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Abbreviations
* i
and Symbols
ABBREVIATIONS
allow allowable
av average
cr critical i
E.S. factor of safety
ft feet
Hp horsepower
Hz hertz
in. inches
k kips
kg kilogram
kip kilo-pound (1,000 Ib)
ksi kips per square inch
Ib pounds (from Latin /ibra meaning weight)
m meter 3
max maximum
min minimum
N newton £
NA neutral axis
Pa pascal

*With very few exceptions. the abbreviations and letter symbols shown here conform with those
approved by the American Standards Association.

ROMAN LETTER SYMBOLS

SN QSN A Sl S N

area bounded by center line of the perimeter of a thin tube
area, area of cross section

partial area of beam cross sectional area

breadth, width

distance from neutral axis or from center of twist to extreme fiber
diameter, distance, depth

modulus of elasticity in tension or compression

eccentricity

force, allowable stress (AISC notation)

frequency, computed stress (AISC notation)

modulus of elasticity in shear

acceleration of gravity

height, depth of beam

moment of inertia of cross sectional area

polar moment of inertia of cross sectional area
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N'= = g-

psi
rad
rpm

ult
W

yp

stress concentration factor
spring constant, constant

length

moment, bending moment

plastic moment

mass, moment caused by virtual unit load
number of revolutions per minute
number, ratio of moduli of elasticity
force, concentrated load

pressure intensity

first or statical moment of area A around neutral axis
distributed load intensity, shear flow
reaction, radius

elastic section-modulus (S=1/c¢)

radius, radius of gyration

torque, temperature

thickness, width, tangential deviation

strain energy, work

™

internal force caused by virtual unit load, axial or radial displacement
shearing force (often vertical), volume

transverse deflection of beam, velocity

total weight, work

weight or load per unit of length

distance from neutral axis

plastic section modulus

pounds per square inch

radian

revolutions per minute
S-shape (standard) steel beam

second
ultimate

W-shape (wide flange) steel beam

yield point

GREEK LETTER SYMBOLS

€ 91 Q UV T >»x Do LA

(alpha)
(gamma)
(delta)
(epsilon)
(theta)
(kappa)
(lambda)
(nu)
(rho)
(sigma)
(tau)
(phi)

linear coefficient of thermal expansion, general angle

shearing strain, weight per unit volume

total deformation or deflection, change of any designated function
normal strain

slope angle for elastic curve, angle of inclination of line on body
curvature

eigenvalue in column buckling problems

Poisson’s ratio

radius, radius of curvature

tensile or compressive stress (i.e., normal stress)

shearing stress

total angle of twist, general angle
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Preface to
the Second Edition

In the mid-sixties strong pressures developed to revise the first edition
of this book. At that time this was prompted mainly by the need for a text
with a more mathematically rigorous approach, which was favored in some
of our engineering schools. In revising and re-arranging the original text,
some of the sections were entirely re-written and some new material added.
This changed the character of the book, and it was re-titled Introduction to
Mechanics of Solids (Prentice-Hall, Inc., 1968). The new book had an
excellent reception. Nevertheless, demand for the original text continued.
It is remarkable that an unrevised engineering text, with numerous others
available, was being reprinted twenty-three years after it had made its first
appearance. Therefore it was decided to up-date the original text wherever
necessary, but basically leave the treatment very similar to what it was
before. This implied a practical orientation of the text, a gradual develop-
ment of the subject, and adherance to the widely used beam sign convention
for shears and moments. The coming change to the Systeme Internationale
system of units provided the immediate impetus for this work.

In this edition the SI system of units is used side-by-side with the
English. It is hoped that this approach will prove useful, both to the student
and the teacher, for the necessary transition to the new units. If this subject
were pure Newtonian mechanics, a strong temptation for consistency may
have suggested the use of the SI system of units only. But in a design-oriented
subject such as this is, and for a text which definitely emphasizes practical
applications, this does not seem possible now. The data available on the
mechanical properties of materials, as well as the commercially available
sizes of angles, bolts, steel beams, timber, etc., in the United States, are still
being given in the English system of units. It will take some time before
such information becomes generally available in SI units; in the meantime,
confusing as this may be, an engineering student will have to become
acquainted with the dual system of units.

This book is designed for use in an undergraduate course in Strength
or Mechanics of Materials. Fundamental principles of the subject are
emphasized throughout. Applications are selected from the various fields
of engineering.

Xi
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It is assumed that the reader has completed a course in Statics. How-
ever, those topics which are particularly important in Mechanics of Materials
are reviewed where introduced.

The various articles are arranged in a logical sequence that has proved
very effective in the author’s teaching experience. However, some instructors
may wish to combine the study of Chapter 1 with Chapter 4, treating this
part of the course as a review of Statics. Some may find it advantageous to
proceed to the articles in Chapter 10 on the construction of shear and
moment diagrams right after the study of Chapter 4. For this purpose
Articles 10-5 through 10-8 are recommended. Other instructors may find it
desirable to introduce combined stresses by assigning for simultaneous
reading the early articles in Chapter 8 with those in Chapter 9.

The book contains more material than can be covered in a one-quarter
or a one-semester course. To assist instructors in selecting material for such
courses, articles of an advanced or specialized nature are preceded by an
asterisk for possible omission. Moreover, with very few exceptions, each
chapter is written so as to introduce gradually the more complex material.
Thus, study of a particular topic may be terminated where desired. Chapters
14 and 16 may be entirely omitted. On the other hand, Chapters 10, 11,
12, 13, and 14 can form a basis for an introductory design course in structural
steel, whereas Chapter 16 may be covered with more mathematically inclined
classes.

More advanced topics are interspersed throughout the book wherever
justified for logical development of the subject. This treatment has two
desirable effects. First, the more inquisitive reader is presented with the
elaborate treatment he prefers. Second, the book can serve as a reference
work after it has served its purpose as a text.

Among the more advanced topics treated in this text are the generalized
Hooke's law, stress concentrations, inelastic torsion of shafts, plastic analysis
of beams, curved bars, shear center, Mohr’s circles of stress and strain,
strain rosettes, a description of the photoelastic method of stress analysis,
force and displacement methods of indeterminate analysis, virtual work
method for deflection of beams and trusses, and analysis of thick-walled
cylinders. The book includes an extensive practical treatment of concentrically
and eccentrically loaded columns, as well as self-contained treatment of
structural connections, including those with high-strength bolts, and welding.

Numerous illustrative examples are given to show not only how to set
up a problem, but to explain the limitations of the solution. A large number
of problems for solution appear at the end of each chapter. These are
presented to parallel the text discussion and are arranged approximately in
order of difficulty. The longer or more difficult problems are identified with
an asterisk. Answers are given to many problems. More than a third of all
the problems were used in examinations. In many instances the data given
are selected so as to simplify numerical solution for the reader. Some prob-
lems are academic, designed to emphasize the principles studied. And to
maintain student interest, realistic problems are interspersed throughout the

PREFACE TO SECOND EDITION xii
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text. Many problem solutions require the use of free-body diagrams to
bolster the student’s knowledge of Statics and to make the course in
Mechanics of Materials truly continuous with the one in Statics.

The development of this book was strongly influenced by the author’s
colleagues, his students, and the numerous books published both here and
abroad. The privilege of studying under S. Timoshenko and T. von Karman
remains memorable. Special gratitude is due, however, as in the first edition,
to the author’s colleagues in the Division of Structural Engineering and
Structural Mechanics in the Department of Civil Engineering at the Uni-
versity of California, Berkeley. Of this group the author wishes to especially
thank Professors H. D. Eberhart, K.S. Pister, and A.C. Scordelis for
stimulating discussions, for constructive criticism, and their generous assis-
tance with the problems for solution. Professor R. W. Clough kindly pro-
vided the photograph of a photoelastic experiment and several problems for
solution. Other present and former members of the staff, including col-
leagues from the Mechanical Engineering Department, provided much
valuable material for the problems for solution, among these it is a pleasure
to acknowledge Professors F. Baron, J. Bouwkamp, B. Bresler, C. L.
Monismith, J. Penzien, D. Pirtz, M. Polivka, C. W. Radcliffe, R. A. Seban,
C. F. Scheffey, E. L. Wilson and the late C. T. Wiskocil.

In preparing the second edition of the book the author is greatly
indebted to two of his former students who made the appearance of this
book possible. Dr. S. Nagarajan reviewed the entire text, revised example
problems where appropriate into the SI units, and prepared drafts on the
new material. Dr. Z. A. Lu assisted with the assembly of the problems for
solution. In an effort to reduce possible errors, all problems offered for
solution by the student were worked through mainly by J. K. Watt, and
some by P. Hashimoto.

The Prentice-Hall staff was most cooperative in bringing out this new
edition of the book. Lastly, the author again is deeply indebted to his wife,
Irene, for her continual help with the manuscript.

E. P. Porov
Berkeley, California

PREFACE TO SECOND EDITION Xii
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. Stress —

Axial Loads

1-1. INTRODUCTION

In all engineering construction the component parts of a structure must
be assigned definite physical sizes. Such parts must be properly proportioned
to resist the actual or probable forces that may be imposed upon them. Thus,
the walls of a pressure vessel must be of adequate strength to withstand the
internal pressure; the floors of a building must be sufficiently strong for their
intended purpose; the shaft of a machine must be of adequate size to carry the
required torque; a wing of an airplane must safely withstand the aerodynamic
loads which may come upon it in flight or landing. Likewise, the parts of a
composite structure must be rigid enough so as not to deflect or “sag” exces-
sively when in operation under the imposed loads. A floor of a building may
be strong enough but yet may deflect excessively, which in some instances
may cause misalignment of manufacturing equipment, or in other cases
result in the cracking of a plaster ceiling attached underneath. Also a member
may be so thin or slender that, upon being subjected to compressive loading,
it will collapse through buckling; i.e., the initial configuration of a member
may become unstable. Ability to determine the maximum load that a
slender column can carry before buckling occurs, or determination of the
safe level of vacuum that can be maintained by a vessel is of great practical
importance.

In engineering practice, such requirements must be met with minimum
expenditure of a given material. Aside from cost, at times—as in the design
of satellites—the feasibility and success of the whole mission may depend on
the weight of a package. The subject of mechanics of materials, or the strength
of materials, as it has been traditionally called in the past, involves analytical
methods for determining the strength, stiffness (deformation characteristics),
and stability of the various load-carrying members,_Alternately, the subject
may be termed the mechanics of solid deformable bodies.

Mechanics of materials is a fairly old subject, generally dated from the
work of Galileo in the early part of the seventeenth century. Prior to his
investigations into the behavior of solid bodies under loads, constructors

1
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followed precedents and empirical rules. Galileo was the first to attempt to
explain the behavior of some of the members under load on a rational basis.
He studied members in tension and compression, and notably beams used in
the construction of hulls of ships for the Italian navy. Of course much pro-
gress has been made since that time, but it must be noted in passing that much
is owed in the development of this subject to the French investigators, among
whom a group of outstanding men such as Coulomb, Poisson, Navier, St.
Venant, and Cauchy, who worked at the break of the nineteenth century,
has left an indelible impression on this subject.

The subject of mechanics of materials cuts broadly across all branches
of the engineering profession with remarkably many applications. Its methods
are needed by designers of offshore structures; by civil engineers in the design
of bridges and buildings; by mining engineers and architectural engineers,
each of whom is interested in structures; by nuclear engineers in the design of
reactor components; by mechanical and chemical engineers, who rely upon
the methods of this subject for the design of machinery and pressure vessels;
by metallurgists, who need the fundamental concepts of this subject in order
to understand how to improve existing materials further; finally, by elec-
trical engineers, who need the methods of this subject because of the impor-
tance of the mechanical engineering phases of many portions of electrical
equipment. Mechanics of materials has characteristic methods all its own. It
is a definite discipline and one of the most fundamental subjects of an engi-
neering curriculum, standing alongside such other basic subjects as fluid
mechanics, thermodynamics, and basic electricity.

The behavior of a member subjected to forces depends not only on the
fundamental laws of Newtonian mechanics that govern the equilibrium of the
forces but also on the physical characteristics of the materials of which the
member is fabricated. The necessary information regarding the latter comes
from the laboratory where materials are subjected to the action of accurately
known forces and the behavior of test specimens is observed with particular
regard to such phenomena as the occurrence of breaks, deformations, etc.
Determination of such phenomena is a vital part of the subject, but this
branch of the subject is left to other books.* Here the end results of such
investigations are of interest, and this course is concerned with the analytical
or mathematical part of the subject in contradistinction to experimentation.
For the above reasons, it is seen that mechanics of materials is a blended
science of experiment and Newtonian postulates of analytical mechanics.
From the latter is borrowed the branch of the science called statics, a subject
with which the reader of this book is presumed to be familiar, and on which
the subject of this book primarily depends.

This text will be limited to the simpler topics of the subject. In spite of
the relative simplicity of the methods employed here, however, the resulting

*See H. E. Davis, G.E. Troxell, and C. T. Wiskocil, Testing and Inspection of Engi-
neering Materials (2nd ed.), New York: McGraw-Hill, 1955. See also L. H. Van Vlack,
Material Science for Engineers, New York: Addison-Wesley, 1970.
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Fig. 1-1. Sectioning of a body

techniques are unusually useful as they do apply to a vast number of techni-
cally important problems.

The subject matter can be mastered best by solving numerous problems.
The number of formulas necessary for the analysis and design of structural
and machine members by the methods of mechanics of materials is remarka-
bly small; however, throughout this study the student must develop an
ability to visualize a problem and the nature of the quantities being computed.
Comﬂi , carefully drawn dtagrammattc sketches of problems to be solved

1-2. METHOD OF SECTIONS

One of the main problems of mechanics of materials is the investiga-
tion of the internal resistance of a body, that is, the nature of forces set up
within a body to balance the effect of the externally applied forces. For this
purpose, a uniform method of approach is employed. A complete diagram-
matic sketch of the member to be investigated is prepared, on which all
of the external forces acting on a body are shown at their respective points of
application. Such a sketch is called a free-body
diagram. All forces acting on a body, including
the reactive forces caused by the supports and the
weight* of the body itself, are considered external
forces. Moreover, since a stable body at rest is in
equilibrium, the forces acting on it satisfy the
equations of static equilibrium. Thus, if the forces
acting on a body such as shown in Fig. 1-1(a) satisfy
the equations of static equilibrium and are all
shown acting on it, the sketch represents a free-
body diagram. Next, since a determination of the
internal forces caused by the external ones is one of
the principal concerns of this subject, an arbitrary
section is passed through the body, completely
separating it into two parts. The result of such a
process can be seen in Figs. 1-1(b)and (c) where an
(c) arbitrary plane ABCD separates the original solid
body of Fig. 1-1(a) into two distinct parts. This
process will be referred to as the method of sections.
Then, if the body as a whole is in equilibrium, any part of it must also be
in equilibrium. For such parts of a body, however, some of the forces
necessary to maintain equilibrium must act at the cut section. These consi-

*Strictly speaking, the weight of the body, or more generally, the inertial forces due to
acceleration, etc., are “body forces,” and act throughout the body in a manner associated
with the units of volume of the body. However, in most instances, these body forces can be
considered as external loads.

ART. 1-2 METHOD OF SECTIONS 3
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Fig. 1-2. The
and shearing
nents of stress

CHAP.1 STRESS—AXIAL LOADS

A,

normal
compo-

derations lead to the following fundamental conclusion:

the externally applied forces to one side of an arbitrary cut must be balanced by
the internal forces developed at the cut, or briefly, the external forces are
balanced by the internal forces. Later it will be seen that the cutting planes
will be oriented in a particular direction to fit special requirements. However,
the above concept will be relied upon as a first step in solving all problems
where internal forces are being investigated.

In discussing the method of sections, it is significant to note that some
bodies, although not in static equilibrium, may be in dynamic equilibrium.
These problems can be reduced to problems of static equilibrium. Eirst, the
acceleration of the part in question is computed, then it is multiplied by the
mass of the body, giving a force F = ma. If the force so computed is applied
to the body at its mass center in a direction opposite to the acceleration, the
dynamic problem is reduced to one of statics. This is the so-called d’Alembert
principle. With this point of view, all bodies can be thought of as being instan-
taneously in a state of static equilibrium. Hence for any body, whether in
static or dynamic equilibrium, a free-body diagram can be prepared on which
the necessary forces to maintain the body as a whole in equilibrium can be
shown. From then on the problem is the same as discussed above.

1-3. STRESS

In general, the internal forces acting on infinitesimal areas of a cut may
be of varying magnitudes and directions, as is shown diagrammatically in
Figs. 1-1(b) and (c). These internal forces are vectorial in nature and maintain
in equilibrium the externally applied forces. In mechanics of materials it is
particularly significant to determine the intensity of these forces on the
various portions of the cut, as resistance to deformation and the capacity of
materials to resist forces depend on these intensities. In general, these intensi-
ties of force acting on infinitesimal areas of the cut vary from point to point,
and, in general, they are inclined with respect to the plane of the cut. In
engineering practice it is customary to resolve this intensity of force perpen-
dicular and parallel to the section investigated. Such resolution of the intensity
of a force on an infinitesimal area is shown in Fig. 1-2. The intensity of the
force perpendicular or normal to the section is called the normal stress at a
point. In this book it will be designated by the Greek letter o (sigma). As a
particular stress generally holds true only at a point, it is defined mathe-
matically as

o = lim ap

AA—0 AA
where Fis a force acting normal to the cut, while A is the corresponding area.
It is customary to refer to the normal stresses that cause traction or tension
on the surface of a cut as fensile stresses. On the other hand, those that are

AL LR e
pushing against the cut are compressive stresses.
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ART. 1-3 STRESS

The other component of the intensity of force acts parallel to the plane
of the elementary area, as in Fig. 1-2. This component of the intensity of force
is called the shearing stress. It will be designated by the Greek letter z(tau).
Mathematically it is defined as

T am A4
where A represents area, and V' is the component of the force parallel to the
cut. It should be noted that these definitions of stresses at a point involve the
concept of letting A4 — 0 and may be questionable from a strictly atomic
view of matter. However, the homogeneous model implied by these equations
has been a good approximation to inhomogenous matter on the macroscopic
level. Therefore, this so-called phenomenological approach is used.

The student should form a clear mental picture of the stresses called
normal and those called shearing. To repeat, normal stresses result from
force components perpendicular to the plane of the cut, while shearing
stresses result from components parallel to the plane of the cut.

It is seen from the above definitions of normal and shearing stresses
that, since they represent the intensity of force on an area, stresses* are
measured in units of force divided by units of area. Since a force is a vector
and an area is a scalar, their ratio, which represents the component of stress
in a given direction, is a vectorial quantity.t

It should be noted that stresses multiplied by the respective areas on
which they act give forces, and it is the sum of these forces at an imaginary cut
that keeps a body in equilibrium.

In the English system, the usual units for stress are pounds per square
inch, abbreviated in this text as “psi.” In many cases it will be found con-
venient to use as a unit of force the coined word “kip,” meaning kilo-pound
or 1,000 Ib. The stress in Kkips per square inch is abbreviated as “ksi.” It
should be noted that the unit pound referred to here implies a pound-force,
not a pound-mass. Such ambiguities are avoided in the modernized version
of the metric system referred to as the International System of Units or SI
units.} SI units are being increasingly adopted and will be used in this text
along with the conventional English system in order to facilitate a smooth
transition. The base units in the SI are meter (m) for length, kilogram (kg)
for mass, and second (s) for time. The derived unit for area is a square
meter (m?), and for acceleration a meter per second squared (m/s*). The unit of
force is defined as a unit mass subjected to a unit acceleration, i.e., kilogram-
meter per second squared (kg+-m/s?), and is designated a newton (N). The unit
of stress is the newton per square meter (N/m?), also designated a pascal (Pa).

Multiple and submultiple prefixes representing steps of 1 000 are recommen-
*In some books the term “unit stress” is used to indicate stress per unit of area, However,
in this text the word “stress” is used for this concept.

fFor further details see Art. 8-2.

tFrom the French, Systéme International d’Unités.
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Fig. 1-3. The most general state of stress
acting on an element

ded. For example, force can be shown in millinewtons (1 mN = 0.001 N),
newtons, or kilonewtons (1 kN = 1000 N), length in millimeters (1 mm =
0.001 m), meters, or kilometers (1 km = 1000 m), stresses in kilopascals
(1 kPa = 103 Pa), megapascals (1 MPa = 10¢ Pa), gigapascals (1 GPa =
10° Pa), etc.*

The stress expressed numerically in units of N/m? may appear to be
unusually small to those familiar with the English system of units. This is
because the force of one newton is small in relation to a pound-force, and
a square meter is associated with a much larger area than one square inch.
Therefore, to some it may be more acceptable to think in terms of a force of
one newton acting on one square millimeter. Since the notation N/mm? is
not recommended, however, one can simply employ its equivalent, the
megapascal (MPa).

If in addition to a plane such as ABCD in Fig. 1-1(a) another plane an
infinitesimal distance away and parallel to the first were passed through the

body, a thin element of the body would be isolated.

o, Then, if an additional two pairs of planes were
i passed normal to the first pair, an elementary cube
of infinitesimal dimensions would be isolated from

Tey / o, the body. Such a cube is shown in Fig. 1-3. Here,

for identification purposes, the process of resolution

of stresses into components has been carried further
than discussed above. At each surface the shearing
stress 7 has been resolved into two components
parallel to a particular set of axes. The subscripts
of the ¢’'s designate the direction of the normal
stress along a particular axis, while the stress itself
acts on a plane perpendicular to the same axis. The
first subscripts of the 7’s associate the shearing
stress with a plane that is perpendicular to a given
axis, while the second designate the direction of the
shearing stress.

An infinitesimal cube, as shown in Fig. 1-3, could be used as the basis
for an exact formulation of the problem in mechanics of materials. How-
ever, the methods for the study of the behavior of such a cube (which involve
the writing of an equation for its equilibrium and making certain that such a
cube, after deformations caused in it by the action of forces will be geomet-
rically compatible with the adjoining infinitesimal cubes) are beyond the
scope of this course. They are in the realm of the mathematical theory of
elasticity. The procedures used in this text do not resort to the generality
implied in Fig. 1-3. The methods used here will be much simpler.

*A detailed discussion of SI units, including conversion factors, rules for SI style, and usage
can be found in a comprehensive guide published by the American Society for Testing
and Materials under the designation ASTM E-380-1974. For convenience, a short table of
conversion factors is included on the inside of the back cover.

CHAP.1 STRESS—AXIAL LOADS 6
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1-4. AXIAL LOAD; NORMAL STRESS

In many practical situations, if the direction of the imaginary plane
cutting a member is judiciously selected, the stresses that act on the cut will
be found both particularly significant and simple to determine. One such
important case occurs in a straight axially loaded rod in tension, provided a
plane is passed perpendicular to the axis of the rod. The tensile stress acting on
such a cut is the maximum stress, as any other cut not perpendicular to the
axis of the rod provides a larger surface for resisting the applied force. The
maximum stress is the most significant one, as it tends to cause the failure of
the material . *

To obtain an algebraic expression for this maximum stress, consider
the case illustrated in Fig. 1-4(a). If the rod is assumed weightless, two
equal and opposite forces P are necessary, one at each end to maintain
equilibrium. Then, as stated in Art. 1-2, since the body as a whole is in
equilibrium, any part of it is also in equilibrium. A part of the rod to either
side of the cut x-x is in equilibrium. At the cut, where the cross-sectional
area of the rod is A4, a force equivalent to P, as shown in Figs. 1-4(b) and
(c), must be developed. Whereupon, from the definition of stress, the normal
stress, or the stress that acts perpendicularly to the cut, is

7 % force [N} [I%:l (1-1)

.= r =
A area

mZ

P P
I ! 7 3 a
1 ¢«
i |
| [}
| |
Axis of )'___b z d:j
G g : sl o
the rod P (b) A (d g )
X |£I l} i B %
u/ tp LY YV P=o4
124 ——
| AYh ANT =~
e A ()
I : \
(a) | |
i |
/)h_ % ,}-_ ("
T (©) - i (e) I (h)
P P 7

Fig. 1-4. Successive steps in the analysis of a body for stress

*Some materials exhibit a far greater relative strength to normal stresses than to shearing
stresses. For such materials, failure takes place on an oblique plane. This will be discussed
in Chapter 9.

ART. 1-4 AXIAL LOAD: NORMAL STRESS 7
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Fig. 1-5. A member with a nonuiform stress

This normal stress is uniformly distributed over the cross-sectional area A.*
The nature of the quantity computed by Eq. 1-1 may be seen graphically in
Figs. 1-4(d) and (e). In general, the force P is a resultant of a number of forces
to one side of the cut or another.

If an additional cut is made parallel to the plane x-x in Fig. 1-4(a), the
isolated section of the rod could be represented as in Fig. 1-4(f), and upon
further “cutting,” an infinitesimal cube as in Fig. 1-4(g) results. The only kind
of stresses that appear here are the normal stresses on the two surfaces of the
cube. Such a state of stress on an element is referred to as uyniaxial stress. In
practice, isometric views of a cube as shown in Fig. 1-4(g) are seldom employed ;
the diagrams are simplified to look like those of Fig. 1-4(h). Nevertheless, the
student must never lose sight of the three-dimensional aspect of the problem
at hand.

At a cut, the system of tensile stresses computed by Eq. 1-1 provides an
equilibrant to the externally applied force. When these normal stresses are
multiplied by the corresponding infinitesimal areas and then summed over the
whole area of a cut, the summation is equal to the applied force P. Thus the
system of stresses is statically equivalent to the force P. Moreover, the resultant
of this sum must act through the centroid of a section. Conversely, to have
a uniform stress distribution in a rod, the applied axial force must act through
the centroid of the cross-sectional area investigated. For example, in the
machine part shown in Fig. 1-5(a) the stresses cannot be obtained from Eq. 1-1
alone. Here, at a cut such as A4-A4, a statically equivalent system of forces
developed within the material must consist not only
of the force P but also of a bending moment M that
must maintain the externally applied force in equi-
librium. This causes nonuniform stress distribution
in the member. This will be treated in Chapter 7.

In accepting Eq. 1-1, it must be kept in mind
that the material’s behavior is idealized. Each and
every particle of a body is assumed to contribute
equally to the resistance of the force. A perfect
homogeneity of the material is implied by such an
assumption. Real materials, such as metals, consist
of a great many grains, while wood is fibrous. In
real materials, some particles will contribute more
to the resistance of a force than others. Stresses as
shown in Figs. 1-4(d) and (e) actually do not exist.
The diagram of true stress distribution varies in
each particular case and is a highly irregular, jagged
affair. However, on the average, or statistically

Section
A-A

distribution at Section A-A speaking, computations based on Eq. I-1 are

*Equation 1-1 strictly applies only if the cross-sectional area is constant along the rod.
For a discussion of situations where an abrupt discontinuity in the cross-sectional area
occurs, see Art. 2-11.

CHAP. 1 STRESS—AXIAL LOADS 8
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correct, and hence the computed stress represents a highly significant
quantity.

Similar reasoning applies to compression members. The maximum
normal or compressive stress can also be obtained by passing a section
perpendicular to the axis of a member and applying Eq. 1-1. The stress so
obtained will be of uniform intensity as long as the resultant of the applied
forces coincides with the centroid of the area at the cut. However, one must
exercise additional care when compression members are investigated.
These may be so slender that they may not behave in the fashion considered.
For example, an ordinary yardstick under a rather small axial compression
force has a tendency to buckle sideways and collapse. The consideration of
such instability of compression members is deferred until Chapter 13. Equa-
tion 1-1 is applicable only for axially loaded compression members that are
rather chunky, i.e., to short blocks. As will be shown in Chapter 13, a block
whose least dimension is approximately one-tenth of its length may usually
be considered a short block. For example, a 2 in. by 4 in. wooden piece may
be 20 in. long and still be considered a short block.

Situations often arise where one body is
supported by another. If the resultant of the applied
forces coincides with the centroid of the contact
area between the two bodies, the intensity of force,
or stress, between the two bodies can again be
determined from Eq. 1-1. It is customary to refer
to this normal stress as a_bearing stress. Figure 1-6,
where a short block bears on a concrete pier and
the latter bears on the soil, illustrates such a
stress. The bearing stresses are obtained by dividing

Fig. 1-6. Bearing stresses occur the applied force P by the corresponding area of

between the block and pier contact.

1-56. AVERAGE SHEARING STRESS

Another situation that frequently arises in practice is shown in Figs.
1-7(a), (c), and (e). In all of these cases the forces are transmitted from one
part of a body to the other by causing stresses in the plane parallel to the
applied force. To obtain stresses in such instances, cutting planes as A-A
are selected and free-body diagrams* as shown in Figs. 1-7(b), (d), and (f) are
used. The forces are transmitted through the respective cut areas. Hence,
assuming that the stresses that act in the plane of these cuts are uniformly
distributed, one obtains a relation for stress

1’=§ or Jorce [N] or [l—b-] (1-2)

area m? in.?

