2/8
Introductory Problems
2/149 Car A rounds a curve of 150-m radius at a constant 
speed of 54 km∕h. At the instant represented, car B is mov-
ing at 81 km∕h but is slowing down at the rate of 3 m∕s2. 
Determine the velocity and acceleration of car A as ob-
served from car B.

x

B

A
y

150 m

PROBLEM 2/149

2/150 Train A is traveling at a constant speed vA = 35 
mi ∕hr while car B travels in a straight line along the road 
as shown at a constant speed vB. A conductor C in the train 
begins to walk to the rear of the train car at a constant 
speed of 4 ft ∕sec relative to the train. If the conductor per-
ceives car B to move directly westward at 16 ft ∕sec, how 
fast is the car traveling?

B
C

AvB

vA

x

y

N

𝜃

PROBLEM 2/150

2/151 The jet transport B is fl ying north with a velocity 
vB = 600 km ∕h when a smaller aircraft A passes under-
neath the transport headed in the 60° direction shown. To 
passengers in B, however, A appears to be fl ying sideways 
and moving east. Determine the actual velocity of A and 
the velocity which A appears to have relative to B.

N

E60°

vB

B

A

PROBLEM 2/151

2/152  A marathon participant R is running north at a 
speed vR = 10 mi∕hr. A wind is blowing in the direction 
shown at a speed vW = 15 mi∕hr. (a) Determine the velocity 
of the wind relative to the runner. (b) Repeat for the case 
when the runner is moving directly to the south at the 
same speed. Express all answers both in terms of the unit 
vectors i and j and as magnitudes and compass directions.

N

35°

x

Ry

vR

vW

PROBLEM 2/152

2/153 A ship capable of making a speed of 16 knots through 
still water is to maintain a true course due west while en-
countering a 3-knot current running from north to south. 
What should be the heading of the ship (measured clock-
wise from the north to the nearest degree)? How long does 
it take the ship to proceed 24 nautical miles due west?

2/154 The car A has a forward speed of 18 km ∕h and is 
 accelerating at 3 m∕s2. Determine the velocity and acceler-
ation of the car relative to observer B, who rides in a non-
rotating chair on the Ferris wheel. The angular rate 
𝛺 = 3 rev∕min of the Ferris wheel is constant.
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2/157  Plane A travels along the indicated path with a 
constant speed vA = 285 km ∕h. Relative to the pilot in plane 
B, which is fl ying at a constant speed vB = 350 km ∕h, what 
are the velocities which plane A appears to have when it is 
at positions C and E? Both planes are fl ying horizontally.

300 m

300 m

600 m60°
30°

E

D

C

B

A
x

y

vA

vB

PROBLEM 2/157

2/158  Starting from the relative position shown, aircraft B 
is to rendezvous with the refueling tanker A. If B is to ar-
rive in close proximity to A in a two-minute time interval, 
what absolute velocity vector should B acquire and  maintain? 
The velocity of the tanker A is 300 mi∕hr along the con-
stant-altitude path shown.

y

x

10,000ʹ

2000ʹ

A

B

PROBLEM 2/158

2/159 A sailboat moving in the direction shown is tacking to 
windward against a north wind. The log registers a hull 
speed of 6.5 knots. A “telltale” (light string tied to the rigging) 
indicates that the direction of the apparent wind is 35° from 
the centerline of the boat. What is the true wind velocity vw?

vw

6.5 knots

35°

50°

PROBLEM 2/159

𝛺 = 3 rev/min

R = 9 m

B

A

45°

y

x

PROBLEM 2/154

2/155 A ferry is moving due east and encounters a south-
west wind of speed vW = 10 m∕s as shown. The experienced 
ferry captain wishes to minimize the effects of the wind on 
the passengers who are on the outdoor decks. At what 
speed vB should he proceed?

vW

vB
B

N

40°

PROBLEM 2/155

Representative Problems
2/156 A drop of water falls with no initial speed from point 
A of a highway overpass. After dropping 6 m, it strikes the 
windshield at point B of a car which is traveling at a speed 
of 100 km ∕h on the horizontal road. If the windshield is 
inclined 50° from the vertical as shown, determine the an-
gle 𝜃 relative to the normal n to the windshield at which 
the water drop strikes.

100 km/h

50°

6 m

n

A

B

t

PROBLEM 2/156

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Problems for Article 2/8 P-31

B

C

A

2.5 m

30 km/h

70 m/s

350 m 

60 m
𝛼

PROBLEM 2/163

2/164 The shuttle orbiter A is in a circular orbit of altitude 
200 mi, while spacecraft B is in a geosynchronous circular 
orbit of altitude 22,300 mi. Determine the acceleration of B 
relative to a nonrotating observer in shuttle A. Use 
g0 = 32.23 ft∕sec2 for the surface-level gravitational accel-
eration and R = 3959 mi for the radius of the earth.

y

B

A

22,300 mi

200 mi

x

PROBLEM 2/164

2/165 After starting from the position marked with the “x”, 
a football receiver B runs the slant-in pattern shown, mak-
ing a cut at P and thereafter running with a constant speed 
vB = 7 yd∕sec in the direction shown. The quarterback re-
leases the ball with a horizontal velocity of 100 ft ∕sec at the 
instant the receiver passes point P. Determine the angle 𝛼 
at which the quarterback must throw the ball, and the ve-
locity of the ball relative to the receiver when the ball is 
caught. Neglect any vertical motion of the ball.

15 yd

15 yd
30°

B

Q

A

P

x

y

vB
vA

𝛼

PROBLEM 2/165

2/160 At the instant illustrated, car B has a speed of 
30 km ∕h and car A has a speed of 40 km ∕h. Determine the 
values of ṙ and 𝜃 for this instant where r and 𝜃 are mea-
sured relative to a longitudinal axis fi xed to car B as indi-
cated in the fi gure.

vA

vB

A

x
r

B

105 m

45°

30°

75 m

y

𝜃

PROBLEM 2/160

2/161 For the cars of Prob. 2 ∕160, determine the instanta-
neous values of r̈ and 𝜃 if car A is slowing down at a rate of 
1.25 m ∕s2 and car B is speeding up at a rate of 2.5 m ∕s2. 
Refer to the printed answers for Prob. 2 ∕160 as needed.

2/162 Car A is traveling at 25 mi ∕hr and applies the brakes 
at the position shown so as to arrive at the intersection C at 
a complete stop with a constant deceleration. Car B has a 
speed of 40 mi ∕hr at the instant represented and is capable 
of a maximum deceleration of 18 ft ∕sec2. If the driver of car B 
is distracted and does not apply his brakes until 1.30 sec-
onds after car A begins to brake, the result being a collision 
with car A, with what relative speed will car B strike car A? 
Treat both cars as particles.

60ʹ 120ʹ

C
AB

PROBLEM 2/162

2/163 As part of an unmanned-autonomous-vehicle (UAV) 
demonstration, an unmanned vehicle B launches a projectile 
A from the position shown while traveling at a constant 
speed of 30 km ∕h. The projectile is launched with a speed of 
70 m ∕s relative to the vehicle. At what launch angle 𝛼 should 
the projectile be fi red to ensure that it strikes a target at C? 
Compare your answer with that for the case where the ve-
hicle is stationary.
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2/169 The aircraft A with radar detection equipment is 
fl ying horizontally at an altitude of 12 km and is increasing 
its speed at the rate of 1.2 m ∕s each second. Its radar locks 
onto an aircraft B fl ying in the same direction and in the 
same vertical plane at an altitude of 18 km. If A has a speed 
of 1000 km ∕h at the instant when 𝜃 = 30°, determine the 
values of r̈ and 𝜃 at this same instant if B has a constant 
speed of 1500 km ∕h.

𝜃

18 km

A

B

12 km

r

PROBLEM 2/169

2/170 At a certain instant after jumping from the air-
plane A, a skydiver B is in the position shown and has 
reached a terminal (constant) speed vB = 50 m∕s. The air-
plane has the same constant speed vA = 50 m∕s, and after a 
period of level fl ight is just beginning to follow the circular 
path shown of radius 𝜌A = 2000 m. (a) Determine the veloc-
ity and acceleration of the airplane relative to the skydiver. 
(b) Determine the time rate of change of the speed vr of the 
airplane and the radius of curvature 𝜌r of its path, both as 
observed by the nonrotating skydiver.

A

B

r

𝜌A = 2000 m

vA

vB

y

x

500 m

350 m

PROBLEM 2/170

2/166 Car A is traveling at the constant speed of 60 km ∕h as 
it rounds the circular curve of 300-m radius and at the instant 
represented is at the position 𝜃 = 45°. Car B is traveling at 
the constant speed of 80 km ∕h and passes the center of the 
circle at this same instant. Car A is located with respect to 
car B by polar coordinates r and 𝜃 with the pole moving with 
B. For this instant determine vA ∕B and the values of ṙ and 𝜃 
as measured by an observer in car B.

300 m

r

A

B

𝜃

PROBLEM 2/166

2/167  For the conditions of Prob. 2 ∕166, determine 
the values of r̈ and 𝜃 as measured by an observer in car B 
at the instant represented. Use the results for ṙ and 𝜃 cited 
in the answers for that problem.

2/168 A batter hits the baseball A with an initial velocity 
of v0 = 100 ft∕sec directly toward fi elder B at an angle of 
30° to the horizontal; the initial position of the ball is 3 ft 
above ground level. Fielder B requires 14 sec to judge where 
the ball should be caught and begins moving to that posi-
tion with constant speed. Because of great experience, 
fi elder B chooses his running speed so that he arrives at 
the “catch position” simultaneously with the baseball. The 
catch position is the fi eld location at which the ball altitude 
is 7 ft. Determine the velocity of the ball relative to the 
fi elder at the instant the catch is made.

220ʹ

B

y

x

3ʹ

v0

A

30°

PROBLEM 2/168
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Problems for Article 2/9
Introductory Problems
2/171  If block A has a velocity of 3.6 ft∕sec to the right, 
determine the velocity of cylinder B.

A

B

PROBLEM 2/171

2/172 At the instant represented, vB/A = 3.5j m ∕s. Deter-
mine the velocity of each body at this instant. Assume that 
the upper surface of A remains horizontal.

A

B

x

y

PROBLEM 2/172

2/173 At a certain instant, the velocity of cylinder B is 
1.2 m ∕s down and its acceleration is 2 m∕s2 up. Determine 
the corresponding velocity and acceleration of block A.

B

A

PROBLEM 2/173

2/174 Determine the velocity of cart A if cylinder B has a 
downward velocity of 2 ft ∕sec at the instant illustrated. The 
two pulleys at C are pivoted independently.

B

A

vB
C

PROBLEM 2/174

2/175 An electric motor M is used to reel in cable and hoist 
a bicycle into the ceiling space of a garage. Pulleys are fas-
tened to the bicycle frame with hooks at locations A and B, 
and the motor can reel in cable at a steady rate of 12 in. ∕sec. 
At this rate, how long will it take to hoist the bicycle 5 feet 
into the air? Assume that the bicycle remains level.

BA

M

PROBLEM 2/175
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A
B

b b

y

PROBLEM 2/178

2/179 Under the action of force P, the constant acceleration 
of block B is 6 ft∕sec2 up the incline. For the instant when 
the velocity of B is 3 ft  ∕sec up the incline, determine the 
velocity of B relative to A, the acceleration of B relative to 
A, and the absolute velocity of point C of the cable.

A

20°

B

C

P

PROBLEM 2/179

2/180  Determine the relationship which governs the 
velocities of the four cylinders. Express all velocities as 
positive down. How many degrees of freedom are there?

A

B

D

C

PROBLEM 2/180

2/181 Collars A and B slide along the fi xed right-angle 
rods and are connected by a cord of length L. Determine the 
acceleration ax of collar B as a function of y if collar A is 
given a constant upward velocity vA.

2/176  A truck equipped with a power winch on its front 
end pulls itself up a steep incline with the cable and pulley 
arrangement shown. If the cable is wound up on the drum 
at the constant rate of 40 mm∕s, how long does it take for 
the truck to move 4 m up the incline?

PROBLEM 2/176

Representative Problems
2/177  Determine an expression for the velocity vA of 
the cart A down the incline in terms of the upward velocity 
vB of cylinder B.

B

A

C

h

x

PROBLEM 2/177

2/178 Neglect the diameters of the small pulleys and es-
tablish the relationship between the velocity of A and the 
velocity of B for a given value of y.
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s

B

A
L

45°

x

PROBLEM 2/184

2/185 Determine the vertical rise h of the load W during 
10 seconds if the hoisting drum draws in cable at the con-
stant rate of 180 mm ∕s.

W

M

PROBLEM 2/185

2/186 The hoisting system shown is used to easily raise 
kayaks for overhead storage. Determine expressions for 
the upward velocity and acceleration of the kayak at any 
height y if the winch M reels in cable at a constant rate l̇ . As-
sume that the kayak remains level.

b

b

y

b

AM B

PROBLEM 2/186

y

A

B

L

x

y

PROBLEM 2/181

2/182 The small sliders A and B are connected by the rigid 
slender rod. If the velocity of slider B is 2 m ∕s to the right 
and is constant over a certain interval of time, determine 
the speed of slider A when the system is in the position 
shown.

vB

R

A

B

2R

60°

PROBLEM 2/182

2/183 For a given value of y, determine the upward velocity 
of A in terms of the downward velocity of B. Neglect the di-
ameters of the pulleys.

2b

A

B

y

PROBLEM 2/183

2/184  Collars A and B slide along the fi xed rods and are 
connected by a cord of length L. If collar A has a velocity 
vA =  ẋ to the right, express the velocity vB = −ṡ of B in 
terms of x, vA, and s.
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2/189 The rod of the fi xed hydraulic cylinder is moving to 
the left with a constant speed vA = 25 mm∕s. Determine 
the corresponding velocity of slider B when sA = 425 mm. 
The length of the cord is 1050 mm, and the effects of the 
radius of the small pulley A may be neglected.

vA

C

B

A

sA

250 mm

PROBLEM 2/189

2/190 With all conditions of Prob. 2∕189 remaining the 
same, determine the acceleration of slider B at the instant 
when sA = 425 mm.

2/187 Develop an expression for the upward velocity of cyl-
inder B in terms of the downward velocity of cylinder A. 
The cylinders are connected by a series of n cables and pul-
leys in a repeating fashion as shown.

B

n − 2

3

2

1

0

n −1

n

A

PROBLEM 2/187

2/188 If load B has a downward velocity vB, determine the 
upward component (vA)y of the velocity of A in terms of b, 
the boom length l, and the angle 𝜃. Assume that the cable 
supporting A remains vertical.

y

A

b

b

l

B

𝜃

PROBLEM 2/188
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Problems for Article 2/10 Chapter Review 
2/191 The position s of a particle along a straight line is 
given by s = 8e−0.4t − 6t + t2, where s is in meters and t is 
the time in seconds. Determine the velocity v when the ac-
celeration is 3 m∕s2.

2/192 A particle moving in the x-y plane has a velocity 
v = 7.25i + 3.48j m ∕s at a certain instant. If the particle 
then undergoes a constant acceleration a = 0.85j m ∕s2, 
determine the amount of time which must pass before the 
direction of the tangent to the trajectory of the particle 
has been altered by 30°.

2/193 Two airplanes are performing at an air show. Plane A 
travels along the path shown and, for the instant under 
consideration, has a speed of 265 mi ∕hr that is increasing 
at a rate of 4 mi ∕hr every second. Meanwhile, plane B exe-
cutes a vertical loop at a constant speed of 150 mi ∕hr. De-
termine the velocity and acceleration which plane B 
 appears to have to the pilot in plane A at the instant 
 represented.

500ʹ

45°
20°

B

A

x

y

PROBLEM 2/193

2/194 At time t = 0 a small ball is projected from point A 
with a velocity of 200 ft ∕sec at the 60° angle. Neglect atmo-
spheric resistance and determine the two times t1 and t2 
when the velocity of the ball makes an angle of 45° with the 
horizontal x-axis.

60°

u = 200 ft/sec

A
x

PROBLEM 2/194

2/195 A bicyclist rides along the hard-packed sand beach 
with a speed vB = 16 mi ∕hr as indicated. The wind speed is 
vW = 20 mi ∕hr. (a) Determine the velocity of the wind 

 relative to the bicyclist. (b) At what speed vB would the bi-
cyclist feel the wind coming directly from her left (perpen-
dicular to her path)? What would be this relative speed?

15°

35°

x

y

B

vB

vW

N

PROBLEM 2/195

2/196  The motion of pin P is controlled by the two moving 
slots A and B in which the pin slides. If B has a velocity 
vB = 3 m∕s to the right while A has an upward velocity 
vA = 2 m∕s, determine the magnitude vP of the velocity of 
the pin.

60°

vA

B

A

P

vB

PROBLEM 2/196

2/197 Body A is released from rest in the position shown 
and moves downward causing body B to lift off the support 
at C. If motion is controlled such that the magnitude 
aB∕A = 2.4 m ∕s2 is held constant, determine the amount of 
time it takes for body B to travel 5 m up the incline and the 
corresponding speed of body A at the end of that time pe-
riod. The angle 𝜃 = 55°.
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2/200 The coordinates of a particle which moves with cur-
vilinear motion are given by x = 10.25t + 1.75t2 − 0.45t3 
and y = 6.32 + 14.65t − 2.48t2, where x and y are in milli-
meters and the time t is in seconds. Determine the values 
of v, v, a, a, et, en, at, at, an, an, 𝜌, and �̇� (the angular velocity 
of the normal to the path) when t = 3.25 s. Express all vec-
tors in terms of the unit vectors i and j.

2/201 The coordinates of a particle which moves with cur-
vilinear motion are given by x = 10.25t + 1.75t2 − 0.45t3 
and y = 6.32 + 14.65t − 2.48t2, where x and y are in milli-
meters and the time t is in seconds. Determine the values 
of v, v, a, a, er, e𝜃, vr, vr, v𝜃, v𝜃, ar, ar, a𝜃, a𝜃, r, ṙ, r̈, 𝜃, 𝜃, and 𝜃 
when t = 3.25 s. Express all vectors in terms of the unit vec-
tors i and j. Take the r-coordinate to proceed from the ori-
gin, and take 𝜃 to be measured positive counterclockwise 
from the positive x-axis.

2/202 A small aircraft is moving in a horizontal circle with 
a constant speed of 130 ft ∕sec. At the instant represented, a 
small package A is ejected from the right side of the air-
craft with a horizontal velocity of 20 ft ∕sec relative to the 
aircraft. Neglect aerodynamic effects and calculate the co-
ordinates of the point of impact on the ground.

1000ʹ

1500ʹ

z

y
x

A

O

PROBLEM 2/202

2/203 A rocket fi red vertically up from the north pole 
achieves a velocity of 27 000 km ∕h at an altitude of 350 km 
when its fuel is exhausted. Calculate the additional verti-
cal height h reached by the rocket before it starts its de-
scent back to the earth. The coasting phase of its fl ight oc-
curs above the atmosphere. Consult Fig. 1 ∕1 in choosing the 
appropriate value of gravitational acceleration and use the 
mean radius of the earth from Table D ∕2. (Note: Launching 
from the earth’s pole avoids considering the effect of the 
earth’s rotation.)

A

B

C
𝜃

PROBLEM 2/197

2/198 The launching catapult of the aircraft carrier gives 
the jet fi ghter a constant acceleration of 50 m ∕s2 from rest 
relative to the fl ight deck and launches the aircraft in a 
distance of 100 m measured along the angled takeoff ramp. 
If the carrier is moving at a steady 30 knots (1 knot = 1.852 
km ∕h), determine the magnitude v of the actual velocity of 
the fi ghter when it is launched.

vC

15°

PROBLEM 2/198

2/199  At the instant depicted, assume that the particle P, 
which moves on a curved path, is 80 m from the pole O and 
has the velocity v and acceleration a as indicated. Deter-
mine the instantaneous values of ṙ, r̈, �̇�, �̈�, the n- and t- 
components of acceleration, and the radius of curvature 𝜌.

r

P

O

r =
 80 m

30°

30°

60°

a = 8 m/s2

v = 30 m/s

𝜃

𝜃

PROBLEM 2/199
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the particle is in the air. State the value for each compo-
nent at time t = 9 s.

x

r

r

y

O
55°

120 m/s

𝜃

𝜃

PROBLEM 2/207

*2/208 If all frictional effects are neglected, the expression 
for the angular acceleration of the simple pendulum is

𝜃 = 
g
l
 cos 𝜃, where g is the acceleration of gravity and l is 

the length of the rod OA. If the pendulum has a clockwise 
angular velocity 𝜃 = 2 rad ∕s when 𝜃 = 0 at t = 0, determine 
the time t′ at which the pendulum passes the vertical posi-
tion 𝜃 = 90°. The pendulum length is l = 0.6 m. Also plot the 
time t versus the angle 𝜃.

O

A

l

𝜃

PROBLEM 2/208

*2/209 A baseball is dropped from an altitude h = 200 ft 
and is found to be traveling at 85 ft ∕sec when it strikes the 
ground. In addition to gravitational acceleration, which 
may be assumed constant, air resistance causes a decelera-
tion component of magnitude kv2, where v is the speed and 
k is a constant. Determine the value of the coeffi cient k. 
Plot the speed of the baseball as a function of altitude y. If 
the baseball were dropped from a high altitude, but one at 
which g may still be assumed constant, what would be the 
terminal velocity vt? (The terminal velocity is that speed at 
which the acceleration of gravity and that due to air resis-
tance are equal and opposite, so that the baseball drops at 
a constant speed.) If the baseball were dropped from 
h = 200 ft, at what speed v′ would it strike the ground if 
air resistance were neglected?

*2/210 A ship with a total displacement of 16 000 metric 
tons (1 metric ton = 1000 kg) starts from rest in still water 
under a constant propeller thrust T = 250 kN. The ship 
develops a total resistance to motion through the water 
given by R = 4.50v2, where R is in kilonewtons and v is in 
meters per second. The acceleration of the ship is a = 
(T − R) ∕m, where m equals the mass of the ship in metric 
tons. Plot the speed v of the ship in knots as a function of 
the distance s in nautical miles which the ship goes for the 

2/204  The rod of the fi xed hydraulic cylinder is moving to 
the left with a constant speed vA =  25  mm∕s. Determine 
the corresponding velocity of slider B when sA =  425 mm. 
The length of the cord is 1600 mm, and the effects of the 
radius of the small pulley at A may be neglected.

vA

C

B

A

sA

250 mm

PROBLEM 2/204

*2/205  With all conditions of Prob. 2∕204 remaining the 
same, determine the acceleration of slider B at the instant 
when sA =  425 mm.

2/206 The radar tracking antenna oscillates about its 
vertical axis according to 𝜃 = 𝜃0  cos 𝜔t, where 𝜔 is the con-
stant circular frequency and 2𝜃0 is the double amplitude of 
oscillation. Simultaneously, the angle of elevation 𝜙 is in-
creasing at the constant rate �̇� = K . Determine the expres-
sion for the magnitude a of the acceleration of the signal 
horn (a) as it passes position A and (b) as it passes the top 
position B, assuming that 𝜃 = 0 at this instant.

B

A

z

b

2𝜃0

𝜃

𝜙

PROBLEM 2/206

*Computer-Oriented Problems
*2/207 A projectile is fi red with the given initial condi-
tions. Plot the r- and 𝜃-components of velocity and accelera-
tion as functions of time for the time period during which 
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of A with respect to B and plot the magnitudes of both 
these quantities over the time period 0 ≤ t ≤ 50 s as func-
tions of both time and displacement sB of the car. Deter-
mine the maximum and minimum values of both quanti-
ties and state the values of the time t and the displacement 
sB at which they occur.

1000 m

350 m

300 m

x

y

sB

B

A

PROBLEM 2/213

*2/214 A particle P is launched from point A with the ini-
tial conditions shown. If the particle is subjected to aerody-
namic drag, compute the range R of the particle and com-
pare this with the case in which aerodynamic drag is 
neglected. Plot the trajectories of the particle for both  cases. 
The acceleration due to aerodynamic drag has the form 
aD = −kv2et, where k is a positive constant, v is the particle 
speed, and et is the unit vector associated with the instan-
taneous velocity v of the particle. The unit vector et has the

form et =
vxi + vy j

√vx
2 + vy

2
, where vx and vy are the instantaneous

x- and y-components of particle velocity, respectively. Use 
the values v0 = 65 m ∕s, 𝜃 = 35°, and k = 4.0 × 10−3 m−1.

et

v0

aD

A

P

v

𝜃

PROBLEM 2/214

fi rst 5 nautical miles from rest. Find the speed after the 
ship has gone 1 nautical mile. What is the maximum speed 
which the ship can reach?

*2/211 At time t = 0, the 1.8-lb particle P is given an ini-
tial velocity v0 = 1 ft∕sec at the position 𝜃 = 0 and subse-
quently slides along the circular path of  radius r = 1.5 ft. 
Because of the viscous fl uid and the effect of gravitational 
acceleration, the tangential acceleration is

at = g cos 𝜃 −
k
m

 v, where the constant k = 0.2 lb-sec∕ft is a 

drag parameter. Determine and plot both 𝜃 and 𝜃 as func-
tions of the time t over the range 0 ≤ t ≤ 5 sec. Determine 
the maximum values of 𝜃 and �̇� and the corresponding val-
ues of t. Also determine the fi rst time at which 𝜃 = 90°.

r
P

O

𝜃

PROBLEM 2/211

*2/212 A projectile is launched from point A with speed 
v0 =  30 m∕s. Determine the value of the launch angle 𝛼  
which maximizes the range R indicated in the fi gure. De-
termine the corresponding value R.

A

B

v0 = 30 m/s

50 m
R

10 m

𝛼

PROBLEM 2/212

*2/213 A low-fl ying cropduster A is moving with a con-
stant speed of 40 m ∕s in the horizontal circle of radius 300 m. 
As it passes the twelve-o’clock position shown at time t = 0, 
car B starts from rest from the position shown and acceler-
ates along the straight road at the constant rate of 3 m∕s2 
until it reaches a speed of 30 m ∕s, after which it maintains 
that constant speed. Determine the velocity and  acceleration 
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Problems for Articles 3/1–3/4
Introductory Problems
3/1 The 50-kg crate is projected along the fl oor with an ini-
tial speed of 6 m ∕s at x = 0. The coeffi cient of kinetic fric-
tion is 0.40. Calculate the time required for the crate to 
come to rest and the corresponding distance x traveled.

50 kg

v0 = 6 m/s

x𝜇k = 0.40

PROBLEM 3/1

3/2 The 50-kg crate is stationary when the force P is ap-
plied. Determine the resulting acceleration of the crate if 
(a) P = 0, (b) P = 150 N, and (c) P = 300 N.

15°

P

𝜇s = 0.20
𝜇k = 0.15

50 kg

PROBLEM 3/2

3/3  The 180-lb man in the bosun’s chair exerts a pull 
of 50 lb on the rope for a short interval. Find his accelera-
tion. Neglect the mass of the chair, rope, and pulleys.

PROBLEM 3/3

3/4 The 10-Mg truck hauls the 20-Mg trailer. If the unit 
starts from rest on a level road with a tractive force of 20 kN 
between the driving wheels of the truck and the road, 
 compute the tension T in the horizontal drawbar and the 
acceleration a of the rig.

20 Mg 10 Mg

PROBLEM 3/4

Chapter 3
* Computer-oriented problem

 Diffi cult problem
 Student solution available in WileyPLUS
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3/8 Determine the steady-state angle 𝛼 if the constant 
force P is applied to the cart of mass M. The pendulum bob 
has mass m and the rigid bar of length L has negligible 
mass. Ignore all friction. Evaluate your expression for 
P = 0.

L

M

m

P

𝛼

𝜃

PROBLEM 3/8

3/9 The 300-Mg jet airliner has three engines, each of 
which produces a nearly constant thrust of 240 kN during 
the takeoff roll. Determine the length s of runway required 
if the takeoff speed is 220 km ∕  h. Compute s fi rst for an 
uphill takeoff direction from A to B and second for a down-
hill takeoff from B to A on the slightly inclined runway. 
Neglect air and rolling resistance.

Horizontal

0.5°

A
B

PROBLEM 3/9

3/10 For a given horizontal force P, determine the normal 
reaction forces at A and B. The mass of the cylinder is m 
and that of the cart is M. Neglect all friction.

m

A B
60°60°

M
P

PROBLEM 3/10

3/5 A 60-kg woman holds a 9-kg package as she stands 
within an elevator which briefl y accelerates upward at a 
rate of g ∕4. Determine the force R which the elevator fl oor 
exerts on her feet and the lifting force L which she exerts 
on the package during the acceleration interval. If the 
 elevator support cables suddenly and completely fail, what 
values would R and L acquire?

9 kg

60 kg

g
―
4

PROBLEM 3/5

3/6 During a brake test, the rear-engine car is stopped 
from an initial speed of 100 km ∕  h in a distance of 50 m. If 
it is known that all four wheels contribute equally to the 
braking force, determine the braking force F at each wheel. 
Assume a constant deceleration for the 1500-kg car.

50 m
v1 = 100 km/h v2 = 0

PROBLEM 3/6

3/7 A skier starts from rest on the 40° slope at time t = 0 and 
is clocked at t = 2.58 s as he passes a speed checkpoint 20 m 
down the slope. Determine the coeffi cient of kine tic friction 
between the snow and the skis. Neglect wind resistance.

40°

PROBLEM 3/7
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3/14 A cesium-ion engine for deep-space propulsion is de-
signed to produce a constant thrust of 2.5 N for long peri-
ods of time. If the engine is to propel a 70-Mg spacecraft on 
an interplanetary mission, compute the time t required for a 
speed increase from 40 000 km ∕  h to 65 000 km ∕  h. Also fi nd 
the distance s traveled during this interval. Assume that 
the spacecraft is moving in a remote region of space where 
the thrust from its ion engine is the only force acting on the 
spacecraft in the direction of its motion.

3/15  A worker develops a tension T in the cable as he 
attempts to move the 50-kg cart up the 20° incline. Deter-
mine the resulting acceleration of the cart if (a) T = 150 N 
and (b) T = 200 N. Neglect all friction, except that at the 
worker’s feet.

15°

T

50 kg

20°

PROBLEM 3/15

3/16  Determine the initial acceleration of the 15-kg block 
if (a) T =  23 N and (b) T =  26 N. The system is initially 
at rest with no slack in the cable, and the mass and friction 
of the pulleys are negligible.

30°

T

15 kg

𝜇s = 0.50
𝜇k = 0.40 

PROBLEM 3/16

3/17  The beam and attached hoisting mechanism together 
weigh 2400 lb with center of gravity at G. If the initial ac-
celeration a of point P on the hoisting cable is 20 ft∕sec2, 
calculate the corresponding reaction at the support A.

1000 lb

a
P

G

A

B

8ʹ

10ʹ

8ʹ

12ʺ

PROBLEM 3/17

3/11 The 750,000-lb jetliner A has four engines, each of 
which produces a nearly constant thrust of 40,000 lb 
during the takeoff roll. A small commuter aircraft B tax-
is toward the end of the runway at a constant speed vB = 
15 mi ∕  hr. Determine the velocity and acceleration which 
A appears to have relative to an observer in B 10 seconds 
after A begins its takeoff roll. Neglect air and rolling 
 resistance.

y

x

A

B

30°

sA

PROBLEM 3/11

Representative Problems
3/12  A train consists of a 400,000-lb locomotive and one 
hundred 200,000-lb hopper cars. If the locomotive exerts a 
friction force of 40,000 lb on the rails in starting the train 
from rest, compute the forces in couplers 1 and 100. As-
sume no slack in the couplers and neglect friction associ-
ated with the hopper cars.

100 99 98 3 2 1

PROBLEM 3/12

3/13  Determine the tension P in the cable which will 
give the 100-lb block a steady acceleration of 5 ft  ∕sec2 up the 
 incline.

30°

P

𝜇k = 0.25

30°

100 lb

PROBLEM 3/13
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3/21  Determine the vertical acceleration of the 60-lb 
cylinder for each of the two cases. Neglect friction and the 
mass of the pulleys.

60 lb 40 lb
40 lb

60 lb

(a) (b)

PROBLEM 3/21

3/22  The system is released from rest with the cable taut. 
For the friction coeffi cients 𝜇s = 0.25 and 𝜇k = 0.20, 
 calculate the acceleration of each body and the tension T in 
the cable. Neglect the small mass and friction of the pulleys.

B

20 kg
30°

A

60 kg
𝜇s, 𝜇k

PROBLEM 3/22

3/23 If the rider presses on the pedal with a force P = 
160 N as shown, determine the resulting forward accelera-
tion of the bicycle. Neglect the effects of the mass of rotat-
ing parts, and assume no slippage at the rear wheel. The 
radii of sprockets A and B are 45 mm and 90 mm, respec-
tively. The mass of the bicycle is 13 kg and that of the rider 
is 65 kg. Treat the rider as a particle moving with the bi-
cycle frame, and neglect drivetrain friction.

B

P

675
mm

175
mm

A

PROBLEM 3/23

3/18 A bicyclist fi nds that she descends the slope 𝜃1 = 3° at 
a certain constant speed with no braking or pedaling re-
quired. The slope changes fairly abruptly to 𝜃2 at point A. If 
the bicyclist takes no action but continues to coast, deter-
mine the acceleration a of the bike just after it passes point 
A for the conditions (a) 𝜃2 = 5° and (b) 𝜃2 = 0.

A𝜃1

v = constant

𝜃2

PROBLEM 3/18

3/19 The coeffi cient of static friction between the fl at bed 
of the truck and the crate it carries is 0.30. Determine the 
minimum stopping distance s which the truck can have 
from a speed of 70 km ∕  h with constant deceleration if the 
crate is not to slip forward.

3 m

PROBLEM 3/19

3/20 The winch takes in cable at the rate of 200 mm ∕s, and 
this rate is momentarily increasing at 500 mm ∕s each sec-
ond. Determine the tensions in the three cables. Neglect 
the weights of the pulleys.

100 kg

1

3

2

PROBLEM 3/20
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3/26 During its fi nal approach to the runway, the aircraft 
speed is reduced from 300 km ∕  h at A to 200 km ∕  h at B. 
Determine the net external aerodynamic force R which 
acts on the 200-Mg aircraft during this interval, and fi nd 
the components of this force which are parallel to and 
 normal to the fl ight path.

250 m

2 km

B

A

PROBLEM 3/26

3/27 A heavy chain with a mass 𝜌 per unit length is pulled 
by the constant force P along a horizontal surface consist-
ing of a smooth section and a rough section. The chain is 
initially at rest on the rough surface with x = 0. If the coef-
fi cient of kinetic friction between the chain and the rough 
surface is 𝜇k, determine the velocity v of the chain when 
x = L. The force P is greater than 𝜇k𝜌gL in order to initiate 
motion.

L

SmoothRough 𝜇k

P
x

PROBLEM 3/27

3/28 The sliders A and B are connected by a light rigid bar 
of length l = 20 in. and move with negligible friction in the 
slots, both of which lie in a horizontal plane. For the posi-
tion where xA = 16 in., the velocity of A is vA = 3 ft  ∕sec to 
the right. Determine the acceleration of each slider and the 
force in the bar at this instant.

P = 10 lb

4 lb

20ʺ

6 lb

B

A

xA

PROBLEM 3/28

3/24  The device shown is used as an accelerometer and 
consists of a 4-oz plunger A which defl ects the spring as the 
housing of the unit is given an upward acceleration a. Spec-
ify the necessary spring stiffness k which will permit the 
plunger to defl ect 1∕4 in. beyond the equilibrium position 
and touch the electrical contact when the steadily but slow-
ly increasing upward acceleration reaches 5g. Friction may 
be neglected.

ʺ1
—
4

A
a

PROBLEM 3/24

3/25  A jet airplane with a mass of 5 Mg has a touch-
down speed of 300 km ∕  h, at which instant the braking 
parachute is deployed and the power shut off. If the total 
drag on the aircraft varies with velocity as shown in the 
accompanying graph, calculate the distance x along the 
runway required to reduce the speed to 150 km ∕  h. Approx-
imate the variation of the drag by an equation of the form 
D = kv2, where k is a constant.

300200100
0

20

40

60

80

100

120

0
Velocity v, km/h

v

D
ra

g 
D

, k
N

PROBLEM 3/25
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right. Determine the acceleration of slider B and the force 
in the bar at this instant.

A

B

0.5 m

60°
30°

3 kg

2 kg

PROBLEM 3/32

3/33 The design of a lunar mission calls for a 2600-lb 
spacecraft to lift off from the surface of the moon and  travel 
in a straight line from point A and pass point B. If the space-
craft motor has a constant thrust of 560 lb, determine the 
speed of the spacecraft as it passes point B. Use Table D∕ 2 
and the gravitational law from Chapter 1 as needed.

R R

BAO

PROBLEM 3/33

3/34 The system is released from rest in the confi guration 
shown at time t = 0. Determine the time t when the block of 
mass m1 contacts the lower stop of the body of mass m2. 
Also, determine the corresponding distance s2 traveled by 
m2. Use the values m1 = 0.5 kg, m2 = 2 kg, 𝜇s = 0.25, 𝜇k = 
0.20, and d = 0.4 m.

20°

m2m1

d

𝜇s, 𝜇k

smooth

PROBLEM 3/34

3/29 The spring of constant k = 200 N∕ m is attached to both 
the support and the 2-kg cylinder, which slides freely on the 
horizontal guide. If a constant 10-N force is applied to the cyl-
inder at time t = 0 when the spring is undeformed and the 
system is at rest, determine the velocity of the cylinder when 
x = 40 mm. Also determine the maximum displacement of the 
cylinder.

200 N/m

Equilibrium
position

2 kg

x

10 N

PROBLEM 3/29

3/30 Determine the range of applied force P over which the 
block of mass m2 will not slip on the wedge-shaped block of 
mass m1. Neglect friction associated with the wheels of the 
tapered block.

𝜇s = 0.30
𝜇k = 0.25

20°

m1
P

m2

PROBLEM 3/30

3/31 A spring-loaded device imparts an initial vertical 
 velocity of 50 m ∕s to a 0.15-kg ball. The drag force on the 
ball is FD = 0.002v2, where FD is in newtons when the speed 
v is in meters per second. Determine the maximum alti-
tude h attained by the ball (a) with drag considered and 
(b) with drag neglected.

0.15 kg

v0 = 50 m/s

PROBLEM 3/31

3/32  The sliders A and B are connected by a light rigid bar 
and move with negligible friction in the slots, both of which 
lie in a horizontal plane. For the position shown, the hy-
draulic cylinder imparts a velocity and acceleration to 
 slider A of 0.4 m∕s and 2 m∕s2, respectively, both to the 
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3/36 Two iron spheres, each of which is 100 mm in diam-
eter, are released from rest with a center-to-center separa-
tion of 1 m. Assume an environment in space with no forces 
other than the force of mutual gravitational attraction and 
calculate the time t required for the spheres to contact each 
other and the absolute speed v of each sphere upon contact.

100 mm

1 m

PROBLEM 3/36

3/35 The rod of the fi xed hydraulic cylinder is moving to 
the left with a speed of 100 mm  ∕s, and this speed is momen-
tarily increasing at a rate of 400 mm  ∕s each second at the 
instant when sA = 425 mm. Determine the tension in the 
cord at that instant. The mass of slider B is 0.5 kg, the 
length of the cord is 1050 mm, and the effects of the radius 
and friction of the small pulley at A are negligible. Find 
results for cases (a) negligible friction at slider B and 
(b) 𝜇k = 0.40 at slider B. The action is in a vertical plane.

250 mm
C

B

A

0.5 kg

sA

PROBLEM 3/35
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Problems for Article 3/5
Introductory Problems
3/37  The small 0.6-kg block slides with a small amount of 
friction on the circular path of radius 3 m in the vertical 
plane. If the speed of the block is 5 m∕s as it passes point A 
and 4 m∕s as it passes point B, determine the normal force 
exerted on the block by the surface at each of these two 
 locations.

3 m

v

30°

B

A

PROBLEM 3/37

3/38 A 2-lb slider is propelled upward at A along the fi xed 
curved bar which lies in a vertical plane. If the slider is 
observed to have a speed of 10 ft∕sec as it passes position B, 
determine (a) the magnitude N of the force exerted by the 
fi xed rod on the slider and (b) the rate at which the speed 
of the slider is decreasing. Assume that friction is  negligible.

30°2ʹ

A

B

PROBLEM 3/38

3/39 If the 180-lb ski-jumper attains a speed of 80 ft  ∕sec as 
he approaches the takeoff position, calculate the magni-
tude N of the normal force exerted by the snow on his skis 
just before he reaches A.

30°

150ʹ

A

PROBLEM 3/39

3/40 The 120-g slider has a speed v = 1.4 m  ∕s as it passes 
point A of the smooth guide, which lies in a horizontal 
plane. Determine the magnitude R of the force which the 
guide exerts on the slider (a) just before it passes point A of 
the guide and (b) as it passes point B.

A

B

200
mm

v

PROBLEM 3/40

3/41 A jet transport plane fl ies in the trajectory shown in 
order to allow astronauts to experience the “weightless” 
condition similar to that aboard orbiting spacecraft. If the 
speed at the highest point is 600 mi ∕  hr, what is the radius 
of curvature 𝜌 necessary to exactly simulate the orbital 
“free-fall” environment?

PROBLEM 3/41
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3/45 A Formula-1 car encounters a hump which has a cir-
cular shape with smooth transitions at both ends. (a) What 
speed vB will cause the car to lose contact with the road at 
the topmost point B? (b) For a speed vA = 190 km ∕  h, what 
is the normal force exerted by the road on the 640-kg car as 
it passes point A?

𝜌 = 300 m10°

A
B

PROBLEM 3/45

3/46  A “swing ride” is shown in the fi gure. Calculate the 
necessary angular velocity 𝜔 for the swings to assume an 
angle 𝜃 =  35° with the vertical. Neglect the mass of the 
cables and treat the chair and person as one particle.

3.2 m

5 m𝜃

𝜔

PROBLEM 3/46

3/47 A 180-lb snowboarder has speed v = 15 ft  ∕sec when in 
the position shown on the halfpipe. Determine the normal 
force on his snowboard and the magnitude of his total ac-
celeration at the instant depicted. Use a value 𝜇k = 0.10 for 
the coeffi cient of kinetic friction between the snowboard 
and the surface. Neglect the weight of the snowboard and 
assume that the mass center G of the snowboarder is 3 feet 
from the surface of the snow.

30°

22ʹ
v

22ʹ

G

PROBLEM 3/47

3/42 In the design of a space station to operate outside the 
earth’s gravitational fi eld, it is desired to give the structure 
a rotational speed N which will simulate the effect of the 
earth’s gravity for members of the crew. If the centers of the 
crew’s quarters are to be located 12 m from the axis of rota-
tion, calculate the necessary rotational speed N of the 
space station in revolutions per minute.

12 m

N

PROBLEM 3/42

3/43 Determine the speed which the 630-kg four-man bob-
sled must have in order to negotiate the turn without reli-
ance on friction. Also fi nd the net normal force exerted on 
the bobsled by the track.

30°

GG
 𝜌 = 50 m

PROBLEM 3/43

3/44 The hollow tube is pivoted about a horizontal axis 
through point O and is made to rotate in the vertical plane 
with a constant counterclockwise angular velocity 𝜃 = 
3 rad ∕sec. If a 0.2-lb particle is sliding in the tube toward O 
with a velocity of 6 ft  ∕sec relative to the tube when the posi-
tion 𝜃 = 30° is passed, calculate the magnitude N of the 
normal force exerted by the wall of the tube on the particle 
at this instant.

𝜃
O

PROBLEM 3/44
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v

100 ft

PROBLEM 3/50

3/51 The car of Prob. 3 ∕50 is traveling at 25 mi ∕  hr when 
the driver applies the brakes, and the car continues to 
move along the circular path. What is the maximum decel-
eration possible if the tires are limited to a total horizontal 
friction force of 2400 lb?

Representative Problems
3/52 The fl atbed truck carries a large section of circular 
pipe secured only by the two fi xed blocks A and B of height 
h. The truck is in a left turn of radius 𝜌. Determine the 
maximum speed for which the pipe will be restrained. Use 
the values 𝜌 = 60 m, h = 0.1 m, and R = 0.8 m.

R

hBA

𝜌

PROBLEM 3/52

3/48 A child twirls a small 50-g ball attached to the end of 
a 1-m string so that the ball traces a circle in a vertical 
plane as shown. What is the minimum speed v which the 
ball must have when in position 1? If this speed is  maintained 
throughout the circle, calculate the tension T in the string 
when the ball is in position 2. Neglect any small motion of 
the child’s hand.

1

2

1 m

PROBLEM 3/48

3/49 A small object A is held against the vertical side of 
the rotating cylindrical container of radius r by centrifugal 
action. If the coeffi cient of static friction  between the object 
and the container is 𝜇s,  determine the expression for the 
minimum rotational rate 𝜃 = 𝜔 of the container which will 
keep the object from slipping down the vertical side.

r

A
𝜃 = 𝜔
⋅

PROBLEM 3/49

3/50 The standard test to determine the maximum lateral 
acceleration of a car is to drive it around a 200-ft-diameter 
circle painted on a level asphalt surface. The driver slowly 
increases the vehicle speed until he is no longer able to 
keep both wheel pairs straddling the line. If this maximum 
speed is 35 mi ∕  hr for a 3000-lb car, determine its lateral 
acceleration capability an in g’s and compute the magni-
tude F of the total friction force exerted by the pavement on 
the car tires.
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B

A

1000 m

600 km/h

PROBLEM 3/55

3/56 A 0.2-kg particle P is constrained to move along the 
vertical-plane circular slot of radius r = 0.5 m and is con-
fi ned to the slot of arm OA, which rotates about a horizon-
tal axis through O with a constant angular rate 𝛺 = 
3 rad ∕s. For the instant when 𝛽 = 20°, determine the force 
N exerted on the particle by the circular constraint and the 
force R exerted on it by the slotted arm.

r
O

Oʹ

P
A

𝛽

𝛺

PROBLEM 3/56

3/57  A fl atbed truck going 100 km∕h rounds a horizontal 
curve of 300-m radius inwardly banked at 10°. The coeffi -
cient of static friction between the truck bed and the 200-
kg crate it carries is 0.70. Calculate the friction force F act-
ing on the crate.

10°

𝜌

PROBLEM 3/57

3/53 The concept of variable banking for racetrack turns 
is shown in the fi gure. If the two radii of curvature are 
𝜌A = 300 ft and 𝜌B = 320 ft for cars A and B, respectively, 
determine the maximum speed for each car. The coeffi cient 
of static friction is 𝜇s = 0.90 for both cars.

A

B

27°

22°

PROBLEM 3/53

3/54 The particle of mass m = 0.2 kg travels with constant 
speed v in a circular path around the conical body. Deter-
mine the tension T in the cord. Neglect all friction, and use 
the values h = 0.8 m and v = 0.6 m ∕s. For what value of v 
does the normal force go to zero?

h

z

x

1.25h

m

T

y

h
―
2

O

h
―
2

PROBLEM 3/54

3/55  A pilot fl ies an airplane at a constant speed of 600 
km∕h in the vertical circle of radius 1000 m. Calculate the 
force exerted by the seat on the 90-kg pilot at point A and 
at point B.
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L

O

A
B

m

75°𝜃

PROBLEM 3/60

3/61 Determine the altitude h (in kilometers) above the 
surface of the earth at which a satellite in a circular orbit 
has the same period, 23.9344 h, as the earth’s absolute ro-
tation. If such an orbit lies in the equatorial plane of the 
earth, it is said to be geosynchronous, because the satellite 
does not appear to move relative to an earth-fi xed observer.

3/62 The quarter-circular slotted arm OA is rotating about 
a horizontal axis through point O with a constant counter-
clockwise angular velocity 𝛺 = 7 rad ∕sec. The 0.1-lb parti-
cle P is epoxied to the arm at the position 𝛽 = 60°. Deter-
mine the tangential force F parallel to the slot which the 
epoxy must support so that the particle does not move 
along the slot. The value of R = 1.4 ft.

O

R

A

P

𝛽

𝛺

PROBLEM 3/62

3/63 A 2-kg sphere S is being moved in a vertical plane by 
a robotic arm. When the angle 𝜃 is 30°, the angular velocity 
of the arm about a horizontal axis through O is 50 deg ∕s 
clockwise and its angular acceleration is 200 deg ∕s2 coun-
terclockwise. In addition, the hydraulic element is being 
shortened at the constant rate of 500 mm ∕s. Determine the 
necessary minimum gripping force P if the coeffi cient of 
static friction between the sphere and the gripping  surfaces 
is 0.50. Compare P with the minimum gripping force Ps 
required to hold the sphere in static equilibrium in the 30° 
position.

3/58 The hollow tube assembly rotates about a vertical axis 
with angular velocity 𝜔 = 𝜃 = 4 rad ∕s and �̇� =  𝜃 = −2 
rad ∕s2. A small 0.2-kg slider P moves inside the horizontal 
tube portion under the control of the string which passes 
out the bottom of the assembly. If r = 0.8 m, ṙ = −2 m ∕s, 
and r̈ = 4 m ∕s2, determine the tension T in the string and 
the horizontal force F𝜃 exerted on the slider by the tube.

𝜔

P

r

T

PROBLEM 3/58

3/59  The slotted arm OA rotates about a fi xed axis 
through O. At the instant under consideration, 𝜃 = 30°, 
𝜃 = 45 deg ∕s, and 𝜃 = 20 deg ∕s2. Determine the forces ap-
plied by both arm OA and the sides of the slot to the 0.2-kg 
slider B. Neglect all friction, and let L = 0.6 m. The motion 
occurs in a vertical plane.

L

O

A
B

m

𝜃

PROBLEM 3/59

3/60 The confi guration of Prob. 3 ∕ 59 is now modifi ed as 
shown in the fi gure. Use all the data of Prob. 3 ∕ 59 and de-
termine the forces applied to the slider B by both arm OA 
and the sides of the slot. Neglect all friction.
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T

R

Vertical

30°

PROBLEM 3/65

3/66 The robot arm is elevating and extending simultane-
ously. At a given instant, 𝜃 = 30°, 𝜃 = 40 deg ∕s, 𝜃 = 120 
deg ∕s2, l = 0.5 m, l̇ = 0.4 m ∕s, and l̈ = −0.3 m  ∕s2. Compute 
the radial and transverse forces Fr and F𝜃 that the arm must 
exert on the gripped part P, which has a mass of 1.2 kg. Com-
pare with the case of static equilibrium in the same position.

𝜃

𝜃

y

x

l

0.75 m

O

P
1.2 kg

r

PROBLEM 3/66

3/67 The small object is placed on the inner surface of the 
conical dish at the radius shown. If the coeffi cient of static 
friction between the object and the conical surface is 0.30, 
for what range of angular velocities 𝜔 about the vertical 
axis will the block remain on the dish without slipping? 
Assume that speed changes are made slowly so that any 
angular acceleration may be neglected.

0.2 m

30°

m𝜔

PROBLEM 3/67

P

P

S

S

O

1 m

𝜃

PROBLEM 3/63

3/64  The cars of an amusement park ride have a 
speed vA = 22 m ∕s at A and a speed vB = 12 m ∕s at B. If a 
75-kg rider sits on a spring scale (which registers the nor-
mal force exerted on it), determine the scale readings as 
the car passes points A and B. Assume that the person’s 
arms and legs do not support appreciable force.

40 m

A

B

20 m

vA

vB

PROBLEM 3/64

3/65 The rocket moves in a vertical plane and is being 
 propelled by a thrust T of 32 kN. It is also subjected to an 
atmospheric resistance R of 9.6 kN. If the rocket has a 
 velocity of 3 km  ∕s and if the gravitational acceleration is 
6 m  ∕s2 at the altitude of the rocket, calculate the radius of 
curvature 𝜌 of its path for the position described and the 
time-rate-of-change of the magnitude v of the velocity of 
the rocket. The mass of the rocket at the instant considered 
is 2000 kg.
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A B
C

100ʹ

𝜌 = 250ʹ

30°

PROBLEM 3/70

3/71 A small coin is placed on the horizontal surface of the 
rotating disk. If the disk starts from rest and is given a 
constant angular acceleration 𝜃 = 𝛼, determine an expres-
sion for the number of revolutions N through which the 
disk turns before the coin slips. The coeffi cient of static fric-
tion between the coin and the disk is 𝜇s.

θ
⋅⋅

Vertical

r

PROBLEM 3/71

3/72 The particle P is released at time t = 0 from the po-
sition r = r0 inside the smooth tube with no velocity rela-
tive to the tube, which is driven at the constant angular 
 velocity 𝜔0 about a vertical axis. Determine the radial ve-
locity vr, the radial position r, and the transverse velocity 
v𝜃 as functions of time t. Explain why the radial velocity 
increases with time in the absence of radial forces. Plot the 
absolute path of the particle during the time it is inside the 
tube for r0 = 0.1 m, l = 1 m, and 𝜔0 = 1 rad ∕s.

r

l

P

r0

𝜔0

PROBLEM 3/72

3/68 The spring-mounted 0.8-kg collar A oscillates along 
the horizontal rod, which is rotating at the constant angu-
lar rate 𝜃 = 6 rad ∕s. At a certain instant, r is increasing at 
the rate of 800 mm ∕s. If the coeffi cient of kinetic friction 
between the collar and the rod is 0.40, calculate the friction 
force F exerted by the rod on the collar at this instant.

Vertical

A

r 𝜃
⋅

PROBLEM 3/68

3/69  The slotted arm revolves in the horizontal plane 
about the fi xed vertical axis through point O. The 3-lb 
 slider C is drawn toward O at the constant rate of 2 in. ∕sec 
by pulling the cord S. At the instant for which r = 9 in., the 
arm has a counterclockwise angular velocity 𝜔 = 6 rad ∕sec 
and is slowing down at the rate of 2 rad ∕sec2. For this in-
stant, determine the tension T in the cord and the magni-
tude N of the force exerted on the slider by the sides of the 
smooth radial slot. Indicate which side, A or B, of the slot 
contacts the slider.

B

C
A

r

O

S

𝜔

PROBLEM 3/69

3/70  The 3000-lb car is traveling at 60 mi∕hr on the 
straight portion of the road, and then its speed is reduced 
uniformly from A to C, at which point it comes to rest. Com-
pute the magnitude F of the total friction force exerted by 
the road on the car (a) just before it passes point B, (b) just 
after it passes point B, and (c) just before it stops at 
point C.
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3/75 The slotted arm OB rotates in a horizontal plane 
about point O of the fi xed circular cam with constant angu-
lar velocity 𝜃 = 15 rad ∕s. The spring has a stiffness of 
5 kN∕ m and is uncompressed when 𝜃 = 0. The smooth 
 roller A has a mass of 0.5 kg. Determine the normal force N 
which the cam exerts on A and also the force R exerted on 
A by the sides of the slot when 𝜃 = 45°. All surfaces are 
smooth. Neglect the small diameter of the roller.

0.1
m

0.1
m

B

A

O

𝜃

PROBLEM 3/75

3/76 A small collar of mass m is given an initial velocity 
of magnitude v0 on the horizontal circular track fabricated 
from a slender rod. If the coeffi cient of kinetic friction is 𝜇k, 
determine the distance traveled before the collar comes to 
rest. (Hint: Recognize that the friction force depends on the 
net normal force.)

v0

r m

PROBLEM 3/76

3/73  A small vehicle enters the top A of the circular 
path with a horizontal velocity v0 and gathers speed as it 
moves down the path. Determine an expression for the 
angle 𝛽 which locates the point where the vehicle leaves 
the path and becomes a projectile. Evaluate your expres-
sion for v0 = 0. Neglect friction and treat the vehicle as a 
particle.

𝛽

v0 A

R
B

PROBLEM 3/73

3/74 The spacecraft P is in the elliptical orbit shown. At the 
instant represented, its speed is v = 13,244 ft  ∕sec. Deter-
mine the corresponding values of ṙ, 𝜃, r̈, and 𝜃. Use g = 32.23 
ft  ∕sec2 as the acceleration of gravity on the surface of the 
earth and R = 3959 mi as the radius of the earth.

v

10,450 mi

200 mi22,300 mi

P

r

O

𝜃

PROBLEM 3/74
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Problems for Article 3/6
Introductory Problems
3/77 The small 0.2-kg slider is known to move from posi-
tion A to position B along the vertical-plane slot. Deter-
mine (a) the work done on the body by its weight and 
(b) the work done on the body by the spring. The distance R = 
0.8 m, the spring modulus k = 180 N∕ m, and the un-
stretched length of the spring is 0.6 m.

R

B

AO
k

R
―
2

PROBLEM 3/77

3/78 The small body has a speed vA = 5 m∕s at point A. Ne-
glecting friction, determine its speed vB at point B after it 
has risen 0.8 m. Is knowledge of the shape of the track 
 necessary?

5 m/s0.8 m B

A

PROBLEM 3/78

3/79 In the design of a spring bumper for a 3500-lb car, it is 
desired to bring the car to a stop from a speed of 5 mi ∕  hr in 
a distance equal to 6 in. of spring deformation. Specify the 
required stiffness k for each of the two springs behind the 
bumper. The springs are undeformed at the start of impact.

5 mi/hr

PROBLEM 3/79

3/80 The 2-kg collar is at rest in position A when the con-
stant force P is applied as shown. Determine the speed of 
the collar as it passes position B if (a) P = 25 N and (b) P = 
40 N. The curved rod lies in a vertical plane, and friction is 
negligible.

35°

35°

0.8 m

A

B

P

P

1.6 m

PROBLEM 3/80

3/81 The 64.4-lb crate slides down the curved path in the 
vertical plane. If the crate has a velocity of 3 ft∕sec down 
the incline at A and a velocity of 25 ft∕sec at B, compute the 
work Uƒ done on the crate by friction during the motion 
from A to B.

20ʹ

3 ft/sec

A

B 25 ft/sec

30ʹ

PROBLEM 3/81
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3/85 The 30-lb collar A is released from rest in the position 
shown and slides with negligible friction up the fi xed rod 
inclined 30° from the horizontal under the action of a 
 constant force P = 50 lb applied to the cable. Calculate the 
required stiffness k of the spring so that its maximum 
 defl ection equals 6 in. The position of the small pulley at B 
is fi xed.

P

B

30ʺ

40ʺ

6ʺ

A

k

30°

PROBLEM 3/85

3/86 Each of the two systems is released from rest. 
 Calculate the velocity v of each 50-lb cylinder after the 
 40-lb cylinder has dropped 6 ft. The 20-lb cylinder of case 
(a) is replaced by a 20-lb force in case (b).

50
lb

40
lb

20
lb

50
lb

40
lb

20 lb

(b)(a)

PROBLEM 3/86

3/82 The man and his bicycle together weigh 200 lb. What 
power P is the man developing in riding up a 5-percent 
grade at a constant speed of 15 mi ∕  hr?

5
100

15 mi/hr

PROBLEM 3/82

3/83 The car is moving with a speed v0 = 65 mi ∕  hr up the 
6-percent grade, and the driver applies the brakes at point 
A, causing all wheels to skid. The coeffi cient of kinetic fric-
tion for the rain-slicked road is 𝜇k = 0.60. Determine the 
stopping distance sAB. Repeat your calculations for the case 
when the car is moving downhill from B to A.

v0

A
B

s

6
100

PROBLEM 3/83

3/84 The 2-kg collar is released from rest at A and slides 
down the inclined fi xed rod in the vertical plane. The coef-
fi cient of kinetic friction is 0.40. Calculate (a) the velocity v 
of the collar as it strikes the spring and (b) the maximum 
defl ection x of the spring.

0.5 m

2 kg

A

k = 1.6 kN/m

𝜇k = 0.40

60°

PROBLEM 3/84
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3/90 The position vector of a particle is given by r = 8ti + 
1.2t2j − 0.5(t3 − 1)k, where t is the time in seconds from the 
start of the motion and where r is expressed in meters. For 
the condition when t = 4 s, determine the power P devel-
oped by the force F = 40i − 20j − 36k N which acts on the 
particle.

3/91 An escalator handles a steady load of 30 people per 
minute in elevating them from the fi rst to the second fl oor 
through a vertical rise of 24 ft. The average person weighs 
140 lb. If the motor which drives the unit delivers 4 hp, 
calculate the mechanical effi ciency e of the system.

24ʹ

PROBLEM 3/91

3/92 A 3600-lb car travels up the 6-percent incline shown. 
The car is subjected to a 60-lb aerodynamic drag force and 
a 50-lb force due to all other factors such as rolling resis-
tance. Determine the power output required at a speed of 
65 mi ∕  hr if (a) the speed is constant and (b) the speed is 
increasing at the rate of 0.05g.

100
6

v = 65 mi/hr

PROBLEM 3/92

3/93  The resistance R to penetration x of a 0.25-kg projec-
tile fi red with a velocity of 600 m∕s into a certain block of 
fi brous material is shown in the graph. Represent this re-
sistance by the dashed line and compute the velocity v 
of the projectile for the instant when x = 25 mm if the 
 projectile is brought to rest after a total penetration of 
75 mm.

x
R, N

x, mm
0 75

0

Rmax

PROBLEM 3/93

3/87 The 0.8-kg collar travels with negligible friction on 
the vertical rod under the action of the constant force P = 
20 N. If the collar starts from rest at A, determine its speed 
as it passes point B. The value of R = 1.6 m.

R
―
2

P

m
A

C
B

R

PROBLEM 3/87

3/88 The 120-lb woman jogs up the fl ight of stairs in 5 sec-
onds. Determine her average power output. Convert all 
given information to SI units and repeat your calculation.

9ʹ

PROBLEM 3/88

Representative Problems
3/89 The 4-kg ball and the attached light rod rotate in the 
vertical plane about the fi xed axis at O. If the assembly is 
released from rest at 𝜃 = 0 and moves under the action of 
the 60-N force, which is maintained normal to the rod, de-
termine the velocity v of the ball as 𝜃 approaches 90°. Treat 
the ball as a particle.

O
A

4 kg

60 N

200
mm

300
mm

𝜃

PROBLEM 3/89
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B A

100 kg
300 kg

2 m/s

PROBLEM 3/96

3/97 A 90-lb boy starts from rest at the bottom A of a 
10-percent incline and increases his speed at a constant 
rate to 5 mi ∕  hr as he passes B, 50 ft along the incline from 
A. Determine his power output as he approaches B.

A

B

100

10

50ʹ

PROBLEM 3/97

3/98 A projectile is launched from the north pole with an 
initial vertical velocity v0. What value of v0 will result in a 
maximum altitude of R∕2? Neglect aerodynamic drag and 
use g =  9.825 m∕s2 as the surface-level acceleration due 
to gravity.

R

v0

PROBLEM 3/98

3/94 The collar of mass m is released from rest while in 
position A and subsequently travels with negligible friction 
along the vertical-plane circular guide. Determine the nor-
mal force (magnitude and direction) exerted by the guide 
on the  collar (a) just before the collar passes point B, 
(b) just after the collar passes point B (i.e., the collar is now 
on the curved portion of the guide), (c) as the collar passes 
point C, and (d) just before the collar passes point D. Use 
the values m = 0.4 kg, R = 1.2 m, and k = 200 N∕m. The 
unstretched length of the spring is 0.8R.

m A

B

C

D
O

k
R/2

R

PROBLEM 3/94

3/95  A nonlinear automobile spring is tested by hav-
ing a 150-lb cylinder impact it with a speed v0 = 12 ft  ∕sec. 
The spring resistance is shown in the  accompanying graph. 
Determine the maximum  defl ection 𝛿 of the spring with 
and without the nonlinear term present. The small plat-
form at the top of the spring has negligible weight.

150 lb

Deflection 𝛿, in.

Force F, lb

v0

Nonlinear,
F = 400x + 20x2

Linear,
F = 400x

𝛿

0
0

PROBLEM 3/95

3/96 The motor unit A is used to elevate the 300-kg cylin-
der at a constant rate of 2 m ∕s. If the power meter B 
 registers an electrical input of 2.20 kW, calculate the com-
bined electrical and mechanical effi ciency e of the system.
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3 m

(Vertical scale exaggerated)

150 m
x

A
B

C

PROBLEM 3/102

3/103 The system is released from rest with no slack in 
the cable and with the spring unstretched. Determine the 
distance s traveled by the 4-kg cart before it comes to rest 
(a) if m approaches zero and (b) if m = 3 kg. Assume no 
mechanical interference and no friction, and state whether 
the distance traveled is up or down the incline.

m

25°

4 kg
k = 150 N/m

PROBLEM 3/103

3/104 The system is released from rest with no slack in the 
cable and with the spring stretched 200 mm. Determine 
the distance s traveled by the 4-kg cart before it comes to 
rest (a) if m approaches zero and (b) if m = 3 kg. Assume no 
mechanical interference and no friction, and state whether 
the distance traveled is up or down the incline.

25°

4 kg
k = 150 N/m

m

PROBLEM 3/104

3/105 It is experimentally determined that the drive 
wheels of a car must exert a tractive force of 560 N on the 
road surface in order to maintain a steady vehicle speed of 
90 km ∕  h on a horizontal road. If it is known that the over-
all drivetrain effi ciency is em = 0.70, determine the required 
motor power output P.

3/99 Two 425,000-lb locomotives pull fi fty 200,000-lb coal 
hoppers. The train starts from rest and accelerates uni-
formly to a speed of 40 mi ∕  hr over a distance of 8000 ft on 
a level track. The constant rolling resistance of each car is 
0.005 times its weight. Neglect all other retarding forces 
and assume that each locomotive contributes equally to 
the tractive force. Determine (a) the tractive force exerted 
by each locomotive at 20 mi ∕  hr, (b) the power required 
from each locomotive at 20 mi ∕  hr, (c) the power required 
from each locomotive as the train speed approaches 
40 mi ∕  hr, and (d) the power required from each locomotive 
if the train cruises at a steady 40 mi ∕  hr.

50 coal hoppers

PROBLEM 3/99

3/100 A car with a mass of 1500 kg starts from rest at 
the bottom of a 10-percent grade and acquires a speed of 
50 km ∕  h in a distance of 100 m with constant acceleration 
up the grade. What is the power P delivered to the drive 
wheels by the engine when the car reaches this speed?

3/101 The small slider of mass m is released from rest 
while in position A and then slides along the vertical-plane 
track. The track is smooth from A to D and rough (coeffi -
cient of kinetic friction 𝜇k) from point D on. Determine 
(a) the normal force NB exerted by the track on the slider 
just after it passes point B, (b) the normal force NC exerted 
by the track on the slider as it passes the bottom point C, 
and (c) the distance s traveled along the incline past point 
D before the slider stops.

2R

30°

A

B

s

C

D

m

R

𝜇k

PROBLEM 3/101

3/102 In a railroad classifi cation yard, a 68-Mg freight car 
moving at 0.5 m ∕s at A encounters a retarder section of 
track at B which exerts a retarding force of 32 kN on the 
car in the direction opposite to motion. Over what distance 
x should the retarder be activated in order to limit the 
speed of the car to 3 m ∕s at C?
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3/109  The two 0.2-kg sliders A and B are connected by a 
light rigid bar of length L =  0.5 m. If the system is re-
leased from rest while in the position shown with the 
spring undeformed, determine the maximum compression  
𝛿 of the spring. Note the presence of a constant 0.14-MPa 
air pressure acting on one 500-mm2 side of slider A. Neglect 
friction. The motion occurs in a vertical plane.

B

A

60°
30°

k = 1.2 kN/m

L

PROBLEM 3/109

3/110 Extensive testing of an experimental 2000-lb auto-
mobile reveals the aerodynamic drag force FD and the total 
nonaerodynamic rolling-resistance force FR to be as shown 
in the plot. Determine (a) the power required for steady 
speeds of 30 and 60 mi ∕  hr on a level road, (b) the power 
required for a steady speed of 60 mi ∕  hr both up and down 
a 6-percent incline, and (c) the steady speed at which no 
power is required going down the 6-percent incline.

0

20

40

60

80

0 20 40 60 80

Speed v, mi/hr

Force, lb

FR (constant)

FD (parabolic)

PROBLEM 3/110

3/106 Once under way at a steady speed, the 1000-kg ele-
vator A rises at the rate of 1 story (3 m) per second. Determine 
the power input Pin into the motor unit M if the combined 
mechanical and electrical effi ciency of the system is e = 0.8.

A

M

PROBLEM 3/106

3/107 Calculate the horizontal velocity v with which the 
48-lb carriage must strike the spring in order to compress 
it a maximum of 4 in. The spring is known as a “hardening” 
spring, since its stiffness increases with defl ection as 
shown in the accompanying graph.

x

48 lb

F, lb

60x

3x2

x, in.
x 40

0

PROBLEM 3/107

3/108 The 6-kg cylinder is released from rest in the posi-
tion shown and falls on the spring, which has been initially 
precompressed 50 mm by the light strap and restraining 
wires. If the stiffness of the spring is 4 kN∕m, compute the 
additional defl ection 𝛿 of the spring produced by the falling 
cylinder before it rebounds.

100 mm

6 kg

𝛿

PROBLEM 3/108
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Introductory Problems
3/111  The spring has an unstretched length of 0.4 m 
and a stiffness of 200 N∕m. The 3-kg slider and attached 
spring are released from rest at A and move in the vertical 
plane. Calculate the velocity v of the slider as it reaches B 
in the absence of friction.

0.6 m

A

B

0.8 m

PROBLEM 3/111

3/112 The 1.2-kg slider is released from rest in position A 
and slides without friction along the vertical-plane guide 
shown. Determine (a) the speed vB of the slider as it passes 
position B and (b) the maximum defl ection 𝛿 of the spring.

3 m

1.2 kg

k = 24 kN/m

E

DC

B

A

1.5 m
30°

30°

PROBLEM 3/112

3/113 The system is released from rest with the spring ini-
tially stretched 3 in. Calculate the velocity v of the cylinder 
after it has dropped 0.5 in. The spring has a stiffness of 
6 lb ∕in. Neglect the mass of the small pulley.

Problems for Article 3/7

k = 6 lb/in.

100 lb

PROBLEM 3/113

3/114 The 3-lb collar is released from rest at A and slides 
freely down the inclined rod. If the spring constant k = 
4 lb ∕ft and the unstretched length of the spring is 50 in., 
 determine the speed of the collar as it passes point B.

O

A

B

k

3 lb

40ʺ

20ʺ

36ʺ

PROBLEM 3/114

3/115 Determine the unstretched spring length which 
would cause the 3-lb collar of the previous problem to have 
no speed as it arrives at position B. All other conditions of 
the previous problem remain the same.
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O

10 lb

5 lb

12ʺ

k = 200 lb/in.

18ʺ

𝜃

PROBLEM 3/118

3/119 The two springs, each of stiffness k = 1.2 kN∕m, are 
of equal length and undeformed when 𝜃 = 0. If the mech-
anism is released from rest in the  position 𝜃 = 20°, deter-
mine its angular velocity 𝜃 when 𝜃 = 0. The mass m of each 
sphere is 3 kg. Treat the spheres as particles and neglect 
the masses of the light rods and springs.

O

k k

m

m

m
0.25 m

𝜃

PROBLEM 3/119

3/120 The particle of mass m = 1.2 kg is attached to the 
end of the light rigid bar of length L = 0.6 m. The system is 
released from rest while in the horizontal position shown, 
at which the torsional spring is undefl ected. The bar is then 
observed to rotate 30° before stopping momentarily. (a) De-
termine the value of the torsional spring constant kT. 
(b) For this value of kT, determine the speed v of the parti-
cle when 𝜃 = 15°.

kT
mL

O

𝜃

PROBLEM 3/120

3/116 A bead with a mass of 0.25 kg is released from rest 
at A and slides down and around the fi xed smooth wire. 
Determine the force N between the wire and the bead as it 
passes point B.

B

A

0.6 m

45°

0.15 m

PROBLEM 3/116

3/117 The 0.8-kg particle is attached to the system of 
two light rigid bars, all of which move in a vertical plane. 
The spring is compressed an amount b ∕2 when 𝜃 = 0, and 
the length b = 0.30 m. The system is released from rest 
in a position slightly above that for 𝜃 = 0. (a) If the max-
imum value of 𝜃 is observed to be 50°, determine the 
spring constant k. (b) For k = 400 N∕m, determine the 
speed v of the particle when 𝜃 = 25°. Also fi nd the corre-
sponding value of 𝜃.

