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To the Student 

With the hope that this work will stimulate 

an interest in Engineering Mechanics and 

Mechanics of Materials and provide 

an acceptable guide to its understanding. 
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PREFACE 

This book represents a combined abridged version of two of the author's 
books, namely Engineering Mechanics: Statics, Fourteenth Edition and 
Mechanics of Materials, Tenth Edition. It provides a clear and thorough 
presentation of both the theory and application of the important 
fundamental topics of these subjects, that are often used in many 
engineering disciplines. The development emphasizes the importance of 
satisfying equilibrium, compatibility of deformation, and material 
behavior requirements. The hallmark of the book, however, remains the 
same as the author's unabridged versions, and that is, strong emphasis is 
placed on drawing a free-body diagram, and the importance of selecting 
an appropriate coordinate system and an associated sign convention 
whenever the equations of mechanics are applied. Throughout the book, 
many analysis and design applications are presented, which involve 
mechanical elements and structural members often encountered in 
engineering practice. 

NEW TO THIS EDITION 
• Preliminary Problems. This new feature can be found throughout the 
text, and is given just before the Fundamental Problems. The intent here 
is to test the student's conceptual understanding of the theory. Normally 
the solutions require little or no calculation, and as such, these problems 
provide a basic understanding of the concepts before they are applied 
numerically. All the solutions are given in the back of the text. 

• Improved Fundamental Problems. These problem sets are located just 
after the Preliminary Problems. They offer students basic applications of 
the concepts covered in each section, and they help provide the chance to 
develop their problem-solving skills before attempting to solve any of the 
standard problems that follow. 

• New Problems. There are approximately 80% new problems that have 
been added to this edition, which involve applications to many different 
fields of engineering. 

• Updated Material. Many topics in the book have been re-written in 
order to further enhance clarity and to be more succinct. Also, some of 
the artwork has been enlarged and improved throughout the book to 
support these changes. 
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VI 11 PREFACE 

• New Layout Design. Additional design features have been added to 
this edition to provide a better display of the material. Almost all the 
topics are presented on a one or two page spread so that page turning is 
minimized. 

• New Photos. The relevance of knowing the subject matter is reflected by 
the real-world application of new or updated photos placed throughout the 
book. These photos generally are used to explain how the principles apply 
to real-world situations and how materials behave under load. 

HALLMARK FEATURES 
Besides the new features just mentioned, other outstanding features that 
define the contents of the text include the following. 

Organization and Approach. Each chapter is organized into well
defined sections that contain an explanation of specific topics, illustrative 
example problems, and a set of homework problems. The topics within 
each section are placed into subgroups defined by boldface titles. The 
purpose of this is to present a structured method for introducing each new 
definition or concept and to make the book convenient for later reference 
and review. 

Chapter Contents. Each chapter begins with a photo demonstrating 
a broad-range application of the material within the chapter. A bulleted 
list of the chapter contents is provided to give a general overview of the 
material that will be covered. 

Emphasis on Free-Body Diagrams. Drawing a free-body 
diagram is particularly important when solving problems, and for this 
reason this step is strongly emphasized throughout the book. In particular, 
within the statics coverage some sections are devoted to show how to 
draw free-body diagrams. Specific homework problems have also been 
added to develop this practice. 

Procedures for Analysis. A general procedure for analyzing any 
mechanics problem is presented at the end of the first chapter. Then this 
procedure is customized to relate to specific types of problems that are 
covered throughout the book . This unique feature provides the student 
with a logical and orderly method to follow when applying the theory. The 
example problems are solved using this outlined method in order to 
clarify its numerical application. Realize, however, that once the relevant 
principles have been mastered and enough confidence and judgment have 
been obtained, the student can then develop his or her own procedures 
for solving problems. 
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Important Points. This feature provides a review or summary of the 
most important concepts in a section and highlights the most significant 
points that should be realized when applying the theory to solve problems. 

Conceptual Understanding. Through the use of photographs 
placed throughout the book, the theory is applied in a simplified way in 
order to illustrate some of its more important conceptual features and 
instill the physical meaning of many of the terms used in the equations. 
These simplified applications increase interest in the subject matter and 
better prepare the student to understand the examples and solve problems. 

Preliminary and Fundamental Problems. These problems may 
be considered as extended examples, since the key equations and answers 
are all listed in the back of the book. Additionally, when assigned, these 
problems offer students an excellent means of preparing for exams, and 
they can be used at a later time as a review when studying for the 
Fundamentals of Engineering Exam. 

Conceptual Problems. Throughout the text, usually at the end of 
each chapter, there is a set of problems that involve conceptual situations 
related to the application of the principles contained in the chapter. These 
analysis and design problems are intended to engage students in thinking 
through a real-life situation as depicted in a photo. They can be assigned 
after the students have developed some expertise in the subject matter 
and they work well either for individual or team projects. 

Homework Problems. Apart from the Preliminary, Fundamental, 
and Conceptual type problems mentioned previously, other types of 
problems contained in the book include the following: 

• General Analysis and Design Problems. The majority of problems 
in the book depict realistic situations encountered in engineering 
practice. Some of these problems come from actual products used in 
industry. It is hoped that this realism will both stimulate the student's 
interest in engineering mechanics and provide a means for developing 
the skill to reduce any such problem from its physical description to a 
model or symbolic representation to which the principles of mechanics 
may be applied. 

Throughout the book, there is an approximate balance of problems 
using either SI of FPS units. Furthermore, in any set, an attempt has 
been made to arrange the problems in order of increasing difficulty, 
except for the end of chapter review problems, which are presented in 
random order. Problems that are simply indicated by a problem 
number have an answer given in the back of the book. However, an 
asterisk (*) before every fourth problem number indicates a problem 
without an answer. 

PREFACE IX 
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x PREFACE 

Accuracy. In addition to the author, the text and problem solutions 
have been thoroughly checked for accuracy by four other parties: Scott 
Hendricks, Virginia Polytechnic Institute and State University; Karim 
Nohra, University of South Florida; Kurt Norlin, Bittner Development 
Group; and finally Kai Beng Yap, a practicing engineer. 

CONTENTS 
The book is divided into two parts, and the material is covered in the 
traditional manner. 

Statics. The subject of statics is presented in 6 chapters. The text begins 
in Chapter 1 with an introduction to mechanics and a discussion of units. 
The notion of a vector and the properties of a concurrent force system are 
introduced in Chapter 2. Chapter 3 contains a general discussion of 
concentrated force systems and the methods used to simplify them. The 
principles of rigid-body equililbrium are developed in Chapter 4 and then 
applied to specific problems involving the equilibrium of trusses, frames, 
and machines in Chapter 5. Finally, topics related to the center of gravity, 
centroid, and moment of inertia are treated in Chapter 6. 

Mechanics of Materials. This portion of the text is covered in 
10 chapters. Chapter 7 begins with a formal definition of both normal and 
shear stress, and a discussion of normal stress in axially loaded members 
and average shear stress caused by direct shear; finally, normal and shear 
strain are defined. In Chapter 8 a discussion of some of the important 
mechanical properties of materials is given. Separate treatments of axial 
load, torsion, bending, and transverse shear are presented in Chapters 9, 10, 
11, and 12, respectively. Chapter 13 provides a partial review of the material 
covered in the previous chapters, in which the state of stress resulting from 
combined loadings is discussed. In Chapter 14 the concepts for transforming 
stress and strain are presented. Chapter 15 provides a means for a further 
summary and review of previous material by covering design of beams 
based on allowable stress. In Chapter 16 various methods for computing 
deflections of beams are presented, including the method for finding the 
reactions on these members if they are statically indeterminate. Lastly, 
Chapter 17 provides a discussion of column buckling. 

Sections of the book that contain more advanced material are indicated 
by a star (*).Time permitting, some of these topics may be included in 
the course. Furthermore, this material provides a suitable reference for 
basic principles when it is covered in other courses, and it can be used as 
a basis for assigning special projects. 

Alternative Method for Coverage of Mechanics of 
Materials. It is possible to cover many of the topics in the text in several 
different sequences. For example, some instructors prefer to cover stress 
and strain transformations first, before discussing specific applications of 
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axial load, torsion, bending, and shear. One possible method for doing this 
would be to first cover stress and strain and its transformations, Chapter 7 
and Chapter 14, then Chapters 8 through 13 can be covered with no Joss in 
continuity. 
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your answer specific feedback 

Express your answer to three significant figures and include appropriate units. 

Q = 176.9 ll~in3 __ 

Submit Hints Mv Answers Give Up Review Part 

Incorrect; Try Again; 5 attempts remaining 

The distance between the horizontal centroidal axis of area A' and the neutral axis of the 
beam's cross section is half the distance between the top of the shaft and the neutral axis. 

www.MasteringEngineering:com 

www.konkur.in
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RESOURCES FOR INSTRUCTORS 
• MasteringEngineering. This online Tutorial Homework program allows 
you to integrate dynamic homework with automatic grading and adaptive 
tutoring. MasteringEngineering allows you to easily track the performance 
of your entire class on an assignment-by-assignment basis, or the detailed 
work of an individual student. 

• Instructor's Solutions Manual. An instructor's solutions manual was 
prepared by the author. The manual was also checked as part of the 
accuracy checking program. The Instructor Solutions Manual is available 
at www.pearsonhighered.com. 

• Presentation Resources. All art from the text is available in Power Point 
slide and JPEG format. These files are available for download from the 
Instructor Resource Center at www.pearsonhighered.com. If you are in 
need of a login and password for this site, please contact your local 
Pearson representative. 

• Video Solutions. Developed by Professor Edward Berger, Purdue 
University, video solutions located on the Pearson Engineering Portal 
offer step-by-step solution walkthroughs of representative homework 
problems from each section of the text. Make efficient use of class time 
and office hours by showing students the complete and concise problem 
solving approaches that they can access anytime and view at their own 
pace. The videos are designed to be a flexible resource to be used however 
each instructor and student prefers. A valuable tutorial resource, the 
videos are also helpful for student self-evaluation as students can pause 
the videos to check their understanding and work alongside the video. 
Access the videos at pearsonhighered.com/engineering-resources/ and 
follow the links for the Statics and Mechanics of Materials text. 

RESOURCES FOR STUDENTS 
• Mastering Engineering. Tutorial homework problems emulate the 
instrutor's office-hour environment. 

• Engineering Portal - The Pearson Engineering Portal, located at 
pearsonhighered.com/engineering-resources/ includes opportunities for 
practice and review including: 

• Video Solutions- Complete, step-by-step solution walkthroughs of 
representative homework problems from each section of the text. Videos 
offer fully worked solutions that show every step of the representative 
homework problems- this helps students make vital connections between 
concepts. 
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CHAPTER 1 

•- ae-T. 

Large cranes such as this one are required to lift extremely large loads. Their 
design is based on the basic principles of statics and dynamics, which fonn the 
subject matter of engineering mechanics. 
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GENERAL PRINCIPLES 

CHAPTER OBJECTIVES 

• To provide an introduction to the basic quantities and ideal'izations 
of mechanics. 

• To state Newton's Laws of Motion. 

• To review the principles for applying the SI system of units. 

• To examine the standard procedures for performing numerical 

calculations. 

• To present a general guide for solving problems. 

1. 1 MECHANICS 
Mechanics can be defined as that branch of the physical sciences concerned 
with the state of rest or motion of bodies that are subjected to the action 
of forces. In this book we will study two important branches of mechanics, 
namely, statics and mechanics of materials. These subjects form a suitable 
basis for the design and analysis of many types of structural, mechanical, 
or electrical devices encountered in engineering. 

Statics deals with the equilibrium of bodies, that is, it is used to 
determine the forces acting either external to the body or within it that 
are necessary to keep the body in equilibrium. Mechanics of materials 
studies the relationships between the external loads and the distribution 
of internal forces acting within the body. This subject is also concerned 
with finding the deformations of the body, and it provides a study of the 
body's stability. 

3 
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4 CHAPTER 1 GENERAL PRINCIPLES 

In this book we will first study the principles of statics, since for the 
design and analysis of any structural or mechanical element it is first 
necessary to determine the forces acting both on and within its various 
members. Once these internal forces are determined, the size of the 
members, their deflection, and their stability can then be determined using 
the fundamentals of mechanics of materials, which will be covered later. 

Historical Development. The subject of statics developed very 
early in history because its principles can be formulated simply from 
measurements of geometry and force. For example, the writings of 
Archimedes (287- 212 a.c.) deal with the principle of the lever. Studies of 
the pulley and inclined plane are also recorded in ancient writings - at 
times when the requirements for engineering were limited primarily to 
building construction. 

The origin of mechanics of materials dates back to the beginning of the 
seventeenth century, when Galileo performed experiments to study the 
effects of loads on rods and beams made of various materials. However, at 
the beginning of the eighteenth century, experimental methods for testing 
materials were vastly improved, and at that time many experimental and 
theoretical studies in this subject were undertaken primarily in France, by 
such notables as Saint-Venant, Poisson, Lame, and Navier. 

Over the years, after many of the fundamental problems of mechanics 
of materials had been solved, it became necessary to use advanced 
mathematical and computer techniques to solve more complex problems. 
As a result, this subject has expanded into other areas of mechanics, such 
as the theory of elasticity andl the theory of plasticity. Research in these 
fields is ongoing, in order to meet the demands for solving more advanced 
problems in engineering. 

1.2 FUNDAMENTAL CONCEPTS 
Before we begin our study, it is important to understand the definitions 
of certain fundamental concepts and principles. 

Mass. Mass is a measure of a quantity of matter that is used to compare 
the action of one body with that of another. This property provides a 
measure of the resistance of matter to a change in velocity. 

Force. In general,force is considered as a "push" or "pull" exerted by 
one body on another. This in teraction can occur when there is direct 
contact between the bodies, such as a person pushing on a wall, or it can 
occur through a distance when the bodies are physically separated. 
Examples of the latter type include gravitational, electrical, and magnetic 
forces. In any case, a force is completely characterized by its magnitude, 
direction, and point of application. 
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1.2 FUNDAM ENTAL CONCEPTS 

Particle. A particle has a mass, but a size that can be neglected. For 
example, the size of the earth is insignificant compared to the size of its 
orbit, and therefore the earth can be modeled as a particle when studying 
its orbital motion. When a body is idealized as a particle, the principles of 
mechanics reduce to a rather simplified form since the geometry of the 
body will not be involved in the analysis of the problem. 

R191d Bod A rigid body can be considered as a combination of a 
large number of particles in which all the particles remain at a fixed 
distance from one another, both before and after applying a load. This 
model is important because the material properties of any body that is 
assumed to be rigid will not have to be considered when studying the 
effects of forces acting on the body. lo most cases the actual 
deformations occurring in structures, machines, mechanisms, and the 
like are relatively small, and the rigid-body assumption is suitable for 
analysis. 

Concentrated Force. A concentrated force represents the effect of 
a loading which is assumed to act at a point on a body. We can represent a 
load by a concentrated force, provided the area over which the load is 
applied is very small compared to the overall size of the body. An example 
would be the contact force between a wheel and the ground. 

Steel is a common engineering material that does not 
deform very much under load. Therefore, we can consider 
this rai lroad wheel to be a rigid body acted upon by the 
concentrated force o f the rail. 

Three forces act on the ring. Since these 
forces all meet at a point, then for any 
force analysis, we can assume the ring to 
be represented as a particle. 

5 
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6 CHAPTER 1 GENERAL PRINCIPLES 

Newton's Three Laws of Motion. Engineering mechanics is 
formulated on the basis of Newton's three Jaws of motion, the validity of 
which is based on experimental observation. These Jaws apply to the 
motion of a particle as measured from a nonaccelerating reference frame. 
They may be briefly stated as follows. 

First Law. A particle originally at rest, or moving in a straight line with 
constant velocity, tends to remain in this equilibrium state provided the 
particle is not subjected to an unbalanced force, Fig. 1- la. 

··y·,. 
F1 

Equilibrium 

(a) 

Second Law. A particle acted upon by an unbalanced force F 
experiences an acceleration a that has the same direction as the force 
and a magnitude that is directly proportional to the force, Fig. 1- lb. If 
the particle has a mass m, this Jaw may be expressed mathematically as 

F = ma (1- 1) 

a 

Accelerated motion 

(b) 

Third Law. The mutual forces of action and reaction between two 
particles are equal, opposite, and collinear, Fig. 1- lc. 

F 0
torce of A on B 

@3 F 
A B \_force of Bon A 

Action - reaction 

(c) 

Fig.1-1 
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1.2 FUNDAMENTAL CONCEPTS 

Newton's Law of Gravitational Attraction. Shortly after 
formulating his three laws of motion, Newton postulated a law governing 
the gravitational attraction between any two particles.Stated mathematically, 

1111 ,,,,, 
F = G -

r2 
(1-2) 

where 

F= force of gravitation between the two particles 

G =universal constant of gravitation; according to experimental 
evidence, G = 66.73( 10-12) m3 /(kg· s2 ) 

111., 1112 = mass of each of the two particles 

r =distance between the two particles 

Weight. According to Eq. l-2, any two particles or bodies have a 
mutual attractive (gravitational) force acting between them. In the case 
of a particle located at or near the surface of the earth, however, the only 
gravitational force having any sizable magnitude is that betwe,en the 
earth and the particle. Consequently, this force, called the weight, will be 
the only gravitational force considered in our study of mechanics. 

From Eq. 1-2, we can develop an approximate expression for finding the 
weight W of a particle having a mass m1 = m. If we assume the earth to be 
a nonrotating sphere of constant density and having a mass 1112 = M,, then 
if r is the distance between the earth's center and the particle, we have 

Letting g = GM,/ r2 yields 

mM, 
W= G-?

r 

(1-3) 

By comparison with F = ma, we can see that g is the acceleration due 
to gravity. Since it depends on r, the weight of a particle or body is not 
an absolute quantity. Instead, its magnitude is determined from where 
the measurement was made. For most engineering calculations, however, 
g is determined at sea level and at a latitude of 45°, which is considered 
the "standard location." 

This astronaut"s weight is diminished since 
she is far removed from lhe gravitational 
field of the earth. (© NikoNomad/ 
Shutters1ock) 

7 
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8 CHAPTER 1 GENERAL PRINCIPLES 

Fig.1-2 

Name Length Time Mass Force 

International meter second kilogram I newton* I 
System of Units 

N SI m s kg 
(kg5~m) 

•Derived unit. 

1. 3 THE INTERNATIONAL SYSTEM OF 
UNITS 

The four basic quantities-length, time, mass, and force - are not all 
independent from one another; in fact, they are related by Newton's 
second Jaw of motion, F = ma. Because of this, the units used to measure 
these quantities cannot all be selected arbitrarily. The equality F = ma is 
maintained only if three of the four units, called base units , are defined 
and the fourth unit is then derived from the equation. 

For the International System of Units, abbreviated SI after the French 
"Systeme International d'Unites," length is in meters (m), time is in 
seconds (s), and mass is in kilograms (kg), Table 1- 1. The unit of 
force, called a newton (N), is derived from F = ma. Thus, 1 newton is 
equal to a force required to give 1 kilogram of mass an acceleration of 
1 m/s2 (N = kg · m/s2) . 

If the weight of a body located at the "standard location" is to be 
determined in newtons, then Eq.1- 3 must be applied. Here measurements 
give g = 9.806 65 m/s2; however, for calculations the valueg = 9.81 m/s2 

will be used. Thus, 

W = mg (g = 9.81 m/s2) (1-4) 

Therefore, a body of mass 1 kg has a weight of9.81N,a2-kg body weighs 
19.62 N, and so on, Fig. 1- 2. Perhaps it is easier to remember that a small 
apple weighs one newton. Also, by comparison with the U.S. Customary 
system of units (FPS), 

1 pound (lb) = 4.448 N 

1 foot (ft) = 0.3048 m 

Prefixes. When a numerical quantity is either very large or very small, 
the units used to define its size may be modified by using a prefix. Some 
of the prefixes used in the SI system are shown in Table 1- 2. Each 
represents a multiple or sn.ibmultiple of a unit which, if applied 
successively, moves the decimal point of a numerical quantity to every 
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1.3 THE INTERNATIONAL SYSTEM OF UNITS 

third place.* For example, 4 000 000 N = 4 000 kN (kilo-newton) = 
4 MN (mega-newton), or 0.005 m = 5 mm (milli-meter). Notice that the 
SI system does not include the multiple deca (10) or the submultiple 
centi (0.01), which form part of the metric system. Except for some 
volume and area measurements, the use of these prefixes is generally 
avoided in science and engineering. 

Exponential Form Prefix SI Symbol 

Multiple 
1000000 000 109 giga G 
1000000 106 mega M 
1 000 1()-1 kilo k 
Submulriple 
0.001 10-3 milli m 
0.000 001 10-6 micro J.L 
0.000 000 001 10-9 nano n 

Rules for Use. Here are a few of the important rules that describe the 
proper use of the various SI symbols: 

• Quantities defined by several units which are multiples of one 
another are separated by a dot to avoid confusion with prefix 
notation as indicated by N = k<> · m/s2 = k<> · m · s- 2 Also m · s 

' 0 0 . ' 

(meter-second), whereas ms (milli-second). 

• The exponential power on a unit having a prefix refers to both the 
unit and its prefix. For example, µN2 = (µN)2 = µN · µN. Likewise, 
mm2 represents (mm)2 = mm· mm. 

• With the exception of the base unit the kilogram, in general avoid the 
use of a prefix in the denominator of composite units. For ex.ample, 
do not write N/mm, but rather kN/m; also, m/mg should be written 
as Mm/kg. 

• When performing calculations, represent the numbers in terms of 
their base or derived units by converting all prefixes to powers of 10. 
The final result should then be expressed using a single prefix. Also, 
after calculation, it is best to keep numerical values between 0.1 and 
1000; otherwise, a suitable prefix should be chosen. For example, 

(50 kN)(60 nm) = [50(103 ) N][60(10- 9 ) m] 
= 3000(10- 6) N · m = 3(10- 3) N · m = 3 mN • m 

*The kilogram is the only base unit that is defined with a prefix. 

9 
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10 CHAPTER 1 GENERAL PRI NCIPLES 

Computers are often used in engineering for 
advanced design and analysis. (© Blaize 
Pascall/ Alamy) 

1.4 NUMERICAL CALCULATIONS 
Numerical work in engineering practice is most often performed by using 
handheld calculators and computers. It is important, however, that the 
answers to any problem be reported with justifiable accuracy using 
appropriate significant figures. In this section we will discuss these topics 
together with some other important aspects involved in all engineering 
calculations. 

Dimensional Homogeneity. The terms of any equation used to 
describe a physical process must be dimensionally homogeneous; that is, 
each term must be expressed in the same units. Provided this is the case, 
all the terms of an equation can then be combined if numerical values 
are substituted for the variables. Consider, for example, the equation 
s = vt + ~ at2, where, in SI units, sis the position in meters, m, tis time 
in seconds~s, v is velocity in m/s,and a is acceleration in m/s2. Regardless 
of how this equation is evaluated, it maintains its dimensional 
homogeneity. In the form stated, each of the three terms is expressed in 
meters [ m, (m/i)i, (m/i>)sl ) or solving for a, a = 2s/t2 - 2v/t, the 
terms are each expressed in units of m/s2 [m/s2

, m/s2
, (m/s)/s]. 

Keep in mind that problems in mechanics always involve the solution 
of dimensionally homogeneous equations, and so this fact can then be 
used as a partial check for algebraic manipulations of an equation. 

Significant Figures. The number of significant figures contained in 
any number determines the accuracy of the number. For instance, the 
number 4981 contains four significant figures. However, if zeros occur at 
the end of a whole number, it may be unclear as to how many significant 
figures the number represents. For example, 23 400 might have three 
(234), four (2340), or five (23 400) significant figures. To avoid these 
ambiguities, we will use engineering notation to report a result. This 
requires that numbers be rounded off to the appropriate number of 
significant digits and then expressed in multiples of (103) , such as (103) , 

(106) , or (10-9) . For instance, if 23 400 has five significant figures, it is 
written as 23.400(103), but if it has only three significant figures, it is 
written as 23.4(103). 

If zeros occur at the beginning of a number that is Jess than one, then 
the zeros are not significant. For example, 0.008 21 has three significant 
figures. Using engineering notation, this number is expressed as 8.21(10-3). 
Likewise, 0.000 582 can be expressed as 0.582(10-3) or 582(10-6). 
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1. 5 GENERAL PROCEDURE FOR ANALYSIS 

Rounding Off Numbers. Rounding off a number is necessary so 
that the accuracy of the result will be the same as that of the problem 
data. As a general rule, any numerical figure ending in a number greater 
than five is rounded up and a number less than five is not rounded up. The 
rules for rounding off numbers are best illustrated by example. Suppose 
the number 3.5587 is to be rounded off to three significant figures. Because 
the fourth digit (8) is greater than 5, the third number is rounded up 
to 3.56. Likewise 0.5896 becomes 0.590 and 9.3866 becomes 9.39. If we 
round off 1.341 to three significant figures, because the fourth digit (1) is 
less than 5, then we get 1.34. Likewise 0.3762 becomes 0.376 and 9.871 
becomes 9.87. There is a special case for any number that ends in a 5. As a 
general rule, if the digit preceding the 5 is an even number, then this digit 
is not rounded up. lf the digit preceding the 5 is an odd number, then it is 
rounded up. Fo r example, 75.25 rounded off to three significant digits 
becomes 75.2, 0.1275 becomes 0.128, and 0.2555 becomes 0.256. 

Calculations. Whe n a sequence of calculations is performed, it is best 
to store the intermediate results in the calculator. In other words, do not 
round off calculations until expressing the final result. This procedure 
maintains precision throughout the series of steps to the final solution. In 
this book we will generally round off the answers to three significant 
figures since most of the data in engineering mechanics, such as geometry 
and loads, may be reliably measured to this accuracy. 

1 . 5 GENERAL PROCEDURE FOR 
ANALYSIS 

Attending a lecture, reading this book, and studying the example problems 
helps. but the most effedive way o f learning the principles of engineering 
mechanics is to solve problems. To be successful at this, it is important to 
always present the work in a logical and orderly manner, as suggested by 
the following sequence of steps: 

• Read the problem carefully and try to correlate the actual physical 
situation with the theory studied. 

• Tabulate the problem data and draw to a large scale any necessary 
diagrams. 

• Apply the relevant principles, generally in mathematical form. When 
writing any equations, be sure they are dimensionally homogeneous. 

• Solve the necessary equations, and report the answer with no more 
than three s ignificant figures. 

• Study the answer with technical judgment and common sense to 
determine whether o r not it seems reasonable. 

When solving problems, do the work as 
neatly as possible. Being neat will 
stimulate clear and orderly thinking, 
and vice versa. 

11 
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12 CHAPTER 1 GENERAL PRINCIPLES 

IMPORTANT POINTS 

• A particle has a mass but a size that can be neglected, and a 
rigid body does not deform under load. 

• A force is considered as a "push" or "pull" of one body on 
another. 

• Concentrated forces are assumed to act at a point on a body. 

• Newton's three Jaws of motion should be memorized. 

• Mass is measure of a quantity of matter that does not change 
from one location to another. Weight refers to the gravitational 
attraction of the earth on a body or quantity of mass. Its magnitude 
depends upon the elevation at which the mass is located. 

• In the SI system the unit of force, the newton, is a derived unit. 
The meter, second, and kilogram are base units. 

• Prefixes G, M, k, m, µ,, and n are used to represent large and small 
numerical quantities. Their exponential size should be known, 
along with the rules for using the SI units. 

• Perform numerical calculations with several significant figures, 
and then report the final answer to three significant figures. 

• A lgebraic manipulations of an equation can be checked in 
part by verifying that the equation remains dimensionally 
homogeneous. 

• Know the rules for rounding off numbers. 

www.konkur.in



EXAMPLE 1.1 

EXAMPLE 1.2 

1. 5 GENERAL PROCEDURE FOR ANALYSIS 1 3 

Convert 2 km/ h to m/s. H ow many ft /s is this? 

SOLUTION 

Since 1 km = 1000 m and 1 h = 3600 s, the factors of conversion are 
arranged in the following order, so that a cancellation of the units can 
be applied: 

2 km/ h = 2J,;.m(1000 m)( 1 l< ) 
l< J,;.m 3600 s 

2000m 
= = 0.556 m/s 

3600s 
Ans. 

Since 1 ft = 0.3048 m, then 

0_556 m/s = (0.556 m)( I ft ) 
s o.3048 m 

= 1.82 ft/s Ans. 

NOTE: Remember to round off the final answer to three significant 
figures. 

Convert 300 lb· ft to appropriate SI units. 

SOLUTION 

Since 1 lb = 4.448 N and 1 ft = 0.3048 m, then we have 

f( (
4.448 N) (0.3048 m) 300 lb'· = 

llb' I f( 

= 407N·m Ans. 
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14 CHAPTER 1 GENERAL PRI N CIPLES 

I EXAMPLE 1.3 

Evaluate each of the following and express with SI units having an 
appropriate prefix: (a) (50 mN)(6 GN), (b) (400 mm)(0.6 MN)2, 

(c) 45 MN3 / 900 Gg. 

SOLUTION 

First convert each number to base units, perform the indicated 
operations, then choose an appropriate prefix. 

Part (a) 

(50 mN)(6 GN) = ( 50(10- 3) N ][ 6(109) N j 
= 300(106) N2 

= 300(106
) w( 

1 ~)( 1 ~) 
10 ]>( 10 ]>( 

= 300 kN2 Ans. 

NOTE: Keep in mind the convention kN2 = ( kN)2 = 106 N2. 

Part (b) 

(400 mm)(0.6 MN)2 = ( 400( 10- 3) m] [ 0.6( 106) N ]2 
= ( 400( 10- 3) m ][ 0.36( 1012) N2 j 
= E44(109) m·N2 

= 144Gm · N2 Ans. 

We can also write 

Part (c) 

144( 109
) m · N2 = 144( 109

) m · w(
1 ~)( 1 ~N) 
10 M 10 N 

= 0.144 m • MN2 

45 MN3 45(106 N)3 

----
900 Gg 900( 106) kg 

= 50(109) N3/ kg 

= 50( 109) w-( 1 
kN )

3 

J... 
103 ]>( kg 

Ans. 

= 50 kN3 / kg Ans. 
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PROBLEMS 15 

PROBLEMS 

The answers to all but every fourth problem (asterisk) an given in the back of the book. 

1-1. What is the weight in newtons of an object that 
bas a mass of (a) 8 kg. {b) 0.04 kg, (c) 760 Mg? 

1-2. Represent each of the following combinations of 
units in the correct SI form using an appropriate prefix: 
(a) kN/ µs. {b) Mg/mN, (e) MN/{kg ·ms). 

1-3. Represent each of 1he following combinations of 
units in the correct SI form: (a) Mg/ms, (b) N/mm, 
(c) mN/(kg · µs). 

*1-4. Convert: (a) 200 lb· fl to N · m, (b) 350 lb/ft3 to kN/m3, 
(c) 8 ft/h to mm/s. Express the resu lt to three significant 
figures. Use an appropriate prefix. 

1-5. Represent each of the following as a number between 
0.1 and 1000 using an appropriate prefix: (a) 45320 kN, 
(b) 568(105) mm,(e) 0.00563 mg. 

1-6. Round off lhc following numbers to three significant 
figures: (a) 58 342 m, (b) 68.534 s, (c) 2553 N, (d) 7555 kg. 

1-7. Represent each of the following quantities in the 
correct SI form using an appropriate prefix: (a) 0.000 431 kg, 
(b) 35.3( Iol) N. (c) 0.005 32 km. 

*1-8. Represent each of the following combinations of units 
in the correct SI form using an appropriate prefix: (a) Mg/mm, 
(b) mN/µs.(c) µm ·Mg. 

1-9. Represent each of the following combinations of 
units in the correct SI form using an appropriate prefix: 
(a) m/ms, (b) µkm. (c) ks/mg, (d) km· µN. 

1-10. Represent each of 1he following combinations of 
units in the correct SI form using an appropriate prefix: 
(a) GN · µm, (b} kg/ µm, (c) N/ks2, and {d) kN/ µs. 

1-11. Represent each of the following with SI units having 
an appropriate prefix: (a) 8653 ms, (b} 8368 N, (c) 0.893 kg. 

*1-U. Evaluate each of the following to three significant 
figures and express each answer in SI units using 
an appropriate prefix: (a) (684 µm)/(43 ms), 
(b) (28 ms)(0.0458 Mm)/(348 mg), (c) (2.68 mm)(426 Mg). 

1-13. Coovert each of the following to three significant 
figures. (a) 20 lb· ft to N · m. {b) 450 lb/ft3 to kN/m3

, 

(c) 15 ft/b to mm/s. 

1-14. Evaluate each of the following to three significant 
figures and express each answer in SI units using an 
appropriate prefix: (a) {212 mN)2, {b) {52 800 ms)2, 

(c) [548(106)]112 ms. 

1-15. Using the SI system of units, show that Eq. 1- 2 is a 
dimensionally homogeneous equation which gives F in 
newtons. Determine to three significant figures the 
gravitational force acting between two spheres that are 
touching each other. The mass of each sphere is 200 kg and 
the radius is 300 mm. 

*1-16. The pascal (Pa) is actually a very small unit of 
pressur·e. To show this, convert 1 Pa = l N/m2 to lb/ft2. 

Atmosphere pressure al sea level is 14.7 lb/in2. How many 
pascals is this? 

1-17. What is the weight in newtons of an object that has 
a mass of: (a) 10 kg. (b) 0.5 g. (c) 4.50 Mg? Express the 
result to three significant figures. Use an appropriate prefix. 

1-18. Evaluate each of the following to three significant 
figures and express each answer in SI units using an 
appropriate prefix: (a) 354 mg(45 km)/(0.0356 kN), 
(b) (0.004 53 Mg)(20l ms). (c) 435 MN/23.2 mm. 

1-19. A concrete column has a diameter of 350 mm and 
a length of2 m. Uthe density (mass/volume) of concrete is 
2.45 Mg/ml, determine the weight of the column in pounds. 

*1-20. Two particles have a mass of 8 kg and 12 kg, 
respectively. U they are 800 mm apart, determine the force 
of gravity acting between them. Compare this result with 
the weight of each particle. 

1-2L U a man weighs 155 lb on earth, specify (a) his 
mass in kilograms, and (b) his weight in newtons. If the 
man is on the moon, where the acceleration due to gravity 
is g., = 5.30 ft/s2, determine (c) his weight in pounds, and 
( d) his mass in kilograms. 
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This electric transmission tower is stabilized by cables that exert forces on the 
tower at their points of connection. In this chapter we will show how to express 
these forces as Cartesian vectors, and then determine their resultant. 
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FORCE VECTORS 

CHAPTER OBJECTIVES 

• To show how to add forces and resolve them into components 
using the Parallelogram Law. 

• To express force and position as Cartesian vectors. 

• To introduce the dot product in order to use it to find the angle 

between two vectors or the projection of one vector onto another. 

2.1 SCALARS AND VECTORS 
Many physical quantities in engineering mechanics are measured using 
either scalars or vectors. 

Scalar. A scalar is any positive or negative physical quantity that can 
be completely specified by its magnitude. Examples of scalar quantities 
include length, mass, and time. 

Vector. A vector is any physical quantity that requires both a magnitude 
and a direction for its complete description. Examples of vectors 
encountered in statics are force, position, and moment. A vector A 
is shown graphically by an arrow, Fig. 2- 1. The length of the arrow 
represents the magnitude of the vector, and the angle 8 between the vector 
and a fixed axis defines the direction of its line of action. The head or tip of 
the arrow indicates the sense of direction of the vector. 

In print, vector quantities are represented by boldface letters such as 
A, and the magnitude of a vector is italicized, A. For handwritten work, it 
is often convenient to denote a vector quantity by simply drawing an 

b 
. ~ 

arrow a ove 1t, A. 

Line of action~ _ 

~ Tail~ 
0 

Fig. 2-1 
17 
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18 CHAPTER 2 FORCE VECTORS 

Scalar multiplication and division 

Fig. 2-2 

2.2 VECTOR OPERATIONS 

Multiplication and Division of a Vector by a Scalar. If a 
vector is multiplied or divided by a positive scalar, its magnitude is 
increased by that amount. Multiplying or dividing by a negative scalar 
will also change the directional sense of the vector. Graphic examples of 
these operations are shown in Fig. 2- 2. 

Vector Addition. When adding two vectors together it is important 
to account for both their magnitudes and their directions. To do this we 
must use the parallelogram law. To illustrate, the two component vectors 
A and B in Fig. 2- 3a are addled to form a resultant vector R = A + B 
using the following procedure: 

• First join the tails of the components at a point to make them 
concurrent, Fig. 2- 3b. 

• From the head of B, draw a line parallel to A. Draw another line 
from the head of A that is parallel to B. These two lines intersect at 
point P to form the adjacent sides of a parallelogram. 

• The diagonal of this parallelogram that extends to P forms R, which 
then represents the resultant vector R = A + B, Fig. 2- 3c. 

(a) (b) 

Fig. 2-3 

p 

R =A+ B 
Parallelogram law 

(c) 

We can also add B to A , Fig. 2-4a, using the triangle rule, which is a 
special case of the parallelogram law, whereby vector B is added to 
vector A in a "head-to-tail" fashion , i.e., by connecting the tail of B to 
the head of A , Fig. 2-4b. The resultant R extends from the tail of A to 
the head of B. In a similar manner, R can also be obtained by adding 
A to B, Fig. 2- 4c. By comparison, it is seen that vector addition is 
commutative; in other words, the vectors can be added in either order, 
i.e., R = A + B = B + A. 

www.konkur.in



(a) 

R 

R = A + B 
Triangle rule 

(b) 

Fig. 2-4 

R = B + A 
Triangle rule 

(c) 

As a special case, if the two vectors A and B are collinear, i.e., both 
have the same line of action, the parallelogram Jaw reduces to an 
algebraic or scalar addition R = A + B, as shown in Fig. 2- 5. 

• 
A 

R 

B 

R=A+B 

Addition of collinear vectors 

Fig. 2-5 

• 

Vector Subtraction. The resultant of the difference between two 
vectors A and B of the same type may be expressed as 

R' =A - B =A + (-B) 

This vector sum is shown graphically in Fig. 2-6. Subtraction is therefore 
defined as a special case of addition, so the rules of vector addition also 
apply to vector subtraction. 

or 

B 

2.2 VECTOR OPERATIONS 

-B 

-B 
R'= A-B 

Parallelogram Jaw 

R' = A-B 
Triangle rule 

Vector subtraction 

Fig. 2-6 

19 
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20 CHAPTER 2 FORCE VECTORS 

The parallelogram law must be used to 
determine the resultant of the two 
forces acting on the hook. 

F 
II 

' 

Using the parallelogram law the 
supporting force F can be resolved into 
components acting along the u. and v axes. 

(a) 

2. 3 VECTOR ADDITION OF FORCES 
Experimental evidence has shown that a force is a vector quantity since 
it has a specified magnitude, direction, and sense and it adds according to 
the parallelogram Jaw. Two common problems in statics involve either 
finding the resultant force, knowing its components, or resolving a known 
force into two components. We will now describe how each of these 
problems is solved using the parallelogram Jaw. 

Finding a Resultant Force. The two component forces F1 and F2 

acting on the pin in Fig. 2- 7a are added together to form the resultant 
force FR = F1 + F2, using the parallelogram Jaw as shown in Fig. 2- 7b. 
From this construction, or using the triangle rule, Fig. 2- 7c, we can then 
apply the Jaw of cosines or the Jaw of sines to the triangle in order to 
obtain the magnitude of the resultant force and its direction. 

(b) (c) 

Fi.g. 2-7 

Finding the Components of a Force. Sometimes it is necessary 
to resolve a force into two components in order to study its pulling or 
pushing effect in two specific directions. For example, in Fig. 2-8a, F is to 
be resolved into two components along the two members, defined by the 
u and v axes. In order to determine the magnitude of each component, a 
parallelogram is constructed first, by drawing lines starting from the tip of 
F, one line parallel to u, and the other line parallel to v. These lines 
intersect with the v and u axes, forming a parallelogram. The force 
components F11 and Fv are established by simply joining the tail of F to the 
intersection points on the u and v axes, Fig. 2-8b. This parallelogram can 
be reduced to a triangle, which represents the triangle rule, Fig. 2- &. From 
this, the Jaw of sines can be applied to determine the unknown magnitudes 
of the components. 
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2.3 VECTOR ADDITION OF FORCES 21 

v 

F,. F,, 

(a) (b) 

Fig. 2-8 

Addition of Several Forces. If more than two forces are to be 
added, successive applications of the parallelogram law can be carried 
out in order to obtain the resultant force. For example, if three forces Fi, 
F2, F3 act at a point 0 , Fig. 2- 9, the resultant of any two of the forces is 
found, say, F1 + F2, and then this resultant is added to the third force, 
yielding the resultant of all three forces; i.e., FR= (F1 + F2) + F3• Using 
the parallelogram law to add more than two forces, as shown here, 
generally requires extensive geometric and trigonometric calculation to 
determine the magnitude and direction of the resultant. Instead, 
problems of this type are easily solved by using the "rectangular
component method," which is explained in the next section. 

(c) 

Fig. 2-9 

The resultant force FR on the hook requires 
the addition of F1 + F2, then this resultant is 
added to F3. 
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22 CHAPTER 2 FORCE VECTORS 

A 

b 

Cosine law: 

(a) 

(b) 

c 

c 

__.-II 

B 

a 

C = -.JA 2 + 8 2 - 2AB cos c 
Sine law: 
_A_ = _J}_ = _s;_ 
sin a sin b sin c 

(c) 

Fig. 2-10 

IMPORTANT POINTS 

• A scalar is a positive or negative number. 

• A vector is a quantity that has a magnitude, direction, and sense. 

• Multiplication or division of a vector by a scalar will change the 
magnitude of the vector. The sense of the vector will change if the 
scalar is negative. 

• Vectors are added or subtracted using the parallelogram Jaw or 
the triangle rule. 

• As a special case, if the vectors are collinear, the resultant is 
formed by an algebraic or scalar addition. 

PROCEDURE FOR ANALYSIS 

Problems that involve the addition of two forces can be solved as 
follows: 

Parallelogram Law. 

• Sketch the addition of the two "component" forces F1 and F2 
according to the parallelogram Jaw, yielding the resultant force 
FR that forms the diagonal of the parallelogram, Fig. 2- lOa. 

• If a force F is to be resolved into components along two axes u 
and v, then start at the head of force F and construct lines parallel 
to the axes, thereby forming the parallelogram, Fig. 2- lOb. The 
sides of the parallelogram represent the components, F11 and Fv. 

• Label all the known and unknown force magnitudes and the angles 
on the sketch and identify the two unknowns as the magnitude 
and direction of FR• or the magnitudes of its components. 

Trigonometry. 

• Redraw a half portion of the parallelogram to illustrate the 
triangular head-to-tail addition of the components. 

• From this triangle, the magnitude of the resultant force can be 
determined using the Jaw of cosines, and its direction is 
determined from the Jaw of sines. The magnitudes of two force 
components are determined from the Jaw of sines. The formulas 
are given in Fig. 2- lOc. 
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2.3 VECTOR ADDITION OF FORCES 23 

EXAMPLE 2.1 
- -

The screw eye in Fig. 2- lla is subjected to two forces, F1 and F2. 

Determine the magnitude and direction of the resultant force. 

(a) 

SOLUTION 

Parallelogram Law. The parallelogram is formed by drawing a line 
from the head of F1 that is parallel to F2, and another line from the head 
of F2 that is parallel to F1. The resultant force FR extends to where these 
lines intersect at point A, Fig. 2- llb. The two unknowns are the 
magnitude of FR and the angle 8 (theta). 

Trigonometry. From the parallelogram, the vector triangle is shown in 
Fig. 2- llc. Using the Jaw of cosines 

FR = Y(l00N)2 + (150N)2 - 2(100N)(l50N)cos 115° 

= Y 10 000 + 22 500 - 30 000( -0.4226) = 212.6 N 

= 213 N 

Applying the Jaw of sines to determine 8, 

150 N 212.6 N 

sin 8 sin 115° 
150 N . 

0 sin 8 = 
212

.
6 

N (sm 115 ) 

8 = 39.8° 

Thus, the direction </> (phi) of FR, measured from the horizontal, is 

</> = 39.8° + 15.0° = 54.8° 

Ans. 

Ans. 

NOTE: The results seem reasonable, since Fig. 2- llb shows FR to have 
a magnitude larger than its components and a direction that is 
between them. 

l(f 

90• - 25• = 65° 

A 

65° 

360" - 2( 65°) 
v ----- =us• 

2 

(b) 

Fig. 2-11 
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24 CHAPTER 2 FORCE VECTORS 

I EXAMPLE 2.2 

600 Jb 

v 

(a) 

Resolve the horizontal 600-Jb force in Fig. 2- 12a into components 
acting along the u and v axes and determine the magnitudes of these 
components. 

II 

600 Jb 

c 

I 
v 

(b) (c) 

Fig. 2-U 

SOLUTION 

Parallelogram Law. The parallelogram is constructed by extending a 
line from the head of the 600-Jb force parallel to the v axis until it intersects 
the u axis at point B, Fig. 2- 12b. The arrow from A to B represents F11• 

Similarly, the line extended from the head of the 600-Jb force drawn 
parallel to the u axis intersects ~he v axis at point C, which gives Fv. 

Trigonometry. The vector addition using the triangle rule is shown 
in Fig. 2- 12c. The two unknowns are the magnitudes of F 11 and Fv. 
Applying the Jaw of sines, 

F,, 600 lb 

sin 120° sin 30° 

F,, = 1039 lb Ans. 

Fv 600 lb 

sin 30° sin 30° 

Fv = 600 lb Ans. 

NOTE: The result for F11 shows that sometimes a component can have 
a greater magnitude than the resultant. 
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2.3 VECTOR ADDITION OF FORCES 

EXAMPLE 2.3 
- -

Determine the magnitude of the component force Fin Fig. 2- 13a and 
the magnitude of the resultant force FR if FR is directed along the 
positive y axis. 

y 

(a) 

SOLUTION 

y 

I 

/ 
45• 

FR 

(b} 

Fig. 2-13 

The parallelogram Jaw of addition is shown in Fig. 2- 13b, and the 
triangle rule is shown in Fig. 2- 13c. The magnitudes of FR and Fare the 
two unknowns. They can be determined by applying the Jaw of sines. 

F 200 lb 

sin 60° sin 45° 

F = 245lb Ans. 

FR 200 lb 

sin 75° sin 45° 

FR = 273 lb Ans. 

It is strongly suggested that you test yourself on the solutions to these 
examples by covering them over and then trying to draw the 
parallelogram law, and thinking about how the sine and cosine laws 
are used to determine the unknowns. Then before solving any of the 
problems, try to solve the Preliminary Problems and some of the 
Fundamental Problems given on the next pages. The solutions and 
answers to these are given in the back of the book. Doing this 
throughout the book will help immensely in developing your problem
solving skills. 

FR 

(c) 

25 

www.konkur.in



26 CHAPTER 2 FORCE VECTORS 

PRELIMINARY PROBLEMS 

Partial solutions and answers to all Preliminary Problems are given in the back of the book. 

P2-L In each case, construct the parallelogram law to 
show FR= F1 + F2• Then establish the triangle rule, where 
FR= F 1 + F2• Label all known and unknown sides and 
internal angles. 

F1 =200N 

/ 
/\45° 

(a) 

(b) 

(c) 

Prob. P2-1 

P2-2. In each case, show how to resolve the force F into 
components acting along the u and v axes using the 
parallelogram law. Then establish the triangle rule to show 
FR = F,. + Fv. Label all known and unknown sides and 
interior ang,les. 

v 

ll 

F= 200N 

II 

(a) 

F= 400N 

v 

II 

(b) 

F=600N 

(c) 

Prob. P2-2 
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2.3 VECTOR ADDITION OF FORCES 27 

FUNDAMENTAL PROBLEMS 
Partial solutions and answers to all Fundamental Problems are given in the back of the book. 

F2-1. Determine the magnitude of the resultant force 
acting on the screw eye and its direction measured clockwise 
from the x axis. 

Prob.F2-1 

F2-2. Determine the magnitude of the resultant force. 

3Cf 
I 

A 200N 
40° 

/ 

Prob.F2-2 

F2-3. Determine the magnitude of the resultant force and 
its direction measured counterclockwise from the positive 
x axis. 

y 

I 
800N 

Prob.F2-3 

F2-4. Resolve the 30·1b force into components along the 
u and v axes, and determine the magnitude of each of these 
components. 

v 

Prob.F2-4 

F2-5. Resolve the force into components acting along 
members AB and AC, and determine the magnitude of each 
component. 

Prob.F2-5 

F2-6. If force Fis to have a component along the u axis of 
Fu= 6 kN, determine the magnitude of F and the magnitude 
of its component Fv along the v axis. 

" 

F 

Prob.F2-6 
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PROBLEMS 

2-1. If e = 60° and F = 450 N, determine the magnitude 
of the resultant force and its direction, measured 
counterclockwise from the positive x axis. 

2-2. If the magnitude of the resultant force is to be 500 N, 
directed along the positive y axis, determine the magnitude 
of force F and its direction 8. 

)' 

700N 

Probs. 2-112 

2-3. Determine the magnitude of the resultant force 
FR = F1 + Fi and its direction, measured counterclockwise 
from the positive x axis. 

)' 

F1 = 250 lb 

F2 = 375 lb 

Prob. 2-3 

*2-4. Determine the magnitudes of the two components 
of F directed along members AB and AC. Set F = 500 N. 

2- 5. Solve Prob. 2-4 with F = 350 lb. 

A 

c 

Probs. 2-4/5 

2-6. Determine the magnitude of the resultant force 
FR = F1 + Fi and its direction, measured clockwise from 
the positive u axis. 

2- 7. Resolve the force F1 into components acting along 
the u and v axes and determine the magnitudes of the 
components. 

*2-8. Resolve the force Fi into components acting along 
the u and v axes and determine the magnitudes of the 
components. 

75° 

F2 =6kN 

Probs. 2-617/8 

II 
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2-9. If the resultant force acting on the suppon is to be 
1200 lb, directed horizontally to the right. determine the 
force F in rope A and the corresponding angle 8. 

-60" 9001b 

Prob.2-9 

2-10. Determine the magnitude of the resultant force and its 
direction. measured counterclockwise from the positive x axis. 

y 

5001b 

Prob. 2-10 

2-11. If 8 = 60°, determine the magnitude of the resultant 
and its direction measured clockwise from the horizontal. 

*2-12. Determine the angle 8 for connecting member A 
to the plate so that the resultant force of FA and F 8 is 
directed horizontally to the right. Also. what is the 
magnitude of the resultant force? 

Probs. 2-lli12 

2.3 VECTOR ADDITION OF FORCES 29 

2-13. The force acting on the gear tooth is F = 20 lb. 
Resolve this force into two components acting along the 
lines aa and bb. 

2-14. The component of force F acting along line aa is 
required to be 30 lb. Determine the magnitude of F and its 
component along line bb. 

b 
F a 

Probs. 2-13/14 

2-15. Force F acts on the frame such that its component 
acting along member AB is 650 lb, directed from B 
towards A, and the component acting alo11g member BC is 
500 lb, directed from B towards C. Determine the magnitude 
of F and its direction 8. Set 4> = 6Cl°. 

*2-16. Force F acts on the frame such that its component 
acting along member AB is 650 lb, directed from B 
towards A. Determine the required angle </J (0° s 4> < 45°) 
and the component acting along member BC.Set F = 850 lb 
and 8 = 300. 

Probs. 2-15/16 
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30 CHAPTER 2 FORCE VECTORS 

2-17. If F1 = 30 lb and F2 = 40 lb, determine the angles IJ 
and </> so that the resultant force is directed along the 
positive x axis and has a magnitude of FR= 60 lb. 

)' 

Prob. 2-17 

2-18. Determine the magnitude and direction IJ of FA so 
that the resultant force is directed along the positive x axis 
and has a magnitude of 1250 N. 

2-19. Determine the magnitude of the resultant force acting 
on the ring at 0 if FA = 750 N and IJ = 45°. What is its 
direction, measured counterclockwise from the positive x axis? 

Probs. 2-18/19 

*2-20. Determine the magnitude of force F so that the 
resultant FR of the three forces is as small as possible. What 
is the minimum magnitude of FR? 

8kN 

Prob. 2-20 

2-21. If the resultant force of the two tugboats is 3 kN, 
directed along the positive x axis, determine the required 
magnitude of force F 8 and its direction IJ. 

2-22. If F 8 = 3 kN and IJ = 45°, determine the magnitude 
of the resultant force and its direction measured clockwise 
from the positive x axis. 

2-23. If the resultant force of the two tugboats is required 
to be directed towards the positive x axis, and F 8 is to be a 
minimum, d etermine the magnitude of FR and F 8 and the 
angle IJ. 

y 
A 

c 

B 

Probs. 2-21122/23 
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2.4 ADDITION OF A SYSTEM OF COPLANAR FORCES 

2.4 ADDITION OF A SYSTEM OF 
COPLANAR FORCES 

When a force is resolved into two components along the x and y axes, the 
components are then called rectangular w mponents. For analytical work 
we can represent these components in one of two ways, using either scalar 
notation or Cartesian vector notation. 

Scalar Nota 1 The recrangular components of force F shown in 
Fig. 2-14a are found using the parallelogram law, so that F = Fx + F,.. 
Because these components form a right triangle, they can be determined 
from 

Fx = F cos (} and F,, = F sin (} 

Instead of using the angle(}, however, the direction ofF can also be defined 
using a small "slope" triangle, as in the example shown in Fig. 2-15b. 
Since this triangle and the larger shaded triangle are similar, the proportional 
length of the sides gives 

Fx a 
-=-
F c 

or 

F = F(a) 
.T C 

and 

F,, b 
-= -
F c 

or 

Here they component is a negative scalar since F,, is directed along the 
negative y axis. 

It is important to keep in mind that this positive and negative scalar 
notation is to be used only for calculations, not for graphical 
representations in figures. Throughout the book, the head of a vector 
arrow in any figure indicates the sense of the vector graphically; algebraic 
signs are not used for this purpose. Thus, the vectors in Figs. 2-14a and 
2-14b are designated by using boldface (vector) notation.* Whenever 
italic symbols are written near vector arrows in figures, they indicate the 
magnitude of the vector, which is always a positive quantity. 

• Negative signs are used on ly in figures with boldface notation when showing equal but 
opposite pairs of vectors. as in fig. 2-2. 

y 

F, 

(a) 

y 

(b) 

Fig. 2-14 

31 

F 

www.konkur.in



32 CHAPTER 2 FORCE VECTORS 

y 

jt 

T;------=F 
Fy 

1"---~---X ____,..... 

Fig. 2-15 

y 

(a) 
y 

(b) 

Fig. 2-16 

I 

x 

The resultant force of the four cable forces 
acting on the post can be dete rmined by 
adding algebraically the separate x and y 
components of each cable force. This 
resultant FR produces the same pulling effect 
on the post as all four cables. 

Cartesian Vector Notation. Rather than representing the 
magnitude and direction of the components Fx and Fy as positive or 
negative scalars, we can instead consider them to be only positive scalars 
and thereby only report the magnitudes of the components. Their 
directions are then represented by the Cartesian unit vectors i and j , 
Fig. 2- 15. These are called unit vectors because they have a dimensionless 
magnitude of 1. By separating the magnitude and direction of each 
component, we can express Fas a Cartesian vector. 

Coplanar Force Resultants. We can use either of the two methods 
just described to determine the resultant of several coplanar forces, i.e., 
forces that all lie in the same plane. To do this, each force is first resolved 
into its x and y components, and then the respective components are added 
using scalar algebra since they are collinear. The resultant force is then 
formed by adding the resultant components using the parallelogram law. 
For example, consider the three concurrent forces in Fig. 2- 16a, which have 
x and y components shown in Fig. 2- 16b. Using Cartesian vector notation, 
each force is first represented as a Cartesian vector, i.e., 

F1 = F1xi + F1yj 

F2 = -F2x i + F2y j 

F3 = F3xi - F3yj 

The vector resultant, Fig. 2- 17c, is therefore 

FR = F, + F2 + F3 

= Fixi + F,y j - F2x i + F2y j + F3x i - F3y j 

= (Fix - F2x + F3x) i + (F1y + F2y - F3y) j 

= (FR)x i + (FR)y j 

If scalar notation is used, then indicating the positive directions of 
components along the x and y axes with symbolic arrows, we have 

...±. (FR)x = Fix - F2x + F3x 
+ j (FR)y = F1y + F1y - F3y 

Notice that these are the same results as the i and j components of FR 
determined above. 
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2.4 ADDITION OF A SYSTEM OF COPLANAR FORCES 

In general, then, the components of the resultant force of any number 
of coplanar forces can be represented by the algebraic sum of the x and y 
components of all the forces, i.e., 

(FR)x = lFx 

(FR)y = lFy 
(2- 1) 

Once these components are determined, they may be sketched along 
the x and y axes with their proper sense of direction, and the resultant 
force can be determined from vector addition, Fig. 2- 16c. From this 
sketch, the magnitude ofF R is then found from the Pythagorean theorem; 
that is, 

Also, the angle 8, which specifies the direction of the resultant force, is 
determined from trigonometry. 

The above concepts are illustrated numerically in the examples 
which follow. 

IMPORTANT POINTS 

• The resultant of several coplanar forces can easily be 
determined if an x, y coordinate system is established and the 
forces are resolved into components along the axes. 

• The direction of each force is specified by the angle its line of 
action makes with one of the axes, or by a slope triangle. 

• The orientation of the x and y axes is arbitrary, and their 
positive direction can be specified by the Cartesian unit vectors 
i and j. 

• The x and y components of the resultant force are simply the 
algebraic addition of the components of all the coplanar forces. 

• The magnitude of the resultant force is determined from the 
Pythagorean theorem, and when the resultant components are 
sketched on the x and y axes, Fig. 2- 16c, the direction() of the 
resultant can be determined from trigonometry. 

y 

(c) 

Fig. 2-16 (cont.) 
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I EXAMPLE 2.4 

Y Determine the x and y components of F1 and F2 acting on the boom 
shown in Fig. 2- 17a. Express each force as a Cartesian vector. 

(a) 

y 

F1 = 200 ~N--. 
'\ .F1y = 200 cos 3D° N 

\ 
\ 
\ 30° 
\.~-

\ 
\ 

__ ,.,_~_.._----~X 

Fix = 200 sin 3D° N 

(b) 

y 

Fix= 260 G~) N 
----p.,.~~~~~~x .... 

s1' !.3. 
( 5) 12 ....... 

F2y = 260 13 N J-'------''~,., 
Fi=260N 

(c) 

Fig. 2-17 

SOLUTION 
Scalar Notation. By the parallelogram Jaw, F1 is resolved into x and y 
components, Fig. 2- 17b. Since F1, acts in the - x direction, and F1>' acts in 
the +y direction, we have 

F1x = -200 sin 30° N = -100 N = 100 N ~ 

F1y = 200 cos 30° N = 173 N = 173 N f 
Ans. 

Ans. 

The force F2 is resolved into its x and y components, as shown in 
Fig. 2-17c. From the "slope triangle" we could obtain the angle 8, 
e.g.,() = tan- 1(1

5
2), and then proceed to determine the magnitudes of 

the components in the same manner as for F1. The easier method, 
however, consists of using proportional parts of similar triangles, i.e., 

260 N 13 
F = 260 N(.!3.) = 240 N 

2x 13 

Similarly, 

F = 260 ,../ 2-) = 100 N 2>' "\. 13 

Notice how the magnitude of the horizontal component, F2x , was 
obtained by multiplying the force magnitude by the ratio of the 
horizontal leg of the slope triangle divided by the hypotenuse; whereas 
the magnitude of the vertical component, F2..,, was obtained by 
multiplying the force magnitude by the ratio of the vertical leg divided 
by the hypotenuse. Using scalar notation to represent the components, 
we have 

F2x = 240 N = 240 N ~ 

F? = -lOON = IOON! .. y 

Ans. 

Ans. 

Cartesian Vector Notation. Having determined the magnitudes 
and directions of the components of each force, we can express each 
force as a Cartesian vector. 

F1 = {-lOOi +173j }N 

F2 = {240i - lOOj }N 

Ans. 

Ans. 
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EXAMPLE 2 .5 

The link in Fig. 2-18a is subjected to two forces F1 and F2. Determine the 
magnitude and direction of the resultant force. 

SOLUTION I 
Scalar Notation. Ftrst we resolve each force into its x and y 
components, Fig. 2-18b, then we sum these components algebraically. 

+ 
--'-+ (FR)x = "i.Fx; (FR)x = 600 cos 30° N - 400 sin 45° N 

= 236.8 N --'-+ 

(FR)y = 600 sin 30° N + 400 cos 45° N 

= 582.8 Nf 

The resultant force, shown in Fig. 2- 18c, has a magnitude of 

FR = V(236.8 N)2 + (582.8 N)2 

= 629N 

From the vector addition, 

8 _ _1(582.8 N) _ 6 0 - tan 
6 8 

- 7.9 
23. N 

SOLUTION II 

Ans. 

Ans. 

Cartesian Vector Notation. From Fig. 2- 18b, each force is first 
expressed as a Cartesian vector. 

Then, 

F1 = { 600 cos 30°i + 600 sin 30°j } N 

F2 = { -400 sin 45°i + 400 cos 45°j } N 

FR = F1 + F2 = (600 cos 300 N - 400 sin 45° N)i 

+ (600 sin 30° N + 400 cos 45° N)j 

= { 236.8i + 582.8j } N 

The magnitude and direction of FR are determined m the same 
manner as before. 

NOTE: Comparing the two methods of solution, notice that the use 
of scalar nota tion is more efficient since the components can be 
found directly, without first having to express each force as a 
Cartesian vector before adding the components. Later, however, we 
will show that Cartesian vector analysis is very beneficial for solving 
three-dimensional problems. 

y 

(a) 

y 

(b) 

y 

582.SN 
,..1----,, FR 

(c) 

Fig. 2-18 
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I EXAMPLE 2.6 

383.2 N 

y 

(b} 

y 

I 

(c) 

Fig. 2-19 

296.8 N 

0 

The end of the boom 0 in Fig. 2- l9a is subjected to the three concurrent 
and coplanar forces. Determine the magnitude and direction of the 
resultant force. 

y 

(a) 

SOLUTION 
Each force is resolved into its x and y components, Fig. 2- 19b. Summing 
the x components, we have 

~ (FR)x = lFx; (FR)x = -400 N + 250 sin 45° N - 200 ( ~) N 

= -383.2 N = 383.2 N ~ 

Summing they components yields 

+ f (FR)y = lFy; (FR)y = 250 cos 45° N + 200 ( ~) N 

= 296.8 Nf 

The resultant force, shown in Fig. 2- 19c, has a magnitude of 

FR = V(-383.2 N)2 + (296.8 N)2 

= 485N 

From the vector addition in Fig. 2- 19c, the direction angle() is 

8 = tan- 1(296.8) = 37.80 

383.2 

Ans. 

Ans. 

NOTE: Application of this method is more convenient, compared to 
using two applications of the parallelogram Jaw, first to add F1 and F2, 

then adding F3 to this resultant. 
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2.4 ADDITION OF A SYSTEM OF COPLANAR FORCES 37 

FUNDAMENTAL PROBLEMS 

Fl-7. Resolve each force into its x and y components. 
y 

I F1 = 300N 

Prob.F2-7 

F2-8. Determine the magnitude and direction of the 
resultant force. 

250N 
y 

400 N 

. ... . . ... ·.· • • • 

p" .l-8 

.·2-··· Determine the magnitude of the resultant force 
acting on the corbel and its direction 8. measured 
counterclockwise from the x axis. 

y 

F
3 

= 600 lb F2 = 400 lb 

Prob. F2-9 

• 2-1 '· If the resultant force acting on the bracket is to be 
750 N directed along the positive x axis, determine the 
magnitude of F and its direction 8. 

y 
325 N 

Prob.F2-10 

F2-11. If the magnitude of the resultant force acting on 
the bracket is to be 80 lb directed along the 11 axis, determine 
the magnitude of F and its direction 8. 

y 

Pr•• rl-t: 

• '2-12. Determine the magnitude of the resultant force 
and its direction 8. measured counterclockwise from the 
positive x axis. 

F1 =15 kN 

Prob. F2-12 
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PROBLEMS 

*2-24. Determine the magnitude of the resultant force 
and its direction, measured counterclockwise from the 
positive x axis. 

)' 

F2 = 150 N 

Prob. 2-24 

2-25. Determine the magnitude of the resultant force and 
its direction, measured clockwise from the positive x axis. 

)' 

400N 

800N 

Prob. 2-25 

2- 26. Resolve F1 and F2 into their x and y components. 

2- 27. Determine the magnitude of the resultant force and 
its direction measured counterclockwise from the positive x 
axis. 

45° 
.../ 

Probs. 2-26/27 

x 

*2-28. Resolve each force acting on the gusset plate into 
its x and y components, and express each force as a 
Cartesian vector. 

2- 29. Determine the magnitude of the resultant force 
acting on the gusset plate and its direction, measured 
counterclockwise from the positive x axis. 

)' 

/--2 =750N 

~ 

Probs. 2-28/29 
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2-30. Express each of the three forces acting on the 
support in Cartesian vector form and determine the 
magnitude of lhe resultanl force and its direction, measured 
clockwise from posilive x axis. 

)' F1 =50N 

Prob. 2-30 

2-31. Delermine lhe x and y components of F1 and F2• 

*2-32. Determine lhe magnilude of the resultant force 
and its direction, measured counterclockwise from the 
positive x axis. 

)' 

Probs. 2-31132 

2-33. Determine the magnitude of the resultant force and 
its direction. measured counterclockwise from the positive x 
axis. 

)' 

F2 = 5 kN 

Prob. 2-33 

2.4 ADDITION OF A SYSTEM OF COPLANAR FORCES 39 

2-34. Express F1, F2, and F3 as Cartesian vectors. 

2-35. Determine the magnilude of the resultant force and its 
direction, measured counlerclockwise from the positive x axis. 

)' 

F1=850N 

Probs. 2-34135 

*2-36. Determine the magnitude of the resultant force 
and its direction, measured clockwise from the positive 
x axis. 

)' 

40 1b 

91 lb 

Prob. 2-36 

2-37. Determine the magnitude and direction 8 of the 
resultant force FR. Express the result in terms of the 
magnitudes of the components F1 and F2 and the angle c/J. 

Fz 

Prob. 2-37 

www.konkur.in



40 CHAPTER 2 FORCE VECTORS 

x 

x 

Fig. 2-20 

z 

I 
A, 

A, 
/"'-----~ 

Fig. 2-21 

y 

i/ ~------Y 

/ / j 

x 

Fig. 2-22 

2. 5 CARTESIAN VECTORS 
The operations of vector algebra, when applied to solving problems in 
three dimensions, are greatly simplified if the vectors are first represented 
in Cartesian vector form. In this section we will present a general method 
for doing this; then in the next section we will use this method for finding 
the resultant force of a system of concurrent forces. 

Right-Handed Coordinate System. We will use a right-handed 
coordinate system to describe the vector algebra that follows. 
Specifically, a rectangular coordinate system is said to be right handed if 
the thumb of the right hand points in the direction of the positive z axis 
when the right-hand fingers are curled about this axis and directed from 
the positive x towards the positive y axis, Fig. 2- 20. 

Rectangular Components of a Vector. In general a vector A 
will have three rectangular components along the x, y, z coordinate axes, 
Fig. 2- 21. These components are determined using two successive 
applications of the parallelogram Jaw, that is, A = A' + Az and then 
A' = Ax + Ar Combining these equations to eliminate A', A 1s 
represented by the vector sum of its three rectangular components, 

(2- 2) 

Cartesian Vector Representation. In three dimensions, the set 
of Cartesian unit vectors, i, j , k, is used to designate the directions of the 
x, y, z axes, respectively, Fig. 2- 22. Using these vectors, the three 
components of A in Fig. 2- 23 can be written in Cartesian vector form as 

(2- 3) 

There is a distinct advantage to writing vectors in this manner. 
Separating the magnitude and direction of each component vector will 
simplify the operations of vector algebra, particularly in three dimensions. 

z 

I 
A, k 

A 

Fig. 2-23 
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Magnitude of a Cartesian Vector. If A is expressed as a Cartesian 
vector, then its magnitude can be determined. As shown 
in Fig. 2- 24, from the blue right triangle, A = VA 12 + Ai, and from 
the gray right triangle, A 1 = V Ai + A~. Combining these equations to 
eliminate A' yields 

I A = VA; + A~ + A~ I (2-4) 

Hence, the magnilude of A is equal to the positive square root of the 
sum of the squares of the magniludes of its components. 

Coordinate Direction Angles. We will define the direction of A 
by the coordinate direction angles a (alpha), f3 {beta), and y (gamma), 
measured between the tail of A and the positive x, y, z axes, Fig. 2- 25. 
Note that regardless of where A is directed, each of these angles will be 
between 0° and 180°. 

To determine a , {3, and y , consider the projection of A onto the x , y , z 
axes, Fig. 2-26. Referring to the three shaded right triangles shown in the 
figure, we have 

Ax Ay At 
cos a = - cos{3 = - cosy = -

A A A 
(2- 5) 

These numbers are known as the direction cosines of A. Once they 
have been obtained, the coordinate direction angles a , {3, y can then be 
determined from the inverse cosines. 

2.5 CARTESIAN VECTORS 

x 

/ 
x 

/ 

z 

A ,k~I ,------..,. 

Fig. 2-24 

z 

I 
A,k 

A 

Fig. 2-25 

z 

Fig. 2-26 
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42 CHAPTER 2 FORCE VECTORS 

z 

I 
A, k 

A 

z 

I 

Fig. 2-27 

An easy way of obtaining these direction cosines is to form a unit 
vector uA in the direction of A, Fig. 2- 25. To do this, divide A by its 
magnitude A , so that 

A Ax Ay At 
u = - = -j + -j + -k 

A A A A A 
(2-6) 

By comparison with Eqs. 2- 5, it is seen that the i, j , k components of uA 
represent the direction cosines of A , i.e., 

UA = COS a i + COS {3j + COS y k (2-7) 

Since the magnitude of uA is one, then from this equation an important 
relation among the direction cosines can be formulated, namely, 

l cos2 a + cos2 /3 + cos2 y = 1 I (2-8) 

Therefore, if only two of the coordinate angles are known, the third 
angle can be found using this equation. 

Fmally, if the magnitude and coordinate direction angles of A are 
known, then A may be expressed in Cartesian vector form as 

A= AuA 
= A cos a i + A cos /3j + A cos y k 
= Axi + Ayj + Azk 

(2- 9) 

Horizontal and Vertical Angles. Sometimes the direction of A 
can be specified using a horizontal angle() and a vertical angle </> (phi), 
such as shown in Fig. 2-27. The components of A can then be determined 
by applying trigonometry first to the light blue right triangle, which yields 

and 

A ' = A sin</> 

Now applying trigonometry to the dark blue right triangle, 

Ax = A' cos () = A sin </> cos () 

Ay = A 'sin() = A sin</> sin() 
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2.6 ADDITION OF CARTESIAN VECTORS 43 

Therefore A written in Cartesian vector form becomes 

A = A sin </> cos (J i + A sin </> sin 8 j + A cos </> k 

This equation should not be memorized; rather, it is important to 
understand how the components were determined using trigonometry. 

2. 6 ADDITION OF CARTESIAN 
VECTORS 

The addition (or subtraction) of two or more vectors is greatly simplified 
if the vectors are expressed in terms of their Cartesian components. 
For example, if A = A .. i + A1 j + Azk and B = B_.i + Byj + Bzk , Fig. 2-28, 
then the resultant vector, R, has components which are the scalar sums of 
the i, j , k components of A and B, i.e., 

R = A + 8 = (A., + B.,)i + (Ay + By)j + (Az + Bz)k 

(A,+ BJk 

(A1 + B1)j 
---Y 

lf this is generalized and applied to a system of several concurrent 
forces, then the force resultant is the vector sum of all the forces in the .r 

system and can be written as 
Fig. 2-28 

(2-10) 

Here 'i.F_., 'i.F,, and 'i.F: represent the algebraic sums of the respective 
x,y, z or i ,j , k components of each force in the system. 

IMPORTANT POINTS 

• A Cartesian vector A has i, j, k components along the x, y, z 
axes. If A is known, its magnitude is A = YA} +A/ + A/. 

• The direction of a Cartesian vector can be defined by the three 
coordinate direction angles a, {3 , y , measured from the positive 
x, y, z axes to the tail of the vector. To find these angEes, 
formulate a unit vector in the direction of A, i.e., uA =A/ A, 
and determine the inverse cosines of its components. Only two 
of these angles are independent of one another; the third angle 
is found from cos2 a + cos2 f3 + cos2 y = I. 

The direction of a Cartesian vector can also be specified using 
a horizontal angle (J and vertical angle</>. 

Cartesian vector analysis provides a 
convenient method for finding both the 
resultant force and its components in three 
dimensions. 
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I EXAMPLE 2.7 

Determine the magnitude and the coordinate direction angles of the 
resultant force acting on the ring in Fig. 2- 29a. 

z 

F2 = {50i - lOOj + lOOk) lb F1 =160j + 80k} lb 

x x 
(a) (b) 

Fig. 2-29 

SOLUTION 
Since each force is represented in Cartesian vector form, the resultant 
force, shown in Fig. 2- 29b, is 

FR= lF = F1 + F2 = {60j + 80k } lb + {50i - lOOj + lOOk }lb 
= {50i - 40j + 180k }lb 

The magnitude of FR is 

FR = Y(50 lb)2 + (-40 lb)2 + (180 lb)2 = 191.0 lb 

= 191 lb Ans. 

The coordinate direction angles a , {3, y are determined from the 
components of the unit vector acting in the direction of FR· 

FR 50 . 40 . 180 k 
uF. = FR = 191.0 1 

- 191.0J + 191.0 

= 0.2617i - 0.2094j + 0.9422 k 

so that 

cos a = 0.2617 

cos {3 = -0.2094 

cos y = 0.9422 

These angles are shown in Fig. 2- 29b. 

a = 74.8° 

{3 = 102° 

y = 19.6° 

Ans. 

Ans. 

Ans. 

NOTE: Here {3 > 90° since the j component of uF. is negative. This 
seems reasonable considering how F1 and F2 add according to the 
parallelogram Jaw. 
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2.6 ADDITION OF CARTESIAN VECTORS 

~ EXAMPLE 2 .~ 

Express the force F shown in Fig. 2-30t1 as a Cartesian vector. 

SOLUTION 
The angles of 60° and 45° defining the direction of F are not coordinate F: 100 lb 

direction angles. Two successive applications of the parallelogram law 
are needed to resolve F into its x, y, z components. FltSt F = F ' + F:, 
then F ' = Fx + FP Fig. 2-30b. By trigonometry, the magnitudes of the 
components are 

F: = I 00 sin 60° lb = 86.6 lb 

F' = 100 cos 60° lb = 50 lb 

Fx = F' cos 45° = 50 cos 45° lb = 35.4 lb 

FY = F' sin 45° = 50 sin 45° lb = 35.4 lb 

Realizing that F,, is in the - j direction, we have 

F = { 35.4i - 35.4j + 86.6k } lb Ans. 

To show that the magnitude of this vector is indeed 100 lb, apply 
Eq.2-4, 

F = VF; + F; + F~ 

= v'C35.4)2 + (35.4)2 + (86.6)2 = 100 tb 

If needed, the coordinate direction angles of F can be determined from 
the components of the unit vector acting in the direction of F. 

F Fx F,. F. 
u = - = - j + -j + ~k 

F F F F 

35.4 35.4 86.6 = --j - --j + --k 
100 100 100 

= 0.354i - 0.354j + 0.866k 

so that 

a = cos-1(0.354) = 69.3° 

{3 = cos-1(- 0.354) = 111° 

'Y = cos-1(0.866) = 30.0° 

These results are shown in Fig. 2-30c. 

F: 100 lb 

F' 

F - lOOlb 

x 
(a) 

z 
I 

x 
(b) 

x 
(c) 

Fig. 2-30 

45 

y 

y 
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I EXAMPLE 2.9 

z 

x 
(a) 

z 

x 

(b) 

Fig. 2-31 

Two forces act on the hook shown in Fig. 2- 31a. Specify the magnitude of 
F2 and its coordinate direction angles so that the resultant force FR acts 
along the positive y axis and has a magnitude of 800 N. 

Fi SOLUTION 
To solve this problem, the resultant force FR and its two components, 
F1 and F2, will each be expressed in Cartesian vector form. Then, as 

Y shown in Fig. 2- 31b, it is necessary that FR = F1 + F2. 

Applying Eq. 2- 9, 

Fi = F, cos a,i + Fi cos f3d + Fi cos y,k 

= 300 cos 45° i + 300 cos 60° j + 300 cos 120° k 

= {212.li + 150j - 150k}N 

F2 = F2xi + F2yj + F2lk 

Since FR has a magnitude of 800 N and acts in the +j direction, 

FR = (800 N)( +j ) = { 800j } N 

FR = F, + F2 

800j = 212. li + 150j - 150k + F2xi + F2yj + F2zk 

800j = (212.1 + F2x)i + (150 + F2y)j + (-150 + F2z)k 

To satisfy this equation the i, j , k components of FR must be equal to 
the corresponding i,j, k components of (F1 + F2). Hence, 

0 = 212.1 + F2x 

800 = 150 + F2y 

0 = -150 + F2t 

The magnitude of F2 is thus 

F2r = -212.1 N 

F2y = 650 N 

F2t = 150 N 

F2 = Y~( --2-1-2-.1-N-)~2 _+_(_6-50_N_)~2_+_( 1_5_0 _N~)2 

= 700N 

We can use Eq. 2- 9 to determine a2, 132, y 2• 

-212.1 
cos a2 = 700 

650 cos a _=-· 
/Jl 700' 

150 
COS"' = - · 

12 700' 

132 = 21.8° 

'Y2 = 77.6° 

These results are shown in Fig. 2- 31b. 

Ans. 

Ans. 

Ans. 

Ans. 
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PRELIMINARY PROBLEMS 

P2-3. Sketch the following forces on the x, y, z coordinate 
axes. Show a , {3, y. 

a) F = (50i + 60j - lOk} kN 

b) F = {-40i - 80j + 60k} kN 

P2-4. In each case, establish F as a Cartesian vector, and 
find the magnitude of F and the direction cosine of {3. 

z 

x 

(a) 

/ 
x 

F 

(b) 

Prob. P2-4 

P2-S. Show how to resolve each force into its x, y, z 
components. Set up the calculation used to find the 
magnitude of each component. 

z 

x 

z 

x 

F= 800N 

x 

(a) 

(b) 
z 

(c) 

Prob. P2-S 

F= 600N 

F=SOON 
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FUNDAMENTAL PROBLEMS 

F2-13. Determine the coordinate direction angles of the 
force. 

x 

F= 75 lb 

Prob. F2-13 

F2-14. Express the force as a Cartesian vector. 

z F=500N 

x )' 

Prob.FZ-14 

F2-15. Express the force as a Cartesian vector. 

z 

F= SOON y 

Prob. F2-15 

F2-16. Express the force as a Cartesian vector. 

z 

Prob. F2-16 

FZ-17. Express the force as a Cartesian vector. 

z 

y 

Prob.FZ-17 

FZ-18. Determine the resultant force acting on the hook. 

z 

x )' 

Prob. F2-18 
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PROBLEMS 

2-38. The force F has a magnitude of 80 lb. Determine the 
magnitudes of the x, y, z components of F. 

z 

F,I 
~----------~ 

F= 801b 

Prob. 2-38 

2-39. The bolt is subjected to the force F, which has 
components acting along the x, y, z axes as shown. If the 
magnitude of Fis 80 N, and a = 60° and 1' = 45°, determine 
the magnitudes of its components. 

z 

,r-----..,; F, 

Prob. 2-39 

2.6 ADDITION OF CARTESIAN VECTORS 49 

*2-40. Determine the magnitude and coordinate direction 
angles of the force F acting on the support. The component 
of Fin the x-y plane is 7 kN. 

- -----y 

7 kN 

x 

Prob. 2-40 

2-41. Determine the magnitude and coordinate direction 
angles of the resultant force and sketch this vector on the 
coordinate system. 

2-42. Specify the coordinate direction angles of F 1 and F2 

and express each force as a Cartesian vector. 

F1 = 80 Jb 

F2 = 130 lb 

x I 
Probs. 2-41142 
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50 CHAPTER 2 FORCE VECTORS 

2-43. Express each force in Cartesian vector form and 
then determine the resultant force. Find the magnitude and 
coordinate direction angles of the resultant force. 

*2-44. Determine the coordinate direction angles of F1• 

Probs. 2-43/44 

2-45. Determine the magnitude and coordinate direction 
angles of F3 so that the resultant of the three forces acts 
along the positive y axis and has a magnitude of 600 lb. 

2-46. Determine the magnitude and coordinate direction 
angles of F3 so that the resultant of the three forces is zero. 

z 

x 

Fi= 300 lb 

Probs. 2-45/46 

2-47. Determine the magnitude and coordinate direction 
angles of the resultant force, and sketch this vector on the 
coordinate system. 

z 

Fi= 125 N 

Prob. 2-47 

*2-48. Determine the magnitude and coordinate direction 
angles of the resultant force, and sketch this vector on the 
coordinate system. 

z 

)' 

F1 = 450N 

Prob. 2-48 

2-49. Determine the magnitude and coordinate direction 
angles a t> 131> y 1 of F1 so that the resultant of the three 
forces acting on the bracket is FR= { - 350k } lb. 

z 

Fi= 200 lb 

x 

Prob. 2-49 
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2-50. If the resultant force FR has a magnitude of 150 lb 
and the coordinate direction angles shown, determine the 
magnitude of F2 and its coordinate direction angles. 

Prob. 2-50 

2-51. Express each force as a Cartesian vector. 

*2-52. Determine the magnitude and coordinate direction 
angles of the resultant force. and sketch this vector on the 
coordinate system. 

z 

I 
F2 =!SON 

x 

Probs. 2-51/52 

2 .6 A DDITION OF CARTESIAN VECTORS 51 

2-53. The spur gear is subjected to the two forces. Express 
each force as a Cartesian vector. 

2-54. The spur gear is subjected to the two forces. 
Determine the resultant of the two forces and express the 
result as a Cartesian vector. 

y 

x 

F1 = 50lb 

Probs. 2-53/54 

2-55. Determine the magnitude and coordinate direction 
angles of the resultant force. and sketch this vector on the 
coordinate system. 

y 
x 

Prob. 2-55 
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B 

( 
4 m 

lm 

x 

2.7 POSITION VECTORS 
In this section we will introduce the concept of a position vector. Later it 
will be shown that this vector is of importance in formulating a Cartesian 
force vector directed between two points in space. 

-,..=,1---~~--Y x, y, z Coordinates. Throughout the book we will use the convention r2m-7 0 

4.( 

2 ril 
'......L.. 

6m 

1 
A 

Fig. 2-32 

followed in many technical books, which requires the positive z axis to be 
directed upward (the zenith direction) so that it measures the height of 
an object or the altitude of a point. Thex,y axes then lie in the horizontal 
plane, Fig. 2- 32. Points in space are located relative to the origin of 
coordinates, 0 , by successive measurements along the x, y, z axes. For 
example, the coordinates of point A are obtained by starting at 0 and 
measuring xA = +4 m along the x axis, YA = +2 m along they axis, and 
finally ZA = -6 m along the z axis, so that A ( 4 m, 2 m, -6 m ). In a similar 
manner, measurements along the x, y, z axes from 0 to B give the 
coordinates of B, that is, B(6 m, -1m, 4 m). 

Position Vector. A position vector r is defined as a fixed vector 
which locates a point in space relative to another point. For example, if r 
extends from the origin of coordinates, 0, to point P(x, y, z), Fig. 2- 33a, 
then r can be expressed in Cartesian vector form as 

r =xi + yj + zk 

Note how the head-to-tail vector addition of the three components yields 
vector r, Fig. 2- 33b. Starting at the origin 0 , one "travels" x in the +i 
direction, then y in the +j direction, and finally z in the +k direction to 
arrive at point P(x,y, z). 

z z 

P(x, y, z) P(x, y, z) 
r r 

0 y j 0 
z k 

--Y .\' i --y 
x i 

x / x / y j 

(a) (b) 

Fig. 2-33 
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2. 7 POSITION V ECTORS 

ln the more general case, the position vector may be directed 
from point A to point B in space. From Fig. 2- 34a, by the head
to-tail vector addition, using the triangle rule, we require 

A(x,.. y ,.. z,.)o 

Solving for r and expressing rA and r8 in Cartesian vector form yields 

or 

{2-11) 

Thus, the i, j , k components of r may be formed by taking the coordinates 
of the lllil of the vector A(x11, y11 , z11 ) and subtracting them from the 
corresponding coordinates of the head B(x8 , y8 , z8 ) . We can also form 
these components directly , Fig. 2-34b, by starting at A and moving 
through a distance of (x8 - xA) along the positive x axis (+i), then 
(y8 - YA) along the positive y axis (+j ), and finally (z8 - ZA) along the 
posi tive z axis (+k) to get to B. 

B 

U an x. y. z coordinate system is established, 
then the coordinates of two points A and 8 
on the cable can be determined. From this 
the position vector r acting along the cable 
can be formulated. Its magnitude represents 
the distance from A to 8, and its unit vector, 
u = r / r, gives the direction defined by a, {3. y. 

.t 

x 

(a) 

(b) 

Fig. 2-34 
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I EXAMPLE 2.10 I 

z 

B~ 
2m~ 31

m 

;/i~r 
2m y 

Jm y x 

A~m 
(a) 

z 
B 

;1{6k{m 
y 

r 

x 
I {2j) m 

A 
I 1- 3 iJm 

(b) 

B 
• 

z' 

r=7m 

'Y = 31.CY' 

a= 115° 

x 

/3 = 73.4° 

A 

(c) 

Fi.g. 2-35 

An elastic rubber band is attached to points A and B as shown in 
Fig. 2- 35a. Determine its length and its direction measured from 
A towardsB. 

SOLUTION 
We first establish a pos1t1on vector from A to B, Fig. 2- 35b. In 
accordance with Eq. 2- 11, the coordinates of the tail A(l m, 0, -3 m) 
are subtracted from the coordinates of the head B(-2 m, 2 m, 3 m), 
which yields 

r = [-2 m - 1 m]i + [2 m - O]j + [3 m - (-3 m)]k 

= { -3i + 2j + 61k} m 

These components of r can also be determined directly by realizing 
that they represent the direction and distance one must travel along 
each axis in order to move from A to B, i.e., along the x axis { -3i } m, 
along they axis { 2j } m, and finally along the z axis { 6k } m. 

The length of the rubber band is therefore 

r = V(-3 m)2 + (2 m)2 + (6 m)2 = 7 m 

Formulating a unit vector in the direction of r, we have 

r 
u=-= 

r 

3 2 6 
- -j + -j + - k 

7 7 7 

Ans. 

The components of this unit vector give the coordinate direction 
angles 

a = cos- 1(-~) = 115° 

{3 = cos- 1
( ~) = 73.4° 

y = cos-{~) = 31.0° 

Ans. 

Ans. 

Ans. 

NOTE: These angles are measured from the posilive axes of a localized 
coordinate system placed at the tail of r , as shown in Fig. 2- 35c. 
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2.8 FORCE VECTOR DIRECTED A LONG A LINE 

2.8 FORCE VECTOR DIRECTED ALONG 
A LINE 

Quite often in three-dimensional statics problems, the direction of a force 
is specified by rwo points through which its line of action passes. Such a 
situation is shown in Fig. 2-36, where the force F is directed along the 
cord AB. We can formuJate F as a Cartesian vector by realizing that it has 
the same direction and sense as the position vector r directed from point 
A to point B on the cord. This common direction is specified by the 
unit vector u = r / r, and so once u is determined, then 

Although we have represented F symbolically in Fig. 2- 36, note that it has 
units of force, unlike r, which has units of length. 

The force F acting along the rope can 
be represented as a Cartesian vector by 
establishing x, y. z axes and first forming a 
position vector r along the length of the 
rope. Then the corresponding unit vector 
u = r / r that defines the direction of both the 
rope and the force can be determined. Finally. 
tbe magnitude of tbe force is combined with 

• - its direction. so tbat F = Fu. 

IMPORTANT POINTS 

• A position vector locates one point in space relative to 
another point. 

• The easiest way to formuJate the components of a position 
vector is to determine the distance and direction that one must 
travel in the x, y, z directions-going from the tail to the head 
of the vector. 

• A force F acting in the direction of a position vector r can be 
represented in Cartesian form if the unit vector u of the position 
vector is determined and it is muJtiplied by the magnitude of 
the force, i.e., F = Fu = F(r / r). 

x 

Fig. 2.-36 
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I EXAMPLE 2.11 

x 
(a) 

z' 

r 

·n 
(b) 

Fig. 2-37 

The man shown in Fig. 2- 37a pulls on the cord with a force of 70 lb. 
Represent this force acting on the support A as a Cartesian vector and 
determine its direction. 

SOLUTION 
Force F is shown in Fig. 2- 37b. The direction of this vector, u, is 
determined from the position vector r , which extends from A to B. 
Rather than using the coordinates of the end points of the cord, r can 
be determined directly by noting in Fig. 2- 37a that one must travel 
from A {-24k} ft, then {-8j} ft , and finally {12i} ft to get to B. Thus, 

r = { l 2i - 8j - 24k } ft 

The magnitude of r , which represents the length of cord AB, is 

r = V <12 ft)2 + <-8 ft)2 + <-24 ft)2 = 28 ft 

Forming the unit vector that defines the direction and sense of both 
r and F, we have 

r 12. 8 . 24 
u=-=-1 - -J - -k 

r 28 28 28 

Since F has a magnitude of 70 lb and a direction specified by u, then 

F = Fu = 70 I'./ .!3_i - i_j - 24 
k) 

'\28 28 28 

= { 30i - 20j - 60k } lb Ans. 

The coordinate direction angles are measured between the tail of r 
(or F) and the positive axes of a localized coordinate system with 
origin placed at A, Fig. 2- 37b. From the components of the unit vector: 

a = cos-1(~~) = 64.6° Ans. 

{3 = cos- 1( 
2
:) = 107° Ans. 

(
-24) y = cos- 1 28 = 149° Ans. 

NOTE: These results make sense when compared with the angles 
identified in Fig. 2- 37b. 
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2.8 FORCE VECTOR DIRECTED ALONG A LINE 

EXAMPLE 2.12 
- -

The roof is supported by two cables as shown in the photo. If the cables 
exert forces FA8 = 100 N and FAc = 120 N on the wall hook at A as 
shown in Fig. 2- 3&1, determine the resultant force acting at A. Express 
the result as a Cartesian vector. 

SOLUTION 
The resultant force FR is shown graphically in Fig. 2- 38b. We can 
express this force as a Cartesian vector by first formulating F AB and 
F AC as Cartesian vectors and then adding their components. The 
directions of F AB and F AC are specified by forming unit vectors u AB 

and u Ac along the cables. These unit vectors are obtained from the 
associated position vectors r AB and r Ac· With reference to Fig. 2- 3&t, 
to go from A to B, we must travel { -4k } m, and then { 4i } m. Thus, 

TAB = { 4i - 4k } m 

rAB = V(4 m)2 + (-4 m)2 = 5.66 m 

(
TAB) ( 4 . 4 ) 

FAB = FAB rAB = (100 N) 5.661 - 5.66 k 

FA8 = {70.7i-70.7k }N 

To go from A to C, we must travel { -4k } m, then { 2j} m, and finally 
{ 4i } m. Thus, 

rAc = { 4i + 2j - 4k} m 
rAc = V(4 m)2 + (2 m)2 + (-4 m)2 = 6 m 

FAc = FAc (~:~) = (120 N) (~i + ~j - ~k) 
= { 80i + 40j - 80k } N 

The resultant force is therefore 

FR= FAB + FAc = {70.7i - 70.7k } N + {80i + 40j - 80k} N 

- { 151i + 40j - 151k} N Ans. 

x 

x 

z 

(a) 
z 

(b) 

Fig. 2-38 
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PRELIMINARY PROBLEMS 
P2-6. In each case, establish a position vector from point 
A to point B. 

Sm 

~ 
A 

x 

A 

T 
3m 

lm 
J 

4m 

x 

x 

z 

,,,--3 m --7-,,,/ 
-:;;r-::,f"------.-----,- Y 

2m 

_I 
B 

(a) 

z 

y 

(b) 

z 

(c) 

Prob. P2-6 

P2-7. In each case, express F as a Cartesian vector. 

z 

F= 15 kN 
x 

(a) 

2m~ 
)' 

2m 

+ x lm 
_i_ 

F= 600N 

(b) 

z 

F= 300N 

T 

x 

(c) 

Prob. P2-7 
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2.8 FORCE VECTOR DIRECTED A LONG A LINE 59 

FUNDAMENTAL PROBLEMS 

F2-19. Express rAs as a Cartesian vector, then determine its 
magnitude and coordinate direction angles. 

3m 
.L fl:--,,' 
A 
2m 

x 

z B 

Prob.F2-19 

F2-20. Determine the length of the rod and the position 
vector directed from A to B. What is the angle 6? 

x )' 

Prob.F2-20 

F2-2L Express the force as a Cartesian vector. 

z 

2m 

x )' 

Prob.F2-21 

F2-22. Express the force as a Cartesian vector. 

z 

F= 900N 

x 

Prob.F2-22 

F2-23. Determine the magnitude of the resultant force 
at A. 

x 

AZ~ 
6m 
I 

Fe= 420N 

I 

y 

Prob.F2-23 

F2-24. Determine the resultant force at A , expressed as a 
Cartesian vector. 

x 

z 
2 ft 

Fe= 490 lb 
·~~t,: _ _:.:~_JCA' 

F8 = 600lb I 

""& r 
/""!!> > 

4ft~ft 
y 

Prob.F2-24 
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60 CHAPTER 2 FORCE VECTORS 

PROBLEMS 

*2-56. Determine the length of the connecting rod AB by 
first formulating a position vector from A to B and then 
determining its magnitude. 

)' 

B 

300mm 

--.,~-h~~~~-P~~~x 

3(f 

Prob. 2-56 

2-57. Express force Fas a Cartesian vector; then determine 
its coordinate direction angles. 