*A small unbalance in moment equal to Pe exists in the first two cases shown in Fig. 1-7,
but, being small, is commonly ignored.

ART. 1-5 AVERAGE SHEARING STRESS 9
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Fig. 1-7. Loading conditions causing shearing stresses

where 7 by definition is the shearing stress, P is the total force acting across
and parallel to the cut, often called shear, and A is the cross-sectional area of
the cut member. For reasons to be discussed later, unlike normal stress, the
shearing stress given by Eq. 1-2 is only approximately true. For the cases
shown, the shearing stresses actually are distributed in a nonuniform fashion
across the area of the cut. The quantity given by Eq. 1-2 represents an
average shearing stress.

The shearing stress, as computed by Eq. 1-2, is shown diagrammatically
in Fig. 1-7(g). Note that for the case shown in Fig. 1-7(e) there are two planes
of the rivet that resist the force. Such a rivet is referred to as being in
double shear.

In cases such as those in Figs. 1-7(c) and (e), as the force P is applied, a
highly irregular pressure develops between a rivet or a bolt and the plates.

CHAP.1 STRESS—AXIAL LOADS 10
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The average nominal intensity of this pressure is obtained by dividing the
force transmitted by the projected area of the rivet onto the plate. This is
referred to as the hegring stress. The bearing stress in Fig. 1-7(c) is g, = P/(td),
where 7 is the thickness of the plate and d is the diameter of theé Tivet. For the
case in Fig. 1-7(e) the bearing stresses for the middle plate and the outer
plates are o, = P/(t,d) and o, = P/(2t,d), respectively.

1-6. PROBLEMS IN NORMAL AND SHEARING STRESS

Once P and A are determined in a given problem, Eqgs. 1-1 and 1-2 are
easy to apply. These equations have a clear physical meaning. Moreover, it
seems reasonably clear that the desired magnitudes of stresses are the maxi-
mum stresses, as they are the greatest imposition on the strength of a material. "

The greatest stresses occur at a cut or section of minimum cross-sectional area

and the greatest axial force. Such sections are called critical sections. The
critical section for the particular arrangement being analyzed can usually be
found by inspection. However, to de:ermine the force P that acts through a -
member is usually a more difficult task. In the majority of problems treated
in this text the latter information is obtained from statics.

For the equilibrium of a body in space, the equations of statics require
the fulfillment of the following conditions:

SF=0 XM =0
EF}':O ZMyZO (1'3)
SF =0 XYM =0

The first column of Eq. 1-3 states that the sum of a// forces acting on a body
in any (x, y, z) direction must be zero. The second column notes that the
summation of moments of al/ forces around any axis parallel to any (x, y, z)
direction must also be zero for equilibrium. In a planar problem, i.e., all
members and forces lie in a single plane such as the x-y plane, relations
M F,=0,3 M, =0,and } M, =0, while still valid, are trivial.

These equations of statics are directly applicable to deformable solid
bodies. The deformations tolerated in engineering structures are usually
negligible in comparison with the over-all dimensions of structures. There-
fore, for the purposes of obtaining the forces in members, the initial undeformed
dimensions of members are used in computations.

There are problems where equations of

g statics are not sufficient to determine the forces in,
/ or those acting on, the member. For example, the
reactions for a straight beam, shown in Fig. 1-8,

X

supported vertically at three points, cannot be
t}, 7 determined from statics alone. In this planar prob-
lem there are four unknown reaction components,

Fig. 1-8. A statically indeterminate beam  While only three independent equations of statics

ART. 1-6 PROBLEMS IN NORMAL AND SHEARING STRESS 11
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are available. Such problems are termed statically indeterminate. The con-
sideration of statically indeterminate problems is postponed until Chapter
11. For the present, and in the succeeding nine chapters of this text, all
structures and members considered will be statically determinate, i.e., all
of the external forces acting on such bodies can be determined by Eqs. 1-3.
There is no dearth of statically determinate problems that are practically
significant.

Equations 1-3 should already be familiar to the student. However,
several examples where they are applied will now be given, the professional
techniques for their use being stressed. These examples will serve as an
informal review of some of the principles of statics and will show applica-
tions of Egs. 1-1 and 1-2.

EXAMPLE 1-1

The beam BE in Fig. 1-9(a) is used for hoisting machinery. It is anchored
by two bolts at B, and at C it rests on a parapet wall. The essential details
are given in the figure. Note that the bolts are threaded as shown in Fig.
1-9(d) with d = 16 mm.at the root of the threads. If this arrangement is used
to lift equipment of 10 kN, determine the stress in the bolts BD and the
bearing stress at C. Assume that the weight of the beam is negligible in com-
parison with the loads handled.

(a)

Im 2.5m
I‘E'B € E il 02m x 03m
z { f },I\\\ finished timber
’ 02m 0.3m H
“ 77
7007 .
I 7| »——Building
b s
D . Two 20 mm bolts
P 4D EN @ View A-A
1 ()
y Im 25m
B C £
_ Distributed force
' Cx t equivalent to F
RB_y Rey P

(b)

(d)

Fig.1-9
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SOLUTION

To solve this problem, the actual situation is idealized, and a free-body
diagram is made on which all known and unknown forces are indicated.
This is shown in Fig. 1-9(b). The vertical reactions at B and C are unknown.
They are indicated respectively as Rz, and Rc,, where the first subscript
identifies the location and the second the line of action of the unknown force.
As the long bolts BD are not effective in resisting the horizontal force, only
an unknown horizontal reaction at C is assumed and marked as Rq.. The
applied known force P is shown in its proper location. After a free-body
diagram is prepared, the equations of statics are applied and solved for the
unknown forces.

SF. =0 Ree =0
SMy=0Q+, 1025+1)— Rey(1)=0, Re,=35kN1
SMe=00D+, 102.5) — Rg(1) =0, R, = 25kN |
Check: Y F,=01 +, —25+35—10=0

These steps complete and check the work of determining the forces.
The various areas of the material that resist these forces are determined next,
and Eq. 1-1 is applied.

Cross-sectional area of one 20 mm bolt: 4 = 7(0.02/2)2 = 0.000 314 m?
This is not the minimum area of a bolt; threads reduce it.

The cross-sectional area of one 20 mm bolt at the root of the threads is

Ay = 1(0.016/2) = 0.000 201 m?

Maximum normal tensile stress* in each of the two bolts BD:

Tensile stress in the shank of the bolts BD:
S —

25 = 39 800 kN/m? = 39.8 x 106 N/m? = 39.8 MPa

7 = 3(0.000 314)
Contact area at C:
A =02 %02 = 0.04 m2

Bearing stress at C:

—Rey _ 35 _ 975 kN/m2 = 0.875 x 106 N/m? = 0.875 MPa

EXAMPLE 1-2

The concrete pier shown in Fig. 1-10(a) is loaded at the top with a uniformly
distributed load of 20 kN/m?2. Investigate the state of stress at a level of 1 m
above the base. Concrete weighs approximately 25 kN/m?3.

*See also discussion on stress concentrations, Art. 2-11.

ART.1-6 PROBLEMS IN NORMAL AND SHEARING STRESS 13
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(a) (c)
Fig.1-10
SOLUTION

In this problem the weight of the structure itself is appreciable and must
be included in the calculations.
Weight of the whole pier:

W =[(0.5 + 1.5[D))(0.5)(2)(25) = 25 kN
Total applied force:
P = 20(0.5)(0.5) = 5 kN
From ) F, = 0, reaction at base:
R =W+ P =30kN

These forces are shown schematically in the diagrams as concentrated
forces acting through their respective centroids. Then, to determine the stress
at the desired level, the body is cut into two separate parts. A free-body
diagram for either part is sufficient to solve the problem. For comparison the
problem is solved both ways.

CHAP.1 STRESS—AXIAL LOADS 14
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Using the upper part of the pier as a free body, Fig. 1-10(b), weight of
the pier above the cut:

W, = (0.5 + 1)(0.5)(1)(25/2) = 9.4 kN
From Y F, = 0, force at the cut:
F, =P+ W, = 144kN.
Hence, using Eq. 1-1, the normal stress at the level a-a is

_F, 144
0. =4 = sy = B8 KN/m?

This stress is compressive as F, acts on the cut.
Using the lower part of the pier as a free body, Fig. 1-10(c), weight
of the pier below the cut:

W, = (1 + 1.5)(0.5)(1)(25/2) = 15.6 kN
From Y F, = 0, force at the cut:
F,=R— W, =144kN
The remainder of the problem is the same as before. The pier considered

here has a vertical axis of symmetry, making the application of Eq. 1-1
possible.*

 EXAMPLE 1-3

A bracket of negligible weight shown in Fig. 1-11(a) is loaded with a force
P of 3 kips. For interconnection purposes the bar ends are clevised (forked).
Pertinent dimensions are shown in the figure. Find the normal stresses in the
members AB and BC and the bearing and shearing stresses for the pin C.
All pins are 0.375 in. in diameter.

SOLUTION

First an idealized free-body diagram consisting of the two bars pinned at
the ends is prepared, Fig. 1-11(b). As there are no intermediate forces acting
on the bars and the applied force acts through the joint at B, the forces in
the bars are directed along the lines AB and BC, and the bars 4B and BC
are loaded axially. The magnitudes of the forces are unknown and are labeled
F, and F, in the diagram.t These forces can be determined graphically
by completing a triangle of forces F,, F, and P. These forces may also be

*Strictly speaking the solution obtained is not exact, as the sides of the pier are sloping.
If the included angle between these sides is large, this solution is altogether inadequate.
For further details see S. Timoshenko and J. N. Goodier, Theory of Elasticity (3rd ed.),
New York: McGraw-Hill, 1970, p. 139.

fIn frameworks it is convenient to assume all unknown forces are tensile. A negative
answer in the solution then indicates that the bar is in compression.

ART. 1-6 PROBLEMS IN NORMAL AND SHEARING STRESS 15
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Fig. 1-11

found analytically from two simultaneous equations >, F, = 0 and > F.
= 0, written in terms of the unknowns F, and F,, a known force P, and two
known angles & and f. Both these procedures are possible. However, in this
course it will usually be found advantageous to proceed in a different way.
Instead of treating forces F, and F, directly, their components are used; and
instead of 3} F = 0, 3 M = 0 becomes the main tool.

Any force can be resolved into components. For example, F, can be
resolved into F,, and F,, as in Fig. 1-11(c). Conversely, if any one of the
components of a directed force is known, the force itself can be determined.
This follows from similarity of dimension and force triangles. In Fig. 1-11(c)
the triangles Akm and BAD are similar triangles (both are shaded in the dia-
gram). Hence, if F,, is known,

F4 = (AB/DB)F .

CHAP.1 STRESS—AXIAL LOADS 16
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Similarly, F, = (AD/DB)F,.. However, note further that AB/ DB or AD|DB
are ratios, hence relative dimensions of members can be used. Such relative
dimensions are shown by a little triangle on the member AB and again on
BC. In the problem at hand

FAz(ﬁ/Z)FAx and FA,V=FAX/2

Adopting the above procedure of resolving forces, a revised free-
body diagram, Fig. 1-11(d), is prepared. Two components of force are neces-
sary at the pin joints. After the forces are determined by statics, Eq. 1-1 is
applied several times, thinking in terms of a free body of an individual mem-
ber:

SMc=00+, +Fu(3+6)—36)=0, F, = +2kips
Fy, = F4./2 = 2/2 = 1 kip,
F, =2(./5/2) = +2.23 kips
SMy=0D+, +3(6) + Fex(9) =0,
F., = —2Kkips (compression)
Fey = Fo, = —2Kips,
Fo = ,/2(—2) = —2.83 kips
Check: X F, =0, Fqu+For=2-2=0
>F,=0, F4,—F,—P=1—(-2—-3=0

Stress in main bar AB:

_F,_ 223 - : .
Ous =3 = 025)(0.30) 17.8 ksi (tension)
Stress in clevis of bar 4B, Fig. 1-11(e):

G andoenss = Fy _ 2.23
AB)clevis Anﬂ 2(020)(0875 — 0375)

= 11.2ksi (tension)

Stress in main bar BC:

_F- 2.83 - : :
Opc = = OBT5)(05) — 12.9 ksi (compression)

In the compression member the net section at the clevis need not be investi-
gated; see Fig. 1-11(f) for the transfer of forces. The bearing stress at the pin
is more critical. Bearing between pin C and clevis:

Fe 2.83

% = T (0375(0202 188K
Bearing between the pin C and the main plate:
% 283 = 302ksi

9 =4 T (0.375)0.25)

ART. 1-6 PROBLEMS IN NORMAL AND SHEARING STRESS 17
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Fa

Double shear in the pin C:

_F. 283 .
T =" = s aTsy = 129%ksi

For a complete analysis of this bracket, other
pins should be investigated. However, it can be seen by
inspection that the other pins in this case are stressed

Fay either the same amount as computed above or less.

The advantages of the method used in the
above example for finding forces in members
should now be apparent. It can also be applied
with success in a problem such as the one shown
in Fig. 1-12. The force F, transmitted by the
curved member AB acts through points 4 and B,
since the forces applied at 4 and B must be collinear.
By resolving this force at A’, the same procedure
can be followed. Wavy lines through F, and F,
indicate that these forces are replaced by the two
components shown. Alternatively, the force F,
can be resolved at A4, and since F,, = (x/y)F,,,
the application of 3 M, = 0 yields F,,.

In frames where the applied forces do not
act through a joint, proceed as above as far as
possible. Then isolate an individual member, and
using its free-body diagram, complete the deter-
mination of forces. If inclined forces are acting

on the structure, resolve them into convenient
Fig.1-12 components.

1-7. ALLOWABLE STRESSES; FACTOR OF SAFETY

The determination of stresses would be altogether meaningless were it
not for the fact that physical testing of materials in a laboratory provides
information regarding a material’s resistance to stress. In a laboratory, speci-
mens of known material, manufacturing process, and heat treatment are
carefully prepared to desired dimensions. Then these specimens are subjected
to successively increasing known forces. In the most widely used test, a round
rod is subjected to tension and the specimen is loaded until it finally ruptures.
The force necessary to cause rupture is called the ultimate load. By dividing
this ultimate load by the original cross-sectional area of the specimen, the
ultimate strength (stress) of a material is obtained. Figure 1-13 shows a testing
machine used for this purpose. Figure 1-14 is a photograph of a tension-test
specimen. The tensile test is used most widely. However, compression, bend-
ing, torsion, and shearing tests are also employed. Table 1 of the Appendix
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Fig.1-13. Universal testing machine (Cour- Fig. 1-14. A typical tension test specimen of
tesy SATEC Systems). mild steel: (a) before fracture,(b) after frac-
ture.

gives ultimate strengths and other physical properties for a few materials.

For the design of members the stress level called the allowable stress is
set considerably lower than the ultimate strength found in the so-called
“static” test mentioned above. This is necessary for several reasons. The
exact magnitudes of the forces that may act upon the designed structure are
seldom accurately known. Materials are not entirely uniform. Some of the
materials stretch unpermissible amounts prior to an actual break, so to hold
down these deformations, stresses must be kept low.* Some materials seri-
ously corrode. Some materials flow plastically under a sustained load, a
phenomenon called creep. With a lapse of time, this can cause large defor-
mations that cannot be tolerated.

For applications where a force comes on and off the structure a number
of times, the materials cannot withstand the ultimate stress of a static test.
In such cases the “ultimate strength” depends on the number of times the
force is applied as the material works at a particular stress level. Figure 1-15
shows the results of testst on a number of the same kind of specimens at

*See Chapter 2 for more details.

ftZambrow, J. L., and Fontana, M. G., “Mechanical Properties, including Fatigue, of
Aircraft Alloys at Very Low Temperatures,” Trans. ASM, 1949, vol. 41, p. 498.
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18-8 stainless steel
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Fig. 1-15. Fatigue strength of 18-8 stainless steel at various tempera-
tures (reciprocating beam test).

different stresses. Experimental points indicate the number of cycles required
to break the specimen at a particular stress under the application of a fluc-
tuating load. Such tests are called “fatigue tests,” and the corresponding curves
are termed S-N (stress-number) diagrams. As can be seen from Fig. 1-15,
at smaller stresses the material can withstand an ever-increasing number of
cycles of load application. For some materials, notably steels, the S-N curve
for low stresses becomes essentially horizontal. This means that at a low
stress an infinitely large number of reversals of stress can take place before
the material fractures. The limiting stress at which this occurs is called the
endurance limit of the material. This limit, being dependent on stress, is
measured in pounds per square inch or newtons per square meter.

Some care must be exercised in interpreting S-N diagrams, particu-
larly with regard to the range of the applied stress. In some tests, complete
reversal (tension to compression) of stress is made; in others the applied load
is varied in a different manner, such as tension to no load and back to tension.
The major part of fatigue testing is done on specimens in bending.

In some cases another item deserves attention. As materials are manu-
factured, they are often rolled, peened, and hammered. In castings, materials
cool unevenly. These processes set up high internal stresses, which are called
residual stresses. In all cases treated in this text the materials are assumed to
be entirely free of such stresses.
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The aforementioned facts, coupled with the impossibility of determin-
ing stresses accurately in complicated structures and machines, necessitate a
substantial reduction of stress compared to the ultimate strength of a material
in a static test. For example, ordinary steel will withstand an ultimate stress
in tension of 60,000 psi and more. However, it deforms rather suddenly and
severely at the stress level of about 36,000 psi, and it is customary in the
United States to use an allowable stress of around 22,000 psi for structural
work. This allowable stress is even further reduced to about 12,000 psi for
parts that are subjected to alternating loads because of the fatigue character-
istics of the material. Fatigue properties of materials are of utmost importance
in mechanical equipment. Many failures in machine parts can be traced to
disregard of this important consideration. (Also see Art. 2-11.)

Large companies, as well as city, state, and federal authorities, prescribe
or recommend* allowable stresses for different materials, depending on the
application. Often such stresses are called the allowable fibert stresses.

Since according to Eq. 1-1, stress times area is equal to a force, the
allowable and ultimate stresses may be converted into the allowable and
ultimate forces or “loads™ that a member can resist. Also a significant ratio
may be formed:

ultimate load for a member
allowable load for a member

This ratio is called a factor of safety and must always be greater than unity.
Although not commonly used, perhaps a better term for this ratio is a factor
of ignorance.

This factor is identical with the ratio of ultimate to allowable stress for
tension members. For more complexly stressed members, the former defini-
tion is implied, although the ratio of stresses is actually used. As will become
apparent from subsequent reading, the two are not synonymous since the
stresses do not necessarily vary linearly with load.

In the aircraft industry the term factor of safety is replaced by another,
defined as

ultimate load
design load

and is known as the margin of safety. In normal usage this also reverts to

ultimate stress 1
maximum stress caused by the design load

*For example, see the American Institute of Steel Construction Manual, Building Construc-
tion Code of any large city, ANC-5 Strength of Aircraft Elements issued by the Army-Navy
Civil Committee on Aircraft Design Criteria, etc.

1The adjective fiber in the above sense is used for two reasons. Many original experiments
were made on wood, which is fibrous in character. Also, in several derivations that follow,
the concept of a continuous filament or fiber in a member is a convenient device for visualiz-
ing its action.
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An alternative approach is to determine the ultimate collapse load* of
a structure and then divide by a suitably chosen load factor to obtain the
allowable or working load. Conversely, once the working load has been deter-
mined, members are proportioned such that the ultimate load of the structure
is equal to the working load multiplied by the load factor. The two concepts,
allowable stress design and ultimate load design, lead to the same results for
a bar in simple tension or compression as well as for more complicated struc-
tures where failure is defined by an elastic criterion. However, significantly
different designs may be obtained in most cases where inelastic material
behavior is taken into account and the failure criterion is excessive plastic
deformation.

1-8. DESIGN OF AXIALLY LOADED MEMBERS AND PINS

The design of members for axial forces is rather simple. From Eq. [-]
the required area of a member is
4 =L (1-1a)

T allow

In all statically determinate problems the axial force P is determined from
statics, and the intended use of the material sets the allowable stress. For
tension members, the area 4 so computed is the required net cross-sectional
area of a member. For short compression blocks, Eq. 1-1a is also applicable;
however, for slender members, do not attempt to use the above equation prior
to study of the chapter on columns.

The simplicity of Eq. 1-1a is unrelated to its importance. A large num-
ber of problems requiring its use occur in practice. The following problems
illustrate some applications of Eq. 1-1a as well as provide additional review
in statics.

EXAMPLE 1-4

Reduce the weight of bar 4B in Example 1-3 by using a better material such
as chrome-vanadium steel. The ultimate strength of this steel is approxi-
mately 120,000 psi. Use a factor of safety of 2}.

SOLUTION

Oaiow = 120/2.5 = 48 ksi. From Example 1-3 the force in the bar AB:
F, = +2.23 kips. Required area: A,, = 2.23/48 = 0.0464 in.2. Adopt:
0.20-in. by 0.25-in. bar. This provides an area of (0.20)(0.25) = 0.050 in.2,
which is slightly in excess of the required area. Many other proportions of
the bar are possible.

With the cross-sectional area selected, the actual or working stress is
somewhat below the allowable stress: @,.u.a = 2.23/(0.050) = 44.6 ksi.

*See Art. 12-10 for further details.
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The actual factor of safety is 120/(44.6) = 2.69, and the actual margin of

safety is 1.69.
In a complete redesign, clevis and pins should also be reviewed and, if

possible, decreased in dimensions.

EXAMPLE 1-5

Select members FC and CB in the truss of Fig. 1-16(a) to carry an inclined
force P of 650 kN. Set the allowable tensile stress at 140 000 kN/m?2.
SOLUTION

If all members of the truss were to be designed, forces in all members would
have to be found. In practice this is now done by employing computer pro-
grams developed on the basis of matrix structural analysis* or by directly

P = 650 kN
dE
F C G 4
A
0.75 m
r
A B
0.75 m
E_Y_ >
X 6 equal spaces at 0.5 m = 3 m 520 kN 1 325 kNJ
< > e—1m
(a) O

R Dx

(b) (d)
Fig.1-16
*For example, see J. M. Gere, and W. Weaver, Jr., Analysis of Framed Structures, New

York: Van Nostrand Reinhold, 1965. See also J. L. Meek, Matrix Structural Analysis,
New York: McGraw-Hill, 1971.
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analyzing the truss by the method of joints. However, if only a few members
are to be designed or checked, the method of sections illustrated here is
quicker.

It is generally understood that a planar truss such as shown in the
figure is stable in the direction perpendicular to the plane of the paper.
Practically this is accomplished by introducing braces at right angles to the
plane of the truss. In this example the design of compression members is
avoided as this will be treated in the chapter on columns.

To determine the forces in the members to be designed, the reactions
for the whole structure are computed first. This is done by completely dis-
regarding the interior framing. Only reaction and force components definitely
located at their points of application are indicated on a free-body diagram of
the whole structure, Fig. 1-16(b). After the reactions are determined, free-
body diagrams of a part of the structure are used to determine the forces in
the members considered, Figs. 1-16(c) and (d).

Using free body in Fig. 1-16(b):

S F.=0 Rp.—520=0, Rp. = 520kN
My =00+, 4+ Rp,(3) — 390(0.5) — 520(1.5) = 0
Rp, = 325kN

SM,=00 +, + Rg(3) + 520(1.5) — 390(2.5) = 0
Rz = 65kN

Check: 3 F, =0, 4325 — 390 + 65 =0
Using free body in Fig. 1-16(c):

SM;=00 +, +Fpc(0.75) + 325(1) — 520(0.75) =0
Frc = +86.7 kN
Ape = Fpel|Oa10w = 86.7/(140 000) = 0.000 620 m? = 620 mm?
(use 12.5 mm x 50 mm bar)

Using free body in Fig. 1-16(d):
2. F,=0, —(Fep)y + 325 =0, (Fep)y = +325kN
Fep = '\/—B(FCB).V/3 = 4391 kN
Acp = Fep/Oanow = 391/(140 000) = 0.002 790 m? = 2 790 mm?

(use two bars 30 mm x 50 mm)

EXAMPLE 1-6

Consider the idealized dynamic system shown in Fig. 1-17. The shaft AB
rotates at a constant frequency of 10 Hz.* A light rod CD is attached to this
shaft at point C, and at the end of this rod a weight of 50 N is fastened. In
describing a complete circle the weight at D spins on a “frictionless” plane.
Select the size of the rod CD so that the stress in it will not exceed 70 000
kN/m2. In calculations, neglect the weight of the rod.

*Hz (abbreviation for hertz) or cycles per second is the SI unit for frequency.
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Smooth frictionless
SON plane

0.27 m

Fig. 1-17

SOLUTION

The acceleration of gravity g is 9.81 m/s2. The angular velocity w is 207
radians* per second. For the given motion the body W is accelerated toward
the center of rotation with an acceleration of w?2R, where R is the distance
CD. By multiplying this acceleration a by the mass m of the body, force
F is obtained. This force acts in the opposite direction to that of the
acceleration (d’Alembert principle); see Fig. 1-17.

F=mg = %szR - %(207:)2(0.27) — 5430N = 543 kN
F 543 B .
Aues = 5 = o055 = 0.000077 m? = 77 mm

A 10 mm round rod provides the required cross-sectional area. The additional
pull at C caused by the mass of the rod, not considered above, is

R
F, = '[o(ml dr)m?r

where m, is the mass of the rod per unit length and (m,dr) is its infinitesimal
mass at a variable distance r from the vertical rod AB. The total pull at C
caused by the rod and the weight W at the end is F + F),.

1-9. BASIC APPROACH

The method of attack for problems in mechanics of materials follows

along remarkably uniform lines. Now, by way of a bird’s-eye view of the
subject, the typical procedure will be outlined. It has already been used, and

*27 radians correspond to one cycle or complete revolution of the shaft.
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the reader will recognize the same method of approach in other problems
that follow. At times it is obscured by intermediate steps, but in the final

analysis it is always applied.

. From a particular arrangement of parts, a single member is isolated. Such a

member is indicated on a diagram with all the forces and reactions acting on
it. This is a free body of the whole member.

. The reactions are determined by the application of the equations of statics. In

indeterminate problems, statics is supplemented by additional considerations.

. At a point where the magnitude of the stress is wanted, a section perpendicular

to the axis of the body is passed, and a portion of the body, to either one side
of the section or the other, is completely removed.

. At the section investigated, the system of internal forces necessary to keep the

isolated part of the member in equilibrium is determined. In general, this
system of forces consists of an axial force, a shear, a bending moment, and
a torque.* These quantities are found by treating a part of the member as a

free body.

5. With the system of forces at the section properly resolved, the formulas of
mechanics of materials enable one to determine the stresses at the section

considered.

6. If the magnitude of the maximum stress at a section is known, one can
provide proper material for such a section; or, conversely, if the physical
properties of a material are known, one can select a member of adequate

size.

7. In certain other problems, a further study of a member at a section enables
one to predict the deformation of the structure as a whole and hence, if
necessary, to design members that do not deflect or “sag”™ excessively.

Very few basic formulas are used in mechanics of materials. These will
be learned by their repeated application. However, visualization of the nature
of the quantities being computed is essential. Free-body diagrams help visual-

ization immensely.

PROBLEMS FOR SOLUTION

1-1. If an axial tensile force of 110 kips is ap-
plied to a member made of a W 8 x 31 section,
what will the tensile stress be? What will the
stress be if the member is a C 12 x 20.7 section?
For designation and cross-sectional areas of these
members see Tables 4 and 5 in the Appendix.
Ans. 12-1 ksi, 18.2 ksi.

1-2. Revise the data in Example 1-1 to read as
follows: the distance BC is 3 ft, the distance CE
is 8 ft, the thickness of the parapet wall at C is
8 in., the weight being lifted is 1 ton (2,000 Ib),
the actual timber size is 7.5 in. by 11.5 in. (8 in. by
12 in. nominal, see Table 10 in the Appendix),
the bolts are  in. in diameter, and the cross-sec-

*A complete appreciation of these terms will result only after a study of Chapters 3 and 4.
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tional area at the root of the threads is 0.302 in.2
Solve for the same quantities as done in the above
example. Ans. . = 8,800 psi, 6, = 122 psi.

1-3 and 1-4. Short cast iron members have the
cross-sectional dimensions shown in the figures.
If they are subjected to axial compressive forces of
45 kN each, find the points of application for
these forces to cause no bending, and determine
the normal stresses. All dimensions are in mm.

=+ ‘*l()mm

25 mm 50 mm

PROB. 1 -3

75 mm 75 mm

J

100 mm

PROB. | - 4

1-5. A gear transmitting a torque of 4,000
in.-1b to a 2% in. shaft is keyed to it as shown in
the figure. The } in. square key is 2in. long.
Determine the shearing stress in the key. Ans.