𝜃

CO

B

A

k
b

b

b

m

PROBLEM 3/117

3/118  The light rod is pivoted at O and carries the 5- and 
10-lb particles. If the rod is released from rest at 𝜃 =  60° 
and swings in the vertical plane, calculate (a) the velocity 
v of the 5-lb particle just before it hits the spring in the 
dashed position and (b) the maximum compression x of 
the spring. Assume that x is small so that the position of 
the rod when the spring is compressed is essentially 
 horizontal.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


P-64  Problems for Article 3/7

3/123 The two wheels consisting of hoops and spokes of 
negligible mass rotate about their respective centers and 
are pressed together suffi ciently to prevent any slipping. 
The 3-lb and 2-lb eccentric masses are mounted on the rims 
of the wheels. If the wheels are given a slight nudge from 
rest in the equilibrium positions shown, compute the 
 angular velocity 𝜃 of the larger of the two wheels when it 
has revolved through a quarter of a revolution and put the 
eccentric masses in the dashed positions shown. Note that 
the angular velocity of the small wheel is twice that of the 
large wheel. Neglect any friction in the wheel bearings.

18ʺ 9ʺ

3 lb

2 lb

θ
⋅

PROBLEM 3/123

3/124 The slider of mass m is released from rest in  position 
A and slides without friction along the  vertical-plane guide 
shown. Determine the height h such that the normal force 
exerted by the guide on the slider is zero as the slider 
 passes point C. For this value of h, determine the normal 
force as the slider passes point B.

A

B

C

h

m

R

R

PROBLEM 3/124

Representative Problems
3/121 The system is released from rest with the spring ini-
tially stretched 2 in. Calculate the velocity of the 100-lb 
cylinder after it has dropped 6 in. Also determine the max-
imum drop distance of the cylinder. Neglect the mass and 
friction of the pulleys.

k = 5 lb/in.

100 lb

PROBLEM 3/121

3/122  The collar has a mass of 2 kg and is attached to the 
light spring, which has a stiffness of 30 N∕m and an un-
stretched length of 1.5 m. The collar is released from rest at 
A and slides up the smooth rod under the action of the con-
stant 50-N force. Calculate the velocity v of the collar as it 
passes position B.

A

B

2 m

k = 30 N/m

50 N

30°

1.5 m

PROBLEM 3/122
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200 mm60°

250 mm

m

m
A

O

B

PROBLEM 3/127

3/128 Upon its return voyage from a space mission, the 
spacecraft has a velocity of 24 000 km ∕h at point A, which is 
7000 km from the center of the earth. Determine the velocity 
of the spacecraft when it reaches point B, which is 6500 km 
from the center of the earth. The trajectory between these 
two points is outside the effect of the earth’s atmosphere.

A

B
O

PROBLEM 3/128

3/129 A 175-lb pole vaulter carrying a uniform 16-ft, 10-lb 
pole approaches the jump with a  velocity v and manages to 
barely clear the bar set at a height of 18 ft. As he clears the 
bar, his velocity and that of the pole are essentially zero. 
Calculate the minimum possible value of v required for 
him to make the jump. Both the horizontal pole and the 
center of gravity of the vaulter are 42 in. above the ground 
during the approach.

42ʺ

18ʹ

16ʹ

v

PROBLEM 3/129

3/125  The mechanism is released from rest with 𝜃 =  180°, 
where the uncompressed spring of stiffness k =  900 N∕m 
is just touching the underside of the 4-kg collar. Determine 
the angle 𝜃 corresponding to the maximum compression of 
the spring. Motion is in the vertical plane, and the mass of 
the links may be neglected.

4 kg

Vertical

k

3 kg

200 m
m

20
0 

m
m

30
0 

m
m

3 kg

𝜃

PROBLEM 3/125

3/126 The projectile of Prob. 3 ∕98 is repeated here. By the 
method of this article, determine the vertical launch veloc-
ity v0 which will result in a maximum altitude of R ∕2. The 
launch is from the north pole and aerodynamic drag can be 
neglected. Use g = 9.825 m∕s2 as the surface-level accelera-
tion due to gravity.

R

v0

PROBLEM 3/126

3/127 The small bodies A and B each of mass m are con-
nected and supported by the pivoted links of negligible 
mass. If A is released from rest in the position shown, calcu-
late its velocity vA as it crosses the vertical centerline. Ne-
glect any friction.
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vP

vA

R
PA rPrA

PROBLEM 3/132

3/133 Calculate the maximum velocity of slider B if the 
system is released from rest with x = y. Motion is in the 
vertical plane. Assume that friction is negligible. The slid-
ers have equal masses, and the motion is restricted to 
y ≥ 0.

0.9 m

A

B

y

x

PROBLEM 3/133

3/134 The system is initially moving with the cable taut, 
the 10-kg block moving down the rough incline with a 
speed of 0.3 m ∕s, and the spring stretched 25 mm. By 
the method of this article, (a) determine the velocity v of 
the block after it has traveled 100 mm, and (b) calculate the 
distance traveled by the block before it comes to rest.

k = 200 N/m

50°

𝜇k = 0.15

10
 k

g

PROBLEM 3/134

3/130 When the mechanism is released from rest in the 
position where 𝜃 = 60°, the 4-kg carriage drops and the 6-kg 
sphere rises. Determine the velocity v of the sphere when 
𝜃 = 180°. Neglect the mass of the links and treat the sphere 
as a particle.

4 kg

6 kg300 mm

300 mm

300 mm

𝜃

PROBLEM 3/130

3/131 The cars of an amusement-park ride have a speed 
v1 = 90 km∕h at the lowest part of the track. Determine 
their speed v2 at the highest part of the track. Neglect en-
ergy loss due to friction. (Caution: Give careful thought to 
the change in potential energy of the system of cars.)

v2

v1

90°

15 m

90°

15 m

PROBLEM 3/131

3/132 A satellite is put into an elliptical orbit around the 
earth and has a velocity vP at the perigee position P. Deter-
mine the expression for the velocity vA at the apogee 
 position A. The radii to A and P are, respectively, rA and rP. 
Note that the total energy remains constant.
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𝜃k

C

B

m
A

b

O

1.25b

PROBLEM 3/137

3/138 The two particles of mass m and 2m, respectively, 
are connected by a rigid rod of negligible mass and slide 
with negligible friction in a circular path of radius r on the 
inside of the vertical circular ring. If the unit is released 
from rest at 𝜃 = 0, determine (a) the velocity v of the parti-
cles when the rod passes the horizontal position, (b) the 
maximum velocity vmax of the particles, and (c) the maxi-
mum value of 𝜃.

2m

m

r
r
𝜃

𝜃

PROBLEM 3/138

3/135 A spacecraft m is heading toward the center of the 
moon with a velocity of 2000 mi ∕hr at a distance from the 
moon’s surface equal to the radius R of the moon. Compute 
the impact velocity v with the surface of the moon if the 
spacecraft is unable to fi re its retro-rockets. Consider the 
moon fi xed in space. The radius R of the moon is 1080 mi, 
and the acceleration due to gravity at its surface is 
5.32 ft  ∕sec2.

2000 mi/hr

m
R

R

PROBLEM 3/135

3/136 When the 10-lb plunger is released from rest in its 
vertical guide at 𝜃 = 0, each spring of stiffness k = 20 lb ∕in. 
is uncompressed. The links are free to slide through their 
pivoted collars and compress their springs. Calculate the 
velocity v of the plunger when the position 𝜃 = 30° is passed.

6ʺ 6ʺ

kk

10 lb

𝜃 𝜃

PROBLEM 3/136

3/137 The system is at rest with the spring unstretched 
when 𝜃 = 0. The 3-kg particle is then given a slight nudge 
to the right. (a) If the system comes to momentary rest 
at 𝜃 = 40°, determine the spring constant k. (b) For the 
value k = 100 N∕m, fi nd the speed of the particle when 
𝜃 = 25°. Use the value b = 0.40 m throughout and neglect 
friction.
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Problems for Articles 3/8–3/9
Introductory Problems
3/139  The rubber mallet is used to drive a cylindrical plug 
into the wood member. If the impact force varies with time 
as shown in the plot, determine the magnitude of the linear 
impulse delivered by the mallet to the plug.

0

200

0 0.002 0.010
0.009t, s

F
, N

F

PROBLEM 3/139

3/140  The 1500-kg car has a velocity of 30 km∕h up the 
10-percent grade when the driver applies more power for 
8 s to bring the car up to a speed of 60 km∕h. Calculate the 
time average F of the total force tangent to the road  exerted 
on the tires during the 8 s. Treat the car as a particle and 
neglect air resistance.

v

10
1

PROBLEM 3/140

3/141 The velocity of a 1.2-kg particle is given by v = 
1.5t3i + (2.4 − 3t2)j + 5k, where v is in meters per second 
and the time t is in seconds. Determine the linear momen-
tum G of the particle, its magnitude G, and the net force R 
which acts on the particle when t = 2 s.

3∕142  A 75-g projectile traveling at 600 m∕s strikes and 
becomes embedded in the 50-kg block, which is initially 
stationary. Compute the energy lost during the impact. 
 Express your answer as an absolute value |ΔE| and as a 
percentage n of the original system energy E.

75 g
50 kg

600 m/s

PROBLEM 3/142

3/143  A 2-oz bullet is fi red horizontally with a veloc-
ity v1 = 1800 ft∕sec into the 6-lb block of soft wood initially 
at rest on the horizontal surface. The bullet emerges from 
the block with the velocity v2 = 1200 ft∕sec, and the block is 
observed to slide a distance of 8 ft before coming to rest. 
Determine the coeffi cient of kinetic friction 𝜇k between the 
block and the supporting surface.

8ʹ

1200 ft/sec 1800 ft/sec
6 lb

2 oz

PROBLEM 3/143

3/144 Careful measurements made during the impact of 
the 200-g metal cylinder with the spring-loaded plate re-
veal a semielliptical relation between the contact force F 
and the time t of impact as shown. Determine the rebound 
velocity v of the cylinder if it strikes the plate with a veloc-
ity of 6 m ∕s.

6 m/s

200 g

v

30

0 0.08
Time t, s

F
or

ce
 F

, N

0

PROBLEM 3/144
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𝜇k
𝜇k

15°

3 m

4 m/s

10 kg

6 kg
d

A

B

PROBLEM 3/148

3/149 The 15   200-kg lunar lander is descending onto the 
moon’s surface with a velocity of 2 m ∕s when its retro- 
engine is fi red. If the engine produces a thrust T for 4 s 
which varies with time as shown and then cuts off, calcu-
late the velocity of the lander when t = 5 s, assuming that 
it has not yet landed. Gravitational acceleration at the 
moon’s surface is 1.62 m∕s2.

T

2 m/s

45

2 40
0

T, kN

t, s

PROBLEM 3/149

3/150 The slider of mass m1 is released from rest in the 
position shown and then slides down the right side of the 
contoured body of mass m2. For the conditions m1 = 0.50 kg, 
m2 =  3 kg, and r =  0.25 m, determine the absolute ve-
locities of both masses at the instant of separation. Neglect 
friction.

r

r

m1

m2

PROBLEM 3/150

3/145  A 0.2-kg particle is moving with a velocity 
v1 =  i +  j +  2k m∕s at time t1 =  1 s. If the single force 
F =  (5 +  3t)i +  (2 −  t2)j +  3k N acts on the particle, 
determine its velocity v2 at time t2 =  4 s.

3/146 The 90-kg man dives from the 40-kg canoe. The ve-
locity indicated in the fi gure is that of the man relative to 
the canoe just after loss of contact. If the man, woman, and 
 canoe are initially at rest, determine the horizontal compo-
nent of the absolute velocity of the canoe just after separa-
tion. Neglect drag on the canoe, and assume that the 60-kg 
woman remains motionless relative to the canoe.

3 m/s

40 kg

60 kg 90 kg
30°

PROBLEM 3/146

3/147 An 8-lb object, which is moving on a smooth  horizontal 
surface with a velocity of 30 ft ∕sec in the −x- direction, is 
subjected to a force Fx which  varies with time as shown. 
Approximate the experimental data by the dashed line and 
 determine the  velocity of the object (a) at t = 0.6 sec and 
(b) at t = 0.9 sec.

Fx, lb

0

−30

60

t, sec

0.2 0.6 0.9

PROBLEM 3/147

3/148 Crate A is traveling down the incline with a speed of 
4 m ∕s when in the position shown. It later strikes and be-
comes attached to crate B. Determine the distance d moved 
by the pair after the collision. The coeffi cient of kinetic fric-
tion is 𝜇k = 0.40 for both crates.
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3/154 The 600,000-lb jet airliner has a touchdown velocity 
v = 120 mi ∕  hr directed 𝜃 = 0.5° below the horizontal. The 
touchdown process of the eight main wheels takes 0.6 sec 
to complete. Treat the aircraft as a particle and estimate 
the average normal  reaction force at each wheel during 
this 0.6-sec process, during which tires defl ect, struts com-
press, etc. Assume that the aircraft lift equals the aircraft 
weight during the touchdown.

v𝜃

PROBLEM 3/154

3/155 The collar of mass m slides on the rough horizontal 
shaft under the action of the force F of constant magnitude 
F ≤ mg but variable direction. If 𝜃 = kt where k is a con-
stant, and if the collar has a speed v1 to the right when 𝜃 = 
0, determine the velocity v2 of the collar when 𝜃 reaches 
90°. Also determine the value of F which renders v2 = v1.

𝜇km

F

𝜃

PROBLEM 3/155

3/156 The 140-g projectile is fi red with a velocity of 
600 m ∕s and picks up three washers, each with a mass of 
100 g. Find the common velocity v of the projectile and 
washers. Determine also the loss � ΔE| of energy during 
the interaction.

600 m/s

PROBLEM 3/156

Representative Problems
3/151 The tow truck with attached 1200-kg car accelerates 
uniformly from 30 km ∕  h to 70 km ∕  h over a 15-s interval. 
The average rolling resistance for the car over this speed 
interval is 500 N. Assume that the 60° angle shown repre-
sents the time-average confi guration and determine the 
 average tension in the tow cable.

60°

PROBLEM 3/151

3/152 Car B weighing 3200 lb and traveling west at 
30 mi∕hr collides with car A weighing 3400 lb and traveling 
north at 20 mi∕hr as shown. If the two cars become 
 entangled and move together as a unit after the crash, 
compute the magnitude v of their common velocity immedi-
ately after the impact and the angle 𝜃 made by the velocity 
vector with the north direction.

30 mi/hr

20 mi/hr A

B

N

W

PROBLEM 3/152

3/153 A railroad car of mass m and initial speed v collides 
with and becomes coupled with the two identical cars. 
Compute the fi nal speed v′ of the group of three cars and 
the fractional loss n of energy if (a) the initial separation 
distance d = 0 (that is, the two stationary cars are initially 
coupled together with no slack in the coupling) and (b) the 
distance d ≠ 0 so that the cars are uncoupled and slightly 
separated. Neglect rolling resistance.

dv

PROBLEM 3/153
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power and enters a 5° glide path as shown. After 120 sec-
onds the airspeed is 360 mi ∕  hr. Calculate the time-average 
drag force D (air resistance to motion along the fl ight path).

5°

v

PROBLEM 3/160

3/161 The space shuttle launches an 800-kg satellite by 
ejecting it from the cargo bay as shown. The ejection mech-
anism is activated and is in contact with the satellite for 
4 s to give it a velocity of 0.3 m ∕s in the z-direction relative 
to the shuttle. The mass of the shuttle is 90 Mg. Determine 
the component of velocity vƒ of the shuttle in the minus z-
direction resulting from the ejection. Also fi nd the time 
 average Fav of the ejection force.

y

x

z

v

PROBLEM 3/161

3/162 The hydraulic braking system for the truck and 
trailer is set to produce equal braking forces for the two 
units. If the brakes are applied uniformly for 5 seconds to 
bring the rig to a stop from a speed of 20 mi ∕  hr down the 
10-percent grade, determine the force P in the coupling be-
tween the trailer and the truck. The truck weighs 20,000 lb 
and the trailer weighs 15,000 lb.

20 mi/hr

1
10

PROBLEM 3/162

3/157 The third and fourth stages of a rocket are coasting 
in space with a velocity of 18 000 km ∕ h when a small 
 explosive charge between the stages separates them. Im-
mediately after separation the fourth stage has increased 
its velocity to v4 = 18 060 km ∕ h. What is the corresponding 
velocity v3 of the third stage? At separation the third and 
fourth stages have masses of 400 and 200 kg, respectively.

4th stage

3rd stage

v4

v3

PROBLEM 3/157

3/158 The initially stationary 20-kg block is subjected to 
the time-varying horizontal force whose magnitude P is 
shown in the plot. Note that the force is zero for all times 
greater than 3 s. Determine the time ts at which the block 
comes to rest.

20 kg
𝜇k = 0.40
𝜇s = 0.60

P

3
0

150

0
t, s

P, N

PROBLEM 3/158

3/159 All elements of the previous problem remain un-
changed, except that the force P is now held at a constant 
30° angle relative to the horizontal. Determine the time ts 
at which the initially  stationary 20-kg block comes to rest.

20 kg
30°𝜇k = 0.40

𝜇s = 0.60

P

3
0

150

0
t, s

P, N

PROBLEM 3/159

3/160 The pilot of a 90,000-lb airplane which is originally 
fl ying horizontally at a speed of 400 mi ∕  hr cuts off all  engine 
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3/166 The ice-hockey puck with a mass of 0.20 kg has a 
velocity of 12 m ∕s before being struck by the hockey stick. 
After the impact the puck moves in the new direction 
shown with a velocity of 18 m ∕s. If the stick is in contact 
with the puck for 0.04 s, compute the magnitude of the 
 average force F  exerted by the stick on the puck during con-
tact, and fi nd the angle 𝛽 made by F with the x-direction.

20°

12 m/s

x
18 m/s

y

PROBLEM 3/166

3/167 The baseball is traveling with a horizontal velocity of 
85 mi ∕  hr just before impact with the bat. Just after the im-
pact, the velocity of the 51

8-oz ball is 130 mi ∕  hr directed at 
35° to the horizontal as shown. Determine the x- and y- 
components of the average force R exerted by the bat on the 
baseball during the 0.005-sec impact. Comment on the treat-
ment of the weight of the baseball (a) during the impact and 
(b) over the fi rst few seconds after impact.

35°

85 mi/hr

130 mi/hr

PROBLEM 3/167

3/163 The 100-lb block is stationary at time t = 0, and then 
it is subjected to the force P shown. Note that the force is 
zero for all times beyond t = 15 sec. Determine the velocity 
v of the block at time t = 15 sec. Also calculate the time t at 
which the block again comes to rest.

100 lb
P

10 15
0

60

30

0
t, sec

P, lb

𝜇s = 0.50 

𝜇k = 0.35

PROBLEM 3/163

3/164 Car B is initially stationary and is struck by car A 
moving with initial speed v1 = 30 km ∕  h. The cars become 
entangled and move together with speed v′ after the colli-
sion. If the time duration of the collision is 0.1 s, determine 
(a) the common fi nal speed v′, (b) the average acceleration of 
each car during the collision, and (c) the magnitude R of the 
average force exerted by each car on the other car during the 
impact. All brakes are released during the collision.

30 km/h

1800 kg 900 kg

A B

PROBLEM 3/164

3/165 The 1.62-oz golf ball is struck by the fi ve-iron and 
acquires the velocity shown in a time period of 0.001 sec. 
Determine the magnitude R of the average force exerted 
by the club on the ball. What acceleration magnitude a 
does this force cause, and what is the distance d over 
which the launch velocity is achieved, assuming constant 
acceleration?

v = 150 ft/sec

25°

PROBLEM 3/165
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30°

16 ft/sec

PROBLEM 3/170

3/171 The wad of clay A is projected as shown at the same 
instant that cylinder B is released. The two bodies collide 
and stick together at C and then ultimately strike the hori-
zontal surface at D.  Determine the horizontal distance d. 
Use the values v0 = 12 m ∕s, 𝜃 = 40°, L = 6 m, mA = 0.1 kg, 
and mB = 0.2 kg.

v0

dL

A D

C

B

𝜃

PROBLEM 3/171

3/172 Two barges, each with a displacement (mass) of 
500 Mg, are loosely moored in calm water. A stunt driver 
starts his 1500-kg car from rest at A, drives along the deck, 
and leaves the end of the 15° ramp at a speed of 50 km ∕  h 
relative to the barge and ramp. The driver successfully 
jumps the gap and brings his car to rest relative to barge 2 
at B. Calculate the velocity v2 imparted to barge 2 just after 
the car has come to rest on the barge. Neglect the resis-
tance of the water to motion at the low velocities involved.

A B
21 15°

PROBLEM 3/172

3/168 The ballistic pendulum is a simple device to mea-
sure projectile velocity v by observing the maximum angle 
𝜃 to which the box of sand with embedded projectile swings. 
Calculate the angle 𝜃 if the 2-oz projectile is fi red horizon-
tally into the suspended 50-lb box of sand with a velocity 
v = 2000 ft  ∕sec. Also fi nd the percentage of energy lost dur-
ing impact.

v

6ʹ

𝜃

PROBLEM 3/168

3/169  A tennis player strikes the tennis ball with her 
racket while the ball is still rising. The ball speed before 
impact with the racket is v1 = 15 m ∕s and after impact its 
speed is v2 = 22 m ∕s, with directions as shown in the fi gure. 
If the 60-g ball is in contact with the racket for 0.05 s, de-
termine the magnitude of the average force R exerted by 
the racket on the ball. Find the angle 𝛽 made by R with the 
horizontal. Comment on the treatment of the ball weight 
during impact.

20°

v1

v2

10°

PROBLEM 3/169

3/170 The 80-lb boy has taken a running jump from the 
upper surface and lands on his 10-lb skateboard with a ve-
locity of 16 ft  ∕sec in the plane of the fi gure as shown. If his 
impact with the skateboard has a time duration of 0.05 sec, 
determine the fi nal speed v along the horizontal surface and 
the total normal force N exerted by the surface on the skate-
board wheels during the impact.
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Problems for Article 3/10
Introductory Problems
3/173   Determine the magnitude HO of the angular 
momentum of the 2-kg sphere about point O (a) by using 
the vector defi nition of angular momentum and (b) by us-
ing an equivalent scalar approach. The center of the sphere 
lies in the x-y plane.

x

y

30°

8 m

2 kg

O6 m

7 m/s

PROBLEM 3/173

3/174  At a certain instant, the particle of mass m has the 
position and velocity shown in the fi gure, and it is acted 
upon by the force F. Determine its angular momentum 
about point O and the time rate of change of this angular 
momentum.

z

x

yc

b

O

a

F
m

v

PROBLEM 3/174

3/175  The 3-kg sphere moves in the x-y plane and has the 
indicated velocity at a particular instant. Determine its 
(a) linear momentum, (b) angular momentum about point 
O, and (c) kinetic energy.

x

y

O

45°

15°

5 m/s

3 kg

2 m

PROBLEM 3/175

3/176 The particle of mass m is gently nudged from the 
equilibrium position A and subsequently slides along the 
smooth circular path which lies in a vertical plane. Deter-
mine the magnitude of its angular momentum about point 
O as it passes (a) point B and (b) point C. In each case, de-
termine the time rate of change of HO.

B
O

m

r

A

C

PROBLEM 3/176
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Representative Problems
3/180 The small particle of mass m and its restraining 
cord are spinning with an angular velocity 𝜔 on the hori-
zontal surface of a smooth disk, shown in section. As the 
force F is slightly relaxed, r  increases and 𝜔 changes. De-
termine the rate of change of 𝜔 with respect to r and show 
that the work done by F during a movement dr equals the 
change in kinetic energy of the particle.

r

m

F

𝜔

PROBLEM 3/180

3/181 A particle with a mass of 4 kg has a position vector 
in meters given by r =  3t2i −  2tj −  3tk, where t is the 
time in seconds. For t =  3 s determine the magnitude of 
the angular momentum of the particle and the magnitude 
of the moment of all forces on the particle, both about the 
origin of coordinates.

3/182 The 12-lb sphere and 8-lb block (shown in section) 
are secured to the arm of negligible mass which rotates in 
the vertical plane about a horizontal axis at O. The 4-lb 
plug is released from rest at A and falls into the recess in 
the block when the arm has reached the horizontal posi-
tion. An instant  before engagement, the arm has an angu-
lar velocity 𝜔0 = 2 rad ∕sec. Determine the angular velocity 
𝜔 of the arm immediately after the plug has wedged itself 
in the block.

24ʺ

4 lb

12ʺ

20ʺ
8 lb

12 lb

O

A

𝜔0

PROBLEM 3/182

3/177 Just after launch from the earth, the space-shuttle 
orbiter is in the 37 × 137–mi orbit shown. At the apogee 
point A, its speed is 17,290 mi ∕  hr. If nothing were done to 
modify the orbit, what would be its speed at the perigee P? 
Neglect aerodynamic drag. (Note that the normal practice 
is to add speed at A, which raises the perigee altitude to a 
value that is well above the bulk of the atmosphere.)

17,290 mi/hr

A
O

P

37 mi
137 mi

PROBLEM 3/177

3/178 The rigid assembly which consists of light rods and 
two 1.2-kg spheres rotates freely about a  vertical axis. The 
assembly is initially at rest and then a constant couple 
M = 2 N ∙ m is applied for 5 s. Determine the fi nal angular 
velocity of the assembly. Treat the small spheres as 
 particles.

0.4 m

1.2 kg

1.2 kg

M

z

0.4 m

PROBLEM 3/178

3/179 All conditions of the previous problem remain the 
same, except now the applied couple varies with time ac-
cording to M = 2t, where t is in seconds and M is in 
 newton-meters. Determine the angular velocity of the as-
sembly at time t = 5 s.
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O

m

2m

L

L v

3v

PROBLEM 3/186

3/187 The particle of mass m is launched from point O 
with a horizontal velocity u at time t = 0. Determine its 
angular momentum HO relative to point O as a function of 
time.

x

m u

O

y

PROBLEM 3/187

3/188 A wad of clay of mass m1 with an initial horizontal 
velocity v1 hits and adheres to the massless rigid bar which 
supports the body of mass m2, which can be assumed to be 
a particle. The pendulum assembly is freely pivoted at O 
and is initially stationary. Determine the angular velocity 
�̇� of the combined body just after impact. Why is linear mo-
mentum of the system not conserved?

L/2

L/2

m1

m2

O

v1

PROBLEM 3/188

3/183 A 0.4-kg particle is located at the position r1 = 
2i +  3j +  k m and has the velocity v1 =  i +  j +  2k 
m∕s at time t =  0. If the particle is acted upon by a single 

force which has the moment MO = (4 + 2t)i + (3 −  12t2)j

+ 5k N∙m about the origin O of the coordinate system in 
use, determine the angular momentum about O of the par-
ticle when t = 4 s.

3/184  The two spheres of equal mass m are able to 
slide along the horizontal rotating rod. If they are initially 
latched in position a distance r from the rotating axis with 
the assembly rotating freely with an angular velocity 𝜔0, 
determine the new angular velocity 𝜔 after the spheres are 
released and fi nally assume positions at the ends of the rod 
at a radial distance of 2r. Also fi nd the fraction n of the 
initial kinetic energy of the system which is lost. Neglect 
the small mass of the rod and shaft.

2r
r

m
m

r

2r

𝜔0

PROBLEM 3/184

3/185 A particle of mass m moves with negligible friction 
on a horizontal surface and is connected to a light spring 
fastened at O. At position A the particle has the velocity 
vA = 4 m ∕s. Determine the velocity vB of the particle as 
it passes position B.

350 mm

230 mm vB

vA = 4 m/sO

A

B
65°

54°

PROBLEM 3/185

3/186 The small spheres, which have the masses and ini-
tial velocities shown in the fi gure, strike and become at-
tached to the spiked ends of the rod, which is freely pivoted 
at O and is initially at rest. Determine the angular velocity 
𝜔 of the assembly after impact. Neglect the mass of the rod.
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400 mm

200 mm

20°

O

v

𝜃

𝜔

PROBLEM 3/191

3/192 A particle is launched with a horizontal velocity 
v0 = 0.55 m ∕s from the 30° position shown and then slides 
without friction along the funnel-like surface. Determine 
the angle 𝜃 which its velocity vector makes with the hori-
zontal as the particle passes level O-O. The value of r is 
0.9 m.

r

m
m

O O

30°

v0

0.15r

PROBLEM 3/192

3/193  The 0.4-lb ball and its supporting cord are re-
volving about the vertical axis on the fi xed smooth conical 
surface with an angular velocity of 4 rad ∕sec. The ball is held 
in the position b = 14 in. by the tension T in the cord. If the 
distance b is reduced to the constant value of 9 in. by in-
creasing the tension T in the cord, compute the new angular 
velocity 𝜔 and the work U′1-2 done on the system by T.

b

0.4 lb

T

30°

𝜔

PROBLEM 3/193

3/189 A particle of mass m is released from rest in position 
A and then slides down the smooth vertical-plane track. 
Determine its angular momentum about both points A and 
D (a) as it passes position B and (b) as it passes position C.

A

B
C

D

m

30°

𝜌
𝜌

PROBLEM 3/189

3/190 At the point A of closest approach to the sun, a  comet 
has a velocity vA = 188,500 ft  ∕sec. Determine the radial and 
transverse components of its velocity vB at point B, where 
the radial distance from the sun is 75(106) mi.

A

v

vr

B

50 (106)
mi

75 (106) mi

v𝜃

S

PROBLEM 3/190

3/191  A pendulum consists of two 3.2-kg  concentrated 
masses positioned as shown on a light but rigid bar. The 
pendulum is swinging through the vertical position with a 
clockwise angular velocity 𝜔 = 6 rad ∕s when a 50-g bullet 
traveling with  velocity v = 300 m ∕s in the direction shown 
strikes the lower mass and becomes embedded in it. Calcu-
late the angular velocity 𝜔′ which the pendulum has 
 immediately after impact and fi nd the maximum angular 
defl ection 𝜃 of the pendulum.
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100 mm

30
0 m

m

5 kg 5 kgF

300m
m

300m
m

𝜔
𝜃

PROBLEM 3/194

3/194 The assembly of two 5-kg spheres is rotating freely 
about the vertical axis at 40 rev∕min with 𝜃 = 90°. If the 
force F which maintains the given position is increased to 
raise the base collar and reduce 𝜃 to 60°, determine the 
new angular velocity 𝜔. Also determine the work U done by 
F in changing the confi guration of the system. Assume that 
the mass of the arms and collars is negligible.
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Problems for Articles 3/11–3/12
Introductory Problems
3/195  Tennis balls are usually rejected if they fail to re-
bound to waist level when dropped from shoulder level. If a 
ball just passes the test as indicated in the fi gure, deter-
mine the coeffi cient of restitution e and the percentage n of 
the original energy lost during the impact.

1100
mm

1600
mm

PROBLEM 3/195

3/196 Compute the fi nal velocities v1′ and v2′ after colli-
sion of the two cylinders which slide on the smooth horizon-
tal shaft. The coeffi cient of restitution is e = 0.8.

v1 = 20 ft/sec

W1 = 4 lb

v2 = 3 ft/sec

W2 = 10 lb

PROBLEM 3/196

3/197 The two bodies have the masses and initial veloci-
ties shown in the fi gure. The coeffi cient of restitution for 
the collision is e = 0.3, and friction is negligible. If the time 
duration of the collision is 0.025 s, determine the average 
impact force which is exerted on the 3-kg body.

3 kg 4 kg

0.5 m/s
0.7 m/s

PROBLEM 3/197

3/198  The sphere of mass m1 travels with an initial veloc-
ity v1 directed as shown and strikes the sphere of mass m2. 
For a given coeffi cient of restitution e, determine the mass 
ratio m1∕m2 which results in m1 being motionless after the 
impact.

v1

m2m1

PROBLEM 3/198

3/199 A tennis ball is projected toward a smooth surface 
with speed v as shown. Determine the rebound angle 𝜃′ and 
the fi nal speed v′. The coeffi cient of restitution is 0.6.

45°

v
vʹ

𝜃ʹ

PROBLEM 3/199

3/200 Determine the coeffi cient of restitution e for a steel 
ball dropped from rest at a height h above a heavy horizon-
tal steel plate if the height of the second rebound is h2.

h

h2

PROBLEM 3/200

3/201 Determine the value of the coeffi cient of restitution 
e for which the outgoing angle is one-half of the incoming 
angle 𝜃 as shown. Evaluate your general expression for 
𝜃 = 40°.

v
vʹ

—
2

𝜃 𝜃

PROBLEM 3/201
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0.75 m

R C

20°

A

PROBLEM 3/205

3/206 A miniature-golf shot from position A to the hole D 
is to be accomplished by “banking off” the 45° wall. Using 
the theory of this article, determine the location x for which 
the shot can be made. The coeffi cient of restitution associ-
ated with the wall collision is e = 0.8.

D

A

B

C
45°

2d

x

d 

PROBLEM 3/206

3/207  The pendulum is released from the 60° position 
and then strikes the initially stationary cylinder of mass m2 
when OA is vertical. Determine the maximum spring com-
pression 𝛿. Use the values m1 = 3 kg, m2 = 2 kg, OA = 0.8 m, 
e = 0.7, and k = 6 kN∕ m. Assume that the bar of the pendu-
lum is light so that the mass m1 is effectively concentrated 
at point A. The rubber cushion S stops the pendulum just 
after the collision is over. Neglect all friction.

O

AS

k

m2

m1

60°

𝛿

PROBLEM 3/207

3/202 To pass inspection, steel balls designed for use in 
ball bearings must clear the fi xed bar A at the top of their 
rebound when dropped from rest through the vertical dis-
tance H = 36 in. onto the heavy inclined steel plate. If balls 
which have a coeffi cient of restitution of less than 0.7 with 
the rebound plate are to be rejected, determine the position 
of the bar by specifying h and s. Neglect any friction during 
impact.

h

s

𝜃 = 10°

AH

PROBLEM 3/202

3/203  Cylinder A is moving to the right with speed v when 
it impacts the initially stationary cylinder B. Both cylin-
ders have mass m, and the coeffi cient of restitution for the 
collision is e. Determine the maximum defl ection 𝛿 of the 
spring of modulus k. Neglect friction.

v
k

BA
m m

PROBLEM 3/203

3/204 Freight car A of mass mA is rolling to the right when 
it collides with freight car B of mass mB initially at rest. If 
the two cars are coupled together at impact, show that the 
fractional loss of energy equals mB ∕(mA + mB).

A B

PROBLEM 3/204

Representative Problems
3/205  The ball is released from position A and drops 
0.75 m to the incline. If the coeffi cient of restitution in the 
 impact is e = 0.85, determine the slant range R.
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d

h

hʹ

PROBLEM 3/210

3/211 Sphere A has a weight of 45 lb and a radius of 3 in., 
while sphere B has a weight of 8 lb and a radius of 2 in. If 
the spheres are traveling  initially along the parallel paths 
with the speeds shown, determine the velocities of the 
spheres immediately after impact. Specify the angles 𝜃A 
and 𝜃B with respect to the x-axis made by the rebound ve-
locity vectors. The coeffi cient of restitution is 0.4 and fric-
tion is neglected.

vʹ

3ʺ

12 ft/sec

36 ft/sec

A

B

y

x
𝜃

PROBLEM 3/211

3/212 Two identical hockey pucks moving with initial ve-
locities vA and vB collide as shown. If the coeffi cient of res-
titution is e = 0.75, determine the velocity (magnitude and 
direction 𝜃 with respect to the positive x-axis) of each puck 
just after impact. Also calculate the percentage loss n of 
system kinetic energy.

vA = 10 m/s
vB = 6 m/s

30°

A

y

x
B

PROBLEM 3/212

3/208 A 0.1-kg meteor and a 1000-kg spacecraft have the 
indicated absolute velocities just before colliding. The 
 meteor punches a hole entirely through the spacecraft. In-
struments indicate that the velocity of the meteor relative 
to the spacecraft just after the collision is vm∕s′ =−1880i −

6898j m ∕s. Determine the direction 𝜃 of the absolute veloc-
ity of the spacecraft after the collision.

z

x

y

vm = 7000 m/s

vs = 2000 m/s

vsʹ

𝜃

PROBLEM 3/208

3/209 Pool ball B is to be shot into the side pocket D by 
banking it off the cushion at C. Specify the location x of the 
cushion impact for coeffi cients of restitution (a) e =  1 and 
(b) e =  0.8.

x

v

d

B

D

C

d/2

d/2A

PROBLEM 3/209

3/210 Determine the coeffi cient of restitution e which will 
allow the ball to bounce down the steps as shown. The 
tread and riser dimensions, d and h, respectively, are the 
same for every step, and the ball bounces the same dis-
tance h′ above each step. What horizontal velocity vx is re-
quired so that the ball lands in the center of each tread?
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A

B

10ʹ

𝛼

PROBLEM 3/216

3/217 The 2-kg sphere is projected horizontally with a 
velocity of 10 m ∕s against the 10-kg carriage which is 
backed up by the spring with stiffness of 1600 N∕ m. The 
carriage is initially at rest with the spring uncompressed. 
If the coeffi cient of restitution is 0.6, calculate the rebound 
velocity v′, the rebound angle 𝜃, and the maximum travel 
𝛿 of the carriage after impact.

60°

10 kg
10 m/s

2 kg

k = 1600 N/m

vʹ

𝜃

PROBLEM 3/217

3/218 A small ball is projected horizontally as shown and 
bounces at point A. Determine the range of initial speed v0 
for which the ball will ultimately land on the horizontal 
surface at B. The coeffi cient of restitution at A is e = 0.8 and 
the distance d = 4 m.

v0

B

A

d

d

d
―
2

PROBLEM 3/218

3/213 Repeat the previous problem, only now the mass of 
puck B is twice that of puck A.

3/214 The 3000-kg anvil A of the drop forge is mounted on 
a nest of heavy coil springs having a combined stiffness of 
2.8(106) N∕ m. The 600-kg hammer B falls 500 mm from 
rest and strikes the anvil, which suffers a maximum down-
ward defl ection of 24 mm from its equilibrium position. De-
termine the height h of rebound of the hammer and the 
 coeffi cient of restitution e which applies.

500 mm

B

A

PROBLEM 3/214

3/215 The elements of a device designed to measure the 
coeffi cient of restitution of bat–baseball collisions are 
shown. The 1-lb “bat” A is a short length of wood or alumi-
num which is projected to the right with a speed vA = 
60 ft  ∕sec within the confi nes of the horizontal slot. Just be-
fore and after the moment of impact, body A is free to move 
horizontally. The baseball B weighs 5.125 oz and has an 
initial speed vB = 125 ft  ∕sec. If the coeffi cient of restitution 
is e = 0.5, determine the fi nal speed of the baseball and the 
angle 𝛽 which its fi nal velocity makes with the horizontal.

20°

vA
vB

B

A

PROBLEM 3/215

3/216 A child throws a ball from point A with a speed of 
50 ft  ∕sec. It strikes the wall at point B and then  returns 
exactly to point A. Determine the necessary angle 𝛼 if the 
coeffi cient of restitution in the wall impact is e = 0.5.
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Problems for Article 3/13
(Unless otherwise indicated, the velocities mentioned in 
the problems which follow are measured from a nonrotat-
ing reference frame moving with the center of the attract-
ing body. Also, aerodynamic drag is to be neglected unless 
stated otherwise. Use g = 9.825 m ∕s2 (32.23 ft  ∕sec2) for the 
absolute gravitational acceleration at the surface of the 
earth and treat the earth as a sphere of radius R = 6371 km 
(3959 mi).)

Introductory Problems
3/219  Determine the speed v of the earth in its orbit about 
the sun. Assume a circular orbit of radius 93(106) miles.

3/220 What velocity v must the space shuttle have in order 
to release the Hubble space telescope in a circular earth 
orbit 590 km above the surface of the earth?

590 km

PROBLEM 3/220

3/221 Show that the path of the moon is concave toward 
the sun at the position shown. Assume that the sun, earth, 
and moon are in the same line.

Earth

Moon

Sunlight

PROBLEM 3/221

3/222 A spacecraft is in an initial circular orbit with an 
altitude of 350 km. As it passes point P, onboard thrusters 
give it a velocity boost of 25 m ∕s. Determine the resulting 
altitude gain Δh at point A.

Δh

A P

350 km

PROBLEM 3/222

3/223  In one of the orbits of the Apollo spacecraft about the 
moon, its distance from the lunar surface varied from 60 mi 
to 180 mi. Compute the maximum velocity of the spacecraft 
in this orbit.

3/224 Determine the energy difference ΔE between an 
80 000-kg space-shuttle orbiter on the launch pad in Cape 
Canaveral (latitude 28.5°) and the same orbiter in a circu-
lar orbit of altitude h = 300 km.

3/225 A satellite is in a circular earth orbit of radius 2R, 
where R is the radius of the earth. What is the minimum 
velocity boost Δv necessary to reach point B, which is a 
distance 3R from the center of the earth? At what point in 
the original circular orbit should the velocity increment 
be added?

R

 B

2R
3R

PROBLEM 3/225
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 B

 A

C

800 mi 800 mi 200 mi

PROBLEM 3/228

3/229 The binary star system consists of stars A and B, 
both of which orbit about the system mass center. Compare 
the orbital period 𝜏ƒ calculated with the assumption of 
a fi xed star A with the period 𝜏nƒ calculated without this 
assumption.

A B

200 (106) km

1031 kg
1030 kg

PROBLEM 3/229

3/230  A synchronous satellite is one whose velocity in its 
circular orbit allows it to remain above the same position 
on the surface of the rotating earth. Calculate the required 
distance H of the satellite above the surface of the earth. 
Locate the position of the orbital plane of the satellite and 
calculate the angular range 𝛽 of longitude on the surface of 
the earth for which there is a direct line of sight to the 
 satellite.

3/226 Determine the speed v required of an earth satel-
lite at point A for (a) a circular orbit, (b) an elliptical 
 orbit of eccentricity e = 0.1, (c) an elliptical orbit of 
 eccentricity e = 0.9, and (d) a parabolic orbit. In cases (b), 
(c), and (d), A is the orbit perigee.

R

A

v

0.1R

PROBLEM 3/226

Representative Problems
3/227 Initially in the 240-km circular orbit, the spacecraft 
S receives a velocity boost at P which will take it to r→∞  
with no speed at that point. Determine the required veloc-
ity increment Δv at point P and also determine the speed 
when r = 2rP. At what value of 𝜃 does r become 2rP?

P

r

O

S

240 km

𝜃

PROBLEM 3/227

3/228  Satellite A moving in the circular orbit and satellite 
B moving in the elliptical orbit collide and become entan-
gled at point C. If the masses of the satellites are equal, 
determine the maximum altitude hmax of the resulting 
 orbit.
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A B

Aʹ

3R

R

𝜃

PROBLEM 3/233

3/234 A projectile is launched from B with a speed of 
2000 m ∕s at an angle 𝛼 of 30° with the horizontal as shown. 
Determine the maximum altitude hmax.

B

D

hmax

O

vB = 2000 m/s

𝛽

𝛼

PROBLEM 3/234

3/235 Two satellites B and C are in the same circular orbit 
of altitude 500 miles. Satellite B is 1000 mi ahead of satel-
lite C as indicated. Show that C can catch up to B by “put-
ting on the brakes.” Specifi cally, by what amount Δv should 
the circular-orbit velocity of C be reduced so that it will 
rendezvous with B after one period in its new elliptical 
 orbit? Check to see that C does not strike the earth in the 
elliptical orbit.

1000 mi 

B

R

C

500 mi

PROBLEM 3/235

3/231  An earth satellite A is in a circular west-to-east 
equatorial orbit a distance 300 km above the surface of the 
earth as indicated. An observer B on the equator who sees 
the satellite directly overhead will see it directly overhead 
in the next orbit at position B′ because of the rotation of 
the earth. The radial line to the satellite will have rotated 
through the angle 2𝜋 +  𝜃, and the observer will measure 
the apparent period 𝜏′ as a value slightly greater than the 
true period 𝜏. Calculate 𝜏′ and 𝜏′ −  𝜏.

Equator 

A

N

O

B

Aʹ

Bʹ

𝜔

𝜃

PROBLEM 3/231

3/232 Just after launch from the earth, the space-shuttle 
orbiter is in the 37 × 137-mi orbit shown. The fi rst time 
that the orbiter passes the apogee A, its two orbital- 
maneuvering-system (OMS) engines are fi red to circularize 
the orbit. If the weight of the orbiter is 175,000 lb and the OMS 
engines have a thrust of 6000 lb each, determine the 
 required time duration Δt of the burn.

AO
P

37 mi
137 mi

PROBLEM 3/232

3/233 A spacecraft is in a circular orbit of radius 3R around 
the moon. At point A, the spacecraft ejects a probe which is 
designed to arrive at the surface of the moon at point B. 
Determine the necessary velocity vr of the probe relative to 
the spacecraft just after ejection. Also calculate the position 
𝜃 of the spacecraft when the probe arrives at point B.
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3/239 A spacecraft moving in a west-to-east equatorial 
 orbit is observed by a tracking station located on the equa-
tor. If the spacecraft has a perigee altitude H = 150 km and 
velocity v when directly over the station and an apogee al-
titude of 1500 km, determine an expression for the angular 
rate p (relative to the earth) at which the antenna dish 
must be rotated when the spacecraft is directly overhead. 
Compute p. The angular velocity of the earth is 𝜔 = 0.7292
(10−4) rad ∕s.

v

H

East

West

p

N

R
𝜔

PROBLEM 3/239

 *3/240 In 1995 a spacecraft called the Solar and Heliospheric 
Observatory (SOHO) was placed into a circular orbit about 
the sun and inside that of the earth as shown. Determine the 
distance h so that the  period of the spacecraft orbit will match 
that of the earth, with the result that the spacecraft will 
 remain between the earth and the sun in a “halo” orbit.

Sun

Earth

h

S

PROBLEM 3/240

3/236 The 175,000-lb space-shuttle orbiter is in a circular 
orbit of altitude 200 miles. The two orbital- maneuvering-
system (OMS) engines, each of which has a thrust of 6000 lb, 
are fi red in retrothrust for 150 seconds. Determine the an-
gle 𝛽 which locates the intersection of the shuttle trajectory 
with the earth’s surface. Assume that the shuttle position 
B corresponds to the completion of the OMS burn and that 
no loss of altitude occurs during the burn.

B

C

200 mi

𝛽

PROBLEM 3/236

3/237 Compare the orbital period of the moon calculated 
with the assumption of a fi xed earth with the period calcu-
lated without this assumption.

3/238 A satellite is placed in a circular polar orbit a dis-
tance H above the earth. As the satellite goes over the 
north pole at A, its retro-rocket is activated to produce a 
burst of negative thrust which reduces its velocity to a 
 value which will ensure an equatorial landing. Derive the 
expression for the required reduction ΔvA of velocity at A. 
Note that A is the apogee of the elliptical path.

B

A

N

R

HS

PROBLEM 3/238
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3/243 A spacecraft in an elliptical orbit has the position 
and velocity indicated in the fi gure at a certain instant. 
Determine the semimajor axis length a of the orbit and fi nd 
the acute angle 𝛼 between the semimajor axis and the 
line l. Does the spacecraft eventually strike the earth?

1000 km

A
l

2° v = 7400 m/s

PROBLEM 3/243

3/244 The satellite has a velocity at B of 3200 m ∕s in the 
direction indicated. Determine the angle 𝛽 which locates 
the point C of impact with the earth.

vBB

2R

5R

C

R
𝛽

PROBLEM 3/244

3/241 A space vehicle moving in a circular orbit of radius r1 
transfers to a larger circular orbit of radius r2 by means of an 
elliptical path between A and B. (This transfer path is known 
as the Hohmann transfer ellipse.) The transfer is accom-
plished by a burst of speed ΔvA at A and a second burst of 
speed ΔvB at B. Write expressions for ΔvA and ΔvB in terms of 
the radii shown and the value of g of the acceleration due to 
gravity at the earth’s surface. If each Δv is positive, how can 
the velocity for path 2 be less than the velocity for path 1? 
Compute each Δv if r1 = (6371 + 500) km and r2 = (6371 + 
35 800) km. Note that r2 has been chosen as the radius of a 
geosynchronous orbit.

AB

r2
r1

1

2

PROBLEM 3/241

3/242 At the instant represented in the fi gure, a small 
 experimental satellite A is ejected from the shuttle orbiter 
with a velocity vr = 100 m ∕s relative to the shuttle, directed 
toward the center of the earth. The shuttle is in a circular 
orbit of altitude h = 200 km. For the resulting elliptical orbit 
of the satellite,  determine the semimajor axis a and its orien-
tation, the period 𝜏, eccentricity e, apogee speed va, perigee 
speed vp, rmax, and rmin. Sketch the satellite orbit.

vr
h

A

x

y

PROBLEM 3/242
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Problems for Article 3/14
Introductory Problems
3/245 The fl atbed truck is traveling at the constant speed 
of 60 km ∕  h up the 15-percent grade when the 100-kg crate 
which it carries is given a shove which imparts to it an ini-
tial relative velocity ẋ = 3 m ∕s toward the rear of the truck. 
If the crate slides a distance x = 2 m measured on the truck 
bed before coming to rest on the bed, compute the coeffi cient 
of kinetic friction 𝜇k between the crate and the truck bed.

60 km/h

15

100

x

PROBLEM 3/245

3/246 If the spring of constant k is compressed a distance 
𝛿 as indicated, calculate the acceleration arel of the block of 
mass m1 relative to the frame of mass m2 upon release of 
the spring. The system is initially stationary.

k

m2 

m1 𝛿

PROBLEM 3/246

3/247 The cart with attached x-y axes moves with an abso-
lute speed v = 2 m ∕s to the right. Simultaneously, the light 
arm of length l = 0.5 m rotates about point B of the cart with 
angular velocity 𝜃 = 2 rad ∕s. The mass of the sphere is m = 
3 kg. Determine the following quantities for the sphere when 
𝜃 = 0: G, Grel, T, Trel, HO, (HB)rel where the subscript “rel” 
indicates measurement relative to the x-y axes. Point O is an 
inertially fi xed point coincident with point B at the instant 
under consideration.

v
O, B

l

m

x

y

𝜃

PROBLEM 3/247

3/248 The aircraft carrier is moving at a constant speed 
and launches a jet plane with a mass of 3 Mg in a distance 
of 75 m along the deck by means of a steam-driven cata-
pult. If the plane leaves the deck with a velocity of 
240 km ∕  h relative to the  carrier and if the jet thrust is con-
stant at 22 kN during takeoff, compute the constant force P 
exerted by the catapult on the airplane during the 75-m 
travel of the launch carriage.

75 m

PROBLEM 3/248

3/249  The 4000-lb van is driven from position A to 
position B on the barge, which is towed at a constant speed 
v0 = 10 mi ∕  hr. The van starts from rest relative to the barge 
at A, accelerates to v = 15 mi ∕  hr relative to the barge over 
a distance of 80 ft, and then stops with a deceleration of the 
same magnitude. Determine the magnitude of the net force 
F between the tires of the van and the barge during this 
maneuver.

v0 = 10 mi/hr

v = 15 mi/hr
80ʹ

A B

80ʹ

PROBLEM 3/249
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s

x

xA
A B

u

PROBLEM 3/252

3/253 The block of mass m is attached to the frame by the 
spring of stiffness k and moves horizontally with negligible 
friction within the frame. The frame and block are initially 
at rest with x = x0, the uncompressed length of the spring. 
If the frame is given a constant acceleration a0, determine 
the maximum velocity ẋmax = (vrel)max of the block relative 
to the frame.

x

k
m

a0

PROBLEM 3/253

3/254 The slider A has a mass of 2 kg and moves with neg-
ligible friction in the 30° slot in the vertical sliding plate. 
What horizontal acceleration a0 should be given to the 
plate so that the absolute acceleration of the slider will be 
vertically down? What is the value of the corresponding 
force R exerted on the slider by the slot?

a0

A

30°

PROBLEM 3/254

Representative Problems
3/250 The launch catapult of the aircraft carrier gives the 
7-Mg jet airplane a constant acceleration and launches the 
airplane in a distance of 100 m measured along the angled 
takeoff ramp. The carrier is moving at a steady speed vC = 
16 m ∕s. If an absolute aircraft speed of 90 m ∕s is desired for 
takeoff, determine the net force F supplied by the catapult 
and the aircraft engines.

vC

15°

PROBLEM 3/250

3/251 The coeffi cients of friction between the fl at bed of the 
truck and crate are 𝜇s = 0.80 and 𝜇k = 0.70. The coeffi cient 
of kinetic friction between the truck tires and the road sur-
face is 0.90. If the truck stops from an initial speed of 
15 m ∕s with maximum braking (wheels skidding), deter-
mine where on the bed the crate fi nally comes to rest or the 
velocity vrel relative to the truck with which the crate 
strikes the wall at the forward edge of the bed.

3.2 m

PROBLEM 3/251

3/252 A boy of mass m is standing initially at rest relative 
to the moving walkway, which has a constant horizontal 
speed u. He decides to accelerate his progress and starts to 
walk from point A with a steadily increasing speed and 
reaches point B with a speed ẋ = v relative to the walkway. 
During his acceleration he generates an average horizontal 
force F between his shoes and the walkway. Write the 
work-energy equations for his absolute and relative mo-
tions and explain the meaning of the term muv.
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equations for the motion between A and B for his absolute 
motion and his relative motion and explain the meaning of 
the term muvr. If the boy weighs 150 lb and if u = 2 ft  ∕sec, 
s = 30 ft, and 𝜃 = 10°, calculate the power Prel developed by 
the boy as he reaches the speed of 2.5 ft  ∕sec relative to the 
walkway.

s

x
B

A

x0
u

u
𝜃

PROBLEM 3/258

3/259 A ball is released from rest relative to the elevator 
at a distance h1 above the fl oor. The speed of the elevator at 
the time of ball release is v0. Determine the bounce height 
h2 of the ball (a) if v0 is constant and (b) if an upward eleva-
tor acceleration a = g∕4 begins at the instant the ball is 
released. The coeffi cient of restitution for the impact is e.

h2

h1 v0

a =
g
—
4

PROBLEM 3/259

3/260 The small slider A moves with negligible friction 
down the tapered block, which moves to the right with con-
stant speed v = v0. Use the principle of work-energy to de-
termine the magnitude vA of the absolute velocity of the 
slider as it passes point C if it is released at point B with no 
velocity relative to the block. Apply the equation, both as 
an observer fi xed to the block and as an observer fi xed to 
the ground, and reconcile the two relations.

l
B

A

C

v

𝜃

PROBLEM 3/260

3/255 The ball A of mass 10 kg is attached to the light rod 
of length l = 0.8 m. The mass of the carriage alone is 250 kg, 
and it moves with an acceleration aO as shown. If 𝜃 = 
3 rad ∕s when 𝜃 = 90°, fi nd the kinetic energy T of the sys-
tem if the carriage has a velocity of 0.8 m ∕s (a) in the direc-
tion of aO and (b) in the direction opposite to aO. Treat the 
ball as a particle.

A
O

aO

l

𝜃

PROBLEM 3/255

3/256 Consider the system of Prob. 3 ∕255 where the mass 
of the ball is m = 10 kg and the length of the light rod is l = 
0.8 m. The ball–rod assembly is free to rotate about a verti-
cal axis through O. The carriage, rod, and ball are initially 
at rest with 𝜃 = 0 when the carriage is given a constant 
acceleration aO = 3 m ∕s2. Write an expression for the ten-
sion T in the rod as a function of 𝜃 and calculate T for the 
position 𝜃 = 𝜋 ∕2.

3/257 A simple pendulum is placed on an elevator, which 
accelerates upward as shown. If the pendulum is displaced 
an amount 𝜃0 and released from rest  relative to the eleva-
tor, fi nd the tension T0 in the supporting light rod when 
𝜃 = 0. Evaluate your result for 𝜃0 = 𝜋 ∕2.

O

l

m

a0
𝜃

PROBLEM 3/257

3/258 A boy of mass m is standing initially at rest relative 
to the moving walkway inclined at the angle 𝜃 and moving 
with a constant speed u. He decides to accelerate his prog-
ress and starts to walk from point A with a steadily in-
creasing speed and reaches point B with a speed vr relative 
to the walkway. During his acceleration he generates a 
 constant average force F tangent to the walkway between 
his shoes and the walkway surface. Write the work-energy 
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Problems for Article 3/15 Chapter Review
3/261  The crate is at rest at point A when it is nudged 
down the incline. If the coeffi cient of kinetic friction be-
tween the crate and the incline is 0.30 from A to B and 0.22 
from B to C, determine its speeds at points B and C.

A

C
B

7 m

7 m

𝜇s = 0.28
𝜇k = 0.22

𝜇s = 0.40
𝜇k = 0.30

20°

10°

PROBLEM 3/261

3/262  Collar A is free to slide with negligible friction on 
the circular guide mounted in the vertical frame. Deter-
mine the angle 𝜃 assumed by the collar if the frame is given 
a constant horizontal acceleration a to the right.

A

a

r 𝜃

PROBLEM 3/262

3/263 The simple 2-kg pendulum is released from rest in 
the horizontal position. As it reaches the bottom position, 
the cord wraps around the smooth fi xed pin at B and con-
tinues in the smaller arc in the vertical plane. Calculate 
the magnitude of the force R supported by the pin at B 
when the pendulum passes the position 𝜃 = 30°.

800
mm

400
mm

2 kg

A

B

90°

𝜃

PROBLEM 3/263

3/264 The small 2-kg carriage is moving freely along the 
horizontal with a speed of 4 m ∕s at time t = 0. A force ap-
plied to the carriage in the direction opposite to motion 
produces two impulse “peaks,” one after the other, as 
shown by the graphical plot of the readings of the instru-
ment which measured the force. Approximate the loading 
by the dashed lines and determine the velocity v of the car-
riage for t = 1.5 s.

4 m/s v

t = 1.5 st = 0

F

0 1.5

t, s

F, N

0

8

10

0.4 0.4

PROBLEM 3/264
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3/265 For the elliptical orbit of a spacecraft around the 
earth, determine the speed vA at point A which results in a 
perigee altitude at B of 200 km. What is the eccentricity e 
of the orbit?

A

B

vA

600 km

200 km

PROBLEM 3/265

3/266 At a steady speed of 200 mi ∕  hr along a level track, the 
racecar is subjected to an aerodynamic force of 900 lb and an 
overall rolling resistance of 200 lb. If the drive train effi cien-
cy is e = 0.90, what power P must the motor produce?

PROBLEM 3/266

3/267  A person rolls a small ball with speed u along the 
fl oor from point A. If x = 3R, determine the required speed 
u so that the ball returns to A after rolling on the circular 
surface in the vertical plane from B to C and becoming a 
projectile at C. What is the minimum value of x for which 
the game could be played if contact must be maintained to 
point C? Neglect friction.

R

C

u

xA B

PROBLEM 3/267

3/268 The 180-lb exerciser is beginning to execute a bicep 
curl. When in the position shown with his right elbow fi xed, 
he causes the 20-lb cylinder to accelerate upward at the 
rate g∕4. Neglect the effects of the mass of his lower arm 
and estimate the normal reaction forces at A and B. Fric-
tion is suffi cient to prevent slipping.

14ʺ10ʺ10ʺ

62ʺ

20°

C

G

BA

20 lb

PROBLEM 3/268

3/269 The fi gure shows a centrifugal clutch consisting in 
part of a rotating spider A which carries four plungers B. 
As the spider is made to rotate about its center with a 
speed 𝜔, the plungers move outward and bear against the 
interior surface of the rim of wheel C, causing it to rotate. 
The wheel and spider are independent except for frictional 
contact. If each plunger has a mass of 2 kg with a center of 
mass at G, and if the coeffi cient of kinetic friction between 
the plungers and the wheel is 0.40, calculate the maximum 
moment M which can be transmitted to wheel C for a spi-
der speed of 3000 rev∕ min.

300 mm
200 mm

O

A

B

G

C

𝜔

PROBLEM 3/269
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3/273 The 200-kg glider B is being towed by airplane A, 
which is fl ying horizontally with a constant speed of 
220 km ∕  h. The tow cable has a length r = 60 m and may be 
assumed to form a straight line. The glider is gaining alti-
tude and when 𝜃 reaches 15°, the angle is increasing at the 
constant rate 𝜃 = 5 deg ∕s. At the same time the tension in 
the tow cable is 1520 N for this position. Calculate the 
aerodynamic lift L and drag D acting on the glider.

B

L

D

r

10°

A

220 km/h𝜃

PROBLEM 3/273

3/274 An electromagnetic catapult system is being de-
signed to replace a steam-driven system on an aircraft car-
rier. The requirements include accelerating a 12 000-kg air-
craft from rest to a speed of 70 m ∕s over a distance of 90 m. 
What constant force F must the catapult exert on the 
 aircraft?

F

PROBLEM 3/274

3/275 The 2-lb piece of putty is dropped 6 ft onto the 18-lb 
block initially at rest on the two springs, each with a stiff-
ness k = 3 lb ∕ in. Calculate the additional defl ection 𝛿 of the 
springs due to the impact of the putty, which adheres to the 
block upon contact.

6ʹ

18 lb

k = 3 lb/in.

2 lb

k k

𝛿

PROBLEM 3/275

3/270 A ball is thrown from point O with a velocity of 
30 ft  ∕sec at a 60° angle with the horizontal and bounces on 
the inclined plane at A. If the coeffi cient of restitution is 0.6, 
calculate the magnitude v of the rebound velocity at A. Ne-
glect air resistance.

O

y

x

A
v

30°

30 ft/sec
60°

PROBLEM 3/270

3/271 The pickup truck is used to hoist the 40-kg bale of 
hay as shown. If the truck has reached a constant velocity 
v = 5 m ∕s when x = 12 m, compute the corresponding ten-
sion T in the rope.

16 m

x

v

PROBLEM 3/271

3/272 For a given value of the force P, determine the 
steady-state spring compression 𝛿, which is measured rela-
tive to the unstretched length of the spring of modulus k. 
The mass of the cart is M and that of the slider is m. Ne-
glect all friction. State the values of P and 𝛿 associated with 
the steady-state condition.

m

M

k

P

𝜃

PROBLEM 3/272
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C B

h1 = 170 mi
h2 = 22,300 mi

PROBLEM 3/278

3/279  The frame of mass 6m is initially at rest. A particle 
of mass m is attached to the end of the light rod, which 
pivots freely at A. If the rod is released from rest in the 
horizontal position shown, determine the velocity vrel of the 
particle with respect to the frame when the rod is vertical.

6m

mlA

PROBLEM 3/279

3/280 A short train consists of a 400,000-lb locomotive and 
three 200,000-lb hopper cars. The locomotive exerts a con-
stant friction force of 40,000 lb on the rails as the train 
starts from rest. (a) If there is 1 ft of slack in each of the 
three couplers before the train begins moving, estimate the 
speed v of the train just after car C begins to move. Slack 
removal is a plastic short-duration impact. Neglect all fric-
tion except that of the locomotive tractive force and neglect 
the tractive force during the short time duration of the im-
pacts associated with the slack removal. (b) If there is no 
slack in the train couplers, determine the speed v′ which is 
acquired when the train has moved 3 ft.

C B A L

3 2 1

PROBLEM 3/280

3/276  A slider C has a speed of 3 m∕s as it passes point A of 
the guide, which lies in a horizontal plane. The coeffi cient 
of kinetic friction between the slider and the guide is 
𝜇k = 0.60. Compute the tangential deceleration at of the 
slider just after it passes point A if (a) the slider hole and 
guide cross section are both circular and (b) the slider hole 
and guide cross section are both square. In case (b), the 
sides of the square are vertical and horizontal. Assume a 
slight clearance between the slider and the guide.

0.6 m

A C

(a) (b)

PROBLEM 3/276

3/277 The 3-kg block A is released from rest in the 60° 
 position shown and subsequently strikes the 1-kg cart B. If 
the coeffi cient of restitution for the collision is e = 0.7, 
 determine the maximum displacement s of cart B beyond 
point C. Neglect friction.

0.6 m

1.8 m

3 kg

1 kg

60°
30°

A

B
C

s

PROBLEM 3/277

3/278 One of the functions of the space shuttle is to release 
communications satellites at low altitude. A booster rocket 
is fi red at B, placing the satellite in an elliptical transfer 
orbit, the apogee of which is at the altitude necessary for 
a geosynchronous orbit. (A geosynchronous orbit is an 
 equatorial-plane circular orbit whose period is equal to the 
absolute rotational period of the earth. A satellite in such 
an orbit appears to remain stationary to an earth-fi xed ob-
server.) A second booster rocket is then fi red at C, and the 
fi nal circular orbit is achieved. On one of the early space-
shuttle missions, a 1500-lb satellite was released from the 
shuttle at B, where h1 = 170 miles. The booster rocket was 
to fi re for t = 90 seconds, forming a transfer orbit with h2 = 
22,300 miles. The rocket failed during its burn. Radar ob-
servations determined the apogee altitude of the transfer 
orbit to be only 700 miles. Determine the actual time t′ 
which the rocket motor operated before failure. Assume 
negligible mass change during the booster rocket fi ring.
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AkT

m

M

L

L

O

𝜃

PROBLEM 3/284

*3/285 The two 0.2-kg sliders are connected by a light 
 rigid bar of length L = 0.5 m. If the system is released from 
rest in the position shown with the spring unstretched, plot 
the speeds of A and B as functions of the displacement of B 
(with zero being the initial position). The 0.14-MPa air 
pressure acting on one 500-mm2 side of slider A is constant. 
The motion occurs in a vertical plane. Neglect friction. 
State the maximum values of vA and vB and the position of 
B at which each occurs.

B

A

60°
30°

k = 1.2 kN/m

L

PROBLEM 3/285

*3/286 The bowl-shaped device rotates about a vertical 
axis with a constant angular velocity 𝜔 = 6 rad ∕s. The 
 value of r is 0.2 m. Determine the range of the position 
angle 𝜃 for which a stationary value is possible if the coef-
fi cient of static friction between the particle and the sur-
face is 𝜇s = 0.20.

r

m

r

𝜇s = 0.20

𝜃

𝜔

PROBLEM 3/286

3/281 The retarding forces which act on the racecar are 
the drag force FD and a nonaerodynamic force FR. The drag 
force is FD = CD 

(1
2 𝜌v2)S, where CD is the drag coeffi cient, 

𝜌 is the air density, v is the car speed, and S = 30 ft2 is the 
projected frontal area of the car. The nonaerodynamic force 
FR is constant at 200 lb. With its sheet metal in good condi-
tion, the racecar has a drag coeffi cient CD = 0.3 and it has 
a corresponding top speed v = 200 mi ∕  hr. After a minor col-
lision, the damaged front-end sheet metal causes the drag 
coeffi cient to be CD′ = 0.4. What is the corresponding top 
speed v′ of the racecar?

PROBLEM 3/281

3/282 The satellite of Sample Problem 3 ∕31 has a perigee 
velocity of 26 140 km ∕  h at the perigee altitude of 2000 km. 
What is the minimum increase Δv in velocity required of its 
rocket motor at this position to allow the satellite to escape 
from the earth’s gravity fi eld?

3/283 A long fl y ball strikes the wall at point A (where e1 = 
0.5) and then hits the ground at B (where e2 = 0.3). The 
outfi elder likes to catch the ball when it is 4 ft above the 
ground and 2 ft in front of him as shown. Determine the 
distance x from the wall where he can catch the ball as 
 described. Note the two possible solutions.

8ʹ

4ʹ

2ʹ

45°

100 ft/sec
A

B

x

PROBLEM 3/283

*Computer-Oriented Problems
*3/284 The system is released from rest while in the posi-
tion shown with the torsional spring undefl ected. The rod has 
negligible mass, and all friction is negligible. Determine (a) 
the value of 𝜃 when 𝜃 is 30° and (b) the maximum value of 𝜃. 
Use the values m = 5 kg, M = 8 kg, L = 0.8 m, and kT = 100 
N ∙ m ∕rad.
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m

r

O

𝜔0

𝜃

PROBLEM 3/289

 *3/290 The elements of a device designed to measure the 
coeffi cient of restitution of bat–baseball collisions are re-
peated here from Prob. 3 ∕215. The 1-lb “bat” A is a length of 
wood or aluminum which is projected to the right with a 
speed vA = 60 ft  ∕sec and is confi ned to move horizontally in 
the smooth slot. Just before and after the moment of im-
pact, body A is free to move horizontally. The baseball B 
weighs 5.125 oz and has an initial speed vB = 125 ft  ∕sec. 
Determine the immediate post-impact speed vB′ of the 
baseball and the resulting horizontal distance R traveled 
by the baseball over the range 0.4 ≤ e ≤ 0.6, where e is the 
coeffi cient of restitution. The range is to be calculated as-
suming that the baseball is initially 3 ft above a horizontal 
ground.

20°

vA
vB

B

A

PROBLEM 3/290

*3/287 If the vertical frame starts from rest with a con-
stant acceleration a and the smooth sliding collar A is 
 initially at rest in the bottom position 𝜃 = 0, plot 𝜃 as a 
function of 𝜃 and fi nd the maximum  position angle 𝜃max 
reached by the collar. Use the values a = g ∕ 2 and r = 0.3 m.

A

a

r 𝜃

PROBLEM 3/287

*3/288 The tennis player practices by hitting the ball against 
the wall at A. The ball bounces off the court surface at B and 
then up to its maximum height at C. For the conditions shown 
in the fi gure, plot the location of point C for values of the coef-
fi cient of restitution in the range 0.5 ≤ e ≤ 0.9. (The value of 
e is common to both A and B.) For what value of e is x = 0 
at point C, and what is the corresponding value of y?

30ʹ

B

C

y

x

5°

3ʹ

80 ft/sec
A

PROBLEM 3/288

*3/289 A particle of mass m is introduced with zero veloc-
ity at r = 0 when 𝜃 = 0. It slides outward through the 
smooth hollow tube, which is driven at the constant angu-
lar velocity 𝜔0 about a horizontal axis through point O. If 
the length l of the tube is 1 m and 𝜔0 = 0.5 rad ∕s, determine 
the time t after  release and the angular displacement 𝜃 for 
which the particle exits the tube.
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Problems for Articles 4/1–4/5
Introductory Problems
4/1 The system of three particles has the indicated particle 
masses, velocities, and external forces. Determine r, ṙ, r̈, T, 
HO, and ḢO for this two-dimensional system.

y

O
x

F
2v

v

2d (stationary)

3m

m

2m

d

PROBLEM 4/1

4/2 For the particle system of Prob. 4 ∕1, determine HG 
and ḢG.

4/3 The system of three particles has the indicated particle 
masses, velocities, and external forces. Determine r, ṙ, r̈, T, 
HO, and ḢO for this three-dimensional system.

z

y

3F

2F

3m

5m
v

2v

4v

60°

30°

1.5b

2.5b

5b
2b

3b
m

O

x

b

PROBLEM 4/3

4/4 For the particle system of Prob. 4 ∕3, determine HG 
and ḢG.

4/5 The system consists of the two smooth spheres, each 
weighing 3 lb and connected by a light spring, and the two 
bars of negligible weight hinged freely at their ends and 
hanging in the vertical plane. The spheres are confi ned to 
slide in the smooth horizontal guide. If a horizontal force F = 
10 lb is applied to the one bar at the position shown, what 
is the acceleration of the center C of the spring? Why does 
the result not depend on the dimension b?

3 lb 3 lb

12ʺ12ʺ

10 lb

b

C

PROBLEM 4/5

4/6 The total linear momentum of a system of fi ve particles 
at time t = 2.2 s is given by G2.2 = 3.4i −2.6j + 4.6k kg∙m∕s. 
At time t = 2.4 s, the linear momentum has changed to G2.4 = 
3.7i − 2.2j + 4.9k kg∙m∕s. Calculate the magnitude F of the 
time average of the resultant of the external forces acting 
on the system during the interval.

4/7 The angular momentum of a system of six particles 
about a fi xed point O at time t = 4 s is H4 = 3.65i + 4.27j − 
5.36k kg ∙m2 ∕s. At time t = 4.1 s, the angular momentum is 
H4.1 = 3.67i + 4.30j − 5.20k kg ∙m2 ∕s. Determine the average 
value of the resultant moment about point O of all forces 
acting on all particles during the 0.1-s interval.

Chapter 4
* Computer-oriented problem

 Diffi cult problem
 Student solution available in WileyPLUS
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4/10 Each of the fi ve connected particles has a mass of 
0.5 kg, and G is the mass center of the system. At a certain 
instant the angular velocity of the body is 𝜔 = 2 rad ∕s and 
the linear velocity of G is vG = 4 m  ∕s in the direction shown. 
Determine the linear momentum of the body and its angu-
lar momentum about G and about O.