/ 
/ 

/ 

/ 
/ 

/ 

z 
A 

~~~~~~~,..L~~~~..,,..:::::....~--'--"'----~~~~-y 

5 ft 
,,., 

x 

Prob. 2-57 

2-58. Express each force as a Cartesian vector, and then 
determine the magnitude and coordinate direction angles 
of the resultant force. 

z 

c 

/ 
F1 = 801b 

F2 = 50 lb 

x 

Prob. 2-58 

2-59. If F = { 350i - 250j - 450k } N and cable AB is 
9 m long, determine the x, y, z coordinates of point A. 

x 

Prob. 2-59 
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*2-60. The 8-m-long cable is anchored to the ground at A. 
If x = 4 m and y = 2 m, determine the coordinate z to the 
highest point of attachment along the column. 

2-6L The 8-m-long cable is anchored to the ground at A. 
If z = 5 m, determine the location +x, +y of the support at A. 
Choose a value such that x = y. 

z 

)' 

x 

Probs. 2-60/61 

2-62. Express each of the forces in Cartesian vector form 
and then determine the magnitude and coordinate direction 
angles of the resultant force. 

z 

FAc = 400N 
~AB= 250N I 

3m 

71 ___,__._..------;k:---,--~-,-- )' 

2m 

/c B 

,..Lt m 

x 

Prob. 2-62 

2.8 FORCE VECTOR D IRECTED ALONG A LINE 61 

2-63. If Fe = 560 N and Fe = 700 N, determine the 
magnitude and coordinate direction angles of the resultant 
force acting on the flag pole. 

*2-64. If Fe = 700 N, and Fe = 560 N, determine the 
magnitude and coordinate direction angles of the resultant 
force acting on the flag pole. 

z 

Probs. 2-63/64 

2-65. The plate is suspended using the three cables which 
exert the forces shown. Express each force as a Cartesian 
vector. 

z 

A 

FcA = 5001b 

/ 
___./ 

FoA = 400 lb 

x 

Prob. 2-65 
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62 CHAPTER 2 FORCE VECTORS 

2-66. Represent each cable force as a Cartesian vector. 

"2-67. Determine the magnitude and coordinate direction 
angles of the resultant force of the two forces acting at point A. 

y 

x 

Probs. 2-66167 

*2-68. The force F has a magnitude of 80 lb and acts at the 
midpoint C of the rod. Express this force as a Cartesian 
vector. 

3 ft 

A <.-<------,<'---'-/ -

,,L 2ft 

x 

Prob."2-68 

6 ft 

2-69. The load at A creates a force of 60 lb in wire AB. 
Express this force as a Cartesian vector. 

-~-Y 

x 
x 

10 ft 

Prob. "2-69 

2-70. Determine the magnitude and coordinate direction 
angles of the resultant force acting at point A on the post. 

x 

Prob. 2-70 
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2.9 DOT PRODUCT 
Occasionally in statics one has to find the angle between two lines or the 
components of a force parallel and perpendicular to a line. In two 
dimensions, these problems can readily be solved by trigonometry since 
the geometry is easy to visualize. In three dimensions, however, this is 
often difficult, and consequently vector methods should be employed for 
the solution. The dot product, which defines a particular method for 
"multiplying" two vectors, will be used to solve the above-mentioned 
problems. 

The dot product of vectors A and B, written A· B, and read " A dot B," 
is defined as the product of the magnitudes of A and B and the cosine of 
the angle 6 between their tails, Fig. 2- 39. Expressed in equation form, 

I A·B = ABcose I (2- 12) 

where 0° :$ 6 :$ 180°. The dot product is often referred to as the scalar 
product of vectors since the result is a scalar and not a vector. 

The following three Jaws of operation apply. 

1. Commutative Jaw: A · B = B · A 

2. Multiplication by a scalar: a(A · B) = (aA) • B = A · (aB ) 

3. Distributive Jaw: A • (B + D) = (A · B) + (A · D) 

Cartesian Vector Formulation. If we apply Eq. 2- 12, we can find 
the dot product for any two Cartesian unit vectors. For ex.ample, 
i • i = (1)(1) cos 0° = 1 and i • j = (1)(1) cos 90° = 0. If we want to find 
the dot product of two general vectors A and B that are expressed in 
Cartesian vector form, then we have 

A · B = (A.,.i + A1j + Azle) • (B) + Byj + Bzk ) 
= Afix (i · i) + A)3y (i · j ) + Afiz (i · k ) 

+ A>Bx (j · i) + (AyBy (j · j ) + A>Bz (j · k) 
+ AzBx (k • i) + AzBy (k · j ) + AzBz (k • k) 

Carrying out the dot-product operations, the final result becomes 

(2- 13) 

Thus, to determine the dot product of two Cartesian vectors, multiply their 
corresponding x, y, z components and sum these products algebrt1ically. 
The result will be either a positive or negative scalar, or it could be zero. 

2. 9 Dor PRODUCT 63 

Fig. 2-39 
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64 CHAPTER 2 FORCE VECTORS 

Applications. The dot product has two important applications. 

Fig. 2-39 (Repeated) 

The angle () between the rope and the beam 
can be determined by formulating unit 
vectors along the beam and rope and then 
using the dot product, u b • u, = ( 1)(1) cos 8. 

The projection of the cable force F along the 
beam can be determined by first finding the 
unit vector u b that defines this direction. Then 
apply the dot product, Fb = F · ub. 

• The angle formed between two vectors or intersecting lines. The 
angle 6 between the tails of vectors A and B in Fig. 2- 39 can be 
determined from Eq. 2- 12 and written as 

(A·B) 6 = cos- 1 AB 0° ::; 6 ::; 180° 

Here A· B is found from Eq. 2- 13. As a special case, if A· B = 0, 
then 6 = cos- 1 0 = 90° so that A will be perpendicular to B. 

• The components of a vector parallel and perpendicular to a line. 
The component of vector A parallel to or collinear with the line aa 
in Fig. 2-40 is defined by A0 = A cos 6. This component is sometimes 
referred to as the projection of A onto the line, since a right angle is 
formed in the construction. If the direction of the line is specified by 
the unit vector ua, and since u0 = 1, we can determine the magnitude 
of A 0 directly from the dot product (Eq. 2- 12); i.e., 

Aa = A·ua = Acos6 

Hence, the scalar projecti.on of A along a line is determined from the 
dot product of A and the unit vector 0 0 which defines the direction of 
the line. Notice that if this result is positive, then Aa has a directional 
sense which is the same as u0 ; whereas if Aa is a negative scalar, then 
Aa has the opposite sense of direction to ua. 

The component A 0 represented as a vector is therefore 

The perpendicular component of A can also be obtained, Fig. 2-40. 
Since A = A0 + A .L, then A .L = A - Aa . There are two possible ways 
of obtaining A.i. One way would be to determine 6 from the dot product, 
6 = cos- 1(A · uA/A); then A.i = A sin 6. Alternatively, if Aa is known, 
then by the Pythagorean theorem we can also write A.i = V A2 

- A~. 

A.=Acoso u. 

Fig. 2-40 
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IMPORTANT POINTS 

• The dot product is used to determine the angle between two 
vectors or the projection of a vector in a specified direction. 

• If vectors A and B are expressed in Cartesian vector form, the 
dot product is determined by multiplying the respective x, y , z 
scalar components and algebraically adding the results, i.e., 
A · B = AJ3.r + A>BY + AzBz· 

• From the definition of the dot product, the angle formed 
between the tails of vectors A and B is 8 = cos-1 (A · B/AB). 

• The magnitude of the projection of vector A along a line aa 
whose direction is specified by 0 0 is determined from the dot 
product, A0 = A · 0 0 . 

I EXAMPLE 2.13 1 

Determine the magnitudes of the projections of the force F in Fig. 2-41 
onto the u and v axes. 

SOLUTION 

v 

50 

Projections of F 
(a) 

= lOON 

Projections of Force. The graphical representation of the projections 
is shown in Fig. 2-41a. From this figure, the magnitudes of the 
projections of F onto the u and v axes can be obtained by trigonometry: 

(F,,)proj = (100 N)cos 45° = 70.7 N Ans. 

(Fv)proj = (100 N)cos 15° = 96.6 N Ans. 

NOTE: These projections are not equal to the magnitudes of the 
components of force F along the u and v axes found from the 
parallelogram Jaw, Fig. 2-41b. They would only be equal if the u and 
v axes were perpendicular to one another. 

2. 9 Dor PRODUCT 65 

Components of F 

(b) 

Fig. 2-41 
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66 CHAPTER 2 FORCE VECTORS 

I EXAMPLE 2.14 I 

z 

x 

(a) 

The frame shown in Fig. 2-42a is subjected to a horizontal force 
F = {300j} N. Determine the magnitudes of the components of this force 
parallel and perpendicular to member AB. 

z 

x 

(b) 

Fig. 2-42 
SOLUTION 
The magnitude of the projected component of F along AB is equal to 
the dot product of F and the unit vector uB, which defines the direction 
of AB, Fig. 2-42b. Since 

rs 2i + 6j + 3k 
Us = - = = 0.286i + 0.857j + 0.429 k 

rs Y(2)2 + (6)2 + (3)2 
then 

FAS = F COS () = F ·Us = (300j ) · (0.286i + 0.857j + 0.429k) 

= (0)(0.286) + (300)(0.857) + (0)(0.429) 

= 257.1 N Ans. 

Since the result is a positive scalar, F AB has the same sense of direction 
as us, Fig. 2-42b. 

Expressing F AB in Cartesian vector form, we have 

FAS = FAsUs = (257.1 N)(0.286i + 0.857j + 0.429k) 

= {73.5i + 220j + llOk }N 

The perpendicular component, Fig. 2-43b, is therefore 

F .i = F - FAs = 300j - (73.5i + 220j + 110k) 

= { -73.5i + 79.6j - l lOk } N 

Ans. 

Its magnitude can be determined either from this vector or by using 
the Pythagorean theorem, Fig. 2-42b: 

F .L = v F2 - F1'8 = Y(300 N)2 - (257.1 N)2 

= 155 N Ans. 

www.konkur.in



EXAMPLE 2.15 
- -
The pipe in Fig. 2-43a is subjected to the force of F = 80 lb. Determine 
the angle 8 between F and the pipe segment BA, and the projection of 
F along this segment. 

c 
x 

(a) 

SOLUTION 

Angle 6. First we will establish position vectors from B to A and B 
to C; Fig. 2-43b. Then we will determine the angle 8 between the tails 
of these two vectors. 

r8A = { -2i-2j + l k } ft , r8A = 3 ft 

rsc = { -3j + lk } ft, r8c = v'iO ft 
Thus, x 

cos B = r8A·rsc = (-2)(0) + (-2)(-3) + (1)(1) = 0.7379 
rsArsc 3ViQ 

8 = 42.5° Ans. 

Projection of F. The projection of F along BA is shown in 
Fig. 2-43c. We must first formulate the unit vector along BA and force 
F as Cartesian vectors. 

r8A (-2i - 2j + lk) 2. 2 . 1 
U8A = - = = - -1 - -J + -k 

rs A 3 3 3 3 

F = 801{~;~) = 8~-3~lk) = -75.89j + 25.30k 

Thus, 

F8 A = F·u8A = (-75.89j + 25.30k) · (-~i - ~j + ~k) 

= o(-~) + (-75.89\- ~) + (25.30)(~) 
= 59.0 lb Ans. 

NOTE: Since 8 has been calculated, then also, F8A = F cos 8 = 
80 lb cos 42.5° = 59.0 lb. 

x 

2. 9 Dor PRODUCT 

(b) 

(c) 

Fig. 2-43 
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PRELIMINARY PROBLEMS 
P2-8. In each case, set up the dot product to find the 
angle e. Do not calculate the result. 

3 01 

x 

x 

B 

(a) 

z 

(b) 

Prob. P2-8 

P2-9. In each case, set up the dot product to find the 
magnitude of the projection of the force F along a-a axes. 
Do not calculate the result. 

z 
a 

/2m 
,,__ __ ~..........,,--F', ~ 

2m - __,. lm 
x F=300N _L 

(a) 

a 

F= SOON 

x 

(b) 

Prob. P2-9 

www.konkur.in



2. 9 Dor PRODUCT 69 

FUNDAMENTAL PROBLEMS 

FZ-25. Determine the angle 8 between the force and the 
line AO. 

z 

F = 1- 6 i + 9 j + 3 k) kN 

x 

Prob.F2-25 

FZ-26. Determine the angle 8 between the force and the 
line AB. 

z 

-........n 

4m 

x 

Prob.FZ-26 

FZ-27. Determine the angle 8 between the force and the 
line OA. 

FZ-28. Determine the projected component of the force 
along the line OA. 

Probs. FZ-27/28 

FZ-29. Find the magnitude of the projected component of 
the force along the pipe AO. 

z 

)' 

Prob.FZ-29 

F2-30. Determine the components of the force acting 
parallel and perpendicular to the axis of the pole. 

z 

)' 

Prob.F2-30 

F2-3L Determine the magnitudes of the components of the 
force F = 56 N acting along and perpendicular to line AO. 

z 

x 

Prob.F2-31 
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PROBLEMS 

2-7L Given the three vectors A, B, and D, show that 
A · (B + D) = (A · B) + (A· D). 

*2-72. Determine the magnitudes of the components of 
F = 600 N acting along and perpendicular to segment DE 
of the pipe assembly. 

B 

x ~)' 
F= 600N 

Probs. 2-7tn2 

2-73. Determine the angle e between BA and BC. 

2-74. Determine the magnitude of the projected 
component of the 3 kN force acting along axis BC of the pipe. 

z 

y 

D 
x F= 3kN 

Probs. 2-73n4 

2-75. Determine the angle e between the two cables. 

*2-76. Determine the magnitude of the projection of the 
force F1 along cable AC. 

y 

"-'<"<::-- 3 m _ __,, 

x 

Probs. 2-75176 

2-77. Determine the angle e between the pole and the 
wire AB. 

:r 

Prob. 2-77 
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2- 78. Determine the magnitude of the projection of the 
force along the u axis. 

F= 600N 

2m y 

x II 

Prob. 2-78 

2-79. Determine the magnitude of the projected component 
of the 100-lb force acting along the axis BC of the pipe. 

*2-80. Determine the angle 8 between pipe segments BA 
and BC. 

z 
A 

x 

3~ 

~~'" 4:v ~ ft • •• •• -- ··· · 

y""'c--::F~. 100 lb 
)' 

Probs. 2-79/80 

2. 9 Dor PRODUCT 71 

2-81. Determine the angle 8 between the two cables. 

2-82. Determine the projected component of the force 
acting in the direction of cable AC. Express the result as a 
Cartesian vector. 

z 

8ft v 
c 

r 
10 ft 

A 
x 

Probs. 2-81182 

2-83. Determine the angles 8 and <f> between the flag pole 
and the cables AB and AC. 

x 

z 

l.501 
/ 

Prob.2-83 

y 
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*2-84. Determine the magnitudes of the components of F 
acting along and perpendicular to segment BC of the pipe 
assembly. 

2-85. Determine the magnitude of the projected 
component of F along line AC. Express this component as a 
Cartesian vector. 

2~. Determine the angle () between the pipe segments 
BA and BC. 

y 

Probs. 2-84185/86 

2-87. If the force F= 100 N lies in the plane DBEC. which 
is parallel to the x-z plane. and makes an angle of 10" with 
the extended line DB as shown. determine the angle that F 
makes with the diagonal AB of the crate. 

Prob. 2-87 

*2-88. Determine the magnitudes of the components of 
the force acting parallel and perpendicular to diagonal AB 
of the crate. 

Prob. 2-88 
2-89. Determine the magnitudes of the projected 
components of the force acting along the x and y axes. 

2-90. Determine the magnitude of the projected 
component of the force acting along line OA. 

x 

Probs. 2-89/90 
2-91. Two cables exert forces on the pipe. Determine the 
magnitude of the projected component of F1 along the line 
of action of F2• 

*2-92. Determine the angle() between the two forces. 
z 

x 

F1 = 30 lb 

Probs. 2-91192 
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CHAPTER REVIEW 

A scalar is a positive or negative number; 
e.g. , mass and temperature. 

A vector has a magnitude and direction. 
where the arrowhead represents the 
sense of the vector. 

Multiplication or division of a vector by a 
scalar will change only the magnitude of 
the vector. If the scalar is negative, the 
sense of the vector will change so that it 
acts in the opposite direction. 

If vectors are collinear, the resultant is 
simply the algebraic or scalar addition. 

Parallelogram Law 

Two forces add according to the 
parallelogram law. The components form 
the sides of the parallelogram and the 
resu/10111 is the diagonal. 

To find the components of a force along 
any two axes, extend lines Crom the head 
of the force. parallel to the axes, to form 
the components. 

Two force components can be added 
tip-to-tail using the triangle rule, and 
then the law of cosines and the law of 
sines can be used to calculate unknown 
values. 

R - A+ B 

FR= V FT + F~ - 2F1F2cos8R 

Fi F2 FR --=--=--

CHAPTER REVlEW 73 

A B 

a 

\ 
Resultant 

c---- - - - --1 

Components 
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74 CHAPTER 2 FORCE VECTORS 

Redangular Components: 1\vo Dimensions 

Vectors F, and F,. are rectangular components 
ofF. 

The resultant force is determined from the 
algebraic sum of its components. 

(FR\ = 'i.F, 

(FR)y = 'i.F>, 

FR = V(FR); + (FR); 

(FR)y 
8 = tan- I 

Cartesian Vectors 

The unit vector u has a length of 1, no units, and 
it points in the direction of the vector F. 

A force can be resolved into its Cartesian 
components along the x, y, z axes so that 
F = F) + F,J + F)r.. 

The magnitude of F is determined from the 
positive square root of the sum of the squares of 
its components. 

The coordinate direction angles a , /3. 1' are 
determined by formulating a unit vector in the 
direction of F. The x, y, z components of 
u represent cos a , cos /3,cos 1'· 

y 

F, 

y y 

F1.r 
F11 

~,,, ·1 t ,' 7

1 F2x 
,, 

,.,,...-' .. Ft.r - ,, 

.. F.lT 
' FJ)' '~ 

F 
u = -

F 

z 

I 
F, k 

F 

F =VF}+ F} + F} 

F F, F,. F, 
u = F = y i + Fj + f.k 

- )1 

u = cosa i + cosf3 j + cosy k 
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The coordinate direction angles are 
related. so that only two of the three 
angles arc independent of one another. 

To find the resultant of a concurrent force 
system. express each force as a Cartesian 
vector and add the i.j , k components of all 
the forces in the system. 

Position and Force Vectors 

A position vector locates one point in space 
relative to another. The easiest way to 
formulate the components of a position 
vector is to determine the distance and 
direction that one must travel along the 
x, y, and z directions-going from the tai l to 
the head of the vector. 

If the line of action of a force passes 
through points A and 8, then the force 
acts in the same direction u as the 
position vector r extending from A to 8. 
Knowing F and u. the force can then be 
expressed as a Cartesian vector. 

Dot Product 

The dot product between two vectors A 
and B yields a scalar. If A and B arc 
expressed in Cartesian vector form, then 
the dot product is the sum of the products 
of their x,y, and z components. 

The dot product can be used to determine 
the angle between A and B. 

The dot product is also used to 
determine the projected component of a 
vector A onto an axis aa defined by its 
unit vector u •. 

coi1 a + cos2 f3 + cos2 1' = 1 

+ (yB - YA)j 

+ (l/i - ZA)k 

F =Fo =F(~) 

A· B = ABcos8 

= A,Bx + A/Jy + A:!J, 

(
A· B) 8 = cos- 1 
AB 

A. = A cos 8 u,, = (A • u0 )u0 

x 

a 

CHAPTER REVIEW 75 

11::,_---J:=:i==~=::.....-y 
(yB - YA)j 

A0 = A cos 0 0 0 

Da --. - a 
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REVIEW PROBLEMS 

R2-1. Determine the magnitude of the resultant force FR 
and its direction, measured clockwise from the positive 
u axis. 

Prob. R2-1 

R2-2. Resolve the force into components along the u and 
v axes and determine the magnitudes of these components. 

v 

F= 250N 

/ 
~" 

Prob. R2-2 

R2-3. Determine the magnitude of the resultant force 
acting on the gusset plare. 

/ 
/ F4 = 300 lb 

x s 
4 

F3 = 300 lb 

Prob. R2-3 

/ 
Fi= 200 lb 

*R:Z-4. The cable exerts a force of 250 lb on the crane 
boom as shown. Express this force as a Cartesian vector. 

z 

F= 250lb 

Prob. R2-4 
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R2-5. The cable attached to the tractor at B exerts a force 
of 350 lb on the framework. Express this force as a Cartesian 
vector. 

x 

Prob. R2-5 

R2~. Express F1 and F2 as Cartesian vectors. 

Prob. R2-6 

REVIEW PROBLEMS 77 

R2-7. Determine the angle 8 between the edges of the 
sheet-metal bracket. 

z 

1-400 mm ____ J 

l 
x __ _ 

y 

Prob. R2-7 

*R2-8. Determine the projection of the force F along 
the pole. 

F = l2i + 4j + tot } kN 

Prob. R2-8 
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CHAPTER 3 

(©Rolf Adlercreutz/Alamy) 

The force applied to this wrench will produce rotation or a tendency for rotation. 
This effect is called a moment, and in this chapter we will study how to determine 
the moment of a system of forces and calculate their resultants. 
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FORCE SYSTEM 
RESULTANTS 

CHAPTER OBJECTIVES 

• To discuss the concept of the moment of a force and show how 
to calculate it in two and three dimensions. 

• To provide a method for finding the moment of a force about a 

specified axis. 

• To define the moment of a couple. 

• To show how to find the resultant effect of a nonconcurrent 

force system. 

• To indicate how to reduce a simple distributed loading to a 

resultant force acting at a specified location. 

3.1 MOMENT OF A FORCE-SCALAR 
FORMULATION 

When a force is applied to a body it will produce a tendency for the body to 
rotate about a point that is not on the line of action of the force. This tendency 
to rotate is sometimes called a torque, but most often it is called the moment 
of a force or simply the moment. For example, consider applying a force to 
the handle of the wrench used to unscrew the bolt in Fig. 3-la. The magnitude 
of the moment is directly proportional to the magnitude of F and the 
perpendicular distance or moment arm d. The larger the force or the longer 
the moment arm, the greater the moment or turning effect. If the force F is 
applied at an angle(} ¥ 90°, Fig. 3-lb, then it will be more difficult to turn 
the bolt since the moment arm d' = d sin(} will be smaller than d. If F is 
applied along the handle, Fig. 3-lc, its moment arm will be zero since the line 
of action of F will intersect point 0 (the z axis). As a result, the moment of 
F about 0 is also zero and no turning can occur. 

z 

z 

z 

(a) 

(b) 

(c) 

Fig. 3-1 
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80 CHAPTER 3 FORCE SYSTEM RESULTANTS 

F 

(a) Sense of rotation 

(b) 

Fig. 3-2 

Fig. 3-3 

In general, if we consider the force F and point 0 to lie in the shaded 
plane shown in Fig. 3-2a, the moment Mo about point 0, or about an 
axis passing through 0 and perpendicular to the plane, is a vector quantity 
since it has a specified magnitude and direction. 

Magnitude. The magnitude of M0 is 

(3- 1) 

where d is the moment arm or perpendicular distance from the axis at 
point 0 to the line of action of the force. Units of moment magnitude 
consist of force times distance, e.g., N · m or lb· ft. 

Direction. The direction of Mo is defined by its moment axis, which is 
perpendicular to the plane that contains the force F and its moment arm d. 
The right-hand rule is used to establish the sense of direction of M0 , where 
the natural curl of the fingers of the right hand, as they are drawn towards the 
palm, represents the rotation, or the tendency for rotation caused by the 
moment. Doing this, the thumb of the right hand will give the directional sense 
of M0 , Fig. 3-2a. Here the moment vector is represented three-dimensionally 
by a curl around an arrow. In two dimensions this vector is represented only 
by the curl, as in Fig. 3-2b. Since this produces counterclockwise rotation, the 
moment vector is actually directed out of the page. 

Resultant Moment. For two-dimensional problems, where all the forces 
lie within thex-y plane, Fig. 3-3, the resultant moment (MR)o about point 0 
(the z axis) can be determined by finding the algebraic sum of the moments 
caused by all the forces in the system. As a convention, we will generally 
consider positive moments as counterclockwise since they are directed along 
the positive z axis (out of the page). C/.ockwise moments will be negative. 
The directional sense of each moment can be represented by a plus or minus 
sign. Using this sign convention, with a symbolic curl to define the positive 
direction, the resultant moment in Fig. 3-3 is therefore 

If the numerical result of this sum is a positive scalar, (MR)owill be a 
counterclockwise moment (out of the page); and if the result is negative, 
(MR)owill be a clockwise moment (into the page). 

www.konkur.in



3.1 MOMENT OF A FORCE- SCALAR FORMULATION 81 

EXAMPLE 3.1 
- -

For each case illustrated in Fig. ~, determine the moment of the force 
about point 0. 

SOLUTION (SCALAR ANALYSIS) 
The line of action of each force is extended as a dashed line in order to 
establish the moment arm d. Also illustrated is the tendency of rotation 
of the member as caused by the force, and the orbit of the force about 0 
is shown as a colored curl. Thus, 

Fig. 3-4a M0 = (100N)(2m) = 200N · m) Ans. 

Fig. 3-4b M0 = (50 N)(0.75 m) = 37.5 N · m) Ans. 

Fig. 3-4c Mo = (40 Jb)(4 ft+ 2 cos 30° ft) = 229 Jb · ft) Ans. 

Fig. 3-4d Mo = (60 Jb)(l sin 45° ft) = 42.4 lb · ft ) Ans. 

Fig. 3-4e Mo = (7 kN)(4 m - 1 m) = 21.0 kN · m) Ans. 

0 ~ ) 

2ttA 

q(o\.) :~40 1b 
0 f:=t==:;;;;;;;;;;;;;;;;;o~~ 1 

0.75 m 

1~'---- SON 
(b) 

i-----3 ft ----11 
0 I)_ ----_'ili·.' ·"r,." 

601b 

(d) 

Fig. 3-4 

I 

1--4 ft---1---: 
2 cos 30" ft 

(c) 

1-201-I 

4m 

0 

' lm 
~--'--7kN 

(e) 

lOON 

! 
2m 

(a) 
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I EXAMPLE 3.2 

y 

SON 

2m !~ 
60N 

- - - _;...;3m-~,;;,...- 20N 
"-/ 

40N 

Fig. 3-5 

F 

Determine the resultant moment of the four forces acting on the rod 
shown in Fig. 3- 5 about point 0. 

SOLUTION 
Assuming that positive moments act m the +k direction, 1.e., 
counterclockwise, we have 

C + (MR)o = 2Fd; 

(MR)o = - 50 N(2 m) + 60 N(O) + 20 N(3 sin 30° m) 

- 40 N(4 m + 3 cos 30° m) 

(MR)
0 

= - 334 N · m = 334N · m ;> Ans. 

For this calculation, note how the moment-arm distances for the 20-N 
and 40-N forces are established from the extended (dashed) lines of 
action of each of the forces. 

The force F tends to rotate the beam clockwise about its 
support at A with a moment MA = FdA. The actual rotation 
would occur only if the support at B were removed. 

The ability to remove the nail will require 
the moment of F,, about point 0 to 
be larger than the moment of the force 
F,, about 0 that is needed to pull the 
nail out. 
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3. 2 CROSS PRODUCT 
The moment of a force will be formulated using Cartesian vectors in the 
next section. Before doing this, however, it is first necessary to expand our 
knowledge of vector algebra and introduce the cross-product method of 
vector multiplication. 

The cross product of two vectors A and B yields the vector C, which 
is wrinen as 

C=AX B (3-2) 

and is read "C equals A cross B." 

Magnitude. The magnitude of C is defined as the product of the 
magnitudes of A and B and the sine of the angle 8 between their tails, 
where 0° < fJ s 1800. Thus, 

C =AB sin 8 

Direction. Vector Chas a direction that is perpendicular to the plane 
containing A and B such that the directional sense of C is specified by 
the right-hand rule; i.e., curling the fingers of the right hand from 
vector A (cross) to vector B, the thumb points in the direction of C, as 
shown in Fig. 3~. 

Knowing both the magnitude and direction of C, we can therefore write 

C = A x B = (A B sin 8)uc (3-3) 

The terms of Eq. 3-3 are illustrated graphically in Fig. 3-6. 

C = A X B 

B 

Fig. 3-6 

3.2 CROSS PRODUCT 8 3 
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C = A X B 

8 

A 

-C = B X A 

Fig. 3-7 

z 

k = i X j 

x / 

Fig. 3-8 

Fig. 3-9 

The following three Jaws of operation apply. 
• The commutative Jaw is not valid; i.e., A x B ~ B x A. Rather, 

A x B =-B x A 

This is shown in Fig. 3-7 by using the right-hand rule. The cross 
product B x A yields a vector that has the same magnitude but acts 
in the opposite sense of direction to C; i.e., B x A = -C. 

• If the cross product is multiplied by a scalar a, it obeys the associa
tive Jaw; 

• 

a(A x B) = (aA ) x B = A x (aB) = (A x B)a 

This property is easily shown since the magnitude of the resultant 
vector (I a I AB sin 8) and its sense of direction are the same in each 
case. 

The vector cross product also obeys the distributive Jaw of addition, 

A x (B + D) = (A x B) + (A x D) 

It is important to note that proper order of these cross products 
must be maintained since they are not commutative. 

Cartesian Vector Formulation. Equation 3- 3 may be used to 
find the cross product of any pair of Cartesian unit vectors. For example, 
to find i x j , the magnitude of the resultant vector is 
(i)(j)(sin 90°) = (1)(1)(1) = 1, and its direction is determined using the 
right-hand rule, Fig. 3-8. Here the resultant vector points in the +k 
direction so that i x j = (l)k. In a similar manner, 

i X j =k i x k = - j i X i=O 

j X k=i j X i= - k j X j =0 
k X i=j k x j - -i k X k=O 

These results should not be memorized; rather, it should be clearly 
understood how each is obtained by using the right-hand rule and the 
definition of the cross product. A simple scheme shown in Fig. 3- 9 can 
sometimes be helpful for obtaining the same results when the need 
arises. If the circle is constructed as shown, then "crossing" two unit 
vectors in a counterclockwise fashion around the circle yields the positive 
third unit vector; e.g. , k x i = j. "Crossing" clockwise, a negative unit 
vector is obtained; e.g. , i x k = - j. 
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Let us now consider the cross product of vectors A and B which are 
expressed in Cartesian vector form. We have 

A X B = (Axi + A,,j + Azk) x (B .. i + B,,j + Bzk) 

- A..B .. (i x i) + A..B,,(i x j ) + A .. Bz(i x k) 

+ A,, B .. (j x i) + A,,B,,(j x j ) + A,,Bz(j x k) 

+ A:B..(k x i) + A,B,,(k x j ) + AzBz(k x k) 

Carrying out the cross-product operations and combining terms yields 

This equation may also be written in a more compact determinant 
form as 

j k 

(3-5) 

Thus, to find the cross product of A and B, it is necessary to expand a 
determinant whose first row of elements consists of the unit vectors i, j , 
and k and whose second and third rows represent the x, y, z components 
of the two vectors A and B, respectively.* 

•A determinant having three rows and three columns can be expanded using three minors, 
each of which is multiplied by one of the three terms in the first row. There are four 
elements in each minor. for example. 

By definition. this determinant notation represents the terms (A11A 22 - A1i}l21), which is 
simply the product of the two elements intersected by the arrow slanting downward to the 
right (A11A22) mi1111s the product of the two elements intersected by the arrow slanting 
downward to the left (A1;021). For a 3 X 3 determinant. such as Eq. 3-5. the three minors 
can be generated in accordance with the following scheme: 

fo• olom"I lo m -l (A,B, -,.....A_,B_>_.) __ __, 

? ' Remember the 
. ~ negative sign 

Fo"lomoo< j ~ ' , -j(A,B, - A ,B, ) 
B 1 B, 

For element k: ~! = k(A,81 - AyB,) 

Adding these results and noting that the j element must include 1he mi1111s sign yields the 
expanded form of A x B given by Eq. ~-

3.2 CROSS PRODUCT 85 
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Moment axis 

F 

(a) 

Moment axis 

~ t Mo 

dQ 
0 

F 

(b) 

Fig. 3-10 

_ .. t) M0 = r 1 X F = r2 X F = r3 X F 

I 

0 

F 
Line of action 

Fig. 3-11 

3.3 MOMENT OF A FORCE-VECTOR 
FORMULATION 

The moment of a force F about point 0 , Fig. 3- lOa, can be expressed using 
the vector cross product, 

Mo = r x F (3-6) 

Here r is a position vector directed from 0 to any point on the line of 
action of F. We will now show that indeed the moment M 0 , when 
determined by this cross product, has the proper magnitude and direction. 

Magnitude. The magnitude of the cross product is defined from 
Eq. 3- 3 as M0 = rF sin 8, where the angle 8 is measured between the 
tails of r and F. To establish this angle, r must be treated as a sliding 
vector so that 8 can be constrUJcted properly, Fig. 3- lOb. Since the moment 
arm d = r sin 8, then 

Mo = rFsin 8 = F(rsin 8) = Fd 

which agrees with Eq. 3- 1. 

Direction. The direction an d sense of Mo in Eq. 3- 6 are determined 
by the right-hand rule as it applies to the cross product. Thus, sliding 
r to the dashed posit ion and curling the right-hand fingers from r 
towards F, "r cross F," the thumb is directed upward or perpendicular 
to the plane containing r and F and this is in the same direction as 
M0 , the moment of the force about point 0 , Fig. 3- lOb. Remember 
that the cross product does not obey the commutative Jaw, and so the 
order of r x F must be mai ntained to produce the correct sense of 
direction for M 0 . 

Principle of Transmissibility. The cross product operation is often 
used in three dimensions since the perpendicular distance or moment 
arm from point 0 to the line of action of the force is not needed. In other 
words, we can use any position vector r measured from point 0 to any 
point on the line of action of the force F, Fig. 3- 11. Thus, 

M0 = r1 x F = r2 x F = r3 x F 

Since F can be applied at any point along its line of action and still create 
this same moment about point 0, then F can be considered a sliding 
vector. This property is called the principle of transmissibility of a force. 
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3.3 MOMENT OF A FORCE-VECTOR FORMULATION 

Cartesian Vector Formulation. If we establish x, y, z coordinate 
axes, then the position vector r and force F can be expressed as Cartesian 
vectors, Fig. 3-12a. Then applying Eq. 3- 5 we have 

i j k 
Mo= r x F = rx ry r-

F,, F, E 

where 

r,., r,,, r: represent the x, y, z components of the position 
vector drawn from point 0 to any point on the 
line of action of the force 

(3-7) 

Fx, F,,, Fz represent the x, y, z components of the force vector 

If the determinant is expanded, then like Eq. 3-4 we have 

The physical meaning of these three moment components becomes 
evident by studying Fig. 3-12b. For example, the i component of M o 
can be determined from the moments of Fx, F,,, and Fi about the x axis. 
The component Fx does not create a moment or tendency to cause 
turning about the x axis since this force is parallel to the x axis. The line 
of action of F,. passes through point B, and so the magnitude of the 
moment of F,, about point A on the x axis is r~F,· By the right-hand rule 
this component acts in the negative i direction. Likewise, Fz passes 
through point C and so it contributes a moment component of r,.Fz i 
about the x axis. Thus, (Mo)x = (r,.F,. - r4 F,) as shown in Eq. 3-8. As 
an exercise, try to establish the j and k components of M 0 in this 
manner and show that indeed the expanded form of the determinant, 
Eq. 3-8, represents the moment of F about point 0. Once M o is 
determined, realize that it will always be perpendicular to the shaded 
plane containing vectors r and F, Fig. 3- 12a. 

Resultant Moment of a System of Forces. If a body is acted 
upon by a system of forces, Fig. 3-13, the resultant moment of the forces 
about point 0 can be determined by vector addition of the moment of 
each force. This resultant can be written symbolically as 

{3-9) 

Moment 

axis\ 

Mo\ ~ 

/ x 

/ 
.r 

(a) 

(b} 

Fig. 3-12 

Fig. 3-13 

87 

F 

y 

--- Y 

F, 
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I EXAMPLE 3.3 

z Determine the moment produced by the force Fin Fig. 3-14a about 

x 

x 

(a) 

(b) 

Fig. 3-14 

point 0. Express the result as a Cartesian vector. 

SOLUTION 
As shown in Fig. 3-l4b, either rA or rs can be used to determine the 
moment about point 0. These position vectors are 

rA = {12k} m rs = {4i + 12j} m 

Force F expressed as a Cartesian vector is 

F = Fu As = 2kN 
[ 

{4i + 12j - 12k} m ] 

V(4m)2 + (12m)2 + (-12m)2 

= {0.4588i + 1.376ji - 1.376k} kN 

Thus 

or 

i 

M o = rA X F = 0 

j 
0 

k 

12 
0.4588 1.376 -1.376 

= (0(-1.376) - 12(1.376)]i - (0(-1.376) - 12(0.4588)]j 

+ (0(1.376) - 0(0.4588)]k 

= {-16.5i + 5.5lj} kN · m 

i j k 

M 0 =rs x F = 4 12 0 
0.4588 1.376 -1.376 

= (12(-1.376) - 0(1.376)]i - (4(-1.376) - 0(0.4588)]j 

+ (4(1.376) - 12(0.4588)]k 

= {-16.5i + 5.5lj} kN · m 

Ans. 

Ans. 

NOTE: As shown in Fig. 3- 14b, M o acts perpendicular to the plane 
that contains F, rA, and r s. Had this problem been worked using 
Mo = Fd, notice the difficulty that would arise in obtaining the 
moment arm d. 
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3.3 MOMENT OF A FORCE- V ECTOR FORMULATION 

I EXAMPLE 3.4 

Two forces act on the rod shown in Fig. 3-15a. Determine the resultant 
moment they create about the flange at 0. Express the result as a 
Cartesian vector. 

F1 = {- 60i + 40j + 20k} lb 

0 

x 

B 
F2 = {80i + 40j - 30k} lb 

(a) (b} 

SOLUTION 
Position vectors are directed from 0 to each force as shown m 
Fig. 3-15b. These vectors are 

TA = {5j } ft 

r8 = {4i + 5j - 2k} ft 
Moment 

axis 

The resultant moment about 0 is therefore 

(MR)o = I(r X F) 

= r A x F1 + r8 x F2 

i j k i j k 
- 0 5 0 + 4 5 - 2 

- 60 40 20 80 40 -30 

= [5(20) - 0( 40)Ji - [O]j + (0( 40) - (5)(-60)Jk 

x 

(c) 

+ [5(-30) - (-2)(40)J i - (4(- 30) - (- 2)(80)J j + (4(40) - 5(80)Jk 

= {30i - 40j + 60k} lb . ft Ans. 

NOTE: This result is shown in Fig. 3- 15c. The coordinate direction 
angles were determined from the unit vector for (MR)

0
. Realize that 

the two forces tend to cause the rod to rotate about the moment axis 
in the manner shown by the curl indicated on the moment vector. 

Fig. 3-15 

89 

www.konkur.in



90 CHAPTER 3 FORCE SYSTEM RESULTANTS 

r 

0 

Fig. 3-16 

0 

Fig. 3-17 

The moment of the force about point 0 is 
Mo = Fd. But it is easier to find this moment 
using Mo = f.(O) + Fyr = Fyr. 

3.4 PRINCIPLE OF MOMENTS 
A concept often used in mechanics is the principle of moments, which is 
sometimes referred to as Varignon's theorem since it was originally 
developed by the French mathematician Pierre Varignon (1654-1722). It 
states that the moment of a force about a point is equal to the sum of the 
moments of the components of the force about the point. This theorem can 
be proven easily using the vector cross product since the cross product obeys 
the distributive law. For example, consider the moments of the force F and 
twoofitscomponentsaboutpointO, Fig.3-16.Since F = F1 + F2 wehave 

M 0 = r x F = r x (F1 + F2) = r x F1 + r x F2 
I I 

moment of force moment of components 
For two-dimensional problems, Fig. 3- 17, we can use the principle of 
moments by resolving the force into any two rectangular components 
and then determine the moment using a scalar analysis. Thus, 

M 0 = F.y-F.x x y 

The following examples will show that this method is generally easier 
than finding the same moment using M0 = Fd. 

IMPORTANT POINTS 

• The moment of a force creates the tendency of a body to turn 
about an axis passing through a specific point 0. 

• Using the right-hand rule, the sense of rotation is indicated by the 
curl of the fingers, and the thumb produces the sense of direction 
of the moment. 

• The magnitude of the moment is determined from M0 = Fd, 
where d is called the moment arm, which represents the 
perpendicular or shortest distance from point 0 to the line of 
action of the force. 

• In three dimensions the vector cross product is used to determine 
the moment, i.e., M o = r x F. Here r is directed from point 0 to 
any point on the line of action of F. 

• In two dimensions it is often easier to use the principle of 
moments and find the moment of the force's components about 
point 0 , rather than using M0 = Fd. 
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3.4 PRINCIPLE OF MOMENTS 

I EXAMPLE 3.5 

Determine the moment of the force in Fig. 3- 18a about point 0. 

y 

- d, = 3cos30°m -I 
F, = (5 kN) cos 45° 

---"""A"7~ I 
d1 = 3 sin 30" m 

I 
0 

(a) (b) 

SOLUTION I 
The moment arm din Fig. 3- 18a can be found from trigonometry. 

d = (3 m) sin 75° = 2.898 m 

Thus, 

M0 = Fd = (5 kN)(2.898 m) = 14.5 kN · m) Ans. 

Since the force tends to rotate or orbit clockwise about point 0 , the 
moment is directed into the page. 

SOLUTION II 
The x and y components of the force are indicated in Fig. 3- 18b. 
Considering counterclockwise moments as positive, and applying the 
principle of moments, we have 

C + M0 = -Frdy - f'ydx 

= -(5 cos 45° kN)(3 sin 30° m) - (5 sin 45° kN)(3 cos 30° m) 

= -14.5 kN · m = 14.5 kN · m ) Ans. 

SOLUTION Ill 
The x and y axes can be oriented parallel and perpendicular to the 
rod's axis as shown in Fig. 3-18c. Here~. produces no moment about 
point 0 since its line of action passes through this point. Therefore, 

C + Mo = -F,,dx 

= -(5 sin 75° kN)(3 m) 

= -14.5kN·m = 14.5kN · m) Ans. 

0 

F, = (5 kN) cos 75° 
y 

(c) 

Fig. 3-18 

91 
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I EXAMPLE 3.6 

y 

0.2m 

~i---~--"'V.-1 
0.4 m _J\ 

~ 
(c) 

Fig. 3-19 

F 

Force Facts at the end of the angle bracket in Fig. 3-19a. Determine 
the moment of the force about point 0. 

SOLUTION I (SCALAR ANALYSIS) 
The force is resolved into its x and y components, Fig. 3-19b, then 

or 

(. + M0 = 400 sin 30° N(0.2 m) - 400 cos 30° N(0.4 m) 

= -98.6 N · m = 98.6 N · m ) 

M o = {-98.6k} N · m 

SOLUTION II (VECTOR ANALYSIS) 

Ans. 

Using a Cartesian vector approach, the force and position vectors, 
Fig. 3-19c, are 

r = {0.4i - 0.2j} m 

F = (400 sin 30°i - 400 cos 30°j) N 

= {200.0i - 346.4j} N 

The moment is therefore 

i 
M 0 = r x F = 0.4 

j k 
-0.2 0 

200.0 - 346.4 0 

= Oi - Oj + (0.4(-346.4) - (-0.2)(200.0)Jk 

= {-98.6k} N · m Ans. 

NOTE: The scalar analysis (Solution I) provides a more convenient 
method for analysis than Solution II since the direction of the 
moment and the moment arm for each component force are easy to 
establish. For this reason, this method is generally recommended for 
solving problems in two dimensions, whereas a Cartesian vector 
analysis is generally recommended only for solving three
dimensional problems. 
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PRELIMINARY PROBLEMS 

P3-L In each case, determine the moment of the force 
about point 0. 

lOON 0 

P3-2. In each case, set up the determinant to find the 
moment of the force about point P. 

z 

l 
I 

l-- 3m -

~, _ __.I. J 1:m F = l- 3i + 2j + Sk)kN 

(a) 

lOON 

'k I 2 
1-lm- I 3m ----1 

(b) 

SOON 

t~o ------(',Jf 
I 2m-I 

(c) 

l-2m-l--3m--I 0 
4 s 

3 

SOON 

(d) 

;fi-1 - 2 m--il 

SOON 

(g) 

11---3 m ----1 
0 lr-======i -, 

SOON 

lm 
_l_ 

lm 
'l_ _ _JJ_ 
1-tm-I 
(h) 

1- lm- -I 
2m 

0 1 
(i) 

;1·~\1--_ -_ -_ -_---S -m==--=--=--=-~__,I O 

lOON 

(e) 

O ~===~=l::iO~O =N==J 
l-2m~1-- 3m-J 

(f) 

Prob. P3-1 

x 

(a) 

z 

x 

F = l2i - 4j - 3k) kN 

(b) 

z 

F = {- 2i + 3j + 4k} kN 

x 

(c) 

Prob. P3-2 
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FUNDAMENTAL PROBLEMS 

F3-1. Determine the moment of the force about point 0. 

0 

lOON 

~ =1 
2m 

_I 
\ 1---Sm ---1 

Prob.F3-l 

F3-2. Determine the moment of the force about point 0. 

F=300N 

0 

~0.4m--I 
Prob.F3-2 

F3-3. Determine the moment of the force about point 0. 

4ft-I/~ 

0 

6001b 

Prob.F3-3 

F:>-4. Determine the moment of the force about point 0. 

Prob. F:>-4 

F3-S. Determine the moment of the force about point 0. 

6001b 

\ 
Prob.F3-S 

F3-6. Determine the moment of the force about point 0. 

SOON 

Prob.F3-6 
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F3-7. Determine the resultant moment produced by the 
forces about point 0. 

SOON 

600N 

Prob. FJ-7 

FJ-8. Determine the resultant moment produced by the 
forces about point 0. 

F1 = 500N 

I 
0.25m 

1 
0 

Prob. FJ-8 

• 3-1<. Determine the resultant moment produced by the 
forces about point 0. 

F2 = 200 lb I 6f1--

-30° 
F1 = 300 1b 

Prob. F3-9 

3.4 PRINCIPLE OF MOMENTS 95 

£3-10. Determine the moment of force F about point 0. 
Express the result as a Cartesian vector. 

0 

y 

? 1b 13-. 

l3-11. Determine the moment of force F about point 0. 
Express the result as a Cartesian vector. 

F= 1201b 

B 

r-
2 fl 

............. y 
x 

Yr• • >-11 

.3-U. If F1 = POOi - 120j + 75kJ lb and F2 = 
(-200i + 250j + IOOkJ lb, determine the resultant moment 
produced by these forces about point 0. Express the result 
as a Cartesian vector. 

z 

y 

Prob. FJ-12 
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PROBLEMS 

3-L Prove the distributive Jaw for the vector cross 
product, i.e., A x (B + D) = (A x B) + (A x D). 

3-2. Prove the triple scalar product identity 
A· (B x C) =(A x B)-C. 

3-3. Given the three nonzero vectors A, B, and C, show 
that if A · (B x C) = 0, the three vectors must lie in the 
same plane. 

*3-4. Determine the moment about point A of each of the 
three forces acting on the beam. 

3-5. Determine the moment about point B of each of the 
three forces acting on the beam. 

F1 = 375 lb F2 = 500 lb 

A 

8ft-+-6ft+5ft 

F3 = 160 lb 

Probs. 3-4/5 

3-6. The crowbar is subjected to a vertical force of P = 25 lb 
at the grip, whereas it takes a force of F = 155 lb at the claw 
to pull the nail out. Find the moment of each force about 
point A and determine if P is sufficient to pull out the nail. 

p ' 
,;? -

14 in. 

Prob.3-6 

3- 7. Determine the moment of each of the three forces 
about point A. 

*3-8. Determine the moment of each of the three forces 
about point B. 

F 1 =250N 3Cl° 

2 m-J---3 m--+---1 

4m 

Probs. 3-718 

3-9. Determine the moment of each force about the bolt 
at A. Take F8 = 40 lb, Fe = 50 lb. 

3-10. If F8 = 30 lb and Fe = 45 lb, determine the 
resultant moment about the bolt at A. 

Probs. 3-9/10 
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3-11. The cable exerts a force of P = 6 kN at the end 
of the 8-m-long crane boom. If 8 = 300. determine the 
placement x of the hook at B so that this force creates a 
maximum moment about point 0. Whal is this moment? 

*3-U . The cable exerts a force of P = 6 kN at the end of 
the 8-m-long crane boom. If x = 10 m, determine the angle 8 
of the boom so that this force creates a maximum moment 
about point 0. What is this moment? 

A 

'----x·-----

Probs. 3-11/12 

3-13. The 20.N horizontal force acts on the handle of the 
socket wrench. What is the moment of this force about point B. 
Specify the coordinate direction angles a, {3, 'Y of the moment 
axis. 

3-14. 111e 20-N horizontal force acts on the handle of the 
socket wrench. Determine the moment of this force about 
point 0. Specify the coordinate direction angles a , {3, y of 
the moment axis. 

20N 
( 200mm 

/ B 

y 

Probs. 3-13114 
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3-15. Two men exert forces of F = 80 lb and P = SO lb on 
the ropes. Determine the moment of each force about A. 
Which way will the pole rotate, clockwise or counterclockwise? 

*3-16. If the man at B exerts a force of P = 30 lb on the 
rope, determine the magnitude of the force F the man at C 
must exert to prevent the pole from rotating. i.e., so the 
resultant moment about A of both forces is zero. 

I 
6rt 

_I 
F 

12 rt 

c 

A 

Probs. 3-15116 

3-17. ' Ille torque wrench ABC is used to measure the 
moment or torque applied to a bolt when the bolt is located 
at A and a force is applied to the handle at C. The mechanic 
reads the torque on the scale at B. If an e:>.1ension AO of 
length dis used on the wrench, determine the required scale 
reading if the desired torque on the bolt at 0 is to be M. 

F 
/11 

B 4 ~ 
A 

s ~ 0 1-d I c 

Prob. 3-17 
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3-18. The tongs are used to grip the ends of the drilling pipe. 
Determine the torque (moment) Mp that the applied force 
F = 150 lb exerts on the pipe about point P as a function of 8. 
Plot this moment Mp versus 8 for (J' s 8 < 90". 

3-19. The tongs arc used to grip the ends of the drilling 
pipe. If a torque (moment) of MP = 800 lb· ft is needed 
at P to turn the pipe. determine the cable force F that must 
be applied to the tongs. Set 8 = 30°. 

F 

1-----43 in. ------1 

Probs. 3-18/19 

*3-20. The handle of the hammer is subjected to the force 
of F = 20 lb. Determine the moment of this force about the 
point A. 

3-21. In order to pull out the nail at B, the force F exerted 
on the handle of the hammer must produce a clockwise 
moment of 500 lb· in. about point A. Determine the 
required magnitude of force F. 

Probs. 3-20/21 

3-22. Old clocks were constructed using a fusee B to drive 
the gears and watch hands. The purpose of the fusee is to 
increase the leverage developed by the mainspring A as it 
uncoils and thereby loses some of its tension. The mainspring 
can develop a torque (moment) T, = k8, where 
k = O.OlS N · m/rad is the torsional stiffness and 8 is the 
angle of twist of the spring in radians. If the torque T1 
developed by the fusee is to remain constant as the 
mainspring winds down. and x = 10 mm when 8 = 4 rad, 
determine the required radius of the fusee when 8 = 3 rad. 

12mm 
~~ -..,.. 
IT, 

y 

Prob. 3-22 

3-23. The tower crane is used to hoist the 2-Mg load upward 
at constant velocity. The LS-Mg jib BD. 0.S-Mg jib BC, and 
6-Mg counterweight C have centers of mass at Gi. G2. and G3, 
respectively. Determine the resultant moment produced by 
the load and the weights of the tower crane jibs about point A 
and about point B. 

*3-24. The tower crane is used to hoist a 2-Mg load upward 
at constant velocity. The LS-Mg jib BD and 0.S-Mg jib BC 
have centers of mass at G1 and G2. respectively. Determine 
the required mass of the counterweight C so that the 
resultant moment produced by the load and the weight of 
the tower crane jibs about point A is zero. The center of mass 
for the counterweight is located at G3. 

A-9.sm-i 
G2 I As I D 

O:::::mzszs:zm;~i=--
12 .5 m~ 

23 Ill 

A 

Probs. 3-23124 
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3-25. If the 1500-lb boom AB. the 200-lb cage BCD, and 
the 175-lb man have centers of gravity located at points G1, 

G2, and G3, respectively, determine the resultant moment 
produced by each weight about point A. 

3-26. If the 1500-lb boom AB, the 200-lb cage BCD, and 
the 175-lb man have centers of gravity located at points GI> 
G2, and G3, respectively, determine the resultant moment 
produced by all the weights about point A. 

5 ft 1.75 ft 

Probs. 3-25/26 

3-27. Determine the moment of the force F about point 0. 
Express the result as a Cartesian vector. 

•3-28. Determine the moment of the force F about point P. 
Express the result as a Cartesian vector. 

F = {-6i + 4 j + 8k } kN 

4mlp 

I 
6 m 3 m 

J 
lm 

y 

x 

Probs. 3-27128 
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3-29. The force F = {400i - lOOj - 700k) lb acts at the 
end of Che beam. Determine the moment of this force about 
point 0. 

3-30. TI1e force F = {400i - lOOj - 700k} lb acts at the 
end of t he beam. Determine the moment of this force about 
point A. 

Probs. 3-29/30 

3-31. Determine the moment of the force F about point P. 
Express the result as a Cartesian vector. 

p 

2L 

2Z' 
3m 0 

y 

3 m 

3 111 
y 
Im 

x 

F = {2i + 4j - 6k} kN 

Prob. 3-31 
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*3-32. The curved rod has a radius of 5 ft. If a force of 
60 lb acts at its end as shown, determine the moment of this 
force about point C. 

3-33. Determine the smallest force F that must be applied 
along the rope in order to cause the curved rod to fail at the 
support C. This requires a moment of M = 80 lb· ft to be 
developed at C. 

x 

z 

60 Jb 
6ft 

,<--------aB U 
--~~-7ft~~-?~,A 

Probs. 3-31133 

3-34. A 20-N horizontal force is applied perpendicular to 
the handle of the socket wrench. Determine the magnitude 
and the coordinate direction angles of the moment created 
by this force about point 0. 

z 

------200mm 

I 
75mm 

L~~-1~ 0 ,,,,...__,,__--=:::::::::;~ 
y 

x 

Prob.3-34 

3-35. The pipe assembly is subjected to the 80-N force. 
Determine the moment of this force about point A. 

*3-36. The pipe assembly is subjected to the 80-N force. 
Determine the moment of this force about point B. 

z 

A 

x 

Probs. 3-35/36 

3-37. A force of F = {6i - 2j + l k} kN produces a 
moment of M 0 = {4i + Sj - 14k} kN · m about the origin, 
point 0. If the force acts at a point having an x coordinate of 
x = 1 m, determine the y and z coordinates. Nore: The 
figure shows F and M 0 in an arbitrary position. 

3-38. The force F = {6i + 8j + lOk} N creates a moment 
about point 0 of M 0 = {- 14i + 8j + 2k} N · m. If the 
force passes through a point having an x coordinate of 1 m, 
determine t he y and z coordinates of the point. Also, 
realizing that M0 = Fd, determine the perpendicular 
distanced from point 0 to the line of action of F. Nore: The 
figure shows F and M 0 in an arbitrary position. 

z / 
/ 

F 

/ 
/ 

Mo 
/ 

/ 

'& z 

0 
y 

lm 

y 

Probs. 3-37/38 
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3.5 MOMENT OF A FORCE ABOUT 
A SPECIFIED AXIS 

Sometimes the moment produced by a force about a specified axis must 
be determined. For example, suppose the lug nut at 0 on the car tire in 
Fig. 3- 20a needs to be loosened. The force applied to the wrench will 
create a tendency for the wrench and the nut to rotate about the moment 
axis passing through 0; however, the nut can only rotate about they axis. 
Therefore, to determine the turning effect, only they component of the 
moment is needed, and the total moment produced is not important. To 
determine this component, we can use either a scalar or vector analysis. 

Scalar Analysis To use a scalar analysis, the moment arm, or 
perpendicular distance d0 from the axis to the line of action of the force, 
must be determined. The moment is then 

(3-10) 

For example, for the lug nut in Fig. 3-20a, dy = d cos 8, and so the moment 
of F about they axis is M,, = F d,, = F(d cos 8). According to the right
hand rule, My is directed along the positive y axis as shown in the figure. 

(a) 

Fig. 3-20 

y 

www.konkur.in



1 02 CHAPTER 3 FORCE SYSTEM RESULTANTS 

x 

(b) 

Fig. 3-20 (cont.) 

a 

r 

F 

Axis of projection 

Fig. 3-21 

Vector Analysis. To find tbe moment of force F in Fig. 3-20b about the 
y axis using a vector analysis, we must first determine the moment of the force 
about any point 0 on the y axis by applying Eq. 3- 7, M 0 = r x F. 
The component My along they axis is the projection of Mo onto they axis. It 
can be found using the dot product discussed in Chapter 2, so that 
My = j ·Mo = j · (r x F), where j is the unit vector for they axis. 

We can generalize this approach by Jetting Ua be the unit vector that 
specifies the direction of the a axis, shown in Fig. 3- 21. Then the moment 
of F about a point 0 on the axis is M 0 = r x F, and the projection of this 

Y moment onto the a axis is M 0 = ua · (r x F). This combination is referred 
to as the scalar triple product. If the vectors are written in Cartesian 
form, we have 

i j k 
Ma = (ua} + Ua

1
j + Ua,k ] · rx ry rz 

F.r F,. Fz 

= Ua,(ryFz - rzF,,) - u 0 1(rxFz - rzF.r) + ua.(rxF,• - ryFx) 

This result can also be written in the form of a determinant, making it 
easier to memorize.* 

where 

Ua, 
Ma = 0 0 • ( r X F) = rx 

Ua ' Ua 'Ua x y ; 

F.r 

represent the x, y, z components of the unit 
vector defining the direction of the a axis 

(3- 11) 

rx, ry, rz represent the x, y , z components of the position 
vector extended from any point 0 on the a axis to 
any point A on the line of action of the force 

f ,, Fy, Fz represent the x,y, z components of the force vector. 

When Ma is evaluated from Eq. 3- 11, it will yield a positive or negative 
scalar. The sign of this scalar indicates the sense of direction of Ma 
along the a axis. If it is positive, then Ma will have the same sense as u°' 
whereas if it is negative, then Ma will act opposite to u0 . Once the a axis 
is established, point your right-hand thumb in the direction of Ma, and 
the curl of your fingers will indicate the sense of twist about the axis, 
Fig. 3- 21. 

*Take a moment to expand this determinant, to show that it will yield the above result. 

www.konkur.in



3.5 MOMENT OF A FORCE ABOUT A SPECIFIED AxlS 1 03 

Once Mu is determined, we can then express Ma as a Cartesian vector, 
namely, 

(3-12) 

The examples which follow illustrate numerical applications of these 
concepts. 

IMPORTANT POINTS 

• The moment of a force about a specified axis can be determined 
provided the perpendicular distance da from the force line of 
action to the axis can be determined. Then Ma = Fda. 

• If vector analysis is used, then Ma = ua • (r X F), where 0 0 

defines the direction of the axis and r is extended from any point 
on the axis to any point on the line of action of the force. 

• If M0 is calculated as a negative scalar, then the sense of direction 
of Mu is opposite to 0 0 . 

• The moment M 11 expressed as a Cartesian vector is determined 
from M 0 = M11u11• 

EXAMPLE 3.;-i 
Determine the resultant moment of the three forces in Fig. 3-22 about 
the x axis. they axis, and the z axis. 

SOLUTION 
A force that is parallel to a coordinate axis or bas a line of action that 
passes through the axis does nor produce any moment or tendency for 
turning about the axis. Defining the positive direction of the moment 
of a force according to the right-hand rule, as shown in the figure, 
we have 

Mx = (601b)(2ft) + (50lb)(2ft) + 0 = 220lb·ft Ans. 

My = 0 - (50 lb)(3 ft) - (40 lb)(2 ft) = -230 lb · ft Ans. 

M, = 0 + 0 - (401b)(2ft) = -80lb · ft Ans. 

The negative signs indicate that My and M z act in the -y and - z 
directions, respective ly. 

Fig. 3-22 
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EXAMPLE 3.8 
-

F=300N 

x 

F 

(a) 

z 

A -----Y 

(b) 

Fig. 3-23 

Determine the moment M AB produced by the force F in Fig. 3-23a, 
which tends to rotate the rod about the AB axis. 

SOLUTION 
A vector analysis using MAB = u8 · (r x F) will be considered for the 
solution rather than trying to find the moment arm or perpendicular 
distance from the line of action of F to the AB axis. 

Unit vector u8 defines the direction of the AB axis of the rod, 
Fig. 3- 23b, where 

r8 {0.4i + 0.2J
0

} m 
Ua = - = = 0.8944i + 0.4472j 

ra V(0.4 m)2 + (0.2 m)2 

Vector r is directed from any point on the AB axis to any point on the 
line of action of the force. For example, position vectors re and r0 are 
suitable, Fig. 3-23b. (Although not shown, r8 c or r80 can also be 
used.) For simplicity, we choose r0 , where 

r o = {0.6i} m 

The force is 

F = {-300k} N 

Substituting these vectors into the determinant form of the triple 
product and expanding, we have 

0.8944 

MAB = ua · (r o X F) = 0.6 

0.4472 

0 

0 

0 
0 0 -300 

= 0.8944(0(-300) - 0(0)) - 0.4472(0.6(-300) - 0(0)) 

+ 0(0.6(0) - 0(0)) 

= 80.50N·m 

This positive result indicates that the sense of MAB is in the same 
direction as u8 , Fig. 3- 23b. 

Expressing MAB as a Cartesian vector yields 

M AB = MABUB = (80.50 N · m)(0.8944i + 0.4472j) 

= {72.0i + 36.0j} N · m Ans. 

NOTE: If the axis AB is defined using a unit vector directed from 
B toward A , then in the above determinant - u8 would have to 
be used. This would lead to MAB = -80.50 N · m. Consequently, 
M AB = MA8 (-u8 ) , and the same vector result would be obtained. 
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EXAMPLE 3.9 
- -

Determine the magnitude of the moment of force F about segment OA 
of the pipe assembly in Fig. 3- 24a. 

SOLUTION 
The moment of F about the OA axis is determined from 
MoA = u0 A • (r X F), where r is a position vector extending from 
any point on the OA axis to any point on the line of action of F. 
As indicated in Fig. 3- 24b, either r0 D, r 0c, rAD• or rAc can be used. 
Here r oD will be considered since it will simplify the calculation. 

The unit vector u0 A , which specifies the direction of the OA axis, is 

r oA {0.3i + 0.4j} m . . 
U QA = - = = 0.61 + 0.8J 

roA Y(0.3 m)2 + (0.4 m)2 

and the position vector roD is 

r oD = {0.5i + 0.5k} m 

The force F expressed as a Cartesian vector is 

F = F(rcD) 
rcD 

= (300N) 
[ 

{0.4i - 0.4j + 0.2k} m ] 

V (0.4 m)2 + (-0.4 m)2 + (0.2 m)2 

= {200i - 200j + lOOk} N 

Therefore, 

MoA = u oA · ( r oD X F) 

0.6 0.8 0 
- 0.5 0 0.5 

200 -200 100 

= 0.6(0(100) - (0.5)(-200)) - 0.8(0.5(100) - (0.5)(200)] + 0 

= lOON·m Ans. 

z 

~ 
0.5 m 

D~ 
/,~ 

O.Sm 

x 

x 

(a) 

(b) 

Fig. 3-24 

y 
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PRELIMINARY PROBLEMS 

P3-3. In each case, determine the resultant moment of the 
forces acting about the x, they, and the z axis. 

z 

I 
200N 

SON 

300N 

(a) 

(b) 

z 

SON I lm-1 
300N 

400N 

lOON 

(c) 

Prob. P3-3 

P3-4. In each case, set up the determinant needed to find 
the moment of the force about the a-a axes. 

F = 16i + 2j + 3k ) kN 

4m 

x 
a 

(a) 

3 n1 ,..___------<-u 
/-- 4 m __ ""/ f 

/ 2m 
x _ l 

F = {2i - 4j + 3k} kN 

(b) 

F = {2i - 4j + 3k ) kN 

7 
3 n1 

(c) 

Prob. P3-4 
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FUNDAMENTAL PROBLEMS 

t"J-13. D etermine the magnitude of the moment of the 
force F = ( 300i - 200j + 1 SOk J N about the x axis. 

."3-14. Determine the magnitude of the moment of the 
force F = (300i - 200j + 150k) N about the OA axis. 

x 

0.2111 

F 

Probs. Fl-13114 

• 3-15. Determine the magnitude of the moment of the 
200·N force about the x axis. Solve the problem using both a 
scalar and a vector analysis. 

--0.3m--

Prob. 1''3-15 

F=200N 

0.25111 

y 

• 3-16. Determine the magnitude of the moment of the 
force about the y axis. 

F = (30i - 20j + 50kl N 

Prob. Fl-16 
t '3-17. Determine the moment of the force 
F = (50i - 40j + 20k) lb about the AB axis. Express the 
result as a Cartesian vector. 

.-r• >-. 
1'3-1 •• Determine the moment of force F about the x. the 
y, and the z axis. Solve the problem using both a scalar and 
a vector analysis. 

z 

F= SOON 

Prob. 13-18 
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PROBLEMS 

3-39. The lug nut on the wheel of the automobile is to be 
removed using the wrench and applying the vertical force of 
F = 30 Nat A. Determine if this force is adequate, provided 
14 N · m of torque about the x axis is initially required to 
turn the nut. If the 30-N force can be applied at A in any 
other direction, will it be possible to turn the nut? 

*3-40. Solve Prob. 3-39 if the cheater pipe AB is slipped 
over the handle of the wrench and the 30-N force can be 
applied at any point and in any direction on the assembly. 

z 
F= 30N 

)' 

x 

Probs. 3-39/40 

3-4L The A-frame is being hoisted into an upright 
position by the vertical force of F = 80 lb. Determine the 
moment of this force about the y' axis passing through 
points A and B when the frame is in the position shown. 

3-42. The A-frame is being hoisted into an upright 
position by the vertical force of F = 80 lb. Determine the 
moment of this force about the x axis when the frame is in 
the position shown. 

z 

F 

x' )' 

x 

Probs. 3-41142 

3-43. Determine the magnitude of the moment of the force 
F about the x, they, and the z axis. Solve the problem (a) using 
a Cartesian vector approach and (b) using a scalar approach. 

*3-44. Determine the moment of force F about an axis 
extending between A and C. Express the result as a 
Cartesian vector. 

z 

y 

2 ft 

in 
F = l4i + 12j - 3k) lb 

Probs. 3-43/44 

3-45. The board is used to hold the end of the cross lug wrench 
in the position shown when the man applies a force of 
F = 100 N. Determine the magnitude of the moment produced 
by this force about the x axis. Force Flies in a vertical plane. 

3-46. The 'board is used to hold the end of the cross lug 
wrench in the position shown. If a torque of 30 N · m about 
thex axis is required to tighten the nut, determine the required 
magnitude of the force F needed to turn the wrench. Force F 
lies in a vertical plane. 

x 
250mm 

z 

Probs. 3-45/46 

250mm 
y 
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3-47. The A-frame is being hoisted into an upright position 
by the vertical force of F = 80 lb. Determine the moment 
of this force about the y axis when the frame is in the 
position shown. 

x'---<l ~ 
' 6ft~8 

x 

Prob.3-47 

F 

y 

I 

*3-48. Determine the magnitude of the moment of the force 
F = {SOi - 20j - 80k} N about member AB of the tripod. 

3-49. Determine the magnitude of the moment of the force 
F = {SOi - 20j - 80k} N about member BC of the tripod. 

3-50. Determine the magnitude of the moment of the force 
F = {SOi - 20j - 80k) N about member CA of the tripod. 

z 

y 

Probs. 3-48/49/50 
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3-51. A horizontal force of F = {-SOi} N is applied 
perpendicular to the handle of the pipe wrench. Determine 
the moment that this force exerts along the axis OA (z axis) 
of the pipe assembly. Both the wrench and pipe assembly, 
OABC, lie in the .r-z plane. Suggestion: Use a scalar analysis. 

*3-52. Determine the magnitude of the horizontal force 
F = - F i acting on Lbe handle of the pipe wrench so that 
this force produces a component of the moment along the 
OA axis (z axis) of the pipe assembly of M, = {4k} N · m. 
Both the wrench and the pipe assembly, OABC, lie in 
the .r-z plane. Suggestion: Use a scalar analysis. 

0 

x 

)' 

Probs. 3-51/52 

3-53. Determine the moment of the force about the a- a 
axis of the pipe if a = 6'1'. f3 = 6'1'. and y = 45°. Also. 
determine the coordinate direction angles of Fin order to 
produce the maximum moment about the a-a axis. What is 
this moment? 

F=30N 

~y 
a 

~ 
IOOmm 

a 

Prob. 3-53 
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F 

-F 
Fig. 3-25 

-F 
A 

F 

0 

Fig. 3-26 

Fig. 3-27 

3.6 MOMENT OF A COUPLE 
A couple is defined as two parallel forces that have the same magnitude, 
but opposite directions, and are separated by a perpendicular distanced, 
Fig. 3-25. Since the resultant force is zero, the only effect of a couple is to 
produce a rotation, or if no movement is possible, there is a tendency for 
rotation. 

The moment produced by a couple is called a couple moment. We can 
determine its value by finding the sum of the moments of both couple 
forces about any arbitrary point. For example, in Fig. 3- 26, position 
vectors rA and r8 are directed from point 0 to points A and B lying on 
the line of action of -F and F. The couple moment determined about 0 
is therefore 

However, r8 = rA + r or r = r8 - rA, so that 

M = r x F (3- 13) 

This result indicates that a couple moment is a free vector, i.e., it can 
act at any point since M depends only upon the position vector r directed 
between the forces and not the position vectors rA and r8 , directed from 
point 0 to the forces. 

Scalar Formulation. The moment of a couple, Fig. 3- 27, has a 
magnitude of 

(3-14) 

where Fis the magnitude of one of the forces and d is the perpendicular 
distance or moment arm between the forces. The direction and sense of 
the couple moment are determined by the right-hand rule, where the 
thumb indicates this direction when the fingers are curled with the sense 
of rotation caused by the couple forces. In all cases, M will act 
perpendicular to the plane contairLing these forces. 

Vector Formulation. As noted above, the moment of a couple can 
also be expressed by the vector cross product using Eq. 3- 13, i.e., 

(3-15) 

Application of this equation is easily remembered if one thinks of taking 
the moments of both forces about a point lying on the line of action of 
one of the forces. For example, if moments are taken about point A in 
Fig. 3- 26, the moment of-Fis zero about this point, and the moment of 
Fis defined from Eq. 3- 15. Therefore, in the formulation r is crossed with 
the force F to which it is directed. 

www.konkur.in



Fig. 3-28 

Equivalent Couples. If two couples produce a moment with the same 
magnitude and direction, then these two couples are equivalent. For example, 
the two couples shown in Fig. 3-28 are equivalent because each couple 
moment has a magnitude of M = 30 N(0.4 m) = 40 N(0.3 m) = 12 N · m, 
and each is directed into the plane of the page. Notice that larger forces are 
required in the second case to create the same turning effect because the 
hands are placed closer together. Also, if the wheel was connected to the 
shaft at a point other than at its center, then the wheel would still tum when 
each couple is applied since this 12 N · m couple is a free vector. 

Resultant Couple Moment. Since couple moments are free 
vectors, their resultant can be determined by moving them to a single 
point and using vector addition. For example, to find the resultant of 
couple moments M1 and M2 acting on the pipe assembly in Fig. 3- 29a, 
we can join their tails at point 0 and find the resultant couple moment, 
MR = M 1 + M 2, as shown in Fig. 3-29b. 

If more than two couple moments act on the body, we may generalize 
this concept and write the vector resultant as 

(3- 16) 

These concepts are illustrated numerically in the examples that follow. 
In general, problems projected in two dimensions should be solved using 
a scalar analysis since the moment arms and force components are easy 
to determine. 

3.6 MOMENT OF A COUPLE 111 

(a) 

MR 
(b) 

Fig. 3-29 
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Steering wheels on vehicles have been 
made smaller than on older vehicles 
because power steering does not require 
the driver to apply a large couple 
moment to the wheel. 

I EXAMPLE 3.10 I 

IMPORTANT POINTS 

• A couple moment is produced by two noncollinear forces that 
are equal in magnitude but opposite in direction. Its effect is to 
produce pure rotation, or tendency for rotation in a specified 
direction. 

• A couple moment is a free vector, and as a result it causes the 
same rotational effect on a body regardless of where the couple 
moment is applied to the body. 

• The moment of the two couple forces can be determined about 
any point. For convenience, this point is often chosen on the 
line of action of one of the forces in order to eliminate the 
moment of this force about the point. 

• In three dimensions thle couple moment is often determined 
using the vector formulation, M = r x F, where r is directed 
from any point on the line of action of one of the forces to any 
point on the line of action of the other force F. 

• A resultant couple moment is simply the vector sum of all the 
couple moments of the system. 

F1 = 2001b 

-d1=4 ft

Determine the resultant couple moment of the three couples acting on 
F3 = 300 lb the plate in Fig. 3-30. 

F2 = 450 Jb A 

F1 = 200 lb F3 = 300 lb 

Fig. 3-30 

SOLUTION 
As shown the perpendicular distances between each pair of couple forces 
are d 1 = 4 ft , d 2 = 3 ft, and d3 = 5 ft. Considering counterclockwise 
couple moments as positive, we have 

= -(200 lb)(4 ft) + (450 lb)(3 ft) - (300 lb)(5 ft) 

= -950 lb . ft = 950 lb . ft ;> Ans. 
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i EXAMPLE 3.11 

Determine the magnitude and direction of the couple moment acting on 
the gear in Fig. 3-31a. 

F= 600N 

(a) 

SOLUTION 

F = 600 N 600 sin 30" N 

(b) 

The easiest solution requires resolving each force into its components 
as shown in Fig. 3- 31b. The couple moment can be determined by 
summing the moments of these force components about any point, for 
example, the center 0 of the gear or point A. If we consider 
counterclockwise moments as positive, we have 

<: + M = 2.M0 ; M = (600 cos 30° N)(0.2 m) - (600 sin 30° N)(0.2 m) 

= 43.9N·m) Ans. 

or 

<: + M = 2.MA; M = (600 cos 30° N)(0.2 m) - (600 sin 30° N)(0.2 m) 

= 43.9N·m ) Ans. 

This positive result indicates that M has a counterclockwise rotational 
sense, so it is directed outward, perpendicular to the page. 

NOTE: The same result can also be obtained using M = Fd, where dis 
the perpendicular distance between the lines of action of the couple 
forces, Fig. 3- 31c. However, the computation for d is more involved. 
Also, realize that the couple moment is a free vector and can act at any 
point on the gear and produce the same turning effect about point 0. 

3.6 MOMENT OF A COUPLE 11 3 

F= 600N 

(c) 

Fig. 3-31 
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I EXAMPLE 3.12 I 

x 

x 

x 

z 

z 

z 

(b) 

(c) 

(d) 

Fig. 3-32 

A 

----y 

Determine the couple moment acting on the pipe shown in Fig. 3-32a. 
Segment AB is directed 30° be[ow the x- y plane. 

z 

x 

(a) 

SOLUTION I (VECTOR ANALYSIS) 
The moment of the two couple forces can be found about any point. If 
point 0 is considered, Fig. 3- 32b, we have 

M = r A x (-25k) + r8 x (25k) 

= (8j) X (-25k) + (6 cos 30°i + 8j - 6 sin 30°k) X (25k) 

= -200i - 129.9j + 200i 

= {-130j} lb· in. Ans. 

It is easier to take moments of the couple forces about a point lying on 
the line of action of one of the forces, e.g., point A , Fig. 3- 32c. In this 
case the moment of the force at A is zero, so that 

M = r AB X (25k) 

= (6 cos 30°i - 6 sin 30°k) X (25k) 

= {-130j} lb. in. Ans. 

SOLUTION II (SCALAR ANALYSIS) 
A Although this problem is shown in three dimensions, the geometry 
---......._ is simple enough to use the scalar equation M = Fd, where 

Y d = 6 cos 30° = 5.196 in., Fig. 3- 32d. Hence, taking moments of the 
forces about either point A or point B yields 

M = Fd = 25 lb (5.196 in.) = 129.9 lb· in. 

Applying the right-hand rule, M acts in the - j direction. Thus, 

M = {-130j}lb · in. Ans. 
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EXAMPLE 3.1 3 
- -

Replace the two couples acting on the pipe assembly in Fig. 3-33a by a 
resultant couple moment. 

lSON 

z 125N~ 

' 3 4 

'~ 
~ 

~l 

(a) 

y 

(b) 

Fig. 3-33 

SOLUTION (VECTOR ANALYSIS) 
The couple moment Ml> developed by the forces at A and B, can 
easily be determined from a scalar formulation. 

M1 = Fd = 150N(0.4m) = 60N · m 

By the right-hand rule, M 1 acts in the +i direction, Fig. 3- 33b. Hence, 

M 1 = {60i} N · m 

Vector analysis will be used to determine M 2, caused by forces at C 
and D. If moments are calculated about point D, Fig. 3- 33a, 
M 2 = roe x Fe, then 

M i = roe X Fe = (0.3i) X [125(~)j - 125(~) k ) 

= (0.3i) x [lOOj - 75k] = 30(i x j) - 22.5(i x k) 

= {22.5j + 30k} N · m 

Since M 1 and Mi are free vectors, Fig. 3-33b, they may be moved to 
some arbitrary point and added vectorially, Fig. 3- 33c. The resultant 
couple moment becomes 

M R = M 1 + M i = {60i + 22.5j + 30k} N · m Ans. 

3.6 MOMENT OF A COUPLE 11 5 

(c) 

www.konkur.in



116 CHAPTER 3 FORCE SYSTEM RESULTANTS 

FUNDAMENTAL PROBLEMS 

F3-19. Determine the resultant couple moment acting on 
the beam. 

400N 400N 

' 

IA 200N . 
-~ 

[o.2n 1 

- 200N 

3 n1 2m- -

• 
300N 300N 

Prob.F3-19 

F3-20. Determine the resultant couple moment acting on 
the plate. 

2001b 

·-----4 ft-----1 

3001b 300 1b 

Prob.F3-20 

F3-21. Determine the magnitude of F so that the resultant 
couple moment acting on the beam is 1.5 kN · m clockwise. 

F 

2kN 

- F 

Prob. F3-21 

F3-22. Determine the couple moment acting on the beam. 
lOkN 

4m 

B 

lm 
_J 

[( 4 

10 kN 
Prob. F3-22 

F3-23. Determine the resultant couple moment acting on 
the pipe assembly. 

(Mch = 300 lb·ft 

.\'. 

t Mc)2 = 250 lb·ft 

Prob. F3-23 

y 

F3-24. Determine the couple moment acting on the pipe 
assembly and express the result as a Cartesian vector. 

FA= 450N z 

0.4m 

~ 
B 

x 

c 
Prob. F3-24 

)' 
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PROBLEMS 

3-54. A clockwise couple M = 5 N · m is resisted by the 
shaft of the electric motor. Determine the magnitude of the 
reactive forces -R and R which act at supports A and B so 
that the resultant of the two couples is zero. 

150mm 

j 

-R R 

Prob.3-54 

3-55. A twist of 4 N · m is applied to the handle of the 
screwdriver. Resolve this couple moment into a pair of couple 
forces F exerted on the handle and P exerted on the blade. 

4N·m 

~j 
Smm 

Prob. 3-55 

3.6 MOMENT OF A COUPLE 117 

*3- 56. If the resultant couple of the three couples acting 
on the triangular block is to be zero, determine the 
magnitude of forces F and P. 

z 

l_F 

c 

x 

Prob. 3-56 

3-57. If F = 125 lb, determine the resultant couple 
moment. 

3-58. Determine the magnitude of F so that the resultant 
couple moment is 450 lb· ft, counterclockwise. Where on 
the beam does the resultant couple moment act? 

200lb 

1.5 ft 

200 lb 
1---2ft --....i 

Probs. 3-57/58 

- F 

F 
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3-59. Determine the magnitude and coordinate direction 
angles of the resultant couple moment. 

M1 =40 1b ·ft z 

'().. 
M2 = 30 lb· ft 

~~ 

x 

Prob. 3-59 

*3-60. Determine the required magnitude of the couple 
moments M2 and M3 so that the resultant couple moment 
is zero. 

M1 =300N · m 

Prob. 3-60 

3-61. Determine the resultant couple moment of the two 
couples that act on the assembly. Specify its magnitude and 
coordinate direction angles. 

80 Jb 

--y 
x 

3 
in. --- 1 60 lb 

Prob. 3-61 

3-62. Express the moment of the couple acting on the 
frame in Cartesian vector form. The forces are applied 
perpendicular to the frame. What is the magnitude of the 
couple moment? Take F = 50 N. 

3-63. In order to turn over the frame, a couple moment is 
applied as sihown. If the component of this couple moment 
along the x axis is M .. = {- 20i) N · m, determine the 
magnitude F of the couple forces. 

z 

0 

F 

L:~/~· ~ 
/ 1.Sm_-/ 

x 
- F 

Probs. 3-62/63 

y 
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*3--04. Express the moment of the couple acting on the 
pipe in Cartesian vector form. What is the magnitude of the 
couple moment? Take F = 125 N. 

3-65. If the couple moment acting on the pipe has a 
magnitude of 300 N · m. determine the magnitude of the 
forces applied to the wrenches. 

-F 

600mm 

A 

F 

Probs. 3-64/65 

3-66. If F = 80 N, determine the magnitude and 
coordinate direction angles of the couple moment. The pipe 
assembly lies in the x-y plane. 

3-67. If the magnitude of the couple moment acting on the 
pipe assembly is 50 N · m. determine the magnitude of the 
couple forces applied to each wrench. The pipe assembly 
lies in the x- y plane. 

Probs. 3-66/67 

3.6 M OMENT OF A COUPLE 119 

*3-68. Express the moment of the couple acting on the 
rod in Cartesian vector form. What is the magnitude of the 
couple moment? 

z 

I 
-F = { 4i - 3j + 4kl k 

y 

F = I- 4i + 3j - 4kl kN 

Prob. 3-68 

3-69. If F, = 100 N, Fi = 120 N. and Fj = 80 N, 
determine the magnitude and coordinate direction angles 
of the resultant couple moment. 

3-70. Determine the required magnitude of F1• F2, and 
F3 so that the resultant couple moment is 
~1c)R = (50i - 45j - 20k) · m. 

F• = (150 k) N 

x 

-F2 0.2 m 

Probs. 3-69no 
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(a) 

3. 7 SIMPLIFICATION OF A FORCE AND 
COUPLE SYSTEM 

Sometimes it is convenient to reduce a system of forces and couple 
moments acting on a body to a simpler form by replacing it with an 
equivalent system , consisting of a single resultant force and a resultant 
couple moment. A system is equivalent if the external effects it produces 
on a body are the same as those caused by the original force and couple 
moment system. If the body is free to move, then the external effects of a 
system refer to the translating and rotating motion of the body, or if the 
body is fully supported, they refer to the reactive forces at the supports. 

For example, consider holding the stick in Fig. 3-34a, which is subjected 
to the force F at point A. If we attach a pair of equal but opposite forces 
F and - F at point B, which is on the line of action of F, Fig. 3- 34b, we 
observe that -F at B and F at A will cancel each other, leaving only F 
at B, Fig. 3- 34c. Force F has now been moved from A to B without 
modifying its external effects on the stick; i.e., the reaction at the grip 
remains the same. This demonstrates the principle of transmissibility, 
which states that a force acting on a body (stick) is a sliding vector since 
it can be applied at any point along its line of action. 

We can also use the above procedure to move a force to a point that is 
not on the line of action of the force. If F is applied perpendicular to the 
stick, as in Fig. 3- 35a, then we can attach a pair of equal but opposite forces 
F and -F to B, Fig. 3- 35b. Force Fis now applied at B, and the other two 
forces, Fat A and -Fat B, form a couple that produces the couple moment 
M = Fd, Fig. 3- 35c. Therefore, the force F can be moved from A to B 
provided a couple moment M is added to maintain an equivalent system. 
This couple moment is determined by taking the moment of F about B. 
Since Mis actually a free vector, it can act at any point on the stick. In each 
case in Fig. 3-35 the systems are equivalent. This causes a downward force 
F and clockwise couple moment M = Fd to be felt at the grip. 

(c) 

Fig. 3-34 

(b) (c) 

Fig. 3-35 

www.konkur.in



3.7 SIMPLIFICATION OF A FORCE ANO COUPLE SYSTEM 1 21 

System of Forces and Couple Moments. Using this method, 
a system of several forces and couple moments acting on a body can be 
reduced to an equivalent single resultant force acting at a point 0 and a 
resultant couple moment. For example, in Fig. 3-36a, 0 is not on the line of 
action of Fi, and so this force can be moved to point 0 provided a couple (a) 

moment (M 0 ) 1 = r1 X F is added to the body. Similarly, the couple 
moment (Moh = r2 X F2 should be added to the body when we move F2 
to point 0. Finally, since the couple moment M is a free vector, it can just 
be moved to point 0. Doing this, we obtain the equivalent system shown in 
Fig. 3-36b, which produces the same external effects on the body as that of 
the force and couple system shown in Fig. 3-36a. If we sum the forces and 
couple moments, we obtain the resultant force FR = F1 + F2 and the 
resultant couple moment (M R)o = M + (M 0 ) 1 + (M0)i, Fig. 3-36c. 

Notice that FR is independent of the location of point 0 since it is 
simply a summation of the forces. However, (MR)o depends upon this 
location since the moments M1 and M 2 are determined using the position (b) 

vectors r1 and r2, which extend from 0 to each force. Also note that 
(MR)o is a free vector and can act at any point on the body, although 
point 0 is generally chosen as its point of application. 

We can now generalize the above method of reducing a force and 
couple system to an equivalent resultant force FR acting at point 0 and a 
resultant couple moment (MR)o by using the following two equations. 

FR= l F 
(MR)o = l Mo + l M 

(3-17) 

The first equation states that the resultant force of the system is 
equivalent to the sum of all the forces; and the second equation states 
that the resultant couple moment of the system is equivalent to the sum 
of all the couple moments l M plus the moments of all the forces about 
point 0 , I M0 . If the force system lies in the x- y plane and any couple 
moments are perpendicular to this plane, then the above equations 
reduce to the following three scalar equations. 

(FR)x = 2.Fx 
(FR)y = 2.Fy 

(MR)o = lM0 + IM 

(3-18) 

Here the resultant force is determined from the vector sum of its two 
components (FR)x and (FR)y-

(c) 

II 

II 

Fig. 3-36 
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The weights of these t raffic lights can be replaced by their equivalent resultant force 
WR = Wi + Wi and a couple mome nt (MR)o = \.\'id1 + W2 d2 at the suppor t, 0. 
In both cases the support must provide the same resistance to translation and rotation 
in order to keep the member in the horizontal position. 

PROCEDURE FOR ANALYSIS 

The following points should be kept in mind when simplifying a force 
and couple moment system to an equivalent resultant force and 
couple system. 

• Establish the coordinate axes with the ongm located at 
point 0 and the axes having a selected orientation. 

Force Summation. 

• If the force system is coplanar, resolve each force into its x and 
y components. If a component is directed along the positive x 
or y axis, it represents a positive scalar; whereas if it is directed 
along the negative x or y axis, it is a negative scalar. 

• In three dimensions, represent each force as a Cartesian vector 
before summing the forces. 

Moment Summation. 

• When determining the moments of a coplanar force system 
about point 0 , it is generally advantageous to use the principle 
of moments, i.e., determine the moments of the components of 
each force, rather than the moment of the force itself. 

• In three dimensions use the vector cross product to determine 
the moment of each force about point 0. Here the position 
vectors extend from 0 to any point on the line of action of 
each force. 
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I EXAMPLE 3.14 

Replace the force and couple system shown in Fig. 3- 37a by an 
equivalent resultant force and couple moment acting at point 0. 

y 

(3 kN)sin 30" 

-,- l==::::::;:::;===o~-j__ 
0.1 m -,- F===~~---i~ . ·. 
--+---+o . 

0.1 m 
O.lm O 

-'- l=======li====· =· ==~:... 
- 0.2m --0.3m--I 

- 0.2m 

SkN 
4 kN 

4 k N 
(a) 

SOLUTION 

Force Summation. The 3 kN and 5 kN forces are resolved into 
their x and y components as shown in Fig. 3- 37 b. We have 

~(5kN) <--~ 
5 

(b) 

..t (FR)x = 2F,; (FR)x = (3 kN) cos 30° + ( ~) (5 kN) = 5.598 kN ~ 

+ j (FR)y = IFy; (FR)y = (3 kN) sin 30° - ( ~) (5 kN) - 4 kN = -6.50 kN = 6.50 kN ! 
Using the Pythagorean theorem, Fig. 3- 37c, the magnitude of FR is 

FR = V(FR)/ + (FR)/ = V (5.598 kN)2 + (6.50 kN)2 = 8.58 kN Ans. 

I ts direction (} is 

_ 1((FR)y) -t( 6.50 kN ) 0 

(} = tan (FR)x = tan 5.598 kN = 49.3 

Moment Summation. Referring to Fig. 3- 37b, we have 

c + (MR)o = 2Mo; 

Ans. 

(M R)o = 2.46 kN ·m 

... 

FR 
(FR)y = 6.50 kN 

0 

(MR)o = (3 kN) sin 30°(0.2 m) - (3 kN) cos 30°(0.1 m) + (t) (5 kN) (0.1 m) 

- ( ~ ) (5kN)(0.5m)-(4kN)(0.2m) 

(c) 

Fig. 3-37 

= -2.46kN·m = 2.46kN·m ) Ans. 
This clockwise moment is shown in Fig. 3- 37c. 

NOTE: Realize that the resultant force and couple moment in Fig. 3- 37c 
will produce the same external effects or reactions at the wall support as 
those produced by the force system, Fig. 3- 37a. 
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I EXAMPLE 3.1 s I 

0 

• 

Replace the force and couple system acting on the member in Fig. 3-38a 
by an equivalent resultant force and couple moment acting at point 0. 

SOON y 
750N 

l 
(MR)o = 37.5 N·m 

200N 
0 0 

I x 
lm 11 (FR)x = 300 N 

1.25m+ l.25m - J 

200N 
FR 

(a) (FR)y = 350 N (b) 

Fig. 3-38 

SOLUTION 

Force Summation. Since the couple forces of 200 N are equal but 
opposite, they produce a zero resultant force, and so it is not necessary 
to consider them in the force summation. The SOO-N force is resolved 
into its x and y components, thus, 

~(FR)x = IF,,; (FR)x = (~)(SOON) = 300N ~ 

+ j(FR)y = IFy; (FR)y = (SOON)(~) -7SON = -3SON = 3SON! 

From Fig. 3- lSb, the magnitude of FR is 

FR = V(FR).i + (FR)} 

= Y (300 N)2 + (3SO N)2 = 461 N 

And the angle () is 

Ans. 

() = tan- 1 (~~:~:) = tan-1 (~~~~) = 49.4° Ans. 

Moment Summation. Since the couple moment is a free vector, it can 
act at any point on the member. Referring to Fig. 3-38a, we have 

C+ (MR)o = IM0 + IM 

(MR)o = (SOON) (~) (2.S m) - (SOON) (~) (1 m) 

- (7SO N)(l.2S m) + 200 N · m 

= -37.SN·m = 37.SN · m) 

This clockwise moment is shown in Fig. 3- 38b. 

Ans. 
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EXAMPLE 3.16 
- -

The member is subjected to a couple moment M and forces Fi and F2 
in Fig. 3- 39a. Replace this system by an equivalent resultant force and 
couple moment acting at its base, point 0. 

SOLUTION (VECTOR ANALYSIS) 

z 

The three-dimensional aspects of the problem can be simplified by using re 

a Cartesian vector analysis. Expressing the forces and couple moment as 
Cartesian vectors, we have 

Fi = {-800k} N 

F2 = (300 N)uca 

= (300 N)(rca) 
rca 

[ 
{-0.15i + O.lJ.} m J 

= 300 N = {-249.6i + 166.4j} N 
V (-0.15 m)2 + (0.1 m)2 

M = -500 (~)j + 500(~) k = {-400j + 300k}N · m 

Force Summation. 

FR = F i + F 2 = -800k - 249.6i + 166.4j 

= {-250i + 166j - 800k} N 

Moment Summation. 

(MR)o = 2M + 'LMo 

(MR)
0 

= M + re X F i + ra X F 2 

i 
(MR)o = (-400j + 300k) + (l k) X (-800k) + -0.15 

-249.6 

= (-400j + 300k) + (0) + (-166.4i - 249.6j ) 

= {-166i - 650j + 300k} N · m 

The results are shown in Fig. 3- 39b. 

Ans. 

j k 
0.1 1 

166.4 0 

Ans. 

(a) 

z 

(MR)0 

><io 
x 

(b) 

Fig. 3-39 

lm 

y 

FR y 
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PRELIMINARY PROBLEM 

P3-5. In each case, determine the x and y components of the 
resultant force and the resultant couple moment at point 0. 

SOON 400N 

0 ;f i 
"r,t;r~----l""-------'-1----o,-I _,. 200 N 

l-2m---!- 2m--2m-I 

(a) 

SOON 
300N 

0 i 4 

) 200N·m 

2m~ 2m I 
(b) 

Prob. P3-5 

SOON 

0 ! lOON 

r--2 m-l-2 m - -+-1 

SOON 

(c) 

l-2m-I 

SOON 
SOON 2m 

2m 

0 

(d) 
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FUNDAMENTAL PROBLEMS 

F3-25. Replace the loading by an equivalent resultant 
force and couple moment acting at point A. 

100 lb 

AtI====t-==~=::=~~ ... .JL200 lb 

1--3 ft--- --3 ft-I 

150 lb 

Prob. F3-25 

F3-26. Replace the loading by an equivalent resultant 
force and couple moment acting at point A. 

40N 

200N·m 

A• 

~3m---
SON 

Prob. F3-26 

F3-27. Replace the loading by an equivalent resultant 
force and couple moment acting at point A. 

- 0-.7-5 _m_1·-0-.7-5-m-1 0.75 m a.1sm I 
Prob. F3-27 

F3-28. Replace the loading by an equivalent resultant 
force and couple moment acting at point A. 

.»lOO lb 

I 
A 

1 ft 

_._SO lb 

Prob.F3-28 

F3-29. Replace the loading by an equivalent resultant 
force and couple moment acting at point 0. 

z 

h~ F1 = {- 300i + 150j + 200k} N 

~ 2n~~.5m~B 
0 . ~l~ 

x 

Prob. F3-29 

F3-30. Replace the loading by an equivalent resultant 
force and couple moment acting at point 0. 

z 

F1 = lOON 
Mc = 75N·m 

y 

Prob.F3-30 
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PROBLEMS 

3-71. Replace the force system by an equivalent resultant 
force and couple moment at point 0. 

*3-72. Replace the force system by an equivalent resultant 
force and couple moment at point P. 

)' 

455N 

-r 
1---2.5 m __ __, 2m 

0 
--+--+------~---~~~---x 

o.1sm I 0.75m 

T\ ·;;r lm-lp 

600N 

Probs. 3-71172 

3-73. Replace the loading acting on the beam by an 
equivalent force and couple moment at point A. 

3-74. Replace the loading acting on the beam by an 
equivalent force and couple moment at point B. 

3kN 

2.5 kN 

l- 2m- 4m - 2m-I 

Probs. 3-73/74 

3-75. Replace the loading acting on the beam by an 
equivalent resultant force and couple moment at point 0. 

)' 

450N 

~ 
0.2 m / 200 N · m 

o~l ~~~~-x 
~ 1.5 m ~ 2 m ___ ',,____ 1.5 m-1 

200N 

Prob. 3-75 

*3-76. Replace the loading acting on the post by an 
equivalent resultant force and couple moment at point A. 

3-77. Replace the loading acting on the post by an 
equivalent resultant force and couple moment at point B. 

650N 

Q 300N 
SOON 

1500N ·m i A 60° B 

~3m-1 sm-l-2m-I 

Probs. 3-76177 
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3-78. Replace the loading acting on the post by a resultant 
force and couple moment at point 0. 

3001b 

2 ft 

-+ 2 ft 

l 2001b 
oo 

I 
2 ft 

0 _J_ 

Prob. 3-78 

3-79. Replace the loading acting on the frame by an 
equivalent resultant force and couple moment acting at 
point A. 

A 

300N 05m 

lm 

SOON .... 
f- o.5 m - -0.3 m-1 

400N 

Prob. 3-79 

*3-80. ·me forces F1 = {- 4i + 2j - 3kl kN and F 2 = 
(3i - 4j - 2kl kN act on the end of the beam. Replace 
these forces by an equivalent force and couple moment 
acting at point 0. 

y 

x 

Prob. 3-80 

3-81. A biomechanical model of the lumbar region of the 
human trunk is shown. The forces acting in the four muscle 
groups consist of FR = 35 N for the rectus, F0 = 45 N for 
the oblique. FL = 23 N for the lumbar latissimus dorsi, and 
F£ = 32 N for the erector spinae. These loadings are 
symmetric with respect to the y-z plane. Replace this system 
of parallel forces by an equivalent force and couple moment 
acting at the spine, point 0. Express the results in Cartesian 
vector form. 

x y 

Prob. 3-81 
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3-82. Replace the loading by 
force and couple moment 
F3 = {- 200i + 500j - 300k} N. 

an equivalent resultant 
at point 0. Take 

z 

F1 =300N 

x 

Prob. 3-82 

3-83. Replace the loading by an equivalent resultant force 
and couple moment at point 0. 

z 

0 

x~------rr~ 
O.Sm 

-1 
)' 

0.7m 
F2 = l- 2 i + 5 j - 3 k} kN 

---0.8 m---1 

F1 = 18 i - 2 k} kN 

Prob. 3-83 

*3-84. Replace the force of F = 80 N acting on the pipe 
assembly by an equivalent resultant force and couple 
moment at point A. 

z 

x 

Prob. 3-84 

3-85. The belt passing over the pulley is subjected to forces 
F1 and Fi , each having a magnitude of 40 N. F1 acts in the -k 
direction. Replace these forces by an equivalent force and 
couple moment at point A. Express the result in Cartesian 
vector form. Set e = 00 so that Fi acts in the - j direction. 

3-86. The belt passing over the pulley is subjected to two 
forces F1 and Fi , each having a magnitude of 40 N. F1 acts in 
the -k direction. Replace these forces by an equivalent 
force and couple moment at point A. Express the result in 
Cartesian vector form. Take e = 45°. 

z 

Probs. 3-85/86 
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3.8 FURTHER SIMPLIFICATION OF 
A FORCE AND COUPLE SYSTEM 

In the preceding section, we developed a way to reduce a force and 
couple moment system acting on a rigid body into an equivalent resultant 
force FR acting at a specific point 0 and a resultant couple moment 
(M R)o. The force system can be further reduced to an equivalent single 
resultant force provided the lines of action of FR and (MR)o are 
perpendicular to each other. This occurs when the force system is either 
concurrent, coplanar, or parallel. 

Concurrent Fo ·ce Sy ·tem. Since a concurrent force system is one Y 
in which the lines of action of all the forces intersect at a common point 0 , 
Fig. 3-40a, then the force system produces no moment about this point. 
As a result, the equivalent system can be represented by a single resultant 
force FR = I F acting at 0, Fig. 3-40b. 

Coplanar Force System. In the case of a coplanar force system, the 
lines of action of all the forces lie in the same plane, Fig. 3-41a, and so the 
resultant force FR = I F of this system also lies in this plane. Furthermore, 
the moment of each of the forces about any point 0 is directed perpendicular 
to this plane. Thus, the resultant moment (MR)o and resultant force FR will 
be mULually perpendicular, Fig. 3-4lb. The resultant moment can be 
replaced by moving the resultant force FR a perpendicular or moment arm 
distance d away from point 0 such that FR produces the same moment 
(MR)o about point 0, Fig. 3-4lc. This distanced can be determined from 
the scalar equation (MR)o = F~ = "2.Mo or d = (MR)o/ FR. 

(MR)o 

F4 F1 
(a) (b) 

Fig. 3-41 

(a) 

II 

(b) 

Fig. 3-40 

FR ov 
_.,g__ 

(c) 
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0 

The four cable forces are all concurrent at 
point 0 on this bridge tower. Consequently 
they produce no resultant moment there, only 
a resultant force FR· Note that the designers 
have positioned the cables so that FR is 
directed along the bridge tower directly to the 
support, so that it does not cause any bending 
of the tower. 

Parallel Force System. The parallel force system shown in 
Fig. 3-42a consists of forces that are all parallel to the z axis. Thus, the 
resultant force FR = IF at point 0 must also be parallel to this axis, 
Fig. 3-42b. The moment produced by each force lies in the plane of the 
plate, and so the resultant couple moment, (MR)o, will also lie in this 
plane, along the moment axis a since FR and (MR)o are mutually 
perpendicular. As a result , the force system can be further reduced to an 
equivalent single resultant force FR, acting through point P located on 
the perpendicular b axis, Fig. 3-42c. The distance d along this axis from 
point 0 requires (MR)o = FRd = lM0 or d = lM0 / FR. 

PROCEDURE FOR ANALYSIS 

The technique used to reduce a coplanar or parallel force system to 
a single resultant force follows a similar procedure outlined in the 
previous section. 

• Establish the x, y, z axes and locate the resultant force FR an 
arbitrary distance away from the origin of the coordinates. 

Force Summation. 

• The resultant force is equal to the sum of all the forces in the 
system. 

• For a coplanar force system, resolve each force into its x and y 
components. Positive components are directed along the 
positive x and y axes, and negative components are directed 
along the negative x and y axes. 

Moment Summation. 

• The moment of the resultant force about point 0 is equal to 
the sum of all the couple moments in the system plus the 
moments of all the forces in the system about 0, lM0 . 

• To find the location d of the resultant force from point 0, use 
the condition that d = lM0 / FR. 
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EXAMPLE 3 .17 

Replace the force and couple moment system acting on the beam in 
Fig. 3-43a by an equivalent resultant force, and find where its line of 
action intersects the beam. measured from point 0. 

y 

x 

-1.5m 

(a) 

Fig. 3-43 

SOLUTION 

Force Summation. Summing the force components, 

..:!+ (FR)x = IF,.; (FR)x = 8 kN(~) = 4.80 kN ~ 

+f(FR)y =IF,,; (FR),, = -4 kN + 8 kN{~) = 2.40 kNf 

From Fig. 3-44b, the magnitude of FR is 

FR = V(4.80 kN)2 + (2.40 kN)2 = 5.37 kN Ans. 

The angle 8 is 

8 - - ·(2.40kN) - 660 
- tan 4.80 kN - 2 · An~ 

Moment Summation. We must equate the moment of FR about 
point 0 in Fig. 3-43b to the sum of the moments of the force and 
couple moment system about point 0 in Fig. 3-43a. Since the line of 
action of (FR)., passes through point 0, only (FR)y produces a moment 
about this point. Thus, 

C + (MR)o = IM0 ; 2.40 kN(d) = -(4 kN)(l.5 m) - 15 kN · m 

-[8kN(~)j(0.5m) + [8 kN(~) j(4.5m) 

d = 2.25 m Ans. 

(b) 
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I EXAMPLE 3.1 s I 

I 
6 ft 

175 lb 

5 ft 

y 

B 

/ 

y 

1""""""3"""tt_ 1 __ """s-'-'ft~-I 3 ft 
B 

A 

/ 
/ 

/ 
/ 

/ 
/ 

60 Jb 

/ 

(a) 

/ 
/ 

/ 

/ FR 

(b) 

Fig. 3-44 

260 Jb 

The jib crane shown in Fig. 3--44a is subjected to three coplanar forces. 
Replace this loading by an equivalent resultant force and specify where 
the resultant's line of action intersects the column AB and boom BC. 

SOLUTION 

Force Summation. Resolving the 250-lb force into x and y 
components and summing the iforce components yields 

~(FR), = 2F,; (FR), = -250lb ( ~) -175lb = -325lb = 325lb ~ 

+ j(FR), = 2£,.; (FR), = -250lb ( ~) -60lb = -260lb = 260lb! 

As shown by the vector addition in Fig. 3-44b, 

FR = V (325 lb )2 + (260 lb )2 = 416 lb Ans. 

- 1(260 lb) 38 0 8 = tan 325 lb = .7 7 Ans. 

Moment Summation. Moments will be summed about point A. 
Assuming the line of action of lF R intersects AB at a distance y from A , 
Fig. 3-44b, we have 

~ + (MR)A = IMA; 325 lb (y) + 260 lb (0) 

= 175 lb(5ft) - 60lb(3ft) + 250lb ( ~) (llft) - 250lb ( ~)(8ft) 

y = 2.29 ft Ans. 

By the principle of transmissibility, FR can also be placed at a distance x 
where it intersects BC, Fig. 3-44b. In this case we have 

~ + (MR)A = IMA; 325 lb (11 ft) - 260 lb (x) 

= 175lb(5ft) - 60lb(3ft) + 250lb ( ~) (llft) - 250lb ( ~)(8ft) 

x = 10.9 ft Ans. 
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EXAMPLE 3.19 
- -

The slab in Fig. 3-45a is subjected to four parallel forces. Determine the 
magnitude and direction of a resultant force equivalent to the given force 
system, and locate its point of application on the slab. 

600N 

0 

400N 

y 

x 
(a) 

SOLUTION (SCALAR ANALYSIS) 

x 

Fig. 3-45 

Force Summation. 

+ !FR = IF; 

From Fig. 3-45a, the resultant force is 

FR = 600N - lOON + 400N + SOON 

= 1400 N! Ans. 

Moment Summation. We require the moment about the x axis of 
the resultant force, Fig. 3-45b, to be equal to the sum of the moments 
about the x axis of all the forces in the system, Fig. 3-45a. The moment 
arms are determined from they coordinates, since these coordinates 
represent the perpendicular distances from the x axis to the lines of 
action of the forces. Using the right-hand rule, we have 

(MR)x = lMx; 

-(1400 N)y = 600 N(O) + 100 N(S m) - 400 N(lO m) + 500 N(O) 

-1400y = -3500 y = 2.50m Ans. 

In a similar manner, a moment equation can be written about the 
y axis using moment arms defined by the x coordinates of each force. 

(MR)y = lMy; 

(1400 N)x = 600 N(8 m) - 100 N(6 m) + 400 N(O) + 500 N(O) 

1400x = 4200 

x = 3m Ans. 

NOTE: A force of FR = 1400 N placed at point P(3.00 m, 2.50 m) on 
the slab, Fig. 3-45b, is therefore equivalent to the parallel force system 
acting on the slab in Fig. 3-45a. 

z 

x 
P(x, y) •--L-

(b} 

+ 
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I EXAMPLE 3.20 I 

x 

(a) 

(b) 

Fig. 3-46 

Replace the force system in Fig. 3-46a by an equivalent resultant 
Fs = 500 lb force and specify its point of application on the pedestal. 

2 in. SOLUTION 

y 

Force Summation. Here we will demonstrate a vector analysis. 
Summing forces, 

FR = IF; FR = FA + Fs + Fe 

= {-300k} lb + {-500k} lb + {lOOk}lb 

= l-700k} lb Ans. 

Location. Moments will be summed about point 0. The resultant 
force FR is assumed to act through point P (x, y, 0), Fig. 3-46b. Thus 

(MR)o = 2 Mo; 

rp x FR = (rA x FA) + (r8 x F8 ) + (re x Fe) 

(xi + yj ) x (-700k ) = ((4i) x (-300k)] 

+ ((-4i + 2j) x (-500k)J + ((-4j) x (lOOk)] 

-700x(i X k) - 700y(j X k) = -1200(i X k) + 2000(i X k) 

- lOOO(j x k) - 400(.j x k) 

700xj - 700yi = 120Qj - 2000j - lOOOi - 400i 

Equating the i and j components, 

(1) -700y = -1400 

y = 2 in. 

700x = -800 

Ans. 

(2) 

x = -1.14 in. Ans. 

The negative sign indicates that the x coordinate of point P is 
negative. 

NOTE: As demonstrated in Example 3.19, it is also possible to 
establish Eq. 1 and 2 directly by summing moments about the x and 
y axes. Using the right-hand ruk, we have 

(MR)x = 2Mr; 

(MR)y = 2My; 

-700y = -100 lb(4 in.) - 500 lb(2 in.) 

700x = 300 lb(4 in.) - 500 lb(4 in.) 
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PRELIMINARY PROBLEMS 

P3-6. In each case. determine the x and y components of 
the resultant force and specify the distance where this force 
acts from point 0. 

260N 
200N 

0 
• 

l-2m--2111--2m- I 
(a) 

SOON 
400N f 

~o i 
I 

I 2m~ l-2m 
(b) 

500 N SOON 

O ~ ;t 600N· m 

5 0
1

) 

l-2m-~2m-l-2m-I 
(c) 

Prob. P3-6 

1'3-7. In each case. determine the resultant force and 
specify its coordinates x and y where it acts on the x-y plane. 

200N 

x 

400N 

100 N 

(a) 

100 N 

(b) 

200N 

300N 

(c) 

Prob. P3-7 

200N 

200N 

IOON 

?' 2m 

y 
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FUNDAMENTAL PROBLEMS 
F3-3L Replace the loading by an equivalent resultant 
force and specify where the resultant's line of action 
intersects the beam, measured from 0. 

y 

5001b 5001b 
250 lb 

• • 
0 ·1 

' 
x 

1-3 ft--3 ft--3 ft--3 ft-I Prob.F3-31 

F3-32. Replace the loading by an equivalent resultant 
force and specify where the resultant's line of action 
intersects the member, measured from A. 

2001b 

1-3ft 3ft1-3ftl 3(f 
501b 

A 

lOOlb Prob.F3-32 

F3-33. Replace the loading by an equivalent resultant 
force and specify where the resultant's line of action 
intersects the horizontal segment of the member, measured 
from A. 

20kN 

2m 2m- 2m 

Prob.F3-33 

F3-34. Replace the loading by an equivalent resultant 
force and specify where the resultant's line of action 
intersects the member AB, measured from A. 

y 

O.Sm 
- - 1.Sm-1 

0.5m 

0.5m B 

8 kN 

3m 

Prob.F3-34 

F3-35. Replace the loading by an equivalent single 
resultant force and specify the x and y coordinates of its line 
of action. 

z 

400N 

HOON 

x Prob.F3-35 

F3-36. Replace the loading by an equivalent single 
resultant force and specify the x and y coordinates of its line 
of action. 

z 

x Prob.F3-36 
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PROBLEMS 

3-87. The weights of the various components of the truck 
are shown. Replace this system of forces by an equivalent 
resultant force and specify its location, measured from B. 

*3-88. The weights of the various components of the truck 
are shown. Replace this system of forces by an equivalent 
resultant force and specify its location, measured from 
point A. 

Probs. 3-87188 

3-89. Replace the three forces acting on the shaft by a 
single resultant force. Specify where the force acts., measured 
from end A. 

3-90. Replace the three forces acting on the shaft by a 
single resultant force. Specify where the force acts., measured 
from end B. 

1---s ri--1-3 n- 1-2 n-1- 4 r1--1 

A B 

5001b 
260lb 200lb 

Probs. 3-89/90 

3-91. Replace the loading by a single resultant force. 
Specify where the force acts. measured from end A. 

*3-92. Replace the loading by a single resultant force. 
Specify where the force acts. measured from B. 

700N 

300N 

~2 m-1---4 111---' 

Probs. 3-91/92 

3-93. Replace the loading by a single resultant force. 
Specify where its line of action intersects a vertical line 
along member AB. measured from A. 

400N 
200N 200N 

B !-O.S m--0.Sm-! 
(i()() N 

-- o 0 

c 

1.5 m 

A 

Prob. 3-93 
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3-94. Replace the loading on the frame by a single 
resultant force. Specify where its line of action intersects a 
vertical line along member AB, measured from A. 

3-95. Replace the loading on the frame by a single 
resultant force. Specify where its line of action intersects a 
horizontal line along member CB, measured from end C. 

y 

1 1
0.5 m 

- n1~ 

600N 
B 

400N 1.5 m 

l 900 N 

--'-I:'___.._' 1'-"'--~-400-N x 

Probs. 3-94195 

*3-96. Replace the loading acting on the post by a 
resultant force, and specify where its line of action intersects 
the post AB, measured from point A. 

3-97. Replace the loading acting on the post by a resultant 
force, and specify where its line of action intersects the post 
AB, measured from point B. 

I SOON 
lm 

B 

~ 
lm 

I 300N 

lm 

I A 

Probs. 3-96197 

3-98. Replace the parallel force system acting on the plate 
by a resultant force and specify its location on the 
x-z plane. 

z 

lm 
~ 

y 

3kN 
0.5m 

x 

Prob. 3-98 

3-99. Replace the loading acting on the frame by an 
equivalent resultant force and specify where the resultant's 
line of action intersects member AB, measured from A. 

A I 
2 ft 

_J_ 

150 lb 
4 ft 

500~----++-BIJ 
/1 __ 3ft --1 

~ 
50lb 

Prob. 3-99 

www.konkur.in



3.8 FURTHER SIMPLIFICATION OF A FORCE AND COUPLE SYSTEM 141 

*3-100. Replace the loading acting on the frame by an 
equivalent resultant force and specify where the resultant's 
line of action intersects member BC, measured from B. 

4 

l50lb 

A 
r 

2 ft 

_l 

4 ft 

~ .. J 
1---3r1-I 

Prob. 3-100 

3-101. If FA = 7 kN and F8 = 5 kN. represent the force 
system by a resultant force, and specify its location on the 
x- y plane. 

SkN 

100mm 

x 

Prob.3-101 

3-102. Determine the magnitudes of FA and F 8 so that the 
resultant force passes through point 0. 

SkN 

lOOmm 

x 

Prob. 3-102 

3-103. The tube supports the four parallel forces. Determine 
the magnitudes of forces Fe and F0 acting at C and D so 
that the equivalent resultant force of the force system acts 
through the midpoint 0 of the tube. 

600N 

Prob. 3-103 
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*3-104. The building slab is subjected to four parallel 
column loadings. Determine the equivalent resultant force 
and specify its location (x, y) on the slab. Take F1 = 8 kN 
andF2 = 9 kN. 

z 

12kN 

Prob. 3-104 

3-105. The building slab is subjected to four parallel 
column loadings. Determine F1 and F2 if the resultant force 
acts through point (12 m, 10 m). 

z 

12kN 

Prob. 3-105 

3-106. If FA = 40 kN and F8 = 35 kN, determine the 
magnitude of the resultant force and specify the location of 
its point of application (x, y) on the slab. 

x 

0.75m 

30kN 

90kN 

Prob. 3-106 

20kN 

3-107. If the resultant force is required to act at the center 
of the slab, determine the magnitude of the column loadings 
FA and F 8 and the magnitude of the resultant force. 

30kN 

0.75 m 90kN 

0.75m 

Prob.3-107 
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3.9 REDUCTION OF A SIMPLE 
DISTRIBUTED LOADING 

Sometimes a body may be subjected to a loading that is distributed over 
its surface. For example, wind on the face of a sign, water within a tank, 
or sand on the floor of a storage container all exert distributed loa dings. 
The pressure caused by a loading at each point on the surface represents 
the intensity of the loading. It is measured using pascals, Pa (or N /m2) in 
SI units, or lb/ft2 in the U.S. Customary system. 

Loading Along a Single Axis. The most common type of 
distributed pressure loading is represented along a single axis. For 
example, consider the beam (or plate) in Fig. 3-47a that has a constant 
width and is subjected to a pressure loading that varies only along the 
x axis. This loading can be described by the function p = p(x) N/m2. 

Since it contains only one variable, x, we can represent it as a coplanar 
distributed load. To do so, we must multiply it by the width b m of the 
beam, so that w(x) = p(x)b N/m, Fig. 3-47b. Using the methods of 
Sec. 3-8, we can replace this coplanar parallel force system with a single 
equivalent resultant force FR, Fig. 3-47c. 

Magnitude o Re u tant Force. The magnitude of FR is 
equivalent to the sum of all the forces in the system, FR = 'i.F. In this 
case integration must be used since there is an infinite number of parallel 
forces dF acting on the beam. Fig. 3-47b. Each dF is acting on an element 
of length dx, and since w(x) is a force per unit length, then 
dF = w(x) dx = dA where dA is the colored differential area under the 
loading curve. For the entire length L , 

(3-19) 

Therefore, the magnilllde of the resultant force is equal to the area A. under 
the loading diagram, Fig. 3-47c. 

p 

x 

(a) 

w 

I dF=dA 
w = w(x) 

x 
0 dx- -

x-1 
L 

(b) 

w 

FR 

c 

o x-l 
L 

(c) 

Fig. 3-47 
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p 

p = p(x) 

(a) 

IV 

I dF=dA 
w = w(x ) 

0 dx - -
1---x--I 

L---

IV 

c 

.:!__v-1 

(b) 

L --

(c) 

Fig. 3-47 (Repeated) 

x 

The pile of brick creates an approximate 
triangular distributed loading on the board. 

Location of Resultant Force. The location x of FR can be 
determined by equating the moments of the force resultant and the 
parallel force distribution about point 0 (the y axis), (MR)o = 2M0 . 

Since dF produces a moment of x dF = xw(x) dx about 0, Fig. 3-47b, 
then for the entire length L, Fig. 3-47c, we have 

-xFR = - [xw(x) dx 

Solving for x, using Eq. 3- 19, we have 

x = 

[xw(x) dx 

/. w(x) dx 

(3- 20) 

This coordinate x locates the geometric center or centroid of the area 
under the distributed loading. In other words, the line of action of the 
resultant force passes through the centroid C (geometric center) of the area 
under the loading diagram, Fig. 3-47c. When the distributed-loading 
diagram is in the shape of a rectangle, triangle, or some other simple 
geometric form, then the centroid location for such common shapes does 
not have to be determined from the above equation. Rather it can be 
obtained directly from the tabulation given on the inside back cover. 

Once xis determined, FR by symmetry passes through point (x, 0) on 
the surface of the beam, Fig. 3-47a, and so in three dimensions the 
resultant force has a magnitude equal to the volume under the loading 
curve p = p(x) and a line of action which passes through the centroid 
(geometric center) of this volume. 

IMPORTANT POINTS 

• Coplanar distributed loadings are defined by using a loading 
function w = w(x) that indicates the intensity of the loading 
along the length of a member. This intensity is measured in 
N/m or lb/ft. 

• The external effects caused by a coplanar distributed load acting 
on a member can be represented by a resultant force. 

• This resultant force is equivalent to the area under the loading 
diagram, and has a line of action that passes through the centroid 
or geometric center of this area. 

www.konkur.in



EXAMPLE 3 .21 

w 

0 
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Determine the magnitude and location of the equivalent resultant force 
acting on the shaft in Fig. 3--4&. 

240Nfm 
w 

w = (60r)N/m 

dA = wdx 

x 

x - - x 
0 

i= I.S m-I - dx 2m 
(a) (b) 

Fig. 3-48 
SOLUTION 

Since w = w(x) is given, this problem will be solved by integration. 

The differential element has an area dA = w dx = 60x2 dx. Applying 
Eq. 3- 19, 

+!FR = I.F; 

= 160N Ans. 

The location x of FR measured from 0 , Fig. 3-48b, is de te rmined from 
Eq. 3- 20. 

x = 
160N 

= l.5m Ans. 

NOTE: These results can be checked by using the table in Appendix B, 
where for the exparabolic area of length a, height b, and shape shown 
in Fig. 3-48a, we have 

ab 2 m(240 N/ m) 3 3 
A = - = = 160 N and x = -a = -(2 m) = 1 5 m 3 3 4 4 . 
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I EXAMPLE 3.22 

A distributed loading of p = (800x) Pa acts over the top surface of the 
beam shown in Fig. 3-49a. Determine the magnitude and location of the 
equivalent resultant force. 

7200 Pa 

p = 800x Pa 
x 

Y-.....__ 

IV 
iv= 160x N/m 1440N/m 

--x---i 
----9m----I 

(b) 

FR= 6.48 kN 

1--x = 6 m---1--3 m-J 

(c) 

Fig. 3-49 

(a) 

SOLUTION 

Since the loading intensity is uniform along the width of the beam 
(they axis), the loading can be viewed in two dimensions as shown in 
Fig. 3-49b. Here 

w = (800x N/m2)(0.2 m) 

= (160x) N/m 

At x = 9 m, w = 1440 N/m. We may again apply Eqs. 3-19 and 3-20 as 
in the previous example; however, here it is easier to find the area and its 
centroid using Appendix B. 

The magnitude of the resultant force is equivalent to the area of the 
triangle. 

FR = !(9 m)(1440 N/m) = 6480 N = 6.48 kN Ans. 

The line of action of FR passes through the centroid C of this triangle. 
Hence, 

x = 9 m - l(9 m) = 6 m 

The results are shown in Fig. 3-49c. 

Ans. 

NOTE: We can also view the resultant FR as acting through the centroid 
of the volume of the loading diagram p = p(x) in Fig. 3-49a. Then FR 
intersects the x- y plane at the point (6 m, 0). Furthermore, the 
magnitude of FR is equal to the volume under this loading diagram; i.e., 

FR = V = !(7200 N/m2)(9 m)(0.2 m) = 6.48 kN Ans. 
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EXAMPLE 3.23 

100 lb/ ft 

3. 9 REDUCTION OF A SIMPLE DISTRIBUTED LOADING 1 4 7 

The granular material exerts the distributed loading on the beam as 
shown in Fig. 3-50a. Determine the magnitude and location of the 
equivalent resultant of this load. 

SOLUTION 
50 lb/ fl 

1-" _____ ...... ...,., 8 The area of the loading diagram is a trapezoid, and therefore the 
A 

I 

r-----9 ft---
(a) 

- -'1'2-
1----9 fl----1 

{b) 

B 

(c) 

100 lb/ ft 
j_ ·,A 

·----9 fl----1 

{d) 

Fig. 3-50 

B 

solution can be obtained directly from the formulas for a trapezoid 
listed in Appendix B. Since these formulas are not easily remembered, 
instead we will solve this problem by using "composite" areas. Here 
we will divide the loading into a rectangular and a triangular loading 
as shown in Fig. 3- 50b. The magnitude of the force represented by 
each of these loadings is equal to its associated area, 

Fi = !(9 ft)(50 lb/ft) = 225 lb 

Fi = (9 ft)(50 lb/ft) = 450 lb 

The lines of action of these parallel forces act through the respective 
centroids of their associated areas and therefore intersect the beam at 

xi = t<9 ft) = 3 ft 

Xi = !(9 ft) = 4.5 ft 

The two parallel forces F1 and F2 can be reduced to a single resultant 
FR· The magnitude of FR is 

FR= 225 + 450 = 675 lb Ans. 

We can find the location of FR with reference to point A , Fig. 3-50b 
and Fig. 3-50c. We require 

( + (MR)A = ~MA; .X(675) = 3(225) + 4.5(450) 

x = 4 ft Ans. 

NOTE: The trapezoidal area in Fig. 3- 50a can a lso be divided into two 
triangular areas as shown in Fig. 3- 50d. In this case 

~ = !(9 ft)(lOO lb/ft) = 450 lb 

F4 = !(9 ft)(50 lb/ft) = 225 lb 

and 

x3 = ~(9 ft) = 3 ft 

~ = 9 ft - t<9 ft) = 6 ft 

Using these results, show again that FR = 675 lb and x = 4 ft. 
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148 CHAPTER 3 FORCE SYSTEM RESULTANTS 

FUNDAMENTAL PROBLEMS 

F3-37. Determine the resultant force and specify where it 
acts on the beam, measured from A. 

9 kN/m 
6kN/m ! I I I I I 1 3kN/m 

~ l l l t t t t 
'°' I I 

A 
I I 

8

t l.5mj - 1.5m-L3m 

Prob.F3-37 

F3-38. Determine the resultant force and specify where it 
acts on the beam, measured from A. 

150lb/ft 

A)~ l l l l l l l l !A~ 
I 6ft ~8ft I 

Prob.F3-38 

F3-39. Determine the resultant force and specify where it 
acts on the beam, measured from A. 

6kN/m 

Prob.F3-39 

F3-40. Determine the resultant force and specify where it 
acts on the beam, measured from A. 

200 lb /ft 500 lb 

1 SO lb/ft 

n ' 
A = r~,B 

• 

--6 ft--1~3 ft~-3 tt-1 
Prob.F3-40 

F3-41. Determine the resultant force and specify where it 
acts on the beam, measured from A. 

6kN/m 

A• 
B 

---4.Sm--- l.Sm -

Prob.F3-41 

F3-42. Determine the resultant force and specify where it 
acts on the beam, measured from A. 

.'I-----------~ • . . 
1-----4m------1 

Prob.F3-42 

160N/m 
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PROBLEMS 

*3-108. Replace the loading by an equivalent resultant 
force and couple moment acting at point 0. 

0 

50 lb/ft 

1---9ft---

1- --9 ft--- 1 

50 lb/ft 

Prob. 3-108 

3-109. Replace the distributed loading with an equivalent 
resultant force, and specify its location on the beam, 
measured from point 0. 

3kN/m 

0 

1-3m--~15m-
Prob. 3-109 

3-110. Replace the loading by an equivalent resultant force 
and specify its location on the beam, measured from A. 

IV 

5 kN/m 
-

2kN /m 

x 
~) ~' 

~-201-I I 4m 

3-111. Currently eighty-five percent of all neck injuries 
are caused by rear-end car collisions. To alleviate this 
problem, an automobile seat restraint has been developed 
that provides additional pressure contact with the cranium. 
During dynamic tests the distribution of load on the 
cranium has been plotted and shown to be parabolic. 
Determine the equivalent resultant force and its location, 
measured from point A. 

IV 

--.a.- w = 12(1 + 2i-2) lb/ft 

x 

Prob.3-111 

*3-112. Replace the distributed loading by an equivalent 
resultant force, and specify its location on the beam, 
measured from the pin at A. 

4kN/m 

2kN/m 

~ 3 n1 3 n1 -----1 

Prob. 3-110 Prob. 3-112 
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150 C HAPTER 3 FORCE SYSTEM RESULTANTS 

3-113. Replace the distributed loading by an equivalent 
resultant force and specify where its line of action intersects 
a horizontal line along member AB, measured from A. 

3-114. Replace the distributed loading by an equivalent 
resultant force and specify where its line of action intersects 
a vertical line along member BC, measured from C. 

3kN/m 

B 
A • --

I 3 n1 I I 

4m 
2kN/m 

c_ .. ~ -

Probs. 3-113/114 

3-115. Determine the length b of the triangular load and 
its position a on the beam so that the equivalent resultant 
force is zero and the resultant couple moment is 8 kN · m 
clockwise. 

- a - ·1---- b ----

6kN/m 

.. . F=============::::!:::::::!:::::!:::::!::::!::::::!::::::l 
. ·f-----~~~~~~~~~~-r--1 

~: A .. 

Prob.3-llS 

*3-116. Determine the equivalent resultant force and 
couple moment at point 0. 

JV 

9kN/m 

1------3 n1------- 1 

Prob.3-116 

3-117. Determine the magnitude of the equivalent 
resultant force and its location, measured from point 0. 

IV 

----,/..--
4 lb/ft 

JV= (4 + 2G) lb/ft 

----

Prob.3-117 

8.90 lb /ft 

I 
() 

x 
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CHAPTER REVIEW 

Moment of Force-Scalar Definition 

A force produces a turning effect or 
moment about a point 0 that does not lie 
on the force's line of action. In scalar 
form, the moment magnimde is the 
product of the force and the moment arm 
or perpendicular distance from point 0 to 
the line of action of the force. 

The direction of the moment is defined 
using the right-hand rule. M0 always acts 
along an axis perpendicular to the plane 
containing F and d, and passes through 
the point 0. 

Principle of Moments 

Rather than finding d, it is normally easier 
to resolve the force into its x and y 
components, determine the moment of 
each component about the point, and 
then sum the results. This is called the 
principle of moments. 

Mo= Fd 

M0 = Fd = F,y - F,.x 

Moment of a Force-Vector Definition 

Since three-dimensional geometry is 
generally more difficult to visualize, the 
vector cross product should be used to 
determine the moment. Here M 0 = r X F, 
where r is a position vector that extends 
from point 0 to any point A , B, or Con 
the line of action of F. 

M o = r A X F = ro X F = r e X F 

If the position vector r and force F are 
expressed as Cartesian vectors, then the 
cross product can be evaluated from the 
expansion of a determinant. 

i 
M 0 = r X F = rx 

F, 

k 

r, 
F_ -

CHAPTER REVIEW 151 

Moment axis 

~ 
I 

~Mo 

F 0 

c 

x 
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152 CHAPTER 3 FORCE SYSTEM RESULTANTS 

Moment about an Axis 

If the moment of a force F is to be 
determined about a specific axis a, then 
for a scalar solution the moment arm, or 
shortest distance d 0 from the line of action 
of the force to the axis must be used. This 
distance is perpendicular to both the axis 
and the line of action of the force. 

When the line of action of F intersects the 
axis then the moment of F about the axis 
is zero. Also, when the line of action of Fis 
parallel to the axis, the moment of F about 
the axis is zero. 

u., 

In three dimensions, the scalar triple 
product should be used. Here u0 is the unit 
vector that specifies the direction of the axis, 
and r is a position vector that is directed 
from any point on the axis to any point on 
the line of action of the force. If M0 is 
calculated as a negative scalar, then the 
sense of direction of M 0 is opposite to u0 . 

M0 = u0 • (r x F) = rx 

Couple Moment 

A couple consists of two equal but 
opposite forces that act a perpendicular 
distanced apart. Couples tend to produce 
a rotation without translation. 

The magnitude of the couple moment is 
M = Fd, and its direction is established 
using the right-hand rule. 

If the vector cross product is used to 
determine the moment of a couple, then r 
extends from any point on the line of 
action of one of the forces to any point on 
the line of action of the other force F that 
is used in the cross product. 

~ 

M = Fd 

M = r x F 

F 

a 

r 

u. 
1 

lt0 ;. 

r,. r, F 

F,. F, 

Axis of projection 

a' 

F~-F 
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Simplification or a Force and 
Couple System 

Any system of forces and couples can be 
redured to a single resultant force and 
resultant couple moment acting at a point 0. 
The resultant force is the sum of all the 
forces in the system. FR = I F, and the 
resultant couple moment is equal to the 
sum of the couple moments and the 
moments of all the forres about point 0. 
(M R)o = I M + I M0 . 

Further simplification to a single resultant 
force is possible, provided the force system 
is concurrent, coplanar. or parallel. To find 
the location of the resultant force from 
point 0. it is necessary to equate the 
moment of the resultant force about the 
point to the moment of the forces and 
couples in the system about the same point. 

Coplanar Distributed Loading 

A simple distributed loading can be 
represented by its resultant force, which is 
equivalent to the area under the loading 
curve. This resultant has a line of action 
that passes through the cemroid or the 
geometric center of the area under the 
loading diagram. 

b 

Fn 

b 
a 

w 

w = w(x) 

---L---' 

CHAPTER REVIEW 153 

F, 

Fn 

b - A11t0 d= -FR a 
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REVIEW PROBLEMS 

R3-L The boom has a length of 30 ft, a weight of 800 lb, 
and mass center at G. If the maximum moment that can be 
developed by a motor at A is M = 20(103) lb· ft, determine 
the maximum load W, having a mass center at G ', that can 
be lifted. 

2 ft 

Prob. R3-1 

R3-2. Replace the force F having a magnitude of F = 50 lb 
and acting at point A by an equivalent force and couple 
moment at point C. 

/ 
x x 20 ft 

z 

Prob. R3-2 

A 

30 ft 
F 

y 

R3-3. The hood of the automobile is supported by the 
strut AB, which exerts a force of F = 24 lb on the hood. 
Determine tihe moment of this force about the hinged axis y. 

z 

B 

x 

Prob. R3-3 

*R3-4. Friction on the concrete surface creates a couple 
moment of M0 = 100 N · m on the blades of the trowel. 
Determine the magnitude of the couple forces so that the 
resultant couple moment on the trowel is zero. The forces 
lie in a horizontal plane and act perpendicular to the handle 
of the trowel 

Prob. R3-4 
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R3-5. Replace the force and couple system by an 
equivalent force and couple moment at point P. 

RJ-6. Replace the force system acting on the frame by a 
resultant force. and specify where its line of action intersects 
member AB, measured from point A. 

-2.s r1 -tB-3 r1 --1 
I 

2 rt 

3001b 

200 1b 

250 lb 

L 
.f. ~~.·: : 

Prob. R3-6 

REVIEW PROBLEMS 1 5 5 

R3-7. The building slab is subjected to four parallel 
column loadings. Determine the equivalent resultant force 
and specify its location (x, y) on the slab. Take Fi = 30 kN, 
Fi = 40kN. 

Prob. R3-7 

*R.3-8. Replace the distributed loading by an equivalent 
resultant force, and specify its location on the beam. 
measured from the pin at C. 

----15(! ----11800 lb/ft lSft----1 

Prob. R3-8 
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CHAPTER 4 

(© YuryZap/Shutterstock) 

It is important to be able to determine the forces in the cables used to support 
this boom to ensure that it does not fail. In this chapter we will study how to apply 
equilibrium methods to determine the forces acting on the supports of a rigid 
body such as this. 
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EQUILIBRIUM OF A 
RIGID BODY 

CHAPTER OBJECTIVES 

• To develop the equations of equilibrium. 

• To introduce the concept of the free-body diagram. 

• To show how to solve rigid-body equilibrium problems in two 
and three dimensions. 

4. 1 CONDITIONS FOR RIGID-BODY 
EQUILIBRIUM 

In this section, we will develop both the necessary and sufficient conditions 
for the equilibrium of the rigid body shown in Fig. 4-la. This body is 
subjected to an external force and couple moment system that is the result 
of the effects of gravitational, electrical, magnetic, or contact forces caused 
by supports or adjacent bodies. The internal forces caused by interactions 
between particles within the body are not shown in this figure, because 
these forces occur in equal but opposite collinear pairs and hence will 
cancel out, a consequence of Newton's third Jaw. 

IF, 
o. 

f \ ..,-M2 "11\ 

Fig. 4-1 

157 
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158 CHAPTER 4 EQUILIBRIUM OF A RIGID BODY 

F4 IF, 
" o. 

- {) 

--
\F2 

F3 / 
w 

M1 (a) 

(b) 

r 

A 

(c) 

Fig. 4-1 (cont.) 

w 

oooocc 

2T 

Fig. 4-2 

..,..M2 

Using the methods of the previous chapter, the force and couple moment 
system acting on a body can be reduced to an equivalent resultant force and 
resultant couple moment at any arbitrary point 0 on or off the body, 
Fig. 4-lb. If these two resultants are both equal to zero, then the body is 
said to be in equilibrium, which means it is at rest or will move with constant 
velocity. Mathematically, the equilibrium of a body is expressed as 

FR = 2F = 0 

(MR)o = 2 M 0 = 0 
(4-1) 

The first of these equations states that the sum of the forces acting on the 
body is equal to zero. The second equation states that the sum of the 
moments of all the forces in the system about point 0 , added to all the 
couple moments, is equal to zero. These two equations are not only necessary 
for equilibrium, they are also sufficient. To show this, consider summing 
moments about some other point, such as point A in Fig. 4-lc. We require 

Since r ~ 0, this equation is satisfied if Eqs. 4-1 are satisfied, namely 
FR= 0 and (MR)o = 0. 

When applying the equations of equilibrium, we will assume that the 
body remains rigid. In reality, all bodies deform when subjected to loads; 
however, most engineering materials such as steel and concrete are very 
stiff and so their deformation is usually very small. Therefore, when 
applying the equations of equilibrium, we can generally assume that the 
body will remain rigid and not deform under the applied load without 
introducing any significant error. This way the direction of the applied 
forces and their moment arms with respect to a fixed reference remain 
the same both before and after a load is applied. 

EQUILIBRIUM IN TWO DIMENSIONS 
In the first part of the chapter, we will consider the case where the force 
system acting on a rigid body lies in or may be projected onto a single plane 
and, furthermore, any couple moments acting on the body are directed 
perpendicular to this plane. This type of force and couple system is often 
referred to as a two-dimensional or coplanar force system. For example, 
the airplane in Fig. 4-2 has a plane of symmetry through its center axis, and 
so the loads acting on the airplane are symmetrical with respect to this 
plane. Thus, each of the two wing tires will support the same load T, which 
is represented on the side (two-dimensional) view of the plane as 2T . 
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4.2 FREE-BODY DIAGRAMS 
Successful application of the equations of equilibrium, which will be 
discussed in Sec. 4.3, requires a complete specification of all the known 
and unknown external forces that act on the body. The best way to account 
for these forces is to draw a f ree-body diagram of the body. This diagram 
is a sketch of the outl ined shape of the body, which represents it as being 
isolated or "free" from its surroundings, i.e., a "free body." On this sketch 
it is necessary to show all the forces and couple moments that the supports 
and the surroundings exert on the body, so that these effects can be 
accounted for when the equations of equilibrium are applied. A thorough 
understanding of how to draw a free-body diagram is of primary importance 
for solving problems in both statics and mechanics of materials. 

Support Reactions Before presenting a formal procedure as to 
how to draw a free-body diagram, we will first consider the various types 
of reactions that occur at supports and at points of contact between 
bodies subjected to coplanar force systems. As a general rule, 

• A support prevents the translation of a body by exerting a force on 
the body. 

• A support prevents the rotation of a body by exerting a couple 
moment on the body. 

For example, let us consider three ways in which a horizontal member, 
such as a beam, is supported at its end. One method consists of a ro ller or 
cylinder, Fig. 4-3a. Since this support only prevents the beam from 
translating in the vertical direction, the roller will only exert a force on 
the beam in this direction, Fig. 4-3b. 

The beam can be supported in a more restrictive manner by using a 
pin, Fig. 4-3c. The pin passes through a hole in the beam and two leaves 
which are fixed to the ground. Here the pin can prevent translation of the 
beam in any direction</>, Fig. 4-3d, and so the pin must exert a force F on 
the beam in the opposite direction. For purposes of analysis, it is generally 
easier to represent this resultant force F by its two rectangular 
components f'.t and F,,, Fig. 4-3e. Once flx and F,, are known, then F and <f> 
can be calculated. 

The most restrictive way to support the beam would be to use a fixed 
support as shown in Fig. 4-3[ This support will prevent both translation 
and rotation of the beam. As a result, a force and couple moment must be 
developed on the beam at its point of connection, Fig. 4-3g. Like the case 
of the pin, the force is usually represented by its rectangular components 
F:t and Fy. 

Table 4-1 lists other common types of supports for bodies subjected to 
coplanar force systems. (In all cases the angle 8 is assumed to be known.) 
Carefully study each of the symbols used to represent these supports and 
the types of reactions they exert on their contacting members. 

4.2 FREE· BODY DIAGRAMS 1 5 9 

(a) 

.'& 
pin 

(d) 

(f) 

roller 

(b) 

ll member 
.... pin 

• UJ. leaves 

1 _L_ 

(c) 

or 

Fig. 4-3 

F, 
(e) 

(g) 

F 
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160 CHAPTER 4 EQUILIBRIUM OF A RIGID BODY 

TABLE 4-1 Supports for Rigid Bodies Subjected to Two-Dimensional Force Systems 

Types of Connection Reaction 

(1) 

~ ~ 
cable 

(2) 

weightless link 

(3) 

;/ 
roller 

(4) ~ 

8("Z 
rocker 

(5~ 

smooth contacting 
surface 

(6) 

roller or pin in 
confined smooth slot 

(7) 

member pin connected 
to collar on smooth rod 

or 

F 

F 

F 

orF~ 

Number of Unknowns 

One unknown. The reaction is a tension force which acts 
away from the member in the direction of the cable. 

One unknown. The reaction is a force which acts along 
the axis of the link. 

One unknown. The reaction is a force which acts 
perpendicular to the surface at the point of contact. 

One unknown. The reaction is a force which acts 
perpendicular to the surface at the point of contact. 

One unknown. The reaction is a force which acts 
perpendicular to the surface at the point of contact. 

One unknown. The reaction is a force which acts 
perpendicular to the slot. 

One unknown. The reaction is a force which acts 
perpendicular to the rod. 

continued 
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TABLE 4-1 Continued 

Types of Connection 

(8) .t 
' 

smooth pin or hinge 

(9) 

member fixed connected 
to collar on smooth rod 

(Hl) 

fixed support 

Reaction 

or 

4.2 FREE·BODY DIAGRAMS 161 

Number of Unknowns 

Two unknowns. The reactions are two components of 
force, or the magnitude and direction 4> of the resultant 
force. Note that 4> and 8 are not necessarily equal [usually 
not, unless the rod shown is a link as in (2)]. 

Two unknowns. The reactions arc the couple moment and 
the force which acts perpendicular to the rod. 

Three unknowns. The reactions arc the couple moment 
and the two force components, or the couple moment and 
the magnitude and direction <J> of the resultant force. 

Typical examples of actual supports are shown in the following sequence of photos. The numbers refer to the 
connection types in Table 4-1. 

The cable exerts a force on the bracket 
in the direction of the cable. (1) 

Typical pin support for a beam. (8) 

The rocker support for this 
bridge girder allows horizontal 
movement so the bridge is free 
to expand and contract due to 
a change in temperature. ( 4) 

This concrete girder 
rests on the ledge that 
is assumed to act as 
a smooth contacting 
surface. (5) 

The Ooor beams of this 
building are welded 
together and thus form 
fixed connect ions. (I 0) 
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162 CHAPTER 4 EQUILIBRIUM OF A RIGID BODY 

F 

Fig. 4-4 

(a) 

Fig. 4-5 

w 

(b) 

Springs. If a linear elastic spring as in Fig. 4-4 is used to support a body, 
the length of the spring will change in direct proportion to the force acting 
on it. A characteristic that defines the "elasticity" of a spring is the spring 
constant or stiffness k. Specifically, the magnitude of force developed by a 
linear elastic spring which has a stiffness k, and is deformed (elongated or 
compressed) a distances measured from its unloaded position, is 

(4-2) 

Note that s is determined from the difference in the spring's deformed 
length land its undeformed length 10 , i.e.,s = l - 10. 

Weight and the Center of Gravity. When a body is within a 
gravitational field, then each of its particles has a specified weight. It was 
shown in Sec. 3.8 that such a system of forces can be reduced to a single 
resultant force acting through a specified point. We refer to this force 
resultant as the weight W of the body and to the location of its point of 
application as the center of gravity. The methods used for its determination 
will be developed in Chapter 6. In the examples and problems that follow, 
if the weight of the body is important for the analysis, this force will be 
reported in the problem statement. 

Internal Forces. As stated in Sec. 4.1, the internal forces that act 
between adjacent particles in a body always occur in collinear pairs such 
that they have the same magnitude and act in opposite directions (Newton's 
third Jaw). Since these forces cancel each other, they will not create an 
external effect on the body. It is for this reason that the internal forces should 
not be included on the free-body diagram if the entire body is to be 
considered. For example, the engine shown in Fig. 4-Sa has a free-body 
diagram shown in Fig. 4-Sb. The internal forces between all its connected 
parts, such as the screws and bolts, will cancel out. Only the external forces 
T1 and T2 exerted by the chains and the engine weight W are shown on the 
free-body diagram. 

Idealized Models. When an engineer performs a force analysis of 
any object, he or she must consider a corresponding analytical or 
idealized model that gives results that approximate as closely as possible 
the actual situation. To do this, careful choices have to be made so that 
selection of the type of supports, the material behavior, and the object's 
dimensions can be justified. This way one can feel confident that any 
design or analysis will yield results which can be trusted. In complex 
cases this process may require developing several different models of the 
object that must be analyzed. However, in any case, this selection process 
requires both skill and experience. 
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The following two cases illustrate what is required to develop a proper 
model. In Fig. 4-6a, the steel beam is to be used to support the three roof 
joists of a building. For a force analysis it is reasonable to assume the 
material (steel) is rigid since only very small deflections will occur when 
the beam is loaded. A bolted connection at A will allow for any slight 
rotation that occurs here when the load is applied, and so a pin can be 
considered for this support. At B a roller can be considered since this 
support offers no resistance to horizontal movement. A building code is 
used to specify the roof loading so that the joist loads F can be calculated. 
These forces are intented to be larger than any actual loading on the 
beam since they account for extreme loading cases and for any dynamic 
or vibrational effects. Finally, the weight of the beam is generally 
neglected when it is small compared to the load the beam supports. 
The idealized model of the beam is therefore shown with average 
dimensions a, b, c, and din Fig. 4-6b. 

As a second case, consider the lift boom in Fig. 4-7a. By inspection, it is 
supported by a pin at A and by the hydraulic cylinder BC, which can be 
approximated as a weightless link. The material can be assumed rigid, 
and with its density known, the weight of the boom and the location of its 
center of gravity Gare determined. When a design loading P is specified, 
the idealized model shown in Fig. 4-7b can be used for a force analysis. 
Average dimensions (not shown) are used to specify the location of the 
loads and the supports. 

Idealized models of specific objects will be given in some of the 
examples throughout the text. In all cases, it should be realized that each 
represents the reduction of a practical situation using simplifying 
assumptions Like the ones illustrated here. 

p 

(a) (b) 

Fig. 4-7 

4.2 FREE-BODY D IAGRAMS 163 

(a) 

(b) 

Fig. 4-6 
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IMPORTANT POINTS 

• No equilibrium problem should be solved without first drawing the free-body diagram, so as to account 
for all the forces and couple moments that act on the body. 

• If a support prevents translation of a body, then the support exerts a force on the body. 

• If a support prevents rotation of a body, then the support exerts a couple moment on the body. 

• The force Fin an elastic spring is related to the extension or compression of the spring using F = ks, 
where k is the spring's stiffness. 

• The weight of a body is an external force, and its effect is represented by a single resultant force acting 
through the body's center of gravity G. 

• Internal forces are never shown on the free-body diagram since they occur in equal but opposite collinear 
pairs and therefore cancel out. 

• Couple moments can be placed anywhere on the free-body diagram since they are free vectors. Forces 
can act at any point along their lines of action since they are sliding vectors. 

PROCEDURE FOR ANALYSIS 

To construct a free-body diagram for a rigid body or any group of bodies considered as a single system, the 
following steps should be performed: 

Draw Outlined Shape. 

Imagine the body to be isolated or cut "free" from its constraints and connections and draw (sketch) its 
outlined shape. 

Show All Forces and Couple Moments. 

Identify all the known and unknown external forces and couple moments that act on the body. Those generally 
encountered are due to (1) applied loadings, (2) reactions occurring at the supports or at points of contact 
with other bodies, and (3) the weight of the body. To account for all these effects, it may help to trace over the 
boundary, carefully noting each force or couple moment acting on it. 

Identify Each Loading and Give Dimensions. 

The forces and couple moments that are known should be labeled with their proper magnitudes and directions. 
Letters are used to represent the magnitudes and direction angles of forces and couple moments that are 
unknown. Finally, indicate the dimensions of the body necessary for calculating the moments of forces. 
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EXAMPLE 4 .1 

The sphere in Fig. 4-& has a mass of 6 kg and is supported as shown. 
Draw a free-body diagram of the sphere, the cord CE, and the knot at C. 

B 

k 

D 

(a) 

SOLUTION 

Sphere. By inspection, there are only two forces acting on the sphere, 
namely, its weight, 6 kg (9.81 m/s2) = 58.9 N, and the force of cord CE. 
The free-body diagram is shown in Fig. 4-8b. 

Cord CE. When the cord CE is isolated from its surroundings, its free
body diagram shows only two forces acting on it, namely, the force of the 
sphere and the force of the knot, Fig. 4-8c. Notice that Fe£ shown here is 
equal but opposite to that shown in Fig. 4-8b, a consequence of Newton's 
third law of action-reaction.Also, Fe£ and F£c pull on the cord and keep 
it in tension so that it doesn't collapse. For equilibrium, Fe£= F EC· 

Knot. The knot at C is subjected to three forces, Fig. 4-8d. They are 
caused by the cords CBA and CE and the spring CD. As required, the 
free-body diagram shows all these forces labeled with their magnitudes 
and directions. It is important to recognize that the weight of the sphere 
does not directly act on the knot. Instead, the cord CE subjects the knot 
to this force. 

F CBA (Force of cord CBA acting on knot) 

c 
,.._ ____ F co (Force of spring acting on knot) 

Fe£ (Force of cord CE acting on knot) 

(d) 

Fig. 4-8 

Fe£ (Force of cord CE acting OD sphere) 

58.9 N (Weight or gravity acting OD sphere) 

(b) 

F EC (Force of knot acti ng on cord CE) 

Fe£ (Force of sphere acting on cord CE) 

(c) 
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I EXAMPLE 4.2 

(a) 

Fig. 4-9 

Draw the free-body diagram of the foot lever shown in Fig. 4-9a. The 
operator applies a vertical force to the pedal so that the spring is stretched 
1.5 in. and the force in the short link at B is 20 lb. 

(b) 

SOLUTION 

t 1.yn. 
1 in. 

I 
1.5 in. 

I 
1 in. 

By inspection of the photo, the lever is loosely bolted to the frame at A. 
The rod at Bis pinned at its ends and acts as a "short link." After making 
the proper measurements, the idealized model of the lever is shown in 
Fig. 4-9b. From this, the free-body diagram is shown in Fig. 4-9c. The pin 
support at A exerts force components Ax and Ayon the lever. The link at 
B exerts a force of 20 lb, acting in the direction of the link. In addition the 
spring also exerts a horizontal force on the lever. If the stiffness is 
measured and found to be k = 20 lb/in., then since the stretch 
s = 1.5 in., using Eq. 4-2, F, = ks = 20 lb/in. (1.5 in.) = 30 lb. Finally, 
the operator's shoe applies a vertical force of F on the pedal. The 
dimensions of the lever are also shown on the free-body diagram, since 
this information will be useful when calculating the moments of the 
forces. As usual, the senses of the unknown forces at A have been 
assumed. The correct senses will become apparent after solving the 
equilibrium equations. 
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EXAMPLE 4 .3 

Two smooth pipes, each having a mass of 300 kg, are supported by the 
forked tines of the tractor in Fig. 4-lOa. Draw the free-body diagrams for 
each pipe and both pipes together. 

Effect of sloped 
blade acting on A 

2943 N 
Effect of gravi ty 
(weight) acting on A 

Effect of B acting on A 
R 

300 

Effect of sloped 
F fork acting on A 

(a) (b) (c) 

SOLUTION 

The idealized model from which we must draw the free-body diagrams is 
shown in Fig. 4-IOb. Here the pipes are identified, the dimensions have 
been added, and the physical situation is reduced to its simplest form. 

The free-body diagram of pipe A is shown in Fig. 4-lOc. Its weight is 
W = 300(9.81) N = 2943 N. Assuming all contacting surfaces are 
smooth, the reactive forces T ,F, R act in a directionnonna/ to the tangent 
at their surfaces of contact. 

The free-body diagram of pipe B is shown in Fig. 4-lOd. Can you 
identify each of the three forces acting on this pipe? Note that R 
representing the force of A on B, Fig. 4-lOd, is equal and opposite to R 
representing the force of Bon A, Fig. 4-lOc. 

The free-body diagram of both pipes combined ("system") is shown in T 

Fig. 4-IOe. Here the contact force R, which acts between A and B, is 
considered an internal force and hence is not shown on the free-body 
diag ram. That is, it represents a pair of equal but opposite collinear forces 
which cancel each othe r. 

R 

(d) 

F 

(e) 

Fig. 4-10 

p 
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CONCEPTUAL PROBLEMS 

C4-L Draw the free-body diagram of the uniform trash 
bucket which has a significant weight. It is pinned at A and 
rests aganist the smooth horizontal member at B. Show your 
result in side view. Label any necessary dimensions. 

Prob. C4-1 

C4-2. Draw the free-body diagram of the outrigger ABC 
used to support a backhoe. The top pin B is connected to the 
hydraulic cylinder, which can be considered to be a short link 
(two-force member), the bearing shoe at A is smooth, and 
the outtrigger is pinned to the frame at C. 

Prob. C4-2 

C4-3. Draw the free-body diagram of the wing on the 
passenger plane. The weights of the engine and wing are 
significant. The tires at B are smooth. 

Prob. C4-3 

C4-4. Draw the free-body diagram of the wheel and 
member ABC used as part of the landing gear on a jet plane. 
The hydraulic cylinder AD acts as a two-force member, and 
there is a pin connection at B. 

Prob. C4-4 
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4. 3 EQUATIONS OF EQUILIBRIUM 
In Sec. 4.1 we developed the two equations which are both necessary and 
sufficient for the equilibrium of a rigid body, namely, I F = 0 and 
I M 0 = 0. When the body is subjected to a system of forces, which all lie 
in the x-y plane, then the forces can be resolved into their x and y 
components. The conditions for equilibrium in two dimensions then 
become 

IF. = O x 

IF. = O )' 

IM0 = 0 

(4-3) 

Here !f"x and I Fy represent, respectively, the algebraic sums of the x and 
y components of a ll the forces acting on the body, and IM0 represents 
the algebraic sum of the couple moments and the moments of all th,e force 
components about the z axis that pass through the arbitrary point 0. 

Alternative Sets of Equilibrium Equations. Although Eqs. 4-3 
are most often used for solving coplanar equilibrium problems, two 
alternative sets of three independent equilibrium equations may also be 
used. One such set is 

IF. = O x 

IMA= 0 

IMB= 0 

(4-4) 

When using these equations, it is required that the line passing through 
points A and B not be parallel to they axis. To show that these equations 
provide the conditions for equilibrium, consider the free-body diagram 
of the plate in Fig. 4-lla. Using the methods of Sec. 3.7, all the forces on 
the free-body diagram are first replaced by an eq_uivalent resultant force 
FR= I F, and a resultant couple moment (MR)A = I MA, Fig. 4-llb. 
lf IMA = 0 is satisfied, then ( MR) A = 0. lf If"x = 0 is satisfied, then 
FR must have no component along the x axis, and therefore FR must be 
parallel to they axis, Fig. 4-llc. Fmally, if !Ma = 0, where B does not lie 
on the line of action of FR, then FR = 0 and therefore the body in 
Fig. 4-1 la must be in equilibrium. 

(a) 

8 lo<'--------' c 
(b) 

r.F=;=====---~A 

8 lo<'--------' c 
(c) 

Fig. 4-11 
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(a) 

n""---- -------- c 
(b) 

,...~---------:>IA 

n""---- -------- c 
(c) 

Fig. 4-11 (Repeated) 

A second alternative set of equilibrium equations is 

2MA = 0 

'I.Ms = 0 

'I.Mc = 0 

(4-5) 

Here it is necessary that points A, B, and C do not lie on the same line. To 
show that these equations, when satisfied, ensure equilibrium, consider 
again the free-body diagram in Fig. 4- llb. If 2MA = 0 is to be satisfied, 
then ( MR ) A = 0. If 2Mc = 0 is satisfied, then the line of action of FR 
passes through point C, Fig. 4-llc. Finally, if 2M8 = 0 is satisfied, then 
FR = 0, and so the plate in Fig. 4-lla must be in equilibrium. 

PROCEDURE FOR ANAL YS/S 

Coplanar force equilibrium problems can be solved using the 
following procedure. 

Free-Body Diagram. 

• Establish the x, y coordinate axes in any suitable orientation. 

• Draw an outlined shape of the body. 

• Show all the forces and couple moments acting on the body. 

• Label all the loadings and specify their directions relative to the x 
or y axis. The sense of a force or couple moment having an 
unknown magnitude but known line of action can be assumed. 

• Indicate the dimensions of the body necessary for calculating the 
moments of forces. 

Equations of Equilibrium. 

• Apply the moment equation of equilibrium, 2M0 = 0, about 
a point 0 that lies at the intersection of the lines of action of 
two unknown forces. In this way, the moments of these 
unknowns are zero about 0 , and a direct solution for the third 
unknown can be determined. 

• When applying the force equilibrium equations, 24 = 0 and 
2F,; = 0, orient the x and y axes along lines that will provide the 
sunplest resolution of the forces into their x and y components. 

• If the solution of the equilibrium equations yields a negative 
scalar for a force or couple moment magnitude, this indicates 
that the sense is opposite to that which was assumed on the 
free-body diagram. 
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EXAMPLE 4 .~ 

Determine the tension in cables BA and BC necessary to support the 60-kg 
cylinder in Fig. 4-12.a. 

B 

D 

(a) 

SOLUTION 

Free-Body Diagram. Due to equilibrium, the weight of the cylinder 
causes the tension in cable BD to be T80 = 60(9.81) N, Fig. 4-12b. The 
forces in cables BA and BC can be determined by investigating the 
equilibrium of ring B. Its free-body diagram is shown in Fig. 4-12c. The 
magnitudes of TA and Tc are unknown, but their directions are known. 

Equations of Equilibrium. Applying the equations of equilibrium 
along the x and y axes, we have 

~I~= 0; Tccos45° - (~) TA = 0 (1) 

+f l£,. = 0; Tc sin 45° + (D TA - 60(9.81) N = 0 (2) 

Equation (1) can be written as TA = 0.8839T c- Substituting this into 
Eq. (2) yields 

Tc sin 45° + (~}(0.8839Tc) - 60(9.81)N = 0 

So that 

Tc = 475.66 N = 476 N Ans. 

Substituting this result into either Eq. (1) or Eq. (2), we get 

TA = 420 N Ans. 

NOTE: The accuracy of these results, of course, depends on the accuracy 
of the data, i.e., measurements of geometry and loads. For most 
engineering work involving a problem such as this, the data as measured 
to three significant figures would be sufficient. 

T80 = 60 (9.81) N 

60 (9.81) N 

(b) 

y 

T8 v = 60 (9.81) N 

(c) 

Fig. 4-12 
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EXAMPLE 4.5 - -

Determine the horizontal and vertical components of reaction on the beam 
caused by the pin at Band the rocker at A as shown in Fig. 4-13a. Neglect 
the weight of the beam. 

y 

600N 200N 600 sin 45° N I 

4> 0.2m t 
~. I ? n 

200N 

Aiji f ?' 

i:mJ1-3m-1~zT -2m~--3m--D-•-2m-
lOON 

(a) 

1319 N 
A t (beam on pin) 

t 319N 

319N 
(pin on rocker) 

(rocker on pin) 319N 
(floor on rocker) 

(c) 

Fig. 4-13 

SOLUTION 

lOON 

(b) 

Free-Body Diagram. Identify each of the forces shown on the free
body diagram in Fig. 4-13b. Here the 600-N force is represented by its 
x and y components. 

Equations of Equilibrium. Summing forces in the x direction yields 

~ 2-Fr = O; 600cos45°N - Bx = 0 

Bx = 424 N Ans. 

A direct solution for Ay can be obtained by applying the moment 
equation about point B. 

~+2.Ms = O; 100 N (2 m) + (600 sin 45° N)(5 m) 

- (600 cos 45° N)(0.2 m) - Ay(7 m) = O 

Ay = 319 N 

Summing forces in they direction, using this result, gives 

Ans. 

+f 2£,, = 0; 319N - 600sin45°N - lOON - 200N + By = 0 

B = 405 N y Ans 

NOTE: The support forces in Fig. 4- 13b are caused by the pins that act on 
the beam. The opposite forces act on the pins. For example, Fig. 4-13c 
shows the equilibrium of the pin at A and the rocker. 
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EXAMPLE 4 .6 

The cord shown in Fig. 4-14a supports a force of 100 lb and wraps over the 
frictionless pulley. Determine the tension in the cord at C and the horizontal 
and vertical components of reaction at pin A . 

100 lb 

SOLUTION 

(a) 

Fig. 4-14 

Free-Body Diagrams. The free-body diagrams of the cord and pulley 
are shown in Fig. 4-14b. Note that the principle of action, equal but 
opposite reaction must be carefully observed when drawing each of 
these diagrams: the cord exerts an unknown load distribution p on the 
pulley at the contact surface, whereas the pulley exerts an equal but 
opposite effect on the cord. For the solution, however, it is simpler to 
combine the free-body diagrams of the pulley and this portion of the 

100 
lb 

cord, so that the distributed load becomes internal to this .. system" and is 
therefore e liminated from the analysis, Fig. 4-14c. 

Equations of Equilibrium. Summing moments about point A to 
e liminate Ax and Ay, Fig. 4-14c, we have 

Using this result , 

..:!; ~F,r = O; 

+ f ~F,. = O; 

100 lb (0.5 ft) - T(0.5 ft) = 0 

T = 100 lb 

-Ax + 100 sin 30° lb = 0 

Ax= 50.0 lb 

Ay - 100 lb - 100 cos 30° lb = 0 

Ay = 187 lb 

Ans. 

Ans. 

Ans. 

NOTE: It is seen that the tension in the cord remains constant as the cord 
passes over the pulley. (This of course is true for any angle 8 at which the 
cord is directed and for any radius r of the pulley.) 

0.5 fl 

IOOlb 

T 

(b) 

(c) 

p 

T 
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EXAMPLE 4.7 - -

The member shown in Fig. 4-15a is pin connected at A and rests against a 
smooth support at B. Determine the horizontal and vertical components of 
reaction at the pin A. 

B 

-L------>{~v-----~o) 
90N · m 

(a) 

(b) 

Fig. 4-15 

SOLUTION 

Free-Body Diagram. As shown on the free-body diagram, Fig. 4-15b, 
the reaction Na must be perpendicular to the member at B. Also, 
horizontal and vertical components of reaction are represented at A. 

Equations of Equilibrium. Summing moments about A, we obtain a 
direct solution for Na, 

C +lMA = O; -90N·m - 60N(lm) + Na(0.75m) = 0 

Using this result, 

~IF. = O· x , 

+ jlF. = O· y , 

Na = 200N 

Ax - 200 sin 30° N = 0 

Ax = lOON 

Ay - 200 cos 30° N - 60 N = 0 

A>' = 233 N 

Ans. 

Ans. 
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4.4 TWO- AND THREE-FORCE 
MEMBERS 

The solutions to some equilibrium problems can be simplified by 
recognizing members that are subjected to only two or three forces. 

Two-Force Members. As the name implies, a two-force member has 
forces applied at only two points on the member. An example of a two
force member is shown in Fig. 4-16a. To satisfy force equilibrium, FA and 
Fa must be equal in magnitude, FA = Fa = F, but opposite in direction 
(:~F = 0), Fig. 4-16b. Furthermore, moment equilibrium requires that FA 
and Fa share the same line of action, which can only happen if they are 
directed along the line joining points A and B (IMA = 0 or lM8 = 0), 
Fig. 4- 16c. Therefore, for any two-force member to be in equilibrium, the 
two forces acting on the member must have the same magnitude, act in 
opposite directions, and have the same line of action, directed along the Line 
joining the two points where these forces act. 

(a) 
F8 =F 

(b) (c) 

Two-force member 

Fig. 4-16 

Three-Force Members. If a member is subjected to only three forces, 
it is called a three-force member. Moment equilibrium can be satisfied only 
if the three forces form a concurrent or parallel force system. To illustrate, 
consider the member in Fig. 4-17a subjected to the three forces FI> !F2, and 
F3. If the lines of action of F1 and F2 intersect at point 0 , then the line of 
action of F3 must also pass through point 0 so that the forces satisfy 
l M0 = 0. As a special case, if the three forces are all parallel, Fig. 4-17b, 
the location of the point of intersection, 0, will approach infinity. 

0 

(a) (b) 

Three-force member 

Fig. 4-17 

The hydraulic cylinder AB is a typical 
example of a two-force member since it 
is pin connected at its ends and, provided 
its weight is neglected, only the resultant 
pin forces act on this member. 

The boom-and-bucket on this lift is a 
three-force member, provided its weight is 
neglected. Here the lines of action of the 
weight of the worker, W, and the force of 
the two-force member (hydraulic cylinder) 
at B, F8 , intersect at 0. For moment 
equilibrium, the resultant force at the pin 
A , FA, must also be directed towards 0. 

The link used for this railroad car brake 
is a three-force member. Since the force 
F 8 in the tie rod at B and Fe from the 
link at Care parallel, then for equilibrium 
the resultant force FA at the pin A must 
also be parallel with these two forces. 
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EXAMPLE 4.8 - -

I 
0.2m 
_L 

0.5 m 

0.201 ~ 
r---i~ 

• D .• r· 
0.1 m 
(a) 

F 

[ 45° ' \ 

D 
F 

I 
I 

I 
I 
I 

I 

I 
I 

I 
I 

/ 
I 

(b) 

o.sm-J 

' c 400N 1
0 

I 
I 
I 
I 
\ 

'L 
1 45•\ 

0.2m 
I F 

(c) 

Fig. 4-18 

The lever ABC is pin supported at A and connected to a short link BD as 
shown in Fig. 4-18a. If the weight of the members is negligible, determine 
the force of the pin on the lever at A. 

SOLUTION 

Free-Body Diagrams. As shown in Fig. 4-18b, the short link BD is 
a two-force member, so the resultant forces from the pins D and B must 
be equal, opposite, and collinear. Although the magnitude of the force is 
unknown, the line of action is known since it passes through Band D. 

Lever ABC is a three-force member, and therefore, in order to 
satisfy moment equilibrium, the three nonparallel forces acting on it 
must be concurrent at 0, Fig. 4- 18c. Note that the force Fon the lever at 
B is equal but opposite to the force F acting at B on the link. Why? The 
distance CO must be 0.5 m since the line of action of F is known. 

Equations of Equilibrium. By requiring the force system to be 
concurrent at 0 , since IM0 = 0, the angle 8 which defines the line of 
action of FA can be determined from trigonometry, 

8 = tan- 1(
0

·
7

) = 60.3° 
0.4 

Using the x, y axes and applying the force equilibrium equations, 

~IF. = O· x , 

+ jIF. = O· y , 

Solving, we get 

FA cos 60.3° - F cos 45° + 400 N = 0 

FA sin 60.3° - F sin 45° = O 

FA = 1.07 kN 

F = 1.32kN 

Ans. 

NOTE: We can also solve this problem by representing the force at A by 
its two components Ax and Ay and applying IMA = 0 to get F, then 
IF., = 0, IF,. = 0 to get Ax and Ay. Once Ax and Ay are determined, we 
can get FA and 8. 
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PRELIMINARY PROBLEM 
P4-l . Draw the free-body diagram of each object. 

SOON 

i---4m---1 
SOON 

b---------' B 

_..~..._ 3 m--1-2m~ 
(a) (d) 

.A~• - :;:ttWJrN. m 

l-2m 

3m 

l B 

A ,-----.,...----~B 

2m-~2m--I 

(b) (e) 

400N/m 

,~. 
-3m~-3m-J 

• 

A i-l -.....,2-m-B-1l~C 
(c) (f) 

Prob. P4-l 
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FUNDAMENTAL PROBLEMS 

All problem solutions must include an FBD. 

F4-1. Determine the horizontal and vertical components 
of reaction at the supports. Neglect the thickness of the 
beam. 

500Jb 

~ 6001b·ft 

'!f\. () B ;i) 
1-s ft -l-s ft -~s ft~ 

Prob.F4-1 

F4-2. Determine the horizontal and vertical components 
of reaction at the pin A and the reaction on the beam at C. 

11--l.Sm 

-l o 
4kN! 

1--1.Sm 

IA 
1.5 m 

Prob.F4-2 

B 

F4-3. The truss is supported by a pin at A and a roller 
at B. Determine the support reactions. 

Prob.F4-3 

F4-4. Determine the components of reaction at the fixed 
support A. Neglect the thickness of the beam. 

200 N 200 N 200 N 

A 

Prob.F4-4 

F4-S. The 25-kg bar has a center of mass at G. If it is 
supported by a smooth peg at C, a roller at A, and cord AB, 
determine the reactions at these supports. 

B 

Prob. F4-S 

F4-6. Determine the reactions at the smooth contact 
points A , B, and Con the bar. 

Prob.F4-6 
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PROBLEMS 

All problem solutions must include an FBD. 

4-L Determine the components of the support reactions 
at the fixed support A on the cantilevered beam. 

6kN 

Prob. 4-1 

4-2. Determine the reactions at the supports. 

400 N/m 

1---3 m--·1- --3 m--- 1 

Prob. 4-2 

4-3. Determine the horizontal and vertical components 
of reaction of the pin A and the reaction of the rocker B on 
the beam. 

4kN 

A o 

1----6 m----- 1 

Prob. 4-3 
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*4-4. Determine the reactions at the supports. 

900N/m 
r--,.._ --.,.._ 

600N/m ---. ,.._ 

A ~!1 • 

---3m~1---3n1---1 
Prob. 4-4 

4-5. Determine the reactions at the supports. 

3 n1 

- 1 m--i-----3 m----1 

Prob. 4-5 

4-6. Determine the reactions at the supports. 

Sk~N~>(JJ.====;;;;;:;~:;-~~~-,-

1 
2m 

~~Y=~·· =~:' sl 
6kN 8 kN 

-- 2m --~2m ~--2m --· 
Prob. 4-6 
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4-7. Determine the magnitude of force at the pin A and in 
the cable BC needed to support the 500-lb load. Neglect the 
weight of the boom AB. 

B 

Prob. 4-7 

*4-8. The dimensions of a jib crane are given in the figure. 
If the crane has a mass of 800 kg and a center of mass at G, 
and the maximum rated force at its end is F = 15 kN, 
determine the reactions at its bearings. The bearing at A is a 
journal bearing and supports only a horizontal force, 
whereas the bearing at B is a thrust bearing that supports 
both horizontal and vertical components. 

4-9. The dimensions of a jib crane are given in the figure. The 
crane has a mass of 800 kg and a center of mass at G. The 
bearing at A is a journal bearing and can support a horizontal 
force, whereas the bearing at B is a thrust bearing that supports 
both horizontal and vertical components. Determine the 
maximum load F that can be suspended from the end of the 
crane if the bearings at A and B can sustain a maximum 
resultant load of24 kN and 34 kN, respectively. 

3m 

A 

0.75m 

2m 

l 
B 

Probs. 4-819 

4-10. The smooth pipe rests against the opening at the 
points of contact A, B, and C. Determine the reactions at 
these points needed to support the force of 300 N. Neglect 
the pipe's thickness. 

c 

A 

J o.J6 m 
30•(._ B _j 

/ I O 5 m- -+--- 0.5 m --1--l 
~· . 0.15m 

300N 

Prob. 4-10 

4-11. The beam is horizontal and the springs are 
unstretched when there is no load on the beam. Determine 
the angle of tilt of the beam when the load is applied. 

B 

600N/m 
k 8 = 1.5 kN/m 

-- 3 m --1-- 3 m --1 
Prob. 4-11 
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*4-U. The 10.kg uniform rod is pinned at end A. If it is 
subjected to a couple moment of 50 N · m, determine the 
smallest angle e for equilibrium. The spring is unstretched 
when e = 0°, and has a stiffness of k = 60 N / m. 

~ k~~Nlm B 

2m 
0 

~o.sm -

t::Bf 50N · m 

Prob. 4-12 

4-13. The man uses the hand truck to move material up 
the step. If the truck and its contents have a mass of 50 kg 
with center of gravity at G, determine the normal reaction 
on both wheels and the magnitude and direction of the 
minimum force required at the grip B needed to lift the load. 

Prob. 4-13 

4-14. Three uniform books, each having a weight W and 
length a, are stacked as shown. Determine the maximum 
distanced that the top book can extend out from the bottom 
one so the stack does not topple over. 

----a----+-d-

Prob. 4-14 
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4-15. Determine the reactions at the pin A and the tension 
in cord BC. Set F= 40 kN. Neglect the thickness of the beam. 

*4-16. If rope BC will fail when the tension becomes 50 kN, 
determine the greatest vertical load F that can be applied to 
the beam at B. What is the magnitude of the reaction at A for 
this loading? Neglect the thickness of the beam. 

26kN F 

c 

A 

~2m-1---4m --~1 

Probs. 4-15n6 

4-17. The rigid metal strip of negligible weight is used as 
part of an electromagnetic switch. If the stiffness of the 
springs at A and B is k = 5 N / m and the strip is originally 
horizontal when the springs are unstretched, determine the 
smallest force F needed to close the contact gap at C. 

50 mm----50 mm---1 

?pi 

Prob. 4-17 

!F 
c:::J.f... 

_lomm 
= 
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182 C HAPTER 4 EQU ILI BRIUM OF A RI GID BODY 

4-18. The rigid metal strip of negligible weight is used as 
part of an electromagnetic switch. Determine the maximum 
stiffness k of the springs at A and B so that the contact at C 
closes when the vertical force developed there is F = 0.5 N. 
Originally the strip is horizontal as shown. 

SOmm-J SOmm-J 

Prob. 4-18 

!F 
/!& c::::J c 

r omm 
=-

4-19. The cantilever footing is used to support a wall near 
its edge A so that it causes a uniform soil pressure under the 
footing. Determine the uniform distribution loads, w A and 
w8 ,measured in lb/ft at pads A and B,necessary to support 
the wall forces of 8000 lb and 20 000 lb. 

20 000 lb 

1! 025ft 
8000 lb -

, .... 
>--- 1.5 f 

I 

I ~ 

I ·1 
I I I 

AW11 t t t t t tB 
l-2wAft I I wn I ,... ----8 ft ------i-3 ft-

Prob. 4-19 

*4-20. The uniform beam has a weight Wand length I and 
is supported by a pin at A and a cable BC. Determine the 
horizontal and vertical components of reaction at A and the 
tension in the cable necessary to hold the beam in the 
position shown. 

t 
A• 

Prob. 4-20 

4-2L A boy stands out at the end of the diving board, which 
is supported by two springs A and B, each having a stiffness 
of k = 15 kN / m. In the position shown the board is horizontal. 
If the boy has a mass of 40 kg, determine the angle of tilt 
which the board makes with the horizontal after he jumps off 
Neglect the weight of the board and assume it is rigid. 

- i------3 fl)-----

Prob. 4-21 
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4-22. The beam is subjected to the two concentrated loads. 
Assuming that the foundation exerts a linearly varying load 
distribution on its bottom, determine the load intensities w 1 
and w2 for equilibrium in terms of the parameters shown. 

P 2P 

r-+-i-+-i-~--j 
~ ' l II 

iv, 
,, 
' - I • 

Prob. 4-22 

4-23. The rod supports a weight of200 lb and is pinned at its 
end A. U it is subjected to a couple moment of 100 lb· ft, 
determine the angle 8 for equilibrium. The spring has an 
unstretched length of2 ft and a stiffness of k = 50 lb/ft. 

2 ft 
k = 50 lb/ft 

Prob. 4-23 

4.4 Two- AND THREE-FORCE M EMBERS 183 

*4-24. Determine the distance d for placement of the load P 
for equilibrium of the smooth bar when it is held in the position 
8 as shown. Neglect the weight of the bar. 

-a-

Prob. 4-24 

4-25. U d = 1 m. and 8 = 30". determine the normal 
reaction at the smooth supports and the required distance a 
for the placement of the roller if P = 600 N. Neglect the 
weight of the bar. 

-a-

Prob. 4-25 
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CONCEPTUAL PROBLEMS 

C4-5. The tie rod is used to support this overhang at the 
entrance of a building. If it is pin connected to the building wall 
at A and to the center of the overhang B, determine if the force 
in the rod will increase, decrease, or remain the same if (a) the 
support at A is moved to a lower position D,and (b) the support 
at Bis moved to the outer position C. Explain your answer with 
an equilibrium analysis, using dimensions and loads. Assume 
the overhang is pin supported from the building wall. 

Prob. C4-5 

C4-6. The man attempts to pull the four wheeler up the 
incline and onto the trailer. From the position shown, is it 
more effective to pull on the rope at A , or would it be better 
to pull on the rope at B? Draw a free-body diagram for each 
case, and do an equilibrium analysis to explain your answer. 
Use appropriate numerical values to do your calculations. 

Prob. C4-6 

C4-7. Like all aircraft, this jet plane rests on three wheels. 
Why not use an additional wheel at the tail for better 
support? (Can you think of any other reason for not 
including this wheel?) If there was a fourth tail wheel, draw 
a free-body diagram of the plane from a side (2 D) view, and 
show why one would not be able to determine all the wheel 
reactions using the equations of equilibrium. 

Prob. C4-7 

C4-8. Where is the best place to arrange most of the logs 
in the wheelbarrow so that it minimizes the amount of force 
on the backbone of the person transporting the load? Do an 
equilibrium analysis to explain your answer. 

Prob. C4-8 
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EQUILIBRIUM IN THREE DIMENSIONS 

4. 5 FREE-BODY DIAGRAMS 
The first step in solving three-dimensional equilibrium problems, as in 
the case of two dimensions, is to draw a free-body diagram. Before we 
can do this, however, it is first necessary to discuss the types of reactions 
that can occur at the supports. 

Support React~ons. The reactive forces and couple moments acting 
at various types of supports and connections, when the members are 
viewed in three dimensions, are listed in Table 4-2. It is important to 
recognize the symbols used to represent each of these supports and to 
understand clearly how the forces and couple moments are developed. 
As in the two-dimensional case: 

• A support prevents the translation of a body by exerting a force on 
the body. 

• A support prevents the rotation of a body by exerting a couple moment 
on the body. 

For example, in Table 4-2, item (4), the ball-and-socket joint prevents 
any translation of the connecting member; therefore, a force must act on 
the member at the point of connection. This force has three components 
having unknown magnitudes, f"x, £,,, F,. Provided these components are 

known, one can obtain the magnitude of force, F = VF; + F~ + F~, 
and the force's orientation defined by its coordinate direction angles a, 
{3, -y, Eqs. 2-5. * Since the connecting member is allowed to rotate freely 
about any axis, no couple moment is resisted by a ball-and-socket joint. 

Notice that the single bearing supports in items (5) and (7), the single 
pin (8), and the single hinge (9) are shown to resist both force and couple
moment components. 1~ however, these supports are used with other 
bearings, pins, or hinges to hold a rigid body in equilibrium and these 
supports are properly aligned when connected to the body, then the force 
reactions at these supports alone are adequate for supporting the body. 
In other words, the couple moments will not develop since the body is 
prevented from rotating by the other supports. The reason for this should 
become clear after studying the examples which follow. 

*The three unknowns may also be represented as an unknown force magnitude F and 
two unknown coordinate direction angles. The third direction angle is obtained using the 
identity cos2 a + coSZ {J + cos2 y = I. Eq. 2-S. 

4.5 FREE-BODY DIAGRAMS 185 

www.konkur.in



186 CHAPTER 4 EQUILIBRIUM OF A RIGID BODY 

TABLE 4-2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems 

Types of Connection 

(1) 

cable 

(2) 

smooth surface support 

(3) 

roller 

(4) 

ball and socket 

(5) 

single journal bearing 

Reaction 

F 

F 

Number of Unknowns 

One unknown. The reaction is a force which acts away 
from the member in the known direction of the cable. 

One unknown. The reaction is a force which acts 
perpendicular to the surface at the point of contact. 

One unknown. The reaction is a force which acts 
perpendicular to the surface at the point of contact. 

Three unknowns. The reactions are three rectangular 
force components. 

Four unknowns. The reactions are two force and two 
couple-moment components which act perpendicular to 
the shaft. Note: The couple moments are generally not 
applied if the body is supported elsewhere. See the 
examples. 

continued 
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TABLE 4-2 Continued 

Types of Connection 

(6) 

single journal bearing 
with square shart 

(7) 

s ingle thrusl bearing 

(8) 

• 

single smooth pin 

(9) 

single hinge 

(10) 

fixed support 

Reaction 

Met Fo// 
~B:11 

x 

M, 
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Number of Unknowns 

Five unknowns. The reactions are two force and three 
couple-moment components. Note: The couple moments 
are generally nor applied if the body is supported 
elsewhere. See the examples. 

Five unknowns. The reactions arc three force and two 
couple-moment components. Note: The couple moments 
are generally not applied if the body is supported 
elsewhe re. Sec the examples. 

Five unknowns. The reactions arc three force and two 
couple-moment components. Note: The couple moments 
are generally nor applied if the body is supported 
elsewhere. See the examples. 

Five unknowns. The reactions are three force and two 
couple-moment components. Note: The couple moments 
are generally nor applied if the body is supported 
elsewhere. See the examples. 

Six unknowns. The reactions arc three force and three 
couple-moment components. 
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188 CHAPTER 4 EQUILIBRIUM OF A RI GID BODY 

Typical examples of actual supports that are referenced to Table 4-2 are 
shown in the following sequence of photos. 

This ball-and-socket joint provides a 
connection for a member of an earth 
grader to its frame. (4) 

This thrust bearing is used to support the 
drive shaft on a machine. (7) 

The journal bearings support the ends 
of the shaft. (5) 

This pin is used to support the end of 
the strut used on a tractor. (8) 

Free-Body Diagrams. The general procedure for establishing the 
free-body diagram of a rigid body has been outlined in Sec. 4.2. Essentially 
it requires first "isolating" the body by drawing its outlined shape. This is 
followed by a careful labeling of all the forces and couple moments with 
reference to an established x, y, z coordinate system. As a general rule, 
show the unknown components of reaction as acting on the free-body 
diagram in the positive sense. In this way, if any negative values are 
obtained, they will indicate that the components act in the negative 
coordinate directions. 
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I EXAMPLE 4.9 

Consider the two rods and plate, along with their associated free-body 
diagrams, shown in Fig. 4-19. The x, y, z axes are established on each diagram 
and the unknown reaction components are indicated in the positive sense. z 

I •,u<:c, 
<l"', 

The weight is neglected. c 

SOLUTION 

Properly aligned journal 
bearings at A, B, C. 

300 lb B 

Pin at A and cable BC. 

400 lb 

A 

B 

Properly aligned journal bearing 
at A and hinge at C. Roller at B. 

c 

SOON SOON 

The force reactions developed by 
the bearings are sufficient for 
equilibrium since they prevent the 
shaft from rotating about each of the 
coordinate axes. No couple moments 
at each bearing are developed. 

z 
I 

MA, cb 
• 

Moment components are developed 
by the pin on the rod to prevent 
rotation about the x and z axes. 

z 

B, 

Only force reactions are developed by the 
bearing and hinge on the plate to prevent 
rotation about each coordinate axis. No 
moments are developed at the hinge or bearing. 

Fig. 4-19 
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190 CHAPTER 4 EQUILIBRIUM OF A RIGID BODY 

4. 6 EQUATIONS OF EQUILIBRIUM 
As stated in Sec. 4.1, the conditions for equilibrium of a rigid body 
subjected to a three-dimensional force system require that both the 
resultant force and resultant couple moment acting on the body be equal 
to zero. 

Vector Equations of Equilibrium. The two conditions for 
equilibrium of a rigid body may be expressed mathematically in vector 
form as 

I F= 0 
I M0 = 0 (4-6) 

where IF is the vector sum of all the external forces acting on the body, 
and I M0 is the sum of the couple moments and the moments of all the 
forces about any point 0 located either on or off the body. 

Scalar Equations of Equilibrium. If all the external forces and 
couple moments are expressed in Cartesian vector form and substituted 
into Eqs. 4-6, we have 

I F = If,i + IFyj + IFzk = 0 

I Mo = I./\(,i + IMyj + IMzk = 0 

Since the i,j , and k components are independent from one another, then 
these equations are satisfied provided 

IF. = 0 x 

IF. = 0 y (4-7a) 

IF. = 0 z 

and 

IM = 0 x 

IM = 0 y (4-7b) 

IM = 0 z 

These six scalar equilibrium equations may be used to solve for at most 
six unknowns shown on the free-body diagram. Equations 4-7a require 
the sum of the external force components acting in the x, y, z directions 
to be zero, and Eqs. 4-7b require the sum of the moment components 
about the x, y, z axes to be zero. 
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IMPORTANT POINTS 

• Always draw the free-body diagram first when solving any 
equilibrium problem. 

• If a support prevents tra11slation of a body, then the support 
exerts a force on the body. 

• If a support prevems rotation of a body, then the support exerts 
a couple moment on the body. 

PROCEDURE FOR ANALYSIS 

Three-dimensional equilibrium problems for a rigid body can be 
solved using the following procedure. 

Free-Body Diagram. 

• Draw an outlined shape of the body. 

• Show all the forces and couple moments acting on the body. 

• Establish the origin of the x, y, z axes at a convenient point and 
orient the axes so that they are parallel to as many of the 
external forces and moments as possible. 

• Label all the loadings and specify their directions. In general, 
show all the unknown components having a positive sense 
along the x, y, z axes. 

• Indicate the dimensions of the body necessary for calculating 
the moments of forces. 

Equations of Equilibrium. 

• If the x, y, z force and moment components seem easy to 
determine, then apply the six scalar equations of equilibrium; 
otherwise use the vector equations. 

• It is not necessary that the set of axes chosen for force summation 
coincide with the set of axes chosen for moment summation. 

• Choose the direction of an axis for moment summation such 
that it intersects the lines of action of as many unknown forces 
as possible. Realize that the moments of forces passing throuigh 
points on this axis, and the moments of forces which are 
parallel to the axis, will then be zero. 

• If the solution of the equilibrium equations yields a negative 
scalar for a force or couple moment magnitude, it indicates that 
the sense is opposite to that assumed on the free-body diagram. 

4.6 EQUATIONS OF EOUIUBRIUM 1 91 
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EXAMPLE 4.10 - -

300N200N·m 

1.sn?'i ~ c 

~ nf> 
2m 
~ 

B 
(a) 

z 

300N l 200N·m 

J981 N~_JT · 

<'~~~-x_,.c; ( f ><fw,P,1' 1.5 m -
A, 

/ B, By '....... , 
x' ,,._.. Y 

B, 
(b) 

Fig. 4-20 

The homogeneous plate shown in Fig. 4-20a has a mass of 100 kg and is 
subjected to a force and couple moment along its edges. If it is supported in 
the horizontal plane by a roller at A, a ball-and-socket joint at B, and a cord 
at C, determine the components of reaction at these supports. 

SOLUTION (SCALAR ANALYSIS) 

Free-Body Diagram. There are five unknown reactions acting on the 
plate, as shown in Fig. 4-20b. Each of these reactions is assumed to act in 
a positive coordinate direction. 

Equations of Equilibrium. Since the three-dimensional geometry is 
rather simple, a scalar analysis provides a direct solution to this problem. 
A force summation along each axis yields 

IF. = O· x , 

IF. = O· y , 

IF = O· z , 

B = 0 x 

B = 0 y 

Az + Bz + Tc - 300 N - 981 N = 0 

Ans. 
Ans. 

(1) 

Recall that the moment of a force about an axis is equal to the product 
of the force magnitude and the perpendicular distance (moment arm) 
from the line of action of the force to the axis. Also, forces that are 
parallel to an axis or pass through it create no moment about the axis. 
Hence, summing moments about the positive x and y axes, we have 

IM., = O; Tc (2 m) - 981 N(l m) + Bz(2 m) = 0 (2) 

"I.My = O; 

-300 N(l.5 m) + 981 N(l.5 m) - Bz(3 m) - Az (3 m) - 200 N · m = 0 

(3) 

The components of the force at B can be eliminated if moments are 
summed about the x' and y' axes. We obtain 

IM<' = O; 981 N(l m) + 300 N(2 m) - Az(2 m) = 0 (4) 

"I.My· = O; 

-300 N(l.5 m) - 981 N(l.5 m) - 200 N · m + Tc(3 m) = 0 (5) 

Solving Eqs. (1) through (3) or the more convenient Eqs. (1), (4), and (5) 

yields 

Az = 790N Bz = -217N Tc = 707N Ans. 

The negative sign indicates that B z acts downward. 

NOTE: The solution of this problem does not require a summation of 
moments about the z axis. The plate is partially constrained because the 
supports cannot prevent it from turning about the z axis if a force is 
applied to it in the x- y plane. 
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EXAMPLE 4.11 
- -

Determine the components of reaction that the ball-and-socket joint at A, 
the smooth journal bearing at B, and the roller support at C exert on the rod 
assembly in Fig. 4-21a. 

z z 
900N 900 N 

(a) (b) 

Fig. 4-21 

SOLUTION 

Free-Body Diagram. As shown on the free-body diagram, Fig. 4-2lb, 
the reactive forces of the supports will prevent the assembly from 
rotating about each coordinate axis, and so the journal bearing at B only 
exerts reactive forces on the member. 

Equations of Equilibrium. A direct solution for Ay can be obtained by 
summing forces along they axis. 

IFy = O; Ay = 0 Ans. 

The force Fe can be determined directly by summing moments about the 
y axis. 

IMy = O; Fe(0.6 m) - 900 N(0.4 m) = 0 
Fe = 600N Ans. 

Using this result , Bz can be determined by summing moments about the 
x axis. 
IM = O· x , Bz(0.8 m) + 600 N(l.2 m) - 900 N(0.4 m) = 0 

Bz = -450N Ans. 

The negative sign indicates that Bz acts downward. The force B x can be 
found by summing moments about the z axis. 

IMz = O; -Bx(0.8 m) = 0 Bx = 0 Ans. 

Thus, 
IF. = O· x , A = 0 x 

Finally, using the results of Bz and Fe, 

IFz = 0; A z + ( -450 N) + 600 N - 900 N = 0 
Az = 750N 

Ans. 

Ans. 
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PRELIMINARY PROBLEMS 

P4-2. Draw the free-body diagram of each object. 

z 

300N 

I 
B 

A 

x lm~ 
0.5 m 

(a) 

SOON 

(b) 

z 

B 400N 

A 1~~Y 
/~--.... ----~.,_~ 

,. -~"'---2 m --./ 

x 

(c) 

Prob. P4-2 

P4-3. In each case, write the moment equations about the 
x, y, and z axes. 

c, 

A, 

z 

B, 

z 

B, 

z 

I 

(a) 

(b) 

A, 

c, 
(c) 

Prob. P4-3 

600N 

300N 

B, 

y 

c, 
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FUNDAMENTAL PROBLEMS 

All problem solutions m ust include an FBD. 

-·4-7. The uniform plate has a weight of 500 lb. Determine 
the tension in each of the supporting cables. 

z 

I 
8 c 

2001b 

x 

Prob. F4-7 

F4-8. Determine the reactions at the roller support A, the 
ball-and-socket joint D. and the tension in cable BC for the 
plate. 

l 

cl 

x 
0.1 m 

)' 

4-9. The rod is supported by smooth journal bearings at 
A, B, and C. Determjne the reactions at these supports. 

l 

x 

Prob. F<4-9 

14-1 • Determine the support reactions at the smooth 
journal bearings A. 8, and C of the pipe assembly. 

y 

Prob. F4-IO 

F4-ll. Determine the force developed in the short link 
BD, and the tension in the cords CE and CF, and the 
reactions of the ball-and-socket joint A on the block. 

l 

I 

6kN 9kN 

Pr }4-• 

- 4-U. Determine the components of reaction that the 
thrust bearing A and cable BC exert on the bar. 

Prob. F4-12 
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PROBLEMS 

All problem solutions must include an FBD. 

4-26. The uniform load has a mass of 600 kg and is lifted 
using a uniform 30-kg strongback beam BAC and the four 
ropes as shown. Determine the tension in each rope and the 
force that must be applied at A. 

F 

1.25 m 1.25 m 

A 

0 

Prob.4-26 

4-27. Due to an unequal distribution of fuel in the wing 
tanks, the centers of gravity for the airplane fuselage A and 
wings B and Care located as shown. If these components have 
weights WA = 45 000 lb, W8 = 8000 lb, and We = 6000 lb, 
determine the normal reactions of the wheels D, E, and Fon 
the ground. 

y 

Prob.4-27 

*4-28. Determine the components of reaction at the fixed 
support A. The 400 N, 500 N, and 600 N forces are parallel 
to the x,y, and z axes, respectively. 

z 

600N 

0.75m 
A SOON 

x 

y 

Prob. 4-28 

4-29. The 50-lb mulching machine has a center of gravity 
at G. Determine the vertical reactions at the wheels C 
and Band the smooth contact point A. 

x 

)' 

Prob. 4-29 
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4-30. The smooth uniform rod AB is supported by a ball
and-socketjoint at A, the wall at B.and cable BC. Determine 
the components of reaction at A, the tension in the cable, 
and the normal reaction at 8 if the rod has a mass of 20 kg. 

z 

y 

x 

Prob. 4-30 

4-31. The uniform concrete slab has a mass of 2400 kg. 
Determine the tension in each of the three parallel 
supporting cables. 

x 0.5 111 

Tc 
15 kN 

Prob. 4-31 

z 

I 

A 
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*4-32. The 100-lb door has its center of gravity at G. 
Determine the components of reaction at hinges A and 8 if 
hinge B resists only forces in the x and y directions and A 
resists forces in the x, y, z directions. 

8 
24 in. 

24 in. 

x 

18 in. 

Prob.4-32 

I 
3D° 

--<_y 

4-33. Determine the tension in each cable and the 
components of reaction at D needed to support the load. 

z 

x
A 

y 

30° 

400N 

Prob.4-33 
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4-34. The bent rod is supported at A , B, and C by smooth 
journal bearings. Calculate the x, y, z components of reaction 
at the bearings if the rod is subjected to forces Fi = 300 lb 
and Fi = 250 lb. F1 lies in the y-z plane. The bearings are in 
proper alignment and exert only force reactions on the rod. 

1 ft 

A c 

-3ft- 30" y 

x 

Prob. 4-34 

4-35. The bent rod is supported at A , B, and C by smooth 
journal bearings. Determine the magnitude of F2 which will 
cause the reaction c,. at the bearing C to be equal to zero. 
The bearings are in proper alignment and exert only force 
reactions on the rod. Set F1 = 300 lb. 

c 

-3ft- 30" y 

x 

Prob. 4-35 

*4-36. The bar AB is supported by two smooth collars. 
At A the connection is a ball-and-socket joint and at Bit is 
a rigid attachment. If a 50-lb load is applied to the bar, 
determine the x, y, z components of reaction at A and B. 

Prob.4-36 

4-37. The rod has a weight of 6 lb/ft. If it is supported by a 
ball-and-socket joint at C and a journal bearing at D, 
determine the x, y, z components of reaction at these 
supports and the moment M that must be applied along the 
axis of the rod to hold it in the position shown. 

z 

y 

Prob.4-37 
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4-38. The sign has a mass or 100 kg with center of mass 
at G. Determine the x, y, z components of reaction at the 
ball-and-socket joint A and the tension in wires BC and BD. 

r---.....y 
•G 

-lm-k lm-J 
Prob. 4-38 

4-39. Both pulleys are fixed to the shaft and as the shaft 
turns with constant angular velocity, the power of pulley A 
is transmitted to pulley B. Determine the horizontal tension 
T in the belt on pulley B and the x, y. z components of 
reaction at the journal bearing C and thrust bearing D if 
0 = O". The bearings are in proper alignment and exert only 
force reactions on the shaft. 

z 

200m~. ~~~l~Jl'-__,-50N 
250m~ & 

300m~ 

~ 
x 

65 N l 
SON 

Prob. 4-39 

T 
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*4-40. Both pulleys are fixed to the shaft and as the shaft 
turns with constant angular velocity, the power of pulley A 
is transmitted to pulley B. Determine the horizontal tension 
T in the belt on pulley B and the x. y, z components of 
reaction at the journal bearing C and thrust bearing D if 
0 = 45°. The bearings are in proper alignment and exert 
only force reactions on the shaft. 

z 

200m~ I 50N 
250 m~ ·~~~:pi--__....,-

300m~ 
~_s,C ~ 

x~ 

65N l 
SON 

Prob. 4-40 

0 

T 

4-41. Member AB is supported by a cable BC and at A by 
a square rod which fits loosely through the square hole 
at the end collar of the member as shown. Determine the 
x, y, z components of reaction at A and the tension in the 
cable needed 10 hold the 800-lb cylinder in equilibrium. 

B 

3 ft>---

'<:.:'._ y 

Prob.4-41 
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w 

• p 

-

(a) 

w 

p 

• 

(b) 

(c) 

w 

1-a/2 ;2-1 
p 

• 
h 

f--1--,....,.~ F 

x N 
Resultant Nom1al 
and Frictional Forces 

(d) 

Fig. 4-22 

4.7 CHARACTERISTICS OF DRY 
FRICTION 

Friction is a force that resists the movement between two contacting 
surfaces that slide relative to one another. This force always acts tangent 
to the surface at the points of contact, and is directed so as to oppose the 
possible or existing motion between the surfaces. 

In this section, we will study the effects of dry f riction, which is 
sometimes called Coulomb friction since its characteristics were studied 
extensively by C.A. Coulomb in 1781. Dry friction occurs between the 
contacting surfaces of bodies when there is no lubricating fluid. 

Theory of Dry Friction. The theory of dry friction can be explained 
by considering the effects caused by pulling horizontally on a block of 
uniform weight W which is resting on a rough horizontal surface, 
Fig. 4- 22a. As shown on the free-body diagram of the block, Fig. 4-22b, 
the floor exerts an uneven distribution of both normal force d N,, and 
frictional force d F,, along the contacting surface.* For equilibrium, the 
normal forces must act upward to balance the block's weight W, and the 
frictional forces act to the left to prevent the applied force P from moving 
the block to the right. Close examination of the contacting surfaces 
between the floor and block reveals how these frictional and normal 
forces develop, Fig. 4-22c. It can be seen that many microscopic 
irregularit ies exist between the two surfaces and, as a result, reactive 
forces d R,, are developed at each point of contact. As shown, each 
reactive force contributes both a frictional component d F,, and a normal 
component d N,,. 

Equilibrium. The effect of the distributed normal and frictional 
loadings is indicated by their resullllnts N and F on the free-body diagram 
shown in Fig. 4-22d. Notice that N acts a distance x to the right of the line 
of action of W, Fig. 4-22d. This location of the normal force distribution 
in Fig. 4-22b is necessary in order to balance the "tipping effect" caused 
by P. For example, if P is applied at a height h from the surface, 
Fig. 4-22d, then moment equilibrium about point 0 is satisfied if 
Wx = Phorx = Ph/W. 

* A complete discussion of distributed loadings is given in Sec. 3.9. 
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Impending 
--~ . 

P mollon 

(e) 

Fig. 4-22 (cont.) 

Impending Motion. In cases where the surfaces of contact are 
rather "slippery," the frictional force F may not be great enough to 
balance P, and consequently the block will tend to slip. In other words, as 
P is slowly increased, F correspondingly increases until it attains a certain 
maximum value F,, called the limiting static frictional force, Fig. 4-22e. 
When this value is reached, the block is in unstable equilibrium since any 
further increase in P will cause the block to move. Experimentally, it has 
been determined that F, is directly proportional to the resultant normal 
force N. Expressed mathematically, 

(4-8) 

where the constant of proportionality, I.Ls (mu "sub" s), is called the 
coefficient of static f riction. 

Thus, when the block is on the verge of sliding, the normal force N and 
frictional force F, combine to create a resultant Rs, Fig. 4-22e. The angle 
<Ps (phi) that ~ makes with N is called the angle of static friction. From 
the figure, 

Typical values for µ,, are given in Table 4-3. As indicated, these values 
will vary since experimental testing was done under variable conditions 
of roughness and cleanliness of the contacting surfaces. For applications, 
therefore, it is important that both caution and judgment be exercised 
when selecting a coefficient of friction for a given set of conditions. 
When a more accurate calculation of F, is required, the coefficient of 
friction should be determined directly by an experiment that involves 
the two contacting materials. 

[Tllble4-3 !YPk* v.i .... for I 
Contact Coefficient of 
Materials Static Friction (µ,) 

Metal on ice 0.03-0.05 

Wood on wood 0.30-0.70 

Leather on wood 0.20-0.50 

Leather on metal 0.30-0.60 

Copper on copper 0.74-1.21 
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w 

~~1-~ - Mo tion 

p 
• 

(a) 

Fig. 4-23 

Motion. If the magnitude of P acting on the block is increased so that 
it becomes slightly greater than F,, the frictional force at the contacting 
surface will drop to a smaller value Fh called the kinetic frictional force. 
The block will then begin to slide with increasing speed, Fig. 4- 23a. As 
this occurs, the block will " ride" on top of the peaks at the points 
of contact, as shown in Fig. 4-23b. The continued breakdown of the 
nonrigid surfaces is the dominant mechanism creating kinetic friction. 

Experiments with sliding blocks indicate that the magnitude of the 
kinetic friction force is directly proportional to the magnitude of the 
resultant normal force, expressed mathematically as 

(4-9) 

Here the constant of proportionality, /.Lh is called the coefficient of 
kinetic friction . Typical values for /.Lk are approximately 25 percent 
smaller than those listed in Table 4-3 for JLs· 

As shown in Fig. 4- 23a, in this case, the resultant force at the surface of 
contact, Rh has a line of action defined by <Pk· This angle is referred to as 
the angle of kinetic friction , where 

"' _1(Fk) _1(µ,kN) _1 
't'k = tan N = tan N = tan /.Lk 

By comparison, <Ps =::: <Pk· 
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Characteristics of Dry Friction. As a result of experiments that 
pertain to the foregoing discussion, we can state the following rules 
which apply to bodies subjected to dry friction. 

• The frictional force acts tangent to the contacting surfaces in a 
direction opposed to the motion or tendency for motion of one 
surface relative to another. 

• The maximum static frictional force F, that can be developed is 
independent of the area of contact between the surfaces, provided 
the normal pressure is not very low nor great enough to severely 
deform or crush the surfaces between the bodies. 

• The maximum static frictional force is generally greater than the 
kinetic frictional force for any two surfaces of contact. However, if 
one of the bodies is moving with a very low velocity over the surface 
of another, Fk becomes approximately equal to F,, i.e., f.Ls "" f-lk· 

• When slipping at the surface of contact is about to occur, the 
maximum static frictional force is proportional to the normal force, 
such that F, = µ,5 N. 

• When slipping at the surface of contact is occurring, the !kinetic 
frictional force is proportional to the normal force, such that 
Fk = f.LkN. 

w 
T 

F 

Some objects, such as this barrel, may not be on the verge of slipping, 
and therefore the friction force F must be determined strictly from 
the equations of equilibrium. 
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A 

!LA = 0.3 
(a) 

(b) 

Fig. 4-24 

B 

A \8 

JLA = Q.3 
(a) 

(b) 

Fig. 4-25 

JLB = 0.4 

4. 8 PROBLEMS INVOLVING DRY 
FRICTION 

If a rigid body is in equilibrium when it is subjected to a system of 
forces that includes the effect of friction, the force system must satisfy not 
only the equations of equilibrium but also the Jaws that govern the 
frictional forces. 

Types of Friction Problems. In general, there are three types of 
static problems involving dry friction. They can easily be classified once 
free-body diagrams are drawn and the total number of unknowns are 
identified and compared with the total number of available equilibrium 
equations. 

No Apparent Impending Motion. Problems in this category are 
strictly equilibrium problems, which require the number of unknowns to 
be equal to the number of available equilibrium equations. Once the 
frictional forces are determined from the solution, however, their 
numerical values must be checked to be sure they satisfy the inequality 
F ::;; µ, N ; otherwise, slipping will occur and the body will not remain in 
equilibrium. A problem of this type is shown in Fig. 4-24a. Here we must 
determine the frictional forces at A and C to check if the equilibrium 
position of the two-member frame can be maintained. If the members 
are uniform and have known weights of 100 N each, then the free-body 
diagrams are as shown in Fig. 4-24b. There are six unknown force 
components which can be determined strictly from the six equilibrium 
equations (three for each member). Once FA, NA, Fe, and Ne are 
determined, then the members will remain in equilibrium provided 
FA ::;; 0.3NA and Fe ::;; 0.5Ne are satisfied. 

Impending Motion at All Points of Contact. In this case the total 
number of unknowns will equal the total number of available equilibrium 
equations plus the total number of available frictional equations, F = µN. 
When motion is impending at the points of contact, then F, = µ, N; whereas 
if the body is slipping, then Fk = /Lk N. For example, consider the problem of 
finding the smallest angle 8 at which the 100-N bar in Fig. 4-25a can be 
placed against the wall without slipping. The free-body diagram of the bar is 
shown in Fig. 4-25b. Here the five unknowns are determined from the three 
equilibrium equations and two static frictional equations which apply at 
both points of contact, so that FA = 0.3N A and F8 = 0.4N 8 . 
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Impending Motion at Some Points of Contact. For these types of 
problems, the number of unknowns will be less than the number of 
available equilibrium equations plus the number of available frictional 
equations or conditional equations for tipping. As a result , several 
possibilities for motion or impending motion will exist and the problem 
will involve a determination of the kind of motion which actually occurs. 
For example, consider the two-member frame in Fig. 4-26a. In this 
problem we wish to determine the horizontal force P needed to cause 
movement. If each member has a weight of 100 N, then the free-body 
diagrams are as shown in Fig. 4-26b. There are seven unknowns. For a 
unique solution we must satisfy the si.x equilibrium equations {three for 
each member) and only one of two possible static frictional equations. 
This means that as P increases it will either cause slipping at A and no 
slipping at C, so that FA = 0.3NA and Fe :s 0.5Ne, or slipping wiU occur 
at C and no slipping at A , in which case Fe = 0.5Ne and FA < 0.3NA
The actual situation can be determined by calculating P for each case, 
and then choosing the case for which P is smaller. If in both cases the 
same value for P is calculated, which would be highly improbable, then 
slipping at both points occurs simultaneously; i.e., the seven unknowns 
would have to satisfy eight equations. 

Equilibrium Versus Frictional Equations. Whenever we solve 
a problem such as the one in Fig. 4-24, where the friction force Fis to be 
an "equilibrium force" and satisfies the inequality F < µ,,N, then we can 
assume the sense of direction of Fon the free-body diagram. The correct 
sense is made known after solving the equations of equilibrium for F. If F 
is a negative scalar the sense of F is the reverse of that which was 
assumed. This convenience of assuming the sense of F is possible because 
the equilibrium equations equate to zero the components of vectors 
acting in the same direction. However, in cases where the frictional 
equation F = µ.N is used in the solution of a problem, this convenience 
of assuming the sense of F is lost, since the frictional equation relates 
only the magnitudes of two perpendicular vectors. Consequently, !F must 
always be shown acting with its correct sense on the free-body diagram, 
whenever the frictional equation is used for the solution of a problem. 

A 

µ.,. ~ 0.3 

B 

(a) 

(b) 

""c 
JJ.c = 0.5 

Fig. 4-26 
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IMPORTANT POINTS 

• Friction is a tangential iforce that resists the movement of one 
surface relative to another. 

• If no sliding occurs, the maximum value for the friction force is 
equal to the product of the coefficient of static friction and the 
normal force at the surface, F, = /Ls N. 

• If sliding occurs, then the friction force is the product of the 
coefficient of kinetic friction and the normal force at the surface, 
Fk = ILkN. 

• There are three types of static friction problems. Each of these 
problems is analyzed by first drawing the necessary free-body 
diagrams, and then applying the equations of equilibrium, 
while satisfying either the conditions of friction or the 
possibility of tipping. 

1-b/2- >-b/2-1 1-b/2- -b/2-1 

p p 

!w 
• 

!w 
• ,, h 

--
F F 

,_ 
x N 

- x -

Consider pushing on the uniform crate that has a weight Wand sits on the rough surface. As shown on the first 
free-body diagram, if the magnitude of P is small, the crate will remain in equilibrium. As P increases the crate will 
either be on the verge of slipping on the surface (F = µ,, N), or if the surface is very rough (largeµ,,), then the 
resultant normal force will shift to the corner, x = b /2, as shown on the second free-body diagram. At this point 
the crate will begin to tip over. The crate also has a greater chance of tipping if P is applied at a greater height h 
above the surface, or if its width b is smaller. 
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PROCEDURE FOR ANALYSIS 

Equilibrium problems involving dry friction can be solved using the 
following procedure. 

Free-Body Diagrams. 

• Draw the necessary free-body diagrams, and unless it is stated 
in the problem that impending motion or slipping occl!lrs, 
always show the frictional forces as unknowns (i.e., do not 

assume F = µ,N). 

• Determine the number of unknowns and compare this with the 

number of available equilibrium equations. 

• If there are more unknowns than equations of equilibrium, it will 
be necessary to apply the frictional equation at some, if not all, 
points of contact to obtain the extra equations needed for a 
complete solution. 

• If the equation F = µ,N is to be used, it will be necessary to show 
F acting in the correct sense of direction on the free-body 
diagram. 

Equations of Equilibrium and Friction. 

• Apply the equations of equilibrium and the necessary frictional 
equations (or conditional equations if t ipping is possible) and 
solve for the unknowns. 

• If the problem involves a three-dimensional force system such 
that it becomes difficult to obtain the force components or the 
necessary moment arms, apply the equations of equilibrium 
using Cartesian vectors. 
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I EXAMPLE 4. 12 I 

P= 80N 

- x-

Ne 

(b) 

The uniform crate shown in Fig. 4-27a has a mass of 20 kg. If a force 
P = 80 N is applied to the crate, determine if it remains in equilibrium. 
The coefficient of static friction is /Ls = 0.3. 

P= 80N 

SOLUTION 

1---0.8 01 ---1 

(a) 

Fig. 4-27 

Free-Body Diagram. As shown in Fig. 4-27b, the resultant normal 
force Ne must act a distance .x from the crate's centerline in order to 
counteract the tipping effect caused by P. There are three unknowns, 
F, Ne, and x, which can be determined strictly from the three equations 
of equilibrium. 

Equations of Equilibrium. 

~IF, = O; 80 cos 30° N - F = 0 

+ jlF. = O· y , -80sin 30°N + Ne - 196.2 N = 0 

C +lM0 = O; 80 sin 30°N(0.4 m)-80cos 30°N(0.2 m) + Ne(x) = 0 

Solving, 

F = 69.3 N 

Ne = 236.2N 
x = -0.00908 m = -9.08 mm 

Since xis negative it indicates the resultant normal force acts (slightly) 
to the left of the crate's centerline. Also, the maximum frictional force 
which can be developed at the surface of contact is 
Fmax = µ,5 Ne = 0.3(236.2 N) = 70.9 N. Since F = 69.3 N < 70.9 N, 
the crate will not slip, although it is very close to doing so. 

www.konkur.in



4.8 PROBLEMS INVOLVING DRY F RICTION 209 

EXAMPLE 4 .13 

It is observed tha t when the bed of the dump truck is raised to an angle o f 
0 = 25° the vending machines will begin to slide off the bed, Fig. 4-2&z. 
Determine the coefficient of static friction between a vending machine 
and the su rface of the truckbed . 

SOLUTION 
An idealized m od el of a ve nding machine resting on the truckbe d is 
shown in Fig. 4-28b. The dimensions have been measured and the 
ce nte r o f gravity has been located. We will assume that the vending 
machine we ighs W. 

Free-Body Diagram. As shown in Fig. 4-28c, the dimension x is used 
to locate the position of the resultant normal force N. There are four 
unknowns, N, F, µ,, , and x. 

Equations of Equilibrium. 

+\.l F. = O· .r ' W sin 25° - F = 0 

+?lF,. = O; N - W cos25° = 0 

C + lM0 = O; - W sin 25°(2.5 ft) + W cos 25°(x) = O 

Since slipping im pends at 0 = 25°, using Eqs. 1 and 2, we have 

F, = µ,, N; W sin 25° = µ,, (W cos 25°) 

µ,, = tan 25° = 0.466 

(1) 

(2) 

(3) 

Ans. 

The angle of O = 25° is referred to as the angle of repose, and by comparison, 
it is equal to the angle of static friction, 0 = <Ps· Since 0 is independent of 
the weight of the vending machine, knowing 0 provides a convenient 
method for determining the coefficient of static friction. 

NOTE: Fro m E q. 3, we find x = 1.17 ft. Since 1.17 ft < 1.5 ft, indeed 
the ve nding machine will slip down the truckbed and not tip over. 

(a) 

(b) 

(c) 

Fig. 4-28 

www.konkur.in



210 CHAPTER 4 EQUILIBRIUM OF A RIGID BODY 

I EXAMPLE 4. 14 I 
P Blocks A and B have a mass of 3 kg and 9 kg, respectively, and are 

(a) 

p 

--04-----x 
C Fsc 

9(9.81) N 

'"=0577~ 
~ Ns 

(b) 

Fig. 4-29 

connected to the weightless links shown in Fig. 4-29a. Determine the 
largest vertical force P that can be applied to the pin C without causing 
any movement. The coefficient of static friction between the blocks and 
the contacting surfaces isµ,, = 0.3. 

SOLUTION 

Free-Body Diagram. The links are two-force members and so the free
body diagrams of pin C and blocks A and Bare shown in Fig. 4-29b. Since 
the horizontal component of FAc tends to move block A to the left, FA 
must act to the right. Similarly, F 8 must act to the left to oppose the 
tendency of motion of block B to the right, caused by F BC· There are seven 
unknowns and six available force equilibrium equations, two for the pin 
and two for each block, so that only one friction equation is needed. 

Equations of Equilibrium and Friction. The force in links AC and 
BC can be related to P by considering the equilibrium of pin C. 

+ jIF. = O· y , 

~IF.. = O· 
.t ' 

FAccos 30° - P = O; 

l.l55P sin 30° - F8 c = O; 

FAc = 1.155P 

F8 c = 0.5774P 

Using the result for FAc, for block A, 

~IF, = O; FA - 1.155P sin 30° = O; FA = 0.5774P 

+ f IFy = O; NA -1.155P cos 30° - 3(9.81 N) = O; 

NA = P + 29.43N 

Using the result for F8 c, for block B, 

~IF, = O; (0.5774P) - F8 = O; 

+ f IFy = 0; N8 - 9(9.81) N = O; 

F8 = 0.5774P 

N8 = 88.29N 

(1) 

(2) 

(3) 

Movement of the system may be caused by the initial slipping of eilher 
block A or block B. If we assume that block A slips first, then 

FA = /.LsNA = 0.3NA 

Substituting Eqs. 1 and 2 into Eq. 4, 

0.5774P = 0.3(P + 29.43) 

P = 31.8N 

(4) 

Ans. 

Substituting this result into Eq. 3, we obtain F8 = 18.4 N. Since the 
maximum static frictional force at B is (Fs)max = /.LsNB = 
0.3(88.29 N) = 26.5 N > F8 , block B will not slip. Thus, the above 
assumption is correct. Notice that if the inequality were not satisfied, 
we would have to assume slipping of block B (F8 = 0.3 N8 ) and then 
solve for P. 
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PRELIMINARY PROBLEMS 

P4-4. Detennine the friction force at the surface of contact. 

SOON 

~ 

I 
I W=200N 

µ, = 0.3 
1-'k = 0.2 

(a) 

IOON 

~ 

I 
IW=40N 

µ, = 0.9 
(b) 1-'k = 0.6 

Prob. P4-4 

P4-5. Detennine the couple moment M needed to cause 
impending motion of the cylinder. 

W= IOON .---...._ 

µ,, = 0.1 

Prob. P4-5 

B 
Smooth 

P4-6. Detennine the force P to move block B. 

J 

A W= 100 N 

µ, = 0.2 . v W= 100 N 
B p 

µ, = 0.2 v 
c W=200 N 

µ , - 0.1 

Prob. P4-6 

P4-7. Determine the force P needed to cause impending 
motion of the block. 

p -

I 
2m W=200N 

I 
f-tm-1 

µ, - 0.3 

(a) 

T 
I m W - lOON 

l 
I- I 111 - Iµ, = 0.4 

(b) 

Prob. P4-7 
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FUNDAMENTAL PROBLEMS 

All problem solutions must include FBDs. 

F4-13. Determine the friction developed between the 50-kg 
crate and the ground if a) P = 200 N, and b) P = 400 N. 
The coefficients of static and kinetic friction between the crate 
and the ground areµ., = 0.3 and µ.k = 0.2. 

Prob. F4-13 

F4-14. Determine the minimum force P to prevent the 
30-kg rod AB from sliding. The contact surface at B is 
smooth, whereas the coefficient of static friction between 
the rod and the wall at A is µ., = 0.2. 

A 

1 
3m 

p B l 
i-----4 m----1 

Prob. F4-14 

F4-15. Determine the maximum force P that can 
be applied without causing the two 50-kg crates to move. 
The coefficient of static friction between each crate and the 
ground isµ., = 0.25. 

A B 

I~ [I ~ ~:1 
Prob. F4-15 

F4-16. If the coefficient of static friction at contact points A 
and B is µ., = 0.3, determine the maximum force P that can 
be applied without causing the 100-kg spool to move. 

Prob. F4-16 

F4-17. Determine the maximum force P that can be 
applied without causing movement of the 250-lb crate that 
has a center of gravity at G. The coefficient of static friction 
at the floor isµ., = 0.4. 

Prob. F4-17 
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F4-18. Determine the m1mmum coefficient of static 
friction between the uniform 50-kg spool and the wall so 
that the spool does not slip. 

6(f 

0.6m 

0.3m 

Prob. F4-18 

F4-19. Blocks A , B, and C have weights of 50 N, 25 N, and 
15 N, respectively. Determine the smallest horizontal force P 
that will cause impending motion. The coefficient of static 
friction between A and B is J.Ls = 0.3, between B and C, 
µ!, = 0.4, and between block C and the ground,µ!,' = 0.35. 

' A 

p 

B -

c 

- D 
J 

Prob. F4-19 
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F4-20. If the coefficient of static friction at all contacting 
surfaces is µ,,, determine the inclination 8 at which the 
identical blocks, each of weight W, begin to slide. 

Prob. F4-20 

F4-21. Blocks A and B have a mass of 7 kg and 10 kg, 
respectively. Using the coefficients of static friction 
indicated, determine the largest force P which can be 
applied to the cord without causing motion. There are 
pulleys at C and D. 

1

300mm 

1 

DO -, 
8 

c.,.0....,~--~P 

J.LA = Q.1 

Prob. F4-21 
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PROBLEMS 

A ll problem solutions must include FBDs. 

4-42. Determine the maximum force P the connection 
can support so that no slipping occurs between the plates. 
There are four bolts used for the connection and each is 
tightened so that it is subjected to a tension of 4 kN. The 
coefficient of static friction between the plates isµ., = 0.4. 

Prob. 4-42 

4-43. The tractor exerts a towing force T = 400 lb. 
Determine the normal reactions at each of the two front 
and two rear tires and the tractive frictional force F on each 
rear tire needed to pull the load forward at constant velocity. 
The tractor has a weight of 7500 lb and a center of gravity 
located at Gr. An additional weight of 600 lb is added to its 
front having a center of gravity at GA- Take µ., = 0.4. 
The front wheels are free to roll. 

2.5 fl 

- 4ft-
3 ft 

Prob. 4-43 

*4-44. The mine car and its contents have a total mass of 
6 Mg and a center of gravity at G. If the coefficient of static 
friction between the wheels and the tracks is µ., = 0.4 when 
the wheels are locked, find the normal force acting on the 
front wheels at B and the rear wheels at A when the brakes 
at both A and Bare locked. Does the car move? 

lOkN 

0.9m .c 

- 0.6m -
1---1.S m--- 1 

Prob. 4-44 

4-45. The winch on the truck is used to hoist the garbage 
bin onto the bed of the truck. If the loaded bin has a weight 
of 8500 lb and center of gravity at G, determine the force in 
the cable needed to begin the lift. The coefficients of static 
friction at A and B are J.l.A = 0.3 and J.l.B = 0.2, respectively. 
Neglect the height of the support at A. 

--- . G --
Al-10 ft-Jc---

Prob. 4-45 
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4-46. The automobile has a mass of 2 Mg and center of 
mass al G. Determine the towing force F required to move 
the car if the back brakes are locked, and the front wheels 
are free to roll. Takeµ, = 0.3. 

~7. The automobile has a mass of 2 Mg and center of 
mass at G. Determine the towing force F required to move 
the car. Both the front and rear brakes are locked. 
Takeµ, = 0.3. 

f 

A 

1----1-Lm 
0.75 111 

Probs. 4-46/47 

·~8. The block brake consists of a pin-connected lever 
and friction block at B. The coefficient of static friction 
between the wheel and the lever isµ, = 0.3. and a torque of 
5 N · m is applied to the wheel. Determine if the brake can 
hold the wheel stationary when the force applied to the 
lever is (a) P = 30 N. (b) P = 70 N. 

~5N·m 

~ 
150 mm 

p 

200 mm 400 mm ----1 
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~9. The block brake consists of a pin-connected lever 
and friction block at B. The coefficient of static friction 
between the wheel and the lever isµ., = 0.3, and a torque of 
5 N · m is applied 10 the wheel. Determine if the brake can 
hold the wheel stationary when the force applied to the 
lever is (a) P = 30 N. (b) P = 70 N. 

~ 
150 mn1 

p 

Prob. ~9 

4-50. The pipe of weight Wis to be pulled up the inclined 
plane of slope a using a force P. lf P acts at an angle .p, show 
that for slipping P = W sin(a + 9)/cos(<P - 8), where 8 is 
the ang.le of static friction; 8 = tan-1 µ., . 

4-5L Determine the angle <P at which the applied force P 
should act on the pipe so that the magnitude of P is as small 
as possible for pulling the pipe up the incline. What is the 
corresponding value of P? The pipe weighs Wand the slope 
a is known. Express the answer in terms of the angle of 
kinetic friction, 8 = tan-1 µ.4 • 

Prob. 4-48 Probs. 4-50/51 
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216 CHAPTER 4 EQUILIBRIUM OF A RIGID BODY 

*4-52. The log has a coefficient of static friction of 
J.Ls = 0.3 with the ground and a weight of 40 lb /ft. If a man 
can pull on the rope with a maximum force of 80 lb, 
determine the greatest length I of log he can drag. 

.. 80 lb 

( iO A 

Prob. 4-52 

4-53. The 180-lb man climbs up the ladder and stops at the 
position shown after he senses that the ladder is on the verge 
of slipping. Determine the inclination e of the ladder if the 
coefficient of static friction between the friction pad A and the 
ground is J.Ls = 0.4. Assume the wall at B is smooth. The center 
of gravity for the man is at G. Neglect the weight of the ladder. 

4-54. The 180-lb man climbs up the ladder and stops at the 
position shown after he senses that the ladder is on the verge 
of slipping. Determine the coefficient of static friction between 
the friction pad at A and ground if the inclination of the ladder 
is e = 60° and the wall at B is smooth. The center of gravity 
for the man is at G. Neglect the weight of the ladder. 

Probs. 4-53154 

4-55. The spool of wire having a weight of 300 lb rests on 
the ground at B and against the wall at A. Determine the 
force P required to begin pulling the wire horizontally off 
the spool. The coefficient of static friction between the 
spool and its points of contact is J.Ls = 0.25. 

*4-56. The spool of wire having a weight of 300 lb rests on 
the ground at B and against the wall at A. Determine the 
normal force acting on the spool at A if P = 300 lb. 
The coefficient of static friction between the spool and the 
ground at B is J.Ls = 0.35. The wall at A is smooth. 

3 ft 

0 
1 ft 

A 

, /'!' ...... .-... p 

Probs. 4-55/56 

4-57. The ring has a mass of 0.5 kg and is resting on the 
surface of the table. To move the ring a normal force P from 
the finger is exerted on it as shown. Determine its magnitude 
when the ring is on the verge of slipping at A. The coefficient 
of static friction at A is J.LA = 0.2 and at B,µ,8 = 0.3. 

A 

Prob. 4-57 
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4-58. Determine the smallest force P that must be applied 
in order to cause the 150-lb uniform crate to move. The 
coefficent of static Criction between the crate and the floor 
isµ., = 0.5. 

4-59. The man having a weight of 200 lb pushes 
horizontally on the crate. If the coefficient of static friction 
between the 450-lb crate and the floor is µ., = 03 and 
between his shoes and the floor isµ~ = 0.6, determine if he 
can move the crate. 

j-2rt-I 

•• 

Probs. 4-58/59 

*4-60. The uniform hoop of weight W is subjected to the 
horizontal force P. Determine the coefficient of static 
friction between the hoop and the surface al A and B if the 
hoop is on the verge of rotating. 

4-61. Determine the maximum horizontal force P that 
can be applied to the 30-lb hoop without causing it to rotate. 
The coefficient of static friction between the hoop and the 
surfaces A and B isµ, = 0.2. Take r = 300 mm. 

A 

Probs.~/61 
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4-62. Determine the minimum force P needed to push 
the tube E up the incline. The coefficients of static friction 
at the contacting surfaces are JLA = 0.2, µ 8 = 0.3, and 
JLc = 0.4. The 100-kg roller and 40-kg tube each have a 
radius of 150 mm. 

c 

Prob. 4-62 

4-63. The coefficients of static and kinetic friction 
between the drum and brake bar arcµ" = 0.4 and /.Lk = 0.3, 
respectively. lf M = 50 N · m and P = 85 N, determine the 
horizontal and vertical components of reaction at the pin 0. 
Neglect the weight and thickness of the brake. The drum has 
a mass of 25 kg. 

*4-64. The coefficient of static friction between the drum 
and brake bar is µ., = 0.4. If the moment M = 35 N • m. 
determine the smallest force P that needs to be applied to 
the brake bar in order to prevent the drum from rotating. 
Also determine the corresponding horizontal and vertical 
components of reaction at pin 0. Neglect the weight and 
thickness of the brake bar. The drum has a mass of 25 kg. 

I 300 mm I 700 mm ---1 

Olm fo!A ! ~12Smm 

p 

1 
500mm 

A'• l 
Probs. 4-63/64 
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218 CHAPTER 4 EQUILIBRIUM OF A RIGID BODY 

CHAPTER REVIEW 

Equilibrium 

A body in equilibrium is at rest or moves 
with constant velocity. 

Two Dimensions 

Before analyzing the equilibrium of a body, 
it is first necessary to draw its free-body 
diagram. This is an outlined shape of the 
body, which shows all the forces and couple 
moments that act on it. 

Couple moments can be placed anywhere 
on the free-body diagram since they are 
free vectors. Forces can act at any point 
along their line of action since they are 
sliding vectors. 

Angles used to resolve forces, and 
dimensions used to take moments of the 
forces, should also be shown on the free
body diagram. 

Remember that a support will exert a 
force on the body in a particular direction 
if it prevents translation of the body in 
that direction, and it will exert a couple 
moment on the body if it prevents 
rotation. 

The three scalar equations of equilibrium 
can be applied when solving problems in 
two dimensions, since the geometry is 
easy to visualize. 

For the most direct solution, try to sum 
forces along an axis that will eliminate as 
many unknown forces as possible. Sum 
moments about a point A that passes 
through the line of action of as many 
unknown forces as possible. 

z Fi 

~ 
i .. 

FJ X 
0 

x 

~)-, _--2m ~OON·~1 
~~i:====1~~:::1= 11 ,. A 

_L B~(f' 

1--2m-~OON·m 

A, 4 ---I ~Fsc 
+ 1 m / \ 3(f " _I_ =-----i::. 
Ay 'Lx 

kF, = 0 

kF,. = 0 

~M0 = 0 

F1 

/ 

- F• 
)' 
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Three Dimensions 

In three dimensions, it is often advantageous 
to use a Cartesian vector analysis when 
applying the equations of equilibrium. To 
do this, first express each known and 
unknown force and couple moment shown 
on the free-body diagram as a Cartesian 
vector. Then set the force summation equal 
to zero. Take moments about a point 0 that 
lies on the line of action of as many 
unknown force components as possible. 
From point 0 direct position vectors to 
each force, and then use the cross product 
to determine the moment of each force. 

The six scalar equations of equilibrium 
are established by setting the respective i , 
j , and k components of these force and 
moment summations equal to zero. 

Dry Friction 

Frictional forces exist between two rough 
surfaces of contact. These forces act on a 
body so as to oppose its motion or 
tendency of motion. 

A static frictional force has a maximum 
value of F, = µ,N, where µ, is the 
coefficienr of sraric friction. In this case, 
motion between the contacting surfaces is 
impending. 

If slipping occurs, then the friction force 
remains essentially constant and equal to 
Fk = µkN. Here µk is the coefficieni of 
kineric friciion. 

The solution of a problem involving 
friction requires first drawing the 
free-body diagram of the body. If the 
unknowns cannot be determined strictly 
from the equations of equilibrium, and 
the possibility of slipping occurs, then the 
friction equation should be applied at the 
appropriate points of contact in order to 
complete the solution. 

LF = 0 

LM = 0 ·' 
LM = 0 y 

LM- = 0 -

w 

' 

Rough surface 

' • 

w 

p 

CHAPTER REVIEW 

w 

F 

N 

Impending 
1---~p ·- - - -+ 

motion 

.,.._1--r-N-- F, = µ,, N 

w 

' Motion 
1---.~p ----

N 
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220 CHAPTER 4 EQUILIBRIUM OF A RIGID BODY 

REVIEW PROBLEMS 

All problem solutions must include an FBD. 

R4-1. If the roller at B can sustain a maximum load of 
3 kN, determine the largest magnitude of each of the three 
forces F that can be supported by the truss. 

- 2m--2m - 2m 

F F F 

Prob. R4-1 

R4-2. Determine the reactions at the supports A and B 
for equilibrium of the beam. 

400 N/m 

2 OON/m ~-----
.----

' 
I !lB 

Prob. R4-2 

R4-3. Determine the normal reaction at the roller A and 
horizontal and vertical components at pin B for equilibrium 
of the member. 

lO kN 

1-0.6m--0.6m-J 

Prob. R4-3 

*R4-4. Determine the horizontal and vertical components 
of reaction at the pin A and the reaction at the roller B on 
the lever. 

B 

1--20 in.---1 

Prob. R4-4 
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R4-5. Determine the x,y, z components of reaction at the 
fixed wall A. The 150-N force is parallel to the z axis and the 
200-N force is parallel to they axis. 

150 N 

x y 

2 Ill 

200 N 

Prob. R4-5 

R~. A vertical force of 80 lb acts on the crankshaft. 
Determine the horizontal equilibrium force P that must be 
applied to the handle and the x, y, z components of reaction 
at the journal bearing A and thrust bearing B. The bearings 
are properly aligned and exert only force reactions on 
the shaft. 

Prob. R~ 
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R4-7. The uniform 20-lb ladder rests on the rough floor for 
which the coefficient of static friction isµ., = 0.4 and against 
the smooth wall at 8. Determine the horizontal force P the 
man must exert on the ladder in order to cause it to move. 

B 

8 ft 
p 

A 

r. 

.... "..: .... ·.:::. ·.::~ ... "..:.-... · .. : . . ... 
---6rt 

Prob. R4-7 

*R4-8. The uniform 60-kg crate C rests uniformly on a 
10-kg dolly D. If the front wheels of the dolly at A are 
locked to prevent rolling while the wheels at B are free to 
roll, determine the maximum force P that may be applied 
without causing motion of the crate. The coefficient of static 
friction between the wheels and the floor is µ.1 = 0.35 and 
between the dolly and the crate, µ.4 = 0.5. 

t-0.6m-I 

P-.,...-..-1 c 1.5 m 

0.8 m 

Prob. R4-8 
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CHAPTER 6 

__ _,_ 

-
(©Tim Scrivener/Alamy) 

In order to design the many parts of this boom assembly it is required that 
we know the forces that they must support. In this chapter we will show how 
to analyze such structures using the equations of equi librium. 
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STRUCTURAL 
ANALYSIS 

CHAPTER OBJECTIVES 

• To show how to determine the forces in the members of a truss 
using the method of joints and the method of sections. 

• To analyze the forces acting on the members of a frame or 

machine composed of pin-connected members. 

5.1 SIMPLE TRUSSES 
A truss is a structure composed of slender members joined together at 
their end points. The members commonly used in construction consist of 
wooden struts or metal bars. In particular, planar trusses lie in a single 
plane and are often used to support roofs and bridges. The truss shown in 
Fig. 5- la is an example of a typical roof-supporting truss. Here, the roof 
load is transmitted to the truss at the joints by means of a series of purlins. 
Since this loading acts in the same plane as the truss, Fig. 5- lb, the analysis 
of the forces developed in the truss members will be two-dimensional. 

Fig. 5-1 

Roof truss 

(b) 

223 
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\ 
Gusset \ 4': 
plate "}•~ 
~ " 

(a) 

(b) 

Fig. 5- 3 

Floor beam 

(a) 

f t 
Bridge truss 

(b) 

Fig. 5-2 

In the case of a bridge, such as shown in Fig. 5- 2a, the load on the deck 
is first transmitted to stringers, then to floor beams, and finally to the 
joints of the two support ing side trusses. Like the roof truss, the bridge 
truss loading is also coplanar, Fig. 5- 2b. 

When bridge or roof trusses extend over large distances, a rocker or roller 
is commonly used for supporting one end, for example, joint A in Figs. 5- la 
and 5-2a. This type of support allows freedom for expansion or contraction 
of the members due to a change in temperature or application of loads. 

Assumptions for Design. To design both the members and the 
connections of a truss, it is first necessary to determine the force 
developed in each member when the truss is subjected to a given loading. 
To do a force analysis we will make two important assumptions: 

• A ll loadings are applied at the joints. In most situations, such as for 
bridge and roof trusses, this assumption is true. Frequently the weight of 
the members is neglected !because the force supported by each member 
is usually much larger than its weight. However, if the weight is to be 
included in the analysis, it is generally satisfactory to apply it as a vertical 
force, with half of its magnitude applied at each end of the member. 

• The members are joined together by smooth pins. The joint 
connections are usually formed by bolting or welding the ends of 
the members to a common plate, called a gusset plate, Fig. 5- 3a, or 
by simply passing a large bolt or pin through each of the members, 
Fig. 5- 3b. We can assume these connections act as pins provided the 
centerlines of the joining members are concurrent, as in Fig. 5- 3. 
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T 

T 

Tension 
(a) 

c 

c 
Compression 

(b) 

Fig. 5-4 

Because of these two assumptions, each truss member will act as a two
force member, and therefore the force acting at each end of the member 
will be directed along the axis of the member. If the force tends to 
elongate the member, it is a tensile force (T), Fig. 5-4a; whereas if it tends 
to shorten the member, it is a compressive force (C), Fig. 5-4b. In the 
actual design of a truss it is important to state whether the force is tensile 
or compressive. Often, compression members must be made thicker than 
tension members because of the buckling or sudden collapse that can 
occur when a member is in compression. 

Simple Trus If three members are pin connected at their ends, they 
form a triangular truss that will be rigid, Fig. 5- 5. Attaching two more 
members and connecting them to a new joint D forms a larger truss, 
Fig. 5-6. This procedure can be repeated as many times as desired to 
form an even larger truss, and by doing this one forms a simple truss. 

p 

Fig. 5-5 

p 

c 

Fig. 5-6 

5.1 SIM PLE TRUSSES 225 

The use of metal gusset plates in the 
construction of these Warren trusses is 
clearly evident. 
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226 CHAPTER 5 STRUCTURAL ANALYSIS 

2m 

---2m---

(a) 

~SOON . 

F BA (tension) t45~FBc (compression) 

(b) 

B SOON 

F BA (tension) 
F BC (compression) 

(c) 

Fig. 5-7 

The forces in the members of this simple 
roof truss can be determined using the 
method of joints. 

5. 2 THE METHOD OF JOINTS 
One way to determine the force in each member of a truss is to use the 
method of joints. This method is based on the fact that if the entire truss 
is in equilibrium, then each of its joints is also in equilibrium. Therefore, 
if the free-body diagram of each joint is drawn, the force equilibrium 
equations, lFr = 0 and lFy = 0, can then be used to obtain the member 
forces acting on each joint. 

For example, consider the pin at joint B of the truss in Fig. 5- 7a. 
As shown on its free-body dliagram, Fig. 5- 7b, three forces act on the 
pin, namely, the 500-N force and the forces exerted by members BA 
and BC. Here, FaA is "pulling" on the pin, which means that member 
BA is in tension; whereas Fae is " pushing" on the pin, and consequently 
member BC is in compression. These effects can also be seen by 
isolating the joint with small segments of the member connected to 
the pin, Fig. 5- 7c. The pushing or pulling on these small segments 
indicates the effect on the members being either in compression 
or tension. 

When using the method of joints, always start at a joint having at least 
one known force and at most two unknown forces, as in Fig. 5- ?b. In this 
way, application of lFr = 0 and lFy = 0 yields two algebraic equations 
which can be solved for the two unknowns. When applying these 
equations, the correct sense of an unknown member force can be 
determined using one of two possible methods. 

• The correct sense of direction of an unknown member force 
can, in many cases, be determined "by inspection." For example, 
Fae in Fig. 5-?b must iPUSh on the pin (compression) since its 
horizontal component, Fae sin 45°, must balance the 500-N force 
(lF.r = 0). Likewise, F8 A is a tensile force since it balances the 
vertical component, Fae cos 45° (lFy = 0). In more complicated 
cases, the sense of an unknown member force can be assumed; 
then, after applying the equilibrium equations, the assumed sense 
can be verified from the numerical results. A positive scalar 
indicates that the sense is correct , whereas a negative scalar 
indicates that the sense shown on the free-body diagram must 
be reversed. 

• Always assume the unknown member forces acting on the joint's 
free-body diagram to be in tension; i.e., the forces "pull" on the pin. 
If this is done, then numerical solution of the equilibrium equations 
will yield positive scalars for members in tension and negative scalars 
for members in compression. Once an unknown member force is 
found , use its correct magnitude and sense (T or C) on subsequent 
joint free-body diagrams. 
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IMPORTANT POINTS 

• Simple trusses are composed of triangular elements. The 
members are assumed to be pin connected at their ends and 
the loads applied at the joints. 

• If a truss is in equilibrium, then each of its joints is in equilibrium. 
The internal forces in the members become external forces when 
the free-body diagram of each joint of the truss is drawn. A force 
pulling on a joint is caused by tension in a member, and a force 
pushing on a joint is caused by compression. 

PROCEDURE FOR ANALYSIS 

The following procedure provides a means for analyzing a truss using 
the method of joints. 

• Draw the free-body diagram of a joint having at least one 
known force and at most two unknown forces. If this joint is at 
one of the supports, then it may be necessary first to calculate 
the external reactions at the support. 

• Orient the x and y axes such that the forces on the free-body 
diagram can be easily resolved into their x and y components, 
and then apply the two force equilibrium equations 2F, = 0 
and 2£,, = 0. Solve for the two unknown member forces and 
verify their correct sense. 

• Using the calculated results, continue to analyze each of the 
other joints. Remember that a member in compression "pushes" 
on the joint and a member in tension "pulls" on the joint. 

5.2 THE METHOD OF JOINTS 227 
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I EXAMPLE 5.1 

l-2m-
(a) 

B SOON 

FsAI~:sc 
(b) 

(c) 

FsA =SOON 

A 
A,-~'6--•FcA = 500 N 

(d) 

B SOON 

500N~07.1 N 

4S0 

c 
0 

't;; 
c 
~ 

Tension ~ 500=i~ 4s• 707.lN 

soo N soo .... Nl-a::====:::::i~soo N • ~00 N 
SOON 

(e) 

Fig. 5-8 

Determine the force in each member of the truss shown in Fig. 5--8a and 
indicate whether the members are in tension or compression. 

SOLUTION 
We will begin our analysis at joint B since there are one known force 
and two unknown forces there. 

Joint S. The free-body diagram is shown in Fig. 5- 8b. Applying the 
equations of equilibrium, we have 

~ 2F., = O; 500 N - Fae sin 45° = 0 

+ iIFy = O; Fae cos45° - FaA = 0 
Fae = 707.1 N (C) Ans. 

FaA = 500 N (T) Ans. 

Now that the force in member BC has been calculated, we can proceed 
to analyze joint C to determine the force in member CA and the support 
reaction at the rocker. 

Joint C. From the free-body diagram, Fig. 5--8c, we have 

~2F, = O; 
+ jIF. = O· y , 

-FeA + 707.1cos45° N = 0 

Cy - 707.1 sin 45° N = 0 

FeA = 500 N (T) Ans. 

Cy = 500 N Ans. 

Joint A. Although it is not necessary, we can determine the 
components of the support reactions at joint A using the results of FCA 
and FaA- From the free-body diagram, Fig. 5- 8d, we have 

~2F, = O; 
+ jIF. = O· y , 

500N-A = 0 .r 

500 N - A y = 0 

Ax = 500N 

A y = 500 N 

NOTE: The results of this analysis are summarized in Fig. 5--8e. Here 
the free-body diagram of each joint (or pin) shows the effects of all 
the connected members and external forces applied to the joint, 
whereas the free-body diagram of each member shows only the effects 
of the joints on the member. 
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I EXAMPLE 5.2 

Determine the forces acting in all the members of the truss shown 
in Fig. 5- 9a, and indicate whether the members are in tension or 
compress10n. 

SOLUTION 
By inspection, there are more than two unknowns at each joint. As a 
result, the support reactions on the truss must first be determined. 
Show that they have been correctly calculated on the free-body 
diagram in Fig. 5- 9b. We can now begin the analysis at joint C. 

Joint C. From the free-body diagram, Fig. 5- 9c, 

~2F. = O· x , -FcD cos 30° + FcB sin 45° = 0 
+ j2F. = O· y , 1.5 kN + FcD sin 30° - FcB cos 45° = 0 

These two equations must be solved simultaneously for each of the two 
unknowns. A more direct solution can be obtained by applying a force 
summation along an axis that is perpendicular to the direction of the 
other unknown force. For example, summing forces along the y' axis, 
which is perpendicular to the direction of FcD, Fig. 5- 9d, yields a direct 
solution for FcB· 

Then, 

1.5 cos 30° kN - FcB sin 15° = 0 

FcB = 5.019 kN = 5.02 kN (C) Ans. 

-FcD + 5.019 cos 15° - 1.5 sin 30° = O; FcD = 4.10 kN (T) Ans. 

Joint 0. We can now proceed to analyze joint D. The free-body 
diagram is shown in Fig. 5- 9e. 

~2F. = O· x , 

+ j2F. = O· y , 

-FDA COS 30° + 4.10 cos 30° kN = 0 

FDA = 4.10 kN (T) 

FDB - 2( 4.10 sin 30° kN) = O 

FDB = 4.10 kN (T) 

Ans. 

Ans. 

NOTE: The force in the last member, BA, can be obtained from joint B or 
joint A. As an exercise, draw the free-body diagram of joint B, sum the 
forces in the horizontal direction, and show that FBA = 0.776 kN (C). 
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B _

1 

_____ ~---l~ 3 kN 

2m 

LA. 

3kN 

- 2m--2m -

(a) 

- 2m--2m -

1.5 kN 

Fcs 

(b} 

Fcs 
y 

45• 

1.5 kN 

(c) 

30° 
1.5 kN 

(d) 

y 

I 
Fos 

x' 

FoA 4.lOkN 

(e) 

Fig. 5- 9 

1.5 kN 
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I EXAMPLE 5.3 

y 

14 

FAB 

FAD 
A<:""-----1~ ---x 

600N 

(c) 

Determine the force in each member of the truss shown in Fig. 5- lOa. 
Indicate whether the members are in tension or compression. 

400N 

c 

- 3m-1--3m
(a) 

SOLUTION 

D 

600N 

4 m 

Fig. 5-10 

400N C
1 3m 

C 

1----6 m ----1 

(b) 

600N 

Support Reactions. No joint can be analyzed until the support 
reactions are determined, because each joint has at least three 
unknown forces acting on it. A free-body diagram of the entire truss is 
given in Fig. 5- lOb. Applying the equations of equilibrium, we have 

~IF. = O· x , 600 N - Cx = 0 Cx = 600 N 

C+IMc = O; -Ay(6 m) + 400 N(3 m) + 600 N(4 m) = 0 

A y = 600N 

600 N - 400 N - Cy = 0 Cy = 200 N 

The analysis can now start at either joint A or C. The choice is arbitrary 
since there are one known and two unknown member forces acting on 
the pin at each of these joints. 

Joint A. (Fig. 5- lOc). As shown on the free-body diagram, FAB is 
assumed to be compressive and FAD is tensile. Applying the equations 
of equilibrium, we have 

+f IFy = 0; 

~IF. = O· x , 

600N - ~FAB = 0 

FAD - ~(750 N) = 0 

FAB = 750 N (C) 

FAD = 450 N (T) 

Ans. 

Ans. 
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Joint 0. (Fig. 5- lOd). Using the result for FAD and summing forces in 
the horizontal direction, we have 

..:!;. IF, = O; -450N + ~FDB + 600N = 0 FDB = -250N 

The negative sign indicates that F DB acts in the opposite sense ~o that 
shown in Fig. 5- lOd. * Hence, 

FDB = 250 N (T) Ans. 

To determine F De, we can either correct the sense of F DB on the free
body diagram, and then apply 'I.Py = 0, or apply this equation and 
retain the negative sign for FDB• i.e., 

+ fl£,, = O; -FDc - ~(-250N) = 0 FDc = 200N (C) Ans. 

Joint C. (Fig. 5- lOe). 

..:!;. IF. = O· x , FcB - 600 N = 0 FcB = 600 N (C) Ans. 

+ fl£,, = 0; 200 N - 200 N = 0 (check) 

NOTE: The analysis is summarized in Fig. 5- lOf, which shows the free
body diagram for each joint and member. 

400N 

600 N Compression 

750N 250N 

750N 

6 
250 N '!200 N 

Tension 
A -+-a::========:::D---• c • 600 N 

~N ~ON D 

600N 

(f) 

Fig. 5-10 (cont.) 

*The proper sense could have been determined by inspection, prior to applying "i,F, = 0. 

5.2 THE METHOD OF JOINTS 2 31 

450N D 600N 

(d) 

1 
Fcs 

1200N 

~~ c 600N _ x 

f 200N 

I 
(e) 
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232 CHAPTER 5 STRUCTURAL ANALYSIS 

A 

5.3 ZERO-FORCE MEMBERS 
Truss analysis using the method of joints is greatly simplified if we can 
first identify those members which support no loading. These zero-force 
members are used to increase the stability of the truss during construction 
and to provide added support if the loading is changed. 

The zero-force members of a truss can generally be found by 
inspection of each of the joints. For example, consider the truss shown 
in Fig. 5- lla. If a free-body diagram of the pin at joint A is drawn, 
Fig. 5- 1 lb, it is seen that members AB and AF are zero-force members. 
(We could not come to this conclusion if we had considered the 
free-body diagrams of joints F or B, simply because there are five 
unknowns at each of these joints.) In a similar manner, consider the 
free-body diagram of joint D , Fig. 5- llc. Here again it is seen that DC 
and DE are zero-force members. To summarize, then, if only two non
collinear members form a truss joint and no external load or support 
reaction is applied to the joint, the two members must be zero-force 
members. The load on the truss in Fig. 5- lla is therefore actually 
supported by only five members, as shown in Fig. 5- 1 ld. 

D 

1 
L A --x 

c FAB 

B + 
~ lF, = O; FAB = 0 

p 
+i 2Fy = O; FAF= 0 

(a) (b) 

D 
F E 

B 
+ \, 2Fy = O; F DC sin 0 = O; F DC = 0 since sin 9 * 0 
+iClF, = 0; FDE + 0 = 0; FDE = 0 p 

(c) (d) 

Fig. 5-11 
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Now consider the truss shown in Fig. 5-12a. The free-body diagram of 
the pin at joint D is shown in Fig. 5-12b. By orienting they axis along 
members DC and DE and the x axis along member DA, it is seen that DA 
is a zero-force member. From the free-body diagram of joint C, Fig. 5-12c, 
it can be seen that this is also the case for member CA. In general then, if 
three members form a truss joint for which two of the members are collinear, 
the third member is a zero-force member provided no external force or 
support reaction has a component that acts along this member. The truss 
shown in Fig. 5-12" is therefore suitable for supporting the load P. 

p £ 

5.3 ZERO-FORCE M EMBERS 2 3 3 

Foe 

/ FoA """ 

B 

(a) 

Fes 

x y 

+.c 'f.Fx = 0: Fe,.. sin 0 = 0: FeA = 0 since sin 0 '# O; 

+'>i 'f.Fy = 0: Fes = Feo 

x y 

+ .C 'S.F.., = 0; FoA • 0 

+'>i '2Fy = O; F0 e = FOi-:. 

(b) 

p £ 

A 

(c) (d) 

Fig.5-U 

IMPORTANT POINT 

• Zero-force members support no load; however, they are 
necessary for stability, and are available when additional 
loadings are applied to the joints of the truss. These members 
can usually be identified by inspection. They occur at joints 
where only two mernbers are connected and no external load 
acts along either member. Also, at joints having two collinear 
members, a third member will be a zero-force member if no 
external force components act along this member. 
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I EXAMPLE 5.4 

x 

(b} 

x 
(c) 

x 

(d} 

\ 
x 

(e) 

y 

2kN 

FHc 

- x 
FHA H FHG 

( f } 

Determine all the zero-force members of the Fink roof truss shown in 
Fig. 5- 13a. Assume all joints a.re pin connected. 

SOLUTION 

SkN 

c 

(a) 

Fig. 5-13 

Look for joint geometries that have three members for which two are 
collinear. We have 

Joint G. (Fig. 5-13b). 

+ jIF. = O· y , Fee = 0 Ans. 

Realize that we could not conclude that GC is a zero-force member by 
considering joint C, where there are five unknowns. The fact that GC 
is a zero-force member means that the 5-kN load at C must be 
supported by members CB, CH, CF, and CD. 

Joint 0 . (Fig. 5- 13c). 

+il'IF, = O; FvF = 0 Ans. 

Joint F. (Fig. 5- 13d). 

+ jIF. = O· y , FFc cos 8 = 0 Since 8 # 90°, FFc = 0 Ans. 

NOTE: If joint B is analyzed, Fig. 5- 13e, 

+ \.IF.. = O· .t , 2kN - FBH = 0 FBH = 2 kN (C) 

Also, FHc must satisfy IF). = 0, Fig. 5-13/, and therefore HC is not a 
zero-force member. 
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5.3 ZERO-FORCE MEMBERS 2 3 5 

PRELIMINARY PROBLEMS 

P5-L In each case, calculate the support reactions and 
then draw the free-body diagrams of joints A , B , and C of 
the truss. 

P5-2. Identify the zero-force members in each truss. 

E D 
• 

2m 

A ~=======3t.======~• --'
---2 m---;1-

8

---2 m-lc 
400N 

(a) 

E 

,_ __ 2m ---- •---- 2m ---

600N 

(b) 

Prob. P5-l 

H G F E 

A 

(a) 

E 

4m 

A " " IB 1c D 

l-2m-----l-2m-l-2m -

700N 

SOON 

(b) 

Prob. P5-2 
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FUNDAMENTAL PROBLEMS 

All problem solutions must include FBDs. 

F5-L Determine the force in each member of the truss 
and state if the members are in tension or compression. 

--4 ft --1;--4ft 

450 Jb 

Prob.FS-1 

FS-2. Determine the force in each member of the truss 
and state if the members are in tension or compression. 

3 ft 

--2 ft--1~2 ft 

300 Jb 

Prob.FS-2 

FS-3. Determine the force in each member of the truss 
and state if the members are in tension or compression. 

D c 
Q ·1 

3 ft 

J 
A 

4 ft 

800 Jb 6001b 

Prob.FS-3 

FS-4. Determine the greatest load P that can be applied 
to the truss so that none of the members are subjected to a 
force exceeding either 2 kN in tension or 1.5 kN in 
compression . 

p 

--3m---

Prob.FS-4 

FS-5. Identify the zero-force members in the truss. 

3 kN 

---i---2 m---1 
D 

-[ D/o ~=:::::A===;::j>c 

1.5 nn 

l_ IBI;======~ 
A 

Prob.FS-5 

FS-6. Determine the force in each member of the truss 
and state if the members are in tension or compression. 

6001b 

450 lb E 

A 
0 oc 

--3 ft--1~3 ft--
Prob.FS-6 
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PROBLEMS 

All problem solutions must include FBDs. 

5-1. Determine the force in each member of the truss and 
state if the members are in tension or compression. Set 
P1 =20 kN, P2 =10 kN. 

5- 2. Determine the force in each member of the truss and 
state if the members are in tension or compression. Set 
P1 =45 kN,P2 =30kN. 

i------- 2 m ___ _, 

Probs. 5-112 

5- 3. Determine the force in each member of the truss and 
state if the members are in tension or compression. 

Prob.5- 3 

5.3 ZERO-FORCE MEMBERS 237 

*5-4. Determine the force in each member of the truss 
and state if the members are in tension or compression. 

3 kip 
H -1- 2 kip 3 kip 

8 ft 

4 ft 
i
1 

i.s kip~f'OK 
- 0£ 

A - B c ID -
~10ft --10ft --10ft~10ft~ 

Prob.5-4 

5-5. Determine the force in each member of the truss, and 
state if the members are in tension or compression. Set 9 = 0°. 

5-6. Determine the force in each member of the truss, and 
state if the members are in tension or compression. Set 9 = 30°. 

D 

-.-1------7<.!~-.-- 3kN 

1.5 m 

_]A• 
B 

1---2 m---•---2 m---i 

4 kN 

Probs. 5-5/6 

5-7. Determine the force in each member of the truss and 
state if the members are in tension or compression. 

4kN 

- 3m
B 

SkN 

3mc l 3m-I 

Prob. 5-7 

Sm 
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238 CHAPTER 5 S TRUCTURAL A NALYSIS 

*5-8. Determine the force in each member of the truss in 
terms of the load P and state if the members are in tension 
or compression. 

5-9. Members AB and BC can each support a maximum 
compressive force of 800 lb, and members AD,DC, and BD 
can support a maximum tensile force of 1500 lb. If a= 10 ft, 
determine the greatest load P the truss can support. 

5-10. Members AB and BC can each support a maximum 
compressive force of 800 lb, and members AD,DC, and BD 
can support a maximum tensile force of 2000 lb. If a= 6 ft, 
determine the greatest load P the truss can support. 

B 

p 

Probs. 5-8/9/10 

5-11. Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P=8kN. 

*5-12. If the maximum force that any member can support 
is 8 kN in tension and 6 kN in compression, determine the 
maximum force P that can be supported at joint D. 

-- 4m---- 4m --o 

p 

Probs. 5-11/12 

5-13. Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P1 =10kN,P 2 =8kN. 

5-14. Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P1 =8 kN,P2 =12kN. 

G F E 

T 
2m 

Probs. 5-13/14 

5-15. Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P1 =9 kN,P2 =15 kN. 

*5-16. Determine the force in each member of the truss 
and state if the members are in tension or compression. Set 
P 1=30kN,P 2 =15 kN. 

E D 

4m 

1---3 m ---1---3 m -----..1 

Probs. 5-15/16 
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5.4 THE M ETHOD OF SECTIONS 239 

5.4 THE METHOD OF SECTIONS 
When we need to find the force in only a few members of a truss, we can 
analyze the truss using the method of sections. It is based on the principle 
that if the truss is in equilibrium then any part of the truss is also in 
equilibrium. For example, consider the two truss members shown in 
Fig. 5-14. If the forces within the members are to be determined, then an 
imaginary section, indicated by the blue line, can be used to cut each member 
into two parts and thereby "expose" each internal force as "external" to the 
free-body diagrams of the parts shown on the right. Clearly, it can be seen 
that equilibrium requires that the member in tension (T) be subjected to a 
"pu!J,'' whereas the member in compression (C) is subjected to a "push." 

The method of sections can also be used to "cut" or section the members 
of an entire truss. If the section passes through the truss and the free-body 
diagram of either of its two parts is drawn, we can then apply the equations 
of equilibrium to that part to determine the member forces at the section. 
Since only three independent equilibrium equations (IF.r = 0, I.Py = 0, 
2.M0 = 0) can be applied to the free-body diagram of any part, then we 
should try to select a section that, in general, passes through not more 
than three members in which the forces are unknown. For example, 
consider the truss in Fig. 5- 15a. If the forces in members BC, GC, and GF 
are to be determined, then section aa would be appropriate. The free
body diagrams of the two parts are shown in Figs. 5-15b and 5- 15c. Notice 
that the direction of each member force is specified from the geonietry of 
the truss, since the force in a member is along its axis. Also, the member 
forces acting on one part of the truss are equal but opposite to those 
acting on the other part - Newton's third law. Members BC and GC are 
assumed to be in tension since they are subjected to a "pull,'' whereas GF 
is in compression since it is subjected to a "push." 

The three unknown member forces F80 Fee, and FcFcan be obtained 
by applying the three equilibrium equations to the free-body diagram in 
Fig. 5-15b. Ir, however, the free-body diagram in Fig. 5-15c is considered, 
then the three support reactions Dx, D,, and Ex will have to be known, 
because only three equations of equilibrium are available. (This, of 
course, is done in the usual manner by considering a free-body diagram 
of the entire truss.) 

a c .. -I 
2 111 

Af==.=~==l=~=~l -l 
G 0 F E 

- Zm- l-2 m- l-2m-I 
IOOON 

(a) 

- 2m-
lOOON 

(b) 

Fig. 5-15 

T 

T 

T 

c 

c 

T 

lntemal T 
tensile 
forces 

Tension 
T 
c 

c 

Lnterna 
compressive c 
forces 

Compression 
c 

Fig. 5-14 

t
Dy 

c 1-2m-
--,q .... .....,._. 

2m 
Fae I 

G /---=--!==::la=:===lll-~L- E, 
Fap 

(c) 
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l- 2m-1 
Fsc C 

----.1---,.p;::~+.7 

2m 
_l ¢::::::::==£=:'.::I+-::. 

- 2m-lG 
lOOON 

(b) 

Fig. 5-15 (Repeated) 

When applying the equilibrium equations, we should carefully 
consider ways of writing the equations so as to yield a direct solution for 
each of the unknowns, rather than having to solve simultaneous 
equations. For example, using the part in Fig. 5- 15b and summing 
moments about C will yield a direct solution for FeF since F8 c and Fee 
create zero moment about C. Likewise, F8 c can be directly obtained by 
summing moments about G. Finally, Fee can be found directly from a 
force summation in the vertical direction since FeF and F8 c have no 
vertical components. This ability to determine directly the force in a 
particular truss member is one of the main advantages of using the 
method of sections.* 

As in the method of joints, there are two ways in which we can 
determine the correct sense of an unknown member force: 

• The correct sense can in many cases be determined "by inspection." 
For example, F BC is shown as a tensile force in Fig. 5- 15b since 
moment equilibrium about G requires that F8 c create a moment 
opposite to that of the 1000-N force. Also, Fee is tensile since its 
vertical component must balance the 1000-N force which acts 
downward. In more complicated cases, the sense of an unknown force 
may be assumed. If the solution yields a negative scalar, it indicates 
that the force's sense of direction is opposite to that shown on the 
free-body diagram. 

• Always assume that the unknown member forces at the section are 
tensile forces, i.e., "pulling" on the member. By doing this, the 
numerical solution of the equilibrium equations will yield positive 
scalars for members in tension and negative scalars for members in 
compression. 

*If the method of joints were used to determine, say, the force in member GC, it would 
be necessary to analyze joints A, B, and G in sequence. 

The forces in selected members of this 
Pratt truss ,can readily be dete rmined 
using the method of sections. 
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IMPORTANT POINT 

• If a truss is in equilibrium, then each of its parts is in equilibrium. 
The internal forces in the members become external forces 
when the free-body diagram of a part of the truss is drawn. A 
force pulling on a member causes tension in the member, and a 
force pushing on a member causes compression. 

PROCEDURE FOR ANALYSIS 

The forces in the members of a truss may be determined by the 
method of sections using the following procedure. 

Free-Body Diagram. 

• Make a decision as to how to "cut" or section the truss through 
the members where forces are to be determined. 

• Before isolating any part of the truss, it may first be necessary to 
detennine the truss's support reactions that act on the part. Once 
this is done then the three equilibrium equations will be available 
to solve for member forces at the section. 

• Draw the free-body diagram of that part of the sectioned truss 
which has the least number of forces acting on it. 

Equations of Equilibrium. 

• Moments should be summed about a point that lies at the 
intersection of the lines of action of two unknown forces, so that 
the third unknown force can be determined directly from the 
moment equation. 

• If two of the unknown forces are parallel, forces may be summed 
perpendicular to their direction in order to directly determine the 
third unknown force. 

5.4 THE M ETHOD OF SECTIONS 241 

Simple trusses are often used in 
the construction of large cranes 
in order to reduce the weight of 
the boom and tower. 
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I EXAMPLE 5.5 

a E 

1200N 

(a) 

I 
3m 

~JA~===lt=::==\t==~~D 
A.r 

1---8 01 - 4 m 
Ay 

1200N 
(b) 

3m FGc 

IA ' c 
400N Fsc1 

- 4 m --4m -I 

300N 

(c) 

Fig. 5-16 

Determine the force in members GE, GC, and BC of the truss shown in 
Fig. 5-16a. Indicate whether the members are in tension or compression. 

SOLUTION 
Section aa in Fig. 5- 16a has been chosen since it cuts through the three 
members whose forces are to be determined. In order to use the 
method of sections, however, it is first necessary to determine 
the external reactions at A or D. Why? A free-body diagram of 
the entire truss is shown in Fig. 5- 16b. Applying the equations of 
equilibrium, we have 

~2F, = O; 400N-A = 0 A = 400N x x 

-1200 N(8 m) - 400 N(3 m) + Dy(12 m) = 0 

Dy = 900N 

+ j2F. = O· y , Ay - 1200 N + 900 N = 0 Ay = 300N 

Free-Body Diagram. For the analysis the free-body diagram of the 
left part of the sectioned truss will be used, since it involves the least 
number of forces, Fig. 5- 16c. 

Equations of Equilibrium. Summing moments about point G 
eliminates Fee and Fee and yields a direct solution for Fae· 

C+ 2Me = O; -300N(4m) - 400N(3m) + Fae (3m) = 0 

Fae = 800 N (T) Ans. 

In the same manner, summing moments about point C we obtain a 
direct solution for Fee· 

C + 2Me = O; -300 N(8 m) + Fee(3 m) = 0 

Fee = 800 N (C) Ans. 

Since Fae and Fee have no vertical components, summing forces in 
they direction directly yields Fee, i.e., 

+ j2F. = O· y , 300N - ~Fee = 0 

Fee = 500 N (T) Ans. 

NOTE: Here it is possible to tell, by inspection, the proper direction for 
each unknown member force. For example, 2Me = 0 requires Fee to 
be compressive because it must balance the moment of the 300-N 
force about C. 
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I EXAMPLE 5.6 

Determine the force in member CF of the truss shown in Fig. 5- 17a. 
Indicate whether the member is in tension or compression. Assume 
each member is pin connected. 

G 

B a 
l-4 m 4 m-t-4 m--4m -I 

1---8 m ---·-•.:___ 4 m ___::!~ 4 m .:___ 

SOLUTION 

5kN 

(a) 

3 kN 3.25 kN 

Free-Body Diagram. Section aa in Fig. 5- 17a will be used since this 
section will "expose" the internal force in member CF as "external" on 
the free-body diagram of either the right or left portion of the truss. It 
is first necessary, however, to determine the support reactions on either 
the left or right side. Verify the results shown on the free-body diagram 
in Fig. 5- 17b. 

The free-body diagram of the right part of the truss, which is the easiest 
to analyze, is shown in Fig. 5- 17c. There are three unknowns, 
FFG• FcF, and FcD· 

Equations of Equilibrium. We will apply the moment equation 
about point 0 in order to eliminate the two unknowns FFc and 

5kN 

(b) 

Fig. 5-17 

G 

3kN 4.75kN 

~-,----------1~ 

I 2m 

6m: FCF I FcD· The location of point 0, measured from E, can be determined 
from proportionaltriangles,i.e.,4/ (4 + x) = 6/ (8 + x), x = 4 m. 
Or, stated in another manner, since the slope of member GF has a 
drop of 2 m to a horizontal distance of 4 m, and FD is 4 m, 

4 m 

FCF cos45°C~ . · ~. =a~'',',,o_l 
45~t- 4 ~~·D_TD 4 m E x -=i 

Fig. 5- 17c, then from D to 0 the distance must be 8 m. 

An easy way to determine the moment of FcF about point 0 is to 
use the principle of transmissibility and slide FcF to point C, and 
then resolve FcF into its two rectangular components. We have 

C+lM0 = O; 

-FcFsin45°(12m) + (3kN)(8m) - (4.75kN)(4m) = 0 

FcF = 0.589 kN (C) 

FcFsin 45° f 
3 kN 4.75 kN 

(c) 

Ans. 
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I EXAMPLE 5.7 

1000 N Determine the force in member EB of the roof truss shown in Fig. 5- 18a. 

3000 N lOOON 
Indicate whether the member is in tension or compression. 

b Eb 
lOOON 

SOLUTION 

Free-Body Diagrams. By the method of sections, any imaginary section 
A c that cuts through EB will also have to cut through three other members 

4::'.:::::::::::::::::::)::::::::=ll::::::::====~ for which the forces are unknown. For example, section aa cuts through 

- 2m--2m--2m--2m -

4000N 2000N 

(a) 

lOOON 

3000N 
E 

lOOON 

(b) 

ED, EB, FB,and AB. If a free-body diagram of the left part of this section 
is considered, Fig. 5- 18b, it is poosible to obtain FED by summing moments 
about B to eliminate the other three unknowns; however, FEB cannot be 
determined from the remaining two equilibrium equations. 

One possible way of obtaining FEB is first to determine FED from 
section aa, then use this result on section bb, Fig. 5- 18a, which is shown in 
Fig. 5- 1&. Here the force system is concurrent and our sectioned free
body diagram is the same as the free-body diagram for the joint at E. 

y 

I 
lOOON 

FEo = 3000N 

Fig.5-18 

Equations of Equilibrium. In order to determine the moment of 
FED about point B, Fig. 5- 18b, we will use the principle of transmissibility 
and slide this force to point C and then resolve it into its rectangular 
components as shown. Therefore, 

C +lMB = O; 1000N(4m) + 3000N(2m) - 4000N(4m) 

+ FED sin 30°(4 m) = O 

FED = 3000 N (C) 

Considering now the free-body diagram of section bb, Fig. 5- 1&, we have 

~ IF, = O; FEF cos 30° - 3000 cos 30° N = 0 

FEF = 3000 N (C) 

+ jlFy = O; 2(3000sin 30°N) - lOOON - FEB = 0 

FEB = 2000 N (T) Ans. 
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FUNDAMENTAL PROBLEMS 

All problem solutions must include FBDs. 

FS-7. Determine the force in members BC, CF, and FE 
and state if the members are in tension or compression. 

G F E 
l[jx:· =~~· --1 

4 ft 

IDr-;::::=4=ft==i¢s~=4=ft~=-~-c~=:_=4=f=t :_~~Dl 
600 lb 600 lb 

800 lb 

Prob. FS-7 

FS-8. Determine the force in members LK, KC, and CD 
of the Pratt truss and state if the members are in tension or 
compression. 

L K J I 

B C 

1-2 m--2 m--2 m -2 m- -2 m- -2 m-

20 kN 30 kN 40 kN 

Prob. FS-8 

FS-9. Determine the force in members Kl, KD, and CD 
of the Pratt truss and state if the members are in tension or 
compression. 

I 
3 01 

A 

L K J I 

• B C 

1-2 m--2 m--2 m -2 m--2 m- -2 m-

20 kN 30 kN 40 kN 

Prob. FS-9 

FS-10. Determine the force in members EF, CF, and BC 
of the truss and state if the members are in tension or 
compression. 

F 

B 
- 6tt--6ft 

300lb 300lb 

Prob.FS-10 

FS-11. Determine the force in members GF, GD, and CD 
of the truss and state if the members are in tension or 
compression. 

G 

B C D 
l-2 m- - 2 m- - 2 m- - 2 m-1 

lOkN 
15 kN 25kN 

Prob. FS-11 

FS-12. Determine the force in members DC, HI, and JI of 
the truss and state if the members are in tension or 
compression. Suggesrion: Use the sections shown. 

_Q i--9 ft-~6 ftl F6 tt--j-9 ft-1 E 

6 ;ft I I 
I 6ft 

I 
12 ft 

s~++-~ s 
I ---1+..'5"----1-:-~Mll-- I 

I 

l-6 ft-l-6 tt-1 

Prob.FS-12 

1600 lb 
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PROBLEMS 

A ll problem solutions must include FBDs. 

5-17. Determine the force in members DC, HC, and HI of 
the truss and state if the members are in tension or 
compression. 

5-18. Determine the force in members ED, EH, and GH 
of the truss and state if the members are in tension or 
compression. 

50kN 
40kN - 2m--2m--2m 

Probs. 5-17n8 

1 
1.5 m 

C J 30kN 
1 

1.5 m 
B J 40 kN 

1 
l.5m 

J 

5-19. Determine the force in members HG, HE, and DE 
of the truss and state if the members are in tension or 
compression. 

*5-20. Determine the force in members CD , HI, and CH 
of the truss and state if the members are in tension or 
compression. 

J:t==~~f¢=.~it=~l;;=::::::PF 

1-3 ft - 3ft - -3 ft - - 3ft 3 ft -

1500 lb 1500 lb 1500 lb 1500 lb 1500 lb 

Probs. 5-19/20 

5-21. Determine the force in members CD, CJ, Kl, and 
DJ of the truss which serves to support the deck of a bridge. 
State if these members are in tension or compression. 

5-22. Determine the force in members EI and JI of the 
truss which serves to support the deck of a bridge. State if 
these members are in tension or compression. 

8000 lb 5000lb 
4000lb 

A B~ C D E 
~~~~~~:::::::;~~G-r 