3,650 psi.
Key

PROB. | -5

1-6. Two 10 mm thick steel plates are fastened
together as shown in the figure, by means of two
20 mm bolts that fit tightly into the holes. If the
joint transmits a tensile force of 45 kN, determine

t

150 mm ==

f

PROB. 1 -6

M |

1
| ©

CHAP.1 PROBLEMS FOR SOLUTION

(a) the average normal stress in the plates at a
section where no holes occur; (b) the average nor-
mal stress at the critical section; (c) the average
shearing stress in the bolts; and (d) the average
bearing stress between the bolts and the plates.

1-7. In Example 1-2, find the stress 0.5 m
above the base. Show the result on an infinitesimal
element.

1-8. Determine the bearing stresses caused by
the applied force at 4, B, and C for the structure
shown in the figure. Ans. o4, = —100 psi, 65 =
—167 psi.

6" % 12* (actual) B ‘|
A=——-\1N="]|c

4"~
6" x 6" (actual)
o |
| >T

PROB. 1 - 8

1-9. A lever mechanism used to lift panels of a
portable army bridge is shown in the figure. Cal-
culate the shearing stress in pin 4 caused by a
load of 2.5 kN. Ans. 20.3 MPa.

10 mm —
diameter pin

PROB. 1 -9

1-10. Calculate the shearing stress in pin A of
the bulldozer if the total forces acting on the blade
are as shown in the figure. Note that there is a
1} in. diameter pin on each side of the bulldozer.
Each pin is in single shear. Ans. T = 2.83 ksi.
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8k

/] ATAVAWAWAVA

A TSI IS/

4k
PROB. 1 - 10

1-11. A steel bar 1 in. in diameter is loaded in
double shear until failure; the ultimate load is
found to be 100,000 Ib. If the allowable stress is
to be based on a safety factor of 4, what must
the diameter of a pin designed for an allowable
load of 6,000 Ib in single shear be ? Ans. 0.69 in.

1-12. A 150 mm % 150 mm wooden post deliv-
ers a force of 50 kN to a concrete footing, as
shown in Fig. 1-6. (a) Find the bearing stress of
the wood on the concrete. (b) If the allowable
pressure on the soil is 100 kN/m2, determine in
plan view the required dimensions of a square
footing. Neglect the weight of the footing.

1-13. An arrangement of three rods is used to
suspend a 50 kN weight as shown in the figure.
The rods AB and BD are 20 mm in diameter, the
rod BCis 13 mm in diameter. Find the stresses in
the rods. Ans. 45 = 151 MPa.

C
A
0.90 m ﬁ B 1.2m
0.30 m 3.6 m
D
(Ow
PROB. 1 - 13
1-14. A rod of variable cross section built in

at one end is subjected to three axial forces as
shown in the figure. Find the maximum normal
stress. Ans. 22.5 Ksi.

4 in?

70k 20k 2 in2 40 k

- s W

PROB.1 - 14

CHAP.1 STRESS—AXIAL LOADS

1-15. Rework the preceding problem, assum-
ing that the (axial) end force, instead of being 40 k,
is to be such as to cause the same maximum nor-
mal stresses in the two sizes of the rod. The 20 k
and the 70 k axial forces remain applied, and the
maximum normal stress for the smaller part of the
rod may be either between these two forces, or
nearer to the free end. Investigate both conditions.
Ans. 50 k.

1-16. A short column is made up of two
standard steel pipes, one on top of the other as
shown in the figure. If the allowable stress in com-
pression is 15 ksi, (a) what is the allowable axial
load P, if the axial load P, = 50 kips; (b) what is
the allowable load P, if the load P, = 15 kips?
Neglect the weight of the pipes. Ans. (a) 14.5k,
(b) 49.5 k.

"

P

3" pipe

5” pipe

PROB. | - 16

1-17. Rework the above problem, assuming
that the direction of the force P, is reversed, i.e.,
P, becomes a tensile force. Assume that the
allowable tensile stress is also 15 ksi.

1-18. For the structure shown in the figure,
calculate the size of the bolt and area of the bear-
ing plates required if the allowable stresses are
18,000 psi in tension and 500 psi in bearing.
Neglect the weight of the beams. Ans. 1.25in.,
30in.2

Bearing plates
6" x 107

PROB. 1 - 18
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1-19. Rework Example 1-5 after revising the
data as follows: the total height of the truss is
60 in., the total width is 120 in., the applied force
P is 150 kips. Let the allowable tensile stress be
20,000 psi. Ans. 1in.2, 4.51 in.2

1-20. A 30 kN weight is supported by means
of a pulley as shown in the figure. The pulley is
supported by the frame 4ABC. Find the required
cross-sectional areas for members AC and BC if
the allowable stress in tension is 140 000 kN/m?
and in compression, determined by the method of
Chapter 13, is 96 000 kN/m?2. Ans. 306 mmz2.

1.8 m
25 mm diam.

Y
A
1

240 m 30 kN

PROB. 1 - 20

1-21. A force of 500 kN is applied at joint B
to a system of two pin-joined bars as shown in the
figure. Determine the required cross-sectional
area of the bar BC if the allowable stresses are
100 MPa in tension and 70 MPa in compression.

3 2500 kN

PROB. I - 21

1-22. Find the stress in the mast of the derrick
shown in the figure. All members are in the same
vertical plane and are joined by pins. The mast is
made from an 8 in. standard steel pipe weighing
28.55 Ib/ft. Neglect the weight of the members.
Ans. —446 psi.

CHAP.1 PROBLEMS FOR SOLUTION

Cable
10

S5k [107

PROB. | - 22

1-23. Find the required cross-sectional areas
for all tension members in Example 1-5. The
allowable stress is 140 000 kN/m2 = 140 MPa.

1-24. A signboard 4.5 m by 6.0 m in area is
supported by two frames as shown in the figure.
All members are actually 50 mm by 100 mm in
cross section. Calculate the stress in each member
due to a horizontal wind load of 960 N/m? on the
sign. Assume all joints to be connected by pins
and that one-quarter of the total wind force acts
at B and at C. Neglect the possibility of buckling
of the compression members. Neglect the weight
of the structure. Ans. 0, = 1.08 MPa.

C
y
24m
B
24 m JL/ %
A
Q
3 E
6 m
PROB. | - 24

1-25. What distances, a and b, are required
beyond the notches in the horizontal member of
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the truss shown ? All members are nominally 8 in.
by 8 in. in cross section (see Table 10, Appendix
for actual size). Assume the ultimate strength of
wood in shear parallel to the grain to be 500 psi.
Use a factor of safety of 5. (This detail is not
recommended.) Ans. a = 10.7 in.

PROB. | - 25

1-26. What is the required diameter of the pin
Bfor the bell crank mechanism shown in the figure
if an applied force of 60 kN at A is resisted by a
force P at C? The allowable shearing stress is
100 MPa. Ans. 23.2 mm.

1-27. What is the shearing stress in the bolt 4
caused by the applied load shown in the figure?
The bolt is 6 mm in diameter, and it acts in double
shear. All dimensions are in mm.

PROB. 1 - 27

1-28. A control pedal for actuating a spring
mechanism is shown in the figure. Calculate the

CHAP. 1 STRESS—AXIAL LOADS

shearing stress in pins 4 and B due to a force P
when it causes a stress of 10,000 psi in the rod
AB. Both pins are in double shear. Ans. 2,380
psi, 2,240 psi.

PROB. 1 - 28

1-29. A beam with a force of 100 kips at one
end is supported by a strutted cable as shown in
the figure. Find the horizontal and vertical com-
ponents of the reactions at 4, B, and D. If the
allowable tensile stress is 20,000 psi and the
allowable compressive stress is 10,000 psi, what is
the required cross-sectional area of members AC,
BC, and CE? (Hint: Isolate the beam DF first.)
Ans. Aye = Acy = 10in.2 and Age = 5.66 in.2,

100 k
F

207 500 | 30
PROB. | - 29

1-30. A tower used for a highline is shown in
the figure. If it is subjected to a horizontal force of
540 kN and the allowable stresses are 100 MPa
in compression and 140 MPa in tension, what is
the required cross-sectional area of each member ?
All members are pin-connected. All dimensions
are in meters. Ans. A,p = 3 640 mm.
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a force P is shown in the figure. The stress ¢ in
both members AB and BC is to be the same.
Determine the angle & necessary to achieve the
minimum weight of construction. Members 4B
and BC have a constant cross section. Ans.
cos2® = } or o0 =~ 55°.

fe———r——f?

Ac b
Z]

PROB. I - 30

1-31. To support a load, P = 180 kN, deter-
mine the necessary diameter for the rods 4B and P
AC for the tripod shown in the figure. Neglect the

weight of the structure and assume that the joints A

are pin-connected. No allowance need be made PROB. 1 - 33

for threads. The allowable tensile stress is 125

MPa. All dimensions are in meters. 1-34. A joint for transmitting a tensile force

is to be made by means of a pin as shown in the
figure. If the diameter of the rods being connected
is D, what should the diameter d of the pin be?
Assume that the allowable shearing stress in the
pin is one-half the maximum tensile stress in the
rods. (In Art. 9-18 it will be shown that this ratio
for the allowable stresses is an excellent assump-
tion for many materials.) Ans. D = d.

PROB. 1 - 31

1-32. A 101b weight moves in a horizontal
circle at the end of a 5ft wire with such an
angular velocity that the wire makes an angle of
30° with the vertical. What is the proper diameter
for the wire if the allowable tensile stress for high
strength steel is 40 ksi? Ans. 0.0192 in.

1-33. A pin-connected frame for supporting PROB. | - 34
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Strain —

Hooke's Law —
Axial Load Problems

2-1. INTRODUCTION

This chapter will be devoted to the further examination of some of the
physical properties of the materials of construction. An investigation of the
nature of the deformations that take place in a stressed body will be the pri-
mary objective. These deformations will be related to the magnitudes of the
stresses that cause them. Also, some additional limitations that must be
imposed on Egs. 1-1 and 1-2 of the previous chapter are pointed out.

" o

A E:T
E

B CDL

Fig. 2-1. Diagram of a tension
specimen in a testing machine

2-2. STRAIN

In Art. 1-7 it was stated that information
regarding the physical properties of materials comes
from the laboratory. In the particularly common
tension test, not only the ultimate strength, but
other properties are usually observed, especially
those pertaining to the study of deformation as a
function of the applied force. Thus, while a speci-
men is being subjected to an increasing force P, as
shown in Fig. 2-1, a change in length between two
points, as A and B, on the specimen is observed.
Initially, two such points can be selected an arbi-
trary distance apart. Thus, depending on the test,
either a 2 in. or an 8 in. distance is commonly used.
This initial distance between the two points is
called a gage distance.* In an experiment it is the
change in length of this distance that is noted. With
the same load and a longer gage distance, a larger
deformation is observed, or vice versa. Therefore it
is more fundamental to refer to the observed elon-

*Now electric resistance strain gages that are bonded directly to the specimen are exten-
sively used. Their gage lengths vary widely from about 4 mm to 150 mm depending on
application. See Art. 8-13 for further details.

33



www.konkur.in

Shape of
specimen
near the

breaking
point

|
|
|
|
|
|
|
/!
|
|
|
|
|
|
!
|
|
|
|
|

I Original
<~ diameter

of specimen

Fig. 2-2. Typical con-
traction of a specimen
of mild steel in tension
near the breaking point

gation per unit of length of the gage. If A is the total elongation in a given
original gage length L, the elongation per unit of length, ¢ (epsilon), is

e = % (2-1)

This elongation per unit of length is termed strain.* It is a dimensionless
quantity, but it is customary to refer to it as having the dimensions of inches
per inch or meter per meter. Sometimes strain is given in percent. The quan-
tity € is a very small one, except for a few materials such as rubber. If the
strain is known, the total deformation of an axially loaded bar is eL. This
relationship holds for any gage length until some local deformation takes
place on an appreciable scale. The latter effect, exemplifying the behavior of
a mild steel rod near a breaking point, is shown in Fig. 2-2. This phenomenon
is referred to as “necking.” Brittle materials do not exhibit this at usual tem-
peratures, although they too contract transversely a little in a tension test and
expand in a compression test.

2-3. STRESS-STRAIN DIAGRAM

It is apparent from this discussion that for general purposes the deform-
ations of a rod in tension or compression are most conveniently expressed
in terms of strain. Similarly, stress rather than force is the more significant
parameter in the study of materials, since the effect on a material of an applied
force P depends primarily on the cross-sectional area of the member. As a
consequence, in the study of the properties of materials, it is customary to
plot diagrams on which a relationship between stress and strain for a par-
ticular test is reported. Such diagrams establish a relationship between stress
and strain, and for most practical purposes are assumed to be independent
of the size of the specimen or its gage length. For these stress-strain diagrams,
it is customary to use the ordinate scale for stresses and the abscissa for strains.
Stresses are usually computed on the basis of the original area of a specimen,
although, as mentioned earlier, some transverse contraction or expansion of
a material always takes place. If the stress is computed by dividing the applied
force by the corresponding actual area of a specimen at the same instant, the
so-called rrue siress is obtained. A plot of true stress vs. strain is called a
true stress-strain diagram. Such diagrams are seldom used in practice.

Experimentally determined stress-strain diagrams differ considerably
for different materials. Even for the same material they differ, depending on
the temperature at which the test was conducted, the speed of the test, and
several other variables.t However, broadly speaking, two types of diagrams

*The term wunit strain is sometimes used.

1For more details, see Davis, H. E., G. E. Troxell, and C. T. Wiskocil, Testing and Inspec-
tion of Engineering Materials, (2nd .ed.) New York: McGraw-Hill, 1955.
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Fig. 2-3. Stress-strain diagram for mild Fig. 2-4. Stress-strain diagram for a
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can be recognized. One type is shown in Fig. 2-3, which is for mild steel,
a ductile material widely used in construction. The other type is shown in
Fig. 2-4. Such diverse materials as tool steel, concrete, copper, etc., have
curves of this variety, although the extreme value of strain that these materials
can withstand differs drastically. The “steepness” of these curves varies con-
siderably. Numerically speaking, each material has its own curve. The
terminal point on a stress-strain diagram represents the complete failure
(rupture) of a specimen. Materials capable of withstanding large strains
are referred to as ductile materials. The converse applies to brittle materials.

2-4. HOOKE'S LAW

Fortunately, one feature of stress-strain diagrams is applicable with
sufficient accuracy to nearly all materials. It is a fact that for a certain distance
from the origin the experimental values of stress vs. strain lie essentially on a
straight line. This holds true almost without reservations for glass. It is true
for mild steel up to some point, as 4 in Fig. 2-3. It holds nearly true up to
very close to the failure point for many high-grade alloy steels. On the other
hand, the straight part of the curve hardly exists in concrete, annealed copper,
or cast iron. Nevertheless, for all practical purposes, up to some such point
as A (also in Fig. 2-4), the relationship between stress and strain may be said
to be linear for all materials. This sweeping idealization and generalization
applicable to all materials became known as Hooke’s law.* Symbolically, this
law can be expressed by the equation

o — Ee or E= % (2-2)

*Actually Robert Hooke, an English scientist, worked with springs and not with rods.
In 1676 he announced an anagram “ceiiinosssttuv,” which in Latin is Ut Tensio
sic Vis (the force varies as the stretch).
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which simply means that stress is directly proportional to strain where the
constant of proportionality is E. This constant E is called the elastic modulus,
modulus of elasticity, or Young’s modulus.* As & is dimensionless, E
has the units of stress in this relation. In the English system of units it is
usually measured in pounds per square inch, while in the SI units it is mea-
sured in newtons per square meter (or Pascals).

Graphically E is interpreted as the slope of a straight line from the
origin to the rather vague point A4 on a stress-strain diagram. The stress cor-
responding to the latter point is termed the proportional limit of the material.
Physically the elastic modulus represents the stiffness of the material to an
imposed load. The value of the elastic modulus is a definite property of a
material. From experiments it is known that & is always a very small
quantity, hence E must be a large one. Its approximate values are tabulated
for a few materials in Table 1 of the Appendix. For most steels, E is between
29 and 30 x 106 psi, or 200 and 207 x 10° N/m?2.

It follows from the foregoing discussion that Hooke's law applies only
up to the proportional limit of the material. This is highly significant as in
most of the subsequent treatment the derived formulas are based on this law.
Clearly then, such formulas will be limited to the material’s behavior in the
lower range of stresses.

Some materials, notably single crystals, possess different elastic moduli
in different directions with reference to their crystallographic planes. Such
materials, having different physical properties in different directions, are
termed nonisotropic. A consideration of such materials is excluded from this
text. The vast majority of engineering materials consist of a large number of
randomly oriented crystals. Because of this random orientation of crystals,
properties of materials become essentially alike in any direction.t Such mate-
rials are called isotropic. Throughout this text complete homogeneity (sameness)
and isotropy of materials is assumed.

2-5. FURTHER REMARKS ON STRESS-STRAIN DIAGRAMS

In addition to the proportional limit defined in Art. 2-4, several other
interesting points can be observed on the stress-strain diagrams. For instance,
the highest points (B in Figs. 2-3 and 2-4) correspond to the wu/timate strength
of a material. Stress associated with the remarkably long plateau ab in Fig.
2-3 is termed the yield point of a material. As will be brought out later, this
remarkable property of mild steel, in common with other ductile materials,
is significant in stress analysis. For the present, note that at an essentially
constant stress, strains 15 to 20 times those that take place up to the propor-
tional limit occur during yielding. At the yield point a large amount of

*Young’s modulus is so called in honor of Thomas Young, an English scientist. His Lectures
on Natural Philosophy, published in 1807, contain a definition of the modulus of elasticity.

fRolling operations produce preferential orientation of crystalline grains in some materials.
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Stress a, psi

' _ deformation takes place at a constant stress. The
Yield point yielding phenomenon is absent in most materials,
particularly in those that behave in a brittle
fashion.

A study of stress-strain diagrams shows that
the yield point is so near the proportional limit
that for most purposes the two may be taken as
one. However, it is much easier to locate the former.
For materials that do not possess a well-defined

yield point, one is actually “invented” by the use

-—l i*—o.z"'o off-set of the so-called “offset method.” This is illustrated

Fig. 2-5. Off-set method of determining the
yield point of a material

in Fig. 2-5 where a line offset an arbitrary amount
Strain, ¢, in./in. of 0.29 of strain is drawn parallel to the straight-
line portion of the initial stress-strain diagram.*
Point C is then taken as the yield point of the
material at 0.2 9 offset.

Finally, the technical definition of the elasticity of a material should be
made. In such usage it means that a material is able to regain completely its
original dimensions upon removal of the applied forces. At the beginning of
loading, if a small force is applied to a body, the body deforms a certain
small amount. If such a force is removed, the body returns to its initial size
and shape. With increasing magnitude of force this continues to take place
while the material behaves elastically. However, eventually a stress is reached
that causes permanent deformation, or set, in the material. The correspond-
ing stress level is called the elastic limit of the material. Practically speaking,
the elastic limit corresponds closely to the proportional limit of the material.

For the majority of materials, stress-strain diagrams obtained for short
compression blocks are reasonably close to those found in tension. However,
there are some notable exceptions. For example, cast iron and concrete are
very weak in tension but not in compression. For these materials the diagrams
differ considerably, depending on the sense of the applied force.

2-6. DEFLECTION OF AXIALLY LOADED RODS

Equations 1-1, 2-1, and 2-2, plus a known elastic modulus for a given
material, are sufficient to determine the deformations of axially loaded rods.
However, the usual calculations apply only within the elastic range of a mate-
rial’s behavior inasmuch as Hooke’s law (Eq. 2-2) is used. To formulate this
problem in general terms, consider the axially loaded bar shown in Fig. 2-6(a).
In this bar the cross-sectional area varies along the length, and forces of
various magnitudes are applied at several points. Now suppose that in this
problem the change in length of the bar between two points A and B caused

*For decreasing loads the stress-strain diagram is parallel to the straight-line portion of the
initial stress-strain diagram. For further details see Fig. 15-2 and the accompanying text.
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Fig. 2-6. An axially loader bar

by the applied forces is sought. The quantity wanted is the sum (or accumu-
lation) of the deformations that take place in infinitesimal lengths of the rod.
Hence the amount of deformation that takes place in an arbitrary element of
length dx is first formulated, then the sum or integral of this effect over the
given length gives the quantity sought.

An arbitrary element cut out from the bar is shown in Fig. 2-6(b).
From free-body considerations, this element is subjected to a pull P, which,
in general, is a variable quantity. The infinitesimal deformation dA that takes
place in this element upon application of the forces is equal to strain & mul-
tiplied by the length dx. From Eq. 2-2, strain is equal to the stress o, divided
by the elastic modulus E. However, in general, ¢, is a variable quantity
obtained by dividing the variable force P, by the corresponding area A,
Hence, since ¢ = o,/E and ¢, = P,/A,,

Since the contribution of individual elements is now known, the total
deformation between any two given points on a bar is simply their sum,*

that is,
B B
o - P, dx y
A—LdA—JA [ (2-3)

Three examples will now be solved to show applications of the above
equations.

*The limits of integration as stated represent the range of integration. Actually, they must
be expressed in terms of the values of the variable. This nonrigorous usage of the limits will
occasionally be employed in this text.
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EXAMPLE 2-1

Consider the rod AB of constant cross-sectional area
A and of length L shown in Fig. 2-7(a). Determine
the relative displacement of the end 4 with respect to
B when a force P is applied, i.e., find the deflection of
the free end, caused by the application of a concentrated
force P. The elastic modulus of the material is E.

SOLUTION

In this problem the rod may be treated as being weight-
less as only the effect of P on the deflection is investi-
gated. Hence, no matter where a cut C-C is made
through the rod, P, = P, Fig. 2-7(b). The infinitesimal
elements, Fig. 2-7(c), are everywhere the same, subjected
to a constant pull P. Likewise, 4, everywhere has a
constant value 4. Applying Eq. 2-3,

[ EF A R A
y AE — AE 6 ~ AE

* T4E

(2-4)

It is seen from Eq. 2-4 that the deflection of the rod is directly propor-
tional to the applied force and the length, and is inversely proportional to A4

and E.

This equation will be referred to in subsequent work.

EXAMPLE 2-2

Determine the relative displacement of points 4 and D of the steel rod of
variable cross-sectional area shown in Fig. 2-8(a) when it is subjected to the
four concentrated forces P,, P,, P;, and P,. Let E = 200 x 106 kN/m?2.

| 2m I m 1.5m |
0.002 m? 2
2 C, 0.001 m
P =100kNlg__ 0™ ¢, gt N IO ey &3 Dl p, = 50kN
(a i |
) i \\Cz\;g = 200kN ! .
I - 3
100 kN | 100 kN ~——P, = 250 kN
_L ]—» 2
(b)
100 kN 250 kN
— s | <= |50 kN
(c)
250 kN 200 kN
100 kN
u—i—» 4-115 w50 kKN
(d)

Fig. 2-8

ART. 2-6 DEFLECTION OF AXIALLY LOADED RODS 39



www.konkur.in

SOLUTION

In attacking such a problem, a check must first be made to ascertain that the
body as a whole is in equilibrium, i.e., >, F, = 0. Here, by inspection it can
be seen that such is the case. Next, the variation of P, along the length of the
bar must be studied. This may be done conveniently with the aid of sketches
as shown in Figs. 2-8(b), (c), and (d), which show that no matter where a
section C,-C, is taken between points 4 and B, the force in the rod is P, =
+-100 kN. Similarly, between B and C, P, = —150 kN, and between C and
D, P, = +50 kN. The variation of A, is shown in Fig. 2-8(a). Both P, and
A,, mathematically speaking, are not continuous functions along the rod.
Both have “jumps” or sudden changes in their values. Hence, in integrating,
the limits of integration must be “broken.” Thus, from Eq. 2-3,

A PP.dx (" Pspdx . “ Pac dx . P Pep dx
, AE A pE AscE AcpE

A B c

In the last three integrals the respective P, and A, are constants between the
limits shown. The subscripts of P and A denote the range of applicability of
the function; thus P, applies in the interval 4B, etc. These integrals revert
to the solution of the previous example, i.e., Eq. 2-4. Applying it and sub-
stituting numerical values,

_ PL _ (100)(2) B (150)(1)
A= Z AE ~ T{0.001)(200 » 105)  (0.002)(200 < 10%)
n (50)(1.5)

(0.001)(200 = 10°)
= +0.001 — 0.000 375 + 0.000 375 = +0.00l m = +1 mm

The operation performed means that the individual deformations of the
three “separate” rods have been added, or superposed. Each one of these
“rods” is subjected to a constant force. The positive sign of the answer

indicates that the rod elongates, as a positive sign is

associated with tensile forces. The equality of the

absolute values of the deformations in lengths BC and

CD is purely accidental. Note that in spite of the

relatively large stresses present in the rod, the value
1P_ = wx of Aissmall

EXAMPLE 2-3

dx Find the deflection, caused by its own weight, of the
free end A4 of the rod 4B having a constant cross-
sectional area 4 and weighing w N/m, Fig. 2-9(a).

(a)

SOLUTION

Here again Eq. 2-3 must be applied. However, in this
Fig.2-9 case P, is a variable quantity. It is conveniently ex-

pressed as wux if the origin of x is taken at 4. Hence

(b)
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x2t _(wL)L _ WL

2AE ~ 24E

P, dx o w
A= fAE ZEf wx dx =5

where wL is the roral weight of the rod, which is designated by capital W.

Fig. 2-10

(a)

Initial shape

Compare this expression with Eq. 2-4.

If a concentrated force P, in addition to the bar’s own weight, were
acting on the bar AB at the end A, the total deflection due to the rwo causes
would be obtained by superposition (direct addition) as

A_PL WL _[P+(WDIL

AE 2AE AE

In problems where the area of a rod is variable, a proper function for it
must be substituted into Eq. 2-3 to determine deflections. In practice, it is
sometimes sufficiently accurate to analyze such problems by approximating
the shape of a rod by a finite number of elements as shown in Fig. 2-10. The
deflections for each one of these elements are added to obtain the total deflec-
tion.

2-7. POISSON’'S RATIO

In addition to the deformation of materials in the direction of the
applied force, another remarkable property can be observed in all solid
materials, namely, that at right angles to the applied force, a certain amount
of lateral (transverse) expansion or contraction takes place. This phenome-
non is illustrated in Figs. 2-11(a) and (b), where the deformations are greatly
exaggerated. For clarity this physical fact may be restated thus: if a solid
body is subjected to an axial tension, it contracts laterally; on the other hand,
if it is compressed, the material “squashes out” sideways. With this in mind,
directions of lateral deformations aré easily determined, depending on the
sense of the applied force. Mathematically, a plus sign is usually assigned to
an increment of lateral dimension, and vice versa.

Final shape

Final shape

Fig. 2-11. Lateral contraction and expansion of solid bodies subjected
to axial forces (Poisson effect)
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For a general theory, it is preferable to refer to these lateral deforma-
tions on the basis of deformation per unit of length of the transverse dimen-
sion. Thus the lateral deformations on a relative basis can be expressed in
inches per inch or m/m. These relative unit lateral deformations are termed
lateral strains. Moreover, it is known from experiments that lateral strains
bear a constant relationship to the longitudinal or axial strains caused by an
axial force, provided a material remains elastic and is homogeneous and
isotropic. This constant is a definite property of a material, just like the elastic
modulus E, and is called Poisson’s ratio.* It will be denoted by v (nu) and is
defined as follows:

lateral strain
axtal strain

. Iatgral strain (2-5)
axial strain

where the strains are caused by uniaxial stress only. The second, alternative
form of Eq. 2-5 is true because the lateral and axial strains are always of
opposite sign for uniaxial stress, thus invariably giving a positive value of v.
The value of v fluctuates for different materials over a relatively narrow range.
Generally it is in the neighborhood of 0.25 to 0.35. In extreme cases values
as low as 0.1 (some concretes) and as high as 0.5 (rubber) occur. The latter
value is the largest possible. It is normally attained by materials during plastic
flow and signifies constancy of volume.t In this text, Poisson’s ratio will be
used only when materials behave elastically.

In conclusion, note that the Poisson effect exhibited by materials causes
no additional stresses other than those considered earlier unless the transverse
deformation is inhibited or prevented. The same is found to be true with regard
to thermal expansion or contraction of materials. This topic will be treated
in the chapter on statically indeterminate structures.

EXAMPLE 2-4

Consider a carefully conducted test where an aluminum bar of 50 mm
diameter is stressed in a testing machine as shown in Fig. 2-12. At a certain
instant the applied force P is 100 kN, while the measured elongation of the rod
is 0.219 mm in a 300 mm gage length, and the diameter’s dimension is
decreased by 0.012 15 mm. Calculate the two physical constants v and E

of the material.
SOLUTION

Transverse or lateral strain:

_ A, 000001215 _
&= = —""50os0— = —0.000243 m/m.