0.3 m

0.15 m

0.15 m 15°

15°

vG

G

O

0.3 m

0.6 m

0.8 m

𝜔

x

y

PROBLEM 4/10

4/11 Calculate the acceleration of the center of mass of the 
system of the four 10-kg cylinders. Neglect friction and the 
mass of the pulleys and cables.

10
kg

10
kg

500 N 250 N

10
kg

10
kg

PROBLEM 4/11

4/8 Three monkeys A, B, and C weighing 20, 25, and 15 lb, 
respectively, are climbing up and down the rope suspended 
from D. At the instant represented, A is descending the 
rope with an acceleration of 5 ft  ∕sec2, and C is pulling him-
self up with an acceleration of 3 ft  ∕sec2. Monkey B is climb-
ing up with a constant speed of 2 ft  ∕sec. Treat the rope and 
monkeys as a complete system and calculate the tension T 
in the rope at D.

A

B

C

D

PROBLEM 4/8

4/9 The monkeys of Prob. 4 ∕8 are now climbing along the 
heavy rope wall suspended from the uniform beam. If mon-
keys A, B, and C have velocities of 5, 3, and 2 ft  ∕sec, and ac-
celerations of 1.5, 0.5, and 2 ft  ∕sec2, respectively, determine 
the changes in the reactions at D and E caused by the mo-
tion and weight of the monkeys. The support at E makes 
contact with only one side of the beam at a time. Assume 
for this analysis that the rope wall remains rigid.

25 lb

15 lb

15°

30°

20 lb

B

E
D

C

A

6.5ʹ3.5ʹ
2ʹ

2ʹ 2.5ʹ

2ʹ

8ʹ

3ʹ

2ʹ

6ʹ

vB

vA,aA

aC

vC

aB

PROBLEM 4/9
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4/15 The three small spheres are welded to the light rigid 
frame which is rotating in a horizontal plane about a verti-
cal axis through O with an angular velocity 𝜃 = 20 rad ∕s. If 
a couple MO = 30 N∙m is applied to the frame for 
5 seconds, compute the new angular velocity 𝜃′.

0.4 m

0.5 m

0.6 m

3 kg

3 kg

4 kg O

MO = 30 N · m

𝜃
⋅

PROBLEM 4/15

4/16 Billiard ball A is moving in the y-direction with a 
 velocity of 2 m ∕s when it strikes ball B of identical size and 
mass initially at rest. Following the impact, the balls are 
observed to move in the directions shown. Calculate the 
velocities vA and vB which the balls have immediately after 
the impact. Treat the balls as particles and neglect any 
friction forces acting on the balls compared with the force 
of impact.

vA

vB
y

B

2 m/s

A

30°

50°

PROBLEM 4/16

Representative Problems
4/12 The two small spheres, each of mass m, and their con-
necting rod of negligible mass are rotating about their 
mass center G with an angular velocity 𝜔. At the same in-
stant the mass center has a velocity v in the x-direction. 
Determine the angular momentum HO of the assembly at 
the instant when G has coordinates x and y.

y

O
x

m

m

r

r
G

v

𝜔

PROBLEM 4/12

4/13 A department-store escalator makes an angle of 30° 
with the horizontal and takes 40 seconds to transport a 
person from the fi rst to the second fl oor with a vertical rise 
of 20 ft. At a certain instant, there are 10 people on the es-
calator averaging 150 lb per person and standing at rest 
relative to the moving steps. Additionally, three boys aver-
aging 120 lb each are running down the escalator at a 
speed of 2 ft  ∕sec relative to the moving steps. Calculate the 
power output P of the driving motor to maintain the con-
stant speed of the escalator. The no-load power without 
passengers is 2.2 hp to overcome friction in the mechanism.

4/14 A centrifuge consists of four cylindrical containers, 
each of mass m, at a radial distance r from the rotation 
axis. Determine the time t required to bring the centrifuge 
to an angular velocity 𝜔 from rest under a constant torque 
M applied to the shaft. The diameter of each container is 
small compared with r, and the mass of the shaft and sup-
porting arms is small compared with m.

m

M

r

PROBLEM 4/14
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4/20 The woman A, the captain B, and the sailor C weigh 
120, 180, and 160 lb, respectively, and are sitting in the 
300-lb skiff, which is gliding through the water with a 
speed of 1 knot. If the three people change their positions 
as shown in the second fi gure, fi nd the distance x from the 
skiff to the position where it would have been if the people 
had not moved. Neglect any resistance to motion afforded 
by the water. Does the sequence or timing of the change in 
positions affect the fi nal result?

1 knot
A B C

ACB

6ʹ 8ʹ
2ʹ

4ʹ 6ʹ
x

4ʹ

PROBLEM 4/20

4/21 The three small steel balls, each of mass 2.75 kg, are 
connected by the hinged links of negligible mass and equal 
length. They are released from rest in the positions shown 
and slide down the quarter-circular guide in the vertical 
plane. When the upper sphere reaches the bottom position, 
the spheres have a horizontal velocity of 1.560 m ∕s. Calcu-
late the energy loss ΔQ due to friction and the total im-
pulse Ix on the system of three spheres during this interval.

x

360
mm

PROBLEM 4/21

4/22  The two spheres are rigidly connected to the rod of 
negligible mass and are initially at rest on the smooth hor-
izontal surface. A force F is suddenly applied to one sphere 
in the y-direction and imparts an impulse of 10 N∙s during 
a negligibly short period of time. As the spheres pass the 
dashed position, calculate the velocity of each one.

4/17 The 300-kg and 400-kg mine cars are rolling in oppo-
site directions along the horizontal track with the respec-
tive speeds of 0.6 m ∕s and 0.3 m ∕s. Upon impact the cars 
become coupled together. Just prior to impact, a 100-kg 
boulder leaves the delivery chute with a velocity of 1.2 m ∕s 
in the direction shown and lands in the 300-kg car. Calcu-
late the velocity v of the system after the boulder has come 
to rest relative to the car. Would the fi nal velocity be the 
same if the cars were coupled before the boulder dropped?

30°

100 kg

1.2 m/s

0.6 m/s 0.3 m/s

300 kg 400 kg

PROBLEM 4/17

4/18 The three freight cars are rolling along the horizontal 
track with the velocities shown. After the impacts occur, 
the three cars become coupled together and move with a 
common velocity v. The weights of the loaded cars A, B, and 
C are 130,000, 100,000, and 150,000 lb, respectively. Deter-
mine v and calculate the percentage loss n of energy of the 
system due to coupling.

2 mi/hr

A B C

1 mi/hr 1.5 mi/hr

PROBLEM 4/18

4/19 The man of mass m1 and the woman of mass m2 are 
standing on opposite ends of the platform of mass m0 which 
moves with negligible friction and is initially at rest with s = 0. 
The man and woman begin to approach each other. Derive 
an expression for the displacement s of the platform when 
the two meet in terms of the displacement x1 of the man 
relative to the platform.

A

s

l

x2

m0

m1m2

x1

PROBLEM 4/19

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Problems for Articles 4/1–4/5 P-101

4/25 The 50,000-lb fl atcar supports a 15,000-lb vehicle on 
a 5° ramp built on the fl atcar. If the vehicle is released from 
rest with the fl atcar also at rest, determine the velocity v of 
the fl atcar when the vehicle has rolled s = 40 ft down the 
ramp just before hitting the stop at B. Neglect all friction 
and treat the vehicle and the fl atcar as particles.

s

A

B 5°

PROBLEM 4/25

4/26 A 60-kg rocket is fi red from O with an initial veloc-
ity v0 = 125 m ∕s along the indicated trajectory. The rocket 
explodes 7 seconds after launch and breaks into three piec-
es A, B, and C having masses of 10, 30, and 20 kg, respec-
tively. Pieces B and C are recovered at the impact 
 coordinates shown. Instrumentation records reveal that 
piece B reached a maximum altitude of 1500 m after the 
explosion and that piece C struck the ground 6 seconds af-
ter the explosion. What are the impact coordinates for piece 
A? Neglect air resistance.

P

1500 m

(2000, 1520, 0)

(−565, 1975, 0)

x, m

O

tan−1

CB

v0

y, m

(xA, yA, 0)

A
4

3

z, m

5
―
12

PROBLEM 4/26

1.5 kg

1.5 kg
600 mm

F
x

vy

y

𝜔

PROBLEM 4/22

4/23 The small car, which has a mass of 20 kg, rolls freely 
on the horizontal track and carries the 5-kg sphere mount-
ed on the light rotating rod with r = 0.4 m. A geared motor 
drive maintains a constant angular speed 𝜃 = 4 rad ∕s of the 
rod. If the car has a velocity v = 0.6 m ∕s when 𝜃 = 0, calcu-
late v when 𝜃 = 60°. Neglect the mass of the wheels and any 
friction.

O

v

r

𝜃
⋅

𝜃

PROBLEM 4/23

4/24 The cars of a roller-coaster ride have a speed of 
30 km ∕  h as they pass over the top of the circular track. 
Neglect any friction and calculate their speed v when they 
reach the horizontal bottom position. At the top position, 
the radius of the circular path of their mass centers is 
18 m, and all six cars have the same mass.

30 km/h

v
18 m

18 m

PROBLEM 4/24
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4/28 In the unstretched position the coils of the 1.5-kg 
spring are just touching one another, as shown in part a of 
the fi gure. In the stretched position the force P,  proportional 
to x, equals 900 N when x = 500 mm. If end A of the spring 
is suddenly released, determine the velocity vA of the coil 
end A, measured positive to the left, as it  approaches its 
unstretched position at x = 0. What happens to the  kinetic 
energy of the spring?

500 mm x

A

P

(a)

(b)

PROBLEM 4/28

4/27 A horizontal bar of mass m1 and small diameter is 
suspended by two wires of length l from a carriage of mass 
m2 which is free to roll along the horizontal rails. If the bar 
and carriage are released from rest with the wires making 
an angle 𝜃 with the vertical, determine the velocity vb∕c of 
the bar relative to the carriage and the velocity vc of the 
carriage at the instant when 𝜃 = 0. Neglect all friction and 
treat the carriage and the bar as particles in the vertical 
plane of motion.

m1

m2

l𝜃

PROBLEM 4/27
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Problems for Article 4/6
Introductory Problems
4/29 The experimental race car is propelled by a rocket 
motor and is designed to reach a maximum speed v = 300 
mi ∕  hr under the thrust T of its motor. Prior wind-tunnel 
tests disclose that the wind resistance at this speed is 
225 lb. If the rocket motor is burning fuel at the rate of 
3.5 lb ∕sec, determine the velocity u of the exhaust gases 
relative to the car.

v

PROBLEM 4/29

4/30 The jet aircraft has a mass of 4.6 Mg and a drag (air 
resistance) of 32 kN at a speed of 1000 km ∕ h at a particular 
altitude. The aircraft consumes air at the rate of 106 kg ∕s 
through its intake scoop and uses fuel at the rate of 4 kg ∕s. 
If the exhaust has a rearward velocity of 680 m ∕s relative 
to the exhaust nozzle, determine the maximum angle of 
 elevation 𝛼 at which the jet can fl y with a constant speed of 
1000 km ∕ h at the particular altitude in question.

𝛼

PROBLEM 4/30

4/31  A jet of air issues from the nozzle with a velocity 
of 300 ft∕sec at the rate of 6.50 ft3∕sec and is defl ected by 
the right-angle vane. Calculate the force F required to hold 
the vane in a fi xed position. The specifi c weight of the air is 
0.0753 lb∕ft3.

y

xF
v

PROBLEM 4/31

4/32 In an unwise effort to remove debris, a homeowner 
directs the nozzle of his backpack blower directly toward 
the garage door. The nozzle velocity is 130 mi ∕ hr and 
the fl ow rate is 410 ft3 ∕min. Estimate the force F exerted 
by the airfl ow on the door. The specifi c weight of air is 
0.0753 lb ∕ft3.

PROBLEM 4/32

4/33 The jet water ski has reached its maximum velocity of 
70 km ∕h when operating in salt water. The water intake is 
in the horizontal tunnel in the bottom of the hull, so the 
water enters the intake at the velocity of 70 km ∕h relative 
to the ski. The motorized pump discharges water from the 
horizontal exhaust nozzle of 50-mm diameter at the rate of 
0.082 m3 ∕s. Calculate the resistance R of the water to the 
hull at the operating speed.

PROBLEM 4/33
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4/37  The 90° vane moves to the left with a constant 
velocity of 10 m ∕s against a stream of fresh water issuing 
with a velocity of 20 m ∕s from the 25-mm-diameter nozzle. 
Calculate the forces Fx and Fy on the vane required to sup-
port the motion.

Fx

Fy

20 m/s

10 m/s

y

x 

PROBLEM 4/37

Representative Problems
4/38  Salt water is being discharged into the atmosphere 
from the two 30° outlets at the total rate of 30 m3∕min. 
Each of the discharge nozzles has a fl ow diameter of 
100 mm, and the inside diameter of the pipe at the connect-
ing section A is 250 mm. The pressure of the water at section 
A-A is 550 kPa. If each of the six bolts at the fl ange A-A is 
tightened to a tension of 10 kN, calculate the average pres-
sure p on the fl ange gasket, which has an area of 24(103) mm2. 
The pipe above the fl ange and the water within it have a 
mass of 60 kg.

AA

30°30°

PROBLEM 4/38

4/34 The fi re tug discharges a stream of salt water (density 
1030 kg ∕m3) with a nozzle velocity of 40 m ∕s at the rate of 
0.080 m3 ∕s. Calculate the propeller thrust T which must be 
developed by the tug to maintain a fi xed position while 
pumping.

30°

PROBLEM 4/34

4/35 The pump shown draws air with a density 𝜌 through 
the fi xed duct A of diameter d with a velocity u and dis-
charges it at high velocity v through the two outlets B. The 
pressure in the airstreams at A and B is atmospheric. De-
termine the expression for the tension T exerted on the 
pump unit through the fl ange at C.

d

B

C

A u

v

v

B

𝜃

𝜃

PROBLEM 4/35

4/36 A jet-engine noise suppressor consists of a movable 
duct which is secured directly behind the jet exhaust by 
cable A and defl ects the blast directly upward. During a 
ground test, the engine sucks in air at the rate of 43 kg ∕s 
and burns fuel at the rate of 0.8 kg ∕s. The exhaust velocity 
is 720 m ∕s. Determine the tension T in the cable.

A
15°

PROBLEM 4/36
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4/41 A jet-engine thrust reverser to reduce an aircraft 
speed of 200 km ∕ h after landing employs folding vanes 
which defl ect the exhaust gases in the direction indicated. 
If the engine is consuming 50 kg of air and 0.65 kg of fuel 
per second, calculate the braking thrust as a fraction n of 
the engine thrust without the defl ector vanes. The exhaust 
gases have a velocity of 650 m ∕s relative to the nozzle.

200 km/h

30°

30°

PROBLEM 4/41

4/42  In a test of the operation of a “cherry-picker” fi re 
truck, the equipment is free to roll with its brakes released. 
For the position shown, the truck is observed to defl ect the 
spring of stiffness k = 15 kN∕m a distance of 150 mm be-
cause of the action of the horizontal stream of water issu-
ing from the nozzle when the pump is activated. If the exit 
diameter of the nozzle is 30 mm, calculate the velocity v of 
the stream as it leaves the nozzle. Also determine the 
 added moment M which the joint at A must resist when the 
pump is in operation with the nozzle in the position shown.

v

75°

90°

15 m

A

4.8 m

PROBLEM 4/42

4/39 A jet of fl uid with cross-sectional area A and mass den-
sity 𝜌 issues from the nozzle with a velocity v and impinges on 
the inclined trough shown in section. Some of the fl uid is di-
verted in each of the two directions. If the trough is smooth, 
the velocity of both diverted streams remains v, and the only 
force which can be exerted on the trough is normal to the bot-
tom surface. Hence, the trough will be held in position by 
forces whose resultant is F normal to the trough. By writing 
impulse-momentum equations for the directions along and 
normal to the trough, determine the force F required to sup-
port the trough. Also fi nd the volume rates of fl ow Q1 and Q2 
for the two streams.

F

v

2

1

𝜃

PROBLEM 4/39

4/40 The 8-oz ball is supported by the vertical stream of 
fresh water which issues from the 1 ∕2-in.-diameter nozzle 
with a velocity of 35 ft ∕sec. Calculate the height h of the 
ball above the nozzle. Assume that the stream remains in-
tact and there is no energy lost in the jet stream.

h

lb
1
—
2

PROBLEM 4/40
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6 m

45°

200 mm

100 mm

A

250
mm

PROBLEM 4/45

4/46 The experimental ground-effect machine has a total 
weight of 4200 lb. It hovers 1 or 2 ft off the ground by pump-
ing air at atmospheric pressure through the circular intake 
duct at B and discharging it horizontally under the periph-
ery of the skirt C. For an intake velocity v of 150 ft ∕sec, cal-
culate the average air pressure p under the 18-ft-diameter 
machine at ground level. The specifi c weight of the air is 
0.076 lb ∕ft3.

3ʹ

C

B

v

9ʹ

PROBLEM 4/46

4/47 The leaf blower draws in air at a rate of 11 m3 ∕min 
and discharges it at a speed v = 380 km ∕ h. If the density of 
the air being drawn into the blower is 1.206 kg ∕m3, deter-
mine the added torque which the man must exert on the 
handle of the blower when it is running, compared with 
that when it is off, to maintain a steady orientation.

OO

v

250 mm

PROBLEM 4/47

4/43 Air is pumped through the stationary duct A with a 
velocity of 50 ft ∕sec and exhausted through an experimen-
tal nozzle section BC. The average static pressure across 
section B is 150 lb ∕in.2 gage, and the specifi c weight of air at 
this pressure and at the temperature prevailing is 0.840 lb ∕ft3. 
The  average static pressure across the exit section C is 
measured to be 2 lb ∕in.2 gage, and the corresponding spe-
cifi c weight of air is 0.0760 lb ∕ft3. Calculate the force T ex-
erted on the nozzle fl ange at B by the bolts and the gasket 
to hold the nozzle in place.

50

ft/sec
8ʺ 4ʺ

A
B

C

PROBLEM 4/43

4/44 Air enters the pipe at A at the rate of 6 kg ∕s under a 
pressure of 1400 kPa gage and leaves the whistle at atmo-
spheric pressure through the opening at B. The entering 
velocity of the air at A is 45 m ∕s, and the exhaust velocity 
at B is 360 m ∕s. Calculate the tension T, shear V, and bend-
ing moment M in the pipe at A. The net fl ow area at A is 
7500 mm2.

600 mm

60°

A

B

PROBLEM 4/44

4/45 The sump pump has a net mass of 310 kg and pumps 
fresh water against a 6-m head at the rate of 0.125 m3 ∕s. 
Determine the vertical force R between the supporting 
base and the pump fl ange at A during operation. The mass 
of water in the pump may be taken as the equivalent of a 
200-mm-diameter column 6 m in height.
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from its 45° chute with a velocity of 12 m ∕s relative to the 
plow. Calculate the tractive force P on the tires in the direc-
tion of motion necessary to move the plow and fi nd the cor-
responding lateral force R between the tires and the road.

45°

z

y

x

PROBLEM 4/50

4/51 The industrial blower sucks in air through the axial 
opening A with a velocity v1 and discharges it at atmo-
spheric pressure and temperature through the 150-mm- 
diameter duct B with a velocity v2. The blower handles 
16 m3 of air per minute with the motor and fan running at 
3450 rev ∕min. If the motor requires 0.32 kW of power  under 
no load (both ducts closed), calculate the power P consumed 
while air is being pumped.

A

B

200 mm
v1

v2

PROBLEM 4/51

4/48 The ducted fan unit of mass m is supported in the 
vertical position on its fl ange at A. The unit draws in air 
with a density 𝜌 and a velocity u through section A and 
discharges it through section B with a velocity v. Both in-
let and outlet pressures are atmospheric. Write an expres-
sion for the force R applied to the fl ange of the fan unit by 
the supporting slab.

d
u

v v

B B

A

𝜃 𝜃

PROBLEM 4/48

4/49  The military jet aircraft has a gross weight of 24,000 lb 
and is poised for takeoff with brakes set while the engine is 
revved up to maximum power. At this condition, air with a 
specifi c weight of 0.0753 lb∕ft3 is sucked into the intake 
ducts at the rate of 106 lb∕sec with a static pressure of 
−0.30 lb∕in.2 (gage) across the duct entrance. The total 
cross-sectional area of both intake ducts (one on each side) 
is 1800 in.2 The air–fuel ratio is 18, and the exhaust veloc-
ity u is 3100 ft∕sec with zero back pressure (gage) across 
the exhaust nozzle. Compute the initial acceleration a of 
the aircraft upon release of the brakes.

v0
u

PROBLEM 4/49

4/50 A rotary snow plow mounted on a large truck eats its 
way through a snow drift on a level road at a constant speed 
of 20 km ∕ h. The plow discharges 60 Mg of snow per minute 
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4/54 The sprinkler is made to rotate at the constant angu-
lar velocity 𝜔 and distributes water at the volume rate Q. 
Each of the four nozzles has an exit area A. Water is ejected 
from each nozzle at an angle 𝜙 that is measured in the hor-
izontal plane as shown. Write an expression for the torque 
M on the shaft of the sprinkler necessary to maintain the 
given motion. For a given pressure and thus fl ow rate Q, at 
what speed 𝜔0 will the sprinkler operate with no applied 
torque? Let 𝜌 be the density of water.

r

b

M

𝜙

𝜙

𝜙𝜔

𝜙

PROBLEM 4/54

4/55 The VTOL (vertical takeoff and landing) military air-
craft is capable of rising vertically under the action of its 
jet exhaust, which can be “vectored” from 𝜃 ≅ 0 for takeoff 
and hovering to 𝜃 = 90° for forward fl ight. The loaded air-
craft has a mass of 8600 kg. At full takeoff power, its  turbo-
fan engine consumes air at the rate of 90 kg∕s and has 
an air–fuel ratio of 18. Exhaust-gas velocity is 1020 m∕s 
with essentially atmospheric pressure across the exhaust 
nozzles. Air with a density of 1.206 kg∕m3 is sucked into 
the intake scoops at a pressure of −2 kPa (gage) over the 
total inlet area of 1.10 m2. Determine the angle 𝜃 for verti-
cal takeoff and the corresponding vertical acceleration ay of 
the aircraft.

v0

u

y

𝜃
PROBLEM 4/55

4/52  A high-speed jet of air issues from the 40-mm- 
diameter nozzle A with a velocity v of 240 m∕s and im-
pinges on the vane OB, shown in its edge view. The vane 
and its right-angle extension have negligible mass com-
pared with the attached 6-kg cylinder and are freely piv-
oted about a horizontal axis through O. Calculate the 
 angle 𝜃 assumed by the vane with the horizontal. The air 
density under the prevailing conditions is 1.206 kg∕m3. 
State any assumptions.

100 mm

240 mm6 kg

A
B

O

v

v

𝜃

PROBLEM 4/52

4/53 The helicopter shown has a mass m and hovers in 
position by imparting downward momentum to a column of 
air defi ned by the slipstream boundary shown. Find the 
downward velocity v given to the air by the rotor at a sec-
tion in the stream below the rotor, where the pressure is 
atmospheric and the stream radius is r. Also fi nd the power 
P required of the engine. Neglect the rotational energy of 
the air, any temperature rise due to air friction, and any 
change in air density 𝜌.

r
v

PROBLEM 4/53
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y

x

60°

B C

A

PROBLEM 4/56

4/56 A marine terminal for unloading bulk wheat from a 
ship is equipped with a vertical pipe with a nozzle at A which 
sucks wheat up the pipe and transfers it to the storage build-
ing. Calculate the x- and y-components of the force R required 
to change the momentum of the fl owing mass in rounding the 
bend. Identify all forces applied externally to the bend and 
mass within it. Air fl ows through the 14-in.-diameter pipe at 
the rate of 18 tons per hour under a vacuum of 9 in. of mer-
cury (p = −4.42 lb ∕in.2) and carries with it 150 tons of wheat 
per hour at a speed of 124 ft ∕sec.
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Problems for Article 4/7
Introductory Problems
4/57 At the instant of vertical launch the rocket expels 
 exhaust at the rate of 220 kg ∕s with an exhaust velocity of 
900 m ∕s. If the initial vertical acceleration is 6 m ∕s2, calcu-
late the total mass of the rocket and fuel at launch.

a = 6 m/s2 

PROBLEM 4/57

4/58 The space shuttle, together with its central fuel tank 
and two booster rockets, has a total mass of 2.04(106) kg at 
liftoff. Each of the two booster  rockets produces a thrust 
of 11.80(106) N, and each of the three main engines of the 
shuttle produces a thrust of 2.00(106) N. The specifi c impulse 
(ratio of exhaust velocity to gravitational acceleration) for 
each of the three main engines of the shuttle is 455 s. Calcu-
late the initial vertical acceleration a of the assembly with 
all fi ve engines operating and fi nd the rate at which fuel is 
being consumed by each of the shuttle’s three engines.

PROBLEM 4/58

4/59 A small rocket of initial mass m0 is fi red vertically 
upward near the surface of the earth (  g constant). If air 
resistance is neglected, determine the manner in which the 
mass m of the rocket must vary as a function of the time t 
after launching in order that the rocket may have a constant 
vertical acceleration a, with a constant relative velocity u of 
the escaping gases with respect to the nozzle.

a

PROBLEM 4/59

4/60 A tank truck for washing down streets has a total 
weight of 20,000 lb when its tank is full. With the spray 
turned on, 80 lb of water per second issue from the nozzle 
with a velocity of 60 ft  ∕sec relative to the truck at the 30° 
angle shown. If the truck is to accelerate at the rate of 
2 ft  ∕sec2 when starting on a level road, determine the re-
quired tractive force P between the tires and the road when 
(a) the spray is turned on and (b) the spray is turned off.

a

30°

PROBLEM 4/60
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4/63 Fresh water issues from the two 30-mm-diameter 
holes in the bucket with a velocity of 2.5 m ∕s in the direc-
tions shown. Calculate the force P required to give the 
bucket an upward acceleration of 0.5 m ∕s2 from rest if it 
contains 20 kg of water at that time. The empty bucket has 
a mass of 0.6 kg.

P

20° 20°

PROBLEM 4/63

Representative Problems
4/64 The upper end of the open-link chain of length L and 
mass 𝜌 per unit length is lowered at a constant speed v by 
the force P. Determine the reading R of the platform scale 
in terms of x.

x

L

P

v

PROBLEM 4/64

4/61 A model rocket weighs 1.5 lb just before its vertical 
launch. Its experimental solid-fuel motor carries 0.1 lb of 
fuel, has an escape velocity of 3000 ft  ∕sec, and burns the 
fuel for 0.9 sec. Determine the acceleration of the rocket at 
launch and its burnout velocity. Neglect aerodynamic drag 
and state any other assumptions.

PROBLEM 4/61

4/62 The magnetometer boom for a spacecraft consists of 
a large number of triangular-shaped units which spring 
into their deployed confi guration upon release from the 
canister in which they were folded and packed prior to re-
lease. Write an expression for the force F which the base of 
the canister must exert on the boom during its deployment 
in terms of the increasing length x and its time deriva-
tives. The mass of the boom per unit of deployed length is 
𝜌. Treat the supporting base on the spacecraft as a fi xed 
platform and assume that the deployment takes place out-
side of any gravitational fi eld. Neglect the dimension b 
compared with x.

x

b

PROBLEM 4/62
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and the tension in the rope at the post is 2.4 N, determine 
the force P required to give the cart and drum an accelera-
tion of 0.3 m ∕s2. Neglect all friction.

P

x

A

PROBLEM 4/68

4/69 By lowering a scoop as it skims the surface of a body 
of water, the aircraft (nicknamed the “Super Scooper”) is 
able to ingest 4.5 m3 of fresh water during a 12-second run. 
The plane then fl ies to a fi re area and makes a massive 
water drop with the ability to repeat the procedure as 
many times as necessary. The plane approaches its run 
with a velocity of 280 km ∕ h and an initial mass of 16.4 Mg. 
As the scoop enters the water, the pilot advances the throt-
tle to provide an additional 300 hp (223.8 kW) needed to 
prevent undue deceleration. Determine the initial decel-
eration when the scooping action starts. (Neglect the dif-
ference between the average and the initial rates of water 
intake.)

v

Scoop

PROBLEM 4/69

4/70 A small rocket-propelled vehicle weighs 125 lb, in-
cluding 20 lb of fuel. Fuel is burned at the constant rate of 
2 lb ∕sec with an exhaust velocity relative to the nozzle of 
400 ft  ∕sec. Upon ignition the vehicle is released from rest 
on the 10° incline. Calculate the maximum velocity v 
reached by the vehicle. Neglect all friction.

10°

PROBLEM 4/70

4/65 A rocket stage designed for deep-space missions con-
sists of 200 kg of fuel and 300 kg of structure and payload 
combined. In terms of burnout velocity, what would be the 
advantage of reducing the structural ∕payload mass by 
1 percent (3 kg) and using that mass for additional fuel? 
Express your answer in terms of a percent increase in 
burnout velocity. Repeat your calculation for a 5 percent 
reduction in the structural ∕payload mass.

4/66 At a bulk loading station, gravel leaves the hopper at 
the rate of 220 lb ∕sec with a velocity of 10 ft  ∕sec in the di-
rection shown and is deposited on the moving fl atbed truck. 
The tractive force between the driving wheels and the road 
is 380 lb, which overcomes the 200 lb of frictional road re-
sistance. Determine the acceleration a of the truck 4 sec-
onds after the hopper is opened over the truck bed, at 
which instant the truck has a forward speed of 1.5 mi ∕  hr. 
The empty weight of the truck is 12,000 lb.

v60°

10 ft/sec

PROBLEM 4/66

4/67 A railroad coal car has an empty mass of 25 Mg and 
carries a total load of 90 Mg of coal. The bins are equipped 
with bottom doors which permit discharging coal through an 
opening between the rails. If the car dumps coal at the rate 
of 10 Mg ∕s in a downward direction relative to the car, and if 
frictional resistance to motion is 20 N per megagram of total 
remaining mass, determine the coupler force P required to 
give the car an acceleration of 0.045 m  ∕s2 in the direction of 
P at the instant when half the coal has been dumped.

P

PROBLEM 4/67

4/68 A coil of heavy fl exible cable with a total length of 
100 m and a mass of 1.2 kg ∕m is to be laid along a straight 
horizontal line. The end is secured to a post at A, and the 
cable peels off the coil and emerges through the horizontal 
opening in the cart as shown. The cart and drum together 
have a mass of 40 kg. If the cart is moving to the right with 
a velocity of 2 m ∕s when 30 m of cable remain in the drum 
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4/74 Repeat the previous problem, but now let h ≠ 0. Then 
evaluate your expression for the conditions h = 2 m, L = 
10 m, and 𝜃 = 25°.

4/75 The open-link chain of length L and mass 𝜌 per unit 
length is released from rest in the position shown, where 
the bottom link is almost touching the platform and the 
horizontal section is supported on a smooth surface. Fric-
tion at the corner guide is negligible. Determine (a) the ve-
locity v1 of end A as it reaches the corner and (b) its velocity 
v2 as it strikes the platform. (c) Also specify the total loss Q 
of energy.

h

L − h

A

PROBLEM 4/75

4/76 In the fi gure is shown a system used to arrest the mo-
tion of an airplane landing on a fi eld of restricted length. 
The plane of mass m rolling freely with a velocity v0 en-
gages a hook which pulls the ends of two heavy chains, 
each of length L and mass 𝜌 per unit length, in the manner 
shown. A conservative calculation of the effectiveness of 
the device neglects the retardation of chain friction on the 
ground and any other resistance to the motion of the air-
plane. With these assumptions, compute the velocity v of 
the airplane at the instant when the last link of each chain 
is put in motion. Also determine the relation between the 
displacement x and the time t after contact with the chain. 
Assume each link of the chain acquires its velocity v sud-
denly upon contact with the moving links.

x

x
–
2

L

v0

v

PROBLEM 4/76

4/71 The end of a pile of loose-link chain of mass 𝜌 per unit 
length is being pulled horizontally along the surface by a 
constant force P. If the coeffi cient of kinetic friction  between 
the chain and the surface is 𝜇k, determine the acceleration 
a of the chain in terms of x and ẋ.

P
x

PROBLEM 4/71

4/72 A coal car with an empty mass of 25 Mg is moving 
freely with a speed of 1.2 m ∕s under a hopper which opens 
and releases coal into the moving car at the constant rate 
of 4 Mg per second. Determine the distance x moved by 
the car during the time that 32 Mg of coal are deposited 
in the car. Neglect any frictional resistance to rolling along 
the horizontal track.

v0

PROBLEM 4/72

4/73 Sand is released from the hopper H with negligible 
velocity and then falls a distance h to the conveyor belt. The 
mass fl ow rate from the hopper is m′. Develop an expression 
for the steady-state belt speed v for the case h = 0. Assume 
that the sand quickly acquires the belt velocity with no 
 rebound, and neglect friction at the pulleys A and B.

𝜃

h

H

B

A

L

v

PROBLEM 4/73
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Problems for Article 4/8 Chapter Review
4/77 The system of three particles has the indicated 
 particle masses, velocities, and external forces. Deter mine r, 
ṙ, r̈, T, HO, and ḢO for this three-dimensional system.

F

v

2v

3v

1.5d

2d

d

4m

2m

m

O

z

y
x

PROBLEM 4/77

4/78 For the particle system of Prob. 4 ∕77, determine HG 
and ḢG.

4/79 Each of the identical steel balls weighs 4 lb and is 
fastened to the other two by connecting bars of negligible 
weight and unequal length. In the absence of friction at the 
supporting horizontal surface, determine the initial accel-
eration a of the mass center of the assembly when it is 
subjected to the horizontal force F = 20 lb applied to the 
supporting ball. The assembly is initially at rest in the ver-
tical plane. Can you show that a is initially horizontal?

F

PROBLEM 4/79

4/80 A 60-g bullet is fi red horizontally with a velocity v = 
300 m∕s into the slender bar of a 1.5-kg pendulum initially 
at rest. If the bullet embeds itself in the bar, compute the re-
sulting angular velocity of the pendulum immediately after 
the impact. Treat the sphere as a particle and neglect the 
mass of the bar. Why is the linear momentum of the system 
not conserved?

180 mm

360 mm

O

60 g

1.5 kg

Before After

v

𝜔

PROBLEM 4/80

4/81 A small rocket of initial mass m0 is fi red vertically up 
near the surface of the earth (g constant), and the mass 
rate of exhaust m′ and the relative exhaust velocity u are 
constant. Determine the velocity v as a function of the time t 
of fl ight if the air resistance is neglected and if the mass of 
the rocket case and machinery is negligible compared with 
the mass of the fuel carried.

4/82 In an operational design test of the equipment of 
the fi re truck, the water cannon is delivering fresh water 
through its 2-in.-diameter nozzle at the rate of 1400 
gal ∕min at the 20° angle. Calculate the total friction force F 
exerted by the pavement on the tires of the truck, which 
remains in a fi xed position with its brakes locked. (There 
are 231 in.3 in 1 gal.)

20°

v

PROBLEM 4/82
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v

A
F

30°

30°

PROBLEM 4/86

4/87 The fl exible nonextensible rope of length 𝜋r ∕2 and 
mass 𝜌 per unit length is attached at A to the fi xed quarter-
circular guide and allowed to fall from rest in the hori zontal 
position. When the rope comes to rest in the dashed posi-
tion, the system will have lost energy.  Determine the loss 
ΔQ and explain what becomes of the lost energy.

r

A𝜋r/2

PROBLEM 4/87

4/88 In the static test of a jet engine and exhaust nozzle 
assembly, air is sucked into the engine at the rate of 30 kg ∕s 
and fuel is burned at the rate of 1.6 kg ∕s. The fl ow area, 
static pressure, and axial-fl ow velocity for the three sec-
tions shown are as follows:

Sec. A Sec. B Sec. C
Flow area, m2 0.15 0.16 0.06
Static pressure, kPa −14 140 14
Axial-fl ow velocity, m ∕s 120 315 600

4/83 The rocket shown is designed to test the operation of 
a new guidance system. When it has reached a certain alti-
tude beyond the effective infl uence of the earth’s atmo-
sphere, its mass has decreased to 2.80 Mg, and its trajec-
tory is 30° from the vertical. Rocket fuel is being consumed 
at the rate of 120 kg ∕s with an exhaust velocity of 640 m ∕s 
relative to the nozzle. Gravitational acceleration is 9.34 m ∕s2 
at its altitude. Calculate the n- and t-components of the ac-
celeration of the rocket.

Horiz.

Vert.

n

t
30°

PROBLEM 4/83

4/84 When only the air of a sand-blasting gun is turned on, 
the force of the air on a fl at surface normal to the stream 
and close to the nozzle is 20 N. With the nozzle in the same 
position, the force increases to 30 N when sand is admitted 
to the stream. If sand is being consumed at the rate of 
4.5 kg ∕min, calculate the velocity v of the sand particles as 
they strike the surface.

4/85 A two-stage rocket is fi red vertically up and is above 
the atmosphere when the fi rst stage burns out and the sec-
ond stage separates and ignites. The second stage carries 
1200 kg of fuel and has an empty mass of 200 kg. Upon ig-
nition the second stage burns fuel at the rate of 5.2 kg ∕s 
and has a constant exhaust velocity of 3000 m ∕s relative to 
its nozzle. Determine the acceleration of the second stage 
60 seconds after ignition and fi nd the maximum accelera-
tion and the time t after ignition at which it occurs. Neglect 
the variation of g and take it to be 8.70 m ∕s2 for the range 
of altitude averaging about 400 km.

4/86 A jet of fresh water under pressure issues from the 
3 ∕4-in.-diameter fi xed nozzle with a velocity v = 120 ft  ∕sec 
and is diverted into the two equal streams. Neglect any 
 energy loss in the streams and compute the force F  required 
to hold the vane in place.
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4/91  The diverter section of pipe between A and B is de-
signed to allow the parallel pipes to clear an obstruction. 
The fl ange of the diverter is secured at C by a heavy bolt. 
The pipe carries fresh water at the steady rate of 5000 
gal∕min under a static pressure of 130 lb∕in.2 entering the 
diverter. The inside diameter of the pipe at A and at B is 4 in. 
The tensions in the pipe at A and B are balanced by the 
pressure in the pipe acting over the fl ow area. There is no 
shear or bending of the pipes at A or B. Calculate the mo-
ment M supported by the bolt at C. (Recall that 1 gallon 
contains 231 in.3)

A

B

C

v

v

8ʺ

PROBLEM 4/91

4/92 The chain of mass 𝜌 per unit length passes over the 
small freely turning pulley and is released from rest with 
only a small imbalance h to initiate motion. Determine the 
acceleration a and velocity v of the chain and the force R 
supported by the hook at A, all in terms of h as it varies 
from essentially zero to H. Neglect the weight of the pulley 
and its supporting frame and the weight of the small 
amount of chain in contact with the pulley. (Hint: The 
force R does not equal two times the equal tensions T in 
the chain tangent to the pulley.)

H

A

h

h

PROBLEM 4/92

Determine the tension T in the diagonal member of the sup-
porting test stand and calculate the force F exerted on the 
nozzle fl ange at B by the bolts and gasket to hold the nozzle 
to the engine housing.

A B

T
60°60°

C

PROBLEM 4/88

4/89  The open-link chain of total length L and of mass 𝜌 
per unit length is released from rest at x = 0 at the same 
instant that the platform starts from rest at y = 0 and 
moves vertically up with a constant acceleration a. Deter-
mine the expression for the total force R exerted on the 
platform by the chain t seconds after the motion starts.

x

y

L

PROBLEM 4/89

4/90 The chain of length L and mass 𝜌 per unit length is 
released from rest on the smooth horizontal surface with a 
negligibly small overhang x to initiate motion. Determine 
(a) the acceleration a as a function of x, (b) the tension T in 
the chain at the smooth corner as a function of x, and (c) the 
velocity v of the last link A as it reaches the corner.

x

L − x

A

x

PROBLEM 4/90
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4/94 A rope or hinged-link bicycle-type chain of length L 
and mass 𝜌 per unit length is released from rest with x = 0. 
Determine the expression for the total force R exerted on 
the fi xed platform by the chain as a function of x. Note that 
the hinged-link chain is a conservative system during all 
but the last increment of motion.

x

L

PROBLEM 4/94

4/93 The centrifugal pump handles 20 m3 of fresh water 
per minute with inlet and outlet velocities of 18 m ∕s. The 
impeller is turned clockwise through the shaft at O by 
a motor which delivers 40 kW at a pump speed of 900 
rev ∕min. With the pump fi lled but not turning, the vertical 
reactions at C and D are each 250 N. Calculate the forces 
exerted by the foundation on the pump at C and D while 
the pump is running. The tensions in the connecting pipes 
at A and B are exactly balanced by the respective forces 
due to the static pressure in the water. (Suggestion: Isolate 
the entire pump and water within it between sections A 
and B and apply the momentum principle to the entire 
 system.)

C

A

B

D

O

150
mm

150
mm

200 mm
75 mm

PROBLEM 4/93
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Problems for Articles 5/1–5/2
Introductory Problems
5/1 A torque applied to a fl ywheel causes it to accelerate 
uniformly from a speed of 300 rev ∕min to a speed of 900 
rev ∕min in 6 seconds. Determine the number of revolutions 
N through which the wheel turns during this interval. 
(Suggestion: Use revolutions and minutes for units in your 
calculations.)

5/2 The triangular plate rotates about a fi xed axis through 
point O with the angular properties indicated. Determine 
the instantaneous velocity and  acceleration of point A. 
Take all given variables to be positive.

h

b

O

x

y

A

𝜔
𝛼

PROBLEM 5/2

5/3  The body is formed of slender rod and rotates 
about a fi xed axis through point O with the indicated angu-
lar properties. If 𝜔 = 4 rad∕s and 𝛼 = 7 rad∕s2, determine 
the instantaneous velocity and acceleration of point A.

0.2 m

0.5 m

20°

O

x

y

A

𝜔 𝛼

PROBLEM 5/3

5/4 The angular velocity of a gear is controlled according to 
𝜔 = 12 − 3t2 where 𝜔, in radians per second, is positive in 
the clockwise sense and where t is the time in seconds. Find 
the net angular displacement Δ𝜃 from the time t = 0 to t = 3 s. 

Also fi nd the total number of revolutions N through which 
the gear turns during the 3 seconds.

5/5 Magnetic tape is being fed over and around the light 
pulleys mounted in a computer. If the speed v of the tape is 
constant and if the magnitude of the acceleration of point A 
on the tape is 4∕3 times that of point B, calculate the radius 
r of the smaller pulley.

v

v

A

B

4ʺ

r

PROBLEM 5/5

5/6 When switched on, the grinding machine accelerates 
from rest to its operating speed of 3450 rev ∕min in 
6 seconds. When switched off, it coasts to rest in 32 seconds. 
Determine the number of revolutions turned during both 
the startup and shutdown periods. Also determine the num-
ber of revolutions turned during the fi rst half of each period. 
Assume uniform angular acceleration in both cases. 

𝜔

PROBLEM 5/6

Chapter 5
* Computer-oriented problem

 Diffi cult problem
 Student solution available in WileyPLUS
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5/10 The device shown rotates about the fi xed z-axis with 
angular velocity 𝜔 = 20 rad ∕s and angular acceleration 
𝛼 = 40 rad ∕s2 in the directions indicated. Determine the 
instantaneous velocity and acceleration of point B.

OA = 300 mm, AB = 500 mm

x

z

y

60°

60°

AO

B

𝜔

𝛼

PROBLEM 5/10

5/11  In order to test an intentionally weak adhesive, 
the bottom of the small 0.1-lb block is coated with adhesive 
and then the block is pressed onto the turntable with a 
known force. The turntable starts from rest at time t = 0 
and uniformly accelerates with 𝛼 = 2 rad∕sec2. If the adhe-
sive fails at exactly t = 3 sec, determine the ultimate shear 
force which the adhesive supports. What is the angular dis-
placement of the turntable at the time of failure?

16ʺ

O

P

𝜔

PROBLEM 5/11

5/7 The drive mechanism imparts to the semicircular plate 
simple harmonic motion of the form 𝜃 =  𝜃0 sin 𝜔0t, where 
𝜃0 is the amplitude of the oscillation and 𝜔0 is its circular 
frequency. Determine the amplitudes of the angular veloc-
ity and angular acceleration and state where in the motion 
cycle these maxima occur. Note that this motion is not that 
of a freely pivoted and undriven body undergoing  arbitrarily 
large-amplitude angular motion.

𝜃

O

PROBLEM 5/7

5/8 The cylinder rotates about the fi xed z-axis in the direc-
tion indicated. If the speed of point A is vA = 2 ft  ∕sec and the 
magnitude of its acceleration is aA = 12 ft  ∕sec2,  determine the 
angular velocity and angular acceleration of the cylinder. Is 
knowledge of the angle 𝜃  necessary?

x

y

O

6ʺ

Az

𝜔
𝜃

PROBLEM 5/8

Representative Problems
5/9  The angular acceleration of a body which is rotat-
ing about a fi xed axis is given by 𝛼 = −k𝜔

2, where the 
 constant k = 0.1 (no units). Determine the angular dis-
placement and time elapsed when the angular velocity has 
been reduced to one-third its initial value 𝜔0 = 12 rad∕s.
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250 mm

150 mm

550 mm

x

y

O B

PA

z

𝜔
𝛼

PROBLEM 5/14

5/15 A clockwise variable torque is applied to a fl ywheel 
at time t = 0 causing its clockwise angular acceleration to 
decrease linearly with angular displacement 𝜃 during 20 
revolutions of the wheel as shown. If the clockwise speed of 
the fl ywheel was 300 rev∕min at t = 0, determine its speed 
N after turning the 20 revolutions. (Suggestion: Use units 
of revolutions  instead of radians.)

𝛼, rev/s2

𝜃, rev
0

0

0.6

1.8

20

PROBLEM 5/15

5/16 Develop general expressions for the instantaneous 
velocity and acceleration of point A of the square plate, 
which rotates about a fi xed axis through point O. Take all 
variables to be positive. Then evaluate your expressions for 
𝜃 = 30°, b = 8 in., 𝜔 = 1.4 rad ∕sec, and 𝛼 = 2.5 rad ∕sec2.

A

O

b

b

x

y

𝜔
𝛼

𝜃

PROBLEM 5/16

5/12 The belt-driven pulley and attached disk are rotating 
with increasing angular velocity. At a certain instant the 
speed v of the belt is 1.5 m∕s, and the total acceleration of 
point A is 75 m∕s2. For this instant determine (a) the angu-
lar acceleration 𝛼 of the pulley and disk, (b) the total ac-
celeration of point B, and (c) the acceleration of point C on 
the belt.

150 mm

150 mm

A
C

v

v

B

PROBLEM 5/12

5/13 The bent fl at bar rotates about a fi xed axis through 
point O with the instantaneous angular properties indica-
ted in the fi gure. Determine the velocity and acceleration of 
point A.

A

O

120°
15°

0.5 m

 𝛼 = 5 rad/s2

0.3 m

 𝜔 = 2 rad/s

x

y

PROBLEM 5/13

5/14 At time t = 0, the arm is rotating about the fi xed z-
axis with an angular velocity 𝜔 = 200 rad ∕s in the direction 
shown. At that time, a constant angular deceleration be-
gins and the arm comes to a stop in 10 seconds. At what 
time t does the acceleration of point P make a 15° angle 
with the arm AB?
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5/19 Repeat Prob. 5 ∕18, except now the angular accelera-
tion of the disk is given by 𝛼 = 2t, where t is in seconds and 
𝛼 is in radians per second squared. Determine the velocity 
and acceleration of point A in terms of fi xed i and j unit 
vectors at time t = 2 s.

5/20 Repeat Prob. 5 ∕18, except now the angular accelera-
tion of the disk is given by 𝛼 = 2𝜔, where 𝜔 is in radians 
per second and 𝛼 is in radians per second squared. Deter-
mine the velocity and acceleration of point A in terms of 
fi xed i and j unit vectors at time t = 1 s.

5/21 The disk of Prob. 5 ∕18 is at the angular position 𝜃 = 0 
at time t = 0. Its angular velocity at t = 0 is 𝜔0 = 0.1 rad∕s, 
and then it experiences an angular acceleration given by 
𝛼 = 2𝜃, where 𝜃 is in radians and 𝛼 is in radians per second 
squared. Determine the angular position of point A at time 
t = 2 s.

5/22 The design characteristics of a gear-reduction unit 
are under review. Gear B is rotating clockwise with a speed 
of 300 rev ∕min when a torque is applied to gear A at time 
t = 2 sec to give gear A a counterclockwise angular accel-
eration 𝛼 which varies with time for a  duration of 4 seconds 
as shown. Determine the speed NB of gear B when t = 6 sec.

2 6
t, sec

0
0

4

8

𝛼A, CCW
rad

——–

sec2

2bb

A

B

PROBLEM 5/22

5/17 The motor A accelerates uniformly from zero to 3600 
rev ∕min in 8 seconds after it is turned on at time t = 0. It 
drives a fan (not shown) which is attached to drum B. The 
effective pulley radii are shown in the fi gure. Determine 
(a) the number of revolutions turned by drum B during the 
8-second startup period, (b) the angular velocity of drum B 
at time t = 4 s, and (c) the number of revolutions turned by 
drum B during the fi rst 4 seconds of  motion. Assume no 
belt slippage.

A

rA = 75 mm, rB = 200 mm 

B

PROBLEM 5/17

5/18 Point A of the circular disk is at the angular position 
𝜃 = 0 at time t = 0. The disk has angular velocity 𝜔0 =

0.1 rad∕s at t = 0 and subsequently experiences a constant 
angular acceleration 𝛼 = 2 rad∕s2. Determine the  velocity 
and acceleration of point A in terms of fi xed i and j unit vec-
tors at time t = 1 s.

A
O

200 mm

x

y

𝛼

𝜃

PROBLEM 5/18
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Problems for Article 5/3
Introductory Problems
5/23 The fi xed hydraulic cylinder C imparts a constant up-
ward velocity v to the collar B, which slips freely on rod OA. 
Determine the resulting angular velocity 𝜔OA in terms of v, 
the displacement s of point B, and the fi xed distance d.

𝜃O

B A

C

d

s
v

PROBLEM 5/23

5/24 The concrete pier P is being lowered by the pulley-
and-cable arrangement shown. If points A and B have 
 velocities of 0.4 m ∕s and 0.2 m ∕s, respectively, compute the 
velocity of P, the velocity of point C for the instant repre-
sented, and the angular velocity of the pulley.

A
B

P

C

200 mm100 mm

vB

vA

PROBLEM 5/24

5/25 At the instant under consideration, the  hydraulic 
 cylinder AB has a length L = 0.75 m, and this length is 
momentarily increasing at a constant rate of 0.2 m ∕s. If 
vA = 0.6 m ∕s and 𝜃 = 35°, determine the velocity of slider B.

A

B

L

vA

𝜃

PROBLEM 5/25

5/26 The Scotch-yoke mechanism converts rotational mo-
tion of the disk to oscillatory translation of the shaft. For 
given values of 𝜃, 𝜔, 𝛼, r, and d, determine the velocity and 
acceleration of point P of the shaft.

P

A

r

O

d

𝜃𝛼

𝜔

PROBLEM 5/26

5/27 The Scotch-yoke mechanism of Prob. 5 ∕26 is modifi ed 
as shown in the fi gure. For given values of 𝜔, 𝛼, r, 𝜃, d, and 
𝛽, determine the velocity and acceleration of point P of the 
shaft.

P

A

O

d

r

𝜔

𝛼 𝜃

𝛽

PROBLEM 5/27
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5/28 The wheel of radius r rolls without slipping, and its 
center O has a constant velocity vO to the right.  Determine 
expressions for the magnitudes of the velocity v and accel-
eration a of point A on the rim by differentiating its x- and 
y-coordinates. Represent your results graphically as vec-
tors on your sketch and show that v is the vector sum of 
two vectors, each of which has a magnitude vO.

y

x

A

r

O vO

xO

𝜃

PROBLEM 5/28

5/29 Link OA rotates with a clockwise angular velocity 𝜔 = 
7 rad ∕sec. Determine the velocity of point B for the position 
𝜃 = 30°. Use the values b = 3.2 in., d = 4 in., and h = 1.2 in.

O

b

d

B

A

v

h

𝜔

𝜃

PROBLEM 5/29

5/30 Determine the acceleration of the shaft B for 𝜃 = 60° 
if the crank OA has an angular acceleration �̈� = 8  rad∕s2 
and an angular velocity �̇� = 4  rad∕s at this position. The 
spring maintains contact between the roller and the sur-
face of the plunger.

O

B

20 mm

80 mm

A

𝜃
𝜔

PROBLEM 5/30

5/31  Link OA rotates with a counterclockwise angu-
lar  velocity 𝜔 = 3 rad ∕s. Determine the angular velocity of 
bar BC when 𝜃 = 20°.

O

A

b

C

B

2b

𝜔

𝜃

PROBLEM 5/31

5/32 The telephone-cable reel rolls without slipping on the 
horizontal surface. If point A on the cable has a velocity 
vA = 0.8 m∕s to the right, compute the velocity of the center 
O and the angular velocity 𝜔 of the reel. (Be careful not to 
make the mistake of assuming that the reel rolls to the 
left.)

1.8 m

0.6 m vA

A

O

PROBLEM 5/32

Representative Problems
5/33 As end A of the slender bar is pulled to the right with 
the velocity v, the bar slides on the surface of the fi xed half-
cylinder. Determine the angular velocity 𝜔 = �̇� of the bar in 
terms of x.

A
r

x

v

B

𝜃

PROBLEM 5/33
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100 mm

60
mm

A

O

C

B

30 mm

D

𝜔0

PROBLEM 5/36

5/37  Link OA is given a clockwise angular velocity 𝜔 = 
2 rad∕sec as indicated. Determine the velocity v of point C 
for the position 𝜃 = 30° if b = 8 in.

x

v
CB

A

O

b 2b

𝜃

𝜔

PROBLEM 5/37

5/38 Determine the acceleration of point C of the previous 
problem if the clockwise angular velocity of link OA is 
 constant at 𝜔 = 2 rad∕sec.

5/39  Derive an expression for the upward velocity v of 
the car hoist in terms of 𝜃. The piston rod of the  hydraulic 
cylinder is extending at the rate ṡ.

L

b2b
b

𝜃 𝜃

PROBLEM 5/39

5/34 The telescoping link is hinged at O, and its end A is 
given a constant upward velocity of 200 mm∕s by the piston 
rod of the fi xed hydraulic cylinder B. Calculate the angular 
velocity �̇� and the angular acceleration �̈� of link OA for the 
instant when y = 600 mm.

y

x

y

500
mm

A

B

O 𝜃

PROBLEM 5/34

5/35 A roadway speed bump is being installed on a level 
road to remind motorists of the existing speed limit. If the 
driver of the car experiences at G a vertical acceleration of 
as much as g, up or down, he is expected to realize that his 
speed is bordering on being excessive. For the speed bump 
with the cosine contour shown, derive an expression for the 
height h of the bump which will produce a vertical compo-
nent of acceleration at G of g at a car speed v. Compute h if 
b = 1 m and v = 20 km ∕  h. Neglect the effects of suspension-
spring fl exing and fi nite wheel diameter.

v

y = ( )1 + cosh
—
2

𝜋x
—–
b

b b

h

y

x

L L

G

PROBLEM 5/35

5/36 Motion of the wheel as it rolls up the fi xed rack on its 
geared hub is controlled through the peripheral cable by 
the driving wheel D, which turns  counterclockwise at the 
constant rate 𝜔0 = 4 rad ∕s for a short interval of motion. By 
examining the geometry of a small (differential) rotation of 
line AOCB as it pivots momentarily about the contact point 
C, determine the angular velocity 𝜔 of the wheel and the 
velocities of point A and the center O. Also fi nd the accel-
eration of point C.
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b2b1

r1 r2

𝜔1 𝜔2

1 2

PROBLEM 5/42

5/43 The piston rod of the hydraulic cylinder gives point B 
a velocity vB as shown. Determine the magnitude vC of the 
velocity of point C in terms of 𝜃.

vBb

b

b

O

A

B

C

𝜃

PROBLEM 5/43

5/44 For the instant represented when y =  160 mm, the 
piston rod of the hydraulic cylinder C imparts a vertical 
motion to the pin B consisting of ẏ = 400 mm∕s and 
ÿ = −100 mm∕s2. For this instant determine the angular 
velocity 𝜔 and the angular acceleration 𝛼 of link OA. Mem-
bers OA and AB make equal angles with the horizontal at 
this instant.

y

O

B

C

A

200 mm

300 mm

PROBLEM 5/44

5/40 It is desired to design a system for controlling the 
rate of extension ẋ of the fi re-truck ladder during elevation 
of the ladder so that the bucket B will have vertical motion 
only. Determine ẋ in terms of the elongation rate ċ of the 
hydraulic cylinder for given values of 𝜃 and x.

B

A

C

D

b

b
h

L

x

Horiz.
𝜃

PROBLEM 5/40

5/41 Show that the expressions v = r𝜔 and at = r𝛼 hold for 
the motion of the center O of the wheel which rolls on the 
concave or convex circular arc, where 𝜔 and 𝛼 are the abso-
lute angular velocity and acceleration, respectively, of the 
wheel. (Hint: Follow the example of Sample Problem 5 ∕4 
and allow the wheel to roll a small distance. Be very careful 
to identify the correct absolute angle through which the 
wheel turns in each case in determining its angular veloc-
ity and angular acceleration.)

tR

R

O

r

tO

r

PROBLEM 5/41

5/42 A variable-speed belt drive consists of the two  pulleys, 
each of which is constructed of two cones which turn as a 
unit but are capable of being drawn together or separated 
so as to change the effective radius of the pulley. If the 
 angular velocity 𝜔1 of  pulley 1 is constant, determine the 
expression for the angular acceleration 𝛼2 = �̇�2 of pulley 2 
in terms of the rates of change ṙ1 and ṙ2 of the effective 
 radii.
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5/46 The rod AB slides through the pivoted collar as end 
A moves along the slot. If A starts from rest at x = 0 and 
moves to the right with a constant acceleration of 4 in.∕sec2, 
calculate the angular acceleration 𝛼 of AB at the instant 
when x = 6 in.

x

8ʺ

A

B

C

PROBLEM 5/46

5/45 The Geneva wheel is a mechanism for producing 
 intermittent rotation. Pin P in the integral unit of wheel A 
and locking plate B engages the radial slots in wheel C, 
thus turning wheel C one-fourth of a revolution for each 
revolution of the pin. At the engagement position shown, 
𝜃 = 45°. For a constant clockwise angular velocity 
𝜔1 = 2 rad∕s of wheel A, determine the corresponding 
counterclockwise  angular velocity 𝜔2 of wheel C for 𝜃 = 20°. 
(Note that the motion during engagement is governed by 
the geometry of triangle O1O2P with changing 𝜃.)

200 mm

P

A

C
B

O1 O2

200/  2
mm

200/  2
mm

𝜔1 𝜔2

𝜃

PROBLEM 5/45
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Problems for Article 5/4
Introductory Problems
5/47 Bar AB moves on the horizontal surface. Its mass 
 center has a velocity vG = 2 m∕s directed parallel to the y-
axis and the bar has a counterclockwise (as seen from 
above) angular velocity 𝜔 = 4 rad∕s. Determine the velocity 
of point B.

vG 30°

0.4 m0.4 m

𝜔

A
G

B

x y

z

PROBLEM 5/47

5/48 The uniform rectangular plate moves on the horizon-
tal surface. Its mass center has a velocity vG = 10 ft∕sec 
directed parallel to the x-axis and the plate has a coun-
terclockwise (as seen from above) angular velocity 𝜔 = 
4 rad ∕sec. Determine the velocities of points A and B.

9ʺ

15ʺ

vG

y

G

B

A

z

x

𝜔

PROBLEM 5/48

5/49 The cart has a velocity of 4 ft  ∕sec to the right. Deter-
mine the angular speed N of the wheel so that point A on 
the top of the rim has a velocity (a) equal to 4 ft  ∕sec to the 
left, (b) equal to zero, and (c) equal to 8 ft  ∕sec to the right.

10ʺ

A

BO

C C = 4 ft/secv

PROBLEM 5/49

5/50 For the instant represented the curved link has a 
counterclockwise angular velocity of 4 rad∕s, and the roller 
at B has a velocity of 40 mm∕s along the constraining sur-
face as shown. Determine the magnitude vA of the velocity 
of A.

vB

20 mm

45°

A

B

PROBLEM 5/50

5/51 The speed of the center of the earth as it orbits the 
sun is v = 107 257 km∕h, and the absolute  angular velocity 
of the earth about its north–south spin axis is 
𝜔 = 7.292(10−5) rad∕s. Use the value R = 6371 km for the 
radius of the earth and determine the velocities of points A, 
B, C, and D, all of which are on the equator. The inclination 
of the axis of the earth is neglected.

x

A

v

B

Sunlight

C

D

y

N

𝜔

PROBLEM 5/51
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5/55 The magnitude of the absolute velocity of point A 
on the automobile tire is 12 m∕s when A is in the position 
shown. What are the corresponding velocity vO of the car 
and the angular velocity 𝜔 of the wheel? (The wheel rolls 
without slipping.)

650 mm

A

O vO
3030°°30°

PROBLEM 5/55

5/56 The two pulleys are riveted together to form a  single 
rigid unit, and each of the two cables is securely wrapped 
around its respective pulley. If point A on the hoisting cable 
has a velocity v = 3 ft∕sec, determine the magnitudes of the 
velocity of point O and the velocity of point B on the larger 
pulley for the position shown.

A
B

O

v

8ʺ

  4ʺ

L

PROBLEM 5/56

5/52 The center C of the smaller wheel has a velocity vC = 
0.4 m∕s in the direction shown. The cord which connects 
the two wheels is securely wrapped around the respective 
peripheries and does not slip. Calculate the speed of point 
D when in the position shown. Also compute the change Δx 
which occurs per second if vC is constant.

D

B A

x

C
O

vC

200 mm

100 mm

150 mm

PROBLEM 5/52

5/53 The circular disk of radius 8 in. is released very near 
the horizontal surface with a velocity of its center 
vO = 27 in.∕sec to the right and a clockwise angular velocity 
𝜔 = 2 rad∕sec. Determine the velocities of points A and P of 
the disk. Describe the motion upon contact with the ground.

A

P

O
8ʺ

y

x

vO

𝜔

PROBLEM 5/53

5/54 For a short interval, collars A and B are sliding along 
the fi xed vertical shaft with velocities vA = 2 m∕s and vB = 
3 m∕s in the directions shown. Determine the magnitude of 
the velocity of point C for the position 𝜃 = 60°.

400 mm

400 mm

C

B

A
Av

Bv

𝜃

𝜃

PROBLEM 5/54
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𝜃

r

A

B x

y

P
v

PROBLEM 5/60

5/61 At the instant represented, the velocity of point A 
of the 1.2-m bar is 3 m∕s to the right. Determine the speed 
vB of point B and the angular velocity 𝜔 of the bar. The di-
ameter of the small end wheels may be neglected.

1.2 m

A

B

60°
0.5 m

vA

PROBLEM 5/61

5/62 Determine the angular velocity of link BC for the in-
stant indicated. In case (a), the center O of the disk is a 
fi xed pivot, while in case (b), the disk rolls without slipping 
on the horizontal surface. In both cases, the disk has clock-
wise angular velocity 𝜔.  Neglect the small distance of pin A 
from the edge of the disk.

O
r

r
2rA

B

C

(b)(a)

O

r

r
2rA

B

C

𝜔 𝜔

PROBLEM 5/62

5/63 The elements of a switching device are shown. If the 
vertical control rod has a downward velocity v = 2 ft  ∕sec 
when the device is in the position shown, determine the 
corresponding speed of point A. Roller C is in continuous 
contact with the inclined surface.

5/57  Determine the angular velocity of the telescop-
ing link AB for the position shown where the driving links 
have the angular velocities indicated.

165

Dimensions 
in millimeters

60

150

45
2 rad/s

2 rad/s
A

B

C

O

PROBLEM 5/57

5/58 Determine the angular velocity of bar AB just after 
roller B has begun moving up the 15° incline. At the instant 
under consideration, the velocity of roller A is vA.

vA
L

A B
15°

PROBLEM 5/58

5/59 For the instant represented, point B crosses the hori-
zontal axis through point O with a downward velocity v = 
0.6 m∕s. Determine the corresponding value of the angular 
velocity 𝜔OA of link OA.

v

180 mm

130 mm
90 mm

O

A

B

PROBLEM 5/59

Representative Problems
5/60 The spoked wheel of radius r is made to roll up the 
incline by the cord wrapped securely around a shallow 
groove on its outer rim. For a given cord speed v at point 
P, determine the velocities of points A and B. No slipping 
occurs.
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v

A

B

C

3ʺ

30°

15°

3ʺ

PROBLEM 5/63

5/64 The rotation of the gear is controlled by the  horizontal 
motion of end A of the rack AB. If the piston rod has a con-
stant velocity ẋ = 300 mm∕s during a short interval of mo-
tion, determine the angular  velocity 𝜔0 of the gear and the 
angular velocity 𝜔AB of AB at the instant when x = 800 mm.

x

200 mm

B

A

PROBLEM 5/64

5/65 The elements of a simplifi ed clam-shell bucket for 
a dredge are shown. The cable which opens and closes the 
bucket passes through the block at O. With O as a fi xed 
point, determine the angular velocity 𝜔 of the bucket jaws 
when 𝜃 = 45° as they are closing. The upward velocity of the 
control cable is 0.5 m∕s as it passes through the block.

v

600 mm

BA

O

C

90° 500
mm

𝜃

PROBLEM 5/65

5/66 The ends of the 0.4-m slender bar remain in contact 
with their respective support surfaces. If end B has a veloc-
ity vB = 0.5 m∕s in the direction shown,  determine the 
 angular velocity of the bar and the velocity of end A.

A

B

105°

30°

0.4 m

vB = 0.5 m/s

PROBLEM 5/66

5/67  Horizontal motion of the piston rod of the hydrau-
lic cylinder controls the rotation of link OB about O. For the 
instant represented, vA = 2 m∕s and OB is horizontal. Deter-
mine the angular velocity 𝜔 of OB for this instant.

160 mm

120 mm

180 mm

A

B O

vA = 2 m/s

𝜃

PROBLEM 5/67

5/68 The vertical rod has a downward velocity v = 2.5 ft∕sec 
when link AB is in the 30° position shown.  Determine the 
corresponding angular velocity of AB and the speed of 
 roller B if R = 16 in.

v

R

1.25R

A

O

B

30°

PROBLEM 5/68
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5/71 The elements of the mechanism for deployment of a 
spacecraft magnetometer boom are shown. Determine the 
angular velocity of the boom when the driving link OB 
crosses the y-axis with an angular velocity 𝜔OB = 0.5 rad∕sec 
if tan 𝜃 = 4∕3 at this  instant.

6ʺ

6ʺ

10ʺ

A

C

B

O

y

x

𝜔OB

𝜃

PROBLEM 5/71

5/72 A mechanism for pushing small boxes from an assem-
bly line onto a conveyor belt is shown with arm OD and 
crank CB in their vertical positions. The crank revolves 
clockwise at a constant rate of 1 revolution every 2 seconds. 
For the position shown, determine the speed at which the 
box is being shoved horizontally onto the conveyor belt.

600
mm

200
mm

100 mm

100
mm

200
mm

50
mm

200 mm400 mm

A
B

C

O

D

E

PROBLEM 5/72

5/69  A four-bar linkage is shown in the fi gure (the 
ground “link” OC is considered the fourth bar). If the drive link 
OA has a counterclockwise angular velocity 𝜔0 = 10 rad∕s, 
 determine the angular velocities of links AB and BC.

15°

60°

200
mm

80 mm

A

B

O

C

240 mm

𝜔0

PROBLEM 5/69

5/70 For the instant represented the rotating link D has 
an angular velocity 𝜔 = 2 rad∕s, and its slot is vertical. Also 
𝜃 = 60° momentarily. Determine the velocity of end A of 
link AB for this instant.

200 mm

200 mm

C

D

B O

130 mm
A

𝜔

𝜃

PROBLEM 5/70
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Problems for Article 5/5
Introductory Problems
5/73 The slender bar is moving in general plane motion 
with the indicated linear and angular properties.  Locate 
the instantaneous center of zero velocity and determine the 
velocities of points A and B.

BA
G0.3 m 0.3 m

2 m/s4 rad/s

PROBLEM 5/73

5/74 The slender bar is moving in general plane motion 
with the indicated linear and angular properties.  Locate 
the instantaneous center of zero velocity and determine the 
velocities of points A and B.

B

A

G

0.3 m

0.3 m

2 m/s

20°

4 rad/s

PROBLEM 5/74

5/75 For the instant represented, corner A of the rectangu-
lar plate has a velocity vA = 2.8 m∕s and the plate has a 
clockwise angular velocity 𝜔 = 12 rad ∕s. Determine the 
magnitude of the corresponding velocity of point B.

vA

A 30°

120
mm

160
mm

B

PROBLEM 5/75

5/76 Roller B of the quarter-circular link has a velocity 
vB = 3 ft  ∕sec directed down the 15° incline. The link has 
a counterclockwise angular velocity 𝜔 = 2 rad ∕sec. By 
the method of this article, determine the  velocity of 
 roller A.

A

6ʺ

B

vB
15°

𝜔

PROBLEM 5/76

5/77 The bar of Prob. 5∕66 is repeated here. By the method 
of this article, determine the velocity of end A. Both ends 
remain in contact with their  respective support surfaces.

A

B

105°

30°

0.4 m

vB = 0.5 m/s

PROBLEM 5/77

5/78 For the instant represented, when crank OA passes 
the horizontal position, determine the velocity of the center 
G of link AB by the method of this article.

G

A O
8 rad/s

B

90 mm

90 mm

60
mm 90

mm

PROBLEM 5/78
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O

A

G

B

AB = 200 mm

100 mm
9 rad/s

80
mm

PROBLEM 5/81

5/82 The mechanism of Prob. 5∕81 is now shown in a dif-
ferent position, with the crank OA 30° below the horizontal 
as illustrated. Determine the angular velocity 𝜔 of link AB 
and the velocity of roller B.

O

A

G

B

AB = 200 mm

100 mm

9 rad/s

80 mm

30°

PROBLEM 5/82

5/83 Motion of the bar is controlled by the constrained 
paths of A and B. If the angular velocity of the bar is 2 rad∕s 
counterclockwise as the position 𝜃 = 45° is passed, deter-
mine the speeds of points A and P.

B

P

A

500 m
m

500 m
m

2 rad/s

𝜃

PROBLEM 5/83

5/79 At a certain instant vertex B of the right-triangular 
plate has a velocity of 200 mm∕s in the direction shown. If 
the instantaneous center of zero velocity for the plate is 
40 mm from point B and if the angular velocity of the plate 
is clockwise, determine the speed of point D.

40 mm

30 mm

A

B

D

vB

PROBLEM 5/79

5/80 At the instant represented, crank OB has a clockwise 
angular velocity 𝜔 = 0.8 rad∕sec and is passing the hori-
zontal position. By the method of this article, determine the 
corresponding speed of the guide roller A in the 20° slot and 
the speed of point C midway between A and B.

C

O

20ʺ

20°

10ʺ

B

A

𝜔

PROBLEM 5/80

5/81 Crank OA rotates with a counterclockwise angular 
velocity of 9 rad ∕s. By the method of this article, determine 
the angular velocity 𝜔 of link AB and the velocity of roller 
B for the position illustrated. Also, fi nd the velocity of the 
center G of link AB.
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5/84 The switching device of Prob. 5∕63 is repeated here. If 
the vertical control rod has a downward velocity v = 2 ft  ∕sec 
when the device is in the position shown, determine the cor-
responding speed of point A by the method of this article. 
Roller C is in continuous contact with the inclined surface.

v

A

B

C

3ʺ

30°

15°

3ʺ

PROBLEM 5/84

5/85 The shaft of the wheel unit rolls without slipping on 
the fi xed horizontal surface, and point O has a velocity of 
3 ft  ∕sec to the right. By the method of this article, deter-
mine the velocities of points A, B, C, and D.

y

x
10ʺ 2ʺ vO =

3 ft/sec

O

A

D
C

B

PROBLEM 5/85

5/86 The center D of the car follows the centerline of 
the 100-ft skidpad. The speed of point D is v = 45 ft  ∕sec. 
Determine the angular velocity of the car and the speeds of 
points A and B of the car.