12 ft 

~~~:::::::::::::~~--1-l 
- 9 ft-IL 9 t1 -l~9 ft -1! 9 t1 -l~9 ft-1~9 ft-

Probs. 5-21122 

5-23. The Howe 1russ is subjected to the loading shown. 
Determine the force in members GF, CD, and GC and 
state if the members are in tension or compression. 

*5-24. The Howe 1russ is subjected to the loading shown. 
Determine the force in members GH, BC, and BG of the 
truss and state if the members are in tension or compression. 

5kN 

G 
-,r----S'k~·Nu---/~~ 5 kN 

3m 

tkN 
~I 2~mJPs=. ,,41_[~2m::[==:2m~I ' 

Probs. 5-23/24 
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5-25. Determine the force in members EF. CF, and BC, 
and state if tbc members arc in tension or compression. 

5-26. Determine the force in members AF, BF, and BC, 
and state if the members arc in tension or compression. 

4kN 

2m 

8kN F 

c 

2 m 

A .J 
Probs. 5-25126 

5-27. Determine the force in members EF, BE, BC, and 
BF of the truss and state if these members are in tension or 
compression. Set P1=9 kN, P2 = 12 kN, and P3 = 6 kN. 

*5-28. Dctem1ine the force in members BC, BE, and EF 
of the truss and state if these members are in tension 
or compression. Set P1=6 kN, P2 = 9 kN, and P3 = 12 kN. 

F E 

I 
3 Dl 

AA~ ~~~~J_ 
~ B C 
-3m--3m - - 3m--I 

Probs. 5-27128 

5.4 THE M ETHOD OF SECTIONS 247 

5-29. Determine tbc force in members BC, HC, and HG. 
After the truss is sectioned use a single equation of 
equilibrium for the calculation of each force. State if these 
members arc in tension or compression. 

5-30. Determine the force in members CD, CF, and CG 
and state if these members are in tension or compression. 

5kN 
4 kN 4 kN 

3 kN 
2 kN 

B 

J 
.) Ill 

- 5m--5mj-5m15 m-
2

1
m 

Probs. 5-29130 

5-31. Determine the force developed in members FE, EB, 
and BC of the truss and state if these members are in 
tension or compression. 

1 2 m~- 1.5 m Ej-- 2 m ---I 

1 
2 m 

L 
B c 
II kN 

22 kN 

Prob. 5-31 
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248 CHAPTER 5 STRUCTURAL ANALYSIS 

This crane is a typical 
example of a framework. 

Common tools such as these pliers 
act as simple machines. Here the 
applied force on the handles 
creates a much larger force at 
the jaws. 

5.5 FRAMES AND MACHINES 
Frames and machines are two types of structures which are often 
composed of pin-connected multiforce members, i.e., members that are 
subjected to more than two forces. Frames are used to support loads, 
whereas machines contain moving parts and are designed to transmit and 
alter the effect of forces. Provided a frame or machine contains no more 
supports or members than are necessary to prevent its collapse, then the 
forces acting at the joints and supports can be determined by applying the 
equations of equilibrium to each of its members. Once these forces are 
obtained, it is then possible to design the size of the members, connections, 
and supports using the theory of mechanics of materials and an appropriate 
engineering design code. 

Free-Body Diagrams. In order to determine the forces acting at 
the joints and supports of a frame or machine, the structure must be 
disassembled and the free-body diagrams of its parts must be drawn. The 
following important points must be observed: 

• Isolate each part by drawing its outlined shape. Then show all the 
forces and/or couple moments that act on the part. Make sure to 
label or identify each known and unknown force and couple moment 
with reference to an established x, y coordinate system. Also, 
indicate any dimensions used for taking moments. As usual, the 
sense of an unknown force or couple moment can be assumed. 

• Identify all the two-force members in the structure and represent 
their free-body diagrams as having two equal but opposite collinear 
forces acting at their points of application. (See Sec. 4.4.) By doing 
this, we can avoid solving an unnecessary number of equilibrium 
equations. 

• Forces common to any two contacting members act with equal 
magnitudes but opposite sense on the free-body diagrams of the 
respective members. 

The following two examples graphically illustrate how to draw the 
free-body diagrams of a dismembered frame or machine. In all cases, the 
weight of the members is neglected. 
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EXAMPLE 5 .~ 

For the frame shown in Fig. 5- l 9a, draw the free-body diagram of (a) each 
member, (b) the pins at Band A , and (c) the two members connected 
together. 

p 

c,. 

(a) (b) 

SOLUTION 

Part (a). By inspection, members BA and BC are not two-force 
members. Instead, as shown on the free-body diagrams, Fig. 5-19b, BC 
is subjected to a force from each of the pins at B and C and the 
external force P. Likewise, AB is subjected to a force from each of the 
pins at A and Band the external couple moment M. The pin forces are 
represented by their x and y components. 

Part (b). The pin at Bis subjected to only two forces, i.e., the force of 
member BC and the force of member AB. For equilibriunz these 
forces (or their respective components) must be equal but opposite, 
Fig. 5-19c. Notice that Newton's third law is applied between the pin 

5.5 FRAMES ANO MACHINES 249 

n, Effecl of 
member BC 

8 x -:;:Jon the pin 

Effecl of D 8 
B, 

member AB 8
1 

on the pin 

Pin B 

(c) 

Pin A 

(d) 

and its connected members, i.e., the effect of the pin on the two f' *P 
members, Fig. 5-19b, and the equal but opposite effect of the two 
members on the pin, Fig. 5-19c. ln the same manner, there are three 
forces on pin A , Fig. 5-19d,caused by the force components of member l\1 \ 

AB and each of the two pin leaves. ~ ~ 
Part (c). The free-body diagram of both members connected A,--• .1fio1 ""4--- ex 
together, yet removed from the supporting pins at A and C, is shown 
in Fig. 5-19e. The force components Bx and Bv are not shown on this 
diagram since they are internal forces (Fig.' 5- 19b) and therefore 
cancel out. Also, to be consistent when later applying the equilibrium 
equations, the unknown force components at A and C in Fig. 5-19e 
must act in the same sense as those shown in Fig. 5- 19b. 

(c) 

Fig. 5-19 

c, 
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250 CHAPTER 5 STRUCTURAL ANALYSIS 

I EXAMPLE 5.9 

75 lb 

(b) 

For the frame shown in Fig. 5- ZOa, draw the free-body diagrams of (a) the 
entire frame including the pullleys and cords, (b) the frame without the 
pulleys and cords, and ( c) each of the pulleys. 

D 

75 lb 

(a) 

SOLUTION 

Part (a). When the entire frame including the pulleys and cords is 
considered, the interactions at the points where the pulleys and cords are 
connected to the frame become pairs of internal forces which cancel each 
other and therefore are not shown on the free-body diagram, Fig. 5- 20b. 

Part (b). When the cords and pulleys are removed, their effect on 
the frame must be shown, Fig. 5- 20c. 

Part (c). The force components Bx, B>• C-"' C>' of the pins on the 
pulleys are equal but opposite to the force components exerted by the 
pins on the frame, Fig. 5-20c. 

f 
Ay 

T 

A, 

B, 

By 
-

T 

• 
11 

- ' J -.li:====~=::!!::!!::~===~· ,.._: - A, 
" 

(c) 

Fig. 5-20 
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PROCEDURE FOR ANALYSIS 

The joint reactions on frames or machines (structures) composed of 
multiforce members can be determined using the following procedure. 

Free-Body Diagram. 

• Draw the free-body diagram of the entire frame or machine, a 
portion of it, or each of its members. The choice should be 
made so that it leads to the most direct solution of the problem. 

• When the free-body diagram of a group of members of a frame 
or machine is drawn, the forces between the connected parts of 
this group are internal forces and are not shown on the free-body 
diagram of the group. 

• Forces common to two members which are in contact act with 
equal magnitude but opposite sense on the respective free-body 
diagrams of the members. 

• A two-force member, regardless of its shape, has equal but 
opposite collinear forces acting at the ends of the member. 

• In many cases it is possible to tell by inspection the proper sense 
of the unknown forces acting on a member; however, if this seems 
difficult, the sense can be assumed. 

• Remember that a couple moment is a free vector and can act 
at any point on the free-body diagram. Also, a force is a sliding 
vector and can act at any point along its line of action. 

Equations of Equilibrium. 

• Count the number of unknowns and compare it to the total 
number of equilibrium equations that are available. In two 
dimensions, there are three equilibrium equations that can be 
written for each member. 

• Sum moments about a point that lies at the intersection of the 
lines of action of as many of the unknown forces as possible. 

• If the solution of a force or couple moment is found to be a 
negative scalar, it means the sense of the force is the reverse of 
that shown on the free-body diagram. 

5.5 FRAMES ANO MACHINES 2 51 
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I EXAMPLE 5.10 I 

(a) 

(b) 

2000N 

B, c 
, 

By - 2m -l-2m - Cy 

/; 

; t 
A.T ~-

B, 

(c) 

Fig. 5-21 

c, 

Determine the horizontal and vertical components of force which the pin 
at C exerts on member BC of the frame in Fig. 5- 21a. 

SOLUTION I 

Free-Body Diagrams. By inspection it can be seen that AB is a 
two-force member. The free-body diagrams are shown in Fig. 5- 21b. 

Equations of Equilibrium. The three unknowns can be determined 
by applying the three equations of equilibrium to member CB. 

C + lMc = 0; 2000 N(2 m) - (FAB sin 60°)(4 m) = 0 FAB = 1154.7 N 

~IF, = O; 1154.7 cos 60° N - Cx = 0 Cx = 577 N Ans. 

+ f IF,. = O; 1154.7 sin 60° N - 2000 N + c,. = 0 

Cy = 1000 N Ans. 

SOLUTION II 

Free-Body Diagrams. If one does not recognize that AB is a 
two-force member, then more work is involved in solving this problem. 
The free-body diagrams are shown in Fig. 5- 21c. 

Equations of Equilibrium. The six unknowns are determined by 
applying the three equations of equilibrium to each member. 

Member AB 

C +IMA = O; Bx(3 sin 60° m) - B,.(3 cos 60° m) = 0 

~IF, = O; 

+f l£,. = 0; 

Member BC 

A - B = 0 x x 

Ay - By = 0 

C+lMc = O; 2000N(2m) - By(4m) = 0 

~ IF, = O; Bx - Cx = 0 

+ f IF,. = O; By - 2000 N + Cy = 0 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

The results for Cx and Cy can be determined by solving these equations 
in the following sequence: 4, 1, 5, then 6. The results are 

By = lOOON 

Bx = 577N 

Cx = 577N 

Cy = lOOON 

Ans. 

Ans. 

By comparison, Solution I is simpler since the requirement that 
FAB in Fig. 5-21b be equal, opposite, and collinear at the ends of 
member AB automatically satisfies Eqs. (1), (2), and (3) above, and 
therefore eliminates the need to write these equations. As a result, 
save yourself some time and effort by always identifying the two-force 
members before starting the analysis! 
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EXAMPLE 5 .11 

The compound beam shown in Fig. 5- 22a is pin connected at B. 
Determine the components of reaction at its supports. Neglect its weight 
and thickness. 

IOkN 

(b) 

Fig. 5-22 

SOLUTION 

Free-Body Diagrams. By inspection, if we consider a free-body 
diagram of the entire beam ABC, there will be three un!known 
reactions at A and one at C. These four unknowns cannot all be 
obtained from the three available equations of equilibrium, and so for 
the solution it will become necessary to dismember the beam into its 
two segments, as shown in Fig. 5-22b. 

Equations of Equilibrium. The six unknowns are determined as 
follows: 

Segment BC 

~ "2.J'.r = O; Bx = 0 

C + "i.Ms = O; -8 kN(l m) + Cy(2 m) = 0 

+f"i.F,. = O; By - 8kN +Cy = 0 

Segment AB 

~ "2. J'.r = O; 

C+!MA = O; 

+f!F,. = O; 

Ax - (lOkN)(~) + Bx = 0 

MA - (10 kN) (~)(2 m) - By(4 m) = 0 

Ay - (10 kN) (~) - By = 0 

Solving each of these equations successively, using previously 
calculated results, we obtain 

Ax= 6 kN 

Bx= 0 

Cy= 4 kN 

Ay = 12 kN 

By= 4 kN 

MA = 32kN · m Ans. 

Ans. 

5.5 FRAMES AND M ACHINES 25 3 
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254 CHAPTER 5 STRUCTURAL ANALYSIS 

I EXAMPLE s.12 j 

(a) 

The 500-kg elevator car in Fig. 5- 23a is being hoisted at constant speed by 
motor A using the pulley system shown. Determine the force developed in 
the two cables. 

c 

500 (9.81) N 

(b) 

Fig. 5-23 

SOLUTION 

Free-Body Diagrams. We can solve this problem using the free-body 
diagrams of the elevator car and pulley C, Fig. 5- 23b. The tensile forces 
developed in the two cables are denoted as T1 and T2. 

Equations of Equilibrium. For pulley C, 

or 

For the elevator car, 

371 + 272 - 500(9.81) N = 0 

Substituting Eq. (1) into Eq. (2) yields 

3T1 + 2(2T1) - 500(9.81) N = 0 

T1 = 700.71 N = 701 N 

Substituting this result into Eq. (1 ), 

T2 = 2(700.71) N = 1401 N = 1.40 kN 

(1) 

(2) 

Ans. 

Ans. 
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5.5 FRAMES AND MACHINES 2 5 5 

EXAMPLE 5.13 
- -

The two planks in Fig. 5- 24a are connected together by cable BC and a 
smooth spacer DE. Determine the reactions at the smooth supports A 
and F, and also find the force developed in the cable and spacer. 

SOLUTION 

100 lb 
.I. 200 lb 1-2 ft -i-2 ft -1-2 ft -1 

(a) 

(b) 

Fig. 5-24 

Free-Body Diagrams. The free-body diagram of each plank is shown 
in Fig. 5- 24b. It is important to apply Newton's third Jaw to the interaction 
forces as shown. 

Equations of Equilibrium. For plank AD, 

~ +IMA = 0; FvE(6 ft) - F8 c(4 ft) - 100 lb (2 ft) = 0 

For plank CF, 

~ +IMF = 0; FvE(4 ft) - F8 c(6 ft) + 200 lb (2 ft) = 0 

Solving simultaneously, 

FvE = 140 lb F8 c = 160 lb 

Using these results, for plank AD, 

+f2£,. = O; NA + 140Jb - 160Jb - lOOJb = 0 

NA = 120Jb 

And for plank CF, 

+f 2£,. = 0; NF + 160 lb - 140 lb - 200 lb = 0 

NF = l80 lb 

Ans. 

Ans. 

Ans. 
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PRELIMINARY PROBLEM 

PS-3. In each case, identify any two-force members, and 
then draw the free-body diagrams of each member of the 
frame. 

60N·m 

A "\=====:::::::::'.):::==~ B ,~ 0 -r 
I 1.6 1.5 m 
i-2m-l-2m--+1 l 200N 

r 
1.5 m 

d_ 

(a) 

400 N/m 

A~========:::::::=~B T i----3 m----+1 1 m 

C~::::::'..J _l 
1-tm-

(b) 

A v· -, 
1.5 m 

lm-J-tm-J--2m--+< _j 
Bo o 

c 

SOON 

(c) 

800N 

~ j 
A I o) ~ 

I 6m 1~2m~-2m--J 
(d) 

T 
t- 2m - t - 2m-l 

~~i Yi B 
0

f-- 1.5 m 
0 .. 25 m 

2m 

_l_ 

200N 

(e) 

r 2m - t- 2m --i 400N 
-•> 0 

A B ""-. 0.2 m T 
1.5 m 

1 ., 
c _..!, 16. 

(f) 

Prob. PS-3 
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FUNDAMENTAL PROBLEMS 

All problem solutions must include FBDs. 

. ·5-.3. Determine the force P needed to hold the 60-lb 
weight in equilibrium. 

p 

Prob. FS-13 

. '5-1 . Determine the horizontal and vertical components 
of reaction at pin C. 

5001b 
400lb 

8 
-, ~~.~-----'-~---'-~~. c 

4 fl 

1 • 
1-Jft -3 ft--3 ft - 3 ft-

Pn ~14 

. ·5-15. If a 100-N force is applied to the handles of the 
pliers, determine the clamping force exerted on the smooth 
pipe B and the magnitude of the resultant force that one of 
the members exerts on pin A. 

100 N 

1- ---250 mm----1 

IOON 

Prob. FS-15 

• 'S-16. Determine the horizontal and vertical components 
of reaction at pin C. 

400N 

~~~··+-' "' 
lm 

• C 

i- 7:-"Q ~-
1 m 

l 
A 

Prob. FS-16 
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PROBLEMS 

All problem solutions must include FBDs. 

*5- 32. Determine the force P required to hold the 100-lb 
weight in equilibrium. 

~D 

p 

Prob. 5-32 

5- 33. In each case, determine the force P required to 
maintain equilibrium of the 100-lb block. 

" 

0 

(a) (b) (c) 

Prob. 5-33 

5-34. Determine the force P required to hold the 50-kg 
block in equilibrium. 

B 

A t8l 

p 
• 

0 
Prob. 5-34 

5-35. Determine the force P required to hold the 150-kg 
crate in equilibrium. 

p 

Prob. 5-35 
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*5-36. Determine the reactions at the supports A, C, and E 
of the compound beam. 

12 kN 
3kN/m 

A 18 - c ID - E 

3m-l- 4m -l~l- 6m-~3mj 
Prob. 5-36 

5-37. Determine the resultant force at pins A , B, and Con 
the three-member frame. 

800N 

2m 

Prob. 5-37 

5-38. Determine the reactions at the supports at A , E, and B 
of the compound beam. 

900 N/m 

A l Jc ID - E 

3m - 3m - 4m -r3m-l-3m-I 

Prob. 5-38 

5.5 FRAMES AND MACHINES 259 

5-39. The wall crane supports a load of 700 lb. Determine 
the horizontal and vertical components of reaction at the 
pins A and D. Also, what is the force in the cable at the 
winch W? 

*5-40. The wall crane supports a load of 700 lb. Determine 
the horizontal and vertical components of reaction at the 
pins A and D. Also, what is the force in the cable at the 
winch W?The jib ABC has a weight of 100 lb and member BD 
has a weight of 40 lb. Each member is uniform and has a center 
of gravity at its center. 

4 ft 

- 4 ft -->.,--11-4 ft----1 

A B 

E 

w 

700Jb 

Probs. 5-39/40 

5-41. Determine the horizontal and vertical components 
of force which the pins at A and B exert on the frame. 

---2m---

400 Nr/n::.:.14~;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;::!1 
-r c D 

1.5 m 

Ll---+l~E 

3m 

1.5 m 

B .1 

Prob. 5-41 

www.konkur.in



260 C HAPTER 5 S TRUCTURAL A NALYSIS 

5-42. Determine the force in members FD and DB of the 
frame. Also, find the horizontal and vertical components 
of reaction the pin at C exerts on member ABC and 
member EDC. 

2m 
•D-1 I 

lm 
_l 

• c 
l-201--1 

Prob. 5-42 

5-43. Determine the force that the smooth 20-kg cylinder 
exerts on members AB and CDB. Also, what are the 
horizontal and vertical components of reaction at pin A? 

D Cr-----..JI 
lm 

A _l 

1-1.Smj,_£ 2m_j 
Prob. 5-43 

*5-44. The three power lines exert the forces shown on the 
pin-connected members at joints B, C, and D , which in turn are 
pin connected to the poles AH and EG. Determine the force 
in the guy cable Al and the pin reaction at the support H. 

20 ft 
A1-1 

5-45. The pumping unit is used to recover oil. When the 
walking beam ABC is horizontal, the force acting in the 
wireline at the well head is 250 lb. Determine the torque M 
which must be exerted by the motor in order to overcome this 
load. The horse-head C weighs 60 lb and has a center of gravity 
at Ge. The walking beam ABC has a weight of 130 lb and a 
center of gravity at G 8 , and the counterweight has a weight of 
200 lb and a center of gravity at Gw. The pitman, AD, is pin 
connected at its ends and has negligible weight. 

250 lb 

Prob. 5-45 

5-46. Determine the force that the jaws I of the metal 
cutters exert on the smooth cable C if 100-N forces are 
applied to the handles. The jaws are pinned at E and A , 
and D and B. There is also a pin at F. 

125 ft 30 nm 

I 

I-soft 30 ft~-30 ft -~30 ft-1-30 ft - 50 ft-I 

Prob. 5-44 

15° 

Prob. 5-46 
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5-47. The machine shown is used for forming metal plates. It 
consists of two toggles ABC and DEF, which are operated by 
the hydraulic cylinder H. The toggles push the movable bar G 
forward, pressing the plate p into the cavity. If the force which 
the plate exerts on the head is P = 12 kN, determine the 
force Fin the hydraulic cylinder when 8 = 30°. 

p 

Prob. 5-47 

\ 
\ 
\ 

P = 12kN 

I 
I 

I 
/ 

*5-48. Determine the horizontal and vertical components 
of force which pin C exerts on member ABC. The 600-N 
force is applied to the pin. 

- 2m 

D 
3m 

l , A 

I B 
1.5 m 

I 600N -F 300N 

Prob. 5-48 
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5-49. The pipe cutter is clamped around the pipe P. If the 
wheel at A exerts a normal force of FA = 80 N on the pipe, 
determine the normal forces of wheels B and Con the pipe. 
Also calculate the pin reaction on the wheel at C. The three 
wheels each have a radius of? mm and the pipe has an outer 
radius of 10 mm. 

Prob. 5-49 

I 
lOmm 

lOmm 

5-50. Determine the force created in the hydraulic 
cylinders EF and AD in order to hold the shovel in 
equilibrium. The shovel load has a mass of 1.25 Mg and a 
center of gravity at G. All joints are pin connected. 

Prob. 5-50 
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5-51. The hydraulic crane is used to lift the 1400-lb load 
Determine the force in the hydraulic cylinder AB and the 
force in links AC and AD when the load is held in the 
position shown. 

Prob. 5-51 

*5-52. Determine force P on the cable if the spring is 
compressed 25 nun when the mechanism is in the position 
shown.1l1e spring has a stiffness of k = 6 kN /m. 

E 

ISO mm 

k 

Prob.5-52 

5-53. If d = 0.75 ft and the spring has an unstretched 
length of I f1. determine the force F required for equilibrium. 

B 

F 

D 

Prob. 5-53 

5-54. If a force of F = 50 lb is applied to the pads at A 
and C, determine the smallest dimension d required for 
equilibrium if the spring bas an unstretched length of 1 ft. 

B 

F F 

D 

Prob. 5-54 

5-55. The skid-steer loader has a mass of 1.18 Mg. and in the 
position shown the center of mass is at G1• lf there is a 300-kg 
stone in the bucket, with center of mass at G2• determine the 
reactions or each pair of wheels A and B on the ground and 
the force in 1he hydraulic cylinder CD and at the pin £.There 
is a similar I inkage on each side of the loader. 

- l.25m 

0.5 111 

0.15 m 

--1.5 m ---!- 0.75 m 

Prob. 5-55 
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*5-56. Determine the force P on the cable if the spring is 
compressed 0.5 in. when the mechanism is in the position 
shown. The spring has a stiffness of k = 800 lb/ft. 

c p 

24 in. 

Prob. 5-56 

5-57. The spring has an unstretched length of 0.3 m. 
Determine the angle 8 for equilibrium if the uniform bars 
each have a mass of 20 kg. 

5-58. The spring has an unstretched length of 0.3 m. 
D etermine the mass m of each uniform bar if each angle 
8 = 30" for equilibrium. 

J:---_2 m 

A 

Probs. 5-57/58 
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5-59. The piston C moves vertica lly between the two 
smooth walls. Uthe spring has a stiffness of k = 15 lb/in., 
and is unstretched when 8 = Cf, determine the couple 
moment that must be applied to AB to hold the mechanism 
in equilibrium when 8 = 30°. 

B 

k = 15 lb/in. 

Prob.5-59 

*5-60. The platform scale consists of a combination of third 
and first class levers so that the load on one lever becomes the 
effort that moves the next lever. Through this arrangement, a 
small weight can balance a massive object. If x = 450 mm, 
determine the required mass of the counterweight S required 
to balance the load L having a mass of 90 kg. 

5-6L The platform scale consists of a combination of third 
and first class levers so that the load on one lever becomes the 
effort that moves the next lever. Through this arrangement, a 
small weight can balance a massive object. If x = 450 mm, and 
the mass of the counte rweight S is 2 kg. determine the mass of 
the load L required to maintain the balance. 

100 mm250 mm lf!SO mm 

.H 

E ~F~;.. 
• • o G 

D 

1

150mm 
- l-350mm I 

• • B 

l1-x-1 

Probs. 5-60/61 

s 
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264 CHAPTER 5 S TRUCTURAL A NALYSIS 

CHAPTER REVIEW 

Simple Thuss 

A simple truss consists of triangular 
elements connected together by pinned 
joints. The forces within its members 
can be determined by assuming the 
members are all two-force members, 
connected concurrently at each joint. 
The members are either in tension or 
compression, or carry no force. 

Method of Joints 

The method of joints states that if a 
truss is in equilibrium, then each of its 
joints is also in equilibrium. For a plane 
truss, the concurrent force system at 
each joint must satisfy force equilibrium. 

To obtain a numerical solution for the 
forces in the members, select a joint 
that has a free-body diagram with at 
most two unknown forces and one 
known force. (This may require first 
finding the reactions at the supports.) 

Once a member force is determined, use 
its value and apply it to an adjacent joint. 

Remember that forces that pull on the 
joint are rensile forces , and those that 
push on the joint are compressive 
forces. 

To avoid a simultaneous solution of two 
equations, set one of the coordinate axes 
along the line of action of one of the 
unknown forces and sum forces 
perpendicular to this axis. This will allow 
a direct solution for the other unknown. 

The analysis can also be simplified by 
first identifying all the zero-force 
members. 

"'l..F. = 0 ·' 
"'l..F. = 0 y 

Roof truss 

B 

~SOON . 

F
8

A (tension) i<(s•"'Fsc (compression) 
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Method of Sections 

The method of sections states that if a truss 
is in equilibrium, then each part of the 
truss is also in equilibrium. Pass a section 
through the truss and the member whose 
force is to be determined. Then draw the 
free-body diagram of the sectioned part 
having the least number of forces on it. 

Sectioned members subjected to pulling 
are in rension, and those that are 
subjected to pushing are in compression. 

Three equations of equilibrium are 
available to determine the unknowns. 

If possible, sum forces in a direction that 
is perpendicular to two of the three 
unknown forces. This will yield a direct 
solution for the third force. 

Sum moments about the point where the 
lines of action of two of the three unknown 
forces intersect, so that the third unknown 
force can be determined directly. 

Frames and Machines 

Frames and machines are structures that 
contain one or more multiforce members, 
that is, members with three or more forces 
or couples acting on them. Frames are 
designed to support loads, and machines 
transmit and alter the effect of forces. 

The forces acting at the joints of a frame 
or machine can be determined by drawing 
the free-body diagrams of each of its 
members or parts. The principle of 
action-reaction should be carefully 
observed when indicating these forces on 
the free-body diagram of each adjacent 
member or pin. For a coplanar force 
system, there are three equilibrium 
equations available for each member. 

To simplify the analysis, be sure to 
recognize all two-force members. They 
have equal but opposite collinear forces 
at their ends. 

CHAPTER REVIEW 

a D 
0 -I 

2m 

_l 
E 

A4=.====~==::::::j:==~====~I 
G a F 

2m-I 2 m--l-2 m--rl--

1000 N 

--2m--

lOOON 

2000N 

i 
Multiforce 

member 
Two-force 
member 

B 

) 

I 
I 

FABI 

2000N 

£.....+-) F AB 
Action- reaction1 

c 

c.T 

kF, = 0 

kF,, = 0 

kMo =O 

+ikF,, = 0 

- 1000 N +Fee sin 45° = 0 

Fee = 1.41 kN (T) 

<: +kMc = 0 

1000N(4m) - FcF(2m) = 0 

FcF = 2kN (C) 
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266 C HAPTER 5 S TRUCTURAL A NALYSIS 

REVIEW PROBLEMS 

All problem solutions must include FBDs. 

RS-1. Determine the force in each member of the truss 
and state if the members are in tension or compression. 

8 kN lO kN 

4kN 

1.5 m 

~~~~J 
-===-

1---2 m ---+--- 2m __ _, 

Prob. RS-1 

RS-2. Determine the force in each member of the truss 
and state if the members are in tension or compression. 

G E 

1 
10 ft 

IA~---+-:'----~~ 
- ~ D 

IB c 
l-10 ft --f--10 ft--1---10 ft -I 

lOOO Jb 

Prob. RS-2 

RS-3. Determine the force in member GI and GC of the 
truss and state if the members are in tension or compression. 

lOOOlb 

lOOO lb 

Prob. RS-3 

*RS-4. Determine the force in members GF, FB , and BC 
of the Fink l'russ and state if the members are in tension or 
compression. 

6001b 

D 

• : i--:----10 ft 

Prob. RS-4 
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R5-5. Determine the horizontal and vertical components 
of force that the pins A and B exert on the two-member frame. 

lm 

I 
c 11 

lm 

B .l 
Prob. RS-5 

R5-6. Determine the horizontal and vertical components 
of force that the pins A and C exert on the two-member frame. 

500N/m 

1------3 n1----+ 

3 01 

c -- r-..,.-=~-------~ 
600N/m 

400N/m 

Prob. R5-6 

REVIEW PROBLEMS 267 

R5-7. The three pin-connected members shown in the 
rop view support a downward force of 60 lb at G. If only 
vertical forces are supported at the connections B, C, E and 
pad supports A, D, F, determine the reactions at each pad. 

A 

Prob. RS-7 

*RS-8. Determine the resultant forces at pins B and Con 
member ABC of the four-member frame. 

1-----5 ft -----1 2f1-1 
150 lb/ft 

r--~~~~~-~~~~--i-~~~~ 

l~~~------t'o .,__B -----,-.iC • 1 
4 ft 

I~~ ~£ ~D l 
1--2 ft --i------5 ft-----1 

Prob. RS-8 
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CHAPTER 6 

(©Michael N. Paras/AGE Fotostock/Alamy) 

The design of these structural members requires finding their 
centroid and ca lcu lating their moment of inertia. In this 

chapter we wi ll discuss how this is done. 
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CENTER OF GRAVITY, 
CENTROID, AND 
MOMENT OF INERTIA 

CHAPTER OBJECTIVES 

• To show how to determine the location of the center of gravity and 

centroid for a body of arbitrary shape and for a composite body. 

• To present a method for finding the resultant of a general 

distributed loading. 

• To show how to determine the moment of inertia of an area. 

6.1 CENTER OF GRAVITY AND THE 
CENTROID OF A BODY 

In this section we will show how to locate the center of gravity for a body 
of arbitrary shape, and then we will show that the centroid of the body 
can be found using this same method. 

Center of Gravity. A body is composed of an infinite number of 
particles of differential size, and so if the body is located within a gravitational 
field, then each of these particles will have a weight dW. These weights will 
form an approximately parallel force system, and the resultant of this system 
is the total weight of the body, which passes through a single point called the 
center of gravity, G. 

269 
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270 CHAPTER 6 CENTER OF GRAVITY, CENTROID, AND MOMENT OF INERTIA 

x 

w 

(a) 

Fig. 6-1 

To show how to determine the location of the center of gravity, consider 
the rod in Fig. 6-la, where the segment having the weight dW is located at 
the arbitrary position x. Using the methods outlined in Sec. 3.8, the total 
weight of the rod is the sum oif the weights of all of its particles, that is 

W= jdw 

The location of the center of gravity, measured from the y axis, is 
determined by equating the moment of W about they axis, Fig. 6-lb, to 
the sum of the moments of the weights of all its particles about this same 
axis. Therefore, 

xW = 

x= 

jxdW 

jxdW 

jdw 

In a similar manner, if the body represents a plate, Fig. 6- lb, then a 
moment balance about the x and y axes would be required to determine 
the location (x, Y) of point G. Finally we can generalize this idea to a 
three-dimensional body, Fig. 6-lc, and perform a moment balance about 
each of the three axes to locate G for any rotated position of the axes. This 
results in the following equations. 

jxdW JydW jzdW 
(6-1) x= 

jdw 
y= 

jdw 
z = 

jdw 

where 

x, y, z are the coordinates of the center of gravity G. 
x, y, z are the coordinates of an arbitrary particle in the body. 
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6.1 CENTER OF GRAVITY AND THE C ENTROID OF A BODY 271 

w 

x 

(b) (c) 

Fig. 6-1 (cont.) 

Centroid of a Volume. If the body in Fig. 6-2 is made of the same 
material , then its specific weighty (gamma) will be constant throughout 
the body. Therefore, a differential element of volume dV will have a 
weight dW = y dV. Substituting this into Eqs. 6-1 and canceling out y , 
we obtain formulas that locate the centroid C or geometric center of the 
body; namely 

X= y= z = (6-2) 

Since these equations represent a balance of the moments of the volume of 
the body, then if the volume possesses two planes of symmetry, its centroid 
will lie along the line of intersection of these two planes. For example, the 
cone in Fig. 6-3 has a centroid that lies on they axis so that x = z = 0. 
To find the location y of the centroid, we can use the second of Eqs. 6-2. Here 
a single integration is possible if we choose a differential element represented 
by a thin disk having a thickness dy and radius r = z. Its volume is 
dV = ,,,.,2 dy = ,,,.z2 dy and its centroid is at x = 0, y = y, z = 0. 

• C 

dV 

J-~~~~~~~~~y 

x 

Fig. 6-2 

y = )' ...... 

r=z 

x 

y 

Fig. 6-3 
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272 CHAPTER 6 CENTER OF GRAVITY, CENTROID, AND MOMENT OF INERTIA 

y 

y = f(x) 

~J-+---•C 

ji 

Centroid of an Area. If an area lies in the x- y plane and is bounded 
by the curve y = f(x ), as shown in Fig. 6-4a, then its centroid will be in this 
plane and can be determined from integrals similar to Eqs. 6-2, namely, 

x = y = (6-3) 

These integrals can be evaluated by performing a single integration if we 
use a recwngular strip for the differential area element. For example, if a 
vertical strip is used, Fig. 6-4b , the area of the element is dA = y dx, and 
its centroid is located at x = x and y = y /2. If we consider a horizontal 
strip, Fig. 6-4c, then dA = x dy, and its centroid is located at x = x/2 
and y = y. 

)' y 

Y = f(x) 

I 
d.YJ: • 

1-X~ 

Y = f(x) 
(x,y) 

I 
ji = y 

-'-+---+---------'--- X '---'--L-.L.--'------'--- x ._____ _ ___._-'--I x 

- x -

(a) (b) 

Fig. 6-4 

IMPORTANT POINTS 

(c) 

• The centroid represents the geometric center of a body. This 
point coincides with the center of gravity only if the material 
composing the body is uniform or homogeneous. 

• Formulas used to locate the center of gravity or the centroid 
represent a balance between the sum of moments of all 
the parts of the system and the moment of the "resultant" for 
the system. 
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6.1 CENTER OF GRAVITY AND THE CENTROID OF A BODY 27 3 

PROCEDURE FOR ANALYSIS 

The center of gravity or centroid of an object or shape can be 
determined by single integrations using the following procedure. 

Differential Element. 

• Select an appropriate coordinate system, specify the coordinate 
axes, and then choose a differential element for integration. 

• For areas the differential element is generally a rectangle of area 
dA, having a finite length and differential width. 

• For volumes the differential element can be a circular disk of 
volume dV, having a finite radius and differential thickness. 

• Locate the element so that it touches the arbitrary point (x, y, z) 
on the curve that defines the boundary of the shape. 

Size and M oment Arms. 

• Express the area dA or volume dV of the element in terms of 
the coordinates describing the curve. 

• Express the moment arms x, y, z for the centroid or center of 
gravity of the element in terms of the coordinates describing the 
curve. 

Integrations. 

• Substitute the formulations for x, y, z and dA or dV into the 
appropriate equations (Eqs. 6- 1 through 6-3). 

• Express the function in the integrand in terms of the same 
variable as the differential thickness of the element. 

• The limits of the integral are defined from the two extreme 
locations of the element's differential thickness, so that when the 
elements are "summed" or the integration performed, the entire 
region is covered.' 

·some formulas for integration are given in Appendix A. 
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274 CHAPTER 6 CENTER O F GRAVITY, CENTROID, AND MOM ENT OF IN ERTIA 

I EXAMPLE 

y 

1----X-

(x, y 

6.1 

• (x, y) 

1---lm---1 

(a) 

y 

y =xi 

-, 
y 

-, 
y 

x = 

Locate the centroid of the area shown in Fig. 6-5a. 

SOLUTION I 
Differential Element. A differential element of thickness dx is shown 
in Fig. 6-5a. The element intersects the curve at the arbitrary point (x, y), 
and so it has a height y . 
Area and Moment Arms. The area of the element is dA = y dx, and 
its centroid is located at x = x, y = y/2. 
Integrations. Applying Eqs. 6-3 and integrating with respect to x yields 

ixdA 1
1m 

1
1m 

0 
xydx 

0 
x3 dx 

0.250 

ldA 

- - 11m = 0.333 = 0.75 m Ans. 11m 
0 

ydx 
0 

x2 dx 

lydA 
11m 

0 
(y/2)y dx 

11m 
0 

(x2 /2)x2 dx 
0.100 

= 0.333 = 0.3 m Ans. y = - -

ldA 1
1m 

0 
ydx 1

1m 
0 

x2 dx 

SOLUTION II 
Differential Element. The differential element of thickness dy is 
shown in Fig. 6-5b. The element intersects the curve at the arbitrary 
point (x, y), and so it has a length (1 - x). 
Areaand MomentArms. Theareaoftheelement isdA = (1 -x) dy, 
and its centroid is located at 

-'--1"""--------'----'---'-- X 

1----x - 1 m 1-<t - x~ x = x + (1 ; x) = 1 ; x, y = y 

(b) 

Fig.6-5 

ixdA 
x = -

ldA 

lydA 
y = 

ldA 

-

Integrations. Applying Eqs. 6- 3 and integrating with respect to y, 
we obtain 

11 

m((l + x)/2)(1 - x) dy 
1 rt m 

2 }
0 

(l - y) dy 0.250 
t m = 0.333 = 0.75 m Ans. -

11 m(l - x) dy 1 (1 - Vy)dy 

11m 11m 
0 

y(l - x) dy 0 (y - y3f2) dy 
0.100 

11m - 11m = 0.333 = 0.3 m Ans. 

0 

(1 - x) dy 0 (1 - vY) dy 

NOTE: Plot these results and notice that they seem reasonable. Also, by 
comparison, elements of thickness dx offer a simpler solution. 
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6.1 CENTER OF GRAVITY AND THE CENTROID OF A BODY 27 5 

EXAMPLE 6.2 
- -

Locate the centroid of the semi-elliptical area shown in Fig. 6--6a. 

y y 
2 

f+l=l 
dy ~ +y2=1 

(- x,y) 

- ~=x -1 

1 ft 
x x y=y y 

x I 

2ft 2ft-l 

-11-dx 
---2 ft---1---2 ft---

(a) 

Fig. 6-6 

SOLUTION I 

Differential Element. The rectangular differential element parallel to 
they axis shown shaded in Fig. 6--6a will be considered. This element has a 
thickness of dx and a height of y. 

Area and Moment Arms. Thus, the area is dA = y dx, and its centroid 
is located at x = x and y = y /2. 

Integration. Since the area is symmetrical about they axis, 

(b} 

~ = 0 Am 

Applying the second of Eqs. 6-3 with y = ) 1 :
2
, we have 

{AydA f2f
1

~(ydx) !f2f1(1 - x
2

)dx 
}A - 2ft2 2 - 2ft 4 4/3 

y = idA - J2fty dx - J2ft) 1 x2 dx = -:;- = 0.424 ft Ans. 

- 2ft - 2ft 4 

SOLUTION II 

Differential Element. The shaded rectangular differential element of 
thickness dy and length 2x will be considered, Fig. 6--6b. 

Area and Moment Arms. The area is dA = 2x dy, and its centroid is at 
x = Dandy = y. 

Integration. Applying the second of Eqs. 6- 3, with x = 2~, 
we have 

iydA 
11ft 11f• 

0 
y(2x dy) 0 4y v'1="l dy 

4/3 
0.424 ft y = 

idA 

- 11 ft 
- 11 ft =-ft -

0 4v'l="ldy 
'TT 

2xdy 
0 

Ans. 

x 
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276 CHAPTER 6 CENTER OF GRAVITY, CENTROID, AND MOMENT OF INERTIA 

I EXAMPLE 6.3 

y = 

Locate they centroid for the paraboloid of revolution, shown in Fig. 6-7. 

- y = y-
z2 = lOOy 

dy 

x 

1--100 mm--1 

Fig. 6-7 

SOLUTION 

Differential Element. An element having the shape of a thin disk is 
chosen. This element has a thickness dy, it intersects the curve at the 
arbitrary point (0, y, z), and so its radius is r = z. 

Volume and Moment Arm. The volume of the element ts 
dV = ('1Tz2) dy, and its centroid is located at y = y. 

Integration. Applying the second of Eqs. 6-2 and integrating with 
respect toy yields 

fvydV 
1100mm 1 100 mm 0 y(1TZ2) dy 1007T 0 y2 dy 

= 66.7mm Ans. 

fvdv 

- 1 100 mm - 1 100 mm 
o (1TZ2) dy 1007T 0 y dy 
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6.1 CENTER OF GRAVITY AND THE CENTROID OF A BODY 2 7 7 

PRELIMINARY PROBLEM 

P6-1. lo each case. use the element shown and specify 
x.y.and dA. 

y 

I =x 

T 
Im 

y 

....<--------' 
T 
Im 

'---------'--'--X .._ __ _,_..__ __ __,__~_ x 

1--- lm--- 1--- lm---

(a) 
(b) 

y y 

T 7 y = .r y =.r2 

lm lm 

l l x x 

I l m I Im 

(c) (d) 

Prob. P6-1 
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278 CHAPTER 6 CENTER O F GRAVITY, CENTROID, AND MOMENT OF IN ERTIA 

FUNDAMENTAL PROBLEMS 

F6-1. Determine the centroid (x, Y) of the area. 

y 

lm 

y =x' 
-'-----1--"''----------'---x 

1-tm~ 
Prob. F6-1 

F6-2. Determine the centroid (x, Y) of the area. 

)' 

lm 
)' = .t3 

-'-----1-""'----------'--x 

Prob. F6-2 

F6-3. Determine the centroid y of the area. 

y 

2m 

- tm -lm~ 
Prob. F6-3 

F6-4. Locate the center of gravity x of the straight rod if its 
weight per unit length is given by W = W0(1 + x2 / L2). 

)' 

~=========-........ -~x 

1-L-I 
Prob. F6-4 

F6-S. Locate the centroid y of the homogeneous solid 
formed by revolving the shaded area about they axis. 

z 

x 

Prob. F6-S 

z2 = .!.,, 
4-

0.5 01 

FIH>. Locate the centroid z of the homogeneous solid 
formed by revolving the shaded area about the z axis. 

z = j (12 - 8y) 

2 ft 

--L'--F-----1------4---y 

- 1.5 ft~ 
Prob. FIH> 
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PROBLEMS 

6-L Locate the centroid x of the area. 

y 

h 

Y = ax2 

1---b---

Prob. 6-1 

6-2. Locate the centroid of the area. 

y 

v =a cos7TX , L 

a 

-'---'-----+----'---x 

~ -I 

Prob. 6-2 

6-3. Locate the centroid x of the area. 

*6-4. Locate the centroid y of the area. 

y 

4m 

" = .!_ x2 , 4 

'---":::_-------'----x 
---4m---1 

Probs. 6-3/4 

6.1 CENTER OF GRAVITY AND THE CENTROID OF A BODY 

6-5. Locate the centroid x of the area. 

6-6. Locate the centroid y of the area. 
y 

h 

1----b·---1 

Probs. 6-5/6 
6-7. Locate the centroid x of the area. 

*6-8. Locate the centroid y of the area. 
y 

y=4 - 116x2 

1 
4m 

~-+-----~~-x 

i--sm-1 

Probs. 6-7/8 

279 

6-9. Locate the centroid x of the area. Solve the problem 
by evaluating the integrals using Simpson's rule. 

6-10. Locate the centroid y of the area. Solve the problem 
by evaluating the integrals using Simpson's rule. 

y 

y =a.sir' 
, 
' 

>--------~---x 

1-lm~ 
Probs. 6-9/10 
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280 CHAPTER 6 CENTER OF GRAVITY, CENTROID, A N D MOM ENT OF INERTIA 

6-11. Locate the centroid ji of the area. 

y 

-l 
4 in. 

1----Sin.~ 
Prob. 6-U 

*6-U . Locate the centroid x of the area. 

6-13. Locate the centroid ji of the area. 

y 

T " Y = h - - r• .. 
a 

" 
--'--1----------~~-~x 

Probs. 6-12/13 

6-14. Locate the centroid ji of the area. 

y 

Y = /1 x" 
" a 

1~----0-----1 

Prob. 6-14 

T 

6-15. Locate the centroid x of the area. 

*6-16. Locate the centroid ji of the area. 

y 

16 ft 

T 
4 rt 

._ __ _,_.._ __ x 

l-4 rt-j 

Probs. 6-15/16 

6-17. Locate the centroid x of the area. 

6-18. Locate the centroid ji of the area. 

y 

i---a---1 

Probs. 6-17/18 

6-19. The plate has a thickness of 0.25 ft and a specific 
weight of 1' = 180 lb/ ft3. Determine the location of its 
center of gravity. Also, fmd the tension in each of the cords 
used to support it. 

• 
I 

B 
16 ft 

I t 
yl + /i = 4 

Prob. 6-19 

c --y 
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*6-20. Locate the centroid x of the area. 

6-21. Locate the centroid y of the area. 
y 

4 ft 

- ---4 ft - ----1 

Probs. 6-20/21 

6-22. Locate the centroid x of the area. 

6-23. Locate the centroid y of the area. 
y 

Probs. 6-22123 

*6-24. Locate the centroid x of the area. 

6-25. Locate the centroid y of the area. 
y 

1- ---- a ----1 

Probs. 6-24125 

6.1 CENTER OF GRAVITY AND THE C ENTROID OF A BODY 281 

6-26. Locate the centroid x of the area. 

6-27. Locate the centroid y of the area. 

y 

-I y =a sin f 

a 

Probs. 6-26127 

*6-28. The steel plate is 0.3 m thick and has a density of 
7850 kg/ m3. Determine the location of its center of gravity. 
Also find the reactions at the pin and roller support. 

y 

y2 = 2x 

2m 

2m 

y= - x 

B 

1---2 m---' 

Prob.6-28 

6-29. Locate the centroid x of the area. 

6-30. Locate the centroid y of the area. 

y 

T 
" 

" :y=h - -x" 
a" 

1----~a-----

Probs. 6-29/30 
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282 C HAPTER 6 CENTER O F GRAVITY, CENTROID, AND M OMENT OF IN ERTIA 

6-3L Locate the centroid y of the solid. 

z 

x 

1---3 ft-----1 

Prob.6-31 

*6-32. Locate the centroid of the quarter-cone. 

z 

I 

/ )' 

x 

Prob.6-32 

6-33. Locate the centroid z of the solid. 
z 

l 
16 in. 

x 

Prob. 6-33 

6-34. Locate the centroid z of the volume. 
z 

x 

Prob. 6-34 

6-35. Locate the centroid of the ellipsoid of revolution. 
z 

x )' 

Prob. 6-35 
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6.2 COMPOSITE BODIES 
A composite body consists of a series of connected "simpler" shaped bodies, 
which may be rectangular, triangular, semicircular, etc. Such a body, as shown 
in Fig. 6--8, can often be divided up into its composite parts and, provided the 
weight and location of the center of gravity of each of these parts are known, 
we can then eliminate the need for integration to determine the center of 
gravity for the body. The method for doing this follows the same procedure 
outlined in Sec. 6.1, and so formulas analogous to Eqs. 6-1 result. Here, 
however, we have a finite number of weights, and so the equations become 

where 

IxW 
x= I W 

_ IyW 
y = IW 

x, y, z represent the coordinates of the center of gravity 
G of the composite body 

x, y, z represent the coordinates of the center of gravity 
of each composite part of the body 

I W is the sum of the weights of all the composite 
parts of the body, o r simply the total weight of 
the body 

(~) 

When the body has a constant density or specific weight, the center of 
gravity coincides with the centroid of the body. The centroid for composite 
Jines, areas, and volumes can then be found using relations analogous to 
Eqs. ~; however, the Ws are replaced by Ls, As, and Vs, respectively. 
Centroids for areas and volumes that often make up a composite body 
are given in Appendix B. 

In order 1ode1ermine lhe force required 
to tip over this concrele barrier, it is 
[irst necessary to determine the location 
of ils cenler of gravity G. This point will 
lie on the vertical axis of symmetry. 
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Fig. 6-8 
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284 CHAPTER 6 CENTER O F GRAVITY, CENTROID, AND MOMENT OF IN ERTIA 

PROCEDURE FOR ANALYSIS 

The location of the center of gravity of a body or the centroid of a 
composite geometrical object represented by an area or volume can 
be determined using the following procedure. 

Composite Parts. 

• Using a sketch, divide the body or object into a finite number 
of composite parts that have simpler shapes. 

• If a composite body has a hole, or a geometric region having 
no material, then consider the composite body without the 
hole and consider the hole as an additional composite part 
having negative weight or size. 

Moment Arms. 

• Establish the coordinate axes on the sketch and determine the 
coordinates x, y, z of the center of gravity or centroid of each part. 

Summations. 

• Determine x, y, z by applying the center of gravity equations, 
Eqs. 6-4, or the analogous centroid equations. 

• If an object is symmetrical about an axis, the centroid of the 
object lies on this axis. 

If desired, the calculations can be arranged in tabular form, as 
indicated in the following examples. 

The center of gravity of this water tank can be 
determined by dividing it into composite parts and 
applying Eqs. 6-4. 

):a 
. tv . . ~~ .. 

• 
• 

., 
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EXAMPLE 6 .4 

Locate the centroid of the plate area shown in Fig. 6-9a. 

y 

2 ft 

-f 
lft 
~~----,,.----1-----~-x 

hr1l-2 rt---3 ft - I 
(a) 

Fig. 6-9 

SOLUTION 

Composite Parts. The plate is divided into three segments as shown 
in Fig. 6-9b. Here the area of the small rectangle is considered "negative" 

since it must be subtracted from the larger area * · 

Moment Arms. The location of the centroid of each segment is shown 
in the figure. Note that the x coordinates of* and are negative. 
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y 

, . 
1.5 ft I 

Summations. Taking the data from Fig. 6-9b, the calculations are -~~i::~::i:::::;::r--~-x I 15 ft I rt 
tabulated as follows: 

Segment 

l 

2 

3 

Thus, 

A (ft2) x (ft) y (ft) ,{A (ft3) 

4'3)(3) = 4.5 1 1 4.5 

(3)(3) = 9 -1.5 1.5 - 13.5 

-(2)(1) = -2 -2.5 2 5 

IA = 11.5 IxA = - 4 

IxA -4 
:X = IA = ll.5 = -0.348 ft 

_ IyA 14 
y = !A = 11.5 = 1.22 ft 

4.5 

13.5 

- 4 

IyA = 14 

Ans. 

Ans. 

NOTE: If these results are plotted in Fig. 6-9a, the location of point C 
seems reasonable. 

y 

0 m2.sft-

ITT 2 ft 

---~-~-----x 

(b) 
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I EXAMPLE 6.5 

z Locate the center of gravity of the assembly shown in Fig. 6-lOa. The 
conical frustum has a density of Pc = 8 Mg/m3

, and the hemisphere has 
a density of Plr = 4 Mg/m3

. There is a 25-mm-radius cylindrical hole in 
the center of the frustum. 

lOOmm 

SOLUTION 

Composite Parts. The assembly can be thought of as consisting of 

four segments as shown in Fig. 6-lOb. For the calculations, @ and© 
50 mm.--a~~..--1----y must be considered as "negative" segments in order that the four 

x 

50mm 

(a) 

Fig. 6-10 

Segment 

200mm 

1 

2 

3 

4 

I 
segments, when added together, yield the total composite shape 
shown in Fig. 6-lOa. 

Moment Arm. Using the table in Appendix B, the calculations for 
the centroid z of each piece are shown in the figure. 

Summations. Because of symmetry, 

x = y = O Ans. 

Since W = mg, and g is constant, the third of Eqs. 6-4 becomes 
z = Izmf:£m. The mass of each piece can be calculated from m = pV. 
Also, 1 Mg/m3 = 10-6 kg/mm3, so that 

m (kg) z (mm) 

8(10-6) ( ~) 7T(50)2(200) = 4.189 50 

4(10-6) ( ~) 7T(50)3 = 1.047 -18.75 

-8(10-6) ( ~) 7T(25)2(100) = -0.524 100 + 25 = 125 

-8(10-6)7T(25)2(100) = -1.571 50 

Im = 3.142 

Thus, 
Izm 45.815 

6 z = = = 14. mm 
Im 3.142 

I 

0 

l_ 
100 mm - · 25 mm 

4 -, 

lOOmm 

J 

(b) 

zm (kg·mm) 

209.440 

-19.635 

-65.450 

-78.540 

Izm = 45.815 

Ans. 

25mm 

ti 
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6.2 COMPOSITE BODIES 287 

FUNDAMENTAL PROBLEMS 

• ~7. Locate the cenlroid (x. y, Z) of the wire bent in the 
shape shown. 

x 600mm 

~ I 
400 mm y 

Prob. ~6-7 

y 

1'6-8. Locate the centroid y of the beam's cross-sectional 
area. 

y 

150 mm ISO mm 

I y 

mm 

Pr• F6-8 

• r.-~ Locate the centroid y of Lhe beam's cross-sectional 
area. 

1--- 400 mm---

c 200mm 

Pr."' . ... 6-9 

• 6-1 . Locate the centroid (x. Y) of the cross-sectional 
area. 

y 

0.5 in. 

0.5 in. x 

Proh. F6-IO 

F6-ll. Locate the center of gravity (x, y, z) of the 
homogeneous sol id block. 

z 

I 

~ r• ti. l "-•-

116-U. Locate the center of gravity (x. y, Z) of the 
homogeneous solid block. 

D-
1.8 Ill 

---;. __ / -Ly 
.sm/ 

Proh.16- 2 

www.konkur.in



288 CHAPTER 6 CENTER OF GRAVITY, CENTROID, AND MOM ENT OF INERTIA 

PROBLEMS 

*6-36. Locate the centroid (x, y) of the area. 
,, 
·1-6in.-I 

l 
6 in. 

Tf------+----ll_X 
6 in. 

_I .__________._______, 
l-6in.-I 

Prob. 6-36 

6-37. Locate the centroid y for the beam's cross-sectional 
area. 

y 
- I 

240mm Jc 
120 

240mm 
mm 

Prob. 6-37 

6-38. Locate the centroid y of the beam having the cross
sectional area shown. 

_i_ 1--150 mm --11 
15 mm1~------~1T 

r ,_:_c ~l x 
150mm 

- - 15mm 

15mm I A I 

I l-1oomm--I 

Prob. 6-38 

6-39. Locate the centroid (x, ji) of the area. 
y 

3 in . 
..L 

I 
6 in. 

l- 6in.-J 

l 
-~~----•-------- x 

l-6in.-I 

Prob. 6-39 

*6-40. Locate the centroid y of the beam's cross-sectional 
area. Neglect the size of the corner welds at A and B for the 
calculation. 

6-41. 

y 

r 
llOmm 

I 

15 mm 

Prob. 6-40 

Locate the centroid (x, ji) of the area. 
y 

1 in. 3 in. 

1-3 in.-1-3 in. 

Prob. 6-41 
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6-42. Locate the centroid (x, y) of the area. 

y 

l,,;,l 
-, 

1.5 in. 

l_ T 
~ I.Sin. 

~1.5 in.~ 
x 

Prob. 6-42 

6-43. Locate the centroid y of the cross-sectional area of 
the beam. The beam is symmetric with respect to the y axis. 

y 

1 
c 3 in. 

T J y 
1 in. 

x 

Prob. 6-43 

*6-44. Locate the centroid y of the cross-sectional area of 
the beam constructed from a channel and a plate. Assume 
all comers are square and neglect the size of the weld at A. 

20 m y 

350mm 

c 
lOmm 

--325 mm ---i---325 mm --

Prob. 6-44 
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6-45. A triangular plate made of homogeneous material 
has a constant thickness that is very small. If it is folded over 
as shown, determine the location y of the plate's center of 
gravity G. 

6 in. 

x 

Prob. 6-45 

6-46. A triangular plate made of homogeneous material 
has a constant thickness that is very small. If it is folded over 
as shown, determine the location z of the plate's center of 
gravity G. 

6 in. 

~ 
x ............... 3. m. 

Prob. 6-46 
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6-47. The assembly is made from a steel hemisphere, 
P.i = 7.80 Mg/m3, and an aluminum cylinder, 
Pai = 2.70 Mg/m3. Determine the center of gravity of the 
assembly if the height of the cylinder is h = 200 mm. 

*6-48. The assembly is made from a steel hemisphere, 
P.i = 7.80 Mg/m3, and an aluminum cylinder, 
Pal = 2.70 Mg/m3. Determine the height h of the cylinder 
so that the center of gravity of the assembly is located at 
z= 160mm. 

z 

80mm 

h 

l 
r 

160mm 

x 

Probs. 6-47/48 

6-49. The car rests on four scales and in this position the 
scale readings of both the front and rear tires are shown by 
FA and F8 . When the rear wheels are elevated to a height of 
3 ft above the front scales, the new readings of the front 
wheels are also recorded. Use this data to calculate the 
location x and y to the center of gravity G of the car. The 
tires each have a diameter of 1.98 ft. 

(

1 

FA = 1129 lb + 1168 lb = 2297 lb 
F8 = 975 lb+ 984 lb = 1959 lb 

FA = 1269 lb + 1307 lb = 2576 lb 

Prob. 6-49 

6-50. Determine thedistanceh to which a 100-mrn-diameter 
hole must be bored into the base of the cone so that the 
center of gravity of the resulting shape is located at 
z = 115 mm. The material has a density of 8 Mg/m3

. 

z 

500mm 

x 

Prob. 6-50 

6-51. Determine the distance z to the centroid of the shape 
that consists of a cone with a hole of height h = 50 mm 
bored into its base. 

z 

500mm 

x 

Prob. 6-51 
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*6-52. Locate the center of gravity z of the assembly. The 
cylinder and the cone are made from materials having 
densities of S Mgtm3 and 9 Mglm3, respectively. 

z 

I 

0.4 m 

0.2 111 

Prob. 6-52 

6-53. Major floor loadings in a shop are caused by the 
weights of the objects shown. Each force acts through its 
respective center of gravity G. Locate the center of gravity 
(x, Y) of all these components. 

y 
450lb 

Prob. 6-53 
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6-54. The assembly consists of a 20-in. wooden dowel rod 
and a tight-fitting steel collar. Determine the distance 'i to 
its center of gravity if the specific weights of the materials 
are 1'w = 150 lb/ft3 and y., = 490 lb/ft3. The radii of the 
dowel and collar are shown. 

·- -5 in. - - 10 in._ - ,. -- I - G l 
\.. /• 

X-
/ 

7 

2in. x 

1 m. 

Prob. 6-54 

6-55. The composite plate is made from both steel (A) 
and brass (B) segments. Determine the weight and location 
('i, y, Z) of its center of gravity G. Take Pst = 7.85 Mg/m3, 
and Pbr = 8.74 Mg/m3. 

I 
225mm 

y 

Prob. 6-55 
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y 

-- x 
dA 

/T 
r y 

0 
Fig. 6-11 

x 

6.3 MOMENTS OF INERTIA FOR 
AREAS 

In the first few sections of this chapter, we determined the centroid for an 
area by considering the first moment of the area about an axis; that is, for 
the computation we had to evaluate an integral of the form J x dA. An 
integral of the second moment of an area, such as J x 

2 
dA , is referred to as 

the moment of inertia for the area. Integrals of this form arise in formulas 
used in mechanics of materials, and so we should become familiar with the 
methods used for their computation. 

Moment of Inertia. Con.sider the area A, shown in Fig. 6- 11, which 
lies in the x - y plane. By definition, the moments of inertia of the 
differential planar area dA about the x and y axes are df, = y2 dA and 
dly = x2dA, respectively. For the entire area the moments of inertia are 
determined by integration; i.e., 

(6-5) 

We can also formulate this quantity for dA about the "pole" 0 or 
z axis, Fig. 6-11. This is referred to as the polar moment of inertia. It is 
defined as dl0 = r 2dA , wheire r is the perpendicular distance from the 
pole (z axis) to the element dA. For the entire area the polar moment of 
inertia is 

(6-6) 

Notice that this relation between 10 and I., ly is possible smce 
r 2 = x2 + y2

, Fig. 6- 11. 
From the above formulations it is seen that I., />" and 10 will always be 

positive since they involve t!he product of distance squared and area. 
Furthermore, the units for moment of inertia involve length raised to the 
f h 4 4 ft4 . 4 ourt power, e.g. , m , mm, oir , m . 

www.konkur.in



6.4 PARAllEL-AxlS THEOREM FOR AN AREA 293 

6.4 PARALLEL-AXIS THEOREM 
FOR AN AREA 

If the moment of inertia is known about an axis passing through the 
centroid of an area, then the parallel-axis theorem can be used to find 
the moment of inertia of the area about any axis that is parallel to the 
centroidal axis. To develop this theorem, consider finding the moment 
of inertia about the x axis of the shaded area shown in Fig. 6-12. 

If we choose a differe ntial element dA located at an arbitrary 
distance y' from the centroida/ x ' axis, then the distance between the 
parallel x and x ' axes is d,,, and so the moment of inertia of dA about 
the x axis is dlx = (y' + d,,)2 dA. For the entire area, 

Ix = i (y' + d,,)2 dA 

= iy'2 dA + 2d,, ly' dA + d~ idA 

The first integra l represents the moment of inertia of the area about 
the centroidal axis, 7 .... The second integral is zero since the x' axis 
passes through the area's centroid C; i.e., J y' dA = Y' J dA = 0 since 
y• = 0. Since the third integral represents the area A, the final result 
is therefore 

(6-7) 

A similar expression can be written for I,,; i.e., 

(6-8) 

And finally, for the polar moment of inertia, since le = Ix· + 1,,. and 
d2 = d2 + d2 we have x Y' 

I lo =le + Ad21 (6-9) 

The form of each of these three equations states that the monwnt of 
inertia for an area abow an axis is equal to its moment of inertia about a 
parallel axis passing through the area's centroid, plus the product of the 
area and the square of the perpendicular distance between the axes. 

y y' 

x' 

I 
y' 

I x· 

"-------'------ x 
0 

Fig. 6-12 
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294 CHAPTER 6 CENTER OF GRAVITY, CENTROID, AND MOMENT OF INERTIA 

y 

y = f(x) 

dA (x,y) 
dyI l---------r:----1· 

1---x-- y 

~-------~~-x 

(a) 

y 

- x-j 
""'l/(x,y) 

T Y = f(x) 

y 
dA 

~-~~----~--x 

~ 
(b) 

Fig. 6-13 

PROCEDURE FOR ANALYSIS 

In most cases the moment of inertia can be determined using a single 
integration. The following procedure shows two ways in which this 
can be done. 

• If the curve defining the boundary of the area is expressed as 
y = j(x), then select a rectangular differential element such 
that it has a finite length and differential width. 

• The element should be [ocated so that it intersects the curve at 
the arbitrary point (x, y ). 

Case 1: 

• Orient the element so that its length is parallel to the axis 
about which the moment of inertia is calculated. This situation 
occurs when the rectangular element shown in Fig. 6-13a is 
used to determine I.r for the area. Here the entire element is 
at a distance y from the x axis since it has a thickness dy. Thus 
I, = J y 2 dA. To find ly, the element is oriented as shown in 
Fig. 6-13b. This element lies at the same distance x from the 
y axis so that ly = J x 2 dA. 

Case 2: 

• The length of the element can be oriented perpendicular to the 
axis about which the moment of inertia is calculated; however, 
Eq. 6-7 does not apply since all points on the element will not 
lie at the same moment-arm distance from the axis. For example, 
if the rectangular element in Fig. 6-13a is used to determine f,., 
it will first be necessary to calculate the moment of inertia of 
the element about an axis parallel to the y axis that passes 
through the element 's centroid, and then determine 
the moment of inertia of the element about they axis using the 
parallel-axis theorem. Integration of this result will yield ly. The 
details are given in Example 6-7. 
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I EXAMPLE 6 .6 

Detennine the moment of inertia for the rectangular area shown in 
Fig. Crl4 with respect to (a) the centroidal x' axis, (b) the axis XfJ passing 
through the base of the rectangle, and ( c) the pole or z' axis perpendicular 
to the x ' -y' plane and passing through the centroid C. 

SOLUTION (CASE 1) 

Part (a ). The differential element shown in Fig. Cr14 is chosen for 
integration. Because of its location and orientation, the entire element 
is at a distance y' from the x ' axis. Here it is necessary to integrate 
from y' = -h/2 toy' = h/2. Since dA = b dy', then 

J f lr/2 J"/2 fx· = y'2 dA = y'2(b dy') = b y'2 dy' 
A - lr/2 - lr/2 

- 1 3 / . = - bh 
x 12 Ans. 

Part (b). The moment of inertia about an axis passing through the 
base of the rectangle can be obtained by using the above result and 
applying the parallel-axis theorem, Eq. Cr7. 

- - 2 l x• - Ix· + Ady 

1 3 (h)2 
1 3 = -bh + bh - = - bh 

12 2 3 
Ans. 

Part (c). To obtain the polar moment of inertia about point C, we 
must first obtain ly'• which may be found by interchanging the 
dimensions band h in the result of part (a), i.e., 

- 1 3 1 · = -hb 
y 12 

Using Eq. Cr9, the polar moment of inertia about C is therefore 

- - - 1 2 2 
l e = I x' + ly' = 

12 
bh(h + b ) Ans. 

T ,, 
2 

t ,, 
2 

l 

y' 

c 

l-~-1-~-I 
Fig. 6-14 

dy' 
_L 

I 
y' 

I :c' 
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EXAMPLE 6.7 
- -

y 

v2 = 400x 

-~ 

(100 - x) dy 

---------< _l._ -, - -, 
y 200mm 

-'~~x 1-lOOmm-I 
(a) 

y 

y2 = 400x 

~ 

T 200mm 

Y ---+----+-I- X' 

l _I y 
y= z-

'----------'--- x 

=-x~l:~x~ 
(b) 

Fig. 6-15 

Determine the moment of inertia of the shaded area shown m 
Fig. 6-15a about the x axis. 

SOLUTION I {CASE 1) 
A differential element that is parallel to the x axis, Fig. 6-15a, is chosen 
for integration. It intersects tbe curve at the arbitrary point (x, y). 
Since this element has a thickness dy and intersects the curve at the 
arbitrary point (x,y), its area is dA = (100 - x) dy. Furthermore, the 
element lies at the same distance y from the x axis. Hence, integrating 
with respect toy, from y = 0 toy = 200 mm, we have 

I, = irdA = fo2

oommy2(100 - x)dy 

= 12oommy\100 - :~) dy = 12oomm(100y2 - :~) dy 

= 107(106) mm4 Ans. 

SOLUTION II {CASE 2) 
A differential element parallel to they axis, Fig. 6-15b, is chosen for 
integration. It intersects the curve at the arbitrary point (x, y). In 
this case, all points of the element do not lie at the same distance 
from the x axis, and therefore the parallel-axis theorem must be 
used to determine the moment of inertia of the element with respect 
to this axis. For a rectangle having a baseband height h, the moment 
of inertia about its centroidal axis has been determined in part (a) 
of Example 6-6. There it was found that lt' = 1

1
2 bh3. For the 

differential element shown in Fig. 6-15b, b = dx and h = y, and so 
dl_,. = 1

1
2 dxy3• Since the centroid of the element is y = y/2 from 

the x axis, the moment of inertia of the element about this axis is 

df., = dl_t' + dA r = 1~ dx y
3 + y dx (~)

2 

= ~y3 
dx 

(This result can also be concluded from part (b) of Example 6-6.) 
Integrating with respect to x, from x = 0 to x = 100 mm, yields 

J 
rlOOmml rtOOmml 

/., = df., = Jo 3y3 
dx = } 

0 3 ( 400x)312 
dx 

= 107(106) mm4 Ans. 
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FUNDAMENTAL PROBLEMS 

F6-13. Determine the moment of inertia of the area about 
the x axis. 

y 

y3 = x2 

lm 

1---lm---

Prob.F6-13 

F6-14. Determine the moment of inertia of the area about 
the x axis. 

y 

lm 

~-+---------~x 

1---lm---

Prob.F6-14 

F6-15. Determine the moment of inertia of the area about 
they axis. 

)' 

r y3 = x2 

lm 

1---lm~ 
Prob.F6-15 

F6-16. Determine the moment of inertia of the area about 
they axis. 

)' 

r 
lm 

~-+-----------.X 

1---lm~ 
Prob.F6-16 
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PROBLEMS 

*6-56. Determine the moment of inertia of the area about 
the x axis. 

6-57. Determine the moment of inertia of the area about 
they axis. 

y 

Y = .!l... x" 
ti' 

1----a----

Probs. 6-56/57 

b 

6-58. Determine the moment of inertia for the area about 
the x axis. 

6-59. Determine the moment of inertia for the area about 
they axis. 

y 

- lOOmm -1 

"=...1...x2 , 50 
200mm 

Probs. 6-58/59 

*6-60. Determine the moment of inertia for the area 
about the x axis. 

6-61. Determine the moment of inertia for the area about 
they axis. 

y 

y =x'f2 

1 
lm 

---+----------+~---x 

i-----1 m---... 

Probs. 6-60/61 

6-62. Determine the moment of inertia for the area about 
the x axis. 

6-63. Determine the moment of inertia for the area about 
they axis. 

)I 

-1 y2 = 1 - 0.5x 

lm 

--+--+-----------~--x 

1----- 201 -----

Probs. 6-62/63 
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*6-64. Determine the moment of inertia of the area about 
the x axis. Solve the problem in two ways, using rectangular 
differential elements: (a) having a thickness dx and 
(b) having a thickness of dy. 

y 

I y = 2.5 - O.lx2 

2.5 ft 

--'--'------+------.,,_-X 
t-- 5tt-I 

Prob.6-64 

6-65. Determine the moment of inertia of the area about 
the x axis. 

y 

• .2 = lt2 x 
y b" 

h 

- --+--------1-'---X 
1----b---~ 

Prob. 6-65 

6-66. Determine the moment of inertia for the area about 
thex axis. 

6-67. Determine the moment of inertia for the area about 
they axis. 

)' 

r 
8m 

r--y = _.!_x3 
I s 

-1.---1-""'------'---x 

4m-I 
Probs. 6-66/67 
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*6-68. Determine the moment of inertia about the x axis. 

6-69. Determine the moment of inertia about they axis. 

y 

T 
x2 + 4y2 = 4 

lm 

~--+-----------~--x 

,__ ____ 2 m ____ _, 

Probs. 6-68169 

6-70. Determine the moment of inertia for the area about 
the x axis. 

)' 

-r 
4 in. 
l_.__~~~~~-'---X 

1--I ---16 in. ---1 

Prob.6-70 

6-71. Determine the moment of inertia for the area about 
they axis. 

)' 

-r 
4 in. 

J_:1 =--=--=----_- 1-6-in-.-=--=--=----_-_-'-,--x 

Prob.6-71 
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*6-72. Determine the moment of inertia for the area 
about the x axis. 

y 

y = .!!._ x3 
b3 

l-----b-----

Prob.6-72 

T ,, 

6-73. Determine the moment of inertia for the area about 
they axis. 

y 

l-----b----

Prob.6-73 

T ,, 

6-74. Determine the moment of inertia for the area about 
the x axis. 

6-75. Determine the moment of inertia for the area about 
they axis. 

y 

..,rHr----1,-1-- x 
lm 

_l __ l m 

Probs. 6-74ns 

*6-76. Determine the moment of inertia for the area 
about the x axis. 

6-77. Determine the moment of inertia for the area about 
they axis. 

)' 

-1 
y=x 2m 

--+--------!--~-x 

1-- 2m----J 

Probs. 6-76n7 

6-78. Determine the moment of inertia for the area about 
the x axis. 

y 

b 
v=bx2 
, a2 

Prob.6-78 

6-79. Determine the moment of inertia for the area about 
they axis. 

y 

b2 
y2 = - x 

a 

,, =bx2 
, a2 

1----a---~ 

Prob.6-79 

b 
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6. 5 MOMENTS OF INERTIA FOR 
COMPOSITE AREAS 

The moment of inertia of a composite area that consists of a series of 
connected "simpler" parts or shapes can be determined about any axis 
provided the moment of inertia of each of its parts is known or can be 
determined about the axis. The following procedure outlines a method for 
doing this. 

PROCEDURE FOR ANAL YS/S 

Composite Parts. 

• Using a sketch, divide the area into its composite parts and 
indicate the perpendicular distance from the centroid of each 
part to the axis. 

Paralle l-Axis Theorem. 

• If the centroidal axis for each part does not coincide with the 
axis, the parallel-axis theorem, I = l + Ad2, must be used to 
determine the moment of inertia of the part about the axis. For 
the calculation of 7, use Appendix B. 

Summat ion. 

• The moment of inertia of the entire area about the axis is 
determined by summing the results of its composite parts 
about this axis. 

• If a composite part has an empty region or hole, its moment of 
inertia is found by subtracting the moment of inertia of the hole 
from the moment of inertia of the entire part including the hole. 

To design or analyze 1his T-beam, ii is 
necessary 10 locale the centroidal axis 
of its cross-sectional area. and Lhen find 
lhe moment of inerti a of the area about 
lhis axis. 
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I EXAMPLE 6.8 

Determine the moment of inertia of the area shown in Fig. 6-16a 
about the x axis. 

1-1000101 -I 

T T 
1-1000101 -I 

250101 250101 750101 

-8 --+-+---• 

750101 

750101 750101 

I 
-'--~----~-- x 

(a) (b) 

Fig. 6-16 

SOLUTION 

Composite Parts. The area can be obtained by subtracting the 
circle from the rectangle shown in Fig. 6-16b. The centroid of each 
area is shown in the figure. 

Parallel-Axis Theorem. The moments of inertia about the x axis 
are determined using the parallel-axis theorem and the moment of 
inertia formulas for circular and rectangular areas, I, = l7Tr4 and 
I, = 1\bh3 , found in Appendix B. 

Circle 

- 2 z, = Zr.' + Ad,. 

1 
= - 7T(25)4 + 7T(25)2(75)2 = 11 4(106) mm4 

4 . 

Rectangle 

- ? z, = Zr.' + Ady 

= 
1
1
2 

(100)(150)3 + (100)(150)(75)2 = 112.5(106) mm4 

Summation. The moment of inertia for the area is therefore 

I, = -11.4(106) + 112.5(106) 

= 101(106) mm4 Ans. 
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EXAMPLE 6.9 

Determine the moments of inertia for the cross-sectional area of the 
member shown in Fig. 6-17a about the x and y centroidal axes. 

SOLUTION 

Composite Parts. The cross section can be subdivided into the three 
rectangular areas A, B, and D shown in Fig. 6-17b. For the calcwation, 
the centroid of each of these rectangles is located in the figure. 

Parallel-Axis Theorem. From the table in Appendix B, or from 
Example 6-6, the moment of inertia of a rectangle about its cen troidal 
axis is 1 = ftbh3. Hence, using the parallel-axis theorem for rectangles 
A and D, the calculations are as follows: 

Rectangles A and D 

Ix = Zr• + Ad; = l~ (100)(300)3 + (100)(300)(200)2 

= 1.425(109) mm4 

ly = l y· + Ad; = l~ (300)(100)3 + (100)(300)(250)2 

= 1.90(109) mm4 

Rectangle B 

Ix = l~ (600)(100)3 = 0.05(109) mm4 

ly = 1~ (100)(600)3 = 1.80(109) mm4 

Summation. The moments of inertia for the entire cross section are 
thus 

ix = 2[1.425(109)] + 0.05(109) 

= 2.90(109
) mm4 

ly = 2[1.90(109)] + 1.80(109) 

= 5.60(109
) mm4 

Ans. 

Ans. 

y 

I 00 m!!!_j 1-: 
I 

400mm g 
IOOmm 400-

rr 
- I l-1oomm 

600mm~ 

(a) 

y 
100 m!!!_I 

1

_ 

200mm 

TA 
300mm • 250mm 

...L H""'"-+--+---M 
8 - -r---++---X 

I -r 
250mm ' ~~ . 300mm 

200mm D _L 

-j 1-toomm 

(b) 

Fig. 6-17 
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FUNDAMENTAL PROBLEMS 

F6-17. Determine the moment of inertia of the cross· 
sectional area of the beam about the centroidal x and y axes. 

)' 

200mm 

I 
50 mm f :::::::!-+-1---~..,..---x 

200mm 

I 
1150 mnJ (1so mm 

SO mm 

Prob.F6-17 

F6-18. Determine the moment of inertia of the cross
sectional area of the beam about the centroidal x and y axes. 

T 
200mm 

)' 

0 

,,,__--+-----1i+ •-"-'+1 30 mm 

_I_ __0 

30mm 

1-1-300 mm-1-1 
30mm 30mm 

Prob.F6-18 

F6-19. Determine the moment of inertia of the cross
sectional area of the channel with respect to they axis. 

y 

50mm 

Prob.F6-19 

F6-20. Determine the moment of inertia of the cross
sectional area of the T-beam with respect to the x' axis 
passing through the centroid of the cross section. 

30mm 

1-~ 

150mm I ---+--+--+-------,.--x· 

30 nu~!--------'f'---YLI 
--l-150 mm-I 

Prob.F6-20 
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PROBLEMS 

*6-80. Determine the moment of inertia of the composite 
area about the x axis. 

6-81. Determine the moment of inertia of the composite 
area about they axis. 

y 

- 3 in. -1--6 in. 

T 
3 in. 

+ 
3 in. 

~l-1----------~--x 

Probs. 6-80/81 

6-82. The polar moment of inertia for the area is 
Jc = 642 (106) mm4, about the z' axis passing through the 
centroid C. The moment of inertia about the y' axis is 
264 (106) mm4

, and the moment of inertia about the x axis is 
938 (106) mm4• Determine the area A. 

y' 

200mm 

Prob.6-82 

6.5 MOMENTS OF INERTIA FOR COMPOSITE AREAS 305 

6-83. Determine the location y of the centroid of the 
cross-sectional area of the channel, and then calculate the 
moment of inertia of this area about this axis. 

SO mm SO mm 

x 

Prob.6-83 

*6-84. Determine y, which locates the centroidal axis x' 
for the cross-sectional area of the T-beam, and then find the 
moments of inertia Ix· and I, .. 

.Y' 

75 ml!!... 

150mm 

Prob.6-84 

www.konkur.in



306 CHAPTER 6 CENTER OF GRAVITY, CENTROID, AND MOM ENT OF INERTIA 

6-85. Determine the moment of inertia of the cross-sectional 
area of the beam about the x axis. 

6-86. Determine the moment of inertia of the cross-sectional 
area of the beam about they axis. 

y 

- lin. 

8 in. 

1 in. 
,_ ____ 10 in. ___ _, 

Probs. 6-85/86 

6-87. Determine the moment of inertia I., of the area about 
the x axis. 

*6-88. Determine the moment of inertia I, of the area 
about the y axis. 

y 

-1 
150mm 

75mm 
t 

150mm 

l~--~-x 
0 

Probs. 6-87/88 

6-89. Determine the moment of inertia of the cross-sectional 
area of the beam about they axis. 

6-90. Determine y, which locates the centroidal axis x' for 
the cross-sectional area of the T-beam, and then find the 
moment of inertia about the x' axis. 

y 

50mm 

x' 
250mm 

Probs. 6-89/90 

6-91. Determine the moment of inertia of the cross-sectional 
area of the beam about the x axis. 

*6-92. Determine the moment of inertia of the cross-sectional 
area of the beam about they axis. 

y 

~ 150mm 150mm ~1 

200mm 

---+------+-X 

Probs. 6-91/92 
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CHAPTER REVIEW 

Center of Gravity and Centroid 

The cenrer of gravity G represents a point 
where the weight of the body can be 
considered concentrated. The distance from 
an axis to this point can be determined from 
a balance of moments, which requires that 
the moment of the weight of all the particles 
of the body about this axis must equal the 
moment of the entire weight of the body 
about the axis. 

The cenrroid is the location of the geometric 
center for the body. It is determined in a 
similar manner, using a moment balance of 
geometric elements such as area or volume 
segments. For bodies having an arbitrary 
shape, moments are summed (integrated) 
using differential elements. 

Composite Body 

If the body is a composite of several shapes, 
each having a known location for its center of 
gravity or centroid, then the location of the 
center of gravity or centroid of the body can 
be determined from a discrete summation 
using its composite parts. 

x= 

y= 

z= 

CHAPTER REVIEW 307 

z 

x 

x 
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Area Moment of Inertia 

The area and polar momenis of inerria 
represent the second moment of the area 
about an axis. It is frequently used in 
formulas throughout mechanics of materials. 

If the area shape is irregular but can be 
described mathematically, then a differential 
element must be selected and integration over 
the entire area must be performed to determine 
the moment of inertia. 

Parallel-Axis Theorem 

If the moment of inertia for an area is known 
about its centroidal axis, then its moment 
of inertia about a parallel axis can be 
determined using the parallel-axis theorem. 

Composite Area 

If an area is a composite of common shapes, 
then its moment of inertia is equal to the 
algebraic sum of the moments of inertia of 
each of its parts. 

REVIEW PROBLEMS 

R6-L Locate the centroid x of the area. 

R6-2. Locate the centroid y of the area. 
y 

)' = c2 

--1-~---~-x 

a-I I 
1---b-I 

Probs. R6-l/2 

I,= L/dA 

ly = Lx2 dA 

10 = Lr2 dA 

I= I+ Ad2 

y 

-- x - 1---1 
dA 

/ T 
r y 

A 

IL_ ______ L_ ___ x 

0 

A 

--1'-----....----+--~~r 
c 

d 

-------'-----! I 

--1---• 

---1----~--x 

R6-3. Locate the centroid of the rod. 

z 

1 
4 ft 

J 
y 

Prob. R6-3 
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*R6-4. Locate the centroid y of the cross-sectional area of 
the beam. 

y 

SO mm 
- 75mm 

2smm r 1=.--ri---t'" 
100mm C 

75mm-

l 
-J 1-
25 mm 

y 
L-----'---L.=-----'---x 

Prob.R6-4 

-J l-
25mm 

R6-5. Determine the moment of inertia for the area 
about the x axis. 

y 

2 in. 

1-----4 in. -----1 

Prob.R6-5 

REVIEW PROBLEMS 309 

R6-6. Determine the area moment of inertia of the area 
about they axis. 

y 

I 4y = 4 - .~ 

1 ft 

__,_1--'------+------'----x 
1----2 ft ---1 

Prob.R6-6 

R6-7. Determine the area moment of inertia of the 
cross-sectional area of the beam about the x axis which 
passes through the centroid C. 

y 

1-4 !! _J 
2 I 

Prob.R6-7 

www.konkur.in



CHAPTER 7 

The bolts used for the connections of this steel framework are subjected to 
stress. In this chapter, we will discuss how engineers design these connections 
and their fasteners. 
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STRESS AND 
STRAIN 

CHAPTER OBJECTIVES 

• To show how to use the method of sections for determining the 
internal loadings in a member. 

• To introduce the concepts of normal and shear stress, and to use 

them in the analysis and design of members subject to axial load 

and direct shear. 

• To define normal and shear strain, and show how they can be 

determined for various types of problems. 

7. 1 INTRODUCTION 
Mechanics of materials is a study of the internal effects of stress and 
strain in a solid body that is subjected to an external loading. Stress is 
associated with the strength of the material from which the body is made, 
while strain is a measure of the deformation of the body. A thorough 
understanding of the fundamentals of this subject is of vital importance 
for the design of any machine or structure, because many of the formulas 
and rules of design cited in engineering codes are based upon the 
principles of this subject. 

311 

www.konkur.in



312 CHAPTER 7 S TRESS AND STRAIN 

In order to design the horizontal 
members of this building frame, it is first 
necessary to find the internal loadings 
at various points along their length. 

F• 

! 

Section 

(a) 

7.2 INTERNAL RESULTANT LOADINGS 
When applying the methods of mechanics of materials, statics along with 
the method of sections is used to determine the resultant loadings that act 
within a body. For example, consider the body shown in Fig. 7- la, which 
is held in equilibrium by the four external forces.* In order to obtain the 
internal loadings acting on a specific region within the body, it is necessary 
to pass an imaginary section or "cut" through the region where the 
internal loadings are to be determined. The two parts of the body are then 
separated, and a free-body diagram of one of the parts is drawn, Fig. 7- lb. 
Here there is actually a distribution of internal force acting on the 
"exposed" area of the section . These forces actually represent the effects 
of the top section of the body acting on its bottom section. 

Although the exact distribution of this internal loading may be 
unknown, we can find its resultants FR and (MR)o at any specific point 0 
on the sectioned area, Fig. 7- lc, by applying the equations of equilibrium 
to the bottom part of the body. It will be shown later in the book that 
point 0 is most often chosen at the centroid of the sectioned area, and so 
we will always choose this location for 0 , unless otherwise stated. Also, if 
a member is long and slender, as in the case of a rod or beam, the section 
to be considered is generally taken perpendicular to the longitudinal axis 
of the member. This section is referred to as the cross section. 

(b) (c) 

Fi.g. 7-1 

*111e body's weight is not shown, since it is assumed to be quite small, and therefore 
negligible compared with the other loads. 
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(c) 

Torsional 
moment 

T 
(MR)o ----- -------

7 .2 INTERNAL RESULTANT LOADINGS 31 3 

NNormal 
force -- ,FR 

Bending M ~.(:.}-;;:::~::-:;::::;: 
moment 

(d) 

Fig. 7-1 (cont.) 

I 
I 
I 
I 
I 
I 
I 

~--..~:v 

Shear 
force 

Three Dimensions. For later application of the formulas of mechanics 
of materials, we will consider the components of FR and (MR)o acting 
both normal and perpendicular to the sectioned area, Fig. 7- ld. Four 
different types of resultant loadings can then be defined as follows: 

Normal force, N. This force acts perpendicular to the area. It is 
developed whenever the external loads tend to push or pull on the two 
segments of the body. 

Shear force, V. The shear force lies in the plane of the area and it is 
developed when the external loads tend to cause the two segments of the 
body to slide over one another. 

Torsional moment or torque, T. This effect is developed! when 
the external loads tend to twist one segment of the body with respect to 
the other about an axis perpendicular to the area. 

Bending moment, M. The bending moment is caused by the 
external loads that tend to bend the body about an axis lying within the 
plane of the area. 
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section 

F, 

(a) (b) 

Fi.g. 7- 2 

Coplanar Loadings. If the body is subjected to a coplanar system of 
forces, Fig. 7- 2a, then only normal-force, shear-force, and bending-moment 
components will exist at the section, Fig. 7-2b. If we use the x, y, z 
coordinate axes, as shown on the left segment, then N can be obtained 
by applying IFr = 0, and V can be obtained from IFy = 0. Finally, the 
bending moment M 0 can be determined by summing moments about 
point 0 (the z axis), IM0 = 0, in order to eliminate the moments caused 
by the unknowns N and V. 

IMPORTANT POINTS 

• Mechanics of materials is a study of the relationship between 
the external loads applied to a body and the stress and strain 
caused by the internal loads within the body. 

• External forces can be applied to a body as distributed or 
concentrated surface loadings, or as body forces that act 
throughout the volume of the body. 

• Linear distributed loadings produce a resultant force having a 
magnitude equal to the area under the load diagram, and 
having a location that passes through the centroid of this area. 

• A support produces a force in a particular direction on its 
attached member if it prevents translation of the member in 
that direction, and it produces a couple moment on the member 
if it prevents rotation. 

• The equations of equilibrium I F = 0 and I M = 0 must be 
sat isfied in order to prevent a body from translating with 
accelerated motion and from rotating. 

• The method of sections is used to determine the internal 
resultant loadings acting on the surface of a sectioned body. In 
general, these resultants consist of a normal force, shear force, 
torsional moment, and bending moment. 
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PROCEDURE FOR ANALYSIS 

The resultant internal loadings at a point located on the section of a 
body can be obtained using the method of sections. This requires the 
following steps. 

Support Reactions. 

• When the body is sectioned, decide which segment of the body 
is to be considered. If the segment has a support or connection 
to another body, then before the body is sectioned, it will be 
necessary to determine the reactions acting on the chosen 
segment. To do this, draw the free-body diagram of the entire 
body and then apply the necessary equations of equilibrium to 
obtain these reactions. 

Free-Body Diagram. 

• Keep all external distributed loadings, couple moments, 
torques, and forces in their exact locations, before passing the 
section through the body at the point where the resultant 
internal loadings are to be determined. 

• Draw a free-body diagram of one of the "cut" segments and 
indicate the unknown resultants N, V, M, and T at the section. 
These resultants are normally placed at the point representing 
the geometric center or centroid of the sectioned area. 

• If the member is subjected to a coplanar system of forces, only 
N, V, and M act at the centroid. 

• Establish the x, y, z coordinate axes with origin at the centroid 
and show the resultant internal loadings acting along the axes. 

Equations of Equilibrium. 

• Moments should be summed at the section, about each of the 
coordinate axes where the resultants act. Doing this eliminates the 
unknown forces N and V and allows a direct solution for Mand T. 

• If the solution of the equilibrium equations yields a negative 
value for a resultant, the directional sense of the resultant JS 

opposite to that shown on the free-body diagram. 

The following examples illustrate this procedure numerically and also 
provide a review of some of the important principles of statics. 
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I EXAMPLE 7.1 

540N 

180 ~~~-- I 
Mc I +-------

Ne .-(:tic ----DI 
Vcl-2m -I 4m I 

(b) 

Determine the resultant internal loadings acting on the cross section at C 
of the cantilevered beam shown in Fig. 7- 3a. 

SOLUTION 

270N/m 

A 

- 3 m ---t---- 6 m ----

(a) 

Fig. 7-3 

Support Reactions. The support reactions at A do not have to be 
determined if segment CB is considered. 

Free-Body Diagram. The free-body diagram of segment CB is 
shown in Fig. 7- 3b. It is important to keep the distributed loading on 
the segment until after the section is made. Only then should this 
loading be replaced by a single resultant force. Notice that the intensity 
of the distributed loading at C is found by proportion, i.e., from 
Fig.7- 3a, w/6m = (270N/m)/9m,w = 180N/m.Themagnitudeof 
the resultant of the distributed load is equal to the area under the 
loading curve (triangle) and acts through the centroid of this area. 
Thus, F = !(180 N/m)(6 m) = 540 N, which acts !(6 m) = 2 m from 
C as shown in Fig. 7- 3b. 

Equations of Equilibrium. Applying the equations of equilibrium 
we have 

+jIF. = O· y , 

C+IMc = O; 

-Ne = 0 

Ne = 0 

Ve - 540N = 0 

Ve = 540N 

-Mc - 540N(2m) = 0 

Mc = -1080N · m 

Ans. 

Ans. 

Ans. 

The negative sign indicates thlat Mc acts in the opposite direction to 
that shown on the free-body ,diagram. Try solving this problem using 
segment AC, by first checking the support reactions at A, which are 
given in Fig. 7- 3c. 
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I EXAMPLE 7.2 

The 500-kg engine is suspended from the crane boom in Fig. 7-4a. 
Determine the resultant internal loadings acting on the cross section of 
the boom at point E. 

SOLUTION 

Support Reactions. We will consider segment AE of the boom, so 
we must first determine the pin reactions at A. Since member CD is a 
two-force member, it acts like a cable, and therefore exerts a force F co 
having a known direction. The free-body diagram of the boom is 
shown in Fig. 7-4b. Applying the equations of equilibrium, 

Fco(~) (2 m) - [500(9.81) N](3 m) = 0 

Fco = 12 262.5 N 

Ax - (12 262.5N) (~) = 0 

Ax = 9810 N 

-A>'+ (12262.5 N)(~) - 500(9.81)N = 0 

Ay = 2452.5 N 

Free-Body Diagram. The free-body diagram of segment AE is 
shown in Fig. 7-4c. 

Equations of Equilibrium. 

NE + 9810 N = 0 

NE = -9810 N = -9.81 kN Ans. 

+ jIF. = O· y , -VE - 2452.5 N = 0 

VE = -2452.5 N = -2.45 kN Ans. 

ME + (2452.5N)(l m) = 0 

ME = -2452.5 N · m = -2.45 kN · m Ans. 

D 

r 
1.5 m 

l 

A, 

9810N 

(a) 

500(9.81) N 

(b) 

v - lm - £ 

2452.5 N 

(c) 

Fig. 7-4 
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I EXAMPLE 7.3 

(a) 

1-2 ft-1 Mc 

~.t;~c 
3601b 

(c) 

Determine the resultant internal loadings acting on the cross section at C 
of the beam shown in Fig. 7- 5a. 

300 lb/ft 

Fig. 7-5 

SOLUTION 

9001b 

i-----8 ft 2 ft-1 
----1 

--- I 
--- I --- A, 

(b) 

Support Reactions. Here we will consider segment BC, but first we 
must find the force components at pin A. The free-body diagram of the 
entire beam is shown in Fig. 7- 5b. Since member BD is a two-force 
member, like member CD in Example 7.2, the force at B has a known 
direction, Fig. 7- 5b. We have 

~+IMA = O; (900lb)(2ft) - (F8 vsin30°)10ft = 0 F8 v = 360lb 

Free-Body Diagram. Using this result , the free-body diagram of 
segment BC is shown in Fig. 7- 5c. 

Equations of Equilibrium. 

~IF, = O; Ne - (360 lb) cos 30° = 0 

+f IFy = 0; 

~+IMc = O; 

Ne = 312lb 

(360 lb) sin 30° - Ve = 0 

Ve = 180 lb 

Mc - (360 lb) sin 30°(2 ft) = O 

Mc = 360 lb · ft 

Ans. 

Ans. 

Ans. 
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I EXAMPLE 7.4 

Determine the resultant internal loadings acting on the cross section at B 
of the pipe shown in Fig. 7-&1. End A is subjected to a vertical force of 
50 N, a horizontal force of 30 N, and a couple moment of70 N · m. Neglect 
the pipe's mass. 

SOLUTION 

The problem can be solved by considering segment AB, so we do not 
need to calculate the support reactions at C. 

Free·Body Diagram. The free-body diagram of segment AB is 
shown in Fig. 7-6b, where the x, y, z axes are established at B. The 
resultant force and moment components at the section are assumed 
to act in the positive coordinate directions and to pass through the 
centroid of the cross-sectional area at B. 

Equations of Equilibrium. Applying the six scalar equations of 
equilibrium, we have* 

IR. = O· . t , 

If',, = O; 

2.Fz = O; 

2.(Ms)y = O; 

(Fs)y + 30N = 0 

(Fs)z - 50 N = 0 

(Fs)x = 0 

(Fs)y = -30 N 

(Fs)z = SON 

(Ms)x + 70 N · m - 50 N (0.5 m) = 0 

(Ms)x = -45 N · m 

(Ms)y + 50 N (1.25 m) = 0 

(Ms)y = -62.5 N · m 

(Ms) z + (30 N)(l.25) = 0 

(Ms)z = -37.5 N · m 

Ans . 

Ans. 

Ans. 

Ans. 

Ans. 

Ans. 

NOTE: What do the negative signs for (Fs)Y' (Ms}" (Ms)y, and (Ms)z 
indicate? The normal force Ns = I (Fs) v I = 30 N, whereas the shear 
force is Vs = V(0)2 + (50)2 = 50 N. Also, the torsional moment is 
Ts = I (Ms)yl = 62.5 N · m, and the bending moment is Ms = 

V ( 45)2 + (37.5)2 = 58.6 N · m. 

*The magnimde of each moment about the x, y , or z axis is equal to the magnitude 
of each force times the perpendicular distance from the axis to the line of action of 
the force. The direction of each moment is detem1ined using the right-hand rule, with 
positive moments (thumb) directed along the positive coordinate axes. 

(a) 

(b) 

Fig. 7-6 
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PRELIMINARY PROBLEM 

P7-1. In each case, explain how to find the resultant internal 
loading acting on the cross section at point A. Draw all 
necessary free-body diagrams, and indicate the relevant 
equations of equilibrium. Do not calculate values. The lettered 
dimensions, angles, and loads are assumed to be known. 

a 

D 

A 
f!--:------l!f------T---~1c 
1---20---1--a-l-a-I 

a 

B 

p 

(a) 

IV 

• 
A 

(b) 

c 

a 

p 

81., •P. -i~a~-1 C _j~ a p 

(c) 

Prob.P7-1 

0 

(d) 

(e) 

/" -c 

3a I 

I 
--·l 

1o--a-I B 

' 
p 

(f) 

' 

IA • 

D 

-

p 

c 

-r 
a 

l 
-I 

a 

I 
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FUNDAMENTAL PROBLEMS 

.'7-1. Determine the internal normal force, shear force, 
and bending moment at point C in the beam. 

IOkN 

60kN·m 

Prob. l 7-1 

F7-2. Determine the internal normal force, shear force, 
and bending moment at point C in the beam. 

OON/ 200N/m 

kl i I (111JI!111111 
A • IB 

I _JC ~ 
l-1.sm 1.sm-l 

Prub. 1-2 

17-3. Determine the internal normal force, shear force, 
and bending moment at point C in the beam. 

20 kN/m 

....... 
~2 m~l-2 m-l-2 m-l 

Prob. 17-3 

17-4. Determine the internal normal force, shear force, 
and bending moment at point C in the beam. 

lO k N/m 

A B , 1c -
i---3 m----3 m-----1 

Prob. •'7-4 

F7-5. Determine the internal normal force, shear force, 
and bending moment al point C in the beam. 

300 lb/ft 

i>r. .... I / -.,, 

.'7-6. Determine the internal normal force, shear force, 
and bending moment at point C in the beam. 

3m 

_L lf]):o=~ 
1° 2m-l-2 m=-l-2m-

Prob. F7-6 
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PROBLEMS 

7-1. The shaft is supported by a smooth thrust bearing 
at B and a journal bearing at C. Determine the resultant 
internal loadings acting on the cross section at £. 

E C 

4ftj-4ft -

4001b 

8001b 

Prob. 7-1 

7-2. Determine the resultant internal normal and shear 
force in the member at (a) section a-a and (b) section b-b, 
each of which passes through point A. The 500-lb load is 
applied along the centroidal axis of the member. 

a b 

300 

SOOJb .---1- -+---.SOOlb 

A 
a 

Prob. 7-2 

7-3. Determine the resultant internal loadings acting on 
section b-b through the centroid, point Con the beam. 

Prob. 7-3 

*7-4. The shaft is supported by a smooth thrust bearing 
at A and a smooth journal bearing at B. Determine the 
resultant internal loadings acting on the cross section at C. 

600N/m 

B 

c 

lm -Lsml sm 
900N 

Prob. 7-4 

7-5. Determine the resultant internal loadings acting on 
the cross section at point B. 

60 lb/ft 

A 

-+------12 ft ------

Prob. 7-5 

7-6. Determine the resultant internal loadings on the 
cross section at point D. 

7-7. Determine the resultant internal loadings at cross 
sections at points E and Fon the assembly. 

1--1.S m ---1 

Probs. 7-617 
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*7-8. The beam supports the distributed load shown. 
Determine the resultant internal loadings acting on the cross 
section at point C. Assume the reactions at the supports A 
and B are vertical. 

7-9. The beam supports the distributed load shown. 
Determine the resultant internal loadings acting on the cross 
section at point D. Assume the reactions at the supports A 
and B are vertical. 

4kN/m 

A~::=::==-:~:...:=::=::=::=::=~::=:::::;;~B 

1- t.5 m-·1--C-- 3 m _J_~5 m -1 
Probs. 7-S/9 

7-10. The boom DF of the jib crane and the column DE 
have a uniform weight of SO lb/ft.Uthe hoist and load weigh 
300 lb, determine the resultant internal loadings in the crane 
on cross sections at points A. 8. and C. 

-.---J2.D',.E:::';'j======;=. Ar= F 

5 ft 

-+----+f 
300 lb 

7 ft 

E 

Prob. 7-10 

7 .2 INTERNAL RESULTANT LOADINGS 323 

7-11. Determine the resultant internal loadings acting on 
the cross sections at points D and £of the frame. 

*7-ll. Determine the resultant internal loadings acting 
on the cross sections at points F and G of the frame. 

T 
4 ft 

l 

150lb 

Probs. 7-11112 

7-13. The blade of the hacksaw is subjected to a pretension 
force of F= 100 N. Determine the resultant internal loadings 
acting on section a-a at point D. 

7-14. The blade oft he hacksaw is subjected to a pretension 
force of F= 100 N. Determine the resultant internal loadings 
acting on section b-b at point D. 

a 

-225mm-
300 b -.. 

Probs. 7-13/14 
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7-15. The beam supports the triangular distributed load 
shown. Determine the resultant internal loadings on the 
cross section at point C. Assume lhe reactions at the supports 
A and B are vertical. 

*7-16. The beam supports the dislributed load shown. 
Determine the resultant internal loadings on the cross 
sections at points D and £. Assume the reactions at the 
supports A and B are vertical. 

800 lb/ft 

C E 
--- 11---1-6 n-l--·1---1 

6 ft 6 fl 4.5 ft 4.5 ft 

Probs. 7- 15/16 

7-17. The shaft is supported at its ends by two bearings 
A and B and is subjected to lhe forces applied to the pulleys 
fixed to the shaft. Determine the resultant internal loadings 
acting on the cross section at point D. The 400-N forces act in 
the - z direction and the 200-N and 80-N forces act in the +y 
direction. The journal bearings at A and B exert only y and z 
components of force on the shaf1. 

y 

x 

Prob. 7-17 

7-18. The shaft is supported at ils ends by two bearings 
A and Band is subjected to the forces applied to lhe pulleys 
fixed to the shaft. Determine the resultant internal loadings 
acting on the cross section at point C. The 400-N forces act 
in the - z dir ection and the 200-N and 80-N forces act in the 
+y direction. The journal bearings at A and B exert only y 
and z components of force on the shaf1. 

y 

x 

Prob. 7-18 

7-19. The hand crank that is used in a press bas the 
dimensions shown. Determine the resultant internal 
loadings acting on the cross section at point A if a vertical 
force of 50 lb is applied to the handle as shown. Assume the 
crank is fLxed to the shaft at B. 

8 

y 

501b 

Prob. 7-19 
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*7- 20. Determine the resultant internal loadings acting on 
the cross section at point C in the beam. The load D has a 
mass of 300 kg and is being hoisted by the motor M with 
constant velocity. 

7- 2L Determine the resultant internal loadings acting on 
the cross section at point E. The load D has a mass of 300 kg 
and is being hoisted by the motor M with constant velocity. 

1-201-J-201-1-201-J 

0.101 I 0.101 I 
• 

E C A 

L 101-i- 1.501 -

D 

Probs. 7- 20/21 

7- 22. The metal stud punch is subjected to a force of 120 Non 
the handle. Determine the magnitude of the reactive force at 
the pin A and in the short link BC. Also, determine the resultant 
internal loadings acting on the cross section at point D. 

7- 23. Determine the resultant internal loadings acting on the 
cross section at point E of the handle arm, and on the cross 
section of the short link BC. 

120N 

Probs. 7- 22123 

7 .2 INTERNAL RESULTANT LOADINGS 325 

*7- 24. Determine the resultant internal loadings acting 
on the cross section at point C. The cooling unit has a total 
weight of 52 kip and a center of gravity at G. 

F 

A c B 
II---- 3 ft ---~---- 3 ft -------

• 

Prob. 7-24 

7- 25. Determine the resultant internal loadings acting on 
the cross section at points B and C of the curved member. 

A 

500 Jb 

Prob. 7-25 
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Fig. 7-7 

x 

(a) 

z 
I 

7.3 STRESS 
It was stated in Section 7.2 that the force and moment acting at a specified 
point 0 on the sectioned area of the body, Fig. 7- 7, represents the 
resultant effects of the distribution of loading that acts over the 
sectioned area, Fig. 7- 8a. Obtaining this distribution is of primary 
importance in mechanics of materials. To solve this problem it is first necessary 
to establish the concept of stress. 

We begin by considering the sectioned area to be subdivided into 
small areas, such as dA shown in Fig. 7- 8a. As we reduce dA to a smaller 
and smaller size, we will make two assumptions regarding the 
properties of the material. We will consider the material to be 
continuous, that is, to consist of a continuum or uniform distribution of 
matter having no voids. Also, the material must be cohesive, meaning 
that all portions of it are connected together, without having breaks, 
cracks, or separations. A typical finite yet very small force dF, acting on 
dA , is shown in Fig. 7-8a. This force, like all the others, will have a 
unique direction, but to compare it with all the other forces, we will replace 
it by its three components, namely, d F., d F>" and d Fz. As ~A approaches 
zero, so do dF and its components; however, the quotient of the force and 
area will approach a finite limit. This quotient is called stress, and 
it describes the intensity of the internal force acting on a specific plane 
(area) passing through a point. 

', 
'', 6F 

' ' ' ' 6F, : 6F 

y 
x 

\ / 
~

\ 

(b) 

Fig. 7-8 

y 
x 

y 

(c) 
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Normal Stress. The intensity of the force acting normal to ~A is 
referred to as the normal stress, a (sigma). Since dFz is normal to the 
area then 

(7- 1) 

If the normal force or stress "pulls" on dA as shown in Fig. 7-8a, it is 
tensile stress, whereas if it "pushes" on dA it is compressive stress. 

Shear Stress. The intensity of force acting tangent to ~A is called the 
shear stress, -r (tau). Here we have two shear stress components, 

. dfr 
'T = Jim --
zx aA~OdA 

(7-2) 

The subscript notation z specifies the orientation of the area aA, 
Fig. 7- 9, and x and y indicate the axes along which each shear stress acts. 

General State of Stress. If the body is further sectioned by planes 
parallel to the x- z plane, Fig. 7-8b, and the y- z plane, Fig. 7-8c, we can 
then "cut out" a cubic volume element of material that represents the 
state of stress acting around a chosen point in the body. This state of 
stress is then characterized by three components acting on each face of 
the element, Fig. 7- 10. 

Units. Since stress represents a force per unit area, in the International 
Standard or SI system, the magnitudes of both normal and shear stress 
are specified in the base units of newtons per square meter (N/m2) . This 
combination of units is called a pascal (1 Pa = 1 N /m2

), and because it is 
rather small, prefixes such as kilo- (103) , symbolized by k, mega- (106) , 

symbolized by M, or giga- (109), symbolized by G, are used in engin eering 
to represent larger, more realistic values of stress.* In the Foot-Pound
Second system of units, engineers usually express stress in pounds per 
square inch (psi) or kilopounds per square inch (ksi), where 1 kilopound 
(kip) = 1000 lb. 

*Sometimes stress is expressed in units of N/mm2 , where 1 mm = 10-3 m. However, in 
the SJ system, prefixes are not allowed in the denominator of a fraction, and therefore it 
is better to use the equivalent 1 N/mm2 = 1 MN/m2 = 1 MPa. 
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z 

I 
u , 

'Tzy ----y 
Fig.7-9 

y 

Fig. 7-10 
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7.4 AVERAGE NORMAL STRESS IN AN 
AXIALLY LOADED BAR 

We will now determine the average stress distribution acting over the 
cross-sectional area of an axially loaded bar such as the one shown in 
Fig. 7- lla. Specifically, the cross section is the section taken perpendicular 
to the longitudinal axis of the bar, and since the bar is prismatic all cross 
sections are the same throughout its length. Provided the material of the 
bar is both homogeneous and isotropic, that is, it has the same physical 
and mechanical properties throughout its volume, and it has the same 
properties in all directions, then when the load P is applied to the bar 
through the centroid of its cross-sectional area, the bar will deform 
uniformly throughout the central region of its length, Fig. 7- llb. 

Realize that many engineering materials may be approximated as 
being both homogeneous and isotropic. Steel, for example, contains 
thousands of randomly oriented crystals in each cubic millimeter of its 
volume, and since most objects made of this material have a physical size 
that is very much larger than a single crystal, the above assumption 
regarding the material's composition is quite realistic. 

Note that anisotropic materials, such as wood, have different properties 
in different directions; and although this is the case, if the grains of wood 
are oriented along the bar's axis (as for instance in a typical wood board), 
then the bar will also deform uniformly when subjected to the axial load P. 

Average Normal Stress Distribution. If we pass a section 
through the bar, and separate it into two parts, then equilibrium requires 
the resultant normal force Nat the section to be equal to P, Fig. 7- llc. 
And because the material undergoes a uniform deformation, it is necessary 
that the cross section be subjected to a constant normal stress distribution. 

p 

p 

,t_ 

.._ .... 
i i 
p p 

(a) (b) 

~ 

Region of 
uniform 
deformation 
of bar 

Fig. 7-11 

N =P 

Cross-sectional 
area 

i External force 

p 

(c) 
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7.4 AVERAGE NORMAL STRESS IN AN AXIAUY LOADED BAR 329 

As a result, each smaU area 6.A on the cross section is subjected to a 
force 6.N = u 6.A , Fig. 7-lld, and the sum of these forces acting over 
the entire cross-sectional area must be equivalent to the internal resultant 
force P at the section. U we let 6.A ~ dA and therefore 6.N ~ dN, then, 
recognizing u is constant, we have 

N = CTA 

(7-3) 

H ere 

CT= average normal stress at any point on the cross-sectional area 

N =internal resultant normal force, which acts through the centroid of the 
cross-sectional area. N is determined using the method of sections 
and the equations of equilibrium, where for this case N = P. 

A =cross-sectional area of the bar where CT is determined 

Equilibrium The stress distribution in Fig. 7- 11 indicates that only a 
normal stress exists on any small volume element of material located at 
each point on the cross section. Thus, if we consider vertical equilibrium 
of an element of material and then apply the equation of force 
equilibrium to its free-body diagram, Fig. 7-12, 

'i.F. = O· z , CT(M) - CT'(M) = 0 

u = u' 

uM 
u 

r f 

L 
CT 

Stress on element Free-body diagram 

Fig. 7-U 

z 

I 
N 

y 

x 

(d) 

Fig. 7-11 (cont.) 
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This steel tie rod is used as a hanger to 
suspend a portion of a staircase, and as 
a result it is subjected to tensile stress. 

N 
N 

t N i 
U= A 

qi a 
t 

i t p 
p 

Tension Compression 

Fig. 7-13 

In other words, the normal stress components on the element must be 
equal in magnitude but opposite in direction. Under this condition the 
material is subjected to uniaxial stress, and this analysis applies to 
members subjected to either tension or compression, as shown in 
Fig. 7- 13. 

Although we have developed this analysis for prismatic bars, this 
assumption can be relaxed somewhat to include bars that have a slight 
taper. For example, it can be shown, using the more exact analysis of the 
theory of elasticity, that for a tapered bar of rectangular cross section, 
where the angle between two adjacent sides is 15°, the average normal 
stress, as calculated by u = N /A, is only 2.2°/o less than its value found 
from the theory of elasticity. 

Maximum Average Normal Stress. For our analysis, both the 
internal force N and the cross-sectional area A were constant along the 
longitudinal axis of the bar, and as a result the normal stress u = N /A is 
also constllnt throughout the bar's length. Occasionally, however, the bar 
may be subjected to several external axial loads, or a change in its cross
sectional area may occur. As a result, the normal stress within the bar 
may be different from one section to the next, and, if the maximum 
average normal stress is to be determined, then it becomes important to 
find the location where the ratio N /A is a maximum. Example 7.5 
illustrates the procedure. Once the internal loading throughout the bar is 
known, the maximum ratio N /A can then be identified. 
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IMPORTANT POINTS 

• When a body subjected to external loads is sectioned, there is a 
distribution of force acting over the sectioned area which holds 
each segment of the body in equilibrium. The intensity of this 
internal force at a point in the body is referred to as stress. 

• Stress is the limiting value of force per unit area, as the area 
approaches zero. For this definition, the material is considered to 
be continuous and cohesive. 

• The magnitude of the stress components at a point depends upon 
the type of loading acting on the body, and the orientation of the 
element at the point. 

• When a prismatic bar is made of homogeneous and isotropic 
material, and is subjected to an axial force acting through the 
centroid of the cross-sectional area, then the center region of the 
bar will deform uniformly. As a result, the material will be 
subjected only to normal stress. This stress is uniform or averaged 
over the cross-sectional area. 

PROCEDURE FOR ANALYSIS 

The equation <T = N /A gives the average normal stress on the 
cross-sectional area of a member when the section is subjected to 
an internal resultant normal force N. Application of this equation 
requires the following steps. 

Internal Loading. 

• Section the member perpendicular to its longitudinal axis at 
the point where the normal stress is to be determined, and 
draw the free-body diagram of one of the segments. Apply the 
force equation of equilibrium to obtain the internal axial force 
N at the section. 

Average Normal Stress. 

• Determine the member's cross-sectional area at the section 
and calculate the average normal stress u = N / A. 

• It is suggested that u be shown acting on a small volume element 
of the material located at a point on the section where stress is 
calculated. To do this, first draw u on the face of the element 
coincident with the sectioned area A. Here u acts in the same 
direction as the internal force N since all the normal stresses on 
the cross section develop this resultant. The normal stress u on 
the opposite face of the element acts in the opposite direction. 
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EXAMPLE 7.5 
~ -

N(kN) 

30 
22 
12 

(c) 

35mm 5.7 MPa 

(d) 

Fig. 7-14 

The bar in Fig. 7- 14a has a constant width of 35 mm and a thickness of 
10 mm. Determine the maximum average normal stress in the bar when 
it is subjected to the loading shown. 

A _L 
B 9kN c 4 kN D 

12kN 22kN _,, 
~ 

9kN 4 kN 
35mm 

(a) 

12 kN II ~ ,QJ .i .. NAB= 12kN 

9kN 

12kN ~ 
N8c = 30kN 

9kN 

9kN 4 kN 

12 kN II ~I 
O!iN 
~ Nc0 =22kN 

4kN 

x (b) 

SOLUTION 

Internal Loading. By inspection, the internal axial forces in regions 
AB, BC, and CD are all constant yet have different magnitudes. Using 
the method of sections, these loadings are shown on the free-body 
diagrams of the left segments shown in Fig. 7- 14b. *The normal force 
diagram, which represents these results graphically, is shown in 
Fig. 7- 14c. The largest loading is in region BC, where N8 c = 30 kN. 
Since the cross-sectional area of the bar is constant, the largest average 
normal stress also occurs within this region of the bar. 

Average Normal Stress. Applying Eq. 7- 3, we have 

30(HY) N 
(0.035 m)(0.010 m) = 

85·7 MPa Ans. 

The stress distribution acting on an arbitrary cross section of the bar 
within region BC is shown in Fig. 7- 14d. 

*Show that you get these same results using the right segments. 
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I EXAMPLE 7.6 

The 80-kg lamp is supported by two rods AB and BC as shown in 
Fig. 7- 15a. If AB has a diameter of 10 mm and BC has a diameter of 
8 mm, determine the average normal stress in each rod. 

(a) 

Fig. 7-15 

SOLUTION 

y 

Fsc 

80(9.81) = 784.8 N 

(b) 

Internal Loading. We must first determine the axial force in each rod. 
A free-body diagram of the lamp is shown in Fig. 7-15b. Applying the 
equations of force equilibrium, 

~ 2F, = O; F8c( ~) - F8A cos 60° = 0 

+ f2Fy = O; F8c( ~) + F8 Asin60° - 784.8N = 0 

F8 c = 395.2 N, FBA = 632.4 N 

By Newton's third Jaw of action, equal but opposite reaction, these 
forces subject the rods to tension throughout their length. 

Average Normal Stress. Applying Eq. 7- 3, 

asc = _Fs_c = 395.2 N = 7.86 MPa 
Ase ?T(0.004 m)2 Ans. 

FBA 632.4 N 
aBA = - = ( )2 = 8.05MPa 

AsA 1T 0.005 m 
Ans. 

The average normal stress distribution acting over a cross section of 
rod AB is shown in Fig. 7- 15c, and at a point on this cross section, an 
element of material is stressed as shown in Fig. 7- 15d. 

8.05 MPa 

8.05 MPa 

(d) 
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EXAMPLE 7.7 - -
Member AC shown in Fig. 7- 16ll. is subjected to a vertical force of 3 kN. 
Determine the position x of this force so that the average compressive 
stress at the smooth support C is equal to the average tensile stress in the 
tie rod AB. The rod has a cross-sectional area of 400 mm2 and the contact 
area at C is 650 mm2

. 

x-

A 

c 

(a) (b) 

Fi.g. 7-16 

SOLUTION 

Internal Loading. The forces at A and C can be related by considering 
the free-body diagram of member AC, Fig. 7- 16b. There are three unknowns, 
namely, FA 8 , Fe, and x. To solve we will work in units of newtons and 
millimeters. 

+f 2£,, = 0; 

C+2MA = O; 

FAB + Fe - 3000 N = 0 

-3000 N(x) + Fc(200 mm) = 0 

(1) 

(2) 

Average Normal Stress. A necessary third equation can be written 
that requires the tensile stress in the bar AB and the compressive stress 
at C to be equivalent, i.e., 

FAB Fe 
a = = 

400 mm2 650 mm2 

Fe = 1.625FA8 

Substituting this into Eq. 1, solving for FAB , then solving for Fe, we obtain 
FAB = 1143 N 

Fe = 1857N 
The position of the applied load is determined from Eq. 2, 

x = 124mm Ans. 

As required, 0 < x < 200 mm. 
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7.5 AVERAGE SHEAR STRESS 
Shear stress has been defined in Section 7.3 as the stress component that 
acts in the plane of the sectioned area. To show how this stress can develop, 
consider the effect of applying a force F to the bar in Fig. 7- 17a. If F is 
Large enough, it can cause the material of the bar to deform and fail along 
the planes identified by A 8 and CD. A free-body diagram of the 
unsupported center segment of the bar, Fig. 7-17b, indicates that the shear 
force V = F/2 must be applied at each section to hold the segment in 
equilibrium. The average shear stress distributed over each sectioned area 
that develops this shear force is defined by 

Here 

(7--4) 

Tavg = average shear stress at the section, which is assumed to be the 
same at each point on the section 

V =internal resultant shear force on the section determined from 
the equations of equilibrium 

A =area of the section 

The distribution of average shear stress acting over the sections is 
shown in Fig. 7-17c. Notice that T3 ,.8 is in the same direction as V, since 
the shear stress must create associated forces, all of which contribute to 
the internal resultant force V. 

The loading case discussed here is an example of simple or direct 
shear, since the shear is caused by the direct action of the applied load F. 
This type of shear often occurs in various types of simple connections 
that use bolts, pins, welding material, etc. In all these cases, however, 
application of Eq. 7--4 is only approximate. A more precise investigation 
of the shear-stress distribution over the section often reveals that 
much larger shear stresses occur in the material than those predicted 
by this equation. A lthough this may be the case, application of Eq. 7--4 
is generally acceptable for many problems involving the design or 
analysis of small e lements. For example, engineering codes allow its 
use for determining the size or cross section of fasteners such as bolts, 
and for obtaining the bonding strength of glued joints subjected to 
shear loadings. 
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F 

! c 

(a) 

F 

i 
[ 

I 
v v 

(b) 

F 

h 
1 t~Tavg 
I I 
I I 

(c) 

Fig. 7-17 

The pin A used to connect the 
linkage of this tractor is subjected to 
double shear because shearing 
stresses occur on the surface of the 
pin at 8 and C. See Fig. 7-19c. 
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f Section plane 

-----v 
0 

(a) 

'T --· 

'T 

Pure shear 

(d) 

11.x 

11.z 

z 

·-----~ r Section plane ,.- A>, ( 
7 :.y A __ ,. uX 

l r, 
; •. .,,__, -·~-)' 

• 'T .;:y 

(b) 

Fig. 7-18 

z 

11.y 

Free-body diagram 

(c) 

Shear Stress Equilibrium. Let us consider the block in 
Fig. 7- 18a, which has been sectioned and is subjected to the internal 
shear force V. A volume element taken at a point located on its surface 
will be subjected to a direct shear stress 7:ry> as shown in Fig. 7- 18b. 
However, force and moment equilibrium of this element will also require 
shear stress to be developed on three other sides of the element. To show 
this, it is first necessary to draw the free-body diagram of the element, 
Fig. 7- 18c. Then force equilibrium in they direction requires 

~F. = O· y , 

1
rorce

1 
stress area 
n1 I 
'Tzy (~x~y) - 'T~y ~x~y = 0 

'Tzy = 'T~y 
In a similar manner, force equilibrium in the z direction yields 'Tyz = T~z· 

Fmally, taking moments about the x axis, 
moment 
I I 

force amt 

s~rea L-, 
111 ·1 n 

~M = O· x , -Tzy (~x ~y) ~z + 'Tyz (~x ~z) ~y = 0 

In other words, 

and so, all four shear stresses must have equal magnitude and be directed 
either toward or away from each other at opposite edges of the element, 
Fig. 7- 18d. This is referred to as the complementary property of shear, 
and the element in this case is subjected to pure shear. 
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IMPORTANT POINTS 

• If two parts are thin or small when joined together, the applied 
loads may cause shearing of the material with negligible 
bending. If this is the case, it is generally assumed that an 
average shear stress acts over the cross-sectional area. 

• When shear stress T acts on a plane, then equilibrium of a 
volume element of material at a point on the plane requires 
associated shear stress of the same magnitude act on the three 
other sides of the element. 

PROCEDURE FOR ANALYSIS 

The equation Tavg = V /A is used to determine the average shear 
stress in the material. Application requires the following steps. 

Internal Shear. 

• Section the member at the point where the average shear stress 
is to be determined. 

• Draw the necessary free-body diagram, and calculate the 
internal shear force V acting at the section that is necessary to 
hold the part in equilibrium. 

Average Shear Stress. 

• Determine the sectioned area A , and then calculate the 
average shear stress Tavg = V / A. 

• It is suggested that Tavg be shown on a small volume element of 
material located at a point on the section where it is determined. 
To do this, first draw Tavg on the face of the element, coincident 
with the sectioned area A. This stress acts in the same direction 
as V. The shear stresses acting on the three adjacent planes can 
then be drawn in their appropriate directions following the 
scheme shown in Fig. 7-18d. 
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EXAMPLE 7.8 - -

A t 30kN5 AB 
• y ! ~4 
~ 9 

A, ~2m-l-4m-1 
(b) 

0 

(c) 

(d) 

Fig. 7-19 

Determine the average shear stress in the 20-mm-diameter pin at A and 
the 30-mm-diameter pin at B that support the beam in Fig. 7-19a. 

SOLUTION 

Internal Loadings. The forces on the pins can be obtained by 
considering the equilibrium of the beam, Fig. 7- 19b. 

C+IMA = O; 

F~~)(6m) - 30kN(2m) = 0 Fs = 12.5 kN 

~If, = O; (12.5 kN)(~) -Ax = 0 Ax = 7.50 kN 

+ fIFy = O; A>'+ (12.5 kN)(~) - 30 kN = 0 A>' = 20 kN 

Thus, the resultant force acting on pin A is 

FA = VA;+ A~ = V(7.50 kN)2 + (20 kN)2 = 21.36 kN 

The pin at A is supported by two fixed "leaves" and so the free-body 
diagram of the center segment of the pin shown in Fig. 7- 19c has two 
shearing surfaces between the beam and each leaf. Since the force of 
the beam (21.36 kN) acting on the pin is supported by shear force on 
each of two surfaces, it is called double shear. Thus, 

VA = FA = 21.36 kN = 10.68 kN 
2 2 

In Fig. 7- 19a, note that pin Bis subjected to single shear, which occurs 
on the section between the cable and beam, Fig. 7- 19d. For this pin 
segment, 

Vs = Fs = 12.5 kN 

Average Shear Stress. 

VA 10.68(103 ) N 
(TA)avg = A = = 34.0 MPa 

A 1T(002m) 2 
4 . 

Vs 12.5(103
) N 

(Ts ).vg = - = = 17.7 MPa 
As 1T ( 0 03 m) 2 

4 . 

Ans. 

Ans. 
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EXAMPLE 7 .9 

If the wood joint in Fig. 7-20a has a thickness of 150 mm, determine the 
average shear stress along shear planes a-a and b-b of the connected 
member. For each plane. represent the state of stress on an element of 
the material. 

-tD! 
'•=200kPa -

--a a 

6kN 
(c) 6kN 

b b 

-v. 

- 3kN • 

iDt - [o 
0.1 m 0.125 m 

I 
-r6 = 160kPa~ 

(a) (d) 

F 

6 kN 

F 

(b) 

Fi.g. 7-20 
SOLUTION 

Internal Loadings. Referring to the free-body diagram of the member, 
Fig. 7-20b, 

±. lF,. = O; 6kN-F-F=O F = 3kN 

Now consider the equilibrium of segments cut across shear planes a-a 
and b-b, shown in Figs. 7-20c and 7- 20d. 

±.If,= O; 

+ ~F. = O· ~ - .r , 

Va-3kN=O 

3 kN - Vb= 0 

Average Shear Stress. 

Yi, 3(HP) N 
(Ta) avg= Aa = (0.1 m) (0.15 m) = 200 kPa 

Vb 3( 103
) N 

('Tb) avg = -A = -------- = 160 kPa 
Ji (0.125 m) (0.15 m) 

Ans. 

Ans. 

The state of stress on elements located on sections a-a and b-b is shown 
in Figs. 7-20c and 7-20d, respectively. 

-+--vb 

JkN 

] 
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PRELIMINARY PROBLEMS 

P7-2. In each case, determine the largest internal shear 
force resisted by the bolt. Include all necessary free-body 
diagrams. 

P7-4. Determine the internal normal force at section A if 
the rod is subjected to the external uniformally distributed 
loading along its length of 8 kN / m. 

1- 2m 
A ,(8 kN/m 

1---3 m ___ _, 

Prob. P7-4 

P7- S. The lever is held to the fixed shaft using the pin AB. 
(a) If the couple is applied to the lever, determine the shear 

force in the pin between the pin and the lever. 

6kN 
lOkN 

4kN 
8kN 

20kN 

(b) 

Prob. P7-2 

P7- 3. Determine the largest internal normal force in the bar. 

F 

I 

D c B A 

I I I I• lO kN 

5 kN 2kN 6kN 

Prob. P7- 3 

B 

! 0.2m~ 0.2 m t 
20N 20N 

Prob. P7- S 

P7-6. The single-V butt joint transmits the force of 5 kN 
from one bar to the other. Determine the resultant normal and 
shear force components on the face of the weld, section AB. 

SkN 

120mm 

~ 
lOOmm 5 kN v 

Prob. P7-6 
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FUNDAMENTAL PROBLEMS 

F7-7. The uniform beam is supported by two rods AB and 
CD that have cross-sectional areas of 10 mm2 and 15 mm2

, 

respectively. Determine the intensity w of the distributed 
load so that the average normal stress in each rod does not 
exceed 300 kPa. 

B D 

JV 

A l·~---- C ·- 6 m _____ ___, 

Prob. F7-7 

F7-8. Determine the average normal stress on the cross 
section. Sketch the normal stress distribution over the 
cross section. 

300 kN 

lOOmm 

Prob. F7-8 

F7-9. Determine the average normal stress on the cross 
section. Sketch the normal stress distribution over the 
cross section. 

15 kip 

1 in. 

/?~ 
4 in. 

4 in. ~--....,...::...1:.;in. 77· 
1 in. 

~ 

Prob.F7-9 

F7-10. If the 600-kN force acts through the centroid of 
the cross section, determine the location y of the centroid 
and the average normal stress on the cross section. Also, 
sketch the normal stress distribution over the cross section. 

600kN 

Prob. F7-10 

F7-1L Determine the average normal stress at points A, B, 
and C. The diameter of each segment is indicated in the figure. 

1 in. 

• I 
3 kip 

0.5 in. I 0.5 in. 

~ : 9 ki; ... I ___ »_._ ...... I: kip : ~ 2kip 
I )I 

Prob. F7-11 

F7-12. Determine the average normal stress in rod AB if the 
load has a mass of 50 kg. The diameter of rod AB is 8 mm. 

B 
0 

I 
8mm 

Prob. F7-12 
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PROBLEMS 

7- 26. The supporting wheel on a scaffold is held in place 
on the leg using a 4-mm-diameter pin. If the wheel is 
subjected to a normal force of 3 kN, determine the average 
shear stress in the pin. Assume the pin only supports the 
vertical 3-kN load. 

3kN 

Prob. 7- 26 

7- 27. Determine the largest intensity w of the uniform 
loading that can be applied to the frame without causing 
either the average normal stress or the average shear stress 
at section b-b to exceed u = 15 MPa and -r = 16 MPa, 
respectively. Member CB has a square cross section of 
30 mm on each side. 

B 

Prob. 7- 27 

*7- 28. The bar has a cross-sectional area A and is 
subjected to the axial load P. Determine the average normal 
and average shear stresses acting over the shaded section, 
which is oriented at (J from the horizontal. Plot the variation 
of these stresses as a function of 9 ( 0 < 9 < 90°). 

Prob. 7-28 

7-29. The small block has a thickness of 0.5 in. If the stress 
distribution at the support developed by the load varies as 
shown, determine the force F applied to the block, and the 
distanced to where it is applied. 

F 

__..d--\ 
\ 1.5 in. 
y-

Prob. 7-29 

7- 30. If the material fails when the average normal stress 
reaches 120 psi, determine the largest centrally applied 
vertical load P the block can support. 

7- 31. If the block is subjected to a centrally applied force of 
P = 6 kip, determine the average normal stress in the 
material. Show the stress acting on a differential volume 
element of the material. 

1 . ~lin. 
~ . 4 in. P . 

1 uzs ! 12m. 

~in. 

Probs. 7- 30/31 
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*7-32. The plate has a widtJ1 of0.5 m. Uthe stress distribution 
at the support varies as shown, determine the force P applied 
to the plate and the distanced lo where it is applied. 

:m=n 
"l_ 

~ 

- I u - (15.r fl) MPa_.../ 30MPa 

Prob. 7-32 

7-33. The board is subjected to a tensile force of 200 lb. 
Determine the average normal and average shear stress in 
the wood fibers, which arc oriented along plane a-a at 20° 
with the axis of the board. 

Prob. 7-33 

7-34. The boom has a uniform weight of 600 lb and is 
hoisted into position using the cable BC. Uthe cable has a 
diameter of O.S in .. plot the average normal stress in the 
cable as a function of the boom position 8 for 0° < 8 < 90°. 

Prob. 7-34 

7.5 AVERAGE SHEAR STRESS 343 

7- 35. Determine the average normal stress in each of the 
20-mm-diameter bars of the truss. Set P = 40 kN. 

*7-36. If the average normal stress in each of the 
20-mm-<iiameter bars is not allowed to exceed 150 MPa. 
determine the maximum force P that can be applied to joint C. 

7-37. Determine the maximum average shear stress in pin 
A of the truss. A horizontal force of P = 40 kN is applied to 
joint C. Each pin has a diameter of 25 mm and is subjected 
to double shear. 

c 

1----- 2 m - ----1 

Probs. 7-35136137 

7- 38. If P = S kN, determine the average shear stress in 
the pins at A, B, and C. All pins are in double shear, and 
each has a diameter of 18 mm. 

7-39. Determine the maximum magnitude P of the loads 
the beam can support if the average shear stress in each pin 
is not to exceed 80 MPa. All pins arc in double shear. and 
each has a diameter of 18 mm. 

6P 
p 3P p 

0.5 m 0.5 m 
~ 

8 

--t.5m--2m--l.5m--1 

A 

c 

Probs. 7-38139 
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*7-40. The column is made of concrete having a density 
of 2.30 Mg/ m3. At its top B it is subjected to an axial 
compressive force of 15 kN. Determine the average normal 
stress in the column as a function of the distance z measured 
from its base. 

15kN 

4m 

z 

x }' 

Prob. 7-40 

7-41. The beam is supported by two rods AB and CD that 
have cross-sectional areas of 12 mm2 and 8 mm2, respectively. 
If d = 1 m, determine the average normal stress in each rod. 

7-42. The beam is supported by two rods AB and CD that 
have cross-sectional areas of 12 mm2 and 8 mm2, respectively. 
Determine the position d of the 6-kN load so that the average 
normal stress in each rod is the same. 

6 kN 

-d-! 
A ll.._..~~~~~~~~~----'I C 

1------ 3 m- -----1 
Probs. 7-4V42 

7-43. UP= 15 kN, determine the average shear stress in 
the pins at A. B. and C. All pins are in double shear. and 
each has a diameter of 18 mm. 

T P 4P 4P 2P 
0.Sm I + 0.5m 

- -1 m-+-t.5 m 1.5 m-

B 

' Prob. 7-43 

*7-44. The railcar docklight is supported by the tin-diameter 
pin at A. If the lamp weighs 4 lb, and the extension arm A 8 has 
a weight of 0.5 lb/ft, determine the average shear stress in the 
pin needed to support the lamp. Hint: The shear force in the pin 
is caused by the couple moment required for equilibrium at A. 

1----- --3 ft -------1 

A 

1.25 in. 

Prob. 7-44 

7-45. The plastic block is subjected to an axial compressive 
force of 600 N. Assuming that the caps at the top and bottom 
distribute t he load uniformly throughout the block, 
determine Uhe average normal and average shear stress 
acting along section a-{I. 

a 

a 

150mm 

J---+---+-11 
Zfso mm 

1·"---1..,.....-1-f 
~O mm' 50 mn'1 

I 
600N 

Prob. 7-45 
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7-46. The two steel members arc joined together using a 
30° scarf weld. Determine the average normal and average 
shear stress resisted in the plane of the weld. 

15kN 

30" I L..1....L.. 20 mm 

40 mn1-

15kN 

Prob. 7-46 

7-47. The bar has a cross-sectional area of 400(1o-6) m2. If 
it is subjected to a triangular axial distributed loading along 
its length which is 0 at x = 0 and 9 kN/m at x = 1.5 m, and 
to two concentrated loads as shown, determine the average 
normal stress in the bar as a function of x for 0 < x < 0.6 m. 

*7-48. The bar has a cross-sectional area of 400(10-6) m2. 

Hit is subjected to a uniform axial distributed loading along 
its length of 9 kN/m, and to two concentrated loads as 
shown, determine the average normal stress in the bar as a 
function of x for 0.6 m < x < 1.5 m. 

8 kN 
-.. ___.. --+- ___.. ____. _.. ~ 4 kN 

l::::=======~~----...,,,,,,:1---+--: -1- - I - - --
o.6 m - f- 0.9 m ---1 

Probs. 7-47/48 

7.5 A VERAGE SHEAR STRESS 34 5 

7-49. The two members used in the construction of an 
aircraft fuselage are joined together using a 300 fish·mouth 
weld. Determine the average normal and average shear 
stress on the plane of each weld. Asswne each inclined 
plane supports a horizontal force of 400 lb. 

1.5 in. 30" 

0 .. 800lb 

Prob. 7-49 

7-50. The 2-Mg concrete pipe has a center of mass at 
point G. If it is suspended from cables AB and AC, 
determine the average normal stress in the cables. The 
diameters of A 8 and AC are 12 mm and 10 mm. respectively. 

7-51. The 2-Mg concrete pipe has a center of mass at 
point G. If it is suspended from cables AB and AC, 
determine the diameter of cable AB so that the average 
normal stress in this cable is the same as in the 
10-mrn-diameter cable AC. 

Probs. 7-50/51 

www.konkur.in



346 CHAPTER 7 S TRESS AND STRAIN 

Cranes are often supported using 
bearing pads to give them stability. Care 
must be taken not to crush the 
supporting surface, due to the large 
bearing stress developed between the 
pad and the surface. 

7. 6 ALLOWABLE STRESS DESIGN 
To ensure the safety of a structural or mechanical member, it is necessary 
to restrict the applied load to one that is less than the load the member 
can fully support. There are many reasons for doing this. 

• The intended measurements of a structure or machine may not be 
exact, due to errors in fabrication or in the assembly of its component 
parts. 

• Unknown vibrations, impact, or accidental loadings can occur that 
may not be accounted for in the design. 

• Atmospheric corrosion, decay, or weathering tend to cause materials 
to deteriorate during service. 

• Some materials, such as wood, concrete, or fiber-reinforced 
composites, can show high variability in mechanical properties. 

One method of specifying the allowable load for a member is to use a 
number called the factor of safety (F.S.). It is a ratio of the failure load 
Frail to the allowable load Fallow, 

F.S. = Frail 

Fallow 

Here Frail is found from experimental testing of the material. 

(7- 5) 

If the load applied to the member is linearly related to the stress 
developed within the member, as in the case of a = N /A and 
Tavg = V /A, then we can also express the factor of safety as a ratio of the 
failure stress afail (or Trail) to the allowable stress a,110w (or Tallow). Here the 
area A will cancel, and so, 

or 

F.S. = Ufail 

Uauow 

F.S. = Tfa;1 

Ta now 

(7-6) 

(7- 7) 
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Specific values of F.S. depend on the types of materials to be used 
and the intended purpose of the structure or machine, while accounting 
for the previously mentioned uncertainties. For example, the F.S. used 
in the design of aircraft-or space-vehicle components may be close to 1 
in order to reduce the weight of the vehicle. Or, in the case of a n uclear 
power plant, the factor of safety for some of its components may be as 
high as 3 due to uncertainties in loading or material behavior. Whatever 
the case, the factor of safety or the allowable stress for a specific case 
can be found in design codes and engineering handbooks. Design that 
is based on an allowable stress limit is called allowable stress design 
(ASD). Using this method will ensure a balance between both public 
and environmental safety on the one hand and economic considerations 
on the other. 

Simple Connections. By making simplifying assumptions 
regarding the behavior of the material, the equations a = N /A and 
Tavg = V /A can often be used to analyze or design a simple connection 
or mechanical element. For example, if a member is subjected to normal 
force at a section, its required area at the section is determined from 

N 
(7-8) A=--

a allow 

or if the section is subjected to an average shear force, then the required 
area at the section is 

v 
A=-

Tauow 
(7-9) 

Three examples of where the above equations apply are shown in 
Fig. 7-21. The first figure shows the normal stress acting on the bottom of 
a base plate. This compressive stress caused by one surface that bears 
against another is often called bearing stress. 

The area of the bolt for this lap joint 
is determined from the shear stress, 
which is largest between the plates. 

V=Px 

p 

~1 

8 

(ub) • .,.. 

Assumed uniform I 
normal stress __ _, 
distribution 

p 
A=---

~ 
The area of the column base plate 8 is detem1ined 
Crom the allowable bearing stress for the concrete. 

Assumed uniform shear stress 

The embedded length I of this rod in concrete 
can be determined using the allowable shear 

stress of the bonding glue. 

p 

'-......p 
Fig. 7- 21 

Assumed uniform 

p 
A= -

T allow 
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IMPORTANT POINT 

• Design of a member for strength is based on selecting an 
allowable stress that will enable it to safely support its intended 
load. Since there are many unknown factors that can influence 
the actual stress in a member, then depending upon the 
intended use of the member, a factor of safety is applied to 
obtain the allowable load the member can support. 

PROCEDURE FOR ANALYSIS 

When solving problems using the average normal and shear stress 
equations, a careful consideration should first be made as to choose 
the section over which the critical stress is acting. Once this section 
is determined, the member must then be designed to have a 
sufficient area at the section to resist the stress that acts on it. This 
area is determined using the following steps. 

Internal Loading. 

• Section the member through the area and draw a free-body 
diagram of a segment of the member. The internal resultant 
force at the section is then determined using the equations of 
equilibrium. 

Required Area. 

• Provided the allowable stress is known or can be determined, 
the required area needed to sustain the load at the section is 
then determined from A = P / aauow or A = V /Tallow· 

Appropriate factors of safety must be 
considered when designing cranes and 
cables used to transfer heavy loads. 
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EXAMPLE 7.10 
- -

The control arm is subjected to the loading shown in Fig. 7- 22a. 
Determine to the nearest l in. the required diameters of the steel pins 
at A and C if the factor of safety for shear is F.S. = 1.5 and the failure 
shear stress is Tea;1 = 12 ksi. 

SOLUTION 

Pin Forces. A free-body diagram of the arm is shown in Fig. 7- 22b. 
For equilibrium we have 

~ + lMe = O; FA8 ( 8 in.) - 3 kip ( 3 in. ) - 5 kip ( ~) ( 5 in. ) 

~ IF., = O; 

+ jlFy = 0; 

FAB = 3 kip 

- 3 kip - Cx + 5 kip ( ~) = 0 

Cy - 3 kip - 5 kip ( ~) = 0 

Cx = 1 kip 

Cy = 6 kip 

The pin at C resists the resultant force at C, which is 

Fe = Y ( 1 kip ) 2 + ( 6 kip ) 2 = 6.083 kip 

Allowable Shear Stress. We have 

F S = Tfail. . . , 
Tallow 

1.5 = 12 ksi; 
Tallow 

Tallow = 8 ksi 

Pin A. This pin is subjected to single shear, Fig. 7- 22c, so that 

v 
A =--· , 

Tallow 

_/dA)2 3kip dA = 0.691 in. 

Double 
shear 

B 

8 in. 

8 in. 

c 

A 

Single 
shear 

f · ' 
·~3 in. ; 1 2 in. -

i 
(a) 3 kip 

011

\ 2 = 8kip/ in2; 

Use d 
3. 

A = 410. Ans. 

Pin C. Since this pin is subjected to double shear, a shear force of 
3.041 kip acts over its cross-sectional area between the arm and each 
supporting leaf for the pin, Fig. 7- 22d. We have 

~r 1-3 in. - 2 in. -
5 kip 

A = __!'.:____. _( de)2 = 3.041 kip_ de = 0.696 in. 
Tallow' .

11
\ 2 8 kip/in2 ' 

Use d 3 . e = 410. Ans. 
6.082 kip 

~041 kip 
3.041 kip 

Pin at C 

(d} 

Fig. 7-22 

c,, 3 kip 

(b} 

3 kip 

~ 
3 kip 

Pin at A 

(c) 
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EXAMPLE 7 .11 - -

Determine the largest load P that can be applied to the bars of the lap 
joint shown in Fig. 7- 23a. The bolt has a diameter of 10 mm and an 
allowable shear stress of 80 MPa. Each plate has an allowable tensile 
stress of 50 MPa, an allowable bearing stress of 80 MPa, and an allowable 
shear stress of 30 MPa. 

SO mm 

p 

p 

2 

2 

(a) 

I 

I 
SO mm 

20mm 15mm 

Failure of plate in tension 

Actual stress 
distribution 

p 

(b) 

Assumed uniform 
stress distribution 

p 

Failure of plate in bearing caused by bolt 

(c) 

Fig. 7- 23 

SOLUTION 

To solve the problem we will determine P for each possible failure 
condition; then we will choose the smallest value of P. Why? 

Failure of the Plate in Tension. If the plate fails in tension, it will 
do so at its smallest cross section, Fig. 7- 23b. 

6 2 - p 50(lO) N/m - 2(0.02 m)(0.015 m) 

P = 30kN 

Failure of the Plate by Bearing. A free-body diagram of the top plate, 
Fig. 7- 23c, shows that the bolt will exert a complicated distribution of 
stress on the plate along the curved central area of contact with the bolt.* 
To simplify the analysis for small connections having pins or bolts 
such as this, design codes allow the projected area of the bolt to be 
used when calculating the bearing stress. Therefore, 

6 2 - p 80(lO )N/m - (0.01 m)(0.015 m) 

P = 12 kN 

*l11e material strength of a bolt or pin is generally greater than that of the plate material, 
so bearing failure of the member is of greater concern. 
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p 
V= -

2 

Failure of plate by shear 

(d} 

7 .6 ALLOWABLE STRESS DESIGN 3 51 

p 

Failure of the Plate by Shear. There is the possibility for the bolt 
to tear through the plate along the section shown on the free-body 
diagram in Fig. 7- 23d. Here the shear is V = P /2, and so 

6 2 - P/2 30(lO) N/m - (0.02 m)(0.015 m) 

P = 18 kN 

Failure of the Bolt by Shear. The bolt can fail in shear along the plane 
between the plates. The free-body diagram in Fig. 7- 23e indicates that 
V = P,so that 

80(106) N/m2 = p 
7r(0.005 m)2 

P = 6.28kN 

Comparing the above results, the largest allowable load for the 
connections depends upon the bolt shear. Therefore, 

P = 6.28kN 

V=P 

Failure of bolt by shear 

(e) 

Fig. 7-23 (cont.) 

Ans. 

p 
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EXAMPLE 7 .12 - -

The suspender rod is supported at its end by a fixed-connected circular 
disk as shown in Fig. 7- 24a. If the rod passes through a 40-mm-diameter 
hole, determine the minimum required diameter of the rod and the 
minimum thickness of the disk needed to support the 20-kN load. The 
allowable normal stress for the rod is aauow = 60 MPa, and the allowable 
shear stress for the disk is Tallow = 35 MPa. 

d 

20kN 

(a) 

SOLUTION 

Fig. 7-24 

-1 40 mm l-

l 20kN 

(b} 

Diameter of Rod. By inspection, the axial force in the rod is 20 kN. 
Thus the required cross-sectional area of the rod is 

N 
A = , 

<Ta llow 

so that 

1T 2 20(103 ) N 
- d =------
4 60(106) N/m2 

d = 0.0206 m = 20.6 mm Ans. 

Thickness of Disk. As shown on the free-body diagram in Fig. 7- 24b, 
the material at the sectioned area of the disk must resist shear stress 
to prevent movement of the disk through the hole. If this shear stress 
is assumed to be uniformly distributed over the sectioned area, then, 
since V = 20 kN, we have 

v 
A =-· , 

'Tallow 

20(103
) N 

27T(0.02 m) (t) - 35(106) N/m2 

t = 4.55(10- 3 ) m = 4.55 mm Ans. 
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7 .6 A LLOWABLE STRESS D ESIGN 3 5 3 

EXAMPLE 7 .1_:J 

The shaft shown in Fig. 7-25a is supported by the collar at C, which is 
attached to the shaft and located on the right side of the bearing at B. 
Determine the largest value of P for the axial forces at E and F so that 
the bearing stress on the collar does not exceed an allowable stress of 
(ub)a11ow = 7S MPa and the average normal stress in the shaft does not 
exceed an allowable stress of (u,)auow = SS MPa. 

A 60mm ~r-20mm 
~~~~)eP~I~~ ~"==;;;;;;;;;;;;;;;;~P~~ ._ ja 1 80mm 2P~· 3P 

E C F E C 

Axial 
Force 

(a) 

~~1:===========:--~- Position F £ C 

(c) 

SOLUTION 

(b) 

Fig. 7-25 

To solve the problem we will determine P for each possible failure 
condition. Then we will choose the smallest value. Why? 

Normal Stress. Using the method of sections, the axial load within 
region FE of the shaft is 2P, whereas the largest axial force, 3P , occurs 
within region EC, Fig. 7-25b. The variation of the internal loading is 
clearly shown on the normal-force diagram, Fig. 7- 25c. Since the cross
sectionaJ area of the entire shaft is constant, region FC is subjected to 
the maximum averge normal stress. Applying Eq. 7-8, we have 

N 2 3P 
A = Uanow' 7T (0.03 m ) = SS ( la6 ) N / m2 

P = Sl.8 kN Ans. 

Bearing Stress. As shown on the free-body diagram in Fig. 7-2Sd, 
the collar at C must resist the load of 3P, which acts over a bearing area 
of Ab= [7r(0.04 m)2 - 7T(0.03 m)2) = 2.199(10-3) m2. Thus, 

3P~~ 
c 

N ~ 2 _ W 
A = Uallow' 2.199( 10 ) m - 75(106) N/m2 

P = SS.O kN 
By comparsion, the largest load that can be applied to the shaft is 
P = 51.8 kN, since any load larger than this will cause the allowable 
normal stress in the shaft to be exceeded. 

NOTE: Here we have not considered a possible shear failure of the 
collar as in Example 7 .12. 

(d) 
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FUNDAMENTAL PROBLEMS 

F7-13. Rods AC and BC are used to suspend the 200-kg 
mass. If each rod is made of a material for which the average 
normal stress can not exceed 150 MPa, determine the 
minimum required diameter of each rod to the nearest mm. 

Prob.F7-13 

F7-14. The pin at A has a diameter of 0.25 in. If it is 
subjected to double shear, determine the average shear 
stress in the pin. 

. 1--2 ft --1--2 ft -I 

3 ft 6001b 

• 

Prob.F7-14 

F7-15. Determine the maximum average shear stress 
developed in each 3 / 4-in.-diameter bolt. 

10 kip 

5 kip 

Prob.F7-15 

F7-16. If each of the three nails has a diameter of 4 mm 
and can withstand an average shear stress of 60 MPa, 
determine the maximum allowable force P that can be 
applied to the board. 

Prob.F7-16 
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F7-17. The strut is glued to the horizontal member at 
surface AB. If the strut has a thickness of25 mm and the glue 
can withstand an average shear stress of 600 kPa, determine 
the maximum force P that can be applied to the strut. 

Prob. F7-17 

F7-18. Determine the maximum average shear stress 
developed in the 30-mm-diameter pin. 

30kN 

40 kN 

Prob. F7-18 

7.6 ALLOWABLE STRESS DESIGN 355 

F7-19. If the eyebolt is made of a material having a yield 
stress of uy = 250 MPa, determine the minimum required 
diameter d of its shank. Apply a factor of safety F.S. = 1.5 
against yielding. 

d 

30kN 

Prob. F7-19 

F7-20. If the bar assembly is made of a material having a 
yield stress of uy = 50 ksi, determine the minimum required 
dimensions h 1 and hi to the nearest 1/8 in. Apply a factor 
of safety F.S. = 1.5 against yielding. Each bar has a 
thickness of 0.5 in. 

15 kip 
30 kip 

B 15 kip 
A 

c 

Prob. F7-20 
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F7-21. Determine the maximum force P that can be 
applied to the rod if it is made of material having a yield 
stress of uy = 250 MPa. Consider the possibility that failure 
occurs in the rod and at section a-a. Apply a factor of safety 
of F.S. = 2 against yielding. 

a 

40mm 
p 

Section a-a 

Prob.F7-21 

F7-22. The pin is made of a material having a failure shear 
stress of 'Tra;i = 100 MPa. Determine the minimum required 
diameter of the pin to the nearest mm. Apply a factor of 
safety of F.S. = 2.5 against shear failure. 

M 
80 kN 

Prob.F7-22 

F7-23. If the bolt head and the supporting bracket are 
made of the same material having a failure shear stress of 
'Tra;i = 120 MPa, determine the maximum allowable force P 
that can be applied to the bolt so that it does not pull 
through the plate. Apply a factor of safety of F.S. = 2.5 
against shear failure. 

1-80mm-I 
T 
75mm 

J 

- 40mm 

p 

Prob.F7-23 

F7-24. Six nails are used to hold the hanger at A against 
the column. Determine the minimum required diameter of 
each nail to the nearest 1 /16 in. if it is made of material 
having Tra;1 = 16 ksi. Apply a factor of safety of F.S. = 2 
against shear failure. 

3001b/ft 

A 

1-------9 ft------1 

Prob.F7-24 
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PROBLEMS 

*7-52. If A and 8 are both made of wood and are ~in. 
thick, detennine to the nearest ~in. the smallest dimension 
h of the vertical segment so that it does not fail in shear. The 
allowable shear stress for the segment is Ta11o .. = 300 psi. 

Prob. 7-52 

7-53. The lever is attached to the shaft A using a key that 
has a width d and length of 25 mm.Uthe shaft is fixed and a 
vertical force of 200 N is applied perpendicular to the 
handle, detennine the dimension d if the allowable shear 
stress for the key is T311ow = 35 MPa. 

a (I 

A 1 1 ' 
-20 mm 

i SOOmm 

200N 

Prob. 7-53 

7 .6 A LLOWABLE STRESS DESIGN 357 

7- 54. The connection is made using a bolt and nut and two 
washers. If the allowable bearing stress of the washers on the 
boards is (ub)a11ow = 2 ksi. and the allowable tensile stress 
within the bolt shank S is (u,)a11ow = 18 ksi. determine the 
maximum allowable tension in the bolt shank. The bolt shank 
has a diameter of 0.31 in .. and the washers have an outer 
diameter of 0.75 in. and inner diameter (hole) of 0.50 in. 

Prob. 7-54 

7- 55. The tension member is fastened together using rwo 
bolts, one on each side of the member as shown. Each bolt 
has a diameter of 0.3 in. Determine the maximum load P 
that can be applied to the member if the allowable shear 
stress for the bolts is Tallow = 12 ksi and the allowable 
average normal stress is Uauow = 20 ksi . 

p f 
A& 

I. j .. p 

Prob. 7-55 
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*7-56. The steel swivel bushing in the elevator control of 
an airplane is held in place using a nut and washer as shown 
in Fig. (a). Failure of the washer A can cause the push rod 
to separate as shown in Fig. (b). If the maximum average 
shear stress is Tmax = 21 ksi, determine the force F that must 
be applied to the bushing. The washer is 1

1
6 in. thick. 

.... ~-21::ZOJ.~ ,: •F-~ 
(a) (b) 

Prob. 7-56 

7-57. The spring mechanism is used as a shock absorber 
for a load applied to the drawbar AB. Determine the force 
in each spring when the 50-kN force is applied. Each spring 
is originally unstretched and the drawbar slides along the 
smooth guide posts CG and EF. The ends of all springs are 
attached to their respective members. Also, what is the 
required diameter of the shank of bolts CG and EF if the 
allowable stress for the bolts is uauaw = 150 MPa? 

k = 80kN/m 

c E 

A 
H 

B 

k' = 60kN/m 

200mm 200mm 

D 

50kN 

Prob. 7-57 

7-58. Determine the size of square bearing plates A ' and 
B' required to support the loading. Take P = 1.5 kip. 
Dimension the plates to the nearest! in. The reactions at the 
supports are vertical and the allowable bearing stress for the 
plates is (ub)auaw = 400 psi. 

7-59. Determine the maximum load P that can be 
applied to the beam if the bearing plates A ' and B' have 
square cross sections of 2 in. x 2 in. and 4 in. x 4 in. , 
respectively, and the allowable bearing stress for the 
material is ( ub)auaw = 400 psi . 

3 kip 

2kip 2 kip 2 kip 

5 ft -ii-5 ft--5 ft-!-7.5 ft-p 

A B 

Probs. 7-58/59 

*7-60. Determine the required diameter of the pins at A 
and B to the nearest 1~ in. if the allowable shear stress for the 
material is Tauaw = 6 ksi. Pin A is subjected to double shear, 
whereas pin B is subjected to single shear. 

3 kip 

8 ft 

• 

L6ft~-6ft-1 
D 

Prob. 7-60 
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7-61. If the allowable tensile stress for wires AB and AC is 
uano,. = 200 MPa, determine the required diameter of each 
wire if the applied load is P = 6 kN. 

7-62. If the allowable tensile stress for wires AB and AC is 
u8110w = 180 MPa, and wire AB has a diameter of 5 mm and 
AC has a diameter of 6 mm, determine the greatest force P 
that can be applied to the chain. 

p 

Probs. 7-6V62 

7-63. The cotter is used to hold the two rods together. 
Determine the smallest thickness t of the cotter and the 
smallest diameter d of the rods. All parts are made of steel 
for which the failure normal stress is uran = 500 MPa and 
the failure shear stress is Trail = 375 MPa. Use a factor of 
safety of (F.S.), = 2.50 in tension and (F.S.), = 1.75 in shear. 

d 

d 

30kN 

Prob. 7-63 

7 .6 ALLOWABLE STRESS DESIGN 359 

*7-64. Determine the required diameter of the pins at 
A and B if the allowable shear stress for the material is 
ranow = 100 MPa. Both pins are subjected to double shear. 

2 kN/m 

" A 

3m 

0 

c 

Prob.7-64 

7-65. The steel pipe is supported on the circular base plate 
and concrete pedestal. If the thickness of the pipe is 
1 = 5 mm and the base plate has a radius of 150 mm, 
determine the factors of safety against failure of the steel 
and concrete. The applied force is 500 kN, and the normal 
failure stresses for steel and concrete arc (ur3;1)" = 350 MPa 
and (ur3 ;1)con = 25 MPa, respectively. 

SOOkN 
1 

. ' . .. 

.• 

Prob. 7-65 
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7-66. The boom is supported by the winch cable that has a 
diameter of 0.25 in. and an allowable normal stress of 
uauow = 24 ksi. Determine the greatest weight of the crate 
that can be supported without causing the cable to fail if 
<f> = 30°. Neglect the size of the winch. 

7-67. The boom is supported by the winch cable that 
has an allowable normal stress of uauow = 24 ksi. If it 
supports the 5000 lb crate when <f> = 20°, determine the 
smallest diameter of the cable to the nearest /6 in. 

B 

Probs. 7-66/67 

*7-68. The assembly consists of three disks A , B , and C 
that are used to support the load of 140 kN. Determine the 
smallest diameter d 1 of the top disk, the diameter d2 within 
the support space, and the diameter d3 of the hole in the 
bottom disk. The allowable bearing stress for the material 
is (ub)auow = 350 MPa and allowable shear stress is 
Tallow = 125 MPa. 

140 kN 

di-I i I- 20mm 

I A lOmm 
B l c 

l- d3 -I -I 
d1 

Prob. 7-68 

7-69. The two aluminum rods support the vertical force 
of P = 20 kN. Determine their required diameters if the 
allowable tensile stress for the aluminum is uauow = 150 MPa. 

c 
0 

p 

Prob. 7-69 

7-70. The two aluminum rods AB and AC have diameters 
of 10 mm and 8 mm, respectively. Determine the largest 
vertical force P that can be supported. The allowable tensile 
stress for the aluminum is uauow = 150 MPa. 

c A 
Q 

p 

Prob. 7-70 
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7.7 DEFORMATION 
Whenever a force is applied to a body, it will tend to change the body's 
shape and size. These changes are referred to as deformation, and they 
may be either highly visible or practically unnoticeable. For example, a 
rubber band will undergo a very large deformation when stretched, 
whereas only slight deformations of structural members occur when a 
building is occupied by people walking about. Deformation of a body can 
also occur when the temperature of the body is changed. A t ypical 
example is the thermal expansion or contraction of a roof caused by 
the weather. 

In a general sense, the deformation of a body will not be uniform 
throughout its volume, and so the change in geometry of any line 
segment within the body may vary substantially along its length. Hence, 
to study deformational changes in a more uniform manner, we will 
consider Line segments that are very short and located in the neighborhood 
of a point. Realize, however, that these changes will also depend on the 
orientation of the line segment at the point. For example, a line segment 
may elongate if it is oriented in one direction, whereas it may contract if 
it is oriented in another direction. 

No te the before and afte r positions of three 
d iCCferent line segments on this rubber membrane 
which is subjected to tension. The vertical line is 
lengthened, the horizontal line is shortened, and 
the inclined line changes its le ngth and rotates. 

7.7 D EFORMATION 361 
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Undeformed body 

p • • p 

Deformed body 

Fig. 7- 27 

7.8 STRAIN 
In order to describe the deformation of a body by changes in lengths of 
line segments and changes in the angles between them, we will develop 
the concept of strain. Strain is actually measured by experiment, and once 
the strain is obtained, it will be shown in the next chapter how it can be 
related to the stress acting within the body. 

p p 

Fig. 7-26 

Normal Strain. If an axial load Pis applied to the bar in Fig. 7- 26, it 
will change the bar's length L 0 to a length L. We will define the average 
normal strain E (epsilon) of the bar as the change in its length 
o (delta) = L - L0 divided by its original length, that is 

I E avg = L ~o Lo I (7- 10) 

The normal strain at a point in a body of arbitary shape is defined in a 
similar manner. For example, consider the very small line segment ds 
located at the point, Fig. 7- 27. After deformation it becomes ds', and the 
change in its length is therefore ds' - ds. As ds ~ 0, in the limit the 
normal strain at the point is therefore 

. ds' - ds 
€ = Jim----

Ll.S-o ds 
(7- 11) 

In both cases E (or Eavg) is a change in length per unit length, and it is 
positive when the initial line elongates, and negative when the line 
contracts. 

Units. As shown, normal strain is a dimensionless quantity, since it is a 
ratio of two lengths. However, it is sometimes stated in terms of a ratio of 
length units. If the SI system is used, where the basic unit for length is the 
meter (m), then since € is generally very small, for most engineering 
applications, measurements of strain will be in micrometers per meter 
(µm/m) , where 1 µm = 10- 6 m. In the Foot-Pound-Second system, strain 
is often stated in units of inches per inch (in.fin.), and for experimental 
work, strain is sometimes expressed as a percent. For example, a normal 
strain of 480(10--6) can be reported as 480(10--6) in./in., 480 µm/m, or 
0.0480%. Or one can state the strain as simply 480 µ (480 "micros"). 
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v v 

I I \ \ 
Undeformed body 

(a) 

Deformed body Deformed body 

(b) 

~~ 
0 

Positive shear strain y Negative shear strain y 

(c) 

Fig. 7-28 

Shear Strain. Deformations not only cause line segments to elongate or 
contract, but they also cause them to change direction. If we select two line 
segments that are originally perpendicular to one another, then the dumge 
in angle that occurs between them is referred to as shear strain. This angle 
is denoted by y (gamma) and is always measured in radians (rad), which are 
dimensionless. For example, consider the two perpendicular line segments 
at a point in the block shown in Fig. 7-2&. If an applied loading causes the 
block to deform as shown in Fig. 7-28b, so that the angle between the Line 
segments becomes 8, then the shear strain at the point becomes 

7T 
y = - - 8 

2 
(7-12) 

Notice that if 8 is smaller than -rr /2, Fig. 7- 2&, then the shear strain is 
positive, whereas if 8 is larger than -rr /2, then the shear strain is negative. 

Cartesian S .omponents. We can generalize our definitions 
of normal and shear strain and consider the undeformed element at a 
point in a body, Fig. 7-29a. Since the element's dimensions are very small, 
its deformed shape will become a parallelepiped, Fig. 7- 29b. Here the 
normal strains change the sides of the element to 

which produces a change in the volume of the element. And the shear 
strain changes the angles between the sides of the element to 

7T 7T 7T 
2 - 'Yxy 2 - 'Yyz 2 - 'Yxz 

which produces a change in the shape of the element. 

x 

(I + E,)6t 

(~ - 'Yy: 
2 
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(a) 

1T 

2 

r. 

1T 

2 ~y 

Undeformed 
element 

(b) 

(~ -Y...,.) 
2 

(; - Y,,) 

(1 + Ey)dy 

Deformed 
element 

(c) 

Fig. 7-29 
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Small Strain Analysis. Most engineering design involves applications 
for which only small deformations are allowed. In this text, therefore, we 
will assume that the deformations that take place within a body are almost 
infinitesimal. For example, the normal strains occurring within the 
material are very small compared to 1, so that e << 1. This assumption 
has wide practical application in engineering, and it is often referred to as 
a small strain analysis. It can also be used when a change in angle, 6.8, is 
small, so that sin 6.8 "" 6.8, cos 6.8 "" 1, and tan 6.8 "" 6.8. 

The rubber bearing support under this 
concrete bridge girder is subjected to 
both normal and shear strain. The 
normal strain is caused by the weight 
and bridge loads on the girder, and the 
shear strain is caused by the horizontal 
movement of the girder due to 
temperature changes. 

IMPORTANT POINTS 

• Loads will cause all material bodies to deform and, as a result , 
points in a body will undergo displacements or changes in 
position. 

• Normal strain is a measure per unit length of the elongation or 
contraction of a small line segment in the body, whereas shear 
strain is a measure of the change in angle that occurs between two 
small line segments that are originally perpendicular to one 
another. 

• The state of strain at a point is characterized by six strain 
components: three normal strains Ex, e Y' e z and three shear strains 
Yxy> Yyz> Yxz· These components all depend upon the original 
orientation of the line segments and their location in the body. 

• Strain is the geometrical quantity that is measured using 
experimental techniques. Once obtained, the stress in the body 
can then be determined from material property relations, as 
discussed in the next chapter. 

• Most engineering materials undergo very small deformations, 
and so the normal strain e << 1. This assumption of "small strain 
analysis" allows the calculations for normal strain to be simplified, 
since first-order approximations can be made about its size. 
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EXAMPLE 7.14 

Determine the average normal strains in the two wires in Fig. 7- 30 if the 
ring at A moves to A'. 

B 

SOLUTION 

i---3 m--1--

p 

-I ~ 20mm 

IOmm 

Fig. 7-30 

Geometry. The original length of each wire is 

4m 

LAB= LAc = Y(3m)2 + (4m)2 = 5m 

The final lengths are 

LA'B = Y(3 m - 0.01 m)2 + (4 m + 0.02 m)2 = 5.01004 m 

LA'C = Y(3 m + 0.01 m)2 + (4 m + 0.02 m)2 = 5.02200 m 

Average Normal Strain. 

"AB = LA'B - LAB = 5.01004 m - 5 m = 2.01(10- 3) m/m Ans. 
LAB 5 m 

"Ac = LA'C - LAc = 5.02200 m - 5 m = 4.40(l0- 3) m/m Ans. 
LAc Sm 

7.8 STRAIN 365 

www.konkur.in



366 CHAPTER 7 STRESS AND STRAIN 

I EXAMPLE 7.15 I 

' D I !p 300mm 

=1 • c B A 
1-400mm-I 

(a) 

j-400mm 

D 

a 300mm 

P ~~ o = o.os·~"':=:==~A~l 
c B' _ 400mm-

(b) 

Fig. 7-31 

When force P is applied to the rigid lever arm ABC in Fig. 7- 31a, the arm 
rotates counterclockwise about pin A through an angle of 0.05°. 
Determine the normal strain in wire BD. 