In this case the lateral strain g, is negative, since the diameter of the bar
decreases by A,,

*Named after S. D. Poisson, a French scientist who formulated this concept in 1828.

tA. Nadai, Theory of Flow and Fracture of Solids, vol. 1., New York: McGraw-Hill, 1950.
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Axial strain: g, = A 0000219 _ 60073 m/m.
€ 0.3
. 5 " _ & _(—-0.000 243)
Poisson’s ratio: V= % 000073 0.333

Next, as the area of the rod 4 = }7(0.050)? = 1.96 x 1073 m2, from Eq.
2-4,

=PL _ (100)(0.3) B
K= AA  1.96 x 1073(0.000 219) 70 x 106 kN/m?

In practice, when a study of physical quantities, as E and v, is being
made, it is best to work with the corresponding stress-strain diagram to be
sure that the quantities determined are associated with the elastic range of the
material. Also note that it makes no difference whether the initial or the final
lengths are used in computing strains, since the deformations are very small.

*2-8. GENERALIZED HOOKE'S LAW

In the previous article, Poisson’s ratio was defined as the ratio of lateral
strain to the axial strain for an axially loaded member. This applies only to
a uni-axial state of stress on an element. Now a more general state of stress
acting upon an isotropic body will be considered, and equations relating
stress to deformation will be developed.

A block whose sides are a, b, ¢ respectively is acted upon by tensile
stresses uniformly distributed on all faces as shown in Fig. 2-13(a).* This
diagram approaches the generality of Fig. 1-3. However, for the present,
shearing stresses have been deleted, as it is a known experimental fact that
the strains caused by normal stresses are independent of small shearing defor-
mations. The normal stresses are designated by ¢’s with appropriate sub-
scripts referring to the directions in which the stresses act.

For the moment, attention will be directed to the change in length of
the block in the x-direction. To find this change, use is made of the principle
of superposition, which is based upon the premise that the resultant stress or
strain in a system due to several forces is the algebraic sum of their effects
when separately applied. This assumption is true only if each effect is directly
and linearly related to the force causing it. It is only approximately true when
the deflections or deformations due to one force cause an abnormal change
in the effect of another force. Fortunately the magnitudes of deflections are
relatively small in most engineering structures. Hence, by proceeding on the
basis of the above principle, the separate effects shown in Figs. 2-13(b), (c),
and (d) can be summed. The stress in the x-direction causes a positive strain
¢, = o,/E. Each of the positive stresses in the y- and z-directions causes a
negative strain in the x-direction as a result of Poisson’s effect. These strains
are €, = —vo,/E and €] = —vo_/E, respectively. The strains in the y- and

*This figure is adapted from G. Dreyer, Festigkeitslehre und Elastizitdtslehre, Leipzig:
Janecke, p. 151.
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Fig. 2-13. An element subjected to normal stresses acting in the
directions of coordinate axes

z-directions can also be obtained in a similar manner, and the net axial strains
in the three coordinate directions are

= 4% __ 9 _ ,0:
e, —I—E VE—VE
— O’X_L&_ & 2
g v F VE (2-6)
= —9p%x_ % | O:
g, vE vE—{—E

The application of Eq. 2-6 is limited to isotropic materials in the elastic
range. If a particular stress is compressive, the sign of the corresponding term
changes. The reader should verify this statement by physical reasoning, visu-
alizing the Poisson effect with reference to Fig. 2-11. Also, it should be noted
particularly that the above expression, which is known as the generalized
Hooke’s law, gives the deformation per unit of length or strain in a body. The
strain given by Eq. 2-6 must be multiplied by the dimension of an element or
member in the corresponding direction to obtain the total deformation in that
direction.* The fotal extensional deformation in the x-direction is

A, =¢lL, 2-7

*The stresses must remain constant in the interval considered.
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where L, is the dimension in the x-direction, as the @ dimension in Fig.
2-13(a). Similar relations exist for A, and A..

EXAMPLE 2-5

A 50 mm cube of steel is subjected to a uniform pressure of 200 000 kN/m?2
acting on all faces. Determine the change in dimension between two parallel
faces of the cube. Let E = 200 x 10 kN/m? and v = 0.25.

SOLUTION

Using Eq. 2-6 and noting that pressure is a compressive stress,

. _(—200000)_(L)(—zoooooL(L)(—zooooO)
= T(200)10° 4)7 (2000105 ~ \'4) (20010

= —5 X 107* m/m.
»=&L, = —(5)10"* x 0.050 = —0.000 025 m (contraction)

In thiscase A, = A, = A..

2-9. SHEARING STRESSES ON MUTUALLY PERPENDICULAR
PLANES

Article 2-8 dealt with a general case of deformations caused by normal
stresses. Now the effect of shearing stresses on deformation will be con-
sidered. This requires some preparatory remarks. First, return to Fig. 1-3 and
simplify it to the case shown in Fig. 2-14(a). In this figure only the 7., and
7,. shearing stresses are shown. As before, the first subscript of 7 associates
the shearing stress with a plane perpendicular to a given axis and the second
specifies its direction relative to another axis. The dimensions of the infini-
tesimal element considered are (dx)(dy)(dz). For any such element, as with
normal stresses, the shearing stresses on parallel planes are numerically equal.
This follows directly from the equilibrium of an element. Thus, multiplying

4 yz Ty:z Ty: 5
e =t

4 A o —

(a) (b) (c)

Fig. 2-14. An element of a body in pure shear
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stresses by their respective areas and applying > F, =0,

(Ty:)left-hlnd face dx dz _— (Tyz)richt-lnnd face dx dZ

Hence, the shearing stress 7, on the left- and the right-hand face of an infini-
tesimal element is numerically the same, but is opposite in direction. Similar
reasoning applies to 7,,.

Although the three-dimensional aspect of the problem should not be
forgotten, it is customary, for the sake of convenience, to deal with a plane
representation of the problem as shown in Fig. 2-14(b). Using this represen-
tation and summing the moments of forces about axis O,

2 Mo =00 +, +(v,)dy dx)(dz) — (z,.)(dx dz)(dy) = 0

where the parenthetical expressions correspond respectively to stress, area,
and moment arm. Simplifying,

Ty = Ty: (2'8)

Similarly it can be shown that 7, = 7., and 7,, = 7,,. Hence the subscripts
for the shearing stresses are commutative, i.e., their order may be inter-
changed.

The implication of Eq. 2-8 is very significant. The fact that subscripts
are commutative signifies that shearing stresses on mutually perpendicular
planes of an infinitesimal element are numerically equal. (Note that the mutu-
ally perpendicular planes referred to contain shearing stresses that act only
toward or away from the intersection of such planes.) Moreover, it is possible
to have an element in equilibrium only when shearing stresses occur on four
sides of an element simultaneously. That is, in any stressed body where shear-
ing stresses exist, rwo pairs of such stresses act on the mutually perpendicular
planes. Hence Y M, = 0 is not satisfied by a single pair of shearing stresses.

In the subsequent work, situations where more than two pairs of shear-
ing stresses act on an element simultaneously will seldom occur. Hence the
subscripts used above to identify the planes and directions of the shearing
stresses become superfluous. Shearing stresses will normally be designated
by 7 without any subscripts. However, one must remember that shearing
stresses always occur in two pairs. Moreover, on diagrams, as in Fig. 2-14(b),
the arrowheads of the shearing stresses must meet at diametrically opposite
corners of an element to satisfy the equilibrium conditions for the element.

2-10. HOOKE'S LAW FOR SHEARING STRESS AND STRAIN

In the above article it was shown that in an element of a body the shear-
ing stresses must occur in two pairs acting on mutually perpendicular planes.
When only these stresses occur, the element is said to be in pure shear. Such
a system of stresses distorts an element of an elastic body in the fashion
shown in Fig. 2-14(c). Of course such a distortion is true only for a perfectly
homogeneous, isotropic body having equal properties in all directions. The
diagonals OA and BC are axes of symmetry for a distorted element.
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If attention is confined to the study of small deformations, and further,
if the behavior of an element is considered only in its elastic range, it is again
found experimentally that there is a /inear relationship between the shearing
stress and the angle y (gamma) shown in Fig. 2-14(c). Hence, if y is defined as
the shearing strain, mathematically the extension of Hooke’s law for shearing
stress and strain is

t =Gy (2-9)

where G is a constant of proportionality called the shearing modulus of elasticity
or the modulus of rigidity. Like E, G is a constant for a given material. It is
measured in the same units as E, while y is measured in radians, a dimen-
sionless quantity. (The shearing strain y can be stated in percent, in the same
way as €). The expressions for the three different sets of shearing strains can
be stated as follows:

VYay = Txy/ G
Py = TlG (2-9a)
Yox = Teal G

For convenience, Fig. 2-14(c) is redrawn with a different set of axes so
that the complete angle* y appears on only one side of the distorted element,
Fig. 2-15. Note that the shearing strains con-
sidered, numerically given by y, are always small.
It is sufficiently accurate to assume that tan p, sin p,
or y in radian measure are numerically equal.
Likewise, the linear dimensions of a distorted
element do not change appreciably. For example,
in Fig. 2-15, OB cos y = OB.

The Best arrangement available for direct ex-

yorx

Fig. 2-15. Distortion due to pure shear perimental verification of Eq. 2-9 is a thin tube sub-

jected to a twist or torque. As will be explained in
the next chapter, in this arrangement there is uniform shearing stress through-
out the walls of the tube. From such experiments it is known that the appear-
ance of 7-y diagrams is similar to that of the o-¢ diagrams of a tension test
for the same material. Similar points for the elastic limit in shear, yield point,
and ultimate shearing stress can be obtained. However, for the same material,
the numerical values of these points for the shearing stresses are generally much
lower than (approximately one-half) the corresponding values for the normal
stress.
In Art. 8-14 it will be shown that the three elastic constants E, v, and
G are not independent of each other for isotropic materials. In fact,

E

C=xTw

(2-10)

*Shearing strain is independent of the individual angles made with the coordinate axes.
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Thus, for example, in the tension experiment described in Example 2-4,

G = (70)10¢/2(1 + 0.333) = 26.2 x 10% kN/m?2.

*2-11. STRESS CONCENTRATIONS

The first fundamental formulas of stress analysis, Egs. 1-1 and 1-2, were
discussed in Chapter I, and from the preceding articles of this chapter it is
seen that stresses are accompanied by deformations. If such deformations
take place at the same uniform rate in adjoining elements, no additional
stresses other than those given by the above equations exist in isotropic
materials. However, if the uniformity of the cross-sectional area of an axially
loaded member is interrupted, or if the applied force is actually applied over
a very small area, a perturbation in stresses takes place. This is caused by the
fact that the adjoining elements must be physically continuous in a deformed
state. They must stretch or contract equal amounts at the adjoining sides of
all particles. These deformations result from extensional and shearing deform-
ations involving the properties of materials £, G, and v and the applied
forces. Methods of obtaining this disturbed stress distribution are beyond
the scope of this text. Such problems are treated in the mathematical theory
of elasticity. Even by those advanced methods only the simpler cases have
been solved. The mathematical difficulties become too great for many prac-
tically significant problems. For the group of problems that are not tractable
mathematically, approximate numerical procedures formulated on the basis
of finite elements or finite difference equations are now widely used for the
solution of complex problems. Digital computers are indispensable in such
work. Alternatively, special experimental techniques (mainly photoelasticity,
briefly discussed in Art. 9-4) have been developed to determine the actual
stress distribution.

In this text it seems significant to examine qualitatively the results of
more advanced investigations. For example, in Fig. 2-16(a) a short block is
shown loaded by a concentrated force P. This problem could be solved by
using Eq. 1-1, i.e., ¢ = P/A. But is this answer really correct? Reasoning in
a qualitative way, it is apparent that the strains must be maximum in the
vicinity of the applied force, hence the corresponding stresses must also be
maximum. That indeed is the answer given by the theory of elasticity.* The
end results for normal stress distribution at various sections are shown in
the adjoining stress distribution diagrams, Figs. 2-16(b), (c), and (d). For
present purposes, physical intuition is sufficient to justify these results. Note
particularly the high peak of the normal stress at a section close to the applied
force.t Also note how rapidly this peak smoothes out to a nearly uniform

*S. Timoshenko, and J. N. Goodier, Theory of Elasticity (3rd ed.), New York: McGraw-
Hill, 1970, p. 60. Fig. 2-16 is adopted from this source.

+In a purely elastic material the stress is infinite right under a “concentrated” force.
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Fig. 2-16. Stress distribution near a concentrated force

stress distribution at a section below the top equal to the width of the bar.
This illustrates the famed Saint Venant’s principle of rapid dissipation of
localized stresses. This principle asserts that the effect of forces or stresses
applied over a small area may be treated as a statically equivalent system
which, at a distance approximately equal to the width or thickness of a body,
causes stress distribution that follows a simple law. Hence Eq. 1-1 is nearly
true at a distance equal to the width of the member from the point of appli-
cation of a concentrated force. Note also that at every level where the stress
is investigated accurately, the average stress is still correctly given by Eq. 1-1.
This follows, since the equations of statics must always be satisfied. No matter
how irregular the nature of the stress distribution at a given section through
a member, an integral (or sum) of ¢ d4 over the whole area must be equal to
the applied force.

Because of the great difficulty encountered in solving for the above-
mentioned “peak” or local stresses, a convenient scheme has been developed
in practice. This scheme consists simply of calculating the stress by the ele-
mentary equations (as Eqs. 1-1 or 1-2) and then multiplying the stress so
computed by a number called the stress-concentration factor. In this text
this number will be designated by K. The values of the stress-concentration
factor depend only on the geometrical proportions of the member. These
factors are available in technical literature in various tables and graphs* as
a function of the geometrical parameters of members. Using this scheme,
Eq. 1-1 may now be rewritten as

Y .
Omax = K7 (2 ]l)
where K is the stress-concentration factor. From Fig. 2-16(d), at a depth
below the top equal to one-quarter of the width of the member, K = 2.575.
Hence o,,, = 2.575 7,,-

*R.J. Roark and W.C. Young, Formulas for Stress and Strain ( 5thed.). New York :
McGraw-Hill, 1975.
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Fig. 2-17. Stress-concentration factors for flat bars in tension

Two other particularly significant stress-concentration factors for flat
axially loaded members are shown in Fig. 2-17.* The corresponding factors
that may be read from this graph represent a ratio of the peak stress of the
actual stress in the net or small section of the member as shown in Fig. 2-18
to the average stress in the net section given by Eq. 1-1. A considerable
stress concentration also occurs at the root of threads. This depends to a
large degree upon the sharpness of the cut. For ordinary thread, the stress-
concentration factor is in the neighborhood of 21. The application of Eq.
2-11 presents no difficulties, provided proper graphs or tables of K are avail-

able.
. foomm \
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Fig. 2-18. Meaning of the stress-concentration factor K

EXAMPLE 2-6

Find the maximum stress in the member 4B in the forked end A in Example
1-3.

*M. M. Frocht, “Factors of Stress Concentration Photoelastically Determined.” Trans.,
ASME, 1935, vol. 57, p. A-67.
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SOLUTION

Geometrical proportions:

radius of the hole _ 3/16

net width 12 — 0375

From Fig. 2-17:* K ~ 2.15 for r/d = 0.375.
Average stress from Example 1-3: ,, = P|A,., = 11.2 ksi
Maximum stress, Eq. 2-11: O pn.x = KO,y = (2.15)(11.2) = 24.1 ksi
This answer indicates that actually a large local increase in stress
occurs at this hole, a fact that may be highly significant.

In considering stress-concentration factors in design, it must be remem-
bered that their theoretical or photoelastic determination is based on the use
of Hooke’s law. If members are gradually stressed beyond the proportional
limit of the material, these factors lose their significance. For example, con-
sider a flat bar of mild steel, of the proportions shown in Fig. 2-19, that is
subjected to a gradually increasing force P. The
stress distribution will be geometrically similar to
that shown in Fig. 2-18 until ¢ ,, reaches the yield
point of the material. However, with a further
[m=——> p increase in the applied force, 6., remains the same,

T as a great deal of deformation can take place while

— the material yields. Therefore the stress at A

Omax ~ 0 at yield point remains virtually “frozen” at the same value. Never-

Fig. 2-19. Behavior of a flat bar of mild steel theless, for equl.hbnum, stresses z;ctmg over the net
when stressed beyond the yield point area must be high enough to resist the increased P.

As a result of this, the stress distribution begins to
look something like that shown by line 1-1 in Fig. 2-19; then as 1-2, and
finally as 1-3. Hence, for ductile materials prior to rupture, the local stress
concentration is practically wiped out, and a nearly uniform, distribution
of stress across the net section occurs prior to necking.

The above argument is not quite as true for materials less ductile than
mild steel. Nevertheless, the tendency is in that direction unless the material
is unusually brittle, like glass or some alloy steels. The argument presented
applies to situations where the force is gradually applied or is static in charac-
ter. It is not applicable for fluctuating loads as found in some machine parts.
There the working stress level that is actually reached /ocally determines the
fatigue behavior of the member. The maximum permissible stress is set from
an S-N diagram (Art. 1-7). Failure of most machine parts can be traced to
progressive cracking that originates at points of high stress. In machine design,
then, stress concentrations are of paramount importance, although some
machine designers feel that the theoretical concentrations are somewhat high.

*Strictly speaking the stress concentration depends on the condition of the hole, whether
it is empty, or filled with a bolt or pin.
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Apparently some tendency is present to smooth out the stress peaks even in
members subjected to cyclic loads.

From the above discussion and accompanying charts it should be appar-
ent why a trained machine designer tries to “streamline” the junctures and
transitions of elements that make up a structure.

PROBLEMS FOR SOLUTION

2-1. A standard steel specimen of } in. dia-
meter elongated 0.0087 in. in an 8 in. gage length
when it was subjected to a tensile force of 6,250 Ib.
If the specimen was known to be in the elastic
range, what is the elastic modulus of the steel ?
Ans: 29.3 % 10° psi.

2-2. A steel rod 10 m long used in a control
mechanism must transmit a tensile force of 5 kN
without stretching more than 3 mm, nor exceed-
ing an allowable stress of 150 MN/m2, What must
the diameter of the rod be ? Give the answer to the
nearest millimeter. £ = 210 000 MN/m?2.

2-3. A solid cylinder of 50 mm diameter and
900 mm length is subjected to a tensile force of
120 kN. One part of this cylinder, L, long, is of
steel; the other part, fastened to steel, is aluminum
and is L, long. (a) Determine the lengths L, and
L, so that the two materials elongate an equal
amount. (b) What is the total elongation of the
cylinder? Eg, = 210 000 MN/m?2 = 210 GPa; E,,
= 70 000 MN/m? = 70 GPa. Ans: (b) 0.39mm.

2-4. Rework Example 2-2 after revising the
data to read as follows: P, = 40k, P, = 100 k,
P; = 80k, Py = 20k, the cross-sectional area of
the rod from A4 to Bis 2 in.2, from Bto C is 4 in.2,
and from C to D is 2in.2. Ans: 0.032 in.

2-5. Revise the data in Example 2-2 to read as
follows: P, = 10 kips; P; = 100 kips; Py = 30
kips. Then find (a) the force P, necessary for
equilibrium and (b) the total elongation of the
rod AD. The cross-sectional area of the rod from
AtoBis1in.2, from Bto C is 4 in.2, and from C
to Dis 2in.2. Ans: 0.020 in.

2-6. In Example 2-2, what two additional
(equal and opposite) forces applied at the ends
will bring the total deformation back to zero?

2-7. A }in. by 3 in. plate, hanging vertically,
consists of an aluminum portion 6 ft long fastened
to a steel portion 8 ft long. At the lower end a
load of 6,0001b is suspended. Neglecting the
weight of the plate, calculate the deflection of the
lower end. Eg, = 30 x 106 psi; Ey; = 10 x 106
psi. Ans: 0.083 in.

2-8. A round steel bar having a cross section
of 0.5 in.2 is attached at the top and is subjected
to three axial forces, as shown in the figure. Find
the deflection of the free end caused by these
forces. Plot the axial force and the axial deflection
diagrams. Let E = 30 % 106 psi. Ans: Api, =
0, Apax = 0.040 in.

8k
PROB. 2 -8

2-9. A bar of steel and a bar of aluminum
have the dimensions shown in the figure. Calcu-
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late the magnitude of the force P that will cause
the total length of the two bars to decrease
0.010 in. Assume that the normal stress distribu-
tion over all cross sections of both bars is uniform
and that the bars are prevented from buckling
sideways. Plot the axial deflection diagram. Let
Eg, =30 x 106 psi, and Ej,; = 10 x 10° psi.
Ans: 51.6 k.

.l & .o

steel bar

4" x 4
aluminum bar

PROB.2 - 9

2-10. In one of the California oil fields, a very
long steel drill pipe got stuck in hard clay (see
figure). It was necessary to determine at what
depth this occurred. The engineer on the job
ordered the pipe subjected to a large upward
tensile force. As a result of this operation the
pipe came up elastically 2 ft. At the same time
the pipe elongated 0.0014 in. in an 8-in. gage
length. Approximately where was the pipe stuck ?
Assume that the cross-sectional area of the pipe
was constant and that the media surrounding the
pipe hindered elastic deformation of the pipe in a
static test very little. Ans: 11,400 ft.

Oil well derrick

N7\ AN/

Clay :ﬁg:

PROB. 2 - 10

)

CHAP. 2 PROBLEMS FOR SOLUTION

2-11. A wall bracket is constructed as shown
in the figure. All joints may be considered pin-
connected. The steel rod 4B has a cross-sectional
area of 5 mm2. The member BC is a rigid beam.
If a 1.00 m diameter frictionless drum weighing
4 500 N is placed in the position shown, what will
the elongation of the rod 4B be? Ans: 8.04 mm.

1.80 m

—

240 m

Pinned joint

PROB. 2 - 11

2-12. For the truss shown in the figure, deter-
mine the total elongation of the member BC due
to the application of the force P = 450 kN. The
member BC is made from steel and is 60 mm? in
cross-sectional area. £ = 210 000 MN/m?2,

B

1.20 m

A
7 c D
450 kN

f
5 spaces at 0.90 m = 4.50 m
PROB. 2 - 12

2-13. If the deformation of any one member in
Prob. 2-12 cannot exceed 0.1% of its length,
which member requires the largest cross-sectional
area and what is this area? Ans: 21.4 X 102mm?2,

2-14. If in Example 2-3 the rod is a 1in.
square aluminum bar weighing 1.17 Ib/ft, what
should its length be for the free end to elongate
0.250 in. under its own weight? E = 10 x 106 psi.

2-15. What will the deflection of the free end
of therod in Example 2-3 be if, instead of Hooke's
law, the stress-strain relationship is ¢ = E¢",
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where n is a number dependent on the properties
of the material ?

2-16. The tapered steel bar shown in the figure
is cut out from a steel plate 25 mm thick and is
welded at the top to a rigid structure. Find the
deflection of the end 4 caused by the force of
40 kN applied at B. Consider the origin of the
coordinate axes at the point of intersection of the
sloping lines. E = 210 GN/m2. Ans: 0.093 mm.

~ +l[l=50 mm

PROB. 2 - 16

2-17. Rework Prob. 2-16 taking the origin at
point B.

2-18. Two bars are to be cut from a 1in.
thick metal plate so that both bars have a con-
stant thickness of 1 in. Bar A4 is to have a constant
width of 2in. throughout its entire length. Bar
B is to be 3 in. wide at the top and 1 in. wide at
the bottom. Each bar is to be subjected to the
same load P. Determine the ratio L,/Ly so that
both bars will stretch the same amount. Neglect
the weight of the bar. Ans: 1.10.
>
=

PROB. 2 - I8

2-19. The load P applied to the pin-con-
nected frame shown stretches cable CD 2.5 mm.
The area of the cable is 150 mm2 and E = 210 000
MN/m?2. Determine P. Ans: 39.4 kN.

PROB. 2 - 19

2-20. Two wires are connected to a rigid bar
as shown in the figure, and a weight of 9 000 N
is applied. The cross-sectional area of the left wire
is 60 mm?2, and its E = 200 000 MN/m?; the cor-
responding quantities for the right wire are
120 mm?, and £ = 70 000 MN/m2. Calculate the
vertical displacement of the weight.

%%%% Yt

1.50 m
9000 N
77 b
\
!an meAJ
PROB. 2 - 20

2-21. The dimensions of a frustum of a right
circular cone supported at the large end on a
rigid base are shown in the figure. Determine the
deflection of the top due to the weight of the body.
The unit weight of material is p; the elastic
modulus is E. (Hint: Consider the origin of the
coordinate axes at the vertex of the extended
cone.) Ans: 1.2 x 105p/E mm.
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2-22. Find the total elongation A of a slender
elastic bar of constant cross-sectional area A,
such as shown in the figure, if it is rotated in a
horizontal plane with an angular velocity of w
radians per second. The unit weight of the mate-
rial is p. Neglect the small amount of extra
material by the pin. (Hint: First find the stress at
a section a distance r from the pin by integrating
the effect of the inertial forces between r and L.
See Example 1-6.) Ans: 2yw2L3/3gE.

r

w
——r
L L
PROB.2 - 22
2-23. A cast brass rod 2.25 in. in diameter and

6in. long is compressed axially by a uniformly
distributed force of 45,0001b. Determine the
increase in diameter caused by the applied force.
E =125 x 106 psi; v = 0.30.

2-24. A piece of 50 mm by 250 mm by 10 mm
steel plate is subjected to uniformly distributed
stresses along its edges (see figure). (a) If P, =
100 kN and P, = 200 kN, what change in thick-
ness occurs due to the application of these forces ?
(b) To cause the same change in thickness as in
(a) by P, alone, what must be its magnitude ? Let
E = 200 000 MN/m? and v = 0.25.

CHAP. 2 PROBLEMS FOR SOLUTION

P)’
IR
= 50 mm ;ﬁ} Px
EERRRRRARY
250 mm
PROB.2 24
2.25. A rectangular steel block, such as shown

in Fig. 2-13(a), has the following dimensions:
a = 50 mm, b = 75 mm, and ¢ = 100 mm. The
faces of this block are subjected to uniformly dis-
tributed forces of 180 kN (tension) in the x-
direction, 200 kN (tension) in the y-direction, and
240 kN (compression) in the z-direction. Deter-
mine the magnitude of a single system of forces
acting only in the y-direction that would cause
the same deformation in the y-direction as the
initial forces. Let v = . Ans: 250 kN.

2-26. A 6 mm by 75 mm plate 600 mm long
has a circular hole of 25 mm diameter located in
its center. Find the axial tensile force that may be
applied to this plate in the longitudinal direction
without exceeding an allowable stress of 220 MPa.

2-27. Determine the extent by which a
machined flat tensile bar used in a mechanical ap-
plication is weakened by having an enlarged sec-
tion as shown in the figure. Since the bar is to be
loaded cyclically, consider stress concentrations.
Ans: About 57%.

V2 L radius
P - P
e J—
i
b1
PROB. 2 - 27

2-28. A long slot is cut out from a 1 in. by
6 in. steel bar 10 ft long as shown in the figure.
(a) Find the maximum stress if an axial force
P = 50 kips is applied to the bar. Assume that
the upper curve in Fig. 2-17 is applicable. (b)
For the same case, determine the total elongation
of the rod. Neglect local effects of stress con-
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centrations and assume that the reduced cross-
sectional area extends for 2 ft. (¢) Estimate the
elongation of the same rod if P = 160 kips. As-
sume that steel yields 0.020 in. per inch at a stress
of 40 psi. (d) On removal of the load in (c¢), what
is the residual deflection? Let E = 30 x 106 psi.
Ans: (a) 28.7 ksi; (b) 0.0367 in.; (c) 0.56 in.; (d)
0.448 in.

2" wide slot (1" radii at ends)
ey
24"
PROB. 2 - 28

2-29. The bar shown in the figure is cut from
a 1in. thick piece of steel. At the changes in
section, approximate stress concentration factors
are as indicated. A force P is applied, producing
a total change of length in the bar of 0.016 in.

Determine the maximum stress in the bar caused
by this force. Neglect the effect of the hole and the
stress concentrations on the axial deformation.
Let E = 30 x 106 psi. Ans: . = 28,600 psi.

*2-30. A uniform timber pile, which has been
driven to a depth L in clay, carries an applied load
of F at the top. This load is resisted entirely by
friction f along the pile, which varies in the
parabolic manner shown in the figure. (a) Deter-
mine the total shortening of the pile in terms of
F,L, A, and E. (b) If P =420kN, L =12m,

= 64000 mm2, and E = 10000 MN/m? =
10 GPa, how much does such a pile shorten?
(Hint: From the equilibrium requirement, first
determine the constant k.) Ans: (a) FL/(4AE).

[

f=ky?