BA

D
16ʹ

6ʹ

v

100 ft

PROBLEM 5/86

Representative Problems
5/87 The attached wheels roll without slipping on the 
plates A and B, which are moving in opposite directions as 
shown. If vA = 60 mm∕s to the right and vB = 200 mm∕s to 
the left, determine the speeds of the center O and the point 
P for the position shown.

90
mm

40
mm

O

B

A

P

PROBLEM 5/87

5/88 At the instant under consideration, the rod of the 
 hydraulic cylinder is extending at the rate vA = 2 m∕s. 
 Determine the corresponding angular velocity 𝜔OB of link 
OB.

120 mm

15°

60°

180 mm

A

B
O

vA = 2 m/s

PROBLEM 5/88

5/89 End A of the slender pole is given a velocity vA to the 
right along the horizontal surface. Show that the magni-
tude of the velocity of end B equals vA when the midpoint 
M of the pole comes in contact with the semicircular ob-
struction.

M

B

A

vA

PROBLEM 5/89
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100mm

200mm

A

B

E

F

D

𝜃

PROBLEM 5/92

5/93 A device which tests the resistance to wear of two ma-
terials A and B is shown. If the link EO has a velocity of 
4 ft  ∕sec to the right when 𝜃 = 45°, determine the rubbing 
velocity vA.

A

B

C

D

E
O

5ʺ 12ʺ

6ʺ

𝜃

PROBLEM 5/93

5/94 Motion of the roller A against its restraining spring is 
controlled by the downward motion of the plunger E. For 
an interval of motion the velocity of E is v = 0.2 m∕s. Deter-
mine the velocity of A when 𝜃 becomes 90°.

A
O

B

v

D

E

90
 m

m

120 m
m

60 m
m

𝜃

PROBLEM 5/94

5/90 The fl exible band F is attached at E to the rotating 
sector and leads over the guide pulley G. Determine the 
angular velocities of links AB and BD for the position 
shown if the band has a speed of 2 m∕s.

15°

0.18
m

0.36
m

O

G

F
E

B

D

A

2 m/s

0.4 m
0.3 m

PROBLEM 5/90

5/91 The rear driving wheel of a car has a diameter of 
26 in. and has an angular speed N of 200 rev∕min on an icy 
road. If the instantaneous center of zero velocity is 4 in. 
above the point of contact of the tire with the road, deter-
mine the velocity v of the car and the slipping velocity vs of 
the tire on the ice.

26ʺ

N

PROBLEM 5/91

5/92 Horizontal oscillation of the spring-loaded plunger E 
is controlled by varying the air pressure in the horizontal 
pneumatic cylinder F. If the plunger has a velocity of 2 m∕s 
to the right when 𝜃 = 30°, determine the downward  velocity 
vD of roller D in the vertical guide and fi nd the angular 
velocity 𝜔 of ABD for this position.
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A

B

D
E

F

O

𝜃

PROBLEM 5/96

5/95 The hydraulic cylinder produces a limited horizontal 
motion of point A. If vA = 4 m∕s when 𝜃 = 45°, determine 
the magnitude of the velocity of D and the angular velocity 
𝜔 of ABD for this position.

A

D

B

O

vA

400

mm

200

mm

250 m
m

𝜃

PROBLEM 5/95

▶5/96 Determine the angular velocity 𝜔 of the ram head 
AE of the rock crusher in the position for which 𝜃 = 60°. 
The crank OB has an angular speed of 60 rev∕min. When B 
is at the bottom of its circle, D and E are on a horizontal 
line through F, and lines BD and AE are vertical. The 
 dimensions are OB = 4 in., BD = 30 in., and AE =

ED = DF = 15  in. Carefully construct the confi guration 
graphically, and use the method of this article.
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Problems for Article 5/6
Introductory Problems
5/97 The center O of the wheel is mounted on the sliding 
block, which has an acceleration aO = 8  m∕s2 to the right. 
At the instant when 𝜃 = 45°, �̇� = 3 rad∕s and �̈� = −8 rad∕s2. 
For this instant determine the magnitudes of the accelera-
tions of points A and B.

A

B

aOO

400
mm𝜃

PROBLEM 5/97

5/98 The two rotor blades of 32-in. radius rotate counter-
clockwise with a constant angular velocity 𝜔 = 𝜃 = 2 rad∕sec 
about the shaft at O mounted in the sliding block. The 
 acceleration of the block is aO = 10 ft∕sec2. Determine the 
magnitude of the acceleration of the tip A of the blade when 
(a) 𝜃 = 0, (b) 𝜃 = 90°, and (c) 𝜃 = 180°. Does the velocity of 
O or the sense of 𝜔 enter into the calculation?

32ʺ A

y

aO

O

x

𝜃

PROBLEM 5/98

5/99 Refer to the rotor blades and sliding bearing block of 
Prob. 5∕98 where aO = 10 ft∕sec2. If �̈� = 5 rad∕sec2 and 
�̇� = 0 when 𝜃 = 0, fi nd the magnitude of the acceleration of 
point A for this  instant.

5/100 The center O of the disk has the velocity and accel-
eration shown in the fi gure. If the disk rolls without slip-
ping on the horizontal surface, determine the velocity of A 
and the acceleration of B for the instant represented.

45° 3 m/sB

A

O

0.2 m 0.2 m

5 m/s2

y

x

PROBLEM 5/100

5/101  The 9-ft steel beam is being hoisted from its 
horizontal position by the two cables attached at A and B. 
If the initial angular accelerations are 𝛼1 = 0.2 rad∕sec2 
and 𝛼2 = 0.6 rad∕sec2, determine the initial values of 
(a) the  angular acceleration of the beam, (b) the accelera-
tion of point C, and (c) the distance d from A to the point on 
the centerline of the beam which has zero acceleration.

3ʹ 3ʹ 3ʹ

CA B

15ʺ15ʺ

𝛼2𝛼1

PROBLEM 5/101
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𝜃

r

A

B x

y

P
a
v

PROBLEM 5/104

5/105 The bar AB of Prob. 5 ∕ 58 is repeated here. At the 
instant under consideration, roller B has just begun mov-
ing on the 15° incline, and the velocity and acceleration of 
roller A are given. Determine the angular acceleration of 
bar AB and the acceleration of roller B.

vA

aA

L
A B

15°

PROBLEM 5/105

5/106 Determine the angular acceleration 𝛼AB of AB for 
the position shown if link OB has a constant angular 
 velocity 𝜔.

r

r

A
O

B

2r

𝜔

PROBLEM 5/106

Representative Problems
5/107 Determine the angular acceleration of AB and the 
linear acceleration of A for the position 𝜃 = 90° if 𝜃 = 4 rad∕s 
and 𝜃 = 0 at that position.

5/102 The bar of Prob. 5 ∕66 is repeated here. The ends of 
the 0.4-m bar remain in contact with their respective sup-
port surfaces. End B has a velocity of 0.5 m∕s and an ac-
celeration of 0.3 m∕s2 in the directions shown. Determine 
the angular acceleration of the bar and the acceleration of 
end A.

A

B
105°

30°

0.4 m

vB = 0.5 m/s

aB = 0.3 m/s2

PROBLEM 5/102

5/103 Determine the acceleration of point B on the equator 
of the earth, repeated here from Prob. 5 ∕51. Use the data 
given with that problem and assume that the earth’s or-
bital path is circular, consulting Table D ∕2 as necessary. 
Consider the center of the sun fi xed and neglect the tilt of 
the axis of the earth.

x

A

v

B

Sunlight

C

D

y

N

𝜔

PROBLEM 5/103

5/104 The spoked wheel of Prob. 5 ∕ 60 is repeated here with 
additional information supplied. For a given cord speed v 
and acceleration a at point P and wheel radius r, determine 
the acceleration of point B with respect to point A.
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5/110 The end rollers of bar AB are constrained to the slot 
shown. If roller A has a downward velocity of 1.2 m ∕s and 
this speed is constant over a small motion interval, deter-
mine the tangential acceleration of roller B as it passes the 
topmost position. The value of R is 0.5 m.

vA

R1.5
R

A

B

PROBLEM 5/110

5/111 If the wheel in each case rolls on the circular surface 
without slipping, determine the acceleration of point C on 
the wheel momentarily in contact with the circular surface. 
The wheel has an angular velocity 𝜔 and an angular accel-
eration 𝛼.

(a) (b)

y
y

r

C

O

R

R

C

Ox
r

x

𝜔 𝜔

𝛼 𝛼

PROBLEM 5/111

y

x
O

B

A

500 mm

400 mm

400 mm

𝜃

PROBLEM 5/107

5/108 The switching device of Prob. 5 ∕ 63 is repeated here. 
If the vertical control rod has a downward velocity v = 2 
ft  ∕sec and an upward acceleration a = 1.2 ft  ∕sec2 when the 
device is in the position shown, determine the magnitude 
of the acceleration of point A. Roller C is in continuous 
 contact with the inclined surface.

av

A

B

C

3ʺ

30°

15°

3ʺ

PROBLEM 5/108

5/109 The two connected wheels of Prob. 5 ∕52 are shown 
again here. Determine the magnitude of the acceleration of 
point D in the position shown if the center C of the smaller 
wheel has an acceleration to the right of 0.8 m ∕s2 and has 
reached a velocity of 0.4 m ∕s at this instant.

D

B A

x

C
O

vC

200 mm

100 mm

150 mm

PROBLEM 5/109
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5/115 The system of Prob. 5 ∕68 is repeated here. If the ver-
tical rod has a downward velocity v = 2.5 ft ∕sec and an up-
ward acceleration a = 3.6 ft ∕sec2 when the device is in the 
position shown, determine the corresponding angular ac-
celeration 𝛼 of bar AB and the magnitude of the accelera-
tion of roller B. The value of R is 16 in.

R

1.25R

A

O

B

30°

av

PROBLEM 5/115

5/116 The shaft of the wheel unit rolls without slipping on 
the fi xed horizontal surface. If the velocity and acceleration 
of point O are 3 ft∕sec to the right and 4 ft∕sec2 to the left, 
respectively, determine the   accelerations of points A and D.

y

x
10ʺ 2ʺ vO =

3 ft/sec

O

A

D
C

B

aO =
4 ft/sec2

PROBLEM 5/116

5/117 The system of Prob. 5 ∕88 is repeated here. At the 
instant under consideration, the rod of the  hydraulic cylin-
der is extending at the constant rate vA = 2 m ∕s. Determine 
the angular acceleration 𝛼OB of link OB.

120 mm

15°

60°

180 mm

A

B
O

vA = 2 m/s

PROBLEM 5/117

5/112 The system of Prob. 5 ∕81 is repeated here. Crank OA 
rotates with a constant counterclockwise  angular velocity 
of 9 rad∕s. Determine the angular acceleration 𝛼AB of link 
AB for the position shown.

O

A

G

B

AB = 200 mm

100 mm
9 rad/s

80
mm

PROBLEM 5/112

5/113 The system of Prob. 5 ∕82 is repeated here. Crank OA 
is rotating at a counterclockwise angular rate of 9 rad∕s, 
and this rate is decreasing at 5 rad ∕s2. Determine the 
 angular acceleration 𝛼AB of link AB for the position shown.

O

A

G

B

AB = 200 mm

100 mm

9 rad/s

80 mm

30°

PROBLEM 5/113

5/114 The center O of the wooden spool is moving verti-
cally downward with a speed vO = 2 m∕s, and this speed is 
increasing at the rate of 5 m∕s2. Determine the accelera-
tions of points A, P, and B.

vO

O BA P

0.48 m

0.8 m

x

y

PROBLEM 5/114

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Problems for Article 5/6 P-141

5/121 The deployment mechanism for the spacecraft mag-
netometer boom of Prob. 5 ∕71 is shown again here. The 
driving link OB has a constant clockwise angular velocity 
𝜔OB of 0.5 rad ∕sec as it crosses the vertical position. Deter-
mine the angular acceleration 𝜶CA of the boom for the posi-
tion shown where tan 𝜃 = 4 ∕3.

6ʺ

6ʺ

10ʺ

A

C

B

O

y

x

𝜔OB

𝜃

PROBLEM 5/121

5/122 The four-bar linkage of Prob. 5 ∕69 is repeated here. If 
the angular velocity and angular acceleration of drive link 
OA are 10 rad∕s and 5 rad∕s2, respectively, both counter-
clockwise, determine the angular  accelerations of bars AB 
and BC for the instant represented.

15°

60°

200
mm

80 mm

A

B

O

C

240 mm

𝜔0, 𝛼0

PROBLEM 5/122

5/118 The mechanism of Prob. 5 ∕90 is repeated here. If 
the band has a constant speed of 2 m ∕s as indicated in the 
fi gure, determine the angular acceleration 𝛼AB of link AB.

15°

0.18
m

0.36
m

O

G

F
E

B

D

A

2 m/s

0.4 m
0.3 m

PROBLEM 5/118

5/119  The bar AB from Prob. 5 ∕61 is repeated here. If 
the velocity of point A is 3 m∕s to the right and is constant 
for an interval including the position shown, determine the 
tangential acceleration of point B along its path and the 
angular acceleration of the bar.

1.2 m

A

B

60°
0.5 m

vA

PROBLEM 5/119

5/120 If link AB of the four-bar linkage has a constant 
counterclockwise angular velocity of 40 rad∕s during an 
 interval which includes the instant represented, determine 
the angular acceleration of AO and the acceleration of 
point D. Express your results in vector notation.

75 mm

A
OC

B

D

150 mm

100 mm 100 mm

𝜔AB

y

x

PROBLEM 5/120
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5/124 A mechanism for pushing small boxes from an 
 assembly line onto a conveyor belt, repeated from Prob. 5 ∕72, 
is shown with arm OD and crank CB in their vertical posi-
tions. For the confi guration shown, crank CB has a con-
stant clockwise angular velocity of 𝜋 rad∕s. Determine the 
acceleration of E.

600
mm

200
mm

100 mm

100
mm

200
mm

50
mm

200 mm400 mm

A
B

C

O

D

E

PROBLEM 5/124

5/123 The elements of a power hacksaw are shown in the 
fi gure. The saw blade is mounted in a frame which slides 
along the horizontal guide. If the motor turns the fl ywheel 
at a constant counterclockwise speed of 60 rev∕min, deter-
mine the acceleration of the blade for the position where 
𝜃 = 90°, and fi nd the corresponding angular acceleration of 
the link AB.

B

O

A

18ʺ

4ʺ

4ʺ

𝜃

PROBLEM 5/123
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Problems for Article 5/7
Introductory Problems
5/125 The disk rotates with angular speed 𝜔 = 2 rad∕s. 
The small ball A is moving along the radial slot with speed 
u = 100 mm∕s relative to the disk. Determine the absolute 
velocity of the ball and state the angle 𝛽 between this veloc-
ity vector and the positive x-axis.

y

B
A

u x

125 mm
𝜔

PROBLEM 5/125

5/126 The sector rotates with the indicated angular quan-
tities about a fi xed axis through point B. Simultaneously, 
the particle A moves in the curved slot with constant speed 
u relative to the sector. Determine the absolute velocity 
and acceleration of particle A, and identify the Coriolis 
 acceleration.

r1

r2

B

A

u

C

x

y

𝛺
·

𝛺

PROBLEM 5/126

5/127 The disk rolls without slipping on the horizontal 
surface, and at the instant represented, the center O has 
the velocity and acceleration shown in the fi gure. For this 

instant, the particle A has the indicated speed u and time 
rate of change of speed u̇, both relative to the disk. Deter-
mine the absolute velocity and acceleration of particle A.

y

x

0.24 mvO = 3 m/s

aO = 5 m/s2

u·  = 7 m/s2 u = 2 m/s

O

A

0.30 m

PROBLEM 5/127

5/128 The cars of the roller coaster have a speed v = 
25 ft  ∕sec at the instant under consideration. As rider B 
passes the topmost point, she observes a stationary friend 
A. What velocity of A does she observe? At the position 
 under consideration, the center of curvature of the path of 
rider B is point C.

v

x

y

C

A

20ʹ

40ʹ

65ʹ

B

PROBLEM 5/128
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Representative Problems
5/133 Aircraft B has a constant speed of 540 km∕  h at the 
bottom of a circular loop of 400-m radius. Aircraft A fl ying 
horizontally in the plane of the loop passes 100 m directly 
under B at a constant speed of 360 km∕  h. With coordinate 
axes attached to B as shown, determine the acceleration 
which A appears to have to the pilot of B for this instant.

100 m

x
B

A

z

y

𝜌 = 400 m

PROBLEM 5/133

5/134 Bar OC rotates with a clockwise angular velocity 
𝜔OC = 2 rad∕s. The pin A attached to bar OC engages the 
straight slot of the sector. Determine the angular velocity 𝜔 
of the sector and the velocity of pin A relative to the sector 
for the instant represented.

𝜔OC

30°

400 mm

C

A

O

y

x
B

OA = 500 mm

PROBLEM 5/134

5/129 Cars A and B are rounding the curves with equal 
speeds of 72 km∕h. Determine the velocity which A appears 
to have to an observer riding in and turning with car B for 
the instant represented. Does the curvature of the road for 
car A affect the result? Axes x-y are attached to car B.

100 m

30 m

100 m

y
B

x

A

PROBLEM 5/129

5/130 If the cars of Prob. 5∕129 both have a constant speed 
of 72 km∕h as they round the curves, determine the accel-
eration which A appears to have to an observer riding in 
and turning with car B for the instant represented. Axes 
x-y are attached to car B.

5/131 The small collar A is sliding on the bent bar with 
speed u relative to the bar as shown. Simultaneously, the 
bar is rotating with angular velocity 𝜔 about the fi xed pivot 
B. Take the x-y axes to be fi xed to the bar and determine 
the Coriolis acceleration of the slider for the instant repre-
sented. Interpret your result.

y

L

x
d

A

B

u

𝜔

PROBLEM 5/131

5/132 A train traveling at a constant speed v = 25 mi ∕hr 
has entered a circular portion of track with a radius R = 
200 ft. Determine the velocity and acceleration of point A of 
the train as observed by the engineer B, who is fi xed to the 
locomotive. Use the axes given in the fi gure.

x

y

R/2

A

R
B

v

20°

PROBLEM 5/132
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5/137 Under the action of its stern and starboard bow 
thrusters, the cruise ship has the velocity vB = 1 m∕s of its 
mass center B and angular velocity 𝜔 = 1 deg∕s about a 
vertical axis. The velocity of B is constant, but the angular 
rate 𝜔 is decreasing at 0.5 deg∕s2. Person A is stationary on 
the dock. What velocity and acceleration of A are observed 
by a passenger fi xed to and rotating with the ship? Treat 
the problem as two-dimensional.

y

x

10°

100 m

15°

B

A

vB

𝜔

PROBLEM 5/137

5/138 The air transport B is fl ying with a constant speed of 
480 mi  ∕hr in a horizontal arc of 9-mi radius. When B reaches 
the position shown, aircraft A, fl ying southwest at a constant 
speed of 360 mi  ∕hr, crosses the radial line from B to the cen-
ter of curvature C of its path. Write the vector expression, 
using the x-y axes attached to B, for the velocity of A as mea-
sured by an observer in and turning with B.

vB

vA

45°

C

N

A

B
x

y

9 mi

5 mi

PROBLEM 5/138

5/135  The system of Prob. 5 ∕134 is modifi ed in that 
OC is now a slotted member which accommodates the pin 
A attached to the sector. If bar OC rotates with a clockwise 
angular velocity 𝜔OC = 2 rad ∕s and a counterclockwise angu-
lar acceleration 𝛼OC = 4 rad ∕s2, determine the angular veloc-
ity 𝜔 and the angular acceleration 𝛼 of the sector.

30°400 mm

C
A

B

O

𝜔OC

𝛼OC

OA = 500 mm

PROBLEM 5/135

5/136 A smooth bowling alley is oriented north–south as 
shown. A ball A is released with speed v along the lane as 
shown. Because of the Coriolis effect, it will defl ect a dis-
tance 𝛿 as shown. Develop a general expression for 𝛿. The 
bowling alley is located at a latitude 𝜃 in the northern 
hemisphere. Evaluate your expression for the conditions 
L = 60 ft, v = 15 ft∕sec, and 𝜃 = 40°. Should bowlers prefer 
east–west alleys? State any assumptions.

Not to scale

L

A
v

N

𝛿

PROBLEM 5/136

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


P-146  Problems for Article 5/7

5/143 The disk rotates about a fi xed axis through point O 
with a clockwise angular velocity 𝜔0 = 20 rad∕s and a 
 counterclockwise angular acceleration 𝛼0 = 5 rad∕s2 at the 
instant under consideration. The value of r is 200 mm. Pin 
A is fi xed to the disk but slides freely within the slotted 
member BC. Determine the velocity and acceleration of A 
relative to slotted member BC and the angular velocity and 
angular acceleration of BC.

3r

OB

A

C

r

60°

𝜔0

PROBLEM 5/143

5/144 All conditions of the previous problem remain the 
same, except now, rather than rotating about a fi xed center, 
the disk rolls without slipping on the horizontal surface. If the 
disk has a clockwise angular velocity of 20 rad∕s and a coun-
terclockwise angular acceleration of 5 rad∕s2, determine 
the velocity and acceleration of pin A relative to the slotted 
member BC and the angular velocity and angular accelera-
tion of BC. The value of r is 200 mm. Neglect the distance 
from the center of pin A to the edge of the disk.

3r

O
B

A

C

60°

𝜔0

r

PROBLEM 5/144

5/139 For the conditions of Prob. 5 ∕138, obtain the vector 
expression for the acceleration which aircraft A appears to 
have to an observer in and turning with aircraft B, to which 
axes x-y are attached.

5/140 Car A is traveling along the straightaway with con-
stant speed v. Car B is moving along the circular on-ramp 
with constant speed v ∕2. Determine the velocity and accel-
eration of car A as seen by an observer fi xed to car B. Use 
the values v = 60 mi ∕hr and R = 200 ft, and utilize the x-y 
coordinates shown in the fi gure.

v

y

B C

A

O

R

x

xʹ

yʹ

60° 60°

v
––
2

v
––
2

PROBLEM 5/140

5/141 Refer to the fi gure for Prob. 5 ∕140. Car A is traveling 
along the straightaway with speed v, and this speed is 
 decreasing at a rate a. Car C is moving along the circular 
off-ramp with speed v ∕2, and this speed is decreasing at a 
rate a ∕2. Determine the velocity and acceleration which car 
A appears to have to an observer fi xed to car C. Use the 
values v = 60 mi ∕hr, a = 10 ft  ∕sec2, and R = 200 ft, and uti-
lize the x′-y′ coordinates shown in the fi gure.

5/142 For the instant represented, link CB is rotating 
counterclockwise at a constant rate N = 4 rad∕s, and its 
pin A causes a clockwise rotation of the slotted member 
ODE. Determine the angular velocity 𝜔 and angular ac-
celeration 𝛼 of ODE for this instant.

A

D

B

O

C

N
E

120
mm

120
mm

45°

PROBLEM 5/142
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5/146 Determine the angular acceleration of link EC in the 
position shown, where 𝜔 = �̇� = 2 rad∕sec and �̈� = 6 rad∕sec2 
when 𝜃 = 𝛽 = 60°. Pin A is fi xed to link EC. The circular slot 
in link DO has a radius of curvature of 6 in. In the position 
shown, the tangent to the slot at the point of contact is paral-
lel to AO.

A

E

D

C O

𝜔 = 𝛽

AC = 6ʺ

6ʺ

⋅

𝛽
𝜃

PROBLEM 5/146

5/145 The space shuttle A is in an equatorial circular or-
bit of 240-km altitude and is moving from west to east. De-
termine the velocity and acceleration which it appears to 
have to an observer B fi xed to and rotating with the earth 
at the equator as the shuttle passes overhead. Use 
R = 6378 km for the radius of the earth. Also use Fig. 1 ∕1 
for the appropriate value of g and carry out your calcula-
tions to four-fi gure accuracy.

y

x
B

A

240 km

PROBLEM 5/145
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Problems for Article 5/8 Chapter Review
5/147 The rectangular plate rotates about its fi xed z-axis. 
At the instant considered its angular velocity is 𝜔 = 3 rad ∕s 
and is decreasing at the rate of 6 rad ∕s per second. For this 
instant write the vector expressions for the velocity of P 
and its normal and tangential components of acceleration.

z

y

x

𝜔

100 mm

100 mm

150 mm

150 mm

P

PROBLEM 5/147

5/148 The circular disk rotates about its z-axis with an an-
gular velocity 𝜔 = 2 rad ∕s. A point P located on the rim has 
a velocity given by v = −0.8i − 0.6j m ∕s. Determine the coor-
dinates of P and the radius r of the disk.

z

y

x

𝜔

PROBLEM 5/148

5/149 The frictional resistance to the rotation of a fl ywheel 
consists of a retardation due to air friction which varies as 
the square of the angular velocity and a constant frictional 
retardation in the bearing. As a result the angular accel-
eration of the fl ywheel while it is allowed to coast is given 
by 𝛼 = −K − k𝜔

2, where K and k are constants. Determine 
an expression for the time required for the fl ywheel to come 
to rest from an initial angular velocity 𝜔0.

5/150 What angular velocity 𝜔 of bar AC will result in 
point B having zero velocity? What would be the corre-
sponding velocity of point C? Take the length L of the bar 
and the velocity v of the collar as given quantities.

v

L/2

L/2

A

B

C

PROBLEM 5/150

5/151 Roller B of the linkage has a velocity of 0.75 m∕s to 
the right as the angle 𝜃 passes 60° and bar AB also makes 
an angle of 60° with the horizontal. Locate the instanta-
neous center of zero velocity for bar AB and determine its 
angular velocity 𝜔AB.

𝜃

A

B

O

540 mm

360 mm

0.75 m/s

PROBLEM 5/151

5/152 Rotation of the slotted bar OA is controlled by the 
lead screw which imparts a horizontal velocity v to 
collar C. Pin P is attached to the collar. Determine 
the angular velocity 𝜔 of bar OA in terms of v and 
the displacement x.

x

C
A

vP

h

O

𝜃

PROBLEM 5/152
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O

L

B

B

AP

8ʺv Av

PROBLEM 5/155

5/156 The hydraulic cylinder C imparts a velocity v to 
pin B in the direction shown. The collar slips freely on rod 
OA. Determine the resulting angular velocity of rod OA in 
terms of v, the displacement s of pin B, and the fi xed dis-
tance d, for the angle 𝛽 = 15°.

𝜃

𝛽

O

AB

C

d

s
v

PROBLEM 5/156

5/157 The end rollers of the bent bar ADB are confi ned to 
the slots shown. If vB = 0.3 m ∕s, determine the velocity of 
roller A and the angular velocity of the bar.

𝛽

𝛽

A

D

B

vB

𝛽 = 15°

30°

90 mm

90 mm

PROBLEM 5/157

5/153 The large power-cable reel is rolled up the incline by 
the vehicle as shown. The vehicle starts from rest with 
x = 0 for the reel and accelerates at the constant rate of 
2 ft  ∕sec2. For the instant when x = 6 ft, calculate the magni-
tude of the acceleration of point P on the reel in the posi-
tion shown.

40ʺ
20ʺ

P

O

x

PROBLEM 5/153

5/154 The equilateral triangular plate is guided by the two 
vertex rollers A and B, which are confi ned to move in the 
perpendicular slots. The control rod gives A a constant ve-
locity vA to the left for an interval of its motion. Determine 
the value of 𝜃 for which the horizontal component of the 
velocity of C is zero.

Av

A

B

C

b

b

b
𝜃

PROBLEM 5/154

5/155 The load L is being elevated in accordance with the 
downward  velocities of ends A and B of the cable. Deter-
mine the magnitude of the acceleration of point P on the 
top of the sheave for the instant when vA = 2 ft  ∕sec, v̇A = 
0.5 ft  ∕sec2, vB = 3 ft  ∕sec, and v̇B = −0.5 ft  ∕sec2.
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30° x

y

200 km
B

A

PROBLEM 5/160

Computer-Oriented Problems
*5/161 The disk rotates about a fi xed axis with a constant 
angular velocity 𝜔0 = 10 rad∕s. Pin A is fi xed to the disk. 
Determine and plot the magnitudes of the velocity and ac-
celeration of pin A relative to the slotted member BC as 
functions of the disk angle 𝜃 over the range 0 ≤ 𝜃 ≤ 360°. 
State the maximum and minimum values and also the 
 values of 𝜃 at which they occur. The value of r is 200 mm.

3r

O
B

A C

r

𝜔0

𝜃

PROBLEM 5/161

*5/162 A constant torque M exceeds the moment about O 
due to the force F on the plunger, and an angular accelera-
tion 𝜃 = 100(1 − cos 𝜃) rad∕s2 results. If the crank OA is 
released from rest at B, where 𝜃 = 30°, and strikes the stop 
at C, where 𝜃 = 150°, plot the angular velocity 𝜃 as a func-
tion of 𝜃 and fi nd the time t for the crank to rotate from 𝜃 = 
90° to 𝜃 = 150°.

F

C

A

M

O

B

𝜃

PROBLEM 5/162

5/158 The fi gure illustrates a commonly used quick-return 
mechanism which produces a slow cutting stroke of the tool 
(attached to D) and a rapid return stroke. If the driving 
crank OA is turning at the constant rate 𝜃  = 3 rad∕s, deter-
mine the magnitude of the velocity of point B for the in-
stant when 𝜃 = 30°.

500 mm

300 mm

D B

A
100 mm
O

C

𝜃

PROBLEM 5/158

5/159 The wheel rolls without slipping, and its position is 
controlled by the motion of the slider B. If B has a constant 
velocity of 10 in.∕sec to the left, determine the angular 
 velocity of AB and the velocity of the center O of the wheel 
when 𝜃 = 0.

O

A
6ʺ

4ʺ

16ʺ

B

𝜃

PROBLEM 5/159

5/160 A radar station B situated at the equator observes a 
satellite A in a circular equatorial orbit of 200-km altitude 
and moving from west to east. For the instant when the 
satellite is 30° above the horizon, determine the difference 
between the velocity of the satellite relative to the radar 
station, as measured from a nonrotating frame of refer-
ence, and the velocity as measured relative to the reference 
frame of the radar system.
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𝛽
⋅0.5 m

0.25 m

O

B

A

D

𝛽

PROBLEM 5/166

*5/167 For the slider-crank confi guration shown, derive 
the expression for the velocity vA of the piston (taken posi-
tive to the right) as a function of 𝜃. Substitute the numeri-
cal data of Sample Problem 5 ∕15 and calculate vA as a func-
tion of 𝜃 for 0 ≤ 𝜃 ≤ 180°. Plot vA versus 𝜃 and fi nd its 
maximum magnitude and the corresponding value of 𝜃. (By 
symmetry anticipate the results for 180° ≤ 𝜃 ≤ 360°.)

vA

x

l

y

r

B

O

A 𝜃 𝜔

PROBLEM 5/167

*5/168 For the slider-crank of Prob. 5∕167, derive the ex-
pression for the acceleration aA of the piston (taken posi-
tive to the right) as a function of 𝜃 for 𝜔 =  𝜃 = constant. 
Substitute the numerical data of Sample Problem 5∕15 
and calculate aA as a function of 𝜃 for 0 ≤ 𝜃 ≤ 180°. Plot aA 
versus 𝜃 and fi nd the value of 𝜃 for which aA = 0. (By sym-
metry anticipate the results for 180° ≤ 𝜃 ≤ 360°.)

*5/163 The crank OA of the four-bar linkage is driven at a 
constant counterclockwise angular velocity 𝜔0 = 10 rad∕s. 
Determine and plot as functions of the crank angle 𝜃 the 
angular velocities of bars AB and BC over the range 
0 ≤ 𝜃 ≤ 360°. State the maximum absolute value of each 
angular velocity and the value of 𝜃 at which it occurs.

𝜔0
200
mm

70 mm

OA = 80 mm

A

B

O

C

240 mm

190 mm

𝜃

PROBLEM 5/163

*5/164 If all conditions in the previous problem remain the 
same, determine and plot as functions of the crank angle 𝜃 
the angular accelerations of bars AB and BC over the range 
0 ≤ 𝜃 ≤ 360°. State the maximum absolute value of each 
angular acceleration and the value of 𝜃 at which it occurs.

*5/165 All conditions of Prob. 5 ∕163 remain the same, 
 except the counterclockwise angular velocity of crank OA 
is 10 rad∕s when 𝜃 = 0 and the constant counterclockwise 
angular acceleration of the crank is 20 rad∕s2. Determine 
and plot as functions of the crank angle 𝜃 the angular ve-
locities of bars AB and BC over the range 0 ≤ 𝜃 ≤ 360°. 
State the maximum absolute value of each angular velocity 
and the value of 𝜃 at which it occurs.

*5/166 Bar OA rotates about the fi xed pivot O with con-
stant angular velocity 𝛽 = 0.8 rad∕s. Pin A is fi xed to bar 
OA and is engaged in the slot of member BD, which rotates 
about a fi xed axis through point B. Determine and plot over 
the range 0 ≤ 𝛽 ≤ 360° the angular velocity and angular 
acceleration of BD and the velocity and acceleration of pin 
A relative to member BD. State the magnitude and direc-
tion of the acceleration of pin A relative to member BD for 
𝛽 = 180°.
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Problems for Articles 6/1–6/3
Introductory Problems
6/1 The uniform 30-kg bar OB is secured in the vertical 
position to the accelerating frame by the hinge at O and the 
roller at A. If the horizontal acceleration of the frame is a = 
20 m∕s2, compute the force FA on the roller and the horizon-
tal component of the force supported by the pin at O.

3000 mm

1000 mm

aO

A

B

PROBLEM 6/1

6/2 The right-angle bar with equal legs weighs 6 lb and is 
freely hinged to the vertical plate at C. The bar is  prevented 
from rotating by the two pegs A and B fi xed to the plate. 
Determine the acceleration a of the plate for which no force 
is exerted on the bar by either peg A or B.

a

C

BA

8ʺ

8ʺ

PROBLEM 6/2

6/3 The driver of a pickup truck accelerates from rest to a 
speed of 45 mi ∕  hr over a horizontal distance of 225 ft with 
constant acceleration. The truck is hauling an empty 500-lb 
trailer with a uniform 60-lb gate hinged at O and held in the 

slightly tilted position by two pegs, one on each side of the 
trailer frame at A. Determine the maximum shearing force 
developed in each of the two pegs during the  acceleration.

3°

48ʺ

10ʺ

A

O

PROBLEM 6/3

6/4 For what acceleration a of the frame will the uniform 
slender rod maintain the orientation shown in the fi gure? 
Neglect the friction and mass of the small rollers at A and B.

30°

a

A

B

PROBLEM 6/4

6/5 The frame is made from uniform rod which has a mass 𝜌 
per unit length. A smooth recessed slot constrains the small 
rollers at A and B to travel horizontally. Force P is applied to 
the frame through a cable attached to an adjustable collar C. 
Determine the magnitudes and directions of the normal 
 forces which act on the rollers if (a) h = 0.3L, (b) h = 0.5L, 
and (c) h = 0.9L. Evaluate your results for 𝜌 = 2 kg ∕m, L = 
500 mm, and P = 60 N. What is the acceleration of the frame 
in each case?

h

L

L

C

A B

P

PROBLEM 6/5

Chapter 6
* Computer-oriented problem

 Diffi cult problem
 Student solution available in WileyPLUS
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6/9  If the collar P is given a constant acceleration a = 
3g to the right, the pendulum will assume a steady-state 
defl ection 𝜃 = 30°. Determine the stiffness kT of the tor-
sional spring which will allow this to happen. The torsional 
spring is undeformed when the pendulum is in the vertical 
 position.

L

m

kT

P

a

m

𝜃

PROBLEM 6/9

*6/10 If the collar P of the pendulum of Prob. 6 ∕9 is given 
a constant acceleration a = 5g, what will be the steady-
state defl ection of the pendulum from the vertical? Use the 
value kT = 7mgL.

6/11 The uniform 30-kg bar OB is secured to the accelerat-
ing frame in the 30° position from the horizontal by the 
hinge at O and roller at A. If the horizontal acceleration of 
the frame is a = 20 m∕s2, compute the force FA on the roller 
and the x- and y-components of the force supported by the 
pin at O.

30°

3000
mm

1000
mm

B

y

x

A
a

O

PROBLEM 6/11

6/6 A uniform slender rod rests on a car seat as shown. 
Determine the deceleration a for which the rod will begin 
to tip forward. Assume that friction at B is suffi cient to 
 prevent slipping.

Vertical

Horizontal

B

A

a

90°

30°

7°

PROBLEM 6/6

6/7 Determine the value of P which will cause the homoge-
neous cylinder to begin to roll up out of its rectangular 
 recess. The mass of the cylinder is m and that of the cart is 
M. The cart wheels have negligible mass and friction.

P

m

M

G
r/2

r/2

PROBLEM 6/7

6/8 The 6-kg frame AC and 4-kg uniform slender bar AB of 
length l slide with negligible friction along the fi xed hori-
zontal rod under the action of the 80-N force. Calculate the 
tension T in wire BC and the x- and y-components of the 
force exerted on the bar by the pin at A. The x-y plane is 
vertical.

80 N

60° 60°
CA

B

l
x

y

PROBLEM 6/8
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A

B

a

C60°

4 m

2 m

PROBLEM 6/14

6/15 The four-wheel-drive all-terrain vehicle has a mass of 
300 kg with center of mass G2. The driver has a mass of 
85 kg with center of mass G1. If all four wheels are  observed 
to spin momentarily as the driver attempts to go forward, 
what is the forward acceleration of the driver and ATV? 
The coeffi cient of friction between the tires and the ground 
is 0.40. Also determine the combined normal force at the 
pair of front tires.

425
mm

380
mm

G2

G1

500
mm

950
mm

440
mm

PROBLEM 6/15

6/12 The bicyclist applies the brakes as he descends the 
10° incline. What deceleration a would cause the dangerous 
condition of tipping about the front wheel A? The combined 
center of mass of the rider and bicycle is at G.

G

A
10°

B

25ʺ
15ʺ

36ʺ

PROBLEM 6/12

Representative Problems
6/13  The 1650-kg car has its mass center at G. Calcu-
late the normal forces NA and NB between the road and the 
front and rear pairs of wheels under conditions of  maximum 
acceleration. The mass of the wheels is small compared 
with the total mass of the car. The coeffi cient of static fric-
tion between the road and the rear driving wheels is 0.80.

400 mm
1200
mm

1200
mm

A B

G

PROBLEM 6/13

6/14 The uniform 4-m boom has a mass of 60 kg and is 
pivoted to the back of a truck at A and secured by a cable at 
C. Calculate the magnitude of the total force supported by 
the connection at A if the truck starts from rest with an 
acceleration of 5 m∕s2.
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x

z

y

P

M

m

r

PROBLEM 6/18

6/19 The loaded trailer has a mass of 900 kg with center of 
mass at G and is attached at A to a rear-bumper hitch. If 
the car and trailer reach a velocity of 60 km∕h on a level 
road in a distance of 30 m from rest with constant accelera-
tion, compute the vertical component of the force supported 
by the hitch at A. Neglect the small friction force exerted on 
the relatively light wheels.

1.2 m

0.9 m
0.5 m

A

G
x

y

PROBLEM 6/19

6/20 The block A and attached rod have a combined mass 
of 60 kg and are confi ned to move along the 60° guide under 
the action of the 800-N applied force. The uniform horizon-
tal rod has a mass of 20 kg and is welded to the block at B. 
Friction in the guide is negligible. Compute the bending 
moment M exerted by the weld on the rod at B.

800 N

1.4 m

60°

A

B

PROBLEM 6/20

6/16 A cleated conveyor belt transports solid homogeneous 
cylinders up a 15° incline. The diameter of each cylinder is 
half its height. Determine the maximum acceleration 
which the belt may have without tipping the cylinders as it 
starts.

15°

PROBLEM 6/16

6/17 The uniform 60-lb log is supported by the two cables 
and used as a battering ram. If the log is released from rest 
in the position shown, calculate the initial tension induced 
in each cable immediately after release and the corre-
sponding angular acceleration 𝛼 of the cables.

2ʹ

A

B C

2ʹ

2ʹ 1ʹ60°60°

60 lb

PROBLEM 6/17

6/18  The thin hoop of negligible mass and radius r 
 contains a homogeneous semicylinder of mass m which is 
rigidly  attached to the hoop and positioned such that its 
diametral face is vertical. The assembly is centered on the 
top of a cart of mass M which rolls freely on the horizontal 
surface. If the system is released from rest, what x-directed 
force P must be applied to the cart to keep the hoop and 
semicylinder stationary with respect to the cart, and what 
is the resulting acceleration a of the cart? Motion takes 
place in the x-y plane. Neglect the mass of the cart wheels 
and any friction in the wheel bearings. What is the require-
ment on the coeffi cient of static friction between the hoop 
and cart?
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6/21 The homogeneous rectangular plate weighs 40 lb and is 
supported in the vertical plane by the light parallel links 
shown. If a couple M = 80 lb-ft is applied to the end of link AB 
with the system initially at rest, calculate the force supported 
by the pin at C as the plate lifts off its support with 𝜃 = 30°.

24ʺ

A

M

C

B

D

16ʺ

16ʺ

16ʺ

𝜃

𝜃

PROBLEM 6/21

6/22 A jet transport with a landing speed of 200 km∕h 
 reduces its speed to 60 km∕h with a negative thrust R from 
its jet thrust reversers in a distance of 425 m along the run-
way with constant deceleration. The total mass of the 
 aircraft is 140 Mg with mass center at G. Compute the re-
action N under the nose wheel B toward the end of the 
braking interval and prior to the application of mechanical 
braking. At the lower speed, aerodynamic forces on the air-
craft are small and may be neglected.

v

15 m

2.4 m

R
A

G

B
1.8 m3 m

PROBLEM 6/22

6/23 The uniform L-shaped bar pivots freely at point P of 
the slider, which moves along the horizontal rod. Deter-
mine the steady-state value of the angle 𝜃 if (a) a = 0 and 
(b) a = g∕2. For what value of a would the steady-state 
value of 𝜃 be zero?

P

a

l

2l
𝜃

PROBLEM 6/23

6/24 Determine the maximum counterweight W for which 
the loaded 4000-lb coal car will not overturn about the rear 
wheels B. Neglect the mass of all pulleys and wheels. (Note 
that the tension in the cable at C is not 2W.)

CG

B

A

30°

3ʹ

2ʹ

2ʹ

12ʺ

W

PROBLEM 6/24

6/25 The 1800-kg rear-wheel-drive car accelerates forward 
at a rate of g∕2. If the modulus of each of the rear and front 
springs is 35 kN∕m, estimate the resulting momentary 
nose-up pitch angle 𝜃. (This upward pitch angle during ac-
celeration is called squat, while the downward pitch angle 
during braking is called dive!) Neglect the unsprung mass of 
the wheels and tires. (Hint: Begin by assuming a rigid 
 vehicle.)

A
1500
mm

1500
mm

B

a

G
600 mm

PROBLEM 6/25
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 between the tires and the road for this condition? Compare 
your results with those for passenger-car tires. Also de-
termine the combined normal force acting at the pair of 
rear tires.

A B

G

1625 mm

250 mm

1385 mm

PROBLEM 6/26

6/26 The experimental Formula One race car is traveling 
at 300 km∕h when the driver begins braking to investigate 
the behavior of the extreme-grip tires. An accelerometer in 
the car records a maximum deceleration of 4g when both 
the front and rear tires are on the verge of slipping. The car 
and driver have a combined mass of 690 kg with mass cen-
ter G. The horizontal drag acting on the car at this speed is 
4 kN and may be assumed to pass through the mass center 
G. The downforce acting on the body of the car at this speed 
is 13 kN. For simplicity, assume that 35% of this force acts 
directly over the front wheels, 40% acts directly over the 
rear wheels, and the remaining portion acts at the mass 
center. What is the necessary coeffi cient of friction 𝜇 
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Problems for Article 6/4
Introductory Problems
6/27 The 20-kg uniform steel plate is freely hinged about 
the z-axis as shown. Calculate the force supported by each 
of the bearings at A and B an instant after the plate is re-
leased from rest in the horizontal y-z plane.

80 mm

250 mm

80 mm
A

B

z

y

x

400

mm

PROBLEM 6/27

6/28 The fi gure shows an overhead view of a hydraulically-
operated gate. As fl uid enters the piston side of the  cylinder 
near A, the rod at B extends causing the gate to rotate 
about a vertical axis through O. For a 2-in.-diameter  piston, 
what fl uid pressure p will give the gate an initial counter-
clockwise angular acceleration of 4 rad∕sec2? The radius of 
gyration about O for the 500-lb gate is kO = 38 in.

O

A

B

4ʺ

14ʺ

48ʺ6ʺ

PROBLEM 6/28

6/29 The uniform 100-kg beam is freely hinged about its 
upper end A and is initially at rest in the vertical position 
with 𝜃 = 0. Determine the initial angular acceleration 𝛼 of 
the beam and the magnitude FA of the force supported by 
the pin at A due to the application of the force P = 300 N 
on the attached cable.

3 m

3 m

1 m

P

C

B

A

𝜃

PROBLEM 6/29

6/30 The motor M is used to hoist the 12,000-lb stadium 
panel (centroidal radius of gyration k = 6.5 ft) into position 
by pivoting the panel about its corner A. If the motor is 
capable of producing 5000 lb-ft of torque, what pulley di-
ameter d will give the panel an initial counterclockwise 
 angular acceleration of 1.5 deg∕sec2? Neglect all friction.

10ʹ

20ʹ

d
M A

B

15°

PROBLEM 6/30
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6/34 The uniform 5-kg portion of a circular hoop is released 
from rest while in the position shown where the torsional 
spring of stiffness kT = 15 N ∙ m ∕rad has been twisted 90° 
clockwise from its undeformed position. Determine the 
magnitude of the pin force at O at the instant of release. 
Motion takes place in a vertical plane and the hoop radius 
is r = 150 mm.

O

r

kT

PROBLEM 6/34

6/35 The 30-in. slender bar weighs 20 lb and is mounted on a 
vertical shaft at O. If a torque M = 100 lb-in. is applied to the 
bar through its shaft, calculate the horizontal force R on the 
bearing as the bar starts to rotate.

M

O
18ʺ

12ʺ

PROBLEM 6/35

6/36 The uniform plate of mass m is released from rest 
while in the position shown. Determine the initial angular 
acceleration 𝛼 of the plate and the magnitude of the force 
supported by the pin at O. The axis of rotation is  horizontal.

2b

b

O

PROBLEM 6/36

6/31 A momentum wheel for dynamics-class demonstra-
tions is shown. It is basically a bicycle wheel modifi ed with 
rim band-weighting, handles, and a pulley for cord startup. 
The heavy rim band causes the radius of gyration of the 
3.2-kg wheel to be 275 mm. If a steady 45-N pull T is ap-
plied to the cord, determine the angular acceleration of the 
wheel. Neglect bearing friction.

600 mm T = 45 N

30°

100 mm

PROBLEM 6/31

6/32 Each of the two drums and connected hubs of 8-in. 
radius weighs 200 lb and has a radius of gyration about its 
center of 15 in. Calculate the angular acceleration of each 
drum. Friction in each bearing is negligible.

(a)

8ʺ

30 lb
(b)

8ʺ

30 lb

PROBLEM 6/32

6/33 Determine the angular acceleration and the force on 
the bearing at O for (a) the narrow ring of mass m and 
(b) the fl at circular disk of mass m immediately after each is 
released from rest in the vertical plane with OC horizontal.

O
C

r

(a)

O
C

r

(b)

PROBLEM 6/33
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6/40 The square frame is composed of four equal lengths of 
uniform slender rod, and the ball attachment at O is sus-
pended in a socket (not shown). Beginning from the posi-
tion shown, the assembly is rotated 45° about axis A-A and 
released. Determine the initial angular acceleration of the 
frame. Repeat for a 45° rotation about axis B-B. Neglect the 
small mass, offset, and friction of the ball.

A

A

B

B O

b

b

b/2
b/2

b

PROBLEM 6/40

6/41 A reel of fl exible power cable is mounted on the dolly, 
which is fi xed in position. There are 200 ft of cable weigh-
ing 0.436 lb per foot of length wound on the reel at a radius 
of 15 in. The empty spool weighs 62 lb and has a radius of 
gyration about its axis of 12 in. A tension T of 20 lb is re-
quired to overcome frictional resistance to turning. Calcu-
late the angular acceleration 𝛼 of the reel if a tension of 
40 lb is applied to the free end of the cable.

T

PROBLEM 6/41

6/37 The uniform slender bar AB has a mass of 8 kg and 
swings in a vertical plane about the pivot at A. If 𝜃 = 2 rad∕s 
when 𝜃 = 30°, compute the force supported by the pin at A 
at that instant.

Horizontal

900 mm

A

B

𝜃

PROBLEM 6/37

6/38 The circular sector of uniform thickness and mass m 
is released from rest when one of its straight edges is verti-
cal as shown. Determine the initial angular acceleration 
about the ideal pivot at O. Evaluate your general expres-
sion for 𝛽 =  𝜋∕2 and 𝛽 =  𝜋. Compare your results with 
the stated answer for the previous problem.

𝛽

O

b

m

Vertical

PROBLEM 6/38

Representative Problems
6/39 Determine the angular acceleration of the uniform 
disk if (a) the rotational inertia of the disk is ignored and 
(b) the inertia of the disk is considered. The  system is 
 released from rest, the cord does not slip on the disk, and 
bearing friction at O may be neglected.

4 kg

6 kg

5 kg 0.25 m

A

B

O

PROBLEM 6/39
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6/44 A vibration test is run to check the design adequacy of 
bearings A and B. The unbalanced rotor and attached shaft 
have a combined mass of 2.8 kg. To locate the mass center, 
a torque of 0.660 N ∙ m is applied to the shaft to hold it in 
equilibrium in a position rotated 90° from that shown. A 
constant torque M = 1.5 N ∙ m is then applied to the shaft, 
which reaches a speed of 1200 rev∕min in 18 revolutions 
starting from rest. (During each revolution the angular ac-
celeration varies, but its average value is the same as for 
constant acceleration.) Determine (a) the radius of gyra-
tion k of the rotor and shaft about the rotation axis, (b) the 
force F which each bearing exerts on the shaft immediately 
after M is applied, and (c) the force R exerted by each bear-
ing when the speed of 1200 rev∕min is reached and M is 
removed. Neglect any frictional resistance and the bearing 
forces due to static equilibrium. For parts (b) and (c), take 
the rotor to be in the position shown.

M

A

B

120
mm

120
mm

PROBLEM 6/44

6/42 The uniform bent bar of mass m is supported by the 
smooth pin at O and is connected to the cylinder of mass m1 
by the light cable which passes over the light pulley at C. 
If the system is released from rest while in the position 
shown, determine the tension in the cable. Use the values 
m = 30 kg, m1 = 20 kg, and L = 6 m.

O

A

B

C

2L/3

L/3

m

30°

m1

PROBLEM 6/42

6/43 An air table is used to study the elastic motion of 
 fl exible spacecraft models. Pressurized air escaping from 
 numerous small holes in the horizontal surface provides a 
supporting air cushion which largely eliminates friction. 
The model shown consists of a cylindrical hub of radius r 
and four appendages of length l and small thickness t. The 
hub and the four appendages all have the same depth d and 
are constructed of the same material of density 𝜌. Assume 
that the spacecraft is rigid and determine the moment M 
which must be applied to the hub to spin the model from 
rest to an angular velocity 𝜔 in a time period of 𝜏 seconds. 
(Note that for a spacecraft with highly fl exible appendages, 
the moment must be judiciously applied to the rigid hub to 
avoid undesirable large elastic defl ections of the appendages.)

z
r

M
t

l

d

PROBLEM 6/43
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𝜔

PROBLEM 6/47

6/48 The uniform slender bar is released from rest in the 
horizontal position shown. Determine the value of x for 
which the angular acceleration is a maximum, and deter-
mine the corresponding angular acceleration 𝛼.

l

x
G

O

PROBLEM 6/48

6/49 The 2-kg collar at C has an outer diameter of 80 mm 
and is press fi tted to the light 50-mm-diameter shaft. Each 
spoke has a mass of 1.5 kg and carries a 3-kg sphere with a 
radius of 40 mm attached to its end. The pulley at D has a 
mass of 5 kg with a centroidal radius of gyration of 60 mm. 
If a tension T = 20 N is applied to the end of the securely 
wrapped cable with the assembly initially at rest, deter-
mine the initial angular acceleration of the assembly. 
 Neglect friction in the bearings at A and B and state any 
 assumptions.

T

D

B
C

A

100 mm

200 mm

300 mm

300 mm

400 mm

3 kg

40 mm

PROBLEM 6/49

6/45  The solid cylindrical rotor B has a mass of 43 kg 
and is mounted on its central axis C-C. The frame A rotates 
about the fi xed vertical axis O-O under the applied torque 
M = 30 N∙m. The rotor may be unlocked from the frame by 
withdrawing the locking pin P. Calculate the angular ac-
celeration 𝛼 of the frame A if the locking pin is (a) in place 
and (b) withdrawn. Neglect all friction and the mass of the 
frame.

O

O

M

A

P

B
200 mm

250 mm

C

C

PROBLEM 6/45

6/46 The right-angle body is made of uniform slender bar 
of mass m and length L. It is released from rest while in the 
position shown. Determine the initial angular acceleration 
𝛼 of the body and the magnitude of the force supported by 
the pivot at O.

3L
―–
4

L
―
4

mO

PROBLEM 6/46

6/47 Each of the two grinding wheels has a diameter of 
6 in., a thickness of 3 ∕4 in., and a specifi c weight of 425 lb∕ft3. 
When switched on, the machine accelerates from rest to its 
operating speed of 3450 rev∕min in 5 sec. When switched off, 
it comes to rest in 35 sec. Determine the motor torque and 
frictional moment, assuming that each is constant. Neglect 
the effects of the inertia of the rotating motor armature.
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A

B

M

rB

rA

rA = 240 mm
rB = 180 mm

PROBLEM 6/52

6/53 Disk B weighs 50 lb and has a centroidal radius of 
gyration of 8 in. The power unit C consists of a motor M and 
a disk A, which is driven at a constant angular speed of 
1600 rev∕min. The coeffi cients of static and kinetic friction 
between the two disks are 𝜇s = 0.80 and 𝜇k = 0.60, respec-
tively. Disk B is initially stationary when contact with disk 
A is established by application of the constant force 
P = 3 lb. Determine the angular acceleration 𝛼 of B and 
the time t required for B to reach its steady-state speed.

30°
B

A

𝜔A

M
P

C

rB

rA

rA = 8 in.
rB = 10 in.

PROBLEM 6/53

6/54 The spring is uncompressed when the uniform slen-
der bar is in the vertical position shown. Determine the 
initial angular acceleration 𝛼 of the bar when it is released 
from rest in a position where the bar has been rotated 30° 
clockwise from the position shown. Neglect any sag of the 
spring, whose mass is negligible.

l

k

A

G

O

B

m

l
—
4

l
—
4

l
—
4

l
—
4

PROBLEM 6/54

6/50 The right-angle plate is formed from a fl at plate hav-
ing a mass 𝜌 per unit area and is welded to the horizontal 
shaft mounted in the bearing at O. If the shaft is free to 
rotate, determine the initial angular acceleration 𝛼 of the 
plate when it is released from rest with the upper surface 
in the horizontal plane. Also determine the y- and z- 
components of the resultant force on the shaft at O.

O

z

c

b

b

x

y

PROBLEM 6/50

6/51 A device for impact testing consists of a 34-kg pendu-
lum with mass center at G and with radius of gyration 
about O of 620 mm. The distance b for the pendulum is 
 selected so that the force on the bearing at O has the least 
possible value during impact with the specimen at the bot-
tom of the swing. Determine b and calculate the magnitude 
of the total force R on the bearing O an instant after re-
lease from rest at 𝜃 =  60°.

600 mm

Specimen

b

O

G

𝜃

PROBLEM 6/51

6/52 The mass of gear A is 20 kg and its centroidal radius 
of gyration is 150 mm. The mass of gear B is 10 kg and its 
centroidal radius of gyration is 100 mm. Calculate the an-
gular acceleration of gear B when a torque of 12 N∙m is 
applied to the shaft of gear A. Neglect friction.
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6/56 The uniform slender bar of mass m and length l is 
released from rest in the vertical position and pivots on its 
square end about the corner at O. (a) If the bar is observed 
to slip when 𝜃 =  30°, fi nd the coeffi cient of static friction 
𝜇s between the bar and the corner. (b) If the end of the bar 
is notched so that it cannot slip, fi nd the angle 𝜃 at which 
contact between the bar and the corner ceases.

O

l

𝜃

PROBLEM 6/56

6/55 The uniform 24-m mast has a mass of 300 kg and is 
hinged at its lower end to a fi xed support at O. If the winch 
C develops a starting torque of 1300 N∙m, calculate the 
 total force supported by the pin at O as the mast begins to 
lift off its support at B. Also fi nd the corresponding angular 
acceleration 𝛼 of the mast. The cable at A is horizontal, and 
the mass of the pulleys and winch is negligible.

C O

A

B

1200 mm
16 m

8 m

30°

PROBLEM 6/55
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Problems for Article 6/5
Introductory Problems
6/57 The uniform square steel plate has a mass of 6 kg and 
is resting on a smooth horizontal surface in the x-y plane. If 
a horizontal force P = 120 N is applied to one corner in the 
direction shown, determine the magnitude of the initial ac-
celeration of corner A.

x

A

45°

P

y

20
0 

m
m

200 mm

PROBLEM 6/57

6/58 The 64.4-lb solid circular disk is initially at rest on 
the horizontal surface when a 3-lb force P, constant in mag-
nitude and direction, is applied to the cord wrapped 
 securely around its periphery. Friction between the disk 
and the surface is negligible. Calculate the angular velocity 
𝜔 of the disk after the 3-lb force has been applied for 2 sec-
onds and fi nd the linear velocity v of the center of the disk 
after it has moved 3 feet from rest.

P = 3 lb
10ʺ

PROBLEM 6/58

6/59 A long cable of length L and mass 𝜌 per unit length is 
wrapped around the periphery of a spool of negligible mass. 
One end of the cable is fi xed, and the spool is released from 
rest in the position shown. Find the initial acceleration a of 
the center of the spool.

x

PROBLEM 6/59

6/60 Above the earth’s atmosphere at an altitude of 400 km 
where the acceleration due to gravity is 8.69 m∕s2, a cer-
tain rocket has a total remaining mass of 300 kg and is di-
rected 30° from the vertical. If the thrust T from the rocket 
motor is 4 kN and if the rocket nozzle is tilted through an 
angle of 1° as shown, calculate the angular acceleration 𝛼 
of the rocket and the x- and y-components of the accelera-
tion of its mass center G. The rocket has a centroidal radius 
of gyration of 1.5 m.

G 3 m

1° T

x

y
30°

PROBLEM 6/60
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𝜇s, 𝜇k

W = 8 lb

G

6ʺ

𝜃

PROBLEM 6/63

6/64 The 30-kg spool of outer radius ro = 450 mm has a 
centroidal radius of gyration k = 275 mm and a central 
shaft of radius ri = 200 mm. The spool is at rest on the in-
cline when a tension T = 300 N is applied to the end of a 
cable which is wrapped  securely around the central shaft 
as shown. Determine the acceleration of the spool center G 
and the magnitude and direction of the friction force acting 
at the interface of the spool and incline. The friction coeffi -
cients there are 𝜇s = 0.45 and 𝜇k = 0.30. The tension T is 
applied parallel to the incline and the angle 𝜃 = 20°.

𝜃

T

G

ri

m, k

ro

𝜇s, 𝜇k

PROBLEM 6/64

6/65 Repeat Prob. 6 ∕64 for the case where the cable con-
fi guration has been changed as shown in the fi gure.

T

G

ri

ro

𝜃

𝜇s, 𝜇k

m, k

PROBLEM 6/65

6/61 The body consists of a uniform slender bar and a uni-
form disk, each of mass m∕2. It rests on a smooth surface. 
Determine the angular acceleration 𝛼 and the acceleration 
of the mass center of the body when the force P = 6 N is 
applied as shown. The value of the mass m of the entire 
body is 1.2 kg.

y

x

m/2

m/2

P = 6 N

500 mm

200 mm

PROBLEM 6/61

6/62 Determine the angular acceleration of each of the two 
wheels as they roll without slipping down the inclines. For 
wheel A investigate the case where the mass of the rim and 
spokes is negligible and the mass of the bar is concentrated 
along its centerline. For wheel B assume that the thickness 
of the rim is negligible compared with its radius so that all 
of the mass is concentrated in the rim. Also specify the 
minimum coeffi cient of static friction 𝜇s required to pre-
vent each wheel from slipping.

B

A

r

r

𝜃

𝜃

PROBLEM 6/62

6/63 The solid homogeneous cylinder is released from rest 
on the ramp. If 𝜃 = 40°, 𝜇s = 0.30, and 𝜇k = 0.20, determine 
the acceleration of the mass center G and the friction force 
exerted by the ramp on the cylinder.
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6/68 The uniform slender rod of mass m and length L is 
released from rest in the inverted vertical position shown. 
Neglect friction and the mass of the small end roller and 
fi nd the initial acceleration of A.  Evaluate your result for 
𝜃 = 30°.

L

m

A

𝜃

PROBLEM 6/68

6/69 During a test, the car travels in a horizontal circle of 
radius R and has a forward tangential acceleration a. De-
termine the lateral reactions at the front and rear wheel 
pairs if (a) the car speed v = 0 and (b) the speed v ≠ 0. The 
car mass is m and its polar moment of inertia (about a ver-
tical axis through G) is I. Assume that R >> d.

G

R

d

d

a

v

+ n

PROBLEM 6/69

6/66 The fairing which covers the spacecraft package in 
the nose of the booster rocket is jettisoned when the rocket 
is in space where gravitational attraction is negligible. A 
mechanical actuator moves the two halves slowly from the 
closed position I to position II at which point the fairings 
are released to rotate freely about their hinges at O under 
the infl uence of the constant acceleration a of the rocket. 
When position III is reached, the hinge at O is released and 
the fairings drift away from the rocket. Determine the an-
gular velocity 𝜔 of the fairing at the 90° position. The mass 
of each fairing is m with center of mass at G and radius of 
gyration kO about O.

90°

I
II

III
G

a

O

G

r

𝜔

PROBLEM 6/66

6/67 The uniform steel beam of mass m and length l is 
suspended by the two cables at A and B. If the cable at B 
suddenly breaks, determine the tension T in the cable at A 
immediately after the break occurs. Treat the beam as a 
slender rod and show that the result is independent of the 
length of the beam.

A B

l
60° 60°

PROBLEM 6/67
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7 kg

10 kg

0.15 m

20°

O

PROBLEM 6/72

6/73 The mass center G of the 20-lb wheel is off center by 
0.50 in. If G is in the position shown as the wheel rolls 
without slipping through the bottom of the circular path of 
6-ft radius with an angular velocity 𝜔 of 10 rad∕sec, com-
pute the force P exerted by the path on the wheel. (Be care-
ful to use the correct mass-center acceleration.)

0.5ʺ

6ʹ

G
O 6ʺ

𝜔

PROBLEM 6/73

6/74 End A of the uniform 5-kg bar is pinned freely to the 
collar, which has an acceleration a = 4 m∕s2 along the fi xed 
horizontal shaft. If the bar has a clockwise angular velocity 
𝜔 = 2 rad∕s as it swings past the vertical, determine the 
components of the force on the bar at A for this instant.

𝛼

𝜔

0.8 m

A
y

x

PROBLEM 6/74

6/70 The system of Prob. 6 ∕18 is repeated here. If the hoop- 
and semicylinder-assembly is centered on the top of the 
stationary cart and the system is released from rest, deter-
mine the initial acceleration a of the cart and the angular 
acceleration 𝛼 of the hoop and semicylinder. Friction be-
tween the hoop and cart is suffi cient to prevent slip. Motion 
takes place in the x-y plane. Neglect the mass of the cart 
wheels and any friction in the wheel bearings.

x

z

y

M

m

r

PROBLEM 6/70

6/71 The 9-ft steel beam weighs 280 lb and is hoisted from 
rest where the tension in each of the cables is 140 lb. If the 
hoisting drums are given initial angular accelerations 𝛼1 = 
4 rad∕sec2 and 𝛼2 = 6 rad∕sec2, calculate the corresponding 
tensions TA and TB in the cables. The beam may be treated 
as a slender bar.

3ʹ 3ʹ 3ʹ

CA B

15ʺ15ʺ

𝛼2𝛼1

PROBLEM 6/71

Representative Problems
6/72 The system is released from rest with the cable taut, 
and the homogeneous cylinder does not slip on the rough 
incline. Determine the angular acceleration of the cylinder 
and the minimum coeffi cient 𝜇s of friction for which the 
cylinder will not slip.
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6/78 The robotic device consists of the stationary pedestal 
OA, arm AB pivoted at A, and arm BC pivoted at B. Mem-
ber AB is rotating about joint A with a counterclockwise 
angular velocity of 2 rad∕s, and this rate is increasing at 
4 rad∕s2. Determine the moment MB exerted by arm AB on 
arm BC if joint B is held in a locked condition. The mass of 
arm BC is 4 kg, and the arm may be treated as a uniform 
slender rod.

A

G1
G2

45°

70
0

m
m

350m
m

90°

B

C

O

PROBLEM 6/78

6/79 The uniform 15-kg bar is supported on the horizontal 
surface at A by a small roller of negligible mass. If the coef-
fi cient of kinetic friction between end B and the vertical 
surface is 0.30, calculate the initial acceleration of end A as 
the bar is released from rest in the position shown.

2.4 m

40°

𝜇k = 0.30

A
x

y

B

PROBLEM 6/79

6/75 The uniform rectangular panel of mass m is moving 
to the right when wheel B drops off the horizontal support 
rail. Determine the resulting angular acceleration and the 
force TA in the strap at A immediately after wheel B rolls 
off the rail. Neglect friction and the mass of the small 
straps and wheels.

h m

A B

v

b
––
6

b
––
6

2b
―
3

PROBLEM 6/75

6/76 The truck, initially at rest with a solid cylindrical roll 
of paper in the position shown, moves forward with a con-
stant acceleration a. Find the distance s which the truck 
goes before the paper rolls off the edge of its horizontal bed. 
Friction is suffi cient to prevent slipping.

d

PROBLEM 6/76

6/77 The crank OA rotates in the vertical plane with a con-
stant clockwise angular velocity 𝜔0 of 4.5 rad∕s. For the 
position where OA is horizontal, calculate the force under 
the light roller B of the 10-kg  slender bar AB.

1.0 m

0.4 m

0.8 m

B

AO

𝜔0

PROBLEM 6/77
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A

B

r

r

2r

m, L

60°

45°

PROBLEM 6/82

6/83  A bowling ball with a circumference of 27 in. 
weighs 14 lb and has a centroidal radius of gyration of 3.28 in. 
If the ball is released with a velocity of 20 ft∕sec but with no 
angular velocity as it touches the alley fl oor, compute the 
distance traveled by the ball before it begins to roll without 
slipping. The coeffi cient of friction between the ball and the 
fl oor is 0.20.

v0

s

𝜔 = 0
v

v = r𝜔

PROBLEM 6/83

6/84 In an investigation of whiplash resulting from rear-
end collision, sudden rotation of the head is modeled by 
using a homogeneous solid sphere of mass m and radius r 
pivoted about a tangent axis (at the neck) to represent the 
head. If the axis at O is given a constant acceleration a 
with the head initially at rest, determine expressions for 
the initial angular acceleration 𝛼 of the head and its angu-
lar velocity 𝜔 as a function of the angle 𝜃 of rotation. 
 Assume that the neck is relaxed so that no moment is ap-
plied to the head at O.

Vertical

G

O

r

G

OaO = a

≅

PROBLEM 6/84

6/80 The assembly consisting of a uniform slender bar 
(mass m∕5) and a rigidly attached uniform disk (mass 
4m∕5) is freely pinned to point O on the collar which in turn 
slides on the fi xed horizontal guide. The assembly is at rest 
when the collar is given a sudden acceleration a to the left 
as shown. Determine the initial angular acceleration of the 
assembly.

P

O

a

L/2

L/4

L/4

m
––
5

4m
―–
5

PROBLEM 6/80

6/81  The uniform 12-ft pole is hinged to the truck bed 
and released from the vertical position as the truck starts 
from rest with an acceleration of 3 ft∕sec2. If the accelera-
tion remains constant during the motion of the pole, calcu-
late the angular velocity 𝜔 of the pole as it reaches the 
horizontal position.

a12ʹ

O
90°

𝜔

PROBLEM 6/81

6/82 The uniform bar of mass m is constrained by the light 
rollers which move in the smooth guide, which lies in a ver-
tical plane. If the bar is released from rest while in the posi-
tion shown, what is the force at each roller an instant after 
release? Use the values m = 18 kg and r = 150 mm.
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O

B

A

G

1.7ʺ

1.3ʺ

3ʺ

𝜔

𝜃

PROBLEM 6/86

▶6/87 The four-bar mechanism lies in a vertical plane and 
is controlled by crank OA, which rotates counterclockwise 
at a steady rate of 60 rev∕min. Determine the torque M 
which must be applied to the crank at O when the crank 
angle 𝜃 = 45°. The uniform coupler AB has a mass of 7 kg, 
and the masses of crank OA and the output arm BC may be 
neglected.

200
mm

70 mm

OA = 80 mm

A

M

B

O

C

240 mm

190 mm

𝜃

PROBLEM 6/87

▶6/88 Repeat the analysis of Prob. 6 ∕87 with the added 
information that the mass of crank OA is 1.2 kg and the 
mass of the output arm BC is 1.8 kg. Each of these bars 
may be considered uniform for this analysis.

6/85 In a study of head injury against the instrument 
 panel of a car during sudden or crash stops where lap belts 
without shoulder straps or airbags are used, the  segmented 
human model shown in the fi gure is analyzed. The hip joint 
O is assumed to remain fi xed relative to the car, and the 
torso above the hip is treated as a rigid body of mass m 
freely pivoted at O. The center of mass of the torso is at G 
with the initial position of OG taken as vertical. The radius 
of gyration of the torso about O is kO. If the car is brought 
to a sudden stop with a constant deceleration a, determine 
the speed v relative to the car with which the model’s head 
strikes the instrument panel. Substitute the values 
m = 50 kg, r = 450 mm, r = 800 mm, kO = 550 mm, 𝜃 = 45°, 
and a = 10g and compute v.

r

r
G

O

𝜃

PROBLEM 6/85

6/86 The connecting rod AB of a certain internal- 
combustion engine weighs 1.2 lb with mass center at G and 
has a radius of gyration about G of 1.12 in. The piston and 
piston pin A together weigh 1.80 lb. The engine is running 
at a constant speed of 3000 rev∕min, so that the angular 
velocity of the crank is 3000(2𝜋)∕60 = 100𝜋 rad∕sec. Ne-
glect the weights of the components and the force exerted 
by the gas in the cylinder compared with the dynamic  forces 
generated and calculate the magnitude of the force on 
the piston pin A for the crank angle 𝜃 = 90°. (Suggestion: 
Use the alternative moment relation, Eq. 6 ∕3, with B as the 
moment center.)
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Problems for Article 6/6
(In the following problems neglect any energy loss due to 
kinetic friction unless otherwise instructed.)

Introductory Problems
6/89 The uniform slender bar of mass m and length L is 
released from rest when in the horizontal position shown. 
Determine its angular velocity and mass-center speed as it 
passes the vertical position.

O

m

L
―
4

3L
―–
4

PROBLEM 6/89

6/90 The slender rod (mass m, length L) has a particle 
(mass 2m) attached to one end. If the body is nudged away 
from the vertical equilibrium position shown, determine its 
angular speed after it has  rotated 180°.

L
―
2

L
―
2

O

m

2m

PROBLEM 6/90

6/91 The log is suspended by the two parallel 5-m  cables 
and used as a battering ram. At what angle 𝜃 should the log 
be released from rest in order to strike the object to be 
smashed with a velocity of 4 m∕s?

v = 4 m/s

5 m5 m
𝜃 𝜃

PROBLEM 6/91

6/92 The velocity of the 8-kg cylinder is 0.3 m∕s at a certain 
instant. What is its speed v after  dropping an additional 1.5 m? 
The mass of the grooved drum is 12 kg, its centroidal  radius 
of gyration is k = 210 mm, and the radius of its groove is 
ri = 200 mm. The frictional moment at O is a constant 
3 N∙m.