SOLUTION I 

Geometry. The orientation of the lever arm after it rotates about 
point A is shown in Fig. 7- 31b. From the geometry of this figure, 

(
400mm) a = tan- 1 

300 
mm = 53.1301° 

Then 

<f> = 90° - a + 0.05° = 90° - 53.1301° + 0.05° = 36.92° 

For triangle ABD the Pythagorean theorem gives 

LAD = Y(300 mm)2 + (400 mm)2 = 500 mm 

Using this result and applying the Jaw of cosines to triangle AB' D, 

LB'D = YL~v + L~B' - 2(LAv) (LAB') cos <P 

= Y(500 mm)2 + (400 mm)2 - 2(500 mm) (400 mm) cos 36.92° 

= 300.3491 mm 

Normal Strain. 

LB'D - LBv 

LBv 

300.3491 mm - 300 mm 

300 
mm = 0.00116 mm/mm Ans. 

SOLUTION II 

Since the strain is small, this same result can be obtained by approximating 

the elongation of wire BD as 6.LBv, shown in Fig. 7- 31b. Here, 

[(
0.05°) J l!..LBD = OLAB = 
1800 

(1T rad) (400 mm) = 0.3491 mm 

Therefore, 

0.3491 mm 

300 
mm = 0.00116 mm/mm Ans. 
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EXAMPLE 7 .16 
- -

The plate shown in Fig. 7- 32a is fixed connected along AB and !held in y 

the horizontal guides at its top and bottom, AD and BC. If its right side 
CD is given a uniform horizontal displacement of 2 mm, determine 
(a) the average normal strain along the diagonal AC, and (b) the shear -- A 

strain at E relative to the x, y axes. 
' I 
I 
I 
I 

SOLUTION 150 mm 1 

Part (a). When the plate is deformed, the diagonal AC becomes l E ! 
AC', Fig. 7- 32b. The lengths of diagonals AC and AC' can be found : 
from the Pythagorean theorem. We have B------~c;.;...-

x 

AC = V (0.150 m ) 2 + ( 0.150 m ) 2 = 0.21213 m 

AC' = V(0.150m) 2 + (0.152m) 2 = 0.21355m 

--150 mm --11- 2 mm 

Therefore the average normal strain along AC is 

AC' - AC 
(EAc)avg - AC 

0.21355 m - 0.21213 m 
- ---------

0.21213 m 

= 0.00669 mm/mm Ans. 

Part (b). To find the shear strain at E relative to the x and y axes, 
which are 90° apart, it is necessary to find the change in the angle at£. 
The angle 8 after deformation, Fig. 7- 32b, is 

(8) 76mm 
tan 2 = 75 mm 

8 = 90.759° = ( 
1
; 00 ) (90.759°) = 1.58404 rad 

Applying Eq. 7- 12, the shear strain at E is therefore the change in the 
angleAED, 

1T 
'Yxy = 2 - 1.58404 rad = -0.0132 rad Ans. 

The negative sign indicates that the once 90° angle becomes larger. 

NOTE: If the x and y axes were horizontal and vertical at point E, then 
the 90° angle between these axes would not change due to the 
deformation, and so 'Yxy = 0 at point E. 

(a) 

Fig. 7- 32 
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PRELIMINARY PROBLEMS 

P7-7. A loading causes the member to deform into the 
dashed shape. Explain how to determine the normal strains 
Ecv and IEAB· The displacement a and the lettered 
dimensions are known. 

v\ '-r 
B\ L L 

f L/2 l 
'"' A ;!i~-~-=- _=:=::::=cl!J.nr-+l 8 

l- LJ_:~-1-- - --
Prob. P7- 7 

P7-8. A loading causes the member to deform into the 
dashed shape. Explain how to determine the normal strains 
Ecv and IEAB· The displacement a and the lettered 
dimensions are known. 

~-- --

---2 L----1-- L -

Prob. P7-8 

P7-9. A loading causes the wires to elongate into the 
dashed shape. Explain how to determine the normal strain 
IEAB in wire AB. The displacement a and the distances 
between all lettered points are known. 

c 

I 

' I ' ~ 
\ \ ~I Id .. •:.-

A' 

Prob. P7-9 

P7-10. A loading causes the block to deform into the 
dashed shape. Explain how to determine the strains £An, 

£Ac, £ 8 c , ("YA},,,. The angles and distances between all 
lettered points are known. 

y 

81------~C 

I 
I 

--------, 1B' C' 
I I 

I I 
I I 

I I 
I 

I 

I~ 
I 

I ..._..__ ___ __,_ ____ x 

A D 

Prob. P7-10 

P7- ll A loading causes the block to deform into the 
dashed shape. Explain how to determine the strains ( 1' A)xy• 

("y8 )xy- The angles and distances between all lettered points 
are known. 

y 

B x 
,- ---

/09 ---
2 - - -

y 

Prob. P7- 11 
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FUNDAMENTAL PROBLEMS 

F7-25. When force P is applied to the rigid arm ABC, 
point B displaces vertically downward through a distance of 
0.2 mm. Determine the normal strain in wire CD. 

v\ '1 
--400mml 200mm 3imm 

Afo,, . 
B c 

' p 

Prob. F7-25 

F7-26. If the force P causes the rigid arm ABC to rotate 
clockwise about pin A through an angle of 0.02°, determine 
the normal strain in wires BD and CE. 

Prob. F7-26 

F7-'1:7. The rectangular plate is deformed into the shape of a 
parallelogram shown by the dashed line. Determine the average 
shear strain at comer A with respect to the x and y axes. 

A -------11 l4mm 
- 300mm 

Prob. F7-27 

F7-28. The triangular plate is deformed into the shape 
shown by the dashed line. Determine the normal strain 
developed along edge BC and the average shear strain at 
corner A with respect to the x and y axes. 

y 

Smm 
1-A---400 mm---· 11·--1 

--.---+~~-~-~-=-------------,.;,--+-1,.---~x 
--- -~--~mm 

300mm 

l c 

Prob. F7-28 

F7-29. The square plate is deformed into the shape shown 
by the dashed line. Determine the average normal strain 
along diagonal AC and the shear strain at point E with 
respect to the x and y axes. 

y x 

D c 

IT 
300mm1 

J 4 mm 

~~~-----~-· 

l-~300mm~H 
3mm 3mm 

Prob. F7-29 
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PROBLEMS 

7- 71. An air-filled rubber ball has a diameter of 6 in. If the 
air pressure within the ball is increased until the diameter 
becomes 7 in., determine the average normal strain in the 
rubber. 

*7-72. A thin strip of rubber has an unstretched length of 
15 in. If it is stretched around a pipe having an outer diameter 
of 5 in. , determine the average normal strain in the strip. 

7- 73. If the load P on the beam causes the end C to be 
displaced 10 mm downward, determine the normal strain in 
wires CE and BD. 

D 
• 

p 

i A B 
• 

---3m---l-2m-l-2m-I 

Prob. 7- 73 

7- 74. The force applied at the handle of the rigid lever 
causes the lever to rotate clockwise about the pin B through 
an angle of 2°. Determine the average normal strain in each 
wire. The wires are unstretched when the lever is in the 
horizontal position. 

G F -I 
ZOOmm 300mm 

I 
ZOO mm - 300 mm 

A B 
E 

T 0 

c D 
200mm 

_L H 

Prob. 7-74 

7-75. The rectangular plate is subjected to the deformation 
shown by the dashed lines. Determine the average shear 
strain y_.,. in the plate. 

y 

- 150mm - 3mm 
B _l_ 

r--=-=--""'-==--=----------_ -t - -, 
200mm 

A~-- --- -- - L . -, 
3mm 

Prob. 7-75 

*7- 76. The square deforms into the position shown by the 
dashed lines. Determine the shear strain at each of its 
corners, A , B, C, and D, relative to the x,y axes. Side D' B ' 
remains horizontal. 

y 

__ o; ____ ________ ~l In 3 mm 

1;----------n ---
1 D 
1 
I 1 
I I 
I I 

53 mm : ' 

~- :.___9_1_.s_·_._ ___ c ...... \L ' 
Al I I c 
--- 50 mm ---1H 

8mm 

Prob. 7-76 
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7-77. The pin-connected rigid rods AB and BC are 
inclined at 8 = 30" when they are unloaded. When the force 
P is applied 8 becomes 30.2°. Determine the average normal 
strain in wire AC. 

p 

Prob. 7-77 

7-78. The wire AB is unstretched when 8 = 45°. lf a load is 
applied to the bar AC. which causes 8 to become 47°, 
determine the normal strain in the wire. 

7-79. If a load applied to the bar AC causes point A 
to be displaced to the right by an amount 6 L, determine the 
normal strain in the wire AB. Originally, 8 = 45°. 

L 

Probs. 7-78r79 

7.8 STRAIN 371 

*7--80. Determine the shear strain "Ix, at corners A and B 
if the plastic distorts as shown by the dashed lines. 

7--81. Determine the shear strain "Ix,• at corners D and C 
if the plastic distorts as shown by the dashed lines. 

y 

12mm 

4mm i---=1_ 
-~ l==!--------------r-----/ 8 'mm 

3 mm , In , I 
-- I c : : 

I I 
I I 
I I 

300mlm ,/ ! 
- - --'-,-;2 t..~"""'~-=-~-~-~--~-=-=-=---~.-~' ...J..O L ~OulDwl'--

I
A .r 

D 1---400 mm--- 1 
5mm 

Probs. 7-80/81 

7--82. The material distorts into the dashed position 
shown. Determine the average normal strains £.r £" and the 
shear strain 1'xy at A, and the average normal strain along 
line BE. 

7-83. 111e materia l distorts into the dashed position 
shown. Dete rmine the average normal strains a long the 
diagona ls AD and CF. 

30mm 

DH ...,---r.------,- , 
I 
I 
I 
I 
I 
I 
I 

E I I 
/ 50mm 

Probs. 7-82183 
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372 CHAPTER 7 STRESS AND STRAIN 

*7-S4. Determine the shear strain 'Yxy at corners A and B if 
the plastic distorts as shown by the dashed lines. 

7-85. Determine the shear strain 'Yxy at corners D and C if 
the plastic distorts as shown by the dashed lines. 

7-86. Determine the average normal strain that occurs 
along the diagonals AC and DB. 

y ~ 
2mm I __ ! 

---------------: 
C ' ' ' ' ' ' ' ' ' ' 

300mlm ! ! 
' ---- ------- --~=y2 mm x 

~400mm~~ 
3mm 

Probs. 7-84/85/86 

7-87. The corners of the square plate are given the 
displacements indicated. Determine the average normal 
strains 1:, and "r along the x and y axes. 

y 

0.2 in. 

[ 
IOin. 

Bl x 

0.3 in. -') -
0.3 in. 10 in. 

' , l ' , 
' , 

10 in. 
c' 

lOin.-- I 
0.2 in. 

Prob. 7-87 

*7-88. The triangular plate is fixed at its base. and its apex A 
is given a horizontal displacement of S mm. Determine the 
shear strain. -y ... ,.,at A. 

7-89. The triangular plate is fixed at its base, and its apex A 
is given a horizontal displacement of S mm. Determine the 
average normal strain E, along the x axis. 

7-90. 1l1e triangular plate is fixed at its base, and its apex A 
is given a horizontal displacement of S mm. Determine the 
average normal strain E,• along the x' axis. 

Probs. 7-88/89/90 

7-91. The polysulfone block is glued at its top and bottom 
to the rigid plates. If a tangential force, applied to the top 
plate, causes the material to deform so that its sides are 
described by the equation y = 3.56x114

, determine the shear 
strain at the corners A and B. 

P-~J=:=:=:=:=:::::J 

1 
2 in. 

y = 3.56x114 

Al--------4~ x 

Prob. 7- 91 
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CONCEPTUAL PROBLEMS 

C7- 1. Hurricane winds have caused the failure of this 
highway sign. Assuming the wind creates a uniform pressure 
on the sign of 2 kPa, use reasonable dimensions for the sign 
and determine the resultant shear and moment at each of 
the two connections where the failure occurred. 

Prob. C7-1 

C7- 2. High-heel shoes can often do damage to soft wood 
or linoleum floors. Using a reasonable weight and 
dimensions for the heel of a regular shoe and a high-heel 
shoe, determine the bearing stress under each heel if the 
weight is transferred down only to the heel of one shoe. 

Prob. C7-2 

C7- 3. Here is an example of the single shear failure of a 
bolt. Using appropriate free-body diagrams, explain why 
the bolt failed along the section between the plates, and not 
along some intermediate section such as a-a. 

Prob.C7-3 

C7-4. The vertical load on the hook is 1000 lb. Draw the 
appropriate free-body diagrams and determine the maximum 
average shear force on the pins at A , B, and C. Note that due 
to symmetry four wheels are used to support the loading on 
the railing. 

• 
11 

Prob.C7-4 
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CHAPTER REVIEW 

The internal loadings in a body consist 
of a normal force, shear force, bending 
moment, and torsional moment. They 
represent the resultants of both a 
normal and shear stress distribution 
that act over the cross section. To obtain 
these resultants, use the method of 
sections and the equations of 
equilibrium. 

If a bar is made from homogeneous 
isotropic material and it is subjected to 
a series of external axial loads that pass 
through the centroid of the cross 
section, then a uniform normal stress 
distribution will act over the cross 
section. This average normal stress can 
be determined from u = P /A , where P 
is the internal axial load at the section. 

The average shear stress can be 
determined using Tavg = V /A , where V 
is the shear force acting on the cross 
section. This formula is often used to 
find the average shear stress in fasteners 
or in parts used for connections. 

'l.F, = 0 

I.F,. = 0 

'l.F = 0 
' 

'l.M, = 0 

I.M,. = 0 

'l.M, = 0 

p 
u= -

A 

v 
Tavg =A 

Torsional 
moment 

T 

~ 
N Normal 

force 

Bending M ~--"1"-
v 

Shear 
moment 

~force 

F2 

p - - p 

- v 'avg = -
A 
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The design of any simple connection 
requires that the average stress along 
any cross section not exceed an allowable 
stress of uauow or 'Tallow· These values are 
reported in codes and are considered 
safe on the basis of experiments or 
through experience. Sometimes a factor 
of safety is reported provided the failure 
stress is known. 

Deformation is defined as the change in 
the shape and size of a body. It causes 
line segments to change length and 
orientation. 

Normal strain Ethe change in length per 
unit length of a line segment. If E is 
positive, the line segment elongates. If it 
is negative, the line segment contracts. 

Shear strain 1' is a measure of the change 
in angle made between two line 
segments that are originally 
perpendicular to one another. 

Strain is dimensionless; however, E is 
sometimes reported in in.fin., mm/mm, 
and 1' is in radians. 

F.S. = 
Tfail 

'Tallow 

Eavg = 
ds' - ds 

ds 

7T 
y= -- 8 

2 
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REVIEW PROBLEMS 

R7-1. The beam AB is pin supported at A and supported 
by a cable BC. A separa1e cable CG is used to hold up the 
frame. If AB weighs 120 lb/ft and the column FC has a 
weight of 180 lb /ft, determine the resultant internal loadings 
acting on cross sections located at points D and £. Neglect 
the thickness of both the beam and column in the 
calculation. 

8 ft 

t E 

4 ft 
G _L 

Prob. R7- 1 

R7-2. The long bolt passes through the 30-mm-thick plate. 
If the force in the bolt shank is 8 kN, determine the average 
normal stress in the shank, the average shear stress along 
the cylindrical area of the plate defined by the section lines 
a-a, and the average shear stress in the bolt head along the 
cylindrical area defined by the section lines b-b. 

8mm 
1-Y 

a 

7mm 
18~mb """"':;ii:;:;:;:;;:~'~:J-~8~kN I b-

a 

30mm 

Prob. R7- 2 

R7- 3. Determine the required thickness of member BC and 
the diameter of the pins at A and B if the allowable normal 
stress for member BC is uauow = 29 ksi, and the allowable 
shear stress for the pins is rauow = 10 ksi. 

Prob. R7- 3 

*R7-4. The circular punch B exerts a force of 2 kN on the 
top of the plate A. Determine the average shear stress in the 
plate due to this loading. 

2kN 

l2mm 

Prob. R7-4 
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R7-5. Determine the average punching shear stress the 
circular shaft creates in the metal plate through section AC 
and BD. Also. what is the bearing stress developed on the 
surface of the plate under the shaft? 

40kN 

c D 

-60mm-

1-----120 mm ----1 

Prob. R7-5 

R7-6. The bearing pad consists of a 150 mm by 150 mm 
block of aluminum that supports a compressive load of 
6 kN. Determine the average normal and shear stress acting 
on the plane through section a-a. Show the results on a 
differential volume element located on the plane. 

6kN 

a 

a 
- --150 mm +--1 

Prob. R7-6 

REVIEW PROBLEMS 377 

R7- 7. The square plate is deformed into the shape shown 
by the dashed lines. Lr DC has a normal strain Ex = 0.004, 
DA has a normal strain E

1
=0.005 and at D. "Yxy = 0.02 rad, 

determine the average normal strain along diagonal CA. 

*R7-8. The square plate is deformed into the shape shown 
by the dashed lines. lf DC has a normal strain Ex = 0.004, 
DA has a normal strain e1 =0.005 and at D, "Yxy = 0.02 rad, 
determine the shear strain at point £with respect to the x' 
and y' axes. 

y' 

600mm 

y 

'--600mm-

I 
I 

I 

A' ______ _ 

£ 

x' 

-- -B' 
8 I 

I 
I 

I 

I 
I 

I 
I 

I 
I 

...l..-~-----~LL----x 
D CC' 

Probs. R7-7/8 

R7- 9. The rubber block is fixed along edge AB, and 
edge CD is moved so that the vertical displacement of any 
point in the block is given by v(x) = (v0/ b3) x3. Determine 
the shear strain "Yxy at points (b/ 2. a / 2) and (b, a). 

y 

v (xf) ,.1 i-,-
1 

Vo 
- ----- DI __L 

--- ... · ......... 

Prob. R7-9 

www.konkur.in



CHAPTER B 

I 
I 

(©Tom Wang/Alamy) 

Horizontal ground displacements caused by an earthquake produced fracture of 
this concrete column. The material properties of the steel and concrete must 
be determined so that engineers can properly design the column to resist the 
loadings that caused this failure. 
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MECHANICAL 
PROPERTIES OF 
MATERIALS 

CHAPTER OBJECTIVES 

• To show how stress can be related to strain by using experimental 

methods to determine the stress-strain diagram for a particular 

material. 

• To discuss the properties of the stress- strain diagram for materials 
commonly used in engineering. 

8.1 THE TENSION AND COMPRESSION 
TEST 

The strength of a material depends on its ability to sustain a load without 
undue deformation or failure. This strength is inherent in the material 
itself and must be determined by experiment. One of the most important 
tests to perform in this regard is the tension or compression test. Once 
this test is performed, we can then determine the relationship between 
the average normal stress and average normal strain in many engineering 
materials such as metals, ceramics, polymers, and composites. 

379 
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380 CHAPTER 8 MECHANICAL PROPERTIES OF MATERIALS 

d0 = 0.5 in. 

-
l 

[Lo ~ 2 in.J 
Fig. 8-1 

To perform a tension or compression test, a specimen of the material is 
made into a "standard" shape and size, Fig. 8-1. As shown it has a constant 
circular cross section with enlarged ends, so that when tested, failure will 
occur somewhere within the central region of the specimen. Before 
testing, two small punch marks are sometimes placed along the specimen's 
uniform length. Measurements are taken of both the specimen's initial 
cross-sectional area, ~. and the gage-length distance L0 between the 
punch marks. For example, when a metal specimen is used in a tension 
test, it generally has an initial diameter of d0 = 0.5 in. (13 mm) and a 
gage length of Lo = 2 in. (51 mm), Fig. 8- 1. A testing machine like the 
one shown in Fig. 8- 2 is then used to stretch the specimen at a very slow, 
constant rate until it fails. The machine is designed to read the load 
required to maintain this uniform stretching. 

Typical steel specimen with a11ached 
strain gage 

At frequent intervals, data is recorded of the applied load P. Also, the 
elongation 8 = L - L0 between the punch marks on the specimen may 
be measured, using either a caliper or a mechanical or optical device 
called an extensometer. Rather than taking this measurement and then 
calculating the strain, it is also possible to read the normal strain directly 
on the specimen by using an electrical-resistance strain gage, which 
looks like the one shown in Fig. 8-3. As shown in the adjacent photo, the 
gage is cemented to the specimen along its length, so that it becomes an 
integral part of the specimen. When the specimen is strained in the 
direction of the gage, both the wire and specimen will experience the 
same deformation or strain. By measuring the change in the electrical 
resistance of the wire, the gage may then be calibrated to directly read 
the normal strain in the specimen. 

movable 
upper 

crosshead 

Fig. 8-2 

• 

• £ZllC[TI ... ~ ..... ---
0. --=-

load 
dial 

f 
motor 

and load 
controls 

Electrical-resistance 
strain gage 

Fig. 8-3 
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8.2 THE STRESS-STRAIN DIAGRAM 381 

8.2 THE STRESS-STRAIN DIAGRAM 
Once the stress and strain data from the test are known, then the results 
can be plotted to produce a curve called the stress-strain diagram. This 
diagram is very useful since it applies to a specimen of the material made 
of any size. There are two ways in which the stress- strain diagram is 
normally described. 

Conventional Stress-Strain Diagram. The nominal or 
engineering stress is determined by dividing the applied load P by the 
specimen's original cross-sectional area~· This calculation assumes that 
the stress is constant over the cross section and throughout the gage 
length. We have 

(8- 1) 

Likewise, the nominal or engineering strain is found directly from the 
strain gage reading, or by dividing the change in the specimen's gage 
length, 8, by the specimen's original gage length L0. Thus, 

(8-2) 

When these values of a and e are plotted, where the vertical axis is the 
stress and the horizontal axis is the strain, the resulting curve is called a 
conventional stress- strain diagram. A typical example of this curve is 
shown in Fig. 8-4. Realize, however, that two stress- strain diagrams for a 
particular material will be quite similar, but will never be exactly the 
same. This is because the results actually depend upon such variables as 
the material's composition, microscopic imperfections, the way the 
specimen is manufactured, the rate of loading, and the temperature 
during the time of the test. 

From the curve in Fig. 8-4, we can identify four different regions in 

" 

which the material behaves in a unique way, depending on the amount of "·1--------7"7--?~ 
strain induced in the material. 

Elastic Behavior. The initial region of the curve, indicated in light ~;1=~1--1' 

racture 
stress 

orange, is referred to as the elastic region. Here the curve is a straight line 
up to the point where the stress reaches the proportional limit, apl· When 
the stress slightly exceeds this value, the curve bends until the stress 
reaches an elastic limit. For most materials, these points are very close, 
and therefore it becomes rather difficult to distinguish their exact values. 
What makes the elastic region unique, however, is that after reaching ay, 
if the load is removed, the specimen will recover its original shape. In 
other words, no damage will be done to the material. 

~::::=::::::::::::::=::::±::====::::=====±==:::;::::==t- ' 
strain nee ·ing 

hardening 
plastic behavior 

Conventional and true stress-strain diag.rant 
for ductile mate rial (steel) (not to scale) 

Fig. 8-4 
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382 CHAPTER 8 MECHANICAL PROPERTIES OF MATERIALS 

Because the curve is a straight line up to <Tp/, any increase in stress will 
cause a proportional increase in strain. This fact was discovered in 1676 
by Robert Hooke, using springs, and is known as Hooke's law. It is 
expressed mathematically as 

u = Ee (8- 3) 

Here E represents the constant of proportionality, which is called the 
modulus of elasticity or Young's modulus, named after Thomas Young, 
who published an account of it in 1807. 

As noted in Fig. 8-4, the modulus of elasticity represents the slope of 
the straight line portion of the curve. Since strain is dimensionless, from 
Eq. 8- 3, E will have the same units as stress, such as psi, ksi, or pascals. 

true fracture stress 
u/~~~~~~~~~~~~~~~~---'» 

elastic yielding 
region 

elastic 
ehavior 

strain necking 
hardening 

plastic behavior 

Conventional and true stress- strain diagram 
for ductile material (steel) (not to scale) 

Fig. 8-4 (Repeated) 

fracture 
stress 

Yielding. A slight increase in stress above the elastic limit will result in 
a breakdown of the material and cause it to deform permanently. This 
behavior is called yielding, and it is indicated by the rectangular dark 
orange region in Fig. 8-4. The stress that causes yielding is called the 
yield stress or yield point, <Ty, and the deformation that occurs is called 
plastic deformation. Although not shown in Fig. 8-4, for low-carbon 
steels or those that are hot rolled, the yield point is often distinguished 
by two values. The upper yield point occurs first, followed by a sudden 
decrease in load-carrying capacity to a lower yield point. Once the yield 
point is reached, then as shown in Fig. 8-4, the specimen will continue to 
elongate (strain) without any increase in Load. When the material behaves 
in this manner, it is often referred to as being perfectly plastic. 
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8.2 THE STRESS-STRAIN DIAGRAM 383 

Strain Hardening. When yielding has ended, any load causing an 
increase in stress will be supported by the specimen, resulting in a curve 
that rises continuously but becomes flatter until it reaches a maximum 
stress referred to as the ultimate stress, a,.. The rise in the curve in this 
manner is called strain hardening, and it is identified in Fig. 8-4 as the 
region in Light green. 

Necking. Up to the ultimate stress, as the specimen elongates, its 
cross-sectional area will decrease in a fairly 11nifom1 manner over the 
specimen's enti re gage length. However, just after reaching the ultimate 
stress, the cross-sectional area will then begin to decrease in a localized 
region of the specimen, and so it is here where the stress begins to 
increase. As a result , a constriction or ··neck" tends to form with further 
elongation, Fig. 8-Sa. This region of the curve due to necking is indicated 
in dark green in Fig. 8-4. Here the stress- strain diagram tends to curve 
downward until the specimen breaks at the fracture stress, a1, Fig. 8-Sb. 

True Stress· Strain Diagram. Instead of always using the original 
cross-sectional area A

0 
and specimen length L0 to calculate the 

(engineering) stress and strain, we could have used the actual cross
sectional area A and specimen length Lat the instant the load is measured. 
The values of stress and strain found from these measurements are called 
true stress and true strain, and a plot of their values is called the true 
stress-strain diagram. When this diagram is plotted, it has a form shown 
by the upper blue curve in Fig. 8-4. Note that the conventional and true 
a-E diagrams are practically coincident when the strain is small. 
The differences begin to appear in the strain-hardening range, where the 
magnitude of strain becomes more significant. From the conventional 
a-E diagram, the specimen appears to support a decreasing stress (or 
load), since Ao is constant, a = N / Ao. In fact, the true a -E diagram shows 
the area A within the necking region is always decreasing until fracture, 
a[, and so the material actually sustains increasing stress, since a = N / A. 

Although there is this divergence between these two diagrams, we can 
neglect this effect since most engineering design is done only within the 
elastic range. This will generally restrict the deformation of the material 
to very small values, and when the load is removed the material will 
restore itself to its original shape. The conventional stress- strain diagram 
can be used in the elastic region because the true strain up to the elastic 
Limit is small enough, so that the error in using the engineering values of 
a and Eis very small (about 0.1°/o) compared with their true values . 

• • • goe $1• 
Necking Failure of a 

ductile material 

(a) (b) 

Fig. 8-5 

Typica l necking pattern 
which has occurred on 1his 
steel specimen just before 
fracture. 

This steel specimen clearly shows the necking 
that occurred just before the specimen failed. 
This resulted in the formation of a 
"curxone·· shape al the fracture location, 
which is characteristic of ductile materials. 
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u (ksi) 

20 

10 

(0.050 
Ey = 0.030 

0.10 \ 0.20 
0.001 0.002 

~p1= 0.0012 

Steel. A typical conventional stress- strain diagram for a mild steel 
specimen is shown in Fig. 8--6. In order to enhance the details, the elastic 
region of the curve has been shown in green using an exaggerated strain 
scale, also shown in green. Following this curve, as the load (stress) is 
increased, the proportional limit is reached at <Tp/ = 35 ksi (241 MPa), 
where Ep/ = 0.0012 in.Jin. When the load is further increased, the stress 
reaches an upper yield point of (<Ty) 11 = 38 ksi (262 MPa), followed by a 
drop in stress to a lower yield point of (<Ty) 1 = 36 ksi (248 MPa). The 
end of yielding occurs at a strain of E y = 0.030 in.Jin., which is 25 times 
greater than the strain at the proportional limit! Continuing, the specimen 
undergoes strain hardening until it reaches the ultimate stress of 
u11 = 63 ksi (434 MPa); then it begins to neck down until fracture 
occurs, at <Ft = 47 ksi (324 MPa). By comparison, the strain at failure, 
Et = 0.380 in.Jin., is 317 times greater than Ep1! 

Since <Tp/ = 35 ksi and EpJ = 0.0012 in./ in., we can determine the 
modulus of elasticity. From Hooke's Jaw, it is 

E = <Tp/ = 35 ksi = 29 ( 103 ) ksi 
Ep/ 0.0012 in.Jin. 

Although steel alloys have different carbon contents, most grades of 
steel, from the softest rolled steel to the hardest tool steel, have about 
this same modulus of elasticity, as shown in Fig. 8- 7. 

E (in.f in.) 
0.30 J 0.40 
0.003 0.004 

Et= 0.380 

u (ksi) 

180 

160 

140 

120 

100 

80 

60 

40 

20 

spring steel 
(1 % carbon) 

hard steel 
(0.6% carbon) 
heat treated 

machine steel 
(0.6% carbon) 

structural steel 
(0.2% carbon) 

, _,_- soft steel 
(0.1 % carbon) 

Stress- strain diagram for mild steel 
'----'---'---'----'--'-- E (in.fin.) 

0.002 0.004 0.006 0.008 0.01 

Fig. 8-6 Fig. 8-7 
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8. 3 STRESS-STRAIN BEHAVIOR OF 
DUCTILE AND BRITTLE MATERIALS 

Materials can be classified as ei ther being ductile or brittle, depending on 
their stress-strain characteristics. 

Ductile Ma .e Any material that can be subjected to Large 
strains before it fractures is called a ductile material. Mild steel, as 
discussed previously, is a typical example. Engineers often choose ductile 
materials for design because these materials are capable of absorbing 
shock or energy, and if they become overloaded, they will usually exhibit 
large deformation before failing. 

One way to specify the ductility of a material is to report its percent 
elongation or pe rcent reduction in area at the time of fracture. The 
percent elongation is the specimen's fracture strain expressed as a 
percent. Thus, if the specimen's o riginal gage length is L 0 and its length at 
fracture is L1, then 

L1 - Lo 
Percent e longation = ---'--- (100%) 

Lo 
(~) 

For example, as in Fig. 8-6, since e1 = 0.380, this value would be 38% for 
a mild steel specimen. 

The percent reduction in area is another way to specify ductility. It is 
defined within the region of necking as follows: 

Ao - At 
Percent reduction of area = Ao (lOOo/o) (8-5) 

Here Ao is the specimen's original cross-sectional area and A1 is the area 
of the neck at fracture. Mild steel has a typical value of 60%. 

Besides steel, other me tals such as brass, molybdenum, and zinc may 
also exhibit ductile stress~train characteristics similar to steel, whereby 
they undergo e lastic stress-strain behavior, yielding at constant stress, 
strain hardening, and finally necking until fracture. In most metals and 
some plastics, however, constant yielding will not occur beyond the elastic 
range. One metal where this is the case is aluminum, Fig. 8-8. Actually, 
this metal often does not have a well-defined yield point, and consequently 
it is standard practice to define a yield strength using a graphical procedure 
called the offset method. Normally for structural design a 0.2% strain 
(0.002 in.Jin.) is chosen, and from this point on the e axis a line paralle l to 
the initial straight line portion of the stress- strain diagram is drawn. The 
point where this line inte rsects the curve defines the yield strength. From 
the graph, the yie ld strength is uys = 51 ksi (352 MPa). 

tT (ksi) 

60 
uys = 51 

50 ~----=--,...... 

40 

30 

20 

10 

"---'--"-'---'--'---'--'-'--JL........I._ e (in.fin.) 
lo.0o2I 0.005 0.010 

(0.2% offset) 

Yie ld strength for an aluminum a lloy 

Fig. 8-8 
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u (ksi) 

2.0 

1.5 

1.0 

0.5 

u - E diagram for natural rubber 

Fig. 8-9 

Concrete used for sLructural purposes 
must be tested in compression to be 
sure it reaches its ultimate design 
stress after curing for 30 days. 

u (ksi) 

B 

- 0.06 - 0.05 - 0.04 - 0.03 - 0.02 
--~-~--~-~----~--!>--~- E (in.f in.) 

0.01 

- 60 

- 80 

- 100 

c - 120 

u - E diagram for gray cast iron 

Fig. 8-10 

Realize that the yield strength is not a physical property of the material, 
since it is a stress that causes a specified permanent strain in the material. 
In this text, however, we will assume that the yield strength, yield point, 
elastic limit, and proportional limit all coincide unless otherwise stated. 
An exception would be natural rubber, which in fact does not even have 
a proportional limit, since s tress and strain are not linearly related. 
Instead, as shown in Fig. 8-9, this material, which is known as a polymer, 
exhibits nonlinear elastic behavior. 

Wood is a material that is often moderately ductile, and as a result it is 
usually designed to respond only to elastic loadings. The strength 
characteristics of wood vary greatly from one species to another, and for 
each species they depend on the moisture content, age, and the size and 
arrangement of knots in the wood. Since wood is a fibrous material, its 
tensile or compressive characteristics parallel to its grain will differ 
greatly from these characteristics perpendicular to its grain. Specifically, 
wood splits easily when it is loaded in tension perpendicular to its grain, 
and consequently tensile loads are almost always intended to be applied 
parallel to the grain of wood members. 
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Tension failure of 
a brinle material 

(a) 

Fig. 8-11 

Compression causes 
material to bulge out 

(b) 

- 0.0025 

Brittle Materials. Materials that exhibit little or no yielding before 
failure are referred to as brittle materials. Gray cast iron is an example, 
having a stress~strain diagram in tension as shown by the curve AB in 
Fig. 8-10. Here fracture at <r1 = 22 ksi (152 MPa) occurred due to a 
microscopic crack, which then spread rapidly across the specimen, causing 
complete fracture. Since the appearance of initial cracks in a specimen is 
quite random, brittle materials do not have a well-defined tensile fracture 
stress. Instead the average fracture stress from a set of observed tests is 
generally reported. A typical failed specimen is shown in Fig. 8-lla. 

Compared with their behavior in tension, brittle materials exhibit a 
much higher resistance to axial compression, as evidenced by segment 
AC of the gray cast iron curve in Fig. 8-10. For this case any cracks or 
imperfections in the specimen tend to close up, and as the load increases 
the material will generally bulge or become barrel shaped as the strains 
become larger, Fig. 8-11 b. 

Like gray cast iron, concrete is classified as a brittle material, and it 
also has a low strength capacity in tension. The characteristics of its 
stress- strain diagram depend primarily on the mix of concrete (water, 
sand, gravel, and cement) and the time and temperature of curing. 
A typical example of a ·'complete" stress- strain diagram for concrete is 
given in Fig. 8-12. By inspection, its maximum compressive strength is 
about 12.5 times greater than its tensile Strength, (Uc) max = 5 ksi 
(34.5 MPa) versus ( <r,) max = 0.40 ksi (2.76 MPa). For this treason, 
concrete is almost always reinforced with steel bars or rods whenever it 
is designed to support tensile loads. 

It can generally be stated that most materials exhibit both ductile and 
brittle behavior. For example, steel has brittle behavior when it contains 
a high carbon content, and it is ductile when the carbon content is 
reduced. Also, at low temperatures materials become harder and more 
brittle, whereas when the temperature rises they become softer and more 
ductile. This effect is shown in Fig. 8-13 for a methacrylate plastic. 

u (ksi) 

- 2 (u,)mu - 0.4 

-0.0015 -0.(XX)S "-- E (in.fm.) 
0 0.0005 

- 2 

-4 

--- = ------Ir-- (u,)max = 5 
- 6 

u-E diagram for typical concrete mix 

Fig. 8-12 

Steel rapidly loses its strength when 
heated. For this reason engineers often 
require main structural members to be 
insulated in case of fire. 

u (ksi) 

9 

8 

7 

6 

5 

4 

3 

2 

l 

40" F 

160" F 

"--'--..1---1.--'---''----'-- E (in.fin.) 
0.0 I 0.02 0.03 0.04 0.05 0.06 

u-E diagrams for a melhacrylate plastic 

Fig. 8-13 
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u 

elastic plastic 
region region 

A' 

0 0' 
!permanent I elastic 

set recovery 

u 

0 O' 

(a) 

elastic 
region 

(b) 

Fig. 8-14 

plastic 
region 

Stiffness. The modulus of elasticity is a mechanical property that 
indicates the stiffness of a material. Materials that are very stiff, such as 
steel, have large values of £(£5 1 = 29(103) ksi or200 GPa], whereas spongy 
materials such as vulcanized rubber have low values (Er = 0.10 ksi or 
0.69 MPa]. Values of E for commonly used engineering materials are 
often tabulated in engineering codes and reference books. Representative 
values are also listed on the inside back cover. 

The modulus of elasticity is one of the most important mechanical 
properties used in the development of equations presented in this text. It 
must always be remembered, though, that E, through the application of 
Hooke's Jaw, Eq. 8- 3, can be used only if a material has linear elastic 
behavior. Also, if the stress in the material is greater than the proportional 
limit, the stress- strain diagram ceases to be a straight line, and so Hooke's 
Jaw is no longer valid. 

Strain Hardening. If a specimen of ductile material, such as steel, is 
loaded into the plastic region and then unloaded, elastic strain is recovered 
as the material returns to its equilibrium state. The plastic strain remains, 
however, and as a result the material will be subjected to a permanent set. 
For example, a wire when bent (plastically) will spring back a little 
(elastically) when the load is removed; however, it will not fully return to 
its original position. This behavior is illustrated on the stress- strain diagram 
shown in Fig. 8-14a. Here the specimen is loaded beyond its yield point A 
to point A'. Since interatomic forces have to be overcome to elongate the 
specimen elastically, then these same forces pull the atoms back together 
when the load is removed, Fig. 8-14a. Consequently, the modulus of 
elasticity, £ , is the same, and therefore the slope of line 0 'A' is the same as 
line OA. With the load removed, the permanent set is 00 '. 

If the load is reapplied, the atoms in the material will again be displaced 
until yielding occurs at or near the stress A ', and the stress- strain 
diagram continues along the same path as before, Fig. 8- 14b. Although 
this new stress- strain diagram, defined by 0 'A ' B , now has a higher yield 
point (A') , a consequence of strain hardening, it also has less ductility, 
or a smaller plastic region, than when it was in its original state. 

This pin was made of a hardened stee l 
alloy, that is, one having a high carbon 
content. It fai led due to brittle fracture. 
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8.4 STRAIN ENERGY 
As a material is deformed by an external load, the load will do external work, 
which in turn will be stored in the material as internal energy. This energy is 
related to the strains in the material, and so it is referred to as strain energy. 
To show how to calculate strain energy, consider a small volume element of 
material taken from a tension test specimen, Fig. 8-lSa. It is subjected to the 
uniaxial stress u.This stress develops a force 6.F = u 6A = u ( 6.x 6.y) on 
the top and bottom faces of the element, which causes the element to 
undergo a vertical displacement e 6.z , Fig. 8-lSb. By definition, work is 
determined by the product of a force and displacement in the direction of 
the force. Here the force is increased uniformly from zero to its final 
magnitude 6.F when the displacement e 6.z occurs, and so during the 
displacement the work done on the element by the force is equal to the 
average force magnitude ( t.F/2) times the displacement e 6. z. The 
conservation of energy requires this "e:i...-ternal work" on the element to be 
equivalent to the "internal work" or strain energy stored in the element, 
assuming that no energy is lost in the form of heat. Consequently, the strain 
energy is 6.U = ( t t::..F) E 6. z = (~ u 6.x 6.y) e 6.z. Since the vohume of 
the element is 6. V = 6.x 6.y 6. z, then 6. U = ~ ae 6. V. 

For engineering applications, it is often convenient to specify the strain 
energy per unit volume of material. This is called the strain energy 
density , and it can be expressed as 

6.U 1 
LI= - = -ae 

6.V 2 
(8-6) 

Finally, if the material behavior is linear elastic, then H ooke's law 
applies, u = Ee, and therefore we can express the elastic strain energy 
density in terms of the uniaxial stress u as 

l u 2 
LI= --

2 E 
(8-7) 

Modulus of R s e ce. When the stress in a material reaches the 
proportional Limjt, the strain energy density, as calculated by Eq. 8-6 or 
8-7, is referred to as the modulus of resilience. It is 

(8-8) 

H ere u, is equivalent to the shaded triangular area under the elastic 
region of the stress-strain diagram, Fig. 8-16a. Physically the modulus of 
resilience represents the largest amount of strain energy per unit volume 
the material can absorb without causing any permanent damage to the 
material. Certainly this property becomes important when designing 
bumpers or shock absorbers. 

(T 
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Ay ! 
(T 

(a) 

AF= <r(Ax Ay) 

t 

Ay 

Free-body diagram 

(b) 

Fig. 8-15 

Ept 

Modulus of resilience 11, 

(a) 

Fig. 8-16 
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Modulus of toughness 111 

(b) 

Fig. 8-16 (cont.) 

hard steel 
(0.6% carbon) 
highest strength 

structural steel 
(0.2% carbon) __ _. ___ toughest 

soft steel 

11, 

(0.1 % carbon) 
most ductile 

Fi.g. 8-17 

• , 
• 

/ . 
This nylon specimen exhibits a high 
degree of toughness as noted by the large 
amount of necking that has occurred just 
before fracture. 

Modulus of Toughness. Another important property of a material is 
its modulus of toughness, u1• This quantity represents the entire area under 
the stress- strain diagram, Fig. 8-16b,and therefore it indicates the maximum 
amount of strain energy per unit volume the material can absorb just before 
it fractures. Certainly this becomes important when designing members 
that may be accidentally overloaded. By alloying metals, engineers can 
change their resilience and toughness. For example, by changing 
the percentage of carbon in steel, the resulting stress- strain diagrams in 
Fig. 8-17 show how its resilience and toughness can be changed. 

IMPORTANT POINTS 

• A conventional stress- strain diagram is important in engineering 
since it provides a means for obtaining data about a material's 
tensile or compressive strength without regard for the material's 
physical size or shape. 

• Engineering stress and strain are calculated using the original 
cross-sectional area and gage length of the specimen. 

• A ductile material, such as mild steel, has four distinct behaviors 
as it is loaded. They are elastic behavior, yielding, strain 
hardening, and necking. 

• A material is linear elastic if the stress is proportional to the strain 
within the elastic region. This behavior is described by Hooke's law, 
a = Ee, where the modulus of elasticity Eis the slope of the line. 

• Important points on the stress- strain diagram are the proportional 
limit, elastic limit, yield stress, ultimate stress, and fracture stress. 

• The ductility of a material can be specified by the specimen's 
percent elongation or the percent reduction in area. 

• If a material does not have a distinct yield point, a yield strength 
can be specified using a graphical procedure such as the offset 
method. 

• Brittle materials, such as gray cast iron, have very little or no 
yielding and so they can fracture suddenly. 

• Strain hardening is used to establish a higher yield point for a 
material. This is done by straining the material beyond the 
elastic limit, then releasing the load. The modulus of elasticity 
remains the same; however, the material's ductility decreases . 

• Strain energy is energy stored in a material due to its 
deformation. This energy per unit volume is called strain 
energy density. If it is measured up to the proportional limit, it 
is referred to as the modulus of resilience, and if it is measured 
up to the point of fracture, it is called the modulus of toughness. 
It can be determined from the area under the a-e diagram. 
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EXAMPLE 8 .1 

A tension test for a steel alloy results in the stress- strain diagram shown 
in Fig. 8-18. Calculate the modulus of elasticity and the yield strength 
based on a 0.2°10 offset. Identify on the graph the ultimate stress and the 
fracture stress. 

u (ksi) 

120 

-~1~10~------::;:::;-=---Bo-~--u. = 108 
100 

"' = 90 1---,/-....----------__::,,, c 
80 

Uys = 68 
70 

60 

50 
40 

30 
20 

10 

~ , , , , 

, 
, , , 

, , , , 

A ' 

0 

/ e1 = 0.23 
IL--'--'---'--.l-,...i..:,----'--L--'-----'---'--'--"--'-- e (in. Jin.) 

0.02 0.04 0.060.080.100.12 0.14 0.160.180.200.220.24 

SOLUTION 

I o.OOos I o.0016 I o.obu 
0.0004 0.0012 0.0020 

01% 
Fig. 8-18 

Modulus of Elasticity. We must calculate the slope of the initial 
straight-line portion of the graph. Using the magnified curve and scale 
shown in green, this line extends from point 0 to point A , which has 
coordinates of approximately (0.0016 in.f in., 50 ksi). Therefore, 

50 ksi . 
E = 0.0016 in.f in. = 31.2{1CP) kst Ans. 

Note that the equation of line OA is thusu = 31.2(103 )e. 

Yield Strength. For a 0.2°10 offset, we begin at a strain of 0.2% or 
0.0020 in.fin. and graphically extend a (dashed) line parallel to OA until 
it intersects the u-E curve at A'. The yield strength is approximately 

uys = 68 ksi Ans. 

Ultimate Stress. This is defined by the peak of the u -e graph, point B 
in Fig. 8-18. 

u,, = 108 ksi Ans. 

Fracture Stress. When the specimen is strained to its maximum of 
e1 = 0.23 in.fin., it (ractures at point C. Thus, 

u1 = 90 ksi Ans. 
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I EXAMPLE 8.2 

The stress- strain diagram for an aluminum alloy that is used for making 
aircraft parts is shown in Fig. 8-19. If a specimen of this material is stressed 
to a = 600 MPa, determine the permanent set that remains in the specimen 
when the load is released. Also, find the modulus of resilience both before 
and after the load application. 

u (MPa) 

750 

600 

uy= 450 ;.\ 
parallel 

300 

150 

G C D 
~+-~~~---~-~-.- (mm/mm) 

0 ~ 0.01 0.02 0.03 0.04 
Ey = 0.006 0.023 

Eoc; -

Fig. 8-19 

SOLUTION 

Permanent Strain. When the specimen is subjected to the load, it 
strain hardens until point Bis reached on the a -e diagram. The strain at 
this point is approximately 0.023 mm/mm. When the load is released, the 
material behaves by following the straight line BC, which is parallel to 
line OA. Since both of these lines have the same slope, the strain at point 
C can be determined analytically. The slope of line OA is the modulus of 
elasticity, i.e., 

450MPa 
E = -

0
-
006
---

1
- = 75.0 GPa 

. mm mm 
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From triangle CBD, we require 

BD 
E = CD; ( 9 ) _ 600(106

) Pa 
75.0 10 Pa - CD 

CD = 0.008 mm/mm 

This strain represents the amount of recovered elastic strain. The 
permanent set or strain, e0 c, is thus 

e0 c = 0.023 mm/mm - 0.008 mm/mm 

= 0.0150 mm/mm Ans. 

NOTE: If gage marks on the specimen were originally 50 mm apart, then 
after the load is released these marks will be 50 mm + 
( 0.0150) ( 50 mm) = 50. 75 mm apart. 

Modulus of Resilience. Applying Eq. 8- 8, the areas under OAG and 
CBD in Fig. 8- 19 are* 

1 1 
(u,);nitial = 2 <TptEpt = 2(450MPa) (0.006mm/mm) 

= 1.35 MJ/m3 Ans. 

1 1 
( u,) final = 2 <Tpt Ept = 

2 
( 600 MPa ) ( 0.008 mm/mm) 

= 2.40 MJ/m3 Ans. 

NOTE: By comparison, the effect of strain hardening the material has 
caused an increase in the modulus of resilience; however, note that 
the modulus of toughness for the material has decreased, since the 
area under the original curve, OABF, is larger than the area under 
curve CBF. 

*Work in the SJ system of units is measured in joules, where 1 J = 1 N · m. 
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FUNDAMENTAL PROBLEMS 

F8-1. Define a homogeneous material. 

F8-2. Indicate the points on the stress-strain diagram 
which represent the proportional limit and the ultimate 
stress. 

u 

D 

E 

Prob.F8-2 

F8-3. Define the modulus of elasticity E. 

F8-4. At room temperature, mild steel is a ductile 
material. True or false? 

F8-S. Engineering stress and strain are calculated using 
the actual cross-sectional area and length of the specimen. 
True or false? 

F8-6. As the temperature increases the modulus of 
elasticity will increase. True or false? 

F8-7. A 100-mm-long rod has a diameter of lS mm. If an 
axial tensile load of 100 kN is applied, determine its change in 
length. Assume linear elastic behavior with E = 200 GPa. 

F8-8. A bar has a length of 8 in. and cross-sectional area 
of 12 in2• Determine the modulus of elasticity of the material 
if it is subjected to an axial tensile load of 10 kip and 
stretches 0.003 in. The material has linear elastic behavior. 

F8-9. A IO-mm-diameter rod has a modulus of elasticity 
of E = 100 GPa. If it is 4 m long and subjected to an axial 
tensile load of 6 kN, determine its elongation. Assume 
linear elastic behavior. 

F8-10. The material for the SO-mm-long specimen has the 
stress-strain diagram shown. If P = 100 kN, determine the 
elongation of the specimen. 

F8-11. The material for the SO-mm-long specimen has the 
stress-strain diagram shown. If P = ISO kN is applied and 
then released, determine the permanent elongation of the 
specimen. 

p 

u(MPa) 

500 1-------=.., 
450 ~-~-

~~~----~-- e (mm/mm) 
0.00225 0.03 

Probs. FS-10/11 

F8-12. If t he elongation of wire BC is 0.2 mm after the 
force P is applied, determine the magnitude of P. The wire 
is A-36 steel and has a diameter of 3 mm. 

_ •gfc 
I 

300mm 
p 

.._zoo mm-

' . 
B 

,__ 400mm I 
Prob.F8-12 
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PROBLEMS 

8-L A tension test was performed on a steel specimen 
having an original diameter of 0.503 in. and gage length of 
2.00 in. The data is listed in the table. Plot the stress-strain 
diagram and determine approximately the modulus of 
elasticity. the yield stress, the ultimate stress., and the fracture 
stress. Use a scale of I in. = 20 ksi and 1 in. = 0.05 in.fin. 
Redraw the elastic region. using the same stress scale but a 
strain scale of l in.= 0.001 in.fin. 

Load (kip) Elongation (in.) 

0 
1.50 
4.60 
8.00 
L 1.00 
L 1.80 
L 1.80 
L2.00 
L6.60 
20.00 
21.50 
19.50 
18.50 

0 
0.0005 
0.0015 
0.0025 
0.0035 
0.0050 
0.0080 
0.0200 
0.0400 
0.1000 
0.2800 
0.4000 
0.4600 

Prob. 8-1 

8-2. Data taken Crom a stress-strain test for a ceramic are 
given in the table. The curve is linear between the origin and 
the first point. Plot the diagram, and determine the modulus 
of elasticity and the modulus of resilience. 

8-3. Data taken from a stress~train test for a ceramic are 
given in the table. The curve is linear between the origin and 
the first point. Plot the diagram, and determine approximately 
the modulus of toughness. The fracture stress is u1 = 53.4 ksi. 

u (ks i) e (in.f in.) 

0 
33.2 
45.5 
49.4 
51.5 
53.4 

0 
0.0006 
0.()() I 0 
0.0014 
0.0018 
0.0022 

Probs. 8-213 

8.4 STRAIN ENERGY 3 9 5 

*8-4. The stress-strain diagram for a steel alloy having an 
original diameter of0.5 in. and a gage length of2 in. is given in 
the figure. Determine approximately the modulus of elasticity 
for the material. the load on the specimen that causes yielding, 
and the ultimate load the specimen will support. 

u (ksi) 

80 

70 

60 

50 

40 

30 

20 

10 

I v 

/ 

-- ......... 

/ \ 
~ 

I 
I 

0 e (in.fin.) 
0 0.04 0.08 0. L2 0.16 0.20 0.24 0.28 
0 O.!Ul5 o.rxn 0.1Xll5 O.IU2 O.IXJ2.~ O.IU3().ll l35 

I 

Prob. 8-4 

8-5. The stress-strain diagram for a steel alloy having an 
original diameter of 0.5 in. and a gage length of 2 in. is given in 
the figure. Uthe specimen is loaded until it is stressed to 70 ksi. 
determine the approximate amount of elastic recovery and 
the increase in the gage length after it is unloaded. 

u {ksi) 

80 

70 

60 

50 

40 

30 

20 

10 

I 
/ 

J 

-~ .......... 

/ \ 
~ 

I 
I 

0 e (in .fin.) 
0 0.04 0.08 0. 12 0.16 0.20 0.24 0.28 
0 0.(Xll5 O.IXJI 0.1Xll5 0.1Xl2 o.m25 O.IXJ"l.IU35 

I 

Prob. 8-5 
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8-6. The stress-strain diagram for a steel alloy having an 
original diameter of 0.5 in. and a gage length of 2 in. is given 
in the figure. Determine approximately the modulus of 
resilience and the modulus of toughness for the material. 

u (ksi) 

80 

70 

60 

50 

40 

30 

20 

10 

0 

;f 

/ 

J 
I 

_,,..... -...... 

/ r\ 
b 

I 
I 

o o.~ o.os 0.12 o.t6 0.20 o.24 o.28 
0 0.0005 O.<Xll 0.0015 0.002 0.0025 O.<Xl30.0035 

Prob.8-6 

E (in.fin.) 

8-7. The rigid beam is supported by a pin at C and an A-36 
steel guy wire AB. If the wire has a diameter of 0.2 in., 
determine how much it stretches when a distributed load of 
w = 100 lb /ft acts on the beam. The material remains elastic. 

*8-8. The rigid beam is supported by a pin at C and an 
A-36 steel guy wire AB. If the wire has a diameter of 0.2 in., 
determine the distributed load w if the end B is displaced 
0.75 in. downward. 

A 

• 
w 

1~----~lOft ~------1 

Probs. 8-7/8 

8-9. Acetal plastic has a stress-strain diagram as shown. If 
a bar of this material has a length of 3 ft and cross-sectional 
area of 0.875 in2, and is subjected to an axial load of 2.5 kip, 
determine its elongation. 

CT (psi) 

'--------------E (in.fin.) 

Prob.8-9 

8-10. The stress-strain diagram for an aluminum alloy 
specimen having an original diameter of 0.5 in. and a gage 
length of2 in. is given in the figure. Determine approximately 
the modulus of elasticity for the material, the load on the 
specimen that causes yielding, and the ultimate load the 
specimen will support. 

8-11. The stress-strain diagram for an aluminum alloy 
specimen having an original diameter of 0.5 in. and a gage 
length of2 in. is given in the figure. If the specimen is loaded 
until it is stressed to 60 ksi, determine the approximate 
amount of elastic recovery and the increase in the gage 
length after it is unloaded. 

*8-12. The stress-strain diagram for an aluminum alloy 
specimen having an original diameter of 0.5 in. and a gage 
length of2 in. is given in the figure. Determine approximately 
the modulus of resilience and the modulus of toughness for 
the material. 

u (ksi) 

70 
60 
50 ~ 

40 
30 
20 

10 I 
' 

- ~ 
,._..,... 

- . -

I 
I 

I 
O 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.2 E (in.fin.) 

0 0.0025 0.0050.0075 0.01 0.01250.0150.0175 0.02 0.0255 0.025 

Probs. 8-10111112 
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8-13. A bar having a length of 5 in. and cross-sectional 
area of 0. 7 in.2 is subjected to an axial force of 8000 lb. If the 
bar stretches 0.002 in., determine the modulus of elasticity 
of the material. The material has linear elastic behavior. 

~ ... _________ )~ lb 
i-----5 in.----. 

Prob.8-13 

8-14. The rigid pipe is supported by a pin at A and an A-36 
steel guy wire BO. If the wire has a diameter of 0.25 in., 
determine how much it stretches when a load of P = 600 lb 
acts on the pipe. 

8-15. The rigid pipe is supported by a pin at A and an A-36 
guy wire BO. H the wire has a diameter of 0.25 in., determine 
the load P if the end C is displaced 0.15 in. downward. 

---3 ft ---t--- 3 ft -l 
Probs. 8-14115 

*8-16. Direct tension indicators are sometimes used 
instead of torque wrenches to ensure that a bolt has a 
prescribed tension when used for connections. If a nut on 
the bolt is tightened so that the six 3-mm high heads of the 
indicator are strained 0.1 mm/ mm, and leave a contact area 
on each head of 1.5 mm2, determine the tension in the bolt 
shank. The material has the stress-strain diagram shown. 

1 

ll .. r 

u (MPa) 

600i-----~ 

4501--r-

------- e (mm/ mm) 
0.0015 0.3 

Prob. 8-16 

8.4 STRAIN ENERGY 397 

8-17. The rigid beam is supported by a pin at C and an 
A992 steel guy wire AB of length 6 ft. If the wire has a 
diameter of 0.2 in., determine how much it stretches when a 
distributed load of IV= 200 lb/ft acts on the beam. The wire 
remains elastic. 

8-18. The rigid beam is supported by a pin at C and an A992 
steel guy wire AB of length 6 ft. If the wire has a diameter of 
02 in., determine the distributed load IV if the end B is 
displaced 0.12 in. downward. The wire remains elastic. 

A 

c 

I IV 

l-------------100--------l 

Probs. 8-17/18 

8-19. The stress-strain diagram for a bone is shown, and 
can be described by the equation e = 0.45{1o-6) u + 
0.36{ 10-12) u3, where u is in kPa. Determine the yield 
strength assuming a 0.3% offset. 

u 

~------------€ 

Prob. 8-19 
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398 CHAPTER 8 MECHANICAL PROPERTIES OF MATERIALS 

When the rubber block is 
compressed (negative sLrain), its 
sides will expand (positive strain). 
The ratio of these strains remains 
constant. 

8.5 POISSON'S RATIO 
When a deformable body is subjected to a force, not only does it elongate 
but it also contracts laterally. For example, consider the bar in Fig. 8-20 
that has an original radius r and length L , and is subjected to the tensile 
force P. This force elongates the bar by an amount 8, and its radius 
contracts by an amount 8' . The strains in the longitudinal or axial direction 
and in the lateral or radial direction become 

and 

In the early 1800s, the French scientist S. D. Poisson realized that within 
the elastic range the ratio of these strains is a constant, since the 
displacements 8 and 8' are proportional to the same applied force. This 
ratio is referred to as Poisson's ratio, v (nu), and it has a numerical value 
that is unique for any material that is both homogeneous and isotropic. 
Stated mathematically it is 

(8- 9) 

The negative sign is included here since longitudinal elongation (positive 
strain) causes lateral contraction (negative strain), and vice versa. Keep 
in mind that these strains are caused only by the single axial or 
longitudinal force P; i.e., no force acts in a lateral direction in order to 
strain the material in this direction. 

Poisson's ratio is a dimensionless quantity, and it will be shown in 
Sec. 10.6 that its maximum possible value is 0.5, so that 0 ~ v ~ 0.5. For 
most nonporous solids it has a value that is generally between 0.25 and 
0.355. Typical values for common engineering materials are listed on the 
inside back cover. 

Tension 

Fig. 8-20 
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I EXAMPLE 8.3 

A bar made of A-36 steel has the dimensions shown in Fig. 8-21. If an axial 
force of P = 80 kN is applied to the bar, determine the change in its length 
and the change in the dimensions of its cross section. The material behaves 
elastically. 

P=80kN ." 
y 

SO mm 
x 

lOOmm ~ "--z 

Fig. 8-21 

SOLUTION 

The normal stress in the bar is 

N 80(103 ) N 
a z =A= (0.1 m) (0.05 m) = 16.0(106) Pa 

From the table on the inside back cover for A-36 steel Est = 200 GPa, 
and so the strain in the z direction is 

az 16.0(106
) Pa 

e = - = = 80(10-·{i) mm/mm 
z Est 200(109 ) Pa 

The axial elongation of the bar is therefore 

Ans. 

Using Eq. 8-9, where vst = 0.32 as found from the inside back cover, the 
lateral contraction strains in both the x and y directions are 

Thus the changes in the dimensions of the cross section are 

Bx = ExLx = -(25.6(10-6))(0.1 m) = -2.56µm Ans. 

By = ey L y = -(25.6(10-6)](0.05m) = -1.28µm Ans. 

8.5 POISSON'S RATIO 399 
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400 CHAPTER 8 MECHANICAL PROPERTIES OF MATERIALS 

f Tzy 

IO_f x 

(a) 

y 

7T - 'Y:rv 2 · . 

(b) 

Fi.g. 8-22 

' ......- -......... 

/ -

G 

"Ip/ y,, 

Fig. 8-23 

Yr 

8.6 THE SHEAR STRESS-STRAIN 
DIAGRAM 

In Sec. 7.5 it was shown that when a small element of material is subjected 
to pure shear, equilibrium requires that equal shear stresses must be 
developed on four faces of the element, Fig. 8-22a. Furthermore, if the 
material is homogeneous and isotropic, then this shear stress will distort 
the element uniformly, Fig. 8- 22b, producing shear strain. 

In order to study the behavior of a material subjected to pure shear, 
engineers use a specimen in the shape of a thin tube and subject it to a 
torsional loading. If measurements are made of the applied torque and 
the resulting angle of twist, then by the methods to be explained in 
Chapter 10, the data can be used to determine the shear stress and shear 
strain within the tube and thereby produce a shear stress- strain diagram 
such as shown in Fig. 8- 23. Like the tension test, this material when 
subjected to shear will exhibit linear elastic behavior and it will have a 
defined proportional limil Tp/· Also, strain hardening will occur until an 
ultimate shear stress Tu is reached. And finally, the material will begin to 
Jose its shear strength until it reaches a point where it fractures, T1. 

For most engineering materials, like the one just described, the elastic 
behavior is linear, and so Hooke's Jaw for shear can be written as 

(8-10) 

Here G is called the shear modulus of elasticity or the modulus of 
rigidity. Its value represents the slope of the line on the T- y diagram, 
that is, G = Tpi/'Ypl· Units of measurement for G will be the same as those 
for T (Pa or psi), since y is measured in radians, a dimensionless quantity. 
Typical values for common engineering materials are listed on the inside 
back cover. 

Later it will be shown in Sec. 14.11 that the three material constants, 
E, v, and G can all be related by the equation 

(8-11) 

Therefore, if E and Gare known, the value of v can then be determined 
from this equation rather than through experimental measurement. 
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8.6 THE SHEAR STRESS-STRAIN D IAGRAM 4 0 1 

A specimen of titanium alloy is tested in torsion and the shear T (ksi) 

B 

stress-strain diagram is shown in Fig. 8-24a. Determine the shear 90 
modulus G, the proportional limit, and the ultimate shear stress. Also, 80 

determine the maximum distance d that the top of a block of this ~tT.;;-3!:;;:::::;:=....--T°'-..... 
material , shown in Fig. 8-24b. could be displaced horizontally if the 50 
material behaves elastically when acted upon by a shear force V. What is ;g 
the magnitude of V necessary to cause this displacement? 20 

10 
SOLUTION Oyp1 = 0.008 y. = 0.54 0.73 Y (rad} 

Shear Modulus. This value represents the slope of the straight-line 
portion OA of the r - y diagram. The coordinates of point A are (0.008 rad, 
52 ksi). Thus, 

52 ksi . 
G = 0_008 rad = 6500 ks1 Ans. 

The equation of line OA is therefore,,. = Cy = 6500y, which is Hooke's 
law for shear. 

Proportional Limit. By inspection, the graph ceases to be linear at 
point A. Thus, 

Tp/ = 52 ksi Ans. 

Ultimate Stress. This value represents the maximum shear stress, 
point B. From the graph, 

T11 = 73 ksi Ans. 

Maximum Elastic Displacement and Shear Force. The shear strain 
at the comer C of the block in Fig. 8-24b is determined by finding the 
difference in the 90° angle DCE and the angle 8. This angle is y = 90° - 8 
as shown. From the r-y diagram the maximum elastic shear strain is 
0.008 rad, a very small angle. The top of the block in Fig. 8-24b will 
therefore be displaced horizontally a distanced given by 

d 
tan ( 0.008 rad ) ""' 0.008 rad = -

2 
. 
m. 

d = 0.016 in. 

The corresponding average shear stress in the block is r,,1 = 52 ksi. 
Thus, the shear force V needed to cause the displacement is 

7'avg = ~; 52 ksi = ( 3 in.~( 4 in.) 

v = 624 kip Ans. 

(a) 

E 

(b} 

Fig. 8-24 
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402 CHAPTER 8 MECHANICAL PROPERTIES OF MATERIALS 

I EXAMPLE 8.5 

165 kN 

t 
f 

Lo 

i 
165 kN 

Fig. 8-25 

An aluminum specimen shown in Fig. 8-25 has a diameter of d0 = 25 mm 
and a gage length of L0 = 250 mm. If a force of 165 kN elongates the gage 
length 1.20 mm, determine the modulus of elasticity. Also, determine by how 
much the force causes the diameter of the specimen to contract. Take 
G.1 = 26 GPa and ay = 440 MPa. 

SOLUTION 

Modulus of Elasticity. The average normal st ress in the specimen is 

P 165(1a3) N 
a = - = = 336.1 MPa 

A (7r/4)(0.025m) 2 

and the average normal strain is 

5 1.20 mm 
e = - = = 0.00480 mm/mm 

L 250mm 

Since a < ay = 440 MPa, the material behaves elastically. The modulus 
of elasticity is therefore 

a 336.1(106 ) Pa 
E a1 = -;- = 0.004

8
0 = 70.0 GPa Ans. 

Contraction of Diameter. Fi1rst we will determine Poisson's ratio for 
the material using Eq. 8-11. 

E 
G =----

2(1 + v) 

70.0 GPa 
26GPa = ----

2(1 + v) 

v = 0.347 

Since EJong = 0.00480 mm/mm, then by Eq. 8-9, 

v = 

0.347 = 
0.00480 mm/mm 

EJat = -0.00166 mm/mm 

The contraction of the diameter is therefore 

5' = (0.00166) (25 mm) 

= 0.0416mm Ans. 
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8.6 THE SHEAR STRESS-STRAIN DIAGRAM 403 

IMPORTANT POINTS 

• Poisson's ratio, 11,is a ratio of the lateral strain of a homogeneous 
and isotropic material to its longitudinal strain. Generally 
these strains are of opposite signs, that is, if one is an elongation, 
the other will be a contraction. 

• The shear stress-strain diagram is a plot of the shear stress 
versus the shear strain. If the material is homogeneous and 
isotropic, and is also linear elastic, the slope of the straight line 
within the elastic region is called the modulus of rigidity or the 
shear modulus, G. 

• There is a mathematical relationship between G, E, and v. 

FUNDAMENTAL PROBLEMS 

FS-13. A 100 mm long rod has a diameter of 15 mm. If an 
axial tensile load of 10 kN is applied to it, determine the 
change in its diameter. E = 70 GPa, 11 = 0.35. 

• l-t... A solid circular rod that is 600 mm long and 20 mm 
in diameter is subjected to an axial force of P = 50 kN The 
elongation of the rod is Ii = l.40 mm. and its diameter 
becomes d ' = 19.9837 mm. Determine the modulus of 
elasticity and the modulus of rigidity of the material. 
Assume that the material does not yield. 

P = 50kN 
~ 

600mm 

P=50kN 

Prob. FS-14 

FS-15. A 20-mm-wide block is firmly bonded to rigid 
plates at its top and bottom. When the force P is applied the 
block deforms into the shape shown by the dashed line. 
Determine the magnitude of P.1l1e block"s material has a 
modulus of rigidity of G = 26 G Pa. Assume that the material 
does not yield and use small angle analysis. 

J-150mrn--j 
0.5 mml-t I . 
I I 

I 

' 150mm 1 
I 
I 

• 

p 1b ..... _ 

I 
I 
I 
I 
I 
I 

p 

H~-16. A 20.mm-wide block is bonded to rigid plates at its 
top and bottom. When the force P is applied the block deforms 
into the shape shown by the dashed line. U a= 3 mm and P is 
released, determine the permanent shear strain in the block. 

T (MPa) 

no ~-~----

l
-150 nun-J 
a.

1
= 3 mm I 

r ,------ .., 
I I 

150mm : / 

~,...,..,,,,.....---y (rad) L 1 ,' 
0.005 

Proh.I-S-i6 

p 
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404 CHAPTER 8 MECHANICAL PROPERTIES OF MATERIALS 

PROBLEMS 

*8-20. The acrylic plastic rod is 200 mm long and 15 mm in 
diameter. If an axial load of 300 N is applied to it, determine 
the change in its length and the change in its diameter. 
EP = 2.70 GPa, "P = 0.4. 

~~---==================-~+--... DN IDN 
1------ 200 mm------1. 

Prob. 8-20 

8-2L The plug has a diameter of 30 mm and fits within a 
rigid sleeve having an inner diameter of 32 mm. Both the 
plug and the sleeve are 50 mm long. Determine the axial 
pressure p that must be applied to the top of the plug to 
cause it to contact the sides of the sleeve. Also, how far must 
the plug be compressed downward in order to do this? The 
plug is made from a material for which E = 5 MPa," = 0.45. 

Prob. 8-21 

8-22. The elastic portion of the stress-strain diagram for 
an aluminum alloy is shown in the figure. The specimen 
from which. it was obtained has an original diameter of 
12.7 mm and a gage length of 50.8 mm. When the applied 
load on the specimen is 50 kN, the diameter is 12.67494 mm. 
Determine Poisson's ratio for the material. 

8-23. The elastic portion of the stress-strain diagram for an 
aluminum alloy is shown in the figure. The specimen from 
which it was obtained has an original diameter of 12.7 mm 
and a gage length of 50.8 mm. If a load of P = 60 kN is 
applied to t he specimen, determine its new diameter and 
length. Take " = 0.35. 

u (MPa) 

Probs. 8-22/23 

*8-24. The brake pads for a bicycle tire are made of 
rubber. If a frictional force of 50 N is applied to each side of 
the tires, determine the average shear strain in the rubber. 
Each pad has cross-sectional dimensions of 20 mm and 
50 mm. G, = 0.20 MPa. 

SO mm 

Prob.8-24 
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8-25. The lap joint is connected together using a 1.25 in. 
diameter bolt. U the bolt is made from a material having a 
shear streslH!train diagram that is approximated as shown, 
determine the shear strain developed in the shear plane of 
the bolt when P = 75 kip. 

8-26. The lap joint is connected together using a 125 in. 
diameter bolt. U the bolt is made from a material having a 
shear streslH!train diagram that is approximated as shown, 
determine the permanent shear strain in the shear plane of 
the bolt when the applied force P = 150 kip is removed. 

f 

p 
2 

T (ksi) 

<---J.-------'-- Y (rad) 
0.005 0.05 

Probs. 8-25/26 

8-27. The rubber block is subjected to an elongation of 
0.03 in. along the x axis, and its vertical faces are given a tilt 
so that (J = 89.3°. Determine the strains Ex• E

1
and1'.ry· Take 

,,, = 0.5. 

y 

I r·-------------------- ---; 
. , , 

3 Lil. , 

LJ ----------------------- _f:J_ 
I 

1
1---- 4 in. ----1

1 

Prob. 8-27 

x 
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*8-28. The shear strcslH!train diagram for an alloy is 
shown in the figure. U a bolt having a diameter of 0.25 in. is 
made of this material and used in the lap joint, determine 
the modulus of elasticity E and the force P required to 
cause the material to yield. Take "= 0.3. 

T (ksi) 

Ty= 50 

0.004 

Prob. 8-28 

8-29. A shear spring is made from two blocks of rubber, 
each having a height h, width b. and thickness a. The blocks 
are bonded to three plates as shown. If the plates are rigid 
and the shear modulus of the rubber is G, determine the 
displacement of plate A when the vertical load P is applied. 
Assume that the displacement is small so that 
li = a tan 1' = ay. 

p 

111 --. T J 
" 

I • 

----- - -_ ... ... -
-a- -a-r I 

Prob.8-29 
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406 C HAPTER 8 M ECHANICAL PROPERTIES OF MATERIALS 

CHAPTER REVIEW 

One of the most important tests for material strength is the tension test. The results, found from 
stretching a specimen of known size, are plotted as normal stress on the vertical axis and normal 
strain on the horizontal axis. 

Many engineering materials exhibit u 

initial linear elastic behavior, whereby 
stress is proportional to strain, defined 
by Hooke's Jaw, u = EtE. Here E, called 

u = EtE E u 
the modulus of elasticity, is the slope of 

IE 
this straight line on the stress-strain 
diagram. IE 

Ductile material 

When the material is stressed beyond u 

the yield point, permanent deformation 
~ultimate will occur. In particular, steel has a u,, 

region of yielding, whereby the material proportional limit ~ ~ fracture 
stress 

will exhibit an increase in strain with no Uf 
\ ~lastic limit 

increase in stress. The region of strain Uy yield stress 

hardening causes further yielding of the Up/ 

I material with a corresponding increase 
in stress. Finally, at the ultimate stress, a 
localized region on the specimen will 

E begin to constrict, forming a neck. It is elastic yielding strain necking 
after this that the fracture occurs. region hardening 

elastic plastic behavior 
behavior 

Conventional and true stress-strain diagrams 
for ductile material (steel) (not to scale) 

Ductile materials, such as most metals, Lr - Lo 
exhibit both elastic and plastic behavior. Percent elongation = ( 100% ) 

Wood is moderately ductile. Ductility is 
Lo 

usually specified by the percent Ao - A 
elongation to failure or by the percent Percent reduction of area = Ao f ( 100% ) 
reduction in the cross-sectional area. 

Brittle materials exhibit little or no 
yielding before failure. Cast iron, 
concrete, and glass are typical examples. 
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The yield point of a material at A can 
be increased by strain hardening. This 
is accomplished by applying a load that 
causes the stress to be greater than the 
yield stress, then releasing the load. 
The larger stress A' becomes the new 
yield point for the material. 

When a load is applied to a member, 
the deformations cause strain energy to 
be stored in the material. The strain 
energy per unit volume or strain energy 
density is equivalent to the area under 
the stress-strain curve. This area up to 
the yield point is called the modulus of 
resilience. The entire area under the 
stress-strain diagram is called the 
modulus of toughness. 

Poisson's ratio v is a dimensionless 
material property that relates the 
lateral strain to the longitudinal strain. 
Its range of values is 0 < v < 0.5. 

Shear stress versus shear strain diagrams 
can also be established for a material. 
Within the elastic region, r = G-y, 
where G is the shear modulus found 
from the slope of the line. The value of v 
can be obtained from the relationship 
that exists between G, E, and v. 

O"p/ f-----f 

11, 

Ep/ 

Modulus of resilience 

E1a1 v= ---
Etong 

E 
G= ----

2(1 + v) 

p 

CHAPTER REVIEW 

(]" 

(]" 

7 

elastic 
region 

set 

plastic 
region 

elastic 
recovery 

Modulus of toughness 111 

(b) 

Tension 

407 

11, 
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408 CHAPTER 8 MECHANICAL PROPERTIES OF MATERIALS 

REVIEW PROBLEMS 

R8-1. The elastic portion of the tension stress-strain 
diagram for an aluminum alloy is shown in the figure. The 
specimen used for the test has a gage length of 2 in. and a 
diameter of 0.5 in. When the applied load is 9 kip, the new 
diameter of the specimen is 0.49935 in. Calculate the shear 
modulus Ga1 for the aluminum. 

R8-2. The elastic portion of the tension stress-strain 
diagram for an aluminum alloy is shown in the figure. The 
specimen used for the test has a gage length of 2 in. and a 
diameter of 0.5 in. If the applied load is 10 kip, determine 
the new diameter of the specimen. The shear modulus is 
Ga1 = 3.8( lfrl) ksi. 

u (ksi) 

"------'--------- E (in.fin.) 
0.00614 

Probs. RS-112 

R8-3. The rigid beam rests in the horizontal position on 
two 2014-T6 aluminum cylinders having the unloaded 
lengths shown. If each cylinder has a diameter of 30 mm, 
determine the placement x of the applied 80-kN load so 
that the beam remains horizontal. What is the new diameter 
of cylinder A after the load is applied? v31 =0.35. 

I 1 

220 n1ml IA 
8 

I l2f o mm 

1--3m--1 
Prob. R8-3 

*R8-4. The wires each have a diameter oft in., length of 
2 ft, and are made from 304 stainless steel. If P = 6 kip, 
determine the angle of tilt of the rigid beam AB. 

R8-S. The wires each have a diameter of t in. , length of 
2 ft, and are made from 304 stainless steel. Determine the 
magnitude of force p so that the rigid beam tilts 0.015°. 

D 

1 
2 ft 

AB--2" f ll<- l 
I - -

I -· 

Probs. R8-4/S 

R8-6. The head H is connected to the cylinder of a 
compressor using six 1

3
6 in. diameter steel bolts. If the 

clamping force in each bolt is 800 lb, determine the normal 
strain in the bolts. If uy = 40 ksi and Esi = 29 ( 103

) ksi, 
what is the strain in each bolt when the nut is unscrewed so 
that the clamping force is released? 

CL 

H 

Prob. R8-6 
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R8-7. The stress--strain diagram for polyethylene, which is 
used to sheath coaxial cables, is determined from testing a 
specimen that has a gage length of 10 in. If a load Pon the 
specimen develops a strain of £ = 0.024 in./in., determine 
the approximate length of the specimen, measured between 
the gage points, when the load is removed. Assume the 
specimen recovers elastically. 

u (ksi) 
p 

5 

..-<' 
0 " 

< v 0 

4 

I 
3 

2 

I 
f 

1 

00 0.008 0.016 0.024 0.032 0.040 0.048 

Prob. R8-7 

p 

e (in.fin.) 

*R8-8. The pipe with two rigid caps anached to its ends is 
subjected 10 an axial force P. If the pipe is made from a 
material having a modulus of elasticity £ and Poisson's 
ratio v. determine the change in volume of the material. 

p 

T· 

To 

L 

~Section a - a 

p 

Prob. R8-8 

REVIEW PROBLEMS 409 

R8-9. The 8-mm-diamctcr bolt is made of an aluminum 
alloy. It fits through a magnesium sleeve that has an inner 
diameter of 12 mm and an outer diameter of 20 mm. If the 
original lengths of the bolt and sleeve are 80 mm and 
SO mm. respectively. determine the strains in the sleeve and 
the bolt if the nut on the bolt is tightened so that the tension 
in the bolt is 8 kN. Assume the material at A is rigid. 
£a1 = 70 GPa, Emg = 45 GPa. 

I 
50mm 

Prob. R8-9 

R8-10. An acetal polymer block is fixed to the rigid plates 
at its top and boltom surfaces. If the top plate displaces 
2 mm horizontally when it is subjected to a horizontal force 
P = 2 kN, determine the shear modulus of the polymer. The 
width of the block is 100 mm. Assume that the polymer is 
linearly elastic and use small angle analysis. 

1---400 mm---1 

P=2 kN 

I 
200mm 

L 
Prob. R8-10 
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CHAPTER 8 

(© Hazlan Abdul Hakim/Getty Images) 

The string of drill pipe stacked on this oil rig will be subjected to large axial 
deformations when it is placed in the hole. 
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AXIAL LOAD 

CHAPTER OBJECTIVES 

• In this chapter we will discuss how to determine the deformation 
of an axially loaded member, and we will also develop a method 

for finding the support reactions when these reactions cannot be 

determined strictly from the equations of equilibrium. An analysis 

of the effects of thermal stress, stress concentrations, inelastic 

deformations, and residual stress will also be discussed. 

9.1 SAINT-VENANT'S PRINCIPLE 
In the previous chapters, we have developed the concept of stress as a 
means of measuring the force distribution within a body and strain as a 
means of measuring a body's deformation. We have also shown that the 
mathematical relationship between stress and strain depends on the type 
of material from which the body is made. In particular, if the material 
behaves in a linear elastic manner, then Hooke's Jaw applies, and there is 
a proportional relationship between stress and strain. 

Using this idea, consider the manner in which a rectangular bar will 
deform elastically when the bar is subjected to the force P applied! along 
its centroidal axis, Fig. 9- la. The once horizontal and vertical grid lines 
drawn on the bar become distorted, and Localized deformation occurs at 
each end. Throughout the midsection of the bar, the lines remain 
horizontal and vertical. 

411 
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412 CHAPTER 9 AXIAL L OAD 

Notice how the lines on this rubber 
membrane distor t after it is stretched. The 
localized distortions at the grips smooth out 
as stated by Saint-Ve nant's principle. 

a
b -

p 

t Load distorts lines 
..-~ :::;::~:=- located near load 

a 
b 

c 

.......:::t::=- Lines located away 
!-+-<-+-+ from the load and support 

(a) 

remain straight 

Load distorts lines 
located near support 

Fig. 9-1 

If the material remains elastic, then the strains caused by this 
deformation are directly related to the stress in the bar through Hooke's 
law, a = Ee. As a result , a profile of the variation of the stress distribution 
acting at sections a-a, b- b, and c- c, will look like that shown in Fig. 9-lb. 
By comparison, the stress tends to reach a uniform value at section c-c, 
which is sufficiently removed from the end since the localized 
deformation caused by P vanishes. The minimum distance from the bar's 
end where this occurs can be determined using a mathematical analysis 
based on the theory of elasticity. It has been found that this distance 
should at least be equal to the largest dimension of the loaded cross 
section. Hence, section c-c should be located at a distance at least equal 
to the width (not the thickness) of the bar.* 

In the same way, the stress ,distribution at the support in Fig. 9-la will 
also even out and become uniform over the cross section located the 
same distance away from the support. 

The fact that the localized stress and deformation behave in this 
manner is referred to as Saint- Venant's principle, since it was first 
noticed by the French scientist Barre de Saint-Venant in 1855. Essentially 
it states that the stress and strain produced at points in a body sufficiently 
removed from the region of external load application will be the same as 
the stress and strain produced by any other applied external loading that 
has the same statically equivalent resultant and is applied to the body 
within the same region. For example, if two symmetrically applied forces 
P /2 act on the bar, Fig. 9- lc, the stress distribution at section c-c will be 
uniform and therefore equivalent to aavg = P /A as in Fig. 9-lc. 

*When section c--c is so located, the theory of elasticity predicts the maximum stress to 
be Umax = 1.02 Uavg· 
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section a-a 

9.2 

p p 

p u.,,. = A 

section l>-b section c-c 

(b) 

Fig. 9-1 (cont.) 

ELASTIC DEFORMATION OF AN 
AXIALLY LOADED MEMBER 

Using Hooke's law and the definitions of stress and strain, we will now 
develop an equation that can be used to determine the elastic displacement 
of a member subjected to axial loads. To generalize the development, 
consider the bar shown in Fig. 9-2a, which has a cross-sectional area that 
gradually varies along its length L, and is made of a material that has a 
variable stiffness or modulus of elasticity. The bar is subjected to 
concentrated loads at its ends and a variable external load distributed 
along its length. This distributed load could, for example, represent the 
weight of the bar if it is in the vertical position, or friction forces acting on 
the bar's surface. 

Here we wish to find the relative displacement 8 (delta) of one end of 
the bar with respect to the other end as caused by the loading. We will 
neglect the localized deformations that occur at points of concentrated 
loading and where the cross section suddenly changes. From Saint
Venant's principle, these effects occur within small regions of the bar's 
length and will therefore have only a slight effect on the final result. For 
the most part, the bar will deform uniformly, so the normal stress will be 
uniformly distributed over the cross section. 

t--x--11- dx _, 
! !- - - - ]1-L-.J-; .. ~ P2 Pi "'oe1-----1I- - - -

----L Isl 
(a) 

Fig. 9-2 

p u.,. -a: A 

section c-c 

(c) 

TI1e vertical displacement of the rod at the 
top floor B only depends upon the force in 
the rod along length AB. However, the 
displacement at the bottom floor C depends 
upon the force in the rod along its entire 
length, ABC. 
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414 CHAPTER 9 AXIAL L OAD 

Using the method of sections, a differential element (or wafer) of 
length dx and cross-sectional area A(x) is isolated from the bar at the 
arbitrary position x, where the modulus of elasticity is E(x). The free
body diagram of this element is shown in Fig. 9- 2b. The resultant internal 
axial force will be a function of x since the external distributed loading 
will cause it to vary along the length of the bar. This load, N(x), will 
deform the element into the shape indicated by the dashed outline, and 
therefore the displacement of one end of the element with respect to the 

1----x---l l- dx other e~? becomes do. The stress and strain in the element are therefore 

I 1----lt ! • P2 N(x) do P, .,.4---11- - - -
I I I <T = -- and € = -

..! A(x) dx 
~~~~L ~ 

(a) 

m: N(x) • l_D • N(x) 

1

-1 i- dll 
dx- -

(b) 

Fig. 9-2 (Repeated) 

Provided the stress does not exceed the proportional limit, we can apply 
Hooke's Jaw; i.e., <T = E(x)e, and so 

N(x) = E( )(do) 
A(x) x dx 

N(x)dx 
do = A(x)E(x) 

For the entire length L of the bar, we must integrate this expression to 
find 0. This yields 

Here 

1L N(x)dx 
8 -

0 A(x)E(x) 
(9- 1) 

o = displacement of one point on the bar relative to the other point 
L = original length of bar 

N (x) = internal axial force at the section, located a distance x from 
one end 

A(x) = cross-sectional area of the bar expressed as a function of x 
E(x) = modulus of elasticity for the material expressed as a function 

ofx 

Constant Load and Cross-Sectional Area. In many cases the 
bar will have a constant cross-sectional area A; and the material will be 
homogeneous, so E is constant. Furthermore, if a constant external force 
is applied at each end, Fig. 9- 3a, then the internal force N throughout the 
length of the bar is also constant. As a result , Eq. 9- 1 when integrated 
becomes 

~ 
~ 

(9- 2) 
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x 

p p P, ll I P3 • P4 ~2 I 
~ L -L,~-Li-l ~---l-L.-1 

(a) 

Fig.9-3 

If the bar is subjected to several different axial forces along its length, 
or the cross-sectional area or modulus of elasticity changes abruptly 
from one region of the bar to the next, as in Fig. 9- 3b, then the above 
equation can be applied to each segment of the bar where these quantities 
remain constant. The displacement of one end of the bar with respect to 
the other is then found from the algebraic addition of the relative 
displacements of the ends of each segment. For this general case, 

(9- 3) 

Sign Convention. When applying Eqs. 9- 1 through 9- 3, it is best to 
use a consistent sign convention for the internal axial force and the 
displacement of the bar. To do so, we will consider both the force and 
displacement to be positive if they cause tension and elongation, Fig. 9-4; 
whereas a negative force and displacement will cause compression and 
contraction. 

IMPORTANT POINTS 

• Saint-Venant'.s principle states that both the localized 
deformation and stress which occur within the regions of load 
application or at the supports tend to "even out" at a distance 
sufficiently removed from these regions. 

• The displacement of one end of an axially loaded member relative 
to the other end is determined by relating the applied internal 
load to the stress using <T = N /A and relating the displacement 
to the strain using e = do/ dx. Fmally these two equations are 
combined using Hooke's Jaw, <T = Ee, which yields Eq. 9- 1. 

• Since Hooke's Jaw has been used in the development of the 
displacement equation, it is important that no internal load 
causes yielding of the material, and that the material behaves 
in a linear elastic manner. 

(b) 

E +N 
-I • 

I------~ 

+N ... 

~I 
+s 

1] 
l~'--------l 
+s 

Fi.g. 9-4 
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PROCEDURE FOR ANALYSIS 

The relative displacement between any two points A and B on an 
axially loaded member can be determined by applying Eq. 9-1 (or 
Eq. 9- 2). Application requires the following steps. 

Internal Force. 

• Use the method of sections to determine the internal axial 
force N within the member. 

• If this force varies along the member's length due to an external 
distributed loading, a section should be made at the arbitrary 
location x from one end of the member, and the internal force 
represented as a function of x, i.e., N(x). 

• If several constant external forces act on the member, the internal 
force in each segment of the member between any two external 
forces must be determined. 

• For any segment, an internal tensile force is positive and an 
internal compressive force is negative. For convenience, the 
results of the internal loading throughout the member can be 
shown graphically by constructing the normal-force diagram. 

Displacement. 

• When the member's cross-sectional area varies along its length, 
the area must be expressed as a function of its position x , 
i.e. ,A(x). 

• If the cross-sectional area, the modulus of elasticity, or the 
internal loading suddenly changes, then Eq. 9-2 should be 
applied to each segment for which these quantities are 
constant. 

• When substituting the data into Eqs. 9- 1 through 9-3, be sure to 
account for the proper sign of the internal force N. Tensile forces 
are positive and compressive forces are negative. Also, use a 
consistent set of units. For any segment, if the result is a positive 
numerical quantity, it indicates elongation; if it is negative, it 
indicates a contraction. 
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I EXAMPLE 9.1 

The uniform A-36 steel bar in Fig. 9-5a has a diameter of 50 mm and is 
subjected to the loading shown. Determine the displacement at D , and the 
displacement of point B relative to C. 

80kN 40 kN 
70kN 

Nev= 70 kN Jlo tr".~~l 70 kN 

1-A __ z m---
8-il-1 m- l=--1.5 m--ID Nsc = 50 kN .,r ___ so_ k_N __ 40_k_N_--=;J= • 70 kN 

(a) 

Fig. 9-5 

SOLUTION 

Internal Forces. The internal forces within the bar are determined 
using the method of sections and horizontal equilibrium. The r,esults are 
shown on the free-body diagrams in Fig. 9- 5b. The normal-force diagram 
in Fig. 9- 5c shows the variation of these forces along the bar. 

Displacement. From the table on the inside back cover, for A-36 steel, 
E = 200 GPa. Using the established sign convention, the displacement of 
the end of the bar is therefore N (kN) 

NL [-70(1a3) N)(l.5 m) 

(b) 

L AE = ?T(0.025 m)2[200(109) N/m2] 
50 1------
1----~1--~3.,_ __ ___:,4·;::..-5 x(m) 

-30+-----2L..-~~ 
- 70 

(-30(HP) N](l m) [50(103) N](2 m) 
+ ---------- + ----------

?T(0.025 m)2[200(109) N /m2] ?T(0.025 m)2[200(109) N /m2] 

OD = -89.1(10-3) mm Ans. 

This negative result indicates that point D moves to the left. 

The displacement of B relative to C, 5810 is caused only by the internal 
load within region BC. Thus, 

NL [-30(103) N)(l m) _
3 

f>s;c = AE = ?T(0.025 m)2[200(109) N/m2] = -?6.4(lO ) mm Ans. 

Here the negative result indicates that B will move towards C. 

(c) 
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I EXAMPLE 9.2 

~400mm 

(a) 

The assembly shown in Fig. 9--6a consists of an aluminum tube AB having a 
cross-sectional area of 400 mm2. A steel rod having a diameter of 10 mm is 
attached to a rigid collar and passes through the tube. If a tensile load of 
80 kN is applied to the rod, determine the displacement of the end C of the 
rod. Take E st = 200 GPa, E al = 70 GPa. 

SOLUTION 

NAB= 80 kN 
80 kN --41-~~-----i•---

(b) 

Fig. 9-6 

Internal Force. The free-body diagrams of the tube and rod segments 
in Fig. 9-6b show that the rod is subjected to a tension of 80 kN, and the 
tube is subjected to a compression of 80 kN. 

Displacement. We will first determine the displacement of C with respect 
to B. Working in units of newtons and meters, we have 

NL [ +80(103
) NJ (0.6 m) 

f>qs = AE = = + 0.003056 m ~ 
?T(0.005 m)2[200 (109

) N/m2
] 

The positive sign indicates that C moves to the right relative to B, since 
the bar elongates. 

The displacement of B with respect to the fixed end A is 

0 
_ NL [-80(103) N](0.4 m) 

8 
- AE - (400 mm2(10-6) m2/mm2][70(109) N/m2] 

= -0.001143 m = 0.001143 m ~ 

Here the negative sign indicates that the tube shortens, and so B moves 
to the right relative to A. 

Since both displacements are to the right, the displacement of C 
relative to the fixed end A is therefore 

5 c = 5 8 + 5 C/B = 0.001143 m + 0.003056 m 

= 0.00420 m = 4.20 mm ~ Ans. 
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EXAMPLE 9 .3 

Rigid beam AB rests on the two short posts shown in Fig. 9-?a.AC is made 
of steel and has a diameter of20 mm, and BD is made of aluminum and has 
a diameter of 40 mm. Determine the displacement of point Fon AB if a 
vertical load of 90 kN is applied over this point. Take E,1 = 200 GPa, 
E;,1 = 70 GPa. 

SOLUTION 

Internal Force. The compressive forces acting at the top of each post 
are determined from the equilibrium of member AB, Fig. 9-7b. These 
forces are equal to the internal forces in each post, Fig. 9-7c. 

Displacement. The displacement of the top of each post is 

Post AC: 

= 0.286 mm! 

Post BD: 

N80L80 [-30{HY)N]{0.300m) ( -o 
S8 - - = -102 10 ) m 

AsoE.1 7T{0.020 m)2[70{109) N/m2] 

90kN 

1200 mm i -400 mm-J 
A 8 

F -, 
300mm 

c vi 
(a) 

90kN 

1

200 mm ---.t- 400 mm --1 
I 

t 
60kN 

1 
30kN 

(b) 

60kN 
30kN 

'* 
= 0.102 mm! t 

Nso = 30kN 
A diagram showing the centerline displacements at A, B, and Fon the N11c = (i() kN 

beam is shown in Fig. 9-7d. By proportion of the blue shaded triangle, 
the displacement of point Fis therefore 

SF= 0.102 mm + (0.184 mm)(
400 

mm) = 0.225 mm! Ans. 
600mm 

I 
600mm I 

0.102mm A i--400mm-- B 

,i[l:;;;;:::::J~::::::;;;:::;;=:;:::;=~O~.l~mt 
SF 

0.184 mm 

0.286 mm 

{d) 

Fig. 9-7 

(c) 
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I EXAMPLE 9.4 

Y A member is made of a material that has a specific weight of y = 6 kN / m3 

(a) 

y 

I 
N(y) 

(b) 

Fig. 9-8 

3m 

and modulus of elasticity of 9 GPa. If it is in the form of a cone having the 
dimensions shown in Fig. 9-&1, determine how far its end is displaced due to 
gravity when it is suspended in the vertical position. 

SOLUTION 

Internal Force. The internal axial force varies along the member, since 
it is dependent on the weight W(y) of a segment of the member below 
any section, Fig. 9-8b. Hence, to calculate the displacement, we must use 
Eq. 9- 1. At the section located a distance y from the cone's free end, the 
radius x of the cone as a function of y is determined by proportion; i.e., 

x 0.3m 
- = 
y 3m ' 

x = O.ly 

The volume of a cone having a base of radius x and height y is 

1 ?T(0.01) 
V = 31Tyx2 = 

3 
y3 = 0.01047y3 

Since W = yV, the internal force at the section becomes 

+ jIF. = O· y , N(y) = 6(103)(0.01047y3) = 62.83y3 

Displacement. The area of the cross section is also a function of 
position y, Fig. 9-8b. We have 

A(y) = ?TX2 = 0.03142y2 

Applying Eq. 9- 1 between the limits of y = 0 and y = 3 m yields 

(LN(y)dy 13 (62.83y3
) dy 

o = } 0 A(y) E = o (0.03142y2) 9(109) 

= 222.2(10- 9 ) 13 

y dy 

= 1(10- 6) m = 1 µm Ans. 

NOTE: This is indeed a very small amount. 
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PRELIMINARY PROBLEMS 
P9-l . In each case. determine the internal normal force 
between lettered points on the bar. Draw all necessary free
body diagrams. 

I' 8 c D ' 

(a) 
A 8 C D 

600N --+-:f\f>~;;;;;;;;~4'00~N~~~~~300~~~~.~~~~. 
(b) Prob. P9-l 

P9-2. Determine the internal normal force between 
lettered points on the cable and rod. Draw all necessary 
free-body diagrams. 

SOON 
• 8 

D 

Prob. P9-2 

P9-3. The post weighs 8 kN/m. Determine the internal 
normal force in the post as a function of x. 

T I 
2m 

Prob. P9-3 

P9-4. The rod is subjected to an external axial force of 
800 Nanda uniform distributed load of 100 N/m along its 
length. Determine the internal normal force in the rod as a 
function of x. 

A 
IOON/m 

~~~~i,5~~Sd~~800N 

-
1---x-i 

1------2m - I Prob. P9-4 

P9-5. The rigid beam supports the load of 60 kN. 
Determine the displacement at 8. Take E = 60 GPa. and 
Asc= 2 (10-3) m 2. 

60kN 

12m--4m-1 
A 8 

T T 111 

Jo 3m 
2 

c 
Prob.P9-5 
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FUNDAMENTAL PROBLEMS 

F9-1. The 20-mm-diameter A-36 steel rod is subjected to 
the axial forces shown. Determine the displacement of 
end C with respect to the fixed support at A. 

- 600 mm,-400 mm-J 

~ A ~ SOkN !1--4-;0.~kN 
nU SOkN c 

Prob.F9-l 

F9-2. Segments AB and CD of the assembly are solid 
circular rods, and segment BC is a tube. If the assembly is 
made of 6061-T6 aluminum, determine the displacement of 
end D with respect to end A. 

B 
a c 

20mm 

lO kN Al - lOkN-

I 

lSkN D 

: Ill 20kN 

1
1 

tokN lSkN I I a 
400mm 400mm 400mm 

30mmIO 140mm 

Section a-a 

Prob.F9-2 

F9-3. The 30-mrn-diameter A992 steel rod is subjected to 
the loading shown. Determine the displacement of end C. 

s / 30kN 
~3 

A B ~3 
I I ~ """-30 kN 

1-400 mm --i---600 mm---1 

Prob.F9-3 

90 kN 

c 

F9-4. If the 20-mrn-diameter rod is made of A-36 steel 
and the stiffness of the spring is k = 50 MN/m, determine 
the displacement of end A when the 60-kN force is applied. 

400mm 
k = SOMN/m 

I 
400mm 

J_ 
A 

60kN 

Prob.F9-4 

F9-5. The 20-mrn-diameter 2014-T6 aluminum rod is 
subjected to the uniform distributed axial load. Determine 
the displacement of end A. 

t~kN/m ~ 
Al~~~~~~~ 

1------900 mm _____ _, 

Prob. F9-5 

F9-6. The 20-mrn-diameter 2014-T6 aluminum rod is 
subjected to the triangular distributed axial load. Determine 
the displacement of end A. 

45 kN/m 

1------900 mm------

Prob.F9-6 
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PROBLEMS 

9-L The A992 steel rod is subjected to the loading shown. 
If the cross-sectional area of the rod is 80 mm2, determine the 
displacement of B and A. Neglect the size of the couplings 
at Band C. 

6kN 

5 kN 

c 

B 

I 
0.75m 

l 

1.50 m 
6 kN 

I 
lm 

SkN l 
A 

lOkN 

Prob. 9- 1 

9-2. The copper shaft is subjected to the axial loads shown. 
Determine the displacement of end A with respect to end D 
if the diameters of each segment are dA8 = 0.75 in., d8 c = 
1 in. , and dcD = 0.5 in. Take Ecu = 18(HP) ksi. 

8 kip 

- 80 in.-j-150 in.-j-100 in.-J 

s kip I I 2 kip I 
.. A : I It D 

5 kip B C 2kip 

Prob. 9- 2 

6 kip .. 

9- 3. The composite shaft, consisting of aluminum, copper, 
and steel sections, is subjected to the loading shown. 
Determine the displacement of end A with respect to end D 
and the normal stress in each section. The cross-sectional 
area and modulus of elasticity for each section are shown in 
the figure. Neglect the size of the collars at B and C. 

*9-4. The composite shaft, consisting of aluminum, copper, 
and steel sections, is subjected to the loading shown. Determine 
the displacement of B with respect to C. The cross-sectional 
area and modulus of elasticity for each section are shown in 
the figUie. Neglect the size of the collars at Band C. 

Copper Steel Aluminum 

£ 31 = 10(Hl3) ksi 

AA 8 = 0.09 in2 

£ 00 = 18(103) ksi 

A8 c = 0.12 in2 

E,. = 29(103) ksi 

Aco = 0.06 in2 

3.50 kip 1.75 kip 

2.~ n : fr- 1; 0 kip 

A ·~.50 kip c 11" kip f 
--18 in.-l-12 in.- 16 in.-! 

Probs. 9- 314 

9-5. The 2014-T6 aluminum rod has a diameter of 30 mm 
and supports the load shown. Determine the displacement of 
end A with respect to end £.Neglect the size of the couplings. 

A 8 kN B C D E 
I o..- fktD ttD 0 ~kN 

1-4m~-2m-l-2m-1-2m-
Prob. 9- 5 
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9-6. The A-36 steel drill shaft of an oil well extends 12 000 ft 
into the ground. Assuming that the pipe used to drill the well 
is suspended freely from the derrick at A , determine the 
maximum average normal stress in each pipe string and the 
elongation of its end D with respect to the fixed end 
at A. The shaft consists of three different sizes of pipe, AB, 
BC, and CD, each having the length, weight per unit length, 
and cross-sectional area indicated. 

AAB = 2.50 in.2 

IYAB = 3.2 lb/ft 

A8 c = 1.75 in.2 

w8 c = 2.8 lb /ft 

Arn= 1.25 in.2 
IYCD = 2.Q lb /ft 

Prob. 9-6 

9-7. The truss is made of three A-36 steel members, each 
having a cross-sectional area of 400 mm2. Determine the 
horizontal displacement of the roller at C when P = 8 kN. 

*9-8. The truss is made of three A-36 steel members, 
each having a cross-sectional area of 400 mm2. Determine 
the magnitude P required to displace the roller to the 
right 0.2 mm. 

0.8m 

p 

A~/<-----------~ 
o~--i------=hJ,_ 

1---0.8 m~--0.6 m-1 

Probs. 9-7/8 

9-9. The assembly consists of two 10-mm diameter red 
brass C83400 copper rods AB and CD, a 15-mm diameter 
304 stainless steel rod EF, and a rigid bar G. If P = 5 kN, 
determine the horizontal displacement of end F of rod EF. 

9-10. The assembly consists of two 10-mm diameter red 
brass C83400 copper rods AB and CD, a 15-mm diameter 
304 stainless steel rod EF, and a rigid bar G. If the horizontal 
displacement of end F of rod EF is 0.45 mm, determine the 
magnitude of P. 

i-300mm - 450mm -

A B - p 
- -E ... 4P • 

• F--c D ~ p 
G 

Probs. 9-9/10 

9-11. The load is supported by the four 304 stainless steel 
wires that are connected to the rigid members AB and DC. 
Determine the vertical displacement of the 500-lb load if 
the members were originally horizontal when the load was 
applied. Each wire has a cross-sectional area of 0.025 in2. 

*9-12. The load is supported by the four 304 stainless steel 
wires that are connected to the rigid members AB and DC. 
Determine t he angle of tilt of each member after the 500-lb 
load is applied. The members were originally horizontal, 
and each wire has a cross-sectional area of 0.025 in2• 

E F G 
---· '" -· - .- ~ .. 

- -

3 ft 

H 
5 ft 

D c 
T 1- 1 ft- - 2ft-I 

1.8 ft 

I I 
A B 

I 3 ft - 1 ft-I 

500 lb 

Probs. 9-11112 
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9-13. The rigid bar is supported by the pin-connected rod 
CB that has a cross-sectional area of 14 mm2 and is made 
from 6061-T6 aluminum. Determine the vertical deflection 
of the bar at D when the distributed load is applied. 

-1 
1.5 m 

L~~____.D 

Prob. 9-13 

9-14. The post is made of Douglas fir and has a diameter 
of 100 mm. If it is subjected to the load of20 kN and the soil 
provides a frictional resistance distributed around the post 
that is triangular along its sides; that is, it varies from w = 0 
at y = 0 tow = 12 kN/m at y = 2 m, determine the force 
F at its bottom needed for equilibrium. Also, what is the 
displacement of the top of the post A with respect to its 
bottom B? Neglect the weight of the post. 

9-15. The post is made of Douglas fir and has a diameter 
of 100 mm. if it is subjected to the load of20 kN and the soil 
provides a frictional resistance that is distributed along 
its length and varies linearly from IV= 4 kN/ m at y = 0 
to IV =12 kN/ m at y = 2 m. determine the force F at its 
bottom needed for equilibrium. Also, what is the 
displacement or the top of the post A with respect to its 
bottom B? Neglect the weight of the post. 

20kN 

y + + 
I t t IV 2mj_ 

t t 
t t 

12 kN/m 

Probs. 9-14115 

*9-16. The coupling rod is subjected to a force of 5 kip. 
Determine the distance d between C and E accounting for 
the compression of the spring and the deformation of the 
bolts. When no load is applied the spring is unstretched and 
d = 10 in. The material is A-36 steel and each bolt has a 
diameter of 0.25 in. The plates al A. B, and Care rigid and the 
spring has a stiffness or k = 12 kip/ in. 

i S kip 

Prob.9-16 

9-17. The pipe is stuck in lhe ground so that when it is 
pulled upward the frictional force along its length varies 
linearly from zero al B to /mu (force/length) at C. Determine 
the initial force P required to pull the pipe out and the 
pipe's elongation just before it starts to slip. The pipe has a 
length L. cross-sectional area A, and the material from 
which it is made has a modulus of elasticity £. 

p 

!""'. c 
Prob. 9-17 
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9-18. The linkage is made of three pin-connected A992 
steel members, each having a diameter of 1~ in. If a 
horizontal force of P = 60 kip is applied to the end B of 
member AB, determine the displacement of point B. 

-I 
4 ft 

l -I 
4 ft 

_l 

p 

I---6 ft ---ii B 

Prob.9-18 

9-19. The linkage is made of three pin-connected A992 
steel members, each having a diameter of 1~ in. Determine 
the magnitude of the force P needed to displace point B 
0.25 in. to the right. 

-I 
4 ft 

l 
-I 
4 ft 

_l 

p 

--6 ft---118 

Prob.9-19 

*9-20. The assembly consists of three titanium (Ti-6Al-4V) 
rods and a rigid bar AC. The cross-sectional area of each rod 
is given in the figure. If a force of 60 kip is applied to the 
ring F, determine the horizontal displacement of point F. 

A 

60k 

2 . 2 
£F = lD 

T 
1 ft 

A 6 ft 

A A8 = 1 in2 

E 
ip i l-2ft -~ 

2 ft 

1 A co = 1.5 in2 

c 6 ft 

Prob.9-20 

B, 

' 

' 

D" 

9-21. The rigid beam is supported at its ends by two A-36 
steel tie rods. If the allowable stress for the steel is 
uauaw= 16.2 ksi, the load w=3 kip/ft,andx=4 ft, determine 
the smallest diameter of each rod so that the beam remains 
in the horizontal position when it is loaded. 

9-22. The rigid beam is supported at its ends by two A-36 
steel tie rods. The rods have diameters dAa = 0.5 in. and 
dcv = 0.3 in. If the allowable stress for the steel is 
u allow = 16.2 ksi, determine the largest intensity of the 
distributed load w and its length x on the beam so that the 
beam remains in the horizontal position when it is loaded. 

.J • 
B D 

1 
6ft 

JV 

I :i 
A..,. 

I 

~8ft I 

l 
c 

Probs. 9-21122 

9-23. The steel bar has the original dimensions shown in 
the figure. If it is subjected to an axial load of 50 kN, 
determine the change in its length and its new cross-sectional 
dimensions at section a-a. E" = 200 GPa, v" = 0.29. 

SOkN 

Prob.9-23 
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*9-24. Determine the relative displacement of one end of 
the tapered plate with respect to the other end when it is 
subjected to an axial load P. 

p 

/--d2-----
I 

Prob.9-24 

9-25. The assembly consists of two rigid bars that are 
originally horizontal. They arc supported by pins and 
0.25-in.-diamctcr A-36 steel rods. If the vertical load of 5 kip 
is applied to the bottom bar A 8, determine the displacement 
at C, 8 , and£. 

~ . 
Ji 

•f 

8 ft 1-2 rt -I J. ,. D 
A c £/ b 
• • l.5 rt 

•'> B I-6 ri---1f1--6 r1-I 
i 

5 kip 

Prob.9-25 

9-26. The truss consists of three members, each made 
from A-36 steel and having a cross-sectional area of 0.75 in2• 

Detemune the greatest load P that can be applied so that 
the roller support at 8 is not displaced more than 0.03 in. 

9-27. Solve Prob. 9-26 when the load P acts vertically 
downward at C. 

c 

Probs. 9-26127 

*9-28. The observation cage Chas a weight of 250 kip and 
through a system of gears, travels upward at constant 
velocity along the A-36 steel column, which has a height of 
200 ft. The column has an outer diameter of 3 ft and is made 
from steel plate having a thickness of 0.25 in. Neglect the 
weight of the column, and determine the average normal 
stress in the column at its base. 8. as a function of the cage's 
position y. Also, determine the displacement of end A as a 
function of y. 

A 

200 ft 

1 

c 
~aooooaliQ 

y 
...L_ 

B 

Prob. 9-28 

9-29. Determine the elongation of the aluminum strap 
when it is subjected to an axial force of 30 kN. E.1=70 GPa. 

30 lcN 30kN ~--·~---800 mm ---il---11 
250mm 250mm 

Prob. 9-29 

9-30. The ball is truncated at its ends and is used to 
support the bearing load P. If the modulus of elasticity for 
the material is£, determine the decrease in the ball's height 
when the load is applied. 

p 
r 
2 

r 

Prob. 9-30 
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9.3 PRINCIPLE OF SUPERPOSITION 
The principle of superposition is often used to determine the stress or 
displacement at a point in a member when the member is subjected to a 
complicated loading. By subdividing the loading into components, this 
principle states that the resultant stress or displacement at the point can 
be determined by algebraically summing the stress or displacement 
caused by each load component applied separately to the member. 

The following two conditions must be satisfied if the principle of 
superposition is to be applied. 

1. The loading N must be linearly related to the stress u or 
displacement B that is to be determined. For example, the equations 
a = N /A and 5 = NL/ AE involve a linear relationship between 
a and N, and 5 and N. 

2. The loading must not significantly change the original geometry or 
configuration of the member. If significant changes do occur, the 
direction and location of the applied forces and their moment arms 
will change. For example, consider the slender rod shown in Fig. 9- 9a, 
which is subjected to the load P. In Fig. 9- 9b, P is replaced by two 
of its components, P = P1 + P2. If P causes the rod to deflect a large 
amount, as shown, the moment of this load about its support, Pd, will 
not equal the sum of the moments of its component loads, 
Pd # P1d 1 + P2d2, because d1 # d2 # d. 

~ 
P, 

* J + 
P2 

d, 
di 

d 

(a) (b) 

Fi.g. 9-9 

9.4 STATICALLY INDETERMINATE 
AXIALLY LOADED MEMBERS 

Consider the bar shown in Fig. 9- lOa, which is fixed supported at both of 
its ends. From its free-body diagram, Fig. 9- lOb, there are two unknown 
support reactions. Equilibrium requires 

+ f2F = O; FB + FA - 500 N = 0 

This type of problem is called statically indeterminate, since the equilibrium 
equation is not sufficient to determine both reactions on the bar. 
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In order to establish an additional equation needed for solution, it is necessary 
to consider how points on the bar are displaced. Specifically, an equation that 
specifies the conditions for displacement is referred to as a compatibility or 
kinematic condition. In this case, a suitable compatibility condition would require 
the displacement of end A of the bar with respect to end B to equal zero, since the 
end supports are fixed, and so no relative movement can occur between them. 
Hence, the compatibility condition becomes 

{,A ja = Q 

This equation can be expressed in terms of the internal loads by using a 
loa~isplacement relationship, which depends on the material behavior. For 
example, if linear elastic behavior occurs, then l'J = NL/AE can be used. Realizing 
that the internal force in segment AC is +FA , and in segment CB it is -Fa, Fig. 9-lOc, 
then the compatibility equation can be written as 

FA(2 m) Fa(3 m) 
AE - AE = O 

Since AE is constant, then FA= 1.5F8 . Finally, using the equilibrium equation, the 
reactions are therefore 

FA = 300 N and Fa = 200 N 

Since both of these results are positive, the directions of the reactions are shown 
correctly on the free-body diagram. 

To solve for the reactions on any statically indeterminate problem, we must 
therefore satisfy both the equilibrium and compatibility equations, and relate the 
displacements to the loads using the load-displacement relations. 

IMPORTANT POINTS 

• The principle of superposition is sometimes used to simplify 
stress and displacement problems having complicated loadings. 
This is done by subdividing the loading into components, then 
algebraically adding the results. 

• Superposition requires that the loading be linearly related to the 
stress or displacement, and the loading must not significantly 
change the original geometry of the member. 

• A problem is statically indeterminate if the equations of 
equilibrium are not sufficient to determine all the reactions on 
a member. 

• Compatibility conditions specify the displacement constraints 
that occur at the supports or other points on a member. 

A 

I 
2 m 

t- c 
SOON 

3 m 

(a) 

SOON i 

(b) (c) 

Fig. 9-10 
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Most concrete columns are reinforced with 
steel rods; and since these two materials work 
together in supporting the applied load, the 
force in each material must be determined 
using a statically indeterminate analysis. 

PROCEDURE FOR ANALYSIS 

The support reactions for statically indeterminate problems 
are determined by satisfying equilibrium, compatibility, and 
load- displacement requirements for the member. 

Equilibrium. 

• Draw a free-body diagram of the member in order to identify 
all the forces that act on it. 

• The problem can be classified as statically indeterminate if the 
number of unknown reactions on the free-body diagram is 
greater than the number of available equations of equilibrium. 

• Write the equations of equilibrium for the member. 

Compatibility. 

• Consider drawing a displacement diagram in order to 
investigate the way the member will elongate or contract when 
subjected to the external loads. 

• Express the compatibility conditions in terms of the 
displacements caused by the loading. 

Load-Displacement. 

• Use a load- displacement relation, such as a = NL/ AE, to 
relate the unknown displacements in the compatibility 
equation to the reactions. 

• Solve all the equations for the reactions. If any of the results 
has a negative numerical value, it indicates that this force 
acts in the opposite sense of direction to that indicated on the 
free-body diagram. 
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I EXAMPLE 9.5 

The steel rod shown in Fig. 9- lla has a diameter of 10 mm. It i.s fixed 
to the wall at A , and before it is loaded, there is a gap of 0.2 mm 
between the wall at B' and the rod. Determine the reactions on the 
rod if it is subjected to an axial force of P = 20 kN. Neglect the size of 
the collar at C. Take £,1 = 200 GPa. 

SOLUTION 

Equilibrium. As shown on the free-body diagram, Fig. 9- 1 lb, we 
will assume that force P is large enough to cause the rod's end B to 
contact the wall at B'. When this occurs, the problem becomes 
statically indeterminate since there are two unknowns and only one 
equation of equilibrium. 

~ 'I.fr = 0; -FA - FB + 20(103
) N = 0 (1) 

Compatibility. The force P causes point B to move to B; with no 
further displacement. Therefore the compatibility condition for the rod is 

oB/A = 0.0002 m 

Load-Displacement. This displacement can be expressed in terms 
of the unknown reactions using the load-displacement relationship, 
Eq. 9-2, applied to segments AC and CB, Fig. 9- llc. Working in units 
of newtons and meters, we have 

or 

FA LAc 
OB/A = AE 

FA(0.4 m) 

FBLcB 
AE = 0.0002m 

7T(0.005 m)2 (200(109
) N/m2

] 

FB (0.8 m) 
----------- = 0.0002 m 
7T(0.005 m) 2 (200(10 9

) N/m2
] 

FA (0.4 m) - FB (0.8 m) = 3141.59 N • m (2) 

Solving Eqs. 1 and 2 yields 

FA = 16.0kN FB = 4.05 kN Ans. 

Since the answer for FB is positive, indeed end B contacts the wall at 
B' as originally assumed. 

NOTE: If FB were a negative quantity, the problem would be 
statically determinate, so that FB = 0 and FA = 20 kN. 

p = 20 kN 0.2 mm~ 

A $ Ea:O.::=:=:E[j'I B' 

400 
1.:_800 mm ___!J 

mm 

(a) 

FA~......-----;~FA 

Fs -~;;;;;;;;~~g..-F8 
(c) 

Fig. 9-11 
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I EXAMPLE 9.6 

The aluminum post shown in JFig. 9- l2a is reinforced with a brass core. 
2 in. If this assembly supports an axial compressive load of P = 9 kip, 

1.5 ft 

(a) 

!P= 9kip 

(b) 

(c) 

Fig. 9-U 

applied to the rigid cap, determine the average normal stress in the 
aluminum and the brass. Take Ea1 = 10(103) ksi and Ebr = 15(103) ksi. 

SOLUTION 

Equilibrium. The free-body diagram of the post is shown in Fig. 9- 12b. 
Here the resultant axial force at the base is represented by the unknown 
components carried by the aluminum, Fah and brass, Fbr· The problem is 
statically indeterminate. 

Vertical force equilibrium requires 

+ jIF = O· y , -9kip + Fal + Fbr = 0 (1) 

Compatibility. The rigid cap at the top of the post causes both the 
aluminum and brass to be displaced the same amount. Therefore, 

Bal = Bbr 

Load-Displacement. Using the load-displacement relationships, 

F.1L FbrL 

F = [ 7T((2in.)
2 

- (lin.)
2
] J [10(10

3
)ksi ] 

al Fbr 7T(l in.)2 15(103) ksi 

F.1 = 2fbr (2) 

Solving Eqs. 1 and 2 simultaneously yields 

Fa1 = 6 kip Jbr = 3 kip 

The average normal stress in the aluminum and brass is therefore 

6 kip . 

[( 
. ) 2 ( . 2] = 0.637 ks1 7T 2 m. - 1 m.) 

CTal = Ans. 

3 kip 
= 0.955 ksi Ans. Obr = 

7T(l in.)2 

NOTE: Using these results, the stress distributions within the materials 
are shown in Fig. 9- 12c. Here the stiffer material, brass, is subjected to 
the larger stress. 
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EXAMPLE 9.7 

The three A992 steel bars shown in Fig. 9- 13a are pin connected to a 
rigid member. lf the applied load on the member is 15 kN, determine 
the force developed in each bar. Bars AB and EF each have a 
cross-sectional area of 50 mm2

, and bar CD has a cross-sectional area 
of30 mnl. 

SOLUTION 

Equilibrium. The free-body diagram of the rigid member is shown 
in Fig. 9-13b. This problem is statically indeterminate since there are 
three unknowns and only two available equilibrium equations. 

+ jIF,, = O; FA + F c + FE - 15 kN = 0 (1) 

~+"I.Mc = O; -F A(0.4 m) + 15 kN(0.2 m) + F E(0.4 m) = 0 (2) 

Compatibility. The applied load will cause the horizontal line ACE 
shown in Fig. 9-13c to move to the inclined position A' C' E'. The red 
displacements C>A, Cle, C>E can be related by similar triangles. Thus the 
compatibility equation that relates these displacements is 

Load- Displacement. Using the load-displacement relationship, 
Eq. 9-2, we have 

~ 
~ 

• • • 1 • • 
B. D" F; 

0 5m 

A. c. E l. 
l 

• 
I 

0.2m l0.2m 0.4m-
I ,) 

15 kN 

(a) 

FA Fe F£ 

t _]t~ 

g l0.2ml 
15 kN 

0.4m 

(b) 

(30 mm2)£51 

I [ FA L ] 1 [ FE L 
= 2 (50 mm2)£ SI + 2 (50 rrun2)£ SI 

Fe = 0.3FA + 0.3FE 

Ar-0.4 m d- 0.4 md 
] 8E~ l 8E 

8,. -8E E ' 

(3) A' 
8

,. 8c - 8E C' 8c 

Solving Eqs.1-3 simultaneously yields 

FA= 9.52 kN 

Fe= 3.46 kN 

FE= 2.02kN 

Ans. 

Ans. 

Ans. 

(c) 

Fig. 9-13 
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I EXAMPLE 9.8 

I . 
2m. 

(a) 

F, 

11 . ' 

''l 
ff! 
(b} 

(c) 

Fig. 9-14 

Final 
position 

0.025 in. 

Initial 
position 

The bolt shown in Fig. 9- l4a is made of 2014-T6 aluminum alloy, and it 
passes through the cylindrical tube made of Am 1004-T61 magnesium 
alloy. The tube has an outer radius of! in., and it is assumed that both the 
inner radius of the tube and the radius of the bolt are l in. When the bolt 
is snug against the tube it produces negligible force in the tube. Using a 
wrench, the nut is then further tightened one-half turn. If the bolt has 
20 threads per inch, determine the stress in the bolt. 

SOLUTION 

Equilibrium. The free-body diagram of a section of the bolt and the 
tube, Fig. 9- 14b, is considered in order to relate the force in the bolt Fb to 
that in the tube, F,. Equilibrium requires 

+ jIF. = O· y , F,,-F, = 0 (1) 

Compatibility. As noted in Fig. 9- 14c, when the nut is tightened one
half turn on the bolt, it advances a distance of (~) {z10 in.) = 0.025 in. 
This will cause the tube to shorten 5 1 and the bolt to elongate 5 b· Thus, 
the compatibility of these displacements requires 

(+j) 5, + 5 b = 0.025 in. 

Load-Displacement. Taking the moduli of elasticity from the table on 
the inside back cover, and applying the load-displacement relationship, 
Eq. 9- 2, yields 

F, (3 in.) 

7T[(0.5 in.)2 - (0.25 in.)2) (6.48(103) ksi) 

+ Fb (3 in.) = 0.025 in. 
11(0.25 in.)2 (10.6(1G3) ksi) 

0.78595F, + 1.4414Fb = 25 

Solving Eqs. 1 and 2 simultaneously, we get 

Fb = F, = 11.22 kip 

The stresses in the bolt and tube are therefore 

Fb 11.22 kip 
<Tb = - = = 57 .2 ksi 

Ab 7T(0.25 in.)2 

F, 11.22 kip 
a: = - - = 19.1 ksi 

' A, 7T[(0.5 in.)2 
- (0.25 in.)2

) 

(2) 

Ans. 

These stresses are Jess than the reported yield stress for each material, 
(uv)a1 = 60 ksi and (uv)mg = 22 ksi (see the inside back cover), and 
therefore this "elastic" analysis is valid. 
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9. 5 THE FORCE METHOD OF ANALYSIS 
FOR AXIALLY LOADED MEMBERS 

It is also possible to solve statically indeterminate problems by writing the 
compatibility equation using the principle of superposition. This method 
of solution is often referred to as the flexibility or force method of 
analysis. To show how it is applied, consider again the bar in Fig. 9-15a. 
U we choose the support at B as "redundant" and temporarily remove it 
from the bar, then the bar will become statically determinate, as in 
Fig. 9-15b. Using the principle of superposition, however, we must add 
back the unknown redundant load F8 , as shown in Fig. 9-15c. 

Since the load P causes B to be displaced downward by an amount 8p, 
the reaction F8 must displace end B of the bar upward by an amount 88 , 

so that no displacement occurs at B when the two loadings are 
superimposed. Assuming displacements are positive downward, we have 

(+!) 

This condition of 8p = 88 represents the compatibility equation for 
displacements at point B. 

Applying the load-displacement relationship to each bar, we have 
8p = 500 N(2 m)/AE and 88 = F8 (5 m) /AE. Consequently, 

500 N ( 2 m ) Fs ( 5 m) 
O = AE AE 

Fs = 200N 

From the free-body diagram of the bar, Fig. 9- 15d, equilibrium requires 

+f!F1 = O; 200N +FA - SOON = 0 

Then 
FA= 300N 

These results are the same as those obtained in Sec. 9.4. 

PROCEDURE FOR ANALYSIS 

The force method of analysis requires the following steps. 

Compatibility. 

No dasploc:ement at B 

SOON 

(•) 

Oi.splaccme.n1 Ill 8 when 
redw1dan1 force at 8 

is rcn10\1Cd 

(b) 500 N 

Oisplacen\Cnt 111 8 when 
onl)' the redundanl force 

ot Bis opplied 

(c) 

A 

I 
2m 

c I 
Jm 

1 
B 

II 
A 

+ 
A 

Fa 

Fig. 9-15 

l 500N 

(d) 

• Choose one of the supports as redundant and write the equation of compatibility. To do this, the known 
displacement at the redundant support, which is usually zero, is equated to the displacement at the support 
caused only by the external loads acting on the member plus (vectorially) the displacement at this support 
caused only by the redundant reaction acting on the member. 
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Load-Displacement. 

• Express the external load and redundant displacements in terms of the loadings by usmg a 
load-displacement relationship, such as a = NL/ AE. 

• Once established, the compatibility equation can then be solved for the magnitude of the redundant force. 

Equilibrium. 

• Draw a free-body diagram and write the appropriate equations of equilibrium for the member using the 
calculated result for the redundant. Solve these equations for the other reactions. 

I EXAMPLE 9.9 

P = 20kN 

0.2nm~ 

B' 
800mm -

11 
Initial~ I 

P = 20 kN position 1-c.Sp 
- ( • 3 -i- l 

TheA-36 steel rod shown in Fig. 9-16a has a diameter of 10 mm. It is fixed to 
the wall at A, and before it is loaded there is a gap between the wall and the 
rod of 0.2 mm. Determine the reactions at A and B '. Neglect the size of the 
collar at C. Take E 51 = 200 GPa. 

SOLUTION 

Compatibility. Here we will consider the support at B' as redundant. 
Using the principle of superposit ion, Fig. 9- 16b, we have 

(~) 0.0002 m = op - DB (1) 

f NAc =20kN Ncs=O kfinal + ~/ls position Load-Displacement. The defiections Op and SB are determined from 

~=:3;~;;;;;;;=:=;;-i;i-t-- Fs Eq. 9- 2. 

(b) 

(c) 

Fig. 9- 16 

NAcLAc (20(103 ) N)(0.4 m) _3 
op = AE - ?T(0.005 m)2 (200(109) N/m2) = 0.5093(lO ) m 

FB (1.20 m) 
- ---~--~-~ = 76.3944(10- 9)FB 

?T(0.005 m)2 (200(10 9
) N/m2

] 

Substituting into Eq. 1, we get 

0.0002 m = 0.5093(10- 3 ) m - 76.3944(10- 9 )FB 

FB = 4.05(103 ) N = 4.05 kN 

Equilibrium. 

+ "'F. = O· ~ ~ x ' 

From the free-body diagram, Fig. 9- 16c, 

-FA+ 20kN - 4.05kN = 0 FA = 16.0kN 

Ans. 

Ans. 
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PROBLEMS 

9-31. The column is constructed from high-strength 
concrete and eight A992 steel reinforcing rods.Uthe column 
is subjected to an axial force of 200 kip, determine the 
average normal stress in the concrete and in each rod. Each 
rod has a diameter of l in. 

*9-32. The column is constructed from high-strength 
concrete and eight A992 steel reinforcing rods.Uthe column 
is subjected to an axial force of 200 kip, determine the 
required diameter of each rod so that 60% of the axial force 
is carried by the concrete. 

0 • • 
4 Ill. 

200 kip 

1111 1111 
1111 IJIJ 
I Ii I I JI I 
J IJ I I JI I 
1111 I I Ii 
1111 lili 
1111 lili 3 ft 
I Ii I I JI I 
Jiii 1111 
1111 I JI I 
Jiii llli 
Jiii 1111 
JI JI I JI I 
I Ii I I JI I 

Probs. 9-31/32 

9-33. The A-36 steel pipe has a 6061-T6 aluminum core. It 
is subjected to a tensile force of 200 kN. Determine the 
average normal stress in the aluminum and the steel due to 
this loading. The pipe has an outer diameter of 80 mm and 
an inner diameter of 70 mm. 

I 
400mm 

I 
200kN <I 02 ) 200kN 

Prob. 9-33 

9-34. If column AB is made Crom high strength precast 
concrete and reinforced with four : in. diameter A-36 ste.el 
rods, determine the average normal stress developed in the 
concrete and in each rod. Set P = 75 kip. 

9-35. If column AB is made Crom high strength precast 
concrete and reinforced with four l in. diameter A-36 steel 
rods, determine the maximum allowable floor loadings P. 
The allowable normal stresses for the concrete and the steel 
are (uanow)con = 2.5 ksi and (ua11ow)s1=24 ksi, respectively. 

to ft 

p p 

a -- --a I: :J=r9 in. 
~I 
9 in. 

Section a-a 

8 

Probs. 9-34135 

*9-36. Determine the support reactions at the rigid supports 
A and C. The material has a modulus of elasticity of£. 

9-37. If the supports at A and C are flexible and have a 
stiffness k, determine the support reactions at A and C. The 
material has a modulus of elasticity of£. 

,. 1-, 
ti .l.t1 
I 41 ; 

p 
I 

A I 8 I c 

2a a 

Probs. 9-36/37 
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9-38. The load of 2000 lb is to be supported by the two 
vertical steel wires for which uy = 70 ksi. Originally wire AB 
is 60 in. long and wire AC is 60.04 in. long. Determine the force 
developed in each wire after the load is suspended. Each wire 
has a cross-sectional area of0.02 in2. E" = 29.0(lQ'.l) ksi. 

9-39. The load of 2000 lb is to be supported by the two 
vertical steel wires for which uy = 70 ksi. Originally wire 
AB is 60 in. Jong and wire AC is 60.04 in. long. Determine 
the cross-sectional area of AB if the load is to be shared 
equally between both wires. Wire AC has a cross-sectional 
area of 0.02 in2. Esi = 29.0(103) ksi. 

B 
c 

60.04 in. 

Probs. 9-38/39 

*9-40. The A-36 steel pipe has an outer radius of 20 mm 
and an inner radius of 15 mm. If it fits snugly between the 
fixed walls before it is loaded, determine the reaction at the 
walls when it is subjected to the load shown. 

A B c - 8kN 

- 8kN ' -
l-300mm-I 700mm I 

I 

Prob. 9-40 

9-4L The 10-mm-diameter steel bolt is surrounded by a 
bronze sleeve. The outer diameter of this sleeve is 20 mm, and 
its inner diameter is 10 mm. If the yield stress for the steel is 
(uy)si = 640 MPa, and for the bronze (uy)br = 520 MPa, 
determine the magnitude of the largest elastic load P that can 
be applied to the assembly.£"= 200 GPa, Eb,= 100 GPa. 

p 

I 

I 

I 
I 
I lOmm 
I 
I 
I 

- - 1 --20mm 
I 
I 
I 

•• '. ' 
ii• 

t 
p 

Prob. 9-41 

9-42. The 10-mm-diameter steel bolt is surrounded by a 
bronze sleeve. The outer diameter of this sleeve is 20 mm, and 
its inner diameter is 10 mm. If the bolt is subjected to a 
compressive force of P=20 kN,determine the average normal 
stress in the steel and the bronze.£.,= 200 GPa, Ebr = 100 GPa. 

I 
I 
I 

p 

--+'I lOmm 
I 
I 
I 

- - 1 --20mm 
I 
I 

p 

Prob. 9-42 
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9-43. The assembly consists of two red brass C83400 
copper rods AB and CD of diameter 30 mm, a stainless 304 
steel alloy rod EF of diameter 40 mm, and a rigid cap G. If 
the supports at A, C. and Fare rigid, determine the average 
normal stress developed in the rods. 

I • 4 40kN 
A I 

30mm 
B E I F 

I 
I 

4 
40kN 

40mm 

c r D • 1._) 30mm G 

Prob.9-43 

*9-44. The rigid beam is supported by the three suspender 
bars. Bars AB and EF arc made of aluminum and bar CD is 
made of steel. lf each bar has a cross-sectional area of 450 mm2, 

determine the maximum va lue of P if the allowable stress is 
(uauow)si = 200 MPa for the steel and (<rauow)a1 = 150 MPa for 
the aluminum.£,,= 200 GPa, Ea1=70 GPa. 

0 '• 1> 

B D F 

al st al 
~ 

2m 

A c E 
I 0 0 .n 

0.75m 0.15 m '0.75 m 0.75m 
' p 

2P 

Prob. 9-44 

9-45. The bolt AB has a diameter of 20 mm and passes 
through a sleeve that has an inner diameter of 40 mm and 
an outer diameter of 50 mm. The bolt and sleeve are made 
of A-36 steel and are secured to the rigid brackets as shown. 
If the bolt length is 220 mm and the sleeve length is 200 mm, 
determine the tension in the bolt when a force of 50 kN is 
applied to the brackets. 

l-200mm-I 

::: :A9i - [el: :::: 
l-220mm-J 

Prob. 9-45 

9-46. If the gap between C and the rigid wall at D is 
initially 0.15 mm, determine the support reactions at A and 
D when the force P = 200 kN is applied. The assembly is 
made of solid A-36 steel cylinders. 

1600 mm --i-600 mml 
,_ 

I I 
p 

I D 

O.ISmm 

I c 
A .I B 25mm 

SO mm 
,. 

Prob. 9-46 

9-47. The support consists of a solid red brass C83400 
copper post surrou11ded by a 304 stainless steel tube. Before 
the load is applied the gap between these two parts is 1 mm. 
Given the dimensions shown, determine the greatest axial 
load that ca11 be applied to the rigid cap A without causing 
yielding of any one of the materials. 

p 

r~ .. ~. +lmm 

0.25 m • 

' 

' 

~>-IOmm 
au mm 

Prob.9-47 

*9-48. The specimen represents a filament-reinforced matrix 
system made from plastic (matrix) and glass (fiber). If there are 
11 fibers.. each having a cross-sectional area of A 1 and modulus 
of Er embedded in a matrix having a cross-sectional area of Am 
and modulus of Em• determine the stress in the matrix and in 
each fiber whe11 the force Pis applied on the specimen. 

p 

i 

i 
p 

Prob. 9-48 
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9-49. The rigid bar is pinned at A and supported by two 
aluminum rods, each having a diameter of 1 in .. a modulus of 
elasticity £.1 =10(103) ksi, and yield stress of (uy)a1=40 ksi. 
lf the bar is initially vertical, determine the displacement of the 
end B when the force of 20 kip is applied. 

9-50. The rigid bar is pinned at A and supported by two 
aluminum rods, each having a diameter of 1 in., a modulus of 
elasticity £ 31 =10(103) ksi, and yield stress of (uy )01 =40 ksi. If 
the bar is i11itially vertical, determine the angle of tilt of the 
bar when tJ1e 20-kip load is applied. 

B 
20kip 

I h 
F E I 

1.5h-ri1 
2 ft 

? c.~ 
l-1.s h --+I 1 ft 

A _l 

Probs. 9-49/50 

9-51. The rigid bar is pinned at A and supported by two 
aluminum rods. each having a diameter of l in. and a 
modulus of elasticity £.1=10(103) ksi. If the bar is initially 
vertical. determine the displacement of the end 8 when the 
force of 2 kip is applied. 

*9-52. 111e rigid bar is pinned at A and supported by two 
aluminum rods, each having a diameter of l in. and a 
modulus of elasticity £.1=10(103) ksi. If the bar is initially 
vertical, determine the force in each rod when the 2-kip 
load is applied. 

B 

I ft 
F E I 
f-1h-i!r. 

t-+-1 ... 2 kip 

1 lft 

I? c. t 
l-2h--J 1 rt 

A _I 

Probs. 9-5V52 

9-53. The 2014-T6 aluminum rod AC is reinforced with the 
firmly bonded A992 steel tube BC. If the assembly fits 
snugly between the rigid supports so that there is no gap at C. 
determine the support reactions when the axial force of 
400 kN is applied. The assembly is attached at D. 

9-54. The 2014-T6 alwuinum rod AC is reinforced with the 
firmly bonded A992 steel tube BC. When no load is applied 
to the assembly, the gap between end C and the rigid 
support is 0.5 mm. Determine the support reactions when 
the axial force of 400 kN is applied. 

D 
A 

400mm 400kN 

-+---· ...... '"-8 

800mm 50~2steel 

a 25 mmT2o14-T6 aluminum alloy 

Section~ 

Probs. 9-53/54 

9-55. The three suspender bars are made of A992 steel 
and have equal cross-sectional areas of 450 mm2. Determine 
the average normal stress in each bar if the rigid beam is 
subjected to the loading shown. 

~ I I 

I A B c 
80kN 

2m SO kN 

! D E F ,__ ot"J I 0 0 

J-1 m--j--1 m-j-i m-j-t m-j 

Prob. 9-55 
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9.6 THERMAL STRESS 
A change in temperature can cause a body to change its dimensions. 
Generally, if the temperature increases, the body will expand, whereas if 
the temperature decreases, it will contract.* Ordinarily this expansion or 
contraction is linearly related to the temperature increase or decrease that 
occurs. If this is the case, and the material is homogeneous and isotropic, 
it has been found from experiment that the displacement of the end of a 
member having a length L can be calculated using the formula 

9.6 THERMAL STRESS 441 

I Br = a6.TL I 
Here 

(9-4) Most traffic bridges are designed with 
expansion JOtn ts to accommodate the 
thermal movement of the deck and thus 
avoid any thermal stress. 

a = a property of the material, referred to as the linear coefficient 
of thermal expansion. The units measure strain per degree of 
temperature. They are 1/°F (Fahrenheit) in the FPS system, and 
1/°C (Celsius) or 1/K (Kelvin) in the SI system. Typical values 
are given on the inside back cover. 

6. T = the algebraic change in temperature of the member 

L = the original length of the member 

or = the algebraic change in the length of the member 

The change in length of a statically determinate member can easily be 
calculated using Eq. 9-4, since the member is free to expand or contract 
when it undergoes a temperature change. However, for a statically 
indeterminate member, these thermal displacements will be constrained 
by the supports, thereby producing thermal stresses that must be 
considered in design. Using the methods outlined in the previous sections, 
it is possible to determine these thermal stresses, as illustrated in the 
following examples. 

*There are some materials, like Invar, an iron-nickel alloy, and scandium trifluoride, that 
behave in the opposite way, but we will not consider these here. 

j 

Long extensions of ducts and pipes that carry 
fluids are subjected to variations in 
temperature that will cause them to expand 
and contract. Expansion joints, such as the 
one shown, are used to mitigate thermal 
stress in the material. 
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I EXAMPLE 9.10 1 

0.5 in. 

1-1 
D I O.Sin. 

A -

2 ft 

B 

(a) 

F 

i 

t 
F 

(b) 

(c) 

Fig. 9-17 

TheA-36 steel bar shown in Fig. 9-17a is constrained to just fit between two 
fixed supports when T1 = 60°F. 1f the temperature is raised to T2 = 120°F, 
determine the average normal thermal stress developed in the bar. 

SOLUTION 

Equilibrium. The free-body diagram of the bar is shown in Fig. 9- 17b. 
Since there is no external load, the force at A is equal but opposite to the 
force at B; that is, 

+jIFy = O; 

The problem is statically indeterminate since this force cannot be 
determined from equilibrium. 

Compatibility. Since oA/B = 0, the thermal displacement oT at A that 
occurs, Fig. 9- 17c, is counteracted by the force F that is required to push 
the bar oF back to its original position. The compatibility condition at A 
becomes 

(+j) 

Load-Displacement. Applying the thermal and load-displacement 
relationships, we have 

FL 
0 = a6.TL - -

AE 

Using the value of a on the inside back cover yields 

F = a6.TAE 
= (6.60(10-6)/°F](120°F - 60°F)(0.5 in.)2 (29(103) kip/in 2] 

= 2.871 kip 

Since F also represents the internal axial force within the bar, the 
average normal compressive stress is thus 

F 2.871 kip . . 
a = - = . ? = 11.5 ks1 

A (0.5 m.)-
Ans. 

NOTE: The magnitude of F indicates that changes in temperature can 
cause large reaction forces in statically indeterminate members. 
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EXAMPLE 9 .~ 

l-300 mm+300 mm-I 

I l 1 l l l l l l l Jtso kN /m 
I 

T 
250mm 

60mm- <-

The rigid beam shown in Fig. 9-l&l is fixed to the top of the three posts 
made of A992 steel and 2014-T6 aluminum. The posts each have a length of 
250 mm when no load is applied to the beam, and the temperature is 
T1 = 20"C. Determine the force supported by each post if the bar is 
subjected to a uniform distributed load of 150 kN/m and the temperature 
is raised to T2 = 80"C. 

- -40mm 40mm- - j 

SOLUTION 

Equilibrium. The free-body diagram of the beam is shown in Fig. 9-18b. 
Moment equilibrium about the beam's center requires the forces in the 
steel posts to be equal. Summing forces on the free-body diagram, we have 

+ f "i.0, = 0; 2F,;1 + Fa1 - 90(103
) N = 0 (1) 

Compatibility. Due to load, geometry, and material symmetry, the top 
of each post is displaced by an equal amount. Hence, 

( + l) o .. = Bai (2) 
The final position of the top of each post is equal to its displacement 

caused by the temperature increase, plus its displacement caused by the 
internal axial compressive force, Fig. 9- 18c. Thus, for the steel and 
aluminum post, we have 

(+ l ) 

(+l) 
Applying Eq. 2 gives 

ost = - (o.,)r + (o.,)F 

Bai = - (o.1)r + (oa1)F 

-(o.,)r + (o.JF = - (oa1)r + (oai)F 

Load-Displacement. Using Eqs. 9-2 and 9~ and the material 
properties on the inside back cover, we get 

~ F.1 (0.250 m) -[12(10 )/°C](80"C - 20"C)(0.250 m) + ___ ::.:....:.._ _ ____: __ _ 
1T(0.020 m) 2 [200(109) N/m2] 

Steel Aluminum Steel 

(a) 

90kN 

1---- i.-----, 
, I 

• ' 

F" 

(b) 

(c) 

Fig. 9-18 

= -[23(10~)/°C)(80"C - 20°C)(0.250 m) + 1T(0.030 ~·~ i~·:~~l~\ N/m2) 

Fs1 = l.216Fa1 - 165.9(103) (3) 

To be consistent, all numerical data has been expressed in terms of 
newtons, meters, and degrees Celsius. Solving Eqs. 1 and 3 simultaneously 
yields 

F81 = - 16.4 kN Fa1 = 123 kN Ans. 

The negative value for F51 indicates that this force acts opposite to that 
shown in Fig. 9i.-18b. In other words, the steel posts are in tension and the 
aluminum post is in compression. 
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EXAMPLE 9.12 
~ -

l 
150mm 

J 
(a) 

(b) 

Initial 

A 2014-T6 aluminum tube having a cross-sectional area of 600 mm2 is used 
as a sleeve for an A-36 steel bolt having a cross-sectional area of 400 mm2, 

Fig. 9- 19a. When the temperature is T1 = l5°C, the nut holds the assembly 
in a snug position such that the axial force in the bolt is negligible. If the 
temperature increases to T2 = 80°C, determine the force in the bolt and 
sleeve. 

SOLUTION 

Equilibrium. The free-body diagram of a top segment of the assembly 
is shown in Fig. 9-19b. The forces Fb and F, are produced since the sleeve 
has a higher coefficient of thermal expansion than the bolt, and therefore 
the sleeve will expand more when the temperature is increased. It is 
required that 

+ jIFy = O; (1) 

Compatibility. The temperature increase causes the sleeve and bolt to 
expand (os)T and (ob)T, Fig. 9- 19c. However, the redundant forces Fb and 
F, elongate the bolt and shorten the sleeve. Consequently, the end of the 
assembly reaches a final position, which is not the same as its initial 
position. Hence, the compatibility condition becomes 

(+ !) 

Load-Displacement. Applying Eqs. 9- 2 and 9-4, and using the 
mechanical properties from the table on the inside back cover, we have 

(12(10 -6)/°C](80°C - l5°C)(0.150 m) + 

Fb (0.150 m) 

= (23(10 -6) / °C](80°C - 15°C)(0.150 m) 

position ~ ~(llb)r 
(ll,)r ll 

(llb)F Final 
~--~-
L 1 position 

Fs (0.150 m) 

(ll,)F Using Eq. 1 and solving gives 

(c) 

Fig. 9-19 

Fs = Fb = 20.3 kN Ans. 

NOTE: Since linear elastic material behavior was assumed in this 
analysis, the average normal stresses should be checked to make sure 
that they do not exceed the proportional limits for the material. 
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PROBLEMS 

*9-56. The C83400-red-brass rod AB and 2014-T6-
aluminum rod BC are joined at the collar B and fixed 
connected at their ends. lf there is no load in the members 
when T1 = 50°F. determine the average normal stress in each 
member when T2 = 120°F. Also. how far will the collar be 
displaced? The cross-sectional area of each member is 1. 75 in2• 

Prob. 9-56 

9-57. The assembly has the diameters and material 
indicated. If it fits securely between its fixed supports 
when the temperature is T1 =70°F, determine the average 
normal stress in each material when the temperature 
reaches T2 = 11 0°F. 

2014-T6 Aluminum 304 Stainless 
C 86100 Bronze steel 

A 12 in. D 

Prob. 9-57 

9-58. The rod is made or A992 steel and has a diameter of 
0.25 in. If the rod is 4 ft long when the springs are compressed 
0.5 in.and the temperature of the rod is T = 40°F,determine 
the force in the rod when its temperature is T = 160°F. 

---4ft---

Prob. 9-58 
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9-59. The two cylindrical rod segments are fixed to the rigid 
walls such that there is a gap of 0.01 in. between them when 
T1 = 60°F. What larger temperature T2 is required in order 
to just close the gap? Each rod has a diameter of 1.25 in. 
Detennine the average normal stress in each rod if 
Ti = 300°F. Take a,1 = 13(1Q-6)/°F. £.1 = lO(lCP) ksi. 
(uy)a1 = 40 ksi, acu = 9.4(1o-6)/°F. Ecu = 15(HP) ksi. and 
(uy)cu = 50 ksi. 

*~. The two cylindrical rod segments are fixed to the 
rigid walls such that there is a gap of 0.01 in. between them 
when T 1 = 60°F. Each rod has a diameter of 1.25 in. 
Determine the average normal stress in each rod 
if Ti = 400°F, and also calculate the new length of the 
aluminum segment. Tuke a 81 = 13(1o-6)f°F, £31 = 10(103) ksi, 
(uy)31 = 40 ksi, acu = 9.4(1o-6)f°F, (uy)cu = 50 ksi, and 
Ecu = 115(103) ksi. 

O.Olin.-1~ 

Co r ~ 

12 in. 1 l-6 in.--1 
Probs. 9-59/60 

~1. The pipe is made of A992 steel and is connected to 
the collars at A and B. When the temperature is 60°F, there is 
no axial load in the pipe. If hot gas traveling through the pipe 
causes its temperature to rise by ~ T = ( 40 + 15x)°F. where 
x is in feet, determine the average normal stress in the pipe. 
The inner diameter is 2 in .. the wall thickness is 0.15 in. 

~2. The bronze C86100 pipe bas an inner radius of 
0.5 in. and a wall thickness of 0.2 in. lf the gas flowing 
through it changes the temperature of the pipe uniformly 
from TA = 200°F at A to T8 = 60°F at B, determine the 
axial force it exerts on the walls. The pipe was fitted between 
the walls when T = 60°F. 

Probs. 9~1/62 
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9-63. The 40-ft-long A-36 steel rails on a train track are laid 
with a small gap between them to allow for thermal 
expansion. Determine the required gap 8 so that the rails just 
touch one another when the temperature is increased from 
T1 = - 20°F to Ti = 90°F. Using this gap, what would be the 
axial force in the rails if the temperature rises to T3 = 110°F? 
The cross-sectional area of each rail is 5.10 in2

. 

-11- s s -11-
• • F • • • • • • • 

- 1 
• • 

40 ft 

Prob. 9-63 

*9-64. The device is used to measure a change in 
temperature. Bars AB and CD are made of A-36 steel and 
2014-T6 aluminum alloy, respectively. When the temperature 
is at 75°F, ACE is in the horizontal position. Determine the 
vertical displacement of the pointer at E when the 
temperature rises to 150°F. 

3in.=-i ~ 
0 0 

A c E r 
1.5 i n. 

B D 

Prob. 9-64 

9-65. The bar has a cross-sectional area A , length L , 
modulus of elasticity E, and coefficient of thermal expansion 
a. The temperature of the bar changes uniformly along its 
length from TA at A to T8 at B so that at any point x along 
the bar T = TA + x(T8 - TA)/ L. Determine the force the 
bar exerts on the rigid walls. Initially no axial force is in the 
bar and the bar has a temperature of TA. 

- x-J 
A B 

Prob. 9-65 

9-66. When the temperature is at 30°C, the A-36 steel pipe 
fits snugly !between the two fuel tanks. When fuel flows 
through the pipe, the temperatures at ends A and B rise to 
130°C and &0°C, respectively. If the temperature drop along 
the pipe is linear, determine the average normal stress 
developed in the pipe. Assume each tank provides a rigid 
support at A and B. 

ISO~ 
lOmm 

Section a - a 

Prob.9-66 

9-67. When the temperature is at 30°C, the A-36 steel pipe 
fits snugly !between the two fuel tanks. When fuel flows 
through the pipe, the temperatures at ends A and B rise to 
130°C and &0°C, respectively. If the temperature drop along 
the pipe is linear, determine the average normal stress 
developed in the pipe. Assume the walls of each tank act as 
a spring, each having a stiffness of k = 900 MN/m. 

*9-68. When the temperature is at 30°C, the A-36 steel 
pipe fits snugly between the two fuel tanks. When fuel flows 
through the pipe, it causes the temperature to vary along 
the pipe as T = (~x2 - 20x + 120)°C, where x is in meters. 
Determine the normal stress developed in the pipe. Assume 
each tank provides a rigid support at A and B. 

150m~ 

lOmm~ 

Section a - a 

a B 

Probs. 9...(,7/68 
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9-69. The SO-mm-diameter cylinder is made from 
Am 1004-T61 magnesium and is placed in the clamp when 
the temperature is Ti = 20° C. If the 304-stainless-steel 
carriage bolts of the clamp each have a diameter of 10 mm, 
and they hold the cylinder snug with negligible force against 
the rigid jaws, determine the force in the cylinder when the 
temperature rises to T2 = 1300C. 

9-70. The SO-mm-diameter cylinder is made from 
Am 1004-T61 magnesium and is placed in the clamp when 
the temperature is Ti = 1S0 C. If the two 304-stainless-steel 
carriage bolts of the clamp each have a diameter of 10 mm, 
and they hold the cylinder snug with negligible force against 
the rigid jaws, determine the temperature at which the 
average normal stress in either the magnesium or the steel 
first becomes 12 MPa. 

IOOmm 150mm 

l.~ 
Probs. 9-69no 

9-71. The wires AB and AC are made of steel. and wire 
AD is made of copper. Before the lSO-lb force is applied, 
AB and AC are each 60 in. long and AD is 40 in. long. If the 
temperature is increased by SO"F. determine the force in 
each wire needed to support the load. Each wire has a cross
sectional area of 0.0123 in2. Take £., = 29(10 3) ksi, 
Ecu = 17(103) ksi, a,1 = 8(10-6)/°F, acu = 9.(i()(l0-6)/°F. 

B c 

1501b 

Prob. 9-71 
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*9-72. The cylinder CD of the assembly is heated from 
T1 = 30°C to T2 = 180°C using electrical resistance. At the 
lower temperature T1 the gap between C and the rigid bar is 
0.7 mm. Determine the force in rods AB and EF caused by 
the increase in temperature. Rods AB and EF are made of 
steel, and each has a cross-sectional area of 12S mm2• CD is 
made of aluminum and has a cross-sectional area of 37S mm2. 

£., = 200GPa,Eai = 70GPa.and aa1 = 23(1CJf>)/°C. 

9-73. The cylinder CD of the assembly is heated from 
T1 = 30°C to T2 = 180°C using electrical resistance. Also. the 
two end rods AB and EF are heated from T1 = 30°C to 
T2 = S0°C. At the lower temperature Ti the gap between C 
and the rigid bar is 0.7 mm. Determine the force in rods AB 
and EF caused by the increase in temperature. Rods AB 
and EF are made of steel, and each has a cross-sectional 
area of 12S mm2. CD is made of aluminum and has a cross
sectional area of 37S mm2. £,, = 200 GPa, £ 01 = 70 GPa, 
asi = 12(1~)/°C, and a 01 = 23(1CJf>)j°C. 

0.7mm 

F 

300mm 

A 

Probs. 9-71f13 

9-74. The metal strap has a thickness / and width 111 and is 
subjected to a temperature gradient Ti to Tz (Ti < Tz). 
This causes the modulus of elasticity for the material to vary 
linearly from Ei at the top to a smaller amount £ 2 at the 
bottom. As a result. for any vertical position y. measured 
from the top surface,£ = ((£2 - Ei) /wjy + Ei. Determine 
the position d where the axial force P must be applied so 
that the bar stretches uniformly over its cross section. 

Prob. 9-74 
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CONCEPTUAL PROBLEMS 

C9-L The concrete footing A was poured when this 
column was put in place. Later the rest of the foundation 
stab was poured. Can you explain why the 45° cracks 
occured at each corner? Can you think of a better design 
that would avoid such cracks? 

Prob. C9-1 

CHAPTER REVIEW 

When a loading is applied at a point on a body, it tends 
to create a stress distribution within the body that 
becomes more uniformly distributed at regions 
removed from the point of application of the load. 
This is called Saint-Venant's principle. 

The relative displacement at the end of an axially 
loaded member relative to the other end is 
determined from 

ii = 1 L N(x)dx 

0 AE 

C9- 2. The row of bricks, along with mortar and an internal 
steel reinforcing rod, was intended to serve as a lintel beam 
to support the bricks above this ventilation opening on an 
exterior wall of a building. Explain what may have caused 
the bricks to fail in the manner shown. 

Prob. C9-2 

N 

1--
N 

U a\'g = A 

1----x--- 11 1- dx _, 

i :----L. P, 
Pi ..... 1----11--+ - -+ 

----L ~I 
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U a series of concentrated external axial forces are 
applied to a member and A£ is also piecewise constant, 
then 

NL 6=}: AE 

For application. it is necessary to use a sign convention 
for the internal load N and displacement 8. We consider 
tension and elongation as positive values. Also, the 
material must not yield. but rather it must remain linear 
elastic. 

Superposition of load and displacement is possible 
provided tbe material remains linear elastic and no 
significant changes in the geometry of the member 
occur after loading. 

The reactions on a statically indeterminate bar can be 
determined using the equilibrium equations 
and compatibility conditions that specify tbe 
displacement at the supports. These displacements are 
related to the loads using a load--<lisplacement 
relationship such as 8 = NL/ A£. 

A change in temperature can cause a member made of 
homogeneous isotropic material to change its length by 

8 =at.TL 

U the member is confined. this change will produce 
thermal stress in the member. 

Holes and sharp transi tions at a cross section will 
create stress concentrations. For the design of a 
member made of brittle material one obtains the 
stress concentration factor K from a graph, which has 
been determined from experiment. This value is then 
multiplied by the average stress to obtain the 
maximum stress at the cross section. 

CHAPTER REVIEW 449 

P1 • LI _ _ P_2_.,.~_-_-: ____ .. _--~~-P_3 _ __,[1 • P4 

:1--~~~~L~~~~~41~sl 
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REVIEW PROBLEMS 

R9-1. The assembly consists of two A992 steel bolts AB 
and EF and an 6061-T6 aluminum rod CD. When the 
temperature is at 30° C, the gap between the rod and rigid 
member AE is 0.1 mm. Determine the normal stress 
developed in the bolts and the rod if the temperature rises 
to 130° C. Assume BF is also rigid. 

c 
25mm 25mm 

400mm 300mm 

SO mm 

B D 
~--~----' 

Prob. R9-1 

R9-2. The assembly shown consists of two A992 steel bolts 
AB and EF and an 6061-T6 aluminum rod CD. When the 
temperature is at 30° C, the gap between the rod and rigid 
member AE is 0.1 mm. Determine the highest temperature 
to which the assembly can be raised without causing yielding 
either in the rod or the bolts. Assume BF is also rigid. 

c 
25mm 25mm 

400mm 300mm 

SO mm 

D 

Prob. R9-2 

R9-3. The rods each have the same 25-mm diameter and 
600-mm length. If they are made of A992 steel, determine 
the forces developed in each rod when the temperature 
increases by 50° c. 

c 

1--600 mm---' 

0 

B A 

600mm 

v~ 
Prob. R9- 3 

*R9-4. Two A992 steel pipes, each having a cross-sectional 
area of 0.32 in2, are screwed together using a union at B. 
Originally the assembly is adjusted so that no load is on the 
pipe. If the union is then tightened so that its screw, having a 
lead of 0.15 in., undergoes two full turns, determine the 
average normal stress developed in the pipe. Assume that 
the union and couplings at A and C are rigid. Neglect the 
size of the union. Nore: The lead would cause the pipe, when 
unloaded, to shorten 0.15 in. when the union is rotated one 
revolution. 

--- 3ft ---

Prob. R9-4 
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R9-5. The 2014-T6 aluminum rod has a diameter of 
0.5 in. and is lightly attached to the rigid supports at A and B 
when T1 = 70"F. Lf the temperature becomes T2 = - 10°F, and 
an axial force of P = 16 lb is applied to the rigid collar as 
shown. determine the reactions at the rigid supports A and B. 

A 
Pf2. 
Pf2. 

-S in. 

B 

Prob. R9-5 

R9-6. The 2014-T6 aluminum rod has a diameter of 
0.5 in. and is lightly allached to the rigid supports at A and B 
when T 1 = 70°F. Determine the force P that must be applied 
to the collar so that. when T = 0°F, the reaction at Bis zero. 

A B 
Pf2. 
Pf2. 

- 5 in. - I 1--- 8 in. - --:rl 

Prob. R9-6 

REVIEW PROBLEMS 451 

R9- 7. The rigid link is supported by a pin at A and 
two A-36 steel wires. each having an unstretched length of 
12 in. and cross-sectional area of 0.0125 in2. Determine the 
force developed in the wires when the link supports the 
vertical load of 350 lb. 

T 
5 in. 

1
----12 in.----l 

c 

+~B~ 
4 in. I 

- 6in.-I 

3501b 

Prob. R9-7 

*R9-8. The joint is made Crom three A992 steel plates that 
are bonded together at their seams. Determine the 
displacement of end A with respect to end B when the joint 
is subjected to the axial loads. Each plate has a thickness of 
5mm. 

46kN 

Prob. R9-8 

J 23kN 
~~ ;: 
I B 23 kN 
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CHAPTER 10 

(©Jill Fromer/Getty Images) 

The torsional stress and angle of twist of this soil auger depend upon the output 
of the machine turning the bit as well as the resistance of the soi l in contact with 
the shaft. 
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TORSION 

CHAPTER OBJECTIVES 

• To determine the torsional stress and deformation of an elastic 
circular shaft. 

• To determine the support reactions on a statically indeterminate, 

torsionally loaded shaft when these reactions cannot be 

determined solely from the moment equilibrium equation. 

10.1 TORSIONAL DEFORMATION OF A 
CIRCULAR SHAFT 

Torque is a moment that tends to twist a member about its longitudinal 
axis. Its effect is of primary concern in the design of drive shafts used in 
vehicles and machinery, and for this reason it is important to be able to 
determine the stress and the deformation that occurs in a shaft wh.en it is 
subjected to torsional loads. 

We can physically illustrate what happens when a torque is applied to 
a circular shaft by considering the shaft to be made of a highly deformable 
material such as rubber. When the torque is applied, the longitudinal grid 
lines originally marked on the shaft, Fig. 10- la, tend to distort into a 
helix, Fig. 10- lb, that intersects the circles at equal angles. Also, all the 
cross sections of the shaft will remain flat - that is, they do not warp or 
bulge in or out- and radial lines remain straight and rotate during this 
deformation. Provided the angle of twist is small, then the length of 
the shaft and its radius will remain practically unchanged. 

453 
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454 CHAPTER 10 TORSION 

Notice the deformation of the rectangular 
element when this rubber bar is subjected 
to a torque. 

If the shaft is fixed at one end and a torque is applied to its other end, 
then the dark green shaded p[ane in Fig. 10- 2a will distort into a skewed 
form as shown. Here a radial line located on the cross section at a 
distance x from the fixed end of the shaft will rotate through an angle 
<f>(x). This angle is called the angle of twist. It depends on the position x 
and will vary along the shaft as shown. 

In order to understand how this distortion strains the material, we will 
now isolate a small disk element located at x from the end of the shaft, 
Fig. 10-2b. Due to the deformation, the front and rear faces of the 
element will undergo rotation-the back face by <f>(x), and the front face 
by <f>(x) + d<f>. As a result, the difference in these rotations,d<f>, causes the 
element to be subjected to a shear strain, y (see Fig. 8- 24b ). 

Circles remain 
circular 

T 

Before deformation 
(a) 

Radial lines 
remain straight 

After deformation 
(b) 

Fig.10-1 

T 

Longitudinal 
lines become 

twisted 
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Deformed 
plane 

Undeformed 
plane 

The angle of twist </l(x) increases asx increases. 

(a) 

Fig. 10-2 

10.1 TORSIONAL DEFORMATION OF A CIRCULAR SHAFT 455 

The shear strain at points on 
the cross section increases linearly 

with p, i.e., Y = (p/chmax· 

(b) 

This angle (or shear strain) can be related to the angle def> by noting that 
the length of the red arc in Fig. 10-2b is 

or 

p def>= dx y 

def> 
'Y = p

dx 
(10-1) 

Since dx and def> are the same for all elements, then d<f>/dx is constant 
over the cross section, and Eq. 10-1 states that the magnitude of the 
shear strain varies only with its radial distance p from the axis of the 
shaft. Since d<f>/dx = y/ p = 'Ymax/c, then 

(10-2) 

In other words, the shear strain within the shaft varies linearly along any 
radial line, from zero at the axis of the shaft to a maximum 'Yma:x at its 
outer boundary, Fig. 10-2b. 
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10.2 THE TORSION FORMULA 
When an external torque is applied to a shaft, it creates a corresponding 
internal torque within the shaft. In this section, we will develop an 
equation that relates this internal torque to the shear stress distribution 
acting on the cross section of the shaft. 

If the material is linear elastic, then Hooke's law applies, T = Gy, or 
Tmax = G'Ymax, and consequently a linear variation in shear strain, as 
noted in the previous section, leads to a corresponding linear variation 
in shear stress along any radial line. Hence, T will vary from zero at the 
shaft's longitudinal axis to a maximum value, Tmax, at its outer surface, 
Fig. 10-3. Therefore, similar to Eq. 10-2, we can write 

T = (~ )Tmax (10-3) 

T 

Shear stress varies linearly along 
each radial line of the cross section. 

Fig.10.-3 
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Since each e lement of area dA, located at p, is subjected to a force of 
dF = T dA, Fig. 10-3, the torque produced by this force is then 
dT = p(r dA). For the entire cross section we have 

However, Tmax/c is constant, and so 

T = Tmax r p2 dA 
C }A 

(10-4) 

(10-5) 

The integral represents the polar moment of inertia of the shaft's 
cross-sectional area about the shaft's longitudinal axis. On the next page 
we will calculate its value, but here we will symbolize its value as J. As a 
result, the above equation can be rearranged and written in a more 
compact form, namely, 

(10-6) 

Here 

Tmax = the maximum shear stress in the shaft, which occurs at its outer 
surface 

T = the resultant internal torque acting at the cross section. Its value 
is determined from the method of sections and the equation of 
moment equilibrium applied about the shaft's longitudinal axis 

J = the polar moment of inertia of the cross-sectional area 

c = the outer radius of the shaft 

If Eq.10-6 is substituted in Eq.10-3, the shear stress at the intermediate 
distance p on the cross section can be determined. 

(10-7) 

Either of the above two equations is often referred to as the torsion 
formula . Recall that it is used only if the shaft has a circular cross section 
and the material is homogeneous and behaves in a linear e lastic manner, 
since the derivat ion of Eq. 10-3 is based on Hooke's law. 

10.2 THE T ORSION FORMULA 457 

The sha ft auached to the center of this 
wheel is subjected to a torque, and the 
maximum stress it creates must be resisted 
by the shaft lo prevent failure. 
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Fig. 10-4 

Polar Moment of Inertia. If the shaft has a solid circular cross 
section, the polar moment of inertia J can be determined using an area 
element in the form of a differential ring or annulus having a thickness dp 
and circumference 2TTp, Fig. 10-4. For this ring, dA = 2TTp dp, and so 

J = lp2 dA = 1cp2(27rp dp) 

= 271' focp3dp = 2~~)p4 : 

I J ; c4 I (10-8) 

Solid Section 

Note that J is always positive. Common units used for its measurement 
are mm4 or in4

. 

If a shaft has a tubular cross section, with inner radius C; and outer 
radius c0 , Fig. 10-5, then from Eq. 10-8 we can determine its polar 
moment of inertia by subtracting J for a shaft of radius C; from that 
determined for a shaft of radius c0 . The result is 

I 1 = T (c~ - c[) I (10-9) 

Tube 

Fig.10-5 
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/ 

T 

(a) 

Fig. 10-6 

Shear stress varies linearly along 
each radial line of the cross section. 

(b} 

Shear Stress Distribution. If an element of material on the cross 
section of the shaft or tube is isolated, then due to the complementary 
property of shear, equal shear stresses must also act on four of its adjacent 
faces, as shown in Fig. 10-6a. As a result, the internal torque T develops 
a linear distribution of shear stress along each radial line in the plane 
of the cross-sectional area, and also an associated shear-stress 
distribution is developed along an axial plane, Fig.10-6b. It is interesting 
to note that because of this axial distribution of shear stress, shafts made 
of wood tend to split along the axial plane when subjected to excessive 
torque, Fig. 10-7. This is because wood is an anisotropic material, whereby 
its shear resistance paraJlel to its grains or fibers, directed along the axis 
of the shaft, is much less than its resistance perpendicular to the fibers 
within the plane of the cross section. 

7 
T T 

Failure of a wooden shaft due to torsion. 

Fig. 10-7 

10.2 THE T ORSION FORMULA 459 

The tubular drive shaft for a truck was 
subjected to an excessive torque, resulting 
in failure caused by yielding of the material. 
Engineers deliberately design drive shafts 
to fail before torsional damage can occur 
10 parts of the engine or transmission. 
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IMPORTANT POINTS 

• When a shaft having a circular cross section is subjected to a torque, the cross section remains plane 
while radial lines rotate. This causes a shear strain within the material that varies linearly along any radial 
line, from zero at the axis of the shaft to a maximum at its outer boundary. 

• For linear elastic homogeneous material, the shear stress along any radial line of the shaft also varies linearly, 
from zero at its axis to a maximum at its outer boundary. This maximum shear stress must not exceed the 
proportional limit. 

• Due to the complementary property of shear, the linear shear stress distribution within the plane of the cross 
section is also distributed along an adjacent axial plane of the shaft. 

• The torsion formula is based on the requirement that the resultant torque on the cross section is equal 
to the torque produced by the shear stress distribution about the longitudinal axis of the shaft. It is 
required that the shaft or tube have a circular cross section and that it is made of homogeneous material 
which has linear elastic behavior. 

PROCEDURE FOR ANALYSIS 

The torsion formula can be applied using the following procedure. 

Internal Torque. 

• Section the shaft perpendicular to its axis at the point where the shear stress is to be determined, and use 
the necessary free-body diagram and equations of equilibrium to obtain the internal torque at the section. 

Section Property. 

• Calculate the polar moment of inertia of the cross-sectional area. For a solid section of radius c,J = 1TC
4 /2, 

and for a tube of outer radius c0 and inner radius C;, J = 1T ( c~ - c[) /2. 

Shear Stress. 

• Specify the radial distance p, measured from the center of the cross section to the point where the shear 
stress is to be found. Then apply the torsion formula T = Tp/J, or if the maximum shear stress is to be 
determined use Tmax = Tc/ J. When substituting the data, make sure to use a consistent set of units. 

• The shear stress acts on the cross section in a direction that is always perpendicular to p. The force it 
creates must contribute a torque about the axis of the shaft that is in the same direction as the internal 
resultant torque T acting on the section. Once this direction is established, a volume element located at 
the point where T is determined can be isolated, and the direction of T acting on the remaining three 
adjacent faces of the element can be shown. 
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EXAMPLE 10.1 

The solid shaft and tube shown in Fig. 10--8 are made of a material having an 
allowable shear stress of 75 MPa. Determine rhe maximum torque rhat can 
be applied to each cross section, and show rhe stress acting on a small 
element of material at point A of the shaft, and points B and C of the rube. 

SOLUTION 

Section Properties. The polar moments of inertia for the solid and 
tubular shafts are 

1 = ~ c4 = ~ (0 I m)4 = 0 1571(10-3) m4 
' 2 2 . . (]j 

75 MPa A 

J, = ; (c~ - cf) = ; [ (0.1 m)4 - (0.075 m)4 ] = 0.1074(10-3) m4 

Shear Stress. The maximum torque in each case is 

( 
6 ) 2 T,(0.1 m) 

75 10 N / m - -----'-----'--
0.1571 ( 10- 3 ) m4 

T=118kN·m 
' 

( 
"") , T,(0.1 m) 

75 lu- N/m- = 0- .-107--'--'4-( 1-0--3-'-)-m-4 

T, = 80.5 kN · m 

Also, the shear stress at the inner radius of the rube is 

80.5 ( Ia3) N · m (0.075 m) 
(7:) = = 56 2 MPa 

I I 0.1074(10-3) m4 • 

Ans. 

Ans. 

These results are shown acting on small elements in Fig. 10--8. Notice 
how rhe shear stress on the front (shaded) face of the element contributes 
to the torque. As a consequence, shear stress components act on the 
other three faces. No shear stress acts on the outer surface of the shaft or 
tube or on the inne r surface of the tube because it must be stress free. 

~ 
56.2MPa 

Fig. 10--8 
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EXAMPLE 10.2 
- -

(a) 

The 1.5-in.-diameter shaft shown in Fig. 10-9a is supported by two 
bearings and is subjected to three torques. Determine the shear stress 
developed at points A and B, located at section a- a of the shaft, Fig.10-9c. 

30 kip·in. 

~ x 

(b) 

~18.9ksi 

~2.5 kip·in. 

(c) 

Fig.10-9 

x 

~B 
3.77 ksi 

SOLUTION 

Internal Torque. Since the bearing reactions do not 
offer resistance to shaft rotation, the applied torques 
sat isfy moment equilibrium about the shaft's axis. 

The internal torque at section a-a will be determined from 
the free-body diagram of the left segment, Fig.10-9b. We have 

IM, = O; 42.5 kip· in. - 30 kip· in. - T = 0 T = 12.5 kip· in. 

Section Property. The polar moment of inertia for the shaft is 

J = ; (0.75 in. ) 4 
= 0.497 in4 

Shear Stress. Since point A is at p = c = 0.75 in., 

Tc ( 12.5 kip· in.) ( 0.75 in.) 
TA = J = ( 0.4

97 
in4 ) = 18.9 ksi Ans. 

Likewise for point B, at p = 0.15 in., we have 

Tp (12.5kip·in. )(0.15in. ) 
T8 = J = ( 0.4

97 
in4 ) = 3.77 ksi Ans. 

NOTE: The directions of these stresses on each element at A and B, 
Fig. 10- 9c, are established on the planes of each of these elements, so 
that they match the required clockwise torque. 
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I EXAMPLE 10.3 1 

The pipe shown in Fig. 10-lOa has an inner radius of 40 mm and an outer 
radius of 50 mm. If its end is tightened against the support at A using the 
torque wrench, determine the shear stress developed in the material at 
the inner and outer walls along the central portion of the pipe. 

SOLUTION 

Internal Torque. A section is taken at the intermediate location C 
along the pipe's axis, Fig. 10-lOb. The only unknown at the section is the 
internal torque T . We require 

IM = O· x , 80 N ( 0.3 m) + 80 N ( 0.2 m) - T = 0 

T = 40N · m 

Section Property. The polar moment of inertia for the pipe's 
cross-sectional area is 

J = ; [ ( 0.05 m) 4 
-( 0.04 m ) 4

] = 5.796(10- 6 ) m4 

Shear Stress. For any point lying on the outside surface of the pipe, 
p = c0 = 0.05 m, we have 

Tc0 40 N · m(0.05 m) 
r. = - = = 0.345 MPa 0 

J 5.796(10- 6 ) m4 Ans. 

And for any point located on the inside surface, p = C; = 0.04 m, and so 

Tc; 40N · m(0.04m) 
T.· = - = = 0.276 MPa 
' J 5.796(10- 6 ) m4 

Ans. 

The results are shown on two small elements in Fig.10-lOc. 

NOTE: Since the top face of D and the inner face of E are in stress-free 
regions, no shear stress can exist on these faces or on the other 
corresponding faces of the elements. 

SON 

~lzoomm 

~ 
Stress free 

inside 

(a) 

~MPa 

(c) 

Fig. 10-10 
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The belt drive transmits the torque 
developed by an electric motor to 
the shaft at A. The stress developed 
in the shaft depends upon the power 
transmitted by the motor and the 
rate ofrotation of the shaft. P = Tw. 

10. 3 POWER TRANSMISSION 
Shafts and tubes having circular cross sections are often used to transmit 
power developed by a machine. When used for this purpose, they are 
subjected to a torque that depends on both the power generated by the 
machine and the angular speed of the shaft. Power is defined as the work 
performed per unit of time. Also, the work transmitted by a rotating shaft 
equals the torque applied times the angle of rotation. Therefore, if during 
an instant of time dt an applied torque T causes the shaft to rotate dO, then 
the work done is TdO and the instantaneous power is 

P = TdO 
dt 

Since the shaft's angular velocity is w = d() / dt, then the power is 

(10- 10) 

In the SI system, power is expressed in watts when torque is measured 
in newton-meters ( N · m) and w is in radians per second ( rad/s) 
( 1 W = 1 N · m/s) . In the FPS system, the basic units of power are 
foot-pounds per second (ft· lb/s); however, horsepower (hp) is often 
used in engineering practice, where 

1 hp = 550 ft· lb/s 

For machinery, the frequency of a shaft's rotation,/, is often reported. 
This is a measure of the number of revolutions or "cycles" the shaft 
makes per second and is expressed in hertz ( 1 Hz = 1 cycle/s). Since 
1 cycle = 21T rad, then w = 21Tf, and so the above equation for power 
can also be written as 

(10- 11) 

Shaft Design. When the power transmitted by a shaft and its 
frequency of rotation are known, the torque developed in the shaft can 
be determined from Eq. 10-11, that is, T = P/21Tf Knowing T and the 
allowable shear stress for the material, TaJJow, we can then determine the 
size of the shaft's cross section using the torsion formula. Specifically, the 
design or geometric parameter J / c becomes 

J T 
(10- 12) -=--

C Tallow 

For a solid shaft, J = ( 1T /2) c4
, and thus, upon substitution, a unique value 

for the shaft's radius c can be determined. If the shaft is tubular, so that 
J = ( 1T /2) ( c~ - c{), design permits a wide range of possibilities for the 
solution. This is because an arbitrary choice can be made for either c0 or c; 
and the other radius can then be determined from Eq. 10-12. 
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EXAMPLE 10.4 

A solid steel shaft AB, shown in Fig. 10-11, is to be used to transmit 5 hp 
from the motor M to which it is anached. If the shaft rotates at w = 175 rpm 
and the steel has an allowable shear stress of TaJJow = 14.5 ksi, determine 
the required diameter of the shaft to the nearest k in. 

Fig. 10-11 

SOLUTION 

The torque on the shaft is determined from Eq. 10-10, that is, P = Tw. 
Expressing Pin foot-pounds per second and win radians/second, we have 

Thus, 

P = Tw; 

(
550 ft· lb/s) 

P = 5 hp = 2750ft · lb/s 
1 hp 

w = 175 .rev ( 2'1T rad )( 1 min ) = 1833 rad/s 
mm 1 rev 60 s 

2750 ft· lb/s = T( 18.33 rad/s) 

T = 150.1 ft· lb 

Applying Eq.10-12, 
J '1T c4 T 
=--=--

C 2 C 'Tallow 

c = ( 2T ) 113 = (2( 150.1 ft· lb) ( 12 in./ft) )1/3 

'1T1i1llow '1T ( 14 500 lb / in2 ) 

c = 0.429 in. 

Since 2c = 0.858 in., select a shaft having a diameter of 

d = ~ in. = 0.875 in. Ans. 
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PRELIMINARY PROBLEMS 

Pl0--1. Determine the internal torque at each section and 
show the shear stress on differential volume elements 
located at A, B, C, and D. 