~
‘-——-As*-s-s
= > ==
h

T

PROB. 2 - 30
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~ Torsion

3-1. INTRODUCTION

The first two chapters, besides giving general concepts of the subject of
mechanics of materials, investigated in detail the behavior of axially loaded
rods. By the application of the method of sections and by the assumption of
equal strains in longitudinal fibers, a formula for stress in an axially loaded
rod was developed. Then an expression was established for obtaining the
axial deformation of members. In this chapter, similar relations for statically
determinate members subjected only to torque about their longitudinal
axes will be determined. Thus the investigation will be confined to the effect
of a single type of action, i.e, of a torque causing twist or torsion in a member.
Members subjected simultaneously to torque and bending, frequently occur-
ring in practice, will be treated in Chapter 10. Statically indeterminate cases
are discussed in Chapter 12.

A major part of this chapter is devoted to the treatment of members
with circular, or tubular, cross-sectional areas. Noncircular sections are dis-
cussed only briefly. In practice, members that transmit torque, such as shafts
of motors, torque tubes of power equipment, etc., are predominantly circular
or tubular in cross section. Thus, although mainly special cases of the torsion
problem will be treated, the majority of important applications fall within
the scope of the formulas developed.

Shaft couplings are considered briefly at the end of the chapter, since
their analysis is related to the method of analysis used for circular shafts.

3-2. APPLICATION OF METHOD OF SECTIONS

In analyzing members subjected to torque, the basic approach outlined
in Art. 1-9 is followed. First, the system as a whole is examined for equilib-
rium, and then the method of sections is applied by passing a cutting plane
perpendicular to the axis of the member. Everything to either side of a cut is
then removed, and the internal or resisting torque necessary to maintain
equilibrium of the isolated part is determined. For finding this internal
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torque in statically determinate members, only one equation of statics,
> M, =0, where the x-axis is directed along the member, is required. By
applying this equation to an isolated part of a shaft, it may be found that the
externally applied torques* are balanced by the internal resisting torque
developed in the material. Hence the external and internal torques are numer-
ically equal, but act in opposite directions.

In this chapter, shafts will be assumed “weightless” or supported at
frequent enough intervals to make the effect of bending negligible. Axial
forces that may also act simultaneously on the member are excluded for
the present.

EXAMPLE 3-1

Find the internal torque at section K-K for the shaft shown in Fig. 3-1(a)
and acted upon by the three torques indicated.

" 20 N'm internal torque

(b)

Fig. 3-1

SOLUTION

The 30 N-m torque at C is balanced by the two torques of 20 N-m and
10 N-m at 4 and B, respectively. Therefore, the body as a whole is in equilib-
rium. Next, by passing a cutting plane K-K perpendicular to the axis of the rod
anywhere between A and B, a free body of a part of the shaft, shown in Fig.
3-1(b), is obtained. Whereupon, from >, M, = 0, or

externally applied torque = internal torque
the conclusion is reached that the internal or resisting torque developed in the

shaft between A and B is 20 N-m. Similar considerations lead to the conclu-
sion that the internal torque resisted by the shaft between Band Cis 30 N-m.

It may be seen intuitively that for a member of constant cross-sectional
area the maximum internal torque causes the maximum stress and imposes

*If two planes are used to isolate a portion of a body, the internal torque at one end of the
isolated body must be treated as an external torque when the other section is considered.
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the most severe condition on the material. Hence, in investigating a torsion
member, several sections may have to be examined to determine the largest
internal torque. A section where the largest internal torque is developed is
the critical section. In Example 3-1 the critical section is anywhere between
points B and C. If the torsion member varies in size, it is more difficult to
decide where the material is critically stressed. Several sections may have to
be investigated and stresses computed to determine the critical section. These
situations are analogous to the case of an axially loaded rod, and means
must be developed to determine stresses as a function of the internal torque
and the size of the member. In the next several articles the necessary for-
mulas are derived.

3-3. BASIC ASSUMPTIONS

To establish a relation between the internal torque and the stresses it
sets up in members with circular and tubular cross sections, it is necessary
to make several assumptions, the validity of which will be justified further
on. These, in addition to homogeneity of material, are as follows:

1. A plane section of material perpendicular to the axis of a circular member
remains plane after the torques are applied, i.e., no warpage or distortion of
parallel planes normal to the axis of a member takes place.*

2. In a circular member subjected to torque, shearing strains, y, vary linearly from
the central axis. This assumption is illustrated in Fig. 3-2 and means that an
imaginary plane such as 40,0;C moves to A’0;0;C when the torque is
applied. Alternatively, if an imaginary radius O;C is considered fixed in
direction, similar radii initially at O,B and O, 4 rotate to the respective new
positions O,B" and O,A4’. These radii remain straight.

It must be emphasized that these assumptions hold only for circular and
tubular members. For this class of members these assumptions work so well
that they apply beyond the limit of the elastic behavior of a material. These
assumptions will be used again in Art. 3-8 where stress distribution beyond the

Fig. 3-2. Variation of strain in a circular member subjected to torque.

*Actually it is also implied that parallel planes perpendicular to the axis remain a constant
distance apart. This is not true if deformations are large. However, since the usual deforma-
tions are very small, stresses not considered here are negligible. For details see S. Timoshen-
ko, Strength of Materials (3rd. ed.), Part 1I, Advanced Theory and Problems. New York:
Van Nostrand, 1956 Chapter VI.
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proportional limit is discussed. However, if attention is confined to the elastic
case, Hooke’s law applies.

3. Thus it follows that shearing stress is proportional to shearing strain.

In the interior of a member it is difficult to justify the first two assump-
tions directly. However, after deriving stress and deformation formulas
based on them, unquestionable agreement is found between measured and
computed quantities. Moreover, their validity may be rigorously demon-
strated by the methods of the theory of elasticity based on the generalized
Hooke’s law, and by the requirements of strain compatibility.

3-4. THE TORSION FORMULA

In the elastic case, on the basis of the above assumptions, since stress
is proportional to strain, and the latter varies linearly from the center,
stresses vary linearly from the central axis of a circular member. The stresses
induced by the assumed distortions are shearing
stresses and lie in the plane parallel to the section
taken normal to the axis of a rod. The variation of
shearing stress is illustrated in Fig. 3-3. Unlike the
case of an axially loaded rod, this stress is not of
uniform intensity. The maximum shearing stress
occurs at points most remote from the center O
and is designated 7,,,,. These points, such as point
C in Fig. 3-3, lie at the periphery of a section at a
distance ¢ from the center. While, by virtue of a
linear stress variation, at any arbitrary point at a

dA distance p from O, the shearing stress is (p/€)Tpmax-
Fig. 3-3. Variation of stress in a circular Once the stress distribution at a section is
member in the elastic range. established, the resistance to torque in terms of stress

can be expressed. The resistance to the torque so
developed must be equivalent to the internal torque. Hence an equality can
be formulated thus:

f ﬁt,m d4 p =P
a4 €
[—— S pas?
(stress) (area)
(force) (arm)
— ———————

(torque)

where the integral sums up all torques developed on the cut by the infinitesi-
mal forces acting at a distance p from a member’s axis, O in Fig. 3-3, over
the whole area A of the cross section, and where 7 is the resisting torque.

At any given section, 7,,, and ¢ are constant; hence the above relation
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can be written as
Tmlx
—f prdA=T (3-1)
¢ A

However, J- p* dA, the polar moment of inertia of a cross-sectional area, is
A

also a constant for a particular cross-sectional area. It will be designated
by J in this text. For a circular section, d4 = 2znp dp, where 2zp is the
circumference of an annulus* with a radius p of width dp. Hence
szpsz :f 2npdp = 2n %:
A 0 4
T=
where d is the diameter of a solid circular shaft. If ¢ or d is measured in
meters, J has the units of m#; if in inches, the units become in.4.
By using the symbol J for the polar moment of inertia of a circular
area, Eq. 3-1 may be written more compactly as :

c 4 4
~%-% o

)

R L \“ "4 (3-3)

This equation is the well-known torsion formulat for circular shafts that
expresses the maximum shearing stress in terms of the resisting torque and
the dimensions of a member. In applying this formula the internal torque
T can be expressed in newton-meters (N-m)f or inch-pounds, ¢ in meters
or inches, and J in m* or in.* Such usage makes the units of the torsional
shearing stress, -

- (2]

or pascals in SI units, or

[m[ll[ll)_]‘[]m_] = [Ib per in.?]

or psi in English units.
A more general relation than Eq. 3-3 for a shearing stress, 7, at any
point a distance p from the center of a section is
Tp

_ P _ B
T= Tloux =g (3-3a)

*An annulus is an area contained between two concentric circles.

tIt was developed by Coulomb, a French engineer, in about 1775 in connection with his
work on electric instruments. His name has been immortalized by its use for a practical
unit of quantity in electricity.

tAlternatively one (N-m) is equal to one joule (J). However, in this text the symbol J is
used only for the polar moment of inertia of a section.
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Fig. 3-4. Variation of stress in a hollow cir-

Equations 3-3 and 3-3(a) are applicable with equal rigor fo circular
tubes, since the same assumptions as used in the above derivation apply.
It is necessary, however, to modify J. For a tube, as may be seen from Fig.
3-4, the limits of integration for Eq. 3-2 extend from & to ¢. Hence for a
circular tube,

J=fp’dA:f2np’dp="TC4—"7b4 (3-4)
A b

or stated otherwise: J for a circular tube equals J
for a solid shaft, using the outer diameter, minus
‘ J for a solid shaft, using the inner diameter.

For thin tubes, if b is nearly equal to ¢, and

l || ¢ — b = t, the thickness of the tube, J reduces to

a simple approximate expression:

Tmax

J = 2nc’t (3-4a)

which is sufficiently accurate in many applications.
The concepts used in deriving the torsion
formula for circular members are summarized as

cular member in the elastic range. follows:

CHAP. 3 TORSION

1. Eguilibrium requirements are used to determine the internal or resisting torque.

2. Deformation is assumed so that shearing strain varies linearly from the axis of
the shaft.

3. Material properties in the form of Hooke’s law are used to relate the assumed
strain variation to stress.

Only item 3 must be modified suitably in treating the inelastic behav-
ior of circular shafts subjected to the action of torques.

3-5. REMARKS ON THE TORSION FORMULA

So far the shearing stresses as given by Eqs. 3-3 and 3-3(a) have been
thought of as acting only in the plane of a cut perpendicular to the axis of
the shaft. There indeed they are acting to form a couple resisting the exter-
nally applied torques. However, to understand the problem further, an
infinitesimal cylindrical element,* shown in Fig. 3-5(b), is isolated from the
member of Fig. 3-5(a).

The shearing stresses acting in the planes perpendicular to the axis of
the rod are known from Eq. 3-3(a). Their directions coincide with the direction

*Two planes perpendicular to the axis of the rod, two planes through the axis, and two
surfaces at different radii are used to isolate this element. Properties of such an element
are expressible mathematically in cylindrical coordinates.
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(a)

rmax

(b) (c)

Fig. 3-5. Existence of shearing stresses on mutually perpendicular
planes in a shaft subjected to torque.

of the internal resisting torque. (This should be clearly visualized by the
reader.) On adjoining parallel planes of a disk-like element these stresses
act in opposite directions. However, these shearing stresses acting in the
plane of the cuts taken normal to the axis of a rod cannot exist alone, as
was shown in Art. 2-9. Numerically equal shearing stresses must act on the
axial planes (such as the planes aef and bcg in Fig. 3-5(b)) to fulfill the
requirements of static equilibrium for an element.*

Shearing stresses acting in the axial planes follow the same variation
in intensity as do the shearing stresses in the planes perpendicular to the
axis of the rod. This variation of shearing stresses on the mutually perpen-
dicular planes is shown in Fig. 3-5(c), where a portion of the shaft has been
removed for the purposes of illustration.

In isotropic materials it makes little difference in which direction the
shearing stresses act. However, not all materials used in construction are
isotropic. For example, wood exhibits drastically different properties of
strength in different directions. The shearing strength of wood on planes
parallel to the grain is much less than on planes perpendicular to the grain.
Hence, although equal intensities of shearing stress exist on mutually per-
pendicular planes, wooden shafts of inadequate size fail longitudinally
along axial planes. Wooden shafts are occasionally used in the process
industries.

EXAMPLE 3-2

Find the maximum torsional shearing stress in the shaft 4C shown in Fig.
3-1(a). Assume the shaft from 4 to C to be of 10 mm diameter.

*Note that maximum shearing stresses, as shown diagrammatically in Fig. 3-5(a), actually
act on planes perpendicular to the axis of the rod and on planes passing through the axis
of the rod. The representation shown is purely schematic. The free surface of a shaft is free
of all stresses.
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SOLUTION

From Example 3-1 the maximum internal torque resisted by this shaft is
known to be 30 N-m. Hence 7= 30 N-m, and ¢ = d/2 = 5 mm = 0.005 m.
From Eq. 3-2

nd*  m(0.01)*

F=20

32 > = 9.82 X 1010 m*

From Eq. 3-3

Te  (30)(0.005
Taux = 1€ = ONOQI) 153 x 106 N/m? (or Pa).

This maximum shearing stress at 5 mm from the axis of the rod acts in
the plane of a cut perpendicular to the axis of the rod and along the longitu-
dinal planes passing through the axis of the rod (Fig. 3-5(c)).

EXAMPLE 3-3

Consider a long tube of 20 mm outside diameter, d,, and of 16 mm inside
diameter, d;, twisted about its longitudinal axis with a torque 7 of 40 N-m.
Determine the shearing stresses at the outside and the inside of the tube,
Fig. 3-6.

SOLUTION
From Eq. 3-4
J— (et —b%) n(d} — df) _ 7m(0.02% — 0.016%)
2 32 32
= 9.27 X 107 m*
From Eq. 3-3

Te  (40)0.01)
Tmax = 7 = W = 43.1 x 10¢ I\I/I'l'lZ

From Eq. 3-3(a)

Tp  (40)(0.008)

s = = = 6 2
Tinside J 9.27 x 10-° 34.5 x 10 N/m

Note that, for a tube, less material is required to transmit a given torque
at the same stress than for a solid shaft, since no material operates at a low
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stress. By making the wall thickness small and the diameter large, nearly
uniform shearing stress 7 is obtained in the wall. This fact makes thin tubes
suitable for experiments where a uniform “field” of pure shearing stress is
wanted (Art. 2-10). To avoid local crimping or buckling, however, the wall
thickness cannot be excessively thin.

3-6. DESIGN OF CIRCULAR MEMBERS IN TORSION

In designing members for strength, allowable shearing stresses must
be selected. These depend on the information available from experiments
and on the intended application. Accurate information on the capacity of
materials to resist shearing stresses comes from tests on thin-walled tubes.
Solid shafting is employed in routine tests. Moreover, as torsion members
are so often used in power equipment, many fatigue experiments are done.
Characteristically, the shearing stress that a material can withstand is lower
than the normal stress. The ASME (American Society of Mechanical Engi-
neers) code of recommended practice for transmission shafting gives an
allowable value in shearing stress of 8,000 psi for unspecified steel and 0.3
of yield, or 0.18 of ultimate, shearing strength, whichever is smaller.* In
practical designs, suddenly applied and shock loads warrant special consid-
erations.

Once the torque to be transmitted by the shaft is known and the maxi-
mum shearing stress is selected, the proportions of the member become
fixed. Thus, from Eq. 3-3,

T &
d=d Casn = T (9

c Tmlx

where J/c is the parameter on which the elastic strength of a shaft depends.
For an axially loaded rod such a parameter is the cross-sectional area of a
member. For a solid shaft, J/c = nc?/2, where ¢ is the outside radius. By
using this expression and Eq. 3-5, the required radius of a shaft can be deter-
mined. For a hollow shaft, a number of tubes can provide the same numerical
value of J/c, so the problem has an infinite number of possible solutions.
Members subjected to torque are very widely used as rotating shafts
for transmitting power. For future reference, a formula will be established
for the conversion of horsepower, the conventional unit used in the industry,
into torque acting through the shaft. By definition, 1 hp does the work of
745.7 N-m/s. One N-m/s is conveniently referred to as a watt (W) in the SI
units. Thus 1 hp can be converted into 745.7 W. Likewise, it will be recalled
from dynamics that power is equal to torque multiplied by the angle, mea-
sured in radians, through which the shaft rotates per unit of time. For a
shaft rotating with a frequency of f Hz, the angle is 2z f rad/s. Hence, if a

*Recommendations for other materials may be found in machine design books. For
example, see J. E. Shigley, Mechanical Engineering Design (2nd ed.), New York: McGraw-
Hill, 1972, or R. C. Juvinal, Stress, Strain, and Strength, New York: McGraw-Hill, 1967.
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shaft were transmitting a constant torque 7' measured in N-m, it would do
27fT N-m of work per second. Equating this to the horsepower supplied

hp(745.7) [N-m/s] = 2z fT [N-m/s]

or T %hp [N-m] (3-6)
where f is the frequency in hertz of the shaft transmitting the horsepower
hp. This equation converts the horsepower delivered to the shaft into a
constant torque acting through it as the power is applied.

In the English system, 1 hp does work of 550 ft-lb per second, or
550(12)60 in.-Ib per minute. If the shaft rotates at N rpm (revolutions per
minute), an equation similar to Eq. 3-6 can be obtained as

T — 93%),9_1‘2 [in.-1b] (3-6a)

EXAMPLE 3-4

Select a solid shaft for a 10 hp motor operating at 30 Hz. The maximum
shearing stress is limited to 55 000 kN/m?2,

SOLUTION
From Eq. 3-6
_ 119hp _ (119)(10) .
T = =30 = 39.7N-m

From Eq. 3-5

J T 397 —6 3

TR TR k1 106—0.722 X 1076 m

-9
%:HTC’ or 63:%%:2___(722; 107%) _ 460 x 10~ m?

Hence, ¢ = 0.00772mord = 2¢ = 0.0154m = 15.4 mm.
For practical purposes a 16 mm shaft would probably be selected.

EXAMPLE 3-5

Select solid shafts to transmit 200 hp each without exceeding a shearing stress
of 10,000 psi. One of these shafts operates at 20 rpm and the other at 20,000
rpm.

SOLUTION

Subscript 1 applies to the low-speed shaft; 2 to the high-speed shaft.
From Eq. 3-6

T, = 630,000 in.-1b

_ (hp)(63,000) _ 200(63,000)
a N, o 20

66



www.konkur.in

A

Similarly T, = 630 in.-lb
From Eq. 3-5
3
hozdi o 4 =176(63)=321 in.3
and d, = 6.851n.
Similarly d, = 0.685 in.

This example illustrates the reason for the modern tendency to use high-
speed machines in mechanical equipment. The difference in size of the two
shafts is striking. Further saving in the weight of the material can be effected
by making use of hollow tubes.

3-7. ANGLE OF TWIST OF CIRCULAR MEMBERS

So far in this chapter, methods of determining stresses in solid and
hollow circular shafts subjected to torque have been discussed. Now atten-
tion will be directed to the method of finding the angle of twist for shafts
subjected to torsional loading. The interest in this problem is at least three-
fold. First, it is important to predict the twist of a shaft per se since at times it
is not sufficient to design it only to be strong enough: it also must not deform
excessively. Then, magnitudes of angular rotations of shafts are needed in
the torsional vibration analysis of machinery, although this subject is not
treated here. Finally, the angular twist of members is needed in dealing with
statically indeterminate torsional problems, which are discussed in Chapter
12.

According to Assumption 1 stated in Art. 3-3, planes perpendicular
to the axis of a circular rod do not warp. The elements of a shaft undergo
deformation of the type shown in Fig. 3-7(b). The shaded element is shown
in its undistorted form in Fig. 3-7(a). From such a shaft a typical element of
length dx is shown isolated in Fig. 3-8.

In the element shown a line or “fiber” such as AB is parallel initially
to the axis of the shaft. After the torque is applied, it assumes a new position
AD. At the same time, by virtue of Assumption 2, Art. 3-3, radius OB
remains straight and rotates through a small angle d¢ to a new position OD.

(b)

Fig. 3-7. Circular shaft (a) before (b) after torque is applied.
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Fig. 3-8. An element of a circular shaft subjected to torque.
Denoting the small angle DAB by y..., from geometry one has
arc BD = p,,, dx or arc BD = d¢ ¢
where both angles are small and are measured in radians. Hence
Pmax X = d¢ ¢ (3-7)

Ymax @pplies only in the zone of an infinitesimal “tube” of uniform maximum
shearing stress 7,,,. Limiting attention to linearly elastic response makes
Hooke’s law applicable. Therefore, according to Eq. 2-9, the angle y,., is
proportional to Ty, 1.6., Ymex = Tmax/G. Moreover, by Eq. 3-3, 7., = Tc/J.
Hence 7., = T¢/(JG).* Substituting the latter expression into Eq. 3-7 and
canceling c,

dp T _ Tdx
Z=ja o #=7

This is the relative angle of twist of two adjoining sections an infinitesimal
distance dx apart. To find the total angle of twist ¢ between any two sections
A and B on a shaft, the rotations of all elements must be summed. Hence,
the general expression for the angle of twist at any section for a shaft of a

linearly elastic material is
B B
o o T, dx .
o= ] -] a9

The internal torque 7', and the polar moment of inertia J, may vary
along the length of a shaft. The direction of the angle of twist ¢ coincides
with the direction of the applied torque 7.

Equation 3-8 is valid for both solid and hollow circular shafts, which
follows from the assumptions used in the derivation. The angle ¢ is measured
in radians. Note the great similarity of this relation to Eq. 2-3 for the defor-
mation of axially loaded rods. The following two examples illustrate applica-
tions of Eq. 3-8.

*The foregoing argument can be carried out in terms of any y, which progressively becomes
smaller as the axis of the rod is approached. The only difference in derivation consists in
taking an arc corresponding to BD an arbitrary distance p from the center and using
T p/J instead of Tc/J for 7.
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EXAMPLE 3-6

Find the relative rotation of section B-B with respect
to section A4-A of the solid shaft shown in Fig. 3-9

0.025m  0.050 m

av

X1 =X

X2—X2
X3-X;

when a constant torque 7 is being transmitted through
it. The polar moment of inertia of the cross-sectional
area J is constant.

Fig.3-9 SOLUTION
In this case T, = T'and J, = J; hence from Eq. 3-8

B L L
_ ("Tedx _ (*Tdx _ T _TL )
‘l’—LJxG —fo JG_JG_[ 4 =76 (3-9)

0

Equation 3-9 is an important relation. It can be used in the design of
shafts for stiffness, i.e., for limiting the amount of twist that may take place in
their length. For such an application 7, L, and G are known quantities, and
the solution of Eq. 3-9 yields J. This fixes the size of the required shaft (see
Egs. 3-2 and 3-4). Note that for stiffness requirements, J, rather than J/c of the
strength requirement, is the significant parameter. This equation is used in
torsional vibration analyses. The term JG is referred to as the torsional stiffness
of the shaft.

Another application of Eq. 3-9 is found in the laboratory. There a
shaft can be subjected to a known torque 7, J can be computed from the
dimensions of the specimen, and the relative angular rotation ¢ between two
planes a distance L apart can be measured. Then, by using Eq. 3-9, the
shearing modulus of elasticity in the elastic range can be computed, i.e.,
G =TL[J.

In using Eq. 3-9, note particularly that angle ¢ must be expressed in
radians. Also observe the similarity of Eq. 3-9 to Eq. 2-4, A = PL/AE,
formerly derived for axially loaded rods.

EXAMPLE 3-7

Consider the stepped shaft shown in Fig. 3-10 attached to a wall at E, and
determine the rotation of the end A when the two torques at B and at D are
applied. Assume the shearing modulus G to be 80 x 10° N/m2, a typical
value for steels.

Bearing

-

A
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SOLUTION
From Eq. 3-2
4 -2)4
Jap =Jpc = n;; = BE0 > J07) >3<210 L 3.83 x 107¥ m*
From Eq. 3-4

Jogy = Jp = %(d: —d¥) = 312(54 — 2.54)10-% = 57.5 x 10-% m*

where subscripts indicate the range of applicability of a given value. Then by
passing arbitrary sections X,-X,, X,-X,, and X;-X;, and each time con-
sidering a portion of the shaft to the left of such sections, the internal torques
for the various intervals are found to be

Tu=0, TBD:TBCZTCD: ISON'm, TDE: 1150N'm

To find the rotation of the end A4, Eq. 3-8 is applied with the limits of
integration broken at points where 7" or J changes its value abruptly.

¢ T dx _ DTDEdX+ TCD d\’+ TBC dA ATABdX
E ‘IDEG D Jch JmG B JABG

In the last group of integrals, 7s and Js are constant between the limits
considered, so each integral reverts to a known solution, Eq. 3-9. Hence

_TpeLlpe | TepLep | Tpelpe | Taslas
¢ = +
JoeG JepG JocG ' JasG

o (1 150)(0.5) n (150)(0.3)
"~ (57.5 X 107¥)80 x 10° ' (57.5 x 107¥)80 x 10°
(150)(0.2)

+0

T (383 % 10-5)80 < 10°
— 0.0125 + 0.001 0 + 0.009 8
— 00233 radian  or  (360/27)(0.023 3) — 1.33°

The part AB of the shaft contributes nothing to the value of the angle
¢ as no internal torque acts through it. It rotates as much as the section at B.
Little is contributed to ¢ by the shaft from C to D because a small internal
torque and a large J are associated with this segment. No doubt there is a
disturbance in the strains at the step, but this local effect plays a small role in
the overall rotation.

The angle computed would hold equally true for a relative rotation of
sections for an analogous problem of a rotating shaft.

*3-8. SHEARING STRESSES AND DEFORMATIONS IN

CIRCULAR SHAFTS IN THE INELASTIC RANGE

The torsion formula for circular sections derived above is based on

Hooke’s law. Therefore, it applies only up to the point where the propor-
tional limit of a material in shear is reached in the outer annulus of a shaft.
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(a) Assumed strain variation (0

Now the solution will be extended to include inelastic behavior of a material.
As before, the equilibrium requirements at a section must be met. The
deformation assumption of linear strain variation from the axis remains
applicable. Only the difference in material properties affects the solution.

A section through a shaft is shown in Fig. 3-11(a). The linear strain
variation is shown schematically on the same figure. Some possible mechani-
cal properties of materials in shear, obtained, for example, in experiments
with thin tubes in torsion, are as shown in Figs. 3-11(b), (c), and (d). The
corresponding shearing-stress distribution is shown to the right in each
case. The stresses are determined from the strain. For example, if the strain
is @ at an interior annulus, Fig. 3-11(a), the corresponding stress is found
from the stress-strain diagram. This procedure is applicable to solid shafts
as well as to integral shafts made of concentric tubes of different materials,

A7
Tmax
G
X
(b)
AT

AT
yd
/ R4
4
(d) Stress-strain relations (g) Corresponding

stress distribution

Fig. 3-11. Stress in circular shafts.
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Plastic stress distribution

providing the corresponding stress-strain diagrams are used. The derivation
for a linearly elastic material is simply a special case of this approach.

After the stress distribution is known, the torque 7 carried by these
stresses is found as before, i.e.,

T= L [e(dA))p (3-10)

Either analytical or graphical procedures can be used for evaluating this
integral.

Although the shearing-stress distribution after the elastic limit is
exceeded is nonlinear and the elastic torsion formula Eq. 3-3 does not apply,
it is sometimes used to calculate a fictitious stress for the ultimate torque.
The computed stress is called the modulus of rupture; see the largest ordinates
of the dashed lines on Figs. 3-11(f) and (g). It serves as a rough index of
the ultimate strength of a material in torsion. For a thin-walled tube the
stress distribution is very nearly the same regardless of the mechanical prop-
erties of the material, Fig. 3-12. For this reason
experiments with thin-walled tubes are widely used
in establishing the shearing stress-strain (z-y)
diagrams.

If a shaft is strained into the plastic range
and the applied torque is then removed, every
“imaginary” annulus rebounds elastically. Because
of the differences in the strain paths, which cause
permanent set in the material, residual stresses
develop. This process will be illustrated in one of
the examples that follow.

For determining the rate of twist of a circular
shaft or tube, Eq. 3-7 can be used in the following

Elastic stress distribution

Fig. 3-12. For thin-walled tubes the differ- form:
ence between elastic and plastic stresses is

small.
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_‘}’max___h =1 1)
ek (3-11)

He

Here either the maximum shearing strain at ¢ or the strain at p, determined
from the stress-strain diagram must be used.

EXAMPLE 3-8

A solid steel shaft of 24 mm diameter is so severely twisted that only an 8 mm
diameter elastic core remains on the inside, Fig. 3-13(a). If the material prop-
erties can be idealized as shown in Fig. 3-13(b), what residual stresses and
residual rotation will remain upon release of the applied torque ?