O

= 210 mm
m = 12 kg

ri = 200 mm

ro = 300 mm

k

8 kg

PROBLEM 6/92

6/93 The uniform semicircular bar of radius r = 75 mm 
and mass m = 3 kg rotates freely about a horizontal axis 
through the pivot O. The bar is initially held in position 1 
against the action of the torsional spring and then sud-
denly released. Determine the spring stiffness kT which 
will give the bar a counterclockwise angular velocity 𝜔 = 
4 rad∕s when it reaches position 2, at which the spring is 
undeformed.

O

r

A

Aʹ

m

1

2

kT

𝜔

PROBLEM 6/93
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B

A

r

r

𝜃

𝜃

PROBLEM 6/96

Representative Problems
6/97 The 1.2-kg uniform slender bar rotates freely about a 
horizontal axis through O. The system is released from rest 
when it is in the horizontal position 𝜃 = 0, where the spring 
is unstretched. If the bar is observed to momentarily stop 
in the position 𝜃 = 50°, determine the spring constant k. 
For your computed value of k, what is the angular velocity 
of the bar when 𝜃 = 25°?

O

1.2 kg
A

B

k
0.6 m

0.6 m

0.2 m

𝜃

PROBLEM 6/97

6/94 The T-shaped body of total mass m is constructed of 
uniform rod. If it is released from rest while in the position 
shown, determine the vertical force reaction at O as it 
 passes the vertical position (120° after release).

b
―
4

b
―
4

b

O

30°

PROBLEM 6/94

6/95 The 24-lb disk is rigidly attached to the 7-lb bar OA, 
which is pivoted freely about a horizontal axis through 
point O. If the system is released from rest in the position 
shown, determine the angular velocity of the bar and the mag-
nitude of the pin reaction at O after the bar has rotated 90°.

O

A

OA = 20ʺ

6ʺ

PROBLEM 6/95

6/96 The two wheels of Prob. 6 ∕62, shown again here, rep-
resent two extreme conditions of distribution of mass. For 
case A all of the mass m is assumed to be concentrated in 
the center of the hoop in the axial bar of negligible diame-
ter. For case B all of the mass m is assumed to be concen-
trated in the rim. Determine the speed of the center of each 
hoop after it has traveled a distance x down the incline 
from rest. The hoops roll without slipping.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


P-174  Problems for Article 6/6

M

PROBLEM 6/100

6/101 The 20-kg wheel has an eccentric mass which places 
the center of mass G a distance r = 60 mm away from the 
geometric center O. A constant couple M = 6 N ∙ m is ap-
plied to the initially stationary wheel, which rolls without 
slipping along the horizontal surface and enters the curve 
of radius R = 600 mm. Determine the normal force under 
the wheel just before it exits the curve at C. The wheel has 
a rolling radius r = 100 mm and a radius of gyration kO = 
75 mm.

r 𝜋r

rrr

M

M

R

G
O

C

v
45°

PROBLEM 6/101

6/102 The uniform 40-lb bar with attached 12-lb wheels is 
released from rest when 𝜃 = 60°. If the wheels roll without 
slipping on the horizontal and vertical surfaces, determine 
the angular velocity of the bar when 𝜃 = 45°. Each wheel 
has a centroidal radius of gyration of 4.5 inches.

𝜃

6ʺ

4ʹ

A

B

PROBLEM 6/102

6/98 The fi gure shows an impact tester used in studying 
material response to shock loads. The 60-lb pendulum is 
released from rest and swings downward with negligible 
resistance. At the bottommost point of the motion, the pen-
dulum strikes a notched material specimen A. After im-
pact with the specimen, the pendulum swings upward to a 
height h′ = 3.17 ft. If the  impact-energy capacity of the 
pendulum is 300 ft-lb, determine the change in the angular 
velocity of the pendulum during the interval from just 
 before to just after impact with the specimen. The center-
of-mass distance r from O and the radius of  gyration kO of 
the pendulum about O are both 35.5 in. (Note: Positioning 
the center of mass directly at the radius of gyration elimi-
nates shock loads on the bearing at O and extends the life 
of the tester signifi cantly.)

hO

A

G

hʹ

r

PROBLEM 6/98

6/99 The uniform rectangular plate is released from rest 
in the position shown. Determine the maximum angular 
velocity 𝜔 during the ensuing motion. Friction at the pivot 
is negligible.

2b

b

O

PROBLEM 6/99

6/100 The 50-kg fl ywheel has a radius of gyration 
k = 0.4 m about its shaft axis and is subjected to the torque 
M =  2(1 − e−0.1𝜃) N∙m, where 𝜃 is in radians. If the fl y-
wheel is at rest when 𝜃 = 0, determine its angular velocity 
after 5 revolutions.
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6/106 The uniform slender bar ABC weighs 6 lb and is ini-
tially at rest with end A bearing against the stop in the 
horizontal guide. When a constant couple M = 72 lb-in. is 
applied to end C, the bar rotates causing end A to strike the 
side of the  vertical guide with a velocity of 10 ft∕sec. Calcu-
late the loss of energy ΔE due to friction in the guides and 
rollers. The mass of the rollers may be neglected.

B

A

C

M

45°

8ʺ

8ʺ

PROBLEM 6/106

6/107  The torsional spring at A has a stiffness kT = 
10 N ∙ m ∕rad and is undeformed when the uniform 10-kg 
bars OA and AB are in the vertical position and overlap. If 
the system is released from rest with 𝜃 = 60°, determine the 
angular velocity of wheel B when 𝜃 = 30°. The 6-kg wheel at 
B has a centroidal radius of gyration of 50 mm and is 
 observed to roll without slipping on the horizontal surface.

O

kTA 

750 mm

75 mm

750 mm

B

𝜃

PROBLEM 6/107

6/103 A 1200-kg fl ywheel with a radius of gyration of 400 
mm has its speed reduced from 5000 to 3000 rev∕min dur-
ing a 2-min interval. Calculate the average power supplied 
by the fl ywheel. Express your answer both in kilowatts and 
in horsepower.

6/104 The wheel consists of a 4-kg rim of 250-mm radius 
with hub and spokes of negligible mass. The wheel is 
mounted on the 3-kg yoke OA with mass center at G and 
with a radius of gyration about O of 350 mm. If the assem-
bly is released from rest in the horizontal position shown 
and if the wheel rolls on the circular surface without slip-
ping, compute the velocity of point A when it reaches A′.

Aʹ

300 mm

250 mm

OA G

500 mm

PROBLEM 6/104

6/105 The semicircular disk of mass m = 2 kg is mounted 
in the light hoop of radius r = 150 mm and released from 
rest in position (a). Determine the angular velocity 𝜔 of the 
hoop and the normal force N under the hoop as it passes 
position (b) after rotating through 180°. The hoop rolls 
without slipping.

r

(a) (b)

𝜔

PROBLEM 6/105
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RR

a a
a

2a

𝜃

PROBLEM 6/110

6/111 The uniform 12-lb disk pivots freely about a horizon-
tal axis through O. A 4-lb slender bar is fastened to the disk 
as shown. If the system is nudged from rest while in the 
position shown, determine its angular velocity 𝜔 after it 
has rotated 180°.

O

8ʺ

30°30°

PROBLEM 6/111

6/112 For the pivoted slender rod of length l, determine 
the distance x for which the angular velocity will be a max-
imum as the bar passes the vertical position after being 
released in the horizontal position shown. State the corre-
sponding angular velocity.

l

x O

PROBLEM 6/112

6/113 The wheel has mass m and a centroidal radius of 
gyration k and rolls without slipping up the incline under 
the action of a force P. The force is applied to the end of a 
cord which is wrapped securely around the inner hub of 
the wheel as shown. Determine the speed vO of the wheel 
center O after the wheel center has traveled a distance d 
up the incline. The wheel is at rest when the force P is fi rst 
applied.

6/108 The system is at rest with the spring unstretched 
when 𝜃 = 0. The 5-kg uniform slender bar is then given a 
slight clockwise nudge. The value of b is 0.4 m. (a) If the bar 
comes to momentary rest when 𝜃 = 40°, determine the 
spring constant k. (b) For the value k = 90 N∕m, fi nd the 
angular velocity of the bar when 𝜃 = 25°.

𝜃k

A

b

O

1.25b

PROBLEM 6/108

6/109 The system is released from rest when the angle 
𝜃 = 90°. Determine the angular velocity of the  uniform 
slender bar when 𝜃 equals 60°. Use the values m1 = 1 kg,
m2 = 1.25 kg, and b = 0.4 m.

𝜃

O

C

m2

m1

B

A

2b

b

2b

PROBLEM 6/109

6/110 The homogeneous torus and cylindrical ring are re-
leased from rest and roll without slipping down the incline. 
Determine an expression for the velocity difference vdiff 
which develops between the two objects during the motion 
as a function of the distance x they have traveled down the 
incline. Assume that the masses roll straight down the in-
cline and evaluate your expression for the case where a = 
0.2R. Which object is in the lead, and does the size of a 
relative to R ever alter the fi nishing order?
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of 4000 rev∕min. If the bus starts from rest and acquires a 
speed of 72 km∕h at the top of a hill 20 m above the starting 
position, compute the reduced speed N of the fl ywheel. As-
sume that 10 percent of the energy taken from the fl ywheel 
is lost. Neglect the rotational energy of the wheels of the 
bus. The 10-Mg mass includes the fl ywheel.

PROBLEM 6/116

6/117 A small experimental vehicle has a total weight W 
of 1100 lb including wheels and driver. Each of the four 
wheels has a weight of 88 lb and a centroidal radius of gy-
ration of 16 in. Total frictional resistance R to motion is 
90 lb and is measured by towing the vehicle at a constant 
speed on a level road with engine disengaged. Determine 
the power output of the engine for a speed of 45 mi∕hr up 
the 10-percent grade (a) with zero acceleration and (b) with 
an acceleration of 9 ft∕sec2. (Hint: Power equals the time 
rate of increase of the total energy of the vehicle plus the 
rate at which frictional work is overcome.)

4ʹ

1
10

PROBLEM 6/117

6/118 The two slender bars each of mass m and length b are 
pinned together and move in the vertical plane. If the bars 
are released from rest in the position shown and move to-
gether under the action of a couple M of constant magnitude 
applied to AB, determine the velocity of A as it strikes O.

B

b b

M

A O

𝜃 𝜃

PROBLEM 6/118

P

O
ri

m, k‾

ro

𝜃

PROBLEM 6/113

6/114 The 8-kg crank OA, with mass center at G and 
 radius of gyration about O of 0.22 m, is connected to the 
12-kg uniform slender bar AB. If the linkage is released 
from rest in the position shown, compute the velocity v of 
end B as OA swings through the vertical.

1.0 m

0.4 m

0.18 m

0.8 m

B

A OG

PROBLEM 6/114

6/115 The sheave of 400-mm radius has a mass of 50 kg 
and a radius of gyration of 300 mm. The sheave and its 100-
kg load are suspended by the cable and the spring, which 
has a stiffness of 1.5 kN∕m. If the system is released from 
rest with the spring initially stretched 100 mm, determine 
the velocity of O after it has dropped 50 mm.

400 mm

100 kg

k

O

PROBLEM 6/115

6/116 Motive power for the experimental 10-Mg bus comes 
from the energy stored in a rotating fl ywheel which it car-
ries. The fl ywheel has a mass of 1500 kg and a radius of 
gyration of 500 mm and is brought up to a maximum speed 
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Problems for Article 6/7
Introductory Problems
6/119 The position of the horizontal platform of mass m0 is 
controlled by the parallel slender links of masses m and 
2m. Determine the initial angular acceleration 𝛼 of the 
links as they start from their supported position shown 
 under the action of a force P applied normal to AB at its end.

A

P

B O

C D

E

m0

mbb

b 2m

𝜃 𝜃

PROBLEM 6/119

6/120 The uniform slender bar of mass m is shown in its 
equilibrium position in the vertical plane before the couple 
M is applied to the end of the bar. Determine the initial 
angular acceleration 𝛼 of the bar upon application of M. 
The mass of each guide roller is negligible.

b

b
M

k 𝜃

PROBLEM 6/120

6/121 The two uniform slender bars are hinged at O and 
supported on the horizontal surface by their end rollers of 
negligible mass. If the bars are released from rest in the 
position shown, determine their initial angular accelera-
tion 𝛼 as they collapse in the vertical plane. (Suggestion: 
Make use of the instantaneous center of zero velocity in 
writing the expression for dT.)

A

O

B

bb

𝜃 𝜃

PROBLEM 6/121

6/122 Links A and B each weigh 8 lb, and bar C weighs 12 lb. 
Calculate the angle 𝜃 assumed by the links if the body to 
which they are pinned is given a steady horizontal accel-
eration a of 4 ft∕sec2.

A

a

C

B18ʺ 18ʺ

𝜃 𝜃

PROBLEM 6/122

6/123 The mechanism shown moves in the vertical plane. 
The vertical bar AB weighs 10 lb, and each of the two links 
weighs 6 lb with mass center at G and with a radius of gy-
ration of 10 in. about its bearing (O or C). The spring has a 
stiffness of 15 lb ∕ft and an unstretched length of 18 in. If 
the support at D is suddenly withdrawn, determine the ini-
tial angular acceleration 𝛼 of the links.

18ʺ

18ʺ

18ʺ

G

G

O

A

C

B

D

60°

60°

OG = CG = 8ʺ

PROBLEM 6/123
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6/126 The sliding block is given a horizontal acceleration 
to the right which is slowly increased to a steady value a. 
The attached pendulum of mass m and mass center G as-
sumes a steady angular defl ection 𝜃. The torsion spring at O 
 exerts a moment M = kT𝜃 on the pendulum to oppose the 
angular defl ection. Determine the torsional stiffness kT 
which will  allow a steady defl ection 𝜃.

G

O a
kT

𝜃

r–

PROBLEM 6/126

6/127 Each of the uniform bars OA and OB has a mass of 
2 kg and is freely hinged at O to the vertical shaft, which is 
given an upward acceleration a = g ∕2. The links which con-
nect the light collar C to the bars have negligible mass, and 
the collar slides freely on the shaft. The spring has a stiff-
ness k = 130 N ∕m and is uncompressed for the position 
equivalent to 𝜃 = 0. Calculate the angle 𝜃 assumed by the 
bars under conditions of steady acceleration.

200

CB A

a

O

200

200

200
200 200

Dimensions in millimeters

𝜃 𝜃

PROBLEM 6/127

Representative Problems
6/124 The load of mass m is given an upward acceleration 
a from its supported rest position by the application of the 
forces P. Neglect the mass of the links compared with m 
and determine the initial acceleration a.

b b

b b

a

P P

m

𝜃 𝜃

𝜃 𝜃

PROBLEM 6/124

6/125 The cargo box of the food-delivery truck for aircraft 
servicing has a loaded mass m and is elevated by the ap-
plication of a couple M on the lower end of the link which is 
hinged to the truck frame. The horizontal slots allow the 
linkage to unfold as the cargo box is elevated. Determine 
the upward acceleration of the box in terms of h for a given 
value of M. Neglect the mass of the links.

b

bb

b hM

m

PROBLEM 6/125
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6/130 Each of the three identical uniform panels of a seg-
mented industrial door has mass m and is guided in the 
tracks (one shown dashed). Determine the horizontal ac-
celeration a of the upper panel under the action of the force 
P. Neglect any friction in the guide rollers.

45°

Vertical

Horizontal

P

PROBLEM 6/130

6/131 The mechanical tachometer measures the rotational 
speed N of the shaft by the horizontal motion of the collar 
B along the rotating shaft. This movement is caused by the 
centrifugal action of the two 12-oz weights A, which rotate 
with the shaft. Collar C is fi xed to the shaft. Determine the 
rotational speed N of the shaft for a reading 𝛽 = 15°. The 
stiffness of the spring is 5 lb ∕in., and it is uncompressed 
when 𝜃 = 0 and 𝛽 = 0. Neglect the weights of the links.

CB

5/8ʺ 1.5ʺ1.5ʺ

y

A

A

N

1/4ʺ

1/4ʺ

𝛽

𝜃 𝜃

PROBLEM 6/131

6/128 The linkage consists of the two slender bars and moves 
in the horizontal plane under the infl uence of force P. Link 
OC has a mass m and link AC has a mass 2m. The sliding 
block at B has negligible mass. Without dismembering the 
system, determine the initial angular acceleration 𝛼 of the 
links as P is applied at A with the links initially at rest. (Sug-
gestion: Replace P by its equivalent force-couple system.)

P

A

B

b b

b

C

O

𝜃 𝜃

PROBLEM 6/128

6/129 The portable work platform is elevated by means of 
the two hydraulic cylinders articulated at points C. The pres-
sure in each cylinder produces a force F. The platform, man, 
and load have a combined mass m, and the mass of the link-
age is small and may be neglected. Determine the upward 
acceleration a of the platform and show that it is indepen-
dent of both b and 𝜃.

bb

BB

CC

b/2b/2

b/2b/2

𝜃 𝜃

PROBLEM 6/129
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6/134 The uniform arm OA has a mass of 4 kg, and the 
gear D has a mass of 5 kg with a radius of gyration about 
its center of 64 mm. The large gear B is fi xed and cannot 
rotate. If the arm and small gear are released from rest in 
the position shown in the vertical plane, calculate the ini-
tial angular acceleration 𝛼 of OA.

B

O A

D

200
mm

100
mm

PROBLEM 6/134

6/132 The sector and attached wheels are released from 
rest in the position shown in the vertical plane. Each wheel 
is a solid circular disk weighing 12 lb and rolls on the fi xed 
circular path without slipping. The sector weighs 18 lb and 
is closely approximated by one-fourth of a solid circular 
disk of 16-in. radius. Determine the initial angular accel-
eration 𝛼 of the sector.

O
16ʺ

8ʺ

8ʺ

PROBLEM 6/132

6/133 The aerial tower shown is designed to elevate a 
workman in a vertical direction. An internal mechanism at 
B maintains the angle between AB and BC at twice the 
angle 𝜃 between BC and the ground. If the combined mass 
of the man and the cab is 200 kg and if all other masses are 
neglected, determine the torque M applied to BC at C and 
the torque MB in the joint at B required to give the cab an 
initial vertical acceleration of 1.2 m∕s2 when it is started 
from rest in the position 𝜃 = 30°.

A

B

C

M

2𝜃

6 m

6 m

𝜃

PROBLEM 6/133
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Problems for Article 6/8
Introductory Problems
6/135 The mass center G of the slender bar of mass 0.8 kg 
and length 0.4 m is falling vertically with a velocity 
v = 2 m∕s at the instant depicted. Calculate the angular 
momentum HO of the bar about point O if the angular 
 velocity of the bar is (a) 𝜔a = 10 rad∕s clockwise and 
(b) 𝜔b = 10 rad∕s counterclockwise.

O

G

v

0.4 m

𝜔a

𝜔b

0.3 m

𝜃

PROBLEM 6/135

6/136 A person who walks through the revolving door 
 exerts a 90-N horizontal force on one of the four door pan-
els and keeps the 15° angle constant relative to a line which 
is normal to the panel. If each panel is modeled by a 60-kg 
uniform rectangular plate which is 1.2 m in length as 
viewed from above, determine the fi nal angular velocity 𝜔 
of the door if the person exerts the force for 3 seconds. The 
door is initially at rest and friction may be neglected.

0.4 m

90 N

0.8
 mO

15°

PROBLEM 6/136

6/137 The 165-lb fl ywheel has a radius of gyration about 
its shaft axis of k = 20 in. and is subjected to the torque 
M = 8(1 − e−t) lb-ft, where t is in  seconds. If the fl ywheel is 
at rest at time t = 0,  determine its angular velocity 𝜔 at 
t = 3 sec.

M

PROBLEM 6/137

6/138 Determine the angular momentum of the earth 
about the center of the sun. Assume a homogeneous earth 
and a circular earth orbit of radius 149.6(106) km. Consult 
Table D ∕2 of Appendix D for other needed information. 
Comment on the relative contributions of the terms I𝜔 and 
mv  d.

z x

y

N

Sunlight

𝜔

PROBLEM 6/138
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6/142 A uniform slender bar of mass M and length L is 
translating on the smooth horizontal x-y plane with a ve-
locity vM when a particle of mass m traveling with a veloc-
ity vm as shown strikes and becomes embedded in the bar. 
Determine the fi nal linear and angular velocities of the bar 
with its embedded particle.

vm

vM

M

x

y

3L
–—
4

L
—
4

m

PROBLEM 6/142

6/143 The homogeneous circular cylinder of mass m and 
radius R carries a slender rod of mass m∕2  attached to it as 
shown. If the cylinder rolls on the surface without slipping 
with a velocity vO of its center O, determine the angular 
momenta HG and HO of the system about its center of mass 
G and about O for the instant shown.

R
O

m

m/2

vO

3R
‒―
4

PROBLEM 6/143

6/144 The grooved pulley of mass m is acted on by a con-
stant force F through a cable which is wrapped  securely 
around the exterior of the pulley. The pulley supports a cyl-
inder of mass M which is attached to the end of a cable 
which is wrapped securely around an inner hub. If the 
 system is stationary when the force F is fi rst applied, 
 determine the upward velocity of the supported mass after 
3 seconds. Use the values m = 40 kg, M = 10 kg, ro = 225 
mm, ri = 150 mm, kO = 160 mm, and F = 75 N. Assume no 
mechanical interference for the indicated time frame 
and neglect friction in the bearing at O. What is the time-
averaged value of the force in the cable which supports 
the 10-kg mass?

6/139 The constant tensions of 200 N and 160 N are ap-
plied to the hoisting cable as shown. If the velocity v of the 
load is 2 m∕s down and the angular velocity 𝜔 of the pulley 
is 8 rad∕s counterclockwise at time t = 0, determine v and 
𝜔 after the cable tensions have been applied for 5 s. Note 
the independence of the results.

15 kg
k = 250 mm

300 mm

200 N 160 N

20 kg

PROBLEM 6/139

6/140 The man is walking with speed v1 = 1.2 m∕s to the 
right when he trips over a small fl oor discontinuity. Estimate 
his angular velocity 𝜔 just after the impact. His mass is 76 kg 
with center-of-mass height h = 0.87 m, and his mass mo-
ment of inertia about the ankle joint O is 66 kg ∙m2, where all 
are properties of the portion of his body above O; i.e., both the 
mass and moment of inertia do not include the foot.

v1

h

G

O

PROBLEM 6/140

6/141 The constant 9-lb force is applied to the 80-lb stepped 
cylinder as shown. The centroidal radius of gyration of the 
cylinder is k = 8 in., and it rolls on the incline without slip-
ping. If the cylinder is at rest when the force is fi rst applied, 
determine its angular velocity 𝜔 eight seconds later.

6ʺ

10ʺ

10°

9 lb

PROBLEM 6/141
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6/147 The device shown is a simplifi ed model of an 
 amusement-park ride in which passengers are  rotated 
about the vertical axis of the central post at an angular 
speed 𝛺 while sitting in a pod which is capable of rotating 
the occupants 360° about the longitudinal axis of the con-
necting arm attached to the central collar. Determine the 
percent increase n in angular velocity between confi gura-
tions (a) and (b), where the passenger pod has rotated 90° 
about the connecting arm. For the model, m = 1.2 kg, r = 
75 mm, l = 300 mm, and L = 650 mm. The post and connect-
ing arms rotate freely about the z-axis at an initial angular 
speed 𝛺 = 120 rev∕min and have a combined mass moment 
of inertia about the z-axis of 30(10−3) kg ∙ m2.

m
r

z

l

(a)

(b)

Frame

L

Pod

𝛺

PROBLEM 6/147

6/148 The uniform concrete block, which weighs 171 lb and 
falls from rest in the horizontal position shown, strikes the 
fi xed corner A, and pivots around it with no rebound. Calcu-
late the angular velocity 𝜔 of the block immediately after it 
hits the corner and the percentage loss n of energy due to the 
impact.

11ʺ

A

12ʺ

32ʺ

24ʺ

PROBLEM 6/148

MF

Ori
m, kO

ro

PROBLEM 6/144

6/145 The wad of clay of mass m is initially moving with a 
horizontal velocity v1 when it strikes and sticks to the ini-
tially stationary uniform slender bar of mass M and length 
L. Determine the fi nal angular velocity of the combined 
body and the x-component of the linear impulse applied to 
the body by the pivot O during the impact.

x

y

O

v1

M

m

L
—
3

L
—
3

L
—
3

PROBLEM 6/145

Representative Problems
6/146 Just after leaving the platform, the diver’s fully ex-
tended 80-kg body has a rotational speed of 0.3 rev∕s about 
an axis normal to the plane of the trajectory. Estimate the 
angular velocity N later in the dive when the diver has as-
sumed the tuck position. Make reasonable assumptions 
concerning the mass moment of inertia of the body in each 
confi guration.

0.7 m
0.3 rev/s

2 m N

PROBLEM 6/146
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6/151 The base B has a mass of 5 kg and a radius of 
 gyration of 80 mm about the central vertical axis shown. 
Each plate P has a mass of 3 kg. If the system is freely 
 rotating about the vertical axis with an angular speed 
N1 = 10 rev∕min with the plates in the vertical position, es-
timate the angular speed N2 when the plates have moved 
to the horizontal positions indicated. Neglect friction.

P

B

N

300 mm

100
mm

100
mm

120
mm 120

mm

P

PROBLEM 6/151

6/152  The phenomenon of vehicle “tripping” is inves-
tigated here. The sport-utility vehicle is sliding sideways 
with speed v1 and no angular velocity when it strikes a 
small curb. Assume no rebound of the right-side tires and 
estimate the minimum speed v1 which will cause the vehi-
cle to roll completely over to its right side. The mass of the 
SUV is 2300 kg and its mass moment of inertia about a 
longitudinal axis through the mass center G is 900 kg∙m2.

v1

760 mm

G

880 mm880 mm

PROBLEM 6/152

6/149 Two small variable-thrust jets are actuated to keep 
the spacecraft angular velocity about the z-axis constant 
at 𝜔0 = 1.25 rad∕s as the two telescoping booms are ex-
tended from r1 = 1.2 m to r2 = 4.5 m at a constant rate 
over a 2-min period. Determine the necessary thrust T for 
each jet as a function of time where t = 0 is the time when 
the telescoping action is begun. The small 10-kg experi-
ment modules at the ends of the booms may be treated as 
particles, and the mass of the rigid booms is negligible.

G

T

r

r

T

z

10 kg

10 kg

1.1 m

1.1 m

𝜔0

PROBLEM 6/149

6/150 The body composed of slender rods of weight w per 
unit length is lying motionless on the smooth horizontal 
surface when a linear impluse ∫P  dt is applied as shown. 
Determine the velocity vB of corner B immediately follow-
ing the application of the impulse if l = 20 in., w = 2.5 lb ∕ft, 
and ∫P  dt = 2 lb-sec.

y

x

A

B

l

l

P dt

PROBLEM 6/150
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6/155 The homogeneous sphere of mass m and radius r is 
projected along the incline of angle 𝜃 with an initial speed 
v0 and no angular velocity (𝜔0 = 0). If the coeffi cient of 
 kinetic friction is 𝜇k, determine the time duration t of the 
period of slipping. In  addition, state the velocity v of the 
mass center G and the angular velocity 𝜔 at the end of 
the period of slipping.

𝜔0

G

v0

m

r
𝜇k

𝜃

PROBLEM 6/155

6/156 The homogeneous sphere of Prob. 6 ∕155 is placed on 
the incline with a clockwise angular velocity 𝜔0 but no 
 linear velocity of its center (v0 = 0). Determine the time 
duration t of the period of slipping. In addition, state the 
velocity v of the mass center G and angular velocity 𝜔 at 
the end of the period of slipping.

6/157 A uniform pole of length L, inclined at an angle 𝜃 
with the vertical, is dropped and both ends have a velocity 
v as end A hits the ground. If end A pivots about its contact 
point during the remainder of the motion, determine the 
velocity v′ with which end B hits the ground.

L

A

B

v

v

vʹ

𝜃

PROBLEM 6/157

6/153 The slender bar of mass m and length l is released 
from rest in the horizontal position shown. If point A of the 
bar becomes attached to the pivot at B upon impact, deter-
mine the angular velocity 𝜔 of the bar immediately after 
impact in terms of the distance x. Evaluate your expression 
for x = 0, l ∕2, and l.

l
x

h

A

B

PROBLEM 6/153

6/154 The system is initially rotating freely with angular 
velocity 𝜔1 = 10 rad∕s when the inner rod A is centered 
lengthwise within the hollow cylinder B as shown in the 
fi gure. Determine the angular velocity of the system (a) if 
the inner rod A has moved so that a length b ∕2 is protrud-
ing from the cylinder, (b) just before the rod leaves the cyl-
inder, and (c) just after the rod leaves the cylinder. Neglect 
the moment of inertia of the vertical support shafts and 
friction in the two bearings. Both  bodies are constructed of 
the same uniform material. Use the values b = 400 mm 
and r = 20 mm, and refer to the results of Prob. B∕30 as 
needed.

B

2r

r
A

b
―
4

b
―
4

b
―
4

b
―
4

𝜔

PROBLEM 6/154
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torque M is the motor able to supply, and what is the  average 
value of the tension in each side of the cable which is 
wrapped around the pulley at O during the speed-up period? 
The cable does not slip on the pulley and the centroidal ra-
dius of gyration of the pulley is 280 mm. What is the power 
output of the motor when the cart reaches its cruising speed?

15°

750 mm

B

A
O

PROBLEM 6/160

6/161 The elements of a spacecraft with axial mass sym-
metry and a reaction-wheel control system are shown in 
the fi gure. When the motor exerts a torque on the reaction 
wheel, an equal and opposite torque is exerted on the 
spacecraft, thereby changing its  angular momentum in the 
z-direction. If all system elements start from rest and the 
motor exerts a constant torque M for a time period t, deter-
mine the fi nal angular velocity of (a) the spacecraft and 
(b) the wheel relative to the spacecraft. The mass moment 
of inertia about the z-axis of the entire spacecraft, includ-
ing the wheel, is I and that of the wheel alone is Iw. The 
spin axis of the wheel is coincident with the z-axis of sym-
metry of the spacecraft.

I

Iw M

z

Reaction
wheel

Motor

PROBLEM 6/161

6/162 A 55-kg dynamics instructor is demonstrating the 
principles of angular momentum to her class. She stands 
on a freely rotating platform with her body aligned with 
the vertical platform axis. With the platform not rotating, 

6/158 The 165-lb ice skater with arms extended horizon-
tally spins about a vertical axis with a rotational speed of 
1 rev∕sec. Estimate his rotational speed N if he fully retracts 
his arms, bringing his hands very close to the centerline of 
his body. As a reasonable approximation, model the  extended 
arms as uniform slender rods, each of which is 27 in. long 
and weighs 15 lb. Model the torso as a solid 135-lb cylinder 
13 in. in diameter. Treat the man with arms retracted as a 
solid 165-lb cylinder of 13-in. diameter. Neglect friction at 
the skate–ice interface.

27ʺ

1 rev/sec

13ʺ

PROBLEM 6/158

6/159 In the rotating assembly shown, arm OA and the 
attached motor housing B together weigh 10 lb and have a 
radius of gyration about the z-axis of 7 in. The motor arma-
ture and attached 5-in.-radius disk have a combined 
weight of 15 lb and a radius of gyration of 4 in. about their 
own axis. The entire assembly is free to rotate about the 
z-axis. If the motor is turned on with OA initially at rest, 
determine the angular speed N of OA when the motor has 
reached a speed of 300 rev∕min relative to arm OA.

9ʺ

5ʺ

C
A

B

O

zʹ

z

PROBLEM 6/159

6/160 The motor at B supplies a constant torque M which is 
applied to a 375-mm-diameter internal drum around which 
is wound the cable shown. This cable then wraps around an 
80-kg pulley attached to a 125-kg cart carrying 600 kg of 
rock. Beginning from rest, the motor is able to bring the 
loaded cart to a cruising speed of 1.5 m∕s in 3 seconds. What 
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output gear C. Determine the required input power to the 
86%-effi cient motor at A just before the fi nal speed is reached. 
The gears have masses mA = 6 kg, mB = 10 kg, and mC = 24 kg, 
pitch diameters dA = 120 mm, dB = 160 mm, and dC = 240 mm, 
and centroidal radii of gyration kA = 48 mm, kB = 64 mm, and 
kC = 96 mm.

A
B

C

M

150 N⋅m

PROBLEM 6/164

6/165 A uniform circular disk which rolls with a velocity v 
without slipping encounters an abrupt change in the direc-
tion of its motion as it rolls onto the  incline 𝜃. Determine 
the new velocity v′ of the center of the disk as it starts up 
the incline, and fi nd the fraction n of the initial energy 
which is lost because of impact with the incline if 𝜃 =  10°.

r

G v

𝜃

PROBLEM 6/165

6/166 A frozen-juice can rests on the horizontal rack of a 
freezer door as shown. With what maximum angular veloc-
ity 𝛺 can the door be “slammed” shut against its seal and 
not dislodge the can? Assume that the can rolls without 
slipping on the corner of the rack, and neglect the dimen-
sion d compared with the 500-mm distance.

35 mm

7 mm

d

500 mm

𝛺

PROBLEM 6/166

she holds a modifi ed bicycle wheel so that its axis is verti-
cal. She then turns the wheel axis to a horizontal orienta-
tion without changing the 600-mm distance from the cen-
terline of her body to the wheel center, and her students 
observe a platform rotation rate of 30 rev∕min. If the rim-
weighted wheel has a mass of 10 kg and a centroidal radius 
of gyration k = 300 mm, and is spinning at a fairly con-
stant rate of 250 rev∕min, estimate the mass moment of 
inertia I of the instructor (in the posture shown) about the 
vertical platform axis.

𝛺

600
mm

PROBLEM 6/162

6/163 The 8-lb slotted circular disk has a radius of  gyration 
about its center O of 6 in. and initially is rotating freely 
about a fi xed vertical axis through O with a speed N1 = 600 
rev∕min. The 2-lb uniform slender bar A is initially at rest 
relative to the disk in the centered slot position as shown. 
A slight disturbance causes the bar to slide to the end of 
the slot, where it comes to rest relative to the disk. Calcu-
late the new angular speed N2 of the disk, assuming the 
absence of friction in the shaft bearing at O. Does the pres-
ence of any friction in the slot affect the fi nal result?

6ʺ

4ʺ

6ʺ

3ʺ

3ʺ

A

N1

O

PROBLEM 6/163

6/164 The gear train shown starts from rest and reaches 
an output speed of 𝜔C = 240 rev∕min in 2.25 s. Rotation of 
the train is resisted by a constant 150 N ∙m moment at the 
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Problems for Article 6/9 Chapter Review
6/167  The mass m is traveling with speed v when it 
strikes the corner of the plate of mass M. If the mass sticks 
to the plate, determine the maximum angle 𝜃 reached by 
the plate. Use the values m = 500 g, M = 20 kg, v = 30 m∕s, 
b = 400 mm, and h = 800 mm.

O

M
h

b

m v

𝜃

PROBLEM 6/167

6/168 The 5-kg bar is released from rest while in the posi-
tion shown and its end rollers travel in the  vertical-plane 
circular slot shown. If the speed of roller A is 3.25 m∕s as it 
passes point C, determine the work done by friction on the 
system over this portion of the motion. The bar has a length 
l = 700 mm.

30°

B

C

l

A

PROBLEM 6/168

6/169 A person who walks through the revolving door ex-
erts a 90-N horizontal force on one of the four door panels. 
If each panel is modeled by a 60-kg uniform rectangular 
plate which is 1.2 m in length as viewed from above, deter-
mine the angular acceleration of the door unit. Neglect 
 friction.

O

0.4 m
0.8

 m

15°

90 N

PROBLEM 6/169

6/170 The mechanical fl yball governor operates with a ver-
tical shaft O-O. As the shaft speed N  is increased, the rota-
tional radius of the two 3-lb balls tends to increase, and 
the 20-lb weight A is lifted up by the collar B. Determine 
the steady-state value of 𝛽 for a rotational speed of 150 
 rev∕min. Neglect the mass of the arms and collar.

3 lb

20 lb

3 lb

O

O

1ʺ 1ʺ

1ʺ 1ʺ

4ʺ

4ʺ

2ʺ

B

N

A

𝛽 𝛽

PROBLEM 6/170
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r

𝜃

PROBLEM 6/173

6/174 The gear train shown operates in a horizontal plane 
at a steady speed and receives 6 hp from a motor at A to 
move rack D against a 4500-pound load L. At what speed 
will the rack move if gears A, B, and C have pitch  diameters 
dA = 12 in., dB = 24 in., and dC = 12 in.? Gear C is keyed to 
the same shaft as gear B and friction in the bearings is 
negligible.

L

D

A

B

C

PROBLEM 6/174

6/175 The uniform slender bar weighs 60 lb and is released 
from rest in the near-vertical position shown, where the 
spring of stiffness 10 lb ∕ft is  unstretched. Calculate the 
speed with which end A strikes the horizontal surface.

A

1ʹ

1ʹ

3ʹ

A

O

PROBLEM 6/175

6/171 The nose-wheel assembly is raised by the applica-
tion of a torque M to link BC through the shaft at B. The 
arm and wheel AO have a combined weight of 100 lb with 
center of mass at G, and a centroidal radius of gyration of 
14 in. If the angle 𝜃 = 30°, determine the torque M neces-
sary to rotate link AO with a counterclockwise angular 
 velocity of 10 deg∕sec, which is increasing at the rate of 
5 deg∕sec every second. Additionally, determine the total 
force supported by the pin at A. The mass of links BC and 
CD may be neglected for this analysis.

20ʺ

20ʺ

MB

A

C

D

G

16ʺ

32ʺ

8ʺ O

𝜃

PROBLEM 6/171

6/172 Each of the solid square blocks is allowed to fall by 
rotating clockwise from the rest positions shown. The sup-
port at O in case (a) is a hinge and in case (b) is a small 
roller. Determine the angular velocity 𝜔 of each block as 
edge OC becomes horizontal just before striking the sup-
porting surface.

A

O O

25
0 m

m
250 m

m

45° 45°Hinge Roller

C A

25
0 m

m
250 m

m

C

(a) (b)

PROBLEM 6/172

6/173 Four identical slender rods each of mass m are 
 welded at their ends to form a square, and the corners are 
then welded to a light metal hoop of radius r. If the rigid 
assembly of rods and hoop is allowed to roll down the 
 incline, determine the minimum value of the coeffi cient of 
static friction which will prevent slipping.
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6/178 In an acrobatic stunt, man A of mass mA drops from 
a raised platform onto the end of the light but strong beam 
with a velocity v0. The boy of mass mB is propelled upward 
with a velocity vB. For a given ratio n =  mB∕mA determine 
b in terms of L to maximize the upward velocity of the boy. 
Assume that both man and boy act as rigid bodies.

L

O

B

A

b

v0

PROBLEM 6/178

6/179 The 6-lb pendulum with mass center at G is pivoted 
at A to the fi xed support CA. It has a radius of gyration of 
17 in. about O-O and swings through an amplitude 𝜃 = 60°. 
For the instant when the pendulum is in the extreme posi-
tion, calculate the moments Mx, My, and Mz applied by the 
base support to the column at C.

C

20ʺ

8ʺ

x

y

z

O

A

O

G

16ʺ

𝜃

PROBLEM 6/179

6/176 A space telescope is shown in the fi gure. One of the 
reaction wheels of its attitude-control system is spinning 
as shown at 10 rad∕s, and at this speed the friction in the 
wheel bearing causes an internal moment of 10−6 N∙m. 
Both the wheel speed and the friction moment may be con-
sidered constant over a time span of several hours. If the 
mass moment of inertia of the entire spacecraft about the 
x-axis is 150(103) kg∙m2, determine how much time passes 
before the line of sight of the initially stationary spacecraft 
drifts by 1 arc- second, which is 1 ∕3600 degree. All other 
elements are fi xed relative to the spacecraft, and no torqu-
ing of the reaction wheel shown is performed to correct the 
attitude drift. Neglect external torques.

x

G

PROBLEM 6/176

6/177 The uniform semicircular plate is at rest on the 
smooth horizontal surface when the force F is applied at B. 
Determine the coordinates of the point P in the plate which 
has zero initial acceleration.

y

x

m
rF

B

PROBLEM 6/177
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b
―
4

3b
–―
4

b
―
4

O A1.2 kg

C

B

k

0.6 kg

PROBLEM 6/182

*6/183 The uniform 4-ft slender bar with light end rollers 
is released from rest in the vertical plane with 𝜃 essentially 
zero. Determine and graph the velocity of A as a function of 
𝜃 and fi nd the maximum velocity of A and the correspond-
ing angle 𝜃.

A

B

4ʹ

𝜃

PROBLEM 6/183

*6/184 The uniform power pole of mass m and length L is 
hoisted into a vertical position with its lower end  supported 
by a fi xed pivot at O. The guy wires supporting the pole are 
accidentally released, and the pole falls to the ground. Plot 
the x- and y-components of the force exerted on the pole at 
O in terms of 𝜃 from 0 to 90°. Can you explain why Oy in-
creases again after going to zero?

L

O

y

x

𝜃

PROBLEM 6/184

▶6/180 The uniform 40-lb bar with attached 12-lb wheels 
is released from rest in the orientation shown. The wheels 
have a centroidal radius of gyration of 4.5 in., and the coeffi -
cients of static and kinetic friction between the wheels and 
the horizontal and vertical surfaces are 𝜇s = 0.65 and 𝜇k = 
0.50. Friction may be neglected in the pins connecting the 
wheels to the bar. Determine the acceleration components 
of the mass center of the bar at the instant of release.

60°

6ʺ

4ʹ

x

y

A

B

PROBLEM 6/180

▶6/181 The four-bar mechanism operates in a horizontal 
plane. At the instant illustrated, 𝜃 = 30° and crank OA has 
a constant counterclockwise angular velocity of 3 rad∕s. De-
termine the required magnitude of the couple M necessary 
to drive the system at this instant. Member BCD has a 
mass of 8 kg with a radius of gyration of 450 mm about 
point C. The mass of crank OA and connecting link AB may 
be neglected for this analysis.

C

D

B

A

O

MOA = 200 mm
AB = 500 mm
BC = 600 mm

500 mm 

125 mm 

𝜃

PROBLEM 6/181

*Computer-Oriented Problems
*6/182 The 1.2-kg uniform slender bar has a 0.6-kg parti-
cle attached to its end. The spring constant is k = 300 N∕m 
and the distance b = 200 mm. If the bar is released from 
rest in the horizontal position shown where the spring is 
unstretched, determine the maximum angular defl ection 
𝜃max of the bar. Also determine the value of the angular 
velocity at 𝜃 = 𝜃max∕2. Neglect friction.
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*6/187 The 60-ft telephone pole of essentially uniform di-
ameter is being hoisted into the vertical position by two 
cables attached at B as shown. The end O rests on a fi xed 
support and cannot slip. When the pole is nearly vertical, 
the fi tting at B suddenly breaks, releasing both cables. 
When the angle 𝜃 reaches 10°, the speed of the upper end A 
of the pole is 4.5 ft∕sec. From this point, calculate the time 
t which the workman would have to get out of the way be-
fore the pole hits the ground. With what speed vA does end 
A hit the ground?

O

x

y

z

A

60ʹ B

𝜃

PROBLEM 6/187

*6/185 The compound pendulum is composed of a uniform 
slender rod of length l and mass 2m to which is fastened a 
uniform disk of diameter l ∕2 and mass m. The body pivots 
freely about a horizontal axis through O. If the pendulum 
has a clockwise angular velocity of 3 rad∕s when 𝜃 = 0 at 
time t = 0, determine the time t at which the pendulum 
passes the position 𝜃 = 90°. The pendulum length l = 0.8 m.

2m

m

O

l
―
2

l
―
2

𝜃

PROBLEM 6/185

*6/186 The uniform 100-kg beam AB is hanging initially 
at rest with 𝜃 = 0 when the constant force P = 300 N is ap-
plied to the cable. Determine (a) the maximum angular ve-
locity reached by the beam with the corresponding angle 𝜃 
and (b) the maximum angle 𝜃max reached by the beam.

3 m

P
C

A

B
1 m

3 m

𝜃

PROBLEM 6/186
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*6/189 Reconsider the mechanism of Prob. 6 ∕188. If crank 
OA now starts from rest and acquires a speed of 60 rev∕min 
in one complete revolution with constant angular  acceleration, 
determine and plot the torque M which must be applied to 
the crank over the range 0 ≤ 𝜃 ≤ 2𝜋. What is the largest 
magnitude M which occurs during this motion, and at what 
angle 𝜃 does it occur? Additionally, plot the magnitude of 
the force in each pin over this range and state the maxi-
mum magnitude of each pin force along with the corre-
sponding crank angle 𝜃 at which it occurs.

*6/190 Reconsider the basic mechanism of Prob. 6 ∕188, 
only now the mass of the crank OA is 1.2 kg and that of the 
uniform output arm BC is 1.8 kg. For simplicity, treat the 
crank OA as uniform. Determine and plot the torque M 
which must be applied to the crank at O in order to keep 
the speed of the crank steady at 60 rev∕min over the range 
0 ≤ 𝜃 ≤ 2𝜋. What is the largest magnitude M which occurs 
during this motion, and at what angle 𝜃 does it occur? Ad-
ditionally, plot the magnitude of the force on each pin over 
this range and state the maximum magnitude of each pin 
force along with the corresponding crank angle 𝜃 at which 
it occurs.

*6/188 The four-bar mechanism of Prob. 6 ∕87 is repeated 
here. The coupler AB has a mass of 7 kg, and the masses of 
crank OA and the output arm BC may be neglected. Deter-
mine and plot the torque M which must be applied to the 
crank at O in order to keep the speed of the crank steady at 
60 rev∕min over the range 0 ≤ 𝜃 ≤ 2𝜋. What is the largest 
magnitude M which occurs during this motion, and at what 
angle 𝜃 does it occur? Additionally, plot the magnitude of 
the force on each pin over this range and state the maxi-
mum magnitude of each pin force along with the corre-
sponding crank angle 𝜃 at which it occurs.

200
mm

70 mm

OA = 80 mm

A

M

B

O

C

240 mm

190 mm

𝜃

PROBLEM 6/188
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Problems for Articles 7/1–7/5
Introductory Problems
7/1 Place your textbook on your desk, with fi xed axes ori-
ented as shown. Rotate the book about the x-axis through a 
90° angle and then from this new position rotate it 90° 
about the y-axis. Sketch the fi nal position of the book. Re-
peat the process but reverse the order of rotation. From 
your results, state your conclusion concerning the vector 
addition of fi nite rotations. Reconcile your observations 
with Fig. 7∕4.

z
y

x

PROBLEM 7/1

7/2 Repeat the experiment of Prob. 7∕1 but use a small 
angle of rotation, say, 5°. Note the near-equal fi nal posi-
tions for the two different rotation sequences. What does 
this observation lead you to conclude for the combination 
of infi nitesimal rotations and for the time derivatives of 
angular quantities? Reconcile your observations with 
Fig. 7∕5.

7/3 The four-bladed fan rotates about the fi xed axis OB 
with a constant angular speed N = 1200 rev∕min. Write the 
vector expressions for the velocity v and acceleration a of 
the tip A of the fan blade for the instant when its x-y-z co-
ordinates are 0.260, 0.240, and 0.473 m, respectively.

x y

z

O

N

A

B

0.4 m

0.3 m

0.2 m

PROBLEM 7/3

7/4 The rotor and shaft are mounted in a clevis which can 
rotate about the z-axis with an angular velocity 𝛺. With 
𝛺 = 0 and 𝜃 constant, the rotor has an angular velocity 
𝛚0 = −4j − 3k rad ∕s. Find the velocity vA of point A on the 
rim if its position vector at this instant is r = 0.5i + 1.2j + 
1.1k m. What is the rim speed vB of any point B?

z

y

x

A

B 𝜔0

v

𝛺

𝜃

PROBLEM 7/4

Chapter 7
* Computer-oriented problem

 Diffi cult problem
 Student solution available in WileyPLUS
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x

z D

O

A

C

d

h

l

y

𝜃

𝜔

PROBLEM 7/7

7/8 The rod is hinged about the axis O-O of the clevis, 
which is attached to the end of the vertical shaft. The shaft 
rotates with a constant angular velocity 𝜔0 as shown. If 𝜃 is 
decreasing at the constant rate −�̇� = p, write expressions 
for the angular velocity 𝛚 and angular acceleration 𝛂 of 
the rod.

z

O

O

A

yx

𝜔0

𝜃

PROBLEM 7/8

7/5 The disk rotates with a spin velocity of 15 rad ∕s about 
its horizontal z-axis fi rst in the direction (a) and second in 
the direction (b). The assembly rotates with the angular 
velocity N = 10 rad ∕s about the vertical axis. Construct the 
space and body cones for each case.

N

(b)

(a)

z

PROBLEM 7/5

7/6 The rotor B spins about its inclined axis OA at the 
 angular speed N1 = 200 rev∕ min, where 𝛽 = 30°. Simulta-
neously, the assembly rotates about the vertical z-axis at the 
rate N2. If the total angular velocity of the rotor has a 
 magnitude of 40 rad ∕s, determine N2.

x

z

y

A

B

O

N1

N2

𝛽

PROBLEM 7/6

7/7 A slender rod bent into the shape shown rotates about 
the fi xed line CD at a constant angular rate 𝜔. Determine 
the velocity and acceleration of point A.
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rest with constant acceleration, determine the total angular 
acceleration of the rotor and disk 13 second after it is turned on 
if the turntable is rotating at a constant rate N = 30 rev∕min. 
The angle 𝛾 = 30° is constant.

7/12 The spool A rotates about its axis with an angular 
velocity of 20 rad ∕s, fi rst in the sense of 𝜔a and second in 
the sense of 𝜔b. Simultaneously, the assembly rotates about 
the vertical axis with an angular velocity 𝜔1 = 10 rad ∕s. 
Determine the magnitude 𝜔 of the total angular velocity of 
the spool and construct the body and space cones for the 
spool for each case.

60°

A
O 

𝜔1

𝜔b

𝜔a

PROBLEM 7/12

7/13 In manipulating the dumbbell, the jaws of the robotic 
device have an angular velocity 𝜔p = 2 rad ∕s about the axis 
OG with 𝛾 fi xed at 60°. The entire assembly rotates about 
the vertical Z-axis at the constant rate 𝛺 = 0.8 rad ∕s. De-
termine the angular velocity 𝛚 and angular acceleration 𝛂 
of the dumbbell. Express the results in terms of the given 
orientation of axes x-y-z, where the y-axis is parallel to the 
Y-axis.

mz

aG

a
m

x

X
Y

y

Z

O

𝜔p

𝛺

𝛾

PROBLEM 7/13

7/9  The panel assembly and attached x-y-z axes ro-
tate with a constant angular velocity 𝛺 = 0.6 rad ∕sec about 
the vertical z-axis. Simultaneously, the panels rotate about 
the y-axis as shown with a constant rate 𝜔0 = 2 rad ∕sec. 
 Determine the angular acceleration 𝛂 of panel A and fi nd the 
acceleration of point P for the instant when 𝛽 = 90°.

z

y

x
O

A

P

B

18ʺ

16ʺ

20ʺ

𝜔0
𝜔0

𝛺

𝛽

PROBLEM 7/9

Representative Problems
7/10 The motor of Sample Problem 7∕2 is shown again 
here. If the motor pivots about the x-axis at the constant 
rate 𝛾 = 3𝜋 rad ∕sec with no rotation about the Z-axis (N = 
0), determine the angular acceleration 𝛂 of the rotor and 
disk as the position 𝛾 = 30° is passed. The constant speed of 
the motor is 120 rev∕min. Also fi nd the velocity and accelera-
tion of point A, which is on the top of the disk at this 
 instant.

x

z
y

Z

A

C

O

N

𝜔0

OC = 10ʺ

CA = 5ʺ

𝛾

PROBLEM 7/10

7/11 If the motor of Sample Problem 7∕2, repeated in 
Prob. 7∕10, reaches a speed of 3000 rev∕min in 2 seconds from 
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z

A

r

x

O

y

R

PROBLEM 7/17

7/18 Determine expressions for the velocity v and acceler-
ation a of point A on the wheel of Prob. 7∕17 for the position 
shown, where A crosses the horizontal line through the 
center of the wheel.

7/19 The circular disk of 120-mm radius rotates about the 
z-axis at the constant rate 𝜔z = 20 rad ∕s, and the entire as-
sembly rotates about the fi xed x-axis at the constant rate 
𝜔x = 10 rad ∕s. Calculate the magnitudes of the velocity v and 
acceleration a of point B for the instant when 𝜃 = 30°.

200
mm

120
mm

y

B

O

x

y ʹ

z

𝜔z

𝜔x

𝜃

PROBLEM 7/19

7/14 Determine the angular acceleration 𝛂 of the dumbbell 
of Prob. 7∕13 for the conditions stated, except that 𝛺 is in-
creasing at the rate of 3 rad ∕s2 for the instant under consid-
eration.

7/15 The robot shown has fi ve degrees of rotational free-
dom. The x-y-z axes are attached to the base ring, which 
rotates about the z-axis at the rate 𝜔1. The arm O1O2 rotates 
about the x-axis at the rate 𝜔2 = �̇�. The control arm O2A ro-
tates about axis O1-O2 at the rate 𝜔3 and about a perpen-
dicular axis through O2 which is momentarily parallel to the 
x-axis at the rate 𝜔4 = �̇�. Finally, the jaws rotate about axis 
O2-A at the rate 𝜔5. The magnitudes of all angular rates are 
constant. For the confi guration shown, determine the mag-
nitude 𝜔 of the total angular velocity of the jaws for 𝜃 = 60° 
and 𝛽 = 45° if 𝜔1 = 2 rad ∕s, �̇� = 1.5 rad ∕s, and 𝜔3 = 𝜔4 = 𝜔5 = 0. 
Also express the angular acceleration 𝛂 of arm O1O2 as a 
 vector.

z

x

y

A
O2

O1

𝜔1

𝜔2

𝜔3

𝜔5

𝜔4

𝜃

𝛽

PROBLEM 7/15

7/16 For the robot of Prob. 7∕15, determine the angular ve-
locity 𝛚 and angular acceleration 𝛂 of the jaws A if 𝜃 = 60° 
and 𝛽 = 30°, both constant, and if 𝜔1 = 2 rad ∕s, 𝜔2 = 𝜔3 = 𝜔4 = 
0, and 𝜔5 = 0.8 rad ∕s, all constant.

7/17 The wheel rolls without slipping in a circular arc of 
radius R and makes one complete turn about the vertical 
y-axis with constant speed in time 𝜏. Determine the vector 
expression for the angular acceleration 𝛂 of the wheel and 
construct the space and body cones.
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7/20 The crane has a boom of length OP = 24 m and is 
 revolving about the vertical axis at the constant rate of 
2 rev∕min in the direction shown. Simultaneously, the 
boom is being lowered at the constant rate �̇� = 0.10 rad ∕s. 
Calculate the magnitudes of the velocity and acceleration 
of the end P of the boom for the instant when it passes the 
position 𝛽 = 30°.

O

P

𝛽

𝜔

PROBLEM 7/20

7/21 If the angular velocity 𝛚0 = −4 j − 3k rad ∕s of the ro-
tor in Prob. 7∕4 is constant in magnitude,  determine the 
angular acceleration 𝛂 of the rotor for (a) 𝛺 = 0 and �̇� = 
2 rad∕s (both constant) and (b) 𝜃 = tan−1(3

4) and 𝛺 = 2 rad∕s 
(both constant). Find the magnitude of the acceleration of 
point A in each case, where A has the position vector 
r = 0.5i + 1.2j + 1.1k m at the instant represented.

7/22 The vertical shaft and attached clevis rotate about the 
z-axis at the constant rate 𝛺 = 4 rad∕s. Simultaneously, the 
shaft B revolves about its axis OA at the constant rate 𝜔0 = 
3 rad∕s, and the angle 𝛾 is decreasing at the constant rate of 
𝜋 ∕4 rad∕s. Determine the angular velocity 𝛚 and the magni-
tude of the angular acceleration 𝛂 of shaft B when 𝛾 = 30°. 
The x-y-z axes are attached to the clevis and rotate with it.

x

z

y

A

O 
B 

𝜔0 

𝛺

𝛾

PROBLEM 7/22

▶7/23 The right-circular cone A rolls on the fi xed right- 
circular cone B at a constant rate and makes one complete 
trip around B every 4 seconds. Compute the magnitude of 
the angular acceleration 𝛂 of cone A during its motion.

150 mm

150 mm

Z
z

B

O

50 mm

A

PROBLEM 7/23

▶7/24 The pendulum oscillates about the x-axis according 

to 𝜃 = 
𝜋

6
 sin 3𝜋t radians, where t is the time in seconds. 

Simultaneously, the shaft OA revolves about the vertical 
z-axis at the constant rate 𝜔z = 2𝜋 rad ∕sec. Determine the 
velocity v and acceleration a of the center B of the pendu-
lum as well as its angular acceleration 𝛂 for the instant 
when t = 0.

𝜔z 

x

B

O
A

8ʺ

y

z

4ʺ

𝜃

PROBLEM 7/24
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Problems for Article 7/6
Introductory Problems
7/25 The solid cylinder has a body cone with a semi-
vertex angle of 20°. Momentarily the angular velocity 𝛚 has 
a magnitude of 30 rad∕s and lies in the y-z plane. Deter-
mine the rate p at which the cylinder is spinning about its 
z-axis and write the vector expression for the velocity of B 
with respect to A.

z

y

x

20°

0.4 m
A

B

𝛚

PROBLEM 7/25

7/26 The helicopter is nosing down at the constant rate 
q rad∕s. If the rotor blades revolve at the constant speed 
p rad∕s, write the expression for the angular acceleration 𝛂 
of the rotor. Take the y-axis to be attached to the fuselage 
and pointing forward perpendicular to the rotor axis.

y

z

p

q

PROBLEM 7/26

7/27 The collar at O and attached shaft OC rotate about 
the fi xed x0-axis at the constant rate 𝛺 = 4 rad∕s. Simulta-
neously, the circular disk rotates about OC at the constant 
rate p = 10 rad∕s. Determine the magnitude of the total 
angular velocity 𝛚 of the disk and fi nd its angular accelera-
tion 𝛂.

𝛺 = 4 rad/s

 p = 10 rad/s

400
mm

300
mm

A

C

O

x
x0

z

y

PROBLEM 7/27

7/28 If the angular rate p of the disk in Prob. 7∕27 is in-
creasing at the rate of 6 rad∕s per second and if 𝛺 remains 
constant at 4 rad∕s, determine the angular acceleration 𝛂 of 
the disk at the instant when p reaches 10 rad∕s.

7/29 For the conditions of Prob. 7∕27, determine the veloc-
ity vA and acceleration aA of point A on the disk as it passes 
the position shown. Reference axes x-y-z are attached to 
the collar at O and its shaft OC.

7/30 An unmanned radar-radio-controlled aircraft with 
tilt-rotor propulsion is being designed for reconnaissance 
purposes. Vertical rise begins with 𝜃 = 0 and is followed by 
horizontal fl ight as 𝜃 approaches 90°. If the rotors turn at a 
constant speed N of 360 rev∕ min, determine the angular 
 acceleration 𝛂 of rotor A for 𝜃 = 30° if 𝜃 is constant at 
0.2 rad∕s.

x

z
y

A

N

N

𝜃

𝜃

PROBLEM 7/30
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7/31 End A of the rigid link is confi ned to move in the −x-
direction while end B is confi ned to move along the z-axis. 
Determine the component 𝛚n normal to AB of the angular 
velocity of the link as it passes the position shown with 
vA = 3 ft ∕sec.

3ʹ

7ʹ

2ʹ

B

O

Ax

z

yvA

PROBLEM 7/31

Representative Problems
7/32 The small motor M is pivoted about the x-axis through 
O and gives its shaft OA a constant speed p rad∕s in the 
direction shown relative to its housing. The entire unit is 
then set into rotation about the vertical Z-axis at the con-
stant angular velocity 𝛺 rad∕s. Simultaneously, the motor 
pivots about the x-axis at the constant rate �̇� for an inter-
val of motion. Determine the angular acceleration 𝛂 of the 
shaft OA in terms of 𝛽. Express your result in terms of the 
unit vectors for the rotating x-y-z axes.

y

A

R

M

Z

O

b
p

x

z

𝛺 𝛽

PROBLEM 7/32

7/33 The fl ight simulator is mounted on six hydraulic ac-
tuators connected in pairs to their attachment points on 
the underside of the simulator. By programming the ac-
tions of the actuators, a variety of fl ight conditions can be 
simulated with translational and rotational displacements 
through a limited range of motion. Axes x-y-z are attached 

to the simulator with origin B at the center of the volume. 
For the instant represented, B has a velocity and an ac-
celeration in the horizontal y-direction of 3.2 ft∕sec and 
4 ft∕sec2, respectively. Simultaneously, the angular veloci-
ties and their time rates of change are 𝜔x = 1.4 rad∕sec, 
�̇�x = 2 rad∕sec2, 𝜔y = 1.2 rad∕sec, �̇�y = 3 rad∕sec2, 𝜔z = �̇�z = 0. 
For this instant determine the magnitudes of the velocity 
and acceleration of point A.

60ʺ

B

z

y

𝜔y

xA
𝜔x

PROBLEM 7/33

7/34 The robot of Prob. 7∕15 is shown again here, where 
the coordinate system x-y-z with origin at O2 rotates about 
the X-axis at the rate 𝜃. Nonrotating axes X-Y-Z oriented 
as shown have their origin at O1. If 𝜔2 = 𝜃 = 3 rad∕s con-
stant, 𝜔3 = 1.5 rad∕s constant, 𝜔1 = 𝜔5 = 0, O1O2 = 1.2 m, 
and O2 A = 0.6 m, determine the velocity of the center A of 
the jaws for the instant when 𝜃 = 60°. The angle 𝛽 lies in 
the y-z plane and is constant at 45°.

z

X

x

Y

Z

y

A
O2

O1

𝜔1

𝜔2

𝜔3

𝜔5

𝜔4

𝜃

𝛽

PROBLEM 7/34
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7/37 The collar and clevis A are given a constant upward 
velocity of 8 in.∕sec for an interval of motion and cause the 
ball end of the bar to slide in the radial slot in the rotating 
disk. Determine the angular acceleration of the bar when 
the bar passes the position for which z = 3 in. The disk 
turns at the constant rate of 2 rad∕sec.

z

z

y

x
𝛺 = 2 rad/sec

A

B

l = 5ʺ

PROBLEM 7/37

7/38 The circular disk of 100-mm radius rotates about 
its z-axis at the constant speed p = 240 rev∕ min, and arm 
OCB rotates about the Y-axis at the constant speed N = 
30 rev∕ min. Determine the velocity v and acceleration a of 
point A on the disk as it passes the position shown. Use 
reference axes x-y-z attached to the arm OCB.

180 mm

100 mm

100 mm

x

z

p y

A
B

C

D

X

Y
Z

N

O

PROBLEM 7/38

7/39 For the conditions described in Prob. 7∕32, determine 
the velocity v and acceleration a of the center A of the ball 
tool in terms of 𝛽.

7/35 The spacecraft is revolving about its z-axis, which has 
a fi xed space orientation, at the constant rate p = 1

10 rad∕s. 
Simultaneously, its solar panels are unfolding at the rate �̇� 
which is programmed to vary with 𝛽 as shown in the graph. 
Determine the angular acceleration 𝛂 of panel A an instant (a) 
before and an instant (b) after it reaches the position 𝛽 = 18°.

x

y

z

A

p

0
0

2

18
𝛽 (°)

(/s)

90

𝛽
⋅

𝛽

𝛽

PROBLEM 7/35

7/36 The disk has a constant angular velocity p about its 
z-axis, and the yoke A has a constant angular velocity 𝜔2 
about its shaft as shown. Simultaneously, the entire assem-
bly revolves about the fi xed X-axis with a constant angular 
velocity 𝜔1. Determine the expression for the angular ac-
celeration of the disk as the yoke brings it into the vertical 
plane in the position shown. Solve by picturing the vector 
changes in the angular-velocity components.

p

z

Z

x

Y

X

A
y

𝜔2

𝜔1

PROBLEM 7/36
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through O with a constant angular velocity 𝜔2. Determine 
the velocity v and acceleration a of point A on the rim of the 
disk as it passes the position shown where the x-y plane of 
the disk coincides with the X-Y plane. The x-y-z axes are 
attached to the yoke.

Y

y

A

x X

z

Z p

B

O

r

b

𝜔2

𝜔1

PROBLEM 7/42

▶7/43 For the conditions specifi ed with Sample Problem 7∕2, 
except that 𝛾 is increasing at the steady rate of 3𝜋 rad∕sec, 
determine the angular velocity 𝛚 and the angular accelera-
tion 𝛂 of the rotor when the position 𝛾 = 30° is passed. (Sug-
gestion: Apply Eq. 7∕7 to the vector 𝛚 to fi nd 𝛂. Note that V 
in Sample Problem 7∕2 is no longer the complete angular 
velocity of the axes.)

▶7/44 The wheel of radius r is free to rotate about the bent 
axle CO which turns about the vertical axis at the constant 
rate p rad∕s. If the wheel rolls without slipping on the hori-
zontal circle of radius R, determine the expressions for the 
angular velocity 𝛚 and angular acceleration 𝛂 of the wheel. 
The x-axis is always horizontal.

R
A

x

z

r

B

M

p

O

y

C
𝜃

PROBLEM 7/44

7/40 The circular disk is spinning about its own axis 
(y-axis) at the constant rate p = 10𝜋 rad∕s. Simultaneously, 
the frame is rotating about the Z-axis at the constant rate 
𝛺 = 4𝜋 rad∕s. Calculate the angular acceleration 𝛂 of the 
disk and the acceleration of point A at the top of the disk. 
Axes x-y-z are attached to the frame, which has the mo-
mentary orientation shown with respect to the fi xed axes 
X-Y-Z.

p

z

Z

Y

X

A

O

y
B

x

300 mm

100
mm

𝛺

PROBLEM 7/40

7/41 The center O of the spacecraft is moving through 
space with a constant velocity. During the period of motion 
prior to stabilization, the spacecraft has a constant rota-
tional rate 𝛺 = 0.5 rad∕sec about its z-axis. The x-y-z axes 
are attached to the body of the craft, and the solar panels 
rotate about the y-axis at the constant rate 𝜃 = 0.25 rad∕sec 
with respect to the spacecraft. If 𝛚 is the absolute angular 
velocity of the solar panels, determine �̇�. Also fi nd the ac-
celeration of point A when 𝜃 = 30°.

8ʹ

2ʹ

z

x

y

A
O

2ʹ

𝛺

𝜃

PROBLEM 7/41

7/42 The thin circular disk of mass m and radius r is rotat-
ing about its z-axis with a constant angular velocity p, and 
the yoke in which it is mounted rotates about the x-axis 
through OB with a constant angular velocity 𝜔1. Simulta-
neously, the entire assembly rotates about the fi xed Y-axis 
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▶7/46 The crank with a radius of 80 mm turns with a con-
stant angular velocity 𝜔0 = 4 rad∕s and causes the collar A 
to oscillate along the fi xed shaft. Determine the velocity of 
the collar A and the angular velocity of the rigid-body link 
AB as the crank crosses the vertical position shown. (Hint: 
Link AB can have no angular velocity about an axis (unit 
vector n) which is normal to both the Y-axis and the axis of 
the clevis pin. Thus 𝛚 · n = 0 where n has the direction of 
the triple vector product J × (rAB × J).

z
x

B

X

Z
Y

A

300 m
m

40
mm

100
mm

120 mm

80 mm

𝜔0

y

PROBLEM 7/46

▶7/45 The gyro rotor shown is spinning at the constant 
rate of 100 rev∕min relative to the x-y-z axes in the direc-
tion indicated. If the angle 𝛾 between the gimbal ring and 
the horizontal X-Y plane is made to increase at the con-
stant rate of 4 rad∕s and if the unit is forced to precess 
about the vertical at the constant rate N = 20 rev∕min, cal-
culate the magnitude of the angular acceleration 𝛂 of the 
rotor when 𝛾 = 30°. Solve by using Eq. 7∕7 applied to the 
angular velocity of the rotor.

N

Z

O

X

y

z

Y

x

𝛾

PROBLEM 7/45
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Problems for Articles 7/7–7/8
Introductory Problems
7/47 The three small spheres, each of mass m, are rigidly 
mounted to the horizontal shaft which rotates with the 
 angular velocity 𝜔 as shown. Neglect the radius of each 
sphere compared with the other dimensions and write ex-
pressions for the magnitudes of their linear momentum G 
and their angular momentum HO about the origin O of the 
coordinates.

b

b

b

b

b

x

y

O

z
𝜔

PROBLEM 7/47

7/48 The spheres of Prob. 7∕ 47 are replaced by three rods, 
each of mass m and length l, mounted at their centers to the 
shaft, which rotates with the angular velocity 𝜔 as shown. 
The axes of the rods are, respectively, in the x-, y-, and z- 
directions, and their diameters are negligible compared with 
the other dimensions. Determine the angular momentum HO 
of the three rods with respect to the coordinate origin O.

b

b

b

b

b

x

y

O

l

z

𝜔

PROBLEM 7/48

7/49 The aircraft landing gear viewed from the front is 
 being retracted immediately after takeoff, and the wheel is 
spinning at the rate corresponding to the takeoff speed of 
200 km∕h. The 45-kg wheel has a radius of gyration about 
its z-axis of 370 mm. Neglect the thickness of the wheel and 
calculate the angular momentum of the wheel about G and 
about A for the position where 𝜃 is increasing at the rate of 
30° per second.

215
mm

920
mm

x

z

A

G 𝜃

PROBLEM 7/49

7/50 The bent rod has a mass 𝜌 per unit length and rotates 
about the z-axis with an angular velocity 𝜔. Determine the 
angular momentum HO of the rod about the fi xed origin O 
of the axes, which are attached to the rod. Also fi nd the 
 kinetic energy T of the rod.

b

b

y

z b

x

O

𝜔

PROBLEM 7/50

7/51 Use the results of Prob. 7∕ 50 and determine the angu-
lar momentum HG of the bent rod of that problem about its 
mass center G using the given reference axes.
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G

z

y
x

PROBLEM 7/54

7/55 The gyro rotor is spinning at the constant rate p = 100 
rev∕min relative to the x-y-z axes in the direction indicated. 
If the angle 𝛾 between the gimbal ring and horizontal X-Y 
plane is made to increase at the rate of 4 rad∕sec and if the 
unit is forced to precess about the vertical at the constant 
rate N = 20 rev∕min, calculate the angular momentum HO 
of the rotor when 𝛾 = 30°. The axial and transverse mo-
ments of inertia are Izz = 5(10−3) lb-ft-sec2 and Ixx = Iyy = 
2.5(10−3) lb-ft-sec2.

N

Z

O

X

y

z

p

Y

x

𝛾

PROBLEM 7/55

7/56 The slender steel rod AB weighs 6.20 lb and is secured 
to the rotating shaft by the rod OG and its fi ttings at O and G. 
The angle 𝛽 remains constant at 30°, and the entire rigid as-
sembly rotates about the z-axis at the steady rate N = 600 
rev∕min. Calculate the angular momentum HO of AB and its 
kinetic energy T.

Representative Problems
7/52 The solid half-circular cylinder of mass m revolves 
about the z-axis with an angular velocity 𝜔 as shown. De-
termine its angular momentum H with respect to the x-y-z 
axes.