A 
c 

8
/;00N·m 0 

300N·m 

Prob. Pl0--1 

Pl0--2. Determine the internal torque at each section and 
show the shear stress on differential volume elements 
located at A, B, C, and D. 

~400N·m 
~-

A 

B 

~ 
600N·m 

c ~ 

D 

Prob. Pl0--2 

Pl0--3. The solid and hollow shafts are each subjected to 
the torque T. In each case, sketch the shear stress distribution 
along the two radial lines. 

Prob. Pl0--3 

Pl0-4. The motor delivers 10 hp to the shaft. If it rotates 
at 1200 rpm, detemine the torque produced by the motor. 

Prob. Pl0-4 
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FUNDAMENTAL PROBLEMS 

• 10-1. The solid circular shaft is subjected to an internal 
torque of T = 5 kN · m. Determine the shear stress at 
points A and 8. Represent each state of stress on a volume 
element. 

Prob. F 10-1 

• 11.)....2 The hollow circular shaft is subjected to an internal 
torque of T = 10 kN · m. Determine the shear stress at 
points A and 8. Represent each state of stress on a volume 
element. 

60 111111 

Pre . F 0-2 

.10-3. The shaft is hollow from A to Band solid from B to C. 
Determine the maximum shear stress in the shaft. The shaft 
has an outer diameter of 80 mm. and the thickness of the wall 
of the hollow segment is 10 mm. 

2 kN·m 

Proh. Fl0-3 

110-4. Determine the maximum shear stress m the 
40-mm-diameter shaft. 

6 kN 

Proh. Fl0-4 
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Fl0-5. Determine the maximum shear stress in the shaft 
at section a- a. 

a 

600N·m 

~m~Omm 0 
4omzy 1sooN·mc 

Section a-a 

600N·m 

Prob.Fl0-5 

Fl0-6. Determine the shear stress at point A on the surface 
of the shaft. Represent the state of stress on a volume 
element at this point. The shaft has a radius of 40 mm. 

Prob.Fl0-6 

Fl0-7. The solid SO-mm-diameter shaft is subjected to the 
torques applied to the gears. Determine the absolute 
maximum shear stress in the shaft. 

B 

soom{ c I 
400n~ 

"' 500mm 

"' 
Prob. Fl0-7 

Fl0-8. The gear motor can develop 3 hp when it turns at 
150 rev /min. If the allowable shear stress for the shaft is 
r allow = 12 ksi, determine the smallest diameter of the shaft 
to the nearest kin. that can be used. 

Prob. Fl0-8 
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PROBLEMS 

10-1. The solid shaft of radius r is subjected to a torque T. 
Determine the radius r' of the inner core of the shaft that 
resists one-half of the applied torque (T /2). Solve the 
problem two ways: (a) by using the torsion formula, (b) by 
finding the resultant of the shear-stress distribution. 

10-2. The solid shaft of radius r is subjected to a torque T. 
Determine the radius r' of the inner core of the shaft that 
resists one-quarter of the applied torque (T /4). Solve the 
problem two ways: (a) by using the torsion formula, (b) by 
finding the resultant of the shear-stress distribution. 

T 

Probs. 10-1/2 

10-3. A shaft is made of an aluminum alloy having an 
allowable shear stress of 'T a11ow = 100 MPa. If the diameter of 
the shaft is 100 mm. determine the maximum torque T that 
can be transmitted. What would be the maximum torque T ' if 
a 75-mm-diameter hole were bored through the shaft? Sketch 
the shear-stress distribution along a radial line in each case. 

Prob. 10-3 

10.3 POWER T RANSMISSION 469 

*10-4. The copper pipe has an outer diameter of 40 mm 
and an inner diameter of 37 mm. If it is tightly secured to 
the wall and three torques are applied to it, determine the 
absolute maximum shear stress developed in the pipe. 

~ ~y30N·m 
~20Nm 

SON·m 

Prob. 10-4 

10-5. The copper pipe has an outer diameter of 2.50 in. 
and an inner diameter of 2.30 in. If it is tightly secured to the 
wall and three torques are applied to it, determine the shear 
stress developed at points A and 8. These points lie on the 
pipe's outer surface. Sketch the shear stress on volume 
elements located at A and 8. 

Prob. 10-5 
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10-6. The solid aluminum shaft has a diameter of 50 mm 
and an allowable shear stress of r allow = 60 MPa. Determine 
the largest torque T1 that can be applied to the shaft if it is 
also subjected to the other torsional loadings. It is required 
that T 1 act in the direction shown. Also, determine the 
maximum shear stress within regions CD and DE. 

10-7. The solid aluminum shaft has a diameter of 50 mm. 
Determine the absolute maximum shear stress in the shaft and 
sketch the shear-stress distribution along a radial line of the 
shaft where the shear stress is maximum. Set T1 = 2000 N · m. 

300 N·m 

900N·m 

Probs. 10-6n 

*10-8. The solid 30-mm-diameter shaft is used to transmit 
the torques applied to the gears. Determine the absolute 
maximum shear stress in the shaft. 

300 N·m 

500mm 

Prob.10-8 

10-9. The solid shaft is fixed to the support at C and 
subjected to the torsional loadings. Determine the shear 
stress at points A and Bon the surface, and sketch the shear 
stress on volume elements located at these points. 

c 

"(~ 
J5m~20mm 
~V- 300N·m 

800 N·m 

Prob.10-9 

10-10. The link acts as part of the elevator control for a 
small airplane. If the attached aluminum tube has an inner 
diameter of 25 mm and a wall thickness of 5 mm, determine 
the maximum shear stress in the tube when the cable force 
of 600 N is applied to the cables. Also, sketch the 
shear-stress distribution over the cross section. 

600N 75L 
_l 

75L 
_l 

600N 

Prob.10-10 
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10-11. The assembly consists of two sections of galvanized 
steel pipe connected together using a reducing coupling at B. 
The smaller pipe has an outer diameter of 0.75 in. and an inner 
diameter of 0.68 in., whereas the larger pipe has an outer 
diameter of 1 in. and an inner diameter of 0.86 in. If the pipe is 
tightly secured to the wall at C, determine the maximum shear 
stress in each section of the pipe when the couple is applied to 
the handles of the wrench . 

. , p '8h1i 
15 lb 

Prob.10-11 

*10-12. The shaft has an outer diameter of 100 mm and an 
inner diameter of 80 mm. If it is subjected to the three 
torques, determine the absolute maximum shear stress in 
the shaft. The smooth bearings A and B do not resist torque. 

10-13. The shaft has an outer diameter of 100 mm and an 
inner diameter of 80 mm. If it is subjected to the three 
torques, plot the shear stress distribution along a radial line 
for the cross section within region CD of the shaft. The 
smooth bearings at A and B do not resist torque. 

E 

SkN·m 

Probs. 10-12113 

10.3 POWER TRANSMISSION 471 

10-14. A steel tube having an outer diameter of 2.5 in. is 
used to transmit 9 hp when turning at 27 rev /min. Determine 
the inner diameter d of the tube to the nearest l in. if the 
allowable shear stress is r allow = 10 ksi. 

Prob.10-14 

10-15. If the gears are subjected to the torques shown, 
determine the maximum shear stress in the segments AB and 
BC of the A-36 steel shaft. The shaft has a diameter of 40 mm. 

*10-16. If the gears are subjected to the torques shown, 
determine the required diameter of the A-36 steel shaft to 
the nearest mm if r allow = 60 MPa. 

200N·m 

c 

Probs. 10-15/16 
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10-17. The rod has a diameter of 1 in. and a weight of 
10 lb/ft. Determine the maximum torsional stress in the rod 
at a section located at A due to the rod's weight. 

10-18. The rod has a diameter of 1 in. and a weight of 
15 lb/ft. Determine the maximum torsional stress in the rod 
at a section located at B due to the rod's weight. 

Probs. 10-17/18 

10-19. The copper pipe has an outer diameter of 3 in. and 
an inner diameter of2.5 in. If it is tightly secured to the wall 
at C and a uniformly distributed torque is applied to it as 
shown, determine the shear stress at points A and B. These 
points lie on the pipe's outer surface. Sketch the shear stress 
on volume elements located at A and B. 

*10-20. The copper pipe has an outer diameter of 3 in. and 
an inner diameter of 2.50 in. If it is tightly secured to the 
wall at C and it is subjected to the uniformly distributed 
torque along its entire length, determine the absolute 
maximum shear stress in the pipe. Discuss the validity of 
this result. 

c B 

150 lb·ft/ft 

Probs.10-19/20 

10-21. The 60-mrn-diameter solid shaft is subjected to the 
distributed and concentrated torsional loadings shown. 
Determine the shear stress at points A and B, and sketch 
the shear stress on volume elements located at these points. 

10-22. The 60-mrn-diameter solid shaft is subjected to the 
distributed and concentrated torsional loadings shown. 
Determine the absolute maximum and minimum shear 
stresses on the shaft's surface, and specify their locations, 
measured from the fixed end C. 

10-23. The solid shaft is subjected to the distributed and 
concentrated torsional loadings shown. Determine the 
required diameter d of the shaft if the allowable shear stress 
for the material is Tallow = 1.6 MPa. 

Probs. 10-21122123 

*10-24. The 60-mm-diameter solid shaft is subjected to 
the distributed and concentrated torsional loadings shown. 
Determine the absolute maximum and minimum shear 
stresses in the shaft's surface and specify their locations, 
measured from the free end. 

10-25. The solid shaft is subjected to the distributed and 
concentrated torsional loadings shown. Determine the 
required diameter d of the shaft if the allowable shear stress 
for the material is Tallow = 60 MPa. 

c 
400 N·m 

4 kN·m/m , ~"..._.."' 

,~osm 
800N~0.5m 

Probs. 10-24125 
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10-Ui. The pump operates using the motor that has a 
power of 85 W. If the impeller at Bis turning at 150 rev /min, 
determine the maximum shear stress in the 20-mm-diameter 
transmission shaft at A. 

Prob. 10-26 

10-27. The gear motor can develop 1~ hp when it turns at 
300 rev/min. If the shaft has a diameter of} in., determine 
the maximum shear stress in the shaft. 

*10-28. The gear motor can develop 1~ hp when it turns at 
80 rev/min. If the allowable shear stress for the shaft is 
'Tallow= 4 ksi, determine the smallest diameter of the shaft to 
the nearest k in. that can be used. 

--\\ 
" ' ' ----

Probs. 10-27/28 

10-29. The gear motor can develop k hp when it turns at 
(i()O rev/min. If the shaft has a diameter of } in .. determine 
the maximum shear stress in the shaft. 

10-30. The gear motor can develop 2 hp when it turns at 
150 rev/min. If the allowable shear stress for the shaft is 
'Tallow= 8 ksi, determine the smallest diameter of the shaft to 
the nearest k in. that can be used. 

Probs. 10-29/30 

10.3 POWER T RANSMISSION 473 

10-3L The 6-hp reducer motor can turn at 1200 rev/min. 
If the allowable shear stress for the shaft is 'T auow = 6 ksi, 
determine the smallest diameter of the shaft to the nearest 

1~ in. that can be used. 

*10-32. The 6-hp reducer motor can turn at 1200 rev/min. 
If the shaft has a diameter of i in., determine the maximum 
shear stress in the shaft. 

Probs. 10-31132 

10-33. The solid steel shaft DF bas a diameter of 25 mm 
and is supported by smooth bearings al D and £. It is coupled 
to a motor at F, which delivers 12 kW of power to the shaft 
while it is turning at 50 rev/s. II gears A, B. and C remove 
3 kW, 4 kW, and 5 kW respectively. determine the maximum 
shear stress developed in the shaft within regions CF and BC. 
The shaft is free to tum in its support bearings D and £. 

10-34. The solid steel shaft DF has a diameter of 25 mm 
and is supported by smooth bearings at D and £. It is 
coupled to a motor at F, which de livers 12 kW of power to 
the shaft while it is turning at 50 rcv/s. lI gears A, B, and C 
remove 3 kW, 4 kW, and 5 kW respectively, determine the 
absolute maximum shear stress in the shaft. 

SkW 12kW 

-"Lli;:~3=1k~W::;::;44k~W=~~f2~5 n:.JCll 
Jl IA 18 ~ 

D C E F_..___.._ 

Probs. 10-33/34 
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Long shafts subjected to torsion can, in 
some cases, have a noticeable elastic 
twist. 

z 

(a) 

10.4 ANGLE OF TWIST 
In this section we will develop a formula for determining the angle of twist 
<f> (phi) of one end of a shaft with respect to its other end. To generalize this 
development, we will assume the shaft has a circular cross section that can 
gradually vary along its length, Fig. 10-12a. Also, the material is assumed to 
be homogeneous and to behave in a linear elastic manner when the torque 
is applied. As in the case of an axially loaded bar, we will neglect the localized 
deformations that occur at points of application of the torques and where the 
cross section changes abruptly. By Saint-Venant's principle, these effects 
occur within small regions of the shaft's length, and generally they will have 
only a slight effect on the final result. 

Using the method of sections, a differential disk of thickness dx, located at 
position x , is isolated from the shaft, Fig. 10-12b. At this location, the internal 
torque is T(x), since the external loading may cause it to change along the 
shaft. Due to T(x), the disk will twist, such that the relt1Live rotation of one of 
its faces with respect to the other face is d<f>. As a result an element of 
material located at an arbitrary radius p within the disk will undergo a shear 
strain y. The values of y and d</> are related by Eq. 10-1, namely, 

Fig.10-U 

dx 
d<f> = y 

p 
(10-13) 

(b) 
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Since Hooke's law, y = r / G , applies and the shear stress can be 
expressed in terms of the applied torque using the torsion formula 
T = T(x)p/l(x) , then y = T(x)p/ l(x)G(x). Substituting this into 
Eq. 1~13, the angle of twist for the disk is therefore 

T (x) 
d</> = J(x)G(x) dx 

Integrating over the entire length L of the shaft, we can obtain the angle 
of twist for the entire shaft, namely, 

Here 
1L T(x) dx 

</> -
0 J(x)G(x) 

(1~14) 

</> = the angle of twist of one end of the shaft with respect to the 
other end, measured in radians 

T(x) = the internal torque at the arbitrary position x, found from the 
method of sections and the equation of moment equilibrium 
applied about the shaft's axis 

J(x) = the shaft's polar moment of inertia expressed as a function of x 

G(x) = the shear modulus of elasticity for the material expressed as a 
function of x 

Constant Torque and Cross-Sectional Area. Usually in 
engineering practice the material is homogeneous so that G is constant. 
Also, the cross-sectional area and the external torque are constant along 
the length of the shaft, Fig. 1~13. When this is the case, the internal 
torque T(x) = T, the polar moment of inertia J(x) = J, and Eq.1~14 
can be integrated, which gives 

BJ (1~15) 
Note the similarities between the above two equations and those for an 
axially loaded bar. 

Fig. 10-13 
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When calculating both the stress and 
the angle of twist of this soil auger, 
it is necessary to consider the 
variable torsional loading which acts 
along its length. 
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The shear strain at points on 
the cross section increases linearly 

with p, i.e., y = (p/chmax· 

(b) 

Fig. 10-12 (Repeated) 

Load 
dial 

Load 
range 

selector 

• 

Torque 
strain 

recorder r-

Specimen 

Fixed 
head 

Movable unit 
on rails 

Fig. 10-14 

( Turning 
head Motor 

r:-1 
.... .... 
11111 
IUH 

Equation 10-15 is often used to determine the shear modulus of 
elasticity, G, of a material. To do so, a specimen of known length and 
diameter is placed in a torsion testing machine like the one shown in 
Fig. 10- 14. The applied torque T and angle of twist <f> are then measured 
along the length L. From Eq. 10- 15, we get G = TL/l<f>. To obtain a 
more reliable value of G, several of these tests are performed and the 
average value is used. 

Multiple Torques. If the shaft is subjected to several different 
torques, or the cross-sectional area or shear modulus changes abruptly 
from one region of the shaft to the next, as in Fig. 10- 12, then Eq. 10-15 
should be applied to each segment of the shaft where these quantities 
are all constant. The angle of twist of one end of the shaft with respect to 
the other is found from the algebraic addition of the angles of twist of 
each segment. For this case, 

(10-16) 
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Sign Convention. The best way to apply this equation is to use a 
sign convention for both the internal torque and the angle of twist of one 
end of the shaft with respect to the other end. To do this, we will apply 
the right-hand rule, whereby both the torque and angle will be positive, 
provided the thumb is directed outward from the shaft while the fingers 
curl in the direction of the torque, Fig. 10-15. 

+<f>(x) 

Positive sign convention 
for Tand </> 

Fig.10-15 

+<f>(x) 

IMPORTANT POINT 

• When applying Eq. 10- 14 to determine the angle of twist, it is 
important that the applied torques do not cause yielding of the 
material and that the material is homogeneous and behaves in 
a linear elastic manner. 

10.4 ANGLE OF TWIST 4 7 7 
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PROCEDURE FOR ANALYSIS 

The angle of twist of one end of a shaft or tube with respect to the 
other end can be determined using the following procedure. 

Internal Torque. 

• The internal torque is found at a point on the axis of the shaft 
by using the method of sections and the equation of moment 
equilibrium, applied along the shaft's axis. 

• If the torque varies along the shaft 's length, a section should be 
made at the arbitrary position x along the shaft and the internal 
torque represented as a function of x , i.e., T(x). 

• If several constant external torques act on the shaft between 
its ends, the internal torque in each segment of the shaft, 
between any two external torques, must be determined. 

Angle of Twist. 

• When the circular cross-sectional area of the shaft varies along 
the shaft's axis, the polar moment of inertia must be expressed 
as a function of its position x along the axis,J(x). 

• If the polar moment of inertia or the internal torque 
suddenly changes between the ends of the shaft, then 
</> = J ( T(x)/J(x)G(x)) dx or</> = TL/JG must be applied to 
each segment for which J, G, and Tare continuous or constant. 

• When the internal torque in each segment is determined, be 
sure to use a consistent sign convention for the shaft or its 
segments, such as the one shown in Fig. 10-15. Also make sure 
that a consistent set of units is used when substituting numerical 
data into the equations. 
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EXAMPLE 10.5 

Determine the angle of twist of the end A of theA-36 steel shaft shown in 
Fig. 10-16a. Also, what is the angle of twist of A relative to C? The shaft 
has a diameter of200 mm. 

SOLUTION 

Internal Torque. Using the method of sections, the in rental rorques are 
found in each segment as shown in Fig. 10-16b. By the right-hand rule, 
with positive torques directed away from the sectumed end of the shaft, 
we have TAB= +80 kN · m, Tse= -70 kN · m, and TcD = - 10 kN · m. 
These results are also shown on the torque diagram, which indicates how 
the internal torque varies along the axis of the shaft, Fig. 10-16c. 

Angle of Twist. The polar moment of inertia for the shaft is 

J = 7T (0.1 m) 4 = 0.1571(10- 3 ) m4 

2 

For A-36 steel, the table on the back cover gives G = 75 GPa. Therefore, 
the end A of the shaft has a rotation of 

TL 80( 1Q3) N · m (3 m) 

<f>A = 2. JG = (0. 1571(10-3) m4)(75(109) N/ m2) 

10.4 ANGLE OF TWIST 4 7 9 

5m 

c 
IO kN·m 

A 60kN·m 
150kN·m 

80kN·m (a) 

Y-2~.m 
80kN·m 

~:SOkN·m ·~:~ 
80 kN·m 

(b) 

-70(1Q3) N · m (2 m) - 10(1Q3) N · m (1.5 m) + + ~~~~~~~~~~~ 
(0.1571(10-3) m4)(75(109) N/ m2) (0.1571(10- 3) m4)(75(109) N/rrf-) 

Ans. 

The re lative angle of twist of A with respect to C involves only two 
segments of the shaft. 

TL 80(1Q3) N · m (3 m) 

cf>A/c= 1 JG = (0.1571(10-3) m4)(75{109) N/ m2) 

-70(1Q3) N · m (2 m) 
+ 

(0.1571(10- 3) m4)(75(109) N/m2) 

Ans. 

Both results are positive, which means that end A will rotate as 
indicated by the curl of the right-hand fingers when the thumb is 
directed away from the shaft. 

T(kN·m) 

801----
3 5 6.5 x(m) 

I - to ..__ _ _, 
-70 

(c) 

Fig. 10-16 
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EXAMPLE 10.6 
- -

Ef The gears attached to the fixed-end steel shaft are subjected to the torques 

40 N·m ~ shown in Fig. 10-17a. If the shaft has a diameter of 14 mm, determine the 
D ;~", / displacement of the tooth Pon gear A. G = 80 GPa. 

Z!~, N·m ~}~ /·5 
m SOLUTION 

150N·m B ;>< 
P.~ "'x"'o.3 

m Internal Torque. By inspection, the torques in segments AC, CD, and 
-:< / DE cliff h h h F b d 21 o.4 m are erent yet constant t roug out eac segment. ree- o y 
V diagrams of these segments along with the calculated internal torques 

lOOmm (a) are shown in Fig. 10-17b. Using the right-hand rule and the established 

Toe = 170N·m 

~ >~Nm~Nm 
~ 280N·m 

(b) 

tf> A = 0.2121 rad 

~~ 
(c) 

Fig. 10-17 

sign convention that positive torque is directed away from the sectioned 
end of the shaft, we have 

TAc = +150N · m Tcv = -130N·m Tve = -170N·m 

Angle of Twist. The polar moment of inertia for the shaft is 

J = 1T (0.007 m) 4 = 3.771 (10-9) m4 

2 

Applying Eq.10-16 to each segment and adding the results algebraically, 
we have 

TL ( + 150 N · m) (0.4 m) 

<f>A = L JG = 3.771(10-9 )m4 (80(109 )N/m2] 

(-130N ·m)(0.3m) (-170N ·m)(0.5m) 
+ + ---~----~-~-

3.771 ( 10- 9 ) m4 (80 ( 109 ) N /m2] 3.771 ( 10-9) m4 (80 ( 109 ) N /m2] 

<!>A = -0.2121 rad 

Since the answer is negative, by the right-hand rule the thumb is directed 
toward the support E of the shaft, and therefore gear A will rotate as 
shown in Fig. 10-17c. 

The displacement of tooth Pon gear A is 

Sp = </>Ar = ( 0.2121 rad) ( 100 mm) = 21.2 mm Ans. 
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I EXAMPLE 10.7 1 

The 2-in.-diameter solid cast-iron post shown in Fig.10-18a is buried 24 in. 
in soil. If a torque is applied to its top using a rigid wrench, detel!111ine the 
maximum shear stress in the post and the angle of twist of the wrench. 
Assume that the torque is about to tum the bottom of the post, and the soil 
exerts a uniform torsional resistance oft lb· in.fin. along its 24-in. buried 
length. G = 5.5 ( 103 ) ksi. 

SOLUTION 

Internal Torque. The internal torque in segment AB of the post is 
constant. From the free-body diagram, Fig. 10- 18b, we have 

IM = O· z , TAB = 25 lb ( 12 in.) = 300 lb . in. 

The magnitude of the uniform distribution of torque along the buried segment 
BC can be determined from equilibrium of the entire post, Fig. 10-1&. Here 

IMz = 0 25 lb ( 12 in. ) - t ( 24 in.) = 0 

t = 12.5 lb· in.fin. 

Hence, from a free-body diagram of the bottom segment of the post, 
located at the position x, Fig. 10-18d, we have 

IM = O· z , TBc - 12.5x = 0 

TBc = 12.5x 

Maximum Shear Stress. The largest shear stress occurs in region AB, 
since the torque is largest there and J is constant for the post. Applying 
the torsion formula , we have 

TAB c ( 300 lb . in.) ( 1 in.) . 
'Tmax = J = ) ( . ) 4 = 191 psi 

( 1T f2 1 m. 
Ans. 

Angle of Twist. The angle of twist at the top can be determined 
relative to the bottom of the post, since it is fixed and yet is about to tum. 
Both segments AB and BC twist, and so in this case we have 

TAB LAB + 1 Lsc TBc dx <f>A = ---
JG 0 JG 

_ (300lb ·in. )36in. + ( 24
i
0 12.5xdx 

JG Jo JG 

10 800 lb . in2 12.5( ( 24) 2 f2] lb . in2 

= JG + JG 

14 400 lb. in2 = 0.00167 rad 
( 1Tf2) (1 in.)4 5500(1a3) lbfin2 Ans. 
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25lb 

"-2 · ltl. 
B 

I 
36 in. 

- @ Tse 

l(w 
x (w 

(~ r = 12.5 lb·in./in. 

(d) 

Fig.10-18 
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FUNDAMENTAL PROBLEMS 

Fl0-9. The 60-mm-diameter steel shaft is subjected to the 
torques shown. Determine the angle of twist of end A with 
respect to C. Take G = 75 GPa. 

2kN·m 

Prob.Fl0-9 

Fl0-10. Determine the angle of twist of wheel B with 
respect to wheel A. The shaft has a diameter of 40 mm and 
is made of steel for which G = 75 GPa. 

4 kN lOkN 

2kN 

Prob.Fl0-10 

Fl0-11. The hollow 6061-T6 aluminum shaft has an outer 
and inner radius of c,, = 40 mm and C; = 30 mm, respectively. 
Determine the angle of twist of end A. The support at Bis 
flexible like a torsional spring, so that Ts = ks <f>s, where the 
torsional stiffness is ks = 90 kN · m/rad. 

A 3kN·m 

Prob.Fl0-11 

Fl0-12. A series of gears are mounted on the40-mm-diameter 
steel shaft. D etermine the angle of twist of gear E relative 
to gear A. Take G = 75 GPa. 

Prob. Fl0-12 

Fl0-13. The SO-mm-diameter shaft is made of steel. If it is 
subjected to the uniform distributed torque, determine the 
angle of twist of end A. Take G = 75 GPa. 

B 

A 

Prob. Fl0-13 

Fl0-14. Tue SO-mm-diameter shaft is made of steel. If it is 
subjected to the triangular distributed load, determine the 
angle of twist of end A. Take G = 75 GPa. 

Prob. Fl0-14 
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PROBLEMS 

10-35. The propellers of a ship arc connected to an A-36 
steel shaft that is 60 m long and has an outer diameter of 
340 mm and inner diameter of 260 mm. If the power output 
is 4.5 MW when the shaft rotates at 20 rad/s, determine the 
maximum torsional stress in the shaft and its angle of twist. 

*10-36. The solid shaft of radius c is subjected to a torque T 
at its ends. Show that the maximum shear strain in the shaft is 
'Ymax = Tc/JG. What is the shear strain on an clement located 
at point A, c/2 from the center of the shaft? Sketch the shear 
strain distortion of this clement. 

c/2 T 

Prob. 10-36 

10-37. The splined ends and gears attached to the A992 
steel shaft arc subjected to the torques shown. Determine 
the angle of twist of end 8 with respect to end A. The shaft 
has a diameter of 40 mm. 

400N·m 

B 

A 

200 N·m 
500 mm 

// 
400mm 

Prob. 10-37 
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10-38. The A-36 steel shaft has a diameter of 50 mm and is 
subjected to the distributed and concentrated loadings 
shown. Determine the absolute maximum shear stress in 
the shaft and plot a graph of the angle of twist of the shaft in 
radians versus x. 

Prob. 10-38 

10-39. The 60-mm-diamctcr shaft is made of 6061-T6 
aluminum having an allowable shear stress of 'Tallow = 80 MPa. 
Determine the maximum allowable torque T. Also, find the 
corresponding angle of twist of disk A relative to disk C. 

*10-40. The 60-mm-diametcr shaft is made of 6061-T6 
aluminum. If the allowable shear stress is 'Tn11ow = 80 MPa, 
and the angle of twist of disk A relative to disk C is limited 
so that it does not exceed 0.06 rad, determine the maximum 
allowable torque T. 

Probs. 10-39/40 

IT 
3 
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10--41. The SO-mm-diameter A992 steel shaft is subjected 
to the torques shown. Determine the angle of twist of the 
end A. 

Prob. 10--41 

10--42. The shaft is made of A992 steel with the allowable 
shear stress of Ta11ow = 75 MPa. If gear B supplies 15 kW of 
power. while gears A , C and D withdraw 6 kW. 4 kW and 
5 k\V. respectively, determine the required minimum 
diameter d of the shaft to the nearest millimeter. Also. find 
the corresponding angle of twist of gear A relative to gear 
D. The shaft is rotating at 600 rpm. 

10--43. Gear B supplies 15 kW of power. while gears A , C, 
and D withdraw 6 kW, 4 kW and 5 kW, respectively. If the 
shaft is made of steel with the allowable shear stress of 
Tallow = 75 MPa, and the relative angle of twist between any 
two gears cannot exceed 0.05 rad, determine the required 
minimum diameter d of the shaft to the nearest millimeter. 
The shaft is rotating at 600 rpm. 

Probs. 10--42/43 

*10--44. The rotating flywheel-and-shaft, when brought to 
a sudden stop at D. begins to oscillate clockwise-counter
clockwise such that a point A on the outer edge of the 
fly-wheel is displaced through a 6-mm arc. Determine the 
maximum shear stress developed in the tubular A-36 steel 
shaft due to this oscillation. The shaft has an inner diameter 
of 24 mm and an outer diameter of 32 mm. The bearings at 
Band Callow the shaft to rotate freely, whereas the support 
at D holds the shaft fixed. 

Prob. 10--44 

10--45. The turbine develops 150 kW of power, which is 
transmitted to the gears such that C receives 70% and D 
receives 30%. If the rotation of the 100-mm-diameter A-36 
steel shaft is "' = 800 rev / min., determine the absolute 
maximum shear stress in the shaft and the angle of twist of 
end E of the shaft relative to B. The journal bearing at E 
allows the shaft to turn freely about its axis. 

10--46. The turbine develops 150 kW of power, which is 
transmitted to the gears such that both C and D receive an 
equal amount. 1 f the rotation of the 100-mm-diameter A-36 
steel shaft is "' = 500 rev/min., determine the absolute 
maximum shear stress in the shaft and the rotation of end B 
of the shaft relative to £.The journal bearing at E allows 
the shaft to turn freely about its axis. 

Probs. 10--45146 
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10-47. The shaft is made of A992 steel. It has a diameter 
of 1 in. and is supported by bearings at A and D , which 
allow free rotation. Determine the angle of twist of B with 
respect to D. 

*10-48. The shaft is made of A-36 steel. It has a diameter 
of 1 in. and is supported by bearings at A and D , which 
allow free rotation. Determine the angle of twist of gear C 
with respect to 8. 

Probs. 10-47/48 

10-49. The A992 steel shaft has a diameter of 50 mm and 
is subjected to the distributed loadings shown. Determine 
the absolute maximum shear stress in the shaft and plot a 
graph of the angle of twist of the shaft in radians versus x. 

Prob. 10-49 
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10-50. The turbine develops 300 kW of power, which is 
transmitted to the gears such that both 8 and C receive an 
equal amount. If the rotation of the 100-mm-diameter A992 
steel shaft is w = 600 rev/min., determine the absolute 
maximum shear stress in the shaft and the rotation of end D 
of the shaft relative to A. The journal bearing at D allows 
the shaft to tum freely about its axis. 

Prob. 10-50 

10-SL The device shown is used to mix soils in order to 
provide in-situ stabilization. If the mixer is connected to an 
A-36 st eel tubular shaft that has an inner diameter of 3 in. 
and an outer diameter of 4.5 in., determine the angle of 
twist of the shaft at A relative to C if each mixing blade is 
subjected to the torques shown. 

15 ft 
5000 lb· ft A 1 

~ 
Prob. 10-51 
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*10-52. The device shown is used to mix soils in order to 
provide in-situ stabilization. If the mixer is connected to an 
A-36 steel tubular shaft that has an inner diameter of 3 in. 
and an outer diameter of 4.5 in, determine the angle of twist 
of the shaft at A relative to B and the absolute maximum 
shear stress in the shaft if each mixing blade is subjected to 
the torques shown. 

Prob.10-52 

10-53. The 6-in.-diameter L-2 steel shaft on the turbine is 
supported on journal bearings at A and B. If C is held fixed 
and the turbine blades create a torque on the shaft that 
increases linearly from zero at C to 2000 lb · ft at D , 
determine the angle of twist of the shaft at D relative to C. 
Also, calculate the absolute maximum shear stress in the 
shaft. Neglect the size of the blades. 

2 ft 

Prob.10-53 

10-54. The A-36 hollow steel shaft is 2 m Jong and has an 
outer diameter of 40 mm. When it is rotating at 80 rad/s, it 
transmits 32 kW of power from the engine E to the 
generator G. Determine the smallest thickness of the shaft 
if the allowable shear stress is r allow = 140 MPa and the shaft 
is restricted not to twist more than 0.05 rad. 

10-55. The A-36 solid steel shaft is 3 m Jong and has a 
diameter of 50 mm. It is required to transmit 35 kW of 
power from the engine E to the generator G. Determine the 
smallest angular velocity of the shaft if it is restricted not to 
twist more than 1°. 

Probs. 10-54155 

*10-56. The shaft of radius c is subjected to a distributed 
torque 1, measured as torque/length of shaft. Determine the 
angle of twist at end A. The shear modulus is G. 

B 

Prob.10-56 
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10-57. The A-36 steel bolt is tightened within a hole so 
that the reactive torque on the shank AB can be expressed 
by the equation t = (kx2) N · m/m, where xis in meters. If a 
torque of T = 50 N · m is applied to the bolt head, 
determine the constant k and the amount of twist in the 
50-mm length of the shank. Assume the shank has a constant 
radius of 4 mm. 

10-58. Solve Prob. 10-57 if the distributed torque is 
t = (kx2/3) N · m/m. 

Probs. 10-57/58 

10-59. The tubular drive shaft for the propeller of a 
hovercraft is 6 m long. If the motor delivers 4 MW of power 
to the shaft when the propellers rotate at 25 rad/s, determine 
the required inner diameter of the shaft if the outer 
diameter is 250 mm. What is the angle of twist of the shaft 
when it is operatiog?Take 'Tat1ow= 90 MPa and G = 75 GPa. 

-6m 

Prob. 10-59 

10.4 ANGLE OF TWIST 4 87 

*10-60. The 60-mm diameter solid shaft is made of2014-T6 
aluminum and is subjected to the distributed and 
concentrated torsional loadings shown. Determine the angle 
of twist at the free cod A of the shaft. 

/B 
0.4m~ 

0.6111~ 

Prob. 10-60 

10-61. The motor produces a torque of T = 20 N • m on 
gear A. If gear C is suddenly locked so it does not turn, yet B 
can freely turn. determine the angle of twist of F with respect 
to E and F with respect to D of the L2-steel shaft, which bas 
an inner diameter of 30 mm and an outer diameter of 50 mm. 
Also. calculate the absolute maximum shear stress in the 
shaft. The shaft is supported on journal bearings at G at H. 

IOOmm 

c 
D 

·1--- 0.8 m ---1-0.4 m--
~ m 02m 

Prob. 10-61 
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10.5 STATICALLY INDETERMINATE 
TORQUE-LOADED MEMBERS 

A torsionally loaded shaft will be statically indeterminate if the moment 
equation of equilibrium, applied about the axis of the shaft, is not adequate 
to determine the unknown torques acting on the shaft. An example of this 
situation is shown in Fig. 10- 19a. As shown on the free-body diagram, 
Fig. 10-19b, the reactive torques at the supports A and Bare unknown. 
Along the axis of the shaft, we require 

2-M = O· , 

In order to obtain a solution, we will use the same method of analysis 
discussed in Sec. 9.4. The necessary compatibility condition requires the 
angle of twist of one end of the shaft with respect to the other end to be 
equal to zero, since the end supports are fixed. Therefore, 

<f>AJB = 0 

Provided the material is linear elastic, we can then apply the 
load-displacement relation</> = TL/JG to express this equation in terms 
of the unknown torques. Realizing that the internal torque in segment AC 
is + 1A and in segment CB it is -TB, Fig. 10-19c, we have 

TA(3 m) _ TB(2 m) = 
0 

JG JG 

Solving the above two equations for the reactions, we get 

TA = 200 N · m and TB = 300 N · m 

(c) 

Fig.10-19 
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PROCEDURE FOR ANALYSIS 

The unknown torques in statically indeterminate shafts are 
dete rmined by satisfying equilibrium, compatibility, and 
load-displacement requirements for the shaft. 

Equilibrium. 

• Draw a free-body diagram of the shaft in order to identify all 
the external torques that act on it. Then write the equation of 
moment equilibrium about the axis of the shaft. 

Compatibility. 

• Write the compatibility equation. Give consideration as to how 
the supports constrain the shaft when it is twisted. 

Load-Displacement. 

• Express the angles of twist in the compatibility condition in 
terms of the torques, using a load-displacement relation, such 
as</> = TL/JG. 

• Solve the equations for the unknown reactive torques. If any of 
the magnitudes have a negative numerical value, it indicates 
that this torque acts in the opposite sense of direction to that 
shown on the free-body diagram. 

The shafl of this cutting machine is Cixed at its 
ends and subjected to a torque at its center , 
allowing it to act as a torsiona l spring. 
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EXAMPLE 10.8 
- -

B 

800 - Ts 

The solid steel shaft shown in Fig. 10--20a has a diameter of 20 mm. If it is 
subjected to the two torques, determine the reactions at the fixed supports 
A andB. 

A 

(a) (b) 

SOLUTION 

Equilibrium. By inspection of the free-body diagram, Fig. l0--20b, it is 
seen that the problem is statically indeterminate, since there is only one 
available equation of equilibrium and there are two unknowns. We require 

IM, = 0; -Ta+800N · m-500N · m-TA = O (1) 

Compatibility. Since the ends of the shaft are fixed, the angle of twist 
of one end of the shaft with respect to the other must be zero. Hence, the 
compatibility equation becomes 

300 - Ts </>A/a = 0 

(c) 

Fig. 10-20 

Load-Displacement. This condition can be expressed in terms of the 
unknown torques by using the load-displacement relationship, 4> = TL/JG. 
Here there are three regions of the shaft where the internal torque is 
constant. On the free-body diagrams in Fig. 10--20c we have shown the 
internal torques acting on the left segments of the shaft. This way the internal 
torque is only a function of Ta. Using the sign convention established in 
Sec. 10.4, we have 

-Ta(0.2 m) 

JG 
so that 

Using Eq.1, 

+ ( 800 - Ta) ( 1.5 m) + (300 - Ta)( 0.3 m) = 
0 

JG JG 

Ta = 645 N · m Ans. 

TA = -345 N · m Ans. 

The negative sign indicates that T A acts in the opposite direction of that 
shown in Fig. l0- 20b. 
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EXAMPLE 10.9 

The shaft shown in Fig. L0-2 la is made from a steel tube, which is bonded 
to a brass core. lf a torque of T = 250 lb · ft is applied at its end, plot the 
shear stress distribution along a radial line on its cross section. Take 
G,t = 11.4 ( H>3) ks i, Gbr = 5.20 ( H>3) ksi. 

SOLUTION 

Equilibrium. A free-body diagram of the shaft is shown in Fig. 10-21b. (, 
The reaction a t the wall has been represented by the amount of torque \I inA · 

resisted by the steel, T.t, and by the brass, Tb,. Working in units of pounds r- 250 lb·fi 

and inches, equilibrium requires 
1 

-T.t - Tbr + ( 2501b·ft )( 12in./ ft) = 0 (1) 

Compatibility. We require the angle of twist of end A to be the same 
for both the steel and brass since they are bonded together. Thus, 

</J = c/Jst = c/Jbr 
Load-Displacement. Applying the load- displacement relationship, 
</J = TL/JG, 

( 7r/ 2)[ ( 1 in. ) 4 
- ( 0.5 in. ) 4

} ll.4(1a3) kip/ in2 

Tb,L - ~~~~~~..:..:..._~~~~~~ 

( 7r / 2 ) ( 0.5 in. ) 4 5.20 ( 10 3 ) kip/ in2 

T.t = 32.88 Tbr (2) 

Solving Eqs. 1 and 2, we get 
T.t = 2911.5 lb · in. = 242.6 lb · ft 
Tbr = 88.5 lb· in. = 7.38 lb · ft 

The shear stress in the brass core varies from zero at its center to a 
maximum at the inte rface where it contacts the steel tube. Using the 
torsion formula, 

250 lb· rt 

0.5 in. 

8 

(a) 

(b) 

1977 psi 

( 88.5 lb · in. ) ( 0.5 in. ) . 
( 7i ) = = 451 psi Shcar-5trcss distribution 

br max ( 7T 12 ) ( 0.5 in. ) 4 . 

For the steel, the minimum and maximum shear stresses are 
(2911.5 lb· in. ) (0.5 in. ) . 

( -r. ) · = = 989 psi 
st mm ( 7r/2 )[ ( 1 in. )4 - (0.5in.)4} 

( -r.) = (29ll.5lb·in.){lin.) = l 9??psi 
st max ( 7T / 2 )[ ( 1 in.) 4 - ( 0.5 in.) 4) 

The results are plotted in Fig. 10-21c. Note the discontinuity of shear 
stress at the brass and steel interface. This is to be expected, since the 
materials have different moduli of rigidity; i.e. , steel is stiffer than brass 
( Gst > Gbr), and thus it carries more shear stress at the interface. 
Although the shear stress is discontinuous here, the shear strain is not. 
Rather, it is the same on either side of the brass-steel interface, Fig.10-21d. 

(c) 

Shcar-5train distribution 

(d) 

Fig. 10-21 
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PROBLEMS 

10-62. The steel shaft has a diameter of 40 mm and is fixed 
at its ends A and B. If it is subjected to the couple, determine 
the maximum shear stress in regions AC and CB of the 
shaft. Gsi = 75 GPa. 

A 3kN 

B 

Prob. 10-62 

10-63. The A992 steel shaft has a diameter of 60 mm and is 
fixed at its ends A and B. If it is subjected to the torques shown, 
determine the absolute maximum shear stress in the shaft. 

Prob. 10-63 

*10-64. The steel shaft is made from two segments: AC 
has a diameter of 0.5 in., and CB has a diameter of 1 in. If 
the shaft is fixed at its ends A and B and subjected to a 
torque of 500 lb · ft, determine the maximum shear stress 
in the shaft. Gsi = 10.8(103) ksi. 

A 
0.5 in. 

Prob. 10-64 

10-65. The bronze C86100 pipe has an outer diameter of 
1.5 in. and a thickness of 0.125 in. The coupling on it at C is 
being tightened using a wrench. If the torque developed at 
A is 125 lb · in., determine the magnitude F of the couple 
forces. The pipe is fixed supported at end B. 

10-66. The bronze C86100 pipe has an outer diameter of 
1.5 in. and a thickness of 0.125 in. The coupling on it at C is 
being tightened using a wrench. If the applied force is 
F = 20 lb, determine the maximum shear stress in the pipe. 

B 

Probs. 10-65/66 

10-67. The shaft is made of L2 tool steel, has a diameter of 
40 mm, and is fixed at its ends A and B. If it is subjected to 
the torque, determine the maximum shear stress in regions 
AC and CB. 

A 

Prob. 10-67 
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*10-68. The shaft is made of L2 tool steel, has a diameter 
of 40 mm. and is fixed at its ends A and B. If it is subjected 
to the couple. determine the maximum shear stress in 
regions AC and CB. 

2kN 

Prob.10-68 

10-69. TheAmI004-T61 magncsium tube is bonded to the 
A-36 steel rod. If the allowable shear stresses for the 
magnesium and steel are (TaJlow)mg = 45 MPa and (Tanow)s1 = 
75 MPa, respectively, determine the maxin1um allowable 
torque that can be applied at A.Also,find the corresponding 
angle of twist of end A. 

10-70. The Aml004-T61 magnesium tube is bonded to the 
A-36 steel rod. If a torque of T = 5 kN ·mis applied to end A , 
determine the maximum shear stress in each material. 
Sketch the shear stress distribution. 

Probs. 10-69no 

10-71. The two shafts are made of A-36 steel. Each has a 
diameter of 25 mm and they are connected using the gears 
fixed to their ends. Their other ends arc attached to fixed 
supports at A and 8. They are also supported by journal 
bearings at C and D, which allow Cree rotation of the shafts 
along their axes. If a torque of 500 N · m is applied to the 
gear at £,determine the reactions at A and B. 

10-72. The two shafts are made of A-36 steel. Each has a 
diameter of 25 mm and they are connected using the gears 
fixed to their ends. Their other ends arc attached to fixed 
supports at A and 8. They are also supported by journal 
bearings at C and D , which allow free rotation of the shafts 
along their axes. If a torque of 500 N ·mis applied to the gear 
at £,determine the rotation of this gear. 

Probs. 10-71n2 

10-73. A rod is made from two segments: AB is steel and 
BC is brass. It is fixed at its ends and subjected to a torque of 
T = 680 N · m. II the steel portion has a diameter of 30 mm, 
determine the required diameter of the brass portion so the 
reactions at the walls will be the same. G51 = 75 GPa, 
Gbr = 39GPa. 

10-74. Determine the absolute maxinlum shear stress in 
the shaft of Prob. 10--73. 

c 

Probs. 10-73n4 
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10-75. The two 3-ft-long shafts are made of 2014-16 
aluminum. Each has a diameter of 1.5 in. and they are 
connected using the gears fixed to their ends. Their other 
ends are attached to fixed supports at A and B. They are also 
supported by bearings at C and D , which allow free rotation 
of the shafts along their axes. If a torque of 600 lb· ft is 
applied to the top gear as shown, determine the maximum 
shear stress in each shaft. 

A 

/ 
3 ft 

2 in. 

Prob.10-75 

*10-76. The composite shaft consists of a mid-section that 
includes the 1-in.-diameter solid shaft and a tube that is 
welded to the rigid flanges at A and B. Neglect the thickness 
of the flanges and determine the angle of twist of end C of 
the shaft relative to end D. The shaft is subjected to a torque 
of 800 lb · ft. The material is A-36 steel. 

800~='=1;,;:n.:{-.:Jt_.::3:J:n.===0.=25t/:-;in. 
~-

800 lb· ft 

-o.s ft:1-=:.~~~~)I r--.--t f11v 

-o.Sft 

Prob.10-76 

10-77. If the shaft is subjected to a uniform distributed 
torque of 1 = 20 kN · m/m, determine the maximum shear 
stress developed in the shaft. The shaft is made of 2014-T6 
aluminum alloy and is fixed at A and C. 

'--..._ 
400mm 

'--..._ 

~ ~"-'-. 600 mm 
a ~ 

8~1 
60mm ~ 

Section a-a 

Prob.10-77 

10-78. The tapered shaft is confined by the fixed supports 
at A and B. If a torque T is applied at its mid-point, 
determine the reactions at the supports. 

T 

A l c 

L/2 
L/ 

Prob.10-78 

10-79. The shaft of radius c is subjected to a distributed 
torque 1, measured as torque/length of shaft. Determine the 
reactions at the fixed supports A and B. 

B 

A 

Prob.10-79 
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CHAPTER REVIEW 

Torque causes a shaft having a circular cross 
section to twist, such that whatever the torque, 
the shear strain in the shaft is always proportional 
to its radial distance from the center of the shaft. 

Provided the material is homogeneous and 
linear elastic, then the shear stress is 
determined from the torsion formula, 

Tp 
'T = -

J 

The design of a shaft requires finding the 
geometric parameter, 

J T 

C 'Tallow 

Often the power P supplied to a shaft rotating 
at w is reported, in which case the torque is 
determined from P = Tw. 

The angle of twist of a circular shaft is 
determined from 

1 LT(x) dx 
</> = 

0 J(x)G(x) 

If the internal torque and JG are constant 
within each segment of the shaft then 

For application, it is necessary to use a sign 
convention for the internal torque and to be 
sure the material remains linear elastic. 

If the shaft is statically indeterminate, then the 
reactive torques are determined from 
equilibrium, compatibility of twist, and a 
load-displacement relationship, such as 
</>=TL/JG. 

CHAPTER REVIEW 495 
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REVIEW PROBLEMS 

RlO-L The shaft is made of A 992 steel and has an allowable 
shear stress of r allow = 75 MPa. when the shaft is rotating at 
300 rpm, the motor supplies 8 kW of power, while gears A 
and B withdraw 5 kW and 3 kW, respectively. Determine the 
required minimum diameter of the shaft to the nearest 
millimeter. Also, find the rotation of gear A relative to C. 

Rl0-2. The shaft is made of A992 steel and has an 
allowable shear stress of r allow = 75 MPa. when the shaft is 
rotating at 300 rpm, the motor supplies 8 kW of power, 
while gears A and B withdraw 5 kW and 3 kW, respectively. 
If the angle of twist of gear A relative to C is not allowed to 
exceed 0.03 rad, determine the required minimum diameter 
of the shaft to the nearest millimeter. 

~ 
300mm 

300mm 

~ 

Probs. Rl0-112 

Rl0-3. The A-36 steel circular tube is subjected to a torque 
of 10 kN · m. Determine the shear stress at the mean radius 
p = 60 mm and calculate the angle of twist of the tube if it is 
4 m long and fixed at its far end. Solve the problem using 
Eqs. 10-7 and 10-15 and using Eqs. 10-18 and 10-20. 

p = 60mm 
'\ 

( 

Prob. Rl0-3 

*Rl0-4. The shaft has a radius c and is subjected to a torque 
per unit length of 10, which is distributed uniformly over the 
shaft's entire length L. If it is fixed at its far end A , determine 
the angle of twist <f> of end B. The shear modulus is G. 

A 

Prob. Rl0-4 

Rl0-5. The motor delivers 50 hp while turning at a 
constant rate of 1350 rpm at A. Using the belt and pulley 
system this Loading is delivered to the steel blower shaft BC. 
Determine t o the nearest ! in. the smallest diameter of this 
shaft if the allowable shear stress for steel is r allow = 12 ksi. 

c 

A 

2inT 

Prob. Rl0-5 
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Rl~. Segments AB and BC of the assembly are made 
from 6061-T6 aluminum and A992 steel, respectively. U 
couple forces P = 3 kip are applied to the lever arm, 
determine the maximum shear stress developed in each 
segment. The assembly is fixed at A and C. 

4 in. 
p 

Prob. Rl~ 

Rl0-7. Segments AB and BC of the assembly are made 
from 6061-T6 aluminum and A992 steel, respectively.Uthe 
allowable shear stress for the aluminum is (ra11o,.,)a1 = 12 ksi 
and for the steel (r811.,,.),. = 10 ksi, determine the maximum 
allowable couple forces P that can be applied to the lever 
arm. The assembly is fixed at A and C. 

Prob. Rl0-7 

REVIEW PROBLEMS 4 9 7 

*Rl0-8. The tapered shaft is made from 2014-T6 
aluminl!lm alloy, and has a radius which can be described by 
the equation r = 0.02(1 + x3'2) m, where x is in meters. 
Determine the angle of twist of its end A if it is subjected to 
a torque of 450 N · m. 

r = 0.02( I + x3f2) m 

450 N·m 

Prob. Rl0-8 

Rl0-9. The 61l-mm-diameter shaft rotates at 300 rev /min. 
This motion is caused by the unequal belt tensions on the 
pulley of 800 N and 450 N. Determine the power transmitted 
and the maximum shear stress developed in the shaft. 

./ 
300 revfmin 

100mm 

450 N 

SOON 

Prob. Rl0-9 
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(© Construction Photography/Corbis) 

The girders of this bridge have been designed on the basis of their ability 
to resist bending stress. 
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BENDING 

CHAPTER OBJECTIVES 

• To represent the internal shear and moment in a beam or shaft as 
a function of x. 

• To use the re lations between distributed load, shear, and moment 

to draw shear and moment diagrams. 

• To determine the stress in elastic symmetric members subject to 
bending. 

• To develop methods to determine the stress in unsynnmetric 

beams subject to bending. 

11.1 SHEAR AND MOMENT DIAGRAMS 
Members that are slender and support loadings that are applied 
perpendicular to their longitudinal axis are called beams. In general, 
beams are long, straight bars having a constant cross-sectional area. Often 
they are classified as to how they are supported. For example, a simply 
supported beam is pinned at one end and roller supported at the other, 
Fig.11- 1,a cantilevered beam is fixed at one end and free at the other, and 
an overhanging beam has one or both of its ends freely extended over the 

499 
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• • 

Simply supported beam 

Cantilevered beam 

, 
' 

Overhanging beam 

Fig.11-1 

p 

A ~---IVo __ ___.~ 
llS t" I .,_;J_c_, D 

Fig.11-2 

Positive external distributed load 

iv 
Positive internal shear 

M M 

( ' Positive internal moment 

Beam sign convention 

Fig.11-3 

supports. Beams are considered among the most important of all structural 
elements. They are used to support the floor of a building, the deck of a 
bridge, or the wing of an aircraft. Also, the axle of an automobile, the 
boom of a crane, even many of the bones of the body act as beams. 

Because of the applied loadlings, beams develop an internal shear force 
and bending moment that, in general, vary from point to point along the 
axis of the beam. In order to properly design a beam it therefore becomes 
important to determine the maximum shear and moment in the beam. 
One way to do this is to express V and M as functions of their arbitrary 
position x along the beam's axis, and then plot these functions. They 
represent the shear and moment diagrams, respectively. The maximum 
values of V and M can then be obtained directly from these graphs. Also, 
since the shear and moment diagrams provide detailed information 
about the variation of the shear and moment along the beam's axis, they 
are often used by engineers to decide where to place reinforcement 
materials within the beam or how to proportion the size of the beam at 
various points along its length. 

In order to formulate V and! Min terms of x we must choose the origin 
and the positive direction for x. Although the choice is arbitrary, most 
often the origin is located at t he left end of the beam and the positive x 
direction is to the right. 

Since beams can support portions of a distributed load and 
concentrated forces and couple moments, the internal shear and 
moment functions of x will be discontinuous, or their slopes will be 
discontinuous, at points where the loads are applied. Because of this, 
these functions must be determined for each region of the beam 
between any two discontinuities of loading. For example, coordinates 
x i> Ni, and x3 will have to be used to describe the variation of V and M 
throughout the length of the beam in Fig. 11- 2. Here the coordinates are 
valid only within the regions from A to B for x1, from B to C for Ni, and 
from C to D for x3. 

Beam Sign Convention. Before presenting a method for 
determining the shear and moment as functions of x, and later plotting 
these functions (shear and moment diagrams), it is first necessary to 
establish a sign convention in order to define "positive" and "negative" 
values for V and M. Although the choice of a sign convention is arbitrary, 
here we will use the one often used in engineering practice. It is shown in 
Fig. 11- 3. The positive directions are as follows: the distributed load acts 
upward on the beam, the internal shear force causes a clockwise rotation 
of the beam segment on which it acts, and the internal moment causes 
compression in the top fibers of the segment such that it bends the 
segment so that it "holds water." Loadings that are opposite to these are 
considered negative. 
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IMPORTANT POINTS 

• Beams are long straight members that are subjected to loads perpendicular to their longitudinal axis. They 
are classified according to the way they are supported, e.g., simply supported, cantilevered, or overhanging. 

• In order to properly design a beam, it is important to know the variation of the internal shear and moment 
along its axis in order to find the points where these values are a maximum. 

• Using an established sign convention for positive shear and moment, the shear and moment in the beam 
can be determined as a function of their position x on the beam, and then these functions can be plotted 
to form the shear and moment diagrams. 

PROCEDURE FOR ANALYSIS 

The shear and moment diagrams for a beam can be constructed using the following procedure. 

Support Reactions. 

• Determine all the reactive forces and couple moments acting on the beam, and resolve all the forces into 
components acting perpendicular and parallel to the beam's axis. 

Shear and Moment Functions. 

• Specify separate coordinates x having an origin at the beam's left end and extending to regions of the 
beam between concentrated forces and/or couple moments, or where there is no discontinuity of 
distributed loading. 

• Section the beam at each distance x, and draw the free-body diagram of one of the segments. Be sure 
V and M are shown acting in their positive sense, in accordance with the sign convention given in Fig.11-3. 

• The shear is obtained by summing forces perpendicular to the beam's axis. 

• To eliminate V, the moment is obtained directly by summing moments about the sectioned end of 
the segment. 

Shear and Moment Diagrams. 

• Plot the shear diagram (V versus x) and the moment diagram (M versus x). If numerical values of the 
functions describing V and M are positive, the values are plotted above the x axis, whereas negative 
values are plotted below the axis. 

• Generally it is convenient to show the shear and moment diagrams below the free-body diagram of 
the beam. 
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I EXAMPLE 11.1 

3kN/m 

ttt}ttttttttttttt 
• L CL • 
I 4m----I 

(a) 

6 kN 

(b) 

3kN/m 

6 kN 4 m 6kN 

V(kN} 

6 

1----...:::.....,...:::::----+-x(m) 

M (kN·m) 

1~~ 
(c) 

Fig.11-4 

- 6 

x (m) 

Draw the shear and moment diagrams for the beam shown in Fig. ll-4a. 

SOLUTION 

Support Reactions. The support reactions are shown in Fig. 11-4c. 

Shear and Moment Functions. A free-body diagram of the left segment 
of the beam is shown in Fig. 11-4b. The distributed loading on this segment 
is represented by its resultant force (3x) kN, which is found only after the 
segment is isolated as a free-body diagram. This force acts through the 
centroid of the area under the distributed loading, a distance of x/2 from 
the right end. Applying the two equations of equilibrium yields 

+ jlF. = O· 
y ' 

~+IM = O; 

6 kN - (3x) kN - V = 0 

V = (6 - 3x) kN 

-6 kN(x) + (3x) kN (~x) + M = 0 

(1) 

M = (6x - 1.5x2
) kN · m (2) 

Shear and Moment Diagrams. The shear and moment diagrams 
shown in Fig.11-4c are obtained !by plotting Eqs.1and2.The point of zero 
shear can be found from Eq. 1: 

V = (6 - 3x) kN = 0 

x = 2m 

NOTE: From the moment diagram, this value of x represents the point on 
the beam where the maximum moment occurs, since by Eq. 11- 2 
(see Sec. 11.2) the slope V = dM / dx = 0. From Eq. 2, we have 

Mmax = (6 (2) - 1.5 (2)2
] kN · m 

= 6kN · m 
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EXAMPLE 11 .2 

Draw the shear and moment diagrams for the beam shown in Fig. ll-5a. 

2 kN/m 3 kN 2 kN/m •--------: _ ......... -- : 
(1(--------- j 

6 kN·m l-2m J 

(a) {b) 

SOLUTION 

Support Reactions. The distributed load is replaced by its resultant 
force, and the react ions have been determined, as shown in Fig. 11-5b. 

Shear and Moment Functions. A free-body diagram of a beam 
segment of length xis shown in Fig. 11- 5c. The intensity of the triangular 
load at the sect.ion is found by proportion, that is, w/x = (2 kN/ m)/3 m 
or w = ( sx) kN / m. The resultant of the distributed loading is found 
from the area under the diagram. Thus, 

+f IF, =O; 3kN -~ (~x)x - V = O 

v=(3-~x2)kN (1) 

C+IM = O; 6 kN · m - (3 kN) (x) + ~ (~ x) x (! x) + M = 0 

M = (-6 + 3x - ~x3) kN·m (2) 

Shear and Moment Diagrams. The graphs of Eqs. 1 and 2 are shown 
in Fig. 11-5d. 

.l(2 x)x 2 
2 3 IV = - X ____ , 3 

(f ~------- i.,M 
6 kN·m -~x-IV 

1--X 

(c) 

2kN/m 

3 kqpgrrrTIJ 
6kN·m' t t 

V(kN) 

3t-----
--........ x(m) 

M ~pl--·m_) ____ = ,_.._;..x (m) 

(d) 

Fig. 11-5 
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I EXAMPLE 11.3 1 

2 kip/ ft 

£TI i i i i r J l l 
16 kip/ft 

1----18 ft----1 

(a) 

36 kip 36 kip 

..=--=:.: :.:-:..-.: ---- --------: 
I --, ----11 

9ft-1 
I 12 ft 

18 ft 

4 kip/ ft 

2 kip/ft 

30kip 42 kip 

2 kip/ft 

30 kip 
I 
v (kip) 

30 

(d} 

Fig.11-6 

6 kip/ft 

f 
42 kip 

Draw the shear and moment diagrams for the beam shown in Fig.11-6a. 

SOLUTION 

Support Reactions. The distributed load is divided into triangular and 
rectangular component loading&, and these loadings are then replaced by 
their resultant forces. The reactions have been determined as shown on 
the beam's free-body diagram, Fig.11-6b. 

Shear and Moment Functions. A free-body diagram of the left 
segment is shown in Fig. 11-6c. As above, the trapezoidal loading is 
replaced by rectangular and triangular distributions. Here the intensity 
of the triangular load at the section is found by proportion. The resultant 
force and the location of eac!h distributed loading are also shown. 
Applying the equilibrium equations, we have 

+ jlF. = O· 
y ' 30 kip - (2 kip/ft)x - ~(4 kip/ft)(

1
; ft)x - V = 0 

v = ( 30 - 2x - ~
2

) kip (1) 

~+IM = O; 

-30kip(x) + (2kip/ft)x(~) + ~(4kip/ft)(l;ft)x(~) + M = 0 

M = ( 30x - x2 
- ~;)kip · ft (2) 

Shear and Moment Diagrams. Equations 1 and 2 are plotted in 
Fig. 11-6d. Since the point of maximum moment occurs when 
dM/ dx = V = 0 (Eq.11- 2), then, from Eq.1, 

Choosing the positive root, 

Thus, from Eq. 2, 

x 2 
V = 0 = 30-2x- -

9 

x = 9.735 ft 

? (9.735)3 

Mmax = 30(9.735) - (9.735)- -
27 

= 163 kip · ft 
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EXAMPLE 11.4 
- -

Draw the shear and moment diagrams for the beam shown in Fig.11- 7a. 

SOLUTION 

Support Reactions. The reactions at the supports are shown on the 
free-body diagram of the beam, Fig. ll- 7d. 

Shear and Moment Functions. Since there is a discontinlllity of 
distributed load and also a concentrated load at the beam's .center, 
two regions of x must be considered in order to describe the shear 
and moment functions for the entire beam. 

0 ~ X1 < 5 m, Fig.11- 7b: 

+ jIF. = O· y , 5.75 kN - v = 0 

V = 5.75 kN 

~+IM = O; -80 kN · m - 5.75 kN x1 + M = 0 

M = (5.75x1 + 80) kN · m 

5 m < Xz ~ 10 m, Fig.11- 7c: 

+ jIFy = O; 5.75kN-15kN- 5kN/m(x2 - 5m) - V = 0 

v = (15.75 - 5Xz) kN 

~+IM = O; -80kN·m - 5.75kNXz + 15kN(Xz - 5m) 

(
X2 - 5 m) +5kN/m(Xz-5m) 

2 
+ M = O 

M = (-2.5xi2 + 15.75Xz + 92.5) kN · m 

(1) 

(2) 

(3) 

(4) 

Shear and Moment Diagrams. Equations 1 through 4 are plotted 
in Fig.11- 7d. 

lSkN 
~ SkN/m 

&OkN·m tt t t t t tu 

Aeii , ~ 
Bi • 

1--5 m--l-5 m-I 
(a) 

S.7S kN (b) 

lS kN S kN/m (x2 - S) 

80kN·m >--- >---1 

(j..,_____~'i)M 
"--5m---i---i---i v 

X2 - S X2 - S 
1-----X2 - 2- --2 -

S.75 kN (c) 

15 kN 
SkN/m 

c 
A B 

Sm----Sm 

5.75 kN 34.2SkN 

V(kN) 

I S.7S 
x(m) 

- 9.2S 

M(kN·m) -34.25 
108.75 

1----------~x(m) 

(d) 

Fig. 11- 7 
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Failure of this table occurred at the brace 
support on its right side. If drawn, the 
bending-moment diagram for the table 
loading would indicate this to be the point 
of maximum internal moment. 

F 

(a) 

11. 2 GRAPHICAL METHOD FOR 
CONSTRUCTING SHEAR AND 
MOMENT DIAGRAMS 

In cases where a beam is subjected to several different loadings, 
determining V and M as functions of x and then plotting these equations 
can become quite tedious. In this section a simpler method for constructing 
the shear and moment diagrams is discussed- a method based on two 
differential relations, one that exists between the distributed load and 
shear, and the other between the shear and moment. 

Regions of Distributed Load. For purposes of generality, 
consider the beam shown in Fig. 11- &t, which is subjected to an arbitrary 
loading. A free-body diagram for a very small segment 6.x of the beam is 
shown in Fig. 11-8b. Since this segment has been chosen at a position x 
where there is no concentrated force or couple moment, the results to be 
obtained will not apply at these points. 

Notice that all the loadings shown on the segment act in their positive 
directions according to the established sign convention, Fig. 11- 3. Also, 
both the internal resultant shear and moment, acting on the right face of 
the segment, must be changed by a small amount in order to keep the 
segment in equilibrium. The distributed load, which is approximately 
constant over 6.x, has been replaced by a resultant force w6.x that acts at 
!(6.x) from the right side. Applying the equations of equilibrium to the 
segment, we have 

v = w(x) 

Fig.11- 8 

IV 

v 

r--
1 
I 
I 
I 
I 
I 

.. w6x 

-- , 
I 
I 
I 
I I 
1-2 (6x) 
I 

Mer 0 lJMHM 
'------' v + 6 v 

6x 
Free-body diagram 

of segment 6x 

(b) 
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11 .2 GRAPHICAL METHOD FOR CONSTRUCTING SHEAR AND M OMENT DIAGRAMS 5 0 7 

+ j!F. = O· >' , 

C+IM0 = O; 

V + w 6.x - (V + 6. V) = 0 

6.V=w6.x 

-V 6.x - M - w 6.x[~(6.x)] + (M + 6.M) = 0 

6.M = V 6.x + w!{6.x)2 

Dividing by 6.x and taking the limit as 6.x---+ 0, the above two equations 
become 

uv - ·:J (11-1) 
dx 

slope of distributed 
shear diagram load intensity 
at each poinl at each point 

dM 

~ (11- 2) -
dx 

slope of shear 
moment diagram at each 

at each point point 

Equation 11-1 states that at any point the slope of the shear diagram 
equals the intensity of the distributed loading. For example, consider the 
beam in Fig. l l-9a. The distributed loading is negative and increases 
from zero to w8 . Knowing this provides a quick means for drawing the 
shape of the shear diagram. It must be a curve that has a negative slope, 
increasing from zero to - w8 . Specific slopes w A = 0, - we, - w 0 , and 
- w8 are shown in Fig. I l-9b. 

In a similar manner, Eq. 11-2 states that at any point the slope of the 
moment diagram is equal to the shear. Since the shear diagram in 
Fig. ll-9b starts at +VA, decreases to zero, and then becomes negative 
and decreases to -V8 , the moment diagram (or curve) will then have an 
initial slope of + VA which decreases to zero, then the slope becomes 
negative and decreases to - Va. Specific slopes VA, Ve, V0 , 0, and -Va 
are shown in Fig.11-9c. 

(a) A • c B _ o_ 

v w = negative increasing 
o slope = negative increasing 

-we / 
v... -wo 

(b) 

V =positive decreasing 

M slope =;~"Tiecreasing-w8 
Vo 0 

Ve 

(c) 

Fig. 11-9 
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v 

M 

M 

M 

c 
(d) 

(f) 

Fig. 11-9 (cont.) 

v 

v 

F 
.. 

M+ 6.M 

l-1h -1 v + av 

(a) 

~-~ 

I-ax-I v+ av 

(b) 

Fig.11-10 

Equations 11- 1and11- 2 may also be rewritten in the form dV = wdx 
and dM = Vdx. Since w dx and V dx represent differential areas under 
the distributed loading and the shear diagram, we can then integrate 
these areas between any two points C and Don the beam, Fig. 11- 9d, 
and write 

I av= jwdx I 
change in 
shear 

area under 
distributed loading 

change in area under 
moment shear diagram 

(11- 3) 

(11-4) 

Equation 11- 3 states that the change in shear between C and D is equal 
to the area under the distributed-loading curve between these two points, 
Fig. 11- 9d. In this case the change is negative since the distributed load 
acts downward. Similarly, from Eq. 11-4, the change in moment between 
C and D, Fig. 11- 9[, is equal to the area under the shear diagram within 
the region from C to D. Here the change is positive . 

Regions of Concentrated Force and Moment. A free-body 
diagram of a small segment of the beam in Fig. 11- 8a taken from under 
the force is shown in Fig. 11- lOa. Here force equilibrium requires 

+ t 2£,, = O; V + F - (V + a V) = 0 

(11- 5) 

Thus, when Facts upward on the beam, then the change in shear, d V , is 
positive so the values of the shear on the shear diagram will "jump" 
upward. Likewise, if F acts downward, the jump (d V) will be downward. 

When the beam segment includes the couple moment M0 , Fig.11-lOb, 
then moment equilibrium requires the change in moment to be 

C + 2M0 = O; M + dM - M0 - V dx - M = 0 

Letting dx "" 0, we get 

dM = M0 (11-6) 

In this case, if Mo is applied clockwise, the change in moment, dM, is 
positive so the moment diagram will "jump" upward. Likewise, when Mo 
acts counterclockwise, the jump (dM) will be downward. 
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PROCEDURE FOR ANALYSIS 

The following procedure provides a method for constructing the shear 
and moment diagrams for a beam based on the relations among 
distributed load, shear, and moment. 

Support Reactions. 

• Determine the support reactions and resolve the forces act ing 
on the beam into components that are perpendicular and 
parallel to the beam's axis. 

Shear Diagram. 

• Establish the V and x axes and plot the known values of the 
shear at the two ends of the beam. 

• Notice how the values of the distributed load vary along the beam, 
such as positive increasing, negative increasing, etc., and realize that 
each of these successive values indicates the way the shear diagram 
will slope (dV/dx = w). Here w is positive when it acts upward. 
Begin by sketching the slope at the end points. 

• If a numerical value of the shear is to be determined at a point, one 
can find this value either by using the method of sections and the 
equation of force equilibrium, or by using /::,,. V = J w dx, which 
states that the change in the shear between any two points is equal to 
the area under the load diagram between the two points. 

Moment Diagram. 

• Establish the M and x axes and plot the known values of the 
moment at the ends of the beam. 

• Notice how the values of the shear diagram vary along the beam, 
such as positive increasing, negative increasing, etc., and realize 
that each of these successive values indicates the way the moment 
diagram will slope (dM/dx = V). Begin by sketching the slope at 
the end points. 

• At the point where the shear is zero, dM / dx = 0, and therefore 
this will be a point of maximum or minimum moment. 

• If a numerical value of the moment is to be determined at the 
point, one can find this value either by using the method of 
sections and the equation of moment equilibrium, or by using 
l::..M = Jv dx, which states that the change in moment between 
any two points is equal to the area under the shear diagram 
between the two points. 

• Since w must be integrated to obtain I::.. V, and V is integrated to 
obtain M, then if w is a curve of degree n, V will be a curve of degree 
n + 1 and M will be a curve of degree n + 2. For example, if w is 
uniform, V will be linear and M will be parabolic. 
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I EXAMPLE 11.s I 

p p 

(a) 

Draw the shear and moment diagrams for the beam shown in Fig.11- lla. 

SOLUTION 

Support Reactions. The reaction at the fixed support is shown on the 
free-body diagram, Fig.11- llb. 

Shear Diagram. The shear at each end of the beam is plotted first, 
Fig. 11- llc. Since there is no distributed loading on the beam, the slope 
of the shear diagram is zero as indicated. Note how the force P at the 
center of the beam causes the shear diagram to jump downward an 
amount P, since this force acts downward. 

Moment Diagram. The moments at the ends of the beam are plotted, 
Fig. 11- lld. Here the moment diagram consists of two sloping lines, one 
with a slope of +2P and the other with a slope of +P. 

The value of the moment in the center of the beam can be determined 
by the method of sections, or from the area under the shear diagram. If 
we choose the left half of the shear diagram, 

Mlx=L = Mlx=O + l!..M 

Mlx=L = -3PL + (2P)(L) = -PL 

p p 

(b) 

v 
w=O 

slope= 0 
downward force P 
downward jump P 

2Pt-- - -.-- -i 
~----P 

.__ __ ....._,,, ______ _,__~x 

(c) 

V = positive constant 
M slope = positive constant 

- 3PL 

r---7-=:==:::=::::=-c;E~11:cis with 

Begins with 
slope 2P 

(d} 

Fig.11-11 

slope P 
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EXAMPLE 11~ 

Draw the shear and moment diagrams for the beam shown in Fig.11-12a. 

Mo 

1--L- -l L - -1 

(a) 

SOLUTION 

Support Reactions. The reactions are shown on the free-body diagram 
in Fig. 11-12b. 

Shear Diagram. The shear at each end is plotted first, Fig. 11-12c. 
Since there is no distributed load on the beam, the shear diagram has 
zero slope and is therefore a horizontal line. 

Moment Diagram. The moment is zero at each end, Fig. 11-12d. The 
moment diagram has a constant negative slope of - M0/2L since this is 
the shear in the beam at each point. However, here the couple moment 
Mo causes a jump in the moment diagram at the beam's center. 

' l . 

t--- L \ ·1-L--•' 
Mo (b) Mo 

2L 2L 
v • 

"' = 0 
slope = O 

i-----r-----..- - ...-- x 

M 

(c) 

clockwise moment M 0 
positive jump M0 

o/2 

- Mo/2 
(d) 

V = negative constant 
slope = negative constant 

Fig. 11-12 
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I EXAMPLE 11.1 I 

3kN/m 

11---- 4m ----
(a) 

3kN/m 

"(ij 11 l¥ 11111 j 
24kN·m (b) 

w negative constant 
V (kN) V slope negative constant 
12 

Draw the shear and moment diagrams for each of the beams shown in 
Figs. 11- 13a and 11- 14a. 

SOLUTION 

Support Reactions. The reactions at the fixed support are shown on 
each free-body diagram, Figs. ll- 13b and 11- 14b. 

Shear Diagram. The shear at each end point is plotted first, 
Figs.11- 13c and 11- 14c. The distributed loading on each beam indicates 
the slope of the shear diagram and thus produces the shapes shown. 

Moment Diagram. The moment at each end point is plotted first, 
Figs.11- 13d and 11- 14d. Various values of the shear at each point on the 
beam indicate the slope of the moment diagram at the point. Notice how 
this variation produces the curves shown. 

NOTE: Observe how the degree of the curves from w to V to M increases 
L.J.Jll-"11.---------=:::::.- x by one due to the integration of dV = w dx and dM = Vdx. For 

(c) 
V positive decreasing 

M (kN ·m) M slope positive decreasing 

example, in Fig. 11- 14, the linear distributed load produces a parabolic 
shear diagram and cubic moment diagram. 

- 24 

i-----r----:::::::::=~-:=x 
Ends with 
zero slope 

(d) 

Fig.11-13 

u----- 3 m ----

2kN/m 
(a) 

3kN~ (t I 
3kN·m ~ 

V (kN) w negative decreasing 

3 
V slope negative decreasing 

V positive decreasing 
M slope positive decreasing 

M(kN·m) 

i----t;---:----::::::::=~- x (m) 

- 3 (d) 

Fig.11-14 
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EXAMPLE 11.8 
- -

Draw the shear and moment diagrams for the cantilever beam in Rig. 11- 15a. 

(a) 

SOLUTION 

Support Reactions. The support reactions at the fixed support B 
are shown in Fig.11- 15b. 

Shear Diagram. The shear at the ends is plotted first, Fig. 11- lSc. 
Notice how the shear diagram is constructed by following the slopes 
defined by the loading w. 

Moment Diagram. The moments at the ends of the beam are 
plotted first , Fig. 11- 15d. Notice how the moment diagram is 
constructed based on knowing its slope, which is equal to the shear at 
each point. The moment at x = 2 m can be found from the area under 
the shear diagram. We have 

M l.r=2 m = Mlx=O + 6.M = 0 + [-2kN(2m)J = -4kN · m 

Of course, this same value can be determined from the met!hod of 
sections, Fig. 11- lSe. 

(b) 

IV = 0 IV negative constant 
V slope = 0 V slope negative constant 

V(kN) 

- 5 

V negative constant 
M slope negative constant 

V negative increasing 
M slope negative increasing 

- 4 

(d) - 11 

V=2kN 

t ) M=4kN·m 

l-2011--il 
(e) 

Fig.11-15 
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EXAMPLE 11.9 - -

1---4 m 2m-1 

2kN wJO(b\OkN ) 

Vslope = 0 . 
w negative constant 

V (kN) V slope negative constant 

V negative (c) 
constant 

M slope negative 
constant 

M (kN·m) 

(d) 

V positive 
decreasing 

M slope positive 
decreasing 

- 8 

Fig.11-16 

Draw the shear and moment diagrams for the overhang beam in Fig.11- 16a. 

4kN/m 

~ 
I 4m~-2m-

(a) 

SOLUTION 

Support Reactions. The support reactions are shown in Fig.11- 16b. 

Shear Diagram. The shear at the ends is plotted first, Fig. 11- 16c. The 
slopes are determined from the loading and from this the shear diagram 
is constructed. Notice the positive jump of 10 kN at x = 4 m due to the 
force reaction. 

Moment Diagram. The moments at the ends are plotted first, 
Fig. 11- 16d. Then following the behavior of the slope found from the 
shear diagram, the moment diagram is constructed. The moment at x = 4 m 
is found from the area under the shear diagram. 

Mlx=4m = Mlx=O + 6.M = O + (-2kN(4m)) = -8kN · m 

We can also obtain this value by using the method of sections, as shown 
in Fig. 11- 16e. 

V= 2kN 

A__.....,....,....,....,...,. t ; M= 8 kN·m 

1----4m-J 

2kN 

(e) 
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EXAMPLE 11 .10 

The shaft in Fig. 1 l-17a is supported by a thrust bearing at A and a journal 
bearing at B. Draw the shear and moment diagrams. 

120 lb/ft 

~ 
t----12 ft ----1 

(a) 

SOLUTION 

Support Reactions. The support reactions are shown in Fig.11- l7b. 

\ 

12 ft 

(b) 
240 lb w nega tive 

increasing 
V slope negative 

increasing 

l201b/ft 

480 1b 

V(lb) 
Shear Diagram. As shown in Fig.11- 17c, the shears at the ends of the 
beam are +240 lb and - 480 lb. The point where V = 0 must be located. 240'h n-'-'..J. 
To do this we will use the method of sections. The free-body diagram of 0 '---'"ff!-----'"l<::--nir--+

12_ x {ft) 

the left segment of the shaft, sectioned at an arbitrary position x, is shown 
in Fig. 11-l7e. Here the intensity of the distributed load at x is w = lOx, 
which has been found by proportional triangles, i.e. , 120/12 = w /x. 
Thus, for V = 0, 

+ f ~F,. = O; 240 lb - ktOx)x = 0 

x = 6.93 ft 

Moment Diagram. The moment diagram starts and ends at 0. The 
maximum moment occurs at x = 6.93 ft , where the shear is equal to 
zero,sincedM/dx = V = O, Fig.ll-17d. FromFig.11- 17e, we have 

C +LM = O; Mm••+ H(10)(6.93)] 6.93 {~(6.93) ) - 240(6.93) = 0 

M max = 1109lb·ft 

Finally, notice how integration, first of the loading w, which is linear, 
produces a shear diagram which is parabolic, and then a moment diagram 
which is cubic. 

NOTE: Now test yourself by covering over the shear and moment 
diagrams in Examples 11.1 through 11.4, and see if you can construct 
them based on the concepts discussed here. 

V positive 
decreasing 

M slope positjve 
- 480 

decreasing V negative increasing 
j M slope negative increasing 

M{lb·ft) J v~o 
M slope ; ~0-r--... 

o~-------.-x {ft) 

----
x 

Ay= 240 lb 

6.93 
(d) 

x ,_ __ 
:L 

(e) 

lOx 
v 

i" 1\1 

Fig. 11- 17 

12 
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PRELIMINARY PROBLEM 
Pl l-1. In each case, the beam is subjected to the loadings 
shown. Draw the free-body diagram of the beam, and sketch 
the general shape of the shear and moment diagrams. The 
loads and geometry are assumed to be known. 

! 
(a) 

.h:~-----i: 
(b) 

(c) 

( .M. 
(d) 

Prob. Pll-1 

l l l l l t l l l l l 
l!:~------lt 

(e) 

(f) 

(g) 

(h) 

www.konkur.in



11.2 GRAPHICAL METHOD FOR C ONSTRUCTING SHEAR AND M OMENT DIAGRAMS 517 

FUNDAMENTAL PROBLEMS 

In each case, express the shear and moment functions in 
terms of x, and then draw the shear and moment diagrams 
for the beam. 

Fll-1. 

Fll-2. 
9kN 

Fll-3. 

Prob, 11-1 

3m - -----< 

2 kip/ft 

""''(~ 
~x~ 9ft I 

Prob. l- .1-3 

Fll-4. 
12kN/m 

[-x-1 
3m-----l 

Prob. r il-4 

In each case, draw the shear and moment diagrams for the 
beam. 

Fll-5. 

Prob. Fll-S 

Fll-6. 
10 kN/m 10 kN/m 

A~C~B 
I 3m~ 3m~ 

Pron. r 1 l-6 

Fll-7. 
6001b 

2001b;r1 I 
AL l l l l l I I I • ,l• 
I- 6fl -1:.3f1+3ft-j 

Pr -~·I !-7 

Fll-8. 
20kN 

1-'rob. t' al-S 
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PROBLEMS 

11-1. Draw the shear and moment diagrams for the shaft 
and determine the shear and moment throughout the shaft 
as a function of x for 0 < x < 3 ft, 3 ft < x < 5 ft, and 
5 ft < x < 6 ft. The bearings at A and B exert only vertical 
reactions on the shaft. 

500lb 

800 lb ~ 

ft: ~ ~ 
1-x-1 3ft_j-2ft-~lft~- 0.Sft 

Prob. 11-1 

11-2 Draw the shear and moment diagrams for the beam, and 
determine the shear and moment in the beam as functions of x 
forO < x < 4ft,4ft < x < lOft,andlOft < x < 14ft. 

250 lb 

! 
I x~A 
1---4ft 

250lb 

150 lb/ft 

B 

·I--- 6 ft~--4 ft-

Prob. 11-2 

11-3. Draw the shear and moment diagrams for the beam, 
and determine the shear and moment throughout the beam 
as functions of x for 0 < x < 6 ft and 6 ft < x < 10 ft. 

10 kip 
2 kip/ft I 

! • ~o kip· ft 

1-x-
6 ft 4 ft 

Prob. 11-3 

*11-4. Express the shear and moment in terms of x for 
0 < x < 3 m and 3 m < x < 4.5 m, and then draw the 
shear and moment diagrams for the simply supported beam. 

300N/m 

__,;J,,_i!,h:-~~~~--i~~-::::::;;~B 

1-3m-~1.5m~ 
Prob. 11-4 

11-5. Express the internal shear and moment in the 
cantilevered beam as a function of x and then draw the 
shear and moment diagrams. 

200 lb/ft 

A 

Prob. 11-5 

11-6. Draw the shear and moment diagrams for the shaft. 
The bearings at A and B exert only vertical reactions on the 
shaft. Also, express the shear and moment in the shaft as a 
function of x within the region 125 mm< x < 725 mm. 

1500N 

800N ! 
A i 8 

ll;:::::::::::I ~~~==:Q 
r--x I I I- --- 600 mm-----1-J 
125mm 75mm 

Prob. 11-6 
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11-7. Express the internal shear and moment in terms of x 
for 0 < x < L/2, and L/2 < x < L, and then draw the 
shear and moment diagrams. 

Prob. 11-7 

*11-8. Draw the shear and moment diagranis for the beam, 
and determine the shear and moment throughout the beam 
as functions of x for 0 :S x :S 6 ft and 6 ft < x < 9 ft. 

2 kip/fl · 1 4 k"p 

. ~· 

~,_J ,,,_Jl_,.J 
~20 kip·ft 

Prob.11-8 

11-9. rr the force applied to the handle of the load binder 
is 50 lb, determine the tensions T1 and T2 in each end of the 
chain and then draw the shear and moment diagrams for 
the arm ABC. 

B 

! SO lb 
I 12in.---1 

Prob. 11-9 

T 1 

c 

3in. -
Tz 

11-10. Draw the shear and moment diagrams for the 
shaft. The bearings at A and D exert only vertical reactions 
on the shaft. 

A n I I 
E 

B c i D 

' 351 
SO lb r b 

110 lb 

Prob. 11- 10 

11-11. The crane is used to support the engine, which has 
a weight of 1200 lb. Draw the shear and moment diagrams 
of the boom ABC when it is in the horizontal position. 

B 

Prob. 11- 11 

*11-12. Draw the shear and moment diagrams for the 
beam. 
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11-13. Draw the shear and moment diagrams for the beam. 

Mo Mo Mo 

{M ( f:,is 

Prob.11-13 

11-14. Draw the shear and moment diagrams for the beam. 

2 kip/ft 

! ! ! 1 !~ 30kip·ft 

~' =======~~===~~;=; ~!~a~B 
A . . =::::;; 

1--5 ft-l--5 ft----5 ft~ 
Prob.11-14 

11-15. Members ABC and BD of the counter chair are 
rigidly connected at B and the smooth collar at D is allowed 
to move freely along the vertical post. Draw the shear and 
moment diagrams for member ABC. 

1 
1.5 ft 

J 

Prob.11-15 

*11-16. A reinforced concrete pier is used to support the 
stringers for a bridge deck. Draw the shear and moment 
diagrams for the pier. Assume the columns at A and B exert 
only vertical reactions on the pier. 

60 kN 60kN 

A B 

Prob.11-16 

11-17. Draw the shear and moment diagrams for the beam 
and determine the shear and moment in the beam as 
functions of x , where 4 ft < x < 10 ft. 

150 lb/ft 
200 lb·ft 

.______________~~!) 
I 4 ft x--1----__ 6 ft ---1 4ft--

Prob.11-17 

11-18. The industrial robot is held in the stationary position 
shown. Draw the shear and moment diagrams of the arm ABC 
if it is pin connected at A and connected to a hydraulic cylinder 
(two-force member) BD. Assume the arm and grip have a 
uniform weight of 15 lb/in. and support the load of 40 lb at C. 

-----50 in.------1 

Prob.11-18 
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11- 19. Determine the placement distance a of the roller 
support so that the largest absolute value of the moment is 
a minimum. Draw the shear and moment diagrams for this 
condition. 

p p 

1-~-i-~-1 

t-----a-----1 

Prob. 11-19 

*11-20. Draw the shear and moment diagrams for the beam. 

Prob. 11-20 

11-21. Draw the shear and moment diagrams for the beam. 

2 kip/fl 2 kip/ ft 

'Ok"(jl I I ~ I ! ! } I I 11 
1-s f1-l-s f1-~s ft-I 

Prob.11-21 

11-22. Draw the shear and moment diagrams for the 
overhanging beam. 

3 kip/fl 

, + i I 1 l] 
Ah\ j -· I ,; B 

1----12 ri-1-6 ft -I 
Prob. 11-22 

11-23. The 150-lb man sits in the center of the boat, which 
has a uniform width and a weight per linear foot of 3 lb/ft. 
Determine the maximum internal bending moment.Assume 
that the water exerts a uniform distributed load upward on 
the bottom of the boat. 

Prob. 11-23 

*11-24. Draw the shear and moment diagrams for the 
beam. 

800 lb/fl 

• 
A B 

t---------.--...--.--.-..---.--.---1 

800 lb/ft 

, ____ 8 ft ----1---- 8 ft ----1 

Prob.11-24 

11-25. The footing supports the load transmitted by 
the two columns. Draw the shear and moment diagrams for 
the footing if the soil pressure on the footing is assumed to 
be uniform. 

Prob. 11-25 

11-26. Draw the shear and moment diagrams for the beam. 

3 kip/ft 

1
L ,,ro----i-- 6ft__j 

Prob.11-26 
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11-27. Draw the shear and moment diagrams for the beam. 

A 
, __ L --+----- 2L _____ , 

3 3 

Prob.11-27 

*11-28. Draw the shear and moment diagrams for the beam. 

:211il lllll~ I .1 reys 
A ( I I 

1--;-1-;-1-;-J 
Prob.11-28 

11-29. Draw the shear and moment diagrams for the beam. 

18kN/m 

12 kN/m 

B 

Prob.11-29 

11-30. Draw the shear and moment diagrams for the beam. 

2kip 

200 lb/ft 

~ B 
A ' ' 

1-6ft I--- 9 ft --1- 9 ft ---1 

Prob.11-30 

11-3L The support at A allows the beam to slide freely 
along the vertical guide so that it cannot support a vertical 
force. Draw the shear and moment diagrams for the beam. 

JV 

Prob.11-31 

*11-32. The smooth pin is supported by two leaves A and B 
and subjected to a compressive load of 0.4 kN/m caused by 
bar C. Determine the intensity of the distributed load w0 of 
the leaves on the pin and draw the shear and moment 
diagram for the pin. 

c 

Prob.11-32 
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11- 33. The shaft is supported by a smooth thrust bearing 
at A and smooth journal bearing at B. Draw the shear and 
moment diagrams for the shaft. 

400N·m 

---£"l-----~ 

-'--I m-+-1 mj 
900N 

Prob. 11-33 

11-34. Draw the shear and moment diagrams for the 
cantilever beam. 

Prob. 11-34 

11-35. Draw the shear and moment diagrams for the beam. 

400N/m 

200 N/ m 

A 

Prob. 11-35 

*11-36. Draw the shear and moment diagrams for the 
rod. Only vertical reactions occur at its ends A and B. 

~12lb/in. 

I I 
A@ 9>n 
'Y-----36 in.------1 
72 lb 1441b 

Prob. 11-36 

11-37. Draw the shear and moment diagrams for the beam. 

50kN/m 50kN/m 

Al-4.5 m---+----4.5 m-- ---i 

Prob. 11-37 

11-38. The beam is used to support a uniform load along 
CD due to the 6-kN weight of the crate. Also, the reaction at 
the bearing support B can be assumed uniformly distributed 
along its width. Draw the shear and moment diagrams for 
the beam. 

0.5 m'\ 0.75 m 
- 2.75m ---1-L......l.-2m--I 

Prob. 11-38 

11-39. Draw the shear and moment diagrams for the 
double overhanging beam. 

4001b 4001b 

! 200 lb/h ! 

Prob. 11-39 

*11-40. Draw the shear and moment diagrams for the 
simply supported beam. 

10 kN 

15kN·m 

Prob. 11-40 
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11-41. The compound beam is fixed at A , pin connected 
at B, and supported by a roller at C. Draw the shear and 
moment diagrams for the beam. 

600N 

400N/m 

J l l l l l i 

Prob.11-41 

11-42. Draw the shear and moment diagrams for the 
compound beam. 

SkN/m 

l l ! I I ! 1 ! l:f I l l 
A B C LD 

I 2m~-lm-l-lm~ 
Prob.11-42 

11-43. The compound beam is fixed at A , pin connected 
at B, and supported by a roller at C. Draw the shear and 
moment diagrams for the beam. 

2kN 

3kN/m 

-r-3m~ C 

Prob.11-43 

*11-44. Draw the shear and moment diagrams for the 
beam. 

8 kip/ft 

A 
B x 

1--------8 ft --------1 

Prob.11-44 

11-45. A short link at Bis used to connect beams AB and 
BC to form the compound beam. Draw the shear and 
moment diagrams for the beam if the supports at A and C 
are considered fixed and pinned, respectively. 

Prob.11-45 

11-46. The truck is to be used to transport the concrete 
column. If the column has a uniform weight of w (force/length), 
determine the equal placement a of the supports from the ends 
so that the absolute maximum bending moment in the column 
is as small as possible. Also, draw the shear and moment 
diagrams for the column. 

1-----L-----I 

I-a-I 

Prob.11-46 
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11.3 BENDING DEFORMATION OF A 
STRAIGHT MEMBER 

In this section, we will discuss the deformations that occur when a straight 
prismatic beam, made of homogeneous material, is subjected to bending. 
The discussion will be limited to beams having a cross-sectional area that 
is symmetrical with respect to an axis, and the bending moment is applied 
about an axis perpendicular to this axis of symmetry, as shown in Fig.11-18. 
The behavior of members that have unsymmetrical cross sections, or are 
made of several different materials, is based on similar observations and 
will be discussed separately in later sections of this chapter. 

Consider the undeformed bar in Fig. 11-19a, which has a square cross 
section and is marked with horizontal and vertical grid lines. When a 
bending moment is applied, it tends to distort these lines into the pattern 
shown in Fig. 11-19b. Here the horizontal lines become curved, while the 
vertical lines remain straight but undergo a rotation. The bending moment 
causes the material within the bo11om portion of the bar to stretch and 
the material within the top portion to compress. Consequently, between 
these two regions there must be a surface, called the neutral surface, in 
which horizontal fibers of the material will not undergo a change in 
length, Fig. 11-18. As noted, we will refer to the z axis that lies along the 
neutral surface as the neutral axis. 

Horizontal Lines 
become curved 

Axis or 
symmetry y 

x . lZ>~;::';' Neutral 
I!- Neutral surface 

Longitudinal 
axis 

axis 

Fig. 11- 18 

Vertical Imes remain 
straight. yet rotate 

Before deformation 
After deformation 

(a) (b) 

Fig.11-19 
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Note the distortion of the lines due to 
bending of this rubber bar. The top line 
stretches, the bottom line compresses, and 
the center line remains the same length. 
Furthermore the vertical lines rotate and yet 
remain straight. 

x 

From these observations we will make the following three assumptions 
regarding the way the moment deforms the material. Ftrst, the 
longitudinal axis, which lies within the neutral surface, Fig. 11- 20a, does 
not experience any change in length. Rather the moment will tend to 
deform the beam so that this line becomes a curve that lies in the vertical 
plane of symmetry, Fig. 11-20b. Second, all cross sections of the beam 
remain plane and perpendicular to the longitudinal axis during the 
deformation. And third, the small lateral strains due to the Poisson effect 
discussed in Sec. 3.6 will be neglected. In other words, the cross section in 
Fig. 11- 19 retains its shape. 

With the above assumptions, we will now consider how the bending 
moment distorts a small element of the beam located a distance x along 
the beam's length, Fig.11- 20. This element is shown in profile view in the 
undeformed and deformed positions in Fig. 11- 21. Here the line segment 

(a) 

y 

(:=·'~I -;;:;:--;r1\1 G zl 

axis 

neutral 
surface 

( b) 

Fig.11-20 
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Before 
de format ion 

(a) 

Fig. 11-21 

11.3 BENDING DEFORMATION OF A STRAIGHT M EMBER 5 2 7 

0' 

p p 

After 
defom1ation 

(b) 

Ax, located on the neutral surface, does not change its length, whereas 
any line segment As, located at the arbitrary distance y above the neutral 
surface, will contract and become As' after deformation. By definition, 
the normal strain along As is determined from Eq. 7- 11, namely, 

As' - As 
E = lim---

~O As 

Now let's represent this strain in terms of the location y of the segment 
and the radius of curvature p of the longitudinal axis of the element. 
Before deformation, 11s = 11x, Fig. 11-21a. After deformation, Ax bas a 
radius of curvature p, with center of curvature at point O' , Fig. 11- 21b, 
so that Ax = As = p/18. Also, since As' bas a radius of curvature of 
p - y, then As' = (p - y)/18. Substituting these results into the above 
equation, we get 

. (p - y)AIJ - pAIJ 
E = hm -------

A0-0 pAIJ 

or 

y 
E = --

p 
(11- 7) 
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- Emax 

Normal strain distribution 

Fig.11-22 

Since 1 / p is constant at x, this important result, e = -y / p, indicates 
that the longitudinal normal strain will vary linearly with y measured 
from the neutral axis. A contraction (-e) will occur in fibers located 
above the neutral axis ( +y), whereas elongation ( +e) will occur in fibers 
located below the axis (-y). This variation in strain over the cross section 
is shown in Fig.11-22. Here the maximum strain occurs at the outermost 
fiber, located a distance of y = c from the neutral axis. Using Eq. 11- 7, 
since Emax = c / p, then by division, 

E 
--= -(yfp) 

c/p Emax 

So that 

E = -(y)E C max 
(11- 8) 

This normal strain depends only on the assumptions made with regard 
to the deformation. 
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11.4 THE FLEXURE FORMULA 
In this section, we will develop an equation that relates the stress 
distribution within a straight beam to the bending moment acting on its 
cross section. To do this we will assume that the material behav,es in a 
linear elastic manner, so that by Hooke's Jaw, a linear variation of normal 
strain, Fig. 11- 23a, must result in a linear variation in normal stress, 
Fig. 11- 23b. Hence, like the normal strain variation, a will vary from zero 
at the member's neutral axis to a maximum value, amax• a distance c 
farthest from the neutral axis. Because of the proportionality of triangles, 
Fig.11- 23b, or by using Hooke's Jaw, a = Ee, and Eq.11- 8, we can write 

(11- 9) 

This equation describes the stress distribution over the cross-sectional 
area. The sign convention established here is significant. For positive M, 
which acts in the +z direction, positive values of y give negative values 
for a, that is, a compressive stress, since it acts in the negative x direction. 
Similarly, negative y values will give positive or tensile values for er. 

This wood specimen failed in bending due to its fibers being 
crushed at its top and torn apart at its bottom. 

11 .4 THE FLEXURE FORMULA 5 2 9 

y 

Normal strain variation 
(profile view) 

(a) 

y 

Bending stress variation 
(profile view) 

(b) 

Fig.11- 23 
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u 

U max y 

M 

x 

Location of Neutral Axis. To locate the position of the neutral 
axis, we require the resultant force produced by the stress distribution 
acting over the cross-sectional area to be equal to zero. Noting that the 
force dF = a dA acts on the arbitrary element dA in Fig.11- 24, we have 

0 = ldF = iadA 

-a: 1 = max ydA 
C A 

Since amax/c is not equal to zero, then 
Bending stress variation 

Fig.11-24 (11- 10) 

In other words, the first moment of the member's cross-sectional area 
about the neutral axis must be zero. This condition can only be satisfied 
if the neutral axis is also the horizontal centroidal axis for the cross 
section.* Therefore, once the centroid for the member's cross-sectional 
area is determined, the location of the neutral axis is known. 

Bending Moment. We can determine the stress in the beam if we 
require the moment M to be equal to the moment produced by the stress 
distribution about the neutral axis. The moment of dF in Fig. 11- 24 is 
dM = y dF. Since dF = a dA, using Eq. 11- 9, we have for the entire 
cross section, 

or 

M = Umax r y2dA 
C }A 

(11- 11) 

*Recall that the location y for the centroid of an area is defined from the equation 
y = j y dA/ j dA. If J y dA = 0, then y = 0, and so the centroid lies on the reference 
(neutral) axis. See Appendix A. 
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The integral represents the moment of inertia of the cross-sectional 
area about the neutral axis.* We will symbolize its value as I. Hence, 
Eq.11-11 can be solved for CTmax and written as 

(11- 12) 

Here 

CTmax = the maximum normal stress in the member, which occl!lrs at a 
point on the cross-sectional area farthest away from the 
neutral axis 

M = the resultant internal moment, determined from the method 
of sections and the equations of equilibrium, and calculated 
about the neutral axis of the cross section 

c = perpendicular distance from the neutral axis to a point farthest 
away from the neutral axis. This is where CT max acts. 

I = moment of inertia of the cross-sectional area about the 
neutral axis 

Since CTmax/c = -u/y, Eq. 11-9, the normal stress at any distance y 
can be determined from an equation similar to Eq.11-12. We have 

(11- 13) 

Either of the above two equations is often referred to as the flexure 
formula. Although we have assumed that the member is prismatic, we 
can conservatively also use the flexure formula to determine the normal 
stress in members that have a slight taper. For example, using a 
mathematical analysis based on the theory of elasticity, a member having 
a rectangular cross section and a length that is tapered 15° will have an 
actual maximum normal stress that is about 5.4 o/o less than that calculated 
using the flexure formula. 

*See Appendix A for a discussion on how to determine the moment of inertia for various 
shapes. 

11 .4 THE FLEXURE FORMULA 5 31 

www.konkur.in



532 CHAPTER 11 BENDING 

IMPORTANT POINTS 

• The cross section of a straight beam remains plane when the beam deforms due to bending. This causes 
tensile stress on one portion of the cross section and compressive stress on the other portion. In between 
these portions, there exists the neutral axis which is subjected to zero stress. 

• Due to the deformation, the longitudinal strain varies linearly from zero at the neutral axis to a maximum at 
the outer fibers of the beam. Provided the material is homogeneous and linear elastic, then the stress also 
varies in a linear fashion over the cross section. 

• Since there is no resultant normal force on the cross section, then the neutral axis must pass through the 
centroid of the cross-sectional area. 

• The flexure formula is based on the requirement that the internal moment on the cross section is equal to the 
moment produced by the normal stress distribution about the neutral axis. 

PROCEDURE FOR ANALYSIS 

In order to apply the flexure formula, the following procedure is suggested. 

Internal Moment. 

• Section the member at the point where the bending or normal stress is to be determined, and obtain the 
internal moment M at the section. The centroidal or neutral axis for the cross section must be known, 
since M must be calculated about this axis. 

• If the absolute maximum bending stress is to be determined, then draw the moment diagram in order to 
determine the maximum moment in the member. 

Section Property. 

• Determine the moment of inertia of the cross-sectional area about the neutral axis. Methods used for its 
calculation are discussed in Appendix A, and a table listing values of I for several common shapes is given on 
the inside front cover. 

Normal Stress. 

• Specify the location y, measured perpendicular to the neutral axis to the point where the normal stress is 
to be determined. Then apply the equation <T = -My/I, or if the maximum bending stress is to be 
calculated, use <Tmax = Mc/ I. When substituting the data, make sure the units are consistent. 

• The stress acts in a direction such that the force it creates at the point contributes a moment about the 
neutral axis that is in the same direction as the internal moment M .. In this manner the stress distribution 
acting over the entire cross section can be sketched, or a volume element of the material can be isolated and 
used to graphically represent the normal stress acting at the point, see Fig.11-24. 
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I EXAMPLE 11 .11 I 
The simply supported beam in Fig. 11- 25a has the cross-sectional area 
shown in Fig. 11- 25b. Determine the absolute maximum bending 
stress in the beam and draw the stress distribution over the cross 
section at this location. Also, what is the stress at point B? 

SkN/ m 
M (kN·m} 

!~r ~1 ~r 1~1 ~r 1~1 ~1 1~1 ~r 1 22.5 

11.4 THE FLEXURE FORMULA 5 3 3 

a ""---------------""'--- x (m) 
6 • 

(a) 

SOLUTION 

Maximum Internal Moment. The maximum internal moment in 
the beam, M = 22.5 kN · m, occurs at the center, as indicated on the 
moment diagram, Fig. 11- 25c. 

Section Property. By reasons of symmetry, the neutral axis passes 
through the centroid Cat the rnidheight of the beam, Fig. 11- 25b. The 
area is subdivided into the three parts shown, and the moment of 
inertia of each part is calculated about the neutral axis using the 
parallel-axis theorem. (See Eq. A- 5 of Appendix A.) Choosing to 
work in meters, we have 

I = l(l + Ad2) 

= 2[ 1~ (0.25 m)(0.020 m)3 + (0.25 m)(0.020 m)(0.160 m)2 ] 

+ [ 1~ (0.020 m)(0.300 m)3
] 

= 301.3(10-6) m4 

Mc 22.5(103) N · m(0.170 m) 
<Tmax = - ; <Tmax = -6 4 = 12.7 MPa Ans. 

I 301.3(10 ) m 

A three-dimensional view of the stress distribution is shown in 
Fig. 11- 25d. Specifically, at point B, y8 = 150 mm, and so as shown 
in Fig. 11- 25d, 

My8 22.5(103) N · m(0.150 m) 
<Ts = - -

1 
, <Ts = - 6 4 = -11.2 MPa Ans. 

301.3(10- ) m 

3 

(c) 

20mm l _____ , 
-I s71 1 

v-c 150mm 

N-~~-i•1--~--'J'--A 
1 20mm -

150mm 

I J 
20 mm== c:::==::'.:.:::==::::r-'-

1 
- 250mm -

(b) 

ll.2MP~ 

~ 11.2MPa 

12.7 MPa 

(d} 

Fig.11-25 
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EXAMPLE 11.12 - -
2.6kN 

~12 
a 

---2m---1- lm 
a 

(a) 

The beam shown in Fig.11- 26a has a cross-sectional area in the shape 
of a channel, Fig. ll- 26b. Determine the maximum bending stress that 
occurs in the beam at section a- a. 

SOLUTION 

L 1-2somm l 

y=59.09mm~ ] Wmo1 I N t ~ 
C 200mm 

15mm- - - 15mm j 

Internal Moment. Here the beam's support reactions do not have 
to be determined. Instead, by the method of sections, the segment to 
the left of section a-a can be used, Fig. 11- 26c. It is important that 
the resultant internal axial force N passes through the centroid of the 
cross section. Also, realize that the resultant internal moment must be 
calculated about the beam's neutral axis at section a- a. 

To find the location of the neutral axis, the cross-sectional area is 
subdivided into three composite parts as shown in Fig. ll- 26b. Using 
Eq. A- 2 of Appendix A, we have (b) 

_ 2yA 2(0.100 m](0.200 m)(0.015 m) + (0.010 m](0.02 m)(0.250 m) 

2.4kN 
Y = 2A = 2(0.200 m)(0.015 m) + 0.020 m(0.250 m) 

1.0 kN 0.05909 m v = 0.05909 m = 59.09 mm 
M 

ri"-----~=::=~=-.=.~ N This dimension is shown in Fig.11- 26c. 

c 
i---2m---1 

(c) 

Fig.11-26 

Applying the moment equation of equilibrium about the neutral 
axis, we have 
C + 2MNA = 0; 2.4 kN(2 m) + 1.0 kN(0.05909 m) - M = 0 

M = 4.859 kN · m 
Section Property. The moment of inertia of the cross-sectional area 
about the neutral axis is determined using I = L (l + Ad2) applied to each 
of the three composite parts of the area. Working in meters, we have 

I = [ 1~ (0.250 m)(0.020 m)3 + (0.250 m)(0.020 m)(0.05909 m - 0.010 m)2 ] 

+ 2[ 1~ (0.015 m)(0.200 m)3 + (0.015 m)(0.200 m)(0.100 m - 0.05909 m)2] 

= 42.26(10-6) m4 

Maximum Bending Stress. The maximum bending stress occurs at 
points farthest away from the neutral axis. This is at the bottom of the 
beam, c = 0.200 m - 0.05909 m = 0.1409 m. Here the stress is 
compressive. Thus, 

Mc 4.859(103) N · m(0.1409 m) 
amax = I = 42.26(l0-6) m4 = 16.2 MPa (C) Ans. 

Show that at the top of the beam the bending stress is a' = 6.79 MPa. 

NOTE: The normal force of N = 1 kN and shear force V = 2.4 kN 
will also contribute additional stress on the cross section. The 
superposition of all these effects will be discussed in Chapter 13. 
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11 .4 THE FLEXURE FORMULA 5 3 5 

EXAMPLE 11 .13 
- -
The member having a rectangular cross section, Fig. 11- 27a, is 
designed to resist a moment of 40 N · m. In order to increase its 
strength and rigidity, it is proposed that two small ribs be added at its 
bottom, Fig. 11- 27b. Determine the maximum normal stress in the 
member for both cases. 

SOLUTION 

Without Ribs. Clearly the neutral axis is at the center of the cross 
section, Fig.11- 27a, soy = c = 15 mm = 0.015 m. Thus, 

I = 
1
1
2 

bh3 = 1~ (0.060 m)(0.030 m)3 = 0.135(10-6
) m4 

Therefore the maximum normal stress is 
Mc (40 N · m)(0.015 m) 

CTmax = - = = 4.44 MPa 
I 0.135(10-6) m4 Ans. 

With Ribs. From Fig. 11- 27b, segmenting the area into the large 
main rectangle and the bottom two rectangles (ribs), the location y of 
the centroid and the neutral axis is determined as follows: 

I-A - y y =--
IA 
(0.015 m](0.030 m)(0.060 m) + 2(0.0325 m](0.005 m)(0.010 m) 

-
(0.03 m)(0.060 m) + 2(0.005 m)(0.010 m) 

= 0.01592 m 

This value does not represent c. Instead 

c = 0.035 m - 0.01592 m = 0.01908 m 

Using the parallel-axis theorem, the moment of inertia about the 
neutral axis is 

I = [ 1~ (0.060 m)(0.030 m)3 + (0.060 m)(0.030 m)(0.01592 m - 0.015 m)2 ] 

+ 2[ 1~ (0.010 m)(0.005 m)3 + (0.010 m)(0.005 m)(0.0325 m - 0.01592 m)2 ] 

= 0.1642(10-6) m4 

Therefore, the maximum normal stress is 
Mc 40 N · m(0.01908 m) 

CTmax = - = = 4.65 MPa 
I 0.1642(10-6) m4 Ans. 

NOTE: This surprising result indicates that the addition of the ribs to 
the cross section will increase the maximum normal stress rather than 
decrease it, and for this reason, the ribs should be omitted. 

(a) 

(b) 

Fig.11-27 
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PRELIMINARY PROBLEMS 

Pll-2. Determine the moment of inertia of the cross 
section about the neutral axis. 

I 
-t - 0.2m 

I 0.1 m 

N I A 
0.1 m 
l_ 0.2m 

0.1 m 
- 0.2m-

Prob. Pll- 2 

Pll-3. Determine the location of the centroid, y , and 
the moment of inertia of the cross section about the 
neutral axis. 

O.lm 

I I 

I 
0.3m 

L:---+---------+-A 
t y 

0.1 m 
l_.__~~~_,c_~--'-

l-0.2 m-I 
Prob. Pll- 3 

Pll-4. In each case, show how the bending stress acts on a 
differential volume element located at point A and point B. 

p 

l A 
I i :a B 0 

(a) 

M A M 

( ! a ~ !) 
( ) I~ 

B 

(b) 

Prob.Pll-4 

Pll- 5. Sketch the bending stress distribution over each 
cross section. 

(a) (b) 

Prob.Pll-5 
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FUNDAMENTAL PROBLEMS 

Fll-9. If the beam is subjected to a bending moment of 
M = 20 kN · m, determine the maximum bending stress in 
the beam. 

Prob.Fll-9 

Fll-10. If the beam is subjected to a bending moment of 
M = 50 kN · m, sketch the bending stress distribution over 
the beam's cross section. 

Prob.Fll-10 

Fll-11. If the beam is subjected to a bending moment of 
M = 50 kN · m, determine the maximum bending stress in 
the beam. 

300mm 

DM 
20mm 

20mm 

~ 

Prob.Fll-11 

Fll-12. If the beam is subjected to a bending moment of 
M = 10 kN · m, determine the bending stress in the beam 
at points A and B, and sketch the results on a differential 
element at each of these points. 

B 

Prob. Fll-12 

Fll-13. If the beam is subjected to a bending moment of 
M = 5 kN · m, determine the bending stress developed at 
point A and sketch the result on a differential element at 
this point. 

~~50mm 
~ 

150mm 

I 0 

150mm 

Prob. Fll-13 
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PROBLEMS 

11-47. An A-36 steel strip has an allowable bending stress 
of 165 MPa. If it is rolled up, determine the smallest radius r 
of the spool if the strip has a width of 10 mm and a thickness 
of 1.5 mm. Also, find the corresponding maximum internal 
moment developed in the strip. 

Prob.11-47 

*11-48. Determine the moment M that will produce a 
maximum stress of 10 ksi on the cross section. 

11-49. Determine the maximum tensile and compressive 
bending stress in the beam if it is subjected to a moment of 
M = 4 kip· ft. 

!$.~ in.:41 i-'J-in,,...-
0.5 in ' ~·~===~ 

I c 
3 in. 

LI D 
-J l- o.s in. 

Probs.11-48/49 

11- 50. The beam is constructed from four pieces of wood, 
glued together as shown. If M = 10 kip · ft, determine the 
maximum bending stress in the beam. Sketch a three
dimensional view of the stress distribution acting over the 
cross section. 

ll- 5L The beam is constructed from four pieces of wood, 
glued together as shown. If M = 10 kip · ft, determine the 
resultant force this moment exerts on the top and bottom 
boards of the beam. 

Probs. 11- 50/51 

*11-52. The beam is made from three boards nailed 
together as shown. If the moment acting on the cross section 
is M = 600 N · m, determine the maximum bending stress in 
the beam. Sketch a three-dimensional view of the stress 
distribution and cover the cross section. 

11- 53. The beam is made from three boards nailed 
together as shown. If the moment acting on the cross section 
is M = 600 N · m, determine the resultant force the bending 
stress produces on the top board. 

25mm 

0 
Q« 

150mm 

~1 /\I 
200 mm M = 600 N·m 

;1V 
20mm 

Probs. 11- 52/53 
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11-54. If the built-up beam is subjected to an internal 
moment of M = 75 kN · m. determine the maximum tensile 
and compressive stress acting in the beam. 

11-55. If the built-up beam is subjected to an internal 
moment of M = 75 kN · m, determine the amount of this 
internal moment resisted by plate A. 

300mm 

Probs. 11-54155 

•U -56. The beam is subjected to a moment M. Determine the 
percentage of this moment that is resisted by the stresses acting 
on both the top and bottom boards of the beam. 

11-57. Determine the moment M that should be applied to 
the beam in order to create a compressive stress at point D 
of u 0 = 10 MPa. Also sketch the stress distribution acting 
over the cross section and calculate the maximum stress 
developed in the beam. 

Probs. 11-56157 
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11-58. The beam is made from three boards nailed 
together as shown. If the moment acting on the cross section 
is M = 1 kip · ft, determine the maximum bending stress in 
the beam. Sketch a three-dimensional view of the stress 
distribution acting over the cross section. 

11-59. If M = I kip· ft, determine the resultant force the 
bending stresses produce on the top board A of the beam. 

1.5 in. 

Probs. 11-58/59 

-U-00- The beam is subjected to a moment of IS kip· ft. 
Determine the resultant force the bending stress produces 
on the top Oange A and bottom flange B. Also calculate the 
maximum bending stress developed in the beam. 

11-61. The beam is subjected to a moment of 15 kip· ft. 
Determine the percentage of this moment that is resisted by 
the web D of the beam. 

M = 15 kip·ft 

Probs.11-00/61 
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11-62. The beam is subjected to a moment of M = 40 kN · m. 
Determine the bending stress at points A and 8. Sketch the 
results on a volume element acting at each of these points. 

~M=40kN·m 

50mm 

Prob. 11-62 

11-63. The steel shaft bas a diameter of2 in. It is supported 
on smooth journal bearings A and 8, which exert only 
vertical reactions on the shaft. Determine the absolute 
maximum bending stress in the shaft if it is subjected to the 
pulley loadings shown. 

A B 
[] fl 

l20 in.+ 20 in. , 70 in.i-20 in.-l 
500 Ib 300lb 500 lb 

Prob. 11-63 

*ll-64. ·n1c beam is made of steel that has an allowable 
stress of Uauow = 24 ksi. Determine the larges t internal 
moment the beam can resist if the moment is applied 
(a) about the z axis, (b) about the y axis. 

y 

......_ 

Prob. 11-64 

0.25 in . 
~. 

11-65. A shaft is made of a polymer having an elliptical 
cross section. If it resists an internal moment of 
M = 50 N · m. determine the maximum bending stress in 
the material (a) using the flexure formula, where 
I,= k11(0.08 m)(0.04 m)3, (b) using integration. Sketch a 
three-dimensional view of the stress distribution acting over 
the cross-sectional area. Here Ix = }11(0.08 m)(0.04 m)3. 

11-66. Solve Prob. 11-65 if the moment M = 50 N · m is 
applied about the y axis instead of the x axis. Herc 
11 = ! '7T(0.04 m)(0.08 m)3. 

y 
y2 z2 
--+--= I 
(4())2 (80)2 

x 

Probs. 11-65166 

11-67. The shaft is supported by smooth journal bearings 
at A and 8 that only exert vertical reactions on the shaft. If 
d = 90 mm, determine the absolute maximum bending 
stress in the beam, and sketch the stress distribution acting 
over the cross section. 

*ll-68. The shaft is supported by smooth journal bearings 
at A and 8 that only exert vertical reactions on the shaft. 
Determine its smallest diameter d if the allowable bending 
stress is Uallow = 180 MPa. 

~~~~~~~~-~1~2kN/m 

J ll l llll l~, ~ 
- - - -+- 1.5 m J 1----- 3m 

Probs.11-67/68 
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11-69. The axle of the freight car is subjected to a wheel 
loading of 20 kip. If it is supported by two journal bearings at 
C and D, determine the maximum bending stress developed 
at the center of the axle, where the diameter is S.S in. 

1----60 in.----·i---i 
10 in. 

20kip 

Prob. 11-69 

10 in. 

20 kip 

11-70. The strut on the utility pole supports the cable having 
a weight of 600 lb. Determine the absolute maximum bending 
stress in the strul if A, 8, and C arc asswned to be pinned. 

1

----4 ft----- 2 in. 
-2 rt--1 --l I-
,.·'-----,.......::•~----,--' = o 1_4 in. 

8 
1.5 ft 

6001b 

Prob. 11-70 

11-7L The boat has a weight of 2300 lb and a center of 
gravity at G. If it rests on the trailer at the smooth contact A 
and can be considered pinned at B. determine the absolute 
maximum bending stress developed in the main strut of 
the trailer which is pinned al C. Consider the strut to be a 
box-beam having the dimensions shown. 

Prob. 11-71 

1.75 in. 
1-1 

3 in~~Il.75 in. 

1.5 in. 
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*11-72. Determine the absolute maximum bending stress 
in the LS-in.-diameter shaft. The shaft is supported by a 
thrust bearing al A and a journal bearing al B. 

11-73. Determine the smallest allowable diameter of the 
shaft. The shaft is supported by a thrust bearing at A and a 
journal bearing at B. The allowable bending stress is 
u a11ow = 22 ksi. 

4001b 

A 

8 
3001b 

Probs. 11-72/73 

11-74. The pin is used 10 connect the three links together. 
Due to wear, the load is distributed over the top and bottom 
of the pin as shown on the Cree-body diagram. If the 
diameter of the pin is 0.40 in., determine the maximum 
bending stress on the cross-sectional area at the center 
section a-a. For the solution it is first necessary to determine 
the load intensities w 1 and w2• 

8001b 

t 
"'2 0 "'2 

t-1 in.-t H in.-t a 

ro.40in. 

1-1.5 in.-1 

• ' 4001b 400 1b 

Prob. 11-'74 

11-75. The shaft is supported by a thrust bearing at A 
and journal bearing at D. If the shaft has the cross section 
shown, determine the absolute maximum bending stress in 
the shaft. 

B ;:==i v 40 n~ mm 

I 0.75 m --1.S m1--r---1 

3kN 3 kN 

Prob. 11-75 
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542 CHAPTER 11 BENDING 

*11-76. If the intensity of the load w = 15 kN /m, 
determine the absolute maximum tensile and compressive 
stress in the beam. 

11-77. If the allowable bending stress is u allow = 150 MPa, 
determine the maximum intensity w of the uniform 
distributed load. 

IV lf l l l ill l l ii l l i f1_ 
----6m I 

81mm 
l-1 

150mm 

Probs.11-76n7 

11-78. The beam is subjected to the triangular distributed 
load with a maximum intensity of w0 = 300 lb/ft. If the 
allowable bending stress is u allow = 1.40 ksi, determine the 
required dimension b of its cross section to the nearest 
l in. Assume the support at A is a pin and B is a roller. 

11-79. The beam has a rectangular cross section with b =4 
in. Determine the largest maximum intensity w0 of the 
triangular distributed loads that can be supported if the 
allowable bending stress is u allow= 1.40 ksi. 

- 6ft - 6ft 

Probs. 11-78n9 

*11-80. Determine the absolute maximum bending stress 
in the beam. Each segment has a rectangular cross section 
with a base of 4 in. and height of 12 in. 

2 kip/ft 12 kip 

' 
A ol I c 

B ~ 

I 9 ft - 3ft- - 6ft-I 
Prob.11-80 

11-81. If the compound beam in Prob. 11-42 has a square 
cross section of side length a, determine the minimum value 
of a if the allowable bending stress is uauow = 150 MPa. 

11-82. If t he beam in Prob. 11-28 has a rectangular cross 
section with a width band a height h, determine the absolute 
maximum bending stress in the beam. 

11-83. Determine the absolute maximum bending stress 
in the SO-mm-diameter shaft which is subjected to the 
concentrated forces. There is a journal bearing at A and a 
thrust bearing at B. 

*11-84. D etermine, to the nearest millimeter, the smallest 
allowable diameter of the shaft which is subjected to the 
concentrated forces. There is a journal bearing at A and a 
thrust bearing at B. The allowable bending stress is 
Uauow = 150 MPa. 

A B 

i-- 0.5 m--- - 0.4 m -i--- 0.6 m ---1 

12 kN 
20kN 

Probs. 11-83184 

11-85. Determine the absolute maximum bending stress 
in the beam, assuming that the support at B exerts a 
uniformly distributed reaction on the beam. The cross 
section is rectangular with a base of 3 in. and height of 6 in. 

14 kip 

! 
B 

Ai-I --4.5 ft-----4.5 ft-- 3 ft -J 

Prob.11-85 
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11-86. Determine the absolute maximum bending stress 
in the 2-in.-diameter shaft. There is a journal bearing at A 
and a thrust bearing at B. 

11-87. Determine the smallest diameter of the shaft to 
the nearest kin. There is a journal bearing at A and a thrust 
bearing at B. The allowable bending stress is uallow = 22 ksi. 

900 Jb 

B 

Probs. 11-86/87 

*11-88. A log that is 2 ft in diameter is to be cut into a 
rectangular section for use as a simply supported beam. If 
the allowable bending stress is u allow= 8 ksi, determine the 
required width b and height h of the beam that will support 
the largest load possible. What is this load? 

11-89. A log that is 2 ft in diameter is to be cut into a 
rectangular section for use as a simply supported beam. If 
the allowable bending stress is u allow= 8 ksi, determine the 
largest load P that can be supported if the width of the 
beam is b = 8 in. 

I \ 
h 
I • ' 

l-=h- 1 
- 2ft -

p 

+ 
0 0 
l----8ft--ll---8ft-----l 

Probs. 11-88189 
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11-90. If the beam in Prob. 11-19 has a rectangular cross 
section with a width of 8 in. and a height of 16 in. , determine 
the absolute maximum bending stress in the beam. 

11-9L The simply supported truss is subjected to the 
central distributed load. Neglect the effect of the diagonal 
lacing and determine the absolute maximum bending stress 
in the truss. The top member is a pipe having an outer 
diameter of 1 in. and thickness of ;36 in., and the bottom 
member is a solid rod having a diameter of! in. 

100 lb/ft 
_ @ 

5.75 in. J 
- o 

11 6ft 6f1 -~6ft~ 
Prob.11-91 

*11-92. If d = 450 mm, determine the absolute maximum 
bending stress in the overhanging beam. 

11-93. If the allowable bending stress is u allow = 6 MPa, 
determine the minimum dimension d of the beam's 
cross-sectional area to the nearest mm. 

12kN 

8 kN/m ! 
l::lllllllll : 1 

---4 m--

8

--1- - 2 m-1 
Probs. 11-92/93 

125 mm 
25mm )25mm 

-11 w 
I d 

75mm~C- -
1 

75mn~ I _[ 

11-94. The beam has a rectangular cross section as shown. 
Determine the largest intensity w of the uniform distributed 
load so that the bending stress in the beam does not exceed 
u max= 10 MPa. 

11-95. The beam has the rectangular cross section shown. 
If w = 1 kN/m, determine the maximum bending stress in 
the beam. Sketch the stress distribution acting over the 
cross section. 

1 r r r r r r r r r r r r r !11~ 
.._I -----1~1----~-----"I 0 ( 150 mm I \ f t 

--2 m-J--2m--~2 m - -

Probs. 11-94/95 
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y 

Axis of symmetry 

y 

Axis of symmetry 

Fig.11-28 

11.5 UNSYMMETRIC BENDING 
When developing the flexure formula, we required the cross-sectional 
area to be symmetric about an axis perpendicular to the neutral axis 
and the resultant moment M act along the neutral axis. Such is the 
case for the "T" sections shown in Fig. 11- 28. In this section we will 
show how to apply the flexure formula either to a beam having a 
cross-sectional area of any shape or to a beam supporting a moment 
that acts in any direction. 

Moment Applied About Principal Axis. Consider the beam's 
cross section to have the unsymmetrical shape shown in Fig. 11- 29a. As 
in Sec. 11.4, the right-handed x, y, z coordinate system is established such 
that the origin is located at the centroid C on the cross section, and the 
resultant internal moment M acts along the +z axis. It is required that 
the stress distribution acting over the entire cross-sectional area have a 
zero force resultant. Also, the moment of the stress distribution about 
they axis must be zero, and the moment about the z axis must equal M . 
These three conditions can be expressed mathematically by considering 
the force acting on the differential element dA located at (0, y, z), 
Fig. 11- 29a. Since this force is dF = u dA , we have 

FR = IF_,; 

(MR)y = lMy; 

(MR)z = lMz; 

(a) 

0 = -iudA 

0 = - i zudA 

M = iyudA 

dF=udA 

x 

Fig.11-29 

y 

Bending-stress distribution 
(profile view) 

(b) 

(11- 14) 

(11- 15) 

(11- 16) 
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As shown in Sec. 11.4, Eq. 11- 14 is satisfied since the z axis passes 
through the centroid of the area. Also, since the z axis represents the 
neutral axis for the cross section, the normal stress will vary linearly from 
zero at the neutral axis to a maximum at IYI = c, Fig.11-29b. Hence the 
stress distribution is defined by CT = -(y / c )CT max . When this equation is 
substituted into Eq. 11- 16 and integrated, it leads to the flexure formula 
CTmax = Mc/I. When it is substituted into Eq.11- 15, we get 

0 = max YZ dA -CT, 1 
C A 

which requires 

This integral is called the product of inertia for the area. As indicated 
in Appendix A , it will indeed be zero provided the y and z axes are 
chosen as principal axes of inertia for the area. For an arbitrarily shaped 
area, such as the one in Fig. 11- 29a, the orientation of the principal axes 
can always be determined, using the inertia transformation equations as 
explained in Appendix A, Sec. A.4. If the area has an axis of symmetry, 
however, the principal axes can easily be established since they will 
always be oriented along the axis of symmetry and perpendicular to it. 

For example, consider the members shown in Fig. 11- 30. In each of 
these cases, y and z represent the principal axes of inertia for the cross 
section. In Fig. 11- 30a the principal axes are located by symmetry, and 
in Figs. 11- 30b and 11- 30c their orientation is determined using the 
methods of Appendix A. Since M is applied only about one of the 
principal axes (the z axis), the stress distribution has a linear variation, 
and is determined from the flexure formula, CT = -My/ lz, as shown for 
each case. 

y y 

y 

z 

z 
(a) (b) (c) 

Fig.11-30 
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Z- sectioned members are often used in 
light-gage metal building construction 
to support roofs. To design them to 
support bending loads, it is necessary to 
determine their principal axes of inertia. 
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y 

(a) 

II 

y 

(b) 

+ 

y 

(c) 

Fig.11-31 

x 

Moment Arbitrarily Applied. Sometimes a member may be 
loaded such that M does not act about one of the principal axes of the 
cross section. When this occurs, the moment should first be resolved into 
components directed along the principal axes, then the flexure formula 
can be used to determine the normal stress caused by each moment 
component. Fmally, using the principle of superposition, the resultant 
normal stress at the point can be determined. 

To formalize this procedure, consider the beam to have a rectangular 
cross section and to be subjected to the moment M,Fig.11- 31a, where M 
makes an angle 6 with the maximum principal z axis, i.e., the axis of 
maximum moment of inertia for the cross section. We will assume 6 is 
positive when it is directed from the +z axis towards the +y axis. 
Resolving M into components, we have Mz = M cos 6 and My = M sin 6, 
Figs. 11- 31b and 11- 31c. The normal-stress distributions that produce M 
and its components M z and M y are shown in Figs. 11- 31d, 11- 31e, and 
11- 31/, where it is assumed that (o:r)max > (a"x)max· By inspection, the 
maximum tensile and compressive stresses ((o:r)max + (a'x)max] occur at 
two opposite corners of the cross section, Fig.11- 3ld. 

Applying the flexure formula to each moment component in Figs. 11- 31b 
and 11- 31c, and adding the results algebraically, the resultant normal 
stress at any point on the cross section, Fig.11- 3ld, is therefore 

(11- 17) 

Here, 

a = the normal stress at the point. Tensile stress is positive and 
compressive stress is negative. 

y, z = the coordinates of the point measured from a right-handed 
coordinate system, x, y, z, having their origin at the centroid of 
the cross-sectional area. The x axis is directed outward from the 
cross section and t!he y and z axes represent, respectively, the 
principal axes of minimum and maximum moment of inertia 
for the area. 

Mz, My = the resultant internal moment components directed along the 
maximum z and minimum y principal axes. They are positive if 
directed along the + z and +y axes, otherwise they are negative. 
Or, stated another way, My = M sin 6 and Mz = M cos 6, where 
6 is measured positive from the +z axis towards the +y axis. 

Iv ly = the maximum and minimum principal moments of inertia 
calculated about the z and y axes, respectively. See Appendix A. 
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Orientation of the Neutral Axis. The equation defining the 
neutral axis, and its inclination a , Fig. 11- 31d, can be determined by 
applying Eq. 11- 17 to a pointy, z where a = 0, since by definition no 
normal stress acts on the neutral axis. We have 

Since Mz = M cos 8 and My = M sin 8, then 

y = (
1
z tan o)z 

ly 

Since the slope of this line is tan a = y / z, then 

lz 
tan a = -tan 8 

ly 

IMPORTANT POINTS 

(11- 18) 

(11- 19) 

• The flexure formula can be applied only when bending occurs 
about axes that represent the principal axes of inertia for the 
cross section. These axes have their origin at the centroid and 
are oriented along an axis of symmetry, if there is one, and 
perpendicular to it. 

• If the moment is applied about some arbitrary axis, then the 
moment must be resolved into components along each of the 
principal axes, and the stress at a point is determined by 
superposition of the stress caused by each of the moment 
components. 

11.5 UNSYMMETRIC BENDING 5 4 7 

y 

[(u" max -

((u,)m•x + (u~)m•x] 

(d) 

II 

(ux)max 

(e) 

+ 

(f) 

Fig. 11-31 (cont.) 
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I EXAMPLE 11.14 1 

The rectangular cross section shown in Fig.11- 32a is subjected to a bending 
moment of M = 12 kN · m. Determine the normal stress developed at each 
corner of the section, and specify the orientation of the neutral axis. 

SOLUTION 

Internal Moment Components. By inspection it is seen that the y 
and z axes represent the principal axes of inertia since they are axes of 
symmetry for the cross section. As required we have established the z 
axis as the principal axis for maximum moment of inertia. The moment is 
resolved into its y and z components, where 

My = -~(12kN · m) = -9.60kN·m 

3 
Mz = 5(12 kN · m) = 7.20 kN · m 

Section Properties. The moments of inertia about they and z axes are 

1 c c ) 3 c· - 3 4 ly = 
12 

0.4 m) 0.2 m = 0.2667 10 ) m 

l z = 1~ (0.2 m)(0.4 m)3 = 1.067(10-3) m4 

Bending Stress. Thus, 

MzY Myz 
a = - -- + --

ac = 

ao = 

ae = 

lz ly 

7.20(103) N · m(0.2 m) -9.60(103) N · m(-0.1 m) 
-----

3
--

4
-- + 

3 4 
= 2.25 MPa Ans. 

1.067(10- ) m 0.2667(10- ) m 

7.20(103) N · m(0.2 m) -9.60(103) N · m(0.1 m) 
-----

3
--

4
-- + 

3 4 
= -4.95 MPa Ans. 

1.067(10- ) m 0.2667(10- ) m 

7.20(103) N · m(-0.2 m) -9.60(1G3) N · m(0.1 m) 
------

3
--

4
-- + 

3 4 
= -2.25MPa Ans. 

1.067(10- ) m 0.2667(10- ) m 

7.20(103) N · m(-0.2 m) -9.60(1G3) N · m(-0.1 m) 
·-----~--- + -----~--- = 4.95 MPa 

1.067(10-3) m4 0.2667(10-3) m4 Ans. 

The resultant normal-stress distribution has been sketched using 
these values, Fig. 11- 32b. Since superposition applies, the distribution 
is linear as shown. 
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x 

(a) 

Fig.11-32 

Orientation of Neutral Axis. The location z of the neutral axis (NA), 
Fig. 11- 32b, can be established by proportion. Along the edge BC, we 
requue 

2.25 MPa 4.95 MPa 
-

z (0.2 m - z) 

0.450 - 2.25z = 4.95z 

z = 0.0625 m 

In the same manner this is also the distance from D to the neutral axis. 
We can also establish the orientation of the NA using Eq. 11- 19, which 

is used to specify the angle a that the axis makes with the z or maximum 
principal axis. According to our sign convention, 8 must be measured 
from the +z axis toward the +y axis. By comparison, in Fig. 11- 32c, 
8 = -tan-1 ~ = -53.1° (or 8 = +306.9°). Thus, 

lz 
tan a = -tan 8 

ly 

1.067(10-3) m4 

tan a = ( 3) 4 tan(-53.1°) 
0.2667 10- m 

a = -79.4° Ans. 

This result is shown in Fig.11- 32c. Using the value of z calculated above, 
verify, using the geometry of the cross section, that one obtains the same 
answer. 

4.95 MPa 

A 

- 2.25MPa 

D 

(b) 

M = 12kN·m 

A s! 
~4 

E ......-1-+.;D ..__ 

"= - 79.4° 

B C 

N 

y 

(c) 
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I EXAMPLE 11.15 

N 

z' z 

32.9° /, 

-300mm 
(a) 

z' 

(b) 

Fig. 11-33 

z 

A 
y 

The Z-section shown in Fig.11- 33a is subjected to the bending moment of 
M = 20 kN · m. The principal axes y and z are oriented as shown, such that 
they represent the minimum and maximum principal moments of inertia, 
Iv = 0.960(10- 3) m4 and l z = 7.54(10-3) m4

, respectively.* Determine the 
normal stress at point p and the orientation of the neutral axis. 

SOLUTION 

For use of Eq. 11- 19, it is important that the z axis represent the principal 
axis for the maximum moment of inertia. (For this case most of the area 
is located farthest from this axis.) 

Internal Moment Components. From Fig.11- 33a, 

My = 20 kN · m sin 57.1° = 16.79 kN · m 

Mz = 20 kN · m cos 57.1° = 10.86 kN · m 

Bending Stress. The y andl z coordinates of point P must be 
determined first.Note that they' ,z' coordinates of Pare (-0.2 m, 0.35 m). 
Using the colored triangles from the construction shown in Fig. 11- 33b, 
we have 

yp = -0.35 sin 32.9° - 0.2 cos 32.9° = -0.3580 m 

Zp = 0.35 cos 32.9° - 0.2 sin 32.9° = 0.1852 m 

Applying Eq. 11- 17, 

MzYP MyZP 
<Tp = - + --

lz J,. 
(10.86(103) N · m)(-0.3580 m) (16.79(103) N · m)(0.1852 m) 

= - + ------~---
7.54(10- 3) m4 0.960(10-3) m4 

= 3.76MPa Ans. 

Orientation of Neutral Axis. Using the angle 8 = 57.1° between M 
and the z axis, Fig.11- 33a, we have 

[ 
7.54(10-3) m4 J 

tan a = ( 3) 4 tan 57.1° 
0.960 10- m 

a = 85.3° Ans. 

The neutral axis is oriented as shown in Fig. 11- 33b. 

• These values are obtained using the methods of Appendix A. (See Example A.4 or A.5.) 
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FUNDAMENTAL PROBLEMS 

.11-14. Determine the bending stress developed at corners 
A and 8. What is the orientation of the neutral axis? 

y 

A 

r· 
100 mm 

Prob. Fll-14 

PROBLEMS 

*11-96. The member has a square cross section and is 
subjected to the moment M = 850 N · m. Determine the 
stress at each comer and sketch the stress distribution. Set 
8 = 45°. 

Prob. 11-96 

• 11-15. Determine the maximum stress in the beam's cross 
section. 

y 

Prob. Fll-15 

11-97. The member has a square cross section and is 
subjected to the moment M = 850 N · m as shown. 
Determine the stress at each corner and sketch the 
stress distribution. Set 8 = 300. 

Prob. 11-97 
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11-98. Consider the general case of a prismatic beam 
subjected to bending-moment components M, and M , as 
shown, when the x, y, z axes pass through the centroid of 
the cross section. If the material is linear elastic, the 
normal stress in the beam is a linear function of position 
such that u = a + by + cz. Using the equilibrium 
conditions 0 = JAudA, M,. = JAzudA, M, = JA - yudA, 
determine the constants a, b, and c, and show that the 
normal stress can be determined from the equation 
u = [- (M,I,. + M, I,,)y + (M/, + M,I,,)z]/(I,J, - I,,2), 
where the moments and products of inertia are defined in 
Appendix A. 

x 

Prob.11-98 

11-99. Determine the bending stress at point A of the beam, 
and the orientation of the neutral axis. Using the method in 
Appendix A, the principal moments of inertia of the cross 
section are r,. = 8.828 in4 and r,. = 2.295 in4

, where z' and y' 
are the principal axes. Solve the problem using Eq. 11-17. 

*11-100. Determine the bending stress at point A of the 
beam using the result obtained in Prob. 11-98. The moments 
of inertia of the cross-sectional area about the z and y axes 
are I , = I ,. = 5.561 in4 and the product of inertia of the 
cross sectional area with respect to the z and y axes is 
I,, = - 3.267 in4. (See Appendix A.) 

z 
1.183 in. 

A~ in. z' 

~ 
T >-r.~H-1-f ,,,_-_7+~c~~:~~~~~~=~--1-.1118-3 in. 

10.s in. I 
M = 3 kip· ft 

1---4 in.---1 

Probs. 11-99/100 

11-lOL The steel shaft is subjected to the two loads. If the 
journal bearings at A and B do not exert an axial force on 
the shaft, determine the required diameter of the shaft if the 
allowable bending stress is u allow= 180 MPa. 

3if~ 
1.25 m 

>< 
ym 

1.25 m 

Prob.11-101 

11-102. The 65-mm-diameter steel shaft is subjected to the 
two loads If the journal bearings at A and B do not exert an axial 
force on the shaft, determine the absolute maximum bending 
stress developed in the shaft. 

Prob. 11-102 

11-103. For the section,[,. = 31.7(1o-6) m4,I>" = 114(10-6) m4
, 

r,..,. = - 15. l(lo-6) m4
• Using the techniques outlined in 

Appendix A, the member's cross-sectional area has principal 
moments of inertia of I, =29.0(10-6) m4 and I,.= 117(10-6) m4

, 

calculated about the principal axes of inertia y and z, 
respectively. If the section is subjected to a moment 
M = 15 kN · m, determine the stress at point A using 
Eq.11-17. 

*11-104. Solve Prob.11-103 using the equation developed 
in Prob. 11-98. 

z 
c 60mm 

1-140 nm,rt.:-::----1-:,,--1 
mm60mm 

Probs. 11-1031104 
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CONCEPTUAL PROBLEMS 

Cll-1. The steel saw blade passes over the drive wheel of 
the band saw. Using appropriate measurements and data, 
explain how to determine the bending stress in the blade. 

Prob. Cll-1 

Cll-2. The crane boom has a noticeable taper along its 
length. Explain why. To do so, assume the boom is in the 
horizontal position and in the process of hoisting a load 
at its end, so that the reaction on the support A becomes 
zero. Use realistic dimensions and a load. to justify your 
reasoning. 

Prob. Cll-2 

Cll-3. Use reasonable dimensions for this hammer and a 
loading to show through an analysis why this hammer failed 
in the manner shown. 

Prob. Cll-3 

Cll-4. These garden shears were manufactured using an 
inferior material. Using a loading of 50 lb applied normal 
to the blades, and appropriate dimensions for the shears. 
determine the absolute maximum bending stress in the 
material and show why the failure occurred at the critical 
location on the handle. 

(a) (b) 

Prob. Cll-4 
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CHAPTER REVIEW 

Shear and moment diagrams are 
graphical representations of the internal 
shear and moment within a beam. 
They can be constructed by sectioning 
the beam an arbitrary distance x from 
the left end, using the equilibrium 
equations to find V and M as functions 
of x, and then plotting the results. A sign 
convention for positive distributed load, 
shear, and moment must be followed. 

It is also possible to plot the shear and 
moment diagrams by realizing that 
at each point the slope of the shear 
diagram is equal to the intensity of the 
distributed loading at the point. 

Likewise, the slope of the moment 
diagram is equal to the shear at the point. 

The area under the distributed-loading 
diagram between the points represents 
the change in shear. 

And the area under the shear diagram 
represents the change in moment. 

The shear and moment at any point 
can be obtained using the method of 
sections. The maximum (or minimum) 
moment occurs where the shear is zero. 

dV 
IV = -

dx 

V = dM 
dx 

av= fwdx 

11M = fv dx 

Positive external distributed load 

v v 

---it 
Positive internal shear 

M M --,( 

v 
0 

M 

Positive internal moment 

Beam sign convention 

w = negative increasing 
slope = negative increasing 

I 
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A bending moment tends to produce 
a linear variation of normal strain 
within a straight beam. Provided the 
material is homogeneous and linear 
elastic, then equilibrium can be used to 
relate the internal moment in the beam 
to the stress distribution. The result is 
the flexure formula, 

where I and c are determined from the 
neutral axis that passes through the 
centroid of the cross section. 

If the cross-sectional area of the beam 
is not symmetric about an axis that is 
perpendicular to the neutral axis, then 
unsymmetrical bending will occur. The 
maximum stress can be determined 
from formulas, or the problem can be 
solved by considering the superposition 
of bending caused by the moment com
ponents My and M, about the principal 
axes of inertia for the area. 

M._y ~.z 
<T = --- + --

I, r,, 

CHAPTER REVIEW 555 

y 

)' 
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REVIEW PROBLEMS 

Rll-1. Determine the shape factor for the wide-flange 
beam. 

Prob. Rll-1 

Rll-2. The compound beam consists of two segments 
that are pinned together at B. Draw the shear and moment 
diagrams if it supports the distributed loading shown. 

w 

A 
0 c 
B 

1-2/3 L--~1/3 L-1 
Prob. Rll-2 

Rll-3. A shaft is made of a polymer having a parabolic 
upper and lower cross section. If it resists a moment 
of M = 125 N · m, determine the maximum bending 
stress in the material (a) using the flexure formula and 
(b) using integration. Sketch a three-dimensional view of 
the stress distribution acting over the cross-sectional area. 
Hinr: The moment of inertia is determined using Eq. A-3 
of Appendix A. 

y 

.--! 
lOOmm 

I 

z 

x 

Prob. Rl l-3 

*Rll -4. Determine the maximum bending stress in the 
handle of the cable cutter at section a-a. A force of 45 lb is 
applied to the handles. 

45 Jb 

a 

O.SOin. H 

45 Jb 

Prob. Rl l-4 
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Rl l -5. Determine the shear and moment in the beam as 
functions of x. where 0 s x < 6 ft, then draw the shear and 
moment diagrams for the beam. 

2 kip/ft 
8 kip 

t , .....,_so kip·ft 

1 I 
~ 

1-x-
6 fl 4 ft 

Prob. Rll-5 

Rll~. A wooden beam has a square cross section as 
shown. Determine which orientation of the beam provides 
the greatest strength at resisting the moment M . What is the 
difference in the resulting maximum stress in both cases? 

(b} 

Prob. Rll~ 

REVIEW PROBLEMS 557 

Rll - 7. Draw the shear and moment diagrams for the shaft 
if it is subjected to the vertical loadings. The bearings at A 
and B exert only vertical reactions on the shaft. 

B 

I -400111111--300111111- I ;I 
200 111111 200 mn~ 

150N 

Prob. Rll-7 

*Rll-8. The strut has a square cross section a by a and is 
subjected to the bending moment M applied at an angle 8 as 
shown. Determine the maximum bending stress in terms of 
a. M, and 8. What angle 8 will give the largest bending stress 
in the strut? Specify the orientation of the neutral axis for 
this case. 

M 

Prob. Rll-8 
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CHAPTER 12 

(©Bert Folsom/Alamy) 

Railroad ties act as beams that support very large transverse shear loadings. As a 
result, if they are made of wood they will tend to split at their ends, where the 
shear loads are the largest. 
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TRANSVERSE 
SHEAR 

CHAPTER OBJECTIVES 

• To determine the shear stress in beams subjected to a transverse 
loading. 

• To calculate the shear in fasteners used to construct beams made 

from several members. 

12.1 SHEAR IN STRAIGHT MEMBERS 
In general, a beam will support both an internal shear and a moment. The 
shear Vis the result of a transverse shear-stress distribution that acts over 
the beam's cross section, Fig. 12-1. Due to the complementary property 
of shear, this stress will also create corresponding longitudinal sheail" stress 
that acts along the length of the beam. Transverse 

shear stress 

Longitudina~- T 

shear stress ..;)~ 

Fig. 12-1 
559 
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560 CHAPTER 12 TRANSVERSE SHEAR 

ip 

Boards not bonded together 
(a) 

Shear connectors are " tack welded" to this 
corrugated metal floor liner so that when the 
concrete floor is poured, the connectors will 
prevent the concrete slab from slipping on 
the liner surface. The two materials will thus 
act as a composite slab. 

v 
v 
~ 

v 
v ..... 

(a) Before defom1ation 

-.,... .,c; .,,.1 
- ....... ~;...i,...--- ; 

~ - ~ 

r-,_\ \I ¥ I 
- -'-1..J:)--" 

(b) After deformation 

Fig.12-3 

Boards bonded together 
(b) 

Fig. 12-2 

To illustrate the effect caused by the longitudinal shear stress, consider 
the beam made from three boards shown in Fig. 12- 2a. If the top and 
bottom surfaces of each board are smooth, and the boards are not bonded 
together, then application of the load P will cause the boards to slide 
relative to one another when the beam deflects. However, if the boards 
are bonded together, then the longitudinal shear stress acting between 
the boards will prevent their relative sliding, and consequently the beam 
will act as a single unit , Fig.12- 2b. 

As a result of the shear stress, shear strains will be developed and these 
will tend to distort the cross section in a rather complex manner. For 
example, consider the short bar in Fig.12- 3a made of a highly deformable 
material and marked with horizontal and vertical grid lines. When the 
shear force V is applied, it tends to deform these lines into the pattern 
shown in Fig. 12- 3b. This nonuniform shear-strain distribution will cause 
the cross section to warp; and as a result, when a beam is subjected to 
both bending and shear, the cross section will not remain plane as 
assumed in the development of the flexure formula. 

12.2 THE SHEAR FORMULA 
Because the strain distribution for shear is not easily defined, as in the 
case of axial load, torsion, and bending, we will obtain the shear-stress 
distribution in an indirect manner. To do this we will consider the 
horizontal force equilibrium of a portion of an element taken from the 
beam in Fig. 12-4a. A free-body diagram of the entire element is shown 
in Fig. 12-4b. The normal-stress distribution acting on it is caused by the 
bending moments Mand M + dM. Here we have excluded the effects of 
V, V + dv, and w(x), since these loadings are vertical and will therefore 
not be involved in a horizontal force summation. Notice that ~F.r = 0 is 
satisfied since the stress distribution on each side of the element forms 
only a couple moment, and therefore a zero force resultant. 
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" 

IF, = 0 satisfied 

-dF" 
...,._ 

dF' 

Now let's consider the shaded top por1ion of the element that has been 

Section plane 

sectioned at y' from the neutral axis, Fig. 12-4c. It is on this sectioned A' 

plane that we want to find the shear stress. This top segment has a width t 
at the section, and the two cross-sectional sides each have an area A'. The 
segment's free-body diagram is shown in Fig. 12-4d. The resultant T 

moments on each side of the e lement differ by dM, so that IF,, = 0 will ~ 
not be satisfied unless a longitudinal shear stress Tacts over the bottom ~ \.. ~ 

Area= A ' 

sectioned plane. To simplify the analysis, we will assume that this shear d;r / , 
stress is constant across the width / of the bottom face. To find the : : )1,~~ + dM 
horizontal force created by the bending moments, we will assume that \ : ,' 
the effect of warping due to shear is small, so that it can generally be ',,~.... __ / 
neglected. This assumption is particularly true for the most common case ---
of a slender beam, that is, one that has a small depth compared to its Three-dimensional view 
length. Therefore, using the flexure formula, Eq.11- 13, we have 

~ !Fx = 0: { u' dA' - { u ti.A - T(t dx) = 0 
) A. ) A. <T u ' 

1 .(M ~ dM)ydA' - 1.(~)y dA' - ; (tdx) = 0 

( d~) 1.Y dA' = T(t dx) (12-1) 

Solving for T , we get 

1 (dM)1 'T - - - ydA' 
It dx A' 

Here V = dM / dx (Eq. 11-2). Also, the integral represents the 
moment of the area A' about the neutral axis, which we will denote by 
the symbol Q. Since the location of the centroid of A' is determined 
from y' = JA'y dA' /A' , we can also write 

Q = { y dA' = y' A ' 
) A' 

(12-2) 

-I T 

I 
I 
I 
'- - J 

Profile view 

(d) 
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Area= A' 

A 

N 

Fig.12-5 

The final result is called the shear formula , namely 

(12- 3) 

With reference to Fig. 12- 5, 

T = the shear stress in the member at the point located a distance y 
from the neutral axis. This stress is assumed to be constant and 
therefore averaged across the width t of the member 

V = the shear force, determined from the method of sections and 
the equations of equilibrium 

1 = the moment of inertia of the entire cross-sectional area calculated 
about the neutral axis 

t = the width of the member's cross section, measured at the point 
where T is to be determined 

Q = y' A', where A' is the area of the top (or bottom) portion of 
the member's cross section, above (or below) the section 
plane where t is measured, and y' is the distance from the 
neutral axis to the centroid of A' 

Although for the derivation we considered only the shear stress acting 
on the beam's longitudinal plane, the formula applies as well for finding 
the transverse shear stress on the beam's cross section, because these 
stresses are complementary and numerically equal. 
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Calculating Q. Of all the variables in the shear formula, Q is 
usually the most difficult to define properly. Try to remember that it 
represents the moment of the cross-sectional area that is above or below 
the point where the shear stress is 10 be determined. It is this area A' that 
is "held onto" the rest of the beam by the longitudinal shear stress as the 
beam undergoes bending, Fig. 12-4d. The examples shown in Fig. 12~ 
will help to illustrate this point. Here the stress at point P is to be 
determined, and so A' represents the dark shaded region. The value of Q 
for each case is reported under each figure. These same results can also 
be obtained for Q by considering A' to be the light shaded area below P, 
although here y' is a negative quantity when a portion of A' is below the 
neutral axis. 

A 
A 

N 

Q=y'A' Q = j'A' 

A 

N 

Fig. 12-6 
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1-b = 0.511 -j 

(a) 

i----b = 2h---i 

VQ 
7 = -max It (b) 

Fig.12-7 

Limitations on the Use of the Shear Formula. One of the 
major assumptions used in the development of the shear formula is that 
the shear stress is uniformly distributed over the width t at the section. In 
other words, the average shear stress is calculated across the width. We 
can test the accuracy of this assumption by comparing it with a more 
exact mathematical analysis based on the theory of elasticity. For 
example, if the beam's cross section is rectangular, the shear-stress 
distribution across the neutral axis actually varies as shown in Fig. 12- 7. 
The maximum value, -r' max, occurs at the sides of the cross section, and its 
magnitude depends on the ratio b/h (width/depth). For sections having a 
b/ h = 0.5, T 'max is only about 3% greater than the shear stress calculated 
from the shear formula, Fig. 12- 7a. However, for flat sections, say 
b/ h = 2, -r' max is about 40o/o greater than Tmax , Fig. 12- 7b. The error 
becomes even greater as the section becomes flatter, that is, as the b/h 
ratio increases. Errors of this magnitude are certainly intolerable if one 
attempts to use the shear formula to determine the shear stress in the 
flange of the wide-flange beam shown in Fig. 12-8. 

It should also be noted that the shear formula will not give accurate 
results when used to determine the shear stress at the flange- web 
junction of this beam, since this is a point of sudden cross-sectional 
change and therefore a stress concentration occurs here. Fortunately, 
engineers must only use the shear formula to calculate the average 
maximum shear stress in a beam, and for a wide-flange section this 
occurs at the neutral axis, where the b/h (width/depth) ratio for the web 
is very small, and therefore the calculated result is very close to the actual 
maximum shear stress as explained above. 

Flanges 
Web 

Fig.12-8 
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Another important limitation on the use of the shear formula can be 
illustrated with reference to Fig. 12- 9a, which shows a member having a 
cross section with an irregular boundary. If we apply the shear formula to 
determine the (average) shear stress T along the line AB, it will be 
directed downward across this line as shown in Fig. 12- 9b. However, an 
element of material taken from the boundary point B, Fig. 12- 9c, must 
not have any shear stress on its outer surface. In other words, the shear 
stress acting on this element must be directed tangent to the boundary, 
and so the shear-stress distribution across line AB is actually directed as 
shown in Fig. 12- 9d. As a result, the shear formula can only be applied at 
sections shown by the blue lines in Fig. 12- 9a, because these lines 
intersect the tangents to the boundary at right angles, Fig. 12- 9e. 

To summarize the above points, the shear formula does not give 
accurate results when applied to members having cross sections that are 
short or flat, or at points where the cross section suddenly changes. Nor 
should it be applied across a section that intersects the boundary of the 
member at an angle other than 90°. 

12.2 THE SHEAR FORMULA 56 5 

Stress-free 

Shear-stress distribution 
from shear formula 

,ook"o:•~ 

' _,. 
' 7 

(a) (b) (c) (d) 

Fig.12-9 
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IMPORTANT POINTS 

• Shear forces in beams cause nonlinear shear-strain distributions over the cross section, causing it to warp. 

• Due to the complementary property of shear, the shear stress developed in a beam acts over the cross section 
of the beam and along its longitudinal planes. 

• The shear formula was derived by considering horizontal force equilibrium of a portion of a differential 
segment of the beam. 

• The shear formula is to be used on straight prismatic members made of homogeneous material that has 
linear elastic behavior. Also, the internal resultant shear force must be directed along an axis of symmetry for 
the cross section. 

• The shear formula should not be used to determine the shear stress on cross sections that are short or 
flat, at points of sudden cross-sectional changes, or across a section that intersects the boundary of the 
member at an angle other than 90°. 

PROCEDURE FOR ANALYSIS 

In order to apply the shear formula, the following procedure is suggested. 

Internal Shear. 

• Section the member perpendicular to its axis at the point where the shear stress is to be determined, and 
obtain the internal shear V at the section. 

Section Properties. 

• Fmd the location of the neutral axis, and determine the momen~ of inertia I of the entire cross-sectional 
area about the neutral axis. 

• Pass an imaginary horizontal section through the point where the shear stress is to be determined. 
Measure the width t of the cross-sectional area at this section. 

• The portion of the area lying either above or below this width is A' . Determine Q by using Q = y' A' . 
Here )i' is the distance to the centroid of A', measured from the neutral axis. It may be helpful to realize 
that A' is the portion of the member's cross-sectional area that is being "held onto the member" by the 
longitudinal shear stress as the beam undergoes bending. See Figs. 12- 2 and 12-4d. 

Shear Stress. 

• Using a consistent set of units, substitute the data into the shear formula and calculate the shear stress T . 

• It is suggested that the direction of the transverse shear stress r be established on a volume element of 
material located at the point where it is calculated. This can be done by realizing that T acts on the cross 
section in the same direction as V. From this, the corresponding shear stresses acting on the other three 
planes of the element can then be established. 
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I EXAMPLE 12.1 

The beam shown in Fig.12- lOa is made from two boards. Determine the 
maximum shear stress in the glue necessary to hold the boards together 
along the seam where they are joined. 

SOLUTION 

Internal Shear. The support reactions and the shear diagram for the 
beam are shown in Fig. 12- lOb. It is seen that the maximum shear in 
the beam is 19.5 kN. 

Section Properties. The centroid and therefore the neutral axis 
will be determined from the reference axis placed at the bottom of the 
cross-sectional area, Fig. 12- lOa. Working in units of meters, we have 

l-A - y y =--
lA 

[0.075 mj(0.150 m)(0.030 m) + [0.165 mj(0.030 m)(0.150 m) 
- 0.120 m 

(a) 

26 kN 

(0.150 m)(0.030 m) + (0.030 m)(0.150 m) 
•--6 m--1-l 2 m~ 

6.5 kN 19.S kN 

The moment of inertia about the neutral axis, Fig. 12- lOa, is therefore 

[ 
1 ] V (kN) 

I = 
12 

(0.030 m)(0.150 m)3 + (0.150 m)(0.030 m)(0.120 m - 0.075 m)2 
6.5 ~---

+ [ 1~ (0.150 m)(0.030 m)3 + (0.030 m)(0.150 m)(0.165 m - 0.120 m)2] 

= 27.0(10- 6) m4 

The top board (flange) is held onto the bottom board (web) by the 
glue, which is applied over the thickness t = 0.03 m. Consequently Q is 
taken from the area of the top board, Fig. 12- lOa. We have 

Q = y'A' = [0.180 m - 0.015 m - 0.120 m](0.03 m)(0.150 m) 

= 0.2025(10- 3) m3 

Shear Stress. Applying the shear formula , 

VQ 19.5(103 ) N(0.2025(10- 3) m3) 
7: =-= = 488MPa 

max It 27.0(10- 6) m4(0.030 m) · 
Ans. 

The shear stress acting at the top of the bottom board is shown in 
Fig. 12- lOc. 

NOTE: It is the glue's resistance to this longitudinal shear stress that 
holds the boards from slipping at the right support. 

(b} 

Plane containing glue 

4.88 MPa 

(c) 

Fig.12-10 

- 19.S 
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I EXAMPLE 12.2 I 

Shear- stress distribution 

(c) 

Fig.12-11 

Determine the distribution of the shear stress over the cross section of 
the beam shown in Fig. 12- lla. 

A' 

(a) (b) 

SOLUTION 
The distribution can be determined by finding the shear stress at an 
arbitrary height y from the neutral axis, Fig. 12- 1 lb, and then plotting this 
function. Here, the dark colored area A' will be used for Q. * Hence 

Applying the shear formula , we have 

-r = VQ = v(!) [ (h2
/4) - y2 ]b = 6V(h2 

_ 2) (l) 
It (i12bh3 )b bh3 4 y 

This result indicates that the shear-stress distribution over the cross 
section is parabolic. As shown in Fig. 12- llc, the intensity varies from 
zero at the top and bottom, y = + h/2, to a maximum value at the 
neutral axis, y = 0. Specifically, since the area of the cross section is 
A = bh, then at y = 0 Eq. 1 becomes 

(2) 

Rectangular cross section 

*The area below y can also be used [A' = b(h/2 + y) ] , but doing so involves a bit more 
algebraic manipulation. 
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A' 

~I 
2 A 

A 

(d) 

Fig. 12-11 (cont.) 

This same value for Tmax can be obtained directly from the shear 
formula , T = VQ/ It , by realizing that Tmax occurs where Q is largest, 
since V, I, and t are constant. By inspection, Q will be a maximum 
when the entire area above (or below) the neutral axis is considered; 
that is, A' = bh/2 and y' = h/4, Fig.12- lld. Thus, 

VQ V(h/4)(bh/2) V 
'Tmax = ft = [ 112bh3] b = 1.5 A 

By comparison, Tmax is 50% greater than the average shear stress 
determined from Eq. 7-4; that is, Tavg = V/A. 

It is important to realize that Tmax also acts in the longitudinal 
direction of the beam, Fig. 12- lle. It is this stress that can cause a 
timber beam to fail at its supports, as shown Fig. 12- llf Here 
horizontal splitting of the wood starts to occur through the neutral 
axis at the beam's ends, since there the vertical reactions subject the 
beam to large shear stress, and wood has a low resistance to shear 
along its grains, which are oriented in the longitudinal direction. 

It is instructive to show that when the shear-stress distribution, 
Eq. 1, is integrated over the cross section it produces the resultant 
shear V. To do this, a differential strip of area dA = b dy is chosen, 
Fig. 12- llc, and since r acts uniformly over this strip, we have 

J 11r12 
6V (h? ) 

r dA = - 3 - - y2 b dy 
A - h/2 bh 4 

= 6~[h2 y - !.;J/r/2 
h 4 3 - /r/2 

= 6V[h2(h + h) _ !_(h3 
+ h3

)] = V 
h3 4 2 2 3 8 8 
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Typical shear failure of this wooden beam 
occurred at the support and through the 
approximate center of its cross section. 

(f) 
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I EXAMPLE 12.3 1 

20mm 

A steel wide-flange beam has the dimensions shown in Fig. 12- 12'1. If it is 
subjected to a shear of V = 80 kN, plot the shear-stress distribution acting 
over the beam's cross section. 

B' J,/r 
[lOOf~mA 

I 
,..-------""t 

B/ I 
I 

-r8 · = 1.13 MPa 

1---").....__..,_.,B = 22.6 MPa 

A' 

N 

I 

(a) 

0.300m 

._ 
r . 1· B 

(c) 

Fig. 12-U 

0.02m 

l_l 
I 

t 
O.lOOm 

I A 

I 

c l 
I 
I 

1------1-rc = 25.2 MPa 

______ _, 
\._ 22.6MPa 

1.13 MPa 

(b) 

SOLUTION 

Since the flange and web are rectangular elements, then like the previous 
example, the shear-stress distribution will be parabolic and in this case it will 
vary in the manner shown in Fig. 12- 12b. Due to symmetry, only the shear 
stresses at points B', B, and C have to be determined. To show how these 
values are obtained, we must first determine the moment of inertia of the 
cross-sectional area about the neutral axis. Working in meters, we have 

I = [ 1~ (0.015 m)(0.200 m)3
] 

+ 2[ 
1
1
2 

(0.300 m)(0.02 m)3 + (0.300 m)(0.02 m)(0.110 m)2 ] 

= 155.6(10-6) m4 

For point B ', ts' = 0.300 m, and A' is the dark shaded area shown in 
Fig. 12- 12c. Thus, 

QB' = y'A' = [0.110 m](0.300 m)(0.02 m) = 0.660(10-3 ) m3 

so that 

VQs· 80(103 ) N(0.660(10-3 ) m3) 
Ts· = = = 1.13 MPa 

Its· 155.6(10-6) m4(0.300 m) 

For point B, ts = 0.015 m and Qs = Qs·, Fig.12- 12c. Hence 

VQs 80(103)N(0.660(10- 3) m3 ) 
r = -- = = 22.6 MPa 
s Its 155.6(10-6) m4(0.015 m) 
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0.02m 

0.300 m I _I 
A' -I 

0.015 m O.lOOm 

N I A 

c 

(d} 

Fig. 12-12 (cont.) 

Note from our discussion of the limitations on the use of the shear 
formula that the calculated values for both Ts· and Ts are actually very 
misleading. Why? 

For point C, l e = 0.015 m and A' is the dark shaded area shown in 
Fig. 12- 12d. Considering this area to be composed of two rectangles, 
we have 

Qc = 'Ly" A' = (0.110 m](0.300 m)(0.02 m) 

+ l0.05 mj(0.015 m)(0.100 m) 

= 0.735(10-3) m3 

Thus, 

VQc 80(103) N(0.735(10-3) m3] 
T = T = -- = = 25 2 MPa 
c max ltc 155.6( 10- 6) m4(0.015 m) . 

NOTE: From Fig. 12- 12b, the largest shear stress occurs in the web and is 
almost uniform throughout its depth, varying from 22.6 MPa to 25.2 MPa. 
It is for this reason that for design, some codes permit the use of 
calculating the average shear stress on the cross section of the web, rather 
than using the shear formula; that is, 

V 80(103 ) N 
T = - = = 26.7MPa 

avg Aw ( 0.015m ) ( 0.2m ) 

This will be discussed further in Chapter 15. 
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PRELIMINARY PROBLEM 

Pl2-1. In each case, calculate the value of Q and 1 that are 
used in the shear formula for finding the shear stress at A. 
Also, show how the shear stress acts on a differential volume 
element located at point A. 

0.3 m 

0.1 m 
A' y 

,...::I 
0.1 m 

1-"0.2 m 

(a) 

0.1 m 

0.3 m 

l 
(b) 

(c) 

Prob. Pl2-l 

(d) 

(e) 

(f) 
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12.2 THE SHEAR FORMULA 573 

FUNDAMENTAL PROBLEMS 

FU-1. If the beam is subjected to a shear force of 
V = 100 kN, determine the shear stress at point A. Represent 
the state of stress on a volume element at this point. 

Prob. F12-1 

FU-2. Determine the shear stress at points A and B if the 
beam is subjected to a shear force of V = 600 kN. Represent 
the state of stress on a volume element of these points. 

lOOmm 

~ 
lOOmm 

:,,+ ! lOOmm v/ 
Prob. F12-2 

FU-3. Determine the absolute maximum shear stress in 
the beam. 

6 kip 
3 kip 

---.B I l-1 ft-l-1 ft-l-1 ft-
Prob. F12-3 

D~· 
H 
.) 10. 

FU-4. If the beam is subjected to a shear force of 
V = 20 kN, determine the maximum shear stress in the beam. 

Prob. F12-4 

FU-5. If the beam is made from four plates and subjected 
to a shear force of V = 20 kN, determine the shear stress at 
point A. Represent the state of stress on a volume element 
at this point. 

50mm 

150mm 

150mm 

Prob. Fl2-5 
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574 CHAPTER 12 TRANSVERSE SHEAR 

PROBLEMS 

12-L If the wide-flange beam is subjected to a shear of 
V = 20 kN, determine the shear stress on the web at A. 
Indicate the shear-stress components on a volume element 
located at this point. 

12-2. If the wide-flange beam is subjected to a shear of 
V = 20 kN, determine the maximum shear stress in the 
beam. 

12-3. If the wide-flange beam is subjected to a shear of 
V = 20 kN, determine the shear force resisted by the web of 
the beam. 

B 

200mm ...... 20mm 

Probs.12-112/3 

*12-4. If the beam is subjected to a shear of V = 30 kN, 
determine the web's shear stress at A and B. Indicate the 
shear-stress components on a volume element located 
at these points. Set w = 200 mm. Show that the neutral axis 
is located at y = 0.2433 m from the bottom and 
I= 0.5382(10-3) m4. 

12-5. If the wide-flange beam is subjected to a shear of 
V = 30 kN, determine the maximum shear stress in the 
beam. Set w = 300 mm. 

300mm 

20mm 

Probs. 12-4/5 

12-6. The wood beam has an allowable shear stress of 
'Tallow = 7 MPa. Determine the maximum shear force V that 
can be applied to the cross section. 

,-,-
50mm 

.l__ 

-,-
50mm 

-'-

50mm SO mm 
l---l-100 mm-1-1 

I 
I,, 

I 

'" !v 200mm 

IJ 1 

' 
II 

Prob.12-6 

12-7. The shaft is supported by a thrust bearing at A and a 
journal bearing at B. If P = 20 kN, determine the absolute 
maximum shear stress in the shaft. 

*12-8. The shaft is supported by a thrust bearing at A and 
a journal bearing at B. If the shaft is made from a material 
having an allowable shear stress of 'Tallow = 75 MPa, 
determine the maximum value for P. 

c D 

lm~--lm~--lm 
p p 

@mm 

40mm 

Probs.12-7/8 
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12-9. Determine the largest shear force V that the member 
can sustain if the allowable shear stress is Ta11ow = 8 ksi. 

12-10. rr the applied shear force v = 18 kip, determine 
the maximum shear stress in the member. 

1 in. 

Probs. 12-9/10 

12-11. The overhang beam is subjected to the uniform 
distributed load having an intensity of w = 50 kN/m. 
Determine the maximum shear stress in the beam. 

dt~ l l I IEU I. l_ l l l i 
1-3m~l-3m~ 

Prob. 12-11 

*12-12. The beam is made from a polymer and is subjected 
to a shear of V = 7 kip. Determine the maximum shear 
stress in the beam and plot the shear-stress distribution over 
the cross section. Report the values of the shear stress every 
0.5 in. of beam depth. 

1-4in.-I 

I in.I~__, 

l in.- l - 6in. 

I in.Ir-' V ,____,,j 
Prob. 12-12 

12.2 T HE SHEAR FORMULA 575 

12-13. Determine the maximum shear stress in the strut 
if it is subjected to a shear force of V = 20 kN. 

12-14. Determine the maximum shear force V that the 
strut can support if the allowable shear stress for the 
material is Tai'°"' = 40 MPa. 

12mm 

.J/ 
1 

60mm 

!v ),~ 
~'1 12mm 

80mm 20mm p..-
20 mm 

Probs. 12-13/14 
12-1.5. Sketch the intensity of the shear-stress distribution 
acting over the beam's cross-sectional area, and determine the 
resultant shear force acting on the segment AB. The shear force 
acting at the section is V = 35 kip. Show that /NA = 872.49 in4

• 

c 

.__,_ V= 35 kip 

Prob. 12-1.5 
*12-16. Plot the shear-stress distribution over the cross 
section of a rod that has a radius c. By what factor is the 
maximum shear stress greater than the average shear stress 
acting over the cross section? 

Prob. 12-16 
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576 CHAPTER 12 TRANSVERSE SHEAR 

12-17. If the beam is subjected to a shear of V = 15 kN, 
determine the web's shear stress at A and B. Indicate 
the shear-stress components on a volume element 
located at these points. Set w = 125 mm. Show that the 
neutral axis is located at y = 0.1747 m from the bottom 
and INA = 0.2182(10-3 ) m4

. 

12-18. If the wide-flange beam is subjected to a shear of 
V = 30 kN, determine the maximum shear stress in the 
beam. Set w = 200 mm. 

12-19. If the wide-flange beam is subjected to a shear of 
V = 30 kN, determine the shear force resisted by the web 
of the beam. Set w = 200 mm. 

200mm 

Probs. 12-17/18/19 

*12-20. Determine the length of the cantilevered beam so 
that the maximum bending stress in the beam is equivalent 
to the maximum shear stress. 

p 

' 

01 
1------L------ 1 l-b-I 

Prob.12-20 

12-21. If the beam is made from wood having an allowable 
shear stress rauow = 400 psi, determine the maximum 
magnitude of P. Set d = 4 in. 

~ :J:)f_ 
l-2f1-l-2 ft -l-2 ft-I 

~J 
1-1 
2 in. 

Prob.12-21 

12-22. Determine the largest intensity w of the distributed 
load that the member can support if the allowable shear 
stress is r allow = 800 psi. The supports at A and B are 
smooth. 

12-23. If w = 800 lb/ft, determine the absolute maximum 
shear stress in the beam. The supports at A and Bare smooth. 

IV 

t l l l ~ I l l l I l 1 ~ 1 1 I } 
A B 

- 3f1-l---6f1---I 3ft -

Probs. 12-22/23 

*12-24. Determine the shear stress at point Bon the web 
of the cantilevered strut at section a-a. 

12-25. Determine the maximum shear stress acting at 
section a-a of the cantilevered strut. 

2kN 4 kN 

- 250 mm -1-250 mm 300 mm _ __, 
a 

a 

Probs. 12-24/25 
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12-26. Railroad ties must be designed to resist large shear 
loadings. U the tie is subjected to the 34-kip rail loadings 
and an assumed uniformly distributed ground reaction, 
determine the intensity w for equilibrium. and calculate the 
maximum shear stress in the tie at section a-a, which is 
located just to the left of the rail. 

34 kip 34 kip 

a 

-1---3 ft - --1-1.s r1 

D±· 
1-s in.- I 

Prob.12-26 

12-27. The beam is slit longitudinally along both sides. If it 
is subjected to a shear of V = 250 kN. compare the 
maximum shear stress in the beam before and after the cuts 
were made. 

*12-28. The beam is to be cut longitudinally along both 
sides as shown. U it is made from a material having an 
allowable shear stress of 'Tallow = 75 MPa, determine the 
maximum allowable shear force V that can be applied 
before and after the cut is made. 

200mm 

J 
25mm 

.J;s mm 

I 
25mm / 

25 JV2oomm 

Probs.12-27128 

12.2 T HE SHEAR FORMULA 577 

12-29. Determine the maximum shear stress in the 
T-beam at the critical section where the internal shear force 
is maximum. 

12-30. Determine the maximum shear stress in the 
T-beam at section C. Show the result on a volume element 
at this point. 

lOkN/m 

AI I I II~ 
A_: 0 JB 
l-3 m-l-t.s m-~1.5 m-1 

150mm 
1-Ll 

150 :~nl(Fo1m 
-11- 30 nun 

Probs. 12-29/30 

12-31. The beam has a square cross section and is made of 
wood having an allowable shear stress of 'Tanow = 1.4 ksi. U 
it is subjected to a shear of V = 1.5 kip, determine the 
smalles t dimension a of its sides. 

~I.Skip 

Prob.12-31 

f 
l 
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Fig.12-13 

(a) 

Fi.g.12-14 

12. 3 SHEAR FLOW IN BUILT-UP 
MEMBERS 

Occasionally in engineering practice, members are "built up" from several 
composite parts in order to achieve a greater resistance to loads. An 
example is shown in Fig. 12- 13. If the loads cause the members to bend, 
fasteners such as nails, bolts, welding material , or glue will be needed to 
keep the component parts from sliding relative to one another, Fig. 12- 2. 
In order to design these fasteners or determine their spacing, it is necessary 
to know the shear force that they must resist. This loading, when measured 
as a force per unit length of beam, is referred to as shear flow, q. * 

The magnitude of the shear flow is obtained using a procedure similar 
to that for finding the shear stress in a beam. To illustrate, consider finding 
the shear flow along the juncture where the segment in Fig. 12- 14a is 
connected to the flange of the beam. Three horizontal forces must act on 
this segment, Fig.12- 14b. Two of these forces, F and F + dF, are the result 
of the normal stresses caused by the moments Mand M + dM, respectively. 
The third force, which for equilibrium equals dF, acts at the juncture. 
Realizing that dF is the result of dM, then, like Eq. 12- 1, we have 

dMJ dF = - yd.A' 
I A' 

F + dF 
(b) 

The integral represents Q, that is, the moment of the segment's area A' 
about the neutral axis. Since the segment has a length dx, the shear flow, 
or force per unit length along the beam, is q = dF / dx. Hence dividing 
both sides by dx and noting that V = dM/dx, Eq. 11- 2, we have 

I q VIQ I (12-4) 

Here 
q = the shear flow, measured as a force per unit length along the beam 

V = the shear force, determined from the method of sections and the 
equations of equilibrium 

1 = the moment of inertia of the entire cross-sectional area calculated 
about the neutral axis 

Q = Y' A', where A' is the cross-sectional area of the segment that is 
connected to the beam at the juncture where the shear flow is 
calculated, and )i' is the distance from the neutral axis to the 
centroid of A ' 

*TI1e use of the word "flow" in this terminology will become meaningful as it pertains 
to the discussion in Sec. 12.4. 
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12.3 SHEAR FLOW IN BUILT-UP MEMBERS 5 7 9 

Fastener Spacing When segments of a beam are connected by 
fasteners, such as nails or bolts, their spacing s along the beam can be 
determined. For example, let's say that a fastener, such as a nail, can 
support a maximum shear force of F (N) before it fails, Fig. 12-lSa. If 
these nails are used to construct the beam made from two boards, as 
shown in Fig. 12-ISb, then the nails must resist the shear flow q (N/ m) 
between the boards. In other words. the nails are used to '·hold" the top 
board to the bottom board so that no slipping occurs during bending. 
(See Fig. 12-2a). As shown in Fig. 12-lSc, the nail spacing is therefore 
determined from 

F(N) = q (N/m) s (m) 

The examples that follow illustrate application of this equation. 

Other examples of shaded segments connected to built-up beams by 
fasteners are shown in Fig. 12-16. The shear flow here must be found at 
the thick black line, and is determined by using a value of Q calculated 
from A' and )i' indicated in each figure. This value of q will be resisted by 
a single fastener in Fig. 12-16a, by two fasteners in Fig. 12- 16b, and by 
three fasteners in Fig. 12-16c. In other words, the fastener in Fig. 12-16a 
supports the calculated value of q, and in Figs. 12- 16b and 12-16c each 
fastener supports q/2 and q/3, respectively. 

IMPORTANT POINT 

• Shear flow is a measure of the force per unit length along the 
axis of a beam. This value is found from the shear formula and 
is used to determine the shear force developed in fasteners 
and glue that holds the various segments of a composite beam 
together. 

(a) (b) 

Fig. 12-16 

(c) 

F 

(a) 

(b) 

(c) 

Fig. 12-15 

F 
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EXAMPLE 12.4 - -

A ' ( '"'B lOmm 
l=f==250mm--I I 

The beam is constructed from three boards glued together as shown in 
Fig. 12- 17a. If it is subjected to a shear of V = 850 kN, determine the 
shear flow at B and B ' that must be resisted by the glue. r 

N 

B- 11 B' - .I 
11 

I I 
I I 

1 
Y' B SOLUTION 

Section Properties. The neutral axis (centroid) will be located from 
A the bottom of the beam, Fig.12- 17a. Working in units of meters, we have 

300mm 

' 
V= 850kN 

J J 
10 mm-I l-125 mm-I l-10 mm 

(a) 

I I 

N 

,, I 
11 

j C c· I_ 
A' j r-· c Ye 

(b) 

Fig.12-17 

y 

_ 2 yA 2(0.15 m](0.3 m)(0.01 m) + [0.305 m](0.250 m)(0.01 m) 
y =--= 

"LA 2(0.3 m)(0.01 m) + 0.250 m(0.01 m) 

= 0.1956 m 

The moment of inertia of the cross section about the neutral axis is thus 

I = 2[ 
1
1
2 

(0.01 m)(0.3 m)3 + (0.01 m)(0.3 m)(0.1956 m - 0.150 m)2] 

+ [ 
1
1
2 

(0.250 m)(0.01 m)3 + (0.250 m)(0.01 m)(0.305 m - 0.1956 m)2 ] 

= 87.42(10- 6) m4 

The glue at both Band B' in Fig. 12- 17a "holds" the top board to 
the beam. Here 

Q8 = y8A8 = [0.305 m - 0.1956 m](0.250 m)(0.01 m) 

= 0.2735(10- 3) m3 

Shear Flow. 

VQ8 850(103) N(0.2735(10- 3) m3) 
q = - = = 2 66 MN/m 

I 87.42( 10- 6) m4 . 

Since two seams are used to secure the board, the glue per meter 
length of beam at each seam must be strong enough to resist one-half 

A of this shear flow. Thus, 

qB = qg· = ~ = 1.33 MN/m Ans. 

NOTE: If the board CC' is added to the beam, Fig. 12- 17b, then y and I 
have to be recalculated, and the shear flow at C and C' determined 
from q = V Ye A'c/ I. Finally, t!his value is divided by one-half to obtain 
qcand qc . 
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EXAMPLE 12.5 
- -

A box beam is constructed from four boards nailed together as shown 
in Fig. 12- 18a. If each nail can support a maximum shear force of 30 lb, 
determine the maximum spacings of the nails at Band at C so that the 
beam can support the force of 80 lb. 

SOLUTION 

Internal Shear. If the beam is sectioned at an arbitrary point along 
its length, the internal shear required for equilibrium is always 
V = 80 lb. 

Section Properties. The moment of inertia of the cross-sectional 
area about the neutral axis can be determined by considering a 
7.5 in. x 7.5 in. square minus a 4.5 in. x 4.5 in. square. 

I = 1~ (7.5 in.)(7.5 in.)3 
- 1~ (4.5 in.)(4.5 irL)3 = 229.5 in4 

The shear flow at B is determined using Q8 found from the darker 
shaded area shown in Fig.12- 18b. It is this "symmetric" portion of the 
beam that is to be "held onto" the rest of the beam by nails on the left 
side and by the fibers of the board on the right side, B '. 
Thus, 

Q 8 = y' A' = (3 in.](7.5 in.)(1.5 in.) = 33.75 in3 

Likewise, the shear flow at C can be determined using the "symmetric" 
shaded area shown in Fig. 12- 18c. We have 

Qc = y'A' = (3 in.](4.5 in.)(1.5 in.) = 20.25 in3 

Shear Flow. 

VQ8 80 lb(33.75 in3) . 
6 1

. 
qB = - !- = 229.5 in4 = 11.7 lb Ill. 

qc = VQc = 80 lb(20.25 in
3

) = 7_059 lb/in. 
I 229.5 in4 

These values represent the shear force per unit length of the beam 
that must be resisted by the nails at Band the fibers at B', Fig.12- 18b, 
and the nails at C and the fibers at C', Fig. 12- 18c, respectively. Since 
in each case the shear flow is resisted at two surfaces and each nail can 
resist 30 lb, for B the spacing is 

Sa = 30 lb - 5 . 0 . 
(11.76/2) lb/in. - .l rn. 

U;es8 = 5 in. Ans. 

And for C, 

Sc = 30 lb - 8 0. 
( ) 

- .5 Ill. 
7.059/2 lb/irL 

U;e sc = 8.5 in. Ans. 

I 
3 in. 

N I 

c 
l-1.Sin. 

,..--..j ...... -, 

6 in. 

1 
_.., j_l.Sin. 

(a) 

(b) 

80 lb 

( 1.5 in. 

c 

(c) 

Fig.12-18 

A 
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582 CHAPTER 12 TRANSVERSE SHEAR 

EXAMPLE 12.6 - -

Nails, each having a total shear strength of 40 lb, are used in a beam that can 
be constructed either as in Case I or as in Case II, Fig. 12- 19. If the nails are 
spaced at 9 in., determine the largest vertical shear that can be supported in 
each case so that the fasteners will not fail. 

0.5 in. 
l_ 

~n'-. Th~~ 
4in. N ~~ 

_I_.-~~ Case I 
-1-

Fig.12-19 
SOLUTION 
Since the cross section is the same in both cases, the moment of inertia 
about the neutral axis is calculated using one large rectangle and two 
smaller side rectangles. 

I = 1~ (3 in.)(5 in.)3 - 2[ 
1
1
2 

(1 in.)(4 in.)3] = 20.58 in4 

Case I. For this design a single row of nails holds the top or bottom 
flange onto the web. For one of these flanges, 

so that 

VQ 
q =-· I , 

Q = y'A' = (2.25 in.](3 in.(0.5 in.)) = 3.375 in3 

40 lb v (3.375 in3
) 

--= 
9 in. 20.58 in4 

V = 27.1 lb Ans. 
Case II. Here a single row of nails holds one of the side boards onto 
the web. Thus, 

Q = y' A' = (2.25 in.](1 in.(0.5 in.)) = 1.125 in3 

F VQ 40 lb V(l.125in3) 
q =- =-· --= 

s I ' 9 in. 20.58 in4 

V = 81.3 lb Ans. 

Or, we can also say two rows of nails hold two side boards onto the web, 
so that 

F VQ 
q = - = - · 

s I ' 

2(40 lb) V(2(1.125 in3)] 

9 in. 20.58 in4 

v = 81.3 lb Ans. 
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FUNDAMENTAL PROBLEMS 

Fl2-6 The two identical boards are bolted together to 
form lhc beam. Determine the maximum spacing s of the 
bolts to the nearest mm if each boll has a shear strength of 
15 kN.1l1e beam is subjected to a shear force of V = 50 kN. 

/( 
LOO mm 

/ 
JOO mm 

7 / 
/ I 

300mm 

I/ 
Prob.Fil~ 

r .,_ Two identical 20-mm-thick plates arc bolted to the 
top and bottom flange to form the built-up beam. If the 
beam is subjected to a shear force of V = 300 kN, determine 
the maximwu spacing s of the bolts to the nearest mm if 
each bolt has a shear strength of 30 kN. 

Prob. rl..::-1 

l~ The boards are bolted together to form lhe built-up 
beam. If the beam is subjected to a shear force of V = 20 kN, 
determine the maxin1wu spacing s of the bolts to the 
nearest mm if each bolt has a shear strength of 8 kN. 

200mm 

sto ,~ ~ 50mm 
150 

o I 
() 

v 

Prob. ;:""12-8 

12-1 The boards are bolted together to form the built-up 
beam. If the beam is subjected to a shear force of V = 15 kip, 
determine the maximwu spacings of the bolts lo the nearest 
kin. if each bolt has a shear strength of 6 kip. 

1 i~o.s in. 

l'i 
4i/( 
j3in. 

I in. 

fJ' 
,.--;j in. 

y 
0 

0 

Prob . • 12-9 
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PROBLEMS 

*12-32. The beam is constructed from two boards 
fastened together at the top and bottom with three rows of 
nails spaced every 4 in. If each nail can support a 400-lb 
shear force, determine the maximum shear force V that can 
be applied to the beam. 

12-33. The beam is constructed from two boards fastened 
together at the top and bottom with three rows of nails spaced 
every 4 in. If a shear force of V = 900 lb is applied to the 
boards, determine the shear force resisted by each nail. 

4 in.>-

~inX o o o 

Probs. 12-32/33 
12-34. The beam is constructed from three boards. If it is 
subjected to a shear of V = 5 kip, determine the maximum 
allowable spacing s of the nails used to hold the top and 
bottom flanges to the web. Each nail can support a shear 
force of 500 lb. 

12-35. The beam is constructed from three boards. 
Determine the maximum shear V that it can support if the 
allowable shear stress for the wood is Ta1iow = 400 psi. What 
is the maximum allowable spacings of the nails if each nail 
can resist a shear force of 400 lb? 

0 

1.5 in. 

J-

T 

Probs. 12-34/35 

*12-36. The double T-beam is fabricated by welding the 
three plates together as shown. Determine the shear stress 
in the weld necessary to support a shear force of V = 80 kN. 

12-37. The double T-beam is fabricated by welding the 
three plates together as shown. If the weld can resist a shear 
stress Tallow = 90 MPa, determine the maximum shear V that 
can be applied to the beam. 

20mm 
I --

! I 
150 

l v 

mm 

50nm~ 75mm ~ SO mm 

- -
20mm 20mm 

Probs. 12-36/37 

12-38. The beam is constructed from three boards. 
Determine the maximum loads P that it can support if the 
allowable shear stress for the wood is TaJJow = 400 psi. What 
is the maximum allowable spacings of the nails used to hold 
the top and bottom flanges to the web if each nail can resist 
a shear force of 400 lb? 

p p 

. . 
Al I 
~ C D l lB 

1--6 t1--l-6 tt--1-6 t1--I 

Prob. 12-38 
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12-39. A beam is constructed from three boards bolted 
together as shown. Determine the shear force in each bolt if 
the bolts arc spaced s = 250 mm apart and the shear is 
V= 35 kN. 

25mm 1m A 
25m/ ,,l_ 

i:J~ 
350mm 

~ 
Prob. 12-39 

*12-40. The simply supported beam is built up from three 
boards by nailing them together as shown. The wood has an 
allowable shear stress of Tanow = 1.S MPa, and an allowable 
bending stress of O'auow = 9 MPa The nails are spaced at 
s = 75 mm, and each has a shear strength of 1.5 kN. 
Determine the maximum allowable force P that can be 
applied to the beam. 

12-4L The simply supported beam is built up from three 
boards by nailing them together as shown. If P = 12 kN, 
determine the maximum allowable spacing s of the nails to 
support that load. if each nail can resist a shear force of LS kN. 

p 

11 
A B 

---1 m------ 1 m-- --l 

." l==f25 mm 

~ mm- ~ }"' 

' • · I 1 25 mm 

I 

Probs. 12-40/41 

12.3 SHEAR FLOW IN BUILT-UP M EMBERS 585 

U-42. The T-beam is constructed as shown. If each nail 
can support a shear force of 950 lb, determine the maximum 
shear force V that the beam can support and the 
corresponding maximum nail spacings to the nearest k in. 
The allowable shear stress for the wood is Ta1io.. = 450 psi. 

'1 
~~ 

2 in. 

Prob. 12-42 

U-43. The box beam is constructed from four boards that 
are fastened together using nails spaced along the beam 
every 2 in. If each nail can resist a shear force of SO lb, 
determine the largest force P that can be applied to the 
beam without causing failure of the nails. 

*12-44. The box beam is constructed from four boards 
that are fastened together using nails spaced along the 
beam every 2 in. If a force P = 2 kip is applied to the beam, 
determine the shear force resisted by each nail at A and B. 

0000000000000 

Probs. 12-43/44 
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12-45. The member consists of two plastic channel strips 
0.5 in. thick, glued together at A and B. If the distributed 
load has a maximum intensity of w0 = 3 kip/ft, determine 
the maximum shear stress resisted by the glue. 

---6ft-------l1---6ft---

,.--( 
3 in. 

~ 
3 in. 

> 

Prob.12-45 

12-46. The member consists of two plastic channel strips 
0.5 in. thick, glued together at A and B. If the glue can 
support an allowable shear stress of Taiiow = 600 psi, 
determine the maximum intensity w0 of the triangular 
distributed loading that can be applied to the member 
based on the strength of the glue. 

,.--( 
3 in. 

~ 
3 in. 

> 

Prob.12-46 

12-47. The beam is made from four boards nailed together 
as shown. U the nails can each support a shear force of 
100 lb., determine their required spacing s ' and s if the 
beam is subjected to a shear of V = 700 lb. 

10 in. 

l 
,.....I l/l.Sin. 

Prob.12-47 

*12-48. The beam is made from three polystyrene strips 
that are glued together as shown. If the glue has a shear 
strength of 80 kPa, determine the maximum load P that can 
be applied without causing the glue to Jose its bond. 

30mm 

-,-
40mm 

I 
-I 

60mm 
I 

- 20mm 

p 

! p 

-,-
40mm 

_I_ ~0.8m -l- 1 m~-1 m-~0.8m~ 
Prob.12-48 

12-49. The timberT-beam is subjected to a load consisting 
of n concentrated forces, P,,. If the allowable shear V,,a;1 for 
each of the nails is known, write a computer program that 
will specify the nail spacing between each load. Show an 
application of the program using the values L = 15 ft, 
a1 = 4 ft, Pt = 600 lb, a2 = 8 ft, Pi = 1500 lb, b1 = 1.5 in. , 
h.1 = 10 in, bi = 8 in, h.2 = 1 in, and V,,.;1 = 200 lb. 

P2 P,. 

l 1- sr1 l A l 
A.,.,i --------------<~B 

'f.,-l~ i 

Prob.12-49 
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CHAPTER REVIEW 

Transverse shear stress in beams is determined indirectly by 
using the flexure formula and the relationship between 
moment and shear (V = dM/dx). The result is the shear 
formula 

VQ 
'T = -

Ir 

In particular, the value for Q is the moment of the area A' 
about the neutral axis, Q = )i' A '. This area is the portion of 
the cross-sectional area that is .. held onto" the beam above 
(or below) the thickness r where 'T is to be determined. 

If the beam has a rectangular cross section, then the 
shear-stress distribution will be parabolic, having a maximum 
value at the neutral axis. For this special case, the maximum 
shear stress can be determined using 

v 
'T =15-mox • A 

Fasteners, such as nails, bolts, glue, or weld, are used to 
connect the composite parts of a .. built-up" section. The 
shear force resisted by these fasteners is determined from 
the shear Oow, q, or force per unit length, that must be 
supported by the bcam. l11c shear flow is 

VQ 
q=-

1 

CHAPTER REVIEW 587 

Area= A' 

A 

N 

Shear-stress distribution 

A 
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REVIEW PROBLEMS 

R12-L The beam is fabricated from four boards nailed 
together as shown. Determine the shear force each nail 
along the sides C and the top D must resist if the nails are 
uniformly spaced at s = 3 in. The beam is subjected to a 
shear of V = 4.5 kip. 

12 in. 

1 ,,-! !-" 1 in . 

Prob. R12-1 

R12-2. The T-beam is subjected to a shear of V = 150 kN. 
Determine the amount of this force that is supported by 
the webB. 

V= 150 kN 

B 

Prob. R12-2 

R12-3. The member is subjected to a shear force of 
V = 2 kN. Determine the shear flow at points A, B, and C. 
The thickness of each thin-walled segment is 15 mm. 

B 

-,
lOOmm 

_I_ 

300mm 

V= 2kN 

Prob. R12-3 

*R12-4. The beam is constructed from four boards glued 
together at their seams. If the glue can withstand 75 lb/in., 
what is the maximum vertical shear V that the beam can 
support? What is the maximum vertical shear V that the 
beam can support if it is rotated 90° from the position shown? 

-, 
= 3 in. 
• 1 o.5 in. 
- ~__., 

f'-'-':'l-":......,i;::-1 - , 

-j-4in.-f(-
0.5 in. 0.5 in. 

Prob. R12-4 
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R12-S. Determine the shear stress at points B and C on 
the web of the beam located at section a-a. 

R12-6. Determine the maximum shear stress acting at 
section a-a in the beam. 

80001b 
150 lb/ft 

! ! a C • 

A 
r /01 

D 
_u_ jo ' 

I 4 ft 4 fl I 1.5 fl 1.5 fl 

21 inl. 0.75 in. 

-=- lJ 
c£ I 6lin. 

0.5 in.jJcB 1 I 
r=1-r1 
4 m. 0.75 in. 

Probs. R12-5/6 

R12-7. The beam supports a vertical shear of V = 7 kip. 
Determine the resultant force this develops in segment AB 
of the beam. 

0.5 in. 0.5 in. 

V=7 kip 

Prob. R12-7 

REVIEW PROBLEMS 589 

*RU-3. The member consists of two triangular plastic 
strips bonded together along AB. If the glue can support an 
allowable shear stress of 'T.iiow = 600 psi, determine the 
maximum vertical shear V that can be applied to the 
member based on the strength of the glue. 

6 in. 

Prob. R12-8 

R12-9. U the pipe is subjected to a shear of V = 15 kip. 
determine the maximum shear stress in the pipe. 

2.3 in. 

v 

Prob. R12-9 
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CHAPTER 13 

(© lmageBroker/Alamy) 

The offset hanger supporting this ski gondola is subjected to the combined 
loadings of axial force and bending moment. 
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COMBINED 
LOADINGS 

CHAPTER OBJECTIVES 

• To analyze the stresses in thin-walled pressure vessels. 

• To show how to find the stresses in members subjected to combined 
loadings. 

13.1 THIN-WALLED PRESSURE 
VESSELS 

Cylindrical or spherical pressure vessels are commonly used in industry 
to serve as boilers or storage tanks. The stresses acting in the wall of these 
vessels can be analyzed in a simple manner provided it has a thin wall, that 
is, the inner-radius-to-wall-thickness ratio is 10 or more (r/t > 10). 
Specifically, when r/t = 10 the results of a thin-wall analysis will predict 
a stress that is approximately 4% less than the actual maximum stress in 
the vessel. For larger r/ t ratios this error will be even smaller. 

In the following analysis, we will assume the gas pressure in the vessel 
is the gage pressure, that is, it is the pressure above atmospheric pressure, 
since atmospheric pressure is assumed to exist both inside and outside 
the vessel's wall before the vessel is pressurized. 

Cylindrical pressure vessels, such as this gas 
tank, have semispherical end caps rather 
than Oat ones in order to reduce the stress 
in the tank. 

591 
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592 CHAPTER 13 COMBINED LOADINGS 

(a) 

(b) 

I 

(c) 

Fig.13-1 

)' 

Cylindrical Vessels. The cylindrical vessel in Fig. 13- la has a wall 
thickness t, inner radius r, and is subjected to an internal gas pressure p. 
To find the circumferential or hoop stress, we can section the vessel by 
planes a, b, and c. A free-bodly diagram of the back segment along with 
its contained gas is then shown in Fig. 13- lb. Here only the loadings in 
the x direction are shown. They are caused by the uniform hoop stress u1, 

acting on the vessel's wall, and the pressure acting on the vertical face of 
the gas. For equilibrium in the x direction, we require 

2F. = O· x , 2(u1(t dy)] - p(2r dy) = 0 

(13- 1) 

The longitudinal stress can be determined by considering the left 
portion of section b, Fig. 13- la. As shown on its free-body diagram, 
Fig. 13- lc, u2 acts uniformly throughout the wall, and p acts on the 
section of the contained gas. Since the mean radius is approximately 
equal to the vessel's inner radius, equilibrium in they direction requires 

2F. = O· y , 

(13-2) 

For these two equations, 

<Ti, u 2 = the normal stress in the hoop and longitudinal directions, 
respectively. Each is assumed to be constant throughout the 
wall of the cylinder, and each subjects the material to tension. 

p = the internal gage pressure developed by the contained gas 
r = the inner radius of the cylinder 
t = the thickness of the wall (r /t =::: 10) 
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13.1 THIN-WALLED PRESSURE VESSELS 5 9 3 

By comparison, note that the hoop or circumferential stress is twice as 
large as the longitudinal or axial stress. Consequently, when fabricating 
cylindrical pressure vessels from rolled-formed plates, it is important that 
the longitudinal joints be designed to carry twice as much stress as the 
circumferential joints. 

Spherical Vessels. We can analyze a spherical pressure vessel in a 
similar manner. If the vessel in Fig. 13-2a is sectioned in half, the resulting 
free-body diagram is shown in Fig. 13-2b. Like the cylinder, equilibrium 
in they direction requires 

(13- 3) 

This is the same result as that obtained for the longitudinal stress in the 
cylindrical pressure vessel, although this stress will be the same regardless 
of the orientation of the hemispheric free-body diagram. 

Limitations. The above analysis indicates that an element of material 
taken from either a cylindrical or a spherical pressure vessel is subjected 
to biaxial stress, i.e. , normal stress existing in only two directions. 
Actually, however, the pressure also subjects the material to a radial 
stress, u3 , which acts along a radial line. This stress has a maximum value 
equal to the pressure p at the interior wall and it decreases through the 
wall to zero at the exterior surface of the vessel, since the pressure there 
is zero. For thin-walled vessels, however, we will ignore this stress 
component, since our limiting assumption of r/t = 10 results in a 2 and 
u1 being, respectively, 5 and 10 times higher than the maximum radial 
stress, (u3)max = p . Finally, note that if the vessel is subjected to an 
external pressure, the resulting compressive stresses within the wall may 
cause the wall to suddenly collapse inward or buckle rather than causing 
the material to fracture. 

This thin-walled pipe was subjected to an 
excessive gas pressure that caused it to rupture 
in the circumferential or hoop direction. The 
stress in this direction is twice that in the axial 
direction as noted by Eqs. 13-1 and 13-2. 

x 

(a) 

I 

(b) 

Fig.13-2 

y 
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I EXAMPLE 13.1 

A cylindrical pressure vessel has an inner diameter of 4 ft and a thickness 
of ~ in. Determine the maximum internal pressure it can sustain so that 
neither its circumferential nor its longitudinal stress component exceeds 
20 ksi. Under the same conditions, what is the maximum internal pressure 
that a similar-size spherical vessel can sustain? 

SOLUTION 

Cylindrical Pressure Vessel. The maximum stress occurs in the 
circumferential direction. From Eq.13-1 we have 

pr 
<T - - · 

I - t ' 20 k
. ;· 2 p(24 in.) 
Ip Ill = I . 

210. 

p = 417psi Ans. 

Note that when this pressure is reached, from Eq. 13-2, the stress in the 
longitudinal direction will be u 2 = ! (20 ksi) = 10 ksi, and the maximum 
stress in the radilll direction is at the inner wall of the vessel, 
(u3)max = p = 417 psi.Thisvalueis48tirnessmallerthanthecircurnferential 
stress (20 ksi), and as stated earlier, its effect will be neglected. 

Spherical Vessel. Here the maximum stress occurs in any two 
perpendicular directions on an element of the vessel, Fig. 13- 2a. From 
Eq. 13- 3, we have 

pr 
<T - - · 2 - 2t' 

. . 2 p(24 in.) 
20k1p/m = ( 1 . ) 

2 2m. 

p = 833 psi Ans. 

NOTE: Although it is more difficult to fabricate, the spherical pressure 
vessel will carry twice as much internal pressure as a cylindrical vessel. 
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PROBLEMS 

13-L A spherical gas tank has an inner radius of r = 1.5 m. 
If it is subjected to an internal pressure of p = 300 kPa, 
determine its required thickness if the maximum normal stress 
is not to exceed 12 MPa. 

13-2. A pressurized spherical tank is made of 0.5-in.-thick 
steel. If it is subjected to an internal pressure of p = 200 psi, 
determine its outer radius if the maximum normal stress is 
not to exceed 15 ksi. 

13-3. The thin-walled cylinder can be supported in one of 
two ways as shown. Determine the state of stress in the wall 
of the cylinder for both cases if the piston P causes the 
internal pressure to be 65 psi. The wall has a thickness of 
0.25 in., and the inner diameter of the cylinder is 8 in. 

' 
- -P 1-----'"I 

- 8 in. -

.· 

(a) 

Prob.13-3 

p 

8 in. 

(b) 

*13-4. The tank of the air compressor is subjected to 
an internal pressure of 90 psi. If the inner diameter of the 
tank is 22 in. , and the wall thickness is 0.25 in., determine 
the stress components acting at point A. Draw a volume 
element of the material at this point, and show the results 
on the element. 

Prob.13-4 

13.1 THIN-WALLED PRESSURE VESSELS 595 

13-5. Air pressure in the cylinder is increased by exerting 
forces P = 2 kN on the two pistons, each having a radius 
of 45 mm. If the cylinder has a wall thickness of 2 mm, 
determine the state of stress in the wall of the cylinder. 

13-6. Determine the maximum force P that can be exerted 
on each of the two pistons so that the circumferential stress in 
the cylinder does not exceed 3 MPa. Each piston has a radius 
of 45 mm and the cylinder has a wall thickness of2 mm. 

p 

Probs. 13-5/6 

13-7. A boiler is constructed of 8-mm-thick steel plates 
that are fastened together at their ends using a butt joint 
consisting of two 8-mm cover plates and rivets having a 
diameter of 10 mm and spaced 50 mm apart as shown. If the 
steam pressure in the boiler is 1.35 MPa, determine (a) the 
circumferential stress in the boiler's plate away from the seam, 
(b) the circumferential stress in the outer cover plate along 
the rivet line a-a, and (c) the shear stress in the rivets. 

a 

Prob.13-7 
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*13-8. The steel water pipe has an inner diameter of 12 in. 
and a wall thickness of 0.25 in. If the valve A is opened and 
the flowing water has a pressure of 250 psi as it passes point B, 
determine the longitudinal and hoop stress developed in the 
wall of the pipe at point B. 

13-9. The steel water pipe has an inner diameter of 12 in. 
and a wall thickness of 0.25 in. If the valve A is closed and 
the water pressure is 300 psi, determine the longitudinal and 
hoop stress developed in the wall of the pipe at point B. 
Draw the state of stress on a volume element located on 
the wall. 

~B 
A 

Probs. 13-819 

13-10. The A-36-steel band is 2 in. wide and is secured 
around the smooth rigid cylinder. If the bolts are tightened 
so that the tension in them is 400 lb, determine the normal 
stress in the band, the pressure exerted on the cylinder, and 
the distance half the band stretches. 

/ 
8 in. 

Prob.13-10 

13-lL The gas pipe line is supported every 20 ft by 
concrete piers and also lays on the ground. If there are rigid 
retainers at the piers that hold the pipe fixed, determine the 
longitudinal and hoop stress in the pipe if the temperature 
rises 60° F from the temperature at which it was installed. 
The gas witihin the pipe is at a pressure of 600 lb/ in2• The 
pipe has an inner diameter of 20 in. and thickness of 0.25 in. 
The material is A-36 steel. 

i------20 ft------11 