SOLUTION

To begin, the magnitude of the initially applied torque and the corresponding
angle of twist must be determined. The stress distribution corresponding to
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Ar MN/m’
8 mm
160 //- //
r’ /
/| /
/ //
// /
+ —t >
0/ 2/ rin 1073 m/m
/ /
24 mm
(a) (b)
212 MN/m’ - 4
160 MN/m> - '51 MN/m
A
N~
v\ 51 MN/m*
V L o Y
. Zi )
- 89.3 MN/m’
(c) Elastic-plastic stress (d) Elastic rebound (e) Residual stresses
distribution stresses

Fig. 3-13

the given condition is shown in Fig. 3-13(c). The stresses vary linearly from 0
to 160 MN/m? when 0 << p << 4 mm; the stress is a constant 160 MN/m?
for p > 4 mm. Equation 3-10 can be used to determine the applied torque 7.
The release of the torque T causes elastic stresses, and Eq. 3-3 applies, Fig.
3-13(d). The difference between the two stress distributions, corresponding to

no external torque, gives the residual stresses.
c 0.004 [ p :]
T=frpdA:f Zmpldp:f =160 |2np2 dp
A " " 0.004

0.012
+f (160) 2p2 dp = (16 + 557)10-5 MN-m

0.004

=573 x 1006 MN-m = 573 N-m
(Note the smallness of the contribution of the first integral.)

Te _ 573 % 0.012
T = /32)(0.024)*

Toax = = 211 x 106 N/m2 = 211 MN/m?
At p = 12 mm, T;egiqum = 211 — 160 = 51 MN/m?2.

ART. 3-8 SHEARING STRESSES AND DEFORMATIONS IN CIRCULAR SHAFTS
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Two diagrams of the residual stresses are shown in Fig. 3-13(e). For
clarity the initial results are replotted from the horizontal line. In the entire
shaded portion of the diagram, the residual torque is clockwise; an exactly
equal residual torque acts in the opposite direction in the inner portion of the
shaft.

The initial rotation is best determined by calculating twist of the elastic
core. At p =4 mm, y = 2 x 1073. The elastic rebound of the shaft is given
by Eq. 3-9. The difference between the inelastic and the elastic twists gives the
residual rotation per unit length of shaft. If the initial torque is re-applied
in the same direction, the shaft responds elastically.

-3
Inelastic: %g = % =3 2—(—;%(1)%— = 0.5 rad/m

Elastic: d = T = 573
’ dx — JG  (m/32)(0.024)*(80) x 10°

= 0.22 rad/m

Residual: dg% = 0.5 — 0.22 = 0.28 rad/m

EXAMPLE 3-9

Determine the torque carried by a solid circular shaft of mild steel when
shearing stresses above the proportional limit are reached essentially every-
where. For mild steel, the shearing stress-strain diagram can be idealized to
that shown in Fig. 3-14(a). The shearing yield-point stress 7, is to be taken as
being the same as the proportional limit in shear 7.

\ 7 /Asymptote
Typ Tunf—

Tu=4/3 Typ

Typ = Typ

L!“ Ly // A

V4
/
B/‘// Residualxl 8

s i

(a)

CHAP. 3 TORSION

i
|
By dgldx = 6

> 0
(b) (c)
Fig. 3-14
SOLUTION

If a large torque is imposed on a member, large strains take place everywhere
except near the center. Corresponding to the large strains for the idealized
material considered, the yield-point shearing stress will be reached everywhere
except near the center. However, the resistance to the applied torque offered
by the material located near the center of the shaft is negligible as the corre-
sponding p’s are small, Fig. 3-14(b). (See the contribution to the torque 7 by
the elastic action in Example 3-8.) Hence, it can be assumed with a sufficient
degree of accuracy that a constant shearing stress 7,, is acting everywhere on
the section considered. The torque corresponding to this condition may be
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considered the ultimate or limit torque. (Figure 3-14(c) gives a firmer basis for
this statement.) Thus

Tur= | (@ypdA)p = rpty,dp = 3 Ty
4 0 (3-12)
_ A Tpmet 4 TyJ
T 3¢ 2 3 ¢

Note that the maximum elastic torque capacity of a solid shaft is T, = 7,,J/c
according to Eq. 3-3. Therefore since Ty, is 4 times this value, only 33} per
cent of the torque capacity remains after 7,, is reached at the extreme fibers of
a shaft. A plot of torque 7 vs. @, the angle of twist per unit distance, as full
plasticity develops is in Fig. 3-14(c). Point 4 corresponds to the results found
in the preceding example; line AB is the elastic rebound; and point B is the
residual @ for the same problem.

It should be noted that in machine members, because of the fatigue
properties of materials, the ultimate static capacity of the shafts as evaluated
here is often of minor importance.

*3-9. STRESS CONCENTRATIONS

Equations 3-3, 3-3 a ,and 3-5 apply only to solid and tubular shafts while
the material behaves elastically. Moreover, the cross-sectional areas along the
shaft should remain reasonably constant. If a gradual variation in the diameter
takes place, the above equations give satisfactory solutions. On the other
hand, for stepped shafts where the diameters of the adjoining portions
change abruptly, large perturbations of shearing stresses take place. High
local shearing stresses occur at points away from the center of the shaft.
Methods of determining these local concentrations of stress are beyond the
scope of this text. However, by forming a ratio of the true maximum shearing
stress to the maximum stress given by Eq. 3-3, a torsional-stress-concentration
factor can be obtained. An analogous method was used for obtaining
the stress-concentration factors in axially loaded members (Art. 2-11).
The stress-concentration factors depend only on the geometry of the member.
Stress-concentration factors for various proportions of stepped round shafts
are shown in Fig. 3-15.%

To obtain the actual stress at a geometrical discontinuity of a stepped
shaft, a curve for a particular D/d is selected in Fig. 3-15. Then, corresponding
to the given r/(d/2) ratio, the stress-concentration factor K is read from the
curve. Lastly, from the definition of K, the actual maximum shearing stress is
obtained from the modified Eq. 3-3, i.e.,

o — K% (3-3b)

where the shearing stress 7¢/J is determined for the smaller shaft.

*This figure is adapted from a paper by L. S. Jacobsen, “Torsional-Stress Concentrations
in Shafts of Circular Cross-section and Variable Diameter,” Trans. ASME., 1926, vol. 47,
P, 632,
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Fig. 3-16. Circular
shaft with a keyway.
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Fig. 3-15. Torsional stress-concentration factors in circular shafts of

two diameters.

A study of stress-concentration factors shown in Fig. 3-15 emphasizes
the need for a generous fillet radius r at all sections where a transition in the
shaft diameter is made.

Considerable stress raisers also occur in shafts at oil holes and at keyways
for attaching pulleys and gears to the shaft. A shaft prepared for a key, Fig.
3-16, is no longer a circular member. However, according to the procedures
suggested by the ASME, for a usual design, computations for shafts with
keyways are made using Eq. 3-3 or 3-5, but the allowable shearing stress is
reduced by 25%,. This supposedly compensates for the stress concentration
and reduction in cross-sectional area.

Because of some inelastic or nonlinear response in real materials, for
reasons analogous to those pointed out in Art. 2-11, the theoretical stress
concentrations based on the behavior of linearly elastic material tend to be
high.

*3-10. SOLID NONCIRCULAR MEMBERS

The analytical treatment of solid noncircular members in torsion is
beyond the scope of this book. Mathematically the problem is complicated.*
The first two assumptions stated in Art. 3-3 do not apply for noncircular
members. Sections perpendicular to the axis of a member warp when a torque
is applied. The nature of the distortions that take place in a rectangular section

*This problem remained unsolved until a famous French elastician, B. de St. Venant,
developed a solution for such problems in 1853. The general torsion problem is sometimes
referred to as the St. Venant problem.
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(a) (b)
Fig. 3-17. Rectangular shaft (a) before (b) after a torque is applied.

can be seen from Fig. 3-17.* For a rectangular member, oddly enough, the
corner elements do not distort at all. Shearing stresses at the corners are zero,
and they are maximum at the midpoints of the long sides. Figure 3-18 shows
the shearing-stress distribution along three radial lines emanating from the
center. Note particularly the difference in this stress distribution compared
with that of a circular section. For the latter, the stress is a maximum at the
most remote point, but for the former, the stress is zero at the most remote
point. This situation can be explained by considering a corner element as
shown in Fig. 3-19. If a shearing stress 7 existed at the corner, it could be
resolved into two components parallel to the edges of the bar. However, as
shears always occur in pairs acting on mutually perpendicular planes, these
components would have to be met by shears lying in the planes of the outside
surfaces. The latter situation is impossible as outside surfaces are free of all
stresses. Hence T must be zero. Similar considerations can be applied to other

Tmax

57 apicgiy

Fig. 3-18. Shearing-stress distribution in Fig. 3-19. The shearing stress shown can-
a rectangular shaft subjected to a torque. not exist.

*An experiment with a rubber eraser on which a rectangular grating is ruled demonstrates
this type of distortion.
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points on the boundary. All shearing stresses in the plane of a cut near the
boundaries act parallel to them.

Analytical solutions for torsion of rectangular, elastic members have
been obtained.* The methods used are beyond the scope of this book. The
final results of such analysis, however, are of interest. For the maximum
shearing stress (see Fig. 3-18) and the angle of twist, these results can be put
into the following form:

TL

Tomax = ——5 and b = BbeG (3-13)

T as before is the applied torque; b is the long side and c is the short side of the
rectangular section. The values of parameters o and f depend upon the ratio
b/c. A few of these values are recorded in the table below. For thin sections,
when b is much greater than ¢, the values of « and f approach 1.

TABLE OF COEFFICIENTS FOR RECTANGULAR SHAFTS

blc 1.00 1.50 2.00 3.00 6.00 10.0 oo
o 0.208 0.231 0.246 0.267 0.299 0.312 0.333
B 0.141 0.196 0.229 0.263 0.299 0.312 0.333

Formulas as above are available for many other types of cross-sectional
areas in more advanced books. For cases that cannot be conveniently solved
mathematically, a remarkable method has been devised.t It happens that the
solution of the partial differential equation that must be solved in the elastic
torsion problem is mathematically the same as the equation for a thin mem-
brane, such as a soap film, lightly stretched over a hole. This hole must be
geometrically similar to the cross section of the shaft being studied. Light air
pressure must be kept on one side of the membrane. Then the following facts
can be shown.

1. The shearing stress at any point is proportional to the slope of the stretched
membrane at the same point, Fig. 3-20.

2. The direction of a particular shearing stress at a point is at right angles to the
slope of the membrane at the same point, Fig. 3-20.

3. Twice the volume enclosed by the membrane is proportional to the torque
carried by the section.

The foregoing analogy is called the membrane analogy. In addition to its
value in experimental applications, it is a very useful mental tool for visual-

*S. Timoshenko and J. N. Goodier, Theory of Elasticity (3rd ed.), New York: McGraw-
Hill, 1970, p. 312.

+This analogy was introduced by a German engineering scientist, L. Prandtl, in 1903,
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| Weightless cap

Slope

A
\ ' Stretched membrane -/ / E Membrane

(a) (b)

Fig. 3-20. Membrane analogy: (a) simply connected region, (b)
multiply connected (tubular) region.

izing stresses and torque capacities of members. For example, all the sections
shown in Fig. 3-21 can carry approximately the same torque at the same
maximum shearing stress (same maximum slope of the membrane) since the
volume enclosed by the membranes would be nearly the same in all cases.
(For all these shapes, b = L and ¢ = ¢ in Eq. 3-13.) However, use of a little
imagination will convince the reader that the contour lines of a soap film will
“pile up” at a for the angular section. Hence, high local stresses will occur at
that point.

Another analogy, the sand-heap analogy, has been developed for plastic
torsion.* Dry sand is poured onto a raised flat surface having the shape of the
cross section of the member. The surface of the sand heap so formed assumes
a constant slope. For example, a cone is formed on a circular disc, or a

t

A
I*’ = =52

L . L ~ I

(c) (d) (e)

Fig. 3-21. Members of equal cross-sectional areas of the same
thickness carrying the same torque.

£ Ry N
~F

*A. Nadai, Theory of Flow and Fracture of Solids, vol. 1 (2nd ed.), New York: McGraw-
Hill, 1950.
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pyramid on a square base. The constant maximum slope of the sand corre-
sponds to the limiting surface of the membrane in the previous analogy. The
volume of the sand heap, hence its weight, is proportional to the fully plastic
torque carried by a section. The other items in connection with the sand
surface have the same interpretation as those in the membrane analogy.

*3-11. THIN-WALLED HOLLOW MEMBERS

Unlike solid noncircular members, thin-walled tubes of any shape can be
rather simply analyzed for the magnitude of the shearing stresses and the
angle of twist caused by a torque applied to the tube. Thus, consider a tube of
an arbitrary shape with varying wall thickness, such as shown in Fig. 3-22(a),
subjected to a torque 7. Isolate an element from this tube, as shown to an
enlarged scale in Fig. 3-22(b). This element must be in equilibrium under the
action of the forces F,, F,, F;, and F,. These forces are equal to the shearing
stresses acting on the cut planes multiplied by the respective areas.

Fig. 3-22. Thin-walled member of variable thickness.

From } F, =0, F, = F;; but F, = 1,1, dx, and F; = 7,¢, dx, where
7, and 7, are shearing stresses acting on the respective areas ¢, dx and 7, dx.
Hence, 7,t, dx = 1,t, dx, or t,t, = T,t,. However, since the longitudinal
cutting planes were taken an arbitrary distance apart, it follows from the
above relations that the product of the shearing stress and the wall thickness
is the same, i.e., constant, on any such planes. This constant will be denoted
by ¢, and if the shearing stress is measured in newtons per square meter and
the thickness of the tube in meters, ¢ is measured in newtons per meter (N/m).

In Art. 2-9, Eq. 2-8, it was established that shearing stresses on mutually
perpendicular planes are equal at a corner of an element. Hence at a corner
such as A4 in Fig. 3-22(b), 7, = 75; similarly, 7, = t,. Therefore 7,t, = 7,1,,
or in general g is constant in the plane of a cut perpendicular to the axis of a
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member. On this basis an analogy can be formulated. The inner and outer
boundaries of the wall can be thought of as being the boundaries of a channel.
Then one can imagine a constant quantity of water steadily circulating in
this channel. In this arrangement the quantity of water flowing through a plane
across the channel is constant. Because of this analogy the quantity ¢ has been
termed the shear flow.

Next consider the cross section of the tube as shown in Fig. 3-22(c).
The force per meter of the perimeter of this tube, by virtue of the previous
argument, is constant and is the shear flow ¢. This shear flow multiplied by
the length ds of the perimeter gives a force g ds per differential length. The
product of this infinitesimal force ¢ ds and r around some convenient point
such as 0, Fig. 3-22(c), gives the contribution of an element to the resistance
of the applied torque 7. Adding or integrating this,

T= §rqu

where the integration process is carried around the tube along the center line
of the perimeter. Since for a tube ¢ is a constant, this equation may be written
as

T=q§rds

Instead of carrying out the actual integration, a simple interpretation
of the above integral is available. It can be seen from Fig. 3-22(c) that r ds is
twice the value of the shaded area of an infinitesimal triangle of altitude r and
base ds. Hence the complete integral is twice the whole area bounded by the
center line of the perimeter of the tube. Defining this area by a special symbol
@ , one obtains

T=24dq or q=T/CQ@) (3-14)

This equation* applies only to thin-walled tubes. The area @ is approxi-
mately an average of the two areas enclosed by the inside and the outside
surfaces of a tube, or, as noted above, it is an area enclosed by the center line
of the wall’s contour. Equation 3-14 is not applicable at all if the tube is slit.

Since for any tube the shear flow ¢ given by Eq. 3-14 is constant, from
the definition of shear flow, the shearing stress at any point of a tube where
the wall thickness is 7 is

T = gt (3-15)

In the elastic range, Eqgs. 3-14 and 3-15 are applicable to any shape of
tube. For inelastic behavior, Eq. 3-15 applies only if the thickness ¢ is constant.
The analysis of tubes of more than one cell is beyond the scope of this book.

*Equation 3-14 is sometimes called Bredt’s formula in honor of the German engineer who
developed it.
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For linearly elastic material the angle of twist of a hollow tube can be
found by applying the principle of conservation of energy. The angle of twist
per unit distance, @, is then given by*

_do_ T [ds :
e_dx_@szf;t (>-16)

EXAMPLE 3-10

Rework Example 3-3 using Egs. 3-14 and 3-15. The tube has outside and
inside radii of 10 mm and 8 mm, respectively, and the applied torque is
40 N-m.

SOLUTION

The mean radius of the tube is 9 mm and the wall thickness is 2 mm. Hence

q T 40

U= 7 T 2@y ~ 2n(0.009)%0.002)

= 39.3 x 106 N/m?2.

Note that by using Egs. 3-14 and 3-15, only one shearing stress is obtained and

12.7 that it is just about the average of the two stresses computed in Example 3-3.

mm  The thinner the walls, the more accurate the answer, or vice versa.

Y It is interesting to note that a rectangular tube, shown in Fig. 3-23, with
a wall thickness of 2 mm, for the same torque will have nearly the same
shearing stress as the above circular tube. This is so because its enclosed area
is about the same as the@of the circular tube. However, some local stress
concentrations will be present at the corners of a square tube.

*3-12. SHAFT COUPLINGS

Frequently situations arise where the available lengths of shafting are
not long enough. Likewise, for maintenance or assembly reasons, it is often
desirable to make up a long shaft from several pieces. To join the pieces of
the shaft together, the so-called flanged shaft couplings of the type shown in
Fig. 3-24 are used. When bolted together, such couplings are termed rigid, to
differentiate them from another type called flexible that provides for
misalignment of adjoining shafts. The latter type is almost universally used
to join the shaft of a motor to the equipment driven. Here only rigid-type
couplings are considered. The reader is referred to machine design texts and
manufacturer’s catalogues for the other type.

For rigid couplings it is customary to assume that shearing strains in
the bolts vary directly (linearly) as their distance from the axis of the shaft.
Friction between the flanges is neglected. Therefore, analogous to the torsion
problem of circular shafts, if the bolts are of the same material, elastic

*See, for example, E. P. Popov, Introduction to Mechanics of Solids, Englewood Cliffs,
N.J.: Prentice-Hall, 1968.
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Fig. 3-24. Flanged shaft coupling.

shearing stresses in the bolts also vary linearly as their respective distances
from the center of a coupling. The shearing stress in any one bolt is assumed
to be uniform and is governed by the distance from its center to the center of
the coupling. Then, if the shearing stress in a bolt is multiplied by its cross-
sectional area, the force in a bolt is found. On this basis, for example, for bolts
of equal size in two “bolt circles,” the forces on the bolts located by the
respective radii @ and b are as shown in Fig. 3-24(c). The moment of the forces
developed by the bolts around the axis of a shaft gives the torque capacity of
a coupling.

The above reasoning is the same as that used in deriving the torsion
formula for circular shafts, except that, instead of a continuous cross section,
a discrete number of points is considered. This analysis is crude, since stress
concentrations are undoubtedly present at the points of contact of the bolts
with the flanges of a coupling. A conversion of the torsion formula for this
use and for analyzing more difficult cases than couplings is discussed in
Chapter 14.

The above method of analysis is valid only for the case of a coupling in
which the bolts act primarily in shear. However, in some couplings the bolts
are tightened so much that the coupling acts in a different fashion. The initial
tension in the bolts is great enough to cause the entire coupling to act in fric-
tion. Under these circumstances the above analysis is not valid, or is valid only
as a measure of the ultimate strength of the coupling should the stresses in
the bolts be reduced. However, if high tensile strength bolts are used, there is
little danger of this happening, and the strength of the coupling may be
greater than it would be if the bolts had to act in shear.*

EXAMPLE 3-11

Estimate the torque-carrying capacity of a steel coupling forged integrally
with the shaft, shown in Fig. 3-25, as controlled by an allowable shearing
stress of 40 000 kN/m? in the eight bolts. The bolt circle is 0.24 m in diameter.

*See “Symposium on High-Strength Bolts,” Part I, by L. T. Wyly, and Part Il by E.J.
Ruble, Proceedings AISC, 1950. Also see Art. 14-2.
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SOLUTION

Area of one bolt:

8 — 30 mm Bolts

A = (1/4)7r(30)? = 706 mm? = 7.06 x 10~* m?

Allowable force for one bolt:

Piiow = ATaow = 7.06 X 1074(40 x 103) = 28.2 kN

Fig. 3-25
Since eight bolts are available at a distance of 0.12 m
from the central axis,

Tanow = (28.2)(0.12)(8) = 27.1 kN-m

PROBLEMS FOR SOLUTION

3-1. Find the shearing stress developed in the stress parallel to the grain of the wood is 840

extreme fibers of a 75 mm diameter steel shaft due
to an applied torque of 5500 N-m. Assuming
that the torque is applied in the direction shown
in Fig. 3-5(a), indicate on a suitable sketch the
directions of the computed stress.

3-2. A hollow shaft is of 4 in. outside diameter
and 3 in. inside diameter. If the allowable shear-
ing stress is 8,000 psi, what torque can it transmit ?
What is the stress at the inner surface of the shaft
when the allowable torque is applied? Ans:
68,700 in.-1b.

3-3. A shaft of Douglas Fir is to be used in a
certain process industry. If the allowable shearing

55 N'm

kN/m?2, calculate the maximum torque that can
be transmitted by a 200 mm round shaft with
the grain of the wood parallel to the axis.

3-4. A 6in. diameter core, i.e., an axial hole
of 3 in. radius, is bored out from a 9 in. diameter
solid circular shaft. What percentage of the tor-
sional strength is lost by this operation? Ans:
19.6%.

3-5. The solid cylindrical shaft of variable
size shown in the figure is acted upon by the
torques indicated. What is the maximum tor-
sional stress in the shaft, and between what two
pulleys does it occur? Ans: 17.9 MPa.

PROB. 3 -5

CHAP. 3 TORSION
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3-6. A 150 mm diameter solid steel shaft is
transmitting 600 Hp at 1.5 Hz. Compute the
maximum shearing stress. Find the change that
would occur in the shearing stress if the speed
were increased to 6.0 Hz. Part. Ans: 72 MPa.

3-7. Two shafts, one a hollow steel shaft with
an outside diameter of 90 mm and an inside
diameter of 30 mm, the other a solid shaft with
a diameter of 90 mm, are to transmit 75 hp each.
Compare the shearing stresses in the two shafts if
both operate at 3 Hz. Part. Ans: 21 MPa.

3-8. The solid 50 mm diameter steel line shaft
shown in the figure is driven by a 30 hp motor
at 3 Hz. Find the maximum torsional stresses in
the sections 4B, BC, CD, and DE of the shaft.

PROB. 3 - §

3-9. A motor, through a set of gears, drives a
line shaft as shown in the figure, at 630 rpm.
Thirty hp are delivered to a machine on the right;
90 hp on the left. Select a solid round shaft of the
same size throughout. The allowable shearing
stress is 5,750 psi. Ans: 2-in. diameter.

= ==
i:E Motor
9 hp B 30 hp

a
P >l
PROB.3 -9
3-10. Design a hollow steel shaft to transmit

300 hp at 75 rpm without exceeding a shearing
stress of 6,000 psi. Use 1.2:1 as the ratio of the
outside diameter to the inside diameter. Ans:
6.22 in.

CHAP. 3 PROBLEM FOR SOLUTION

3-11. Find the total angle of twist between A4
and E for the shaft in Prob. 3-8. G = 84 000
MN/m2. Ans: 8.6°.

3-12. What must the length of a 5 mm dia-
meter aluminum wire be so that it could be
twisted through one complete revolution without
exceeding a shearing stress of 42 000 kN/m2?
G = 27000 MN/m2. Ans: 10.1 m.

3-13. A hollow steel rod 6 in. long is used as a
torsional spring. The ratio of inside to outside
diameters is §. The required stiffness for this
spring is 1y of a degree per one inch-pound of
torque. Determine the outside diameter of this
rod.G =12 x 108 psi. Ans:0.25in.
\ LY

3-14. A solid aluminum shaft 1.0 m long and
of 50 mm outside diameter is to be replaced by a
tubular steel shaft of the same length and the same
outside diameter so that either shaft could carry
the same torque and have the same angle of twist
over the total length. What must the inner radius
of the tubular steel shaft be ? Gs, = 84 000 MN/m?
and G,; = 28 000 MN/m?2. Ans: 22.6 mm.

3-15. A 2 in. diameter shaft of 3 ft in length is
clamped at one end and is free at the other end. A
1} in. diameter concentric bore is to be made in
this shaft from the free end extending inward.
Determine the required length of the bore such
that the shaft would twist a total of 0.120° due
to the application of an end torque of 900 in.-lb.
LetG = 12 x 106 psi. Ans: 17 in.

3-16. A 100-hp motor is driving a line shaft
through gear A4 at 26.3 rpm. Bevel gears at B and
C drive rubber-cement mixers. If the power re-
quirement of the mixer driven by gear B is 25 hp
and that of C is 75 hp, what are the required
shaft diameters ? The allowable shearing stress in

PROB. 3 - 16
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the shaft is 6,000 psi. A sufficient number of bear-
ings is provided to avoid bending. If G is 12 x
106 psi, what is the angle of twist under load in
the left section of the shaft? State answer in
degrees. Ans: d; = 3.71in., d, = 5.34in., and
¢ =3.72°.

3-17. Two gears are attached to two 50 mm
diameter steel shafts as shown in the figure. The
gear at B has a 200 mm pitch diameter; the gear
at C a 400 mm pitch diameter. Through what
angle will the end A turn if at 4 a torque of 560
N-m is applied and the end D of the second shaft
is prevented from rotating? G = 84 000 MN/m?2,

PROB. 3 - 17

3-18. In Example 3-7, find the magnitude of
a torque that applied at A4 alone would cause the
same angular rotation at A as do the two torques
applied at Band D. Ans: 282 N-m.

3-19. (a) Determine the maximum shearing
stress in the shaft subjected to the torques shown

2" diam shaft

/ 2107 in-Ib
P 1357 in-lb

3757 in-Ib

CHAP. 3 TORSION

in the figure. (b) Find the angle of twist in degrees
between the two ends. Let G = 12 x 106 psi.
Ans: (a) 900 psi, (b) 0.11°,

3-20. A dynamometer is employed to calibrate
the required power input to operate an exhaust
fan at 20 Hz. The dynamometer consists of a
12 mm diameter solid shaft and two disks at-
tached to the shaft 300 mm apart as shown in the
figure. One disk is fastened through a tube at the
input end; the other is near the output end. The
relative displacement of these two disks as viewed
in stroboscopic light was found to be 6° 0". Com-
pute the power input in hp required to operate
the fan at the given speed. Let G = 84000

MN/m2. Ans: 10 hp.
|
300 mm
~ 12 mm
Motor g t Bore
oto Dynamometer Fan
PROB. 3 -20

3-21. A solid, tapered steel shaft is rigidly
fastened to a fixed support at one end and is sub-
jected to a torque 7 at the other end (see figure).
Find the angular rotation of the free end if
dy =6in.; d, =2in.; L=20in.; and T =
27,000 in.-1b. Assume that the usual assumptions
of strain in prismatic circular shafts subjected to
torque apply, and let G = 12 x 106 psi. Ans.
0.264°,

dy

d\

PROB.3 - 21
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* 3.22. A thin-walled elastic frustum of a cone
has the dimensions shown in the figure. Deter-
mine the torsional stiffness of this member, i.e.,
the magnitude of torque per unit angle of twist.
The shearing modulus for the material is G.

I ,
5, Wall thickness

4” diam

PROB. 3 - 22

*3-23. A 150 mm diameter shaft of a linearly
elastic material has in it a conical bore that is
600 mm long as shown in the figure. The shaft is
rigidly attached to a fixed support at one end and
is subjected to a torque 7 at the free end. Deter-
mine the maximum angular rotation of the shaft.

150 mm diam. rod

PROB.3-23

* 3.24. Assume that during a drilling opera-
tion a shaft of constant torsional rigidity JG is
loaded by a concentrated torque 7; = —1,000
in.-1b and a distributed torque 7, = 100 in.-1b per
inch as shown in the figure. Find the angular
rotation of the free end. Plot the torque 7'(x) and
the angle-of-twist ¢(x) diagrams. Ans: Pmax =
10,000/GJ.

Ay

T,

5 e L 10"

PROB.3 - 24

NNNNNN\N

CHAP. 3 PROBLEM FOR SOLUTION

50

*3-28.

3-25. A tube of 50 mm outside diameter and
2 mm thickness is attached at the ends by means
of rigid flanges to a solid shaft of 25 mm diameter
as shown in the figure. (All dimensions in mm.)
If both the tube and the shaft are made of the
same linearly elastic material, what part of the
applied torque 7 is carried by the tube? Ans:
83.7%.