O

yz

x

b

c

r

𝜔

PROBLEM 7/52

7/53 The solid circular cylinder of mass m, radius r, and 
length b revolves about its geometric axis at an angular 
rate p rad∕s. Simultaneously, the bracket and attached 
shaft revolve about the x-axis at the rate 𝜔 rad∕s. Write the 
expression for the angular momentun HO of the cylinder 
about O with reference axes as shown.

h
O

r

b

y

x

z

p

𝜔

PROBLEM 7/53

7/54 The elements of a reaction-wheel attitude-control sys-
tem for a spacecraft are shown in the fi gure. Point G is the 
center of mass for the system of the spacecraft and wheels, 
and x, y, z are principal axes for the system. Each wheel has 
a mass m and a moment of inertia I about its own axis and 
spins with a relative angular velocity p in the direction in-
dicated. The center of each wheel, which may be treated as 
a thin disk, is a distance b from G. If the spacecraft has 
angular velocity components 𝛺x, 𝛺y, and 𝛺z, determine the 
angular momentum HG of the three wheels as a unit.
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x

x ʹ

z

y

O

r

𝛼

𝜔

PROBLEM 7/58

7/59 The right-circular cone of height h and base radius r 
spins about its axis of symmetry with an angular rate p. 
Simultaneously, the entire cone revolves about the x-axis 
with angular rate 𝛺. Determine the angular momentum 
HO of the cone about the origin O of the x-y-z axes and the 
kinetic energy T for the position shown. The mass of the 
cone is m.

z

h

x y

p

O

r

𝛺

PROBLEM 7/59

y

z

x

G

A

B

14ʺ

14ʺ

16ʺ

O
N

𝛽

PROBLEM 7/56

7/57  The rectangular plate, with a mass of 3 kg and a 
uniform small thickness, is welded at the 45° angle to the 
vertical shaft, which rotates with the angular velocity of 
20𝜋 rad∕s. Determine the angular momentum H of the 
plate about O and fi nd the kinetic energy of the plate.

x

z

y

O

45°

20
0 

m
m

20
0 

m
m

100
mm

100
mm

𝜔 = 20𝜋 rad/s

PROBLEM 7/57

7/58 The circular disk of mass m and radius r is mounted 
on the vertical shaft with an angle 𝛼 between its plane and 
the plane of rotation of the shaft. Determine an expression 
for the angular momentum H of the disk about O. Find the 
angle 𝛽 which the angular momentum H makes with the 
shaft if 𝛼 = 10°.
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7/62 The 4-in.-radius wheel weighs 6 lb and turns about its 
y′-axis with an angular velocity p = 40𝜋 rad∕sec in the di-
rection shown. Simultaneously, the fork rotates about its 
x-axis shaft with an angular velocity 𝜔 = 10𝜋 rad∕sec as 
indicated. Calculate the angular momentum of the wheel 
about its center O′. Also compute the kinetic energy of the 
wheel.

O

O ʹ

y

y ʹ

zʹ

z

x

x ʹ

10ʺ

4ʺ

𝜔 = 10𝜋 rad/sec

p = 40𝜋 rad/sec

PROBLEM 7/62

7/63 The assembly, consisting of the solid sphere of mass m 
and the uniform rod of length 2c and equal mass m, revolves 
about the vertical z-axis with an angular velocity 𝜔. The rod 
of length 2c has a diameter which is small compared with its 
length and is perpendicular to the horizontal rod to which it 
is welded with the inclination 𝛽 shown. Determine the com-
bined angular momentum HO of the sphere and inclined rod.

b

b

c

m

yx

m O

z

cr

𝜔

𝛽

PROBLEM 7/63

7/60 The spacecraft shown has a mass m with mass center 
G. Its radius of gyration about its z-axis of rotational sym-
metry is k and that about either the x- or y-axis is k′. In 
space, the spacecraft spins within its x-y-z reference frame 
at the rate p = �̇�. Simultaneously, a point C on the z-axis 
moves in a circle about the z0-axis with a frequency ƒ (rota-
tions per unit time). The z0-axis has a constant direction in 
space. Determine the angular momentum HG of the space-
craft relative to the axes designated. Note that the x-axis 
always lies in the z-z0 plane and that the y-axis is therefore 
normal to z0.

C

G

x y

z
z0

𝜙

𝜃

PROBLEM 7/60

7/61 The uniform circular disk of Prob. 7∕42 with the three 
components of angular velocity is shown again here. Deter-
mine the kinetic energy T and the angular momentum HO 
with respect to O of the disk for the instant represented, 
when the x-y plane coincides with the X-Y plane. The mass 
of the disk is m.

Y

y

A

x X

z

Z p

B

O

r

b

𝜔2

𝜔1

PROBLEM 7/61
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x

a a b

b

O

y

b

b

z

c

c

𝜃

𝜃

𝜔

PROBLEM 7/64

7/64 In a test of the solar panels for a spacecraft, the model 
shown is rotated about the vertical axis at the angular rate 
𝜔. If the mass per unit area of panel is 𝜌, write the expres-
sion for the angular momentum HO of the assembly about 
the axes shown in terms of 𝜃. Also determine the maxi-
mum, minimum, and intermediate values of the moment of 
inertia about the axes through O. The combined mass of 
both panels is m.
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Problems for Articles 7/9–7/10
Introductory Problems
7/65 Each of the two rods of mass m is welded to the face of 
the disk, which rotates about the vertical axis with a con-
stant angular velocity 𝜔. Determine the bending moment 
M acting on each rod at its base.

l

l

b
b

𝜔

PROBLEM 7/65

7/66 The slender shaft carries two offset particles, each of 
mass m, and rotates about the z-axis with the constant an-
gular rate 𝜔 as indicated. Determine the x- and y- components 
of the bearing reactions at A and B due to the dynamic 
imbalance of the shaft for the position shown.

RR m
m

B

L
—
3

L
—
3

L
—
3 z

x

A

y

O

𝜔

PROBLEM 7/66

7/67 The uniform slender bar of length l and mass m is 
welded to the shaft, which rotates in bearings A and B with 
a constant angular velocity 𝜔. Determine the expression for 
the force supported by the bearing at B as a function of 𝜃. 
Consider only the force due to the dynamic imbalance and 
assume that the bearings can support radial forces only.

c

A

O
B

b

l

y

x

z

𝜃

𝜔

PROBLEM 7/67

7/68 If a torque M = Mk is applied to the shaft in Prob. 7∕ 67, 
determine the x- and y-components of the force supported 
by the bearing B as the bar and shaft start from rest in the 
position shown. Neglect the mass of the shaft and consider 
dynamic forces only.

7/69 The 6-kg circular disk and attached shaft rotate at a 
constant speed 𝜔 = 10 000 rev∕min. If the center of mass of 
the disk is 0.05 mm off center, determine the magnitudes of 
the horizontal forces A and B supported by the bearings 
because of the rotational imbalance.

A

B

150 mm

200 mm

𝜔

PROBLEM 7/69
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7/73 The plate has a mass of 3 kg and is welded to the fi xed 
vertical shaft, which rotates at the constant speed of 
20𝜋 rad ∕s. Compute the moment M applied to the shaft by 
the plate due to dynamic imbalance.

x

z

y

O

45°

20
0 

m
m

20
0 

m
m

100
mm

100
mm

𝜔 = 20𝜋 rad/s

PROBLEM 7/73

7/74 Each of the two semicircular disks has a mass of 1.20 
kg and is welded to the shaft supported in bearings A and 
B as shown. Calculate the forces applied to the shaft by the 
bearings for a constant angular speed N = 1200 rev∕min. 
Neglect the forces of static equilibrium.

80 mm 80 mm 80 mm 80 mm

y

z

B

C

D

100 mm

100 mm

A

N G

x

PROBLEM 7/74

7/75 Solve Prob. 7∕74 for the case where the assembly 
starts from rest with an initial angular acceleration 𝛼 = 
900 rad∕s2 as a result of a starting torque (couple) M ap-
plied to the shaft in the same sense as N. Neglect the mo-
ment of inertia of the shaft about its z-axis and calculate M.

Representative Problems
7/70 Determine the bending moment M at the tangency 
point A in the semicircular rod of radius r and mass m as it 
rotates about the tangent axis with a constant and large 
angular velocity 𝜔. Neglect the moment mgr produced by 
the weight of the rod.

x

z

y

A
r

𝜔

PROBLEM 7/70

7/71 If the semicircular rod of Prob. 7∕ 70 starts from rest 
under the action of a torque MO applied through the collar 
about its z-axis of rotation, determine the initial bending 
moment M in the rod at A.

7/72 The large satellite-tracking antenna has a moment of 
inertia I about its z-axis of symmetry and a moment of 
 inertia IO about each of the x- and y-axes. Determine the 
angular acceleration 𝛼 of the antenna about the vertical 
Z-axis caused by a torque M applied about Z by the drive 
mechanism for a given orientation 𝜃.

Z

M

x

z

y

𝜃

𝛼

PROBLEM 7/72
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b

y x

z

b/2O

b/2

𝜔

𝛽

PROBLEM 7/79

7/80 For the plate of mass m in Prob. 7∕ 79, determine the 
y- and z-components of the moment applied to the plate by 
the weld at O necessary to give the plate an angular accel-
eration 𝛼 =  �̇� starting from rest. Neglect the moment due 
to the weight.

7/81 The uniform slender rod of length l is welded to the 
bracket at A on the underside of the disk B. The disk ro-
tates about a vertical axis with a constant angular velocity 
𝜔. Determine the value of 𝜔 which will result in a zero mo-
ment supported by the weld at A for the position 𝜃 = 60° 
with b = l∕4.

l

A
B

b
𝜔

𝜃

PROBLEM 7/81

7/76 The uniform slender bar of mass 𝜌 per unit length is 
freely pivoted about the y-axis at the clevis, which rotates 
about the fi xed vertical z-axis with a constant angular ve-
locity 𝜔. Determine the steady-state angle 𝜃 assumed by 
the bar. Length b is greater than length c.

b

z

y

x

c

𝜔

𝜃

PROBLEM 7/76

7/77 The circular disk of mass m and radius r is mounted 
on the vertical shaft with a small angle 𝛼 between its plane 
and the plane of rotation of the shaft. Determine the ex-
pression for the bending moment M acting on the shaft due 
to the wobble of the disk at a shaft speed of 𝜔 rad∕s.

x

x ʹ

z

y

O

r

𝛼

𝜔

PROBLEM 7/77

7/78 Determine the normal forces under the two disks of 
Sample Problem 7∕7 for the position where the plane of the 
curved bar is vertical. Take the curved bar to be at the top 
of disk A and at the bottom of disk B.

7/79 The uniform square plate of mass m is welded at O to 
the end of the shaft, which rotates about the vertical z-axis 
with a constant angular velocity 𝜔. Determine the moment 
applied to the plate by the weld due only to the rotation.
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▶7/83 The homogeneous thin triangular plate of mass m is 
welded to the horizontal shaft, which rotates freely in the 
bearings at A and B. If the plate is released from rest in the 
horizontal position shown, determine the magnitude of the 
bearing reaction at A for the instant just after release.

b

a

y

x

z A

B

a

PROBLEM 7/83

▶7/84 If the homogeneous triangular plate of Prob. 7∕ 83 is 
released from rest in the position shown, determine the 
magnitude of the bearing reaction at A after the plate has 
rotated 90°.

7/82 The half-cylindrical shell of radius r, length 2b, and 
mass m revolves about the vertical z-axis with a constant 
angular velocity 𝜔 as indicated. Determine the magnitude 
M of the bending moment in the shaft at A due to both the 
weight and the rotational motion of the shell.

A
yx

z

r

r

b

b

𝜔

PROBLEM 7/82
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Problems for Article 7/11
Introductory Problems
7/85 A dynamics instructor demonstrates gyroscopic princi-
ples to his students. He suspends a rapidly spinning wheel 
with a string attached to one end of its horizontal axle. De-
scribe the precession motion of the wheel.

y

z

p

PROBLEM 7/85

7/86 The jet aircraft at the bottom of an inside vertical 
loop has a tendency, due to gyroscopic action of the engine 
rotor, to yaw to the right (as seen by the pilot and as indi-
cated by the dashed orange wingtip movements). Deter-
mine the direction of rotation p1 or p2 of the engine rotor as 
depicted in the expanded view.

y

y

z

x

x

z

p1p2

PROBLEM 7/86

7/87 The student has volunteered to assist in a classroom 
demonstration involving a momentum wheel which is  rapidly 

spinning with angular speed p as shown. The instructor 
has asked her to hold the axle of the wheel in the horizon-
tal position shown and then attempt to tilt the axis upward 
in a vertical plane. What motion tendency of the wheel as-
sembly will the student sense?

p

PROBLEM 7/87

7/88 The 50-kg wheel is a solid circular disk which rolls on 
the horizontal plane in a circle of 600-mm radius. The wheel 
shaft is pivoted about the axis O-O and is driven by the ver-
tical shaft at the constant rate N = 48 rev∕min about the Z-
axis. Determine the normal force R between the wheel and 
the horizontal surface. Neglect the weight of the horizontal 
shaft.

350
mm

600
mm

N
O

O

Z

G

PROBLEM 7/88

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Problems for Article 7/11 P-215

7/91 An experimental antipollution bus is powered by the 
kinetic energy stored in a large fl ywheel which spins at a 
high speed p in the direction indicated. As the bus encoun-
ters a short upward ramp, the front wheels rise, thus caus-
ing the fl ywheel to precess. What changes occur to the 
forces between the tires and the road during this sudden 
change?

PROBLEM 7/91

Representative Problems
7/92 A small air compressor for an aircraft cabin consists 
of the 3.50-kg turbine A which drives the 2.40-kg blower B 
at a speed of 20 000 rev∕min. The shaft of the assembly is 
mounted transversely to the direction of fl ight and is 
viewed from the rear of the aircraft in the fi gure. The radii 
of gyration of A and B are 79.0 and 71.0 mm, respectively. 
Calculate the radial forces exerted on the shaft by the bear-
ings at C and D if the aircraft executes a clockwise roll 
(rotation about the longitudinal fl ight axis) of 2 rad∕s 
viewed from the rear of the aircraft. Neglect the small mo-
ments caused by the weights of the rotors. Draw a free-
body diagram of the shaft as viewed from above and  indicate 
the shape of its defl ected centerline.

150 mm

A B

C D

PROBLEM 7/92

7/89 The special-purpose fan is mounted as shown. The 
 motor armature, shaft, and blades have a combined mass of 
2.2 kg with radius of gyration of 60 mm. The axial position 
b of the 0.8-kg block A can be adjusted. With the fan turned 
off, the unit is balanced about the x-axis when b = 180 mm. 
The motor and fan operate at 1725 rev∕min in the direction 
shown. Determine the value of b which will produce a 
steady precession of 0.2 rad ∕s about the positive y-axis.

x

z

y

b

A

O

PROBLEM 7/89

7/90 An airplane has just cleared the runway with a take-
off speed v. Each of its freely spinning wheels has a mass 
m, with a radius of gyration k about its axle. As seen from 
the front of the airplane, the wheel precesses at the angu-
lar rate 𝛺 as the landing strut is folded into the wing about 
its pivot O. As a result of the gyroscopic action, the support-
ing member A exerts a torsional moment M on B to prevent 
the tubular member from rotating in the sleeve at B. Deter-
mine M and identify whether it is in the sense of M1 or M2.

r b

A

B

B

M1
M2

O

𝛺

PROBLEM 7/90
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hull structure by the gyro if the motor turns the precession 
gear B at the rate of 0.320 rad∕s. In which of the two direc-
tions, (a) or (b), should the motor turn in order to counter-
act a roll of the ship to port?

A

B

Vertical

(a)
(b)

Forward

Port
(left)

Starboard
(right)

PROBLEM 7/95

7/96 Each of the identical wheels has a mass of 4 kg and a 
radius of gyration kz = 120 mm and is mounted on a horizon-
tal shaft AB secured to the vertical shaft at O. In case (a), 
the horizontal shaft is fi xed to a collar at O which is free to 
rotate about the vertical y-axis. In case (b), the shaft is se-
cured by a yoke hinged about the x-axis to the collar. If the 
wheel has a large angular velocity p = 3600 rev∕min about its 
z-axis in the position shown, determine any precession 
which occurs and the bending moment MA in the shaft at A 
for each case. Neglect the small mass of the shaft and fi t-
ting at O.

A

x

z

p

y

O

80
mm

400
mm

B
A

x

z

p

y

O

80
mm

400
mm

B

(a) (b)

PROBLEM 7/96

7/97 If the wheel in case (a) of Prob. 7∕ 96 is forced to pre-
cess about the vertical by a mechanical drive at the steady 
rate V = 2j rad∕s, determine the bending moment in the 
horizontal shaft at A. In the absence of friction, what torque 
MO is applied to the collar at O to sustain this motion?

7/98 The fi gure shows the side view of the wheel carriage 
(truck) of a railway passenger car where the vertical load is 

7/93 The blades and hub of the helicopter rotor weigh 
140 lb and have a radius of gyration of 10 ft about the z-
axis of rotation. With the rotor turning at 500 rev∕min dur-
ing a short interval following vertical liftoff, the helicopter 
tilts forward at the rate 𝜃 = 10 deg∕sec in order to acquire 
forward velocity. Determine the gyroscopic moment M 
transmitted to the body of the helicopter by its rotor and 
indicate whether the helicopter tends to defl ect clockwise 
or counterclockwise, as viewed by a passenger facing  forward.

x

z Vertical

p

𝜃

PROBLEM 7/93

7/94 The 4-oz top with radius of gyration about its spin 
axis of 0.62 in. is spinning at the rate p = 3600 rev∕min in 
the sense shown, with its spin axis making an angle 𝜃 = 20° 
with the vertical. The distance from its tip O to its mass 
center G is r = 2.5 in. Determine the precession V of the top 
and explain why 𝜃 gradually decreases as long as the spin 
rate remains large. An enlarged view of the contact of the 
tip is shown.

𝜃

z

p

G

r–

O Enlarged view
of tip contact

PROBLEM 7/94

7/95 The fi gure shows a gyro mounted with a vertical axis 
and used to stabilize a hospital ship against rolling. The 
motor A turns the pinion which precesses the gyro by rotat-
ing the large precession gear B and attached rotor assem-
bly about a horizontal transverse axis in the ship. The rotor 
turns inside the housing at a clockwise speed of 960  rev∕min as 
viewed from the top and has a mass of 80 Mg with radius of 
gyration of 1.45 m. Calculate the moment exerted on the 
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7/100 The electric motor has a total weight of 20 lb and is 
supported by the mounting brackets A and B attached to 
the rotating disk. The armature of the motor has a weight 
of 5 lb and a radius of gyration of 1.5 in. and turns counter-
clockwise at a speed of 1725 rev∕min as viewed from A to B. 
The turntable revolves about its vertical axis at the con-
stant rate of 48 rev∕min in the direction shown. Determine 
the vertical components of the forces supported by the 
mounting brackets at A and B.

A
B

6ʺ
6ʺ

8ʺ

G

PROBLEM 7/100

7/101 The spacecraft shown is symmetrical about its z-axis 
and has a radius of gyration of 720 mm about this axis. The 
radii of gyration about the x- and y-axes through the mass 
center are both equal to 540 mm. When moving in space, 
the z-axis is observed to generate a cone with a total vertex 
angle of 4° as it precesses about the axis of total angular 
momentum. If the spacecraft has a spin velocity �̇� about its 
z-axis of 1.5 rad  ∕s, compute the period 𝜏 of each full preces-
sion. Is the spin vector in the positive or negative z-direction?

z

2°

x

yG

HG

PROBLEM 7/101

transmitted to the frame in which the journal wheel bear-
ings are located. The lower view shows only one pair of 
wheels and their axle, which rotates with the wheels. Each 
of the 33-in.-diameter wheels weighs 560 lb, and the axle 
weighs 300 lb with a diameter of 5 in. Both wheels and axle 
are made of steel with a specifi c weight of 489 lb ∕ft3. If the 
train is traveling at 80 mi∕hr while rounding an 8° curve to 
the right (radius of curvature 717 ft), calculate the change 
ΔR in the vertical force supported by each wheel due only 
to the gyroscopic action. As a close approximation, treat 
each wheel as a uniform circular disk and the axle as a uni-
form solid cylinder. Also assume that both rails are in the 
same horizontal plane.

5ʺ

33ʺ

A B

View of wheels and axle

Side view of carriage

v

4ʹ 8   ʺ
1
–‑
2

PROBLEM 7/98

7/99 The primary structure of a proposed space station 
consists of fi ve spherical shells connected by tubular 
spokes. The moment of inertia of the structure about its 
geometric axis A-A is twice as much as that about any axis 
through O normal to A-A. The station is designed to rotate 
about its geometric axis at the constant rate of 3 rev∕min. 
If the spin axis A-A precesses about the Z-axis of fi xed ori-
entation and makes a very small angle with it, calculate 
the rate �̇� at which the station wobbles. The mass center O 
has negligible acceleration.

A

A

Z

O

PROBLEM 7/99
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10°

PROBLEM 7/104

7/105 The fi gure shows a football in three common infl ight 
confi gurations. Case (a) is a perfectly thrown spiral pass with a 
spin rate of 120 rev∕min. Case (b) is a wobbly spiral pass again 
with a spin rate of 120 rev∕min about its own axis, but with the 
axis wobbling through a total angle of 20°. Case (c) is an end-
over-end place kick with a rotational rate of 120 rev∕min. For 
each case, specify the values of p, 𝜃, 𝛽, and �̇� as defi ned in this 
article. The moment of inertia about the long axis of the ball is 
0.3 of that about the transverse axis of symmetry.

20°

(a) (b) (c)

PROBLEM 7/105

7/106 The rectangular bar is spinning in space about its 
longitudinal axis at the rate p = 200 rev∕min. If its axis 
wobbles through a total angle of 20° as shown, calculate the 
period 𝜏 of the wobble.

20°

4ʺ

4ʺ

8ʺ

O

p

PROBLEM 7/106

7/102 The 8-lb rotor with radius of gyration of 3 in. rotates on 
ball bearings at a speed of 3000 rev∕min about its shaft OG. 
The shaft is free to pivot about the X-axis, as well as to rotate 
about the Z-axis. Calculate the vector V for precession about 
the Z-axis. Neglect the mass of shaft OG and compute the 
gyroscopic couple M exerted by the shaft on the rotor at G.

9ʺ

70°

i

K

Z

O

G

Y

p X, x

Vertical

PROBLEM 7/102

7/103 The two identical circular disks, each of mass m and 
radius r, are spinning as a rigid unit about their common 
axis. Determine the value of b for which no precessional 
motion can take place if the unit is free to move in space.

r

r

p

b

PROBLEM 7/103

7/104 A boy throws a thin circular disk (like a Frisbee) 
with a spin rate of 300 rev∕min. The plane of the disk is 
seen to wobble through a total angle of 10°. Calculate the 
period 𝜏 of the wobble and indicate whether the precession 
is direct or retrograde.
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by its individual motor. The angular rate 𝛺z of the z-wheel 
relative to the satellite is 𝛺0 at time t = 0, and the x- and 
y-wheels are at rest relative to the satellite at t = 0. 
 Determine the axial torques Mx, My, and Mz which must be 
exerted by the motors on the shafts of their respective 
wheels in order that the angular velocity 𝛚 of the satellite 
will remain constant. The moment of inertia of each reac-
tion wheel about its axis is I. The x and z reaction-wheel 
speeds are harmonic functions of the time with a period 
equal to that of the orbit. Plot the variations of the torques 
and the relative wheel speeds 𝛺x, 𝛺y, and 𝛺z as functions of 
the time during one orbit period. (Hint: The torque to ac-
celerate the x-wheel equals the reaction of the gyroscopic 
moment on the z-wheel, and vice versa.)

y

z

x

y

z

x

O

𝛺x

𝛺z

𝛺y
O

PROBLEM 7/109

▶7/110 The two solid homogeneous right-circular cones, each 
of mass m, are fastened together at their vertices to form a 
rigid unit and are spinning about their axis of radial symme-
try at the rate p = 200 rev∕min. (a) Determine the ratio 
h∕r for which the rotation axis will not precess. (b) Sketch the 
space and body cones for the case where h∕r is less than the 
critical ratio. (c) Sketch the space and body cones when h = r 
and the precessional velocity is �̇� = 18 rad∕s.

r
h

h

p

PROBLEM 7/110

7/107 Each of the three identical and equally spaced pro-
peller blades has a moment of inertia I about the propeller 
z-axis. In addition to the angular velocity p = �̇� of the pro-
peller about the z-axis, the airplane is turning to the left at 
the angular rate 𝛺. Derive expressions for the x- and y-
components of the bending moment M applied to the pro-
peller shaft at the hub as functions of 𝜙. Axes x-y rotate 
with the propeller.

y

z

x

𝛺

𝜙

PROBLEM 7/107

▶7/108 The solid circular disk of mass m and small thick-
ness is spinning freely on its shaft at the rate p. If the as-
sembly is released in the vertical position at 𝜃 = 0 with 𝜃 = 
0, determine the horizontal components of the forces A and 
B exerted by the respective bearings on the horizontal shaft 
as the position 𝜃 = 𝜋∕ 2 is passed. Neglect the mass of the two 
shafts compared with m and neglect all friction. Solve by 
using the appropriate moment equations.

b

A

B

b

l

p

z

r

𝜃

PROBLEM 7/108

▶7/109 The earth-scanning satellite is in a circular orbit of 
period 𝜏. The angular velocity of the satellite about its y- or 
pitch-axis is 𝜔 = 2𝜋 ∕𝜏, and the angular rates about the x- 
and z-axes are zero. Thus, the x-axis of the satellite always 
points to the center of the earth. The satellite has a 
 reaction-wheel attitude-control system consisting of the 
three wheels shown, each of which may be variably torqued 
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Problems for Article 7/12 Chapter Review
7/111 The cylindrical shell is rotating in space about its 
geometric axis. If the axis has a slight wobble, for what ra-
tios of l ∕r will the motion be direct or retrograde  precession?

r

p

l

PROBLEM 7/111

7/112 The solid cube of mass m and side a revolves about 
an axis M-M through a diagonal with an angular velocity 𝜔. 
Write the expression for the angular momentum H of the 
cube with respect to the axes indicated.

M

M

z

y

a

a

a

x

𝜔

PROBLEM 7/112

7/113 An experimental car is equipped with a gyro stabi-
lizer to counteract completely the tendency of the car to tip 
when rounding a curve (no change in normal force between 
tires and road). The rotor of the gyro has a mass m0 and a 
radius of gyration k, and is mounted in fi xed bearings on a 
shaft which is parallel to the rear axle of the car. The center 
of mass of the car is a distance h above the road, and the car 

is rounding an unbanked level turn at a speed v. At what 
speed p should the rotor turn and in what direction to coun-
teract completely the tendency of the car to overturn for ei-
ther a right or a left turn? The combined mass of car and 
rotor is m.

7/114 The wheels of the jet plane are spinning at their 
 angular rate corresponding to a takeoff speed of 150 km∕h. 
The retracting mechanism operates with 𝜃 increasing at 
the rate of 30° per second. Calculate the angular accelera-
tion 𝛂 of the wheels for these conditions.

x
y

560
mm

𝜃

PROBLEM 7/114

7/115 The motor turns the disk at the constant speed 
p = 30 rad∕sec. The motor is also swiveling about the hori-
zontal axis B-O (y-axis) at the constant speed 𝜃 = 2 rad∕sec. 
Simultaneously, the entire assembly is rotating about the 
vertical axis C-C at the constant rate q = 8 rad∕sec. For the 
instant when 𝜃 = 30°, determine the angular acceleration 
𝛂 of the disk and the acceleration a of point A at the bottom 
of the disk. Axes x-y-z are attached to the motor housing, 
and plane O-x0-y is horizontal.

A

x

x0

py6ʺ

z

B

C

C

O

q

6ʺ

4ʺ

𝜃

PROBLEM 7/115
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N

150 mm

150 mm

120
mm

120
mm

O

y

x

z

15°

PROBLEM 7/118

7/119 The circular disk of radius r is mounted on its shaft, 
which is pivoted at O so that it may rotate about the verti-
cal z0-axis. If the disk rolls at constant speed without slip-
ping and makes one complete turn around the circle of 
 radius R in time 𝜏, determine the expression for the abso-
lute angular velocity 𝛚 of the disk. Use axes x-y-z which 
rotate around the z0-axis. (Hint: The absolute angular ve-
locity of the disk equals the angular velocity of the axes 
plus (vectorially) the angular velocity relative to the axes as 
seen by holding x-y-z fi xed and rotating the circular disk of 
radius R at the rate of 2𝜋 ∕𝜏.)

z

O
R

r

y

x

z0

A

PROBLEM 7/119

7/120 Determine the angular acceleration 𝛂 for the rolling 
circular disk of Prob. 7∕ 119. Use the results cited in the 
answer for that problem.

7/121 Determine the acceleration a of point A on the disk 
of Prob. 7∕ 119 for the position shown.

7/116 The collars at the ends of the telescoping link AB 
slide along the fi xed shafts shown. During an interval of 
motion, vA = 5 in.∕sec and vB = 2 in.∕sec. Determine the vec-
tor expression for the angular velocity 𝛚n of the centerline 
of the link for the position where yA = 4 in. and 
yB = 2 in.

x

z

y

yB

yA

vA

vB

A

B

6ʺ

3ʺ

PROBLEM 7/116

7/117 The solid cone of mass m, base radius r, and altitude h 
is spinning at a high rate p about its own axis and is released 
with its vertex O supported by a horizontal surface. Friction 
is suffi cient to prevent the vertex from slipping in the x-y 
plane. Determine the direction of the precession 𝛺 and the 
period 𝜏 of one complete rotation about the vertical z-axis.

z

O

y

h

x

p

r

𝜃

PROBLEM 7/117

7/118 The rectangular steel plate of mass 12 kg is welded 
to the shaft with its plane tilted 15° from the plane (x-y) 
normal to the shaft axis. The shaft and plate are rotating 
about the fi xed z-axis at the rate N = 300 rev∕min. Deter-
mine the angular momentum HO of the plate about the 
given axes and fi nd its kinetic energy T.
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angular momentum HO of the disk for the instant when 𝛽 = 
20°. Also compute the kinetic energy T of the disk. Is T 
 dependent on 𝛽?

7/125 The dynamic imbalance of a certain crankshaft is 
approximated by the physical model shown, where the 
shaft carries three small 1.5-lb spheres attached by rods of 
negligible mass. If the shaft rotates at the constant speed of 
1200 rev∕min, calculate the forces RA and RB acting on the 
bearings. Neglect the gravitational forces.

8ʺ
8ʺ

8ʺ
8ʺ

x

y

z

A

B

1

1

2

2

3

3

120°

End view

120°

120°
6ʺ

PROBLEM 7/125

7/126 Each of the two right-angle bent rods weighs 2.80 lb and 
is parallel to the horizontal x-y plane. The rods are welded 
to the vertical shaft, which rotates about the z-axis with a 
constant angular speed N = 1200 rev∕min. Calculate the 
bending moment M in the shaft at its base O.

x

6ʺ

6ʺ

z

N

y

O

6ʺ6ʺ

6ʺ

6ʺ

PROBLEM 7/126

7/122 A top consists of a ring of mass m = 0.52 kg and 
mean radius r = 60 mm mounted on its central pointed 
shaft with spokes of negligible mass. The top is given a spin 
velocity of 10 000 rev∕min and released on the horizontal 
surface with the point O remaining in a fi xed position. The 
axis of the top is seen to make an angle of 15° with the ver-
tical as it precesses. Determine the number N of precession 
cycles per minute. Also identify the direction of the preces-
sion and sketch the body and space cones.

Z

O

80 mm

10 000 rev/min

15°

60
mm

PROBLEM 7/122

7/123 The uniform circular disk of 4-in. radius and small 
thickness weighs 8 lb and is spinning about its y′-axis at 
the rate N = 300 rev∕min with its plane of rotation tilted at 
a constant angle 𝛽 = 20° from the vertical x-z plane. Simul-
taneously, the assembly rotates about the fi xed z-axis at 
the rate p = 60 rev∕min. Calculate the angular momentum 
HO of the disk alone about the origin O of the x-y-z coordi-
nates. Also calculate the kinetic energy T of the disk.

10ʺ
y

z

O

p

C
yʹ

x

N

4ʺ

zʹ 𝛽

PROBLEM 7/123

7/124 Rework Prob. 7∕ 123 if 𝛽, instead of being constant at 
20°, is increasing at the steady rate of 120 rev∕min. Find the 
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7/128 Calculate the bending moment M in the shaft at O 
for the rotating assembly of Prob. 7∕ 127 as it starts from 
rest with an initial angular acceleration of 200 rad∕s2.

7/127 Each of the quarter-circular plates has a mass of 
2 kg and is secured to the vertical shaft mounted in the 
fi xed bearing at O. Calculate the magnitude M of the bending 
moment in the shaft at O for a constant rotational speed 
N = 300 rev∕min. Treat the plates as exact quarter-circular 
shapes.

150 mm

150 mm75 mm

75 mm

N

O

x y

z

PROBLEM 7/127
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Problems for Articles 8/1–8/2
(Unless otherwise indicated, all motion variables are re-
ferred to the equilibrium position.)

Undamped, Free Vibrations
8/1 When a 3-kg collar is placed upon the pan which is 
 attached to the spring of unknown constant, the additional 
static defl ection of the pan is observed to be 40 mm. Deter-
mine the spring constant k in N∕m, lb∕in., and lb∕ft.

k

3 kg
40 mm

PROBLEM 8/1

8/2 Determine the natural frequency of the spring-mass 
system in both rad∕sec and cycles∕sec (Hz).

x

64.4 lb
k = 24 lb/in.

PROBLEM 8/2

8/3 For the system of Prob. 8∕2, determine the displace-
ment x of the mass as a function of time if the mass is re-
leased at time t = 0 from a position 2 in. to the left of the 
equilibrium position with an initial velocity of 7 in.∕sec to 
the right. Determine the amplitude C of the motion.

8/4 For the spring-mass system shown, determine the 
 static defl ection 𝛿st, the system period 𝜏, and the maximum 
velocity vmax which result if the cylinder is displaced 100 mm 
downward from its equilibrium position and released from 
rest.

Equilibrium
position

k = 98 N/m

m = 2 kg

y

PROBLEM 8/4

8/5 The cylinder of the system of Prob. 8 ∕4 is displaced 
100 mm downward from its equilibrium position and re-
leased at time t = 0. Determine the position y, velocity v, 
and acceleration a when t = 3 s. What is the maximum 
 acceleration?

8/6 Determine the natural frequency in cycles per second 
for the system shown. Neglect the mass and friction of the 
pulleys. Assume that the block of mass m remains 
 horizontal.

k

m

PROBLEM 8/6

Chapter 8
* Computer-oriented problem

 Diffi cult problem
 Student solution available in WileyPLUS
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k

m

PROBLEM 8/10

8/11 An old car being moved by a magnetic crane pickup is 
dropped from a short distance above the ground. Neglect any 
damping effects of its worn-out shock absorbers and calculate 
the natural frequency ƒn in cycles per second (Hz) of the ver-
tical vibration which occurs after impact with the ground. 
Each of the four springs on the 1000-kg car has a constant of 
17.5 kN∕m. Because the center of mass is located midway 
 between the axles and the car is level when dropped, there is 
no rotational motion. State any  assumptions.

Electromagnet

PROBLEM 8/11

8/12 During the design of the spring-support system for 
the 4000-kg weighing platform, it is decided that the fre-
quency of free vertical vibration in the unloaded condition 
shall not exceed 3 cycles per second. (a) Determine the 
maximum acceptable spring constant k for each of the 
three identical springs. (b) For this spring constant, what 
would be the natural frequency ƒn of vertical vibration of 
the platform loaded by the 40-Mg truck?

4000 kg

k k k

PROBLEM 8/12

8/7 If the 100-kg mass has a downward velocity of 0.5 m∕s 
as it passes through its equilibrium position, calculate the 
magnitude amax of its maximum acceleration. Each of the 
two springs has a stiffness k = 180 kN∕m.

k k

100 kg

PROBLEM 8/7

8/8 In the equilibrium position, the 30-kg cylinder causes a 
static defl ection of 50 mm in the coiled spring. If the cylin-
der is depressed an additional 25 mm and released from 
rest, calculate the resulting natural frequency ƒn of vertical 
vibration of the cylinder in cycles per second (Hz).

30 kg

PROBLEM 8/8

8/9 For the cylinder of Prob. 8 ∕8, determine the vertical 
displacement x, measured positive down in millimeters 
from the equilibrium position, in terms of the time t in sec-
onds measured from the instant of release from the posi-
tion of 25 mm added defl ection.

8/10 Determine the natural frequency in radians per sec-
ond for the system shown. Neglect the mass and friction of 
the pulleys.
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0.9ʺ

PROBLEM 8/16

8/17 Shown in the fi gure is a model of a one-story building. 
The bar of mass m is supported by two light elastic upright 
columns whose upper and lower ends are fi xed against 
 rotation. For each column, if a force P and corresponding 
 moment M were applied as shown in the right-hand part of 
the fi gure, the defl ection 𝛿 would be given by 𝛿 = PL3∕12EI, 
where L is the effective column length, E is Young’s modu-
lus, and I is the area moment of inertia of the column cross 
section with respect to its neutral axis. Determine the nat-
ural frequency of horizontal oscillation of the bar when the 
columns bend as shown in the fi gure.

Mm

Ground level

k k

P

L

𝛿

PROBLEM 8/17

8/18 Calculate the natural circular frequency 𝜔n of the 
system shown in the fi gure. The mass and friction of the 
pulleys are negligible.

k

m

2m

𝜃

PROBLEM 8/18

8/13 Replace the springs in each of the two cases shown by 
a single spring of stiffness k (equivalent spring stiffness) 
which will cause each mass to vibrate with its original 
 frequency.

(a) (b)

k1

k1

k2
k2

PROBLEM 8/13

8/14 With the assumption of no slipping, determine the 
mass m of the block which must be placed on the top of the 
6-kg cart in order that the system period be 0.75 s. What is 
the minimum coeffi cient 𝜇s of static friction for which the 
block will not slip relative to the cart if the cart is displaced 
50 mm from the equilibrium position and released?

600 N/m
6 kg

m 𝜇s

PROBLEM 8/14

8/15 An energy-absorbing car bumper with its springs ini-
tially undeformed has an equivalent spring constant of 
3000 lb∕in. If the 2500-lb car approaches a massive wall with 
a speed of 5 mi∕ hr, determine (a) the velocity v of the car as a 
function of time during contact with the wall, where t = 0 is 
the beginning of the impact, and (b) the maximum defl ection 
xmax of the bumper.

5 mi/hr

PROBLEM 8/15

8/16 A 120-lb woman stands in the center of an end- 
supported board and causes a midspan defl ection of 0.9 in. 
If she fl exes her knees slightly in order to cause a vertical 
vibration, what is the frequency ƒn of the motion? Assume 
elastic response of the board and neglect its relatively 
small mass.
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c

80 lb

200 lb/in.

PROBLEM 8/24

8/25 The 2-kg mass of Prob. 8∕20 is released from rest at a 
distance x0 to the right of the equilibrium position. Deter-
mine the displacement x as a function of time t, where t = 0 
is the time of release.

8/26 The fi gure represents the measured displacement-
time relationship for a vibration with small damping where 
it is impractical to achieve accurate results by measuring 
the nearly equal amplitudes of two successive cycles. Mod-
ify the expression for the viscous damping factor 𝜁 based on 
the measured amplitudes x0 and xN which are N cycles 
apart.

x

t

x0

t0 t1 t2 tN tN+1

xN

PROBLEM 8/26

8/19 The slider of mass m is confi ned to the horizontal 
slot shown. The two springs each of constant k are linear. 
Derive the nonlinear equation of motion for small values of 
y, retaining terms of order y3 and larger. Both springs are 
unstretched when y = 0. Neglect friction.

L

k

y

L

k
m

PROBLEM 8/19

Damped, Free Vibrations
8/20  Determine the value of the damping ratio 𝜁 for 
the simple spring-mass-dashpot system shown.

x

k = 392 N/m

c = 42 N · s/m

2 kg

PROBLEM 8/20

8/21 The period 𝜏d of damped linear oscillation for a certain 
1-kg mass is 0.3 s. If the stiffness of the supporting linear 
spring is 800 N∕m, calculate the damping coeffi cient c.

8/22 Viscous damping is added to an initially undamped 
spring-mass system. For what value of the damping ratio 
𝜁 will the damped natural frequency 𝜔d be equal to 90 per-
cent of the natural frequency of the original undamped 
system?

8/23 The addition of damping to an undamped spring-
mass system causes its period to increase by 25 percent. 
Determine the damping ratio 𝜁.

8/24 Determine the value of the viscous damping coeffi -
cient c for which the system shown is critically damped.
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0

x0

x

x1

t
0

c = 18 N · s/m

m = 3 kg

k = 108 N/m

x

PROBLEM 8/30

8/31 The mass of a given critically damped system is re-
leased at time t = 0 from the position x0 > 0 with a nega-
tive initial velocity. Determine the critical value (ẋ0)c of the 
initial velocity below which the mass will pass through the 
equilibrium position.

8/32 The mass of the system shown is released from 
rest at x0 = 6 in. when t = 0. Determine the displacement x 
at t = 0.5 sec if (a) c = 12 lb-sec∕ft and (b) c = 18 lb-sec∕ft.

x
c

W = 96.6 lb

k = 1 lb/in.

PROBLEM 8/32

8/33 The owner of a 3400-lb pickup truck tests the action 
of his rear-wheel shock absorbers by applying a steady 
100-lb force to the rear bumper and measuring a static de-
fl ection of 3 in. Upon sudden release of the force, the bum-
per rises and then falls to a maximum of 1

2 in. below the 
unloaded equilibrium position of the bumper on the fi rst 
rebound. Treat the action as a one-dimensional problem 
with an equivalent mass of half the truck mass. Find the 
viscous damping factor 𝜁 for the rear end and the viscous 
damping coeffi cient c for each shock absorber assuming its 
action to be vertical.

Equil.
position

100 lb

3ʺ

PROBLEM 8/33

8/27 A linear harmonic oscillator having a mass of 1.10 kg 
is set into motion with viscous damping. If the frequency is 
10 Hz and if two successive amplitudes a full cycle apart 
are measured to be 4.65 mm and 4.30 mm as shown, com-
pute the viscous damping coeffi cient c.

x, mm

4.65 4.30

Time

PROBLEM 8/27

8/28 Further design refi nement for the weighing platform 
of Prob. 8 ∕12 is shown here where two viscous dampers are 
to be added to limit the ratio of successive positive ampli-
tudes of vertical vibration in the unloaded condition to 4. 
Determine the necessary viscous damping coeffi cient c for 
each of the dampers.

4000 kg

k

c c

k k

PROBLEM 8/28

8/29 Derive the differential equation of motion for the sys-
tem shown in terms of the variable x1. Neglect friction and 
the mass of the linkage.

x1

k1

m1

x2

k2

m2

a

b

B

A

O

c1

c2

PROBLEM 8/29

8/30 The system shown is released from rest from an initial 
position x0. Determine the overshoot displacement x1. As-
sume translational motion in the x-direction.
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8/36 Investigate the case of Coulomb damping for the 
block shown, where the coeffi cient of kinetic friction is 𝜇k 
and each spring has a stiffness k∕2. The block is displaced 
a distance x0 from the neutral position and released. Deter-
mine and solve the differential equation of motion. Plot the 
resulting vibration and indicate the rate r of decay of the 
amplitude with time.

k/2 k/2
m

y

x

𝜇k

PROBLEM 8/36

8/34  The 2-kg mass is released from rest at a distance 
x0 to the right of the equilibrium position. Determine the 
displacement x as a function of time.

2 kg

x

k = 98 N/m

c = 42 N · s/m

PROBLEM 8/34

8/35 Develop the equation of motion in terms of the vari-
able x for the system shown. Determine an expression for 
the damping ratio 𝜁 in terms of the given system  properties. 
Neglect the mass of the crank AB and assume small 
 oscillations about the equilibrium position shown.

k

m

c

O

a

b

B

A

x

PROBLEM 8/35
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Problems for Article 8/3
(Unless otherwise instructed, assume that the damping is 
light to moderate so that the amplitude of the forced re-
sponse is a maximum at 𝜔∕𝜔n ≅ 1.)

Introductory Problems
8/37 A viscously damped spring-mass system is excited by 
a harmonic force of constant amplitude F0 but varying fre-
quency 𝜔. If the amplitude of the steady-state motion is 
observed to decrease by a factor of 8 as the frequency ratio 
𝜔∕𝜔n is varied from 1 to 2, determine the damping ratio 𝜁 
of the system.

8/38 Determine the amplitude X of the steady-state motion 
of the 10-kg mass if (a) c = 500 N∙s∕m and (b) c = 0.

k = 100 kN/m c

m = 10 kg

F = 1000 cos 120t N

PROBLEM 8/38

8/39 The 64.4-lb cart is acted upon by the harmonic force 
shown in the fi gure. If c = 0, determine the range of the 
driving frequency 𝜔 for which the magnitude of the steady-
state response is less than 3 in.

c

k = 6 lb/in.

F = 5 cos 𝜔t lb64.4 lb

PROBLEM 8/39

8/40 If the viscous damping coeffi cient of the damper in 
the system of Prob. 8∕39 is c = 2.4 lb-sec∕ft, determine the 
range of the driving frequency 𝜔 for which the magnitude 
of the steady-state response is less than 3 in.

8/41 If the driving frequency for the system of Prob. 8∕39 
is 𝜔 = 6 rad∕sec, determine the required value of the damp-
ing coeffi cient c if the steady-state amplitude is not to 
 exceed 3 in.

8/42 The block of weight W = 100 lb is suspended by two 
springs each of stiffness k = 200 lb∕ft and is acted upon by 
the force F = 75 cos 15t lb where t is the time in seconds. 
Determine the amplitude X of the steady-state motion if the 
viscous damping coeffi cient c is (a) 0 and (b) 60 lb-sec∕ft. 
Compare these amplitudes with the static spring defl ec-
tion 𝛿st.

F

k c k

W

PROBLEM 8/42

8/43 A viscously damped spring-mass system is forced 
harmonically at the undamped natural frequency 
(𝜔∕𝜔n = 1). If the damping ratio 𝜁 is doubled from 0.1 to 0.2, 
compute the percentage reduction R1 in the steady-state am-
plitude. Compare with the result R2 of a similar calculation 
for the condition 𝜔∕𝜔n =  2. Verify your results by inspecting 
Fig. 8∕11.

Representative Problems
8/44 It was noted in the text that the maxima of the curves 
for the magnifi cation factor M are not located at 𝜔∕𝜔n = 1. 
Determine an expression in terms of the damping ratio 𝜁 
for the frequency ratio at which the maxima occur.

8/45 The motion of the outer frame B is given by xB = 
b sin 𝜔t. For what range of the driving frequency 𝜔 is the 
amplitude of the motion of the mass m relative to the frame 
less than 2b?

m

B

k/2k/2

xB = b sin 𝜔t

PROBLEM 8/45
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8/50 Attachment B is given a horizontal motion xB =

b cos 𝜔t. Derive the equation of motion for the mass m and 
state the critical frequency 𝜔c for which the oscillations of 
the mass become excessively large. What is the damping 
ratio 𝜁 for the system?

k

c1
c2

m

x

B

xB = b cos 𝜔t

PROBLEM 8/50

8/51 A device to produce vibrations consists of the two 
counter-rotating wheels, each carrying an eccentric mass 
m0 = 1 kg with a center of mass at a distance e = 12 mm 
from its axis of rotation. The wheels are synchronized so 
that the vertical positions of the unbalanced masses are 
always identical. The total mass of the device is 10 kg. De-
termine the two possible values of the equivalent spring 
constant k for the mounting which will permit the ampli-
tude of the periodic force transmitted to the fi xed mounting 
to be 1500 N due to the imbalance of the rotors at a speed 
of 1800 rev∕min. Neglect damping.

e e
m0 m0

𝜔 𝜔

𝜃 𝜃

PROBLEM 8/51

8/52 The seismic instrument shown is attached to a struc-
ture which has a horizontal harmonic vibration at 3 Hz. 
The instrument has a mass m = 0.5 kg, a spring stiffness 
k = 20 N∕m, and a viscous damping coeffi cient c = 3 N∙s∕m. 
If the maximum recorded value of x in its steady-state mo-
tion is X = 2 mm, determine the amplitude b of the hori-
zontal movement xB of the structure.

x xB

kc

Structure

m

PROBLEM 8/52

8/46 When the person stands in the center of the fl oor system 
shown, he causes a static defl ection 𝛿st of the fl oor under his 
feet. If he walks (or runs quickly!) in the same area, how many 
steps per second would cause the fl oor to vibrate with the 
greatest vertical amplitude?

PROBLEM 8/46

8/47 The instrument shown has a mass of 43 kg and is 
spring-mounted to the horizontal base. If the amplitude of 
vertical vibration of the base is 0.10 mm, calculate the 
range of frequencies ƒ of the base  vibration which must be 
prohibited if the amplitude of vertical vibration of the in-
strument is not to exceed 0.15 mm. Each of the four identi-
cal springs has a stiffness of 7.2 kN∕m.

xB

PROBLEM 8/47

8/48 Derive the equation of motion for the inertial dis-
placement xi of the mass of Fig. 8 ∕14. Comment on, but do 
not carry out, the solution to the equation of motion.

8/49 Attachment B is given a horizontal motion xB =

b cos 𝜔t. Derive the equation of motion for the mass m and 
state the critical frequency 𝜔c for which the oscillations of 
the mass become excessively large.

c

k1

k2

m

x

B

xB = b cos 𝜔t

PROBLEM 8/49
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8/55 Derive the expression for the energy loss E over a 
complete steady-state cycle due to the frictional dissipation 
of energy in a viscously damped linear oscillator. The forc-
ing function is F0 sin 𝜔t, and the displacement-time rela-
tion for steady-state motion is xP = X sin (𝜔t − 𝜙) where 
the amplitude X is given by Eq. 8∕20. (Hint: The frictional 
energy loss during a displacement dx is cẋ dx, where c is 
the viscous damping coeffi cient. Integrate this expression 
over a complete cycle.)

8/56 Determine the amplitude of vertical vibration of the 
spring-mounted trailer as it travels at a velocity of 25 km∕h 
over the corduroy road whose contour may be expressed by 
a sine or cosine term. The mass of the trailer is 500 kg and 
that of the wheels alone may be neglected. During the load-
ing, each 75 kg added to the load caused the trailer to sag 
3 mm on its springs. Assume that the wheels are in contact 
with the road at all times and neglect damping. At what 
critical speed vc is the vibration of the trailer greatest?

1.2 m

50 mm

PROBLEM 8/56

8/53 The equilibrium position of the mass m occurs where 
y = 0 and yB = 0. When the attachment B is given a steady 
vertical motion yB = b sin 𝜔t, the mass m will acquire a 
steady vertical oscillation. Derive the differential equation 
of motion for m and specify the circular frequency 𝜔c for 
which the oscillations of m tend to become excessively 
large. The stiffness of the spring is k, and the mass and fric-
tion of the pulley are negligible.

yB

k

y

B

b

𝜔t

m

Equilibrium
position

PROBLEM 8/53

8/54 The seismic instrument is mounted on a structure 
which has a vertical vibration with a frequency of 5 Hz and 
a double amplitude of 18 mm. The sensing element has a 
mass m = 2 kg, and the spring stiffness is k = 1.5 kN∕m. 
The motion of the mass relative to the instrument base is 
recorded on a  revolving drum and shows a double ampli-
tude of 24 mm during the steady-state condition. Calculate 
the viscous damping constant c.

Structure

24 mm

D

c

2 kg

k =
1.5 kN/m

PROBLEM 8/54
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Problems for Article 8/4
Introductory Problems
8/57 The light rod and attached sphere of mass m are at 
rest in the horizontal position shown. Determine the 
 period 𝜏 for small oscillations in the vertical plane about 
the pivot O.

m
O

b

k

k

b b

PROBLEM 8/57

8/58 A uniform rectangular plate pivots about a horizontal 
axis through one of its corners as shown. Determine the 
natural frequency 𝜔n of small oscillations.

b

O

a

PROBLEM 8/58

8/59 The thin square plate is suspended from a socket (not 
shown) which fi ts the small ball attachment at O. If the 
plate is made to swing about axis A-A, determine the  period 
for small oscillations. Neglect the small offset, mass, and 
friction of the ball.

A

A

B

B
O

b

b

b

b/2
b/2

PROBLEM 8/59

8/60 If the square plate of Prob. 8∕59 is made to oscillate 
about axis B-B, determine the period of small  oscillations.

8/61 The 20-lb spoked wheel has a centroidal radius of gyra-
tion k = 6 in. A torsional spring of constant kT = 160 lb-ft ∕rad 
resists rotation about the smooth bearing. If an external 
torque of form M = M0 cos 𝜔t is applied to the wheel, what 
is the magnitude of its steady-state angular displacement? 
The moment magnitude is M0 = 8 lb-ft and the driving fre-
quency is 𝜔 = 25 rad∕sec.

M

W

kT

PROBLEM 8/61
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z

x

y
h

r

PROBLEM 8/64

8/65 Determine the system equation of motion in terms of 
the variable 𝜃 shown in the fi gure. Assume small angular 
motion of bar OA, and neglect the mass of link CD.

m2

m1

C
D

A

k
B

O

xB = b cos 𝜔t

2L
‒―
3

L
―
3

𝜃

PROBLEM 8/65

8/66 The mass of the uniform slender rod is 3 kg. Deter-
mine the position x for the 1.2-kg slider such that the 
 system period is 1 s. Assume small oscillations about the 
horizontal equilibrium position shown.

0.4 m

3 kgO
1.2 kg

250 N/m

x

0.8 m

PROBLEM 8/66

8/62 The uniform rod of length l and mass m is suspended 
at its midpoint by a wire of length L. The resistance of the 
wire to torsion is proportional to its angle of twist 𝜃 and 
equals (JG∕L)𝜃 where J is the polar moment of inertia of 
the wire cross section and G is the shear modulus of 
 elasticity. Derive the expression for the period 𝜏 of oscilla-
tion of the bar when it is set into rotation about the axis of 
the wire.

L

l/2
l/2

PROBLEM 8/62

8/63 The uniform sector has mass m and is freely hinged 
about a horizontal axis through point O. Determine the 
equation of motion of the sector for large- amplitude vi-
brations about the equilibrium position. State the period 
𝜏 for small oscillations about the equilibrium position if 
r = 325 mm and 𝛽 = 45°.

O

mr

𝛽

PROBLEM 8/63

8/64 The thin-walled cylindrical shell of radius r and 
height h is welded to the small shaft at its upper end as 
shown. Determine the natural circular frequency 𝜔n for 
small oscillations of the shell about the y-axis.
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b

G

O

b

kk

‒r

Vertical
𝜃

𝜃

PROBLEM 8/69

8/70 When the motor is slowly brought up to speed, a 
 rather large vibratory oscillation of the entire motor about 
O-O occurs at a speed of 360 rev∕min, which shows that 
this speed corresponds to the natural frequency of free os-
cillation of the motor. If the motor has a mass of 43 kg and 
radius of gyration of 100 mm about O-O, determine the 
stiffness k of each of the four identical spring mounts.

O

200 mm

200 mm O

PROBLEM 8/70

8/71 Two identical uniform bars are welded together at a 
right angle and are pivoted about a horizontal axis through 
point O as shown. Determine the critical driving frequency 
𝜔c of the block B which will result in excessively large os-
cillations of the assembly. The mass of the welded assem-
bly is m.

k

l

l/2 l/2

k

B

O

xB = b sin 𝜔t

PROBLEM 8/71

Representative Problems
8/67 The triangular frame of mass m is formed from uni-
form slender rod and is suspended from a socket (not 
shown) which fi ts the small ball attachment at O. If the 
frame is made to swing about axis A-A, determine the nat-
ural circular frequency 𝜔n for small oscillations. Neglect 
the small offset, mass, and friction of the ball. Evaluate for 
l = 200 mm.

B

B

O

A

l

l

l

A

PROBLEM 8/67

8/68 The uniform rod of mass m is freely pivoted about 
point O. Assume small oscillations and determine an ex-
pression for the damping ratio 𝜁. For what value ccr of the 
damping coeffi cient c will the system be critically damped?

O

a
b

c k

PROBLEM 8/68

8/69 The mechanism shown oscillates in the vertical plane 
about the pivot O. The springs of equal stiffness k are both 
compressed in the equilibrium position 𝜃 = 0. Determine an 
expression for the period 𝜏 of small oscillations about O. 
The mechanism has a mass m with mass center G, and the 
radius of gyration of the assembly about O is kO.
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R

O

G

r

𝜃

PROBLEM 8/74

8/75 The cart B is given the harmonic displacement 
xB = b sin 𝜔t. Determine the steady-state amplitude Θ  of 
the periodic oscillation of the uniform slender bar which is 
pinned to the cart at P. Assume small angles and neglect 
friction at the pivot. The torsional spring is undeformed 
when 𝜃 = 0.

kT

B
P

m

l
xB = b sin 𝜔t

𝜃

PROBLEM 8/75

8/76 The segmented “dummy” of Prob. 6∕85 is repeated 
here. The hip joint O is assumed to remain fi xed to the car, 
and the torso above the hip is treated as a rigid body of 
mass m. The center of mass of the torso is at G and the 
radius of gyration of the torso about O is kO. Assume that 
muscular response acts as an internal torsional spring 
which exerts a moment M = K𝜃 on the upper torso, where 
K is the torsional spring constant and 𝜃 is the angular de-
fl ection from the initial vertical position. If the car is 
brought to a sudden stop with a constant deceleration a, 
derive the differential equation for the motion of the torso 
prior to its impact with the dashboard.

G

O

r

𝜃

PROBLEM 8/76

8/72 Determine the value meff of the mass of system 
(b) so that the frequency of system (b) is equal to that of 
system (a). Note that the two springs are identical and that 
the wheel of system (a) is a solid homogeneous cylinder of 
mass m2. The cord does not slip on the cylinder.

(a) (b)

k

k

meffm1

m2
r

PROBLEM 8/72

8/73 The system of Prob. 8 ∕35 is repeated here. If the crank 
AB now has mass m2 and a radius of gyration kO about 
point O, determine expressions for the undamped natural 
frequency 𝜔n and the damping ratio 𝜁 in terms of the given 
system properties. Assume small oscillations. The damping 
coeffi cient for the damper is c.

k

m

c

O

a

b

B

A

x

PROBLEM 8/73

8/74 The uniform solid cylinder of mass m and radius r 
rolls without slipping during its oscillation on the circular 
surface of radius R. If the motion is confi ned to small am-
plitudes 𝜃 = 𝜃0, determine the period 𝜏 of the oscillations. 
Also determine the angular velocity 𝜔 of the cylinder as it 
crosses the vertical centerline. (Caution: Do not confuse 𝜔 
with 𝜃 or with 𝜔n as used in the defi ning equations. Note 
also that 𝜃 is not the angular displacement of the cylinder.)
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Problems for Article 8/5
(Solve the following problems by the energy method of 
Art. 8∕5.)

Introductory Problems
8/77 The 1.5-kg bar OA is suspended vertically from the bear-
ing O and is constrained by the two springs each of stiffness 
k = 120 N∕m and both equally precompressed with the bar in 
the vertical equilibrium position. Treat the bar as a uniform 
slender rod and compute the natural frequency ƒn of small 
 oscillations about O.

O

A

k k

200
mm

320
mm

PROBLEM 8/77

8/78 The light rod and attached sphere of mass m,  repeated 
here from Prob. 8∕57, are at rest in the horizontal position 
shown. Determine the period 𝜏 for small oscillations in the 
vertical plane about the pivot O.

m
O

b

k

k

b b

PROBLEM 8/78

8/79 A uniform rod of mass m and length l is welded at one 
end to the rim of a light circular hoop of radius l. The other 
end lies at the center of the hoop.  Determine the period 𝜏 
for small oscillations about the vertical position of the bar 
if the hoop rolls on the horizontal surface without slipping.

l

PROBLEM 8/79

8/80 The spoked wheel of radius r, mass m, and centroidal 
radius of gyration k rolls without slipping on the incline. 
Determine the natural frequency of oscillation and explore 
the limiting cases of k = 0 and k = r.

m

rk

𝜃

PROBLEM 8/80

8/81 Determine the period 𝜏 for the uniform circular hoop 
of radius r as it oscillates with small amplitude about the 
horizontal knife edge.

r

PROBLEM 8/81
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8/85 The homogeneous circular cylinder of Prob. 8∕74, re-
peated here, rolls without slipping on the track of radius R. 
Determine the period 𝜏 for small oscillations.

R

O

G

r

𝜃

PROBLEM 8/85

8/86 The disk has mass moment of inertia IO about O and 
is acted upon by a torsional spring of constant kT. The posi-
tion of the small sliders, each of which has mass m, is ad-
justable. Determine the value of x for which the system has 
a given period 𝜏.

O

IO

kT
m m

x x

PROBLEM 8/86

8/87 The uniform slender rod of length l and mass m2 is 
secured to the uniform disk of radius l∕5 and mass m1. If 
the system is shown in its equilibrium position, determine 
the natural frequency 𝜔n and the maximum angular ve-
locity 𝜔 for small oscillations of amplitude 𝜃0 about the 
pivot O.

2l/5l/5 l/5l/5

k
O

m1

m2

PROBLEM 8/87

8/82 The length of the spring is adjusted so that the equi-
librium position of the arm is horizontal as shown. Neglect 
the mass of the spring and the arm and calculate the natu-
ral frequency ƒn for small oscillations.

k

m

O

l

b

PROBLEM 8/82

8/83 The body consists of two slender uniform rods which 
have a mass 𝜌 per unit length. The rods are welded together 
and pivot about a horizontal axis through O against the action 
of a torsional spring of stiffness kT. By the method of this arti-
cle, determine the natural circular frequency 𝜔n for small oscil-
lations about the equilibrium position. The spring is unde-
formed when 𝜃 = 0, and friction in the pivot at O is negligible.

kT

l

O

l
―
2

l
―
2

𝜃

PROBLEM 8/83

Representative Problems
8/84 Calculate the frequency ƒn of vertical oscillation of 
the system shown. The 40-kg pulley has a radius of gyra-
tion about its center O of 200 mm.

k = 2 kN/m

kO = 200 mm
O
300 mm

30 kg

40 kg

PROBLEM 8/84
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L

k k

𝜃

PROBLEM 8/90

8/91 The 12-kg block is supported by the two 5-kg links with 
two torsion springs, each of constant kT = 500 N∙m ∕rad, 
 arranged as shown. The springs are  suffi ciently stiff so that 
stable equilibrium is established in the position shown. 
 Determine the natural frequency ƒn for small oscillations 
about this equilibrium position.

kT kT

5 kg 5 kg

12 kg

0.8 m

PROBLEM 8/91

8/92 If the spring-loaded frame is given a slight vertical 
disturbance from its equilibrium position shown, deter-
mine its natural frequency ƒn of vibration. The mass of the 
upper member is 24 kg, and that of the lower members is 
negligible. Each spring has a stiffness of 9 kN∕m.

24 kg

150
mm

100 mm 100 mm

150
mm

PROBLEM 8/92

8/88 Derive the natural frequency ƒn of the system com-
posed of two homogeneous circular cylinders, each of mass 
M, and the connecting link AB of mass m. Assume small 
oscillations.

M M

m

r

r0 r0

O

B
A

O
r

𝜃 𝜃

PROBLEM 8/88

8/89 The rotational axis of the turntable is inclined at an 
angle 𝛼 from the vertical. The turntable shaft pivots freely 
in bearings which are not shown. If a small block of mass m 
is placed a distance r from point O, determine the natural 
frequency 𝜔n for small rotational oscillations through the 
angle 𝜃. The mass moment of inertia of the turntable about 
the axis of its shaft is I.

𝛼

r O

𝜃

PROBLEM 8/89

8/90 The ends of the uniform slender bar of mass m and 
length L move freely in the vertical and horizontal slots 
under the action of the two precompressed springs each of 
stiffness k as shown. If the bar is in static equilibrium 
when 𝜃 = 0, determine the natural frequency 𝜔n of small 
oscillations.
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8/95 A hole of radius R∕4 is drilled through a cylinder 
of radius R to form a body of mass m as shown. If the 
body rolls on the horizontal surface without slipping, 
 determine the period 𝜏 for small  oscillations.

R/4
O

R/4

R/2

PROBLEM 8/95

8/96 The quarter-circular sector of mass m and radius r is 
set into small rocking oscillation on the horizontal surface. 
If no slipping occurs, determine the expression for the 
 period 𝜏 of each complete oscillation.

t

r

PROBLEM 8/96

8/93 The system shown features a nonlinear spring whose 
resisting force F increases with defl ection from the neutral 
position according to the graph shown. Determine the 
equation of motion for the system by the method of this 
article.

x

64.4 lb
k(x)

F, lb

9x3

100x

x, in.
x

PROBLEM 8/93

8/94 The semicircular cylindrical shell of radius r with 
small but uniform wall thickness is set into small rocking 
oscillation on the horizontal surface. If no slipping occurs, 
determine the expression for the period 𝜏 of each complete 
oscillation.

r

PROBLEM 8/94

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Problems for Article 8/6 Chapter Review P-241

Problems for Article 8/6 Chapter Review
8/97 Determine the natural frequency ƒn of the inverted 
pendulum. Assume small oscillations, and note any restric-
tions on your solution.

k k

O

b

l

m

PROBLEM 8/97

8/98 Determine the period 𝜏 of small oscillations for the 
uniform sector of mass m. The torsional spring of modulus 
kT is undefl ected when the sector is in the position shown.

kT

m

b

O

𝛽 𝛽

PROBLEM 8/98

8/99 The 0.1-kg projectile is fi red into the 10-kg block 
which is initially at rest with no force in the spring. The 
spring is attached at both ends. Calculate the maximum 
horizontal displacement X of the spring and the ensuing 
period of oscillation of the block and embedded projectile.

k = 3 kN/m

10 kg
0.1 kg

500 m/s

PROBLEM 8/99

8/100 The uniform circular disk is suspended by a socket 
(not shown) which fi ts over the small ball attachment at O. 
Determine the frequency of small motion if the disk swings 
freely about (a) axis A-A and (b) axis B-B. Neglect the small 
offset, mass, and friction of the ball.

B

BA

A

r

O

PROBLEM 8/100

8/101 A slender rod is shaped into the semicircle of radius 
r as shown. Determine the natural frequency ƒn for small 
oscillations of the rod when it is pivoted on the horizontal 
knife edge at the middle of its length.

r

PROBLEM 8/101

8/102 A linear oscillator with mass m, spring constant k, 
and viscous damping coeffi cient c is set into motion when 
released from a displaced position. Derive an expression for 
the energy loss Q during one complete cycle in terms of the 
amplitude x1 at the start of the cycle. (See Fig. 8 ∕7.)

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


P-242  Problems for Article 8/6 Chapter Review

8/106 An experimental engine weighing 480 lb is mounted 
on a test stand with spring mounts at A and B, each with a 
stiffness of 600 lb∕in. The radius of gyration of the engine 
about its mass center G is 4.60 in. With the motor not run-
ning, calculate the natural frequency (ƒn)y of vertical vi-
bration and (ƒn)𝜃 of rotation about G. If vertical motion is 
suppressed and a light rotational imbalance occurs, at 
what speed N should the engine not be run?

10ʺ

A B

G

y

10ʺ

PROBLEM 8/106

8/107 The cylinder A of radius r, mass m, and radius of 
gyration k is driven by a cable-spring system attached to 
the drive cylinder B, which oscillates as indicated. If the 
cables do not slip on the cylinders, and if both springs are 
stretched to the degree that they do not go slack during a 
motion cycle, determine an expression for the amplitude 
𝜃max of the steady-state oscillation of cylinder A.

k

r
r0

k

A
B

𝜙 = 𝜙0 cos 𝜔t

PROBLEM 8/107

8/108 A 200-kg machine rests on four fl oor mounts, each 
of which has an effective spring constant k = 250 kN∕m and 
an effective viscous damping coeffi cient c = 1000 N ∙s ∕m. 
The fl oor is known to vibrate vertically with a frequency of 
24 Hz. What would be the effect on the amplitude of the 
absolute machine oscillation if the mounts were replaced 
with new ones which have the same effective spring con-
stant but twice the effective damping coeffi cient?

8/103 Calculate the damping ratio 𝜁 of the system shown 
if the weight and radius of gyration of the stepped cylinder 
are W = 20 lb and k = 5.5 in., the spring constant is 
k = 15 lb∕in., and the damping coeffi cient of the hydraulic 
cylinder is c = 2 lb-sec∕ft. The cylinder rolls without slip-
ping on the hub of radius r = 6 in. and the spring can sup-
port  tension as well as compression.

k

r

c

W

PROBLEM 8/103

8/104 Determine the value of the viscous damping coeffi -
cient c for which the system is critically damped. The cylin-
der mass is m = 2 kg and the spring constant is k = 150 
N∕m. Neglect the mass and friction of the pulley.

c

k

m

PROBLEM 8/104

8/105 The seismic instrument shown is secured to a ship’s 
deck near the stern where propeller-induced vibration is 
most pronounced. The ship has a single three-bladed pro-
peller which turns at 180 rev∕min and operates partly out 
of water, thus causing a shock as each blade breaks the 
surface. The damping ratio of the instrument is 𝜁 = 0.5, 
and its undamped natural frequency is 3 Hz. If the mea-
sured amplitude of A relative to its frame is 0.75 mm, com-
pute the amplitude 𝛿0 of the vertical vibration of the deck.

A

PROBLEM 8/105
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the  magnitude of the recorded relative displacement is less 
than 1.5b. It is assumed that the ratio 𝜔∕𝜔n must remain 
greater than unity.

Neutral
position

yB = b sin 𝜔t

W

k

cO

l1

l2

l3

PROBLEM 8/112

*8/113 The damped linear oscillator of mass m = 4 kg, 
spring constant k = 200 N∕m, and viscous damping factor 
𝜁 = 0.1 is initially at rest in a neutral position when it is 
subjected to a sudden impulsive loading F over a very short 
period of time as shown. If the impulse I = ∫F dt = 8 N∙s, 
determine the resulting displacement x as a function of 
time and plot it for the fi rst two seconds following the 
 impulse.

c
m

Fx

k

F

t

PROBLEM 8/113

*8/114 Plot the response x of the 50-lb body over the time 
interval 0 ≤ t ≤ 1 second. Determine the maximum and 
minimum values of x and their respective times. The initial 
conditions are x0 = 0 and ẋ0 = 6 ft∕sec.

100 lb/in. 18 lb-sec/ft
50 lb

F = (160 cos 60t) lb
x

PROBLEM 8/114

*Computer-Oriented Problems
*8/109 The mass of a critically damped system having a 
natural frequency 𝜔n = 4 rad∕s is released from rest at an 
initial displacement x0. Determine the time t required for 
the mass to reach the position x = 0.1x0.

*8/110 The uniform sector of Prob. 8 ∕63 is repeated here 
with m = 4 kg, r = 325 mm, and 𝛽 = 45°. Let 𝜃 represent the 
angular defl ection from the vertical position. If the sector is 
released from rest with 𝜃0 = 90°, plot the value of 𝜃 for the 
time period 0 ≤ t ≤ 6 s. Friction in the pivot at O results in 
a resistive torque of magnitude M = c𝜃, where the constant 
c = 0.35 N ∙ m ∙ s ∕rad. Compare your large-angle results 
with those for the small-angle approximation of sin 𝜃 ≅ 𝜃 
and state the value of 𝜃 when t = 1 s for both large-angle 
and small-angle cases. (Note: The solution to this problem 
is of considerable diffi culty and involves elliptic integrals. 
A numerical solution utilizing appropriate mathematics 
software is recommended.)

O

mr

𝛽

PROBLEM 8/110

*8/111 The mass of the system shown is released with the 
initial conditions x0 = 0.1 m and ẋ0 = −5 m∕s at t = 0. Plot 
the response of the system and determine the time(s) (if 
any) at which the displacement x = −0.05 m.