~~~1'-~~~~~~--<li~~, 

Prob.13-11 

*13-12. A pressure-vessel head is fabricated by welding 
the circular plate to the end of the vessel as shown. If the 
vessel sustains an internal pressure of 450 kPa, determine 
the average shear stress in the weld and the state of stress in 
the wall oft he vessel. 

l-450mm -I 

f 10mm 

20mm 

Prob.13-12 
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13-13. An A-36-steel hoop has an inner diameter of 
23.99 in., thickness of 0.25 in., and width of 1 in. If it and the 
24-in.-diameter rigid cylinder have a temperature of 65° F, 
determine the temperature to which the hoop should be 
heated in order for it to just slip over the cylinder. What is the 
pressure the hoop exerts on the cylinder, and the tensile stress 
in the ring when it cools back down to 65° F? 

Prob.13-13 

13-14. The ring, having the dimensions shown, is placed 
over a flexible membrane which is pumped up with a 
pressure p. Determine the change in the inner radius of the 
ring after this pressure is applied. The modulus of elasticity 
for the ring is E. 

w 

p 

Prob.13-14 

13-15. The inner ring A has an inner radius r 1 and outer 
radius r2• The outer ring B has an inner radius r3 and an outer 
radius r4 , and r2 > r3. If the outer ring is heated and then 
fitted over the inner ring, determine the pressure between 
the two rings when ring B reaches the temperature of the 
inner ring. The material has a modulus of elasticity of E and 
a coefficient of thermal expansion of a. 

A B 

Prob.13-15 

1 3.1 THIN-WALLED PRESSURE V ESSELS 597 

*13-16- Two hemispheres having an inner radius of 2 ft 
and wall thickness of 0.25 in. are fitted together, and the 
inside pressure is reduced to - 10 psi. If the coefficient 
of static friction is µ,, = 0.5 between the hemispheres, 
determine (a) the torque T needed to initiate the rotation 
of the top hemisphere relative to the bottom one, (b) the 
vertical force needed to pull the top hemisphere off the 
bottom one, and (c) the horizontal force needed to slide 
the top hemisphere off the bottom one. 

Prob.13-16 

13-17. In order to increase the strength of the pressure vessel, 
filament winding of the same material is wrapped around the 
circumference of the vessel as shown. If the pretension in the 
filament is T and the vessel issubjected to an internal pressurep, 
determine the hoop stresses in the filament and in the wall 
of the vessel. Use the free-body diagram shown, and assume 
the filament winding has a thickness 1' and width w for a 
corresponding length L of the vessel. 

Prob.13-17 
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This chimney is subjected to the combined 
internal loading caused by the wind and the 
chimney's weight. 

13.2 STATE OF STRESS CAUSED BY 
COMBINED LOADINGS 

In the previous chapters we showed how to determine the stress in a 
member subjected to either an internal axial force, a shear force, a bending 
moment, or a torsional moment. Most often, however, the cross section of 
a member will be subjected to several of these loadings simultaneously, 
and when this occurs, then the method of superposition should be used to 
determine the resultant stress. The following procedure for analysis 
provides a method for doing this. 

PROCEDURE FOR ANALYSIS 

Here it is required that the material be homogeneous and behave in 
a linear elastic manner. Also, Saint-Venant's principle requires that 
the stress be determined at a point far removed from any 
discontinuities in the cross section or points of applied load. 

Internal Loading. 

• Section the member perpendicular to its axis at the point 
where the stress is to be determined; and use the equations of 
equilibrium to obtain the resultant internal normal and shear 
force components, and the bending and torsional moment 
components. 

• The force components should act through the centroid of the 
cross section, and the moment components should be calculated 
about centroidal axes, which represent the principal axes of 
inertia for the cross section. 

Stress Components. 

• Determine the stress component associated with each internal 
loading. 

Normal Force. 

• The normal force is related to a uniform normal-stress 
distribution determined from <T = N /A. 
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Shear Force. 

• The shear force is related to a shear-stress distribution 
determined from the shear formula , T = V Q / It. 

Bending Moment. 

• For straight members the bending moment is related to a 
normal-stress distribution that varies linearly from zero at 
the neutral axis to a maximum at the outer boundary of the 
member. This stress distribution is determined from the 
flexure formula,u = -My/ I. If the member is curved, the 
stress distribution is nonlinear and is determined from 
u = My/ (A e(R - y)]. 

Torsional Moment. 

• For circular shafts and tubes the torsional moment is 
related to a shear-stress distribution that varies linearly 
from zero at the center of the shaft to a maximum at the 
shaft's outer boundary. This stress distribution is 
determined from the torsion formula,T = Tp/l. 

Thin-Walled Pressure Vessels. 

• If the vessel is a thin-walled cylinder, the internal pressure 
p will cause a biaxial state of stress in the material such 
that the hoop or circumferential stress component is 
u 1 = pr/t, and the longitudinal stress component is 
u2 = pr/21. If the vessel is a thin-walled sphere, then the 
biaxial state of stress is represented by two equivalent 
components, each having a magnitude of u2 = pr /21. 

Superposition. 

• Once the normal and shear stress components for each loading 
have been calcuJated , use the principle of superposition and 
determine the resultant normal and shear stress components. 

• Represent the results on an element of material located at a 
point, or show the results as a distribution of stress acting over 
the member's cross-sectional area. 

Problems in this section, which involve combined loadings, serve as a 
basic review of the application of the stress equations mentioned above. 
A thorough understanding of how these equations are applied, as 
indicated in the previous chapters, is necessary if one is to successfully 
solve the problems at the end of this section. The following examples 
should be carefully studied before proceeding to solve the problems. 

When a pretension force F is developed in 
the blade of this coping saw, it wiU produce 
both a compressive force F and bending 
moment M at 1he section AB o( the frame. 
The ma1erial must therefore resist the 
normal stress produced by both of these 
loadings. 
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I EXAMPLE 13.2 I 
150Jb 

I 5 in. I 5 in. I 
--:7----::7.:::::....---..i:~:f;~2 in. 

2 in. 

B 

B 

(a) 

Fig.13-3 

c 

150Jb 

c 
750 lb·in. 

1501b 
(b) 

~ 
A±l:b :r.Jc 

3.75 psi 

Normal force 

(c) 

A force of 150 lb is applied to the edge of the member shown in Fig. 13- 3a. 
Neglect the weight of the member and determine the state of stress at 
points B and C. 

SOLUTION 

Internal Loadings. The member is sectioned through B and C, 
Fig. 13- 3b. For equilibrium at the section there must be an axial force of 
150 lb acting through the centroid and a bending moment of 750 lb · in. 
about the centroidal principal axis, Fig. 13-3b. 

Stress Components. 

Normal Force. The uniform normal-stress distribution due to the 
normal force is shown in Fig. 13- 3c. Here 

N 150 lb . 
CT = - = ( O. )( . ) = 3.75 psi A 1 m. 4m. 

Bending Moment. The normal-stress distribution due to the bending 
moment is shown in Fig. 13- 3d. The maximum stress is 

Mc 750 lb · in. (5 in.) . 
<Tmax = - = 1 = 11.25 psi 

I 12 (4in.)(10in.)3 

Superposition. Algebraically adding the stresses at B and C, we get 

N Mc 3 . . 5 . ( . ) 
<Ts = - A + I = - .75 psi + 11.25 psi = 7. psi tension Ans. 

N Mc 3 . . . ( . ) <Tc = - A - I= - .75 psi - 11.25 psi = -15 psi compress10n 

Ans. 

These results are shown in Figs. 13- 3/ and 13- 3g. 
NOTE: The resultant stress distribution over the cross section is shown in 
Fig. 13- 3e, where the location of the line of zero stress can be determined 
by proportional triangles; i.e., 

7.5 psi 15 psi . 
x - (lOin. -x); x = 3.33m. 

+ 

Bending moment 

(d) 

c 
7.5p~ I JM !1 15psi 

- x -I 
(10 in. - x) 

Combined loading 

(e) 

B~ ~ i c i 
7.5 psi 

(f) 

15 psi 

(g) 
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EXAMPLE 13.3 
- -
The gas tank in Fig. 13--4a has an inner radius of 24 in. and a thickness of 
0.5 in. If it supports the 1500-lb load at its top, and the gas pressure within it 
is 2 lb /in2, determine the state of stress at point A. 

SOLUTION 

Internal Loadings. The free-body diagram of the section of the tank 
above point A is shown in Fig. 13--4b. 

Stress Components. 

Circumferential Stress. Since r /t = 24 in./0.5 in. = 48 > 10, the tank 
is a thin-walled vessel.Applying Eq.13- 1, using the inner radius r = 24 in., 
we have 

pr 2 lb/in2 (24 in.) . 
u1 = - = = 96 psi 

l 0.5 in. 
Ans. 

Longitudinal Stress. Here the wall of the tank uniformly supports the 
load of 1500 lb (compression) and the pressure stress (tensile). Thus, we 
have 

N pr 1500 lb 2 lb/in2 (24 in.) 
~= - -+ -= - + 

A 2t 1T[(24.5 in.)2 - (24 in.)2] 2 (0.5 in.) 

= 28.3 psi Ans. 

Point A is therefore subjected to the biaxial stress shown in Fig. 13--4c. 

1500lb 
I= 0.5 in. 

1500lb 

A 

_aIJJJ1,, 
A 

(a) (b) 

Fig. 13-4 

!28.3 psi 

____r=-,~
LJJJ 96 psi 
Al 

(c) 
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I EXAMPLE 13.4 1 

c 

The member shown in Fig. 13-5a has a rectangular cross section. Determine 
the state of stress that the loading produces at point C and point D. 

~~mm D t 
12r mm 

j c-

1-1.5m l c 

A 
125mm 

1.5 m 
50mm l 

1-----4 m------·1--

(a) 

1-----4 m _____ _, 

16.45 kN 1 
0.75m 

21.93 kN 
0.75m 

J 

(b} 

1-i.5m~I v 

16.45kN1 ji'M N 

21.93 kN 

SOLUTION 

(c) 

Fig.13-5 

lm 

Internal Loadings. The support reactions on the member have been 
determined and are shown in Fig. 13- 5b. (As a review of statics, apply 
2MA = 0 to show F 8 = 97.59 kN.) If the left segment AC of the member 
is considered, Fig.13- 5c, then the resultant internal loadings at the section 
consist of a normal force, a shear force, and a bending moment. They are 

N = 16.45 kN V = 21.93 kN M = 32.89 kN · m 
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c 

Normal force 

(d) 

Stress Components at C. 

+ 

Shear force 

(e) 

Fig. 13-5 (cont.) 

+ 

Normal Force. The unifo rm normal-stress distribution acting over the 
cross section is produced by the normal force, Fig. 13- 5d. At point C: 

N 16.45(103) N 
<Tc = -A = -(0-.0-5_0_m_)_(0-.25- 0_m_) = 1.32 MPa 

Shear Force. Here the area A' = 0, since point C is located at the top 
of the member. Thus Q = y A' = 0, Fig.13-5e. The shear stress is therefore 

Tc = 0 

Bending Moment. Point C is located at y = c = 0.125 m from the 
neutral axis, so the bending stress at C, Fig. 13-5/, is 

Mc (32.89(103) N · m)(0.125 m) 
u: = - = • = 63.16MPa 
c I [ fi (0.050 m) (0.250 m)') 

Superposition. There is no shear-stress component.Adding the normal 
stresses gives a compressive stress at C having a value of 

<rc = 1.32 MPa + 63.16 MPa = 64.5 MPa Ans. 

This result, acting on an e lement at C, is shown in Fig. 13- 5g. 

Stress Components at D. 

Normal Force. This is the same as at C, <r 0 = 1.32 MPa, Fig. 13-5d. 

Shear Force. Since D is at the neutral axis, and the cross section is 
rectangular, we can use the special form of the shear formula, Fig. 13-5e. 

V 21.93(103
) N 

To = 1.5 A = 1.5 (0.25 m )(0.05 m) = 2.63 MPa Ans. 

Bending Moment. Here D is on the neutral axis and so er 0 = 0. 

Superposition. The resultant stress on the element is shown in Fig. 13-5h. 

Bending moment 

(f) 

64.5 MPa 

(g) 

2.63 MPa 

--\ jl-t.32 MPa 

(h) 
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I EXAMPLE 13.s I 

Ny = 500 lb 

(b) 

The solid rod shown in Fig. 13--6a has a radius of 0.75 in. If it is subjected to 
the force of 500 lb, determine the state of stress at point A . 

SOLUTION 

Internal Loadings. The rod is sectioned through point A. Using the 
free-body diagram of segment AB, Fig. 13- 6b, the resultant internal 
loadings are determined from the equations of equilibrium. 

IF). = O; 500 lb - Ny = O; Ny = 500 lb 

'I.Mz = O; 500 lb(14 in.) - Mz = O; Mz = 7000 lb · in. 

In order to better "visualize" the stress distributions due to these loadings, 
we can consider the equal but opposite resultants acting on segment AC, 
Fig. 13--6c. 

Stress Components. 

Normal Force. The normal-stress distribution is shown in Fig. 13--6d. 
For point A, we have 

(aA)v = N = ( 
500 1

.b )2 = 283 psi = 0.283 ksi 
· A 'TT 0.75 m. 

Bending Moment. For the moment, c = 0.75 in., so the bending stress 
at point A , Fig. 13--6e, is 

Mc 7000 lb · in.(0.75 in.) 
(aA)y = I= [!7r(0.75 in.)4 ) 

= 21126 psi = 21.13 ksi 

Superposition. When the above results are superimposed, it is seen that 
an element at A, Fig. 13- 6/, is subjected to the normal stress 

(aA)y = 0.283 ksi + 21.13 ksi = 21.4 ksi Ans. 

7000 lb·in. 

~ 
~500lb + 

~1.13 ksi ~1.4 ksi 
Normal force Bending moment 

(c) (d) (e) (f) 

Fig.13-6 
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EXAMPLE 13.6 

The solid rod shown in Fig. 13-7a has a radius of 0.75 in. If it is subjected to 
the force of 800 lb, determine the state of stress at point A. 

SOLUTION 

Internal Loadings. The rod is sectioned through point A. Using the 
free-body diagram of segment AB, Fig. 13-7b, the resultant internal 
loadings are determined from the equations of equilibrium. Take a 
moment to verify these results. The equal but opposite resultants are shown 
acting on segment AC, Fig. 13-7c. 

"i.£. = O; Vz - 800 lb = 0; Vz = 800 lb 
"i.Mx = O; Mx - 800 lb(lO in.) = O; Mr = 8000 lb· in. 

"i.M,, = O; -M,, + 800 1b(14in.) = O; M,, = 112001b·in. 

Stress Components. 
Shear Force. The shear-stress distribution is shown in Fig. 13-7d. For 
point A , Q is determined from the gray shaded semicircular area. Using 
the table in Appendix B, we have 

so that 

4(0.75 in.) [ 1 '] 3 Q = J' A' = 
3

7T 
2 

7r(0.75 in.)- = 0.28125 in-

VQ 800 lb(0.28125 in3
) 

(Ty:)A =fr= [ ~(0.75in.)4 ]2(0.75in.) 
= 604 psi = 0.604 ksi 

Bending Moment. Since point A lies on the neutral axis, Fig.13-7e, the 
bending stress is 

<TA = 0 

Torque. At point A,pA = c = 0.75 in.,Fig.13-7fThus the shear stress is 
Tc 11 200 lb· in.(0.75 in.) . . 

(r,.,)A = - = [' . 4] = 16901 psi= l6.90ks1 
J 27T(0.75 m.) 

Superposition. Here the element of material at A is subjected only to 
a shear stress component, Fig. 13-7g, where 

( r,.z)A = 0.604 ksi + 16.90 ksi = 17.5 ksi Ans. 

+ + 
800 lb 11 200 lb· in. 

c 
/ 

(a) 

M
1 
~ 11 200 lb·in . 

~~ 
M, ~ 8000 lb·inp. 

x,./"' 

(b) 

Fig. 13-7 

16.90 ksi 
(c) 

17.5 ksi 

Shear force Bending moment Torsional moment 

(d) (e) (f) (g) 
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PRELIMINARY PROBLEMS 
P13-L In each case, determine the internal loadings that 
act on the indicated section. Show the results on the left 
segment. 

(a) 

lOON 

300N 

(b) 

(c) 

200N 

SOON 

2m 

(d) Prob. P13-1 

P13-2. The internal loadings act on the section. Show the 
stress that each of these loads produce on differential 
elements located at point A and point B. 

v 

N 

(a) 

M 

(b) Prob. P13-2 
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FUNDAMENTAL PROBLEMS 

.13-1. Determine the normal stress at corners A and B of 
the column. 

500kN 

300kN 

B 

m~Nm 

Prob. F13-1 

• 13-2 Determine the state of stress at point A on the 
cross section at section a-a of the cantilever beam. Show the 
results in a differential element at the point. 

400kN 

,a . 

'a I l-o.sm-

lOOmm 
_L 

1---< 
IOOmm 

Section a-a 

Prob F 3-2 

• 13-3. Determine the state of stress at point A on the 
cross section of the beam at section a-a. Show the results in 
a differential element at the point. 

Pr 113-. 

.13-4. Determine the magnitude of the load P that will 
cause a maximum normal stress of Umax = 30 ksi in the link 
along section a-a. 

• 

.-2in.-
p 

a a 

p 

,---~..L 
I I o.s in. 
1-2in.-IT 

Prob. F13-4 
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Fl3-5. The beam has a rectangular cross section and is 
subjected to the loading shown. Determine the state of 
stress at point B. Show the results in a differential element 
at the point. 

Prob. F13-5 

F13-6. Determine the state of stress at point A on the 
cross section of the pipe assembly at section a-a. Show the 
results in a differential element at the point. 

~mm 
lOOON 

A 
Section a- a 

Prob. F13-6 

F13-7. Determine the state of stress at point A on the 
cross section of the pipe at section a-a. Show the results in a 
differential element at the point. 

~ 
300mm 

y 

Section a- a 

Prob.Fl3-7 

F13-8. Determine the state of stress at point A on the 
cross section of the shaft at section a-a. Show the results in 
a differential element at the point. 

x 

300mm 

300 N 900 N ~mm 

w20mm 

Section a- a 

Prob.Fl3-8 

)' 
lOOmm 
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PROBLEMS 

13-18. Determine the shortest distance d to the edge 
of the plate at which the force P can be applied so that it 
produces no compressive stresses in the plate at section a-a. 
The plate has a thickness of 10 mm and P acts along the 
centerline of this thickness. 

I 
300 

a l 

200m m-K 500 

d 

p 

Prob.13-18 

l 

mm 

a 

mm 

13-19. Determine the maximum distanced to the edge of 
the plate at which the force P can be applied so that it produces 
no compressive stresses on the plate at section a-a. The plate 
has a thickness of 20 mm and P acts along the centerline of 
this thickness. 

*13-20. The plate has a thickness of 20 mm and the force 
P = 3 kN acts along the centerline of this thickness such that 
d = 150 mm. Plot the distribution of normal stress acting along 
section a-a. 

200mm 
o 

p 

d l 

o 

Probs.13-19/20 

13-21. If the load has a weight of (i()O lb, determine 
the maximum normal stress on the cross section of 
the supporting member at section a-a. Also, plot the 
normal-stress distribution over the cross section. 

0 --1+-- 0 lit) 
Section o - o 

• 

Prob. 13-21 

13-22. The steel bracket is used to connect the ends of 
two cables. If the allowable normal stress for the steel is 
u allow = 30 ksi, determine the largest tensile force P that can 
be applied to the cables. Assume the bracket is a rod having 
a diameter of 1.5 in. 

13-23. The steel bracket is used to connect the ends of 
two cables. If the applied force P = 1.50 kip, determine the 
maximum normal stress in the bracket. Assume the bracket 
is a rod having a diameter of 1.5 in. 

Probs. 13-22123 
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*13-24. The column is built up by gluing the two boards 
together. Determine the maximum normal stress on the cross 
section when the eccentric force of P = 50 kN is applied. 

13-25. The column is built up by gluing the two boards 
together. If the wood has an allowable normal stress of 
u allow = 6 MPa, determine the maximum allowable eccentric 
force P that can be applied to the column. 

p 

250n~ 
150 m.:;;;< 

~150mm 
:>' 
75mm 

~ 

<mm ~ 
~ 

Probs. 13-24125 

13-26. The screw of the clamp exerts a compressive force 
of 500 lb on the wood blocks. Determine the maximum 
normal stress along section a-a. The cross section is 
rectangular, 0. 75 in. by 0.50 in. 

13-27. The screw of the clamp exerts a compressive 
force of 500 lb on the wood blocks. Sketch the stress 
distribution along section a-a of the clamp. The cross 
section is rectangular, 0.75 in. by 0.50 in. 

-I 
4 in. 

l 

Probs. 13-26/27 

*13-28. The joint is subjected to the force system shown. 
Sketch the normal-stress distribution acting over section a-a 
if the member has a rectangular cross section of width 0.5 in. 
and thickness 1 in. 

13-29. The joint is subjected to the force system shown. 
Determine the state of stress at points A and B, and sketch 
the results on differential elements located at these points. 
The member has a rectangular cross-sectional area of width 
0.5 in. and th ickness 1 in. 

BCJ 
A 1 in. 

SOOlb 

Probs. 13-28129 

a-I 
2in. 

13-30. The rib-joint pliers are used to grip the smooth 
pipe C. If the force of 100 N is applied to the handles, 
determine the state of stress at points A and B on the cross 
section of the jaw at section a-a. Indicate the results on an 
element at each point. 

lOON 

1-----250 mm----• 

A )'lOmm 

~ 
20 5:5 YJ.s mm 

Section a - a 

Prob.13-30 
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13-31. The t-in.-diameter bolt hook is subjected to the 
load of F = 150 lb. Determine the stress components at 
point A on the shank. Show the result on a volume element 
located at this point. 

*13-32. The i -in.-diameter bolt hook is subjected to the 
load of F = 150 lb. Determine the stress components at 
point B on the shank. Show the result on a volume element 
located at this point. 

1.5 in. A 

/ 
l-2 in.-l- 2 in. -18 

F=1501b 

Probs. 13-31132 

13-33. The block is subjected to the eccentric load shown. 
Detennine the normal stress developed at points A and B. 
Neglect the weight of the block. 

13-34. The block is subjected to the eccentric load shown. 
Sketch the normal-stress distribution acting over the cross 
section at section a-a. Neglect the weight of the block. 

ISOkN 

Probs. 13-33/34 

13-35. The spreader bar is used to lift the 2000-lb tank. 
Determine the state of stress at points A and B. and indicate 
the results on a differential volume element. 

Prob. 13-35 

A 
B~ 
-1(- 1 in. 

l in. 

*13-36. The drill is jammed in the wall and is subjected to 
the torque and force shown. Determine the state of stress 
at point A on the cross section of the drill bit at section a-a. 

13-37. The drill is jammed in the wall and is subjected 
to the torque and force shown. Determine the state of 
stress at point B on the cross section of the drill bit at 
section a-a. 

y 

~400mm--• 
la 

Section a - a 

Probs. 13-36/37 
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13-38. The frame supports the distributed load shown. 
Determine the state of stress acting at point D. Show the 
results on a differential element at this point. 

13-39. The frame supports the distributed load shown. 
Determine the state of stress acting at point £. Show the 
results on a differential element at this point. 

c 
Probs. 13-38/39 

*13-40. The rod has a diameter of 40 mm. If it is subjected 
to the force system shown, determine the stress components 
that act at point A , and show the results on a volume element 
located at this point. 

13-41. Solve Prob. 13-40 for point B. 

y 

100mm 

z 

1500N 

600N 

Probs. 13-40/41 

13-42. The beveled gear is subjected to the loads shown. 
Determine the stress components acting on the shaft at 
point A , and show the results on a volume element located 
at this point. The shaft has a diameter of 1 in. and is fixed to 
the wall at C. 

13-43. The beveled gear is subjected to the loads shown. 
Determine the stress components acting on the shaft at 
point B, and show the results on a volume element located 
at this point. The shaft has a diameter of 1 in. and is fixed to 
the wall at C. 

z 
y 

c 

x 

8 in. 

/ 
Probs. 13-42/43 

*13-44. Determine the normal-stress developed at points 
A and B. Neglect the weight of the block. 

13-45. Sketch the normal-stress distribution acting over 
the cross section at section a-a. Neglect the weight of the 
block. 

6 kip 

3 in. 12 kip 

B 

Probs. 13-44/45 
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1~. The vertebra of the spinal column can support a 
maximum compressive stress of <T max• before undergoing a 
compression fracture. Determine the smallest force P that 
can be applied to a vertebra if we assume this load is applied 
at an eccentric distance e from the centerline of the bone, 
and the bone remains elastic. Model the vertebra as a hollow 
cylinder with an inner radius r, and outer radius r,,. 

p 

Prob.~ 

13-47. The solid rod is subjected to the loading shown. 
Determine the state of stress at point A , and show the results 
on a differential volume element located at this point. 

*13-48. The solid rod is subjected to the loading shown. 
Determine the state of stress at point 8. and show the results 
on a differential volume element at this point. 

13-49. The solid rod is subjected to the loading shown. 
Determine the state of stress at point C. and show the results 
on a differential volume element at this point. 

y 
200mm 

IA 
x 

z 
B 

10 kN 

Probs. 13-47/48149 

13-50. The C-frame is used in a riveting machine. U the 
force at the ram on the clamp at D is P = 8 kN. sketch the 
stress distribution acting over the section a-a. 

13-5L Determine the maximum ram force P that can be 
applied to the clamp at D if the allowable normal stress for 
the material is u allo..• = 180 MPa. 

a-~~-u--a p 

D 

-200 mm-

IOmm 

~}omm 
l, 1,1-

60 mm .I '-I 0 mm 

Probs. 13-50/51 

*13-52. The uniform sign has a weight of 1500 lb and is 
supported by the pipe AB, which has an inner radius of 
2.75 in. and an outer radius of 3.00 in. lf the face of the sign 
is subjected to a uniform wind pressure of p = 150 lb/ft2, 

determine the state of stress at points C and D. Show the 
results on a differential volume element located at each of 
these points. Neglect the thickness of the sign. and assume that 
it is supported along the outside edge of the pipe. 

13-53. Solve Prob. 13-52 for points£ and F. 

150 lb/ft2 

E F 
~o 

A 

z----- 1----Y 
x 

Probs. 13-52153 
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CHAPTER REVIEW 

A pressure vessel is considered to have a 
thin wall provided r / r > 10. If the vessel 
contains gas having a gage pressure p, then 
for a cylindrical vessel, the circumferential 
or hoop stress is 

pr 
U] -

I 

This stress is twice as great as the 
longitudinal stress, 

pr 
U2 = -

21 
Thin-walled spherical vessels have the 
same stress within their walls in all 
directions. It is 

pr 
U 1 = U? = -- 21 

Superposition of stress components can be 
used to determine the normal and shear 
stress at a point in a member subjected to 
a combined loading. To do this, it is first 
necessary to determine the resultant axial 
and shear forces and the resultant 
torsional and bending moments at the 
section where the point is located. Then 
the normal and shear stress resultant 
components at the point are determined 
by algebraically adding the normal and 
shear stress components of each loading. 

VQ 
-r= -

lt 

Tp 
7= -

J 

M" u= --' 
I 
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CONCEPTUAL PROBLEMS 

C13-1. Explain why failure of this garden hose occurred 
near its end and why the tear occurred along its length. Use 
numerical values to explain your result. Assume the water 
pressure is 30 psi. 

Prob. C13-1 

C13-2. This open-ended silo contains granular material. It 
is constructed from wood slats and held together with steel 
bands. Explain, using numerical values, why the bands are 
not spaced evenly along the height of the cylinder. Also, 
how would you find this spacing if each band is to be 
subjected to the same stress? 

Prob. C13-2 

C13-3. Unlike the turnbuckle at B, which is connected 
along the axis of the rod, the one at A has been welded to the 
edges of the rod, and so it will be subjected to additional stress. 
Use the same numerical values for the tensile load in each rod 
and the rod's diameter, and compare the stress in each rod. 

Prob. C13-3 

C13-4. A constant wind blowing against the side of this 
chimney has caused creeping strains in the mortar joints, such 
that the chimney has a noticeable deformation. Explain how 
to obtain the stress distribution over a section at the base of 
the chimney, and sketch this distribution over the section. 

Prob. C13-4 
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REVIEW PROBLEMS 

R13-1. The post has a circular cross section of radius c. 
Determine the maximum radius e at which the load P can 
be applied so that no part of the post experiences a tensile 
stress. Neglect the weight of the post. 

p 

tS1; 

Prob.Rl3-1 

R13-2. The 20-kg drum is suspended from the hook 
mounted on the wooden frame. Determine the state of stress 
at point E on the cross section of the frame at section a-a. 
Indicate the results on an element. 

50mm 
1-1 

25 mm II .£1-' 75mm 
_I 

Section a - a 

0.5 m 0.5 m 
1 B- ;11 m 

11i·~7 )". - - c 

75mm 
b i-1 

·A []1~mm _:z_.:::::::ill.'.~ 1-1-

25 mm 
Section b - b 

Prob.Rl3-2 

R13-3. The 20-kg drum is suspended from the hook 
mounted on the wooden frame. Determine the state of stress 
at point Fon the cross section of the frame at section b-b. 
Indicate the results on an element. 

50mm 
II 

25mm[]£ -1 
75mm 
_J_ 

Section a - a 

75mm 
b 1-i 

_J~_:=~~A~ [] 7f mm 
1-1 

25mm 
Section b - b 

Prob. R13-3 

*Rl3-4. The gondola and passengers have a weight of 
1500 lb and center of gravity at G. The suspender arm AE 
has a square cross-sectional area of 1.5 in. by 1.5 in. , and is 
pin connected at its ends A and £. Determine the largest 
tensile stress developed in regions AB and DC of the arm. 

1.5 in.- 5.5 ft 

G 

Prob. R13-4 
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R13-5. If the cross section of the femur at section a-a can 
be approximated as a circular tube as shown, determine the 
maximum normal stress developed on the cross section at 
section a-a due to the load of 75 lb. 

a - 1-Hf-- O 

Section a-a 

F 

Prob. R13-5 

Rl.3-6. A bar having a square cross section of 30 mm by 
30 mm is 2 m long and is held upward. U it has a mass of 
5 kg/m, determine the largest angle 9. measured from the 
vertical, at which it can be supported before it is subjected 
to a tensile stress along its axis near the grip. 

Prob. R13-6 

REVIEW PROBLEMS 617 

R13-7. The wall hanger has a thickness of 0.25 in. and is 
used to support the vertical reactions of the beam that is 
loaded as shown. If the load is transferred uniformly to 
each strap of the hanger, determine the state of stress at 
points C and D on the strap at A. Assume the vertical 
reaction F at this end acts in the center and on the edge of 
the bracket as shown. 

10 kip 

F 

Prob. R13-7 

*Rl3-8. The wall hanger has a thickness of 0.25 in. and is 
used to support the vertical reactions of the beam that is 
loaded as shown. If the load is transferred uniformly to 
each strap of the hanger, determine the state of stress at 
points C and D on the strap at B. Assume the vertical 
reaction F at this end acts in the center and on the edge of 
the bracket as shown. 

10 kip 

Prob. R13-8 
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CHAPTER 14 

These turbine blades are subjected to a complex pattern of stress. For design it is 
necessary to determine where and in what direction the maximum stress occurs. 
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STRESS AND STRAIN 
TRANSFORMATION 

CHAPTER OBJECTIVES 

• To develop the transformation of stress and strain components from 
one orientation of the coordinate system to another orientation. 

• To determine the principal stress and strain and the maximum 

in-plane shear stress at a point. 

• To show how to use Mohr's circle for transforming stress and strain. 

• To discuss strain rosettes and some important material property 

relationships, such as the elastic modulus, shear modulus, and 

Poisson's ratio. 

14.1 PLANE-STRESS TRANSFORMATION 
It was shown in Sec. 7.3 that the general state of stress at a point is 
characterized by six normal and shear-stress components, shown in 
Fig. 14- la. This state of stress, however, is not often encountered in 
engineering practice. Instead, most loadings are coplanar, and so the stress 
these loadings produce can be analyzed in a single plane. When this is the u, 

case, the material is then said to be subjected to plane stress. 

1 
General state of stress 

(a) 

Fig. 14-1 
619 
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620 CHAPTER 14 STRESS AND STRAIN TRANSFORMATION 

)' 

U y 

'T:ry 

(a) 

II 

(b) 

Fig.14-2 

x 
U.T 

x' 

u, 

Plane stress 

(b) 

Fig. 14-1 (cont.) 

The general state of plane stress at a point, shown in Fig. 14-lb, is 
therefore represented by a combination of two normal-stress components, 
a., ay, and one shear-stress component, 7:ry, which act on only four faces of 
the element. For convenience, in this book we will view this state of stress 
in the x- y plane, as shown in Fig. 14-2a. Realize, however, that if this state 
of stress is produced on an element having a different orientation 6, 
as in Fig.14-2b, then it will be subjected to three different stress components, 
a,., ay•, Tr•y•, measured relative to the x' ,y' axes. In other words, the state of 
plane stress at the point is uniquely represented by two normal-stress 
components and one shear-stress component acting on an element. To be 
equivalent, these three components will be different for each specific 
orientation (J of the element at the point. 

If these three stress components act on the element in Fig. 14-2a, we 
will now show what their values will have to be when they act on the 
element in Fig.14-2b. This is similar to knowing the two force components 
F, and Fy directed along the x, y axes, and then finding the force 
components Ft' and Fy' directed along the x', y' axes, so they produce 
the same resultant force. The transformation of force must only account 
for the force component's magnitude and direction. The transformation 
of stress components, however, is more difficult since it must account for 
the magnitude and direction of each stress and the orientation of the 
area upon which it acts. 
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14.1 PLANE-STRESS TRANSFORMATION 621 

PROCEDURE FOR ANAL YS/S 

If the state of stress at a point is known for a given orientation of an 
element, Fig. 14-3a, then the state of stress on an element having 
some other orientation 8. Fig. 14-3b, can be determined as follows. 

• The normal and shear stress components ax· , 'x'y' acting on 
the +x' face of the element, Fig. 14-3b, can be determined 
from an arbitra ry section of the e lement in Fig. 14-3a as 
shown in Fig. 14-3c. If the sectioned area is ~. then the 
adjacent areas of the segment will be ~A sin 8 and ~ cos 8. 

• Draw the free-body diagram of the segment, which requires 
showing the forces that act on the segment, Fig. 14-3d. This is 
done by multiplying the stress components on each face by the 
area upon which they act. 

• When "i.F'.r· = 0 is applied to the free-body diagram, the area 
~A will cancel out of each te rm and a direct solution for <T.r· 
will be possible. Likewise, If'y· = 0 will yield ' x'y' · 

• If <ry· , acting on the +y' face of the element in Fig. 14-3b, is to 
be determined, then it is necessary to consider an arbitrary 
segment of the element as shown in Fig. 14-3e. Applying 
lf'y· = 0 to its free-body diagram will give a y'· 

y' 
y 

y'\ 
y' \ x' Try AA x' \ / 

y' face 

0 x u , AA cosO u,·AA 
u 'I' / 

x ' 

t-+-- u, 
,.,,.AA cos 0 

AA sin 0 'TxyAA sin 0 

u1 AA sin 9 <Ty 

(c) (d) (e) 

Fig. 14-3 

y 

I 
U y 

Try 

U r 
- X 

x fa ce 

(a) 

II 

y' 

\ 

(b) 
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622 CHAPTER 14 STRESS AND STRAIN TRANSFORMATION 

I EXAMPLE 14.1 

~A 
.O.A sin 30"~ 

y'~ 
25 .O.A sin 30" 

.O.A cos 30" 

(b} 

x' 

k-x 

300 
50 .O.A cos 30° 

(c) 

Fig.14-4 

The state of plane stress at a point on the surface of the airplane fuselage is 
represented on the element oriented as shown in Fig. l4-4a. Represent the 
state of stress at the point on an element that is oriented 30° clockwise from 
this position. 

b 1000 
50MPa 

0 

a 

>J' t- "'MP• 
(a) 

'=::::'.::!:::::::;~.5 MPa 
b a 

SOLUTION 
The rotated element is shown in Fig.14-4d.To obtain the stress components 
on this element we will first section the element in Fig. l4-4a 
by the line a-a. The bottom segment is removed, and assuming the 
sectioned (inclined) plane has an area ~A, the horizontal and vertical 
planes have the areas shown in Fig. 14-4b. The free-body diagram of this 
segment is shown in Fig. 14-4c. Notice that the sectioned x' face is defined 
by the outward normal x' axis, and they' axis is along the face. 

Equilibrium. If we apply the equations of force equilibrium in the x' 
and y'directions, not the x and y directions, we will be able to obtain 
direct solutions for u,. and Tr'y' · 

+/'IF. · = O· x ' O:t'~A - (50 dA cos 30°) cos 30° 
+ (25 dA .cos 30°) sin 30° + (80 dA sin 30°) sin 30° 

+ (25 dA sin 30°) cos 30° = O 

u r' = -4.15 MPa Ans. 

r">"dA - (50 ~A cos 30°) sin 30° 
- (25 ~A cos 30°) cos 30° - (80 ~A sin 30°) cos 30° 

+ (25 dA sin 30°) sin 30° = O 

'Tx'y' = 68.8 MPa Ans. 

Since <Tr' is negative, it acts in the opposite direction of that shown in 
Fig. 14-4c. The results are shown on the top of the element in Fig. 14-4d, 
since this surface is the one considered in Fig. 14-4c. 
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14.1 PLANE-STRESS TRANSFORMATION 6 2 3 

We must now repeat the procedure to obtain the stress on the 
perpendicular plane b-b. Sectioning the element in Fig. 14-4a along b-b 
results in a segment having sides with areas shown in Fig.14-4e. Orienting 
the +x' axis outward, perpendicular to the sectioned face, the associated 
free-body diagram is shown in Fig. 14-4f Thus, 

+ 'i.Ifr· = O; ux·dA - (25 dA cos 30") sin 30" 

+ (80 dA cos 30°) cos 30" - {25 M sin 30°) cos 30" 

- (50 M sin 30°) sin 30° = 0 

O'x· = - 25.8 MPa Ans. 

+ .i"IF,,· = O; "x'y' dA + (25 dA cos 30°) cos 30° 

+ (80 dA cos 30°) sin 30° - (25 dA sin 30°) sin 30° 

+ (50 d A sin 30°) cos 30° = O 

Tx'y' = - 68.8 MPa An.1~ 

Since both <Tx• and "~r· are negative quantities, they act opposite to their 
direction shown in Fig. 14-4[ The stress components are shown acting on 
the right side of the element in Fig. 14-4d. 

From this analysis we may therefore conclude that the state of stress at 
the point can be represented by a stress component acting on an element 
removed from the fuselage and oriented as shown in Fig. 14-4a, or by 
choosing one removed and oriented as shown in Fig. 14-4d. In other 
words. these states of stress are equivalent. 

25 4 A cos 30" 

(f) 

Fig. 14-4 (cont.) 

4A cos 300 

b 
{d) 

(c) 

4.15 MPa 

a 

25.SMPa 

www.konkur.in



624 CHAPTER 14 STRESS AND STRAIN TRANSFORMATION 

U y 

+ -rxy 

(a) 

y 

(b) 

+u x 
--x 

u,· / 
x' 

+o 

Positive sign convention 

Fig.14-5 

14. 2 GENERAL EQUATIONS OF 
PLANE-STRESS TRANSFORMATION 

The method of transforming the normal and shear stress components 
from the x, y to the x ', y' coordinate axes, as discussed in the previous 
section, can be developed in a general manner and expressed as a set of 
stress-transformation equations. 

Sign Convention. To apply these equations we must first establish a 
sign convention for the stress components. As shown in Fig. 14-5, the + x 
and +x ' axes are used to define the outward normal on the right-hand 
face of the element, so that <T.r and <T.r' are positive when they act in the 
positive x and x ' directions, and ?:ry and ?:r'y' are positive when they act in 
the positive y and y' directions. 

The orientation of the face upon which the normal and shear stress 
components are to be determined will be defined by the angle 8, which 
is measured from the +x axis to the +x' axis, Fig.14-5b. Notice that the 
unprimed and primed sets of axes in this figure both form right-handed 
coordinate systems; that is, the positive z (or z') axis always points out 
of the page. The angle 8 will be positive when it follows the curl of the 
right-hand fingers, i.e., counterclockwise as shown in Fig. 14-5b. 

Normal and Shear Stress Components. Using this established 
sign convention, the element in Fig. 14-6a is sectioned along the inclined 
plane and the segment shown in Fig. 14-6b is isolated. Assuming the 
sectioned area is ~A, then the horizontal and vertical faces of the 
segment have an area of ~A sin 8 and ~A cos 8, respectively. 

(a) 

1-+--•--x 
fY.T 

Fig.14-6 

y' 

\ 

llA cos 0 

y 

x' 

llA sin 0 

(b) 
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14.2 GENERAL EQUATIONS OF PLANE-STRESS TRANSFORMATION 625 

The resulting free-body diagram of the segment is shown in Fig. 14-6c. 
If we apply the equations of equilibrium along the x ' and y' axes, we can 
obtain a direct solution for <Tx· and rx'y' · We have 

+ J'Il'.,. = O; <Tx·M - (r.rydA sin 8) cos 8 - (uyM sin 8) sin 8 

- (rxyilA cos 8) sin 8 - (uxM cos 8) cos 8 = 0 

<Tx· = <Tx cos2 8 + <Ty sin2 8 + T .ry(2 sin 8 cos 8) 

+'IF,.· = O; TxyilA + (rxyM sin 8) sin 8 - (uyM sin 8) cos 8 

- (':ryilA cos 8) cos 8 + (uxM cos 8) sin 8 = 0 

1'x·y• = (<Ty - u,.) sin 8 cos 8 + r .ry ( cos2 8 - sin2 8) 

To simplify these two equations, use the trigonometric identities sin 28 = 
2 sin 8 cos 8, s in2 8 = (1 - cos 28)/ 2, and cos2 8 = (1 + cos 28)/ 2. 
Therefore, 

<T.r + <Ty 
<T.r· - 2 + 

<T, - <Ty 
· 

2 
cos 28 + 1'xy sin 28 (14-1) 

(14-2) T .r'y' 
<T.r - <Ty 

= -
2 

sin 28 + r,.y cos 28 

Stress Components Acting along x'. y' Axes 

If the normal stress acting in they' direction is needed, it can be obtained 
by simply substituting 8 + 90° for 8 into Eq. 14-1, Fig. 14-6d. This yields 

<Ty• = 
2 

<Tx - <Ty . 

2 
COS 28 - Txy Sill 28 (14-3) 

PROCEDURE FOR ANALYSIS 

To apply the stress transformation Eqs. 14-1 and 14-2, it is simply 
necessary to substitute in the known data for ux, <Ty, TxY' and () in 
accordance with the established sign convention, Fig. 14-5. 
Remember that the x' axis is always directed positive outward from 
the plane upon which the normal stress is to be determined. The 
angle 8 is positive counterclockwise, from the x to the x' axis. If <T.r· 
and ':r'y' are calculated as positive quantities, then these stresses act 
in the positive direction of the x' and y' axes. 

For convenience, these equations can easily be programmed on a 
pocket calculator. 

T.,. .lA COS 0 

y' 

y' 

\ 

0"
1

6 A sin 0 

(c) 

(d) 

Fig. 1~ 

x' 

www.konkur.in



626 CHAPTER 14 STRESS AND STRAIN TRANSFORMATION 

EXAMPLE 14.2 
~ -

50 MPa The state of plane stress at a point is represented on the element shown in 

' 

30• r 

y' 

~ 
B 

t-80MP• 
- 25MPa 

(a) 

y' 

! 
() = - 300 

x 

D 
x' 

(b} 

x' 

() =600 
x 

c 

(c) 

4.15 MPa 

~ 

68.8 MPa 

(d) 

Fig. 14-7 

25.8MPa 

Fig. 14-7a. Determine the state of stress at this point on another element 
oriented 30° clockwise from the position shown. 

SOLUTION 
This problem was solved in Example 14.1 using basic principles. Here 
we will apply Eqs. 14- 1 and 14- 2. From the established sign convention, 
Fig. 14- 5, it is seen that 

<Tr = -80 MPa <Ty = 50 MPa 'Try = - 25 MPa 

Plane CO. To obtain the stress components on plane CD, Fig. 14-7 b, the 
positive x' axis must be directed outward, perpendicular to CD, and the 
associated y ' axis is directed along CD. The angle measured from the x to 
the x ' axis is 6 = -30° (clockwise). Applying Eqs. 14-1 and 14-2 yields 

<Tr + <Tv <Tr - <Tv 
<T • = · · + · · cos26 + Trn sin26 

x 2 2 .. , 

-80 + 50 -80 - 50 

2 
+ 

2 
cos 2(-30°) + (-25) sin 2(-30°) 

= -25.8MPa Ans. 

<T.t - <Ty . 
'T<'y' = -

2 
sin 26 + 'Try cos 26 

-80 - 50 
= -

2 
sin 2(-30°) + (-25) cos 2(-30°) 

= -68.8MPa Ans. 

The negative signs indicate that <T.t' and -i:t'y' act in the negative x' and y ' 
directions, respectively. The results are shown acting on the element in 
Fig.14- 7d. 

Plane SC. Establishing the x ' axis outward from plane BC, Fig. 14- 7c, 
then between the x and x ' axes, 6 = 60° (counterclockwise). Applying 
Eqs.14-1and14- 2,* we get 

<Tt' = -80 2+ 50 + -80 2- 50 cos 2(600) + (-25) sin 2(600) 

= -4.15 MPa 

-80 - 50 
-i:t'y' = -

2 
sin 2(60°) + (-25) cos 2(60°) 

= 68.8MPa 

Ans. 

Ans. 

Here T<'y' has been calculated twice in order to provide a check. The 
negative sign for u" indicates that this stress acts in the negative x ' 
direction, Fig. 14-7c. The results are shown on the element in Fig. 14-7d. 

*Alternatively, we could apply Eq. 14-3 with (I = - 300 rather than Eq. 14-1. 
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14.3 PRINCIPAL STRESSES AND MAXIMUM IN-PLANE SHEAR STRESS 627 

14.3 PRINCIPAL STRESSES AND 
MAXIMUM IN-PLANE SHEAR 
STRESS 

Since ux, u,,, T:ry are all constant, then from Eqs. 14-1 and 14-2 it can be 
seen that the magnitudes of u x· and "x'y' only depend on the angle of 
inclination 8 of the planes on which these stresses act. In engineering 
practice it is often important to determine the orientation that causes the 
normal stress to be a maximum, and the orientation that causes the shear 
stress to be a maximum. We will now consider each of these cases. 

In-Plane P incip I Stresses. To determine the maximum and 
minimum normal stress, we must differentiate Eq. 14-1 with respect to 0 
and set the result equal to zero. This gives 

du..-
-- = 
d8 

U.r - Uy 

2 
(2 sin 20) + 2-rxy cos 20 = 0 

Solving we obtain the orientation 0 = O" of the planes of maximum and 
minimum normal stress. 

tan 28" = ( )/ 
Ux - Uy 2 

(14-4) 

Orientation of Principal Planes 

T 

J (Ux; Uyr+T.ry2 

I 
The solution has two roots, Op, and OPl. Specifically, the values of 28p, and 
20P2 are 180° apart, so Op, and 8"

2 
will be 90° apart. 

T .ry 

~,..,.~~~t:;:.t"'-"--'--'-----'--'-l ~u 

I I I 

fig. 14--8 

The cracks in this concrele beam 
were caused by 1ension slrcss, even 
though the beam was subjeclcd to 
both an inte rnal momenl and shear. 
The stress 1ransforma1ion equal ions 
can be used 10 predicl the direclion 
of the cracks, and the principal 
normal stresses that caused !hem. 
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628 CHAPTER 14 STRESS AND STRAIN TRANSFORMATION 

To obtain the maximum and minimum normal stress, we must 
substitute these angles into Eq. 14-1. Here the necessary sine and cosine 
of 28p, and 21JP

2 
can be found from the shaded triangles shown in 

Fig. 14-8, which are constructed based on Eq. 14-4, assuming that 7:ry and 
(a:, - ay) are both positive or both negative quantities. 

After substituting and simplifying, we obtain two roots, a1 and a 2. 

They are 

_ a, + ay /(a, - ay)2 
2 

a1.2 -
2 

+ \j 
2 

+ ?:ry (14-5) 

Principal Stresses 

These two values, with a1 > a 2, are called the in-plane principal stresses, 
and the corresponding planes on which they act are called the principal 
planes of stress, Fig. 14-9. Fmally, if the trigonometric relations for 8p, or 
8P

2 
are substituted into Eq. 14-2, it will be seen that 7:r'y' = O; in other 

words, no shear stress acts on the principal planes, Fig. 14-9. 

'Txy 

- - "·' 

II 

In-plane principal stresses 

Fig.14-9 
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Maximum In Plane Shear Stress. The orientation of the element 
that is subjected to maximum shear stress can be determined by taking 
the derivative of Eq. 14-2 with respect to 8, and setting the result equal to -,-
zero. This gives .... , 

- (ax - a,.)/2 
tan 28, = Txy I {14-6) 

Orientation of Maximum In-Plane Shear Stress 

The two roots of this equation, 8,
1 

and 8,
1

, can be determined from the 
shaded triangles shown in Fig.14-lOa.Since tan 28...,Eq.14-6,is the negative 
reciprocal of tan 28P, Eq. 14-4, then each root 20s is 90° from 28P, 
and the roots 8, and (JP are 45° apart. Therefore, an element subjected to 
maximum shear stress must be oriented 45° from the position of an 
element that is subjected to the principal stress. 

The maximum shear stress can be found by taking the trigonometric 
values of sin 28, and cos 28s from Fig. 14-10 and substituting them into 
Eq. 14-2. The result is 

~~~~~~~~~~~~~ 

{14-7) ~( )

2 <7.r - Uy 
2 

T 111:u1 = + 1:ry •• .,,b.. 2 . 

Maximum In-Plane Shear Stress 

Here r:::;..,. is referred to as the maximum in-plane shear stress, because 
it acts on the element in the x-y plane. 

Finally, when the values for sin 28, and cos 28, are substituted into 
Eq. 14-1, we see that there is also an average normal stress on the planes 
of maximum in-plane shear stress. It is 

Uavg = 2 
{14-8) 

Average Normal Stress 

For numerical applications, it is suggested that Eqs. 14-1through14-8 be 
programmed for use on a pocket calculator. 

IMPORTANT POINTS 

• The principal stresses represent the maximum and minimum 
normal stress at the point. 

• When the state of stress is represented by the principal stresses, 
no shear stress will act on the element. 

• The state of stress at the point can also be represented in terms 
of the maximum in-plane shear stress. In this case an average 
normal stress will a lso act on the element. 

• The element representing the maximum in-plane shear stress 
with the associated average normal stresses is oriented 45° 
from the e lement representing the principal stresses. 

T 

(a) 

x' 

-~ I e,, 

Maximum in-plane shear stresses 

(b) 

Fig. 14-10 
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EXAMPLE 14.3 
~ -

90MPa 

The state of stress at a point jus~ before failure of this shaft is shown in 
Fig.14-lla. Represent this state of stress in terms of its principal stresses. 

SOLUTION 
From the established sign convention, 

u = -20MPa x <ry = 90MPa Try = 60 MPa 

Orientation of Element. Applying Eq. 14-4, 

-:i:rv 60 
tan 28 = , = ------

P (ur - <ry)/2 (-20 - 90)/2 

Solving, and referring to this first angle as Op,, we have 

2op, = -47.49° op, = -23.7° 

--+----+ 60 MPa Since the difference between 28p, and 20p, is 180°, the second angle is 

y' 

~ 

(a) 

(b) 

i.+-- 20MPa 

x' 

x' 

u 1 =116 MPa 

fJP, = 23.7° 

u 2 = 46.4 MPa 

(c) 

Fig.14-11 

20p, = 180° + 20p, = 132.51° Op, = 66.3° 

In both cases, 0 must be measured positive counterclockwise from the 
x axis to the outward normal (x' axis) on the face of the element, and so 
the element showing the principal stresses will be oriented as shown in 
Fig. 14-llb. 

Principal Stress. We have 

u, + <Ty f (u• - <Ty )2 2 
<Tt,2 = 2 + \J 2 + -i:ry 

= -20 2+ 90 + ~(-20 2- 90)
2 

+ (60)2 

= 35.0 + 81.4 

u1 = 116 MPa 

u2 = -46.4 MPa 

Ans. 

Ans. 
The principal plane on which each normal stress acts can be determined 

by applying Eq. 14- 1 with, say, 0 = Op, = -23.7°. We have 

<Tr + <Ty <Tr - <T v 
<Tr• = 

2 
+ . 

2 
, cos 20 + Try sin 20 

-20 + 90 
2 + 

-20 - 90 

2 
cos 2(-23.7°) + 60 sin 2(-23.7°) 

- -46.4MPa 

Hence, u2 = -46.4 MPa acts on the plane defined by Op, = -23.7°, 
whereas u1 = 116 MPa acts on the plane defined by Op, = 66.3°, 
Fig. 14-llc. Recall that no shear stress acts on this element. 
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EXAMPLE 14.4 

The state of plane stress at a point on a body is represented on the 
element shown in Fig. 14-12a. Represent this state of stress in terms of its 
maximum in-plane shear stress and associated average normal stress. 

SOLUTION 

Orientation of Element. Since Ux = -20 MPa, Uy = 90 MPa, and 
Txy = 60 MPa, applying Eq. 14-6, the two angles are 

-(a:, - uy)/2 -(-20 - 90)/2 
tan 26 = = - -----

' 'Txy 60 

26.2 = 42.5° 

2fls, = 180° + 2Bs, 

6s, = 21.3° 

851 = 111.3° 

Note how these angles are formed between the x and x' axes, Fig. 14-12b. 
They happen to be 45° away from the principal planes of stress, which 
were determined in Example 14.3. 

Maximum In-Plane Shear Stress. Applying Eq.14-7, 

7~- = )( Ux ~Uy ) 2 

+ 'Tx/ = )(-20 
2
- 90)

2 
+ (60)2 

= +81.4 MPa Ans. 

The proper direction of T:;._ on the element can be determined by 
substituting 6 = 6,, = 21.3° into Eq. 14-2. We have 

'Tx•y• = -( Ux ; Uy) Sin 28 + T_..y COS 28 

(
-20 - 90) = -

2 
sin 2(21.3°) + 60 cos 2(21.3°) 

= 81.4 MPa 

This positive result indicates that T::'.',:i- = Tx'y' acts in the positive y' 
direction on this face (6 = 21.3°), Fig. 14-12b. The shear stresses on the 
other three faces are directed as shown in Fig.14-12c. 

Average Normal Stress. Besides the maximum shear stress, the 
element is also subjected to an average normal stress determined from 
Eq. 14-8; that is, 

Ux + Uy -20 + 90 
O'avg = = = 35 MPa 

2 2 
Ans. 

This is a tensile stress. The results are shown in Fig. 14-12c. 

90MPa 

----...-~ 60 MPa 

t-WMP• 

(a) 

(b) 

(c) 

Fig.14-12 

35MPa 
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I EXAMPLE 14.s I 

f01 
(a) 

Torsion failure of mild steel. 

x' 

'<::-----'--x 

(b) 

Fig.14-13 

Torsion failure of cast iron. 

When the torsional loading T is applied to the bar in Fig. 14-13a, it 
produces a state of pure shear st ress in the material. Determine (a) the 
maximum in-plane shear stress and the associated average normal stress, 
and (b) the principal stress. 

SOLUTION 
From the established sign convention, 

a = 0 x O'. = 0 y 

Maximum In-Plane Shear Stress. Applying Eqs.14-7and14-8, we have 

~( )

? 
ar-ay - , / 

'T!""" = . + 'T 2 = v(0)2 + (-T)2 = + 'T 
m•plan~ 2 xy Ans. 

a,+ av 0 + 0 
aavg = ' = = 0 

2 2 
Ans. 

Thus, as expected, the maximum in-plane shear stress is represented by 
the element in Fig.14-13a. 

NOTE: Through experiment it has been found that materials that are 
ductile actually fail due to shear stress. As a result , if the bar in Fig. 14-13a 
is made of mild steel, the maximum in-plane shear stress will cause it to fail 
as shown in the adjacent photo. 

Principal Stress. Applying Eqs. 14-4 and 14-5 yields 

'Try -T 
tan 28P = ( ) - (O _ 0)/2 , 8p, = 45°, 8p, = -45° 

<T.r - a y /2 

a1 ,2 = <T.r: a y + (<T.r ~ ay )2 + 'Try2 = 0 + Y(0)2 + 'T2 = +'T Ans. 

If we now apply Eq.14-1with8p, = 45°, then 

= 0 + 0 + (-T) sin 90° = -T 

Thus, a2 = -T acts at 8p, = 45° as shown in Fig. 14-13b, and a1 = T acts 
on the other face, 8p, = -45°. 

NOTE: Materials that are brittle fail due to normal stress. Therefore, if the 
bar in Fig. 14-13a is made of cast iron it will fail in tension at a 45° 
inclination as seen in the adjacent photo. 
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EXAMPLE 14.6 
- -

When the axial loading Pis applied to the bar in Fig. 14-14a, it produces a 
tensile stress in the material. Determine (a) the principal stress and (b) the 
maximum in-plane shear stress and associated average normal stress. 

SOLUTION 
From the established sign convention, 

a, = a a = 0 y 

Principal Stress. By observation, the element oriented as shown in 
Fig. 14-14a illustrates a condit ion of principal stress since no sh.ear stress 
acts on this element. This can also be shown by direct substitution of the 
above values into Eqs. 14-4 and 14-5. Thus, 

a1 = a Ans. 

NOTE: Brittle materials will fail due to normal stress, and therefore, if the 
bar in Fig. 14-14a is made of cast iron, it will fail as shown in the adjacent 
photo. 

Maximum In-Plane Shear Stress. Applying Eqs. 14-6, 14-7, and 14-8, 
we have 

-(a, - ay)/2 -(a - 0)/ 2 
tan 26 = = 6 = 45° 6 = -45° 

S -r:\')' 0 ' S1 ' Si 

T !Dax = f(a, - ay)2 + T. 2 = f(a - 0)2 + (0)2 = + a 
tn· plane \j 2 -'Y \J 2 - 2 Ans. 

a,+ ay a + O 
aavg = 2 - 2 = z 

a 
Ans. 

To determine the proper orientation of the element, apply Eq. 14- 2. 

~-~. a-0. 
0 

a 
T.• ,• = - Sill 26 + T. COS 26 = - Sill 90 + 0 = - -
.t) 2 ·'Y 2 2 

This negative shear stress acts on the x ' face in the negative y' direction, 
as shown in Fig. 14-14b. 

NOTE: If the bar in Fig. 14-14a is made of a ductile material such as mild 
steel then shear stress will cause it to fail. This can be noted in the adjacent 
photo, where within the region of necking, shear stress has caused 
"slipping" along the steel's crystalline boundaries, resulting in a plane of 
failure that has formed a cone around the bar oriented at approximately 
45° as calculated above. 

(a) 

Axial failure of cast iron. 

(b} 

Fig.14-14 

p 

Axial failure of mild steel. 
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PRELIMINARY PROBLEMS 

P14-L In each case, the state of stress u_,, u,. ,,._.,.produces 
normal and shear stress components along section AB of the 
element that have values of u _.• = - 5 kPa and,,._..,.. = 8 kPa 
when calculated using the stress transformation equations. 
Establish the x' and y' axes for each segment and specify the 
angle IJ, then show these results acting on each segment. 

A 

'-------\B 
B 

I 
(a) 

!Uy I 

B 

.. ~· 30"\ 
B Txy 

;.t 

B 
• 

1 
(b) 

A 
A 

B 

(c) 

Prob. P14-1 

P14-2. Given the state of stress shown on the element, 
find u avg and Tmax and show the results on a properly 

. in-plane 
oriented element. 

rMPa 

4MPa 

f 
Prob. P14-2 
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FUNDAMENTAL PROBLEMS 

F14-1. Determine the normal stress and shear stress 
acting on the inclined plane AB. 

I 

~B 500kPa 

---A~~JQ° II---•• 

Prob. F14-1 

F14-2. Determine the equivalent state of stress on an 
element at the same point oriented 45° clockwise with 
respect to the element shown. 

__LPa 

101 
T 300 kPa 

Prob. F14-2 

F14-3. Determine the equivalent state of stress on an 
element at the same point that represents the principal stresses 
at the point 1. Also, find the corresponding orientation of 
the element with respect to the element shown. 

Prob. F14-3 

F14-4. Determine the equivalent state of stress on an 
element at the same point that represents the maximum 
in-plane shear stress at the point. 

700kPa 

100 kPa 

400kP a 

Prob.Fl4-4 

Fl4-S. The beam is subjected to the load at its end. 
Determine the maximum principal stress at point B. 

2kN 

Prob.Fl4-S 

8kN/m 

i-----3 m----i----3 n1 ---

Prob.Fl4-6 
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PROBLEMS 

14-1. Prove that the sum of the normal stresses 
ux + u,. = ux· + u

1 
.. is constant. See Figs. 14-2a and 14-2b. 

14-2. Determine the stress components acting on the 
inclined plane AB. Solve the problem using the method of 
equilibrium described in Sec. 14.1. 

65MPa 
A 

l 
3Cf 

B 

20MPa 

Prob.14-2 

14-3. Determine the stress components acting on the 
inclined plane AB. Solve the problem using the method of 
equilibrium described in Sec. 14.1. 

A 400 psi 

650 psi 

B 

Prob.14-3 

*14-4. Determine the normal stress and shear stress 
acting on the inclined plane AB. Solve the problem using 
the method of equilibrium described in Sec. 14.1. 

14-5. Determine the normal stress and shear stress acting 
on the inclined plane AB. Solve the problem using the stress 
transformation equations. Show the results on the sectional 
element. 

15 ksi 

L 
B 

l 6Cf 

T 
6 ksi 

Probs. 14-4/5 

14-6. Determine the stress components acting on the 
inclined plane AB. Solve the problem using the method of 
equilibrium described in Sec. 14.1. 

---!- 8 ksi B 

--t 5 ksi 

4Cf 

A 
3 ksi 

Prob.14-6 

www.konkur.in



14.3 PRINCIPAL STRESSES AND MAXIMUM IN-PLANE SHEAR STRESS 637 

14-7. Determine the stress components acting on the 
inclined plane A 8. Solve the problem using the method of 
equilibrium described in Sec. 14.1. 

*14-8. Solve Prob. 14-7 using the stress-transformation 
equations developed in Sec. 14.2. 

A 
60MPa 

B 

Probs. 14-7/8 

14-9. Determine the stress components acting on the 
inclined plane AB. Solve the problem using the method of 
equilibrium described in Sec. 14.1. 

14-10. Solve Prob. 14-9 using the stress-transformation 
equation developed in Sec. 14.2. 

A 

80MPa 

40MPa 

B 

Probs. 14-9/10 

14-11. Determine the equivalent state of stress on an 
element at the same point oriented 60° clockwise with respect 
to the element shown. Sketch the results on the element. 

100 MPa 

75MPa 

150 MP a 

' 
Prob. 14-11 

*14-U. Determine the equivalent state of stress on an 
element at the same point oriented 60° counterclockwise 
with respect to the element shown. Sketch the results on the 
element. 

100 MPa 

75 MPa 

150 MP a 

Prob. 14-12 
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14-13. Determine the stress components acting on the 
inclined plane AB. Solve the problem using the method of 
equilibrium described in Sec. 14.1. 

SOMPa 
A 

IOOMPa 

B 

Prob. 14-13 

14-14. Determine (a) the principal stresses and (b) the 
maxin1wn in-plane shear stress and average normal stress at 
the point. Specify the orientation or the element in each case. 

200 MPa 

,.....=:::::!t=Z.., I 00 M Pa 

H--• 300MPa 

Prob. 14-14 

14-15. The state of stress at a point is shown on the element. 
Determine (a) the principal stresses and (b) the maximum 
in-plane shear stress and average normal stress at the point. 
Specify the orientation of the element in each case. 

60MPa 

+ 30 MPa 

1-1--• 45 MPa 

Prob. 14-15 

*14-16. Determine the equivalent state of stress on an 
element at the point which represents (a) the principal 
stresses and (b) the maximwn in-plane shear stress and the 
associated average normal stress. Also, for each case, 
determine the corresponding orientation of the element 
with respect to the clement shown and sketch the results on 
the element. 

SOMPa 

ISMPa 

Prob. 14-16 

14-17. Detem1inc the equivalent state or stress on an element 
at the san1e point which represents (a) the principal stress. and 
(b) the maximum in-plane shear stress and the associated 
average normal stress. Also, for each case, determine the 
corresponding orientation of the clement with respect to the 
element shown and sketch the results on each element. 

75 MPa 

' I 25MPa 

SOMPa 

Prob. 14-17 

14-18. A point on a thin plate is subjected to the two 
stress components. Determine the resultant state of stress 
represented on the element oriented as shown on the 
right. 

--'--Txy 

85 MPa 

Prob. 14-18 
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14-19. Determine the equivalent state of stress on an 
element at the same point which represents (a) the principal 
stress, and (b) the maximum in-plane shear stress and the 
associated average normal stress. Also. for each case, 
determine the corresponding orientation of the element 
with respect to the element shown and sketch the results on 
the element. 

25 MPa 
~---~ 

Prob.14-19 

*14-20. The stress along two planes at a point is indicated. 
Determine the normal stresses on plane ~ and the 
principal stresses. 

b 

45MPa 

t1 ------..... - .------a 

b 

Prob.14-20 

14-2L The stress acting on two planes at a point is 
indicated. Determine the shear stress on plane a-a and the 
principal stresses at the point. 

b 
a 

60 ksi 

b 

Prob.14-21 

14-22. The state of stress at a point in a member is shown 
on the element. Determine the stress components acting on 
the plane AB. 

A 

SOMPa 

B 

Prob.14-22 
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The following problems involve material covered in 
Chapter 13. 

14-23. The wood beam is subjected to a load of 12 kN. If 
grains of wood in the beam at point A make an angle of 25° 
with the horizontal as shown, determine the normal and shear 
stress that act perpendicular to the grains due to the loading. 

12kN 

1-2 m-i-1 m•-t+-- 4 m.- -11 

D~mm 
1-1 

200mm 

Prob. 14-23 

*14-24. l11e internal loadings at a section of the beam 
are shown. Determine the in-plane principal stresses at 
point A. Also compute the maximum in-plane shear stress 
at this point. 

14-25. Solve Prob. 14-24 for point B. 

14-26. Solve Prob. 14-24 for point C. 

~20mm 

200mm 

Probs. 14-24125126 

80kN 
'-x 

14-27. A rod has a circular cros.s section with a diameter of 
2 in. It is subjected to a torque of 12 kip · in. and a bending 
moment M. The greater principal stress at the point of 
maximum flexural stress is 15 ksi. Determine the magnitude 
of the bending moment. 

Prob. 14-27 

*14-28. The bell crank is pinned at A and supported by a 
short link BC. If it is subjected to the force of 80 N, determine 
the principal stresses at (a) point D and (b) point £. l11e 
crank is constructed from an aluminum plate having a 
thickness of 20 mm. 

50mm 
D 150 mm=-! s 

-y--t~~~:4~0Jh~1Dl;~~o~m:m:::::::::=:::===-si A I I 

50mm 
50mm 

E 

15 mm 

Prob. 14-28 

14-29. The beam has a rectangular cros.s section and is 
subjected to the loadings shown. Determine the principal 
stresses at point A and point B, which are located just to the 
left of the 20-kN load. Show the results on elements located 
at these points. 

20kN 

+ 10 kN 8 0 ::r 100 nun 
111 A :::J: I 00 mm 

.............. !rl.! 
50mm 50mm 

lOOmm 

·B 

o--2m~-A--
Prob. 14-29 
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14-30. A paper tube is formed by rolling a cardboard strip 
in a spiral and then gluing the edges together as shown. 
Determine the shear stress acting along the seam, which is 
at 500 from the horizontal. when the tube is subjected to an 
axial compressive force of 200 N. The paper is 2 mm thick 
and the tube has an outer diameter of 100 mm. 

14-3L Solve Prob. 14-30 for the normal stress acting 
perpendicular to the seam. 

100mm 

Probs. 14-30/31 

*14-32. The 2-in.-diameter drive shaft AB on the 
helicopter is subjected to an axial tension of 10 000 lb and a 
torque of 300 lb· ft. Determine the principal stresses and 
the maximum in-plane shear stress that act at a point on the 
surface of the shaft. 

Prob. 14-32 

14-33. Determine the principal stresses in the cantilevered 
beam at points A and 8. 

Prob. 14-33 

14-34. The internal loadings at a cross section through the 
6-in.-diameter drive shaft of a turbine consist of an axial 
force of 2500 lb. a bending moment of 800 lb· ft, and a 
torsional moment of 1500 lb · fl. Determine the principal 
stresses at point A. Also calculate the maximum in-plane 
shear stress at this point. 

14-35. The internal loadings at a cross section through the 
6-in.-diameter drive shaft of a turbine consist of an axial 
force of 2500 lb, a bending moment of 800 lb· ft, and a 
torsional moment of 1500 lb · ft. Determine the principal 
stresses at point B. Also calculate the maximum in-plane 
shear stress at this point. 

~ 
1500 lb·ft 

ProbS- 14-34/35 

www.konkur.in



642 CHAPTER 14 STRESS AND STRAIN TRANSFORMATION 

*14-36. The shaft has a diameter d and is subjected to the 
loadings shown. Determine the principal stresses and the 
maximum in-plane shear stress at point A. The bearings 
only support vertical reactions. 

p 

~~ ! ~~ 
j~ 1- L L ~ 2 2 

Prob.14-36 

14-37. The steel pipe has an inner diameter of2.75 in. and 
an outer diameter of 3 in. If it is fixed at C and subjected to 
the horizontal 60-lb force acting on the handle of the pipe 
wrench at its end, determine the principal stresses in the pipe 
at point A , which is located on the outer surface of the pipe. 

14-38. Solve Prob. 14-37 for point B, which is located on 
the outer surface of the pipe. 

B 

c 

)' 

x 

Probs. 14-37/38 

14-39. The wide-flange beam is subjected to the 50-kN 
force. Determine the principal stresses in the beam at point A 
located on the web at the bottom of the upper flange. 
Although it is not very accurate, use the shear formula to 
calculate the shear stress. 

*14-40. Solve Prob. 14-39 for point B located on the web 
at the top of the bottom flange. 

SOkN 

A ! 
B 

- 1 m-Ji-----3 m-----1 

I
A I 

10 mm 125012 mm 
mm 

I-I t 12mm 
200mm 

Probs. 14-39/40 

14-41. The box beam is subjected to the 26-kN force that 
is applied at the center of its width, 75 mm from each side. 
Determine the principal stresses at point A and show the 
results in an element located at this point. Use the shear 
formula to calculate the shear stress. 

14-42. Solve Prob. 14-41 for point B. 

B 

i---2 n1--i-----3 n1----1 

130mm 

17 1 
ro TBAT1smm 

.> mm -1..:'.l.QI 75 mm 

r----1 
150mm 

Probs. 14-41142 

26kN 
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14.4 MOHR'S CIRCLE-PLANE STRESS 
In this section, we will show how to apply the equations for plane-stress 
transformation using a graphical procedure that is often convenient to use 
and easy to remember. Furthermore, this approach will allow us to 
"visualize" how the normal and shear stress components <T.t' and -r,y vary 
as the plane on which they act changes its direction, Fig. 14- 15a. 

If we write Eqs. 14-1 and 14-2 in the form 

(a, + ay) (a, -ay) 
<T.t' - · 

2 
= · 

2 
cos 28 + ?:ry sin 28 (14-9) 

(a, -ay) . 
-r,y = -

2 
sm 28 + 7:ry cos 28 (14-10) 

then the parameter 8 can be eliminated by squaring each equation and 
adding them together. The result is 

[ _ (a, + ay)]2 2 _ (<T.r - ay)2 2 
a,. 2 + Tx'y ' - 2 + Txy 

Finally, since a_,, a>., ?:ry are known constants, then the above equation 
can be written in a more compact form as 

(a_,• - Uavg)2 + Tx• y•2 = R2 (14-11) 
where 

(14-12) 

If we establish coordinate axes, a positive to the right and -r positive 
downward, and then plot Eq. 14- 11, it will be seen that this equation 
represents a circle having a radius R and center on the a axis at 
point C(aavg• 0), Fig. 14-15b. This circle is called Mohr's circle, because it 
was developed by the German engineer Otto Mohr. 

1-----"·' -----1 

7 
(b) 

'Tx•y• 

"·"~ () 

(a) 

Fig.14-15 

x' 

www.konkur.in



644 CHAPTER 14 STRESS AND STRAIN TRANSFORMATION 

7 xy = ' - x·y· 

11 = o• 
( x,x' 

U.T = U x • 

(a) 

x ' 

Uy 
I)= 90° 

y' Txy 

x 
u. 

-

(b) 

Each point on Mohr's circle represents the two stress components <T.t' 
and 'T.r'y' acting on the side of t he element defined by the outward x' axis, 
when this axis is in a specific direction 8. For example, when x' is 
coincident with the x axis as shown in Fig. 14-16a, then () = 0° and 
a,. = a" 'T.t'y' = T.ry· We will refer to this as the "reference point" A and 
plot its coordinates A(an Try) , Fig. 14-16c. 

Now consider rotating the x ' axis 90° counterclockwise, Fig. 14-16b. 
Then <T.t' = a>" Tt'y' = --r.ry · These values are the coordinates of point 
G(ay,-T,y) on the circle, Fig. 14-16c. Hence, the radial line CG is 180° 
counterclockwise from the radial "reference line" CA. In other words, a 
rotation () of the x ' axis on th e element will correspond to a rotation 28 
on the circle in the same direction. 

As discussed in the following procedure, Mohr's circle can be used to 
determine the principal stresses, the maximum in-plane shear stress, or 
the stress on any arbitrary plane. 

(Ux; Uy) 

I 20 = 180°1 

cl 1--- Uavg--+------ I 
7;ry 

_l 
0 = Cf 

u, 

(c) 

Fig. 14-16 
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PROCEDURE FOR ANAL YS/S 

The following steps are required to draw and use Mohr's circle. 

Construction of the Circle. 
• Establish a coordinate system such that the horizontal axis 

represents the normal stress u , with positive to the right, and 
the vertical axis represents the shear stress T , with positive 
down wards, Fig. 14-17a.• 

• Using the positive sign convention for u .. , uy, 'T.ry, Fig. 14-17a, 
plot the center of the circle C, which is located on the u axis at 
a distance <Tavg = (O:r + u,,)/2 from the origin, Fig. 14-17a. 

• Plot the " reference point" A having coordinates A(o:., 'Txy) . 
This point represents the normal and shear stress components 
on the e lement 's right-hand vertical face, and since the x ' axis 
coincides with the x axis, this represents(} = 0°, Fig. 14- 17a. 

• Connect point A with the center C of the circle and determine 
CA by trigonometry. This represents the radius R of the circle, 
Fig. 14-17a. 

• Once R has been determined, sketch the circle. 

Principal Stress. 

• The principal stresses u 1 and u2 (u1 =::: u2) are the coordinates 
of points B and D, where the circle intersects the u axis, i.e., 
where T = 0, Fig. 14-17a. 

• These stresses act on planes defined by angles fJp, and 8Pi' 
Fig. 14-l?b. One of these angles is represented on the circle as 
28p,· It is measured from the radial reference line CA to line CB. 

• Using trigonometry, de termine op, from the circle. Remember 
that the direction of rota tion 28P on the circle (here it happe ns 
to be counterclockwise) represents the same direction of 
rotation BP from the reference axis ( +x) to the principal plane 
( +x ' ), Fig. 14-17b.* 

Maximum In-Plane Shear Stress. 
• The average normal stress and maximum in-plane shear stress 

components are determined from the circle as the coordinates 
of e ither point E or F, Fig. 14-17a. 

• In this case the angles 8,, and 8,, give the orientation of the 
planes tha t contain these components, Fig. 14- 17c. The angle 
28.,, is shown in Fig. 14-17a and can be determined using 
trigonometry. H ere the rotation happens to be clockwise, from 
CA to CE, and so 8,, must be clockwise on the element, 
Fig. 14-17c.• 

u,, 

t---u.,.,----i F 

T 

U 2 

E u, 
u,· 

(a) 

(b) 

(c) 

Fig. 14-17 

T 1C)' 

u 

0 = (f 

x' 

/ 
OP, 

x 

in-plane 

~--,--X 
o, 

' 
x' 
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Txy 

u r 

Stresses on Arbitrary Plane. 

• The normal and shear stress components u,. and Tr· v· acting on 
a specified plane or x' axis, defined by the angle 8, Fig. 14- 17d, 
can be obtained by finding the coordinates of point P on the 
circle using trigonometiry, Fig.14-17a. 

• To locate P, the known angle 8 (in this case counterclockwise), 
Fig. 14-17d, must be measured on the circle in the same 
direction 28 (counterclockwise) from the radial reference line 
CA to the radial line CP, Fig. 14- 17a.* 

*If the,,. axis were constructed posirive upwards, then the angle 2i1 on the circle 
would be measured in the opposire direcrion to the orientation() of the x' axis. 

1---Uavg F 

1-----u.,-----< 
l------U.'C·------1 

y' 

\ 
<T.r 

(a) 

(d) 

u.-r·~·"' 
() x 

Fig. 14-17 (cont.) 
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EXAMPLE 14.7 
- -

Due to the applied loading, the element at point A on the solid shaft in 
Fig. 14-18a is subjected to the state of stress shown. Determine the principal 
stresses acting at this point. 

SOLUTION 

Construction of the Circle. From Fig.14-18a, 

u, = -12 ksi <T = 0 y T,y = -6 ksi 

The center of the circle is located on the <Taxis at the point 

-12 + 0 . 
a: = = -6 ks1 avg 2 

The reference point A(-12, -6) and the center C(-6, 0) are plotted in 
Fig. 14-18b. From the shaded triangle, the circle is constructedl having a 
radius of 

R = Y(12 - 6)2 + (6)2 = 8.49 ksi 

Principal Stress. The principal stresses are indicated by the coordinates 
of points B and D. We have, for u1 > u2, 

u1 = 8.49 - 6 = 2.49 ksi 

u2 = -6 - 8.49 = -14.5 ksi 

Ans. 

Ans. 

The orientation of the element can be determined by calculating the 
angle 26p, in Fig. 14-18b, which here is measured counterclockwise from 
CA to CD. It defines the direction 6p, of u 2 and its associated principal 
plane. We have 

26 = tan-1 6 
= 45.0° 

p, 12 - 6 

6p, = 22.5° 

The element is oriented such that the x ' axis or u2 is directed 
22.5° counterclockwise from the horizontal (x axis), as shown in 
Fig.14-1&. 

T 

6 ksi 

(a) 

1---12---1 

2.49 ksi D 1-6- B 
-'--+---'·--'---"-c---+--+--- u (ksi) 

(c) 

14.Sksi~x· 
22.s• x 

Fig. 14-18 

(b) 
-r (ksi) 
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EXAMPLE 14.8 
~ -

90MPa 

~-~-~ 60MPa 

--t f-WMP• 

(a) 

F 

35 c 
f 

1 

u (MPa) 

60 
I .~~::-+-----1 s1( 
- A l20 .__.._£-=----'-

-r (MPa) 

(b) 

y' 

\ 81.4 MPa 
35 MPa x' 

21.3° 
~--L--- x 

(c) 

Fig. 14-19 

The state of plane stress at a point is shown on the element in Fig. 14-19a. 
Determine the maximum in-plane shear stress at this point. 

SOLUTION 

Construction of the Circle. From the problem data, 

a = -20MPa x a y = 90MPa -r:ry• = 60 MPa 

The a , -r axes are established in Fig. 14-19b. The center of the circle C is 
located on the a axis, at the point 

-20 + 90 
Uavg = 

2 
= 35 MPa 

Point C and the reference point A(-20, 60) are plotted. Applying the 
Pythagorean theorem to the shaded triangle to determine the circle's 
radius CA, we have 

R = V(60)2 + (55)2 = 81.4 MPa 

Maximum In-Plane Shear Stress. The maximum in-plane shear stress 
and the average normal stress are identified by point E (or F) on the 
circle. The coordinates of point £(35, 81.4) give 

Uavg = 35 MPa Ans. 

-rm"" = 81.4 MPa 
in•plan~ 

Ans. 

The angle 8,
1

, measured counterclockwise from CA to CE, can be found 
from the circle, identified as 28,,. We have 

-1(20 + 35) 0 28, , = tan 
60 

= 42.5 

8,, = 21.3° Ans. 

This counterclockwise angle defines the direction of the x' axis, 
Fig. 14-19c. Since point E has positive coordinates, then the average 
normal stress and the maximum in-plane shear stress both act in the 
positive x' and y ' directions as shown. 
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EXAMPLE 14.9 

The state of plane stress at a point is shown on the element in Fig. 14-20a. 
Represent this state of stress on an element oriented 30° counterclockwise 
from the position shown. 

SOLUTION 

Construction of the Circle. From the problem data, 

u = -8 ksi :c u1 = 12 ksi -r = -6 ksi xy 

The u and -r axes are established in Fig. 14-20b. The center of the circle C 
is on the u axis at the point 

-8 + 12 
<Tavg = 

2 
= 2 ksi 

The reference point for 9 = 0° has coordinates A(-8, -6). 
Hence from the shaded triangle the radius CA is 

R = Y(10)2 + (6)2 = 11.66 

Stresses on 30° Element. Since the element is to be 
rotated 30° counterclockwise, we must construct a radial 
line CP, 2(30°) = 60° counterclockwise, measured from 
CA (9 = 00), Fig.14-20b.Thecoordinatesofpoint P(ux·, T:cy ) 
must then be obtained. From the geometry of the circle, 

</> = tan-• 1~ = 30.%0 I/! = 6Cf' - 30.%0 = 29.04° 

<Tx· = 2 - 11.66 cos 29.04° = -8.20 ksi 

Tx•y• = 11.66 sin 29.04° = 5.66 ksi 

Ans. 

Ans. 

These two stress components act on face BD of the element shown in 
Fig. 14-20c, since the x' axis for this face is oriented 30° counterclockwise 
from the x axis. 

The stress components acting on the adjacent face DE of the element, 
which is 60° clockwise from the positive x axis, Fig. 14-20c, are represented 
by the coordinates of point Q on the circle. This point lies on the radial 
line CQ, which is 180° from CP, or 120° clockwise from CA. The 
coordinates of point Qare 

<Tx· = 2 + 11.66 cos 29.04° = 12.2 ksi Ans. 

1:r'y' = -(11.66 sin 29.04) = -5.66 ksi (check) Ans. 

NOTE: Here Tx•y• acts in the -y' direction, Fig.14-20c. 

T (ksi) 

12 k . SI 

6 ksi 

(a) 

(b) 

(i()O 

12.2ksiy 

x' 

(c) 

Fig. 14-20 

8 ksi 
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FUNDAMENTAL PROBLEMS 

F14-7. Use Mohr's circle to determine the normal stress 
and shear stress acting on the inclined plane AB. 

Prob. F14-7 

F14-8. Use Mohr's circle to determine the principal 
stresses at the point. Also, find the corresponding orientation 
of the element with respect to the element shown. 

---• 30kPa 

II 11 MkP• 

Prob. F14-8 

F14-9. Draw Mohr's circle and determine the principal 
stresses. 

Prob. F14-9 

F14-10. The hollow circular shaft is subjected to the 
torque of 4 kN · m. Determine the principal stresses at a 
point on the surface of the shaft. 

400101 

Prob. F14-10 

F14-11. Determine the principal stresses at point A on 
the cross section of the beam at section a-a. 

1-3000101 

,a 

50 nu~l T 
A 1500101 

J_ 
1-1 

500101 

Section a-a 

Prob.Fl4-11 

30kN 

F14-12. Determine the maximum in-plane shear stress at 
point A on the cross section of the beam at section a-a, 
which is located just to the left of the 60-kN force. Point A is 
just below the flange. 

!60kN 

a, 

Afu~ 

~0.501 I 101 I 

1-100 0101-1 I 

A 

1
100101 

100101- -
1800101 

l 
:;;;;;;;;~ ..... , 10 0101 

Section a- a 

Prob. F14-12 
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PROBLEMS 

14-43. Solve Prob. 14-2 using Mohr·s circle. 

*14-44. Solve Prob. 14-3 using Mohr·s circle. 

14-45. Solve Prob. 14-6 using Mohr·s circle. 

14-46. Solve Prob. 14-10 using Mohr's circle. 

14-47. Solve Prob. 14-15 using Mohr·s circle. 

*14-48. Solve Prob. 14-16 using Mohr·s circle. 

14-49. Mohr's circle for the state of stress is shown in 
Fig. 14-17a. Show that finding the coordinates of point 
P (ux·· Tx•y•) on the circle gives the same value as the stress 
transformation Eqs. 14-1 and 14-2. 

14-50. Determine (a) the principal stresses and (b) the 
maximum in-plane shear stress and average normal stress. 
Specify the orientation of the clement in each case. 

80MPa 

,.....=:=!:::=~ 60 MPa 

j 1 

T 
Prob. 14-50 

14-51. Determine (a) the principal stresses and (b) the 
maximum in-plane shear stress and average normal stress. 
Specify the orientation of the clement in each case. 

12 ksi 

-t 
Prob. 14-51 

14.4 MOHR'S CIRCLE-PLANE STRESS 651 

*14-52. Determine the equivalent state of stress if an 
element is oriented 60° clockwise Crom the element shown. 

,.------. 65 ksi 

l I .__ ___ _. 

Prob. 14-52 

14-53. Draw Mohr's circle that describes each of the 
following states of st rcss. 

600 psi 
2 ksi 

sOO psi 

f 
(a) (b) (c) 

Prob. 14-53 

14-54. Draw Mohr's circle that describes each of the 
following states of stress. 

200 . psi 

• 1--• 3 ksi . 100 psi 

(a) (b) 

Prob. 14-54 
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14-55. Determine (a) the principal stresses and (b) the 
maximum in-plane shear stress and average normal stress. 
Specify the orientation of the element in each case. 

20MPa 

- lOOMPa 

40MPa 

Prob.14-55 

*14-56. Determine (a) the principal stress and (b) the 
maximum in-plane shear stress and average normal stress. 
Specify the orientation of the element in each case. 

Prob.14-56 

14-57. Determine (a) the principal stresses and (b) the 
maximum in-plane shear stress and average normal stress. 
Specify the orientation of the element in each case. 

50MPa 

-

1 l 
__ ,___ 30 MPa 

Prob.14-57 

14-58. Determine (a) the principal stresses and (b) the 
maximum in-plane shear stress and average normal stress. 
Specify the orientation of the element in each case. 

200MPa 

lOOM Pa 

lSOMPa 

-

Prob.14-58 

14-59. Determine (a) the principal stresses and (b) the 
maximum in-plane shear stress and average normal stress. 
Specify the orientation of the element in each case. 

10 ksi 

~---''---~ 8 ksi 

Prob.14-59 

*14-60. Draw Mohr's circle that describes each of the 
following states of stress. 

2 ksi 800 psi 

--.. 60MPa 

101 800 psi 8 ksi --
t 

(a) (b) (c) 

Prob.14-60 

14-61. The grains of wood in the board make an angle of 
20° with the horizontal as shown. Determine the normal 
and shear stresses that act perpendicular and parallel to the 
grains if the board is subjected to an axial load of 250 N. 

I 300mm----~~ 
L
-------+....::::,--_-_-__ - _,, 60 2n51m0 N 250N.-r - _ . 

(200 
25mm 

Prob.14-61 
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14-62. The post is fixed supported at its base and a horizontal 
force is applied at its end as shown, determine (a) the 
maximum in·plane shear stress developed at A and (b) the 
principal stresses at A. 

z 

Prob.14-62 

14-63. Determine the principal stresses, the maximum 
in·plane shear stress, and average normal stress. Specify the 
orientation of the element in each case. 

20MPa 

80MP a 

30 MP a 

Prob.14-63 

*14-64. The thin.walled pipe has an inner diameter of 0.5 in. 
and a thickness of 0.025 in. If it is subjected to an internal 
pressure of 500 psi and the axial tension and torsional loadings 
shown, determine the principal stress at a point on the surface 
of the pipe. 

20 lb· ft 20 lb· ft 

14.4 MOHR'S CIRCLE- PLANE STRESS 653 

14-65. The frame supports the triangular distributed load 
shown. Determine the normal and shear stresses at point D 
that act perpendicular and parallel, respectively, to the 
grains. The grains at this point make an angle of 35° with the 
horizontal as shown. 

14-66. The frame supports the triangular distributed load 
shown. Determine the normal and shear stresses at point E 
that act perpendicular and parallel, respectively, to the 
grains. The grains at this point make an angle of 45° with the 
horizontal as shown. 

3m 

E 
T-r •l~3..1.0-mm 

1.5 m 

_] @A 

900 N/m 

_J_ 
O _ SOmm 

-I 1-' 
100mm 

Probs. 14-65/66 

14-67. The rotor shaft of the helicopter is subjected to the 
tensile force and torque shown when the rotor blades 
provide the lifting force to suspend the helicopter at midair. 
If the shaft has a diameter of 6 in. , determine the principal 
stresses and maximum in·plane shear stress at a point 
located on the surface of the shaft. 

50 kip 

Prob. 14-64 Prob. 14-67 
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*14-68. The pedal crank for a bicycle has the cross section 
shown. If it is fixed to the gear at B and does not rotate while 
subjected to a force of 75 lb, determine the principal stresses 
on the cross section at point C. 

. 4 in.c1 

¥ffi I0.4 in. 

0 2
. _l0.4 in . 

. 10. 1-1 

0.3 in. 
Prob.14-68 

14-69. A spherical pressure vessel has an inner radius of 
5 ft and a wall thickness of 0.5 in. Draw Mohr's circle for the 
state of stress at a point on the vessel and explain the 
significance of the result. The vessel is subjected to an 
internal pressure of 80 psi. 

14-70. The cylindrical pressure vessel has an inner radius of 
1.25 m and a wall thickness of 15 mm. It is made from steel 
plates that are welded along the 45° seam. Determine the 
normal and shear stress components along this seam if the 
vessel is subjected to an internal pressure of 8 MPa. 

~.,,. 
Prob.14-70 

14-71. Determine the normal and shear stresses at point D 
that act perpendicular and parallel, respectively, to the grains. 
The grains at this point make an angle of 30° with the 
horizontal as shown. Point D is located just to the left of the 
10-kN force. 

*14-72. Determine the principal stress at point D , which is 
located just to the left of the 10-kN force. 

lOkN 

lOOmm 
B 

l-1m-l-lm I 
2m 

D0- 1 
100 mm I j 300 mm-"=C'=0"'-,,_-

1-1 
lOOmm 

Probs. 14-71172 

14-73. If the box wrench is subjected to the 50 lb force, 
determine the principal stresses and maximum in-plane 
shear stress at point A on the cross section of the wrench at 
section a-a. Specify the orientation of these states of stress 
and indicate the results on elements at the point. 

14-74. If the box wrench is subjected to the 50-lb force, 
determine the principal stresses and maximum in-plane 
shear stress at point B on the cross section of the wrench at 
section a-a. Specify the orientation of these states of stress 
and indicate the results on elements at the point . 

12 in. 

~ 50 lb 

0.5 in. 

~ a a 

Section a - a 

Probs. 14-73/74 

14-75. The post is fixed supported at its base and the 
loadings are applied at its end as shown. Determine (a) the 
maximum in-plane shear stress developed at A and (b) the 
principal stresses at A. 

z 
I 
900lb 

9 in. 

Prob.14-75 
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14.5 ABSOLUTE MAXIMUM SHEAR 
STRESS 

Since the strength of a ductile material depends upon its ability to resist 
shear stress, it becomes important to find the absolute maximum shear 
stress in the material when it is subjected to a loading. To show how this 
can be done, we will confine our attention only to the most common case 
of plane stress,* as shown in Fig. 14-21a. Here both a 1 and a2 are tensile. 
If we view the element in two dimensions at a time, that is, in the y-z,x- z, 
and x- y planes, Figs. 14-21b, 14-21c, and 14-21d, then we can use Mohr's 
circle to determine the maximum in-plane shear stress for each case. For 
example, Mohr's circle extends between 0 and a 2 for the case shown in 
Fig. 14- 21b. From this circle, Fig. 14-21e, the maximum in-plane shear 
stress is re:; ... = a 2/2. Mohr's circles for the other two cases are also 

shown in Fig. 14-21e. Comparing all three circles, the absolute maximum 
shear stress is 

~ 
~ 
u1 and u2 have 

the same sign 

(14-13) 

It occurs on an element that is rotated 45° about they axis from the 
element shown in Fig. 14- 21a or Fig. 14- 21c. It is this out of plane shear 
stress that will cause the material to fail, not rr::-~ •••. 

z z y 

• • 

x 

z 

x- y plane stress 

(a) 

( (; .r' ()max 

Absolute maximum 
shear stress 

(e) 

(r .r'y)max 

M ) . I axmmm m-p ane 
shear stress 

'----------- Y X---------~ '----------- X 
(b) (c) 

Fig.14-21 

*The case for three-dimensional stress is discussed in books related to advanced mechanics 
of materials and the theory of elasticity. 

(d) 
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x 

z 

y 

)( 
(7yz-)max ~ "=:>< 

--+-__. (;r()m•x 
(; r.·)m3X 

x- y plane stress 

\_ Maximum in-plane and 
absolute maximum shear stress 

7 

(a) (b) 

Fig.14-22 

In a similar manner, if one of the in-plane principal stresses has the 
opposite sign of the other, Fig. 14-22a, then the three Mohr's circles that 
describe the state of stress for the element when viewed from each plane 
are shown in Fig. 14-22b. Clearly, in this case 

7aM = 
max 2 

u1 and u2 have 

opposite signs 

(14-14) 

Here the absolute maximum shear stress is equal to the maximum 
in-plane shear stress found from rotating the element in Fig. 14- 22a, 
45° about the z axis. 

IMPORTANT POINTS 

• If the in-plane principal stresses both have the same sign, the 
absolute maximum shear stress will occur out of the plane and 
has a value of T ~'::, = Umax/2. This value is greater than the 
in-plane shear stress. 

• If the in-plane principal stresses are of opposite signs, then the 
absolute maximum shear stress will equal the maximum 
in-plane shear stress; that is, T '"' = (umax - CTmin)/2. 

mu 
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EXAMPLE 14.10 

The point on the surface of the pressure ves.sel in Fig. 14-23a is subjected to 
the state of plane stress. Dete rmine the absolute maximum shear stress at 
this point. 

16MPa 16-j 

(a) 
1----32---- 1 

T(MPa) (b) 

Fig. 14-23 
SOLUTION 
The principal stresses are u1 = 32 MPa, u2 = 16 MPa. If these stresses 
are plotted along the u axis, the three Mohr's circles can be constructed 
that describe the state of stress viewed in each of the three perpendicular 
planes, Fig. 14-23b. The largest circle has a radius of 16 MPa and describes 
the state of stress in the plane only containing u1 = 32 MPa, shown 
shaded in Fig. 14-23a. An orientation of an element 45° within this plane 
yields the sta te of absolute maximum shear stress and the associated 
average normal stress, namely, 

T• .. = 16 MPa Ans. -
O"avg = 16 MPa 

This same result for T ... can be obtained from direct application of -· Eq.14-13. 
0"1 32 

T ... = - = - = 16 MPa 
-· 2 2 

Ans. 

32 + 0 
O"avg = 

2 
= 16 MPa 

By comparison, the maximum in-plane shear stress can be determined 
from the Mohr's circle drawn between u1 = 32 MPa and u2 = 16 MPa, 
Fig. 14-23b. This gives a value of 

T-. = 32 - 16 = 8 MPa 
in.p111ni: 2 

= 32 + 16 = 24 MP 
O"avg 2 a 
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EXAMPLE 14.11 
~ -

'===;-' 40 psi 

(a) 

)!' 

31.2ps~ 

/ 

A 

7 (psi) 

(b) 

51.2psi/ 
38.0" 

(c) 

211 = 76.0" + 90" = 166° 
A 

U2 = - 51.2 

J 

x' 

Tabs= 41.2 
-r (psi) 

max 

(d) 

Fig. 14-24 

Due to an applied loading, an element at a point on a machine shaft is 
subjected to the state of plane stress shown in Fig. 14-24a. Determine the 
principal stresses and the absolute maximum shear stress at the point. 

SOLUTION 

Principal Stresses. 
The in-plane principal stresses can be determined from Mohr's 
circle. The center of the circle is on the a axis at 
aavg = (-20 + 0) /2 = -10 psi. Plotting the reference point 
A(-20, -40), the radius CA is established and the circle is 
drawn as shown in Fig. 14-24b. The radius is 

R = V (20 - 10)2 + ( 40)2 = 41.2 psi 

The principal stresses are at the points where the circle 
intersects the a axis; i.e., 

a1 = -10 + 41.2 = 31.2 psi 

a 2 = -10 - 41.2 = -51.2 psi 

From the circle, the counterclockwise angle 28, measured from CA to the 
-a axis, ts 

28 = tan - 1 ( 
40 

) = 76.0° 
20 - 10 

Thus, 
fJ = 38.0° 

This counterclockwise rotation defines the direction of the x' axis and a 2, 

Fig. 14-24c. We have 

a1 = 31.2 psi a 2 = -51.2 psi 

Absolute Maximum Shear Stress. Since these 
have opposite signs, applying Eq.14-14 we have 

a1 - a2 31.2 - (-51.2) 
'T ,., = ---- - ------ = 41.2 psi 

ma. 2 2 
\.. u (psi) 

u 1 = 31.2 Uavg 
31.2 - 51.2 0 . -

2 
= -1 psi 

Ans. 

stresses 

Ans. 

These same results can also be obtained by drawing Mohr's 
circle for each orientation of an element about the x, y, and z 
axes, Fig.14-24d. Since a1 and a2 are of opposite signs, then the 
absolute maximum shear stress as noted equals the maximum 
in-plane shear stress. 
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PROBLEMS 

*14-76. Draw the three Mohr's circles that describe each of 
the following states of stress. 

5 ksi 

~ 
(a) (b) 

Prob.14-76 

14-77. Draw the three Mohr's circles that describe the 
following state of stress. 

'::!--. 
400 psi 

Prob.14-77 

14.5 ABSOLUTE MAXIMUM SHEAR STRESS 659 

14-78. Draw the three Mohr's circles that describe the 
following state of stress. 

25 ksi 

Prob.14-78 

14-79. Determine the principal stresses and the absolute 
maximum shear stress. 

30 psi 

Prob.14-79 
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*14-80. Determine the principal stresses and the absolute 
maximum shear stress. 

Prob. 14-80 

14-81. Determine the principal stresses and the absolute 
maximum shear stress. 

Prob. 14-81 

14-82. Determine the principal stresses and the absolute 
maximum shear stress. 

5 ksi 

Prob. 14-82 

14-83. Consider the general case of plane stress as shown. 
Write a computer program that will show a plot of the three 
Mohr's circles for the element. and will also determine the 
maximum in-plane shear stress and the absolute maximum 
shear stress. 

Txy 

u, 

. 

Prob. 14-83 
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14.6 PLANE STRAIN 
As outlined in Sec. 7.9, the general state of strain at a point in a body is 
represented by a combination of three components of normal strain, 
E.n E>" Ez, and three components of shear strain, 1'.tJ" l'xz, l'yz· The normal 
strains cause a change in the volume of the element, and the shear 
strains cause a change in its shape. Like stress, these six components 
depend upon the orientation of the element, and in many situations, 
engineers must transform the strains in order to obtain their values in 
other directions. 

To understand how this is done, we will direct our attention to a study 
of plane strain, whereby the element is subjected to two components of 
normal strain, Ex, Ey, and one component of shear strain, l'xy- Although 
plane strain and plane stress each have three components lying in the 
same plane, realize that plane stress does not necessarily cause plane 
strain or vice versa. The reason for this has to do with the Poisson effect 
discussed in Sec. 8.5. For example, the element in Fig. 14- 25 is subjected 
to plane stress caused by <Tr and <Ty- Not only are normal strains Ex and Ey 

produced, but there is also an associated normal strain, Ez, and so this is 
not a case of plane strain. 

Actually, a case of plane strain rarely occurs in practice, becall!se few 
materials are constrained between rigid surfaces so as not to permit any 
distortion in, say, the z direction. In spite of this, the analysis of plane 
strain, as outlined in the following section, is still of great importance, 
because it will allow us to convert strain-gage data, measured at a point 
on the surface of a body, into plane stress at the point. 

Plane stress, u,, u Y' does not cause plane 
strain in the x- y plane since E, .,, 0. 

Fig.14-25 

14.6 PLANESTRAIN 661 
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14.7 GENERAL EQUATIONS OF 
PLANE-STRAIN TRANSFORMATION 

For plane-strain analysis it is important to establish strain transformation 
equations that can be used to determine the components of normal and 
shear strain at a point, Ex· , Ey'> 'Yx'y' , Fig. 14-26c, provided the components 
Ex, Ey, 'Y.ry• are known, Fig. 14-26a. So in other words, if we know how the 
element of material in Fig. 14-26a deforms, we want to know how the 
tipped element of material in Fig. l4-26b will deform. To do this requires 
relating the deformations and rotations of line segments which represent 
the sides of differential elements that are parallel to the x,y and x ',y' axes. 

Sign Convention. To begin, we must first establish a sign convention 
for strain. The normal strains Ex and Ey in Fig. 14-26a are positive if they 
cause elongation along the x and y axes, respectively, and the shear strain 
'Yxy is positive if the interior angle AOB becomes smaller than 90°. This 
sign convention also follows the corresponding one used for plane stress, 
Fig. 14-Sa, that is, positive <Tn <Ty, 1:ry will cause the element to deform in 
the positive Ex, Ey, 'Yxy directions, respectively. Finally, if the angle between 
the x and x ' axes is 8, then, like the case of plane stress, 8 will be positive 
provided it follows the curl of the right-hand fingers, i.e. , counterclockwise, 
as shown in Fig. 14-26c. 

dy 

y __ , 
- I 

I 
I 

I 
I 

I 
I 

I 
I 

--- B '"-".:....__r::.._--1.::....__ x 

dx 
11 

(a) 

y ' y 

(c) 

Fig.14-26 
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Normal and Shear Strains. To determine Ex" we must find the 
elongation of a line segment dx' that lies along the x' axis and is subjected 
to strain components Ex, E,,, Yxr As shown in Fig. 14-27a, the components 
of line dx' along the x and y axes are 

dx = dx' cosB 

dy = dx' sin 8 
(14-15) 

When the pos1t1ve normal strain Ex occurs, dx is elongated Ex dx, 
Fig. 14-27b, which causes dx' to elongate Ex dx cos 8. Likewise, when Ey 

occurs, dy elongates Ey dy, Fig. 14-27c, which causes dx' to elongate 

y' 

Ey dy sin 0. Finally, assuming that dx remains fixed in position, the shear y' 

strain Yxy in Fig. 14-27d, which is the change in angle between dx and dy, 
causes the top of line dy to be displaced Yxy dy to the right. This causes 
dx' to elongate Yxy dy cos 0. If all three of these (red) elongations are 
added together, the resultant elongation of dx' is then 

Bx' = E.r dx cos 0 + Ey dy sin 8 + Yxy dy cos 0 

Since the normal strain along line dx' is Ex· = Bx' /dx', then using 
Eqs.14-15, we have 

Ex· = Ex cos2 0 + Ey sin2 8 + Yxy sin 8 cos 8 

This normal strain is shown in Fig. 14-26b. 

The rubber specimen is constrained between 
lhe two fixed supports, and so it will undergo 
plane strain when loads are applied to it in 
lhe horizontal plane. 

(14-16) 

y 

y 

I 

dx 

Before deformation 

Normal strain Ex 

(b) 

Normal strain E1 

(c) 

Shear strain Yxy 

(d) 

Fig. 14-27 
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y 

y ' x' 
/ 

( 1 
I I E_,dx cosO 

I I o 
dx 

Normal strain E, 

(b) 

y 

I 

y' 

Normal strain E Y 

(c) 

To determine 'Yx'y', we must find the rotation of each of the line 
segments dx' and dy ' when they are subjected to the strain components 
Ex, Ey, 'Y.tJ'' Fust we will consider the counterclockwise rotation a of dx' , 
Fig. 14-27e. Here a = oy' /dx' . The displacement oy' consists of three 
displacement components: one from e.n giving -ex dx sin(), Fig. 14-27b; 
another from Ey, giving Ey dy cos(), Fig. 14- 27c; and the last from 'Yxy• 

giving -yX)' dy sin(), Fig.14- 27d. Thus, oy' is 

oy' = -ex dx sin() + € )' dy cos() - 'Yxy dy sin() 

Using Eq. 14-15, we therefore have 

a , 
_ Y _ ( )'a a · 2 a a - dx' - -ex + Ey SIO v COS v - 'Yxy SIO v (14-17) 

Finally, line dy' rotates by an amount {3, Fig. 14-27e. We can 
determine this angle by a similar analysis, or by simply substituting 
() + 90° for() into Eq. 14-17. Using the identities sin(() + 90°) = cos(), 
cos(() + 90°) = -sin(), we have 

{3 = (-ex + ey) sin(() + 90°) cos(() + 90°) - 'Yxy sin2(e + 90°) 

= -(-ex + Ey) cos() sin() - 'Yxy cos2 
() 

y ' Y Since a and {3 must represent the rotation of the sides dx' and dy' in 
\ the manner shown in Fig. 14-27e, then the element is subjected to a shear 

Yxydy sinO Yxydy ;yxydy cosO / x' strain of 
\ __ ::::::::_-,;;?" 

/'x'y' = a - {3 = -2(Ex - Ey) Sin() COS() + 'Yx/cos2 () - sin2 ()) (14-18) 

dx 

Shear strain y xy y 

(d) 

(e) 

Fig. 14-27 (cont.) 
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y y 

y' y' 

Positive normal strain. Er• Positive shear strain, Yxy 

(a) (b) 

Fig. 14-28 

Using the trigonometric identities sin 28 = 2 sine cos 8, 
cos2 8 = (1 + cos 28)/2, and sin2 8 + cos2 8 = 1, Eqs. 14- 16 and 14-18 
can be written in the final form 

Ex'= 
Ex + Ey 

2 + 
Ex - Ey 'Yxv 

2 
cos 28 + 

2
- sin 28 

'Yx'y' (Ex - Ey) 'Yxy 2 = -
2 

sin28 + 2cos28 

Normal and Shear Strain Components 

(14-19) 

(14-20) 

According to our sign convention, if Ex· is positive, the element elongates 
in the positive x' direction, Fig. l4-28a, and if 'Yx'y' is positive, the element 
deforms as shown in Fig. 14-28b. 

If the normal strain in the y' direction is required, it can be obtained 
from Eq. 14-19 by simply substituting (8 + 90°) for 8. The result is 

E • = - COS 28 - - Stll ~ E.r + Ey Ex - Ey /'.ry . ~ 
y 2 2 2 

(14-21) 

The similarity between the above three equations and those for 
plane-stress transformation, Eqs. 14-1, 14-2, and 14- 3, should be noted. 
Making the comparison, <Tx, <Ty, O:r'> <Ty• correspond to E_., E,,, Ex·• e,,·; and 
7:ry• 'Tx•y· correspond to 'Yxy/2, Y xy/2. 
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-
, ; 

; I I ' 

Complex stresses are often developed at 
the joints where the cylindrical and 
hemispherical vessels are joined together. 
The stresses are determined by making 
measurements of strain. 

Principal Strains. Like stress, an element can be oriented at a point 
so that the element's deformation is caused only by normal strains, with 
no shear strain. When this occurs the normal strains are referred to as 
principal strains, and if the material is isotropic, the axes along which 
these strains occur will coincide with the axes of principal stress. 

From the correspondence between stress and strain, then like 
Eqs. 14-18 and 14-19, the direction of the x' axis and the two values of 
the principal strains E1 and E2 are determined from 

'Yxy 
tan 28P = --Ex - Ey 

Orientation of principal planes 

_ Ex + Ey )(Ex - Ey)2 ('Yxy)2 
Et,2 - + + -

2 2 2 

Principal strains 

(14-22) 

(14-23) 

Maximum In-Plane Shear Strain. Similar to Eqs. 14-20, 14- 21, 
and 14-22, the direction of the x' axis and the maximum in-plane shear 
strain and associated average normal strain are determined from the 
following equations: 

tan 28
5 

= -(-E·_"_-_E-'--y) 
'Yxy 

Orientation of maximum in-plane shear strain 

')'~;lane ~
1

(Ex ~ Ey )2 + (~ )2 
Maximum in-plane shear strain 

E avg = 
2 

Av·erage normal strain 

(14-24) 

(14-25) 

(14-26) 

IMPORTANT POINTS 

• In the case of plane stress, plane-strain analysis may be used within the plane of the stresses to analyze 
the data from strain gages. Remember, though, there will be a normal strain that is perpendicular to the 
gages due to the Poisson effect. 

• When the state of strain is represented by the principal strains, no shear strain will act on the element. 

• When the state of strain is represented by the maximum in-plane shear strain, an associated average 
normal strain will also act on the element. 
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EXAMPLE 14.12 

The state of plane strain at a point has components of Ex = 500(10-6), Y 
Ey = - 300(10-6)."Y.ry = 200(10-6), which tends to distort the element as 
shown in Fig. 14-29a. Determine the equivalent strains acting on an 
element of the material oriented clockwise 30". 

SOLUTION 
The strain transformation Eqs. 14-19 and 14-20 will be used to solve 
the problem. Since 0 is positive counterclockwise, then for this problem 
0 = - 30". Thus, 

Ex + Ey E.r - Ey /'xy . 
Ex· = 

2 
+ 

2 
cos 20 + 2sm 20 

= [500 + ;-300))(l0-6) + [500 -i-300))(1o-6)cos(2(_30o)) 

"Yx'y' 

2 

+ [ 200~0-6) J sin(2(-30o)) 

Ex• = 213(10-6) 

(
Ex - Ey) "Yxy 

= -
2 

sin 20 + 2 cos 20 

Ans. 

[ 
500 - ( -300) ] 200(10-6) 

= -
2 

(10-6) sin(2(- 30")) + 
2 

cos(2(- 30°)) 

1'.r'y' = 793(10-6) Ans. 

The strain in the y' direction can be obtained from Eq. 14-21 with 
0 = - 30". However, we can also obtain Ev· using Eq. 14-19 with 
O = 60"(0 = -30° + 90°), Fig. 14-29b. We have with Ey• replacing Ex" 

Ex + Ey Ex - Ey /'xy 
Ey• = 

2 
+ 

2 
COS 20 + 2 Sin 2() 

= [500 + ;-300))(10-6) + [500 -i-300))(10-6)cos(2(60o)) 

+ 200(~0-6) sin(2(60°)) 

Ey• = -13.4(10-6) Ans. 

These results tend to distort the e lement as shown in Fig. 14-29c. 

--1 
......---..~---~- I 

~ ,:- ! 
I 

dy I I 

L 1 
------ -1 :T?f 

1-· - 1tx -1-1 
£,<Lr 

(a) 

y y' 

(b) x' 

y' 

(c) 

Fig. 14-29 

x 

x' 
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I EXAMPLE 14.13 

y The state of plane strain at a point has components of Ex = - 350(10-6), 

---; 
d - - - I 

Ey y I , - - I I ,__,/ ___ / 
dv I 

, I 

l I - : -------r y .Q' 
I ---- 2 --'-'-=---___, --'----- x 

1-dx --~ E, dx 

(a) 

y y' 

1-------. 
r-----.!.__I -=i-E 1dy' 

I 
I 
I 
I 

85.9° I , 
fd-----Li-~~~:· 
C2dX

1 

(b) 

Fig.14-30 

Ey = 200(10-6), Y.tJ' = 80(10-6), Fig. 14-30a. Determine the principal 
strains at the point and the orientation of the element upon which they act. 

SOLUTION 

Orientation of the Element. From Eq. 14- 22 we have 

Yxy 
tan28P = ---

Ex - Ey 

80(10-6) 
- -------

( - 350 - 200)(10-6) 

Thus, 28P = -8.28° and -8.28° + 180° = 171.72°, so that 

(;IP = -4.14° and 85.9° Ans. 

Each of these angles is measured positive counterclockwise, from the 
x axis to the outward normals on each face of the element. The angle 
of -4.l4°is shown in Fig. 14-30b. 

Principal Strains. The principal strains are determined from 
Eq. 14-23. We have 

_ Ex + Ey f (Ex - Ey)2 
(Yxy )

2 

EJ ,2 - 2 + '\/ 2 + -2-

= (-350 + ~00)(10-6) + [ )~(--3-5-0 2-_-2_00_)~2_+_(_~-0~)2 ](10-6) 

= -75.0(10-6) + 277.9(10-6) 

EJ = 203(10-6) Ans. 

To determine the direction of each of these strains we will apply 
Eq. 14-19 with 8 = -4.14°, Fig. 14-30b. Thus, 

Ex + Ey Ex - Ey 'Yxy . 
Ex• = 

2 
+ 

2 
COS 2(;1 + l SJO 2fJ 

= (-350 2+ 200)(10-6) + (-350 2- 200)(10-6) cos 2(-4.140) 

80(10-6) 
+ 

2 
sin 2(-4.14°) 

Ex• = -353(10-6) 

Hence Ex· = E2. When subjected to the principal strains, the element is 
distorted as shown in Fig. 14-30b. 
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EXAMPLE 14.14 

The state of plane strain at a point has components of Ex = - 350(10-6), 
"r = 200(10-6), Yxy = 80(10-6), Fig. 14-31a. Determine the maximum 
in-plane shear strain at the point and the orientation of the element 
upon which it acts. 

SOLUTION 

Orientation of the Element. From Eq. 14-24 we have 

(
Ex - "r) (- 350 - 200)(10-6) 

tan 2fJ = - = - --------
' Y xy 80(10-6) 

Thus, 28, = 81.72° and 81.72° + 180° = 261.72°, so that 

8s = 40.9° and 131° 

Notice that this orientation is 45° from that shown in Fig. 14-31b. 

Maximum In-Plane Shear Strain. Applying Eq. 14-25 gives 

2 

Y max 
in-plane 

=)(Ex ~ Ey )2 + (~ )2 

= [ )(-350 2- 200)
2 

+ (820)
2

] (10-6) 

= 556(10- 6) Ans. 

The square root gives two signs for y max • The proper one for each 
in-plane 

angle can be obtained by applying Eq.14-20. When 8, = 40.9°, we have 

"Yx'y' Ex - Ey Yxy 
-- = - sin 28 + - cos 28 

2 2 2 

= - ( - 35o 
2
-

200
)(10-6) sin 2(40.9°) + 80(~0-6) cos 2(40.9°) 

"Y.r'y' = 556(10-6) 

This result is positive and so y max tends to distort the element so 
in-plane 

that the right angle between dx' and dy' is decreased (positive sign 
convention), Fig. 14-3lb. 

Also, there are associated average normal strains imposed on the 
element that are determined from Eq. 14-26. 

= Ex + Ey = -350 + 200 ( 0_6) = _ 75(l0-6) 
Eavg 2 2 1 

These strains tend to cause the element to contract, Fig. 14-31b. 

y' 

y 

---, 
E1dy -- __ .... I 

I I 

Y.o I 
I 

dy I 
2 Y.., 

l I 2 I 
I 
I ---

(a) 

y 

(b) 

Fag. 14-31 

x 
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Ex - Ey 

2 c 1--1 
1----+----T------T---+-,~ E 

Yxy 

2 
E.,+ Ey __ I 

Eavg = 2 E';--~1 9 = (f 

')' 

2 

Fi.g.14-32 

* 14. 8 MOHR'S CIRCLE-PLANE 
STRAIN 

Since the equations of plane-strain transformation are mathematically 
similar to the equations of plane-stress transformation, we can also solve 
problems involving the transformation of strain using Mohr's circle. 

Like the case for stress, the parameter() in Eqs. 14-19 and 14-20 can be 
eliminated and the result rewritten in the form 

2 x y - 2 ('Y ' ')2 
(Ex• - € avg) + 2 - R (14-27) 

where 

Equation 14-27 represents the equation of Mohr's circle for strain. It has a 
center on the E axis at point C( Eavg• 0) and a radius R. As described in the 
following procedure, Mohr's circle can be used to determine the principal 
strains, the maximum in-plane strain, or the strains on an arbitrary plane. 

PROCEDURE FOR ANALYSIS 
The procedure for drawing Mohr's circle for strain follows 

the same one established for stress. 

Construction of the Circle. 

• Establish a coordinate system such that the horizontal axis 
represents the normal strain E, with positive to the right, and 
the vertical axis represents half the value of the shear strain, 
y /2, with positive downward, Fig. 14-32. 

• Using the positive sign convention for Ex, Ey, 'Yx>" Fig. 14-26, 
determine the center of the circle C, located Eavg = ( Ex + Ey)/2 

from the origin, Fig. 14-32. 

• Plot the reference point A having coordinates A( E.n 'Yxy/2). This 
point represents the case when the x ' axis coincides with the 
x axis. Hence() = 0°, Fig. 14-32. 

• Connect point A with C and from the shaded triangle 
determine the radius R of the circle, Fig. 14-32. 

• Once R has been determined, sketch the circle. 

Principal Strains. 
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• The principal strains E 1 and E2 are determined from the circle 
as the coordinates of points B and D, that is, where y /2 = 0, 
Fig. 14-33a. 

• The orientation of the plane on which E 1 acts can be determined 
from the circle by calculating 28p, using trigonometry. Here 
this angle happens to be counterclockwise, measured from CA 
to CB, Fig. 14-33a. Remember that the rotation of (}p, must be 
in this same direction, from the element's reference axis x to 
the x' axis, Fig.14- 33b.* 

• When E1 and E2 are positive as in Fig. 14-33a, the element in 
Fig. 14-33b will elongate in the x' and y' directions as shown 
by the dashed outline. 

Maximum In-Plane Shear Strain. 

• The average normal strain and half the maximum in-plane 
shear strain are determined from the circle as the coordina~es 
of point E or F, Fig.14-33a. 

• The orientation of the plane on which y max and Eavg act can 
in·plane 

be determined from the circle in Fig. 14-33a, by calculating 285 , 

using trigonometry. Here this angle happens to be clockwise 
from CA to CE. Remember that the rotation of (}

51 
must be in 

this same direction, from the element's reference axis x to the 
x' axis,Fig.14- 33c.* 

Strains on Arbitrary Plane. 

• The normal and shear strain components Ex· and 'Yx'y' for an 
element oriented at an angle 8, Fig. 14-33d, can be obtained 
from the circle using trigonometry to determine the coordina~es 
of point P, Fig. 14- 33a. 

• To locate P, the known counterclockwise angle(} of the x' axis, 
Fig. 14- 33d, is measured counterclockwise on the circle as 28. 
This measurement is made from CA to CP. 

• If the value of Ey• is required, it can be determined by 
calculating the E coordinate of point Qin Fig. 14-33a. The line 
CQ lies 180° away from CP and thus represents a 90° rotation 
of the x' axis. 

*If the y /2 axis were constructed positive upwards, then the angle 20 on the circle 
would be measured in the opposire direcrion to the orientation 0 of the plane. 

1-----E1 -----1 
F ··1 

D B 
1---~l°"'+--__:::'°'=~~--+.::_--E 

'Ymax 
in- plane 

,_ __ Ea\'g ---1 E 

y 
2 

(a) 

Y y ' Ymax 

$__~-~~~ 
---, 

I 
I 

I 
I 

I 
I 

~~ I 

I 
I 

I 
I 

I 
I 

....... ~-;::;:-::::-~-:-IT-::;:::::::Tii--- x {.:f.=r:_o_,, __ 
/.-/ I x ' 

'Ymax 
in- plane 

(c) 2 

.Y' )' 

'Yxy -

2 --· ------ l 
- ,- - l 

Eydy' L" I I 
I I 
I I 
I I 
I I '/xy 

I -I • _1..-.-/ 2 x' 

y ~~-~-=-~-=-tj1E:=~10C:: L i-l x 

Ex·dx' 

(d) 

Fig.14-33 
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EXAMPLE 14.15 - . 
Y The state of plane strain at a point has components of Ex = 250(10-6), 

Ey = -150(10-6) , 'Yxy = 120(10-6), Fig.14-34a. Determine the principal 
strains and the orientation of the element upon which they act. 

-· -- , SOLUTION -- , 
-, - / ' Construction of the Circle. The E and y /2 axes are established in 

I I , f Fig. 14- 34b. Remember that the positive y /2 axis must be directed 
dy 1 

' downward so that counterclockwise rotations of the element 

L / -P' 'Yxy d f k . d h · 1 d · , ---- ~ 
2 

correspon to counterc .oc wise rotation aroun t e cuc e, an vice 
- - +----'------ x versa. The center of the circle C is located at 

1--dx --~,dx 

y' y 
I 

(a) 

- 250-

1. (10- 6) 
2 

(b) 

-_ _,..- --, 
\€2dyc.l- - ------- \ 

250 + (-150) 
= (lo-6 ) = 50(10-6 ) 

2 

Since Yxv /2 = 60(10-6
), the reference point A (8 = 0°) has 

coordinates A(250(10-6), 60(10-6)). From the shaded triangle in 
Fig. 14-34b, the radius of the circle is 

R = [ V(250 - 50)2 + (60)2 ] (10-6) = 208.8(10-6) 

Principal Strains. The E coordinates of points Band Dare therefore 

EJ = (50 + 208.8)(10-6) = 259(10-6) 

E2 = (50 - 208.8)(10-6) = -159(10-6) 

Ans. 

Ans. 

The direction of the positive principal strain Et in Fig. 14- 34b is 
defined by the counterclockwise angle 28p,, measured from 
CA (8 = 0°) to CB. We have 

60 
tan 28p, - -(-25_0 _ _ _ 5_0_) 

dy' ~ _ x' 

\ ' l,- -\-~--rj--:O-:-p,---=8.35° Ans. 

1--\- I .I X 

dx' - '£1d.~ ' Hence, the side dx' of the element is inclined counterclockwise 8.35° 

(c) 

Fig. 14-34 

as shown in Fig. 14- 34c. This also defines the direction of EJ . The 
deformation of the element is also shown in the figure. 
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~ EXAMPLE 14.16 

The state of plane strain at a point has components of e_. = 250(10-6), Y 

e,, = -150(10-6), 'Yxy = 120(10-6), Fig. 14-35a. Determine the 
maximum in-plane shear strains and the orientation of the element 
upon which they act. 

SOLUTION 
The circle has been established in the previous example and is shown 
in Fig. 14-35b. 

Maximum In-Plane Shear Strain. Half the maximum in-plane 
shear strain and average normal strain are represented by the 
coordinates of point E or F on the circle. From the coordinates of 
point E, 

('Y ' ·)-· .r y 1n,P1tn~ 

2 

('Y ' •)ma. = 418(10-6) .r Y in-pt11ne 

To orient the element, we will determine the clockwise angle 28,,, 
measured from C4 (8 = O") to CE. 

28,, = 90° - 2(8.35°) 

0,, = 36.7° Ans. 

This angle is shown in Fig. 14-35c. Since the shear strain defined from 
point E on the circle has a positive value and the average normal 
strain is also positive, these strains deform the element into the dashed 
shape shown in the figure. 

y 

(a) 

F 

Yxy 

2 

y' 
- -1---11----=+<::----rl---,f-E (10 - 6) 

60 
A I 

' o=oo 

E{E 'Y~; .... \ 
~ ll\'&• 2 ) 

1--250--

i (l0 -6) 

(c) 
x' (b) 

Fig.14-35 
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EXAMPLE 14.17 -
y 

,'I 
,' I 

,' I 

dy 

Yxy j 
Z I 

Yx)' 

2 I 

The state of plane strain at a point has components of Ex = -300(10-6), 

Ey = -100(10-6) , 'Y.tJ' = 100(10-6) , Fig. 14-36a. Determine the state of 
strain on an element oriented 20° clockwise from this position. 

SOLUTION 

Construction of the Circle. The E and y /2 axes are established in 
x Fig. 14-36b. The center of the circle is at 

dx d E.T X 

(a) 

1----<E,·----1 

i---200--- 1 

1----300----1 

The reference point A has coordinates A(-300(10-6) , 50(10-6)), and 
so the radius CA, determined from the shaded triangle, is 

R = [ Y (300 - 200)2 + (50)2 ) (10-6) = 111.8(10-6) 

Strains on Inclined Element. Since the element is to be oriented 
20° clockwise, we must consider the radial line CP, 2(20°) = 40° 
clockwise, measured from CA (6 = 0°), Fig. 14- 36a. The coordinates 
of point Pare obtained from the geometry of the circle. Note that 

1' (10 - 6) 
2 

y 

(b) 

y ' 

I 

(c) 

Fig. 14-36 

</> = tan-1 ( (300 5~ 200)) = 26.570, if! = 40° - 26.57° = 13.43° 

Thus, 

Ex• = -(200 + 111.8 COS 13.43°)(10-6) 

= -309(10-6) 

'Yx'y' 

2 
= -(111.8 sin 13.43°)(10-6) 

'Yx'y' = -52.0(10-6
) 

Ans. 

Ans. 

The normal strain Ey• can be determined from the E coordinate of 
point Q on the circle, Fig. 14-36b. 

Ey• = -(200 - 111.8 .cos 13.43°)(10-6) = -91.3(10-6) Ans. 

As a result of these strains, the element deforms relative to the x' , y ' 
axes as shown in Fig. 14-36c. 
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PROBLEMS 

*14-84. Prove that the sum of the normal strains in 
perpendicular directions is constant. i.e., Ex + E,. = E.r + e,. .. 

14-85. The state of strain at the point on the arm has 
components of Ex = 200(1o-6), E

1 
= -300(10~). and 

Yiy = 400(10~). Use the strain transformation equations to 
determine the equivalent in-plane strains on an element 
oriented at an angle of30" counterclockwise from the original 
position. Sketch the deformed clement due to these strains 
within the x- y plane. 

Prob.14-85 

14-86. The state of strain at the point on the pin leaf has 
components of Ex = 200(10-"<i). Ey = 180(10~), and 
.,,..,. = -300(10~). Use the strain transformation equations 
and determine the equivalent in-plane strains on an element 
oriented at an angle of 8 = 60" counterclockwise from the 
original position. Sketch the deformed element due to these 
strains within the x-y plane. 

14-87. Solve Prob. 14-86 for an element oriented 8 = 30" 
clockwise. 

y 

x 

Probs. 14-86/87 

14.8 M OHR'S CIRCLE-PLANE STRAIN 675 

*14-88. The state of strain at the point on the leaf of the 
caster assembly has components of Ex = -400(10~) , 
e1 = 8()()(1o-6), and 1'xy = 375(lo-6). Use the strain 
transformation equations to determine the equivalent 
in-plane strains on an element oriented at an angle of 
8 = 30" counterclockwise from the original position. 
Sketch the deformed element due to these strains within 
the x- y plane. 

Prob. 14-88 

14-89. The state of strain at a point on the bracket has 
component: Ex = 150(10"'6). Ey = 200(10"'6), y..,. = - 700(10"'6). 
Use the strain transformation equations and determine the 
equivalent in plane strains on an element oriented at an angle 
of 8 = 60" counterclockwise from the original position. Sketch 
the deformed element within the x-y plane due to these strains. 

14-90. Solve Prob. 14-89 for an element oriented 8 = 30° 
clockwise. 

y 

0 0 
111----x 

Probs. 14-89/90 
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14-91. The state of strain at the point on the spanner 
wrench has components of E, = 260(10-6), Ey = 320(10-6), 
and 'Yxy = 180(10-6). Use the strain transformation equations 
to determine (a) the in-plane principal strains and (b) the 
maximum in-plane shear strain and average normal strain. In 
each case specify the orientation of the element and show 
how the strains deform the element within the x-y plane. 

y 

Prob.14-91 

*14-92. The state of strain at the point on the member has 
components of E., = 180(10-6), Ey = - 120(10-6), and 
'Yxy = - 100(10-6). Use the strain transformation equations 
to determine (a) the in-plane principal strains and (b) the 
maximum in-plane shear strain and average normal strain. In 
each case specify the orientation of the element and show 
how the strains deform the element within the x-y plane. 

Prob.14-92 

14-93. The state of strain at the point on the support 
has components of E, = 350(10-6), Ey = 400(10-6), 
'Yxy = - 675{10-6). Use the strain transformation equations 
to determine (a) the in-plane principal strains and (b) the 
maximum in-plane shear strain and average normal strain. 
In each case specify the orientation of the element and show 
how the strains deform the element within the x-y plane. 

Prob.14-93 

14-94. Due to the load P, the state of strain at the 
point on the bracket has components of E, = 500(10-6), 
Ey = 350(10-6), and 'Yxy = - 430(10-6). Use the strain 
transformation equations to determine the equivalent 
in-plane strains on an element oriented at an angle of 
e = 30° clockwise from the original position. Sketch the 
deformed element due to these strains within the x-y plane. 

Prob.14-94 
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14-95. The state of strain on an element has components 
€ x = -400(10-6), Ey = 0, 'Y xy = 150(10-0). Determine the 
equivalent state of strain on an element at the same point 
oriented 30° clockwise with respect to the original element. 
Sketch the results on this element. 

*14-96. The state of plane strain on the element is 
£_, = - 300(10-6

) , Ey = 0, and 'Y.<y = 150(10--<>). Determine 
the equivalent state of strain which represents (a) the 
principal strains, and (b) the maximum in-plane shear strain 
and the associated average normal strain. Specify the 
orientation of the corresponding elements for these states of 
strain with respect to the original element. 

y 

C! 
dy T- i, 

I 

----
I 
I 
I 
I 
J 

---'--i -"----+---"=-~-+-'----x 

Yf ~ ~i;,dx 
1-- dx-l 

Probs. 14-95196 

14-97. The state of strain at the point on a boom of a shop 
crane has components of £_, = 250(10--<>), £, = 300(10--<>), 
'Yxy = - 180(10-6 ). Use the strain transformation equations to 
determine (a) the in-plane principal strains and (b) the 
maximum in-plane shear strain and average normal strain. In 
each case, specify the orientation of the element and show 
how the strains deform the element within the x-y plane. 

Prob.14-97 

14.8 MOHR'S CIRCLE-PLANE STRAIN 677 

14-98. Consider the general case of plane strain where 
£,,Er, and 'Yxy are known. Write a computer program that 
can be used to determine the normal and shear strain, £ x' 

and 'Yx'y', on the plane of an element oriented IJ from the 
horizontal. Also, include the principal strains and the 
element's orientation, and the maximum in-plane shear 
strain, the average normal strain, and the element's 
orientation. 

14-99. The state of strain on the element has components 
£, = -300(10-0), Ey = 100(10-6), 'Yxy = 150(10-0). 
Determine the equivalent state of strain, which represents 
(a) the principal strains, and (b) the maximum in-plane 
shear strain and the associated average normal strain. 
Specify the orientation of the corresponding elements for 
these states of strain with respect to the original element. 

)' 

-----
I 'YtY : 

dy 2_ 1--
l I I 

__ ..I--! x l!f/_j-E dx 2 x 

1-- dx 

Prob.14-99 

*14-100. Solve Prob.14-86 using Mohr's circle. 

14-101- Solve Prob. 14-87 using Mohr's circle. 

14-102- Solve Prob. 14-88 using Mohr's circle. 

14-103- Solve Prob. 14-91 using Mohr's circle. 

*14-104. Solve Prob. 14-90 using Mohr's circle. 
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x 

x 

y 
2 

z 

x - y plane strain 

(a) 

2 
(y,,)max 

2 

(b) 

Fi.g.14-37 

z 

x - y plane strain 

(a) 

hxz)max 
2 

(yxy)max 
y 2 
2 

(b) 

Fi.g.14-38 

)' 

)' 

* 14.9 ABSOLUTE MAXIMUM SHEAR 
STRAIN 

In Sec. 14.5 it was pointed out that in the case of plane stress, the absolute 
maximum shear stress in an element of material will occur out of the plane 
when the principal stresses have the same sign, i.e., both are tensile or both 
are compressive. A similar result occurs for plane strain. For example, if 
the principal in-plane strains cause elongations, Fig. 14- 37a, then the three 
Mohr's circles describing the normal and shear strain components for the 
element rotations about the x, y , and z axes are shown in Fig. 14-37b. By 
inspection, the largest circle has a radius R = ( 'Yxz)max /2, and so 

(14-28) 

<' 1 and .-2 have the same sign 

This value gives the absolute maximum shear strain for the material. 
Note that it is larger than the maximum in-plane shear strain, which is 
( 'Yxy)max = Et - E1. 

Now consider the case where one of the in-plane principal strains is of 
opposite sign to the other in-plane principal strain, so that Et causes 
elongation and E2 causes contraction, Fig. 14-38a. The three Mohr's 
circles, which describe the strain components on the element rotated 
about the x, y, z axes, are shown in Fig. 14-38b. Here 

')'abs = ("'·)max =Et - E2 
max 1 .r.y 1n·plane 

(14-29) 

.-1 and .-2 have opposite signs 

IMPORTANT POINTS 

• If the in-plane principal strains both have the same sign, the 
absolute maximum shear strain will occur out of plane and has 
a value of y abs = Emax· This value is greater than the maximum 
. max . 
m-plane shear stram. 

• If the in-plane principal strains are of opposite signs, then the 
absolute maximum shear strain equals the maximum in-plane 
shear strain,')' abs = E t - E2. 

max 
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14.9 ABSOLUTE MAXIMUM SHEAR STRAIN 679 

EXAMPLE 14.18 
- . 
The state of plane strain at a point has strain components of 
Ex = -400(10-6), Ey = 200(10-6), and 'Yxy = 150(10-6), Fig. 14-39a. 
Determine the maximum in-plane shear strain and the absolute 
maximum shear strain. 

y 

- ---; --+----- I ~,dy ...L_ I I . I I Yx)' 
I - I 

dy I 2 Yx)': 

l / 2 I 

I -
'""-"-~-----':...+..L---- x 
1-dx 

(a) 

SOLUTION 

400 

(b) 

Fig.14-39 

Maximum In-Plane Shear Strain. We will solve this problem using 
Mohr's circle. The center of the circle is at 

Eavg = -400; 200 (10-6) = -100(10-6) 

Since 'Yxy /2 = 75(10-6 ), the reference point A has coordinates 
(-400(10-6), 75(10- 6)), Fig.14-39b. The radius of the circle is therefore 

R = [ V ( 400 - 100)2 + (75)2 ] (10-6) = 309(10-6) 

From the circle, the in-plane principal strains are 
Et = (-100 + 309)(10-6) = 209(10-6) 
E2 = (-100 - 309)(10-6) = -409(10-6) 

Also, the maximum in-plane shear strain is 
'Y!D•x = Et - E2 = (209 - (-409))(10-6) = 618(10-6) Ans. 

1n·plane 

Absolute Maximum Shear Strain. Since the principal in-plane 
strains have opposite signs, the maximum in-plane shear strain is also 
the absolute maximum shear strain; i.e., 

')' abs = 618(10-6) Ans. 
max 

The three Mohr's circles, plotted for element orientations about each 
of the x,y, z axes, are also shown in Fig. 14-39b. 
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cjj;I 'Ff (a) 

~' &:V 

~ 1~:1 x 
a 

45• strain rosette 

(b) 

\j. 
~1§:1 

a 
6(f strain rosette 

(c) 

Fig.14-40 

Typical electrical resistance 45° 
strain rosette. 

x 

14.10 STRAIN ROSETTES 
The normal strain on the free surface of a body can be measured in a 
particular direction using an e[ectrical resistance strain gage. For example, 
in Sec. 8.1 we showed how this type of gage is used to find the axial strain 
in a specimen when performing a tension test. When the body is subjected 
to several loads, however, then the strains Ex, E>" l'xy at a point on its surface 
may have to be determined. Unfortunately, the shear strain cannot be 
directly measured with a strain gage, and so to obtain E.n Ey, l'xy• we must 
use a cluster of three strain gages that are arranged in a specified pattern 
called a strain rosette. Once these normal strains are measured, then the 
data can be transformed to specify the state of strain at the point. 

To show how this is done, consider the general case of arranging the 
gages at the angles 8a, 8b, 8e shown in Fig. 14--40a. If the readings Ea, Eb, Ee 

are taken, we can determine the strain components Ex, Ey, l'xy by applying 
the strain transformation equation, Eq.14-16, for each gage. The results are 

Ea = E cos2 8 x a 
. 2 8 + Ey sm a + l'xy sin 8a cos 8a 

Eb = E cos2 8 x b 
. 2 8 + Ey sm b + l'.tJ' sin 8b cos 8b (14-30) 

Ee = E cos2 8 x c 
. 2 8 + Ey sm c + l'xy sin 8e cos 8c 

The values of Ex, E>" l'.tJ' are determined by solving these three equations 
simultaneously. 

Normally, strain rosettes are arranged in 45° or 60° patterns. In the case 
of the 45° or "rectangular" strain rosette, Fig. 14-40b, 8a = 0°, 8b = 45°, 
8e = 90°, so that Eq. 14-30 gives 

Ey = Ee 

-Y.t)' = 2Eb - (E0 + Ee) 

And for the 60° strain rosette, Fig. 14--40c, 8a = 0°, 8b = 60°, 8e = 120°. 
Here Eq. 14- 30 gives 

1 
Ey = J (2Eb + 2Ee - Ea) (14-31) 

2 
J'.t)' = yj ( Eb - Ee) 

Once Ex, E>" l'xy are determined, then the strain transformation 
equations or Mohr's circle can be used to determine the principal 
in-plane strains E1 and E1, or the maximum in-plane shear strain I' !"""

1 
• - - 1n·p ane 

The stress in the material that causes these strains can then be determined 
using Hooke's Jaw, which is discussed in the next section. 
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EXAMPLE 14.19 
- . 
The state of strain at point A on the bracket in Fig.14-41a is measured 
using the strain rosette shown in Fig. 14-41b. The readings from the 
gages give Ea = 60(10-6 ) , Eb = 135(10-6 ), and Ee = 264(10-6 ). 
Determine the in-plane principal strains at the point and the 
directions in which they act. 

SOLUTION 
We will use Eqs.14-30 for the solution. Establishing an x axis, Fig. 14-41b, 
and measuring the angles counterclockwise from this axis to the 
centerlines of each gage, we have 80 = 0°, 8b = 60°, and 8c = 120°. 
Substituting these results, along with the problem data, into the equations 
gives 

60(10-6 ) = E cos2 0° + E , sin2 0° + y sin 0° cos 0° x ) xy 

= ~ (1) 

135(10-6
) = Ex cos2 60° + Ey sin2 60° + 'Yxy sin 60° cos 60° 

= 0.25Ex + 0.75Ey + 0.433/'.ry• (2) 
264(10-6 ) = Ex cos2 120° + Ey sin2 120° + 'Y.ry• sin 120° cos 120° 

= 0.25Ex + 0.75Ey - 0.433/'.ry• (3) 

Using Eq. 1 and solving Eqs. 2 and 3 simultaneously, we get 

Ex = 60(10-6 ) Ey = 246(10-6 ) 'Y.t)' = -149(10-6 ) 

These same results can also be obtained in a more direct manner from 
Eq.14-31. 

The in-plane principal strains will be determined using Mohr's 
circle. The center, C, is at Ea!f = 153(10-6 ) , and the reference point 
on the circle is at A(60(10- ), -74.5(10-6 )], Fig. 14-41c. From the 
shaded triangle, the radius is 

R = [v(153 - 60)2 + (74.5)2 ](lo-6 ) = 119.1(10-6) 

The in-plane principal strains are therefore 

Et = 153(10-6) + 119.1(10-6) = 272(10-6 ) 

E2 = 153(10-6) - 119.1(10-6) = 33.9(10-6) 

28p, = tan- 1 (l5~
4~ 60) = 38.7° 

8 = 19.3° Pz 

Ans. 

Ans. 

Ans. 

NOTE: The deformed element is shown in the dashed position in 
Fig. 14-41d. Realize that, due to the Poisson effect, the element is 
also subjected to an out-of-plane strain, i.e., in the z direction, 
although this value will not influence the calculated results. 

14.10 STRAIN ROSETIES 681 

(a) 

(b) 

(c) 

(d) 

Fig. 14-41 

I 

x 

a 
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(a) 

I 
I 
I 
I 

14.11 MATERIAL PROPERTY 
RELATIONSHIPS 

In this section we will pres ent some important material property 
relationships that are used when the material is subjected to multiaxial 
stress and strain. In all cases, we will assume that the material 1s 
homogeneous and isotropic, and behaves in a linear elastic manner. 

Generalized Hooke's Law. When the material at a point is 
subjected to a state of triaxial stress, a,,, ay, az, Fig. 14-42a, then these 
stresses can be related to the normal strains Ex, Ey, Ez by using the principle 
of superposition, Poisson's ratio, e13 1 = -ve100g, and Hooke's Jaw as it 
applies in the uniaxial direction, e = a/ E. For example, consider 
the normal strain of the element in the x direction, caused by separate 
application of each normal stress. When a, is applied, Fig. l4-42b, the 
element elongates with a strain e_~, where 

a 
e' = .....:!. 

x E 

Application of ay causes the element to contract with a strain 
Fig. l4-42c. Here 

ay 
€ " = -v -

x E 

" Ex, 

Finally, application of az, Fig. 14-42d, causes a contraction strain e.~', 

so that 

/ 
/ ......... 

I 
I 
I 

, 

U z 
e"' = - v -

x E 

I ,, 
I - , • .,, + I •, ., '--' ; : 1 ...... ... (,...,. : 
~ I I I I 

I (T ~,,,-;.>-.._.._, I 
I y "' ..,...., I 
I ... .._ I ... ""-.) 

,,, ... "' iY" ...... ... ,,"' 

"' vz ... 

(b) (c) (d) 

Fig.14-42 
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14.11 MATERIAL PROPERTY RELATIONSHIPS 68 3 

We can obtain the resultant strain Ex by adding these three strains 
algebraically. Similar equations can be developed for the normal strains 
in they and z directions, and so the final results can be written as 

Ex= ~fux - v(u,. + uJ) I 
1 

Ey = E f u,. - v(ux + uJ) 

1 
E;: = E [u, - v(a:, + uy)] 

(14-32) 

These three equations represent the general form of Hooke's law for a 
triaxial state of stress. For application, tensile stress is considered a 
positive quantity, and a compressive stress is negative. If a resulting 
normal strain is positive, it indicates that the material elongates, whereas 
a negative normal strain indicates the material contracts. 

If we only apply a shear stress Txy to the element, Fig. 14-43a, 
experimental observations indicate that the material will change its 
shape, but it will not change its volume. In other words, Txy will only cause 
the shear strain Y xy in the material. Likewise, Tyz and Txz will only cause 
shear strains Y yz and Yxz• Figs. 14-43b and 14-43c. Therefore, Hooke's law 
for shear stress and shear strain becomes 

I 

' I 
' I 

o ',, /!' I ' .,, 
0 I I 
I I I 1~ 1 I 
I xy I I 
......... I 

'~ I 

(a) 

1 
Y y" = --r;Y" .. G , 

I , 
I 

I , 
I , , 

I , _________ _ 

(14-33) 

(b) 

Fi.g. 14-43 

(c) 
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y 

l 1 

'----~~~~~~~~~ x 

(a) 

y 

Umin = - T:ry 

'--~~~~~~~~~x 

(b) 

Fi.g.14-44 

dz 

(a) 

r 
(1 + e,)dz 

(1 + e,)dx 

i 
(b) 

Fi.g.14-45 

Relationship Involving E, v, and G. In Sec. 8.6 it was stated that 
the modulus of elasticity Eis related to the shear modulus G by Eq. 8- 11, 
namely, 

(14-34) 

One way to derive this relationship is to consider an element of the 
material to be subjected only to shear, Fig. 14-44a. Applying Eq. 14-5 
(see Example 14.5) the principal stresses at the point are umax = Try and 
umin = -rry• where this element must be oriented ep, = 45° 
counterclockwise from the x axis, as shown in Fig. 14-44b. If the three 
principal stresses Umax = T")" uint = 0, and Umin = -r,y are then 
substituted into the first of Eqs. 14-32, the principal strain Emax can be 
related to the shear stress -i:ry · The result is 

(14-35) 

This strain, which deforms the element along the x' axis, can also be 
related to the shear strain 'Yxy- From Fig. 14-44a, u, = u y = u z = 0. 
Substituting these results into the first and second Eqs. 14- 32 gives 
Ex = Ey = 0. Now apply the strain transformation Eq. 14-23, which gives 

'Yxy 
Et = €max= T 

By Hooke's law, 'Yxy = Try /G,so that Emax = -i:ry /2G. Finally, substituting 
this into Eq. 14-35 and rearranging the terms gives our result, namely, 
Eq.14-34. 

Dilatation. When an elastic material is subjected to normal stress, the 
strains that are produced will cause its volume to change. For example, if 
the volume element in Fig. 14-45a is subjected to the principal stresses 
u1' u2, u3, Fig. 14-45b, then the lengths of the sides of the element become 
(1 + Ex) dx, (1 + Ey) dy, (1 + Ez ) dz. The change in volume of the 
element is therefore 

Expanding, and neglecting the products of the strains, since the strains 
are very small, we get 

The change in volume per unit volume is called the "volumetric strain" 
or the dilatation e. 

BV 
e =-=E + € + € dV x y z (14-36) 
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If we use Hooke's Jaw, Eq. 14-32, we can also express the dilatation in 
terms of the applied stress. We have 

I e = 1 ~ 2v ( <Tt + <T2 + <T3) I (14-37) 

Bulk Modulus. According to Pascal's Jaw, when a volume element of 
material is subjected to a uniform pressure p caused by a static fluid , the 
pressure will be the same in all directions. Shear stresses will not be 
present, since the fluid does not flow around the element. This state of 
" hydrostatic" loading therefore requires u1 = u2 = u3 = -p, Fig. 14-46. 
Substituting into Eq. 14-37 and rearranging terms yields 

p E 
-= 
e 3(1 - 2v) 

(14-38) 

The term on the right is called the volume modulus of elasticity or the 
bulk modulus, since this ratio,p / e,issimilar to the ratio of one-dimensional 
linear elastic stress to strain, which defines E, i.e., <T / E = E. The bulk 
modulus has the same units as stress and is symbolized by the Jetter k, 
so that 

[k = 3(1 : 2v) ] (14-39) 

For most metals v "" ~ and so k "" E. However, if we assume the 
material did not change its volume when loaded, then av = e = 0, and k 
would be infinite. As a result, Eq. 14-39 would then indicate the 
theoretical maximum value for Poisson's ratio to be v = 0.5. 

IMPORTANT POINTS 

• When a homogeneous isotropic material is subjected to a state 
of triaxial stress, the strain in each direction is influenced by 
the strains produced by all the stresses. This is the result of the 
Poisson effect, and the stress is then related to the strain in the 
form of a generalized Hooke's Jaw. 

• When a shear stress is applied to homogeneous isotropic 
material, it will only produce shear strain in the same plane. 

• The material constants£, G, and v are all related by Eq. 14-34. 

• Dilatation, or volumetric strain, is caused only by normal strain, 
not shear strain. 

• The bulk modulus is a measure of the stiffness of a volume of 
material. This material property provides an upper limit to 
Poisson's ratio of v = 0.5. 

u3 = p 

j 

U 2 =p 
UJ =p 

Hydrostatic stress 

Fig.14-46 
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EXAMPLE 14.20 
-

The bracket in Example 14.19, Fig. 14-47a, is made of steel for which 
E,1 = 200 GPa, v,1 = 0.3. Determine the principal stresses at point A. 

SOLUTION I 

(a) 

Fig. 14-47 

From Example 14.19 the principal strains have been determined as 

Et = 272(10-6) 

€2 = 33.9(10-6) 

Since point A is on the surface of the bracket, for which there is no loading, 
the stress on the surface is zero, and so point A is subjected to plane stress 
(not plane strain). Applying Hooke's Jaw with a3 = 0, we have 

272(10- 6) = Ut -
0·3 

a 
200(109) 200(109) 

2 

54.4(106
) = a1 - 0.3a2 

33.9(10-6) = a 2 - 0.3 a 
200(109) 200(109) 

1 

6.78(106) = a2 - 0.3a1 

Solving Eqs. 1 and 2 simultaneously yields 

a1 = 62.0MPa 

a2 = 25.4MPa 

(1) 

(2) 

Ans. 

Ans. 
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1---43.7---1 

T (MPa) 

(b) 

Fig. 14-47 (cont.) 

SOLUTION II 
It is also possible to solve this problem using the given state of strain 
as specified in Example 14.19. 

Ex = 60(10-6) Ey = 246(10-6) 'Yxy = -149(10-6) 

Applying Hooke's law in the x-y plane, we have 

60(10-6) = <T.r 
200(109) Pa 200(109) Pa 

0.30:, 

200(109) Pa 

o:x = 29.4 MPa o:y = 58.0 MPa 

The shear stress is determined using Hooke's law for shear. First, 
however, we must calculate G. 

E 200 GPa 
G = 2(1 + v) = 2(1 + 0.3) = 76.9 GPa 

Thus, 

1'.ry = G 'Yxy ; Txy = 76.9(109)(-149(10-6)] = -11.46 MPa 

The Mohr's circle for this state of plane stress has a center at 
o:avg = 43.7 MPa and a reference point A (29.4 MPa, -11.46 MPa), 
Fig. 14-47b. The radius is determined from the shaded triangle. 

R = Y (43.7 - 29.4)2 + (11.46)2 = 18.3 MPa 

Therefore, 
<T1 = 43.7 MPa + 18.3 MPa = 62.0 MPa Ans. 

u2 = 43.7 MPa - 18.3 MPa = 25.4 MPa Ans. 

NOTE: Each of these solutions is valid provided the material is both 
linear elastic and isotropic, since only then will the directions of the 
principal stress and strain coincide. 
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I EXAMPLE 14.21 

The copper bar is subjected to a uniform loading shown in Fig.14-48. If it 
has a length a = 300 mm, width b = 50 mm, and thickness t = 20 mm 
before the load is applied, determine its new length, width, and thickness 
after application of the load. Take Ecu = 120 GPa, v cu = 0.34. 

SOOMPa 

Fig.14-48 

SOLUTION 
By inspection, the bar is subjected to a state of plane stress. From the 
loading we have 

Ur = 800 MPa Uy = -500 MPa Try = 0, Uz = 0 

The associated normal strains are determined from Hooke's Jaw, 
Eq. 14-32; that is, 

u, v 
Ex = E - E (uy + uz) 

- 800 MPa 0.34 (-500 MPa + 0) = 0.00808 
120(103

) MPa 120(103
) MPa 

Uy V 

Ey = E - E (ur + uz) 

- - 500 MPa 0·34 (800 MPa + 0) = -0.00643 
120(103

) MPa 120(103
) MPa 

Uz V 
Ez = E - E(ur + uy) 

0.34 ( ) = 0 - 800 MPa - 500 MPa = -0.000850 
120(103

) MPa 

The new bar length, width, and thickness are therefore 

a' = 300 mm + 0.00808(300 mm) = 302.4 mm Ans. 

b ' = 50 mm + (-0.00643)(50 mm) = 49.68 mm Ans. 

t' = 20 mm + (-0.000850)(20 mm) = 19.98 mm Ans. 
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I EXAMPLE 14.22 

If the rectangular block shown in Fig. 14-49 is subjected to a uniform 
pressure of p = 20 psi, determine the dilatation and the change in lenglh 
of each side. Take E = 600 psi, v = 0.45. 

Fig. 14-49 

SOLUTION 

Dilatation. The dilatation can be determined using Eq. 14-37 with 
O:r = Uy = Uz = -20 psi. We have 

1 - 2v 
e = E (Ur + Uy + u z) 

1 - 2(0.45) . 
= 600 psi [3(-20 psi)) 

= -0.01 in3 /in3 Ans. 

Change in Length. The normal strain on each side is detel!111ined 
from Hooke's Jaw, Eq. 14-32; that is, 

1 
E = E [ O:r - v( Uy + Uz)] 

-
60

; psi [-20 psi - (0.45)( -20 psi - 20 psi)] = -0.00333 in./ in. 

Thus, the change in length of each side is 

oa = -0.00333(4 in.) = -0.0133 in. Ans. 

ob = -0.00333(2 in.) = -0.00667 in. Ans. 

oc = -0.00333(3 in.) = -0.0100 in. Ans. 

The negative signs indicate that each dimension is decreased. 

www.konkur.in



690 CHAPTER 14 STRESS AND STRAIN TRANSFORMATION 

PROBLEMS 

14-105. The strain at point A on the bracket 
has components E, = 300(10- 6 ) , E" = 550(10--<> ), 
'Yxy = - 650(10--<> ), E, = 0. Determine (a) the principal 
strains at A in the x-y plane, (b) the maximum shear strain 
in the x-y plane, and (c) the absolute maximum shear strain. 

0 
I' 

y 

A x '-

~ ~ 

' 

Prob.14-105 

14-106. The strain at point A on a beam has components 
Ex = 450(10- 6), Ey = 825(10- 6), 'Yxy = 275(10- 6), Ez = 0. 
Determine (a) the principal strains at A , (b) the maximum 
shear strain in the x-y plane, and (c) the absolute maximum 
shear strain. 

Prob.14-106 

14-107. The strain at point A on the pressure-vessel 
wall has components E., = 480(10--<>), Ev = 720(10--<>), 
'Yxy = 650(10--<>). Determine (a) the principaJ strains at A , 
in the x-y plane, (b) the maximum shear strain in the x-y 
plane, and (c) the absolute maximum shear strain. 

y 

AL x 
0 0 0 0 0 0 0 

_Q. 0 0 0 0 0 
o _ 

Prob.14-107 

*14-108. The 45° strain rosette is mounted on the surface 
of a shell. The following readings are obtained for each 
gage: Ea - - 200(10- 6), Eb - 300(10- 6), and 
Ee = 250(10- 6). Determine the in-plane principal strains. 

Prob.14-108 
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14-109. For the case of plane stress, show that Hooke's 
law can be written as 

£ 
Ux = ---2-(Ex + llEy ). 

(1 - v-) 

£ 
Uy = ? (Ey + llEx) 

(l - v-) 

14-110. Use Hooke·s law. &j. 14-32. to develop the 
strain tranformation equations, Eqs. 14-19 and 14-20, from 
the stress tranformation equations, &js. 14-1 and 14-2. 

14-111. The principal plane stresses and associated strains 
in a plane at a point are u 1 = 36 ksi, u2 = 16 ksi, 
Et = 1.02(10-3), Ez = 0.180(10-3). Determine the modulus 
of elasticity and Poisson's ra tio. 

*14-112. A rod has a radius of 10 mm. If it is subjected to 
an axial load of 15 N such that the axia l strain in the rod is 
Ex = 2.75(10-6), determine the modulus of elasticity E and 
the change in the rod's diameter. 11 = 0.23. 

14-113. The polyvinyl chloride bar is subjected to an axial 
force of 900 lb. If it has the original dimensions shown, 
determine the change in the angle 8 after the load is applied. 
£P'°< = 800(103) psi. "P'"< = Q.20. 

14-114. The polyvinyl chloride bar is subjected to an 
axial force of 900 lb. If it has the original dimensions 
shown, determine the value of Poisson's ratio if the angle 8 
decreases by ti.8 = 0.0 I 0 after the load is applied. 
Epvc = 800(103) psi. 

900 lb--=r= 3 in. 
____ _., 900 1b 

_l._ ""11 -r::;,.-------.1...._6-in-.-=-====~R_ I in. 

Probs. 14-113/L14 

14.11 M ATERIAL PROPERTY RELATIONSHIPS 691 

14-115. The spherical pressure vessel has an inner 
diameter of 2 m and a thickness of LO mm. A strain gage 
having a length of 20 mm is attached to it, and it is observed 
to increase in length by 0.012 mm when the vessel is 
pressurized. Determine the pressure causing this 
deformation, and find the maximum in-plane shear stress, 
and the absolute maximum shear stress at a point on the 
outer surface of the vessel. The material is steel, for which 
E,. = 200 GPa and 1111 = 0.3. 

Prob. 14-115 

*14-116. Determine the bulk modulus for each of the 
following materials: (a) rubber.£, = 0.4 ksi, 11, = 0.48, and 
(b) glass, Eg = 8(la3) ksi. vg = 0.24. 

14-117. The strain gage is placed on the surface of the steel 
boiler as shown. If it is 0.5 in. long. determine the pressure in 
the boiler when the gage elongates 0.2(10-3) in. The boiler 
has a thickness of 0.5 in. and inner diameter of 60 in. Also, 
determine the maximum x, y in-plane shear strain in the 
material.£,. = 29(103) ksi, 11., = 0.3. 

Prob. 14-117 
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692 CHAPTER 14 STRESS AND STRAIN TRANSFORMATION 

14-118. The principal strains at a point on the aluminum 
fuselage of a jet aircraft are £ 1 = 780(10- 6) and 
£ 2 = 400(10- 6). Determine the associated principal stresses 
at the point in the same plane. Ea1 = lO(lo-1) ksi, va1 = 0.33. 
Hinr: See Prob. 14-109. 

14-119. The strain in the x direction at point A on the 
A-36 structural-steel beam is measured and found to be 
£., = 200(10-6). Determine the applied load P. What is the 
shear strain Yxy at point A? 

*14-120. If a load of P = 3 kip is applied to the A-36 
structural-steel beam, determine the strain Ex and Yxy at 
point A. 

y 
p 

I 
! 2 in. l_o_ 

lfl _J12in. 

[2 in. 

I 
-11-

6 in. t-- 3 ft--+ ----4 ft -18 

Probs. 14-119/UO 

14-Ul. The cube of aluminum is subjected to the three 
stresses shown. Determine the principal strains. Take 
Ea1 = lO(lfrl) ksi and va1 = 0.33. 

26 ksi 

15 ksi 

Prob.14-Ul 

14-122. The principal strains at a point on the aluminum 
surface of a tank are £ 1 = 630(10-6) and £2 = 350(10-6). If 
this is a case of plane stress, determine the associated 
principal stresses at the point in the same plane. 
Ea1 = 10(103) ksi, v31 = 0.33. Hinr: See Prob. 14-109. 

14-123. A uniform edge load of 500 lb/in. and 350 lb/in. 
is applied to the polystyrene specimen. If the specimen is 
originally square and has dimensions of a = 2 in. , b = 2 in. , 
and a thickness of 1 = 0.25 in., determine its new dimensions 
a', b' , and r' after the load is applied. EP = 597(103) psi and 
Vp = 0.25. 

350 lb/in. 

' 

r 500 lb/in. 

a= 2 in 

l -

l-b=2in.-J 

Prob.14-U3 

*14-124. A material is subjected to principal stresses u., and 
u >" Determine the orientation 8 of the strain gage so that its 
reading of normal strain responds only to u Y and not u ,. The 
material constants are E and v. 

y 

Prob.14-U4 
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CHAPTER REVIEW 

Plane stress occurs when the material at a point 
is subjected to two normal stress components 
u,, and u,. and a shear stress T,,,.. Provided these 
components are known. then the stress 
components acting on an element having a 
different orientation 8 can be determined using 
tbe two force equations of equilibrium or the 
equations of stress transformation. 

Ux + Uy Ux - u,, 
Ux· = 

2 
+ 

2 
COS 28 + Txy sin 28 

Ux - Uy 
Tx•y• = -

2 
sin 28 + Txy cos 28 

For design. it is important to determine the 
orientation of the element that produces 
the maximum principal normal stresses and the 
maximum in-plane shear stress. Using the stress 
transformation equations, it is found that no 
shear stress acts on the planes of principal 
stress. The principal stresses are 

ux + u,. J(u,, - Uy)2 + 2 
Ut.2 = 2 ± 2 Txy 

The planes of maximum in-plane shear stress 
are oriented 45° from this orientation, and on 
these shear planes there is an associated 
average normal stress. 

J(Ux - u,,)2 
2 

Tm:uc = + T ••·1•''"' 2 xy 

U.r + Uy 
O'avg = 2 

-

y 

I 
Uy 

T xy 

Ux 

T xy 

Ux 

x 

CHAPTER REVIEW 

<T .,., 

T max 
in·planc 
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x' 

0 
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694 CHAPTER 14 STRESS AND STRAIN TRANSFORMATION 

Mohr's circle provides a semi-graphical 
method for finding the stress on any 
plane, the principal normal stresses, 
and the maximum in-plane shear stress. 
To draw the circle, the u and Taxes are 
established, the center of the circle 
C((ux + u

1
,)/2, OJ and the reference 

point A(u" Txy ) are plotted. The radius 
R of the circle extends between these 
two points and is determined from 
trigonometry. 

If u 1 and u2 are of the same sign, then 
the absolute maximum shear stress 
will lie out of plane. 

In the case of plane stress, the absolute 
maximum shear stress will be equal to 
the maximum in-plane shear stress 
provided the principal stresses u1 and 
u 2 have the opposite sign. 

When an element of material is 
subjected to deformations that only 
occur in a single plane, then it 
undergoes plane strain. If the strain 
components"·" ">" and Yxy are known 
for a specified orientation of the 
element, then the strains acting for 
some other orientation of the 
element can be determined using the 
plane-strain transformation equations. 
Likewise, the principal normal strains 
and maximum in-plane shear strain can 
be determined using transformation 
equations. 

Ux-------l J (""-"r)2 R = 2 + -r,; 

x- y plane stress 

Tabs -
2 max 

Ex+ Ey 
Ex• = 2 + 

x- y plane stress 

UJ - U2 
Tabs -

2 ma.-.: 

E.t - Ey 'Yxv 

2 
cos 28 + 2sin 28 

E.t - Ey 'Yxv 

2 
cos 28 - 2sin 28 

°Y<'y' ("' - "Y) "Yxv ~ = - · 
2 

sin28 + 2cos28 

E.t + E)' 
EJ.2 = + 

2 
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Strain transformation problems can 
also be solved in a semi-graphical 
manner using Mohr's circle. To draw 
the circle, the E and y /2 axes are 
established and the center of the 
circle C [(Ex + E1)/2. OJ and the 
""reference point" A (Ex. Yxy/2) are 
ploned. The radius of the circle 
extends between these two points 
and is determined from trigonometry. 

If the material is subjected to 
triaxial stress, then the strain 111 

each direction is innuenced by the 
strain produced by all three stresses. 
Hooke's law then involves the 
material properties £and 11. 

If £ and 11 are known. then G can 
be determined. 

The dilatation is a measure of 
volumetric strain. 

The bulk modulus is used to 
measure the stiffness of a volwne 
of material. 

1 
E. = - [u. - v(ux + u

1
)] • E ' 

G= E 
2(1 + 11) 

1 - 211 
e = £ (o:, + u1 + u,) 

E 
k= ----

3(1 - 211) 

CHAPTER REVlEW 695 

1----+---C"*I ---;I-;-.- E 
1----,.--1----~~ y~ 

I E,+ E, ~ :___] 
Ea'"I = 2 E-:---/,,..,,.11 0 =Cf' 

y 
2 
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REVIEW PROBLEMS 

R14-1. The steel pipe has an inner diameter of 2.75 in. 
and an outer diameter of 3 in. If it is fixed at C and subjected 
to the horizontal 20-lb force acting on the handle of the pipe 
wrench, determine the principal stresses in the pipe at 
point A, which is located on the surface of the pipe. 

201b 

r 
10 in. 

L 
B 

c 
y 

Prob. R14-1 

R14-2. The steel pipe has an inner diameter of 2.75 in. 
and an outer diameter of 3 in. If it is fixed at C and subjected 
to the horizontal 20-lb force acting on the handle of the pipe 
wrench, determine the principal stresses in the pipe at 
point B, which is located on the surface of the pipe. 

201b 

r 
10 in. 

L 
B 

c 
y 

Prob. R14-2 

R14-3. Determine the equivalent state of stress if an 
element is oriented 40° clockwise from the element shown. 
Use Mohr's circle. 

110 ksi 

>---•- 6ksi 

Prob. R14-3 

*R14-4. The crane is used to support the 350-lb load. 
Determine the principal stresses acting in the boom at 
points A and B. The cross section is rectangular and has a 
width of 6 in. and a thickness of 3 in. Use Mohr's circle. 

Prob. R14-4 
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Rl4-5. In the case or plane stress, where the in-plane 
principal strains are given by E1 and E2, show that the third 
principal strain can be obtained from 

where vis Poisson·s ratio for the material. 

R14-6. The plate is made of material having a modulus of 
elasticity£= 200 GPa and Poisson·s ratio v = i. Determine 
the change in width a, height b. and thickness c when it is 
subjected to the uniform distributed loading shown. 

2MN/m 

y I 
b=300mm 

j 
:z: x 

Prob. Rl4-6 

Rl4-7. If the material is graphite for which £, = 800 ksi 
and v, = 0.23, determine the principal strains. 

26 ksi 

15 ksi 

Prob. Rl4-7 

REVIEW PROBLEMS 697 

*Rl4-8. A single strain gage. placed in the vertical plane 
on the outer surface and at an angle 60° to the axis of the 
pipe, gives a reading at point A of EA = -250(1~). 
Determine the principal strains in the pipe at this point. The 
pipe bas an outer diameter or 1 in. and an inner diameter of 
0.6 in. and is made of C86100 bronze. 

Prob. Rl4-8 

Rl4-9. The 60° strain rosette is mounted on a beam. The 
following readings arc obtained for each gage: 
E0 = 600(10....,), Eb= -700(10-<>), and Ee = 350(10....,). 
Determine (a) the in-plane principal strains and (b) the 
maximum in-plane shear strain and average normal strain. 
1n each case show the deformed clement due to these 
strains. 

I 
c 

Prob. Rl4-9 
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CHAPTER 15 

(©Olaf Speier/Alamy) 

Beams are important structural members used to support roof and floor loadings. 
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DESIGN OF BEAMS 
AND SHAFTS 

CHAPTER OBJECTIVES 

• To develop methods for designing beams to resist both bending 
and shear loads. 

15.1 BASIS FOR BEAM DESIGN 
Beams are said to be designed on the basis of strength when they can resist 
the internal shear and moment developed along their length. To design a 
beam in this way requires application of the shear and flexure formulas 
provided the material is homogeneous and has linear elastic behavior. 
Although some beams may also be subjected to an axial force, the effects 
of this force are often neglected in design since the axial stress is generally 
much smaller than the stress developed by shear and bending. 

699 
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700 CHAPTER 15 DESIGN OF BEAMS AND SHAFTS 

As shown in Fig. 15- 1, the external loadings on a beam will create 
additional st resses in the beam directly under the load. Notably, a 
compressive stress a y will be developed, in addition to the bending stress 
a, and shear stress 7:ry discussed previously in Chapters 11 and 12. Using 
advanced methods of analysis, as treated in the theory of elasticity, it can 
be shown that a y diminishes rapidly throughout the beam's depth, and 
for most beam span-to-depth ratios used in engineering practice, the 
maximum value of ay remains small compared to the bending stress a., 
that is, a, >> ay- Furthermore, the direct application of concentrated 
loads is generally avoided in beam design. Instead, bearing plates are 
used to spread these loads more evenly onto the surface of the beam, 
thereby further reducing a y. 

Beams must also be braced properly along their sides so that they do 
not sidesway or suddenly become unstable. In some cases they must also 
be designed to resist deflection, as when they support ceilings made of 
brittle materials such as plaster. Methods for finding beam deflections 
will be discussed in Chapter 16, and limitations placed on beam sidesway 
are often discussed in codes related to structural or mechanical design. 

Knowing how the magnitude and direction of the principal stress 
change from point to point within a beam is important if the beam is 
made of a brittle material, because brittle materials, such as concrete, fail 
in tension. To give some idea as to how to determine this variation, Jet's 
consider the cantilever beam shown in Fig. 15- 2a, which has a rectangular 
cross section and supports a load P at its end. 

In general, at an arbitrary section a- a along the beam, Fig. 15- 2b, the 
internal shear V and moment M create a parabolic shear-stress 
distribution and a linear normal-stress distribution, Fig. 15-2c. As a result , 
the stresses acting on elements located at points 1 through 5 along the 
section are shown in Fig. 15- 2d. Note that elements 1 and 5 are subjected 
only to a maximum normal stress, whereas element 3, which is on the 
neutral axis, is subjected only to a maximum in-plane shear stress. The 
intermediate elements 2 and 4 must resist both normal and shear stress. 

U y 

y + +++u, p 'l"xy 

!1 rm-ITT1 
D D x 

~ 

u. 
+ + +u, 
+' xy 

Fig.15-1 

www.konkur.in



15.1 BASIS FOR BEAM D ESIGN 701 

p 

a 

When these states of stress are transformed into principal s1resses, 
using either the stress transformation equations or Mohr's circle, the 
results will look like those shown in Fig. 15- 2e. If this analysis is extended 
to many vertical sections along the beam other than a-a, a profile of the 
results can be represented by curves called stress trajectories. Each of 
these curves indicates the direction of a principal stress having a constant 
magnitude. Some of these trajectories are shown in Fig. 15- 3. Here the 
solid lines represent the direction of the tensile principal stresses and the 
dashed lines represent the direction of the compressive principal stresses. 
As expected, the lines intersect the neutral axis at 45° angles 
(like element 3), and the solid and dashed lines will intersect at 90° 
because the principal stresses are always 90° apart. Once the directions 
of these lines are established, it can help engineers decide where and 
how to place reinforcement in a beam if it is made of brittle mate rial, so 
that it does not fa il. 

Stress trajectories for 
cantilevered beam 

Fig. 15-3 
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702 CHAPTER 15 DESIGN OF BEAMS AND SHAFTS 

A B 

The two floor beams are connected to the 
beam AB, which transmits the load to the 
columns of this building frame. For design, 
all the connections can be considered to act 
as pins. 

15.2 PRISMATIC BEAM DESIGN 
Most beams are made of ductile materials, and when this is the case it is 
generally not necessary to plot the stress trajectories for the beam. Instead, 
it is simply necessary to be swre the actual bending and shear stress in the 
beam do not exceed allowable limits as defined by structural or mechanical 
codes. In the majority of cases the suspended span of the beam will be 
relatively long, so that the internal moments within it will be large. When 
this is the case, the design is then based upon bending, and afterwards the 
shear strength is checked. 

A bending design requires a determination of the beam's section 
modulus, a geometric property which is the ratio of I to c, that is, S = I/ c. 
Using the flexure formula, a = Mc/ I, we have 

Mmax 
Sreq'd = -

Uallow 
(15- 1) 

Here Mmax is determined from the beam's moment diagram, and the 
allowable bending stress, aauow• is specified in a design code. In many cases 
the beam's as yet unknown weight will be small, and can be neglected in 
comparison with the loads the beam must carry. However, if the additional 
moment caused by the weight is to be included in the design, a selection 
for s is made so that it slightly exceeds sreq'd· 

Once Sreq'd is known, if the beam has a simple cross-sectional shape, 
such as a square, a circle, or a rectangle of known width-to-height 
proportions, its dimensions can be determined directly from Sreq'd, since 
Sreq"d = I/c. However, if the cross section is made from several elements, 
such as a wide-flange section, then an infinite number of web and flange 
dimensions can be determined that satisfy the value of Sreq'd· In practice, 
however, engineers choose a particular beam meeting the requirement 
that S > S,eq'd from a table that lists the standard sizes available from 
manufacturers. Often several beams that have the same section modulus 
can be selected, and if deflections are not restricted, usually the beam 
having the smallest cross-sectional area is chosen, since it is made of Jess 
material, and is therefore both lighter and more economical than 
the others. 
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15.2 PRISMATIC BEAM DESIGN 703 

Once the beam has been selected, the shear formula can then be used 
to be sure the allowable shear stress is not exceeded, TaJJow > VQ/ It. 
Often this requirement will not present a problem; however, if the beam 
is "short" and supports large concentrated loads, the shear-stress 
limitation may dictate the size of the beam. 

Steel Sect. Most manufactured steel beams are produced by 
rolling a hot ingot of steel until the desired shape is formed. These 
so-called rolled shapes have properties that are tabulated in the 
American Institute of Steel Construction (AISC) manual. A 
representative listing of different cross sections taken from this manual is 
given in Appendix B. Here the wide-flange shapes are designated by 
their depth and weight per unit length; for example, W18 x 46 indicates 
a wide-Clange cross section (W) having a depth of 18 in. and a weight of 
46 lb/ft, Fig. 15-4. For any given selection, the weight per length, 
dimensions, cross-sectional area, moment of inertia, and section modulus 
are reported. Also included is the radius of gyration, r, which is a 
geometric property related to the section's buckling strength. This will be 
discussed in Chapter 17. 

The large shear force that occurs at the 
support of this steel beam can cause 
localized buckling of the beam's Oanges 
or web. To avoid this, a "'stiffener" A is 
placed along the web to maintain stability. 

Wood Sect o Most beams made of wood have rectangular cross 
sections because such beams are easy to manufacture and handle. 
Manuals, such as that of the National Forest Products Association, List 
the dimensions of lumber often used in the design of wood beams. Lumber 
is identified by its nominal dimensions, such as 2 x 4 (2 in. by 4 in.); 
however, its acwal or "dressed" dimensions are smaller, being 1.5 in. 
by 3.5 in. The reduction in the dimensions occurs in order to obtain a 
smooth surface from lumber that is rough sawn. Obviously, the acwal 
dimensions must be used whenever stress calculations are performed on 
wood beams. 

Typical profile view of a steel 
wide-flange beam 

0.605 in. 

T __ 0.360 in. 
18 in. 

1,....---' ..____, 
l-6in.-J 

W18 X 46 

Fig. 15-4 
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Wooden box beam 

(a) 

Glulam beam 

(b) 

Fig.15-6 

' 

Welded Bolted 

Steel plate girders 

Fig.15-5 

Built-up Sections. A built-up section is constructed from two or 
more parts joined together to form a single unit. The capacity of this 
section to resist a moment will vary directly with its section modulus, since 
sreq'd = MI <Tallow· If sreq'd is increased, then so is I because by definition 
Sreq'd = I/ c. For this reason, most of the material for a built-up section 
should be placed as far away from the neutral axis as practical. This, of 
course, is what makes a deep wide-flange beam so efficient in resisting a 
moment. For a very large load, however, an available rolled-steel section 
may not have a section modulus great enough to support the load. When 
this is the case, engineers will usually "build up" a beam made from plates 
and angles. A deep I-shaped section having this form is called a plate 
girder. For example, the steel plate girder in Fig.15- 5 has two flange plates 
that are either welded or, using angles, bolted to the web plate. 

Wood beams are also "buillt up," usually in the form of a box beam, 
Fig. 15-6a. They may also be made having plywood webs and larger 
boards for the flanges. For very large spans, glulam beams are used. 
These members are made from several boards glue-laminated together 
to form a single unit, Fig. 15-6b. 

Just as in the case of rolled sections or beams made from a single piece, 
the design of built-up sections requires that the bending and shear stresses 
be checked. In addition, the shear stress in the fasteners, such as weld, glue, 
nails, etc., must be checked to be certain the beam performs as a single unit. 

IMPORTANT POINTS 

• Beams support loadings that are applied perpendicular to 
their axes. If they are designed on the basis of strength, they 
must resist their allowable shear and bending stresses. 

• The maximum bending stress in the beam is assumed to be much 
greater than the localized stresses caused by the application of 
loadings on the surface of the beam. 
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PROCEDURE FOR ANALYSIS 

Based on the previous discussion, the following procedure provides a rational method for the design of a 
beam on the basis of strength. 

Shear and Moment Diagrams. 

• Determine the maximum shear and moment in the beam. Often this is done by constructing the 
beam's shear and moment diagrams. 

Bending Stress. 

• If the beam is relatively long, it is designed by finding its section modulus using the flexure formula, 
Sreq·d = Mmax/aauow· 

• Once Sreq'd is determined, the cross-sectional dimensions for simple shapes can then be calculated, 
since Sreq·d = I/c. 

• If rolled-steel sections are to be used, several possible beams can be selected from the tables in 
Appendix B that meet the requirement that S > Sreq'd· Of these, choose the one having the smallest 
cross-sectional area, since this beam has the least weight and is therefore the most economical. 

• Make sure that the selected section modulus, S, is slightly greater than Sreq'd• so that the additional 
moment created by the beam's weight is considered. 

Shear Stress. 

• Normally beams that are short and carry large loads, especially those made of wood, are first designed 
to resist shear and then later checked against the allowable !bending stress requirement. 

• Using the shear formula, check to see that the allowable shear stress is not exceeded; that is, use 
Tallow > Ymax Q/ ft. 

• If the beam has a solid rectangular cross section, the sheair formula becomes Tallow <:: 1.5 (Vmax/ A) 
(see Eq. 2 of Example 12.2.), and if the cross section is a wide flange, it is generally appropriate to 
assume that the shear stress is constant over the cross-sectional area of the beam's web so that 
Tallow > Vmax/ Aweb• where A.veb is determined from the product of the web's depth and its thickness. 
(See the note at the end of Example 12.3.) 

Adequacy of Fasteners. 

• The adequacy of fasteners used on built-up beams depends upon the shear stress the fasteners can 
resist. Specifically, the required spacing of nails or bolts of a particular size is determined from the 
allowable shear flow, qallow = VQ/ I, calculated at points on the cross section where the fasteners are 
located. (See Sec. 12.3.) 
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I EXAMPLE 15.1 

40 kip 20 kip 

1 i K ,; 
l-6ft -1- 6ft -1-· - 6ft -1 

(a) 

40 kip 20kip 

' i 
• 

-. - 6 ft - - 6 ft -t-6 ft -

10 kip 50 kip 

I 
~:rp) 

20 I 
"0 '-1 _ ___,_ _ _, I 

M (kip·ft) 60 

A beam is to be made of steel that has an allowable bending stress of 
<Tallow = 24 ksi and an allowable shear stress of Tallow = 14.5 ksi. Select an 
appropriate W shape that will carry the loading shown in Fig. 15-7a. 

SOLUTION 

Shear and Moment Diagrams. The support reactions have been 
calculated, and the shear and moment diagrams are shown in Fig. 15-7b. 
From these diagrams, Vmax = 30 kip and Mmax = 120 kip· ft. 

Bending Stress. The required section modulus for the beam ts 
determined from the flexure formula , 

Mmax 120 kip· ft (12 in./ft) . 3 S 'd = = = 60m 
req 24 k' /' 2 <Tallow tp Ill 

Using the table in Appendix B, the following beams are adequate: 

W18 x 40 S = 68.4 in3 

W16 x 45 S = 72.7 in3 

W14 x 43 S = 62.7 in3 

W12 x 50 S = 64.7 in3 

WlO x 54 S = 60.0 in3 
x (ft) 

W8 x 67 S = 60.4 in3 

The beam having the least weight per foot is chosen,* i.e., 

I""'----->,.--'----....;..- x (ft) 
W18 x 40 

- 120 

(b) 

Fig.15-7 

Shear Stress. Since the beam is a wide-flange section, the average 
shear stress within the web will be considered. (See Example 12.3.) Here 
the web is assumed to extend from the very top to the very bottom of the 
beam. From Appendix B, for a W18 x 40, d = 17.90 in., f w = 0.315 in. 
Thus, 

vmax 30 kip 
'Tavg = _A_w_ = (l7_90 in.)(0.3l5 in.) = 5.32 ksi < 14.5 ksi OK 

Use a W18 x 40. Ans. 

*The additional moment caused by the weight of the beam, (0.040 kip/ft) (18 ft}= 0.720 kip, 
will only slightly increase Srcq'd· 
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I EXAMPLE 1 s.2 j 

The laminated wooden beam shown in Fig. 15--8a supports a uniform 
distributed loading of 12 kN /m. If the beam is to have a height-to-width 
ratio of 1.5, determine its smallest width. Take aauow = 9 MPa, and 
Tallow = 0.6 MPa. Neglect the weight of the beam. 

SOLUTION 

Shear and Moment Diagrams. The support reactions at A and B 
have been calculated, and the shear and moment diagrams are shown in 
Fig. 15--8b. Here Vmax = 20 kN, Mmax = 10.67 kN · m. 

Bending Stress. Applying the flexure formula, 

_ Mmax _ 10.67(103) N · m _ 3 
sreq·d - - 6 2 - 0.00119 m 

aauow 9(10 ) N /m 

Assuming that the width is a, then the height is l.5a, Fig. 15- 8a. Thus, 

I 1.(a) (1 5a)3 

s. =-= 000119 3 = 12 
. 

req d c . m (0.75a) 

a3 = 0.003160 m3 

a = 0.147 m 

(a) 

32kN 

V(kN) 
20 

- 12 

M(kN·m) 10.67 
Shear Stress. Applying the shear formula for rectangular sections 
(which is a special case of Tmax = VQ/ It, as shown in Example 12.2), 
we have 

Vmax 20(1a3) N 
Tmax = l.5A = (1.5) (0.147 m)(l.5)(0.147 m) 

= 0.929 MPa > 0.6 MPa 

Since the design based on bending fails the shear criterion, the beam must 
be redesigned on the basis of shear. 

Vmax 
Tallow = 1.5 A 

2 
_ 20(103) N 

600 kN/m - 1.5 (a)(l.5a) 

a = 0.183 m = 183 mm 

This larger section will also adequately resist the bending stress. 

Ans. 

- 6 
(b) 

Fig.15-8 

- 16 
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I EXAMPLE 15.3 1 

30mm 

1.5 kN 

2m-- 2m--

1.5 kN 1 kN 

I 
V(kN) 

1.5 

1------+----~ x (m) 

M (kN·m) 

.__ __ _.._ 1 

I 
2 

(b) 

Fig. 15-9 

The wooden T-beam shown in Fig. l5- 9a is made from two 
200 mm X 30 mm boards. If <Tallow = 12 MPa and 'Tallow = 0.8 MPa, 
determine if the beam can safely support the loading shown. Also, specify 
the maximum spacing of nails needed to hold the two boards together if 
each nail can safely resist 1.50 kN in shear. 

1.5 kN 
0.5 kN/m 

c 

--2m---1---2 m ---1 

(a) 

SOLUTION 

Shear and Moment Diagrams. The reactions on the beam are shown, 
and the shear and moment diagrams are drawn in Fig. 15- 9b. Here 
Vmax = 1.5 kN, Mmax = 2 kN · m. 

Bending Stress. The neutral axis (centroid) will be located from the 
bottom of the beam. Working in units of meters, we have 

2- A - y y = --
IA 

(0.1 m)(0.03 m)(0.2 m) + 0.215 m(0.03 m)(0.2 m) 
= = 0.1575 m 

0.03 m(0.2 m) + 0.03 m(0.2 m) 

Thus, 

I = [ 1~ (0.03 m)(0.2 m)3 + (0.03 m)(0.2 m)(0.1575 m - 0.1 m)2 ] 

+ [ 
1
1
2 

(0.2 m)(0.03 m)3 + (0.03 m)(0.2 m)(0.215 m - 0.1575 m)2
] 

= 60.125(10-6) m4 

Since c = 0.1575 m (not 0.230 m - 0.1575 m = 0.0725 m), we require 

2(103) N · m(0.1575 m) 
12(106) Pa ;:::: = 5.24(106) Pa OK 

60.125(10-6) m4 
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15.2 PRISMATIC BEAM DESIGN 7 09 

Shear Stress. Maximum shear stress in the beam depends upon the 
magnitude of Q and t. It occurs at the neutral axis, since Q is a maximum 
there and at the neutral axis the thickness t = 0.03 m is the smallest for 
the cross section. For simplicity, we will use the rectangular area below 
the neutral axis to calculate Q, rather than a two-part composite area 
above this axis, Fig. 15- 9c. We have 

Q = y'A' = (0·15~5 m )((0.1575 m)(0.03 m)] = 0.372(10- 3
) m3 

so that 

( 3) 1.5(103
) N(0.372(10-3

)] m3 
( 3) 

800 10 Pa ;:-;:: = 309 10 Pa 
60.125(10-6) m4(0.03 m) 

OK 

Nail Spacing. From the shear diagram it is seen that the shear varies over 
the entire span. Since the nail spacing depends on the magnitude of shear in 
the beam, for simplicity (and to be conservative), we will design the spacing 
on the basis of V = 1.5 kN for region BC, and V = 1 kN for region CD. 
Since the nails join the flange to the web, Fig. 15- 9d, we have 

Q = y' A' = (0.0725 m - 0.015 m)((0.2 m)(0.03 m)] = 0.345(10-3) m3 

The shear flow for each region is therefore 

V8 cQ 1.5(103) N(0.345(10-3) m3] 

qsc = I = 60.125(10-6) m4 = 8.61 kN/m 

Vc0 Q 1(103) N(0.345(10-3) m3] 
q = = = 574kN/m 

CD [ 60.125(10-6) m4 . 

One nail can resist 1.50 kN in shear, so the maximum spacing becomes 

1.50 kN 
ssc = 8_61 kN/m = 0.174 m 

1.50 kN 
sco = 5.74 kN/m = 0.261 m 

For ease of measuring, use 

s8 c = 150mm 

sco = 250mm 

Ans. 

Ans. 

N 

g To.0725m 
N ---'o--f---+---- A 

LJ_J.1575m 

-l ~ 
0.03m 

(c) 

I a.2m I 
J_ ITl-
O~m '--TfT-' [ 0.0725 m 

I LJ 
(d) 

Fig.15-9 (cont.) 

A 
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FUNDAMENTAL PROBLEMS 

Fl5-l. Determine the minimum dimension a to the nearest 
mm of the beam's cross section to safely support the load. 
The wood has an allowable normal stress of uauow = 10 MPa 
and an allowable shear stress of Tallow = 1 MPa. 

6kN 6 kN 

CTI I 2a 
! ! 

lm~ la-4 
lm 

Prob.Fl5-l 

FlS-2. Determine the minimum diameter d to the nearest 
l in. of the rod to safely support the load. The rod is made of 
a material having an allowable normal stress of uauow = 20 ksi 
and an allowable shear stress of Tallow = 10 ksi. 

3 kip·ft 
'Ill; 

I •II 10 II \ 

1.5 ft 11 1.5 ft 
• 

3 kip 

Prob.Fl5-2 

Fl5-3. Determine the minimum dimension a to the nearest 
mm of the beam's cross section to safely support the load. 
The wood has an allowable normal stress of uauow = 12 MPa 
and an allowable shear stress of Tallow = 1. 5 MP a. 

"f 
I_ I 

AJ' j In 
1-o.s m 1 m---11 

Prob.Fl5-3 

FlS-4. Determine the minimum dimension h to the nearest 
k in. of the beam's cross section to safely support the load. 
The wood has an allowable normal stress of uauow = 2 ksi 
and an allowable shear stress of TaJJow = 200 psi. 

I· 
6 ft 

CI]} 
1- 1 
4 in. 

Prob.FlS-4 

Fl5-5. Determine the minimum dimension b to the nearest 
mm of the beam's cross section to safely support the load. 
The wood has an allowable normal stress of uauow = 12 MPa 
and an allowable shear stress of TaJJow = 1.5 MPa. 

SOkN 

SkN·m 5 kN·m 

~-1 m~l-1 m-l-1 m-0f-~ m-1) 

-I 
3b 

_l 
lb l 

Prob.Fl5-5 

F15-6. Select the lightest W410·shaped section that can 
safely support the load. The beam is made of steel having an 
allowable normal stress of uauow = 150 MPa and an 
allowable shear stress of Tauow = 75 MPa. Assume the beam 
is pinned at A and roller supported at B. 