25

(All dimensions in mm)
PROB. 3 - 25

3-26. If the outside tube in the preceding prob-
lem is made of aluminum and the shaft is made of
steel, what torque can be applied to the as-
sembly such that the shearing stress in the alumi-
num tube would not exceed 100 MPa? Let
Gs. = 84 GPa, and G,; = 28 GPa. What would
the angle of twist be in the 500 mm length of the
aluminum tube for the above torque ?

3-27. A specimen of an SAE 1060 steel bar of
20 mm diameter and 450 mm in length failed at
a torque of 900 N-m. What is the modulus of
rupture of this steel in torsion? Ans: 573 MPa.

A 2in. diameter steel bar is 100 in.

long. One end of bar is fixed; the other is rotated
through an angle ¢ = 17.19°. What torque 7 was
applied at the free end to produce this rotation?
Idealized mechanical properties for the material
Ans: 30.4

of the shaft are shown in the figure.
k-in.

7, = 15 000 psi,
7, = 0.0015

Y

PROB. 3- 28
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3-29. A solid circular shaft of 150 mm di-
ameter is machined down to a 75 mm diameter
along a part of the shaft. If at the transition point
of the two diameters the fillet radius is 12 mm,
what maximum shearing stress is developed when
a torque of 2700 N-m is applied to the shaft?
What will the maximum shearing stress be if the
fillet radius is reduced to 3 mm?

3-30. Find the required fillet radius for the
juncture of a 6in. diameter shaft with a 4in.
diameter segment if the shaft transmits 110 hp at
100 rpm and the maximum shearing stress is
limited to 8,000 psi. Ans: 0.31 in.

3-31. Compare the maximum shearing stress
and angle of twist for members of equal length
having a square section, a rectangular section, and
a circular section of equal area. All members are
subjected to the same torque. The circular sec-
tion is 100 mm in diameter and the rectangular
section is 25 mm wide. For the square section,
o = 0.208 and f = 0.141; for the rectangular
section, @ ~ f ~ 1.

3-32. Compare the torsional strength and
stiffness of thin-walled tubes of circular cross
section of linearly elastic material with and
without a longitudinal slot (see figure). Ans:
3R/t, t2/(3R?).

PROB. 3 -32

3-33 through 3-35. Find the maximum shearing
stresses developed in members having the cross
sections shown in the figures due to an applied
torque of 500 in.-Ib in each case. Neglect stress
concentrations. Ans: Prob. 3-32; 5,560 psi.

CHAP. 3 TORSION

N

-
o=

PROB. 3 - 33

Ellipse  0.06”

PROB. 3-34

R = 0.20" l

2.00”

PROB. 3 - 35

3-36. For a member having the cross section
shown in the next figure, find the maximum shear-
ing stresses and angles of twist per unit length due
to an applied torque of 1,000 in-Ib. Neglect
stress concentrations. Comment on the advantage
gained by the increase in the wall thickness over
part of the cross section. Ans: 11.1 psi, 0.691/G
rad/in.
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PROB. 3- 36

3-37. A rigid coupling with six 25 mm dia-
meter bolts in a 200 mm diameter bolt circle is
subjected to a torque of 20 000 N-m. Compute
the shearing stress in the bolts.

3-38. A coupling is made with eight § in.
diameter high strength bolts located on a 10 in.
diameter bolt circle. (a) Calculate the torque
that can be transmitted by this coupling if the
allowable stress in the bolts is 10,500 psi. (b) Find

CHAP. 3 PROBLEM FOR SOLUTION

the hp that can be transmitted when the shaft
and couplings are rotating at 250 rpm. Ans: (b)
737 hp. Ans: 67.9 MPa.

3-39. A flange coupling has 6 bolts having a
cross-sectional area of 0.2 in.2 each in an 8 in.
diameter bolt circle, and 6 bolts having a cross-
sectional area of 0.5 in.2 each in a 5 in. diameter
bolt circle. If the allowable shearing stress in the
bolt is 16 ksi, what is the torque capacity of this
coupling? Ans: 152 k-in.

*3-40. Six 20 mm diameter bolts in the outer
bolt circle of 175 mm radius are aluminum, and
six 20 mm diameter bolts in the inner bolt circle
of 125 mm radius are steel. What is the torque
capacity of the coupling? Assume the allowable
shearing stress for both materials at 40 000 kN/m?
and use G5, = 28 000 MN/m2 and G§, = 84 000
MN/m2. Ans: 15.6 kKN-m.
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Axial Force —
Shear —
and Bending Moment

4-1. INTRODUCTION

The effect of axial forces on straight members was treated in Chapters
| and 2. Torsion of straight members was discussed in Chapter 3. It should be
intuitively clear to the reader that these are not the only types of forces to
which a member may be subjected. In fact, in many engineering structures
members resist forces applied laterally or transversely to their axes. This type
of member is termed a beam. Numerous applications of beams can be found
in structural and machine parts. The main members supporting floors of
buildings are beams, just as an axle of a car is a beam. Many shafts of
machinery act simultaneously as torsion members and as beams. With modern
materials, the beam is a dominant member of construction. The determina-
tion of the system of internal forces necessary for equilibrium of any beam
segment will be the main objective of this chapter.*

Beams may be straight or curved, but this chapter will concentrate on a
study of straight beams. Straight beams occur more frequently in practice;
moreover, the system of forces at a section of a straight beam is the same as
in a curved one. Hence, if the behavior of a straight beam is understood,
little needs to be added regarding curved beams. To simplify the work of
this chapter,T the forces applied to the beams will be assumed to lie in the
same plane, i.e., a “planar” beam problem will be discussed exclusively.
Further, although in actual installations a straight beam may be vertical,
inclined, or horizontal, for convenience, the beams discussed here will be
shown in a horizontal position. All beams considered will be statically
determinate, i.e., reactions can always be determined by applying the equa-
tions of static equilibrium.

For the axially loaded or torsion members previously considered, only
one internal force was required at a section to satisfy the conditions of

*The contents of this chapter may be familiar to some students. Nevertheless, it is well
to review the material presented here. A thorough knowledge of this material must be had
prior to the study of the chapters that follow.

TSee Chapter 7 for treatment of the more general problem.
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equilibrium. However, in general, a system of three internal force compo-
nents can be recognized at a section of a beam. These quantities will be
determined in this chapter by isolating segments of a beam and applying
the equilibrium conditions to them. The analysis relating these forces to
the stresses that they cause in the beam will be discussed in the next two
chapters.

4-2. DIAGRAMMATIC CONVENTIONS FOR SUPPORTS

In studying beams it is imperative to adopt diagrammatic conventions
for their supports and loadings inasmuch as several kinds of supports and a
great variety of loads are possible. A thorough mastery of and adherence to
such conventions avoids much confusion and minimizes the chances of
making mistakes. These conventions form the pictorial language of engineers.
As stated in the introduction, for convenience, the beams will usually be
shown in a horizontal position.

Three types of supports are recognized for beams loaded with forces
acting in the same plane. These are identified by the kind of resistance they
offer to the forces. One type of support is physically realized by a roller or a
link. Tt is capable of resisting a force in only one specific line of action. The
link shown in Fig. 4-1(a) can resist a force only in the direction of line AB.
The roller in Fig. 4-1(b) can resist only a vertical force, while the rollers in
Fig. 4-1(c) can resist only a force that acts perpendicular to the plane CD.
This type of support will be usually represented in this text by rollers as
shown in Figs. 4-1(b) and (c), and it will be understood that a roller support
is capable of resisting a force in either direction® along the line of action of the
reaction. To avoid this ambiguity, a schematic link will be occasionally
employed to indicate that the reactive force may act in either direction (see
Fig. 4-4). A reaction of this type corresponds to a single unknown when

L

;| —
i | Beam § i A
k| 4) E D
”%—- Roller ' ' AN {
|RA 90°
Rollers \\
0 C R4

(b) (

Fig. 4-1. Link and roller type of support. (The only possible line of
action of the reaction is shown by the dashed lines.)

*This implies that in the actual design a link must be provided if the reaction acts away
from the beam, in other words, the beam is not allowed to lift off from the support at 4
in Fig. 4-1(b). In this figure it may be helpful to show the roller on top of the beam in the case
of a downward reaction in order to make it clear that the beam is constrained against mov-
ing up vertically at the support. This practice will be followed usually in the text.
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equations of statics are applied. For inclined reactions the ratio between the
two components is fixed (see Example 1-3).

Another type of support that may be used for a beam is a pin. In con-
struction such a support is realized by using a detail as shown in Fig. 4-2(a).
In this text such supports will be represented diagrammatically as shown in

Fig. 4-2(b). A pinned support is capable of resisting
a force acting in any direction of the plane. Hence,
in general, the reaction at such a support may have
two components, one in the horizontal and one in
@—% the vertical direction. Unlike the ratio applying
- to the roller or link support, that between the
reaction components for the pinned support is not
fixed. To determine these two components, two

Fig. 4-2. Pinned support: (a) actual, (b) equations of statics must be used.
disgrammatic. The third type of support used for beams is
capable of resisting a force in any direction and is
y also capable of resisting a couple or a moment. Phys-
ically, such a support is obtained by building a beam
into a brick wall, casting it into concrete, or welding
the end of a beam to the main structure. A system
of three forces can exist at such a support, two
components of force and a moment. Such a support
Fig. 4-3. Fixed support.  is called a fixed support, i.e., the built-in end is fixed
or prevented from rotating. The standard conven-

tion for indicating it is shown in Fig. 4-3.

To differentiate fixed supports from the roller and pin supports, which
are not capable of resisting moment, the latter two are termed simple supports.
Figure 4-4 summarizes the foregoing distinctions between the three types of
supports and the kind of resistance offered by each type. Practicing engineers
normally assume the supports to be of one of the three types by “judgment,”
although in actual construction, supports for beams do not always clearly
fall into these classifications. A more refined investigation of this aspect of
the problem is beyond the scope of this text.

(a) (b)

- ]

Mc
-
R{\' .4 B RC\‘ C
. B [ T or P
1[ ’ i wb ~Link .
(‘ )

RA\' RB '
Resists horizontal Resists vertical forces only Resists horizontal
and vertical forces and vertical forces

and moment
Simple Supports Fixed support

Fig. 4-4. The three common types of support.
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4-3. DIAGRAMMATIC CONVENTIONS FOR LOADING

Beams are called upon to support a variety of loads. Frequently a force
is delivered to the beam through a post, a hanger, or a bolted detail as shown
in Fig. 4-5(a). Such arrangements apply the force over a very limited portion
of the beam and are idealized for the purposes of beam analysis as concen-
trated forces. These are shown diagrammatically in Fig. 4-5(b). On the
other hand, in many instances the forces are applied over a considerable
portion of the beam. In a warehouse, for example, goods may be piled up
along the length of a beam. Such forces are termed distributed loads.

T'T .P

{ B R ix
V.07 —
w
07 Z ‘ Ry,

(a) (b)

N

Fig. 4-5. Concentrated loading on a beam (a) actual, (b) idealized.

Many types of distributed loads occur. Among these, two kinds are
particularly important: the wuniformly distributed loads and the wuniformly
varying loads. The first could easily be an idealization of the warehouse load
just mentioned, where the same kind of goods are piled up to the same height
along the beam. Likewise the beam itself, if of constant cross-sectional area,
is an excellent illustration of the same kind of loading. A realistic situation
and a diagrammatic idealization are shown in Fig. 4-6. This load is usually
expressed as force per unit length of the beam, unless specifically noted
otherwise. In SI units it may be given as newtons per meter (N/m); in the
English, as pounds per inch (Ib/in.), as pounds per foot (Ib/ft), or as kilopounds
per foot (k/ft).

Uniformly varying loads act on the vertical and inclined walls of a

Uniformly distributed load
goods + beam w; N/m

Beam w, N/m

RIRERASR

gﬁ‘ !\
. A

(a) (b)

Fig. 4-6. Distributed loading on a beam (a) actual, (b) idealized.
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Unifors vessel containing liquid. This is illustrated in Fig.
_ ?‘;r(:,:zlgy 4-7 where it is assumed that the vertical beam is

h

/loud one meter wide and y (N/m?) is the unit weight of

the liquid. For this type of loading, it should be
carefully noted that the maximum intensity of the
load of ¢, N/m is applicable only to an infinitesimal

T length of the beam. It is twice as large as the aver-
age intensity of pressure. Hence the total force
exerted by such a loading on a beam is (¢,/4/2) N,

X
)

q, N/m (max) = y-h-1 and its resultant acts at a distance 4/3 above the

Fig. 4-7. Hydrostatic loading on a vertical

wall.

vessel’s bottom. Horizontal bottoms of vessels
containing liquid are loaded uniformly.

Finally, it is conceivable to load a beam with
a concentrated moment applied to the beam essentially at a point. One of
the possible arrangements for applying a concentrated moment is shown in
Fig. 4-8(a), and its diagrammatic representation to be used in this text is
shown in Fig. 4-8(c).

Cable f w
r——»
W M = W(l

3 4 =R B~
W

(a) (b) (c)

Fig. 4-8. A method of applying a concentrated moment to a beam.

The necessity for a complete understanding of the foregoing symbolic
representation for supports and forces cannot be overemphasized. Note
particularly the kind of resistance offered by the different types of supports
and the manner of representation of the forces at such supports. These
notations will be used to construct free-body diagrams for beams.

4-4. CLASSIFICATION OF BEAMS

Beams are classified into several groups, depending primarily on the
kind of support used. Thus, if the supports are at the ends and are either pins
or rollers, the beams are simply supported or simple beams, Fig. 4-9(a) and (b).
The beam becomes a fixed beam or fixed-ended beam, Fig. 4-9(c), if the ends
have fixed supports. Likewise, following the same scheme of nomenclature,
the beam shown in Fig. 4-9(d) is a beam fixed at one end and simply supported
at the other. Such beams are also called restrained beams as an end is
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\ARA! Z!”HHHHW
N N N N
(a) o—E (b |—= (@) = -
Simply supported beams Cantilever
11 | 222223
]
7 N AN
(c)! L ’ (f L
Fixed beam Overhanging beam

e

! ]
L L, I L L ‘

~ Beam fixed at one end and
simply supported at the other end Continuous beam

—_
a.
-
L)

Fig. 4-9. Types of beams.

“restrained” from rotation. A beam fixed at one end and completely free at
the other has a special name, a cantilever beam, Fig. 4-9(e).

If the beam projects beyond a support, the beam is said to have an
overhang. Thus the beam shown in Fig. 4-9(f) is an overhanging beam. If
intermediate supports are provided for a physically continuous member
acting as a beam, Fig. 4-9(g), the beam is termed a continuous beam.

For all beams the distance L between supports is called a span. In a
continuous beam there are several spans that may be of varying lengths.

In addition to classifying beams on the basis of supports, descriptive
phrases pertaining to the loading are often used. Thus the beam shown in
Fig. 4-9(a) is a simple beam with a concentrated load, while the one in Fig.
4-9(b) is a simple beam with a uniformly distributed load. Other types of
beams are similarly described.

For most of the work in mechanics of materials it is also meaningful
to further classify beams into statically determinate and statically indeter-
minate beams. If the beam, loaded in a plane, is statically determinate, the
number of unknown reaction components does not exceed three. These
unknowns can always be determined from the equations of static equilibrium.
The next article will briefly review the methods of statics for computing
reactions for statically determinate beams. An investigation of statically
indeterminate beams will be postponed until Chapter 11.
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4-5. CALCULATION OF BEAM REACTIONS

All subsequent work with beams will begin with determination of the
reactions. When all of the forces are applied in one plane, three equations of
static equilibrium are available for this purpose. Theseare 3 F, =0, 3 F, =
0,and 3} M, = 0, and have already been discussed in Chapter 1. For straight
beams in the horizontal position, the x-axis will be taken in a horizontal
direction, the y-axis in the vertical direction, and the z-axis normal to the
plane of the paper. The application of these equations to several beam
problems is illustrated below and is intended to serve as a review of this
important procedure. The deformation of beams, being small, can be
neglected when the above equations are applied. For stable beams the small
amount of deformation that does take place changes the points of applica-
tion of the forces imperceptibly.

EXAMPLE 4-1
R e

» Find the reactions at the supports for a simple beam loaded as shown in
Fig. 4-10(a). Neglect the weight of the beam.

200 N'm 100 N 160 N
/T C \
A [l jB
N =
LO.I m_'_(n m_| 0.0m |01 mj

(a)

A\

Fig. 4-10

SOLUTION

The loading of the beam is already given in diagrammatic form. The nature of
the supports is examined next, and the unknown components of these reactions
are boldly indicated on the diagram. The beam, with the unknown reaction
components and all the applied forces, is redrawn in Fig. 4-10(b) to delib-
erately emphasize this important step in constructing a free-body diagram.
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At A, two unknown reaction components may exist, since the end is pinned.
The reaction at B can act only in a vertical direction since the end is on a
roller. The points of application of all forces are carefully noted. After a
free-body diagram of the beam is made, the equations of statics are applied
to obtain the solution.

z Fx = O RAx = 0
2M;=0D +, 200 + (100)(0.2) + (160)(0.3) — Rp(0.4) = 0

S Mp=00+,  Ry(0.4) + 200 — (100)0.2) — (160)(0.1) = 0
R, = —410N |

Check:
XFE=01+, —410 — 100 — 160 + 670 = 0

Note that > F, = 0 uses up one of the three independent equations
of statics, thus only two additional reaction components can be determined
from statics. If more unknown reaction components or moments exist at the
support, the problem becomes statically indeterminate. In Fig. 4-9 the beams
shown in parts (c), (d), and (g) are statically indeterminate beams as may be
proved by examining the number of unknown reaction components. (Verify
this statement.)

Note that the concentrated moment applied at C enters only into the
expressions for the summation of moments. The positive sign of R, indicates
that the direction of R has been correctly assumed in Fig. 4-10(b). The inverse
is the case of R,,, and the vertical reaction at A4 is downward. Note that a
check on the arithmetical work is available if the calculations are made as
shown.

ALTERNATE SOLUTION

In computing reactions some engineers prefer to make calculations in the
manner indicated in Fig. 4-11. Fundamentally this involves the use of the
same principles. Only the details are different. The reactions for every force
are determined one at a time. The total reaction is obtained by summing these
reactions. This procedure permits a running check of the computations as
they are performed. For every force the sum of its reactions is equal to the
force itself. For example, for the 160 N force, it is easy to see that the upward
forces of 40 N and 120 N total 160 N. On the other hand, the concentrated
moment at C, being a couple, is resisted by a couple. It causes an upward
force of 500 N at the right reaction and a downward force of 500 N at the left
reaction.

EXAMPLE 4-2

Find the reactions for the partially loaded beam with a uniformly varying
load shown in Fig. 4-12(a). Neglect the weight of the beam.
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100 N
200 N-m ke
A / ', C y B
Rax N [l |
A
RAy RB
0.1 m Olm [ 0.l m 0.1 m
A Ak
Z/WB:O! 0.4 m _ tZAWA:O
200 x 1/(0.4) =500 N t 500 N = 200 x 1/(0.4)  (moment)
100 x (0.2)/(0.4) = S0 N 50 N = 100 x (0.2)/(0.4) (100 N force)
160 x (0.1)/(0.4) = 40 N 120 N = 160 x (0.3)/(0.4) (160 N force)
500N | 90 N Ry = 670N t
R, =410N 1
Y
Fig. 4-11

g, = 100 N/m
,{rﬂ/ﬂ/ﬂ I B i &
]B

x 3 x 100 = 150 N

B
RAx
A -
. A
Im R
4yY2 =9
- X 3=2m 3 i
(a) (b) 3 m
Fig. 4-12
SOLUTION

An examination of the supporting conditions indicates that there are three
unknown reaction components, hence the beam is statically determinate.
These and the applied load are shown in Fig. 4-12(b). Note particularly that
the configuration of the member is not important for computing the reactions.
A crudely shaped outline bearing no resemblance to the actual beam is indi-
cated to emphasize this point. However, this new body is supported at points
A and B in the same manner as the original beam.

For calculating the reactions the distributed load is replaced by an
equivalent concentrated force P. It acts through the centroid of the distributed
forces. These pertinent quantities are marked on the working sketch, Fig.
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4-12(b). After a free-body diagram is prepared, the solution follows by apply-
ing the equations of static equilibrium.

S F.=0 R, =0
SM=00 +, +(150)2) — Rg(5) = 0, Ry = 60N |
S Mp=00D+, —Ru5) +(150)3)=0, Ry =90N]|

5K Check:
A; Tl SF=01+, —9 + 150 — 60 =0
I
g _|‘ EXAMPLE 4-3

b Determine the reactions at 4 and B for the “weightless”

beam shown in Fig. 4-13(a). The applied loads are

12' given in kilo-pound or 1,000-1b units called kips, which
are designated here by k.

(a)
SOLUTION

4k
/Sk A free-body diagram is shown in Fig. 4-13(b). At A
Rax 2 L

3k B Rpx there are two unknown reaction components, R,, and
. ¢ R,,. At B the reaction Ry acts normal to the sup-
] 1 porting plane and constitutes a single unknown. It is
|
R,

expedient to replace this force by the two components
Ray Z Ra Rg, and Rgp,, which in this particular problem are
-l numerically equal. Similarly, it is best to replace the
> inclined force with the two components shown. These

steps reduce the problem to one where all forces are

either horizontal or vertical. This is of great conve-
Fig. 4-13 nience in applying the equations of static equilibrium.

(b)

TMi=00+, +403)— Rp(12)=0, Rp,=1k1 =|Ral
2My=00D+, +R,(12)—-409) =0, R,y=3kt
XF,=0->+, + Riz—3-1=0, Ry =4k>

4
R,=4/42+32=5k 3D

1
Rp=a124+12=,/2k :l
Check:
XF,=01 4+, +3—-4+1=0

4-6. APPLICATION OF METHOD OF SECTIONS

The main object of this chapter is to establish means for determining
the forces that exist at a section of a beam. To obtain these forces, the me-
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(c)

W, (total uniformly varying load)

thod of sections, the basic approach of mechanics of materials, will now be
applied.
The analysis of any beam is begun by preparing a free-body diagram.
The reactions can always be computed using the equations of equilibrium,
provided the beam is statically determinate. The complete system of forces
that maintains the beam in equilibrium is thus established, and no distinction
need be made between the applied and reactive forces in the subsequent steps
of analysis. The method of sections can then be applied at any section of
the beam by employing the previously used concept that if a whole body
is in equilibrium, any part of it is likewise in equi-
librium.
To be more specific, consider a beam, such
P as the one shown in Fig. 4-14(a), with certain con-
W (total load)  centrated and distributed forces acting on it. The
reactions are also presumed to be known since they

) g  may be computed as in the examples considered

earlier in Art. 4-5. The externally applied forces and
the reactions at the support keep the whole body in
Rz equilibrium. Now consider an imaginary cut X-X
normal to the axis of the beam, which separates
the beam into two segments as shown in Figs.
4-14(b) and (c). Note particularly that the imaginary
section goes through the distributed load and separ-
P, ates it too. Each of these beam segments is a free
body that must be in equilibrium. However, the
conditions of equilibrium require the existence of

JB a system of forces at the cut section of the beam.

In general, at a section of a beam a vertical force,
a horizontal force, and a moment are necessary
to maintain the part of the beam in equilibrium.

Fig. 4-14. An application of the method of  1N€S€ quantities take on a special significance in
sections to a statically determinate beam.

beams and therefore will be discussed separately.

4-7. SHEAR IN BEAMS

To maintain a segment of a beam such as shown in Fig. 4-14(b) in
equilibrium there must be an internal vertical force V" at the cut to satisfy the
equation Y F, = 0. This internal force V, acting at right angles to the axis of the
beam, is called the shear or the shearing force. The shear is numerically equal
to the algebraic sum of all the vertical components of the external forces acting
on the isolated segment, but it is opposite in direction. Given the qualitative
data shown in Fig. 4-14(b), V is opposite in direction to the downward load
to the left of the section. The shear at the cut may also be computed by con-
sidering the right-hand segment shown in Fig. 4-14(c). It is then equal
numerically and is opposite in direction to the sum of all the vertical forces,

ART. 4-7 SHEAR IN BEAMS 101



www.konkur.in

including the reaction components, to the right of the section. Whether the
right-hand segment or the left is used to determine the shear at a section is
immaterial—arithmetical simplicity governs. Shears at any other section may
be computed similarly.

At this time a significant observation must be made. The same shear
shown in Fig. 4-14(b) and (c) at the section X-X is opposite in direction in the
two diagrams. For that part of the downward load W, to the left of section
X-X, the beam at the section provides an upward support to maintain vertical
forces in equilibrium. Conversely, the loaded portion of the beam exerts a
downward force on the beam as in Fig. 4-14(c). At a section “two directions”
of shear must be differentiated, depending upon which segment of the beam
is considered. This follows from the familiar action-reaction concept of statics
and has occurred earlier in the case of an axially loaded rod, and again in the
torsion problem.

The direction of the shear at section X-X would be reversed in both
diagrams if the distributed load W, were acting upward. Frequently a
similar reversal in the direction of shear takes place at one section or another
along a beam for reasons which will become apparent later. The adoption
of a sign convention is necessary to differentiate between the two possible
directions of shear. The definition of positive shear is illustrated in Fig.
4-15(a).* A downward internal force acting on the left side of a cut or an

v

Resultant of all forces to the left of section

bl ey

- T"l'ﬂ— ) +V +V

i = b

RE 'ﬂ\h\r‘!—!"ﬂ BeaT Seginem

«_ Arbitrary section tf +V \
Faiixeees R |

o

[

(a) (b)

Fig. 4-15. Definition of positive shear.

*This definition of positive shear is contrary to a rigorous mathematical treatment associated
with a right-hand rectangular Cartesian system. It will be used throughout this book,
however, since it is the sign convention which is predominant in the technical literature.
For a fully consistent treatment, see for example, E. P. Popov, Introduction to Mechanics
of Solids, Englewood Cliffs, New Jersey: Prentice-Hall, 1968.
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upward force acting on the right side of the same cut corresponds to a
positive shear. Positive shears are shown in Fig. 4-15(b) for an element iso-
lated from a beam by two sections. The shear at section X-X of Fig. 4-14(a)
is a negative shear.

4-8. AXIAL FORCE IN BEAMS

In addition to the shear V, a horizontal force

W, (total uniformly varying load) such as P, shown in Fig. 4-16(b) or (c), may be

necessary at a section of a beam to satisfy the

/ (total load) condiFions of equilibrium. The magnitude and sense

/ of this force follows from a particular solution of

the equation )] F, = 0. If the horizontal force P

- — ok acts toward the cut, it is called a thrust; if away

l Ax from the cut, it is termed axial tension. In referring
Ry, tRB

to either of these forces the term axial force is used.
The effect of an axial force on a section of a member
has already been discussed in Chapter 1. It was
shown there that it is imperative to apply this force
through the centroid of the cross-sectional area of a
member to avoid bending. Similarly, here the line

W of action of the axial force will always be directed
/ ,—rm through the centroid of the beam’s cross-sectional

B area.
A t e ‘ Any section along a beam may be examined
R A R

for the magnitude of the axial force in the above

s manner. The tensile force at a section is customarily

—— PR o of taken positive. The axial force (thrust) at section

ig. 4-16. An application of the method o i o . .

sections to a statically determinate beam X-X in Fig."4-16(b) and (c) is equal to the hori-
(Repeated) zontal force P,.

(c)

4-9. BENDING MOMENT IN BEAMS

The determination of the shear and axial force at a section of a beam
completes two of the requirements of statics which a segment must fulfill.
These forces satisfy the equations Y F, = 0 and ) F, = 0. The remaining
condition of static equilibrium for a planar problem is > M, = 0. This, in
general, can be satisfied only by developing a couple or an internal resisting
moment within the cross-sectional area of the cut to counteract the moment
caused by the external forces. The internal resisting moment must act in a
direction opposite to the external moment to satisfy the governing equation
3 M, = 0. Likewise it follows from the same equation that the magnitude of
the internal resisting moment equals the external moment. These moments
tend to bend a beam in the plane of the loads and are usually referred to as
bending moments.
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The internal bending moment M is indicated in Fig. 4-16(b). It can be
developed only within the cross-sectional area of the beam and is equivalent
to a couple. To determine this moment necessary to maintain the equilibrium
of a segment, the sum of the moments caused by the forces may be made
around any point in the plane; of course, all forces times their arms must be
included in the sum. The internal forces ¥ and P form no exception. To
exclude the moments caused by these forces from the sum, it is usually most
convenient in numerical problems to select the point of intersection of these
two internal forces as the point around which the moments are summed. Both
V and P have arms of zero length at this point, which is located on the cen-
troid of the cross-sectional area of the beam.

Instead of considering the segment to the left of section X-X, the right-
hand segment of the beam, Fig. 4-16(c), may also be used to determine the
internal bending moment. As explained above, this internal moment is
equal to the external moment of the applied forces (including reactions).
The summation of moments is made most conveniently around the centroid
of the section az the cut. In Fig. 4-16(b) the resisting moment may be physically
interpreted as a pull on the top fibers of the beam and a push on the lower
ones. The same interpretation applies to the same moment shown in Fig.
4-16(c).