100 N/m

x

50 N · s/m

2 kg

PROBLEM 8/111

*8/112 Shown in the fi gure are the elements of a displace-
ment meter used to study the motion yB = b sin 𝜔t of the 
base. The motion of the mass relative to the frame is re-
corded on the rotating drum. If l1 = 1.2 ft, l2 = 1.6 ft, 
l3 = 2 ft, W = 2 lb, c = 0.1 lb-sec∕ft, and 𝜔 = 10 rad∕sec, 
determine the range of the spring constant k over which 
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position, plot the displacement y as a function of time for 
the fi rst second for the two cases where the viscous damp-
ing coeffi cient is (a) c = 124 N∙s∕m and (b) c = 80 N∙s∕m.

c

4 kg

k = 800 N/m 

y

Equilibrium
position

PROBLEM 8/116

*8/115 Determine and plot the response x as a function of 
time for the undamped linear oscillator subjected to the 
force F which varies linearly with time for the fi rst 3

4 sec-
ond as shown. The mass is initially at rest with x = 0 at 
time t = 0.

x

F, N

t, s

k = 90 N/m

F

0.75 kg

3/4

6.25

0
0

PROBLEM 8/115

*8/116 The 4-kg cylinder is attached to a viscous damper 
and to the spring of stiffness k = 800 N∕m. If the cylinder is 
released from rest at time t = 0 from the position where it 
is displaced a distance y = 100 mm from its equilibrium 
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Problems for Article B/1
Integration Exercises
B/1 Determine the mass moments of inertia about the x-, 
y-, and z-axes of the slender rod of length L and mass m 
which makes an angle 𝛽 with the x-axis as shown.

y

m

x
L
—
2

L
—
2

𝛽

PROBLEM B/1

B/2 Determine the mass moment of inertia of the uniform 
thin triangular plate of mass m about the x-axis. Also de-
termine the radius of gyration about the x-axis. By analogy 
state Iyy and ky. Then determine Izz and kz.

x

z

y

b

h

m

PROBLEM B/2

B/3  Calculate the mass moment of inertia of the ho-
mogeneous right-circular cone of mass m, base radius r, 
and altitude h about the cone axis x and about the y-axis 
through its vertex.

y

x

r

h

PROBLEM B/3

B/4 Determine the mass moment of inertia of the uniform 
thin parabolic plate of mass m about the x-axis. State the 
corresponding radius of gyration.

x

z

y

m

b
―
2

b
―
2

Parabolic

h

PROBLEM B/4

B/5 Determine the mass moment of inertia about the y-
axis for the parabolic plate of the previous problem. State 
the radius of gyration about the y-axis.

Appendix B
* Computer-oriented problem

 Diffi cult problem
 Student solution available in WileyPLUS
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B/9 Determine the mass moment of inertia of the homoge-
neous solid of revolution of the previous problem about the 
y- and z-axes.

B/10 A homogeneous solid of mass m is formed by revolv-
ing the 45° right triangle about the z-axis. Determine the 
radius of gyration of the solid about the z-axis.

r
a

a

a

z

PROBLEM B/10

B/11  Determine the radius of gyration about the z-
axis of the paraboloid of revolution shown. The mass of the 
homogeneous body is m.

r

z

x

y

h

PROBLEM B/11

B/12 Determine the moment of inertia about the y-axis for 
the paraboloid of revolution in the previous problem.

B/13 Develop an expression for the mass moment of iner-
tia of the homogeneous solid of revolution of mass m about 
the y-axis.

y
x

z

b

a

m

y = kzn

PROBLEM B/13

B/6 For the thin homogeneous plate of uniform thickness t 
and mass m, determine the mass moments of inertia about 
the x′-, y′-, and z′-axes through the end of the plate at A. 
Refer to the results of Sample Problem B∕4 and Table D∕3 
in Appendix D as needed.

y

b

A x, xʹ

z

x = ky2

zʹ

yʹ

h

PROBLEM B/6

B/7 Determine the mass moment of inertia of the uniform 
thin elliptical plate (mass m) about the x-axis. Then, by 
analogy, state the expression for Iyy.  Finally, determine Izz.

a

b
m

x

y

z

Elliptical

PROBLEM B/7

B/8 Determine the mass moment of inertia of the homoge-
neous solid of revolution of mass m about the x-axis.

y

z
x

r

h

m

y = kx1.5

PROBLEM B/8
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2b
b

b

m

2b

y

x

L
―
2

L
―
2

L
―
2

L
―
2

Parabolic

y

x

PROBLEM B/16

B/17 Determine Iyy for the homogeneous body of revolu-
tion of the previous problem.

B/18 The thickness of the homogeneous triangular plate of 
mass m varies linearly with the distance from the vertex 
toward the base. The thickness a at the base is small com-
pared with the other dimensions. Determine the moment of 
inertia of the plate about the y-axis along the centerline of 
the base.

a

zx

y

h

b
—
2

b
—
2

PROBLEM B/18

B/14 Determine the mass moment of inertia about the 
x-axis of the solid spherical segment of mass m.

x

y
R
—
2

R
—
2

PROBLEM B/14

B/15 Determine the moment of inertia about the generat-
ing axis of a complete ring (torus) of mass m having a cir-
cular section with the dimensions shown in the sectional 
view.

a

R

PROBLEM B/15

B/16 The plane area shown in the top portion of the fi gure 
is rotated 180° about the x-axis to form the body of revolu-
tion of mass m shown in the lower portion of the fi gure. 
 Determine the mass moment of inertia of the body about the 
x-axis.
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B/23 A shell of mass m is obtained by revolving the 
 quarter-circular section about the z-axis. If the thickness of 
the shell is small compared with a and if r = a∕3, deter mine 
the radius of gyration of the shell about the z-axis.

r

a

z

PROBLEM B/23

B/24 Determine the mass moment of inertia and corre-
sponding radius of gyration of the thin homogeneous para-
bolic shell about the y-axis. The shell has dimensions r = 70 
mm and h = 200 mm, and is made of metal plate having a 
mass per unit area of 32 kg∕m2.

z
y

x

h

r

PROBLEM B/24

B/25 For the parabolic shell of the previous problem, 
 determine the mass moment of inertia and corresponding 
radius of gyration about the z-axis.

Composite and Parallel-Axis Exercises
B/26 The moment of inertia of a solid homogeneous cylin-
der of radius r about an axis parallel to the central axis of 
the cylinder may be obtained approximately by multiply-
ing the mass of the cylinder by the square of the distance d 
between the two axes. What percentage error e results if 
(a) d = 10r and (b) d = 2r?

B/19 Determine the moment of inertia, about the generat-
ing axis, of the hollow circular tube of mass m obtained by 
revolving the thin ring shown in the sectional view com-
pletely around the generating axis.

a

R

PROBLEM B/19

B/20 Determine the moments of inertia of the hemispheri-
cal shell with respect to the x- and z-axes. The mass of the 
shell is m, and its thickness is negligible compared with the 
radius r.

x

z

y

r

PROBLEM B/20

B/21 The partial solid of revolution is formed by revolving 
the shaded area in the x-z plane 90° about the z-axis. If the 
mass of the solid is m, determine its mass moment of iner-
tia about the z-axis.

b

a

x

y
z

x = a z2
‑―

b2
1 −( )

PROBLEM B/21

B/22 For the partial solid of revolution in Prob. B∕21, 
 determine the mass moment of inertia about the x-axis.
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B/30 Determine the mass moment of inertia about the 
z-axis for the right-circular cylinder with a central longi-
tudinal hole.

m
2r

r

L
―
2

L
―
2

z

PROBLEM B/30

B/31 A 6-in. steel cube is cut along its diagonal plane. Cal-
culate the moment of inertia of the resulting prism about 
the edge x-x.

x

6ʺ 6ʺ

6ʺ

x

PROBLEM B/31

B/32 Determine the length L of each of the slender rods of 
mass m∕2 which must be centrally attached to the faces of the 
thin homogeneous disk of mass m in order to make the mass 
moments of inertia of the unit about the x- and z-axes equal.

L

L

x

m r

z

m
―
2

m
―
2

PROBLEM B/32

d

r

PROBLEM B/26

B/27 The two small spheres of mass m each are connected 
by the light rigid rod which lies in the x-z plane. Determine 
the mass moments of inertia of the assembly about the 
x-, y-, and z-axes.

m

m

y

z

L L

x

L

L

PROBLEM B/27

B/28 The molded plastic block has a density of 1300 kg∕m3. 
Calculate its moment of inertia about the y-y axis. What 
percentage error e is introduced by using the approximate 
relation 13 ml2 for Ixx?

x

x

y

y

Dimensions in millimeters

400

50
50

180
180

PROBLEM B/28

B/29 Determine Ixx for the cylinder with a centered circu-
lar hole. The mass of the body is m.

r1

r2

x

PROBLEM B/29
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Dimensions in millimeters

50 100 300 400

120

200 mm2

75

PROBLEM B/35

B/36 The welded assembly is made of a uniform rod which 
weighs 0.370 lb per foot of length and the semicircular 
plate which weighs 8 lb per square foot. Determine the 
mass moments of inertia of the assembly about the three 
coordinate axes shown.

x y

z

4ʺ

6ʺ

4ʺ

PROBLEM B/36

B/37 The uniform rod of length 4b and mass m is bent into 
the shape shown. The diameter of the rod is small com-
pared with its length. Determine the moments of inertia of 
the rod about the three coordinate axes.

B/33 Determine the moment of inertia of the mallet about 
the x-axis. The density of the wooden handle is 800 kg∕m3 
and that of the soft-metal head is 9000 kg∕m3. The longi-
tudinal axis of the cylindrical head is normal to the x-axis. 
State any assumptions.

300
mm

40
mm

30 mm

50
mm
50

mm

x

PROBLEM B/33

B/34 A badminton racket is constructed of uniform slender 
rods bent into the shape shown. Neglect the strings and the 
built-up wooden grip and estimate the mass moment of 
 inertia about the y-axis through O, which is the location of 
the player’s hand. The mass per unit length of the rod 
 material is 𝜌.

L
—
4

L
—
4

L
—
8

y

O

L

PROBLEM B/34

B/35 Calculate the moment of inertia of the steel control 
wheel, shown in section, about its central axis. There are 
eight spokes, each of which has a constant cross-sectional 
area of 200 mm2. What percent n of the total moment of 
inertia is contributed by the outer rim?
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B/40 The body is constructed of a uniform square plate, a 
uniform straight rod, a uniform quarter-circular rod, and a 
particle (negligible dimensions). If each part has the  indicated 
mass, determine the mass moments of inertia of the body 
about the x-, y-, and z-axes.

b

0.5m

0.1m

0.25m

0.15m

y

x

z

O

b

PROBLEM B/40

B/41 The clock pendulum consists of the slender rod of 
length l and mass m and the bob of mass 7m. Neglect the 
effects of the radius of the bob and determine IO in terms of 
the bob position x. Calculate the ratio R of IO evaluated for 
x =

3
4l to IO evaluated for x = l.

x

O

l

7m

m

PROBLEM B/41

z

b

x

O

y

b

b

b

PROBLEM B/37

B/38  The welded assembly shown is made from a 
steel rod which weighs 0.455 lb per foot of length. Deter-
mine the mass moment of inertia of the assembly (a) about 
the y-axis and (b) about the z-axis.

4ʺ

6ʺ
6ʺ

x

y

z

PROBLEM B/38

B/39 Calculate the moment of inertia of the solid steel 
 semicylinder about the x-x axis and about the parallel x0-x0 
axis. (See Table D∕1 for the density of steel.)

x0

60 mm

100 mm

60
mm

x0

x

x

PROBLEM B/39
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B/45 Determine Ixx for the cone frustum, which has base 
radii r1 and r2 and mass m.

x

h

r1

r2

y–

G

PROBLEM B/45

B/46 A preliminary model for a spacecraft consists of a cy-
lindrical shell and two fl at panels as shown. The shell and 
the panels have the same thickness and density. It can be 
shown that, in order for the spacecraft to have a stable spin 
about axis 1-1, the moment of inertia about axis 1-1 must 
be less than the moment of inertia about axis 2-2. Deter-
mine the critical value of l which must be exceeded to en-
sure stable spin about axis 1-1.

2r

2r

l/2

l/2

2

2

3

3

1

1
r

PROBLEM B/46

B/42 A square plate with a quarter-circular sector removed 
has a net mass m. Determine its moment of inertia about 
axis A-A normal to the plane of the plate.

A

A

O

a

x

y

z

a

a

PROBLEM B/42

B/43  The machine element is made of steel and is 
 designed to rotate about axis O-O. Calculate its radius of 
gy ration kO about this axis.

O

O

30 80

Dimensions in millimeters

80

40

PROBLEM B/43

B/44 The welded assembly shown is made from a steel rod 
which weighs 0.667 lb per foot of length. Calculate the mo-
ment of inertia of the assembly about the x-x axis.

x

x

8ʺ

8ʺ8ʺ

8ʺ

8ʺ

PROBLEM B/44
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Problems for Article B/2
Introductory Problems

B/47 Determine the products of inertia about the coordi-
nate axes for the unit which consists of four small particles, 
each of mass m, connected by the light but rigid slender rods.

xz

y

m

m

m

m

l

l

l
l

l
l

l

l

PROBLEM B/47

B/48 Determine the products of inertia about the coordi-
nate axes for the unit which consists of three small spheres, 
each of mass m, connected by the light but rigid slender 
rods.

l

l

l

l

l

m

l

yx

m

m

z

PROBLEM B/48

B/49 Determine the product of inertia Ixy for the slender 
rod of mass m.

𝜃

y

x
l/2

l/2

PROBLEM B/49

B/50 The slender rod of mass m is formed into a quarter- 
circular arc of radius r. Determine the products of inertia 
of the rod with respect to the given axes.

x

z

r
y

45°

PROBLEM B/50

B/51 Determine the products of inertia of the uniform 
slender rod of mass m about the coordinate axes shown.

z

yx

a

m

h

b

PROBLEM B/51
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y
yʹ, yʺ

zʹ

z

x, xʹ

xʺ

b

h

Thickness t

m

PROBLEM B/55

Representative Problems
B/56 The uniform rectangular block weighs 50 lb. Calcu-
late its products of inertia about the coordinate axes shown.

x

y

z

8ʺ 6ʺ

4ʺ

PROBLEM B/56

B/57 Determine the products of inertia for the rod of 
Prob. B∕37, repeated here.

z

b

x

O

y

b

b

b

PROBLEM B/57

B/52 Determine the products of inertia about the coordi-
nate axes for the thin square plate with two circular holes. 
The mass of the plate material per unit area is 𝜌.

b
––
4

b
––
4

b
––
4

b
––
4

b
––
8

b
––
4

y

x

b
––
8

b
––
4
b
––
4
b
––
4

PROBLEM B/52

B/53 Determine the products of inertia of the solid homo-
geneous half-cylinder of mass m for the axes shown.

z xy h

r

PROBLEM B/53

B/54 The homogeneous plate of Prob. B ∕6 is repeated here. 
Determine the product of inertia for the plate about the x-y 
axes. The plate has mass m and uniform thickness t.

y

b

Thickness t
x

z

x = ky2

h

PROBLEM B/54

B/55 Determine by direct integration the product of iner-
tia of the thin homogeneous triangular plate of mass m 
about the x-y axes. Then, use the parallel-axis theorem to 
determine the product of inertia for the plate about the 
x′-y′ axes and the x″-y″ axes. What is the product of inertia 
about the centroid of the plate?
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x-direction. (Note:  Because the analysis does not involve the 
z-coordinate, the expressions developed for area moments of 
inertia, Eqs. A ∕9, A ∕10, and A ∕11 in Appendix A of Vol. 1 
Statics, may be utilized for this problem in place of the 
three-dimensional relations of Appendix B.) The rod has a 
mass 𝜌 per unit length.

𝜃
x

y

O

r

r
M

PROBLEM B/60

*B/61 The assembly of three small spheres connected by 
light rigid bars of Prob. B ∕48 is repeated here. Determine 
the principal moments of inertia and the direction cosines 
associated with the axis of maximum moment of inertia.

l

l

l

l

l

m

l

yx

m

m

z

PROBLEM B/61

B/58 The S-shaped piece is formed from a rod of diameter 
d and bent into the two semicircular shapes. Determine the 
products of inertia for the rod, for which d is small com-
pared with r.

r

d

y

x

z

r

PROBLEM B/58

*Computer-Oriented Problems
*B/59 The L-shaped piece is cut from steel plate having a 
mass per unit area of 160 kg ∕m2. Determine and plot the 
moment of inertia of the piece about axis A-A as a function 
of 𝜃 from 𝜃 = 0 to 𝜃 = 90° and fi nd its minimum value.

𝜃

0.6 m

0.2 m

0.2 m

0.2 m

0.4 m
x

y

A

O

A

PROBLEM B/59

*B/60 Determine the moment of inertia I about axis O-M 
for the uniform slender rod bent into the shape shown. Plot 
I versus 𝜃 from 𝜃 = 0 to 𝜃 = 90° and determine the minimum 
value of I and the angle 𝛼 which its axis makes with the 
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*B/64 The welded assembly is formed from uniform sheet 
metal with a mass of 32 kg ∕m2. Determine the principal 
mass moments of inertia for the assembly and the corre-
sponding direction cosines for each principal axis.

x

y

400
400

200

75

Dimensions in millimeters

150

250

z

PROBLEM B/64

*B/62 Determine the inertia tensor for the homogeneous 
thin plate about the x-, y-, and z-axes. The plate has a mass 
m and uniform thickness t. What is the minimum angle, 
measured from the x-axis, which will rotate the plate into 
principal directions?

y

z

x

2.5b

1.5b

2b
2b

2b

b

2b

3b

PROBLEM B/62

*B/63 The thin plate has a mass 𝜌 per unit area and is 
formed into the shape shown. Determine the principal mo-
ments of inertia of the plate about axes through O.

2b

b

z

y

x

b b

O

PROBLEM B/63
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A
Absolute measurements, 4, 58
Absolute motion, 17, 47, 154, 159, 168
Absolute system of units, 7, 59
Acceleration:

absolute, 48, 58, 168, 176
angular, 150, 151, 230
average, 18, 26
constant, 20, 150
Coriolis, 58, 176
cylindrical components of, 42
function of displacement, 20
function of time, 20
function of velocity, 20
graphical determination of, 19
due to gravity, 8, 9, 59
instantaneous, 18, 26
normal components of, 33
polar components of, 38
rectangular components of, 28, 42
relative to rotating axes, 175, 235
relative to translating axes, 48, 112, 

168, 234
spherical components of, 43
tangential component of, 33
vector representation of, 26
from work-energy principle, 213

Acceleration-displacement diagram, 19
Acceleration-time diagram, 19
Accelerometer, 275
Action and reaction, principle of, 6
Active-force diagram, 77, 185, 207
Addition of vectors, 5, 305
Amplitude ratio, 272, 273
Amplitude of vibration, 263
Angular acceleration, 150, 151, 230
Angular displacement, 149
Angular impulse, 94, 218
Angular momentum:

applied to fluid streams, 133
conservation of, 96, 105, 127, 220
of a particle, 93, 114
relative, 114, 125
of a rigid body, 186, 218, 240
of a system, 123
units of, 93
vector representation of, 93

Angular motion:
of a line, 149
vector representation of, 151, 

227, 228
Angular velocity, 149, 150, 151, 

227, 230
absolute, 160, 168
of the earth, 58, 318
vector representation of, 150, 

229, 230

Apogee velocity, 108
Area moments of inertia, 287
Associative law, 305
Astronomical frame of reference, 4, 

57, 112
Axes:

rotating, 173, 235
translating, 47, 112, 158, 234

B
Balancing in rotation, 248
Base units, 6, 59
Bodies, interconnected, 121, 190, 

213, 219
Body, rigid, 5, 119, 148, 184, 227
Body centrode, 166
Body cone, 230, 256

C
Cajori, F., 4
Center:

of curvature, 33
of mass, motion of, 121
of percussion, 196

Central-force motion, 105
Centrifugal force, 113
Centrode, body and space, 166
Centroids, table of, 319
Circular frequency, natural, 263
Circular motion, 34, 39
Coefficient:

of friction, 317
of restitution, 100, 221
of viscous damping, 264

Commutative law, 305, 306
Complementary solution, 271
Cone, body and space, 230, 256
Conservation: 

of energy, 83, 126, 282
of momentum, 89, 96, 100, 105, 127, 

220, 255
Conservative force, 84
Conservative system, 127, 208, 282
Constant of gravitation, 8, 318
Constrained motion, 17, 51, 61, 

190, 199
Constraint, equations of, 51, 214
Coordinates: 

cartesian, 17
choice of, 17, 27, 47, 54, 61, 289
cylindrical, 42
normal and tangential, 32
polar, 37
rectangular, 27, 42
rotating, 173, 235
spherical, 43
transformation of, 44, 55
translating, 47, 112, 158, 234

Coriolis, G., 4, 176
Coriolis acceleration, 58, 176
Couple: 

gyroscopic, 251
resultant, 213, 247
work of, 205

Critical frequency, 272
Cross or vector product, 93, 150, 

173, 306
Curvature: 

center of, 33
radius of, 32, 311

Curvilinear motion: 
in cylindrical coordinates, 42
in normal and tangential coordinates, 

32, 67
of a particle, 25, 42, 67
in polar coordinates, 37, 67
in rectangular coordinates, 28, 42, 67
in spherical coordinates, 43

Curvilinear translation, 148, 192, 
193, 227

D
D’Alembert, J., 4, 113
D’Alembert’s principle, 112
Damped forced vibration, 272
Damped free vibration, 264
Damping: 

coefficient, 264
critical, 265
ratio, 264
viscous or fluid, 264

Dashpot, 264
Degrees of freedom, 51, 61, 261
Densities, table of, 317
Derivative: 

table of, 308
transformation of, 175, 235
of a vector, 26, 307

Descartes, R., 17
Diagram: 

acceleration-displacement, 19
acceleration-time, 19
active-force, 77, 185, 207
displacement-time, 19
force-displacement, 72, 73
force-time, 89
free-body, 12, 62, 186, 207, 261
impulse-momentum, 88, 218
kinetic, 186, 188, 189, 191, 192, 193, 

196, 199
velocity-displacement, 19
velocity-time, 19

Dimensions, homogeneity of, 10
Direction cosines, 305
Discrete or lumped-parameter model, 260

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k
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Displacement: 
angular, 149
in curvilinear motion, 25
graphical determination of, 19
linear, 17
virtual, 214

Displacement meter, 274
Displacement-time diagram, 19
Distance, 25
Distributed-parameter system, 260
Distributive law, 306
Dot or scalar product, 71, 72, 75, 

77, 306
Dynamical energy, conservation of, 

83, 126
Dynamic balance in rotation, 248
Dynamic equilibrium, 113
Dynamics, 3

E
Earth, angular velocity of, 58, 318
Earth satellites, equations of motion 

for, 105
Efficiency, 77
Einstein, A., 4, 58
Elastic impact, 101
Elastic potential energy, 82, 207
Electric circuit analogy, 275
Energy: 

conservation of, 83, 126, 282
kinetic, 76, 121, 206, 243
potential, 81, 207, 282
in satellite motion, 107
in vibration, 282

Equations of constraint, 51, 214
Equations of motion: 

for fixed-axis rotation, 196
for particles, 63, 67
for plane motion, 187, 199
in polar coordinates, 67
for rectilinear and curvilinear 

 translation, 192
for a rigid body, 186, 246
for rotation about a point, 228
for a system of particles, 121

Equilibrium, dynamic, 113
Euler, L., 4, 247
Euler’s equations, 247

F
Fluid damping, 264
Fluid streams, momentum equations 

for, 133, 134
Foot, 6
Force: 

centrifugal, 113
concept of, 5
conservative, 84
external, 120, 121
inertia, 113
internal, 120
gravitational, 7, 10, 59
resultant, 6, 62, 75, 87, 120, 186, 

213, 247

units of, 6
work of, 71, 205

Force-displacement diagram, 72, 73
Forced vibration, 270, 278

damped, 272
equation for, 271
frequency ratio for, 272
magnification factor for, 272, 273
resonant frequency of, 272
steady-state, 272, 273
undamped, 271

Force field, conservative, 84
Force-time diagram, 89
Forcing functions, 270
Formulation of problems, 11
Frame of reference, 6, 47, 112, 113, 

173, 234, 235
Free-body diagram, 12, 62, 186, 207, 261
Freedom, degrees of, 51, 61, 261
Free vibration: 

damped, 264
energy solution for, 282
equations for, 261, 264
undamped, 261
vector representation of, 263

Frequency: 
critical, 272
damped, 266
natural and circular, 263

Frequency ratio, 272
Friction: 

coefficients of, 317
work of, 207

G
Galileo, 3
Gradient, 84
Graphical representation, 13, 19, 72, 

150, 160, 169, 263
Gravitation: 

constant of, 8, 318
law of, 7

Gravitational force, 7, 10, 59
Gravitational potential energy, 81, 207
Gravitational system of units, 7, 59
Gravity: 

acceleration due to, 8, 9, 59
International Formula for, 9

Gyration, radius of, 289
Gyroscope, 250
Gyroscopic couple, 251
Gyroscopic motion, equation of, 251

H
Harmonic motion, simple, 23, 262
Hertz (unit), 263
Hodograph, 27
Horsepower, 77
Huygens, C., 4

I
Imbalance, rotational, 248
Impact, 99, 220

classical theory of, 101
direct central, 99

elastic, 101
energy loss in, 101
inelastic or plastic, 101
oblique, 101

Impulse: 
angular, 94, 218
linear, 88, 217

Impulse-momentum diagram, 88, 218
Impulse-momentum equation, 88, 94, 

114, 217, 218, 219
Inertia, 5, 57

area moments of, see Moments of 
inertia of area

mass moments of, see Moments of 
inertia of mass

principal axes of, 242, 297
products of, 241, 296

Inertia force, 113
Inertial system, 4, 47, 48, 57, 58
Inertia tensor or matrix, 242, 297
Instantaneous axis of rotation, 165, 229
Instantaneous center of zero 

velocity, 165
Integrals, table of selected, 309
Integration, numerical techniques for, 

314, 315
of vectors, 307

Interconnected bodies, 121, 190, 
213, 219

International Gravity Formula, 9
International System of units, 6

J
Joule (unit), 72

K
Kepler, J., 105
Kepler’s laws of motion, 105, 107
Kilogram, 6, 7, 59
Kinematics, 3, 16, 147, 227

of angular motion, 150, 227
of curvilinear motion, 25
of rectilinear motion, 17
of relative motion, 17, 47, 112, 158, 

168, 173, 234
of rigid bodies, 147, 227

Kinetic diagram, 186, 188, 189, 191, 
192, 193, 196, 199

Kinetic energy: 
of a particle, 76
of plane motion, 206
of rotation, 206, 243
of space motion, 244
of a system of particles, 122, 243
of translation, 206
units of, 76

Kinetic friction, coefficient of, 317
Kinetics, 3, 16, 56, 119, 184, 240

of particles, 56
of rigid bodies, in plane motion, 

184, 248
in rotation, 196, 240
in space motion, 240

Kinetic system of units, 59
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L
Lagrange, J. L., 4
Lagrange’s equations, 191
Laplace, P., 4
Law: 

associative, 305
commutative, 305, 306
of conservation of dynamical energy, 

83, 127, 283
distributive, 306
of gravitation, 7

Laws of motion: 
Kepler’s, 105, 107
Newton’s, 5, 56, 112, 120, 217

Light, speed of, 4, 59
Line, angular motion of, 149
Linear displacement, 17
Linear impulse, 88, 217
Linear momentum: 

applied to fluid streams, 133
conservation of, 89, 100, 127, 220
moment of, 93
of a particle, 87
relative, 114
of a rigid body, 217
of a system, 123

Logarithmic decrement, 267
Lumped-parameter or discrete 

model, 260

M
Magnification factor, 272, 273
Mass, 5, 56

steady flow of, 132
unit of, 6, 7, 59
variable, 138

Mass center, motion of, 121
Mass flow, equations of motion for, 

133, 134
Mass moments of inertia, see Moments 

of inertia of mass
Mathematical model, 11
Mathematics, selected topics in, 302
Matrix, inertia, 242, 297
Measurements: 

absolute, 4, 58
relative, 47, 112, 114, 158, 168, 173, 234

Mechanics, 3
Meter, 6
Metric units, 6, 59
Moment center, choice of, 189, 193, 199
Moment equation of motion, 94, 124, 

125, 126, 187, 189, 246
Moment of linear momentum, 93
Moments of inertia of area, 287, 

291, 319
Moments of inertia of mass, 187, 

240, 288
choice of element of integration 

for, 289
for composite bodies, 291
about any prescribed axis, 296
principal axes for, 242, 297
radius of gyration for, 289

table of, 321
transfer of axes for, 290

Momentum: 
angular, 93, 114, 123, 133, 218, 240
conservation of, 89, 96, 100, 105, 127, 

220, 255
equations for mass flow, 133, 134
linear, 87, 123, 217
moment of, 93
rate of change of, 6, 87, 93, 123, 124, 

125, 126, 217, 218, 219, 246
vector representation of, 87, 93, 217, 

218, 242
Motion: 

absolute, 17, 47, 154, 159, 168
angular, 149, 150, 227, 228, 230, 231
central-force, 105
circular, 34, 39
constrained, 17, 51, 61, 190, 199
curvilinear, 25, 42, 67
in cylindrical coordinates, 42
general space, 234
graphical representation of, 13, 19, 

72, 150, 160, 169, 263
gyroscopic, 250
of mass center, 121
Newton’s laws of, 5, 56, 112, 120, 217
in normal and tangential 

coordinates, 32
parallel-plane, 228, 248
plane, 17, 25, 148, 184, 199
planetary and satellite, 105
in polar coordinates, 37
in rectangular coordinates, 27, 42
rectilinear, 17, 62
relative, 17, 47, 112, 158, 168, 173, 234
rotational, 149, 196, 227, 228
simple harmonic, 23, 262
in spherical coordinates, 43
of a system of particles, 119
unconstrained, 17, 61, 199

N
Natural frequency, 263
Newton, Isaac, 4
Newton (unit), 6
Newtonian frame of reference, 114, 

120, 124
Newtonian mechanics, 58, 120
Newton’s laws, 5, 56, 112, 120, 217
Newton’s method, 312
Notation for vectors, 5, 26, 305
Numerical integration, 314, 315
Nutation, 252

O
Oblique central impact, 101
Orbit, elliptical, 106
Osculating plane, 17

P
Parallel-axis theorems, for mass 

moments of inertia, 290
Parallel-plane motion, 228, 248

Particles, 5, 16
curvilinear motion of, 25, 42, 67
equations of motion of, 63, 67
kinematics of, 16
kinetics of, 56
motion of system of, 119

Particle vibration, 261
Particular solution, 271, 272
Path variables, 17, 32
Percussion, center of, 196
Perigee velocity, 108
Period: 

of orbital motion, 107, 110
of vibration, 263, 266

Phase angle, 273
Plane motion, 17, 25, 148, 184, 199

curvilinear, 25
equations of motion for, 187, 199
general, 148, 199
kinematics of, 25, 47, 148
kinetic energy of, 206
kinetics of, 184, 248

Planetary motion: 
Kepler’s laws of, 105, 107
period of, 107

Poinsot, L., 4
Polar moment of inertia, 291
Position vector, 25
Potential energy, 81, 207, 282
Potential function, 84
Pound force, 6, 7, 59, 60
Pound mass, 7, 59, 60
Power, 77, 208
Precession: 

defined, 230, 250
direct and retrograde, 256
steady, 250, 252, 254, 255
velocity of, 250
with zero moment, 255

Primary inertial system, 4, 47, 57
Principal axes of inertia, 242, 297
Principia, 4
Principle: 

of action and reaction, 6
of conservation of momentum, 89, 96, 

100, 105, 127, 220, 255
D’Alembert’s, 112
of motion of mass center, 121

Products of inertia, 241, 296
Products of vectors, 71, 93, 306
Projectile motion, 28
Propulsion, rocket, 140

R
Radius: 

of curvature, 32, 311
of gyration, 289

Rectilinear motion of a particle, 17, 62
Rectilinear translation, 148, 192, 227
Reference frame, 6, 47, 112, 113, 173, 

234, 235
Relative acceleration, rotating axes, 

175, 235
translating axes, 48, 112, 168, 234
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Relative angular momentum, 114, 125
Relative linear momentum, 114
Relative motion, 17, 42, 112, 158, 168, 

173, 234
Relative velocity: 

rotating axes, 173, 235
translating axes, 48, 158, 234

Relativity, theory of, 59
Resonance, 272
Restitution, coefficient of, 100, 221
Resultant: 

couple, 213, 247
force, 6, 62, 75, 87, 120, 186, 213, 247

Right-hand rule, 93, 306
Rigid bodies: 

kinematics of, 147, 227
kinetics of, 184, 248

Rigid body, 5, 119, 148, 184, 227
Rigid-body motion, general moment 

equations for, 186, 188, 189
Rigid-body vibration, 278
Rocket propulsion, 140
Rotating axes, 173, 235
Rotation:

equations of motion for, 189, 196
finite, 228
fixed-axis, 148, 150, 196, 227
fixed-point, 228
infinitesimal, 229
instantaneous axis of, 165, 229
kinematics of, 149, 150, 230
kinetic energy of, 206, 243
of a line, 149
of a rigid body, 148, 196, 227, 228

Rotational imbalance, 248

S
Satellite, motion of, 105
Scalar, 5
Scalar or dot product, 71, 72, 75, 306
Second, 6
Series, selected expansions, 308
Simple harmonic motion, 23, 262
SI units, 6, 7
Slug, 6, 7, 59, 60
Solar system constants, 318
Solution, method of, 11
Space, 4
Space centrode, 166
Space cone, 230, 256
Space motion, general, 234
Speed, 26
Spin axis, 250
Spin velocity, 250
Spring: 

constant or stiffness of, 73, 261, 282
potential energy of, 82
work done by, 73

Standard conditions, 9, 59
Static friction, coefficient of, 317
Steady mass flow, force and moment 

equations for, 133, 134

Steady-state vibration, 272, 273
Subtraction of vectors, 305
System: 

conservative, 127, 208, 282
of interconnected bodies, 121, 190, 

213, 219
of particles: 

angular momentum of, 123
equation of motion for, 121
kinetic energy of, 122, 243
linear momentum of, 123

of units, 6, 59

T
Table: 

of area moments of inertia, 319
of centroids, 319
of coefficients of friction, 317
of densities, 317
of derivatives, 308
of integrals, 309
of mass centers, 321
of mass moments of inertia, 321
of mathematical relations, 302
of solar-system constants, 318
of units, 6, 7

Tensor, inertia, 242, 297
Theory of relativity, 59
Thrust, rocket, 140
Time, 5, 6, 59
Time derivative, transformation of, 

175, 235
Transfer of axes: 

for moments of inertia, 290
for products of inertia, 296

Transformation of derivative, 175, 235
Transient solution, 272, 273
Translating axes, 47, 112, 158, 234
Translation, rectilinear and curvilinear, 

148, 192, 227
Triple scalar product, 243, 307
Triple vector product, 307
Two-body problem: 

perturbed, 109
restricted, 110

U
Unconstrained motion, 17, 61, 199
Units, 6, 59

kinetic system of, 59
Unit vectors, 28, 32, 37

derivative of, 32, 37, 173, 235
U.S. customary units, 6, 7, 59

V
Variable mass, force equation of, 138
Vectors, 5, 305

addition of, 5, 305
cross or vector product of, 93, 150, 

173, 306
derivative of, 26, 307
dot or scalar product of, 71, 72, 75, 

77, 306

integration of, 307
notation for, 5, 26, 305
subtraction of, 307
triple scalar product of, 307
triple vector product of, 307
unit, 28, 32, 37, 42, 305

Velocity: 
absolute, 47
angular, 149, 150, 151, 227, 230
average, 18, 25
cylindrical components of, 43
defined, 18, 26
graphical determination of, 19
instantaneous, 18, 26
instantaneous axis or center of, 165
in planetary motion, 108
polar components of, 37
rectangular components of, 28, 42
relative to rotating axes, 174, 234
relative to translating axes, 48, 158
spherical components of, 43
tangential component of, 32
vector representation of, 26

Velocity-displacement diagram, 19
Velocity-time diagram, 19
Vibration: 

amplitude of, 263
damped, 264
energy in, 282
forced, 270, 278
free, 261
frequency of, 263, 266
over- and underdamped, 265
period of, 263, 266
reduction of, 273
simple harmonic, 262
steady-state, 272, 273
transient, 272, 273
work-energy solution for, 282

Virtual displacement, 214
Virtual work, 71, 214
Viscous damping coefficient, 264

W
Watt, 77
Weight, 7, 8, 10, 59
Work, 71, 205

of a constant force, 72
of a couple, 205
an exact differential, 84
examples of, 72
of a force, 71, 205
of friction, 207
graphical representation of, 72
of a spring force, 73
units of, 72
virtual, 71, 214
of weight, 74

Work-energy equation, 76, 82, 114, 122, 
207, 247
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Problem Answers

Chapter 1
1/1 For a 180-lb person: m = 5.59 slugs or 81.6 kg
 W = 801 N

1/2 W = 14 720 N or 3310 lb, m = 102.8 slugs

1/3 V1 + V2 = 27, V1 + V2 = 1.392i + 18j, V1 − V2 =
 19.39i−6j, V1 × V2 = 178.7k, V2 × V1 =
 −178.7k, V1 ∙ V2 = − 21.5

1/4 m = 0.01294 slugs or 0.1888 kg, W = 1.853 N

1/5 F = (−2.19i – 1.535j)10−8 N

1/6 h = 0.414R

1/7 Wabs = 589 N, Wrel = 588 N

1/8 g = 29.9 ft ∕sec2, Wh = 186.0 lb

1/9 h = 1.644(105) km

1/10 𝜃 = 1.770°
1/11 RA = 2.19, RB = 2.21

1/12 SI: [E] = kg ∙ m2∕s, US: [E] = lb-ft-sec

1/13 [Q] = ML−1 T−2

Chapter 2
2/1 v = −75 m ∕s

2/2 t = 2.69 sec

2/3 s = 72 m, v = 42 m ∕s, a = 15 m ∕s2

2/4 v = 3 − 10t + t2 m ∕s, s = −4 + 3t − 5t2 + 
1
3

t3 m

2/5 v = √v 2
0 −

2
3

k(s3 − s 3
0 ), v = 9.67 m∕s

2/6  s = s0 +
1
c 2

2 [ c2(v − v0) + c1 ln (
c1 + c2v0

c1 + c2v ) ]
  s = s0 +

c1 + c2v0

c 2
2

(ec2t − 1) −
c1

c2
t

2/7 s = 213 ft

2/8 s =
1
4

 (0.2t + 30)2 mm, v =
1

10
 (0.2t + 30) mm∕s

  a = 0.02 mm ∕s2, For v = 15 mm ∕s: t = 600 s 

 s = 5620 mm

2/9 v2 = 139.0 ft ∕sec, descending

2/10 a = 1.2 ft ∕sec2

2/11 tAC = 2.46 s

2/12 h = 49.4 ft, t = 4.24 sec

 vB = 56.4 ft ∕sec down

2/13 (a) v = 21.9 m ∕s, (b) v = 25.6 m ∕s

2/14 s = 393 m, t = 14.16 s

2/15 Δa = 0.5 m ∕s2, Δs = 64 m

2/16 v = 4.51 m ∕s

2/17 s = 3.26 m, t = 3.26 s

2/18 a = 16.28 ft ∕sec2, v1 = 39.5 ft ∕sec, t1 = 2.43 sec

2/19 v = 43.6 m ∕s, 
dv
ds

 = 0.0918 s−1

2/20 a = 1.168 ft ∕sec2, v = 99.8 mi ∕hr

2/21 h = 2.61 m

2/22 s = 713 m

2/23 d = 21.9 m

2/24 v = 8 ft ∕sec

2/25 h = 125.4 m, t = 157.9 s

2/26 s = 12t2 − 
1
3

  t3 +
10
3

  t3∕2 ft, s(10) = 972 ft 

2/27 t = 108.9 s

2/28 s = 5810 ft

2/29 s = 3710 ft

2/30 k1 = 42.1 s−2, k2 = 42.0 m−2s−2

2/31 (a) v = 6490 ft ∕sec, (b) v = 4990 ft ∕sec

2/32 t = 1.234 sec

2/33 y = 8.05 m, vterminal = 1.871 m ∕s

2/34 c =
3v2

0 + 6gym

2ym
3

2/35 h = 36.5 m, vƒ = 24.1 m ∕s

2/36 tu = 2.63 s, td = 2.83 s

2/37 t1 = 0.788 sec, t10 = 0.1279 sec, t100 = 0.0395 sec

2/38 t1 = 0.795 sec, t10 = 0.1592 sec, t100 = 0.1246 sec

2/39 (a) s = 1206 m, (b) s = 1268 m

2/40 D =
ln 2

k
, t =

1
kv0

2/41 x = 0.831 m

2/42 A leads B by 198.7 m

2/43 xƒ = 61.6 mm (stretch)

 2/44 xƒ = −23.2 mm (compression)

2/45 t1 = 0.900 sec, v1 = 226 ft ∕sec up

 t2 = 14.94 sec, v2 = 226 ft ∕sec down

*

When a problem asks for both a general and a specifi c result, only the specifi c result might 
be listed below.

Denotes that a problem is of increased diffi culty

* Denotes that a problem is best solved utilizing a numerical solution

PA-1
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PA-2 Problem Answers

 2/46 t1 = 1.460 sec, v1 = 84.3 ft ∕sec up

 t2 = 5.97 sec, v2 = 63.3 ft ∕sec down

2/47 vav = 20.6 m ∕s, 𝜃 = 76.0°

2/48 aav = 5 m ∕s2, 𝜃 = 53.1°

2/49 (x, y) = (2.4, 3.24) in.

2/50 v = 2.24 m m∕s, a = 2.06 m m∕s2

2/51 t = 24.7 sec, h = 1.786 mi

2/52 Rmax =
v0

2

g
2/53 u = 343 m ∕s

2/54 2.57 ft above B

2/55 v0 = 131.0 ft ∕sec, d = 255 ft, t = 3.52 sec

2/56 v0 = 5.04 m ∕s, 𝜃 = 64.7°

2/57 E =
mu2

 sin 
2

 𝜃

eb
, s = 2b cot 𝜃

2/58 s = 3.10 m, 𝜃 = 54.1°
2/59 d = 2.07 m

2/60 𝜃 = 21.7°
2/61 𝜃 = 14.91°
2/62 d = 1.971b, 0.986√bg < u < 1.394√bg

2/63 v = 21.2 m ∕s, s = 3.55 m

2/64 42.2 ft up in the tree at B

2/65  (a) t = 1.443 s, h = 0.525 m, (b) t = 1.704 s 
h = 0.813 m

2/66 d = 107.6 m, tƒ = 2.92 s

2/67 R = 46.4 m, 𝜃 = 23.3°
2/68 𝜃 = 2.33°
2/69  (a) (xƒ, yƒ) = (140, −31.9) ft

 (b) (xƒ, yƒ) = (163.4, −20) ft

2/70 R = 2970 m

2/71 6.15 ≤ v0 ≤ 6.68 m ∕s

2/72 R =
2u2

g  tan 𝜃 sec 𝜃

2/73 𝛼 = 50.7°

 2/74 h = 583 ft, tƒ = 12.59 sec
 d = 746 ft

 2/75 𝜃 =
90° + 𝛼

2
, 𝛼 = 0: 𝜃 = 45°

 𝛼 = 30°: 𝜃 = 60°, 𝛼 = 45°: 𝜃 = 67.5°

 2/76 vx = (v0 cos 𝜃)e−kt, vy = (v0 sin 𝜃 +
g
k) e−kt −

g
k

 x =
v0 cos 𝜃

k
 (1 − e−kt)

 y =
1
k

 (v0 sin 𝜃 +
g
k) (1 − e−kt) −

g
k

 t

 As t→∞, vx→0 and vy→−
g
k

2/77 v = 5.30 ft ∕sec, an = 25.0 ft ∕sec2

2/78 a = 6.77 m ∕s2

2/79 No answer

2/80 vA = 11.75 m ∕s, vB = 13.46 m ∕s

2/81 𝜌 = 105.8 m

2/82 v = 19.81 m ∕s

2/83 an = 10.31 ft ∕sec2, at = 9.09 ft ∕sec2

2/84 a = 3.26 m ∕s2 when the sprinter reaches the 
 60-m mark

2/85 𝜌 = 266 m

2/86 (a) aav = 4.94 m ∕s2, 1.138% difference

 (b) aav = 4.99 m ∕s2, 0.285% difference

 (c) aav = 4.998 m ∕s2, 0.0317% difference

 an = 5 m ∕s2 in each case

2/87 𝜌B = 163.0 m 

2/88 aP1
= 338 m∕s2, aP2

= 1.5 m∕s2

2/89 v = 356 m ∕s, a = 0.0260 m ∕s2

2/90 v = 20 m ∕s or 72 km ∕h 

2/91 𝜌 = 1709 m 

2/92 Launch: at = −6.69 ft ∕sec2, 𝜌 = 1859 ft

 Apex: at = 0, 𝜌 = 1740 ft

2/93 t = 0.452 sec and 2.67 sec 

2/94 v = 41.3 km ∕s or 148.8(103) km ∕h 

2/95 Car B crosses fi rst, 𝛿 = 25.9 ft

2/96 a = 63.2 m ∕s2

2/97 t = 1 sec: v̇ = −6.58 ft ∕sec2, 𝜌 = 142.2 ft

 t = 2 sec: v̇ = 8.75 ft ∕sec2, 𝜌 = 149.7 ft

2/98 (a) a = 19.62 m ∕s2, 𝜃x = 0 

 (b) a = 38.9 m ∕s2, 𝜃x = −59.7°
 (c) a = 97.3 m ∕s2, 𝜃x = −168.4°
2/99 an = 66.0 mm ∕s2, at = 29.7 mm ∕s2

2/100 𝜌 = 18 480 km

2/101  an = 28.8 in. ∕sec2, at = 34.6 in. ∕sec2, 𝜌 = 19.06 in.

 2/102 L = 46.1 m

 2/103 (xC, yC) = (22.5, −22.9) m

2/104 (an)max = 11.01 m ∕s2 at t = 9.62 s

 |at|max = 9.72 m ∕s2 at t = 0

 𝜌min = 288 ft at t = 9.62 s

2/105 ṙ = 47.7 ft ∕sec, �̇� = −41.0 deg ∕sec

2/106 v = 10.91 m ∕s, ṙ = 9.76 m ∕s

2/107 No answer

2/108 ṙ = −9.31 m ∕s, �̇� = −0.568 rad ∕s

2/109 r̈ = 2.07 m ∕s2, 𝜃 = −1.653 rad ∕s2

2/110 ṙ = 15 mm ∕s, �̇� = 0.1 rad ∕s

2/111 r̈ = −1 mm ∕s2, 𝜃 = −0.035 rad ∕s2

2/112  v = 1.5er + 2.71e𝜃 ft∕sec

 a = −4.24er + 1.344e𝜃 ft ∕sec2

2/113 No answer

*

*
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 Problem Answers PA-3

2/114  v = 6er + 12.57e𝜃 in. ∕sec 

 a = −4.19er + 2.09e𝜃 in. ∕sec2

2/115 (a) vA = ver + lΩe𝜃, aA = −lΩ2er + 2vΩe𝜃

 (b) vB = 4ver + 2lΩe𝜃, aB = −2lΩ2er + 8vΩe𝜃

2/116 ṙ = −14.17 m ∕s, r̈ = 7.71 m ∕s2

 �̇� = 0.388 rad ∕s, 𝜃 = 0.222 rad ∕s2

2/117 v = 0.377 m ∕s, a = 0.272 m ∕s2, 𝛼 = 19.44°
2/118 vA′ = 109.3 km∕h, vB′ = 107.1 km∕h

2/119 ṙ = 35.9 ft ∕sec, �̇� = 0.1834 rad ∕sec

2/120 r̈ = −1.234 ft ∕sec2, 𝜃 = −0.1072 rad ∕sec2

2/121 v = 360 m ∕s, a = 20.1 m ∕s2

2/122 At entry: �̇� = −2.13 rad ∕s, 𝜃 = 1.565 rad ∕s2

 
| �̇�|max = 2.19 rad ∕s at t = 1.633 s

 |𝜃|max = 3.34 rad ∕s2 at t = 1.373 s

2/123 v = 161.7 ft ∕sec, �̇� = −0.0808 rad ∕sec

2/124 a = 8.62 ft ∕sec2, 𝜃 = 0.01832 rad ∕sec2

2/125 r̈ = 12.15 m ∕s2, 𝜃 = 0.0365 rad ∕s2

2/126 v = 0.296 m ∕s, a = 0.345 m ∕s2

 v = 0.064i + 0.289j m ∕s

 a = −0.328i − 0.1086j m ∕s2

2/127 r = d, 𝜃 = 0, ṙ = v0 cos 𝛼

 �̇� =
v0 sin 𝛼

d
, r̈ =

v0
2 sin2 𝛼

d

 𝜃 = −
1
d [

2v0
2

d
 cos 𝛼 sin 𝛼 + g ]

2/128 ṙ = 8910 ft ∕sec, r̈ = −1.790 ft ∕sec2

 �̇� =  3.48(10−4) rad ∕sec, 𝜃 = −1.398(10−7) rad ∕sec2

2/129 (a) v = 37.7 km ∕s, 𝛽 = 32.0°
 (b) v = 37.7 km ∕s, 𝛽 = 17.01°
2/130 r = 21 900 m, ṙ = −73.0 m ∕s, r̈ = −2.07 m ∕s2

 
𝜃 = 43.2°, �̇� = 0.00312 rad∕s, 𝜃 = −9.01(10−5) rad ∕s2

 2/131 r = 51.0 ft, ṙ = 91.4 ft ∕sec, r̈ = −11.35 ft ∕sec2

 𝜃 = 31.9°, �̇� = −0.334 rad ∕sec, 𝜃 = 0.660 rad ∕sec2

 2/132 v = 50.2 m ∕s, v̇ = 6.01 m ∕s2, 𝜌 = 50.5 m, 𝛽 = 12.00°
2/133 𝜃 = 74.6°, v = 1.571 m ∕s2 𝜌 = 8.59 m

2/134 x = −2050 ft, y = 5640 ft, z = 3950 ft

 vx = −102.6 ft ∕sec, vy = 282 ft ∕sec, vz = −124.4 ft  ∕sec

 ax = 0, ay = 0, az = −32.2 ft  ∕sec2

2/135 a = 27.5 m ∕s2

2/136 v𝜃 = −u sin 𝜃, vR = u cos 𝜃 cos 𝜙, v𝜙 = −u cos 𝜃 sin 𝜙

2/137 amax = √r2𝜔4 + 16n4𝜋4z0
2 

2/138 Ṙ = 12.26 m ∕s, 𝜃 = 0.1234 rad ∕s, �̇� = 0.0281 rad ∕s

2/139  R̈ = 5.69 m ∕s2, �̈� = 9.52(10−4) rad ∕s2 
�̈� = −4.61(10−3) rad ∕s2

2/140 vP = √l̇2 + (l0 + l)2𝜔2 + ḣ2

 aP = √(l̈ − (l0 + l)𝜔2)2 + 4l̇2𝜔2 + ḧ2

2/141 a = 219 mm ∕s2

*

2/142 ar = −19.82 ft ∕sec2, a𝜃 = −2.91 ft ∕sec2

 az = −0.386 ft ∕sec2

2/143 aR = −5.10 m ∕s2, a𝜃 = 7.64 m ∕s2

 a𝜙 = −0.3 m ∕s2

2/144 aP = 17.66 m ∕s2

 2/145 aR = R̈ − R �̇�
2 − R �̇�

2 cos2 𝜙

 a𝜃 =
cos 𝜙

R
 
d
dt

 (R2𝜃)− 2R �̇� �̇� sin 𝜙

 a𝜙 =
1
R

 

d
dt

 (R2
�̇�) + R �̇�

2 sin 𝜙 cos 𝜙

2/146 vR = 0, v𝜃 = R𝜔√1 − ( h
2R)

2

, v𝜙 =
h𝜔

√1 − ( h
2R)

2

 2/147 ar = b𝜃2( tan 
2 𝛾 

 sin 
2𝛽 − 1)e−𝜃 tan 𝛾 sin 𝛽

 with 𝛽 =  tan−1 (b
h)

 2/148 aP = 0.904 m ∕s2

2/149 vA∕B = 15i −22.5j m ∕s, aA∕B = 4.5j m∕s2

2/150 vB = 30.4 mi ∕hr

2/151 vA = 1200 km ∕h, vA ∕B = 1039 km ∕h

2/152 (a) vW∕R − 12.29i − 18.60j mi∕hr

       vW∕R = 22.3 mi∕hr, 33.4° west of due south

 (b) vW∕R = − 12.29i + 1.396jmi∕hr

       vW∕R = 12.37 mi∕hr, 6.48° north of due west

2/153 𝛽 = 281°, t = 1.527 hr

2/154  vA ∕B = 3.00i + 1.999j m ∕s

 aA ∕B = 3.63i + 0.628j m ∕s2

2/155 vB = 6.43 m ∕s

2/156 𝜃 = 28.7° below normal

2/157 At C: vA ∕B = −597i − 142.5j km ∕h

 At E: vA ∕B = −492i + 247j km ∕h

2/158  vB = 523i + 16.67j ft ∕sec

2/159 vW = 14.40 knots

2/160 ṙ = −15.43 m ∕s, 𝜃 = 0.01446 rad ∕s

2/161 r̈ = −1.668 m ∕s2, �̈� = 0.0352 rad ∕s2

2/162 vB ∕A = 9.55 mi ∕hr

2/163 If vB = 30 km ∕h: 𝛼 = 31.3° or 74.3°
 If vB = 0: 𝛼 = 34.0° or 65.4°
2/164 aB∕A = 0.733i + 29.2j ft ∕sec2

2/165 𝛼 = 33.3°, vA ∕B = 73.1i + 73.1j ft ∕sec

2/166 vA ∕B = 36.0 m ∕s, ṙ = −15.71 m ∕s, 𝜃 = 0.1079 rad ∕s

2/167 r̈ = 2.57 m ∕s2, �̈� = 0.01131 rad ∕s2

2/168 vA ∕B = 71.5i − 47.4j ft ∕sec

 2/169 r̈ = −0.637 m ∕s2, �̈� = 0.1660(10−3) rad ∕s2

 2/170 (a) vA ∕B = 50i + 50j m ∕s, aA ∕B = 1.25j m ∕s2

 (b) v̇r = 0.884 m ∕s2, 𝜌r = 5660 m
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PA-4 Problem Answers

2/171 vB = 10.8 ft ∕sec down

2/172 vA = −0.5j m ∕s, vB = 3j m ∕s

2/173 vA = 1.8 m ∕s up, aA = 3 m ∕s2 down

2/174 vA = 1.333 ft ∕sec up incline

2/175 t = 20 sec

2/176 t = 3 min 20 s 

2/177 vA =
2√x2 + h2

x
vB 

2/178 vB = − 
3y

2√y2 + b2
vA 

2/179 vB ∕A = 1 ft ∕sec, aB∕A = 2 ft ∕sec2, vC = 4 ft ∕sec 

 (all directed up incline)

2/180 4vA + 8vB + 4vC + vD = 0, 3 degrees of freedom

2/181 ax = − 
L2vA

2

(L2 − y2)3∕2 

2/182 vA = 2.76 m ∕s

2/183 vA =
2y

√y2 + b2
vB

2/184 vB =
s + √2 x

x + √2 s
 vA

 (a minus value indicates a leftward direction)

2/185 h = 300 mm

2/186 v =
l̇√4y2 + b2

16y
, a =

b2 l̇2

256y3 

2/187 vB =
1
2n vA 

2/188 (vA)y =
l√2(1 +  cos 𝜃)

b tan 𝜃
  vB 

2/189 vB = 62.9 mm ∕s up

 2/190 aB = 11.93 mm ∕s2 up

2/191 v = −7.27 m ∕s

2/192 t = 8.38 s

2/193  vB ∕A = 355i − 15.43j mi ∕hr 

 aB ∕A = 74.0i + 70.5j ft ∕sec2

2/194 t1 = 2.27 sec, t2 = 8.48 sec

2/195 (a) vW /B = −15.61i − 0.928j mi ∕hr

 (b) vB = 12.86 mi ∕hr, vW /B = 15.32 mi ∕hr 

2/196 vP = 2.72 m ∕s

2/197 t = 2.32 s, vA = 1.439 m ∕s down 

2/198 v = 414 km∕h 

2/199 ṙ = 15 m ∕s, �̇�= 0.325 rad ∕s

 r̈ = 4.44 m ∕s2, 𝜃= −0.0352 rad ∕s2

 an = 6.93 m ∕s2, at = 4 m ∕s2

 ρ = 129.9 m

2/200 v = 7.51 mm ∕s, v = 7.37i − 1.470j mm ∕s

 a = 7.24 mm ∕s2, a = −5.28i − 4.96j mm ∕s2

 et = 0.981i − 0.1957j, en = −0.1957i − 0.981j

 at = −4.20 mm ∕s2, at = −4.12i + 0.822j mm ∕s2

 an = 5.90 mm ∕s2, an = −1.154i − 5.78j mm ∕s2

 𝜌 = 9.57 mm, �̇� = 0.785 rad ∕s 

2/201 v = 7.51 mm ∕s, v = 7.37i − 1.470j mm ∕s

 a = 7.24 mm ∕s2, a = −5.28i − 4.96j mm ∕s2

 er = 0.795i + 0.607j, e𝜃 = −0.607i + 0.795j

 vr = 4.96 mm ∕s, vr = 3.95i + 3.01j mm ∕s

 v𝜃 = −5.64 mm ∕s, v𝜃 = 3.42i − 4.48j mm ∕s

 ar = −7.20 mm ∕s2, ar = −5.73i − 4.37j mm ∕s2

 a𝜃 = −0.743 mm ∕s2, a𝜃 = 0.451i − 0.591j mm ∕s2

 r = 45.7 mm, ṙ = 4.96 mm ∕s, r̈ = −6.51 mm ∕s2

 𝜃 = 37.3°, �̇� = −0.1233 rad ∕s, 𝜃 = 0.01052 rad ∕s2

2/202 (x, y, z) = (−1255, 1193, 0) ft 

2/203 h = 6048 km 

2/204 vB = 46.8 mm∕s up

2/205 aB = 7.86  mm∕s2 up

 2/206 (a) a = b√K 4 + 𝜔4𝜃0
2

 cos 
2𝜙 

 (b) a = bK√K2 + 4𝜔2𝜃0
2 

2/207  At t = 9 s: vr = 90.6 m ∕s, v𝜃 = −42.8 m ∕s 
ar = −2.39 m ∕s2, a𝜃 = −9.51 m ∕s2

2/208 t′ =  0.349 s 

2/209 k = 0.00323 ft−1, vt = 99.8 ft ∕sec, v′ = 113.5 ft ∕sec 

2/210 v1 mi = 11.66 knots, vmax = 14.49 knots 

2/211 𝜃max = 110.4° at t = 0.802 sec

  �̇�max = 3.79 rad ∕sec at t = 0.324 sec 
𝜃 = 90° at t = 0.526 sec 

2/212 𝛼 = 42.2°, R = 101.3 m

2/213 (vA ∕B)max = 70 m ∕s at t = 47.1 s and sB = 1264 m

 (vA ∕B)min = 10 m ∕s at t = 23.6 s and sB = 557 m

 (aA ∕B)max = 6.12 m ∕s2 at t = 0 and sB = 0

 (aA ∕B)min = 2.52 m ∕s2 at t = 10 s and sB = 150 m

2/214 With drag: R = 202 m, Without drag: R = 405 m

Chapter 3
3/1 t = 1.529 s, x = 4.59 m

3/2 (a) a = 1.118 m ∕s2 down incline, (b) a = 0

 (c) a = 2.04 m ∕s2 up incline

3/3 a = 3.58 ft ∕sec2 up

3/4 T = 13.33 kN, a = 0.667 m ∕s2

3/5 R = 846 N, L = 110.4 N

3/6 F = 2890 N

3/7 𝜇k = 0.0395

3/8 𝛼 =  tan 
−1 [

P
(M + m) g cos 𝜃 ], For P = 0: 𝛼 = 0  

*

*

*

*

*

*

*

*

*
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 Problem Answers PA-5

3/9 Uphill: s = 807 m, Downhill: s = 751 m

3/10 NA = m [ g +
P

√3(M + m) ]
 NB = m [ g −

P

√3(M + m) ]
3/11 vA ∕B = −87.7i − 11j ft ∕sec, aA ∕B = −6.87i ft ∕sec2

3/12 T1 = 39,200 lb, T100 = 392 lb

3/13 P = 43.8 lb

3/14 t = 6.16 years, s = 2.84(109) km

3/15 (a) a = 0.457 m ∕s2 down incline

 (b) a = 0.508 m ∕s2 up incline

3/16 (a) a = 0, (b) a = 1.390 m ∕s2 right

3/17 FA = 4080 lb

3/18 (a) a = 0.0348g down incline

 (b) a = 0.0523g up incline

3/19 s = 64.2 m

3/20 T1 = 248 N, T2 = 497 N, T3 = 994 N

3/21 (a) a = 10.73 ft ∕sec2 up, (b) a = 2.93 ft ∕sec2 up

3/22 aA = 1.450 m ∕s2 down incline

 aB = 0.725 m ∕s2 up, T = 105.4 N

3/23 a = 0.532 m ∕s2

3/24 k = 5 lb ∕in.

3/25 x = 201 m

3/26 R = 1.995 MN, L = 1.947 MN, D = 435 kN

3/27 v = √2P
𝜌

− 𝜇k gL

3/28 aA = 8.32 ft ∕sec2 right, aB = 36.1 ft ∕sec2 down

 T = 11.21 lb T

3/29 v = 0.490 m ∕s, xmax = 100 mm

3/30 0.0577(m1 + m2) g ≤ P ≤ 0.745(m1 + m2) g

3/31 (a) h = 55.5 m, (b) h = 127.4 m

3/32 aB = 2.37 m ∕s2 down slot

 T = 8.21 N T

3/33 v = 6980 ft ∕sec

3/34 t = 0.589 s, s2 = 0.1824 m

 ▶3/35 (a) T = 8.52 N, (b) T = 16.14 N

 ▶3/36 t = 13 h 33 min, v = 4.76(10−5) m ∕s

3/37 NA = 10.89 N, NB = 8.30 N

3/38 NB = 1.374 lb, v̇ = −16.10 ft ∕sec2

3/39 N = 394 lb

3/40 (a) R = 1.177 N, (b) R = 1.664 N

3/41 𝜌 = 24,000 ft

3/42 N = 8.63 rev ∕min

3/43 v = 29.1 m ∕s, N = 12.36 kN

3/44 N = 0.0504 lb

3/45 (a) vB = 195.3 km ∕  h, (b) NA = 241 N

3/46 𝜔 = 1.064 rad ∕s

3/47 N = 156.2 lb, a = 27.7 ft ∕sec2

3/48 v = 3.13 m ∕s, T = 0.981 N

3/49 𝜔 = √ g
𝜇sr

3/50 an = 0.818g, F = 2460 lb

3/51 at = −22.0 ft ∕sec2

3/52 v = 18.05 m ∕s or 65.0 km ∕  h

3/53 vA = 140.7 ft ∕sec, vB = 163.8 ft ∕sec

3/54 T = 1.901 N, v = 0.895 m ∕s

3/55 NA = 3380 N up

 NB = 1617 N down

3/56 N = 2.89 N toward O′, R = 1.599 N

3/57 F = 165.9 N

3/58 T = 1.76 N, F𝜃 = 3.52 N (contact on upper side)

3/59 FOA = 2.46 N, Fslot = 1.231 N

3/60 FOA = 3.20 N, Fslot = 1.754 N

3/61 h = 35 800 km

3/62 F = 0.0979 lb

3/63 P = 27.0 N, Ps = 19.62 N

3/64 NA = 1643 N, NB = 195.8 N

3/65 𝜌 = 3000 km, v̇ = 6.00 m ∕s2

3/66 Dynamic: Fr = 4.79 N, F𝜃 = 14.00 N

 Static: Fr = 5.89 N, F𝜃 = 10.19 N

3/67 3.41 ≤ 𝜔 ≤ 7.21 rad ∕s

3/68 F = 4.39 N

3/69 T = 2.52 lb, N = 0.326 lb on side B

3/70 (a) and (c) F = 1562 lb

 (b) F = 2260 lb

3/71 N =
1

4𝜋 √(
𝜇sg
r𝛼 )

2

− 1

3/72 r = r0 cosh 𝜔0t, vr = r0  𝜔0 sinh 𝜔0t, v𝜃 = r0𝜔0 cosh 𝜔0t

3/73 𝛽 =  cos−1 (2
3

+
v0

2

3gR), 𝛽 = 48.2°

3/74 ṙ = 9620 ft ∕sec, 𝜃 = 1.133(10−4) rad ∕sec

 r̈ = −1.153 ft ∕sec2, �̈� = −2.72(10−8) rad ∕sec2

 ▶3/75 N = 81.6 N, R = 38.7 N

 ▶3/76 s =
r

2𝜇k
 ln (

v0
2 + √v0

4 + r2g2

rg )
3/77 (a) (UA-B)W = 1.570 J, (b) (UA-B)s = − 4.20 J 

3/78 vB = 3.05 m ∕s

3/79 k = 974 lb ∕in.

3/80 (a) no motion, (b) vB = 5.62 m ∕s

3/81 vF = − 672 ft-lb

3/82 P = 0.400 hp

3/83 sAB = 214 ft, sBA = 262 ft

3/84 (a) v = 2.56 m ∕s, (b) x = 98.9 mm

3/85 k = 267 lb ∕ft 
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PA-6 Problem Answers

3/124 h = 
3
2

 R, NB = 6mg up

3/125 𝜃 = 43.8°
3/126 v0 = 6460 m ∕s

3/127 vA = 2.30 m ∕s

3/128 vB = 26 300 km ∕  h

3/129 v = 30.0 ft ∕sec or 20.4 mi ∕  hr

3/130 v = 0.990 m ∕s

3/131 v2 = 35.1 km ∕  h

3/132 vA = √vP
2 − 2gR2( 1

rP
−

1
rA

)
3/133 (vB)max = 0.962 m ∕s

3/134 (a) v = 0.635 m ∕s, (b) dmax = 0.1469 m

3/135 v = 6240 ft ∕sec or 4250 mi ∕  hr

3/136 v = 3.06 ft ∕sec

3/137 (a) k = 111.9 N∕m, (b) v = 0.522 m ∕s

 ▶3/138 (a) v = 0.865√gr, (b) vmax = 0.908√gr

 (c) 𝜃max = 126.9°

3/139 1.7 N ∙s

3/140 F = 3.03 kN

3/141 G = 14.40i − 11.52j + 6k kg ∙m ∕s
 G = 19.39 kg ∙m ∕s

 R = 21.6i − 14.4j N

3/142 |ΔE | = 13 480 J, n = 99.9% 

3/143 𝜇k = 0.303

3/144 v = 3.42 m ∕s

3/145 v2 = 188.5i − 74j + 47k m ∕s

3/146 vC = 1.231 m ∕s left

3/147 (a) v = 18.30 ft ∕sec, (b) v = 0.1875 ft ∕sec

3/148 d = 1.326 m

3/149 v = 1.218 m ∕s down

3/150 x· 1 = 2.90 m ∕s right, x· 2 = 0.483 m ∕s left

3/151 T = 2780 N

3/152 v = 17.82 mi ∕  hr, 𝜃 = 54.7° west of north

3/153 (a) and (b) v′ =
v
3

, n =
2
3

3/154 N = 5960 lb

3/155 v2 = v1 +
F

mk
(1 + 𝜇k) −

𝜇k𝜋g
2k

, F =
𝜇k𝜋mg

2(1 + 𝜇k)
3/156 v = 190.9 m∕s, |ΔE | = 17.18 kJ (loss) 

3/157 v3 = 17 970 km ∕  h

3/158 ts = 3.46 s

3/159 ts = 3.69 s

3/160 D = 9210 lb

3/161 vƒ = 0.00264 m ∕s, Fav = 59.5 N

3/162 P = 704 lb T

3/86 (a) v = 5.93 ft ∕sec, (b) v = 6.55 ft ∕sec

3/87 vB = 4.25 m ∕s

3/88 P = 0.393 hp, P =  293 W

3/89 v = 1.881 m ∕s

3/90 P = 0.992 kW

3/91 e = 0.764 

3/92 (a) P = 56.4 hp, (b) P = 87.6 hp 

3/93 v = 566 m ∕s

3/94 (a) NB = 48 N right, (b) NB′ = 29.4 N right

 (c) NC = 17.63 N down, (d) ND = 29.4 N left

3/95 With nonlinear term: 𝛿 = 0.377 ft (4.52 in.)

 Without nonlinear term: 𝛿 = 0.406 ft (4.88 in.)

3/96 e = 0.892

3/97 P = 0.1394 hp

3/98 v0 = 6460 m ∕s

3/99 (a) F = 61,200 lb, (b) P = 3270 hp

 (c) P = 6530 hp, (d) P = 2670 hp

3/100 P = 40.4 kW

3/101 (a) NB = 4mg, (b) NC = 7mg

 (c) s =
4R

1 + 𝜇k√3
3/102 x = 53.2 m

3/103 (a) s = 0.221 m down incline

 (b) s = 0.1713 m up incline

3/104 (a) s = 0.621 m down incline

 (b) s = 0.425 m down incline

3/105 P = 20 kW

3/106 Pin = 36.8 kW

3/107 v = 7.80 ft ∕sec

3/108 𝛿 = 29.4 mm

3/109 s = 0.1445 m

3/110 (a) P30 = 5 hp, P60 = 16 hp

 (b) Pup = 35.2 hp, Pdown = −3.17 hp

 (c) v = 70.9 mi ∕  hr

3/111 v = 1.537 m ∕s

3/112 (a) vB = 9.40 m ∕s, (b) 𝛿 = 54.2 mm

3/113 v = 1.248 ft ∕sec

3/114 vB = 4.27 ft ∕sec

3/115 L = 49.0 in.

3/116 NB = 14.42 N

3/117 (a) k = 393 N∕m, (b) v = 1.370 m ∕s, 𝜃 = 2.28 rad  ∕s

3/118 (a) v = 3.84 ft ∕sec, (b) x = 0.510 in.

3/119 𝜃 = 4.22 rad  ∕s

3/120 (a) kT = 25.8 N ∙m ∕rad, (b) v = 1.255 m ∕s

3/121 v = 2.54 ft ∕sec down, d = 8.00 in.

3/122 v = 4.93 m ∕s

3/123 𝜃 = 9.27 rad ∕sec
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 Problem Answers PA-7

3/197 F = 107.0 N left

3/198 
m1

m2
= e 

3/199 𝜃′ = 31.0°, v′ = 0.825v

3/200 e = (
h2

h )
1∕4

 

3/201 For 𝜃 = 40°: e = 0.434

3/202 h = 1.263 ft, s = 1.132 ft

3/203 𝛿 = (1 + e
2 )v√m

k

3/204 
	ΔT 	

T
=

mB

mA + mB
 

3/205 R = 1.613 m

3/206 x = 0.1088d

3/207 𝛿 = 52.2 mm

3/208 𝜃 = 2.92(10−4) deg

3/209 (a) x = 
d
3

, (b) x = 0.286d

3/210 e =  √ h′

h′ + h
, vx =

√g
2

d

√h′ + √h′ + h
 

3/211  vA′ = 7.35 ft ∕sec, 𝜃A = 41.5°

 vB′ = 27.4 ft ∕sec, 𝜃B = −88.9°

3/212  vA′ = 5.12 m ∕s, 𝜃A = 77.8° 

 vB′ = 9.67 m ∕s, 𝜃B = 38.4°, n = 12.06%

3/213  vA′ = 5.20 m ∕s, 𝜃A = 106.1°

 vB′ = 7.84 m ∕s, 𝜃B = 49.9°, n = 12.72%

3/214 h = 14.53 mm, e = 0.405

 ▶3/215 vB′ = 95.9 ft ∕sec, 𝛽 = 46.5°

 ▶3/216 𝛼 = 11.37° or 78.6°

 ▶3/217 v′ = 6.04 m ∕s, 𝜃 = 85.9°, 𝛿 = 165.0 mm

 ▶3/218 2.04 < v0 < 3.11 m∕s

3/219 v = 18.51 mi ∕sec

3/220 v = 7569 m ∕s or 27 250 km ∕  h

3/221 See Prob. 1 ∕11 and its answer.

3/222 Δh = 88.0 km

3/223 vP = 3745 mi ∕hr

3/224 ΔE = 2.61(1012) J

3/225 Δv = 534 m∕s

3/226  (a) v = 7544 m ∕s, (b) v = 7912 m ∕s
(c) v = 10 398 m ∕s, (d) v =10 668 m ∕s

3/227 ∆v = 3217 m ∕s, v = 7767 m ∕s when 𝜃 = 90° 
3/228 hmax = 899 mi

3/229 𝜏ƒ = 21.76(106) s, 𝜏nƒ = 20.74(106) s

3/230 H = 35 800 km, 𝛽 = 162.6°

3/231 𝜏′ = 1 h 36 min 25 s
 𝜏′ − 𝜏 = 6 min 4 s

3/163 v = 40.2 ft ∕sec, t = 18.57 sec

3/164 (a) v′ = 20 km∕h

 (b) aA = 27.8 m ∕s2 left, aB = 55.6 m ∕s2 right

 (c) R = 50 kN

3/165 R = 472 lb, a = 150,000 ft ∕sec2 (4660g)

 d = 0.075 ft or 0.900 in.