~~~! 
lSOkN 

i---2 m 1 m--1 
Prob.Fl5-6 
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PROBLEMS 

15-1. The beam is made of timber that has an allowable 
bending stress of u allow = 6.5 MPa and an allowable shear 
stress of r allow = 500 kPa. Determine its dimensions if it is to 
be rectangular and have a height-to-width ratio of 1.25. 
Assume the beam rests on smooth supports. 

8kN/m 

Prob.15-1 

15-2. Determine the minimum width of the beam to the 
nearest ~in. that will safely support the loading of P = 8 kip. 
The allowable bending stress is u allow = 24 ksi and the 
allowable shear stress is r allow = 15 ksi. 

15-3. Solve Prob. 15-2 if P = 10 kip. 

p 

_ !---6 ft ------6 ft---1 

6inl_I ~q~A as 
Probs. 15- 2/3 

*15-4. The brick wall exerts a uniform distributed load of 
1.20 kip/ft on the beam. If the allowable bending stress is 
u allow = 22 ksi and the allowable shear stress is Tallow = 12 ksi, 
select the lightest wide-flange section with the shortest depth 
from Appendix B that will safely support the load. If there 
are several choices of equal weight, choose the one with the 
shortest height. 

l~l.20 kip/ft 
I +#~ l 

l(.\ I 

1-
1 

4 ft - 1--10 ft---~6 ft ~I' 
Prob.15-4 

15.2 PRISMATIC B EAM D ESIGN 711 

15-5. Select the lightest-weight wide-flange beam from 
Appendix B that will safely support the machine loading 
shown. The allowable bending stress is uallow = 24 ksi and 
the allowable shear stress is 'Tallow = 14 ksi. 

5 kip 5 kip 5 kip 5 kip 

I I I I I I 

M I 
-="=-

l- 2f1 ~-2ft -l- 2f1 -l- 2f1 -~2ft -I 
Prob.15-5 

15-6. The spreader beam AB is used to slowly lift the 
3000-lb pipe that is centrally located on the straps at C 
and D. If the beam is a W12 x 45, determine if it can safely 
support the load. The allowable bending stress is 
u allow = 22 ksi and the allowable shear stress is Tallow = 12 ksi. 

30001b 

c D 

Prob.15-6 

15-7. Select the lightest-weight wide-flange beam with the 
shortest depth from Appendix B that will safely support the 
loading shown. The allowable bending stress is u allow = 24 ksi 
and the allowableshearstressofrauow = 14ksi. 

8 kip/ft 

! ! ~ ~ + t • 

1 

------- 6 ft -------

Prob.15-7 
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712 CHAPTER 15 DESIGN OF BEAMS AND S HAFTS 

*15-8. Select the lightest-weight wide-flange beam from 
Appendix B that will safely support the loading shown. The 
allowable bending stress u allow = 24 ksi and the allowable 
shear stress of Tallow = 14 ksi. 

15 
r p 5 kip/ft 

F ~ 
~6ft-~9ft I 

Prob.15-8 

15-9. Select the lightest W360 wide-flange beam from 
Appendix B that can safely support the loading. The beam 
has an allowable normal stress of u allow = 150 MPa and an 
allowable shear stress of Tallow = 80 MPa. Assume there is a 
pin at A and a roller support at B. 

15-10. Investigate if the W250 x 58 beam can safely 
support the loading. The beam has an allowable normal 
stress of u allow = 150 MPa and an allowable shear stress of 
Tauow = 80 MPa. Assume there is a pin at A and a roller 
support at B. 

50kN 

40 kN/m ! 
0 

,_A ___ 4 m ----+11+-
8
- 2 m -I 

Probs. 15-9/10 

15-11. The beam is constructed from two boards. If each 
nail can support a shear force of 200 lb, determine the 
maximum spacing of the nails, s, s' , and s", to the nearest 
A inch for regions AB, BC, and CD, respectively. 

SOOJb 

i l~I 

l_l- 8 in.-1 
lin.-1:r 

6 in. 
L_ 

1500 lb -tt-
1 in. 

s" 
1--'--l 

C D 
---s ft-1-s ft-I 

Prob.15-11 

*15-12. The joists of a floor in a warehouse are to be 
selected using square timber beams made of oak. If each 
beam is to be designed to carry 90 lb/ft over a simply 
supported span of 25 ft, determine the dimension a of its 
square cross section to the nearest l in. The allowable 
bending stress is u allow = 4.5 ksi and the allowable shear 
stress is Tallow = 125 psi. 

Prob.15-12 

15-13. The timber beam has a width of 6 in. Determine its 
height h so that it simultaneously reaches its allowable 
bending stress u allow = 1.50 ksi and an allowable shear 
stress of Tallow = 50 psi. Also, what is the maximum load P that 
the beam can then support? 

p 

~ 

Prob.15-13 
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15-14. The beam is constructed from four boards. If each 
nail can support a shear force of 300 lb, determine the 
maximum spacing of the nails. s, s' ands•, for regions AB, 
BC, and CD. respectively. 

3 kip 

s 
f--1 

s' 
1-1 

1 kip 

s" ! I 

A I, __ 6 ft 
8 --'~-~--- 6 ft C.....:::~1::=- 6 ft -I D 

,L1-9 in.-1 lin.-rD 
7 in . 

1
• _L 
Ill 
T-11- - 11-

1 in. l in. 

Prob. 15-14 

15-15. The beam is constructed from two boards. If each 
nail can support a shear force of 200 lb, determine the 
maximum spacing of the nails, s. s'. and s•. to the nearest 
l in. for regions AB, BC. and CD. respectively. 

1 kip 

L 1-9 in. -1 
1in.-r:r 

9 in. 
I 

2 kip -tt-
1 in. 

l~I s" 
1....::....-i 

A B C D 

,_ 6 ft ---!---- 6 ft -----6 ft -l 
Prob. 15-15 

15.2 PRISMATIC BEAM DESIGN 713 

*15-16. If the cable is subjected to a maximum force of 
P = 50 kN, select the lightest W310 wide-flange beam that 
can safely support the load. The beam has an allowable 
normal stress of u allow = 150 MPa and an allowable shear 
stress of Tallow = 85 M Pa. 

15-17. If the W360 x 45 wide-flange beam has an allowable 
normal stress of Uano.. = 150 MPa and an allowable shear 
stress of T anow = 85 MPa. determine the maximum cable force 
P that can safely be supported by the beam. 

1-+--- 2 m 2 m - -+-1 

p 

Probs. 15-16/17 

15-18. If P = 800 lb, determine the minimum dimension 
a of the beam's cross section to the nearest ~in. to safely 
support the load. The wood has an allowable normal stress 
of u allow = 1.5 ksi and an allowable shear stress of 
Tallow = 150 psi. 

15-19. If a = 3 in. and the wood has an allowable normal 
stress of u a11o .. = 1.5 ksi. and an allowable shear stress of 
T a11ow = 150 psi , determine the maximum allowable value 
of P that can act on the beam. 

l-3 ft----3 ft--3 ft -

Probs. 15-18/19 
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714 CHAPTER 15 DESIGN OF BEAMS AND S HAFTS 

*15-20. The beam is constructed from three plastic strips. 
If the glue can support a shear stress of 'Tallow = 8 kPa, 
determine the largest magnitude of the loads P that the 
beam can support. 

15-21. If the allowable bending stress is u allow = 6 MPa, 
and the glue can support a shear stress of r allow = 8 kPa, 
determine the largest magnitude of the loads P that can be 
applied to the beam. 

----2 m-----i-----2 m-----1 

200mm 
1-1 1 

300mm 
fITlJT 30mm 

l 
30 mmY I- -I 1!:30 mm 

Probs. 15-20/21 

15-22. The beam is made of Douglas fir having an 
allowable bending stress of u allow = 1.1 ksi and an allowable 
shear stress of r allow = 0.70 ksi. Determine the width b if 
the height h = 2b. 

8001b 80 Ib/ft 

ii £11!1!!1 ~ !1lj 
l-3ft-I 6ft -3ft~ 

Prob.15-22 

DI=2b 
I/JI 

15-23. Select the lightest-weight wide-flange beam from 
Appendix B that will safely support the loading. The 
allowable bending stress is uauow = 24 ksi and the allowable 
shear stress is Tallow = 14 ksi. 

10 kip 5 kip/ft 

i !!!!!!!!!l 
Jtt-- u I 
1-4 ft-~4 ft --4 6 ft~ 

Prob.15-23 

*15-24. Draw the shear and moment diagrams for the 
shaft, and determine its required diameter to the nearest kin. 
if u allow = 30 ksi and r allow = 15 ksi. The journal bearings 
at A and C exert only vertical reactions on the shaft. Take 
p = 6 kip. 

15-25. Draw the shear and moment diagrams for the shaft, 
and determine its required diameter to the nearest ~ in. 
if u allow = 30 ksi and r allow = 15 ksi. The journal bearings 
at A and C exert only vertical reactions on the shaft. Take 
p = 12 kip. 

A 

Probs. 15-24125 
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CHAPTER REVIEW 

Failure of a beam will occur where the internal 
shear or moment in the beam is a maximum. To 
resist these loadings, it is therefore important that 
the maximum shear and bending stress not exceed 
allowable values as stated in codes. Normally, the 
cross section of a beam is first designed to resist the 
allowable bending stress, 

MmaxC 
UalJow - I 

Then the allowable shear stress is checked. For 
rectangular sections, 'Tallow > 1.S(Vmax/ A), and for 
wide-flange sections it is appropriate to use 
Tallow > V.,.,/ Aweb· In general, use 

'Tallow -

For built-up beams, the spacing of fasteners or the 
strength of glue or weld is determined using an 
allowable shear flow 

qallow -
VQ 

I 

CHAPTER REVIEW 715 

www.konkur.in



CHAPTER 16 

(© Michael Blann/Getty Images) 

If the curvature of this pole is measured, it is then possible to determine the 
bending stress developed within it. 
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DEFLECTION 
OF BEAMS AND 
SHAFTS 

CHAPTER OBJECTIVES 

• To determine the deflection and slope at specfic points on beams 
and shafts using the integration method, discontinuity functions, 

and the method of superposition. 

• To use the method of superposition to solve for the support 
reactions on a beam or shaft that is statically indeterminate. 

16.1 THE ELASTIC CURVE 
The deflection of a beam or shaft must often be limited in order to provide 
stability, and for beams, to prevent the cracking of any attached brittle 
materials such as concrete or plaster. Most importantly, though, slopes and 
displacements must be determined in order to find the reactions if the 
beam is statically indeterminate. In this chapter we will find these slopes 
and displacements caused by the effects of bending. 

717 
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718 CHAPTER 16 DEFLECTION OF BEAMS AND SHAFTS 

p 

l 
r 

.... 

' ' 

Fig.16-1 

Before finding the slope or displacement, it is often helpful to sketch 
the deflected shape of the beam, which is represented by its elastic curve. 
This curve passes through the centroid of each cross section of the beam, 
and for most cases it can be sketched without much difficulty. When 
doing so, just remember that supports that resist a force, such as a pin, 
restrict displacement, and those that resist a moment, such as a fixed wall, 
restrict rotation or slope as well as displacement. Two examples of the 
elastic curves for loaded beams are shown in Fig. 16-1. 

If the elastic curve for a beam seems difficult to establish, it is suggested 
that the moment diagram for the beam be drawn first. Using the beam 
sign convention established in Sec. 11.1, a positive internal moment tends 
to bend the beam concave upwards, Fig. 16-2a. Likewise, a negative 
moment tends to bend the beam concave downwards, Fig. 16-2b. 
Therefore, if the moment diagram is known, it will be easy to construct 
the elastic curve. For example, consider the beam in Fig. 16- 3a with its 
associated moment diagram shown in Fig. 16- 3b. Due to the roller and 
pin supports, the displacement at B and D must be zero. Within the 
region of negative moment, AC, Fig. 16- 3b, the elastic curve must be 
concave downwards, and within the region of positive moment, CD, the 
elastic curve must be concave upwards. There is an inflection point at C, 
where the curve changes from concave up to concave down, since this is 
a point of zero moment. It should also be noted that the displacements 
t.A and 6.e are especially critical. At point Ethe slope of the elastic curve 
is zero, and there the beam's deflection may be a maximum. Whether 6.e 
is actually greater than t.A depends on the relative magnitudes of P1 and 
P2 and the location of the roller at B. 

Positive internal moment 
concave upwards 

(a) 

Fig.16-2 

Negative internal moment 
concave downwards 

(b) 

www.konkur.in



r, ~ 

(a) A ,r...t-----~---. __ l'----~. I D 
0 c E 

Ml ~ (b) ... -=::::::::::=::=-------..,r"'----------"~--x 

~ Moment diagram 

Zero deflection Zero deflection 

\p -- A~\D (c)a,.J~ o c\ k~ 
A Inflection point 

Elastic curve 

Fig. 16-3 

Following these same principles, note how the elastic curve in Fig. 16-4 
was constructed. Here the beam is cantilevered from a fixed support at A, 
and therefore the elastic curve must have both zero displacement and zero 
slope at this point. Also, the largest displacement will occur either at D , 
where the slope is zero, or at C. 

p 

I l 1 "M (a) A r----------~D ____ __,C _,) 

M 

(b) 

Moment diagram 

(c) A ~)~r:::=====::::::E~'?"'/'----'--T A--=-c I \ I I A~ 
D Inflection point 

Zero slope and 
zero deflection 

Elastic curve 

Fig. 16-4 

16.1 THE ELASTIC CURVE 71 9 
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Before 
deformation 

(a) 

Elastic 
curve 

(b) 

Fig.16-5 

O' 

dO 

p p 

After 
deformation 

Moment-Curvature Relationship. Before we can obtain the 
slope and deflection at any point on the elastic curve, it is first necessary 
to relate the internal moment to the radius of curvature p (rho) of the 

x elastic curve. To do this, we will consider the beam shown in Fig. 16-Sa, 
and remove the small element located a distance x from the left end and 
having an undeformed length dx, Fig. 16- Sb. The "localized" y coordinate 
is measured from the elastic curve (neutral axis) to the fiber in the beam 
that has an original length of ds = dx and a deformed length ds'. 
In Sec. 11.3 we developed a relationship between the normal strain in 
this fiber and the internal moment and the radius of curvature of the 
beam element, Fig. 16- Sb. It is 

1 € 
(16-1) -= - -

p y 

Since Hooke's Jaw applies, e = a/ E, and a = -My/ I , after substituting 
into the above equation, we get 

Here 

p = the radius of curvature at the point on the elastic curve 
(1 / p is referred to as the curvature) 

M =the internal moment in the beam at the point 

E = the material's modulus of elasticity 

I = the beam's moment of inertia about the neutral axis 

(16-2) 

The sign for p therefore depends on the direction of the moment. As 
shown in Fig. 16-6, when M is positive, p extends above the beam, and 
when M is negative, p extends below the beam. 

v 

0' 

Q 

0 ' 

Fig.16-6 

www.konkur.in
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16. 2 SLOPE AND DISPLACEMENT 
BY INTEGRATION 

The equation of the e lastic curve in Fig. 16-Sa will be defined by the 
coordinates v and x. And so to find the deflection v = ft.x) we must be 
able to represent the curvature (1/ p) in terms of v and x. In most calculus 
books it is shown that this relationship is 

l d2v/dx2 

-= ------
p (1 + (dv/dx)2]3fl 

(16-3) 

Substituting into Eq. 16-2, we have 

(16-4) 

Apart from a few cases of simple beam geometry and loading, this equation 
is difficult to solve, because it represents a nonlinear second-order 
differential equation. Fortunately it can be modified, because most 
engineering design codes will restrict the maximum deflection of a beam 
or shaft. Consequently, the slope of the elastic curve, which is determined 
from dv/dx, will be very small, and its square will be negligible compared 
with unity.* Therefore the curvature, as defined in Eq. 16-3, can be 
approximated by 1/p = d2v/dx2. With this simplification, Eq. 16-4 can 
now be written as 

dx2 EI 
(16-5) -=-

It is also possible to write this equation in two alternative forms. If 
we differentiate each side with respect to x and substitute V = dM / dx 
(Eq. 11-2), we get 

d ( d
2v) - El- = V(x) 

dx dx2 
(l(H)) 

Differentiating again, using w = dV / dx (Eq. 11- 1), yields 

di ( d
2v) - EI- = w(x) 

dx2 dx2 (16-7) 

•See Example 16.1. 
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s;--
V=O 
Roller 

v = 0 
Pin 

v = 0 

Roller 

v = 0 

Pin 

~ 
O=O 
v = 0 

Fixed end 

(a) 

p 

i 

p 
w I 

Illllllll ; 

(b) 

Fig. 16-7 

For most problems the flexural rigidity (El) will be constant along the 
length of the beam. Assuming this to be the case, the above results may 
be reordered into the following set of three equations: 

d4v 
EI-= w(x) 

dx4 

d3v 
EI-= V(x) 

dx3 

d2v 
EI-= M(x) 

dx2 

(16-8) 

(16-9) 

(16- 10) 

Boundary Conditions. Solution of any of these equations requires 
successive integrations to obtain v. For each integration, it is necessary to 
introduce a "constant of integration" and then solve for all the constants to 
obtain a unique solution for a particular problem. For example, if the 
distributed load w is expressed as a function of x and Eq. 16-8 is used, then 
four constants of integration must be evaluated; however, it is generally 
easier to determine the internal moment M as a function of x and use 
Eq. 16-10, so that only two constants of integration must be found. 

Most often, the integration constants are determined from boundary 
conditions for the beam, Table 16-1. As noted, if the beam is supported by 
a roller or pin, then it is required that the displacement be zero at these 
points. At the fixed support, the slope and displacement are both zero. 

Continuity Conditions. Recall from Sec. 11.1 that if the loading on 
a beam is discontinuous, that is, it consists of a series of several distributed 
and concentrated loads, Fig. 16-7a, then several functions must be written 
for the internal moment, each valid within the region between two 
discontinuities. For example, the internal moment in regions AB, BC, and 
CD can be written in terms of the xi> x.i, and x3 coordinates selected as 
shown in Fig.16-7b. 

When each of these functions is integrated twice, it will produce two 
constants of integration, and since not all of these constants can be 
determined from the boundary conditions, some must be determined 
using continuity conditions. For example, consider the beam in Fig. 16-8. 
Here two x coordinates are chosen with origin at A. Once the functions 
for the slope and deflection are obtained, they must give the same values 
for the slope and deflection at point B so the elastic curve is physically 
continuous. Expressed mathematically, these continuity conditions are 
81(a) = 82(a) and v1(a) = v2(a) . They are used to evaluate the two 
constants of integration. Once these functions and the constants of 
integration are determined, they will then give the slope and deflection 
(elastic curve) for each region of the beam for which they are valid. 
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V1· 1'2 
p 

a 
B 

b 

A c 
v 

t=x• 
X2 

Fig. 16-8 

Sign Conve 10 and Coordinates. When applying Eqs. 16-8 
through 16-10, it is important to use the proper signs for w, V, or M as 
established for the derivation of these equations, Fig. 16-9a. Also, since 
positive deflection, v, is upwards then positive slope (j will be measured 
counterclockwise from the x axis when xis positive to the right, Fig. 16-9b. 
This is because a positive increase dx and dv creates an increased (j that 
is counterclockwise. By the same reason, if positive x is directed to the 
left, then (j will be positive clockwise, Fig. 16-9c. 

Since we have considered dv/dx ""' 0, the original horizontal length of 
the beam's axis and the length of the arc of its elastic curve will almost be 
the same. In other words, ds in Figs.16-9b and 16-9c is approximately equal 
to dx,since ds = Y(dx)2 + (dv)2 = Y l + (dv/dx)2 dx""' dx. As a result, 
points on the elastic curve will only be displaced vertically, and not 
horizontally. Also, since the slope (j will be very small, its value in radians can 
be determined directly from (J "" tan 8 = dv / dx. 

+w 

+V +v 
Positive sign convention 

(a) 

v 

Elastic curve Elastic curve 

ds 

i---+x--

ds 

Positive sign convention Positive sign convention 

(b) (c) 

Fig.16-9 

'V 
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PROCEDURE FOR ANALYSIS 

The following procedure provides a method for determining the 
slope and deflection of a beam (or shaft) using the method of 
integration. 

Elastic Curve. 

• Draw an exaggerated view of the beam's elastic curve. Recall 
that zero slope and zero displacement occur at all fixed supports, 
and zero displacement occurs at all pin and roller supports. 

• Establish the x and v coordinate axes. The x axis must be parallel 
to the undeflected beam and can have an origin at any point 
along the beam, with a positive direction either to the right or to 
the left. The positive v axis should be directed upwards. 

• If several discontinuous loads are present, establish x coordinates 
that are valid for each region of the beam between the 
discontinuities. Choose these coordinates so that they will 
simplify subsequent algebraic work. 

Load or Moment Function. 

• For each region in which there is an x coordinate, express the 
loading w or the internal moment M as a function of x. In 
particular, always assume that M acts in the positive direction 
when applying the equation of moment equilibrium to determine 
M = f(x) . 

Slope and Elastic Curve. 

• Provided EI is constant, apply either the load equation 
EI d4v/dx4 = w(x), whtich requires four integrations to get 
v = v(x), or the moment equation EI d2v/dx2 = M(x), which 
requires only two integrations. For each integration it is 
important to include a constant of integration. 

• The constants are evaluated using the boundary conditions 
(Table 16-1) and the continuity conditions that apply to slope 
and displacement at points where two functions meet. Once 
the constants are evaluated and substituted back into the slope 
and deflection equations, the slope and displacement at specific 
points on the elastic curve can then be determined. 

• The numerical values obtained can be checked graphically by 
comparing them with the sketch of the elastic curve. Positive 
values for slope are counterclockwise if the x axis extends positive 
to the right, and clockwise if the x axis extends positive to the left. 
In either of these cases, positive displacement is upwards. 
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EXAMPLE 16.1 
- -

The beam shown in Fig. 16-lOa supports the triangular distributed loading. 
Determine its maximum deflection. EI is constant. 

SOLUTION 

Elastic Curve. Due to symmetry, only one x coordinate is needed for 
the solution, in this case 0 ::; x ::; L/2. The beam deflects as shown in 
Fig. 16-lOa. The maximum deflection occurs at the center since the slope 
is zero at this point. 

Moment Function. A free-body diagram of the segment on the left is 
shown in Fig. 16- lOb. The equation for the distributed loading is 

Hence, 

2w0 w =-x 
L 

wox
2 
(x) woL M + - - - - (x) = 0 

L 3 4 

WoX3 WoL 
M = - -- + --x 

3L 4 

(1) 

Slope and Elastic Curve. Using Eq. 16-10 and integrating twice, we have 

d2v w0 w0 L 
EI- = M = - - x3 + --x 

dx2 3L 4 
(2) 

dv w0 4 w0 L 2 El-= - --x + --x + C 
dx l2L 8 1 

wo s woL 3 
Elv = -

60
L x + "24 x + C1x + C2 

The constants of integration are obtained by applying the boundary 
condition v = 0 at x = 0 and the symmetry condition that dvf dx = 0 at 
x = L/2. This leads to 

Hence, 

5w0 L3 

C1 = _ _ 1_92_ 

dv w0 4 w0 L 2 El-= - --x + --x 
dx 12L 8 

5w0 L3 

192 
w0 w0 L 

3 
5w0 L3 

Elv = - --x5 + --x - x 
60L 24 192 

Determining the maximum deflection at x = L/2, we get 

woL4 

Vmax = - 120EJ Ans. 

w0 L 
4 

(a) 

(b} 

Fig. 16-10 
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I EXAMPLE 16.2 1 

(a) 

p 

L i)M 
~x-lv 

(b} 

Fig.16-11 

The cantilevered beam shown in Fig. 16-lla is subjected to a vertical load P 
at its end. Determine the equation of the elastic curve. EI is constant. 

SOLUTION I 

Elastic Curve. The load tends to deflect the beam as shown in 
Fig. 16-lla. By inspection, the internal moment can be represented 
throughout the beam using a single x coordinate. 

Moment Function. From the free-body diagram, with M acting in the 
positive direction, Fig.16-llb, we have 

M = -Px 

Slope and Elastic Curve. Applying Eq. 16-10 and integrating twice 
yields 

d2v 
EI-= -Px 

dx2 

dv Px2 

EI-= - - + C1 
dx 2 

Px3 

Eiv = - 6 + C1x + C2 

(1) 

(2) 

(3) 

Using the boundary conditions dv/dx = 0 at x = Land v = 0 at x = L, 
Eqs. 2 and 3 become 

PL2 

0 = - - + c 2 I 

PL3 

0 = - 6 + C1L + C2 

Thus, C1 = P L2 /2 and C2 = - P L3 /3. Substituting these results into Eqs. 2 
and 3 with tJ = dv / dx, we get 

p 
tJ = - (L2 - x2) 

2EI 
p 

v = 
6
EI ( - x3 + 3L2x - 2L3

) Ans. 

Maximum slope and displacement occur at A(x = 0), for which 

PL2 

tJA = 2EI (4) 

PL3 

VA = - 3EI (5) 
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The positive result for 8A indicates counterclockwise rotation and the 
negative result for vA indicates that vA is downward. This agrees with the 
results sketched in Fig. 16-1 la. 

In order to obtain some idea as to the actual magnitude of the slope 
and displacement at the end A, consider the beam in Fig. 16-lla to have 
a length of 15 ft, support a load of P = 6 kip, and be made of A-36 steel 
having £ 51 = 29(1cY) ksi. Using the methods of Sec. 15.2, if this beam 
was designed without a factor of safety by assuming the allowable normal 
stress is equal to the yield stress uauow = 36 ksi, then a W12 x 26 would 
be found to be adequate (I = 204 in4

). From Eqs. 4 and 5 we get 

6 kip(l5 ft)2(12 in./ft)2 

8
A = 2[29(1cY) kip/in2)(204 in4) = O.Ol64 rad 

6 kip(15 ft)3(12 in./ft)3 . 
vA=- = -l.97m. 

3(29(103) kip/ in2)(204 in4) 

Since 8~ = (dv/dx)2 = 0.000270 rad2 ~ 1, this justifies the use of 
Eq. 16-10, rather than applying the more exact Eq. 16-4. Also, since this 
numerical application is for a cantilevered beam, we have obtained larger 
values for 8 and v than would have been obtained if the beam were 
supported using pins, rollers, or other fixed supports. 

SOLUTION II 
This problem can also be solved using Eq. 16-8, EI d 4v/dx4 = w(x). 
Here w(x) = 0 for 0 s x < L, Fig.16-lla,so that upon integrating once 
we get the form of Eq. 16-9, i.e., 

d 4v 
EI-=0 

dx4 

d3v 
EI- = Cj = V 

dx3 

The shear constant C'1 can be evaluated at x = 0, since VA = -P 
(negative according to the beam sign convention, Fig. 16-9a). Thus, 
C'1 = -P. Integrating again yields the form of Eq. 16-10, i.e., 

d 3v 
El-= -P 

dx3 

d2v 
EI- = - Px + C2 = M 

dx2 

Here M = 0 at x = 0, so C2 = 0, and as a result one obtains Eq. 1, and 
the solution proceeds as before. 
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I EXAMPLE 16.3 1 

The simply supported beam shown in Fig. 16--12a is subjected to the 
concentrated force. Determine the maximum deflection of the beam. EI is 
constant. 

v 
6 kN 

1---2 m ---
8 
!-1 m ----j 

A ~ 

, ~ ''~ '> - D-----1 

(a) 

6 kN (x2 - 2m) 

1~~~2m---1--'-1( M 
B ' I 2 

A,._~-------1· ~) 
1'----X2----lv

2 

2kN 

(c) 

Fig.16-U 

(b) 

SOLUTION 

Elastic Curve. The beam deflects as shown in Fig. 16--12b. Two 
coordinates must be used, since the moment function will change at B. 
Here we will take x1 and Xz, having the same origin at A. 

Moment Function. From the free-body diagrams shown in Fig.16- 12c, 

M1 = 2x1 

M2 = 2x2 - 6(x-z - 2) = 4(3 - x-z) 

Slope and Elastic Curve. Applying Eq. 16--10 for M1, for 0 !:> x1 < 2 m, 
and integrating twice yields 

d2v1 
EI-= 2x 

dx12 1 

dv1 EI-= xj+ C1 dx1 

1 3 
Eiv1 = 

3
x1 + C1x1 + C2 

Likewise for M2, for 2 m < Xz !:> 3 m, 

d 2Vi 
EI- 2 = 4(3 - x-z) 

dx2 

(1) 

(2) 

(3) 

(4) 
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The four constants are evaluated using two boundary conditions, namely, 
x1 = 0, v 1 = 0 and x2 = 3 m, v2 = 0. Also, two continuity conditions 
must be applied at B, that is, dv1/dx1 = dv2/dx,z at x1 = x,z = 2 m and 
v1 = v2 at x1 = x2 = 2 m. Therefore 

v1 = 0 at x1 = O; 

v 1(2 m) = v2(2 m); 

~ (2)3 + C1(2) + C2 = 4(~ (2)2 
- (~

3

) + C3(2) + C4 

Solving, we get 

Thus Eqs. 1-4 become 

dv1 8 
El -= XI - -

dx1 3 

1 8 
Elv1 = 

3
xj -

3
x1 

dv2 44 
El - = 12x2 - 2ri - -

dx-i 3 
2 44 

Elv2 = 6x~ -
3 
~ - 3 x2 + 8 

(5) 

(6) 

(7) 

(8) 

By inspection of the elastic curve, Fig. 1~12b, the maximum deflection 
occurs at D, somewhere within region AB. Here the slope must be zero. 
From Eq. 5, 

Substituting into Eq. 6, 

8 
X1 2 - - = 0 

3 
X1 = 1.633 

2.90 kN ·m3 

Vmax = - El 

The negative sign indicates that the deflection is downwards. 

Ans. 
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I EXAMPLE 16.4 1 

The beam in Fig. 16-13a is subjected to a load at its end. Determine the 
displacement at C. EI is constant. 

2kN 

SOLUTION 

(a) 

4kN 

M, (f~ 
(b) 

Fig. 16-13 

V2 

Elastic Curve. The beam deflects into the shape shown in Fig. 16- 13a. 
Due to the loading, two x coordinates will be considered, namely, 
0 ::;; x1 < 2 m and 0 ::;; x2 < 1 m, where x2 is directed to the left from C, 
since the internal moment is easy to formulate. 

Moment Functions. Using the free-body diagrams shown in Fig. 16-13b, 
we have 

Slope and Elastic Curve. Applying Eq.16-10, 

For 0 ::;; x1 ::;; 2: 

(1) 

(2) 
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For 0 ~ Xz ~ 1 m: 

(3) 

(4) 

The four constants of integration are determined using three boundary 
conditions, namely, v1 = 0 at x1 = 0, v 1 = 0 at x1 = 2 m, and v2 = 0 at 
x2 = 1 m, and one continuity equation. Here the continuity of slope at the 
roller requires dv 1/ dx1 = -dv2/ d x2 at x1 = 2 m and x2 = 1 m. There is a 
negative sign in this equation because the slope is measured positive 
counterclockwise from the right, and positive clockwise from the left, 
Fig. 16-9. (Continuity of displacement at B has been indirectly considered 
in the boundary conditions, since v1 = v2 = 0 at x1 = 2 m and Xz = 1 m.) 
Applying these four conditions yields 

v1 = 0 at x1 = O; 

v1 = 0 at x1 = 2 m; 

=-
dx1 x=2m dXz x=lm' 

Solving, we obtain 

4 
C1 = -

3 

0 = 0 + 0 + C2 

1 
0 = -3(2)3 + C1(2) + C2 

2 
0 = -3(1)3 + C3(l) + C4 

14 
C3 =-

3 

Substituting C3 and C4 into Eq. 4 gives 

2 14 
Elv2 = - -x~ + - Xz - 4 

3 3 

The displacement at C is determined by setting Xz = 0. We get 

4kN · m3 

Ve = -
EI 

Ans. 
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PRELIMINARY PROBLEMS 

P16-1. In each case, determine the internal bending 
moment as a function of x, and state the necessary boundary 
and/or continuity conditions used to determine the elastic 
curve for the beam. 

8 kN 

b'~ 
t 

401-----1 

(a) 

lOkN·01 

kf""';;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;""'ah: 

~x-1 
1----201-----1 

(b) 

2kN/01 

J i i i i i i i i i i i i i 
_k .ft 
1-x-I 4 01-----1 

(c) 

8 kN·01 

2 
- X1 -

1--201 --1 

l-----X2----I 

1-----4 01-----1 

(d) 

2kN/01 4 kN 

t 

1-----X2----I 

1-----4 01 -----1 

(e) 

- .\'1-

1--201--1 

3kN/01 

1-----X2----1 

1-----4 n1-----1 

( f) 

Prob. P16-1 
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FUNDAMENTAL PROBLEMS 

F16-1. Determine the slope and deflection of end A of the 
cantilevered beam. E = 200 GPa and I = 65.0(106) mm4

• 

30 kN·01 

~ l-301--1 
Prob.Fl6-1 

F16-2. Determine the slope and deflection of end A of the 
cantilevered beam. £=200 GPa and !=65.0(106) mm4

• 

lO kN 

\OkN §~ 
i-------301~------1 

Prob.Fl6-2 

F16-3. Determine the slope of end A of the cantilevered 
beam. E = 200 GPa and I = 65.0(106) mm4

. 

lOkN 

A 

Prob.Fl6-3 

F16-4. Determine the maximum deflection of the simply 
supported beam. The beam is made of wood having a 
modulus of elasticity of Ew = 1.5(103) ksi and a rectangular 
cross section of width b = 3 in. and height h = 6 in. 

100 lb/ft ,£ ! ! ! ! I ! ! ! ! 1111 ! l. 
----- 12 ft ------1 

Prob.Fl6-4 

Fl6-5. Determine the maximum deflection of the simply 
supported beam. E = 200 GPa and I = 39.9(1ff.-{j) m4

• 

~ kN·01 lOkN·01 

~In~~ 
I 601 I 

Prob.Fl6-5 

F16-6. Determine the slope of the simply supported beam 
at A. E = 200 GPa and I= 39.9(10- 6) m4

. 

20kN 

10 kN·01 i 10 kN·01 

~/u~~ 
~301 301~ 

Prob.Fl6-6 
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PROBLEMS 

16-L An L2 steel strap having a thickness of 0.125 in. and 
a width of 2 in. is bent into a circular arc of radius 600 in. 
Determine the maximum bending stress in the strap. 

16-2. The L2 steel blade of the band saw wraps around the 
pulley having a radius of 12 in. Determine the maximum 
normal stress in the blade. The blade has a width of 0.75 in. 
and a thickness of 0.0625 in. 

Prob. 16-2 

16-3. A picture is taken of a man performing a pole vault, and 
the minimum radius of curvature of the pole is estimated by 
measurement to be 4.5 m. If the pole is 40 mm in diameter and 
it is made of a glass-reinforced plastic for which £8 =131 GPa, 
determine the maximum bending stress in the pole. 

Prob. 16-3 

*16-4. Determine the equation of the elastic curve for the 
beam using the x coordinate that is valid for 0 < x < L/2. 
Specify the slope at A and the beam's maximum deflection. 
EI is constant. 

p 

Aafi---
i 

1-x -i ~ ---1--- ~ ---1 

Prob. 16-4 

16-5. Determine the deflection of end C of the 
100-mm-diameter solid circular shaft. Take E = 200 GPa. 

c 

- x2 

i-----2m~--1 m--
6 kN 

Prob. 16-5 

16-6. Determine the elastic curve for the cantilevered 
beam, which is subjected to the couple moment M0. Also 
calculate the maximum slope and maximum deflection of 
the beam. EI is constant. 

---------L---------1 

Prob. 16-6 
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16-7. The A-36 steel beam bas a depth of 10 in. and is 
subjected 10 a constant moment ~- wbicb causes the stress 
at the outer fibers 10 become uy = 36 ksi. Determine the 
radius of curvature of the beam and the beam's maximum 
slope and deflection. 

t--------L---------1 

Prob. 16-7 

*16-8. Determine the equations of the elastic curve using 
the coordinates x1 and x2. £1 is constant. 

Prob.16-8 

16-9. Determine the equations of the elastic curve for the 
beam using the x1 and x2 coordinates. £/ is constant. 

p 

I • 

,__ x,- 1 x I I 

i----~~---- _L ____ ,, 
2 2 

Prob. 16-9 

16.2 SLOPE AND D ISPLACEMENT BY INTEGRATION 735 

16-10. Determine the equations of the elastic curve using 
the coordinates x1 and x2. What is the slope at C and 
displacement at B? £ 1 is constant. 

16-11. Determine the equations of the elastic curve using 
the coordinates x 1 and x3. What is the slope at B and 
deflection at C? £1 is constant. 

Probs. 16-10/11 

*16-12 Draw the bending-moment diagram for the shaft 
and then, from this diagram, sketch the deflection or elastic 
curve for the shaft 's centerline. Determine the equations of 
the elastic curve using the eoordinatesx1 andx2• £1 is constant. 

Prob. 16-12 

16-13. Determine the maximum deflection of the beam 
and the slope at A. £1 is constant. 

Mo Mo 

A.N. ( · ·) ;Jn 
i-a-~a~-a---t 

Prob. 16-13 
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16-14. The simply supported shaft has a moment of inertia 
of2l for region BC and a moment of inertia I for regions AB 
and CD. Determine the maximum deflection of the shaft 
due to the load P. 

p 

A B c D 

~ ~-~ ~~- ~-~ ~~ 
Prob.16-14 

16-15. A torque wrench is used to tighten the nut on a 
bolt. If the dial indicates that a torque of (i() lb · ft is applied 
when the bolt is fully tightened, determine the force P 
acting at the handle and the distance s the needle moves 
along the scale. Assume only the portion AB of the beam 
distorts. The cross section is square having dimensions of 
0.5 in. by 0.5 in. E = 29(103) ksi. 

A 

PV-
Prob.16-15 

*16-16. The pipe can be assumed roller supported at its 
ends and by a rigid saddle C at its center. The saddle rests 
on a cable that is connected to the supports. Determine the 
force that should be developed in the cable if the saddle 
keeps the pipe from sagging or deflecting at its center. 
The pipe and fluid within it have a combined weight of 
12.5 lb/ft. El is constant. 

. . . . . . 
.. . ! 

1---12.s ft ---1--- 12.s ft ---1 
. .. . . .. 
'!' •.• .. . . .... 
'!' •.• 

•·. A c 1 
1 ft 

B •• 

Prob.16-16 

16-17. Determine the equations of the elastic curve for 
the beam using the x1 and x2 coordinates. Specify the beam's 
maximum deflection. El is constant. 

Prob.16-17 

16-18. The bar is supported by a roller constraint at B, 
which allows vertical displacement but resists axial load and 
moment. If the bar is subjected to the loading shown, 
determine the slope at A and the deflection at C. El is 
constant. 

16-19. Determine the deflection at B of the bar in 
Prob. 16-18. 

p 

c 
Ar,-----------------::=-i 

, ___ ~ _J, ___ ~ __ _, 
B 

Probs. 16-18/19 
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*16-20. Determine the equations of the elastic curve using 
the x1 and ·'l'i coordinates. What is the slope at A and the 
deflection at C! £/ is constant. 

Skip 

~ ~ c ~) 
Lx,-l J - xi_J20kip·ft 
J-----20 f1--l--10 ft~ 

Prob. 16-20 

16-21. Determine the maximum deflection of the solid 
circular shaft."fl1e shaft is made of steel having£= 200 GPa. 
It has a diameter or 100 mm. 

SkN 

;;)·:::=:~~~c!~·========B::f~~m 
,~~m 15mjl 

Prob.16-21 

16-22. Determine the elast ie curve for the cantilevered 
W14 x 30 beam using the x coordinate. Specify the maximum 
slope and maxinlum deflection.£ = 29(103) ksi. 

A .___...;.... _____________ ____, 

x-1 8 

1-------- 9 ft - -------1 

Prob. 16-22 

16.2 SLOPE AND D ISPLACEMENT BY INTEGRATION 7 3 7 

16-23. Determine the equations of the elastic curve using 
the coordinates x1 and x2. What is the deflection and slope 
at C! £1 is constant. 

~ 
8 c 

] )Mo 
11 

~~ ~ 
Prob. 16-23 

*16-24. Determine the equations of the elastic curve 
using tbe coordinates x1 and x2. What is the slope at A? £1 is 
constant. 

Prob. 16-24 

16-25. The floor beam of the airplane is subjected to the 
loading shown. Assuming that the fuselage exerts only 
vertical reactions on the ends of the beam, determine the 
maximum deflection of the beam. £/ is constant. 
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7 38 CHAPTER 16 D EFLECTION OF BEAMS AND S HAFTS 

16-26. Determine the maximum denection of the simply 
supported beam. The beam is made of wood having a 
modulus of elasticity of E = 1.5 (103) ksi. 

6001b 

Xi--

4 ft 

Prob. 16-26 

B D 16in. 

1-1 
3 in. 

16-27. The beam is made of a material having a specific 
weight -y. Determine the displacement and slope at its end 
A due to its weight. The modulus of elasticity for the 
material is £. 

Prob. 16-27 

*16-28. Determine the slope at end 8 and the maximum 
denection of the cantilever triangular plate of constant 
thickness 1. The plate is made of material having a modulus 
of elasticity of£. 

I~ 

Prob. 16-28 

16-29. Determine the equation of the elastic curve using 
the coordinates x1 and x2• What is the slope and denection 
at B? El is constant. 

16-30. Determine the equations of the elastic curve using 
the coordinates x1 and x3. \Vhat is the slope and denection 
at point B? El is constant. 

Ill 

A 

B 

~-x-2~~-L~~~~~-1-_x_3-1 
Probs. 16-29/30 
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* 16.3 DISCONTINUITY FUNCTIONS 
The method of integration, used to find the equation of the elastic curve 
for a beam or shaft, is convenient if the load or internal moment can be 
expressed as a continuous function throughout the beam's entire length. 
If several different loadings act on the beam, however, this method can 
become tedious to apply, because separate loading or moment functions 
must be written for each region of the beam. Furthermore, as noted in 
Examples 16.3 and 16.4, integration of these functions requires the 
evaluation of integration constants using both the boundary and continuity 
conditions. 

In this section, we will discuss a method for finding the equation of the 
elastic curve using a single expression, either formulated directly from 
the loading on the beam, w = w(x), or from the beam's internal moment, 
M = M(x). Then when this expression for w is substituted into 
EI d4v / dx4 = w(x) and integrated four times, or if the expression for M 
is substituted into EI d2v / dx2 = M(x) and integrated twice, the constants 
of integration will only have to be determined from the boundary 
conditions. 

Discontinuity Functions. In order to express the load on the beam 
or the internal moment within it using a single expression, we will use 
two types of mathematical operators known as discontinuity functions. 

For safety, the beams supporting these bags 
of cement must be designed for strength 
and a restricted amount of deflection. 
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7 40 CHAPTER 16 DEFLECTION OF BEAMS AND SHAFTS 

Loading 

Mo 

t X-1 j) 
- a -

I 

tp 
r.:::X-1 I 
- a -

Macaulay Functions. For purposes of beam or shaft deflection, 
Macaulay functions, named after the mathematician W. H . Macaulay, can 
be used to describe distributed loadings. These functions can be written 
in general form as 

(x - a)" = {
0 

(x - a)" 

n <::: 0 

for x <a 
for x <:::a (16- 11) 

Here x represents the location of a point on the beam, and a is the 
location where the distributed loading begins. The Macaulay function 
( x - a)" is written with angle or Macaulay brackets to distinguish it 
from an ordinary function (x - a)" written with parentheses. As stated 
bytheequation,onlywhenx <::: ais (x - a)" = (x - a)";otherwise itis 
zero. Furthermore, this function is valid only for exponential values 
n <::: 0. Integration of the Macaulay function follows the same rules as for 
ordinary functions, i.e., 

J (x - a}"+t 
(x-a }"dx = + C 

n + 1 
(16- 12) 

Macaulay functions for a uniform and triangular load are shown in 
Table 16-2. Using integration, the Macaulay functions for shear, 
V = J w(x) dx, and moment, M = jv dx, are also shown in the table. 

Loading Function Shear V =fw(x)dx Moment M = f Vdx 
w = w(x) 

IV= M 0(x - a} - 2 V= M0 (x - a) - 1 M = M0 (x - a)0 

IV= P(x- a) - 1 V = P(x - a}0 M = P(x- a} 1 

IVo 

I 
!11!1111 IV= 1V0 (x- a)0 V= w0(x- a} 1 M= H'o 2 - (x- a) t X-1 I 2 

- a -

slope~ 

IV= m(x- a) 1 Ill ( )2 M = l!!...(x- a) 3 I V= "2 x- a r.:::x -1 I 6 
- a -
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€ ,_ 

p 
\V = -

€ 

~. I 
II 

p 

I 
t .. 

~,-a l 
Fi.g.16-14 

Singularity Functions. These functions are used to describe 
concentrated forces or couple moments acting on a beam or shaft. 
Specifically, a concentrated force P can be considered a special case of a 
distributed loading having an intensity of w = P / E when its length E ~ 0, 
Fig. 16-14. The area under this loading diagram is equivalent to P, positive 
upwards, and has this value only when x = a. We will use a symbolic 
representation to express this result , namely 

w = P(x - a} - 1 = {~ for x # a 

for x = a 
(16-13) 

This expression is referred to as a singularity function , since it takes on the 
value P only at the point x = a where the load acts, otherwise it is zero.* 

*It is also referred to as a unit impulse function or the Dirac delta. 
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7 42 CHAPTER 16 DEFLECTION OF BEAMS AND SHAFTS 

p Mo 
lv = - = -

E E2 

II 

I 1 

Fig.16-15 

In a similar manner, a couple moment M 0, considered poswve 
clockwise, is a limit as e ~ 0 of two distributed loadings, as shown in 
Fig. 16-15. Here the following function describes its value. 

w = Mo(x-a) -2 ={
0 
Mo 

for x -¥ a 

for x = a 
(16-14) 

The exponent n = -2 in order to ensure that the units of w, force per 
length, are maintained. 

Integration of the above two functions follows the rules of calculus and 
yields results that are different from those of the Macaulay function. 
Specifically, 

J (x - a)"dx = (x - a) 11+1,n = -1, -2 (16-15) 

Using this formula, notice how Mo and P, described in Table 16- 2, are 
integrated once, then twice, to obtain the internal shear and moment in 
the beam. 

Application of Eqs. 16-11 through 16-15 provides a direct means for 
expressing the loading or the internal moment in a beam as a function of x. 
Close attention, however, must be paid to the signs of the external loadings. 
As stated above, and as shown in Table 16-2, concentrated forces and 
distributed loads are positive upwards, and couple moments are positive 
clockwise. If this sign convention is followed, then the internal shear and 
moment will be in accordance with the beam sign convention established 
in Sec. 11.1. 
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16.3 DISCONTINUITY FUNCTIONS 7 4 3 

Application. As an example of how to apply discontinuity functions 
to describe the loading or internal moment, we will consider the beam 
in Fig. 16-16a. Here the reactive 2.75-kN force created by the roller, 
Fig. 16-16b, is positive since it acts upwards, and the 1.5-kN · m couple 
moment is also positive since it acts clockwise. Finally, the trapezoidal 
loading is negative and by superposition has been separated into 
triangular and uniform loadings. From Table 16-2, the loading at any 
point x on the beam is therefore 

w = 2.75kN(x - 0} - 1 + 1.5kN·m(x - 3m}-2 - 3kN/m(x - 3m} 0 -1 kN/rtr(x - 3m) 1 

The reactive force at B is not included here since x is never greater than 
6 m. In the same manner, we can determine the moment expression 
directly from Table 16-2. It is 

3 kN/m 1 kN/m2 

M = 2.75kN(x-0} 1 + 1.5kN·m(x-3m}0 -
2 

(x-3m) 2 -
6 

(x-3m} 3 

1 
= 2.75x + 1.5(x - 3)0 - 1.5(x - 3) 2 -

6 
(x - 3) 3 

The deflection of the beam can now be determined after this equation 
is integrated two successive times, and the constants of integration are 
evaluated using the boundary conditions of zero displacement at A 
and B. 

1.5 kN·m 

6kN/m 

3k~/m 
~ ( ,_________ B 

l1--3m~ 3m I 
(a) 

3 kN/m , 
m= 3m =~3kN/m 

l.5kN·m! l l l l J l f 3kN/m 
I ( _ B, 

t--3m l-3m-
2.75 kN (b) By 

Fig. 16-16 
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7 44 CHAPTER 16 DEFLECTION OF BEAMS AND SHAFTS 

PROCEDURE FOR ANALYSIS 

The following procedure provides a method for using discontinuity 
functions to determine a beam's elastic curve. This method is 
particularly advantageous for solving problems involving beams or 
shafts subjected to several loadings, since the constants of integration 
can be evaluated by using only the boundary conditions, while the 
compatibility conditions are automatically satisfied. 

Elastic Curve. 

• Sketch the beam's elastic curve and identify the boundary 
conditions at the supports. 

• Zero displacement occ1Urs at all pin and roller supports, and 
zero slope and zero displacement occur at fixed supports. 

• Establish the x axis so that it extends to the right and has its 
origin at the beam's left end. 

Load or Moment Function. 

• Calculate the support reactions and then use the discontinuity 
functions in Table 16-2 to express either the loading w or the 
internal moment M as a function of x. Make sure to follow the 
sign convention for each. loading. 

• Note that the distributed loadings must extend all the way to 
the beam's right end to be valid. If this does not occur, use the 
method of superposition, which is illustrated in Example 16.5. 

Slope and Elastic Curve. 

• Substitute w into EI d 4v/dx4 = w(x) , or Minto the moment 
curvature relation EI d 2v/dx2 = M, and integrate to obtain the 
equations for the beam's slope and deflection. 

• Evaluate the constants of integration using the boundary 
conditions, and substitute these constants into the slope and 
deflection equations to obtain the final results. 

• When the slope and deflection equations are evaluated at any 
point on the beam, a positive slope is counterclockwise, and a 
positive displt1cement is upwards. 
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EXAMPLE 16.5 
- -

Determine the equation of the elastic curve for the cantilevered beam 
shown in Fig.16-17a. EI is constant. 

SOLUTION 

Elastic Curve. The loads cause the beam to deflect as shown in 
Fig. 16-17a. The boundary conditions require zero slope and 
displacement at A. 

Loading Function. The support reactions at A have been calculated 
and are shown on the free-body diagram in Fig. 16- 17b. Since the 
distributed loading in Fig. 16-17a does not extend to C as required, we 
will use the superposition of loadings shown in Fig. 16-17b to represent 
the same effect. By our sign convention, the beam's loading is therefore 

w = 52 kN ( x - 0) -l - 258 kN · m ( x - 0) - 2 - 8 kN / m ( x - 0) 0 

+ 50kN·m(x - 5m)-2 + 8kN/m(x - 5m) 0 

The 12-kN load is not included here, since x cannot be greater than 9 m. 
Because dV / dx = w(x) , then by integrating, and neglecting the constant of 
integration since the reactions at A are included in the load function, we get 

8kN/m 12kN 

A~~~~;;;;~B~S=O=k~N;·n~1~?~ c 
1--5 m--1--4 m-1 

(a) 

258 kN·m 8 kN/m 12 kN 

(tJ: iii iii :cw t ft ft f }c 
1

52kN 50kN·m

1 

8 kN/m 

1 --Sm 4 m -

(b) 

Fig.16-17 

V = 52(x - 0) 0 - 258(x - 0) - 1 - 8(x - 0) 1 + 50(x - 5) - 1 + 8(x - 5) 1 

Furthermore, dM /dx = V , so that integrating again yields 

M = -258(x - 0) 0 + 52(x - 0) 1 
- &(8)(x - 0) 2 + 50(x - 5) 0 + ~(8)(x - 5) 2 

= ( - 258 + 52x - 4x2 + 50 ( x - 5 ) 0 + 4 ( x - 5 ) 2) kN · m 

This same result can be obtained directly from Table 16-2. 

Slope and Elastic Curve. Applying Eq. 16- 10 and integrating twice, 
we have 

d2v 
El-= -258 + 52x - 4x2 + 50(x - 5) 0 + 4(x - 5) 2 

dx2 

dv 4 4 
EI dx = -258x + 26x2 

-
3

x3 + 50(x - 5) 1 + 
3 

(x - 5) 3 + C1 

2 26 3 1 4 2 1 4 
Elv = -129x + 3x -3x + 25(x-5) + 3(x-5) + C1x + C2 

Sincedv/dx = Oatx = O, C1 = O;andv = Oatx = O,soC2 = O.Thus, 

1 ( 2 26 3 1 4 2 1 4) v = EI -129x + 3x -3x + 25(x-5) + 3(x-5) m Ans. 
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7 46 CHAPTER 16 DEFLECTION OF BEAMS AND SHAFTS 

j EXAMPLE 16.6 

Determine the maximum deflection of the beam shown in Fig.16-18a. EI 
is constant. 

8 kip 

i D :::\120 kip·ft 

t~ ~-.~,-----;cs_.....,J0----~M 

c 10 ft~-----20 ft -----1 

(a) 

8 kip 

' 
;)20kip·ft 

I 

- x-1 6 kip t2 kip 

lOft-1 

I 30 ft 

(b) 

Fig.16-18 

SOLUTION 

Elastic Curve. The beam deflects as shown in Fig. 16-18a. The 
boundary conditions require zero displacement at A and B. 

Loading Function. The reactions have been calculated and are shown 
on the free-body diagram in Fig. 16- 18b. The loading function for the 
beam is 

w = -8kip (x - 0) - 1 + 6kip (x - lOft) - 1 

The couple moment and force at B are not included here, since they are 
located at the right end of the beam, and x cannot be greater than 30 ft. 
IntegratingdV/dx = w(x),weget 

V = -8(x - 0) 0 + 6(x - 10) 0 

In a similar manner, dM / dx = V yields 

M = -8(x - 0) 1 + 6(x - 10) 1 

= (-8x + 6(x -10} 1) kip · ft 
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Notice how this equation can also be established directly using the results 
of Table 16-2 for moment. 

Slope and Elastic Curve. Integrating twice yields 

d2v 
EI-= -8.x + 6 (x - 10}1 

dx2 

dv 2 ? 
EI-= -4x + 3 (x - 10}- + C1 dx 

4 
Eiv = -3x3 + (x - 10)3 + C1x + C2 (1) 

From Eq. 1, the boundary condition v = 0 at x = 10 ft and v = 0 at 
x = 30 ft gives 

0 = -1333 + (10 - 10)3 + C1(10) + C2 

0 = -36 000 + (30 - 10)3 + C1(30) + C2 

Solving these equations simultaneously for C1 and C2, we get C 1 = 1333 
and C2 = -12 000. Thus, 

Eidv = -4x2 + 3 (x - 10) 2 + 1333 (2) 
dx 

4 
Eiv = -

3 
x3 + (x - 10}3 + 1333x - 12 000 (3) 

From Fig.16-1&1, maximum displacement can occur either at C: or at D 
where the slope dv / dx = 0. To obtain the displacement of C, set x = 0 in 
Eq.3.Weget 

12 000 kip . ft3 

Ve = -
EI 

Ans. 

The negative sign indicates that the displacement is downwards as shown 
in Fig. 16-18a. To locate point D, use Eq. 2 with x > 10 ft and dv/ dx = 0. 
This gives 

0 = -4x0
2 + 3(x0 - 10)2 + 1333 

x0
2 + 60xo - 1633 = 0 

Solving for the positive root, 

Xo = 20.3 ft 
Hence, from Eq. 3, 

Eiv0 = - ; (20.3)3 + (20.3 - 10)3 + 1333(20.3) - 12 000 

5006 kip . ft3 

Vo = 
EI 

Comparing this value with Ve, we see that Vmax = Ve. 
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PROBLEMS 

16-31. The shaft is supported at A by a journal bearing 
and at C by a thrust bearing. Determine the equation of the 
elastic curve. EI is constant. 

*16-32. The shaft supports the two pulley loads shown. 
Determine the equation of the elastic curve. EI is constant. 

:a.,J ~ JJ! ~ 
I- 20 in.-!- 20 in.~- 20 in.--! 

40 Jb 

Prob.16-32 

60 Jb 

16-33. The beam is made of a ceramic material. If it is 
subjected to the elastic loading shown, and the moment of 
inertia is I and the beam has a measured maximum 
deflection ti. at its center, determine the modulus of 
elasticity, E. The supports at A and D exert only vertical 
reactions on the beam. 

p p 

ls c 
D 

1-'__j L 
1- ·~ 

Prob.16-33 

16-34. Determine the equation of the elastic curve, the 
maximum deflection in region AB, and the deflection of 
end C. EI is constant. 

B c 

1-a--a-~a~ 
p ~p 

Prob.16-34 

16-35. The beam is subjected to the load shown. Determine 
the equation of the elastic curve. EI is constant. 

3 kip/ft 
5 kip·ft 

~ I I I r I ~ 
5 kip· ft 

( 1 1) 

~·~ 
•' '· A B 

8 ft 4ft -

Prob.16-35 

*16-36. Determine the equation of the elastic curve, the 
slope at A , and the deflection at B. EI is constant. 

16-37. Determine the equation of the elastic curve and 
the maximum deflection of the simply supported beam. EI 
is constant. 

Mo Mo 

A !i\ {e: -:"'ri l D 

~ i-r--i--+-i~· 
Probs. 16-36/37 
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16-38. The shaft supports the two pulley loads. Determine 
the equation of the elastic curve.£/ is constant. 

A 

- 12 in.~-24 in.--~-24 in.-l 

50lb 
801b 

Prob. 16-38 

16-39. Determine the maximum deflection of the 
cantilevered beam. Take £ = 200 GPa and l = 65.0(106) mm4• 

30 kN/m 
15 kN 

A 

~I.Sm l.Sm_j 

Prob.16-39 

*16-40. Determine the slope at A and the deflection 
of end C of the overhang beam. Take E = 29(1Q-3) ksi and 
I= 204 in4• 

16-41. Determine the maximum deflection in region AB 
of the overhang beam. Take £ = 29(1Q-3) ksi and I= 204 in4

• 

6 k' •tp 

2 k ip/ft 3 kip 

• 
Alff 

B 
c 

--6r1--6 ft --1--6 ft --

Probs. 16-40/41 

16.3 DISCONTINUITY FUNCTIONS 7 4 9 

16-42. The shaft supports the two pulley loads shown. 
Determine the slope of the shaft at A and B. The bearings 
exert only vertical reactions on the shaft. £ /is constant. 

A 

- 12 in~-24 in.--.,1--24 in.-l 

50 1b 
801b 

Prob. 16-42 

16-43. Determine the equation of the elastic curve. El is 
constant. 

4 kip 

f) TI TI .i 
~x-1 16 ~p-n 16 [;p·ft I 
I-8 ft --1-- 8 fl -1- 8 ft -I 

Prob. 16-43 

*16-44. Determine the equation of the elastic curve. El 
is constant. 

2k
. 4 kip 
'P I 

~A i ! ~kip·ft 

~ 2 2f 
Lx-1 J 8 

l--- sr1 -sf1----sri -

Prob. 16-44 
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16.4 METHOD OF SUPERPOSITION 
The differential equation EI d 4v/dx4 = w(x) satisfies the two necessary 
requirements for applying the principle of superposition; i.e., the load 
w(x) is linearly related to the deflection v(x), and the load is assumed not 
to significantly change the original geometry of the beam or shaft. As a 
result, the deflections for a series of separate loadings acting on a beam 
may be superimposed. For example, if Vt is the deflection for one load 
and Vi is the deflection for another load, the total deflection for both 
loads acting together is the algebraic sum Vt + v2 . Using tabulated 
results for various beam loadings, such as the ones listed in Appendix C, 
or those found in various engineering handbooks, it is therefore possible 
to find the slope and displacement at a point on a beam subjected to 
several loadings by adding the effects of each loading. 

The following examples numerically illustrate how to do this. 

The resultant deflection at any point on this beam can be determined from the 
superposition of the deflections caused by each of the separate loadings acting on 
the beam. 
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EXAMPLE 16~ 
D etermine the displace ment at point C and the slope at the support A 
of the beam shown in Fig. l6-l9a. EI is constant. 

2 kN/ m S kN 2kN/m 

A ,+1 u) * * * , { B A 1 i , i i + + + ~ 1 c:: ~- ~ ~ = ~) - c 
I oA4 m vcl_c I I ((66A) I [-- --J 4m----l ~~m (vc), 

(a) (b) 

+ 
8kN 

i 
X c:e ) /ac ~ 

I (OA)2 (vd2 I 
l-4 m---1---4 m--

(c) 

Fig. 16--19 

SOLUTION 
The loading can be separated into two component parts as shown in 
Figs. 16-19b and 16-19c. The displacement at C and slope at A are found 
using the table in Appendix C for each part. 

For the distributed loading, 

_ 3wL3 _ 3(2 kN/ m)(8 m)3 
_ 24 kN · m2 ..., 

(OA)i - 128EI - 128EI - EI ._, 

_ 5wL4 _ 5(2 kN/ m)(8 m)4 
_ 53.33 kN · m3 

1 
(vc)i - 768EI - 768EI - EI "" 

For the 8-kN concentrated force, 

_ PL2 _ 8kN{8m)2 
_ 32kN·m2..., 

(OA)i - 16EI - 16EI - EI ._, 

_ PU _ 8 kN{8 m)3 
_ 85.33 kN · m3 

1 
(vc)2 - 48El - 48EI - EI "' 

The displacement at C and the slope at A are the algebraic sums of 
these components. H ence, 

56 kN ·m2 

{+)) 8A = {8A)1 + (8Ah = EI ) Ans. 

{+! ) 
139 kN ·m3 

Ve = (vc)1 + (vc)2 = EI ! Ans. 
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EXAMPLE 16.8 - -
Determine the displacement at the end C of the cantilever beam shown 
in Fig. 16-20. EI is constant. 

A 

Fig.16-20 

SOLUTION 
Using the table in Appendix C for the triangular loading, the slope 
and displacement at point Bare 

w0L3 4 kN /m(6 m)3 36 kN · m2 

68 = 24EI = 24EI - EI 

w0L
4 4kN/m(6m)4 172.8kN · m3 

Va = 30EI = 30EI - EI 

The unloaded region BC of thle beam remains straight, as shown in 
Fig. 16- 20. Since 68 is small, the displacement at C becomes 

= 172.8 kN · m
3 + 36 kN · m

2 
(2 m) 

EI EI 

= 244.8 kN ·m3 ! 
EI 

Ans. 
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~ EXAMPLE 16 . ..:J 
Determine the displacement at the end C of the overhanging beam 
shown in Fig. 16-21a. El is constant. 

SOLUTION 
Since the table in Appendix C does not include beams with overhangs, 
the beam wiJJ be separated into a simply supported and a cantilevered 
portion. First we will calculate the slope at B, as caused by the 
distributed load acting on the simply supported span, Fig. 16-2l b. 

wU 5 kN/m(4 m)3 13.33 kN · m2 

(Bs)i = 24£1 = 24El = EI ) 

Since this angle is small, the vertical displacement at point C is 

( ) = ( m)(13.33 kN · m
2

) = 26.67 kN · m
3
j 

Ve i 2 El EI 

Next, the 10-kN load on the overhang causes a statically equivalent 
force of 10 kN and couple moment of 20 kN · m at the support B of the 
simply supported span, Fig. 16-21c. The 10-kN force does not cause a 
slope at B; however, the 20-kN · m couple moment does cause a slope. 
This slope is 

( ) _ M0L _ 20kN·m(4m) _ 26.67kN · m2) 
88 2 - 3El - 3El - EI 

so that the displacement or point c is 

( ) = ( m)(26.7kN·m
2

) = 53.33kN·m3! 
Ve z 2 El EI 

Finally, the cantilevered portion BC is displaced by the 10-kN force, 
Fig. 16-2ld. We have 

_ pl.} _ 10 kN(2 m)3 
_ 26.67 kN · m3 ! 

(vch - 3El - 3El - El 

Summing these results algebraically, we get 

(+ ! ) Ve = _ 26.7 + 53.3 + 26.7 = 53.3 kN · m
3 

! 
El El El EI 

Ans. 

IOkN 
5 kN/m I 

Az::ffffff~f! ~C 
i---4 m---1-2 m-l 

(a) 

II 

5 kN/m C 

A AJ t f f f ! t:;} b~j(vc), 
(Os)1 

I 4m l-2m-
(b) 

+ 

(c) 

+ 

(d) 

Fig. 16-21 
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I EXAMPLE 16.10 

3 kip 

1-3ft 6ft --11 
Ar'-~-----:,.--~~~~"""'B 

c k = 15 kip/ft 

~ (a) $ 
k = 15 kip/ft 

II 

Original position 
-i---6ft I 

(vA)1-..-'----o ' (vs)1 
B 

t Rigid body displacement t 
2 kip 1 kip 

3 kip 

1-3ft ; 

>.- ~ 

(b} 

+ 

(vc)2 

6ft --1 

--L 
Deformable body displacement 

(c) 

Fig.16-22 

The steel bar shown in Fig. 16-22a is supported by two springs at its 
ends A and B. Each spring has a stiffness of k = 15 kip/ft and is 
originally unstretched. If the bar is loaded with a force of 3 kip at 
point C, determine the vertical displacement of the force. Neglect the 
weight of the bar and take £ 51 = 29(103) ksi, I = 12 in4

• 

SOLUTION 
The end reactions at A and Bare calculated and shown in Fig. 16-22b. 
Each spring deflects by an amount 

2kip 
(vA)1 = S . /f = 0.1333 ft 

1 kip t 

1 kip 
(vs)1 = 

5 
. /ft = 0.0667 ft 

1 kip 

If the bar is considered to be rigid, then the vertical displacement at 
Cis 

2 
= 0.0667 ft + 3(0.1333 ft - 0.0667 ft] = 0.1111 ft ! 

We can find the displacement at C caused by the deformation of the 
bar, Fig. 16-22c, by using the table in Appendix C. We have 

Pab 2 2 2 (vc)2 = (L - b - a ) 
6£/L 

= 0.0149 ft! 

Adding the two displacement components, we get 

(+!) Ve = 0.1111 ft + 0.0149 ft = 0.126 ft = 1.51 in. ! Ans. 
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PROBLEMS 

16-45. The WlO x 15 cantilevered beam is made of A-36 
steel and is subjected to the loading shown. Determine the 
slope and displacement at its end B. 

l=================================='B 
1-A---6 ft ~1----6 ft ----1 

Prob.16-45 

16-46. The WlO x 15 cantilevered beam is made of A-36 
steel and is subjected to the loading shown. Determine the 
displacement at Band the slope at B. 

6kip 4 kip 

~==~===II\ 
I 

B 1----6 ft -J, ____ 6 ft ___ A_, 

Prob.16-46 

16-47. The W14 x 43 simply supported beam is made of 
A992 steel and is subjected to the loading shown. Determine 
the deflection at its center C. 

*16-48. The W14 x 43 simply supported beam is made of 
A992 steel and is subjected to the loading shown. Determine 
the slope at A and B. 

3 kip/ft 

Probs. 16-47/48 

16.4 METHOD OF SUPERPOSITION 7 5 5 

16-49. The W14 x 43 simply supported beam is made of 
A-36 steel and is subjected to the loading shown. Determine 
the deflection at its center C. 

2 kip/ft 

A_k 
I 1111111 la~ ' 

I
C B 

1---10 ft ------ 10 ft ---

Prob.16-49 

16-50. The W14 x 43 simply supported beam is made of 
A-36 steel and is subjected to the loading shown. Determine 
the slope at A and B. 

2 kip/ft 

! ! ! ! ! ! ! ! ! l 40kip·ft 

-ii) 
IC B 

1---10 ft---1-10 ft ---

Prob.16-50 

16-5L The W8 x 48 cantilevered beam is made of A-36 
steel and is subjected to the loading shown. Determine the 
displacement at C and the slope at A. 

2 kip·ft 

A~ 8 ft ~-C---8 ft ---
8

-1 

Prob.16-51 
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7 56 CHAPTER 16 DEFLECTION OF BEAMS AND SHAFTS 

*16-52. The beam supports the loading shown. Code 
restrictions, due to a plaster ceiling, require the maximum 
deflection not to exceed 1 /360 of the span length. Select 
the lightest-weight A-36 steel wide-flange beam from 
Appendix B that will satisfy this requirement and safely 
support the load. The allowable bending stress is u allow= 24 ksi 
and the allowable shear stress is Tallow = 14 ksi. Assume A is a 
roller and B is a pin. 

4 kip/ft 

! ! ! ! ! ! ! ! ! ! 

l~f 1-l2f<-l-l 2 ft -----li~I 
Prob.16-52 

16-53. The W24 x 104 A-36 steel beam is used to support 
the uniform distributed load and a concentrated force which 
is applied at its end. If the force acts at an angle with the 
vertical as shown, determine the horizontal and vertical 
displacement at A. 

y 

I 

z 

Prob.16-53 

16-54. The W8 x 48 cantilevered beam is made of A-36 
steel and is subjected to the loading shown. Determine the 
displacement at its end A. 

1.2 kip 

! 2 kip·ft -
I 'I' ' 

A B , le 
1---- 8 ft ----11-8 ft ----1 

Prob.16-54 

16-55. The rod is pinned at its end A and attached to a 
torsional spring having a stiffness k, which measures the 
torque per radian of rotation of the spring. If a force P is 
always applied perpendicular to the end of the rod, 
determine tihe displacement of the force. El is constant. 

Prob.16-55 

*16-56. Determine the vertical deflection and the change 
in angle at the end A of the bracket. Assume that the bracket 
is fixed supported at its base, and neglect the axial 
deformation of segment AB. El is constant. 

r3 in.l 
1---~B 

6 in. 

A l 

8 kip 

Prob.16-56 
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1~57. The pipe assembly consists of three equal-sized 
pipes with flexibility stiffness El and torsional stiffness GI. 
Determine the vertical deflection at A. 

c 

Prob. 1~57 

1~58. The assembly consists of a cantilevered beam CB 
and a simply supported beam AB. Ir each beam is made of 
A-36 steel and has a moment of inertia about its principal axis 
of Ix = 118 in4

, determine the displacement at the center D 
of beam BA . 

Prob. 1~58 

16.4 METHOD OF SUPERPOSITION 757 

1~59. The relay switch consists of a thin metal strip or 
armature AB that is made of red brass C83400 and is 
anracted to the solenoid S by a magnetic field. Determine 
the smallest force F required to attract the armature at C in 
order that contact is made at the free end 8. Also, what 
should the distance a be for this to occur? The armature is 
fixed at A and has a moment of inertia of I= 0.18(1Cl12) 1114• 

~B 
2mm -I ~1 =-T 50mm 

• c---+-

s 
50mm 

A 

Prob. 1~59 

*16-60. Determine the moment M0 in terms of tJ1e load P 
and dimension a so that the deflection at the center of the 
shaft is zero. El is constant. 

Prob. 16-60 
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7 58 CHAPTER 16 DEFLECTION OF BEAMS AND SHAFTS 

P1 P2 

_j 
! ! 

* --B 

(a) 

16.5 STATICALLY INDETERMINATE 
BEAMS AND SHAFTS-METHOD 
OF SUPERPOSITION 

In this section we will illustrate a general method for determining the 
reactions on a statically indeterminate beam or shaft. Specifically, a 
member is statically indeterminate if the number of unknown reactions 
exceeds the available number of equilibrium equations. 

The additional support reactions on a beam (or shaft) that are not 
needed to keep it in stable equilibrium are called redundants, and the 
number of these redundants is referred to as the degree of indeterminacy. 
For example, consider the beam shown in Fig. 16- 23a. If its free-body 
diagram is drawn, Fig. 16-23b, there will be four unknown support 
reactions, and since three equilibrium equations are available for 
solution, the beam is classified as being "indeterminate to the first 
degree." Either Ay, By, or MA can be classified as the redundant, for if 
any one of these reactions is removed, the beam will still remain stable 
and in equilibrium (Ax cannot be classified as the redundant, for if it 
were removed, IF.r = 0 would not be satisfied.) In a similar manner, the 
continuous beam in Fig. 16-24a is "indeterminate to the second degree," 
since there are five unknown reactions and only three available 
equilibrium equations, Fig. 16-24b. Here any two redundant support 
reactions can be chosen among Ay, By, Cy, and Dy-

The reactions on a beam that is statically indeterminate must satisfy 
both the equations of equilibrium and the compatibility requirements at 
the supports. We will now illustrate how this is done using the method of 
superposition. 

p p 

I 
A 

(a) (b) 

Fig.16-23 

P3 P1 P2 P3 

! A, ! ! ! 
ID ~ l I 

i -- .. -- t t t c 
Ay By 

(b) 
Cy Dy 

Fig.16-24 
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16.5 STATICALLY INDETERMINATE BEAMS AND SHAFTS-METHOD OF SUPERPOSITlON 7 5 9 

To do this it is first necessary to identify the redundants and r,emove 
them from the beam. This will produce the primary beam, which will 
then be statically determinate and stable. Using superposition, we add to 
this beam a succession of similarly supported beams, each loaded only 
with a separate redundant. The redundants are determined from the 
conditions of compatibility that exist at each support where a redundant 
acts. Since the redundant forces are determined directly in this manner, 
this method of analysis is sometimes called the force method. 

To clarify these concepts, consider the beam shown in Fig. 16-25a. If we 
choose the reaction By at the roller as the redundant, then the primary 
beam is shown in Fig. 16-25b, and the beam with the redundant By acting 
on it is shown in Fig.16-25c. The displacement at the roller is to be zero, and 
since the displacement of Bon the primary beam is v8 , and By causes B to 
be displaced upward v8, we can write the compatibility equation at Bas 

(+ j) 

These displacements can be expressed in terms of the loads using the 
table in Appendix C. These load-displacement relations are 

and 

Substituting into the compatibility equation, we get 

5PL3 By {} 
0 = - 48£1 + 3£1 

B = 2-p 
y 16 

Now that By is known, the reactions at the wall are determined from 
the three equations of equilibrium applied to the free-body diagram of 
the beam, Fig. 16-25d. The results are 

11 
A = 0 A = - P 

x y 16 

3 
MA = 

16 
PL 

A 
I 

A 

~ 

A ' 
A, 

p 

i x 
L L I 2 2 

Actual beam 

(a) 

II 

p 

i 
Tvs 

L~ L IB 
2 2 

Redundant B
1

removed 

(b) 

+ B 5}· 
L B 

Only redundant 8
1 

applied Y 

(c) 

p 

L L -- ---- --· 2 2 5 
16 p (d) 

Fig.16-25 
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p 

i 
~ (a) A 

L_j L 
2 2 

Actual beam 

II 

p 

i 
(b) :Js:-- tt ~ 

I L I 2 2 
Redundant MA removed 

+ 
(c) 

C£sOA 
Only redundant MA applied 

Fig.16-26 

Actually, choice of a redundant is arbilrary, provided the primary beam 
remains stable. For example, the moment at A for the beam in Fig. 16-26a 
can also be chosen as the redundant. In this case the capacity of the beam 
to resist MA is removed, and so the primary beam is then pin supported 
at A , Fig. 16-26b. To it we add the beam subjected only to the redundant, 
Fig. 16-26c. Referring to the slope at A caused by the load P as 8 A , and the 
slope at A caused by the redundant MA as 8'.," the compatibility equation 
for the slope at A requires 

((+) 

Again using the table in Appendix C to relate these rotations to the 
loads, we have 

Thus, 

PL2 

8
A = 16El 

0 = PL
2 

+ MAL 
16EI 3EI 

3 
MA = -

16 
PL 

which is the same result determined previously. Here, however, the 
negative sign for MA simply means that MA acts in the opposite sense of 
direction to that shown in Fig. 16-26c. 
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P, P2 

* 
B 

* 
c 

(a) A _)t 

""" Actual beam 

II 

P, P2 

* 
B 

* 
c 

(b) A_> "= I I 
D 

VB lie 
Redundant B1 and C,removed 

+ 
s, 

Bt c D 
(c) A~ ' v8 * Only redundant B

1
applied 

+ 
Cy 

B ct D 
(d) A_).\; T 

vB ti,' c 

Only redundant C1 applied 

Fig. 16-27 

A final example that illustrates this method is shown in Fig. 16-27a. In 
this case the beam is indeterminate to the second degree, and therefore 
two redundant reactions must be removed from the beam. We will choose 
the forces at the ro lle r supports B and C as redundants. The primary 
(statically de terminate) beam deforms as shown in Fig. 16-27b, and each 
redundant force deforms the beam as shown in Figs. 16-27c and 16-27d. 
By superposition, the compatibility equations for the displacements at B 
and Care therefore 

(+ !) 

(+ !) 

0 = v8 + viJ + v[i 

Q = Ve + Ve + V
1c 

(16-16) 

Using the table in Appendix C, all these displacement components can 
be expressed in te rms of the known and unknown loads. Once this is 
done, the equations can then be solved simultaneously for the two 
unknowns By and c,,. 
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7 62 CHAPTER 16 DEFLECTION OF BEAMS AND SHAFTS 

PROCEDURE FOR ANALYSIS 

The following procedure provides a means for applying the method 
of superposition (or the force method) to determine the reactions 
on statically indeterminate !beams or shafts. 

Elastic Curve. 

• Specify the unknown redundant forces or moments that must 
be removed from the beam in order to make it statically 
determinate and stable. 

• Using the principle of superposition, draw the statically 
indeterminate beam and show it equal to a sequence of 
corresponding statically determinate beams. 

• The first of these beams, the primary beam, supports the same 
external loads as the statically indeterminate beam, and each 
of the other beams "added" to the primary beam shows the 
beam loaded with a separate redundant force or moment. 

• Sketch the deflection curve for each beam and indicate the 
displacement (slope) at the point of each redundant force 
(moment). 

Compatibility Equations. 

• Write a compatibility equation for the displacement (slope) at 
each point where there is a redundant force (moment). 

Load- Displacement Equations. 

• Relate all the displacements or slopes to the forces or moments 
using the formulas in Appendix C. 

• Substitute the results into the compatibility equations and 
solve for the unknown redundants. 

• If a numerical value for a redundant is positive, it has the same 
sense of direction as originally assumed. A negative numerical 
value indicates the redundant acts opposite to its assumed 
sense of direction. 

Equilibrium Equations. 

• Once the redundant forces and/or moments have been 
determined, the remaining unknown reactions can be found 
from the equations of equilibrium applied to the loadings 
shown on the beam's free-body diagram. 
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EXAMPLE 16.11 
- -

8 kip 
1==.s ft -:1. 2 kip/ft 
JB+ f + + + t+ ++ff+++ .------------=' B 

A 
1----lOft --~ 

(a) Actual beam 

II 

8 kip 
1==s ft -:1. 2 kip/ft 
rttfflf fTlf ffflft 

Tvs 
i----lOft IB 

(b) Redundant By removed 

+ 
B 

1 '°" 5~·· 
(c) Only redundant By applied Y 

. 8 kip 
18 kip J_ 2 kip/ft 

~! f ft+f f!ff fffff ~ 

4~ kip·ftl-s t1-l-s ft -t 
(d) 10 kip 

V(kip) (kip) 

18 t::~ =====1~8 =~ - . x (ft) 
5 - 10 

~ x(ft) 

Fig.16-28 

Determine the reactions at the roller support B of the beam shown in 
Fig. 16-28a, then draw the shear and moment diagrams. EI is constant. 

SOLUTION 

Principle of Superposition. By inspection, the beam is statically 
indeterminate to the first degree. The roller support at B will be chosen as 
the redundant so that By will be determined directly. Figures 16-28b and 
16-28c show application of the principle of superposition. Here we have 
assumed that By acts upward on the beam. 

Compatibility Equation. Taking positive displacement as downward, 
the compatibility equation at B is 

(+ !) 0 = V9 - Va (1) 

Load-Displacement Equations. These displacements are related to 
the loads using the table in Appendix C. 

wL4 5PL3 

Vs = 8EI + 48EI 

2 kip/ft(lO ft)4 5(8 kip)(lO ft)3 - 3333 kip. ft3 I 

- 8EI + 48EI - EI "' 

PL3 By (10 ft)3 333.3 ft3 By 
v8 = -3E-I = 3EI = EI f 

Substituting into Eq. 1 and solving yields 

3333 333.3By 
O = EI - EI 

By = 10 kip Ans. 

Equilibrium Equations. Using this result and applying the three 
equations of equilibrium, we obtain the results shown on the beam's 
free-body diagram in Fig. 16-28d. The shear and moment diagrams are 
shown in Fig. 16-28e. 
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I EXAMPLE 16.12 I 

cl 
8 ft 

8kip 1 
.! B 

~v" 
~Sft-l-sft -1 8 

Actual beam and rod 
(a) 

The beam in Fig. 16-29a is fixed supported to the wall at A and pin 
connected to a 1-in.-diameter rod BC. If E = 29(103

) ksi for both 
members, determine the force developed in the rod due to the loading. 
The moment of inertia of the beam about its neutral axis is I = 475 in4

. 

8 kip 

1. 
=~~lvs + 

Fsc 
B 

Redundant F BC removed 
(b) 

SOLUTION I 

B 

Fig.16-29 

A 

Only redundant F 8 c applied 
(c) 

Principle of Superposition. By inspection, this problem is 
indeterminate to the first degree. Here B will undergo an unknown 
displacement v8, since the rod will stretch. The rod will be treated as the 
redundant and hence the force of the rod is removed from the beam at B, 
Fig. 16- 29b, and then reapplied, Fig. 16-29c. 

Compatibility Equation. At point B we require 

(+!) v8 = vB-v8 (1) 

Load-Displacement Equations. The displacements vB and v8 are 
related to the loads using Appendix C. The displacement v'B is calculated 
from Eq. 9- 2. Working in kilopo!Ullds and inches, we have 

PL vB = -- = 
AE 

5pIJ 
VB =--= 

48£/ 

PL3 

Vs = 3£/ = 

Thus, Eq. 1 becomes 

FBc (8 ft)(12 in./ ft) = O.Ol686R ! 
(7T / 4) ( 1in.) 2 (29(103) kip /in2] BC 

5(8 kip)(lO ft)3 (12 in./ft)3 
_ . . 1 

~3 2 4 - 0.1045 m . .i. 
48(29(hr) kip/in ](475 in ) 

FBc (10 ft)3 (12 in./ft)3 

3(29(10)3 kip/in2](475 in4) = 0.0
4181

FBc i 

( + ! ) 0.01686FBc = 0.1045 - 0.04181FBc 

FBc = 1.78 kip Ans. 
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c 

Skip 

t 
;i:-~~~~ B 
~sr1-l-sr1-I 

Aclual beam and rod 

(d) 

SOLUTION II 

A 

Redundanl F sc removed 

(e) 

Fig.16-29 (cont.) 

Principle of Superposition. We can also solve this problem by 
removing the pin support at C and keeping the rod attached to the beam. 
In this case the 8-kip load will cause points B and C to be displaced 
downward the same amoulll Ve, Fig. 16-29e, since no force exists in 
rod BC. When the redundant force Fse is applied at point C, it causes the 
end C of the rod to be displaced upward Ve and the end B of the beam to 
be displaced upward vi,, Fig. 16-29[ The difference in these two 
displacements, v8 e, represents the stretch of the rod due to F8 e, so that 
v(: = v8 e + v8. Hence, from Figs. 16-29d, 16-29e, and 16-29/, the 
compatibility of displacement at point C is 

(+!) 0 = Ve - (v8 e + v8) 

From Solution I, we have 

Ve = v 8 = 0.1045 in. ! 
v8 e = vfJ = 0.01686F8 e i 
v8 = 0.04181F8 e i 

Therefore, Eq. 2 becomes 

( + ! ) 0 = 0.1045 - (O.Ol686F8 e + 0.04181F8 e) 

Fse = 1.78 kip 

(2) 

Ans. 

+ 

cVsc 

Fnc j tt-

B 

,_~===~~Jv;, 
A 

Only redundant F sc applied 

(r) 
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EXAMPLE 16.13 - -
Determine the moment at B for the beam shown in Fig. 16-30a. EI is 
constant. Neglect the effects of axial load. 

SOLUTION 

Principle of Superposition. Since the axial load on the beam is 
neglected, there will be a vertical force and moment at A and B. Here 
there are only two available equations of equilibrium (I.M = 0, lFy = 0), 
and so the problem is indeterminate to the second degree. We will assume 
that By and M s are redundant, so that by the principle of superposition, 
the beam is represented as a canti[ever,loadedseparately by the distributed 
load and reactions By and M s, Figs. 16-30b, 16-30c, and 16-30d. 

3 kip/ft 

tttI:~ttt 
(a) A B 

6ft-l-6ft --

Actual beam 

II 

3 kip/ft 

····~··· (b) A 

6 ft -1--6 ft ---Jl;s 
B Os 

Redundants M s and By removed 

+ B. 

~ 
(c) A ! vii 

12 ft s::r: 08 

Only redundant By applied 

+ 
Ms 

(d) A ~8 
12 ft B 08 

Only redundant M 8 applied 

Fig. 16-30 
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Compatibility Equations. Referring to the displacement and slope 
at B, we require 

((+) 

(+ !) 

0 = Os + 08 + 08 

0 = Vs + v8 + v'B 

(1) 

(2) 

Load-Displacement Equations. Using the table in Appendix C to 
relate the slopes and displacements to the loads, we have 

wrJ _ 3 kip/ft (12 ft)3 
= 108 kip · ft2 

, 

Os = 48EI 48EI EI "' 

7wL4 
_ 7(3 kip/ft)(12 ft)4 

= 1134 kip · ft3 ! 
384EI 384EI EI 

PL2 By(12 ft)2 72By 
Os = 2EI = 2EI = EI ) 

v ' = PL3 = By(12 ft)
3 

= 576By ! 
s 3EI 3EI EI 

,, _ ML _ Ms(12 ft) _ 12Ms, 
Os - EI - EI - EI "' 

v" = ML
2 

= Ms(12 ft)
2 

= 72Ms ! 
s 2EI 2EI EI 

Substituting these values into Eqs. 1 and 2 and canceling out the common 
factor EI, we get 

((+) 

(+ !) 

0 = 108 + 72By + 12Ms 

0 = 1134 + 576By + 72Ms 

Solving these equations simultaneously gives 

By = - 3.375 kip 

Ms = 11.25 kip · ft Ans. 

NOTE: The reactions at A can now be determined from the equilibrium 
equations. 
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FUNDAMENTAL PROBLEMS 

r 16- Determine the reactions at the fixed support A and 
the roller B. El is constant. 

40kN 

1----4 m----1---

Prob.Fl6-7 

J.'16-8. Determine the reactions at the fixed support A 
and the roller B. El is constant. 

1------~L-------i 

Prob.F16-8 

_ 16- Determine the reactions at the fixed support A 
and the roller 8. Support B settles 2 mm. E = 200 GPa, 
I = 65.0( 10-<>) m4

• 

lOkN/m 

B 

1-------6 m - - -----1 

t>rob. I' 16-'J 

:0-16-10. Determine the reaction at the roller B. El is 
constant. 

(r_Mo 
A rgt:•:·~---------------j8;~~,;,~~:::::::::~;fi\i•~C~ 

1----L-- - ->----L----1 

Prob. F16-10 

F16-ll. Determine the reaction at the roller 8. El is 
constant. 

50kN 

A • c 

Prob.Fl6-11 

:: 1<>-12. Determine the reaction at the roller support B if 
it settles 5 mm. E = 200 GPa and I = 65.0(10-6) m4

. 

lOkN/m ,! 11 l I l l l r l l l l l l l I 
- B 5 Jc 
~6m 6m---i 

Prob. F16-12 
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PROBLEMS 

16-6L Determine the reactions at the journal bearing 
supports A , B, and C of the shaft. then draw the shear and 
moment diagrams. £/ is constant. 

A 

" _1 '1 _ 

8 -
_ 11_ 

c -
~ 

_11 _ 

l- 1111-- l m-l-1111--lm- I 
' 

400N 400N 

Prob. 16-61 

16-62. Determine the reactions at the supports. then draw 
the shear and moment diagrams. £/ is constant. 

w 

AA l l l l l !£1} l l l f1 
I L I L I 

Prob. 16-62 

16-63. Determine the reactions at the supports. then 
draw the shear and moment diagrams. £ / is constant. 

w 

i-----L----1~---L~--~ 

Prob. 16-63 

*16-64. Determine the reactions at the supports A and B. 
£1 is constant. 

A 

1~------L--------1 

Prob. 16-64 
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16-65. The beam is used to support the 20-kip load. 
Determine the reactions at the supports. Assume A is fixed 
and B is a roller. 

OJG j li--8ft - i-4ft 

Prob. 16-65 

16-66. Determine the reactions a t the supports A and B. 
El is constant. 

A I=========================~ 
B 

i--------L-------~ 

Prob. 16-66 

16-67. Determine the reactions at the supports A and B. 
EI is constant. 

IV 

B • A 

I L L I 
' 2 2 

Prob. 16-67 

*16-68. Before the uniform distributed load is applied to 
the beam, there is a small gap of 0.2 mm between the beam 
and the post at B. Determine the support reactions at A, B, 
and C. The post at B has a diameter of 40 mm, and the 
moment of inertia of the beam is I = 875(1a6) mm4

• The 
post and the beam are made of material having a modulus 
of elasticity of E = 200 GPa. 

30 kN/m 

1---6 111------6 m--- 1 

Prob. 16-68 

16-69. The fixed supported beam AB is strengthened 
using the simply supported beam CD and the roller at F 
which is set in place just before application of the load P. 
Determine the reactions at the supports if El is constant. 

p 

A B 

• 

I 
C I F ,f'Y. D 

-- ~ -l--; - 1-; - 1- ~ --
Prob. 16-69 
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16.5 STATICALLY INDETERMINATE BEAMS AND SHAFTS--M ETHOD OF SUPERPOSITION 77 1 

16-70. The beam has a constant £ 1/ 1 and is supported by the 
fixed wall at Band the rod AC. lf the rod has a cross-sectional 
area A2 and the material has a modulus of elasticity f;, 
determine the force in the rod. 

.. .,. 

I 
ill c 

L 2 w 

l I o 
A B 

1--------L1 -------

Prob. 16-70 

16-71. The beam is supported by the bolted supports at its 
ends. When loaded these supports initially do not provide 
an actual fixed connection. but instead allow a slight 
rotation a before becoming fixed after the load is fully 
applied. Determine the moment at the support and the 
maximum deOection of the beam. 

p 

• • -
UJ LI 
~ -I 

L L 
2 2 

Prob. 16-71 

*16-72. Each of the two members is made from 6061-T6 
aluminum and has a square cross section 1 in. x 1 in. They 
are pin connected at their ends and a jack is placed between 
them and opened until the force it exerts on each member is 
50 lb. D etermine the greatest force P that can be applied to 
the center of the top member without causing either of the 
two members to yield. For the analysis neglect the axial 
force in each member. Assume the jack is rigid . 

p 

A~~==========~;;;;m·;=====::m11c:==:==~B 
£ 

C,liji::~==========F===-=~=9!!!--!1!::====::mD 
,t+----6 r1 --------6 rt ----t1 

Prob. 16-72 

16-73. The beam is made from a soft linear elastic material 
having a constant £/. If it is originally a distance 6. from the 
surface of its end support, determine the length a that rests 
on this support when it is subjected to the uniform load w0• 

which is great enough to cause this to happen. 

T 
t;. 

I 

- a-
L 

Prob. 16-73 
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CHAPTER REVIEW 

The elastic curve represents the centerline 
deflection of a beam or shaft. Its shape can be 
determined using the moment diagram. Positive 
moments cause the elastic curve to be concave 
upwards and negative moments cause it to be 
concave downwards. The radius of curvature at 
any point is determined from 

1 M 
p El 

The equation of the elastic curve and its slope 
can be obtained by first finding the internal 
moment in the member as a function of x. If 
several loadings act on the member, then 
separate moment functions must be determined 
between each of the loadings. Integrating these 
functions once using El(d2v/dx2) = M(x) 
gives the equation for the slope of the elastic 
curve, and integrating again gives the equation 
for the deflection. The constants of integration 
are determined from the boundary conditions 
at the supports, or in cases where several 
moment functions are involved, continuity of 
slope and deflection at points where these 
functions join must be satisfied. 

Discontinuity functions allow one to express the 
equation of the elastic curve as a continuous 
function, regardless of the number of loadings 
on the member. This method eliminates the 
need to use continuity conditions, since the two 
constants of integration can be determined solely 
from the two boundary conditions. 

Ml ~ 
'"~=-----,--..--__,~-M-o_n_1-en_t_d_i-ag_r_a~m~-- x 

~-~'~)--- =-=--f\ 
\ Inflection point 

Elastic curve 

O=O 
~=O 

Boundary conditions 

p 

i 
-
~XJ -j Xi +----1 

dv1 dv2 

dx = dx 

Continuity conditions 

~• 
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The deflection or slope at a point on a member 
subjected to combinations of loadings can be 
determined using the method of superposition. 
The table in Appendix D is available for this 
purpose. 

Statically indeterminate beams and shafts 
have more unknown support reactions than 
available equations of equilibrium. To solve, 
one first identifies the redundant reactions. 
The method of integration can then be used to 
solve for the unknown redundants. It is also 
possible to determine the redundants by using 
the method of superposition, where one 
considers the conditions of continuity at 
the redundant. Here the displacement due 
to the external loading is determined with the 
redundant removed, and again with 
the redundant applied and the external 
loading removed. The tables in Appendix D 
can be used to determine these necessary 
displacements. 

CHAPTER REVIEW 773 

;i B 
::;;> 

2kN/m SkN 

A 1L* &t I I I I ~ 
) 

9A Ve C 

1---4 m---1---4 m--- 1 

II 

2kN/m 

+ 
8kN 

i 
A l= a =::J B 

.._ = ) I C i_ 

I 
(1JA)2 (vd2 I 

---4 m---·1---4 m---

p 

I i 
A ~ 

I L I L I 1-----1 ~2----1, 
2 

Actual beam 

II 

p 

i 
A ~IL'~§~c;f~.~~~~;;:::-=~.I B 

L VA I L I 
1----~ -·---i, 

2 2 
Redundant MA removed 

+ MA 

A~~~~~;;;;;;:::::::::;;;;,~I B ~ :::be;. 
Only redundant MA applied 
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77 4 CHAPTER 16 DEFLECTION OF BEAMS AND SHAFTS 

REVIEW PROBLEMS 

R16-L Determine the equation of the elastic curve. Use 
discontinuity functions El is constant. 

180lb 

Prob. Rl6-1 

R16-2. Draw the bending-moment diagram for the shaft 
and then, from this diagram, sketch the deflection or elastic 
curve for the shaft's centerline. Determine the equations of 
the elastic curve using the coordinates x1 and x2. Use the 
method of integration. El is constant. 

A 

80lb 

t 
4 in. 

Prob. Rl6-2 

B 

R16-3. Determine the moment reactions at the supports 
A and B. Use the method of integration. El is constant. 

IVo , ___ 
-,__ 

t ! ! + • y .. 

A B 

L 

Prob. Rl6-3 

*R16-4. Determine the equations of the elastic curve for 
the beam using the x1 and -12 coordinates. Specify the slope 
at A and the maximum deflection. Use the method of 
integration. El is constant. 

IV 

Prob. R16-4 

Rl6-5. Determine the maximum deflection between the 
supports A and B. Use the method of integration. El is 
constant. 

IV 

Prob. Rl6-5 
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R16-<i. lf the cantilever beam has a constant thickness t, 
determine the deflection at end A. The beam is made of 
material having a modulus of elasticity £. 

L 

wJ 

-I 
ho 

J_ 
B 

Prob. Rl6-<i 

R16-7. The framework consists of two A-36 steel 
cantilevered beams CD and BA and a simply supported 
beam CB. If each beam is made of steel and has a moment 
of inertia about its principal axis of Ix = 118 in4, determine 
the deflection at the center G of beam CB. Use the method 
of superposition. 

A 
15 kip 

Prob. R16-7 

REVIEW PROBLEMS 775 

*R16-8. Using the method of superposition, determine 
the magnitude of M0 in terms of the distributed load wand 
dimension a so that the deflection at the center of the beam 
is zero. £1 is constant. 

!11111[ Mo( I :J) Mo 

~a a a 

Prob. RI6-8 

R16-9. Using the method of superposition, determine the 
deflection at C of beam AB. The beams are made of wood 
having a modulus of elasticity of£ = 1.5( 103) ksi. 

100 lb/ft a 

D £ 

1-4 f~-1-4 ft-
~6ft---6ft-

a 

Section a -a 

Prob. R16-9 
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CHAPTER 17 

{©James Roman/Getty Images) 

The columns of this water tank are braced at points along their length in order to 
reduce their chance of buckling. 
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BUCKLING OF 
COLUMNS 

CHAPTER OBJECTIVES 

• To develop methods to calculate the critical loads causing columns 
to buckle in the elastic region of the stress-strain curve. 

• To consider the effect of different supports on the critical load 

for buckling. 

17.1 CRITICAL LOAD 
Not only must a member satisfy specific strength and deflection 
requirements but it must also be stable. Stability is particularly important if 
the member is long and slender, and it supports a compressive loading that 
becomes large enough to cause the member to suddenly deflect laterally or 
sidesway. These members are called columns, and the lateral deflection that 
occurs is called buckling. Quite often the buckling of a column can [ead to 
a sudden and dramatic failure of a structure or mechanism, and as a result, 
special attention must be given to the design of columns so that they can 
safely support their intended loadings without buckling. 

777 
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77 8 CHAPTER 17 BUCKLING OF COLUMNS 

t 
P er 

(a) (b) 

Fig.17-1 

The maximum axial load that a column can support when it is on the 
verge of buckling is called the critical load, Per. Fig. 17- la. Any additional 
loading will cause the column to buckle and therefore deflect laterally as 
shown in Fig. 17- lb. 

We can study the nature of this instability by considering the two-bar 
mechanism consisting of weightless rigid bars that are pin connected as 
shown in Fig. 17- 2a. When the bars are in the vertical position, the spring, 
having a stiffness k, is unstretched, and a small vertical force P is applied 
at the top of one of the bars. To upset this equilibrium position the pin at 
A is displaced by a small amount ~.Fig.17-2b.As shown on the free-body 
diagram of the pin, Fig. 17- 2c, the spring will produce a restoring force 
F = kt. in order to resist the two horizontal components, Px = P tan 6, 
which tend to push the pin (and the bars) further out of equilibrium. Since 6 
is small, ~ "" 6(L/2) and tan 6 "" 6. Thus the restoring spring force 
becomes F = k6(L/2), and the disturbing force is 2Px = 2P6. 

If the restoring force is greater than the disturbing force, that is, 
k6L/2 > 2P6, then, noticing that 6 cancels out, we can solve for P, 
which gives 

p < kL 
4 

stable equilibrium 

This is a condition for stable equilibrium, since the force developed by 
the spring would be adequate to restore the bars back to their vertical 
position. However, if k6(L/2) < 2P6, or 

p > kL 
4 

unstable equilibrium 

then the bars will be in unstable equilibrium. In other words, if this load 
is applied, and a slight displacement occurs at A , the bars will tend to 
move out of equilibrium and not be restored to their original position. 
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p 

J 
~l 

L L 

2 2 PtanlJ 

L 
.l = 9(- ) k 2 t.41..\l.'!i.-

A .....(, l t." (, \'t , 

F L 9 L 

2 r 2 

r _J o: ;· _,., 
Plan 9 

(a) (b) (c) 

Fig. 17-2 

The intermediate value of P, which requires kL8/2 = 2P8, 1s the 
critical load. Here 

p = kL 
er 4 neutral equilibrium 

This loading represents a case of the bars being in neutral equilibrium. 
Since Pa is indepe11de111 of the (small) displacement 8 of the bars, any 
slight disturbance given to the mechanism will not cause it to move 
further out of equilibrium, nor will it be restored to its original position. 
Instead, the bars will simply remain in the deflected position. 

These three different states of equilibrium are represented graphically 
in Fig. 17-3. The transition point where the load is equal to its critical 
value P = Per is called the bifurcation point. H ere the bars will be in 
neutral equilibrium for any small value of 8. If a larger load Pis placed on 
the bars, then they will undergo a larger deflection, so that the spring is 
compressed or e longated enough to hold them in equilibrium. 

In a similar manner, if the load on an actual column exceeds its critical 
loading, then this loading will a lso require the column to undergo a large 
deflection; however, this is generally not tolerated in engineering 
structures or machines. 

17. 1 CRITICAL LOAD 7 7 9 

p 

I 

Unstable : l 
: 

equilibrium l 
-r'-1'

Neutral -.-/ 
equilibrium 

Stable 
equil ibrium 

0 

Bifurcation point 

Fig. 17-3 
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7 80 CHAPTER 17 BUCKLING OF COLUMNS 

The dramatic failure of this off-shore oil 
platform was caused by the horizontal 
forces of hurricane winds, which led to 
buckling of its supporting columns. 

17.2 IDEAL COLUMN WITH PIN 
SUPPORTS 

In this section we will determine the critical buckling load for a column 
that is pin supported as shown in Fig. 17-4a. The column to be considered 
is an ideal column, meaning it is made of homogeneous linear elastic 
material and it is perfectly straight before loading. Here the load is applied 
through the centroid of the cross section. 

One would think that because the column is straight, theoretically the 
axial load P could be increased until failure occurred either by fracture 
or yielding of the material. However, as we have discussed, when the 
critical load Per is reached, the column will be on the verge of becoming 
unstable, so that a small lateral force F, Fig. 17-4b, will cause the column 
to remain in the deflected position when Fis removed, Fig. 17-4c. Any 
slight reduction in the axial load P from Per will allow the column to 
straighten out, and any slight increase in P, beyond Per. will cause a 
further increase in this deflection. 

The tendency of a column to remain stable or become unstable when 
subjected to an axial load actually depends upon its ability to resist 
bending. Hence, in order to determine the critical load and the buckled 
shape of the column, we will apply Eq. 16-10, which relates the internal 
moment in the column to its deflected shape, i.e., 

(a) 

d2v 
EI-= M 

dx2 

L F 

(b) 

Fig.17-4 

(17- 1) 

(c) 
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17 .2 IDEAL COLUMN WITH PIN SUPPORTS 7 81 

A free-body diagram of a segment of the column in the deflected position 
is shown in Fig. 17- Sa. Here both the displacement v and the internal 
moment Mare shown in the positive direction. Since moment equilibrium 
requires M = -Pv, then Eq. 17- 1 becomes 

Eld2v = 

dx2 
-Pv 

d2v + ( p )v = 0 
dx2 EI 

(17- 2) 

This is a homogeneous, second-order, linear differential equation with 
constant coefficients. It can be shown by using the methods of differential 
equations, or by direct substitution into Eq.17- 2, that the general solution is 

(17- 3) 

The two constants of integration can be determined from the boundary 
conditions at the ends of the column. Since v = 0 at x = 0, then C2 = 0. 
And since v = 0 at x = L , then 

This equation is satisfied if C1 = O; however, then v = 0, which is a trivial 
solution that requires the column to always remain straight, even though 
the load may cause the column to become unstable. The other possibility 
reqmres 

which is satisfied if 

JfIL = n1T 

or 

n2
1T

2EI 
P = L2 n = 1, 2, 3, ... (17-4) 

p p 

! --· ~~-'ri----V 

x ( 
L - }YM 

v p 

p 

I 
x 

(a) 

Fi.g.17-5 
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., ' 
• 

--
· . 

These timber columns can be considered 
pinned at their bottom and fixed connected 
to the beams at their top. 

The smallest value of P is obtained when n = 1, so the critical load for 
the column is therefore* 

ri1EI 
L2 

This load is sometimes referred to as the Euler load , named after the 
Swiss mathematician Leonhard Euler, who originally solved this problem 
in 1757. From Eq. 17- 3, the corresponding buckled shape, shown in 
Fig. 17- 5b, is therefore 

'TTX 
v = C1sinL 

The constant C1 represents the maximum deflection, Vmax• which occurs 
at the midpoint of the column, Fig. 17- 5b. Unfortunately, a specific value 
for C1 cannot be obtained once it has buckled. It is assumed, however, that 
this deflection is small . 

As noted above, the critical load depends on the material's stiffness or 
modulus of elasticity E and not its yield stress. Therefore, a column made 
of high-strength steel offers no advantage over one made of 
lower-strength steel, since the modulus of elasticity for both materials is 
the same. Also note that Per will increase as the moment of inertia of the 
cross section increases. Thus, efficient columns are designed so that most 
of the column's cross-sectional area is located as far away as possible 
from the center of the section. This is why hollow sections such as tubes 
are more economical than solid sections. Furthermore, wide-flange 
sections, and columns that aire "built up" from channels, angles, plates, 
etc., are better than sections that are solid and rectangular. 

(b) 

Fig. 17-5 (cont.) 

*n represents the number of curves in the deflected shape of the column. For example, 
if n = 1, then one curve appears as in Fig. 17- Sb; if n = 2, then two curves appear as in 
Fig. 17- Sa, etc. 
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Since P er is directly related to I , a column will buckle about the 
principal axis of the cross section having the least moment of inertia (the 
weakest axis), provided it is supported the same way about each axis. For 
example, a column having a rectangular cross section, like a meter stick, 
Fig. 17-6, will buckle about the a-a axis, not the b-b axis. Because of this, 
engineers usually try to achieve a balance, keeping the moments of 
inertia the same in all directions. Geometrically, then, circular tubes 
make excellent columns. Square tubes or those shapes having Ix = ly are 
also often selected for columns. 

To summarize, the buckling equation for a pin-supported long slender 
column is 

-rr1EJ 
(17-5) 

where 

P er = critical or maximum axial load on the column just before it 
begins to buckle. This load must not cause the stress in the 
column to exceed the proportional limit. 

E = modulus of elasticity for the material 
I = least moment of inertia for the column's cross-sectional area 
L = unsupported length of the column, whose ends are pinned 

For design purposes, the above equation can also be written in terms of 
stress, by using I = Ar2, where A is the cross-sectional area and r is the 
radius of gyration of the cross-sectional area. We have, 

or 

p 

a b 

b a 

Fig. 17~ 

Failure of 1his crane boom was caused by 
( 17-6) the localized buckling of one of its tubular 

struis. 

Here 

a er = critical stress, which is an average normal stress in the column 
just before the column buckles. It is required that acr < <Ty. 

E = modulus of elasticity for the material 
L = unsupported length of the column, whose ends are pinned 
r = smallest radius of gyration of the column, determined from 

r = VljA, where I is the least moment of inert ia of the column's 
cross-sectional area A 

The geometric ratio L/ r in Eq. 17-6 is known as the slenderness ratio. It 
is a measure of the column's flexibility, and as we will discuss later, it 
serves to classify columns as long, intermediate, or short. 
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I 
40 I 

I 
36 1-------~ 

I 
I 
I 30 

27 1-----~ 

20 

10 

Structural 

A graph of this equation for columns made of structural steel and an 
aluminum alloy is shown in Fig. 17- 7. The curves are hyperbolic and are 
valid only for critical stresses that are below the material's yield point 
(proportional limit). Notice that for the steel the yield stress is 
(ay),1 = 36 ksi (E,1 = 29(1G3) ksi] , and for the aluminum it is 
(ay)31 = 27 ksi (E.1 = 10(103) ksi]. If we substitute acr = ay into 
Eq. 17-6, the smallest allowable slenderness ratios for the steel and 
aluminum columns then become (L/r),1 = 89 and (L/r).1 = 60.5, 
Fig. 17- 7. Thus, for a steel column, if (L/r),1 < 89, the column's stress will 
exceed the yield point before buckling can occur, and so the Euler 
formula cannot be used. 

,,,,,-- Aluminum 

/ alloy 

(uy = 27 ksi) 

L 
o ~--~-+---+-~---~----+-----

50 100 150 200 r 

60.5 89 

Fig.17-7 

IMPORTANT POINTS 

• Columns are Jong slender members that are subjected to axial 
compressive loads. 

• The critical load is the maximum axial load that a column can 
support when it is on the verge of buckling. This loading 
represents a case of neutral equilibrium. 

• An ideal column is initially perfect ly straight, made of 
homogeneous material, and the load is applied through the 
centroid of its cross section. 

• A pin-connected column will buckle about the principal axis of 
the cross section having the least moment of inertia. 

• The slenderness ratio is L/r, where r is the smallest radius of 
gyration of the cross section. Buckling will occur about the axis 
where this ratio gives the greatest value. 
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EXAMPLE 17 .1 
- -

The A992 steel W8 x 31 member shown in Fig. 17-8 is to be used as a 
pin-connected column. Determine the largest axial load it can support 
before it either begins to buckle or the steel yields. Take ay = 50 ksi. 

12 ft 
x 

Fig.17- 8 

SOLUTION 
From the table in Appendix B, the column's cross-sectional area and 
moments of inertia are A = 9.13 in2

, I, = 110 in4
, and 1,. = 37.1 in4

. By 
inspection, buckling will occur about the y- y axis. Why? Applying 
Eq.17- 5, we have 

1T2 EI 7r
2[29(HP) kip /in2)(37.1 in4

) . 
P. = -- = = 512 kip 

er L2 (12 ft(12 in./ft))2 

When this load is applied, the average compressive stress in the column is 

Per 512 kip 
a. = - = = 56.1 ksi 

er A 9.13 in2 

Since this stress exceeds the yield stress (50 ksi), the load Pis determined 
from simple compression. 

p 
50ksi = ---

9.13 in2 

p = 456 kip Ans. 

In actual practice, a factor of safety would be placed on this loading. 
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x p x 

8i 
----+--+-- V 

L 

(a) (b) 

Fig.17-9 

The tubular columns used to support this water 
tank have been braced at three locations along 
their length to prevent them from buckling. 

17.3 COLUMNS HAVING VARIOUS 
TYPES OF SUPPORTS 

The Euler load in Sec. 17.2 was derived for a column that is pin connected 
or free to rotate at its ends. Oftentimes, however, columns may be supported 
in other ways. For example, consider the case of a column fixed at its base 
and free at the top,Fig.17- 9a.As the column buckles, the load will sidesway 
and be displaced 5, while at x the displacement is v. From the free-body 
diagram in Fig. 17- 9b, the internal moment at the arbitrary section is 
M = P(5 - v), and so the differential equation for the deflection curve is 

d2v 
EI-= P(5 - v) 

dx2 

d2v P P - + - v = - 5 
dx2 EI EI 

(17- 7) 

Unlike Eq. 17- 2, this equation is nonhomogeneous because of the 
nonzero term on the right side. The solution consists of both a 
complementary and a particular solution, namely, 

v = C1 sin( .Jfix) + C2 cos( .Jfix) + 5 

The constants are determined from the boundary conditions. At x = 0, 
v = 0, and so C2 = -5. Also, 

and at x = 0, dv / dx = 0, then C1 = 0. The deflection curve is therefore 

v = 5[ 1 - cos( .Jfix)] (17-8) 

Finally, at the top of the column x = L, v = 5 , so that 

5 cos( .JfIL) = 0 

The trivial solution 5 = 0 indicates that no buckling occurs, regardless 
of the load P. Instead, 

or 
{P nTT '\fEiL = 2 ,n = 1, 3,5 ... 

The smallest critical load occurs when n = 1, so that 

,,Tl EI 
P. = -~ 

er 4L2 (17- 9) 

By comparison with Eq. 17- 5, it is seen that a column fixed supported 
at its base and free at its top will support only one-fourth the critical load 
that can be applied to a column pin supported at both ends. 
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Other types of supported columns are analyzed in much the same way 
and will not be covered in detail here.* Instead, we will tabulate the 
results for the most common types of column support and show bow to 
apply these results by writing Euler's formula in a general form. 

Effective Leng To use Euler's formula, Eq. 17- 5, for columns 
having different types of supports, we will modify the column length L to 
represent the distance between the points of zero moment on the column. 
This distance is called the column's effective length, L, . Obviously, for a 
pin-ended column L, = L, Fig. 17-lOa. For the fixed-end and free-ended 
column, the deflection curve is defined by Eq. 17-8. When plotted, its 
shape is equivalent to a pin-ended column having a length of 2L, 
Fig. 17-lOb, and so the effective length between the points of zero 
moment is L, = 2L. Examples for two other columns with different end 
supports are also shown in Fig. 17-10. The column fixed at its ends, 
Fig. 17-lOc, has inflection points or points of zero moment L/4 from 
each support. The effective length is therefore defined by the middle half 
of its length, that is, L, = 0.5L. Finally, the pin- and fixed-ended column, 
Fig. 17-lOd, has an inflection point at approximately 0.7 L from its pinned 
end, so that L, = 0.7 L. 

Rather than specifying the column's effective length, many design 
codes provide column formulas that employ a dimensionless coefficient 
K called the eff ective-length factor. This factor is defined from 

L =KL e (17-10) 

Specific values of Kare also given in Fig. 17-10. Based on this generality, 
we can therefore write Euler's formula as 

or 

, 
p = TrEI 

er (KL)2 

.,,2£ 
u. = 

er (KL/r)2 

Here (KL/r) is the column's eff ective-slenderness ratio. 

•See Problems 17-43.17-44.and 17-45. 

(17-11) 

(17-12) 

p 

+ 

L - L, 

Pinned ends 

IK- 11 
(a) 

L 

Fixed ends 

IK - o.sl 
(c) 

L 

I t L,= 2L 
I t 
I I 
I t 
I I 

' ' t I 
I I 

' ' ' ' ' ' ' ' I t 

' ' ' ' ' ' ' ' ' ' ' ' I I 
I I 

' ' \ \ 
I \ 
\ \ 

\ \ 
,) 

Fixed and free ends 

IK=21 
(b) 

Pinned and fixed ends 

IK =0.71 
(d) 

Fig. 17- 10 
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I EXAMPLE 17 .2 

z 

I 
p 

Sm 

(a) 

Fig.17-11 

I 
I 
I 
I 
I 

' I 
I 

' ' ' ' ' I 
I 
I 
I 
I 
I 
I 
I 
I 

x-x axis buckling 

(b) 

The aluminum column in Fig. 17- lla is braced at its top by cables so as 
to prevent movement at the top along the x axis. If it is assumed to 
be fixed at its base, determine the largest allowable load P that can be 
applied. Use a factor of safety for buckling of F.S. = 3.0. Take 
Ea1 = 70 GPa, uy = 215 MPa, A = 7.5(10- 3) m2, J., = 61.3(10-6) m4

, 

ly = 23.2(10-6) m4
. 

SOLUTION 
Buckling about the x and y axes is shown in Figs. 17- llb and 17- llc. Using 
Fig.17- lOa, for x- x axis buckling, K = 2, so (KL)x = 2(5 m) = 10 m. 
For y- y axis buckling, K = 0.7,so (KL),. = 0.7(5 m) = 3.5 m. 

Applying Eq. 17- 11, the critical loads for each case are 

1T2EJ., ?T
2[70(109) N/m2](61.3(10-6) m4

) 

(Per)x = (KL)i = (10 m)2 

= 424kN 

TT
2EI,. ?T2[70(109) N/m2](23.2(10-6) m4) 

(Per)y = (KL)~ - (3.5 m)2 

= 1.31 MN 

By comparison, as P is increased the column will buckle about the 
x- x axis. The allowable load is therefore 

Per 424 kN 
P. - 141 kN 

allow = F.S. = 3.0 Ans. 

Since 

Per 424 kN 
CTer = A = 

7
.
5

(
10

_3) m2 = 56.5 MPa < 215 MPa 

Euler's equation is valid. 

L, = 3.5 m 

y-y axis buckling 

(c) 
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17 .3 COLUMNS HAVING VARIOUS TYPES OF SUPPORTS 7 8 9 

EXAMPLE 17.3 
- -

A W6 x 15 steel column is 24 ft Jong and is fixed at its ends as shown in 
Fig. 17- 12a. Its load-carrying capacity is increased by bracing it about the 
y- y (weak) axis using struts that are assumed to be pin connected at its 
midheight. Determine the load the column can support so that it does not 
buckle nor the material exceed the yield stress. Take E51 = 29(103) ksi and 
<Ty = 60 ksi. 

SOLUTION 
The buckling behavior of the column will be different about the x- x and 
y- y axes due to the bracing. The buckled shape for each of these cases is 
shown in Figs.17- 12b and 17- 12c. From Fig.17- 12b, the effective length for 
buckling about the x-x axis is (KL)x = 0.5(24 ft) = 12 ft = 144 in., and 
from Fig. 17- 12c, for buckling about the y- y axis (KL)y = 

0.7(24 ft/2) = 8.40 ft = 100.8 in. The moments of inertia for a W6 x 15 
are found from the table in Appendix B. We have I, = 29.1 in4

, 

1,. = 9.32 in4
. 

Applying Eq.17- 11, 

-ri1-EI, 
-

(KL)i 

-rr2-(29(103
) ksi]29.l in4 

(144 in.)2 - 401.7 kip (1) 

-ri1-Ely 
-

(KL); 

-rr2-[29(103) ksi]9.32 in4 _ 

( 
2 = 262.5 ktp 

100.8 in.) 
(2) 

By comparison, buckling will occur about the y- y axis. 
The area of the cross section is 4.43 in2, so the average compressive 

stress in the column is 

Per 262.5 kip . 
CT = - = = 59.3 kSI 

er A 4.43 in2 

Since this stress is Jess than the yield stress, buckling will occur before the 
material yields. Thus, 

Per = 263 kip Ans. 

p 
x 

1 
12 ft 

J 
x-x axis buckling 

(b) 

8.40 ft 

y- y axis buckling 

(c) 

Fig.17- 12 
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FUNDAMENTAL PROBLEMS 

F17-1. A 50-in.-long steel rod has a diameter of 1 in. 
Determine the critical buckling load if the ends are fixed 
supported. E = 29(103) ksi, uy = 36 ksi. 

F17-2. A 12-ft wooden rectangular column has the 
dimensions shown. Determine the critical load if the ends 
are assumed to be pin connected. E = 1.6(103) ksi. Yielding 
does not occur. 

"I!!! '" 

111 

·tD '" 
12 ft 

1-1 
2in. 11 

J 

Prob. F17-2 

F17-3. The A992 steel column can be considered pinned 
at its top and bottom and braced against its weak axis at the 
mid-height. Determine the maximum allowable force P that 
the column can support without buckling. Apply a F.S. = 2 
againstbuckling.TakeA = 7.4(10-3) m2, Ix = 87.3(10-{;) m4, 

and ly = 18.8(10-{j) m4
• 

p 

y x 

Prob. F17-3 

F17-4. A steel pipe is fixed supported at its ends. If it is 
5 m long and has an outer diameter of 50 mm and a thickness 
of 10 mm, determine the maximum axial load P that it can 
carry without buckling. E .. = 200 GPa, uy = 250 MPa. 

F17-S. Determine the maximum force P that can be 
supported by the assembly without causing member AC to 
buckle. The member is made of A992 steel and has a 
diameter of 2 in. Take F.S. = 2 against buckling. 

B 

3 ft 

l 
·------ 4 ft ------i 

p 

Prob. F17-S 

F17-6. The A992 steel rod BC has a diameter of 50 mm 
and is used as a strut to support the beam. Determine the 
maximum intensity w of the uniform distributed load that 
can be applied to the beam without causing the strut to 
buckle. Take F.S. = 2 against buckling. 

! ! ! l l l l ! ! ! ! l l l l ! 
I Co= 

I 

T"~B -
"T 6m-----....... 

A 

I. c 
~ I 

Prob.Fl7-6 
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PROBLEMS 

17-1. Determine the critical buckling load for the column. 
The material can be assumed rigid. 

p 

k 

Prob. 17- 1 

17- 2. The column consists of a rigid member that is pinned 
at its bottom and attached to a spring at its top. Uthe spring 
is unstretched when the column is in the vertical position, 
determine the critical load that can be placed on the column. 

p 

8 
k 

I 
L 

1 oA 

Prob. 17- 2 

17-3. The aircraft link is made from an A992 steel rod. 
Determine the smallest diameter of the rod, to the nearest 

1
1
6 in., that will support the load of 4 kip without buckling. 

The ends are pin connected. 

4 kip EJ[);~ ;;;;;;;;iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiilG 4 kip 

l- ---ISin.-----1 

Prob. 17-3 

*17-4. Rigid bars AB and BC are pin connected at B. U 
the spring at D has a stiffness k , determine the critical load 
Pa: that can be applied to the bars. 

p 

I 
A 

a 

i- 0 8 

a 

i- k 

D 

a 

L c 

Prob. 17-4 
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792 CHAPTER 17 BUCKLING OF COLUMNS 

17-5. A 2014-T6 aluminum alloy column has a length of 
6 m and is fixed at one end and pinned at the other. If the 
cross-sectional area has the dimensions shown, determine 
the critical load. uy = 250 MPa. 

17-6. Solve Prob. 17-5 if the column is pinned at its top 
and bottom. 

~----_-_300_n_m_1_-_-_ -__,--i_l
10 

mm 

I 
200mm lOmm 

l 
1

1omm 

Probs. 17-5/6 

17-7. The W12 x 50 is made of A992 steel and is used as 
a column that has a length of 20 ft. If its ends are assumed 
pin supported, and it is subjected to an axial load of 150 kip, 
determine the factor of safety with respect to buckling. 

*17-8. The W12 x 50 is made of A992 steel and is used as 
a column that has a length of20 ft. If the ends of the column 
are fixed supported, can the column support the critical 
load without yielding? 

20 ft 

p 

Probs. 17-7/8 

17-9. A steel column has a length of9 m and is fixed at both 
ends. If the cross-sectional area has the dimensions shown, 
determine the critical load. Est = 200 G Pa, a y = 250 MPa. 

I- 200 mm -I J_ 

1 

lOmm 

lOmm 150mm 

==~==:::i + 10 mm 

Prob. 17-9 

17-10. A steel column has a length of 9 m and is 
pinned at it s top and bottom. If the cross-sectional area 
has the dimensions shown, determine the critical load. 
Est = 200 GPa, u y = 250 MPa. 

l-200 mm -I J_ 
lOmm 

I 
lOmm 150mm 

I 
T lOmm 

Prob.17-10 

17-ll The A992 steel angle has a cross-sectional area of 
A = 2.48 in2 and a radius of gyration about the x axis of 
rx = 1.26 in. and about the y axis of ry = 0.879 in. The 
smallest radius of gyration occurs about the a-a axis and is 
r0 = 0.644 in. If the angle is to be used as a pin-connected 
10-ft-long column, determine the largest axial load that can 
be applied through its centroid C without causing it to buckle. 

y 

a 

c 
x-~p.j,,..---x 

a 
y 

Prob.17-11 
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•17-U. The 50-mm-diameter C86100 bronze rod is fixed 
supported at A and has a gap of 2 mm from the wall at B. 
Detennine the increase in temperature fl T that will cause 
the rod to buckle. Assume tbat tbe contact at B acts as a pin. 

IA 
B 

lm 
2mm 

Prob. 17-U 

17- 13. Detennine the maximum load P the frame can 
support without buckling member AB. Assume that AB is 
made of steel and is pinned at its ends for y-y axis buckling 
and fixed at its ends for x- x axis buckling. £., = 200 GPa, 
Uy= 360 MPa. 

i-- Jm ---IA 

4m 

1 6m 

c 

B • 

Prob. 17-13 

17-14. "llte W8 x 67 wide-flange A-36 steel column can be 
assumed fixed at its base and pinned at its top. Determine 
tbe largest axial force P tbat can be applied without causing 
it to buckle. 

17-15. Solve Prob. 17- 14 if tbe column is assumed fixed at 
its bottom and free at its top. 

25 ft 

Probs. 17-14115 

•17-16. An A992 steel W200 x 46 column of length 9 mis 
fixed at one end and free at its otber end. Detennine the 
allowable axial load the column can support if F.S. = 2 
against buckling. 

17-17. TI1e 10-ft wooden rectangular column has the 
dimensions shown. Determine the critical load if the ends 
arc assumed to be pin connected. Ew = 1.6(103) ksi , 
oy = 5 ksi. 

17- 18. The 10-ft wooden column has the dimensions 
shown. Determine the critical load if the bottom is fixed and 
the top is pinned. £., = 1.6(103) ksi. u y = 5 ksi. 

4 inT O 

- 11-
2 in. 

10 ft 

Probs. 17-17/18 
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794 CHAPTER 17 B UCKLING OF COLUMNS 

17-19. Determine the maximum force P that can be 
applied to the handle so that the A992 steel control rod AB 
does not buckle. The rod has a diameter of 1.25 in. It is pin 
connected at its ends. 

1-----3 ft -----1 
,__ __ 2 ft ---1 

0 0 

A 

p 

3 fl 

Prob. 17- 19 

*17-20. The A-36 steel pipe has an outer diameter of2 in. 
and a thickness of 0.5 in. If it is held in place by a guywire, 
determine the largest vertical force P that can be applied 
without causing the pipe to buckle. Assume that the ends of 
the pipe are pin connected. 

17-2L The A-36 steel pipe has an outer diameter of2 in. U 
it is held in place by a Yuywire. determine its required inner 
diameter to the nearest ii in.,so that it can suppon a maximum 
venical load of P = 4 kip without causing the pipe to buckle. 
Assume the ends of the pipe are pin connected. 

17-22. The deck is supported by the two 40-mm-square 
columns. Column AB is pinned at A and fixed at B, whereas 
CD is pinned at C and D. 1f the deck is prevented from 
sidesway, determine the greatest weight of the load that can 
be applied without causing the deck to collapse. The center 
of gravity of the load is located at d = 2 m. Both columns 
are made from Douglas Fir. 

17- 23. The deck is supponed by the two 40-mm-square 
columns. Column AB is pinned at A and fixed at B, whereas 
CD is pinned at C and D. Lf the deck is prevented from 
sidesway, determine the position d of the center of gravity of 
the load and the load's greatest magnitude without causing the 
deck to collapse. Both columns are made from Douglas Fir. 

4m 4m 

l ~----Sm-----1.1 

• D::.._ ____ ,,_ __ .....;;B~,___,__ 

Probs. 17- 22123 

*17-24. The beam is supponed by the three pin-connected 
suspender bars, each having a diameter of 0.5 in. and made 
from A-36 steel Determine the greatest uniform load w that 
can be applied to the beam without causing AB or CB to 
buckle. 

8 

6ft 
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17- 25. The W14 x 30 A992 steel column is assumed 
pinned at both of its ends. Determine the largest axial force 
P that can be applied without causing it to buckle. 

p 

l 

25 ft 

Prob.17-25 

17-26. The A992 steel bar AB bas a square cross section. U 
it is pin connected at its ends, determine the maximum 
allowable load P that can be applied to the frame. Use a 
factor of safety with respect to buckling of 2. 

c 

1------10 ft - - ----1 

p 

Prob. 17-26 

17-27. The linkage is made using two A992 steel rods, each 
having a circular cross section. Determine the diameter of 
each rod to the nearest l in. that will support a load of 
P = 10 ki p. Assume that the rods are pin connected at their 
ends. Use a factor of safety with respect to buckling of 1.8. 

*17-28. The linkage is made using two A992 steel rods, 
each having a circular cross section. If each rod has a 
diamete r of 2 in., determine the largest load it can support 
without causing any rod to buckle if the factor of safety 
against buckling is 1.8. Assume that the rods are pin 
connected at their ends. 

p 

B 

I 
12 rt 

10 
1-9 ft---1--5 ft-I 

Probs.17-27128 

17-29. The linkage is made using two A-36 steel rods, each 
having a ci rcular cross section. Determine the diameter of 
each rod to the nearest l in. that will support the 900-lb 
load. Assume that the rods are pin connected at their ends. 
Use a factor of safety with respect to buckling of F.S. = 1.8. 

B 

~ 16 ft ---11"-- 9 ft -1 

Prob.17-29 
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17-30. The linkage is made using two A-36 steel rods, each 
having a circular cross section. If each rod has a diameter of 
~ in., determine the largest load it can support without 
causing any rod to buckle. Assume that the rods are pin 
connected at their ends. 

l-16 ft 9 ft-I 

Prob.17-30 

17-3L The steel bar AB has a rectangular cross section. If it 
is pin connected at its ends, determine the maximum allowable 
intensity w of the distributed load that can be applied to BC 
without causing AB to buckle. Use a factor of safety with 
respect to buckling of 1.5. E.i = 200 GPa, uy = 360 MPa. 

c 

Prob.17-31 

*17-32. Determine if the frame can support a load of 
P = 20 kN if the factor of safety with respect to buckling of 
member AB is F.S. = 3. Assume that AB is made of steel 
and is pinned at its ends for x-x axis buckling and fixed at its 
ends for y-y axis buckling. E.i = 200 GPa, uy = 360 MPa. 

p 

lm-1 
• 8·1 c 

2m 

30mmA J 

Prob.17-32 

17-33. Determine the maximum allowable load P that can 
be applied to member BC without causing member AB to 
buckle. Assume that AB is made of steel and is pinned at its 
ends for x-x axis buckling and fixed at its ends for y-y axis 
buckling. Use a factor of safety with respect to buckling of 
F.S. = 3. Esr = 200 GPa, uy = 360 MPa. 

p 

2m 
30mm-

A 

m 20mm 

"~" ... -I ..r ... 
'=30mm x 

Prob.17-33 

17-34. A 6061-T6 aluminum alloy solid circular rod of 
length 4 m is pinned at both of its ends. If it is subjected to 
an axial load of 15 kN and F.S. = 2 against buckling, 
determine the minimum required diameter of the rod to the 
nearest mm. 

17-35. A 6061-T6 aluminum alloy solid circular rod of 
length 4 m is pinned at one end while fixed at the other end. 
If it is subjected to an axial load of 15 kN and F.S. = 2 
against buckling, determine the minimum required diameter 
of the rod to the nearest mm. 

*17-36. The members of the truss are assumed to be pin 
connected. If member BD is an A992 steel rod of radius 
2 in., determine the maximum load P that can be supported 
by the truss without causing the member to buckle. 

17-37. Solve Prob. 17-36 for member AB, which has a 
radius of 2 in. 

B D 

I 
12 ft 

.!...!I ~~1J~~~~~c 
--" C F 

1-16 ft - --16 ft ---16 ft -1 

p p 

Probs. 17-36/37 
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17-38. The truss is made from A992 steel bars, each of 
which has a circular cross section with a diameter of 1.5 in. 
Determine the maximum force P that can be applied 
without causing any of the members to buckle. The members 
are pin connected at their ends. 

17-39. The truss is made from A992 steel bars, each of 
which has a circular cross section. If the applied load 
P = 10 kip, determine the diameter of member AB to the 
nearest k in. that will prevent this member from buckling. 
The members are pin connected at their ends. 

-, 
3 ft 

A BJ 
4 n-l-4r1-1 

I' 

Probs. 17-38139 

*17-40. The steel bar AB of the frame is assumed to be 
pin connected at its ends for y- y axis buckling. If 
P = 18 kN, determine the factor of safety with respect to 
buckling about the y-y axis. £ 51 = 200 GPa, uy = 360 MPa. 

4m 

1 
c 

Prob. 17-40 

17-4L The ideal column has a weight w (force/length) 
and is subjected to the axial load P. Determine the 
maximum moment in the column at midspan. EI is constant. 
Hint: Establish the differential equation for deflection, 
Eq. 17-1, with the origin at the midspan. The general solution 
is v = C1sin kx + C2 coskx + (w/(2P))x2 

- (wL/(2P))x 
- (wEI/ P 2 ) where k2 = Pf£! . 

1--~~~-L~~~~~ 

Prob. 17-41 

17-42. The ideal column is subjected to the force F at its 
midpoint and the axial load P. Determine the maximum 
moment in the column at midspan. £ / is constant. Hinr: 
Establish the differential equation for deflection, Eq. 17- 1. 
Thegeneralsolutionisv = C1sinkx + C2 coskx - c2x/k2, 

wherec2 = F/2EI.k2 = P/£1. 

Prob. 17-42 

17-43. The column with constant £ / has the end constraints 
shown. Determine the critical load for the column. 

I' 

T 
L 

lr'i-'-
Prob. 17-43 

*17-44. Consider an ideal column as in Fig. 17- lOc, having 
both ends fixed. Show that the critical load on the column is 
Pa = 47?£// L2. Him: Due to the vertical deflection of the 
top of the column, a constant moment M' will be developed 
at the supports. Show that d2vjdx2 + (P/El)v = M'/EI. 
The solution is of the form v = C1 sin( VP/ Elx) + 
C2 cos(VP/Elx) + M'/P. 

17-45. Consider an ideal column as in Fig. 17-lOd, having 
one end fixed and the other pinned. Show that the critical 
load on the column is Per= 20. 19£I/L2

. Him: Due to the 
vertical deflection at the top of the column, a constant 
moment M' will be developed at the fixed support and 
horizontal reactive forces R ' will be developed at both 
supports.Showthatd2v/dx2 + (P/El)v = (R '/El)(L - x). 
The solution is of the form v = C1sin(VP/£/x) + 
C2 cos(VP/ £/x) +(R ' / P)(L - x) . Arter application of the 
boundary conditions show that tan (VP/ El L) = V P/ EI L. 
Solve numerically for the smallest nonzero root. 
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* 17.4 THE SECANT FORMULA 
The Euler formula was derived assuming the load Pis applied through the 
centroid of the column's cross-sectional area and that the column is 
perfectly straight. Actually this is quite unrealistic, since a manufactured 
column is never perfectly straight, nor is the application of the load known 
with great accuracy. In reality, then, columns never suddenly buckle; instead 
they begin to bend, although ever so slightly, immediately upon application 
of the load. As a result , the actual criterion for load application should be 
limited, either to a specified sidesway deflection of the column, or by not 
allowing the maximum stress in the column to exceed an allowable stress. 

To study the effect of an eccentric loading, we will apply the load P to 
the column at a distance e from its centroid, Fig. 17- 13a. This loading is 
statically equivalent to the axial load P and bending moment M' = Pe 
shown in Fig. 17- 13b. In both cases, the ends A and Bare supported so 
that they are free to rotate (pin supported), and as before, we will only 
consider linear elast ic material behavior. Furthermore, the x- v plane is a 
plane of symmetry for the cross-sectional area. 

From the free-body diagram of the arbitrary section, Fig. 17- 13c, the 
internal moment in the column is 

M = -P(e + v) (17-13) 

And so the differential equation for the deflection curve becomes 

d 2v 
EI dx2 = -P(e + v) 

p 

e 

A 

- I\ 
x 

~ L 
L 

-- l/ 
B 

p x 

(a) 

v 

= L 

x 

L 

I 
x 

(b) 

Fig.17-13 

P e 

x 

V p 

(c) 
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or 
d2v P P 
- + - v = --e 
dx2 EI EI 

This equation is similar to Eq. 17- 7, and its solution consists of both 
complementary and particular solutions, namely, 

v = C1 sin .Jf;x + C2 cos~ :Ix - e (17- 14) 

To evaluate the constants we must apply the boundary conditions. At 
x = 0, v = 0, so C2 = e. And at x = L, v = 0, which gives 

e(l - cos(VP[EiL)] 
C1 = --------

sin(VP[Ei L) 

Since 1 - cos(VP[EiL) = 2sin2(VPjEi L/2) and sin(VPjEiL) = 

2 sin(VP[Ei L/2) cos(VP[Ei L/2), we have 

C1 = e tan(.};; ~) 
Hence, the deflection curve, Eq. 17- 14, becomes 

v = e[ tan(.};;~) sin( .Jf;x) + cos( .Jf;x) - 1] (17- 15) 

Maximum Deflection. Due to symmetry of loading, both the 
maximum deflection and maximum stress occur at the column's midpoint. 
Therefore, at x = L/2, 

(17- 16) 

Notice that if e approaches zero, then Vmax approaches zero. However, if 
the terms in the brackets approach infinity as e approaches zero, then 
Vmax will have a nonzero value. Mathematically, this represents the 
behavior of an axially loaded column at failure when subjected to the 
critical load Per· Therefore, to find Per we require 

( 
(P;; L) sec '\/Ei 2 = oo 

JiI~ = ; 
P. = -rr2EI 

er L2 (17- 17) 

which is the same result found from the Euler formula, Eq. 17- 5. 

17.4 THESECANTFORMULA 799 
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p 

~---------------Vmax 

Fig.17-14 

If Eq. 17- 16 is plotted for various values of eccentricity e, it results in a 
family of curves shown in Fig. 17- 14. Here the critical load becomes an 
asymptote to the curves and represents the unrealistic case of an ideal 
column (e = 0). The results developed here apply only for small sidesway 
deflections, and so they certainly apply if the column is long and slender. 

Notice that the curves in Fig. 17- 14 show a nonlinear relationship 
between the load P and the deflection v. As a result, the principle of 
superposition cannot be used to determine the total deflection of a 
column. In other words, the deflection must be determined by applying 
the total Load to the column, not a series of component loads. Furthermore, 
due to this nonlinear relationship, any factor of safety used for design 
purposes must be applied to the load and not to the stress. 

The column supporting this crane is unusually long. 
It will be subjected not only to uniaxial load, but 
also a bending moment. To ensure it will not buckle, 
it should be braoed at the roof as a pin connection. 
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The Secant Formula The maximum stress in an eccentrically loaded 
column is caused by both the axial load and the moment, Fig. 17-15a. 
Maximum moment occurs at the column's midpoint, and using Eqs. 17-13 
and 17-16, it has a magnitude of 

M = IP(e + Vmax) I M = Pe sec( ft ~) (17-18) 

As shown in Fig. 17-15b, the maximum stress in the column is therefore 

CT = p + Pee sec(' {PL) 
m•x A I '\/Eiz 

Since the radius of gyration is r = VijA, the above equation can be 
written in a form called the secant formula: 

P [ ec (Le fP)] 
CT max = A 1 + r 2 sec Zr '\/EA (17-19) 

Here 
u max = maximum elastic stress in the column, which occurs at the inner 

concave side at the column's midpoint. This stress is compressive. 

P = vertical load applied to the column. P < Per unless e = O; 
then P = Pa (Eq.17-5). 

e = eccentricity of the load P. measured from the centroidal axis 
of the column's cross-sectional area to the line of action of P 

c = distance from the centroidal axis to the outer fiber of the 
column where the maximum compressive stress CTmax occurs 

A = cross-sectional area of the column 

L, = unsupported length of the column in the plane of bending. 
Application is restricted to members that are pin connected, 
L, = L, or have one end free and the other end fixed, L, = 2L. 