If the load W, in Fig. 4-16(a) were acting in the opposite direction, the
resisting moments in Figs. 4-16(b) and (c) would reverse. This and similar
situations necessitate the adoption of a sign convention for the bending
moments. This convention is associated with a definite physical action of the
beam. For example, in Figs. 4-16(b) and (c), the internal moments shown pull
on the top portion of the beam and compress the lower. This tends to increase
the length of the top surface of the beam and to contract the lower surface.
A continuous occurrence of such moments along the beam makes the beam

M +M +M
) L D
L é

C
(a) +M(>1 (b)

Fig. 4-17. The definition of a positive bending moment.
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deform convex upwards, i.e., “shed water.” Such bending moments are
assigned a negative sign. Conversely, a positive moment is defined as one that
produces compression in the top part and tension in the lower part of a
beam’s cross section. Under such circumstances the beam assumes a shape
that “retains water.” For example, a simple beam supporting a group of
downward forces deflects down as shown in exaggerated form in Fig. 4-17(a),
a fact immediately suggested by physical intuition. In such a beam, a detailed
investigation of bending moments along the beam shows that all of them are
positive. The sense of a positive bending moment at a section of a beam is
defined in Fig. 4-17(b).

4-10. SHEAR, AXIAL-FORCE, AND BENDING-MOMENT
DIAGRAMS

By the methods discussed above, the magnitude and sense of shears,
axial forces, and bending moments may be obtained at many sections of a
beam. Moreover, with the sign conventions adopted for these quantities, a
plot of their values may be made on separate diagrams. On such diagrams,
from a base line representing the length of a beam, ordinates may be laid off
equal to the computed quantities. When these ordinate points are plotted
and interconnected by lines, graphical representations of the functions are
obtained. These diagrams, corresponding to the kind of quantities they depict,
are called respectively the shear diagram, the axial-force diagram, or the bending-
moment diagram. With the aid of such diagrams, the magnitudes and locations
of the various quantities become immediately apparent. It is convenient to
make these plots directly below the free-body diagram of the beam, using the
same horizontal scale for the length of the beam. Draftsmanlike precision in
making such diagrams is usually unnecessary, although the significant ordi-
nates are generally marked with their numerical value.

The axial-force diagrams are not as commonly used as the shear and the
bending-moment diagrams. This is so because the majority of beams investi-
gated in practice are loaded by forces that act perpendicular to the axis
of the beam. For such loadings of a beam, there are no axial forces at any
section.

Shear and moment diagrams are exceedingly important. From them a
designer sees at a glance the kind of performance that is desired from a beam
at every section. In Chapter 10 on the design of members, methods of con-
structing these diagrams in a rapid manner will be discussed. However, the
procedure discussed above of sectioning a beam and finding the system of
forces at the section is the most fundamental approach. It will be used in the
following illustrative examples.

EXAMPLE 4-4

Construct shear, axial-force, and bending-moment diagrams for the weight-
less beam shown in Fig. 4-18(a) subjected to the inclined force P = 5 kN.
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Fig. 4-18. Bending moment.
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SOLUTION

A free-body diagram of the beam is shown in Fig. 4-18(b). Reactions follow
from inspection after the applied force is resolved into the two components.
Then several sections through the beam are investigated, as shown in Figs.
4-18(c), (d), (e), (f), and (g). In every case the same question is posed: What
are the necessary internal forces to keep the segment of the beam in equilibrium ?
The corresponding quantities are recorded on the respective free-body
diagrams of the beam segment. The ordinates for these quantities are indicated
by heavy dots in Figs. 4-18(h), (i), and (j), with due attention paid to their
signs.

Note that the free bodies shown in Figs. 4-18(d) and (g) are alternates,
as they furnish the same information, and normally both would not be made.
Note that a section just to the left of the applied force has one sign of shear,
Fig. 4-18(e), while just to the right, Fig. 4-18(f), it has another. This indicates
the importance of determining shears on either side of a concentrated force.
For the condition shown, the beam does not resist a shear which is equal
to the whole force. The bending moment in both cases is the same.

In this particular case, after a few individual points have been estab-
lished on the three diagrams in Figs. 4-18(h), (i), and (), the behavior of the
respective quantities across the whole length of the beam may be reasoned
out. Thus, although the segment of the beam shown in Fig. 4-18(c) is 2 m
long, it may vary in length anywhere from zero to just to the left of the applied
force, and no change in the shear and the axial force occurs. Hence the ordi-
nates in Figs. 4-18(h) and (i) remain constant for this segment of the beam.
On the other hand, the bending moment depends directly on the distance
from the supports, hence it varies linearly as shown in Fig. 4-18(j). Similar
reasoning applies to the segment shown in Fig. 4-18(d), enabling one to com-
plete the three diagrams on the right-hand side. The use of the free body of
Fig. 4-18(g) for completing the diagram to the right of center yields the same
result.

EXAMPLE 4-5

Construct shear and bending-moment diagrams for the beam loaded with
the forces shown in Fig. 4-19(a).

SOLUTION

An arbitrary section at a distance x from the left support isolates the beam
segment shown in Fig. 4-19(b). This section is applicable for any value of x
just to the left of the applied force P. The shear, regardless of the distance from
the support, remains constant and is +P. The bending moment varies linearly
from the support, reaching a maximum of + Pa.

An arbitrary section applicable anywhere between the two applied forces
is shown in Fig.4-19(c). No shearing force is necessary to maintain equilibrium
of a segment in this part of the beam. Only a constant bending moment of
-+ Pa must be resisted by the beam in this zone. Such a state of bending or
flexure is called pure bending.

Shear and bending-moment diagrams for this loading condition are
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shown in Figs. 4-19(d) and (e). No axial-force diagram is necessary, as there
is no axial force at any section of the beam.

EXAMPLE 4-6

Plot a shear and a bending-moment diagram for a simple beam with a uni-
formly distributed load, Fig. 4-20(a).

SOLUTION

The best way of solving this problem is to write down algebraic expressions
for the quantities sought. For this purpose an arbitrary section taken at
a distance x from the left support is used to isolate the segment shown in
Fig. 4-20(b). Since the applied load is continuously distributed along the beam,
this section is typical and applies to any section along the length of the beam.
In more difficult cases several zones of a beam may have to be investigated
depending on the distribution of the applied loads. In some instances it is
even advisable to resort to several origins of x to simplify the form of the alge-
braic functions.

The shear V is equal to the left upward reaction /ess the load to the left
of the section. The internal bending moment M resists the moment caused
by the reaction on the left /ess the moment caused by the forces to the left of
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the same section. The summation of moments is performed around an axis
at the section. Although it is customary to isolate the left-hand segment,
similar expressions may be obtained by considering the right-hand segment
of the beam, with due attention paid to sign conventions. The plot of the V
and M functions is shown in Figs. 4-20(c) and (d).

EXAMPLE 4-7

Determine shear, axial-force, and bending-moment diagrams for the can-
tilever loaded with an inclined force at the end, Fig. 4-21(a).

SOLUTION

First the inclined force is replaced by the two components shown in Fig.
4-21(b) and the reactions are determined. The three unknowns at the support
follow from the familiar equations of statics. This completes the free-body
diagram shown in Fig. 4-21(b). Completeness in indicating all of these forces
is of the utmost importance.

A segment of the beam is shown in Fig. 4-21(c); from this segment
it may be seen that the shearing force and the axial force remain the same
regardless of the distance x. On the other hand, the bending moment is a
variable quantity. A summation of moments around C gives (PL — Px)
acting in the direction shown. This represents a negative moment. The moment
at the support is likewise a negative bending moment as it tends to pull on the
upper fibers of the beam. The three diagrams are plotted in Figs. 4-21(d),
(e), and (f).
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EXAMPLE 4-8

Given a curved beam whose centroidal axis is bent into a semicircle of 0.2 m
radius as shown in Fig. 4-22(a). If this member is being pulled by the 1000 N
forces shown, find the axial force, the shear, and the bending moment at the
section 4-A, & = 45°. The centroidal axis and the applied forces all lie in the
same plane.

SOLUTION

There is no essential difference in the method of attack in this problem
compared with that in a straight-beam problem. The body as a whole is
examined for conditions of equilibrium. From the conditions of the problem
here, such is already the case. Next, a segment of the beam is isolated, Fig.
4-22(b). Section A-A is taken perpendicular to the axis of the beam. Before
determining the quantities wanted at the cut, the applied force P is resolved
into components parallel and perpendicular to the cut. These directions are
taken respectively as the y- and x-axes. This resolution replaces P by the
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components shown in Fig. 4-22(b). From 3}, F, = 0, the axial force at the
cut is +707 N. From }; F, = 0, the shear is 707 N in the direction shown.
The bending moment at the cut can be determined in several different ways.
For example, if >} M, = 0 is used, note that the lines of action of the applied
force P and the shear at the section pass through O. Therefore only the axial
force at the centroid of the cut times the radius needs to be considered, and
the resisting bending moment is 707(0.2) = 141.4 N-m, acting in the direction
shown. An alternative solution may be obtained by applying 3> M. = 0.
At C, a point lying on the centroid, the axial force and the shear intersect.
The bending moment is then the product of the applied force P and the
0.1414 m arm. In both of these methods of determining bending moment, use
of the components of the force P is avoided as this is more involved arith-
metically.

It is suggested that the reader complete this problem in terms of a
general angle . Several interesting observations may be made from such a
general solution. The moments at the ends will vanish for @ = 0° and & =
180°. For & = 90° the shear vanishes and the axial force becomes equal to
the applied force P. Likewise the maximum bending moment is associated
with o = 90°.

STEP-BY-STEP PROCEDURE

In beam analysis it is exceedingly important to be able to determine

the shear, the axial force, and the bending moment at any section. The
technique of obtaining these quantities is unusually clear-cut and systematic.
To lend further emphasis, the steps used in all such problems are summa-
rized. This summary is intended to aid the student in an orderly analysis of
problems. Sheer memorization of this procedure is discouraged.
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1. Make a good sketch of the beam on which al/l of the applied forces are clearly
noted and located by dimension lines from the supports.

2. Boldly indicate the unknown reactions (colored pencil may be used to
advantage). Remember that a roller support has orne unknown, a pinned
support has two unknowns, and a fixed support has three unknowns.

3. Replace all of the inclined forces (known and unknown) by components acting
parallel and perpendicular to the beam.*

4. Apply the equations of statics to obtain the reactions.t A check on the
reactions computed in the manner indicated in Examples 4-1, 4-2, and 4-3 is
highly desirable.

5. Pass a section at the desired location through the beam perpendicular to its
axis. This imaginary section cuts only the beam and isolates the forces that act
on the segment.

6. Select a segment to either side of the proposed section and redraw this
segment, indicating all external forces acting on it. This must include all the
reaction components.

7. Indicate the three possible unknown quantities at the cut section, i.e., show
P, V, and M, assuming their directions.

8. Apply the equations of equilibrium to the segment and solve for P, ¥, and
M. If the solution indicates any of these quantities to be a negative value, then
the originally assumed direction at the cut must be reversed.

This procedure enables one to determine the shear, the axial force, and
the bending moment at any section of a beam. Signs for these quantities
follow from the definitions given earlier. If diagrams for this system of internal
forces are wanted, several sections may have to be investigated. Do not fail
to determine the abrupt change in shear at concentrated forces and the
abrupt change in bending-moment value at points where concentrated
moments are introduced. Algebraic expressions for the same quantities some-
times are also necessary.

In the above discussion the construction of shear and moment diagrams
was illustrated principally for horizontal members. For inclined members,
except for directing the coordinate axes along and perpendicular to the axis
of a bar, the procedure is the same. In curved and in spatial structural systems
the directions of the axes are along the axes of the member or members. In
such cases one of the coordinate axes is taken tangent to the axis of the
member—as shown for example in Fig. 4-22. To conform with the diagram-
matic scheme used in this text for horizontal beams, the ordinates for bending
moment in curved and spatial systems should be plotted on the compression
sidef of a section.

At this time it is suggested that Art. 1-9 on the basic approach of
mechanics of materials be reviewed, as a better appreciation may now be
had of the contents of that article.

*More ingenuity may be required for curved beams.
1This step can be avoided in cantilevers by proceeding from the free end.
iIn some texts on structural analysis the opposite scheme is used.
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2

PROBLEMS FOR SOLUTION

(Note: In addition to beams, simple frames are
included in the following problems. For the
quantities asked, the analysis of these frames is
analogous to that of beams.)

4-1. Show that the effect on a structure of the
tensile forces acting in a flexible cable going over
a frictionless pulley is the same as that of the
same two forces applied at the center of the axle.

4-2. Compute the reactions at the hinged
supports A and B. Ans: R, = 18.75kN,
R4, = T5kN.

100 kN
Im Jm

PROB. 4 -2

4-3. For the beam loaded as shown in the
figure determine the magnitude and direction of
the reactions. Ans: Ry = 4 k.

72 k-t 4 K/t 12k
A SEEER ‘ — B
12 & |2 2717
[ [ | | |
PROB. 4 - 3

4-4 through 4-13. For the planar structures
loaded as shown in the figures determine the
reactions or all reaction components. All struc-
tures are to be assumed weightless. A correctly
drawn free-body diagram is an essential part of
each problem. Ans: Upward reaction com-
ponent for the left reaction is given in parentheses
by the figures in the units of the applied loads.
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PROB. 4 - 13
4-14. For the beam loaded as shown in the

figure, find the shear and the bending moment at
the center of the span caused by the applied load.
Ans: V= —1k, M = —13.5 k-ft.

6 k (total)

———
3 6 3
PROB. 4 - 14

4-15. A chain block used for raising 100 kN
weights by means of a spreader beam is shown in
the figure. The chain AB is 2.4 m long; chain BC
is 3.2 m long. Neglecting the weight of the as-

sembly, find the components of all forces acting
parallel and perpendicular to the beam when in
use. Ans: Ry, = 36 kN.

PROB. 4 —15

4-16. Two 3 Ib weights are attached to a shaft
by means of rigid arms as shown in the figure.
Neglecting the weight of the shaft and the arms,
find the reactions at the bearings if the shaft
rotates at 600 rpm. Ans: Ry = 116 1b.

Bearing

PROB. 4 - 16

4-17. Determine the bending moment at the
support B in Prob. 4-5. Ans: 30 kN-m.

4-18. Determine the shear and the bending
moment at a section midway between C and D in
the beam AB of Prob. 4-9. Ans: +300 kN,
+1 350 kN-m.

4-19. Compute the reaction components at
A and B, and calculate the axial force, shear and
bending moment at section a-a of the 12 by 12
inch timber mast. Ans: P, = —45k.
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4-20. For the planar structure shown in the
figure determine the axial force, the shear and the
bending moment at section a-a. Ans: —6 k-ft.

9k

PROB. 4 - 20

4-21. A hydraulic jack exerts a downward
force of 5400 N on the linkage shown. What are
the axial force, the shear, and the bending moment
at section a-a caused by the application of this
force? All dimensions are in meters.

0.20

();45'
s 77

[ 0.60 0.60 1.20

PROB. 4 - 2]

4-22 through 4-33. For the planar structures
shown in the figures, determine the axial force,
the shear, and the bending moment at sections a-a,
b-b, c-c, and d-d, wherever they apply. Neglect the
weight of members. In every case,draw a free body
of the isolated part of the structure and clearly show
on it the sense of the computed quantities. Some
sections are shown close together. In these
cases, determine the quantities asked for just to
the left and just to the right of the point in ques-
tion, assuming that the widths of members are
negligibly small. A4ns: The answers for some
problems are given in the following order: axial

CHAP. 4 PROBLEMS FOR SOLUTION

force, shear, and moment. The signs of shear and
moment apply only for horizontal members.

Prob. 4-22. —30kN, +20kN, 4+30kN-m.

Prob. 4-25. +10kN, +5kN, +2.5kN-m.

Prob. 4-26. At a-a: —28k, —152 k-ft. At
b-b: —8k, —152 k-ft. At c-c: —8 k, —176 k-ft.
At d-d: —8 k, +24 k-ft.

Prob. 4-27. At a-a: 0, +44.4 k, +77.2 k-ft.
At b-b: +50k, —5.6k, —222.8 k-ft. At c-c:
+50k, +17.4 k, +111.6 k-ft.

Prob.4-28. Ata-a: —3.43k, —1.71k, +61.7
k-in.

Prob. 4-32. At a-a: —7.2k, 9.6k, 24 k-ft.
At b-b: —3.15k, 12.6 k, 30 k-ft.

Prob. 4-33. Ata-a: +1.21k,0, 17.1 k-ft.

50 kN

24 m 24m
|
PROB. 4 - 22
Rectangular bar
600 N total wt. .
<& a
a:v°<° a 300
Smooth support mm
400 mm
PROB. 4 - 23
3 ¥y |l ¥ 3|
a
4’ 7 15"
a” . 1
1 \K i |
N
PROB. 4 - 24
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Hinge

lO.S
m
a

25 kN

-

“Im | 1m
[

PROB. 4 - 25

50 k , 18 k/ft
10 k/ft 4\ 2
4‘ t : ‘ 6 |+Cable .
A _E - Eal B
al[lp .
( 107 35 6 6
|
PROB. 4 - 27
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2 tons

PROB. 4- 28

54m
A
B R
PROB. 4 - 29
125 kN
1.8 m g. !2m
T
09 m
—
50 kN
1.S5m

PROB. 4 - 30

2ii—m '
Ny

PROB. 4 - 31

Pin
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. aB M,
a

AMT | (—M))

P PROB.4 37
| " 10’ 10’ hx

100 kN 200 kN

PROB. 4 - 33
4-34. Determine the axial force, the shear, and ’?i m(2m| 4m f’
the bending moment at section a-a. There is no ! '500
i (500)
copnectlon between members 4D and BC at PROB. 4 - 38
point E.
ISm, 15m, 24m g N 10 1b
(IE ] R” ]I -}
nC | 9D | g
10" 20"
* 10 Ib|«- T -}f
(80)
5 e PROB. 4 - 39
P -
44 N 5 ! M = Pa
" TalaTal
PROB. 4 - 34 f I L
(§ Pa)
4-35 through 4-40. Plot the shear and moment PROB. 4 - 40
diagrams for the beams loaded as shown in the 4-41 through 4-43. For beams loaded as
figures. Ans: Max. moment in parentheses by shown in the figures, express the shear and bend-
the figure. ing moments by algebraic expressions for the
: : 47 - B o
10KN interval AB. Ans: Prob. 4-42: M = } k (L2x
x3).
P
, : g1 "
l 4m 6m ‘ S a b 3
Dedmm— ’—’LL—D
(+24) J
PROB.4 —35
PROB. 4 - 4]
M, "
4 [kL
i Ag B
L D L :
(+M))
PROB.4 - 36 PROB. 4 - 42
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2 k/ft

3

£

L

ﬁk & &

PROB. 4 - 43

A

4-44. Establish general algebraicequations for
the axial force, shear, and bending moment for
the curved beam of Example 4-8. Ans: M = Pr
sin o.

4-45. A rectangular bar bent into a semicircle
is built in at one end and is subjected to an internal
radial pressure of p Ib per unit length (see figure).
Write the general expressions for P(6), V(6), and
M(6), and plot the results on a polar diagram.
Show positive directions assumed for P, V, and
M on a free-body diagram. Ans: M = pr?
(1 — cos 6).

p Ibfin.

Bar radius = R

PROB. 4 - 45

4-46. A bar is made in the shape of a right
angle as shown in the figure and is built in at one
of its ends. (a) Write the general expressions for
V, M, and T (torque) caused by the application of
a force F normal to the plane of the bent bar.
Plot the results. (b) If in addition to the applied
force F the weight of the bar w Ib per unit length
is also to be considered, what system of internal
force components develops at the built-in end?
Ans: @) M= —F(L —x), (b) M = —(F +
aw + 3wL)L.

PROB. 4 - 46

(Note: For additional problems see Chapter 10.)
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Pure Bending
of Beams

5-1. INTRODUCTION

The system of forces that may exist at a section of a beam was discussed
in the previous chapter. This was found to consist of an axial force, a shearing
force, and a bending moment. The effect of one of these forces, the axial
force, on a member was discussed in Chapters 1 and 2. In this chapter another
element of the force system that may be present at a section of a member, the
internal bending moment, will be considered. Moreover, since in some cases
a segment of a beam may be in equilibrium under the action of a moment
alone, a condition called pure bending or flexure, this in itself represents a
complete problem. It is the purpose of this chapter to relate the internal
bending moment to the stresses it causes in a beam. If, in addition to the
internal bending moment, an axial force and a shear also act simultaneously,
complex stresses arise. These will be treated in Chapters 7, 8, and 9. The
deflection of beams due to bending will be discussed in Chapter 11.

A major part of this chapter will be devoted to methods for determin-
ing the stresses in straight homogeneous beams caused by bending moments.
Topics on beams, made from two or more different materials, curved beams,
and stress concentrations are also included.

5-2. SOME IMPORTANT LIMITATIONS OF THE THEORY

Just as in the case of axially loaded rods and in the torsion problem,
all forces applied to a beam will be assumed to be steady and delivered to
the beam without shock or impact. Shock or impact problems will be con-
sidered in Chapter 15. Moreover, all of the beams will be assumed to be
stable under the applied forces. A similar point was brought out in Chapter
1, where it was indicated that a rod acting in compression cannot be too
slender, or its behavior will not be governed by the usual compressive
strength criterion. In such cases the stability of the member becomes impor-
tant. As an example, consider the possibility of using a sheet of paper on
edge as a beam. Such a beam has a substantial depth, but even if it is used
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to carry a force over a small span, it will buckle sideways and collapse. The
same phenomenon may take place in more substantial members which may
likewise collapse under an applied force. Such unstable beams do not come
within the scope of this chapter. All the beams considered here will be
assumed to be sufficiently stable laterally by virtue of their proportions, or
to be thoroughly braced in the transverse direction. A better understanding
of this important phenomenon will result after the study of the chapter on
columns. The majority of beams used in structural framing and machine
parts are such that the flexural theory to be developed here is applicable.
This is indeed fortunate as the theory governing the stability of members
is more complex.

5-3. BASIC ASSUMPTIONS

For the present it is assumed that only straight beams having constant
cross-sectional areas with an axis of symmetry are to be included in the
discussion. Moreover, it is assumed that the applied bending moments lie
in a plane containing this axis of symmetry and the beam axis. Let it be further
agreed that for the sake of simplicity in making sketches, the axis of sym-
metry will be taken vertically. Several cross-sectional areas of beams satisfying
these conditions are shown in Fig. 5-1. A generalization of this problem will
be made in Art. 5-7.

A segment of a beam fulfilling the above requirements is shown in Fig.
5-2(a), and its cross-section is shown in Fig. 5-2(b). For such a beam a line
through the centroid of all cross-sections will be referred to as the axis of
the beam. Next, imagine that two planes are passed through the beam per-
pendicular to its axis. The intersections of these planes with a longitudinal
plane passing through the beam axis and the axis of symmetry is shown by
lines AB and CD. Then it is not difficult to imagine that when this segment
is subjected to the bending moments M at its ends as shown in Fig. 5-2(c),
the beam bends, and the planes perpendicular to the beam axis tilt slightly.
Moreover, the lines AB and CD remain straight.* This can be satisfactorily
verified experimentally.t Generalizing this observation for the whole beam,

*This can be demonstrated by using a rubber model with a ruled grating drawn on it.
Alternatively, thin vertical rods passing through the rubber block can be used. In the imme-
diate vicinity of the applied moments the deformation is more complex. However, in accord
with the St. Venant's principle (Art. 2-11), this is only a local phenomenon which rapidly
dissipates.

tRigorous solutions from the Mathematical Theory of Elasticity show that slight warpage
of these lines may take place. Such warpage occurs if a beam carries a shear in addition to
a bending moment. However, the warpage of the adjoining sections is exceedingly similar
in shape. Thus the distance between any two points such as 4 and C on the adjoining sec-
tions remains practically the same whether warped or straight lines AB and CD are con-
sidered. And since the distance between the adjoining sections is the basis for establishing
the elementary flexure theory, the foregoing assumption forms an excellent working hypo-
thesis for all cases. Moreover, a conclusion of far-reaching importance is that the existence
of a shear at a section does not invalidate the expressions to be derived in this chapter.
This will be implied in the subsequent work.
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LmTIOoV

Fig. 5-1. Beam cross sections with a vertical axis of symmetry

ART. 5-3 BASIC ASSUMPTIONS

4 C Beam axis
3 /
T L =
1 Centroid
B D
(a) (b)
AC
( E])hw
B D :
(c) Initial leng[h\iy—»!
(d)
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Unit length ‘< —>| |<——’¢mux
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(e)

Fig. 5-2. Behavior of a beam in bending
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one obtains the most fundamental hypothesis* of the flexure theory, based on
the geometry of deformations. It may be stated thus:

1. Plane sections through a beam, taken normal to its axis, remain
plane after the beam is subjected to bending.

This means that in a bent beam two planes normal to the beam axis
and initially parallel cease to be parallel. In a side view, the behavior of two
such planes corresponds to the behavior of lines AB and CD of Figs. 5-2(a)
and (c). An element of the beam contained between these planes is shown
in Fig. 5-2(d). Under the action of the moments of the sense shown, the
distance AC becomes smaller than BD. Further, because of the internal
moment, a push must exist on the upper part of the beam and a pull on the
lower. Hence, the undistorted beam element must be related to the distorted
one, as A'C'D'B' is to ACDB, shown in more detail in Fig. 5-2(d). From this
diagram it is seen that the fibers or “filaments” of the beam along the surfacet
ab do not change in length. Hence, the fibers in the surface ab are not stressed
at all, and, as the element selected was an arbitrary one, fibers free of stress
exist continuously over the whole length and width of the beam. These
fibers lie in a surface which is called the neutral surface of the beam. Its
intersection with a right section through the beam is termed the neutral
axis of the beam. Either term implies a location of zero stress in the member

subjected to bending.

The precise location of the neutral surface in a beam will be determined
in the next article. First, a study of the nature of the strains in fibers parallel
to the neutral surface will be made. Thus, consider a typical fiber such as
cd parallel to the neutral surface and located at a distancef —y from it.
During bending it elongates an amount A. If this elongation is divided
by the initial length L of the fiber, the strain € in that fiber is obtained.
Next, note that from the geometrical assumption made earlier, elongations
of different fibers vary linearly from the neutral axis since these elongations
are fixed by the triangles aBB’, bDD’, aAA’, and bCC’. On the other hand,
the initial length of all fibers is the same. Hence the original fundamental
assumption may be restated$§ thus:

la. In a beam subjected to bending, strains in its fibers vary linearly
or directly as their respective distances from the neutral surface.

This situation is analogous to the one found earlier in the torsion prob-
lem where the shearing strains vary linearly from the axis of a circular
shaft. In a beam, strains vary linearly from the neutral surface. This varia-
tion is represented diagrammatically in Fig. 5-2(¢). These axial strains are

*This hypothesis with an inaccuracy was first introduced by Jacob Bernoulli (1645-1705),
a Swiss mathematician. In the correct form it dates back to the writings of the French
engineering educator M. Navier (1785-1836).

+A rigorous solution shows that this surface is slightly cylindrical in two directions. In the
present treatment this surface is assumed to be curved only in the direction shown.

tPositive direction of y is taken upward from the neutral axis.

§Experimentally, this assumption may be more easily verified than assumption (1).
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Neutral axis

(¢)

Fig. 5-3. Stress distribution at a section of a
beam resisting a bending moment beam.

associated with stresses which act normal to the section of a beam. The above
corollary to the original assumption is applicable in the elastic as well as
in the inelastic range of the material’s behavior.* For the present this gen-
erality will be limited by introducing the second fundamental assumption
of the flexure theory:

2. Hooke’s law is applicable to the individual fibers, i.e., stress is
proportional to strain. The same elastic modulus £ is assumed to apply to
material in tension as well as in compression. The Poisson effect and the
interference of the adjoining differently stressed fibers are ignored.

Combining the foregoing assumptions, the basis for establishing the
flexural theory for the elastic case is obtained:

On a section of a beam, normal stresses resulting from bending vary
linearly as their respective distances from the neutral axis.

It should be firmly fixed in the reader’s mind
that these stresses act normal to the section of a
beam. They are the result of axial elongation or
contraction of the various beam fibers. Their linear
variation from the neutral axis, to repeat, is due to
the linear variation of the strains and to the propor-
tionality of stress to strain. The distance to the
various fibers of the beam is measured vertically

from the neutral axis. Figures 5-3(a) and (b) illustrate

t the nature of the stress distribution in a beam resis-

C B ting a bending moment. Two alternative schemes

g ] of representing this three-dimensional problem in a
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