3/166 F = 147.8 N, 𝛽 = 12.02°
3/167 Rx = 559 lb, Ry = 218 lb

3/168 𝜃 = 20.7°, n = 99.8%

3/169 R = 43.0 N, 𝛽 = 8.68°
3/170 v = 12.32 ft ∕sec, N = 488 lb

3/171 d = 1.462 m

 ▶3/172 v2 = 40.0 mm ∕s right

3/173 HO = 128.7 kg ∙m2∕s

3/174 HO = mv(bi − aj), ḢO = F(−ci + ak)

3/175  (a) G = −12.99i − 7.5j kg ∙m ∕s
(b) HO = −21.2k kg ∙m2∕s, (c) T = 37.5 J

3/176 (a) HO = mr√2gr, ḢO = mgr

 (b) HO = 2mr√gr, ḢO = 0

3/177 vP = 17,723 mi ∕ hr

3/178 �̇� = 26.0 rad∕s 

3/179 �̇� = 65.1 rad∕s 

3/180 
d𝜔

dr
= − 

2𝜔

r
 

3/181 |H |= 389 N · m · s, |M | = 260 N · m
3/182 𝜔 = 0.1592 rad ∕sec CW

3/183 HO2
 = 34i + 0.1333j + 19.6k kg ∙m2∕s

3/184 𝜔 =
𝜔0

4
, n =

3
4

 

3/185 vB = 5.43 m ∕s

3/186 𝜔 =  

5v
3L

3/187 HO = −
1
2

mgut2k

3/188 𝜃 = (
2m1

m1 + 4m2)
v1

L
 

3/189 (a) HA = 0, HD = m√g𝜌3 CCW

 (b) HA = 0.714m√g𝜌3 CCW
 HD = 1.126m√g𝜌3 CCW

3/190 vr = 88, 870 ft ∕sec, v𝜃 = 125,700 ft ∕sec 

3/191 𝜔′ = 2.77 rad ∕s CCW, 𝜃 = 52.1°

3/192 𝜃 = 52.9°

3/193 𝜔 = 9.68 rad ∕sec, U′1-2 = 0.227 ft-lb

 ▶3/194 𝜔 = 3.00 rad ∕s, U = 5.34 J

3/195 e = 0.829, n = 31.2%

3/196 v1′ = 1.857 ft ∕sec left, v2′ = 11.74 ft ∕sec right 
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PA-8 Problem Answers

3/270 v = 39.0 ft ∕sec

3/271 T = 424 N

3/272 𝛿 =
Pm

k(M + m)
, Peq = (M + m)g sin 𝜃, 𝛿eq =

mg sin 𝜃

k

3/273 L = 2540 N, D = 954 N

3/274 F = 327 kN

3/275 𝛿 = 2.55 in.

3/276 (a) at = −10.75 m∕s2, (b) at = −14.89 m∕s2

3/277 s = 2.28 m

3/278 t′ = 8.50 sec

3/279 vrel = √7
3

 gl left

3/280 (a) v = 2.15 ft ∕sec, (b) v′ = 2.78 ft ∕sec

 ▶3/281 v′ = 182.9 mi ∕  hr

3/282 Δv = 9000 km ∕  h

3/283 x = 13.40 ft or 47.3 ft

 *3/284 (a) �̇� = 1.414 rad ∕s, (b) 𝜃max = 43.0°
 *3/285 |vA| max = 3.86 m∕s at sB − sB0

= 0.0767 m

 |vB| max = 3.25 m∕s at sB − sB0
= 0.0635 m

 *3/286 38.7° ≤ 𝜃 ≤ 65.8°

 *3/287 𝜃max = 53.1° 

 *3/288 e = 0.610, y = 1.396 ft

 *3/289 t = 1.069 s, 𝜃 = 30.6°

 *3/290 For e = 0.5 : R = 288 ft, vB′ = 95.9 ft ∕sec

Chapter 4

4/1 r =
d
6

 (8i + 5j), ṙ =
v
6

 (4i + 3j), r̈ =
F

6m
 i

 T =
11
2

 mv2, HO = 2mvdk, ḢO = −Fdk

4/2 HG =
4
3

 mvdk, ḢG = − 

Fd
6

 k

4/3 r = b(i + 3.61j + 2.17k)

 ṙ = v(0.556i + 0.748j + 0.385k)

 r̈ =
F

3m
 (−j +

2
3

 k),  T = 16.5mv2

 HO = mvb(−15i + 2.07j − 1.536k)

 ḢO = Fb(14.50i − 4j + 3k)

4/4 HG = mvb(−12.92i − 5.30j + 9.79k)

 ḢG = Fb(0.778i − 2j + 6k)

4/5 aC = 53.7 ft∕sec2 

4/6 F = 2.92 N 

4/7 |MO|av = 0.7 N∙m
4/8 T = 58.3 lb 

4/9 Dx = 1.288 lb left, Dy = 35.5 lb up, NE = 25.6 lb up

3/232 Δt = 71.6 sec

3/233 vr = 284 m ∕s, 𝜃 = 98.0°
3/234 hmax = 53.9 km

3/235 Δv = 302 ft ∕sec

3/236 𝛽 = 153.3°

3/237 𝜏ƒ = 658.69 h, 𝜏nƒ = 654.68 h

3/238 ΔvA = R√ g
R + H (1 − √ R

R + h) 

3/239 p = 0.0514 rad ∕s

 *3/240 h = 922,000 mi

 ▶3/241 ΔvA = 2370 m ∕s, ΔvB = 1447 m ∕s

 ▶3/242 a = 6572 km (parallel to the x-axis), 𝜏 = 5301 s

 e = 0.01284, va = 7690 m ∕s, vp = 7890 m ∕s

 rmax = 6.66(106) m, rmin = 6.49(106) m

 ▶3/243 a = 7462 km, 𝛼 = 72.8°, No

 ▶3/244 𝛽 = 109.1°
3/245 𝜇k = 0.382

3/246 arel = k𝛿( 1
m1

+
1

m2) 

3/247  G = 9i kg ∙m ∕s, Grel = 3i kg ∙m ∕s
T = 13.5 J, Trel = 1.5 J

 HO = −4.5k kg ∙m2∕s, (HB)rel = −1.5k kg ∙m2∕s

3/248 P = 66.9 kN

3/249 F = 376 lb

3/250 F = 194.0 kN

3/251 xC∕T = 2.83 m, vrel = 2.46 m ∕s

3/252 No answer

3/253 (vrel)max = a0√m
k

3/254 a0 = 16.99 m ∕s2, R = 0

3/255 (a) and (b) T = 112 J

3/256 T = 3ma0 sin 𝜃, T𝜋 ∕2 = 90 N

3/257 T0 = m(g + a0)(3 − 2 cos 𝜃0), T𝜋 ∕2 = 3m(g + a0) 

3/258 Prel = 0.1206 hp

 ▶3/259 (a) and (b) h2 = e2h1

 ▶3/260 vA = √v0
2 + 2gl sin 𝜃 + 2v0 cos 𝜃√2gl sin 𝜃 

 ▶3/261 vB = 2.87 m ∕s, vG = 1.533 m∕s

3/262 𝜃 = tan−1 a
g

 

3/263 R = 46.7 N

3/264 v = 2.2 m ∕s

3/265 vA = 7451 m ∕s, e = 0.0295

3/266 P = 652 hp

3/267 u = 
5
2

√gR, xmin = 2R

3/268 NA = 23.2 lb, NB = 148.3 lb

3/269 M = 18.96 kN ∙m
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 Problem Answers PA-9

4/48 R = mg + 𝜌 
𝜋d2

4
 u(u − v cos 𝜃) 

4/49 a = 14.68 ft∕sec2

4/50 P = 5.56 kN, R = 8.49 kN 

4/51 P = 0.671 kW 

4/52 𝜃 = 38.2°

4/53 v =
1
r

 √mg
𝜋𝜌

, P =
mg
2r

 √mg
𝜋𝜌

4/54 M = 𝜌 Q [
Qr cos 𝜙

4A
− 𝜔(r2 + b2 + 2rb sin 𝜙) ]

 𝜔0 =
Qr cos 𝜙

4A(r2 + b2 + 2rb sin 𝜙)
 

4/55 𝜃 =  2.31°, ay = 1.448 m∕s2 

4/56 Rx = 311 lb, Ry = −539 lb 

4/57 m = 12.52 Mg 

4/58 a = 4.70 m∕s2, m′ = 448 kg∕s

4/59 m = m0 
e− 

a+g
u

 

t 

4/60 (a) P = 1113 lb, (b) P = 1242 lb 

4/61 a = 190.0 ft∕sec2, vmax = 178.0 ft∕sec

4/62 F = 𝜌(xẍ + ẋ2)

4/63 P = 209 N 

4/64 R = 𝜌gx + 𝜌v2 

4/65 1% mass reduction: 1.967% velocity increase

 5% mass reduction: 10.04% velocity increase

4/66 a = 0.498 ft∕sec2 

4/67 P = 4.55 kN 

4/68 P = 20.4 N 

4/69 a = −1.603 m∕s2 

4/70 v = 13.83 ft∕sec 

4/71 a =
P

𝜌 x − 𝜇k g −
ẋ2

x  

4/72 x = 6.18 m 

4/73 v = √gL sin 𝜃 

4/74 v = 7.90 m∕s 

4/75 (a) v1 = √2 gh ln (L
h), (b) v2 = √2 gh [ 1 + ln (L

h) ]
 Q = 𝜌 gh(L −

h
2) 

4/76 v =
v0

1 +
2𝜌l
m

 , x =
m
𝜌

 (√1 +
2v0 

𝜌t
m

− 1)

4/77 r =
d
7

(i +4j +6k), ṙ =
2v
7

 (2i + j+3k), r̈ =
F

7m
 k

 T = 13mv2, HO = 2mvd (6i + 3j + k), ḢO = −Fd j

4/78 HG =
4mvd

7
 (18i +6j +7k), ḢG = − 

2Fd
7

 (2i +3j)

4/79 a = 53.7 ft ∕sec2

4/80 𝜔 = 14.56 rad  ∕s CCW

4/81 v = u ln (
m0

m0 − m′t) − gt

4/10 G = 8.66i + 5j kg ∙ m∕s, HG = 0.225k kg ∙ m2∕s

 HO = −0.971k kg ∙ m2∕s 

4/11 a = 15.19 m∕s2 

4/12 HO = 2m(r2
𝜔 − vy)k 

4/13 P = 3.24 hp 

4/14 t =
4mr2𝜔

M
 

4/15 �̇�′ = 80.7 rad∕s

4/16 vA = 1.015 m∕s, vB = 1.556 m∕s 

4/17 v = 0.205 m∕s 

4/18 v = 0.355 mi∕hr, n = 95.0% 

4/19 s =
(m1 + m2) 

x1 − m2l
m0 + m1 + m2

 

4/20 x = 0.316 ft 

4/21 ΔQ = 2.52 J, Ix = 12.87 N ∙ s 

4/22 v = 4.71 m∕s both spheres

4/23 v = 0.877 m∕s 

4/24 v = 72.7 km∕h 

 4/25 v = 3.92 ft∕sec 

 4/26 (xA, yA) = (2270, −1350) m 

 4/27 vb∕c=√(1 +
m1

m2)2 gl(1 −  cos 𝜃)

 vc=

√
2gl(1 −  cos 𝜃)
m2

m1
 (1 +

m2

m1)
 4/28 vA = 30 m∕s

4/29 u = 2070 ft∕sec 

4/30 𝛼 = 17.22°
4/31 F = 4.56 lb 

4/32 F = 3.05 lb 

4/33 R = 1885 N 

4/34 T = 2.85 kN 

4/35 T = 𝜌u 

𝜋d2

4
 (u + v cos 𝜃) 

4/36 T = 32.6 kN 

4/37 Fx = 442 N, Fy = 442 N 

4/38 p = 840 kPa

4/39 F = 𝜌 Av2
 sin 𝜃, Q1 =

Q
2

 (1+  cos 𝜃), Q2 =
Q
2

 (1−  cos 𝜃) 

4/40 h = 18.57 ft 

4/41 n = 0.638 

4/42 M = 29.8 kN∙m

4/43 T = 6530 lb 

4/44 T = 9.69 kN, V = 1.871 kN, M = 1.122 kN ∙ m 

4/45 R = 5980 N 

4/46 p = 0.1556 lb∕in.2 

4/47 M = 5.83 N ∙ m CCW
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PA-10 Problem Answers

5/20 vA = −0.0464i + 0.1403j m ∕s

 aA = −0.1965i + 0.246j m ∕s2

5/21 𝜃 = 0.596 rad

5/22 NB = 415 rev∕min

5/23 𝜔OA =
dv

s2 + d2 CCW if v > 0

5/24 vP = 0.3 m ∕s down, vC = 0.25 m ∕s down

 𝜔 = 0.5 rad ∕s CW

5/25 vB = 0.1760 m ∕s down

5/26 vP = −r𝜔 sin 𝜃, aP = −r𝛼 sin 𝜃 − r𝜔
2 cos 𝜃 

 (a negative value is directed leftward)

5/27 vP = −r𝜔 (sin 𝜃 + cos 𝜃 tan 𝛽)

 aP =  −r𝛼(sin 𝜃 + cos 𝜃 tan 𝛽)
− r𝜔

2 (cos 𝜃 − sin 𝜃 tan 𝛽)

 (a negative value is directed leftward)

5/28 v = vO√2(1 +  sin 𝜃), a =
vO

2

r
5/29 vB = 30.2 in. ∕sec

5/30 aB = 789 mm ∕s2 down

5/31 𝜔BC = 1.903 rad ∕s CW

5/32  vO = 1.2 m ∕s right

 𝜔 = 1.333 rad ∕s CW

5/33 𝜔 = − 

v
x

 
r

√x2 − r2

5/34 �̇� = 0.1639 rad∕s CCW

 �̈� = 0.0645 rad∕s2 CW

5/35 h = 4g ( b
𝜋v)

2

, h = 128.8 mm

5/36 𝜔 = 3 rad∕s CW, vA = 480 mm∕s, vO = 180 mm∕s

 aC = 540 mm∕s2 toward O

5/37 vC = 0.965 ft∕sec right 

5/38 aC = 3.07 ft∕sec2 left

5/39 v = 2 
√b2 + L2 − 2bL cos 𝜃

L tan 𝜃
 ṡ

5/40 ẋ =
L + x

b
 

 tan 𝜃

 cos  (𝜃 + 𝛿

2 )
 ċ, where 𝛿 =  sin 

−1 (h
b)

5/41 No answer

5/42 𝛼2 =
ṙ1r2 − r1ṙ2

r2
2  𝜔1

5/43 vC =
vB

2
 √8 + sec2 

𝜃

2

5/44 𝜔OA = 1.056 rad ∕s CW

 𝛼OA = 0.500 rad ∕s2 CCW

 ▶5/45 𝜔2 = 1.923 rad ∕s CCW

 ▶5/46 𝛼 = 0.1408 rad ∕sec2 CCW

5/47 vB = −1.386i + 1.2j m ∕s

4/82 F = 812 lb

4/83 an = 4.67 m ∕s2, at = 19.34 m ∕s2 

4/84 v = 133.3 m ∕s

4/85 t = 60 s: a = 5.64 m∕s2, amax = 69.3 m∕s2 at t = 231 s

4/86 F = 159.8 lb

4/87 ΔQ = 𝜌gr2 

4/88 T = 21.1 kN, F = 12.55 kN

4/89 R =
3𝜌

2
 (a + g)2t2

4/90 (a) a =
g
L

 x, (b) T = 𝜌gx (1 −
x
L), (c) v = √gL

4/91 M = 1837 lb-ft

 4/92 a =
h
H

 g, v = h√ g
H

 , R = 2𝜌g(H −
2h2

H )
 4/93 C = 4340 N up, D = 3840 N down

 4/94 R = 𝜌 gx  

4L − 3x
2(L − x)

Chapter 5
5/1 N = 60 rev

5/2 vA = 𝜔(hi + bj)

 aA = −(b𝜔
2 + h𝛼)i + (h𝜔

2 − b𝛼)j

5/3 vA = 1.332i + 2.19j m ∕s
 aA = −6.42i + 9.16j m ∕s2

5/4 N = 3.66 rev

5/5 r = 3 in.

5/6 Startup: Δ𝜃 = 172.5 rev, 43.1 rev

 Shutdown: Δ𝜃 = 920 rev, 690 rev

5/7 |  �̇�  |max = 𝜃0𝜔0 when 𝜃 = 0, |  𝜃 
¨ |max = 𝜃0𝜔0

2 when 𝜃 = 𝜃0

5/8 𝛚 = 4k rad ∕sec, 𝛂 = ±17.89k rad ∕sec2

5/9 Δ𝜃 = 10.99 rad, t = 1.667 s

5/10 vB = −11i m ∕s, aB = 22i − 220j m ∕s2

5/11 F = 0.1493 lb, Δ𝜃 = 9 rad

5/12 𝛼 = 300 rad  ∕s2, aB = 37.5 m ∕s2

 aC = 22.5 m ∕s2

5/13 vA = 1.121i + 0.838j m ∕s

 aA = −4.48i + 0.1465j m ∕s2

5/14 t = 9.57 s

5/15 N = 513 rev ∕min

5/16 vA = −15.30i − 4.10j in. ∕sec

 aA = 21.6i + 28.7j in. ∕sec2

5/17 (a) Δ𝜃B = 90 rev, (b) 𝜔B = 70.7 rad ∕s
 (c) Δ𝜃B = 22.5 rev

5/18 vA = −0.374i + 0.1905j m ∕s

 aA = −0.757i − 0.605j m ∕s2

5/19  vA = −0.223i − 0.789j m ∕s 

 aA = 3.02i − 1.683j m ∕s2
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 Problem Answers PA-11

5/87 vO = 120 mm ∕s, vP = 216 mm ∕s

5/88 𝜔OB = 11.79 rad ∕s CCW

5/89 No answer

5/90 𝜔AB = 0, 𝜔BD = 8.33 rad ∕s CCW

5/91  v = 15.71 ft ∕sec or 10.71 mi ∕  hr right

 vs = 6.98 ft ∕sec left

5/92 vD = 2.31 m ∕s

5/93 vA = 9.19 ft ∕sec right

5/94 vA = 0.278 m ∕s right

5/95 𝜔ABD = 7.47 rad ∕s CCW

 ▶5/96 𝜔 = 1.10 rad ∕sec CW

5/97 aA = 9.58 m ∕s2, aB = 9.09 m ∕s2

5/98  (a) aA = 0.667 ft  ∕sec2

 (b) aA = 14.62 ft ∕sec2

 (c) aA = 20.7 ft ∕sec2

5/99 aA = 16.67 ft ∕sec2

5/100 vA = 5.12i + 2.12j m ∕s

 aB = −16.25i + 2.5j m ∕s2

5/101 (a) 𝛼Beam = 0.0833 rad ∕sec2 CCW

 (b) aC = 0.625 ft ∕sec2 up, (c) d = 1.5 ft

5/102 𝛼 = 0.286 rad ∕s2 CCW, aA = 0.653 m ∕s2 down

5/103 aB = 0.0279i m ∕s2

5/104 aB∕A = − 

v2

2r
i − aj

5/105 𝛼AB = 0.268
aA

L
− 0.01924

vA
2

L2  CCW if positive

 aB = 1.035aA − 0.0743
vA

2

L
 up incline if positive 

5/106 𝛼AB = 𝜔2 CCW

5/107 𝛂AB = −37.9k rad ∕s2, aA = 17.30i m ∕s2

5/108 aA = 43.8 ft ∕sec2

5/109 aD = 1.388 m ∕s2

5/110 (aB)t = 2.46 m ∕s2 left

5/111 (a) aC =
r𝜔2

1 −
r
R

j, (b) aC =
r𝜔2

1 +
r
R

j

5/112 𝛼AB = 9.98 rad ∕s2 CCW

5/113 𝛼AB = 1.578 rad ∕s2 CW

5/114 aA = 8.33i − 10j m ∕s2

 aP = −8.33i m ∕s2

 aB = −13.89i + 3.33j m ∕s2

5/115 𝛼 = 612 rad ∕sec CW, aB = 874 ft ∕sec2

5/116  aA = −24i − 270j ft ∕sec2

 aD = −265i + 73.6j ft ∕sec2

5/117 𝛼OB = 628 rad ∕s2 CW

5/118 𝛼AB = 14.38 rad ∕s2 CW

5/119 (aB)t = −23.9 m ∕s2, 𝛼 = 36.2 rad ∕s2 CW

5/120 𝛼OA = 0, aD= −480i − 360j m ∕s2

5/48 vA = 10i − 2.5 ft ∕sec, vB = 11.5i + 2.5j ft ∕sec

5/49  (a) N = 91.7 rev∕ min CCW
(b) N = 45.8 rev∕ min CCW
(c) N = 45.8 rev∕ min CW

5/50 vA = 58.9 mm ∕s

5/51  vA = −1672i + 107 257j km ∕  h, vB = 105 585j km ∕  h

 vC = 1672i + 107 257j km ∕  h, vD = 108 929j km ∕  h

5/52 vD = 0.596 m∕s, ẋ = 0.1333 m∕s

5/53 vA = 27i + 16j in. ∕sec, vP = 11i in. ∕sec

5/54 vC = 1.528 m ∕s

5/55 vO = 6.93 m ∕s, 𝜔 = 21.3 rad ∕s CW

5/56 vO = 2 ft ∕sec, vB = 2.83 ft ∕sec

5/57 𝜔AB = 0.96 rad ∕s CCW

5/58 𝜔AB = 0.268 

vA

L
 CCW

5/59 𝝎OA = −3.33k rad∕s

5/60 vA =
v
2

 (i + j), vB =
v
2

 (i − j) 

5/61 vB = 4.38 m ∕s, 𝜔 = 3.23 rad ∕s CCW

5/62 (a) 𝜔BC = 𝜔 CCW, (b) 𝜔BC = 2𝜔 CCW

5/63 vA = 4.57 ft ∕sec

5/64 𝜔0 = 1.452 rad ∕s CW, 𝜔AB = 0.0968 rad ∕s CCW

5/65 𝜔 = 0.722 rad ∕s

5/66 𝜔 = 1.394 rad ∕s CCW, vA = 0.408 m ∕s down

5/67 𝜔 = 8.59 rad ∕s CCW

5/68 𝜔 = 15.36 rad ∕sec CCW, vB = 19.36 ft ∕sec

5/69 𝜔AB = 1.725 rad ∕s CCW, 𝜔BC = 4 rad ∕s CCW

5/70 vA = 600 mm ∕s

5/71 𝛚AC = 0.429k rad ∕sec

5/72 vE = 0.514 m ∕s

5/73 d = 0.5 m above G

 vA = vB = 2.33 m ∕s, 𝛽 = 31.0°
5/74 vA = 1.949 m ∕s at ∡35.4°, vB = 2.66 m ∕s at ∡335°
5/75 vB = 1.114 m ∕s

5/76 vA = 2.24 ft ∕sec at ∡318°
5/77 vA = 0.408 m ∕s down

5/78 vG = 277 mm ∕s

5/79 vD = 250 mm ∕s

5/80 vA = 9.04 in. ∕sec, vC = 6.99 in. ∕sec

5/81 𝜔 = 4.16 rad ∕s CW, vB = 0.416 m ∕s right

 vG = 0.416 m ∕s at ∡60°
5/82 𝜔 = 4.37 rad ∕s CW, vB = 0.971 m ∕s right

5/83 vA = 0.707 m ∕s, vP = 1.581 m ∕s

5/84 vA = 4.57 ft ∕sec

5/85 vA = 18 ft ∕sec right, vB = 12 ft ∕sec left

 vC = 15.30 ft ∕sec at ∡281°, vD = 14.70 ft ∕sec down

5/86  𝜔 = 0.45 rad ∕sec CCW, vA = 43.8 ft ∕sec

 vB = 46.5 ft ∕sec
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 ▶5/156 𝜔OA =
0.966dv

d2 + s2 + 0.518ds
 CCW if v > 0

5/157 vA = 0.1732 m ∕s down, 𝜔 = 1.992 rad∕s CCW

5/158 vB = 288 mm ∕s

5/159 𝜔AB = 0.354 rad ∕sec CW, vO = 7.88 in. ∕sec left

5/160 Δvrel = −50.3i + 87.1j km ∕  h

5/161 (vrel) min = −2 m ∕s at 𝜃 =109.5°
 (vrel) max = 2 m ∕s at 𝜃 = 251°
 (arel) min = −15 m ∕s2 at 𝜃 = 0 and 360°
 (arel) max = 30 m ∕s2 at 𝜃 = 180°
5/162 t = 0.0701 s

5/163 |𝜔AB|max = 6.54 rad ∕s at 𝜃 = 202°
 |𝜔BC|max = 7.47 rad ∕s at 𝜃 = 215°
5/164 |𝛼AB|max = 88.6 rad ∕s2 at 𝜃 = 234°
 |𝛼BC|max = 112.2 rad ∕s2 at 𝜃 = 182.1°
5/165 |𝜔AB|max = 10.15 rad ∕s at 𝜃 = 203°
 |𝜔BC|max = 11.83 rad ∕s at 𝜃 = 216°
5/166 arel = 0.1067 m ∕s2 towards B

5/167 (vA)max = 69.6 ft ∕sec at 𝜃 = 72.3°
5/168 aA = 0 when 𝜃 = 72.3°

Chapter 6
6/1 FA = 1200 N right, Ox = 600 N left

6/2 a = 3g

6/3 NA = 25.4 lb

6/4 a = g√3

6/5 (a) NA = 31.6 N up, NB = 7.62 N up

  (b) NA = NB = 19.62 N up

  (c) NA = 4.38 N down, NB = 43.6 N up

  a = 15 m ∕s2 right in all cases

6/6 a = 5.66 m ∕s2

6/7 P = √3 (M + m) g 

6/8 Ax = 18.34 N, Ay = 15.57 N, T = 27.3 N

6/9 kT = 6.01mgL

6/10 𝜃 = 39.5°
6/11 FA = 1.110 kN at ∡60°, Ox = 45 N, Oy = 667 N

6/12 a = 16.43 ft ∕sec2

6/13 NA = 6.85 kN up, NB = 9.34 kN up

6/14 A = 1192 N

6/15 a = 3.92 m ∕s2, Nƒ = 1460 N

6/16 a = 0.224g

6/17 TA = 12.99 lb, TB = 39.0 lb

6/18 P =
4

3𝜋
 (M + m) g, a =

4g
3𝜋

  right, 𝜇s ≥
4

3𝜋

6/19 Ay = 1389 N

6/20 M = 196.0 N ∙ m

6/21 C = 46.3 lb

*

*

*

*

*

*

*

*

*

5/121 𝛂AC = −0.0758k rad ∕sec2

5/122 𝛼AB = 16.02 rad ∕s2 CW, 𝛼BC = 13.31 rad ∕s CCW

5/123 aA = 195.8 in. ∕sec2 right, 𝛼AB = 0.467 rad ∕sec2 CCW

 ▶5/124 aE = 0.285 m ∕s2 right

5/125  vA = 0.1i + 0.25j m ∕s, 𝛽 = 68.2°

5/126 vA = (r1𝛺 + u)i

 aA = r1�̇�i + (r1𝛺2 + 2𝛺u −
u2

r2 ) j, aCor = 2𝛺uj

5/127 vA = −3.4i m ∕s, aA = 2i − 0.667j m ∕s2

5/128 vrel = 81.2i + 50j ft ∕sec

5/129 vrel = −46i m ∕s, No

5/130 arel = 9.2j m ∕s2

5/131 aCor = −2𝜔ui

5/132 vrel = −18.33j ft ∕sec, arel = 3.36i + 6.72j ft ∕sec2

5/133 arel = −4.69k m ∕s2

5/134 𝜔 = 2.17 rad ∕s CCW, vrel = 0.5 m ∕s right

5/135 𝜔 = 2.89 rad ∕s CCW, 𝛼 = 5.70 rad ∕s2 CCW

5/136 𝛿 =
𝛺L2

v
 sin 𝜃, 𝛿 = 0.01125 ft or 0.1350 in.

5/137  vrel = −2.71i − 0.259j m ∕s

 arel = 0.864i + 0.0642j m ∕s2

5/138 vrel = −373i − 686j ft ∕sec

5/139 arel = 15.70i − 11.06j ft ∕sec2

5/140  vrel = 22i − 38.1j ft ∕sec, arel = 25.1i + 14.52j ft ∕sec2

5/141  vrel = 22i′ + 38.1j′ ft ∕sec 

 arel = −27.6i′ + 10.19j′ ft ∕sec2

5/142 𝜔 = 4 rad ∕s CW, 𝛼 = 64 rad ∕s2 CCW

5/143  vrel = 3.93 m ∕s at ∡19.11°
 arel = 15.22 m ∕s2 at ∡19.11°
 𝜔BC = 1.429 rad ∕s CCW, 𝛼BC = 170.0 rad ∕s2 CW

5/144  vrel = 7.71 m ∕s at ∡19.11°
 arel = 13.77 m ∕s2 at ∡19.11°
 𝜔BC = 1.046 rad ∕s CW, 𝛼BC = 117.7 rad ∕s2 CW

 ▶5/145 vrel = −26 220i km ∕  h, arel = −8.02j m ∕s2

 ▶5/146 𝛼EC = 12 rad ∕sec2 CCW

5/147 vP = −0.45i − 0.3j m ∕s, (aP)t = 0.9i + 0.6j m ∕s2

 (aP)n = 0.9i − 1.35j m ∕s2

5/148 (xP, yP) = (−0.3, 0.4) m, r = 0.5 m

5/149 t =
1

√Kk
  tan 

−1 (𝜔0√ k
K)

5/150 𝜔 =
2v
L

 CW, vC = v left

5/151 𝜔AB = 1.203 rad ∕s CCW

5/152 𝜔 =
vh

x2 + h2 CCW

5/153 aP = 11.14 ft ∕sec2

5/154 𝜃 = 60°
5/155 aP = 0.625 ft ∕sec2

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


 Problem Answers PA-13

6/57 aA = 63.2 m∕s2

6/58 𝜔 = 7.2 rad ∕sec, v = 3 ft ∕sec

6/59 a =
g
2

 down

6/60 𝛼 = 0.310 rad∕s2 CW

  ax = 6.87 m∕s2, ay = 2.74 m∕s2

6/61  𝛼 = 48.8 rad ∕s2 CW from above 

  ax = 0, ay = 5 m∕s2

6/62 A: 𝛼A =
g
r  sin 𝜃, 𝜇s = 0

  B: 𝛼B =
g
2r

 sin 𝜃, 𝜇s =
1
2

  tan 𝜃

6/63 a = 13.80 ft∕sec2 down incline

  F = 1.714 lb up incline

6/64  aG = 3.88 m ∕s2 up incline, F = 83.0 N down incline

6/65 aG = 8.07 m ∕s2 up incline, F = 42.9 N up incline

6/66 𝜔 =
1
kO

√2ar

6/67 T =
2√3

13
 mg

6/68 aA = 1.143g down slot

6/69 (a) Rƒ =
Ia

2dR
, Rr = − 

Ia
2dR

  (b) Rƒ =
mv2d + Ia

2dR
, Rr =

mv2d − Ia
2dR

6/70 a =
8mg

3𝜋 (m + 3M)
  left

  𝛼 =
8(m + M)g

3𝜋r (m + 3M)
 CW

6/71 TA = 145.4 lb, TB = 161.7 lb

6/72 α = 22.8 rad ∕s2 CW, 𝜇s = 0.275

6/73 P = 20.2 lb

6/74 Ax = 5 N, Ay = 57.1 N

6/75 𝛼 =
12bg

7b2 + 3h2 CW, TA =
3(b2 + h2)
7b2 + 3h2  mg

6/76 s =
3d
2

6/77 NB = 36.4 N up

6/78 MB = 3.55 N∙m CCW 

6/79 aA = 5.93 m ∕s2

6/80 𝛼 =
84a
65L

 CCW

6/81 𝜔 = 2.97 rad ∕sec CCW

6/82 NA = 53.6 N, NB = 53.1 N

6/83 s = 18.66 ft

6/84 𝛼 =
5a
7r

 CW

  𝜔 = √10
7r

√g(1 − cos 𝜃) + a sin 𝜃

6/22 N = 257 kN up

6/23 (a) 𝜃 = 51.3°, (b) 𝜃 = 24.8°; a =
5
4

g

6/24 W = 6460 lb

6/25 𝜃 = 0.964°
6/26 𝜇 = 1.167, Nr = 8690 N

6/27 FA = FB = 24.5 N

6/28 p = 125.5 lb ∕in.2

6/29 𝛼 = 1.193 rad ∕s2 CCW, FA = 769 N

6/30 d = 14.64 in.

6/31 𝛼 = 9.30 rad ∕s2

6/32 (a) 𝛼 = 1.976 rad ∕sec2 CW, (b) 𝛼 = 2.06 rad ∕sec2 CW

6/33 (a) 𝛼 =
g
2r

 CW, O=
1
2

 mg, (b) 𝛼 =
2g
3r

 CW, O =
1
3

 mg

6/34 O = 109.1 N

6/35 R = 3.57 lb

6/36 𝛼 =
3g
5b

 CW, O =
1
2

 mg

6/37 A = 56.3 N

6/38 𝛽 =
𝜋

2
 : 𝛼 =

8g
3b𝜋

 CW

  𝛽 = 𝜋 : 𝛼 =
8g

3b𝜋
 CW

6/39 (a) 𝛼 = 7.85 rad∕s2 CCW

  (b) 𝛼 = 6.28 rad∕s2 CCW

6/40 A−A: 𝛼 =
3√2

5
g
b

, B−B: 𝛼 =
3√2

7
g
b

6/41 𝛼 = 4.06 rad ∕sec2

6/42 T = 91.1 N

6/43 M =
𝜔𝜌d

𝜏 [
1
2

 𝜋r4 + 4lt (1
3

 l2 + rl + r2) ]
6/44 (a) k = 87.6 mm, (b) F = 2.35 N, (c) R = 531 N

6/45 (a) 𝛼 = 8.46 rad ∕s2, (b) 𝛼 = 11.16 rad ∕s2

6/46 𝛼 =
18g
11L

 CW, O = 0.239mg

6/47 Mmotor = 0.836 lb-ft, Mƒ = 0.1045 lb-ft

6/48 x =
l

2√3
, 𝛼 = √3 

g
l

6/49 𝛼 = 0.893 rad ∕s2

6/50 𝛼 =
3g

10b
, Oy =

9
20

 𝜌bcg, Oz =
37
20

 𝜌bcg 

6/51 b = 40.7 mm, R = 167.8 N

6/52 𝛼B = 25.5 rad∕s2 CCW

6/53 𝛼 = 3.84 rad/sec2 CW, t = 34.9 sec

6/54 𝛼 =
6g
7l

−
12k
7m

 (√5 − √3 )

6/55 O = 5260 N, 𝛼 = 0.0709 rad ∕s2 CCW

6/56  (a) 𝜇s = 0.1880, (b) 𝜃 = 53.1°
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6/119 𝛼 =

P − (m
2

+ m0)g cos 𝜃

b(m + m0)
 CCW

  if P > (m
2

+ m0)g cos 𝜃; otherwise 𝛼 = 0

6/120 𝛼 =
M

mb2(cos2 𝜃 +
1
3)

 CW

6/121 𝛼 =
3g cos 𝜃

2b
6/122 𝜃 = 7.08°

6/123 𝛼 = 33.7 rad∕sec2 CW 

6/124 a =
2P
5m

  tan  
𝜃

2
− g (up if positive)

6/125 a =
M

2mb√1 − ( h
2b)

2
− g (up if positive)

6/126 kT =
mr
𝜃

(a cos 𝜃 − g sin 𝜃)

6/127 𝜃 = 64.3°

6/128 𝛼 =
P(2 cos 

2 𝜃 + 1)
mb(8 cos 

2 𝜃 + 1)

6/129 a =
F

2m
− g (up if positive) 

6/130 a =
3
8

 ( P
m

−
3g
2 ) (right if positive)

6/131 N = 133.0 rev ∕min

6/132 𝛼 = 10.54 rad ∕sec2 CCW

6/133 M = 0, MB = 11.44 kN ∙ m

6/134 𝛼 = 27.3 rad ∕s2 CW

6/135 (a) HO = 0.587 kg · m2∕s CW

  (b) HO = 0.373 kg · m2∕s CW

6/136 𝜔 = 1.811 rad ∕s CCW
6/137 𝜔 = 1.152 rad ∕sec

6/138 H = 2.66(1040) kg∙m2∕s

6/139 v = 0.379 m∕s up, 𝜔 = 56.0 rad∕s CW

6/140 𝜔 = 1.202 rad ∕s CW

6/141 𝜔 = 23.4 rad ∕sec CW

6/142  v =
MvMi + mvm  

j
M + m

, 𝜔 =
12vm

L
 ( m

4M + 7m) CCW

6/143 HG =
11
16

mRvO  
CW, HO =

37
32

mRvO CW

6/144  v = 0.778 m ∕s, Tav = 100.7 N

6/145  𝜔 =
3mv1

(M + m)L
 CW, ∫t2

t1

Ox dt =
M

2(M + m)
 mv1 right

6/146  N = 2.04 rev ∕s
6/147  n = 1.405%
6/148 𝜔 = 1.593 rad ∕sec CCW, n = 91.7%

6/149 T = 0.750 + 0.01719t N

6/85 v = 11.73 m ∕s

6/86 A = 347 lb

 ▶6/87 M = 2.58 N∙m CCW 

 ▶6/88 M = 3.02 N∙m CCW

6/89 𝜔 = √24g
7L

 CW, vG = √3gL
14

6/90 𝜔 = √48g
7L

6/91 𝜃 = 33.2°
6/92 v = 3.01 m ∕s

6/93 kT = 3.15 N∙m∕rad

6/94 O =
91mg

27
 up

6/95 𝜔 = 6.23 rad ∕sec CW, O = 86.2 lb

6/96 vA = √2gx sin 𝜃, vB = √gx sin 𝜃 

6/97 k = 92.6 N ∕m, 𝜔 = 2.42 rad ∕s CW

6/98 Δ𝜔 = −1.236 rad∕sec 

6/99 𝜔max = 0.861√g
b

6/100 𝜔 = 3.31 rad ∕s

6/101 NC = 123.2 N

6/102 𝜔 = 1.597 rad ∕sec CW

6/103 P = 140.4 kW or 188.2 hp

6/104 vA = 2.45 m ∕s right

6/105 𝜔 = √g
r
 

32
9𝜋 − 16

  N = mg(1 +
128

3𝜋(9𝜋 − 16))
6/106 ΔE = 0.435 ft-lb

6/107 𝜔B = 13.54 rad∕s CW 

6/108 (a) k = 93.3 N∕m, (b) 𝜔 = 1.484 rad∕s CW 

6/109 𝜔 = 2.23 rad ∕s CW

6/110 vdiff = 2.18(10−3)√xg sin 𝜃, Torus leads

6/111 𝜔 = 6.95 rad ∕sec

6/112 x = 0.211l, 𝜔max = 1.861√g
l
 CW

6/113 vO = √ 2rod

m(k2 + ro
2)

√P(ro − ri) − mgro sin 𝜃

6/114 v = 2.29 m ∕s right

6/115 vO = 0.757 m ∕s down 

6/116 N = 3720 rev ∕min 

6/117 (a) P = 23.9 hp, (b) P = 66.1 hp 

6/118 vA = √3 √M𝜃

m
− gb(1 −  cos 𝜃) right
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6/172 (a) 𝜔 = 4.94 rad∕s

 (b) 𝜔 = 6.25 rad∕s

6/173 (𝜇s)min = 
2
5

tan 𝜃
6/174 v = 0.733 ft ∕sec
6/175 vA = 11.35 ft ∕sec
6/176 t = 1206 s
6/177 (xP, yP) = (0.320r, 0.424r)

6/178 b =
L

1 + √n

6/179  Mx = −46.0 lb-in., My = 16.11 lb-in. 
Mz = −18.41 lb-in.

 ▶6/180 ax = −6.95 ft ∕sec2, ay = −4.01 ft ∕sec2

 ▶6/181 M = 0.482 N ∙ m CCW
6/182 𝜃max = 39.9°, 𝜔 = 4.50 rad∕s CW

6/183 (vA)max = 7.57 ft∕sec at 𝜃 = 48.2°

6/184 Ox = 
3mg

4
sin𝜃 (3 cos 𝜃 − 2), Oy = 

mg
4

(3 cos 𝜃 − 1)2

6/185 t = 0.302 s
6/186 𝜔max = 0.680 rad ∕s CCW at 𝜃 = 22.4°, 𝜃max = 45.9°
6/187 t = 2.85 sec, vA = 75.7 ft∕sec
6/188 �M �max = 3.93 N ∙ m at 𝜃 = 145.6°
 Amax = 88.2 N at 𝜃 = 181.2°
 Bmax = Cmax = 91.7 N at 𝜃 = 184.2°
6/189  �M �max = 3.61 N ∙ m at 𝜃 = 360° 

Amax = 63.8 N at 𝜃 = 287°
Bmax = Cmax = 73.7 N at 𝜃 = 185.3°

6/190  �M �max = 4.64 N ∙ m at 𝜃 = 144.6°
Amax = 105.0 N at 𝜃 = 181.5°
Bmax = 108.0 N at 𝜃 = 184.1°
Cmax = 121.7 N at 𝜃 = 183.8°
Omax = 107.4 N at 𝜃 = 180.7°

Chapter 7
7/1 Finite rotations cannot be added as proper vectors

7/2 Infi nitesimal rotations add as proper vectors

7/3 v = 27.3i − 3.87j − 13.07k m ∕s

 a = −949i + 2520j − 2730k m ∕s2

7/4 vA = −0.8i − 1.5j + 2k m ∕s, vB = 2.62 m ∕s

7/5 No answer

7/6 N2 = 440 rev∕min

7/7 v = 𝜔[−l cos 𝜃i + (d cos 𝜃 − h sin 𝜃) j − l sin 𝜃k]

 a =  𝜔2[(h sin 𝜃 cos 𝜃 − d cos2 𝜃)i − lj  
+ (h sin2 𝜃 − d cos 𝜃 sin 𝜃) k]

7/8 𝛚 = pj + 𝜔0k, 𝛂 = −p𝜔0i

7/9 𝛂 = −1.2i rad ∕sec2, aP = 35.8j − 80k in. ∕sec2

7/10 𝛂 = 12𝜋2j rad ∕sec2, vA = 5𝜋 (−4i + 6j −3k) in. ∕sec

 aA = −5𝜋2 (25j + 18k) in. ∕sec2

*

*

*

*
*
*
*

*

*

6/150 vB = 0.773i − 20.9j ft ∕sec

6/151 N2 = 2.59 rev ∕min

6/152 v1 = 4.88 m ∕s

6/153 𝜔 =
( l

2
− x)√2gh

1
3

l2 − lx + x2

 x = 0: 𝜔 =
3
2l

√2gh CW

 x =
l
2

: 𝜔 = 0

  x = l: 𝜔 =
3
2l

√2gh CCW

6/154  (a) 𝜔2 = 6.57 rad ∕s, (b) 𝜔3 = 1.757 rad ∕s
(c) 𝜔4 = 1.757 rad ∕s

6/155 t =
2v0

g(7𝜇k cos 𝜃 − 2 sin 𝜃)

 v =
5v0𝜇k

7𝜇k − 2 tan 𝜃  down incline

 𝜔 =
5v0𝜇k

r(7𝜇k − 2 tan 𝜃)
 CW

6/156 t =
2r𝜔0

g(2 sin 𝜃 + 7𝜇k cos 𝜃)

 v =
2r𝜔0( sin 𝜃 + 𝜇k cos 𝜃)

2 sin 𝜃 + 7𝜇k cos 𝜃  down incline

 𝜔 =
2𝜔0( sin 𝜃 + 𝜇k cos 𝜃)
2 sin 𝜃 + 7𝜇k cos 𝜃  CW

6/157 v′ = √9v2

4
 sin2 𝜃 + 3gL cos 𝜃

6/158 N = 4.78 rev ∕sec
6/159 N = 37.0 rev ∕min
6/160  M = 231 N ∙ m, Tupper = 1234 N

 Tlower = 1212 N, P = 3700 W

6/161 𝜔s =
− Mt

(I − IW)

 𝜔w∕s =
I
Iw

 
Mt

(I − Iw)
6/162 I = 3.45 kg ∙ m2

6/163 N2 = 569 rev ∕min, No
6/164 Pin = 4500 W

6/165  v′ = 
v
3

 (1 + 2 cos 𝜃), n10° = 0.0202

6/166 𝛺 = 1.135 rad∕s

6/167 𝜃 = 35.5°

6/168 Uƒ = −0.336 J

6/169 𝛼 = 0.604 rad∕s2 CCW

6/170 𝛽 = 19.26°
6/171 M = 106.3 lb-ft CCW, A = 51.7 lb
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 ▶7/43 𝛚 = 𝜋(−3i + √3 j + 5k) rad∕sec

 𝛂 = 𝜋2(4√3 i + 9j + 3√3k) rad∕sec2

 ▶7/44 𝛚 = p [ cos 𝜃 j + (sin 𝜃 +
R
r )k ] , 𝛂 =

p2R
r

cos 𝜃i

 ▶7/45 𝛼 = 42.8 rad ∕s2

 ▶7/46 vA = 0.160j m∕s, 𝛚 = 0.32(−2 i + 4 j − k) rad∕s

7/47 G = √2mb𝜔, HO = 3mb2𝜔

7/48 HO = mb2 𝜔 [ i + 2j − ( l2

6b2 + 2)k ]
7/49  HG = −1.613j − 744k kg ∙ m2 ∕s 

 HA = −2.70j − 744k kg ∙ m2 ∕s

7/50 HO = 𝜌b3 𝜔(− 

1
2

i −
3
2

j +
8
3

k), T =
4
3

𝜌b3𝜔2

7/51 HG =
1
4

 𝜌b3 𝜔(−i − j + 2k)

7/52 HO = mr𝜔 [− 

2
3𝜋

(b + 2c)j +
r
2

k ]
7/53 HO = m𝜔(b2

3
+

r2

4
+ h2) i +

1
2

mr2pj

7/54 HG = Ip(i + j + k) + 2(I + mb2)𝛀

 where 𝛀 = 𝛺xi + 𝛺yj + 𝛺zk

7/55 HO = −0.01i + 0.0045j + 0.0576k lb-ft-sec

7/56 HO = 2.38j + 25.6k lb-ft-sec, T = 805 ft-lb

7/57 HO = 𝜋(−0.4 j + 0.6k) kg ∙ m2∕s, T = 59.2 J

7/58 HO =
1
4

mr2 𝜔[−sin 𝛼 cos 𝛼i

 + (sin2 𝛼 + 2 cos2 𝛼)k], 𝛽 = 4.96°

7/59 HO =
3

10
mr2 [(1

2
+

2h2

r2 )𝛺i + pk ]
 T =

3
10

mr2 [(1
4

+
h2

r2 )𝛺2 +
p2

2 ]
7/60 HG = −2𝜋mƒk′2 sin 𝜃i + mk2(p + 2𝜋ƒ cos 𝜃)k

7/61 HO =
1
4

mr2 [ −𝜔1i + (1 +
4b2

r2 ) 𝜔2 j + 2pk ]
 T =

1
8

mr2 [ 𝜔1
2 + (1 +

4b2

r2 ) 𝜔2
2 + 2p2 ]

7/62 HO′ = 0.1626(i + 8j) lb-ft-sec, T = 148.1 ft-lb

7/63 HO = m𝜔 [
1
6

c2
 sin 2𝛽j + (2

5
r2 +

1
3

c2 cos2 𝛽 + 2b2)k]
7/64 HO =

1
6

mb2 𝜔 sin 2𝜃i

 + m𝜔(1
3

c2 +
1
3

b2 cos2 𝜃 + a2 + ac)k

 Imax = m(c2 + b2

3
+ a2 + ac), Imin =

1
3

mb2

 Iint = m(1
3

c2 + a2 + ac)
7/65 M =

1
2

 mbl𝜔2

7/11 𝛂 = 50𝜋 ( 𝜋

2√3
 i + k) rad∕sec2

7/12 (a) 𝜔 = 26.5 rad ∕s, (b) 𝜔 = 17.32 rad ∕s

7/13 𝛚 = −0.4i + 2.69k rad ∕s, 𝛂 = 0.8j rad ∕s2

7/14 𝛂 = −1.5i + 0.8j + 2.60k rad ∕s2

7/15 𝜔 = 2.5 rad ∕s, 𝛂 = 3j rad ∕s2

7/16 𝛚 = 0.693j + 2.40k rad ∕s, 𝛂 = −1.386i rad ∕s2

7/17 𝛂 = −(2𝜋

𝜏 )
2

 
R
r

 i

7/18 vA =
2𝜋R

𝜏
 (i − j −

r
R

 k)
 aA = −(2𝜋

𝜏 )
2

 R [ (R
r

+
r
R) i + k ]

7/19 vB = 3.95 m ∕s, aB = 72.2 m ∕s2

7/20 vP = 3.48 m ∕s, aP = 1.104 m ∕s2

7/21 (a) 𝛂 = 6j − 8k rad ∕s2, aA = 21.2 m ∕s2

 (b) 𝛂 = 8i rad ∕s2, aA = 10.67 m ∕s2

7/22 𝛚 = −0.785i − 2.60j + 2.5k rad ∕s, 𝛼 = 11.44 rad ∕s2

 ▶7/23 𝛼 = 6.32 rad ∕s2

 ▶7/24 vB = −14.35j in. ∕sec, aB = 338i + 194.8k in. ∕sec2

 𝛂 = −31.0 j rad ∕sec2

7/25 p = 28.2 rad ∕s, vB/A = 4.10i m ∕s

7/26 𝛂 = pqj

7/27 𝜔 = 10.77 rad ∕s, 𝛂 = −40j rad ∕s2

7/28 𝛂 = −40j + 6k rad ∕s2

7/29  vA = −3i −1.6j + 1.2k m ∕s 
aA = −34.8j − 6.4k m ∕s2

7/30 𝛂 = −1.2𝜋(√3 i + k) rad∕s2

7/31 𝛚n =
1

49
(−3i + 20j + 9k) rad∕sec

7/32 𝛂 = −𝛺p sin 𝛽i + �̇�(p cos 𝛽 − 𝛺) j − p�̇� sin 𝛽k

7/33 vA = 6.8 ft ∕sec, aA = 20.8 ft ∕sec2

7/34 vA = −0.636i − 4.87j + 1.273k m ∕s

7/35 (a) 𝛂 = −(3.88i + 3.49j)10−3 rad ∕s2

 (b) 𝛂 = −3.49(10−3) j rad ∕s2

7/36 𝛂 = p𝜔2i − p𝜔1 j + 𝜔1𝜔2k

7/37 𝛂 = −3i − 4j rad ∕sec2

7/38  vA = 𝜋(0.1i + 0.8j + 0.08k) m ∕s 

 aA = −𝜋
2(6.32i + 0.1k) m ∕s2

7/39 vA = −𝛺(R + b sin 𝛽)i + b�̇� cos 𝛽j − b�̇� sin 𝛽k

 aA = −2b𝛺�̇� cos 𝛽i 
− [𝛺2(R + b sin 𝛽) + b�̇�

2 sin 𝛽]j − b�̇�
2 cos 𝛽k

7/40 𝛂 = −40𝜋
2i rad ∕s2, aA = 2𝜋

2(−2.4i + 4j − 5k) m ∕s2

7/41 �̇� =
1
8

i rad∕sec2

 aA = 0.313i − 2.43j − 0.1083k ft∕sec2

7/42 vA = −rpi − (r𝜔1 + b𝜔2)k

 aA = −𝜔2(2r𝜔1 + b𝜔2)i − r(𝜔1
2 + p2) j + 2rp𝜔2k
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7/97 MA = 30.9 N ∙ m, MO = 0
7/98 ΔRA = 98.1 lb increase, ΔRB = 98.1 lb decrease 

7/99 𝜓 = −6 rev∕min (retrograde precession) 

7/100 RA = 7.80 lb up, RB = 12.20 lb up

7/101 𝜏 = 1.831 s, Negative z-direction 

7/102 𝛀 = −1.230K rad ∕sec, M = 67.7i lb-in.

7/103 b = r

7/104 𝜏 = 0.0996 s, Retrograde precession 

7/105 (a) p = 4𝜋 rad∕s,  𝜃 = 0, 𝛽 = 0, 𝜓 = 0

 (b) p = 4𝜋 rad∕s,  𝜃 = 10°, 𝛽 = 3.03°

 𝜓 = 5.47 rad∕s

 (c) p = 0,  𝜃 = 90°, 𝛽 = 90°, 𝜓 = 4𝜋 rad∕s 

7/106 𝜏 = 0.443 sec

7/107 Mk = 3I𝛺 p cos 𝜙

 My = −3I𝛺 p sin 𝜙, M = 3I𝛺 p

 ▶7/108 Az = − 

m𝜃

2
  (

r2p
2b

+ l𝜃), Bz =
m𝜃

2
  (

r2p
2b

− l𝜃)
 where 𝜃 = 2√ 2 gl

r2 + 4l2

 ▶7/109 Mx = −I𝜔𝛺0 cos 𝜔t, My = 0, Mz = −I𝜔𝛺0 sin 𝜔t

 ▶7/110 (a) 
h
r

=
1
2

 

7/111 Direct precession: 
l
r

> √6

 Retrograde precession: 
l
r

< √6

7/112 H =
ma2𝜔

6√3
(i + j + k)

7/113 p =
mvh
m0k2, Opposite to car wheels 

7/114 𝛂 = 77.9i rad ∕s2

7/115 𝛂 = 8√3i + 120√3j + 52k rad∕sec2

 aA = −2090i − 369j + 4810k in.∕sec2

7/116 𝛚n =
9

49
(2i + k) rad∕sec

7/117 𝛀 = 𝛺k, 𝜏 =
4𝜋r2 p
5gh

7/118 HO = 0.707j + 4.45k kg ∙ m2 ∕s, T = 69.9 J

7/119 𝛚 =
2𝜋

𝜏 [ ( r
R

−
R
r ) j +

√R2 − r2

R
k ]

7/120 𝛂 = (2𝜋

𝜏 )
2√R2 − r2

r
i

7/121 aA = (2𝜋

𝜏 )
2

[ √R2 − r2 (2r2

R2 − 3) j

         + (3r −
R2

r
−

2r3

R2 )k ]

7/66 Ax = Bx = 0, Ay = − 

1
3

mR𝜔2, By =
1
3

mR𝜔2

7/67 B =
mbl𝜔2

2c
(cos 𝜃i + sin 𝜃j)

7/68 Bx =
3Mb
2lc

sin 𝜃, By = − 

3Mb
2lc

cos 𝜃

7/69 A = 576 N, B = 247 N

7/70 M = − 

2
𝜋

mr𝜔2 j

7/71 M = − 

4MO

3𝜋
i

7/72 𝛼 =
M

IO cos2 𝜃 + Isin2 𝜃
7/73 M = −79.0i N ∙ m

7/74 A = 1608i N, B = −1608i N

7/75 A = −91.7j N, B = 91.7j N, M = 10.8 N ∙ m

7/76 𝜃 = sin−1 (
3g

2𝜔2  
b2 − c2

b3 + c3) if 𝜔2 ≥
3g
2

 
b2 − c2

b3 + c3

 else 𝜃 = 90°

7/77 M =
1
8

mr2𝜔2 sin 2𝛼j

7/78 NA =
mg
2

−
m2v2

2𝜋r
, NB =

mg
2

+
m2v2

2𝜋r

7/79 Mx =
1
6

mb2𝜔2 sin 2𝛽

7/80 My = − 

1
6

mb2 𝛼 sin 2𝛽, Mz =
1

12
mb2 𝛼(1 + 4sin2 𝛽)

7/81 𝜔 = 2√√3g

l

7/82 M =
2mr

𝜋
(g + 2r𝜔2) 

 ▶7/83 A =
mg
6

 

 ▶7/84 A =
mg
3 (7a + 2b

2a + b ) 

7/85 CCW as viewed from above

7/86 p1

7/87 Tendency to rotate to student’s right

7/88 R = 712 N

7/89 b = 216 mm

7/90 M = M1 = mk2𝛺
v
r

 

7/91 Right-side normal forces are increased

7/92 C = D = 948 N

7/93 M = 3970 lb-ft, CCW defl ection

7/94 𝛀 = 6.67k rad ∕sec

7/95 M = 5410 kN ∙ m, (b)

7/96 (a) No precession, MA = 12.56 N ∙ m

 (b) 𝛺 = 0.723 rad ∕s, MA = 3.14 N ∙ m
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PA-18 Problem Answers

8/29 ẍ1 +
a2c1 + b2c2

a2m1 + b2m2
 ẋ1 +

a2k1 + b2k2

a2m1 + b2m2
 x1 = 0

8/30 x1 = −0.1630x0

8/31 (ẋ0)c = −𝜔nx0

8/32 (a) x = 0.368 ft or 4.42 in., (b) x = 0.393 ft or 4.72 in.

8/33 𝜁 = 0.274, c = 39.9 lb-sec∕ft

8/34 x = x0 (1.171e−2.67t − 0.1708e−18.33t)

8/35 ẍ +
b2c
a2m

 ẋ +
k
m

 x = 0, 𝜁 =
b2c

2a2√km

 8/36 r =
2𝜇k g

𝜋 √m
k

8/37 𝜁 = 0.1936

8/38 (a) X = 13.44 mm, (b)  X = 22.7 mm

8/39 𝜔 < 5.10 rad∕sec and 𝜔 > 6.78 rad∕sec

8/40 𝜔 < 5.32 rad∕sec and 𝜔 > 6.51 rad∕sec

8/41 c = 3.33 lb-sec∕ft

8/42 (a) X = 0.251 ft, (b) X = 0.0791 ft; 𝛿st = 0.25 ft

8/43 R1 = 50%, R2 = 2.52%

8/44 
𝜔

𝜔n
= √1 − 2𝜁2

8/45 𝜔 < √2
3

𝜔n and 𝜔 > √2𝜔n

8/46 ƒ =
1

2𝜋
 √ g

𝛿st

8/47 2.38 < ƒ < 5.32 Hz

8/48 ẍi + 2 𝜁𝜔n ẋi + 𝜔n
2

 xi =
k
m

 b sin 𝜔t +
c
m

 b𝜔 cos 𝜔t

8/49 ẍ +
c
m

 ẋ +
k1 + k2

m
 x =

k2

m
 b cos 𝜔t, 𝜔c = √k1 + k2

m

8/50 ẍ +
c1 + c2

m
 ẋ +

k
m

 x = − 

c2

m
 b𝜔 sin 𝜔t, 𝜁 =

c1 + c2

2√km
8/51 k = 227 kN∕m or 823 kN∕m

8/52 b = 1.886 mm

8/53 ÿ +
4k
m

 y =
2k
m

 b sin 𝜔t, 𝜔c = 2√ k
m

8/54 c = 44.6 N ∙ s∕m

 8/55 E = 𝜋c𝜔X 2

 8/56 X = 14.75 mm, vc = 15.23 km∕  h

8/57 𝜏 = 6𝜋√ m
5k

8/58 𝜔n = √ 3g

2√a2 + b2

8/59 𝜏 = 2𝜋√2b
3g

8/60 𝜏 = 2𝜋√5b
6g

8/61 Θ = 0.1271 rad

7/122 N = 1.988 cycles ∕min

7/123 HO = 0.421j + 1.281k lb-ft-sec, T = 11.30 ft-lb

7/124  HO = 0.0867i + 0.421j + 1.281k lb-ft-sec 

 T = 11.85 ft-lb

7/125 RA = RB = 159.3 lb

7/126 M = 271 lb-ft

7/127 M = 13.33 N ∙ m

7/128 M = 2.70 N ∙ m

Chapter 8
8/1 k = 736 N ∕m, k = 4.20 lb∕in., k = 50.4 lb ∕ft

8/2 𝜔n = 12 rad∕sec, ƒn = 1.910 Hz

8/3  x = 2.08 sin (12t + 1.287) in., C = 2.08 in. 

 𝜏 = 0.524 sec

8/4 𝛿st = 0.200 m, 𝜏 = 0.898 s, vmax = 0.7 m∕s

8/5  y = −0.0548 m, v = −0.586 m∕s, a = 2.68 m∕s2 

 amax = 4.9 m∕s2

8/6 ƒn =
1
𝜋

 √ k
m

8/7 amax = 30 m∕s2

8/8 ƒn = 2.23 Hz

8/9 x = 25 cos 14.01t mm

8/10 𝜔n = 3√ k
m

8/11 ƒn = 1.332 Hz

8/12 (a) k = 474 kN∕ m, (b) ƒn = 0.905 Hz

8/13 (a) k = k1 + k2, (b) k =
k1k2

k1 + k2

8/14 m = 2.55 kg, 𝜇s = 0.358

8/15 (a) v = 88.0 cos 21.5t in.∕sec, (b) xmax = 4.09 in.

8/16 ƒn = 3.30 Hz

8/17 𝜔n = 2 √ 6EI
mL3

8/18 𝜔n =
1
3

 √ k
m

 8/19 ÿ +
k

mL2 y3 = 0

8/20 𝜁 = 0.75

8/21 c = 38.0 N ∙ s∕m

8/22 𝜁 = 0.436

8/23 𝜁 = 0.6

8/24 c = 154.4 lb-sec∕ft

8/25 x = x0 (cos 9.26t + 1.134 sin 9.26t)e−10.5t

8/26 𝜁 =
𝛿N

√(2𝜋N)2 + 𝛿N
2
 , where 𝛿N = ln (

x0

xN
)

8/27 c = 1.721 N ∙ s∕m

8/28 c = 16.24(103) N ∙s∕m
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8/84 ƒn = 1.519 Hz

8/85 𝜏 = 𝜋√6 (R − r)
g

8/86 x = √
𝜏 

2kT

4 𝜋 
2 − IO

2m

8/87 𝜔n = 3√ 6k
3m1 + 26m2

, 𝜔 = 3𝜃0 √ 6k
3m1 + 26m2

8/88 ƒn =
1

2𝜋
 √ mgr0

3Mr 

2 + m(r − r0)2

8/89 𝜔n = √mgr sin 𝛼

I + mr2

8/90 𝜔n = √6k
m

+
3g
2l

8/91 ƒn = 1.496 Hz

8/92 ƒn = 2.62 Hz

8/93 ẍ + 600x + 7776x3 = 0, with x in ft

8/94 𝜏 = 2𝜋 √(𝜋 − 2) r
g

 8/95 𝜏 = 41.4  √R
g

 8/96 𝜏 = 4.44 √r
g

8/97 ƒn =
1

2𝜋
 √2kb2

ml2 −
g
l
, k >

mgl

2b2

8/98 𝜏 =
2𝜋

√ 2kT

mb2 +
4 g sin 𝛽

3b𝛽

8/99 X = 0.287 m, 𝜏 = 0.365 s

8/100 (a) 𝜔n = 2 √ g
5r

, (b) 𝜔n = √2g
3r

8/101 ƒn =
1

2𝜋√ g
2r

8/102 Q =
1
2

 kx1
2 (1 − e−2 𝛿), where 𝛿 =

𝜋

√km
c2 −

1
4

8/103 𝜁 = 0.0697

8/104 c = 69.3 N ∙ s∕m

8/105 𝛿0 = 0.712 mm

8/106  (ƒn)y = 4.95 Hz, (ƒn)𝜃 = 10.75 Hz, N = 645 rev∕min

8/107 𝜃max = 𝜙0 

r0r

1 − ( 𝜔

𝜔n
)

2
,

 where 𝜔n =
r

k√2k
m

 8/108 28.9% increase in amplitude

8/109 t = 0.972 s*

8/62 𝜏 = 2𝜋 √ ml2L
12 JG

8/63 �̈� +

8 g sin 
𝛽

2
3r𝛽

 sin 𝜃 = 0, 𝜏 = 1.003 s

8/64 𝜔n = √ 3gh

3r 

2 + 2h2

8/65 �̈� +

1
2 m1 g L +

4
9 kL2

1
3 m1L2 +

4
9 m2 L2

 𝜃 =

2
3 k L b cos 𝜔t

1
3 m1 L2 +

4
9 m2 L2

8/66 x = 0.558 m

8/67 𝜔n = 8.24 rad∕s

8/68 𝜁 =
a2c
2b2 √ 3

km
, ccr =

2b2

a2  √km
3

8/69 𝜏 =
2 𝜋 kO

√2kb2

m
+ gr

8/70 k = 3820 N∕m

8/71 𝜔c = √6
5(2k

m
+

g
l )

8/72 meff = m1 +
m2

2

8/73 𝜔n = √
k

m1 +
kO

2

a2  m2

, 𝜁 =

b2

a2 c

2 √k(m1 +
kO

2

a2  m2)
8/74 𝜏 = 𝜋√6 (R − r)

g
, 𝜔 =

𝜃0

r √2g (R − r)
3

 

8/75 Θ =

− 

3b
2l

 𝜔2

𝜔n
2 − 𝜔2, where 𝜔n = √3kT

ml2 −
3 g
2 l

8/76 mkO
2 Θ̈ + K𝜃 − mr(g sin 𝜃 + a cos 𝜃) = 0

8/77 ƒn = 2.43 Hz

8/78 𝜏 = 6𝜋√ m
5k

8/79 𝜏 = 2𝜋√ 2l
3g

8/80 𝜔n = √
k

m(1 +
k2

r2 )
, k = 0: 𝜔n = √ k

m

 k = r: 𝜔n = √ k
2m

8/81 𝜏 = 2𝜋√2r
g

8/82 ƒn =
b

2𝜋l
 √ k

m

8/83 𝜔n = √12 kT + 18 𝜌 g l2

17𝜌 l3
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PA-20 Problem Answers

B/15 I = m (R2 +
3
4

a2)
B/16 Ixx =

166
147

 mb2

B/17 Iyy = m ( 83
147

b2 +
23

196
L2)

B/18 Iyy =
1

10
mh2

B/19 I =
1
2

m(2R2 + 3a2)

B/20 Ixx = Izz =
2
3

mr2

B/21 Izz =
8

21
ma2

B/22 Ixx = m ( 4
21

a2 +
1
7

b2)
 B/23 kz = 0.890a

 B/24 Iyy = 5.66(10−3) kg ∙ m2, ky = 53.8 mm

 B/25 Izz = 21.5(10−3) kg ∙ m2, kz = 104.9 mm

B/26 (a) d = 10r: e = 0.498%

 (b) d = 2r: e = 11.11%

B/27 Ixx = Izz = 2mL2, Iyy = 4mL2

B/28 Iyy = 1.201 kg ∙ m2, e = 1.538%

B/29 Ixx =
1
2

 m(r1
2 + r2

2)

B/30 Izz =
1

12
m(15r2 + L2) 

B/31 Ixx = 1.898 lb-in.-sec2

B/32 L =
r√3

2
B/33 Ixx = 0.1220 kg ∙ m2

B/34 Iyy = 𝜌L3
 ( 43

192
+

83𝜋

128) or 2.26𝜌L3 

B/35 I = 1.031 kg ∙ m2, n = 97.8%

B/36  Ixx = 5.02(10−3) lb-ft-sec2

 Iyy = 5.84(10−3) lb-ft-sec2

 Izz = 7.12(10−3) lb-ft-sec2

B/37 Ixx = Izz =
3
4

 mb2, Iyy =
1
6

 mb2

B/38  (a) Iyy = 3.27(10−3) lb-ft-sec2 

 (b) Izz = 3.68(10−3) lb-ft-sec2

B/39 Ixx = 0.1107 kg ∙ m2, Ix0x0
 = 0.1010 kg ∙ m2

B/40 Ixx = 0.408mb2, Iyy = 0.6mb2, Izz = 0.525mb2

B/41 IO = m (7x2 +
1
3

  l2), R = 0.582 

B/42 IA = 0.1701ma2

B/43 kO = 97.5 mm

B/44 Ixx = 0.410 lb-in.-sec2 

B/45 Ixx =
3

10
 m (

r2
5 − r1

5

r2
3 − r1

3)

8/110 Large-angle: 𝜃 = 28.0° at t = 1 s

 Small-angle: 𝜃 = 38.8° at t = 1 s

8/111 t = 0.0544 s or 0.442 s

8/112 0 < k < 1.895 lb∕ft

8/113 x = 0.284e−0.707t sin 7.04t

8/114 xmax = 0.1955 ft at t = 0.0462 sec

 xmin = −0.0792 ft at t = 0.1923 sec

8/115 x = 0.0926(t − 0.0913 sin 10.95t) m

8/116 (a) y = 0.1722e−9.16t − 0.0722e−21.8t m

 (b) y = 0.1414e−10t sin (10t + 0.785) m

Appendix B

B/1 Ixx =
1

12
 mL2 sin2

 𝛽, Iyy =
1

12
 mL2 cos2

 𝛽

 Izz =
1

12
 mL2

B/2 Ixx =
1
6

 mh2, kx =
h

√6
= 0.408h

 Iyy =
1
6

 mb2, ky =
b

√6
= 0.408b

 Izz =
1
6

 m(h2 + b2), kz = 0.408√h2 + b2

B/3 Ixx =
3

10
 mr2, Iyy =

3
5

 m (r2

4
+ h2)

B/4 Ixx =
3
7

 mh2, kx = 0.655h

B/5 Iyy =
1

20
 mb2, ky = 0.224b

B/6 Ix′x′ =
1
5

 mh2, Iy′y′ =
8

35
 mb2, Iz′z′ = m (h2

5
+

8b2

35 )
B/7 Ixx =

1
4

 mb2, Iyy =
1
4

 ma2

 Izz =
1
4

 m(a2 + b2)

B/8 Ixx =
2
7

 mr2

B/9 Iyy = Izz = m (r2

7
+

2h2

3 )
B/10 k =

a
2√39

5

B/11 kz =
r

√3

B/12 Iyy =
1
2

 m (h2 +
r2

3 )
B/13 Iyy =

1
2 (2 + n

4 + n)mb2

B/14 Ixx =
53

200
 mR2

*

*

*

*

*

*

*
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B/57 Ixy = Iyz = − 

1
8

 mb2, Ixz = 0

B/58 Ixy =
2
𝜋

 mr2, Ixz = Iyz = 0 

B/59 (IAA)min = 0.535 kg ∙ m2 at 𝜃 = 22.5°
B/60 Imin = 0.1870𝜌r3 at 𝛼 = 38.6°
B/61 I1 = 9ml2, I2 = 7.37ml2, I3 = 1.628ml2 

 l1 = 0.816, m1 = 0.408, n1 = 0.408

B/62 Ixx = 3.74mb2, Iyy = 22.5mb2, Izz = 26.2mb2

  Ixy = 5.55mb2, Ixz = Iyz = 0 

  𝜃 = 15.30° about +z-axis

B/63 I1 = 3.78𝜌b4, I2 = 0.612𝜌b4, I3 = 3.61𝜌b4

B/64  I1 = 1.509 kg ∙ m2, l1 = 0.996, m1 = −0.0876 

 n1 = 0.00514

  I2 = 1.431 kg ∙ m2, l2 = −0.0433, m2 = −0.439

 n2 = 0.897

  I3 = 0.406 kg ∙ m2, l3 = 0.0764, m3 = 0.894

 n3 = 0.441

*

*

*

*

*

*

B/46 l > 4.89r

B/47 Ixy = −2ml2, Ixz = −4ml2, Iyz = 0

B/48 Ixy = 0, Ixz = Iyz = −2ml2

B/49 Ixy = − 

1
24

ml2 sin 2𝜃 

B/50 Ixy =
1
4

 mr2, Ixz = Iyz =
1

𝜋√2
 mr2 

B/51 Ixy = −mab, Ixz =
1
2

 mah, Iyz = − 

1
2

 mbh 

B/52 Ixy = − 

𝜌𝜋b4

512
, Ixz = Iyz = 0 

B/53 Ixy =
1
2

 mrh, Ixz = − 

4
3𝜋

 mr2, Iyz = − 

2
3𝜋

 mrh 

B/54 Ixy =
1
4

 mbh 

B/55  Ixy =
1
4

 mbh, Ix′y′ = − 

1
12

 mbh, Ix″y″ =
1
4

 mbh

 Ixy =
1

36
mbh 

B/56  Ixy = −1.553 lb-in.-sec2 

 Ixz = −1.035 lb-in.-sec2

 Iyz = 0.776 lb-in.-sec2
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