E = modulus of e lasticity for the material 

r = radius of gyration, r = VijA, where I is calculated about the 
centroidal or bending axis 

17.4 THESECANTFORMULA 801 

L 

p 

hh 

' 
p 

e 

(a) 

fuij 
Axial 
stress 

+ 

H 
Bending 

stress 

II 

Resultant 
stress 
(b) 

Fig.17-15 

M 

v p 
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802 CHAPTER 17 BUCKLING OF COLUMNS 

.!:._ (ks i) 
A 

40 \ 
\ 36 f----------

30 

1.5 
10 

Euler's formula 
Eq. 17- 6 

o~-~--~--~--~-
50 100 150 200 

A-36 structural steel 
£ 51 = 29 (HY) ksi, u y = 36 ksi 

Fig.17-16 

KL , 

Graphs of Eq. 17- 19 for various values of the eccentricity ratio ec/r2 

are plotted in Fig. 17- 16 for a structural-grade A-36 steel. Note that when 
e~O, or when ec/r 2~ 0, Eq. 17- 16 gives CTmax = P/A, where P is the 
critical load on the column, defined by Euler's formula. Since the results 
are valid only for elastic loadings, the stresses shown in the figure cannot 
exceed <Ty = 36 ksi, represented here by the horizontal line. 

By inspection, the curves indicate that changes in the eccentricity ratio 
have a marked effect on the load-carrying capacity of columns with small 
slenderness ratios. However, columns that have large slenderness ratios 
tend to fail at or near the Euler critical load regardless of the eccentricity 
ratio, since the curves bunch together. Therefore, when Eq. 17- 19 is used 
for design purposes, it is important to have a somewhat accurate value 
for the eccentricity ratio for shorter-length columns. 

Design. Once the eccentricity ratio is specified, the column data can 
be substituted into Eq. 17- 19. If a value of CTmax = <Ty is considered, then 
the corresponding load Py can be determined numerically, since the 
equation is transcendental and cannot be solved explicitly for Py. As a 
design aid, computer software, or graphs such as those in Fig. 17- 16, can 
also be used to determine Py. Realize that due to the eccentric application 
of Py, this load will always be smaller than the critical load Pen which 
assumes (unrealistically) that the column is axially loaded. 

IMPORTANT POINTS 

• Due to imperfections in manufacturing or specific application 
of the load, a column will never suddenly buckle; instead, it 
begins to bend as it is loaded. 

• The load applied to a column is related to its deflection in a 
nonlinear manner, and so the principle of superposition does 
not apply. 

• As the slenderness ratio increases, eccentrically loaded 
columns tend to fail at or near the Euler buckling load. 
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17.4 THESECANTFORMULA 803 

EXAMPLE 17.4 

The W8 X 40 A992 steel column shown in Fig. 17- 17a is fixed at its base z 
and braced at the top so that it is fixed from displacement, yet free to rotate x '-: P 

about the y-y axis. Also, it can sway to the side in the y-z plane. D etermine 
the maximum eccentric load the column can support before it either begins 
to buckle or the steel yields. Take ay = 50 ksi. 

SOLUTION 

From the support conditions it is seen that about the y- y axis the column 
behaves as if it were pinned at its top and fixed at its bottom, and 
subjected to an axial load P, Fig. 17- 17b. About the x- x axis the column 
is free at the top and fixed at the bottom, and it is subjected to both an 
axial load P and moment M = P(9 in.), Fig. 17- 17c. 

y-y Axis Buckling. From Fig. 17- lOd the effective length factor is 
Ky= 0.7,so (KL)y = 0.7(12) ft= 8.40 ft = 100.8 in. Using the table in 
Appendix B to determine I,, for the W8 x 40 section and applying 
Eq. 17-11, we have 

~ 

(a) 

p 

i 

12 ft 

7T
2£I,, 7T2(29(HP) ksi)(49.1 in4

) . 
\ ..-£ 

( p ) = = = 1383 ktp 
er Y (KL); (100.8 in.)2 

x-x Axis Yielding. From Fig. 17-lOb, Kx = 2, so (KL)x = 2(12) ft = 
24 ft = 288 in. Again using the table in Appendix B, we have A = 11. 7 in2, 

c = 8.25 in./2 = 4.125 in., and 'x = 3.53 in. Applying the secant formula, 

_ Px[ ec ((KL}. ~)] 
ay - A 1 + r} sec 2rx \./ £A 

8.40 ft 

_ j 
y-y axis buckling 

(b) 

p 

12 ft 

. PX [ 9 in. (4.125 in.) ( (288 in.) ~ PX )] 50 ks1 = l + sec . 
M = P(9 in.) 

11.7 in2 (3.53 in.)2 2 (3.53 m.)29(Hl3) ksi (11.7 in2) 

585 = Pxfl + 2.979 sec(0.0700~)] 

Solving for Px by trial and error, noting that the argument for the secant is in 
radians, we get 

Px = 115 kip Ans. 

Since this value is less than (Pcr)y = 1383 kip, failure will occur about the 
x-x axis. 

12 ft 

x-x axis yielding 

(c) 

Fig. 17-17 

x 
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804 CHAPTER 17 B UCKLI NG OF COLUMNS 

PROBLEMS 

17-46. The wood column is fixed at its base and free at its 
top. Determine the load P that can be applied to the edge 
of the column without causing the column to fail either by 
buckling or by yielding. Ew = 12 GPa, uy = 55 MPa. 

2m 

Prob.17-46 

17-47. The WlO x 12 structural A-36 steel column is 
used to support a load of 4 kip. If the column is fixed at the 
base and free at the top, determine the sidesway deflection 
at the top of the column due to the loading. 

*17-48. The WlO x 12 structural A-36 steel column is 
used to support a load of 4 kip. If the column is fixed at its 
base and free at its top, determine the maximum stress in the 
column due to this loading. 

4 kip 
9 in.

1 

15 fl 

-==l 
Probs. 17-47/48 

17-49. The aluminum column is fixed at the bottom and 
free at the top. Determine the maximum force P that can 
be applied at A without causing it to buckle or yield. Use a 
factor of safety of 3 with respect to buckling and yielding. 
E.1 = 70 GPa,uy = 95 MPa. 

p 

-i-smm 

Sm 

150mm 
lOmm=ll I 
80mm 1f= I '...L = lOmm 
80mm_I I 

Prob.17-49 

17-50. The aluminum rod is fixed at its base and free at its 
top. If the eccentric load P = 200 kN is applied, determine 
the greatest allowable length L of the rod so that it does not 
buckle or yield. £ 31 = 72 GPa, uy = 410 MPa. 

17- 5L The aluminum rod is fixed at its base and free and 
at its top. If the length of the rod is L = 2 m, determine the 
greatest allowable load P that can be applied so that the rod 
does not buckle or yield. E.1 = 72 GPa, uy = 410 MPa. 

p 

Smm-1-

200mm 

L 

Probs. 17- 50/51 
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*17- 52. Assume that the wood column is pin connected at 
its base and top. Determine the maximum eccentric load P 
that can be applied without causing the column to buckle or 
yield.£., = 1.8(103) ksi, uy = 8 ksi. 

17-53. Assume that the wood column is pinned top and 
bottom for movement about the x-y axis. and fixed at the 
bottom and free at the top for movement about the y- y 
axis. Determine the maximum eccentric load P that can 
be applied without causing the column to buckle or yield. 
E,. = 1.8(103) ksi. uy = 8 ksi. 

p 

10 ft 

1t1 •in. 

xm"I-x 
p r-t:1

10. y 10. 

Probs. 17-52/53 

17-54. The wood column is pinned at its base and top. If the 
eccentric force P = I 0 k N is applied to the column, investigate 
whether the column is adequate to support this loading without 
buckling or yielding. Take E = 10 GPa and uy = 15 MPa. 

17-55. The wood column is pinned at its base and top. 
Determine the maximum eccentric force P the column can 
support without causing it to either buckle or yield. Take 
E = JO GPa and uy = 15 MPa. 

p 
150mm~ 

c·==~ij~-~ 

3.5m 

n -

x 

75mm 75mm 

Probs. 17-54155 

17.4 THE SECANT FORMULA 805 

*17- 56. The A992 steel rectangular holJow section 
column is pinned at both ends. If it has a length of L = 14 ft, 
determine the maximum allowable eccentric force P it can 
support without causing it to either buckle or yield. 

17- 57. The A992 steel rectangular hollow section column 
is pinned at both ends. If it is subjected to the eccentric 
force P = 45 kip. determine its maximum allowable length 
L without causing it to either buckle or yield. 

2 in. 
0.5 in,-11-1~ in. 

rnn. 
OJin. 

Section a - a 

Probs. l 7-5<J57 

17- 58. The tube is made of copper and has an outer diam
eter of 35 mm and a wall thickness of 7 mm. Determine the 
eccentric load P that it can support without failure.The tube 
is pin supported at its ends. Ecu = 120 GPa, uy = 750 MPa. 

p i-----2 m-----i P 

-==rl~~~•E· :::::::::::::::::::::::=:::::::::::::;-1~•~-" 
14mm 

Prob. 17-58 
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806 CHAPTER 17 BUCKLING OF COLUMNS 

17-59. The wood column is pinned at its base and top. If 
L = 5 ft, determine the maximum eccentric load P that can 
be applied without causing the column to buckle or yield. 
£.., = 1.8(103) ksi, uy = 8 ksi. 

p 

L 

J, A in. 

x~J: x 
P ~lOin. 

Prob. 17-59 

*17-60. The brass rod is fixed at one end and free at the 
other end. If the eccentric load P = 200 kN is applied. 
determine the greatest allowable length L of the rod so that 
it does not buckle or yield. E1w = 101 GPa. uy = 69 MPa. 

17-61. The brass rod is flXed at one end and free at the 
other end. If the length of the rod is L = 2 m, determine 
the greatest allowable load P that can be applied so that the 
rod does not buckle or yield. Also, determine the largest side
sway deflection of the rod due to the loading. Ebr = 101 GPa, 
uy = 69 MPa. 

1----L----1 
rX 
~...:...._-,-----~-L../>l 
JO mm B 

IOOmm 

Probs. 17-60/61 

17~2. The Wl4 X 53 structural A992 steel column is 
fixed at its base and free at its top. If P = 75 kip, determine 
the sidesway deflection at its top and the maximum stress in 
the column. 

17-63. The Wl4 X 53 column is fixed at its base and 
free at its top. Determine the maximum eccentric load P 
that it can support without causing it to buckle or yield. 
£ 51 = 29(103) ksi, ay = 50 ksi. 

IO in. P 

18 ft 

Probs. 17~2/63 

*17-4i. Determine the maximum eccentric load P the 
2014-T6-aluminum-alloy strut can support without caus
ing it either to buckle or yield. The ends of the strut are pin 
connected. 

p IOOmm p 

150 I la 
mmJ__:_ ..:=..J!so mm 

I La 
3 m 

50 mm 

1- 1 
100£0 

Section a-a 

Prob. 17-4i 
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CHAPTER REVIEW 

Buckling is the sudden instability that 
occurs in columns or members that support 
an axial compressive load. The maximum 
axial load that a member can support just 
before buckling is called the critical load Per· 

The critical load for an ideal column is 
determined from Euler's formula, where 
K = 1 for pin supports, K = 0.5 for fixed 
supports, K = 0.7 for a pin and a fixed 
support, and K = 2 for a fixed support and 
a free end. 

If the axial loading is applied eccentrically 
to the column, then the secant formula can 
be used to determine the maximum stress in 
the column. 

7T
2 El 

(KL)1 

CHAPTER REVIEW 807 

' 

I 
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808 CHAPTER 17 B UCKLI NG OF COLUMNS 

REVIEW PROBLEMS 

R17- 1. The wood column is 4 m long and is required to 
support the axial load of25 kN. If the cross section is square, 
determine the dimension a of each of its sides using a factor 
of safety against buckling of F.S. = 2.5. The column is 
assumed to be pinned at its top and bottom. Use the Euler 
equation. Ew = 11 GPa, and u y = 10 MPa. 

1 
4m 

Prob. R17-1 

R17- 2. If the torsional springs attached to ends A and C 
of the rigid members AB and BC have a stiffness k, 
determine the critical load Per· 

p 

Prob. R17-2 

R17- 3. A steel column has a length of 5 m and is free at 
one end and fixed at the other end. If the cross-sectional 
area has the dimensions shown, determine the critical load. 
E .. = 200 GPa, uy = 360 MPa. 

lOmm 

60mm 
- lOmm 

_I 
l-80mm-I 

Prob.Rl7-3 

*R17-4. The square structural A992 steel tubing has outer 
dimensions of 8 in. by 8 in. Its cross-sectional area is 14.40 in2 

and its moments of inertia are Ix = I,. = 131 in4
• Determine 

the maximum load P it can support. The column can be 
assumed fixed at its base and free at its top. 

Prob.Rl7-4 
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R17-5. If the A-36 steel solid circular rod BD bas a 
diameter of 2 in., determine the allowable maximum force 
P that can be supported by the frame without causing the 
rod to buckle. Use F.S. = 2 against buckling. 

R17-<i. If P = 15 kip, determine the required minimum 
diameter of the A992 steel solid circular rod BD to the 
nearest k in. Use F.S. = 2 against buckling. 

4.5 in. 

D 

p 

Probs. R17-5/6 

R17- 7. The steel pipe is fixed supported at its ends. If it is 
4 m long and has an outer diameter of 50 mm, determine its 
required thickness so that it can support an axial load of 
P = I 00 kN without buckling.£., = 200 G Pa, uy = 250 MPa. 

p 

i 

4m 

1 
i 
p 

Prob. R17- 7 

REVIEW PROBLEMS 809 

*Rl7-8. The W200 x 46 wide-flange A992-steel column 
can be considered pinned at its top and fixed at its base. 
Also, the column is braced at its mid-height against weak 
axis buckling. Determine the maximum axial load the 
column can support without causing it to buckle. 

= l 

6m 

I-

6m 

-

Prob. R17-8 

R17-9. The wide-flange A992 steel column has the cross 
section shown. If it is fixed at the bottom and Cree at the top, 
determine the maximum force P that can be applied at A 
without causing it to buckle or yield. Use a factor of safety 
of 3 with respect to buckling and yielding. 

R17- 10. The wide-flange A992 steel column has the cross 
section shown. If it is fixed at the bottom and free a t the top, 
determine if the column will buckle or yield when the load 
P = 10 kN is applied at A. Use a factor of safety of 3 with 
respect to buckling and yielding. 

p 

1 ;-20mm 

A-' 

4m 

10 mm - 11
150

mmjJ-10mm 

1oommT~-- IOOmm 
lOOmm [ ~ 

- lO mm 

Probs. R17- 9/10 
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810 

MATHEMATICAL 

REVIEW AND 

EXPRESSIONS 

GEOMETRY AND TRIGONOMETRY 
REVIEW 

The angles (} in Fig. A-1 are equal between the transverse and two 
parallel lines. 

0 

0 

8 

Fig.A-1 

For a line and its normal, the angles(} in Fig. A-2 are equal. 

(} 

0 
0 

() 

Fig. A-2 
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GEOMETRY AND TRIGONOMETRY R EVIEW 811 

For the circle in Fig. A-3 s = Or, so that when 6 = 360° = 2?T rad then 
the circumference is s = 2?Tr. Also, since 180° = ?T rad, then 
6 (rad) = (?T / 180°)6°. The area of the circle is A = ?Tr2. 

s 

Fig. A-3 

The sides of a similar triangle can be obtained by proportion as m 

F. h a b c 
tg. A-4, w ere A = B = c· 

For the right triangle in Fig. A-5, the Pythagorean theorem is 

h = V(o)2 + (a)2 

The trigonometric functions are 

. 0 
Stn8 = -

h 

a 
cos8=

h 
0 

tan 8 = -
a 

This is easily remembered as "sob, cah, toa," i.e., the sine is the opposite 
over the hypotenuse, etc. The other trigonometric functions follow 
from this. 

1 h 
csc6=--= -

sin 6 o 

1 h 
sec6 = -- = -

cos 6 a 

1 a 
cot6 = -- = -

tan 6 o 

A c 

b B 

Fig. A-4 

_..-- lr (hypotenuse) 

o(opposite) 

0 

a (adjacent) 

Fig. A-5 
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812 APPENDIX A MATHEMATICAL REVIEW AND EXPRESSIONS 

Trigonometric Identities 

sin2 8 + cos2 8 = 1 

sin( 8 + </>) = sin 8 cos </> + cos 8 sin </> 

sin 28 = 2 sin 8 cos 8 

cos( 8 + </>) = cos 8 cos </> + sin 8 sin </> 

cos 28 = cos2 8 - sin2 8 

+ / l+cos28. " - + /1-cos28 
COS 8 = _ '\j 

2 
, Sill v - - '\j 

2 

sin 8 
tan 8 = ,, 

cos v 

1 + tan2 8 = sec2 8 1 + cot2 8 = csc2 8 

Quadratic Formula 

-b + Yb2 - 4ac 
If ax2 + bx + c = 0, then x = -------

2a 

Hyperbolic Functions 

ex - e- x 
sinhx = 

2 
, 

ex+ e-x 
coshx = ---

2 

sinhx 
tanhx = h 

cos x 

Power-Series Expansions 

x2 x3 
sinx = x - - + 

3! , cos x = 1 - 2! + 

x3 
sinhx = x + - + 

3! 

Derivatives 

d du 
- (u") = nu"- 1 -
dx dx 

d dv du 
- (uv) = u - + v 
dx dx dx 

du dv 
v - -u-

!(~) = dx v2 dx 

d du 
- (cot u) = -csc2 u
dx dx 

x2 
coshx = 1 + - + , 2! 

d ( . ) du - smu = cosu-
dx dx 

d ( ) . du - cosu = -smu-
dx dx 

d 2 du 
- (tan u) = sec u
dx dx 

d ( . ) du - smh u = cosh u -d 
dx JC 

d ~d . ~ 

dx
(secu) = tanusecu--(coshu) = smhu-d 

dx dx JC 

d du 
dx (csc u) = -csc u cot u dx 
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Integrals 

I x•+I 
x'' dx = + C, /1 ':/' -1 

11 + l 

I dx = .!.ln(a + bx) + C 
a + bx b 

I dx = 1 1 [a + x~] + C b < o 
a + bx2 2~ n a - x~ ' a 

I xdx 
2 

= _!_Jn(bx2 +a)+ C 
a + bx 2b 

I x2 
lll'. x a _, xWb + C b > 0 --- = - - tan , a 

a + bx2 b b v;;b a 

j Va + bx dx = 
3
2
b V(a + bx)3 + C 

I ~ 1 -2(2a - 3b.x)V(a + bx)3 

x v a + bx dx = , + C 
15b-

J x2Va + bxdx = 
2(8a2 - 12abx + 15b2x2)V(a + bx)3 

--------=------- + c 
105b3 

j V a2 - .t2 dx = ~ [xva2 - ,t2 + a2 sin-1
; ] + c, 

a>O 

jxv a2 - x2 dx = -~ V (a2 
- x2)3 + c 

I x2Va2 - x2dx = -~V(a2 
- x2

)
3 

+ ~(xVa2 
- x2 + a2 sin- 1 ~) + C,a > O 

j Vx2 + a2 dx = 

~ [xVx2 + a2 + a2 1n{x + Vx2 + a2
) ] + C 

GEOMETRY ANO TRIGONOMETRY REVIEW 813 

J x V x2 ± a2 dx = ~ V (x2 ± a2)3 + C 

I x2 vx2 + a2 dx = ~ V (x2 + a2
)
3 

~ a4 ~~~ 
+ 8 x vx2 + a2 - -gtn {x + Vx2 + a2

) + C 

I dx = 2V a + bx+ C 
V a + bx b 

I xdx = V x2+ a2+ c 
Vx2 + a2 

I dx = _ 1,-: rn[va +bx + cx2 + 
Va+ bx + cx2 v c 

xvc + 2~] + C, c > 0 

1 ( -2cx - b ) = v'-Csin-1 + C, c < 0 
-c Vb2 - 4ac 

J sin x dx = -cos x + c 

J cos x dx = sin x + c 

Ix cos( ax) dx = 
1
2 
cos( ax) + x sin( ax) + C 

a a 

I 2x a2x2 - 2 . 
x2 cos(ax) dx = 2 cos(ax) + 3 sm(ax) + C 

a a 

I e"x 
xeax dx = a2 (ax - 1) + C 

j sinh x dx = cosh x + C 

j coshxdx = sinhx + C 

www.konkur.in



814 

GEOMETRIC 

PROPERTIES OF AN 

AREA AND VOLUME 

Area Moment of 
Centroid location Centroid location Inertia 

j 

1
1- ; -J/A=!lz(a+b) 

/t I ~ X 

j_/ \ h ' ~ ) 
I ~'\..! ~±. IL h 
~--b 3 a+b 

b 

I 

Trapezoidal area 

Semiparabolic area 

Exparabolic area 

1-a 
1 
b 

c 
~....__ . 

ft1 - I 
Parabolic area 

)' 

2 r sin() ; -o-

A = 8r2 

Circular sector area 

)' 

Quarter circular area 

Semicircular area 

y 
--+-~ ,,,-A = ;rr2 

r 
-+----=,._--1-x c 

Circular area 
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G EOM ETRIC P ROPE RTIES O F AN AR EA ANO V O LUME 815 

Area Moment of 

Centroid Location Centroid Location Inertia 

= 

le 
/ A= bh 

ii 
I 

I x 
Ix = /ibh3 V = j.:rr3 

)' 1, = /ihb3 
b 

x :lr Rectangular area 
8 

Hemisphere 

= 

~= !hh 
V = t 11'r2/i 

I, = 1l,bJi3 
,, c I 

G ,, .L Z S~ 1 
b I I 1" 

x 
Triangular area 

Cone 
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GEOMETRIC 

PROPERTIES OF 

WIDE-FLANGE 

SECTIONS 

Wide-Flange Sections or W Shapes FPS Units 

Flange 
Web x-xaxis y-yaxis 

Area Depth thickness width thickness 
Designation A d tw br tr I s r I 5 r 

in. x lb/ft in2 in. in. in. in. in4 in3 in. in4 in3 in. 

W24 x 104 30.6 24.06 0.500 12.750 0.750 3100 258 10.l 259 40.7 2.91 
W24 x 94 27.7 24.31 0.515 9.065 0.875 2700 222 9.87 109 24.0 1.98 
W24 x 84 24.7 24.10 0.470 9.020 0.770 2370 196 9.79 94.4 20.9 1.95 
W24 x 76 22.4 23.92 0.440 8.990 0.680 2100 176 9.69 82.5 18.4 1.92 
W24 x 68 20.l 23.73 0.415 8.965 0.585 1830 154 9.55 70.4 15.7 1.87 
W24 x 62 18.2 23.74 0.430 7.040 0.590 1550 131 9.23 34.5 9.80 1.38 
W24 x 55 16.2 23.57 0.395 7.005 0.505 1350 114 9.11 29.1 8.30 1.34 

Wl8 x 65 19.l 18.35 0.450 7.590 0.750 1070 117 7.49 54.8 14.4 1.69 
Wl8 x (j() 17.6 18.24 0.415 7.555 0.695 984 108 7.47 50.1 13.3 1.69 
Wl8 x 55 16.2 18.11 0.390 7.530 0.630 890 98.3 7.41 44.9 11.9 1.67 
Wl8 x 50 14.7 17.99 0.355 7.495 0.570 800 88.9 7.38 40.1 10.7 1.65 
\Vl8 x 46 13.5 18.06 0.3<i0 6.0<iO O.<i05 712 78.8 7.25 22.5 7.43 1.29 
W18 x 40 11.8 17.90 0.315 6.015 0.525 612 68.4 7.21 19.1 6.35 1.27 
Wl8 x 35 10.3 17.70 0.300 6.000 0.425 510 57.6 7.04 15.3 5.12 1.22 

W16 x 57 16.8 16.43 0.430 7.120 0.715 758 92.2 6.72 43.1 12.1 l.(i() 

Wl6 x 50 14.7 16.26 0.380 7.070 0.630 659' 81.0 6.68 37.2 10.5 1.59 
W16 x 45 13.3 16.13 0.345 7.035 0.565 586 72.7 6.65 32.8 9.34 1.57 
W16 x 36 10.6 15.86 0.295 6.985 0.430 448 56.5 6.51 24.5 7.00 1.52 
W16 x 31 9.12 15.88 0.275 5.525 0.440 375 47.2 6.41 12.4 4.49 1.17 
Wl6 x 26 7.68 15.69 0.250 5.500 0.345 301 38.4 6.26 9.59 3.49 1.12 

Wl4 x 53 15.6 13.92 0.370 8.0<iO 0.660 541 77.8 5.89 57.7 14.3 1.92 
W14 x 43 12.6 13.66 0.305 7.995 0.530 428 62.7 5.82 45.2 11.3 1.89 
Wl4 x 38 11.2 14.10 0.310 6.770 0.515 385 54.6 5.87 26.7 7.88 1.55 
W14 x 34 10.0 13.98 0.285 6.745 0.455 340 48.6 5.83 23.3 6.91 1.53 
Wl4 x 30 8.85 13.84 0.270 6.730 0.385 291 42.0 5.73 19.6 5.82 1.49 
Wl4 x 26 7.69 13.91 0.255 5.025 0.420 245 35.3 5.65 8.91 3.54 1.08 
Wl4 x 22 6.49 13.74 0.230 5.000 0.335 199 29.0 5.54 7.00 2.80 1.04 

816 
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W IDE-FLANGE SECTIONS OR W SHAPES FPS UNITS 817 

[i=· I 

d x x 

- - 1 .. 

I I 

_ ;/j 

Wide-Flange Sections or W Shapes FPS Units 

Web 
Flange 

x- x axis y-yaxis 
Area Depth thickness width thickness 

Designation A d tw b1 t1 I s r I s r 

in. x lb / ft in2 in. in. in. in. in4 in3 in. in4 in3 in. 

W12 x 87 25.6 12.53 0.515 12.125 0.810 740 118 5.38 241 39.7 3.07 
W12 x 50 14.7 12.19 0.370 8.080 0.640 394 64.7 5.18 56.3 13.9 1.96 
W12 x 45 13.2 12.06 0.335 8.045 0.575 350 58.1 5.15 50.0 12.4 1.94 
W12 x 26 7.65 12.22 0.230 6.490 0.380 204 33.4 5.17 17.3 5.34 1.51 
W12 x 22 6.48 12.31 0.260 4.030 0.425 156 25.4 4.91 4.66 2.31 0.847 
W12 x 16 4.71 11.99 0.220 3.990 0.265 103 17.1 4.67 2.82 1.41 0.773 
W12 x 14 4.16 11.91 0.200 3.970 0.225 88.6 14.9 4.62 2.36 1.19 0.753 
WlO x 100 29.4 11.10 0.680 10.340 1.120 623 112 4.60 207 40.0 2.65 
WlO x 54 15.8 10.09 0.370 10.030 0.615 303 60.0 4.37 103 20.6 2.56 
WlO x 45 13.3 10.10 0.350 8.020 0.620 248 49.1 4.32 53.4 13.3 2.01 
WlO x 39 11.5 9.92 0.315 7.985 0.530 209 42.1 4.27 45.0 11.3 1.98 
WlO x 30 8.84 10.47 0.300 5.810 0.510 170 32.4 4.38 16.7 5.75 1.37 
WlO x 19 5.62 10.24 0.250 4.020 0.395 96.3 18.8 4.14 4.29 2.14 0.874 
WlO x 15 4.41 9.99 0.230 4.000 0.270 68.9 13.8 3.95 2.89 1.45 0.810 
WlO x 12 3.54 9.87 0.190 3.960 0.210 53.8 10.9 3.90 2.18 1.10 0.785 

W8 x 67 19.7 9.00 0.570 8.280 0.935 272 60.4 3.72 88.6 21.4 2.12 
W8 x 58 17.1 8.75 0.510 8.220 0.810 228 52.0 3.65 75.1 18.3 2.10 
W8 x 48 14.1 8.50 0.400 8.110 0.685 184 43.3 3.61 60.9 15.0 2.08 
W8 x 40 11.7 8.25 0.360 8.070 0.560 146 35.5 3.53 49.1 12.2 2.04 
W8 x 31 9.13 8.00 0.285 7.995 0.435 110 27.5 3.47 37.1 9.27 2.02 
W8 x 24 7.08 7.93 0.245 6.495 0.400 82.8 20.9 3.42 18.3 5.63 1.61 
W8 x 15 4.44 8.11 0.245 4.015 0.315 48.0 11.8 3.29 3.41 1.70 0.876 

W6 x 25 7.34 6.38 0.320 6.080 0.455 53.4 16.7 2.70 17.1 5.61 1.52 
W6 x 20 5.87 6.20 0.260 6.020 0.365 41.4 13.4 2.66 13.3 4.41 1.50 
W6 x 16 4.74 6.28 0.260 4.030 0.405 32.1 10.2 2.60 4.43 2.20 0.966 
W6 x 15 4.43 5.99 0.230 5.990 0.260 29.1 9.72 2.56 9.32 3.11 1.46 
W6 x 12 3.55 6.03 0.230 4.000 0.280 22.1 7.31 2.49 2.99 1.50 0.918 
W6 x 9 2.68 5.90 0.170 3.940 0.215 16.4 5.56 2.47 2.19 1.11 0.905 
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818 APPENDIX C GEOMETRIC PROPERTIES OF W IDE-FLANGE SECTIONS 

11 y 

I 
I I 

T 
d x x 

- - r., 

I I 

L:,J 
Wide-Flange Sections or W Shapes SI Units 

Web 
Flange 

x- xaxis y-yaxis 
Area Depth thickness width thickness 

Designation A d tw b1 t1 I s r I s r 

mm x kg/m mm2 mm mm mm mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm 

W610 x 155 19800 611 12.70 324.0 19.0 1290 4220 255 108 667 73.9 
W610 x 140 17900 617 13.10 230.0 22.2 1120 3 630 250 45.1 392 50.2 
W610 x 125 15900 612 11.90 229.0 19.6 985 3220 249 39.3 343 49.7 
W610 x 113 14400 608 11.20 228.0 17.3 875 2880 247 34.3 301 48.8 
W610 x 101 12900 603 10.50 228.0 14.9 764 2530 243 29.5 259 47.8 
W610 x 92 11800 603 10.90 179.0 15.0 646 2140 234 14.4 161 34.9 
W610 x 82 10 500 599 10.00 178.0 12.8 560 1870 231 12.1 136 33.9 

W460 x 97 12300 466 11.40 193.0 19.0 445 1910 190 22.8 236 43.1 
W460 x 89 11400 463 10.50 192.0 17.7 410 1 770 190 20.9 218 42.8 
W460 x 82 10400 460 9.91 191.0 16.0 370 1610 189 18.6 195 42.3 
W460 x 74 9460 457 9.02 190.0 14.5 333 1460 188 16.6 175 41.9 
W460 x 68 8730 459 9.14 154.0 15.4 297 1290 184 9.41 122 32.8 
W460 x 60 7 590 455 8.00 153.0 13.3 255 1120 183 7.96 104 32.4 
W460 x 52 6640 450 7.62 152.0 10.8 212 942 179 6.34 83.4 30.9 

W410 x 85 10800 417 10.90 181.0 18.2 315 1510 171 18.0 199 40.8 
W410 x 74 9 510 413 9.65 180.0 16.0 275 1330 170 15.6 173 40.5 
W410 x 67 8 560 410 8.76 179.0 14.4 245 1200 169 13.8 154 40.2 
W410 x 53 6820 403 7.49 177.0 10.9 186 923 165 10.1 114 38.5 
W410 x 46 5890 403 6.99 140.0 11.2 156 774 163 5.14 73.4 29.5 
W410 x 39 4960 399 6.35 140.0 8.8 126 632 159 4.02 57.4 28.5 

W360 x 79 10100 354 9.40 205.0 16.8 227 1280 150 24.2 236 48.9 
W360 x 64 8150 347 7.75 203.0 13.5 179 1030 148 18.8 185 48.0 
W360 x 57 7200 358 7.87 172.0 13.1 160 894 149 11.1 129 39.3 
W360 x 51 6450 355 7.24 171.0 11.6 141 794 148 9.68 113 38.7 
W360 x 45 5 710 352 6.86 171.0 9.8 121 688 146 8.16 95.4 37.8 
W360 x 39 4960 353 6.48 128.0 10.7 102 578 143 3.75 58.6 27.5 
W360 x 33 4190 349 5.84 127.0 8.5 82.9 475 141 2.91 45.8 26.4 

www.konkur.in



W IDE-FLANGE SECTIONS OR W SHAPES FPS UNITS 819 

I 
I I 

I 
d x x 

L. - i-1., 

)' 

bi --

Wide-Flange Sections or W Shapes SI Units 

Web 
Flange 

x-xaxis ;<-Y axis 
Area Depth thickness width thickness 

Designation A d tw b1 t1 I s r I s r 

mm x kg/m mm2 mm mm mm mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm 

W310 x 129 16500 318 13.10 308.0 20.6 308 1940 137 100 649 77.8 
W310 x 74 9480 310 9.40 205.0 16.3 165 1060 132 23.4 228 49.7 
W310 x 67 8530 306 8.51 204.0 14.6 145 948 130 20.7 203 49.3 
W310 x 39 4930 310 5.84 165.0 9.7 84.8 547 131 7.23 87.6 38.3 
W310 x 33 4180 313 6.60 102.0 10.8 65.0 415 125 1.92 37.6 21.4 
W310 x 24 3040 305 5.59 101.0 6.7 42.8 281 119 1.16 23.0 19.5 
W310 x 21 2680 303 5.08 101.0 5.7 37.0 244 117 0.986 19.5 19.2 

W250 x 149 19000 282 17.30 263.0 28.4 259 1840 117 86.2 656 67.4 
W250 x 80 10200 256 9.40 255.0 15.6 126 984 111 43.1 338 65.0 
W250 x 67 8560 257 8.89 204.0 15.7 104 809 110 22.2 218 50.9 
W250 x 58 7400 252 8.00 203.0 13.5 87.3 693 109 18.8 185 50.4 
W250 x 45 5700 266 7.62 148.0 13.0 71.1 535 112 7.03 95 35.1 
W250 x 28 3620 260 6.35 102.0 10.0 39.9 307 105 1.78 34.9 22.2 
W250 x 22 2850 254 5.84 102.0 6.9 28.8 227 101 1.22 23.9 20.7 
W250 x 18 2280 251 4.83 101.0 5.3 22.5 179 99.3 0.919 18.2 20.1 

W200 x 100 12700 229 14.50 210.0 23.7 113 987 94.3 36.6 349 53.7 
W200 x 86 11000 222 13.00 209.0 20.6 94.7 853 92.8 31.4 300 53.4 
W200 x 71 9100 216 10.20 206.0 17.4 76.6 709 91.7 25.4 247 52.8 
W200 x 59 7 580 210 9.14 205.0 14.2 61.2 583 89.9 20.4 199 51.9 
W200 x 46 5890 203 7.24 203.0 11.0 45.5 448 87.9 15.3 151 51.0 
W200 x 36 4570 201 6.22 165.0 10.2 34.4 342 86.8 7.64 92.6 40.9 
W200 x 22 2860 206 6.22 102.0 8.0 20.0 194 83.6 1.42 27.8 22.3 
W150 x 37 4730 162 8.13 154.0 11.6 22.2 274 68.5 7.07 91.8 38.7 
W150 x 30 3790 157 6.60 153.0 9.3 17.1 218 67.2 5.54 72.4 38.2 
W150 x 22 2860 152 5.84 152.0 6.6 12.1 159 65.0 3.87 50.9 36.8 
W150 x 24 3060 160 6.60 102.0 10.3 13.4 168 66.2 1.83 35.9 24.5 
W150 x 18 2290 153 5.84 102.0 7.1 9.19 120 63.3 1.26 24.7 23.5 
W150 x 14 1730 150 4.32 100.0 5.5 6.84 91.2 62.9 0.912 18.2 23.0 
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SLOPES AND 

DEFLECTIONS OF 

BEAMS 
- -------

Simply Supported Beam Slopes and Deflections 

Beam Slope Deflection 

- Pi} 
Vmax -

48EI 

-Pab(L + b) 
81 = 6£/L 

Pab(L +a) v 
IJi = 6£/L :c=a 

= - Pba (Lz - b2 - a2) 
6£/L 

v 

v 

v 
I w 

JJ4t l l ~St: x 

1- ~~-~-I 

820 

- wl.! 
Omu = 24£/ 

-3wL3 

81 = 128£1 

7w0 
IJi = 384£/ 

-7woL3 

81 = 360£/ 

Vmu = 
- MoL2 

9VJEI 

at x = O.S774L 

- SwL4 

Vmu = 384£I 

- S111L4 
v -

z = L/2 768£I 

= - 0 006563 wL
4 

Vmax • EI 

at x = 0.4598L 

woL4 
Vmax = - 0.00652 EI 

at x = O.S193L 

Elastic Curve 

- -Px z z 
v - 4S£/ (3L - 4x ) 

0 :S x s L/2 

-Pbx 
v = ( L2 

- b2 
- x2

) 
6£/L 

Osxs a 

-Mox 
v = 6£/L (Lz - . .-2) 

-wx 
v = 24£/(x3 - 2Lx2 + I!) 

-wx 
v = 384£/(16x3 - 24Lx2 + 91.!) 

0 s x s L/2 
-wL 

v = (8x3 - 24Lr2 

384£/ 
+ 17 L2x - U) 

L/2 s x < L 

-111or 
v = (3x4 - 10L2x2 + 7 L4) 

360£I L 
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SLOPES AND DEFLECTIONS OF B EAMS 821 

-- ------- -

Cantilevered Beam Slopes and Deflections 

Beam Slope Deflection Elastic Curve 

v p 

I d±x - PI} - PiJ -Px2 
Bmax = 2£1 Vmax = 3£1 

v = --(3L -x) 
6£1 

L --,..-o .... 
v p 

-Px2 
Vmu v = 12£/ ( 3L - 2x) 0 < x < L /2 

- PL2 - SPIJ 
Bmax = 

8£/ 
Vmax = 48£1 -PL2 

r;-J-;-1 ' v = -(6x-L} L /2 < x < L Omax 48£1 

v 

- wL3 - wL4 - wx2 x Bmax = 
6£1 

Vmax = v= 
24£ / (x2 

- 4Lx + 6L2
) 

8£1 

L 'Om:u: 

v 

I 
~Om., 

M0L MoL2 MoX2 =sC x Bmax = -- Vmax = 2£1 v = 2£/ L~ Mo v .... El 

v -wx2 
w 

v = ( t2 - 2Lr + J L2 ) 
24£/ . 2 

v.,.. 
0 < x < L /2 - wi! - 1wL4 

r;-~;-1 
Omax = 48£1 Vmax = 384£/ -1111.! 

-o .... v = 384£ / (&r - L) 

L /2 < x < L 

v 

v.,.. - woi! - woL4 - -wox2 3 2 U x3 x Bmax = 24£/ Vmax = v - 120£/L ( JQL; - IQL;x + 5 - ) 30£1 

L 'Omu 

www.konkur.in



Preliminary Problems Solutions 

Chapter 2 
P2-L 

300N 

P2-2. 

822 

II 

(a) 

(b) 

II 

(a) 

(b) 

300 

lOON 

200N 

SOON 

60" 

400 N 10" 

~ 600 F 
u 

(c) 

P2-3. 

(a) 

x 

(b) 

P2-4. a. F = { - 4i - 4j + 2k } kN 

F = V(4)2 + (-4)2 + (2)2 = 6 kN 
- 2 

cos{3 = 3 
b. F = {20i + 20j - lOlc } N 

F = V (20)2 + (20)2 + ( - 10)2 = 30 N 
2 

cosf3=3 
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P2-5. 

x 

x 

(a) 

F,, = (600 sin 45°) sin 20" N 

F,. = (600 sin 45°) cos 20° N 

F,_ = 600 cos 45° N 

SOON 

(b) 

3 
F,. = - 5(400) N 

4 
F1 = 5(400) N 

3 
Ft = 5(500) N 

fcsoo N) = 400 N 

PRELIMINARY PROBLEMS SOLUTIONS 823 

z 

I 

(c) 

F,. = 800 cos 60° cos 30° N 
Ty = -800 cos 60° sin 30" N 

F,. = 800 sin 60° N 

PZ-<i. a. r,18 = {-Si + 3j - 2k } m 

b. r A 8 = {4i+8j - 3k }m 
c. r A 8 = { 6i - 3j - 4k } m 

P2-7. a. F = 15 kN( ~3 i + :j) = { -9i + 12j } kN 

b F = 600 .. /'?:._i + '?:._j - .!..k) 
. "\3 3 3 

= { 400i + 400j - 200k } N 

( 
2 2 1 ) c. F = 300 N - 3 i + 3 j - 3 k 

= { - 200i + 200j - lOOk } N 

P2-8. a. rA={3k }m, TA=3m 

rs= {2i + 2j - l k } m, Ts= 3m 

rA· rs = 0(2) + 0(2) + (3)(-1) = -3m2 

rA · r8 = TAT8 cos9 

-3 = 3(3) cos 8 

b. rA = {-2i + 2j + l k } m, TA= 3 m 

rn = {1.Si - 2k } m, Ts= 2.5 m 

rA · r s = (- 2)(1.5) + 2(0) + (1 )(-2) = -5 m2 

rA· rs = TATscos9 

-s = 3(2.5) cos 8 
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824 PRELIMINARY PROBLEMS SOLUT IONS 

P2-9. a. P3-3. a. Mx = -(100 N)(3 m) = -300 N · m 

F = 300 N(~i + ~j - .!..k) = {200i + 200j - lOOk} N 
3 3 3 

3 4 
u. = -5 i + 5j 

F,, = F · o. = (200{-~) + (200{~) + (-100{0) 

b. F = 500 N ( - ~j + ~ k) = { -400j + 300k } N 

I 2 2 
u. = -3i + J:i + 3k 

Fa= F · o. = (o\-k) + (-400{~) + (300\~) 

Chapter 3 

P3-1. a. Mo = 100 N(2 m) = 200 N · m) 

P3-2. 

b. M 0 = - lOON(l m) = lOON·m) 

c. M0 = -(%)(500 N)(2 m) = 600N·m ) 

d. M0 = (~)(500N)(3m) = 1200N · m ) 

e. M 0 = -(%)(tOON)(5m) = 300N·m) 

r. Mo = 100 N(O) = 0 

g. M0 = -(~ )<soo N)(2 m) + (~ )(500 N)(l m) 

= 200N ·m ) 

b. M 0 = -(% )(500 N)(3 m - 1 m) 

+(~)(500 N)(lm) = 200N ·m ) 

i. M0 = (~)(500 N)(l m) - (~)(500 N)(3 m) 

=900N·m ) 

j k j k 
M p= 2 -3 0 M p= 2 5 - 1 

-3 2 5 2 - 4 - 3 

j k 

M p= 5 - 4 -1 
-2 3 4 

P3-4. 

M1 = -(200 N)(2 m) = -400 N · m 

M, = -(300 N)(2 m) = -600 N · m 

b. Mx = (50 N)(0.5 m) = 25 N · m 

M, = (400 N)(0.5 m) - (300 N)(3 m) = - 700 N · m 

M, = (IOON)(3m) = 300N ·m 

c. Mx = (300 N)(2 m) - (100 N)(2 m) = 400 N · m 

M,, = -(300 N)(I m) + (50 N)(l m) 

+ (400 N)(0.5 m) = 250 N · m 

M, = -(200 N)(I m) = -200 N · m 

a. 
4 3 4 3 -- 0 -- 0 5 5 5 5 

M = u -5 2 0 - -1 5 0 
6 2 3 6 2 3 

b. 
1 1 1 1 

V2 V2 
0 

V2 V2 
0 

M. = 3 4 -2 - 5 2 - 2 
2 - 4 3 2 - 4 3 

c. 
2 I 2 2 1 2 - -- - - -- -
3 3 3 3 3 3 

M= a -5 -4 0 - -3 -5 2 
2 -4 3 2 -4 3 

P3-5. a . .±. (FR)x = l:F,.; 

(FR)x = -(~)500 N + 200N = -200N 

+t(FR)y = IF,; 
3 

(FR)y = -5(500 N) - 400 N = -700 N 

c + (MR)o = I Mo: 

(MR)o = -(~ )(500 N)(2 m) - 400 N(4 m) 

= -2200 N ·m 

b. .±. ( Fn)x = If'.,; 

(FR)x = (~ )(500 N) = 400 N 

+ t(FR)y = IF,; 

(FR)y = -(300 N) - (~ )(500 N) = -600 N 
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C + (MiJ0 = I.M0 : 

(MR)o = - (300 N)(2 m) -(~)(500 N)(4 m) 

- 200N·m = -2000N · m 

c. .f. (FR)x = I.ft; 

(FR)x =(~)(SOON) + 100 N = 400 N 

+ f( FR),. = I.F,,; 

(FR),. = - (500 N) - (~ )csoo N) = -900 N 

c + (MR)o = I.Mo; 

(MR)o = - (SOO N)(2 m) -(~)(soo N)(4 m) 

+ (~ )(sOO N)(2 m) = -2000 N · m 

d. .f. ( FR)x = "l.F,; 

(FR)x = -(~)(SOO N)+ (~)(SOON) = -lOON 

+ f (FR)y = I.£,; 

(FR),. = -(~ )<soo N) - (~ )csoo N) = - 700 N 

c + (MR)o = I.Mo; 

(MR)o = (~)(SOO N)(4 m) + (~)(sOO N)(2 m) 

-(~)(sOO N)(4 m) + 200 N · m = 1200 N · m 

PJ-6. a. 2. (FR)x = "l.Fx; (FR)x = 0 

+ f (FR)y = I.£,; 

(FR),. = - 200 N - 2(i() N = -4(i() N 

C + (FR),4 = I.Mo: 

-(4(i() N)d = - (200 N)(2 m) - (2(i() N)(4 m) 

d = 3.13m 

Note: Although 4(i() N acts downward, this is nor 
why - (460 N)d is negative. It is because the 
moment of 460 N about 0 is negative. 

b. 2. (FR)x = I.f,; 

(FR)x = -(~)(SOON)= -300N 

+ t(FR)y = I.Fy. 

PRELIMINARY PROBLEMS SOLUTIONS 8 2 5 

(FR)y = -400 N - (~)(sOO N) = -800 N 

C + (FR),d = I.Mo; 

-(800 N)d = - (400 N)(2 m) - (~)(sOO N)(4 m) 

d=3m 

c. 2. (FR)x = I.ft; 

(FR)x = (~)(SOON) - (~)(SOON) = 0 

+ f(FR)y = I.F,,; 

(FR)y = -(~ )csoo N) - (~ )<sOO N) = -600 N 

C + ( FR),d = I.Mo; 

-(600 N)d = -(~)(SOON)(2m) - (~)(SOO N)(4 m) 

- 600N·m 

d=4m 

P3-7. a. +! FR = I.f;; 

FR= 200 N + lOON + 200N =SOON 

(MR)x = 'LMx; 

-(500 N)y = - (100 N)(2 m) - (200 N)(2 m) 

y = l.20m 

(MR)y = I.M1; 

(SOO N)x = (100 N)(2 m) + (200 N)( I m) 

x = 0.80m 

b. +!FR = "l.f;; 

FR= 100 N - 100 N + 200 N = 200 N 

(MR)x = I,Mx; 

-(200 N)y = (100 N)(l m) + (100 N)(2 m) 

- (200 N)(2 m) 

y = 0.5 m 

(MR)y = I.M,.; 

(200 N)x = - (100 N)(2 m) + (100 N)(2 m) 

x=O 

c. + !FR = I.F,; 

FR= 400 N + 300N + 200N + lOON = lOOON 

(MR)x = I,M_,; 

-(1000 N)y = - (300 N)(4 m) - (100 N)(4 m) 

y = l.6m 
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826 PRELIM INARY PROBLEMS SOLUTIONS 

(MR),, = "i.M1; 

(1000 N)x = (400 N)(2 m) + (300 N)(2 m) 

- (200 N)(2 m) - (100 N)(2 m) 

x = 0.8 m 

Chapter 4 

P4-L 

SOON 

(a) 

~

1
.ooN ·m 

A,-~===-, l"t 
-2m-~ 
A, 

3m 

B, _ J 
(b) 

1200 N 

- 2 m 

c=======:;:=='.::=====$--+- B, 

1-A-,-- 3 m -~t By 

(c) 

SOON 

(d) 

P4-2. 

(e) 

~2m - I m~ 

300N 

(f) 

c, 

(a) 

By 

500 N 

(b) 

c, 
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2 m 
A, 

2 m 

(c) 

! M . <.!:. • 
• B, 

B, 

P~3. a. "i.M_, = 0; 

P~. 

-(400 N)(2 m) - (600 N)(5 m) + B, (5 m) = 0 

,.. M = O· 
"' y ' 

"i. M = O· ' ' 

b. "i. M., = O; 

"i.M1 = O; 

"i.M, = O; 

c. "i.M_, = O; 

"i. M
1

= 0: 

"i.M, = O; 

a. 

~ "i. F,. = O; 

- A,(4 m) - 8,(4 m) = 0 

B,.(4 m) - 8..(5 m) 

+ (300 N)(S m) = 0 

A,(4 m) + C,(6 m) = 0 

B,(1 m) - C,(1 m) = 0 

- 81(1 m) + (300 N)(2 m) 

-A..(4 m) + C
1
(1 m) = 0 

B,(2 m) + C,(3m)- 800 N·m = 0 

- C.(1.5 m) = 0 

- B..{2m) + C, (t.5 m) = 0 

(~)csoo N) - P = o, P = 400 N 

+ j "i.F,, = O; 

N - 200 N - (~ )(500 N) = 0, N = 500 N 

F.nax = 0.3(500 N) = 150 N < 400 N 

Slipping F = /.LkN = 0.2(500 N) = 100 N Ans. 

P~S. 

PRELIMINARY PROBLEMS SOLUTIONS 8 2 7 

b. IOON 

40N 

4---1-- F 

N 

+ "i.F. = O· __,, .1' ' 

~(IOO N) - F' = O;F' = BO N 

+ j"i.F, = O; 

N - 40 N - (~)(100 N) = O; N = 100 N 

Fmax = 0.9(100 N) = 90 N > 80 N 

F = F' = 80 N Ans. 

lOON 

Require 

+ j "i.F,. =0; 

C +"i. M0 = O; 

FA =O.lNA 

NA - lOON = 0 

NA = lOO N 

FA = 0.1(100 N) = 10 N 

- M + (lON)(l m) = 0 

M = lON·m 

P~. Slipping must occur between A and B. 

lOO N 

FA = 0.2(100 N) = 20 N 
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828 PRELIMINARY PROBLEMS SOLUTIONS 

P4-7. 

b. Assume B slips on C and C does not slip. 

lOON 

20N.-L 

p 

N8 =200N 

Fs = 0.2(200 N) = 40 N 

P - 20N-40N = O 

P = 60N 

c. Assume C slips and B does not slip on C. 

lOON 

20N .i__ 

lOON-i---

200N 

Fe 

400N 

Fe = 0.1(400 N) = 40 N 

p 

.±. lf'x = O; P - 20 N - 40 N = 0 

P = 60N 

Therefore, P = 60N 

a. p 

200N 

2m l 
0.5 m 

N=200N 

Ans. 

Assume slipping. F = 0.3(200 N) = 60 N 

.±. lf'x = O; P - 60 N = O; P = 60 N 

C +!.Mo = O; 200 N(x) - (60 N)(2 m) = 0 

x = 0.6 m > 0.5 m 

Block tips, x = 0.5 m 

C +!Mo= 0 (200 N)(O.S m) - P(2 m) = 0 

b. p 

Assume slipping, 

.±. !T;. = O; 

C + ! Mo = O; 

Chapter 5 

P =SON 

lOON 

N= lOON 

F = 0.4(100 N) = 40 N 

P - 40 N = O; P = 40 N 

Ans. 

(100 N)(x) - (40 N)(l m) = 0 

x = 0.4 m < 0.5 m 

No tipping 

P=40N Am:. 

PS-L a. A1 = 200 N, Dx = 0, D,, = 200 N 

200N 

F,.s 
8 

t Fsc 

Fsc 

i 
400N 

Fc;uJFco 

4~~ c 
Fsc 
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b. A y = 300 N, C, = 0, Cy = 300 N 

600N 

PS-2. a. 

b. 

Fcs Fco 

PRELIMINARY PROBLEMS SOLUTIONS 

PS-3. a. 

A, 
1.5 m 

A, 

60N·m 

Ayl---Z----t( B, 

.-......i -rs · 
x 

1.5 m 

t-;-- 200N 

1.5 m 

~_, -~ c, 
r 

b. CB is a two-force member. 

600N 

l- 2m ---:1,.- 1m -J 

45• 

Fcs 

c. CD is a two-force member. 

A y 

B, 
B.T 

By Fco 

- lm-1- tm - s 
3 

4 

Fcs 
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830 PRELIMINARY PROBLEMS SOLUTIONS 

d. 

e. 

f. 

600N 

Ax~rc====i====i"~B, B:.,x i;µ;iiiiim===i 
MA~----,,~--+~,..-------.,1 ~ 

800 

I( 

3m 3m 
2 m 1--=-2-m-tc 

B, r By 

BC is a two-force member. 

Fae 

BC is a two-force member. 

~N .. N 

i-1 __ 2 _m_-+-_ 2_0_1_ -11 400 N 

l ~ r ta 400N j2{ 
Fae 4 

Fae 

s 3 
4 

400N 

Chapter 6 

P~l. 
a. y 

x=x 
- y Vx y=-= -

2 2 

~--~~-x 

1- 1 
dx 

dA = ydx = Vxdx 

b. 

c. 

d. 

y 

x 

y 

~·~-------- x 

lm 

x = x + (1 - x) = 1 + x = 1 + y2 
2 2 2 

y = y 

dA = (1 - x)dy = (1 - y2)dy 

y 

- x Vy x=-=-
2 2 -y = y 

dA = xdy = Vydy 
y 

Im 

dx 
1-l 

....t...L-o=:::::.--+--'---x 
x -x=x 

_ (1 - y) 1 + y 1 + x2 

y = y+ = =--
2 2 2 

dA = (1 - y)dx = (1 - x2)dx 
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Chapter 7 

P7- l a. 

P7- l b. 

P7-lc. 

t ~y 
2a--1lc c, 

.±. I,f'x = O; get NA 

+f LF, = O; get VA 

(+I. MA = O;get MA 

r w(2aL - .., 
--; I 

!,:I ===::====i~· P 
-i-lfrt---a_j- -a--.., ·c, a 

B:y 

( +1 Mn = O; get C,. 

w(a) 
- -, 

+ ... F = O; get NA --. .<. .r 

+fI-F,. = O; get VA 

C +I.MA = 0; get MA 

C + 1Mn = O; get C, 

p 

P7-ld . 

P7-l e. 

PRELIMINARY PROBLEMS SOLUTIONS 

M,. 

N,~ t •/2+-•-J'Y{, v,. 
Cy 

.±. I.F, = O; get NA 

+i I-F,. = O; get VA 

(+I.MA = O; get MA 

+'\ 1F, = O; get NA 

+ /' I,f'x = O; get VA 

... M - O· get MA ( + 1Mo = 0 or"" A - • 

NA 

+ .l'I.F, = O; ge t NA 

+ '\ I-F,. = O; get VA 

C +I.MA = O; get MA 

831 
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832 

P7-U. 

P7-2a. 

PRELIMINARY PROBLEMS S O LUTIONS 

~ 

' 
p 

--
1-a---1-a=:j 

" 

i 
3a 

Cy 2a 

D.r 
. . 

-~ 
. 

B.r 
- I 

+j"l.,F,, = O; get Cy (= P) 

( +"l.,Ms = O; get D .. 

+NA 
......,,...._, MA 

-I A 

a 

D.T 

+f "l.,F,, = 0; get NA(= 0) 

.±. 'i.F., = O; get VA 

C +'I.MA= O; get MA 

FA= 2 kN ---+l~ ____ r:J_,__,I+- 5 kN 

---+- 3 kN 

- 3kN 

1C:::'.:'.J:J====]--J1.,.6 kN 
- 3kN 

Vmax = 3 kN 

P7- 2b. 

---+ 5 kN 

+- 5kN 
~1-:'.J_..... ____ _,~lOkN 
+- SkN 

---+ 5 kN 
F8 = 3 kN --+-._I ---~d-i-_,i+---4 kN 

~4kN 

---+ 4 kN 
I :'.] l+-8 kN 
---+ 4 kN 

Vmax=SkN 

P7- 3. 

N A B = 10 kN -~;;;;;;;;;;;;;;;;;;;;;;;;~ .... - 10 kN 

2kN 6kN 

F, = 1 kN -~~;;;;;;;;;;;;;;;;~--N OF= 1 kN 

Nmax = 10 kN 

P7-4 . 

h (8 kN/m)(3 m) = 24 kN 

N A = 24 kN .... 1-~;;;;;;;;;;;;;;;;;~-!!i!;;;;;;;;;;;;;;~j 

P7- S. 

"l.,M = O; 20 N (0.4 m) - V(0.01 m) = 0 

V =SOON 
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P7-6. 

• 5kN 

P7-7. 

P7-8. 

P7-9. 

P7- 10. 

a , .i 

2L = L 

6 
Eco = -

L 

6 ' = 2a 

26 46 
€JIB= L/2 = L 

N 
' ' 30° ' 

PRELIMINARY PROBLEMS SOLUTIONS 8 3 3 

P7-11. 

= (-81) rad 

'TT 
('Ys).ry = 2 - ('TT - 9z) 

= (-; + 0i) rad 

Chapter 9 

P9-la. 

P9-lb. 

NED= 700 N ~._700 N 

Noc= 300 N -.i;;;;;;;;::~~._ 700 N 
400N 

N cs = 500 N .... ~! ~~;;::::::::iog;;;J~;;;J._ 700 N 
200 N 400N 

600 N ~....,_ NAB= 600 N 

400N 

400N 300N 

P9-2. 

900N Ncs= 900 N 

.. 8 .. 
400N NEo= 400N 

.. 8 • 8 .. 
400 N 500 N Noll= 900 N 
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834 PRELIMINARY PROBLEMS SOLUTIONS 

P9-3. Pl0-2. 

(8x) kN -, 
x 

l 
N= 8.r 

P9-4. 

---x----1 

N = (800 - tOOx) N 

P9-5. Pl0-3. 
60kN 

i 
t-2m-l-4m-t 
40kN 20kN 

PL 20(HP) N (3m) 
.l - - - ----'----'--'-~--

8 - AE - 2(10- 3) m2 ((i()(l09) N/m2) 

= 0.5(10- 3) m = 0.5 mm 

Chapter 10 

Pl0-1. 

Pt0-4. 

P = Tw 

\
550 ft · lb/s) 7( rev )0 min ) ·21Trad 

(10 hp l h = 1200 - .- .en l p mm uvs rev 

T = 43.Slb · ft 
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PRELIMINARY PROBLEMS SOLUTIONS 835 

Chapter 11 Pll- l d. 

PU-la. (: ~ t ! i t v 

I 
I x v 

Ix M 

1-1~ x 

M 

x PU-le. 

PU-lb. 

t v 

v 

M 

Pll- lf. 

PU- l e. 

ti---' - it----7) v 

v 
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836 PRELIM INARY PROBLEMS SOLUTIONS 

PU-lg. 

v 

M 

Pll-lh. 

v 

x 

M 

x 

Pll-2. [1 3] [l . 3] 1 = 12(0.2 m)(0.4 m) -
12 

(0.1 m)(0.2 m) 

= 1.0 ( 10-3) m4 

Pll-3. 

_ 2y:I\ (0.05 m)(0.2 m)(O.I m) + (0.25 m)(0.1 m)(0.3 m) 

y = 2A = (0.2 m)(O.I m) + (0.1 m)(0.3 m) 

= 0.17 m 

I= [ 1~ (0.2 m)(O. I m)3 + (0.2 m)(0.1 m)(0.17 m - 0.05 m)2
] 

+ [ 1~ (0.1 m)(0.3 m)3 + (0.1 m)(0.3 m)(0.25 m - 0.17 m)2
] 

= 0.722 (10-3) m4 

Pll-4a. 

Pll-4b. 

M( B )M 
-o- Us 

~A 

M(j 
lo 

Aj)M 
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Pll-Sa. 

Pll-Sb. 

Chapter 12 

PU-la. 

0.1 m 

I 
0.4m 

1 
~1m 

Q = -y'A' = (0.1 m) (0.1 m) (0.4 m) = 4(10- 3) m3 

I= 0.4m 

PRELIMINARY PROBLEMS SOLUTIONS 8 3 7 

PU-lb. 

Q = y' A' = (0.15 m) (0.3 m) (0.1 m) = 4.5(10- 3) m3 

I= 0.3m 

PU-le. 

Q = y' A' = (0.2 m) (0.1 m) (0.5 m) = 0.01 m3 

r = 3 (0.1 m) = 0.3 m 

P12-ld. 

0.35 m 

Q = y' A' = (0.35 m) (0.6 m) (0.1 m) = 0.021 m3 

I= 0.6m 
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838 PRELIMINARY PROBLEMS S O LUT IONS 

PU-le. 

@ "':101 
' A 

Q = y' A ' = (0.25 m) (0.2 m) (0.1 m) = 5(10- 3) m3 

I= 0.2 m 

P12-lf. 

0.25 m 

Q = k)/'A' = (0.25 m) (0.1 m) (0.1 m) + (0.35 m) (0.1 m) (0.5 m) = 0.02 m3 

I= 0.1 m 

Chapter 13 

P13-la. 

140N·m 

300N 

P13-lb. 

600 N·m 

300N 

P13-lc. 

SON·m 

P13-ld. 

300N·m 

1200N 

SOON 

300N 
~ 600N·m 

200N 

P13-2a. 

ElementA ~+ ~ + GB + @ 
N M v T 

ElementB J)Bf +@ + @ +@ 
N M v T 
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P13-2b. 

Element A (:O +@+(O 
v M T 

Element B GB· ¢ + $ 
v 

Chapter 14 

P14-1. 

P14-lb. 

x. 

5 kPa 8 = 120" 

P14-lc. 

x' 

y~ 8, 57./ 
~=50" 

M T 

x ;r'~ 

~--.--+--x 

o = - no• 

8 kPa 

x ' 

PRELIMINARY PROBLEMS SOLUTIONS 839 

P14-2. 

J(u" u,,)2 , J(4 - (-4))2 
1: = +T -= +(0)2 max 

2 
iy 

2 

= 4MPa 
Ux +Uy 4 - 4 

Uavg = 
2 

-
2 

= 0 

tan 28,. = 
(ux - uy)/2 [4 - (- 4)]/2 

- = -co 
0 

8 = -45° • 
Ux - Uy 

2 
Sin 28 + T.IJ' COS 28 

4 - (-4) 

2 
sin2(- 45°)+0=4MPa 

Chapter 16 

P16-la. 

P16-lb. 

8kN 

32N·m ( t~x-1! ) M 
v 

M = (8x - 32) kN · m 

dy 
x = 0, - = 0 

dx 

x = 0, y = 0 

5kN 

M = (5x)kN · m 

x = 0, y = 0 

x =2m. y =O 
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840 

P16-1c. 

P16-1d. 

PRELIMINARY PROBLEMS SOLUTIONS 

(2x) kN 

,----+-- -~ ,. 
•--x ~tx-1V 

4kN 

M = 4x - (2x)(}x) 
M=(4x - x2)kN·m 

x = 0, y = 0 

x =4m,y =O 

Ll----j{ ----1] ) M1 

ii-----J.t'1- --'. 

2kN 
v, 

M1 = ( - 2ri) kN·m 

8kN·m 

2kN 

P16-1e. 

Mi = (-2x + 8)kN ·m 

x1 = 0, y1 = 0 

x2 = 4 m, Y2 = 0 

dyi dy2 
X1 = X2 = 2m, -

dx1 dXi 

x1 = x2 = 2 m, Yi = Y2 

2 kN 

M, = - 2xi - (2xi) (txi) 

Mi = ( - 2ri - xt) kN · m 

P16-1f. 

4kN 

~'~-""""-"'-"'-,..-~-=-,!,,_=_=_=_=_=_=_""! ==V==lz ) 1\12 

1---I m-J-- 1 m-, 

2 kN lO kN 
1-------.\'2------ I 

M2 = lO(x2 - 2) - 4(x2 - 1) - 2x2 

Mz = (4x2 -16)kN·m 

x1 = 0, y1 = 0 

x1 = 2m, Y1 = 0 

Xz = 2 m, Y2 = 0 
dy1 dy2 x1 = Xz = 2 m, - = -
dx1 dx2 

IA----l x----1,,-11 t • 
V1 

1.5 kN 

3(.rz-2)kN 

2m 

.\'2 

1.5 kN 

1--
I ' 

'--~ 

I L Vz 

/ 
.! (.r2 - 2) 
2 

Mz = l.Sx2 - 3(x2 - 2) (~J (x2 - 2) 

M2 = -1.Sx~ + 7.5Xi - 6 

Xi= 0, Y• = 0 

·".? = 4 m, y2 = 0 

Xi= Xz = 2m, 

x, = X2 = 2 m, Yi = Y2 
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Fundamental Problems 
Solutions and Answers 

Chapter 2 
F2-1. 
FR = v(2 kN)2 + (6 kN)2 - 2(2 kN)(6 kN) cos 105° 

= 6.798 kN = 6.80 kN Ans. 
sin 4> sin 105° 
6 kN = 6.798 kN. </> = 58.49° 

8 = 45° + </> = 45° + 58.49° = 103° Ans. 

F2-2. FR = V2002 + 5002 - 2(200)(500) cos 140° 

= 666 N Ans. 

F2-3. FR = V6002 + 8oo2 - 2(600)(800) cos 60° 

= 721.11 N = 721 N Ans. 
sin a sin 600 
--= a= 73.900 
800 721.11 ' 

4> = a - 30° = 73.90° - 30° = 43.9° Ans. 

F2-4. 
F,, 30 -

sin 105°' 
F,, = 22.0 lb Ans. 

sin 45° 
Fv 30 

F. = 15.5 lb Ans. -
sin 300 sin 105°' 

F2-5. 
FAB 450 -

sin 105° sin 300 
FAB = 869 lb Ans. 

FAc 450 

sin 45° - sin 300 
FAc = 636 lb Ans. 

F2-6. 
F 6 - F = 3.11 kN Ans. 

sin 300 sin 105° 
F. 6 

F. = 4.39kN Ans. -
sin 45° sin 105° 

F2-7. (fi).r = 0 (fj)1 = 300 N Ans. 
(fi)x = -(450 N) cos 45° = - 318 N Ans. 

(fi)1 = (450 N) sin 45° = 318 N Ans. 

(f'.i)x = (~)600 N = 360 N Ans. 

(f'.i)1 = (~ )600 N = 480 N Ans. 

F2-8. Fn.r = 300 + 400 cos 30° - 250U) = 446.4 N 

FRr = 400 sin 300 + 2500) = 350 N 

FR= V(446.4)2 + 3502 = 567 N Ans. 

I) = tan-14~4 = 38.1°~ Ans. 

F2-9. 

:.( FR}r = IF,.; 

(FR)x = -(700 lb) cos 30° + 0 + (D (600 lb) 

= -246.22 lb 

+ f (FR)y = IF,.; 

(FR)y = -(7001b)sin300 - 4001b - U) (600lb) 

= -1230 lb 

FR = V(246.22 lb)2 + (1230 lb)2 = 1254 lb Ans. 

4> = tan-1 ( 1230 lb ) - 78 68° 2-16.22 lb - . 

e = 1800 + </> = 1800 + 78.68° = 259° Ans. 

F2-10. :.( FR)x = IF,; 

750 N = F cos 8 + ( 1
5
3 )(325 N) + (600 N)cos 45° 

+ j (FR)y = IF,; 

0 = Fsin 8 + ( tt) (325 N) - (600 N)sin 45° 

tan I) = 0.6190 I) = 31.76° = 31.8°~ Ans. 

F= 236N Ans. 

F2-ll. :!:.(FR).r = IFx; 

(801b)cos45° = Fcose + 501b - (~)90 lb 

+f(FR)y =IF,; 

-(80 lb) sin 45° = Fsin I) - 0)(90 lb) 

tan e = 0.2547 I) = 14.29° = 14.3°~ Ans. 

F = 62.5 lb Ans. 

F2-12. (FR)x = 15(~) + 0 + 15U) = 24kN--+ 

(FR)y = 15(~) + 20 - 15(~) = 20kN f 
FR= 31.2 kN Ans. 

I) = 39.8° Ans. 

F2-13. F,. = 75 cos 300 sin 45° = 45.93 lb 

F, = 75 cos 300 cos 45° = 45.93 lb 

F, = -75 sin 300 = -37.5 lb 

a= cos-1 (~) = 52.2° Ans. 

f3 =cos-•(~) = 52.2° Ans. 

1' = cos-• ( 4P) = 1200 Ans. 

841 
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842 FUNDAMENTAL PROBLEMS SOLUTIONS AND A NSWERS 

F2-14. cos f3 = V 1 - cos2 120" - cos2 fU = ± 0. 7071 F2-22. F = FuAB = 900N( -~ + ~ - ~) 

Require f3 = 135°. = { -400i + 700j - 400k } N Ans. 
F = Fu F = (500 N)(- 0.5i - 0.707 lj + 0.5k) 

= { - 250i - 354j + 250k } N Ans. F2-23. FB = FBu B 

F2-15. cos2a + cos2135° + cos2120° = l 
= (840N)(~i - ~ - ;t) 

(X = 60° = {360i - 240j - 720k } N 

F = FuF = (500 N)(0.5i - 0.7071j - 0.5k) Fe = Feuc 
= { 250i - 354j - 250k } N Ans. 

= (420 N)(~i + ~ - ~k) 

F2-16. F, = (50 lb) sin 45° = 35.36 lb = { 120i + 180j - 360k } N 
F ' = (50 lb) cos 45° = 35.36 lb 

FR = Y(480 N)2 + (- 60 N)2 + (-1080 N)2 

F, = u) (3536 lb) = 21.21 lb 
= l.18 kN Ans. F, = (~)(35.36 lb) = 28.28 lb 

F = { - 21.2i + 28.3j + 35.4k } lb Ans. F2-24. FB = Fnu B 

F2-l7. F,. = (750 N) sin 45° = 530.33 N = (600 l b)( -~ + ~ - ~k ) 
F' = (750 N) cos 45° = 530.33 N = { -200i + 400j - 400k} lb 
F, = (530.33 N) cos 60° = 265.2 N 

Fe = Fcu c F1 = (530.33 N) sin 60° = 459.3 N 

Fz = {265i- 459j + 530k } N Ans. = (490 lb)( -~i + t.i - ~ ) 

F2-18. F1 = (~)(SOO lb) j + U)(SOOlb)k 
= { -420i + 210j - 140k } lb 

= { 400j + 300k } lb FR = F8 + Fe= { - 620i + 610j-540k } lb Ans. 

F2 = [ (800 lb) cos 45°1 cos 30" i 
F2-25. H z. 2k UAO = -3 + 3J - J 

+ [ (800 lb) cos 45°1 sin 30"j 

+ (800 lb) sin 45° (-k) UF = -0.5345i + 0.8018j + 0.2673k 

= { 489.90i + 282.84j - 565.69k } lb () = cos-• (uAo · u F) = 57.7° A ns. 
FR= F, + F2 = { 490i + 683j - 266k } lb Ans. 

F2-26. 3. 4k UAB = -~ + 5 
F2-l9. rAB = { - 6i + 6j + 3k } m Ans. 

llF = ~ - ~ 
TAB = Y(- 6m)2 + (6m)2 + (3m)2 = 9m Ans. 

(X = 132". f3 = 48.2°, .,. = 10.5° Ans. 8 = cos-• (uAa • uF) = 68.9° Ans. 

F2-20. rAB = { - 4i + 2j + 4k } ft Ans. F2-27. 12 . 5 • 
u oA = u• + 131 

TAB= V(- 4 ft)2 + (2 ft)2 + (4 ft)2 = 6 ft Ans. UoA. j = "oA(l) cos 9 

<x = cos- 1 (-;,4r{') = 131.8° cos9 = fs; 9 = 67.4° A ns. 
() = 180" - 131.8° = 48.2° Ans. 

F2-2l. rAB= {2i +3j- 6k }m F2-28. -Hi 5. UQA = 13 + Tii 

FAB = FABDAB F = Fu F = (650j] N 

= (630N)(~i + ~ - ;t) FoA = F · u oA = 250 N 

= { 180i + 270j - 540k } N Ans. FoA = FoA uoA = {231i + 96.2j } N Ans. 
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FUNDAMENTAL PROBLEMS SOLUTIONS AND A NSWERS 843 

{4 i + l j -6 k }m 
F2-29. F = (400N) 

V(4m)2 + ( 1 m)2 + ( - 6m)2 

= {219.78i + 54.94j - 329.67k } N 

{ - 4 j - 6 k } m 
DAO = 

V(- 4m)2 + (-6m)2 

= - 0.5547j - 0.8321 k 

(FAo)proj = F · DAO = 244 N Ans. 

F2-30. F = [ ( - 600 lb) cos 60"] sin 30" i 
+ ((600 lb) cos 600] cos 30" j 
+ [(600 lb) sin 600) k 

= { - 150i + 259.8lj + 519.62k } lb 

DA = -ii + ii + ! k 

(FA)par = F · DA = 446.41 lb = 446 lb Ans. 

(FA)per = V(600 lb)2 - (446.41 lb)2 

= 40llb Ans. 

F2-31. F = 56 N(ti - ~j + ' k ) 
= {24i - 48j + 16k } N 

(FAo)u = F · DAo = (24i - 48j + 16k ) • (~i - ; j - ~) 
= 46.86 N = 46.9 N Ans. 

( FAo )J. = Vf'2 - (FA0)1 = Y (56 ) 2 - ( 46.86) 2 

= 30.7 N Ans. 

Chapter 3 
F3-l. C +M0 = - (~)(100N)(2m)- (~)(lOON)(Sm) 

= - 460 N • m = 460 N · m) Ans. 

F3-2. C +M0 = ((300 N)sin 30"][0.4 m + (0.3 m)cos 45°] 

- [ (300 N) cos 30°)1 (0.3 m) sin 45°] 

= 36.7 N · m Ans. 

F3-3. C +M0 = (600 lb)(4 ft + (3 ft)cos 45° - 1 ft) 
= 3.07 kip . ft Ans. 

F3-4. C+M0 = - 50sin600(0.l + 0.2cos45° + 0.1) 

+ 50 cos 60"(0.2 sin 45°) 

= - ll.2N·m Ans. 

F3-S. C +M0 = 600 sin 50° (5) + 600 cos 50° (0.5) 
= 2.49 kip. ft Ans. 

F3-6. C + M0 = 500 sin 45° (3 + 3 cos 45°) 

- 500 cos 45° (3 sin 45°) 

= 1.06 kN · m Ans. 

F3-7. 

F3-8. 

F3-9. 

C +(MR)o = I.Fd; 

(MR)o = - (600 N)(l m) 

+ (500 N)(3 m + (2.5 m) cos 45°1 

- (300 N)((2.5 m) sin 45°l 

= 1254 N·m = 1.25 kN · m Ans. 

C +(MR)o = I.Fd; 

(MR)o = [ G) 500 N] (0.425 m) 

- ((~)500 N )(0.25 m) 

- ((600 N) cos 600](0.25 m) 

- ((600 N) sin 600)(0.425 m) 

= - 268N ·m = 268N·m) Ans. 

C +(MR)o = I.Fd; 

(MR)o = (300 cos 30° lb)(6 ft + 6 sin 30" ft) 

- (300 s in 30° lb)(6 cos 30° ft) 

+ (200 lb)(6cos30° ft) 

= 2.60 kip · ft An.t 

F3-10. F = FDAB = SOON(~ - ~ ) = { 400i - 300j } N 

M o = roA x F = {3j } m x {400i - 300j } N 

= { - 1200k } N · m Ans. 

or 

M 0 = r08 x F = {4i } m x {400i - 300j } N 

= { -1200k } N · m Ans. 

F3-ll. F = Fu8 e 

[ 
{4 i - 4 j -2 k }ft J 

= 120 lb ---;:=::::;;:::==::::::;:=== 
V(4 ft)2 + ( - 4 ft)2 + c-2 ft)2 

= {80i - 80j - 40k } lb 

j k 

Mo = re x F = 5 0 0 
80 - 80 -40 

- { 200j - 400k } lb. ft Ans. 

o r 

i j k 
M0 = r8 x F = 1 4 2 

80 - 80 -40 

= { 200j - 400k } lb . ft Ans. 
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F3-12. FR= F1 + Fz 

= {(100 - 200)i + (-120 + 250)j 

+ (75 + lOO)k } lb 

= {-lOOi + 130j + 175k } lb 

j k 

(MR)o = rA X FR= 4 5 3 
-100 130 175 

= { 485i - lOOOj + 1020k } lb· ft Ans. 

1 0 0 
F3-13. Mx = i · (roB X F) = 0.3 0.4 - 0.2 

300 -200 150 

= 20 N ·m Ans. 

F3-14. 
rA {0.3i + 0.4j } m . . 

UoA = - = = 0.6 I + 0.8 J 
'A V(0.3 m)2 + (0.4 m)2 

0.6 0.8 0 

MoA = uoA · (rAB X F) = 0 0 - 0.2 
300 -200 150 

= -72 N · m Ans. 

IMoAI = 72N·m 

F3-15. Scalar Analysis 
The magnitudes of the force components are 

f'x = l200cos l2D°I = 100 N 

F,. = 200cosCiO° = 100 

F, = 200cos45° = 141.42 N 

Mx = -Fy(z) + F,(y) 

= - (100 N)(0.25m) + (141.42N)(0.3m) 

= 17.4N ·m 

Vector Analysis 

0 0 

Ans. 

1 

Mx = 0 0.3 0.25 = 17.4 N · m Ans. 
- 100 100 141.42 

0 
F3-16. My = j · (rA X F) = -3 

30 
= 210N·m 

1 0 
-4 2 
-20 50 

Ans. 

FJ-17. 
rAB { -4i + 3j } ft 

llAB = - = = -0.8i + 0.6j 
'AB V(-4 ft)2 + (3 ft)2 

MAB = uAB • (rAc X F) 

- 0.8 0.6 0 
- 0 0 2 = -4 lb. ft 

50 -40 20 

MAB = MABllAB = { 3.2i - 2.4j } lb. ft Ans. 

F3-18. Scalar Analysis 

F3-19. 

F3-20. 

FJ-21. 

The magnitudes of the force components are 

Fx= n)[;(500)) =240N 

F, = Hh5oo)) = 320 N 

F, = ~(500) = 300 N 

M,= - 320(3) +300(2) = -360 N·m Ans. 

Mr= - 240(3) - 300 (-2) = - 120 N · m 

M, = 240(2) - 320(2) = -160 N·m 

Ve.ctor Analysis 

F = { -240i + 320j + 300k } N 

r0 A = { -2i + 2j + 3k } m 

M_, = i ·( r0 A X F) = -360 N·m 

My = j · ( roA X F ) = -120N ·m 

M~ = k · ( roA X F ) = -160N ·m 

Ans. 

Ans. 

C +Mc. = IMA = -400(3) + 400(5) - 300(5) 

- 200(0.2) = - 740 N · m Ans. 

Also, 

C +Mc.= -300(5) + 400(2) - 200(0.2) 

= -740N·m Ans. 

C +Mc.= 300(4) + 200(4) + 150(4) 

= 2600 1b·ft Ans. 

C +(MB)R = ! MB 

- 1.5 kN · m = (2 kN)(0.3 m) - F(0.9 m) 

F = 2.33 kN Ans. 

FJ-22. C+Mc = 10(0(2) - lO( i){4) = -20 kN·m 

= 20kN·m) Ans. 
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_ r1 _ {- 2i + 2j + 3.5k} ft 
ll1 - - -

r1 v'(- 2 ft)2 + (2 tt)2 + (3.5 ft)2 

= _ 42-i + 42~i + 344k • :> .:>.II .) 

D2 = -k 
_ U· 2 • 

0 3 - ~· - , •• --=> _.;)of 

(M")1 = (M")1u1 

= (450lb·ft){- 425i + 42si + Hk) 
= { - 200i + 200j + 350k } lb. ft 

(M"h = (M,)iu2 = (250 lb· ft)( -k) 

= { - 250k } lb. ft 

(M")J = (M,)3 U3 = (300 lb· ft) ( ~:~i - 22~ ) 
= { 180i - 240j } lb. ft 

(ML")R = LM,; 

F3-27. 

c +MAR = LMA; 

MAR = - 30(3) - ~ (50)(6) - 200 

= - 470N ·m 

::_ (FR)x = LF_,; 

(FR)x = 900 sin 30° = 450 N -+ 

+ f (FR)y = LFy; 

(FR)y = - 900 cos 30° - 300 

= - 1079.42 N = 1079.42 N ! 
FR = v' 4502 + 1079.422 

= 1169.47 N = 1.17 kN 

8 = tan- 1 
( 

1ax;o42
) = 67.4° ~ 

c +(MR)A = LMA; 

Ans . 

Ans. 

Ans. 

(MR)A = 300 - 900 cos 30° (0.75) - 300(2.25) 

(M")R = {- 20i - 40j + 100k}Jb·ft 

F3-24. F8 = (~)(450N)j - G)(450N)k 

Ans. 
= - 959.57 N · m 

= %0N·m) Ans. 

F3-25. 

= {360j - 270k } N 

i j 
M, = rAB x F8 = 0.4 0 

0 360 

= {108j + 144k} N · m 
Also, 

M, = (rA x FA) + (r8 X F8) 

k 
0 

- 270 

Ans. 

F3-28. ::_ (FR) .. = LF,; 
(FR)x = 150G) + 50 - 100(~) = 60 lb-+ 

+ f (FR)y = LF,.; 
(FR), = - 15oU) - 1oo(t) 

= - 180 lb = 180 lb ! 
FR= V602 + 1802 = 189.74 lb= 190 lb Ans. 

8 = tan-1 
( ~,~n = 71.6° ~ Ans. 

i j k i j k c +(MR)A = LMA; 

- 0 0 0.3 + 0.4 0 0.3 (MR)A = 100(~)(1) - 100G)(6) - 150(~)(3) 
0 - 360 270 0 360 - 270 = - 640 = 640 lb· ft ) Ans. 

= {108j + 144k} N · m Ans. 

t.. FR., = LF_,; FRx = 200 - ~ (100) = 140 lb 

+ ! FRy = LFy; FRy = 150 - ~ (100) = 70 lb 

FR = v 14c2 + 702 = 157 lb Ans. 

8 = tan- 1 
( (2i) = 26.6° 7 Ans. 

(+MAR= LMA; 

MAR = -~100)(4) + ~ (100)(6) - 150(3) 

MR. = - 210 lb. ft Ans. 

F3-29. 

FR= F1 + Fi 

= (- 300i + 150j + 200k) + (- 450k) 

= { - 300i + 150j - 250k } N Ans. 

roA = (2 - O)j = {2j} m 

ron = (- 1.5- 0)i + (2 - O)j + (1 - O)k 

= { - l.5i + 2j + l k } m 

(MR)o = L M ; 

F3-26. _:. FR.t = LF,; FR., = ~ (50) = 40 N (MR)o = r on X F i + roA X F1 

+!FR)'= LFy; FRy = 40 + 30 + ~(50) 
= lOON 

FR = V~(4-0~)2~+-(1_0_0)~2 = 108 N Ans. 

8 = tan- 1 
(:) = 68.2° ~ Ans. 

i j k 

- - 1.5 2 1 + 
- 300 150 200 

= { - 650i + 375k } N · m 

i j k 
0 2 0 
0 0 - 450 

Ans. 
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F3-30. F1 = { - I OOj } N 

F2 = (200 N) [ 
{ -0.4i - 0.3k } m J 

V(-0.4m)2 + (- 0.3m)2 

= {-160i - 120k } N 

Mc = { - 75i } N · m 

FR = {-160i - lOOj - 120kJ N Ans. 

(MR)o = (0.3k) X (-100j ) 

j 
+ 0 0.5 

-160 0 

k 

0.3 + ( - 75i) 
-120 

= {- 105i - 48j + 80kJ N · m Ans. 

F3-31. + ! FR = I Fy; FR = 500 + 250 + 500 

F3-32. 

= 1250 lb Ans. 

C+ FRx = I Mo; 

-12SO(x) = -500(3) - 250(6) - 500(9) 

x = 6 ft 

.±. ( FR)x = IF,,; 

(FR)x = 100U)+50sin 30° = 85 lb --+ 

+f(FR)y = IF,,; 

(FR),, = 200 + 50cos30° - 100(;) 

= 163.30 lb t 
FR = Vs52 + 163.3a2 = 1841b 

Ans. 

e = tan- 1 (1~.JO) = 62.5° d. Ans. 

c +(MR)A = I MA: 

163.30(d) = 200(3) - lOO(t)C6) + 50cos30°(9) 

d = 3.12 ft Ans. 

F3-33. ...Z. (FR)x = II'.,: 

(FR)x = 15 (~) = 12 kN --+ 

+f(FR)y = IF,,: 

(FR)y = -20 + 15U) = - 11 kN=11 kN! 

FR = V 1:z2 + 112 = 16.3 kN Ans. 

IJ = tan- 1 (t!) = 42.5° "'I,; Ans. 

c +(MR)A = IMA: 

- ll (d) = -20(2) - 150)(2) + 15 (~) (6) 
d = 0.909 m Ans. 

F3-34. !.( FR)x = IF,..; 

(FR)x = (~) 5 kN - 8 kN 

= -5 kN = 5 kN +-

+ f (FR)y = IF,,; 

(FR)y = -6 kN - (~) 5 kN 

= - !OkN = lOkN! 

FR = V52 + la2 = 11.2 kN 

fJ = tan- 1 ( ~ :t) = 63.4° ;p 

c +(MR)A = I MA: 

5 kN(d) = 8 kN(3 m) - 6 kN(0.5 m) 

- [{g)5 kNj(2m) 

- [(i)5 kN j(4m) 

d = 0.2 m 

Ans. 

Ans. 

Ans. 

F>.-35. + ! FR = IF,; FR = 400 + 500 - 100 

= SOO N Ans. 

MRT = IM,; -800y = -400(4) - 500(4) 

y = 4.50 m Ans. 

MRy = I M,,; 800x = 500(4) - 100(3) 

x = 2. 125 m Ans . 

F>.-36. + ! FR = IF,; 
FR = 200 + 200 + 100 + 100 

= 600 N Ans. 

MRx = I Mx; 
- 600y = 200(1) + 200(1) + 100(3) - 100(3) 

y = -0.667m Ans. 

MR, = I M,,; 

600x = 100(3) + 100(3) + 200(2) - 200(3) 

x = 0.667 m Ans. 

F3-37. +f FR = IF,,; 

- FR = -6( 1.5) - 9(3) - 3(1.5) 

FR = 40.5 kN! 

c +(MR)A = I MA; 
-40.5(d) = 6(1.5)(0.75) 

- 9(3)( 1.5) - 3(1.5)(3.75) 

d = 1.25 m 

Ans. 

Ans. 

F>.-38. FR = ! (6)(150) + 8(150) = 1650 lb Ans. 

C+MA. =IMA; 

- 1650d = -[! (6)(150) ](4) - [8(150)](10) 

d = 8.36 ft Ans. 
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F3-39. +f FR = IF,,; 
- FR = - !(6)(3) - i(6)(6) 

FR = 27 kN! Ans. 

<: +(MR)A = IMA; 

- 27(d) = !(6)(3)(1) - !(6)(6)(2) 

d=lm A ns. 

F3-40. +!FR = IF,,; 
FR = !(S0)(6) + 1S0(6) + SOO 

= lSSO lb Ans. 

<:+MA. = IMA; 
- 1550d = - [ t{s0)(6)](4) - (150(6)](3) - 500(9) 

d = 5.03 ft Ans. 

F3-41. + f FR = IF,,; 
- FR = - !{3)(4.S) - 3(6) 

FR = 24.75 kN ! 
<: +(MR)A = IMA; 

-24.7S(d) = - !{3)(4.S)(l.S) - 3(6)(3) 

d = 2.S9 m 

Ans. 

Ans. 

F3-42. FR= jw(x) dx = 14

2.Sx3 d:c = 160 N 

_ J xw(x) dx 14

2.Sx4 d:c 

x = J - l60 = 3.20 m Ans. 
w(x) dx 

Chapter 4 
F4-1. ~IF,.= O; - Ax +soon) = 0 

Ax = 300 lb Ans. 
<:+IMA = 0; B

1
(10) - 500{!)(5) - 600 = 0 

B1 = 260 lb Ans. 

+fIF,, = 0: A1 + 260 - 500(~) = 0 

A1 = 140 lb Ans. 

F4-2. <:+IMA = O; 
Feo sin 4S0 (1.S m) - 4 kN(3 m) = O 

Feo = 11.31 kN = 11.3 kN Ans. 

:.IF,.= O; Ax+ (11.31 kN) cos 45° = 0 

Ax = - 8 kN = 8 kN +- Ans. 
+fIF, = 0; 

A1 + (11.31 kN) sin 45° - 4 kN = 0 

A1 = - 4 kN = 4 kN ! Ans. 

F4-3. <:+IMA = 0; 
Ns[6 m + (6 m) cos 45°] 

- 10 kN[2 m + (6 m) cos 4S0
] 

- 5 kN(4m) = 0 

Na= 8.047 kN = 8.05 kN Ans. 
'!. IFx = O; 
(5 kN) cos 4S0 

- A_, = 0 

Ax = 3.54 kN Ans. 
+ fIF, = O; 
A1 + 8.047 kN - (5 kN) sin 4S0 

- 10 kN = 0 

A,, = S.49 kN Ans. 

F4-4. ~IF,. = 0: - Ax + 400 cos 30" = 0 

A, = 346 N Ans. 

+fIF, = O; 
A1 - 200 - 200 - 200 - 400 sin 30° = 0 

A1 = 800 N Ans. 
<:+IMA= 0; 

MA - 200(2.5) - 200(3.5) - 200(4.S) 

- 400 sin 30"( 4.5) - 400 cos 30°(3 sin 60°) = O 
MA = 3.90 kN · m Ans. 

F4-5. <: +IMA = 0; 

Nc(0.7 m) - [25(9.81) NJ (0.S m) cos 30" = O 

Ne = 151.71 N = 152 N Ans. 

'!.IF,. = O; 

T11s cos is• - (151.71 N) cos 60" = o 
TAB = 78.53 N = 78.S N Ans. 

+ j IF,, = O; 

FA + (78.S3 N) sin 1S0 

+ (151.71N)sin60° - 25(9.81) N = 0 

FA = 93.5 N Ans. 

F4-6. !.IF,. = 0: 

Ne sin 30" - (250 N) sin 60" = 0 

Ne = 433.0 N = 433 N Ans. 

<: +IMs = O; 

-NA sin 30"(0.lS m) - 433.0 N(0.2 m) 

+ ((250 N) cos 30°](0.6 m) = 0 

NA = 577.4 N = 577 N Ans. 

+ fIF,, = O; 
N8 - 577.4 N + (433.0 N)cos 30" 

- (250 N) cos 60" = 0 

N8 = 327 N Ans. 
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F4-7. !.F, = O; 

TA + Ts + Tc - 200 - 500 = 0 

!.Mx = O; 

TA(3) + Tc(3) - 500(1.S) - 200(3) = 0 

!.My = O; 

-Ts(4) - Tc(4) + 500(2) + 200(2) = 0 

TA = 350 lb, Ts = 250 lb, Tc = 100 lb Ans. 

F4-8. !.My = O; 

600 N(0.2 m) + 900 N(0.6 m) - FA( I m) = 0 

FA = 660 N Ans. 

!.Mx = O; 

D,(0.8 m) - 600 N(0.5 m) - 900 N(O. l m) = 0 

!.F,. = O; 

!.F,. = O; 
!.F, = O; 

D = 0 , 
D = 0 y 

Ans. 

Ans. 

Ans. 

T8 c + 660 N + 487.5 N - 900 N - 600 N = 0 

Tse = 352.S N Ans. 

F4-9. !. Ty = O; 400 N + c,. = 0: 

C
1 

= - 400 N Ans. 

!.M
1 

= O; - C, (0.4 m) - 600 N (0.6 m) = 0 

C, = - 900 N Ans. 

!.M, = O; B, (0.6 m) + 600 N (1.2 m) 

+ (- 400 N)(0.4 m) = 0 

B, = - 933.3 N Ans. 

!.M, = O; 

-Bx (0.6 m) - (- 900 N)(l.2 m) 

+ (- 400 N)(0.6 m) = 0 

Bx = 1400 N Ans. 

!.F, = O; 1400N + (- 900N) + A,. = 0 

A,.= - SOON 

!.F, = O; A, - 933.3 N + 600 N = 0 

A,= 333.3 N 

F4-10. -S.F_, = O; 

!.M, = O; 

B = 0 x 

Cy(0.4m + 0.6m) = 0 C1 = 0 

!.Fy = O; A1 + 0 = 0 A1 = 0 

!.M,. = O; C,(0.6 m + 0.6 m) + B,(0.6 m) 

- 450N(0.6m + 0.6m) = 0 

Ans. 

A11s. 

Ans. 

Ans. 

Ans. 

l.2C, + 0.68, - 540 = 0 

!.M,. = 0: -C,(0.6 m + 0.4 m) 

- 8,(0.6 m) + 450 N(0.6 m) = 0 

-C, - 0.6B, + 270 = 0 

C. =13SON B.= - 1800N . -
!.F, = 0; 

A , + 1350 N + (-1800 N) - 450 N = 0 

A, = 900 N 

F4-1L !.Fy = 0; A1 = 0 

!.M, = 0; -9(3) + Fc_d3) = 0 

FcE = 9kN 

!.M, = 0; Fo{3) - 6(3) = 0 

FcF = 6kN 

!My = 0; 9(4) - A, (4) - 6(1.S) = 0 

A, = 6.75 kN 

!F,, = 0; A, + 6 - 6 = 0 Ax = 0 

!F,. = 0; Fos + 9 - 9 + 6.75 = 0 

Fos = -6.75 kN 

Ant 

Ans. 

Ans. 

Ans. 

Ans. 

Ans. 

Ans. 

A11s. 

F4-U. !F,, = O; A_.. = 0 Ant 

'i.Fy = O; A1 = 0 Ans. 

'i.F, = O; A, + Fsc - 80 = 0 

!M,. = O; (MA)x + 6Fsc - 80(6) = 0 

!M,. = 0; 3F8 c - 80(1.5) = 0 Fsc = 40 lb Ans. 

!M, = 0; (MA), = 0 Ans. 

A , = 40 lb (MA)x = 240 lb· ft Ans. 

F4-13. a) + j!.F, = O; N - 50(9.81) - 2oon) = 0 

N = 610.5N 

::.!.F, = O; F - 200( ; ) = 0 

F = 160N 

F < Frrux = µ,,N = 0.3(610.S) = 183.15 N, 

therefore F = 160 N Ans. 

b) + f!.F,. = O; N - 50(9.81) - 400U) = 0 

N = 730.5N 

::. I.Fx = O; F - 400U) = o 
F = 320N 

F > Fmax = µ, N = 0.3(730.5) = 219.15 N 

Block slips 

F = J.LkN = 0.2(730.5) = 146 N Ans. 

www.konkur.in



FUNDAM ENTAL PROBLEMS SOLUTIONS AND ANSWERS 849 

F4-14. C +!M8 = O; 

NA(3) + 0.2NA(4) - 30(9.81)(2) = 0 

NA = 154.89N 

~IF,, = 0: P - 154.89 = 0 

P = 154.89 N = 155 N 

F4-15. Crate A 

+f!F,. = O; NA - 50(9.81) = 0 

NA = 490.5 N 

~!F,. = O; T - 0.25(490.5) = 0 

T = 122.62N 

Crate B 

Ans. 

+ t!F,. = O; N8 + P sin 30° - 50(9.81) = 0 

N8 = 490.5 - 0.5P 

!.!F,, = O; 

P cos 30° - 0.25( 490.S - 0.S P) - 122.62 = 0 

P = 247 N 

F4-16. ~!F,. = O; NA - 0.3Ns = 0 

+ j !Fy = 0; 

N8 + 0.3NA + P - 100(9.81) = 0 

C+!Mo = 0; 

P(0.6) - 0.3N8 (0.9) - 0.3 NA(0.9) = 0 

NA = 175.70 N N8 = 585.67 N 

Ans. 

F4-19. A will not move. Assume B is about to slip on C 
and A , and C is stationary. 

~!F,. = O; P- 0.3(50) - 0.4(75); P = 45N 

Assume C is about 10 slip and B does not slip on 
C. but is about lo slip at A. 

-:.IF,.= 0: P - 0.3(50) - 0.35(90) = 0 

P = 46.5 N > 45 N 

P = 4SN Ans. 

F4-20. A is about to move down the plane and B moves 
upward. 

Block A 

+1'...!F1 = 0; N = W cos8 

+/'!F,. = O; T + µ,( W cos8) - Wsin8 = 0 

T = Wsin 8 - µ., W cos 8 (1) 

Block B 

+1'...!F).=O; N' = 2 Wcos8 

+/'!F,, = 0; 2T- µ, W cos 8 - µ, (2W cos 8) 
- W sin8 = 0 

Using Eq.(1); 

8 = tan- 1 5µ, Ans. 

F4-2L Assume Bis about 10 slip on A, F8 = 0.3 N8 . 

-:.IF,,= 0: P- 0.3( 10) (9.81) = 0 

P = 29.4 N 

P = 343 N Ans. Assume B is about to tip on A. :r = 0. 

F4-17. If slipping occurs: 

F4-18. 

+ t !F,. = O; Ne - 250 lb = O; Ne = 250 lb 

~!Fx = O; P - 0.4(250) = O; P = 100 lb 

If tipping occurs: 

C +!MA = 0; -P(4.S) + 250(1.5) = 0 

p = 83.3 lb Ans. 

<:+!MA= o; 490.S(0.6) - Tcos60°(0.3 cos 60° + o.6) 

- Tsin60°(0.3sin60° ) = 0 

T = 490.S N 

~!F,. = O; 490.S sin 60° - NA = O; NA = 424.8 N 

+ f !F1 = O; µ, ( 424.8) + 490.5 cos 6\f - 490.5 = 0 

µ, = 0.577 Ans. 

C + !M0 = O; 10(9.81) (0.15) - P ( 0.4) = 0 

P = 36.8N 

Assume A is about to slip. FA = 0.1 NA-

~!F,. = 0 P- 0. 1[7(9.81) + 10(9.81)) = 0 

P=l6.7N 

Choose the smallest result. P = 16.7 N Ans. 

Chapter 5 
FS-1. Joint A. 

+ f I F,.= 0; 225 lb - FAD sin 45° = 0 

FAD = 318.20 lb= 318 lb (C) Ans. 

!.I F,,= 0; FAB - (3 18.20 lb) cos 45° = 0 

FAs = 225 lb (T) Ans. 
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loim B. 

:.IF,. = 0: FBc - 225 lb = 0 

FBc = 225 lb (T) Ans. 

+ i!F,. = 0; FBD = 0 Ans. 

Joi111 D. 

:.IF.-, = O; 

FcD cos 45° + (318.20 lb) cos 45° - 450 lb = O 

FcD = 318.20 lb = 318 lb (T) Ans. 

FS-2. Joi111 D. 

FS-3. 

+ fIF,. = 0; ~FcD - 300 = O; 

FcD = 500 lb (T) Ans. 

.:. IF_., = 0; - FAD + ~ (500) = 0 

F11D = 400 lb (C) Ans. 

F8 c = 500 lb (T), F11c = FA 8 = 0 Ans. 

D., = 800 lb, D, = 1400 lb, A_, = 800 lb 

Joi111 B. 
-±. IF.r = O; F811 = 0 Ans. 

+ t IF, = 0; - 600 + FBc = O; FBc = 600 lb (T) Ans. 

Joi111 C. 

+ f!F,=O;FCAG) - 600=0: 
FCA = 1000 lb (C) Ans. 

..±. !F.r = 0: -FcD + (~)(1000) = 0; 

FcD = 800 lb (T) Ans. 

l oi111 A . 

+ t IF, = 0; - 800 - 1000 ( ~) + FAD = O; 

FAD = 1400 lb (T) An.1: 

FS-4. Joi111 C. 

+ f !F,. = O; 2Fcos 30° - P = O 

FAc = FBc = F = 2 C::3U' = 0.5774P (C) 
Joim 8. 
:.IF.r = 0: 0.5774P cos (ff - FAB = 0 
FAB = 0.2887P(T) 

FAB = 0.2887 p = 2 kN 
p = 6.928kN 

FAc = F8c = 0.5774P = 1.5 kN 
P = 2.598 kN 

·nic smaller value of P is chosen, 

P = 2.598 kN = 2.60 kN 

FS-5. FcB = 0 
FcD = 0 
FAE = 0 
FDE = 0 

Ans. 

Ans. 
Ans. 
Ans. 
Ans. 

FS-6. Joi111 C. 

FS-7. 

FS-8. 

+ f ! F, = 0: 259.81 lb - FcD sin 30" = 0 

Fco = 519.62 lb = 520 lb (C) Ans. 

:!:.If, = O; (519.62 lb) cos 300 - F8 c = O 

FBc = 450 lb (T) Ans. 

Joinr D. 

+ .l'IF,.· = 0; FBD cos 300 = 0 F8 D = 0 Ans. 

+ '>.IF,.· = 0; FDE - 519.62 lb= 0 

FD£ = 519.62 lb = 520 lb (C) Ans. 

l oi111 B. 

f IF,= 0: F8 Esin q, = 0 F8 E = 0 Ans. 

:!:. IF,. = 0: 450 lb - F11B = 0 

FAB = 450 lb (T) Ans. 

Joim A. 

+ f!F, = 0; 340.19lb - FAE= 0 

FAE = 340 lb (C) Ans. 

+ f!F). = 0; FcFsin45° - 600 - 800 = 0 

FcF = 1980 lb (T) Ans. 

C + !Mc = 0: FFE(4) - 800(4) = 0 

FF£ = 800 lb (T) Ans. 

( + IMF = 0: FBc(4) - 600(4) - 800(8) = 0 

F8 c = 2200 lb (C) Ans. 

(+!MA = 0; G, (12 m) - 20 kN(2 m) 

- 30 kN(4 m) - 40 kN(6 m) = 0 

G, = 33.33 kN 

+ t IF, = O; FKc + 33.33 kN - 40 kN = O 

FKc = 6.67 kN (C) Ans. 

( + IMK = 0; 

33.33 kN(8 m) - 40 kN(2 m) - FcD(3 m) = 0 

Fco = 62.22 kN = 622 kN (T) Ans. 

:!.IF,. = 0: FLK - 6222 kN = 0 

FLK = 62.2 kN (C) Ans. 

FS-9. From the geometry of the truss, 

q, = tan- 1(3 m/2 m) = 56.31°. 

( + !.MK= 0; 

33.33 kN(8 m) - 40 kN(2 m) - FcD(3 m) = 0 

Fco = 62.2 kN (T) Ans. 

C + IMD = 0; 33.33 kN(6 m) - FKJ3 m) = 0 

FKJ = 66.7 kN (C) Ans. 
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+t IF,. = O; 
33.33 kN - 40 kN + FKo sin 56.31° = 0 

FKo = 8.01 kN (T) Ans. 

FS-10. From the geometry of the truss, 

tan</> = <911>3•~,· JO" = 1.732 </> = 600 

C+IMc = O; 

FS-11. 

FEFsin 30°(6 ft) + 300 lb(6 ft) = 0 

FEF = - 600 lb = 600 lb (C) Ans. 

C+IMo = O; 

300 lb(6 ft) - FcFsin 60° (6 ft) = 0 

FcF = 346.41 lb = 346 lb (T) Ans. 

C+IMF = O; 

300 lb(9 ft) - 300 lb(3 ft) - F8c(9 ft)tan 300 = 0 

Fsc = 346.41 lb = 346 lb (T) Ans. 

From the geometry of the truss, 
() = tan- 1 (1 m/2 m) = 26.57° 
</> = tan- 1 (3 m/2 m) = 56.31°. 

The location of 0 can be found using similar 
triangles. 

C+IMc = O; 

lm 2m ----
2m 2m+x 

4m=2m +x 

x=2m 

26.25 kN(4 m) - 15 kN(2 m) - Fco(3 m) = 0 

Fco = 25 kN (T) Ans. 

C+IM0 = O; 

26.25 kN(2 m) - FcFcos 26.57°(2 m) = 0 

FcF = 29.3 kN (C) Ans. 

C +IMo = O; 15 kN(4 m) - 26.25 kN(2 m) 
- Fco sin 56.31°(4 m) = 0 

Fco = 2253 kN = 2.25 kN (T) Ans. 

FS-12. c + IMH = O; 

F0 c(12 ft) + 1200 lb(9 ft) - 1600 lb(21 ft) = 0 

Foe = 1900 lb (C) Ans. 

C+IMo = O; 

1200 lb(21 ft) - 1600 lb(9 ft) - Fi11(12 ft) = 0 

FHI = 900 lb (C) Ans. 

C + IMc = O; 0 1 cos 45°(12 fl) + 1200 lb(21 ft) 

- 900 lb(12 ft) - 1600 lb(9 ft) = 0 

Fi1 = 0 Ans. 

FS-13. + f"' F. = O· 3P - 60 = 0 4 )' ~ 

p = 20 lb Ans. 

FS-14. C + IMc = O; 

-(~)(FAs)(9) + 400(6) + 500(3) = 0 

FAB = 541.67 lb 

!.IF,. = O; -ex + ~ (541.67) = 0 

ex = 325 lb Ans. 

+ j IF,, = O; e, + ! (541.67) - 400 - 500 = 0 

e, = 467 lb Ans. 

FS-15. C + IMA = 0; 100 N(250 mm) - Ns(50 mm) = 0 

FS-16. 

Ns=500N 

!.If, = O; (500 N) sin 45° - Ax = 0 

Ax= 353.55 N 

Ans. 

+ t IF,, = O; A, - 100 N - (500 N) cos 45° = 0 

Ay = 453.55 N 

FA = V(353.S5 N)2 + (453.55 N)2 

= 575 N Ans. 

C+IMc = O; 
400(2) + 800 - F8 A ( Jm) (1) 

- FBA (-drn)(3) = 0 
FsA = 843.27 N 

!.IFx = 0; ex - 843.27 ( Jm) = 0 

ex = 800 N Ans. 

+ jIF,, = O; e,. + 843.27('1io)-400 = 0 

e, = 133 N Ans. 

Chapter 6 

lxdA ~1'm113dy 
F6-1. "i = A = 0 = 0.4 m Ans. i dA 1•my113dy 

1 y dA 1' m y413 dy 

y = A = 0 
1 

= 0.571 m Ans. i dA 1 m y"3dy 

j xdA 1•m x(x3dx) 

F6-2. x = l dA - 1 L m x3 dx 

= 0.8 m Ans. 
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F6-3. 

F6-4. 

F6-5. 

F6-6. 

F6-7. 

= 0.286m 

= l.2m 

= 0.667 m 

'i.x L 
x = 'i.L 

! ''" lo x3 dx 

l
lm 

7T ydy 
0 4 

1
2ft 9 

7T 2 - (4 - z) dz 
0 64 

150(300) + 300(600) + 300(400) -
300 + 600 + 400 

= 265mm 
'i,- L - y 

y = 'i.L 

0(300) + 300(600) + 600(400) -
300 + 600 + 400 

= 323mm 
'i,- L - z 

z = 'i.L 

0(300) + 0(600) + (- 200)( 400) -
300 + 600 + 400 

= - 61.5mm 

Ans. 

Ans. 

Ans. 

Ans. 

= 

Ans. 

Ans. 

Ans. 

Ans. 

F6-8. 
_ 'i.y A 150(300(50)] + 325(50(300)] 
y = 'i.A = 300(50) + 50(300) 

= 237.5 mm Ans. 

F6-9. 
_ 'i.y A 100(2(200)(50)] + 225(50(400)] 

F6-10. 

F6-ll. 

y = 'i.A = 2(200)(50) + 50(400) 
= 162.5 mm 

_ 'i.x A 0.25[4(0.5)] + 1.75(0.5(2.5)] x= --= 
'i.A 4(0.5) + 0.5(2.5) 

= 0.827 in. 
_ 'i.y A 2[4(0.5)] + 0.25((0.5)(2.5)] 
y = 'i.A = 4(0.5) + (0.5)(2.5) 

= 1.33 in. 

_ 'l.x v 1[2(7)(6)] + 4[4(2)(3)] 
x = 'i, v = 2(7)(6) + 4(2)(3) 

= 1.67 ft 
- 'i.y v 3.5[2(7)(6)] + 1[4(2)(3)] y= --= 

'i, v 2(7)( 6) + 4(2)(3) 

= 2.94 ft 
_ 'l.z v 3[2(7)(6)] + L5[4(2)(3)J 
z = 'i, v = 2(7)( 6) + 4(2)(3) 

= 2.67 ft 

'i.x v 
F6-12. x = 'i.V 

Ans. 

Ans. 

Ans. 

Ans. 

Ans. 

Ans. 

o.25(0.5(2.5)(1.8)) + o.z5[~c1.s)(l.8)(0.5) J + [~c1.s)(l.8)(0.5) J 
0.5(2.5)(1.8) + & (1.5)(1.8)(0.5) + ~{1.5)(1.8)(0.5) 

= 0.391 m Ans. 

- 'i.y v 5.00625 
y = 'i.V = 3.6 = 1.39 m Ans. 

_ 'i-z v 2.835 
z = 'i, V = 3.6 = 0.7875 m Ans. 

F6-13. 

Ix= i y2 dA = 11 

m y2( ( 1 - y3f2)dy] = 0.111 m4 Ans. 

F6-14. 

Ix= i y2 dA = 11 

m y2(y3f2dy) = 0.222 m4 Ans. 

F6-15. 

J !'"' 
Iy = A x2 dA = l o x2(x213 )dx = 0.273m

4 Ans. 

www.konkur.in



FUNDAM ENTAL PROBLEMS SOLUTIONS AND A NSWERS 853 

F6-16. F6-19. Ir = 2 ( 1i(50) ( 2o03) + 0 ] 

+ [#300)(503
) + o] Iy = L x2 dA = fo 1 

'"x2[ (1 - x2f3) dx] = 0.0606 m4 Ans. 

F6-17. Ix = [.12 (50){ 4503) + 0] + Li (300){ 503) + 0 ] 
= 69.8 (106

) mm4 Ans. 

= 383 (Hf) mm4 Ans. 

Ir = [ 1i (450)(503 ) + o] 
+ 2 [I~ (50) ( 15oJ) + (150)(50)(100)2] 

= 183 (Hf) mm4 Ans. 

F6-18. Ix = 1i (360) ( 2003
) - 1~ (300) ( 14a3) 

F6-20. 
_ LJ A 15(150)(30) + 105(30)(150) 
y = ~A = 150(30) + 30(150) = 60 mm 

Ix· = L(l + Ad2
) 

= [ 112 (150)(30)3 + (150)(30)(60 - 15)2 ] 

+ [I~ (30)(150)3 + 30(150)(105 - 60)2 

= 171 (Hf) mm4 Ans. 

Iy = ii (200) ( 3603
) - #140) ( 30a3) 

= 27.0 (106) mm4 Ans. 

= 463 (Hf) mm4 Ans. 

Chapter 7 
F7-L Entire beam: 

<,:+LM8 =0; 
Left segment: 

..:!> LF = O· 
x ' 

+ jLF,=O; 

<;+LMc=O; 

F7-2. Entire beam: 

<,:+LMA =0; 

Right segment: 
...:!> L F = O· 

x ' 

+ jLF,.=O; 

<;+LMc=O; 

F7-3. Entire beam: 

..:!> LF_, = O; 

<,:+LMA =0; 
Right segment: 

..:!> L F_, = O; 

+ jLF,.=O; 

<;+LMc=O; 

F7-4. Entire beam: 

<,:+LM8 =0; 
Left segment: 

..:!> L F_, = O; 

+ jLF,.=O; 

<;+LMc=O; 

F7-5. Entire beam: 
...:!> L F_, = O; 

<;+LMs=O; 

60 - 10(2) - A y(2) = 0 

Nc=O 

20 - Vc=O 

Mc+ 60 - 20(1) =O 

By(3) - 100(1.5)(0.75) - 200(1.5)(2.25) = 0 

B,. =262.5 N 

Nc=O 

v c + 262.5 - 200(1.5) = 0 

262.5(1.5) - 200(1.5)(0.75) - Mc= 0 

Bx=O 

20(2)(1) - B,.(4) =O 

Nc=O 

Vc - 10=0 

-Mc -10(2)=0 

~ (10)(3)(2) + 10(3)( 4.5) - A,.( 6) = 0 

Nc=O 

27.5 -10(3) - Vc=O 

Mc+ 10(3)(1.5) - 27.5(3) = 0 

A =O 
x 1 

300(6)(3) - 2 (300)(3)(1) - A,. (6) = 0 

A,.=20kN 

Vc=20kN 

Mc= -40kN·m 

Vc=37.5 N 

Mc=l69N · m 

B,.=lOkN 

Ve= 10 kN 

Mc= - 20kN·m 

A,. =27.5 kN 

Vc= - 2.SkN 

Mc= 37.5 kN · m 

A,. =825 lb 

Ans. 

Ans. 

Ans. 

Ans. 

Ans. 

Ans. 

Ans. 

Ans. 

Ans. 

Ans. 

Ans. 

Ans. 
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Left segment: 

-:I> kF. = O· 
x ' 

+fkF =O· 
y ' 

Nc=O 

825 - 300(3) - V c= 0 

<:+kMc=O; Mc+ 300(3)(1.5) - 825(3) = 0 

Vc= - 75lb 

Mc= 1125 lb· ft 

Ans. 

Ans. 

Ans. 

F7-6. Entire beam: 

+fkF. =O· 
y ' 

Left segment: 

-:I> kF. = O· 
x ' 

+fkF =O· 
y ' 

<: + kMc=O; 

F7-7. Beam: 

kMA = 0; Teo= 2w 

k f'y = O; TAB= w 

Rod AB: 

u = N. 300(103) = ~. 
A' 10' 

w=3 N/m 

Rod CD: 

u = N · 300(103) = 2w · 
A ' 15 ' 

w = 2.25N/m 

F80 (~)(4) - 5(6)(3) = 0 

37.5 (~) - A., = 0 

A,.+ 37.5(~) - 5(6) = 0 

Nc - 30=0 

7.5 - 5(2) - Vc=O 

Mc+ 5(2)(1) - 7.5(2) = 0 

Ans. 

F7-8. A = ?T(0.12 - 0.082) = 3.6(10-3)1T m2 

N 300(103) 
u. = - = = 26.5 MPa 

avg A 3.6(10-3)1T 
Ans. 

F7-9. A= 3[4(1)) = 12 in2 

N 15 
Uavg = A = 

12 
= 1.25 ksi Ans. 

F7-10. Consider the cross section to be a rectangle and 
two triangles. 

_ k yA 0.15((0.3)(0.12)) + (0.1)[& (0.16)(0.3) ] 

y= = 
kA 

0.3(0.12) + & (0.16)(0.3) 

= 0.13 m = 130 mm Ans. 

Uavg - N -
6
00(l03) = 10 MPa Ans. 

A 0.06 

F7- 11. 

F80 =37.5 kN 

A,=30kN 

A,.= 7.5 kN 

Nc=30kN 

Vc= - 2.SkN 

Mc=5kN·m 

Ans. 

Ans. 

Ans. 

1T ? ·2 1T 2 ·2 AA =Ac= 4 (0.5-) = 0.06251T 10 , A8 = 4 (1) = 0.251Tm 

- NA - 3 
UA - - - 006 = 15.3 ksi (T) 

AA . 251T 
Ans. 

NB - 6 
us= - = 

0 
= - 7.64 ksi = 7.64 ksi (C) 

As .251T 
Ans. 

Ne 2 . 
uc = Ac = 0.06251T = 10.2 ks1 (T) Ans. 

F7- 12. Pin at A: 

FAD= 50(9.81) N = 490.5 N 

+fkf'y=O; 13ic(~) - 490.5=0 FAc= 817.5 N 

-:I> kf;, = 0; 817.5(~) - ~8 = 0 FA8 =654N 

1T 
AAB = 4 (0.0082) = 16(10--f>)?T m2 

13is 654 
(uAB)avg = AAB = 16(l0--<>)1T = 13.0 MPa 

F7- 13. Ring C: 

+ f k f'y = O; 2F cos (i()0 
- 200(9.81) = 0 

(uauow)avg = AF; 150(106
) = 

1962 

1T d2 
4 

Ans. 

F= 1962 N 

d = 0.00408 m = 4.08 mm 

Used=5 mm. Ans. 
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F7-14. Entire frame: 

F7-15. 

IF, = O; A1 = 600 lb 

IM8 = 0; Ax = 800 lb 

FA = V(600)2 + (800)2 = 1000 lb 

F,i/2 1000/2 . 
(TA).,, = A= ,, 2 = 10.2 ks1 

f(0.25) 

Center plate. bolls have double shear: 

IF,.= 0: 4V- 10 = 0 V=2.5 kip 

A= ;(~)
2 

= 0.1406251rin2 

= V - 2·5 = 5.66 ksi 
0.1406251T A 

F7-16. Nai ls have single shear: 

F7-17. 

IF.= O· .. ' P- 3V = 0 V=p 
3 

p 

v 
{ 1'avg)a11ow = -;4' 60(106

) = 
3 

4(1~)7T 

P = 2.262(103) N = 2.26 kN 

Strut: 

Ans. 

Ans. 

Ans. 

..:t; ~F. = o· 
- x ' V-Pcos60°=0 V=O.SP 

A = ( ~·05 )co.025) = t.4434(10-3) m2 
sm 60° 

( ) V 600{lh3) = 0.5P 
1'avg allow = A- Ir 1.4434(l0-3) 

P = l.732(103) N = 1.73 kN 

F7-18. The resultant force on the pin is 

F = V302 + 402 = 50 kN. 

We have double shear: 

V= F = 50 =25kN 
2 2 

A = :!!.. (0.032) = 0.225(10-3)7T m2 
4 

v 25(1<>3) 
1'. = - = = 35.4 MPa 
"'& A 0.225(10-3)7T 

Ans. 

Ans. 

F7-19. Eyebolt: 

..:t IF..= O; 30-N=O N=30kN 

Uy 250 
= - = - = 166.67MPa 

F.S. 1.5 

= ~; 166.67(106) = 30(la3) 
1T dz 
4 

d= 15.14 mm 
Used= 16 mm. 

F7-20. Right segment through AB: 

..:!; IF..= O; NAB - 30 = 0 NAB= 30 kip 
Right segment through CB: 

Ans. 

..:l;IF_.=O; Nac -15-15-30=0 N8 c=60kip 

Uy 50 . 
UaJlow = F.S. = 1.5 = 33.33 ks1 

Segment AB: 

NAB 
UaJlow =-A ; 

AB 

Segment BC: 
Nae 

UalJO'i\' = --. 
Aac' 

30 
33.33 = h 1{0.5) 

h1=1.8 in. 

60 
33.33 = hz{0.5) 

h 2 = 3.6 in. 

U I 
7 . 5. 

se 11 = 18 m. and h2 = 3Sm. 

F7-21. N= P 

Uy 250 
uan.,.. = - = - = 125 MPa 

F.S. 2 

A,= : (0.042) = 1.2566(10-3) m2 

A.....,= 2(0.06 - 0.03)(0.05) = 3(10-3) m2 

The rod will fail firs1. 

N 125(106) = p 
Uauow = A} 1.2566(10-3) 

P = 157.08(103) N = 157 kN 

F7-22. Pin has double shear: 

..:t IF.. = O; 80 - 2V = 0 V = 40 kN 
'Tfail 100 

1'allow = F.S. = 2_5 = 40 MPa 

v 40(1<>3) 
40(106) = --'Tallow = A' 

'!!..dz 
4 

d = 0.03568 m = 35.68 mm 

Ans. 

Ans. 

Use d = 36 mm. Ans. 
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F7-23. Shear plane 
for bolt 

Shear plane 
P for plate 

V=P 

_ Tfail _ 120 _ 
48 

MPa 
Tallow - F.S. - 2.5 -

Area of shear plane for bolt head and plate: 

A,, = 7rdt = 7r(0.04)(0.075) = 0.0037T m2 

A1, = 'TTlit = 7r(0.08)(0.03) = 0.00247T m2 

Since the area of shear plane for the plate is 
smaller, 

v p 
Tauo.. = Ap ; 48(106) = 0.00247T 

P = 361.91(103) N = 362 kN Ans. 

F7-24. Support reaction at A: 

(+ 2M8 = 0; ~ (300)(9)(6) - A,,(9) = 0 Ay = 900 lb 

Each nail has single shear: 

v = 900 lb/6 = 150 lb 
Tfail 16 . 

Tallow = F.S. = 2 = 8 ks1 

v 8(103) = 150 
Tallow = _..A• 

'TT d2 
4 

d = 0.1545 in. 

Use d = 
1
3
6 

in. 

6c 0.2 
-= -· 
600 400' 

6c = 0.3mm F7-25. 

6c 0.3 
Eco= - = - = 0.001 mm/mm 

Leo 300 

Ans. 

Ans. 

1600 mm-t;-600 mmlc 
A b k J I I 8c 

0 80 

F7-26. 

(
002°) 8 = 
1
·
80

• 'TT rad = 0.3491 (10-3
) rad 

6n = 8LA 8 = 0.3491(10-3)(600) = 0.2094 mm 

6c = 8LAc = 0.3491(10- 3)(1200) = 0.4189 mm 

68 0.2094 - 3 
EBO = LBo = 400 = 0.524(10 ) mm/mm 

6e 0.4189 
Ee£ = - = = 0.698(10-3) mm/ mm 

Le£ 600 
F7-27. )' 

2 mm 
_Qr--j'----~C 

,.. - --
I - --

I 
I 

400mm ' 
' 

a ' ' ' ' 

fl I B 
A - -- __ , 4mm - ~ x 

-300mm 

2 
a = 

400 
= 0.005 rad 

4 
~ = 

300 
= 0.01333 rad 

'TT 
(1'A).ry = l - 8 

=; -(; -a+~) 

F7-28. 

=a-~ 

= 0.005 - 0.01333 
= -0.00833 rad 

y 

400mm 
A ---- ---

fl 300mm 

L 
/ 

/ 
/ 

/ 
/ 

/ 
/ ,, 

c 

Loe= V30<1- + 4002 = 500 mm 

Smm 

3 mm 

/ 
/ 

/ 
/ 

/ 
/ 

L 8 -c = Y (300 - 3)2 + (400 + 5)2 = 502.2290 mm 

Ans. 

Ans. 

Ans. 

x 
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3 
a = 

405 
= 0.007407 rad 

Ls·c - Lsc 502.2290 - 500 
(Esdavg = Lsc = 500 

= 0.00446 mm/mm Ans. 

'TT 'TT ('TT ) ('Y) =- -0= -- - - a =-a=-0.0074lrad Ans. 
A -'Y 2 2 2 

F7-29. 

y' 

I 
I 

300mm 1 

H~300 mm ___!.I~ 
3mm 3 mm 

x 
x' 

LAc = V L~D + L~D = V3002 + 3002 = 424.2641 mm 

LA·c = VL~'D' + L~'D' = V3062 + 2962 =425.7370mm 

8 = tan-•(LcD'); 8 = 2 tan-1(
306

) = 1.6040 rad 
2 LA'D' 296 

) 
- LA'C' - LAC - 425.7370 - 424.2641 

(EAC "' - LAc - 424.2641 

= 0.00347 mm/mm Ans. 

('Y ) - 'TT - 0 - 'TT - 1.6040 = - 0.0332 rad E.xy - 2 -2 Ans. 

Chapter 8 

F8-L Material has uniform properties throughout. Ans. 

FS-2. Proportional limit is A. Ans. 

FS-3. 

FS-4. 

FS-5. 

FS-{). 

FS-7. 

Ultimate stress is D. Ans. 

The initial slope of the u - E diagram. Ans. 
True. Ans. 

False. Use the original cross-sectional area 
and length. Ans. 

False. It will normally decrease. Ans. 

u N 
E = E = AE 

NL lOO(l<l-1)(0. 100) 
ll = EL = - = - -'------

AE 'TT (0.015)2 200(109) 
4 

= 0.283mm Ans. 

FS-8. 

FS-9. 

FS-10. 

FS-11. 

u N 
E = E = AE 

NL 
ll =EL= -

AE 
(10 000)(8) 

0.003 = 12£ 

E = 2.22(106) psi 

u N 
E = £ = AE 

NL 6(10'1)4 
ll =EL =-= ------

AE : (0.01)2100(109) 

= 3.06mm 

N lOO(lcP) 
u = - = - -- = 318.31 MPa 

A 'TT (0.02)2 

4 

Ans. 

Ans. 

Since u < uy = 450 MPa, Hooke's Law is 
applicable. 

Uy 450(1Q6) 
E = - = 200GPa 

E y 0.00225 

u 318.31(106) 
E = E = 9\ = 0.001592 mm/mm 

200(10} 

ll = EL = 0.001592(50) = 0.0796 mm Ans. 

N 150(103
) 

u = - = = 477.46 MPa 
A : (0.022) 

Since u > uy = 450 MPa, Hooke's Law is not 
applicable. From the geometry of the shaded triangle, 

E - Q.00225 477.46 - 450 -
0.03 - 0.00225 500 - 450 

E = 0.0174903 

\Vhen the load is removed, the strain recovers along 
a line AB which is parallel to the original elastic line. 

Uy 450(106) 
Here E = Ey = 

0
_
00225 

= 200 GPa. 

The e lastic recovery is 
u 477.46(106) 

E, = - = 9 = 0.002387 mm/mm 
E 200(10) 

Ep = E - E, = 0.017493 - 0.002387 

= 0.01511 mm/mm 

llP = "PL = 0.0151(50) = 0.755 mm Ans. 
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u(MPa) 

L-----'--=--'---'--- e (mm/mm) 
0.00225 0.03 

Ssc 0.2 3 FS-U. esc = Lsc = 
300 

= 0.6667(10- ) mm/mm 

FS-13. 

use = Eesc = 200(109)(0.6667(10-3)] 

= 133.33 MPa 

Since u8 c < uy = 250 MPa, Hooke's Law is 
valid. 

Fsc 
use= -A ; 

BC 

F. 
133.33(106) = BC 

7T (0.0032) 
4 

Fsc = 942.48 N 
<: + 'i.MA = 0; 942.48(0.4) - P(0.6) = 0 

P = 628.31 N = 628 N Ans. 

p 10(103) 
u = A = r. 2 = 56.59 MPa 

4(0.015) 

- u - 56.59(10
6

) - -3 
€1ang - E - 70(l09) - 0.808(10 ) 

€1a1 = - 11€1ang = - 0.35(0.808(10-3)) 

= - 0.283(10-3) 

Sd = ( - 0.283(10-3))(15 mm) = - 4.24(10-3) mm 
Ans. 

p 50(103) 
FS-14. u = - = = 159.15 MPa 

A ;f(0.022) 

€ 0 = 1 = ~·: = 0.002333 mm/mm 

u 159.15(106
) 

E = - = = 68.2GPa Ans. 
€" 0.002333 

e = d' - d = 19.9837 - 20 = _ 0.815(10_3) mm/mm 
' d 20 

e, - 0.815(10-3) 
JI = -- = = 0.3493 = 0.349 

€ 0 0.002333 
E 68.21 

G = 2(1 + v) - 2(1 + 0.3493) = 25.3 GPa Ans. 

FS-15. 

FS-16. 

0.5 000 a = 
150 

= . 3333 rad 

y =; -8 =; -(; -a) 
= a = 0.003333 rad 

,,. = Gy = [26(109))(0.003333) = 86.67 MPa 

v 
'T = -

A ' 
6 - p 

86.67(10 ) - 0.15(0.02) 

P = 260kN Ans. 

3 
a = 

150 
= 0.02 rad 

y = ; - 8 = ; - (; - a) = a = 0.02 rad 

When P is removed, the shear strain recovers along 
a line parallel to the original elastic line. 
Yr = YY = 0.005 rad 

Yp = y - Yr = 0.02 - 0.005 = 0.015 rad Ans. 

Chapter 9 

F9-L 

F9-2. 

7T 
A = 4 (0.022

) = 0.1(10-3)7T m2 

N8 c = 40 kN, NAB =--60 kN 

Sc = AlE {40(103)( 400) + [- 60(103)(600)]} 

- 20(106) N ·mm 
-

AE 
= - 0.318mm Ans. 

7T 
AAB = Acv = 4 (0.022) = 0.1(10-3)7T m2 

Ase = : (0.042 - 0.032) = 0.175(10-3)7T m2 

NAB= - l0kN, N8 c = lOkN, Ncv = - 20kN 

(- 10(103) ]( 400) 
(jD/A - (0.1(10-3)7T](68.9(109) ) 

[10(103) ]( 400) 
+ --------

(0.175(10-3)7T l [ 68.9(109) l 
(- 20(103) ]( 400) 

+-------
(0.1(10-3)7T ][ 68.9(109) ] 

= - 0.449mm Ans. 

F9-3. A = ~0.032) = 0.225(10- 3)7T m2 

4 

N8 c = - 90 kN, NAB = - 90 +2(~)(30) = - 42 kN 
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I 
li = { (-42(10"1)(0 4)] 
c 0.225(10-3}1r(200(109) ] . 

+ (-90(1<>3)(0.6)]} 

= -0.501(10-3) m = - 0.501 mm Ans. 

NL [60(103)](0.8) 

liA/B = AE = (0.1(10-3)1T)[200(109)] 

= 0.7639(10-3)m ! 
F, 60(103) 

li = _!_ = = 1.2(10-3)m ! 
B k 50(1c6) 

+ ! liA = liB + liA/B 

liA = 1.2(10-3) +0.7639(10-3
) 

= 1.9639(1(} 3) m = 1.96 mm ! Ans. 

F9-5. 30 kN/m 
~-_...,.__/_ N(x) 

F9-6. 

1-+z-1 . 
~x I 

1T 
A = -(0.0'.22) = 0. 1(10-3)1T m2 

4 
internal load N(x) = 30(103)x 

liA = JN(x)dx 
AE 

I { o.9m 

= (O.l(l0-3)1Tl[73.1(109)] ) 0 
3
0(l03)x dx 

= 0.529(10-3) m = 0.529 mm Ans. 

(50x) kN/m 

~N(x) 
I~· 
~x I 

45(103
) 

Distributed load N(x) = 0.
9 

x = 50(103)x N /m 
1 

Interna l load N(x) = 
2 

(50(103))x(x) = 25(103)x2 

-11. N(x)dx 
liA - AE 

0 

= (0.1(10-3);)(73.1(109)] 1 09 m(25(103)x2]dx 

= 0.265 mm Ans. 

Chapter 10 

Fl0-1. 
1T 

J = ~0.044) = 1.28( 1 o-6)1T m~ 

T = T. =Tc= 5(1<>3)(0.04) = 49.7 MPa 
A max 1 l.28( I 0-6)1T 

Ans. 

TpB 5(103)(0.03) 
TB=-

1 
= -6 313 MPa 

l.28(10 )1T 
Ans. 

A v49.7MPa 

37.3 MPa 

Fl0-2. J = i<0.064 
- 0.044

) = 5.2(1o-6)1T m4 

Tc 10(103)(0.06) 
TB= Tmax = - = -6 36.7 MPa Ans. 

J 5.2(10 )1T 

TpA 10(1c3)(0.04) 
TA =-1-= 

5
_
2

(l0-6)1T = 24.S MPa Ans. 

A ~24.S MPa 

36.7 MPa 

Fl0-3. 

1T 
1Bc=2(0.044) = l.28(lo-6)1T m4 

7/,.BCAB (2(103))(0.04) 
(TAB)m:u = JAB 0.875(10-6)1T 29.1 MPa 

TsccBc 16(103)](0.04) 
(TBdmax = j BC l.28(10-6)1T 

=59.7 MPa Ans. 

Fl0-4. TAB= 0, Tuc =600 N · m, Tcv = 0 

1T 
J = "2 (0.02") = 80(10-9)1T m4 

Tm:u = Tc 600(0.02) = 417 MPa 
J 80( 10-9)1T 

Ans. 
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Fl0-5. J BC=; (0.044 - 0.03~) = 0.875(1Q-f>)1T m4 

Fl0-6. 

Fl0-7. 

Fl0-8. 

Tscc8 c 2100(0.04) 
( Tsdmax = Jsc 0.875(10-6)1T 

=30.6 MPa Ans. 

t = 5(H>1) N · m/ m 

internal torque is T= 5(103)(0.8) = 4000 N · m 
1T 

J = 2 (0.044
) = l.28( l<r')1T m~ 

T = ~C = 4000(0.04) 39.8 MPa 
AB J l.28(10-6)1T 

TAB= 250 N · m, T8 c = 175 N · m, 
Teo =-150 N • m 

Maximum internal torque is in region AB. 

TAB= 250N ·m 

Ans. 

T,18 c 250(0.025) 
Tabs = -- = = 10.2 MPa Ans. 

max J .!.(o 025)4 2 . 

P = Tw; 3(550) ft· lb/s = T [150 (!;;) rad/s ] 

T = 105.04 ft · lb 

Tc A1 105.04(12)(d/2) 
Tallow= T' 12(11r) = 

'.!.(d/2)4 

2 
d = 0.812 in. 

Used = ~ in. Ans. 

Fl0-9. TAB=-2kN·m.T8 c =lkN·m 
1T 1=2 (0.034

) = 0.405(1<r')1T m~ 

-2(103)(0.6) + (103)(0.4) 

<f>A/C = (0.405(10-6)1T](75(109)) 

= - 0.00838 rad = -0.48~ 

Fl0-10. TAB= 600 N • m 

1T 
J = 2 (0.024

) = 80(10-")1T m4 

600(0.45) 

</Jo/A= (80(10-9)1T){75( 109)) 

Ans. 

= 0.01432 rad = 0.821° Ans. 

Fl0-11. J =; (0.044 
- 0.034) = 0.875(1Q-f>)1T m4 

~8 LAB 3(1fr1)(0.9) 

<f>A/B = JG (0.875(10-6)1T){26(109)) 

= 0.03778 rad 

18 3(103) 
<f>B = ~ = 90(lfr1) 0.03333 rad 

<f>A = <f>B + <f>A/B 

= 0.03333 + 0.03778 

= 0.07111rad=4.07° 

FlO-U. TA11=600 N · m. Tsc =-300 N · m. 

Fl0-13. 

Tco=200 N · m. ToE=500 N ·m 

1T 
J = 2 (0.024) = 80(1o-9)1T m4 

[600 + (-300) + 200 + 500)0.2 

<f>E/A = (80(10-9)1T)l75(109) ) 

= 0.01061 rad = 0.608° 

1T 
J = 2 (0.044

) = l.28(1Q-f>)1T m~ 

t = 5(103) N · m/m 

internal torque is 5(103)x N · m 

-1L T(x)dx 
d>A/B- o JG 

= 5(lo-1)xdx 1 loll.8 m 

[1.28(10-{j)1T)[75(109)) 0 

Ans. 

Ans. 

= 0.00531 rad= 0.304° Ans. 

Fl0-14. 

7T 
J = T (0.044

) = l.28(1Q-f>)1T m4 

15(103
) 

Distributed torque is t = 
0

_
6 

(x) 

= 25(H>1)x N · m/m 
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Jn1ernal torque in segment AB, 
I 

T(x) = 
2 

(25x}(HY)(x) = 12.5(HP)x2 N · m 

In segment BC, 

I 
TBc= 2125(1(>3)(0.6)](0.6) = 4500 N. m 

1L T(x)dx 18cLBc ... - +~~ 
'l'A/C - o JG JG 

= [l.28(10-6)11T][75(109)J [10.6 m 12.5(1<>3)x2 dx + 4500(0.4)] 

= 0.008952 rad = 0.513° Ans. 

Chapter 11 

Fll-1. 

5kN 

C +IM8 =0; 

+t LF1 =0; 

A1(6)-30=0 

-V-5=0 

A
1

=5 kN 

V= - 5kN 
Ans. 

C+IM0 =0; M +5x =O M={- 5x}kN·m 
Ans. 

V(kN) 

6 
1---------+- X (m) 

-5 t--------~ 

M(kN·m) 

6 

- 30 

Fll-2. 

+ f LF,.=0; -V-9=0 

C+IM0 =0: M +9x=O 

V(kN) 

V=-9 kN Ans. 

M = {-9x} kN · m 
Ans. 

3 
1---------+-x (m) 

t--------~-9 

M(kN·m) 

Fll-3. 2 kip/fl 

'"""(~!DM 
~x-l v 

+f LF,=O; -V-2x=O V= {-2r} kip Ans. 

c +IMo=O: M + ix(~)-18 = 0 

M = (18- .f2} kip· ft Ans. 

v (kip) 

9 
x (ft) 

-18 

M (k ip· fl) 

18 
x (ft) 

-63 
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Fll-4. 

w 12 -
x 3 

w = 4x 

1 +iLF,. = O; - V - 2(4x)(x) = 0 

V= {- 2x2} kN Ans. 

~ + LMo =O;M + [~ (4x)(x) ](~) = 0 

M={-~x3}kN·m Ans. 

V(kN) 

M (kN·m) 

3 
i------====---1 - x (m) 

- 18 

Fll-5. V(kN) 

6 

- 6 

M (kN·m) 

1.5 6 4.5 
i-:::---+-----+---,,,......+- x ( m) 

...__ __ __.,I_ - 4.s 

Fll-6. V(kN) 

M(kN·m) 

Fll-7. V(kip) 

1050 

M (kip·ft) 

Fll-8. V(kN) 

M(kN·m) 

22.S 

I 
1.5 

15 

3 

- 150 
.______. - 750 

2756 2700 

20 

6 
x(m) 

- so 

6 
x(m) 

- 40 
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Fll-9. Consider two vertical rectangles and a horizontal 
rectangle. 

I= 2[ l~ (0.02)(0.zl)] + 1
1
2 (0.26)(0.ozl) 

= 26.84( 10-6) m4 

Mc 20(1<>3)(0.l) 
u ..,... = -,- 26.84(10-6) = 74.5 MPa 

Fll-10. See inside front cover. 

- 0.3 0 1 y=-= m 3 . 

I= ;
6 

(0.3)(0.33) = 0.225(10-3
) m4 

Mc 50(1Q3)(0.3 - 0.1) 
(u,,ia.),=-,-= 0.225(10-3) 

Ans. 

= 44.4 MPa (C) Ans. 

My 50(103)(0.1) 
(u,,"'x)1 = 3 = 22.2 MPa (T) Ans. 

I 0.225(10- ) 

Fll-11. Consider la rge rectangle minus the two side 
rectang.les. 

I= ..!.._ (0.2)(0.33) - (2)-
1 

(0.09)(0.263) 
12 12 

= 0.18636( l 0-3) m4 

Mc 50(1<>3)(0.15) 
Umax=-,-= 0.18636(10-3) = 40.2 MPa Ans. 

Fll-12. Consider two vertical rectangles and two horizontal 
rectangles. 

I = 2[ 
1
1
2 

(0.03)(0.43)] + 2[ l~ (0.14)(0.033
) + 0.14(0.03)(0.152

)] 

= 0.50963( 10-3) m4 

Mc 
Umu= I 

10(1Q3)(0.2) = 3.92 MPa 
0.50963(10-3) 

uA = 3.92 MPa (C) 

u8 = 3.92 MPa (T) 

Ans. 

Fll-13. Consider center rectangle and two side rectangles. 

1 = _!_(o.o5)(0.4)3+2[2-co.025)(0.3)1 ] 
12 12 

= 0.37917(10-3) m4 

MyA 5( 1<>3)(-0.15) 
u = -= -1.98 MPa (T) Ans. 

A 1 0.379 17(10-3) 

Fll-14. M1=5o(~) = 40 kN·m 

M, =so(~) = 30kN ·m 

11 =~(0.3)(0.23) = 0.2(10-3) m4 

12 

1. = _!_ (0.2)(0.33) = 0.45(1 o-3) m4 
• 12 

M,y M1 z 
u=--+-

1, 1, 

[30(1Q3)](-0. l 5) [40(103
) )(0.1) 

u = + .;:;.._-'---~-
A 0.45(10-3) 0.2(10- 3) 

=30MPa (T) 

(30( 103))(0.15) (40(1Q3)](0.l) 
u = + .;:;.._-'---~-

B 0.45(10-3) 0.2(10-3) 

=10 MPa (T) 

1. 
tan a= j tan 8 

y 

= [ 0.45(10-
3
) ](~) 

tan a 0.2(10-3) 3 

a= 71.6° 

Fll-15. Maximum stress occurs at Dor A. 

Ans. 

Ans. 

Ans. 

(50cos30")12(3) (50sin30")12(2) 
(umax)o = Af4)(6)3 + Af6)(4)3 

= 40.4 psi Ans. 

Chapter 12 

F12-1. Consider two vertical rectangles and a horizontal 
rectangle. 

1 = 2[ l~ (0.02)(0.23)] + I~ (0.26)(0.023
) 

= 26.84(10- 6) m4 

Take two rectangles above A. 

QA= 2(0.055(0.09)(0.02)) = 198(10-6) m3 

VQA 100(1<>3)[198(10-6) ) 

TA= 11= (26.84(10-6))2(0.02) 
=IB.4M~ Ans. 
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FU-2. 

FU-3. 

Consider a vertical rectangle and two squares. 

I= 
1

1
2 

(0.1 )(0.33) + (2) l~ (0.1)(0.13) 

=0.24167(10-3) m4 

Take top half of area (above A). 

QA= Y'1A, I+ y':zA '2 

= [ ~ (0.05) ]<o.o5)(0.3) + 0.1(0.1)(0.1) 

= 1.375( 10-3) ml 

VQ 600(la3)(1.375(10-3)J 
TA= fr= (0.24167(10-l)j(0.3) ll4 MPa Ans. 

Take top square (above 8). 
Qs = y' 2A '2 = O. l(0.1)(0.l) = 1(10-l) ml 

VQ 600(la3)[1(10-3)] 
Ts=1r= (0.24167(10-3))(0.1) 24.8 MPa Ans. 

Vmax = 4.5 kip 

I=..:!__ (3)(63) = 54 in4 
12 

Take top ha lf of area. 

Qmax = y'.A' = 1.5(3)(3) = 13.5 in3 

( ) - vm .. Qmax 4.5(103)(13.5) 
'T max abs - /( 54(3) 375 psi 

Ans. 

Fl2-4. Consider two vertical rectangles and two horizontal 
rectangles. 

I = 2[ l~ (0.03)(0.4l)] + 2[ 
1
1
2 

(0.14)(0.033) 

+ 0.14(0.03)(0.152)] = 0.50963(10-3) m~ 
Take the top half of area. 

Qmax = 2y' LA' 1 + y'2 A'2 = 2(0.1)(0.2)(0.03) 

+ (0.15)(0.14)(0.03) = 1.83(10-3) m3 

VQmax 20( 103)(1.83(10-3)] 

"max = It - 0.50963(10-3)[2(0.03)) = 1.20 MPa 
Ans. 

FU-5. Consider one large vertical rectangle and two side 
rectangles. 

l = I~ (0.05)(0.4)3+ 2[ l~ (0.025)(0.3)3] 

= 0.37917( 1 o-3) 111
4 

Fll-6. 

F12-7. 

Take the top half of area. 

Qmax = 2y' 1 A' 1 + y' 2 A ' 2 = 2(0.075)(0.025)(0.15) 

+ (0.1)(0.05)(0.2) = 1.5625(10-3) m3 

VQmu 20(la3)(1.5625(10-3)) 
Tm.ax - -

It (0.37917(10-l)][2(0.025)J 

= 1.65 MPa 

l = 
1
1
2 

(0.3)(0.2°1) = 0.2(10-l) m4 

Top (or bottom) board 

Q = y'.A' = 0.05(0.1)(0.3)=1.5(10-l) ml 

Two rows of nails 

qallow = j F) = 2(15( la3)J 30(la3) 
\.s s s 

Ans. 

VQ 30(la3) 50(la3)[1.5(10-3)J 
qallow = - ,- ; S 0.2(10-3) 

s = 0.08 m = 80 mm Ans. 

Consider large rectangle minus two side rectangles. 

l = __!__ (0.2)(0.343) - (2)..!.. (0.095)(0.283) 
12 12 

= 0.3075(1 o-3) m4 

Top plate 

Q = y' A'= 0.16(0.02)(0.2) = 0.64(10-3) m3 

Two rows of bolts 

qallow= 2(F) = 2(30(la3)J 60(1a3) 
s s s 

VQ 
qau""' = -

1
-; 

60(Ja3) 300(la3)[0.64(10-3)] 

s 0.3075(10-3) 
s = 0.09609 m = 96.1 mm 

Uses= 96 mm Ans. 

F12-8. Consider two large rectangles and two side rectangles. 

1 = 2[ 1
1
2 (0.025)(0.33)] + 2[ 1

1
2 (0.05)(0.2l) + 0.05(0.2)(0.152)] 

= 0.62917(10-3) m4 

Top center board is held onto beam by the top row of bolts. 
Q = y' A' = 0.15(0.2)(0.05) = 1.5(10-3) ml 

Each bolt has two shearing surfaces. 

_ 2(F)- 2[8(1a3)] 16(1a3) 
qallow - S - S S 

VQ 16(103) 20(103)(1.5(10-3)] 
qauow= - ,-; S 0.62917(10-3) 

s = 0.3356 m = 335.56 mm 
Uses=335 mm Ans. 
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F12-9. Consider center board and four side boards. 

I= I~ (I )(63
) + 4[ 

1
1

2 
(0.5)(43

) + 0.5( 4)(32
)] 

= 100.67 in4 

Top-right board is held onto beam by a row 
of bolts. 

Q = y' A'= 3(4)(0.5) = 6 in3 

Bolts have one shear surface. 
F 6 

qallow=-=
S S 

VQ 6 15(6) 
qallow = - /-; s= 100.67 

s = 6.711 in. 

Uses=6~in. Ans. 

Also, can consider lhe top two boards held onto 

beam by a row of bolts with two shearing surfaces. 

Chapter 13 

Fl 3-L + t LF, =(FR),; -500 -300 = p 

F13-2. 

P= -800 kN 

300(0.05) - 500(0.1) = Mx 
Mx = -35 kN ·m 

L M1 =0; 300(0.1) - 500(0.1) = M,, 
M,, = -20 kN · m 

A = 0.3(0.3) = 0.09 m 2 

I =I = -
1 

(0 3)(0 33) = 0 675(10-3) m4 
x y 12 . . . 

-800(103) [20(103)](0.15) [35(103)](0.15) 
u = + + - ----

A 0.09 0.675(10-3) 0.675(10- 3) 

= 3.3333 MPa = 3.33 MPa (T) 

-800(103) [20(103)](0.15) 
u = +-----

8 0.09 0.675(10-3) 

= - 12.22 MPa=12.2 MPa (C) 

+f L Ty=O; V-400 =0 

Ans. 

[35(103) ](0.15) 

0.675(10- 3) 

Ans. 

V=400 kN 

C+IMA =0;-M -400(0.5) =O M = - 200 kN · m 

1 
I = -(0.1)(0.33)=0.225(10-3) m4 

12 

Bonom segment: 

My [200(103))(-0.05) 
u ---

A - I - 0.225(10-3) 

= -44.44 MPa =44.4 MPa (C) Ans. 

QA= y'A' = 0.1(0.1)(0.1) = 1(10-3)m3 

VQ 400(103)(1(10-3)] 
-r = -= = 118 MPa Ans. 

A Ir 0.225(10-3)(0.1) 

~44.4MPa 
17.SMPa-

Fl3-3. Left reaction is 20 kN. 

Left segment: 

+fLF,, =O: 20-V=O V=20kN 

C + 1M, = 0; M - 20(0.5) = 0 M = 10 kN · m 

Consider large rectangle minus two side rectangles. 
1 1 

I= 
12 

(0.l)(0.23) - (2)
12 

(0.045)(0.183) 

= 22.9267(10-6) m4 

Top segment above A: 

QA= Y'1A'1 + y2A2 = 0.07(0.04)(0.01) 

+ 0.095(0.1 )(0.01) = 0.123(10-3) nr3 
MyA [ 10(1a3))(0.05) 

UA = --/-= - 22.9267(10-6) 

= -21.81 MPa = 2 1.8 MPa (C) 

VQA 20(1Q3)(0.123(10-3)) 

TA=~= (22.9267(10-6)](0.01) 

= 10.7 MPa 

~l.8MPa 
10.7MPa-

Fl3-4. At the section through centroidal axis: 

N=P 

V=O 

M=(2 + 1)P=3P 
N Mc 

u=-+ -
A I 

30 
= P + (3P)(1) 

2(0.5) _I (0.5)(2)3 
12 

P=3 kip 

A11s. 

Ans. 

Ans. 
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F13-5. At section through B: 

F13-6. 

N=500lb, V=400lb 

M = 400(10) = 4000 lb · in. 

Axial load: 
N 500 . 

u, =A = 4(
3
) = 41.667 psi (T) 

Shear load: 
_ VQ _ 400((1.5)(3)(1)] 

T,)' - - - 37.5 psi 
Ii [ l~ (3)( 4)3)3 

Bending moment: 

My 4000(1) 
u = - = 250psi (C) 

, I _!_(3)(4)3 
12 

Thus 

u, = 41.667 - 250 = 208 psi (C) 

u,. = 0 

TX)'= 37.5 psi 

Top segment: 

w .Spsi 

208 psi 

Ans. 

Ans. 

Ans. 

LF,. = O; Vy+ 1000 = 0 

LF, = O; \1, - 1500 = O 

LM, = O; T, - 1500(0.4) = 0 
LM,. = O; M,. - 1500(0.2) = 0 

LM, = O; M, - 1000(0.2) = 0 

V,. = - lOOON 

V, = 1500N 

T- = 600N·m < 

M,. = 300N · m 

M, = 200N·m 

7T 
Iy =I.,= 4 (0.0'.24) = 40(10- 9)7T m4 

J = ; (0.024
) = 80(10- 9)7T m4 

(Qy )A 
4(~:) [; (0.022)] = 5.3333(10- 6) m3 

M_,y M>x - 200(0) - 300(0.02) 
<TA = 1,-I,= 40(10- 9)7T - 40(10- 9)7T 

=47.7 MPa (T) Ans. 

T,c 600(0.02) 
[(T,y)r]A =1 = 80(l0- 9)7T 47.746 MPa 

V,(Qy)A 1000(5.3333(10- 6) ) 

[(Tzy)v]A = /.,t [40(10- 9)7r](0.04) 

=1.061 MPa 

Combining these two shear stress components, 

( T ,,.)A = 47.746 + 1.061 = 48.8 MPa 

F13-7. Right Segment: 

47.7 MPa 

-P488MP• 

"'l.F, = O; V, - 6 = 0 V, = 6 kN 

Ans. 

"'l-My = O; T,. - 6(0.3) = 0 Ty= 1.8 kN · m 
"'l.M, = O; M, - 6(0.3) =O M.,= 1.8 kN · m 

I, = : (0.054 
- 0.044

) = 0.9225(10- 6)7T m4 

J = 7T (0.054 - 0.044) = l.845(10- 6)7T m4 

2 
(Q, )A = Y2'A2' - y]A1' 

= 
4(~~5) [ ; (0.052)] -

4(~:) [; (0.042)] 

= 40.6667(10- 6) m3 

<TA = M_,z:. = 1.8(10
3
)(0) = O 

I, 0. 9225(10- 6)7T 
Ans. 

T,.c [l.8(1fr1)](0.05) 
[ ( 7'. ) l = - = = 15 53 MPa 

yz TA J l.845(10- 6)7T . 

V,(Q, )A 6(103)(40.6667(10- 6)) 

[( Tyz)V]A = r,l = [0.9225(10- 6)7Tj(0.02) 

= 4.210 MPa 

Combining these two shear stress components, 

(Tyz)A = 15.53 - 4.210=11.3 MPa Ans. 

~11.3MPa 

F13-8. Left Segment: 

"'l.F, = O; V, - 900 - 300 = 0 

"'l-M,. = O; Ty+ 300(0.1) - 900(0.1) = 0 

V, = 1200N 

T =60N·m y 

"'l.M, = O; M., + (900 + 300)0.3 = 0 M., = - 360N·m 

I, = : (0.0254 
- 0.0:24) = 57.65625(10- 9)7T m4 

J = ; (0.0254 
- 0.02") = 0.1153125(10- 6)7T m4 

(Qy )A= 0 

M,y (360)(0.025) 
<TA = - = 9 = 49.7 MPa Ans. 

I, 57.65625(10- )7T 
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'f,PA (i()(0.025) 
[(T .. ,hL, = I = o.1153125(10-6)'1T = 4.14 MPa Ans. 

[( ) I = Y: (Q~)A = 0 
Ty: v A I ( 

.r 

~.14MPa 
49.7 MPa 

Chapter 14 

Ans. 

fl4-l. 8 = 120° u,, = 500 kPa U y = 0 Txy = 0 
Apply Eqs. 14-1, 14-2. 

F14-2. 

F14-3. 

u,,• = 125 kPa 
Tx•y• = 217 kPa 

45° 

x' 

8 = - 45° u , = 0 u y = - 400 kPa 

T xy = - 300 kPa 

Apply Eqs.14-1, 14-3, 14-2. 
Ux• = 100 kPa 
Uy• = - 500 kPa 
Tx•y• = 200 kPa 

8x = 80 kPa U y = 0 Txy = 30 kPa 

Apply Eqs. 14-5, 14-4. 

U J = 9QkPa u 2 = -lOkPa 

ep = 18.43° and 108.43° 

From Eq.14-1, 

80 + 0 80 - 0 2(18430) u,· = 
2 

+ 
2 

cos . 

+ 30 sin 2(18.43°) 

= 9Q kPa = Ut 

Thus, 

(8p)I = 18.4° for U J 

Ans. 
Ans. 

Ans. 
Ans. 

Ans. 

Ans. 

Ans. 

F14-4. 

F14-5. 

F14-6. 

F14-7. 

10 kPa 

90 kPa __.
......-.18.40 

<Tx = 100 kPa U y = 700 kPa 
T = -400 kPa xy 

Apply Eqs.14-7, 14-8. 

T.mu = 500kPa 
tn-pbne 

u.,, = 400 kPa 

At the cross section through B: 
N=4kN V=2kN 

M = 2(2) = 4kN ·m 

Ans. 

Ans. 

P Mc 4(HP) 
<Ts = A + I = 0.03(0.06) 

4(1<>3)(0.03) 

+ n-co.03)(0.06)3 

= 224 MPa(T) 

Note Ts = 0 since Q = 0. 

Thus 
u1 = 224 MPa 

<Ti = 0 

A1 = B,, = 12 kN 

Segment AC: 

Ve = 0 Mc = 24kN·m 

Tc = 0 (since Ve = 0) 

<Tc = 0 (since C is on neutral axis) 

u1=u2 = 0 

u.. + u,. 500 + 0 u.,, = 
2 

= 
2 

= 250kPa 

Ans. 

Ans. 

The coordinates of the center C of the circle and 
the reference point A are 

A (500, 0) C(250, 0) 

R = CA = 500 - 250 = 250 kPa 
8 = 120° (counterclockwise). Rotate the radial 
line CA counterclockwise 28 = 240° to the 
coordinates of point P(u_,•, ,,.1.). 

a = 240°- 180° = (i()0 

<Tx· = 250 - 250 cos (i()0 = 125 kPa AllS. 

T.r•y• = 250 sin (i()0 = 217 kPa Ans. 
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Fl4-8. 

Fl4-9. 

Ux +Uy 80 + 0 
u1,g - = = 40 kPa 

2 2 
The coordinates of the center C of the circle and 
the reference point A are 

A(80, 30) C(40, 0) 

R =CA= Y(80 - 40)2 + 302 = 50 kPa 

u 1 = 40 + 50 = 90 kPa Ans. 
u 2 = 40 - 50 = - 10 kPa Ans. 

30 
tan 2(8p)t = 

80 
_ 

40 
= 0.75 

(8p)1 = 18.4° (counterclockwise) Ans. 

The coordinates of the reference point A and the 
center C of the circle are 

A(30, 40) 

R =CA= 50MPa 
u 1 = 50 MPa 
u 2 = -50 MPa 

C(O, 0) 

F14-10. J = ; (0.044 
- 0.034

) = 0.875(10-6)11 m4 

Tc 4(1o-1)(0.04) 
-r = - = = 58.21 MPa 

J 0.875(10-6)11 

Ux =Uy = OandT.ry = - 58.21 MPa 
CJ< + '-Y 

o;,, = 2 = 0 

The coordinates of the reference point A and the 
center C of the circle are 

Fl4-11. 

A(O, - 58.21) 

R = CA = 58.21 MPa 

C(0,0) 

u1 = 0 + 58.21 = 58.2 MPa 

u2 = 0 - 58.21 = - 58.2 MPa 

+j!F,. = 0: V - 30 = 0 V = 30kN 

Ans. 

Ans. 

C+!M0 =0; - M - 30(0.3)=0 M=-9kN·m 

1 = 1~ (0.05)(0.153) = 14.0625(10-6) m4 

Segment above A , 

QA = y'A' = 0.05(0.05)(0.05) = 0.125(10- 3) m3 

My,.. [-9(1o-1) I (0.025) 
uA = - -1- = 14.0625(10- 6) = 16 MPa (T) 

VQA 30(1fr1)(0.125(10- 3)) 
T = - - = = 5.333 MPa 

A Jt 14.0625(10-6)(0.05) 

u , = 16 MPa, uy = 0, and Txy = - 5.333 MPa 

Ux + Uy 16 + 0 
Uavg = 

2 
= 

2 
= 8 MPa 

The coordinates of the reference point A and the center C 
of the circle are 

A (16, - 5.333) C(8. 0) 

R =CA = V( 16 - 8)2 + (- 5.333)2 = 9.615 MPa 

u 1 = 8 + 9.615 = 17.6 MPa A ns. 

U2 = 8 - 9.615 = - 1.61 MPa A ns. 

F14-U. 

C +I.Mn= O; 

+t!Fy = 0; 

C +!Mo= O; 

60(1) - Ay(l.5) = 0 

40-V=O 

A y = 40 kN 

V = 40 kN 

M - 40(0.5) = 0 M = 20 kN·m 

Consider large rectangle minus two side rectangles. 

I= l~ (O. l )(O.i3) - (2) 1~ (0.045)(0.183) = 22.9267(10-6) m4 

Top rectangle. 

QA = y'A' = 0.095(0.01)(0.1) = 95(10-6) m3 

My A (20(1a3)](0.09) 
uA = - - /- = - 22.9267(10- 6) = - 78.51 MPa 

= 78.51 MPa (C) 

VQA 40(103)(95(10-6)) 
TA =ft = (22.9267(10-6))(0.01) = 16.57 MPa 

Ux = - 78.51 MPa.u1 = O,andTxy = - 16.57 MPa 

= Ux + Uy = -78.51 + 0 = _3926 MP 
u.,-g 2 2 . a 

The coordinates of the reference point A and the center C 
of the circle are 

A(-78.51, - 16.57) C(- 39.26,0) 

R = CA = V[-78.51 - (- 39.26))2 + (- 16.57)2 

= 42.61 MPa 
T 
i~1~':;'\ane = IRI = 42.6 MPa 

Ans. 
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Chapter 15 
FlS-L 
At support, 

V max = 12 kN M max = 18 kN · m 

1 2 
I = 12 (a)(2a)3 = 3a4 

MmaxC 18(103)(a) 
10(106) = Uallow = I ----

2 4 
3a 

a= 0.1392 m = 
Usea = 140mm 

I= ~ (0.144
) = 0.2561(10-3) m4 

Qma.< = 0~4 (0.14)(0.14) = 1.372(10-3) m3 

Vmax Q max 12(103)(1.372(10- 3)] -
Ir [0.2561(10- 3)](0.14) 

= 0.459 MPa <'Tallow = 1 MPa (OK) 

FlS-2. 
At support, 

V max = 3 kip Mma.< = 12 kip· ft 

I= : (~)4 = 7T~4 

Uauow = I 

Used= 4 !. in. 
4 

12(12)(~) 
20= ----

7Td4 

64 

d = 4.19 in. 

I= ;: (4.254
) = 16.015 in4 

Semicircle, 

4(4.25/2) [ 1 (7T) 2 ] • 3 
Qmax = 37T 2 4 (4.25 ) = 6.397 m 

V max Q max 3(6.397) -
Ir 16.015( 4.25) 

= 0.282 ksi <'Tallow = 10 ksi (OK) 

FlS-3. 
At the supports, 

Vmax = 10 kN 

FUNDAM ENTAL PROBLEMS SOLUTIONS AND ANSWERS 869 

139.2 mm 

Ans. 

Ans. 

Under 15-kN load, 

Mmax = 5kN·m 
1 2 

I= - (a)(2a)3 = - a4 

12 3 

Mma.<C 12(l06) = 5(10
3
)(a) 

Uauow = I 2 4 
- a 
3 

a = 0.0855 m = 85.5 mm 

Use a= 86mm 

I = ~ (0.0864 ) = 36.4672(10-6) m4 

3 
Top half of rectangle, 

Q., •• = 
0·~6 (0.086)(0.086) 

= 0.318028(10- 3) m3 

Vmax Q max lO(lfrl)[0.318028(10- 3)] 
'Tmax = -

Ir [36.4672(10- 6)](0.086) 

= 1.01 MPa < 'Tallow = 1.5 MPa (OK) 

FlS-4. 
At the supports, 

V max = 4.5 kip 

At the center, 

Mmax = 6.75 kip· ft 
1 h3 

I= 12 (4)(h3) = J 

CTauow - I 

6.75(12)(~) 
2= ----

h3 

3 

h = 7.794 in. 
Top half of rectangle, 

Q = y'A' = h(h)(4) =hi 
ma.< 42 2 

(h2) 45 -
_VmaxQmax.

02
=. 2 

1"n1ax · Ir ' . h3 
3(4) 

h = 8.4375 in. (controls) 
1 . 

Use h = 8
2 

m. 

Ans. 

Ans. 

www.konkur.in



870 FUNDAMENTAL PROBLEMS SOLUTIONS AND A NSWERS 

FlS-5. 
At the supports, 

Vmax = 25 kN 
At the center. 

Mma:s. = 20 kN · m 

I = _!_ (b)(3b)3 = 2.25b4 

12 
_ Mrms.c. (j _ 20(1<>3)(1.5b) 

uan.,.,, - I , 12( 1 ) - 2.25b4 

b = 0.1036 m = 103.6 mm 
Useb = 104 mm 

1 = 2.25(0.1044) = 0.2632(10-3) m4 

Top half of rectangle, 

Ans. 

Qmax = 0.75(0.104)(1.5(0.104)(0.104)) = l.2655(10- 3) m3 

V.rnx Q max 25(103)p .2655(10-3)) 

Tmax - fl - (0.2632(10-3))(0.104) 

= 1.156 MPa < 1:1 now = 1.5 MPa (OK). 

FlS-6. 
Within the overhang, 

Vmax = 150 kN 

At B, 

Mma.t = 150 kN · m 
Mmax 150(103) 

S - - = 0.001 m3 = 1000(103) mm3 

reqd - UalJo" - 150(l<f>) 

Select W410 x 67 [S.r = 1200(103) mm3, d = 410 mm, and 
r., = 8.76 mm]. Ans. 

- v - 150( 1<>3) 
Tma:s. - ( .!f - 0.00876(0.41) 

= 41.76 MPa < TallO\\ = 75 MPa (OK) 

Chapter 16 
F16-L 
Use left segment, 

M(x) =30 kN · m 

Eld
2
v = 30 

dx2 

dv 
El dx =30x+C1 

Elv = 15x2 + C1 x+ C2 
dv 

Atx=3 m, dx = 0. 

C1 =-90 kN · m2 

At x = 3 m, v = 0. 

C2 = 135 kN · m3 

dv = __!__ (30x - 90) 
dx EI 

1 
v = EI (15x2 - 90x + 135) 

For end A,x = 0 

dv I 9A =- = 
dx x=O 

90(103) 
------ = -0.00692 rad 
200( 109)(65.0(10-6) J 

Ans. 

135(103) 
v = vi = = 001038m =104mm 

A x=O 200( 109)[65.0( 10-6) ) . . 

F16-2. 

Use left segment, 

M(x) = (-lOx-10) kN · m 

d2v 
El- =-lOx-10 

dx2 

dv 
El dx =-5x2-10x+C1 

5 3 2 Elv = - 3x- - 5x + C1 x + C2 

dv 
At x = 3 m, dx = 0. 

EI(O) =-5(32) -10(3) + c. 
At x = 3 m. 11 = 0. 

An.t 

C1 =75 kN · m2 

EI(O) = - ~ (33
) - 5(32) + 75(3) + C2 C2 = -135 kN · m3 

dv 1 
dx = EI (- 5x2 - lOx + 75) 

v = 2..(-5 
x3 - 5x2 + 75x - 135) 

El 3 

ForendA,x=O 

9A = ~; lx=O = ~/ [-5(0) - 10(0) + 75) 

75(1<>3) 
- = 0.00577 rad 

200(109)[ 65.0(l0-6)] 

1 [ 5 ] VA = V lx=O = £/ -3 (03) - 5(02) + 75(0) - 135 

An.t 

135(103) 
- -

2
00(l09)[65

_
0

(1
0

_6)] = -0.01038 m =-10.4 mm Ans. 

F16-3. 

Use left segment, 

M(x) = ( - ~ x2 - lOx) kN · m 
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d2v 3 
El- = -- v2 - 10v tix2 2" " 

dv 1 El- = --x3 - 5v2 + Ci 
dx 2 " 

A 3 
dv 

tx= m - =O 'dx · 
1 

EI(O) = - l (33) - 5(32) + C1 

dv 1 ( 1 ) dx =EI - lx3 - 5x2 + 58.5 

For end A,x = O 

C1 = 58.5 kN · m2 

dv 
8A = -d; lx=O 

X'. 

58.5(103) 
= 0.0045 rad A ns. 

F16-4. 

Ay = 600 lb 

Use left segment, 

M(x) = (600x - 50x2) lb· ft 

d2v 
El dx2 = 600x - 50x2 

dv 
El dx = 300x2 - 16.667 x3 + c1 

Eiv = 100x3 - 4.1667x4 + c1x + c2 

Atx=O,v = O. 

EI(O) = 100(03) - 4.1667(04) + c1 (0) + c2 
At x = 12 ft v = O ' . 
EI(O) = 100(123) - 4.1667(124) + Ci(12) 

C1 = - 7200 lb· ft2 

dv =_.!.._ 2 dx EI (300x - 16.667x3 - 7200) 

1 
v = EI (lOOx3 - 4.1667x4 

- 7200x) 

V h 
dv 

max occurs w ere - = O dx · 

300x2 - 16.667x3 - 7200 = O 

x=6 ft 
1 

v = El [100(63) - 4.1667(64
) - 7200(6)] 

= - 27 000(12 in./ft)3 

1.5(106)[ 1~ (3)(63)] 

=-0.576 in. 

Ans. 

Ans. 

F16-S. 

A y = - 5kN 

Use left segment, 

M(x)=(40 - 5x)kN·m 

d2v 
El- =40 - 5x 

dx2 

dv 
El-d; = 40x - 2.5x2 + C1 

X'. 

Elv = 20x2 - 0.8333x3 + c1x + c2 
Atx=O,v = O. 

El(O) = 20(02) - 0.8333(03) + c1 (0) + c2 
At x = 6 m, v = 0. 

El(O) = 20(62) - 0.8333(63) + c1 (6) + o 
C1 = - 90 kN · m2 

dv 1 
dx = EI ( 40x - 2.5x2 - 90) 

1 
v = El (20x2 - 0.8333x3 - 90x) 

dv 
Vma.< occurs where - = O 

40x - 2.5x2 - 90 = O 

x=2.7085 m 

dx . 

1 
v = El [20(2.70852) - 0.83333(2.70853) - 90(2.7085)] 

113.60(103) 
- 200(109)(39.9(10- 6)] =-0.01424 m = - 14.2 mm Ans. 

F16-6. 

A, = 10 kN 

Use left segment, 

M(x) = (lOx + 10) kN · m 

d2v 
El- 2 = lOx + 10 

dx 

Ef-d;v = 5x2 + lOx + C1 
X'. 

D 
dv 

ue to symmetry, dx = o at x = 3 m. 

El(O) = 5(32) + 10(3) + C1 C1 = - 75 kN. m2 

dv _ 1 2 dx - EI [5x + lOx - 75] 

Atx=O, 

dv 
dx 

= - 9.40(10- 3) rad Ans. 
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Fl6-7. 

Remove Br 

( ) = Px2 (3L _ x) = 40(4
2

) [3(6) _ 4] = 1493.33 ! 
Vs I 6£/ 6EI £/ 

Apply B1, 

PL3 B,(43
) 

(Vsh = 3£ / = 3£ / 
21.33B, 

EI t 
(+j) Vs= 0 = (vs)i + (vs)2 

1493.33 21.33B, o- + ---
£/ EI 

B1 =70 kN 

For the beam, 

~ !Fx = 0; 

+f!F1 = 0; 

(+!MA= O; 

MA=40kN · m 

F16-8. 

Remove B,. 

A = 0 x 

70 - 40 - A, =0 A y =30 kN 

70(4) - 40(6) - MA =0 

Ans. 

Ans. 

Ans. 

Ans. 

To use the deflection tables, consider loading as a 
superposition of uniform distributed load minus a triangular 
load. 

wo L4 

(vs)1 = 8£1 ! 

Apply B,, 

B,. T} 
(+t) (vsh = 

3
£ / t Vs = 0 = (vn)1 + (vah + (vah 

"'o L4 wa L4 By T} 
0 = - 8£1 + 30EI + 3£/ 

llwo L 
By = 40 

For the beam, 

~ !Fx = 0; A = 0 x 

llwo L 
A, + 40 

9wo L 
A = ---''----

" 40 

1 
- -wo L=O 

2 

Ans. 

Ans. 

Ans. 

( + !"'ti = O; 11w0 L l (2 ) MA+ (L)--wo L-L =0 
40 2 3 

1w L2 
M - o 

A - 120 Ans. 

F16-9. 

RemoveB,.. 

wL4 [10(1a3)](64
) ! 

(vn)i = 8£1 = 8[200(109)][65.0(10- 6)] = 0·
12461 

m 

Apply B,,, 
B

1 
J.} B

1 
(63) 

(v ) = -= = 5 5385(1o-6)B j 
B 

2 3£/ 3(200(109))[65.0(10-6)) . y 

(+!) Va = (vn)1 + (vsh 

0.002 = 0.12461 - 5.5385(1~)B, 

By= 22.314( Ja3) N = 22.1 kN 

For the beam. 

~IF,,= 0: 

+j!F,, = (); 

A =0 x 

A1 + 22.14 - 10(6)=0 

Ans. 

Ans. 

A1 =37.9 kN 

Ans. 

(+!MA= O; MA + 22.14(6) - 10(6)(3)=0 

F16-10. 

Remove B,.. 

MA =47.2 kN · m 

- MoL 2 2 - Mo L2 ! 
(v8) 1 -

6
£ J(

2
L) [(2L) - L ] - 4El · 

Apply B,.. 
B

1 
(2L)3 B

1 
[] 

(vsh = 48£/ 6£1 j 

(+j) V.s = 0 = (vs)1 + (vs)2 

Mo L2 B1 U 
O=- 4£1 + 6£1 

3Mo 
By= 2L 

F16-ll. 

Remove B,. 

Ans. 

Ans. 

(v ) = Pbx (L2 - b2 - x2) = 50(4)(6) (122 - 42 - 62) 
8 1 6£/L 6£I(12) 

= 1533.3 kN · m3 ! 
El 

Apply B,,. 
B,. J.} 8

1 
(123) 368

1 
(vsh = 48£/ = 48£/ = EI j 

(+t) vn = 0 = (vs)1 + (vsh 
1533.3 kN ·ml 3681 

O= - £! + EI 

81 =42.6 kN Ans. 
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F16-U. 

Remove Br 

( ) 
5wL4 5(10(103))(12') = 

0
_
20769 

! 
Vs I= 384EI - 384(200(109))(65.0(10- 6) ] 

Apply 81, 

By I} By (123
) 

(vnh = 48EI = 48(200(109))(65.0(10-6) ] 

= 2.7692(10-<>)By f 
(+ t) Vs= (va)1 + (vah 

--0.005 =--0.20769 + 2.7692(10-f>)B, 

B,. = 73.19(103) N = 73.2 kN 

Chapter 17 
F17-l. 

7r2 EI 
P=--

(KL)2 

~ [ 29(103)] [: (0.5)4
] • 

---(0-.5-(5-0-:)]2~- =22.5 kip 

u =!._ = 
22

·
5 

=28.6ksi <u OK 
A Tr(0.5)2 y 

F17-2. 

~EI ~[1.6(1<>3) ][ l~ (4)(2)3] 
P= =------,~-

(KL)2 (1(12)(12))2 

=2.03 kip 

Fl7-3. 

For buckling about the x axis, Kx = 1 and Lx = 12 m. 

Ans. 

Ans. 

Ans. 

Tr
2 EIX ~ (200(109))(87.3(10- 6

)) 
P = = 1.197(106) N 

er (Kx L,,)2 (1(12)]2 

For buckling about they axis, K1 = 1 and Ly= 6 m. 

~ EI1 ~ [200(109)](18.8(10- 6)] 
p = = -----,----

er (K1 L1)2 (1(6))2 

= 1.031(106) N (controls) 

Per 1.031(1cf) 
Pauow=-= =515kN Ans. 

F.S. 2 

Per 1.031(106) 
<Tcr=-A = 3 = 139.30 MPa < uy=345 MPa (OK) 

7.4(10- ) 

F17-4. 

A = 7r((0.025)2- (0.015)2) = 1.257(10-3) m2 

/=~Tr ( (0.025)4 - (0.015)4 ] = 267.04(1<>-9) m4 

7r2 El ~ [200(109))( 267.04(10-9) ] 
P = = = 84.3 kN Ans. 

(KL)2 (0.5(5))2 

p 84.3(1<>3) 
u=- = =67.1MPa<250MPa (OK) 

A 1.257(10-3) 

F17-5. 

Joint A , 

+ fIF, = O; F,i 8 (~) - P = 0 FA 8= l.6667P(T) 

_:t IF,, = 0: l.6667P(~) - ~c = 0 

FAc = l.3333P (C) 

'Tr ..:1 • 
A = - (.:-)=Tr m2 

4 

'Tr 'Tr 
/=- (14)=- in4 

4 4 

Per= F(F.S.) = l.3333P(2) = 2.6667 P 

.,,.2 £ / 
P=--

cr (KL)2 

Tr2 [29(1<>3) 1(:) 
2.6667P=----

[1(4)(12)]2 

p = 36.59 kip= 36.6 kip 

Per 2.6667(36.59) 
ucr=- = = 31.06 ksi<uy=50ksi 

A Tr 

F17-6. 

Beam AB, 

C+I MA = O; w(6)(3) - F8 c(6)=0 Fsc =3w 

Strut BC, 

Ase =; (0.052) = 0.625(10-3)7r m2 I = ~ (0.0254
) 

4 

Ans. 

(OK) 

= 97.65625( 1 o-9)7r m4 

Pa = F sc(F.S.) = 3w(2) = 6w 

-rr2 El 
p =--

cr (K L)2 

7r2 (200(109))[97.65625(10- 9)7r) 
6w 

(1(3))2 

w = 11.215(103) N/m = 11.2 kN/ m Ans. 

Per 6[11.215(103)) 
ucr = - = = 34.27 MPa < uy= 345 MPa 

A 0.625(10- 3)rr 
(OK) 
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Selected Answers 
Chapter 1 1-18. a. 0.447 kg · m/N 

1-L a. 78.5 N b. 0.911 kg . s 

b. 0.392 mN c. 18.8 GN/m 

c. 7.46 MN 1-19. 1.04 kip 

1-2. a. GN/s 1-21. a. 70.2 kg 

b. Gg/N b. 689N 

c. GN/(kg·s) c. 25.5 lb 

1-3. a. Gg/s d. 70.2 kg 

b. kN/m Chapter 2 
c. kN/(kg · s) 2-1. FR = 497 N, <P = 155° 

1-5. a. 45.3 MN 
2-2. F = 960N, 8 = 45.2° 

b. 56.8 km 2-3. FR = 393 lb, <P = 353° 
c. 5.63 µg 2-5. FA8 = 314lb, FAc = 256 lb 

1-6. a. 58.3 km 2-6. FR= 8.03 kN, <P = 1.22° 
b. 68.5 s 2-7. (F1)v = 2.93 kN, (F1 )u = 2.07 kN 
c. 2.55 kN 2-9. F = 616 lb, 8 = 46.9° 
d. 7.56 mg 2-10. FR = 980 lb , </J = 19.4° 

1-7. a. 0.431 g 2-11. FR= 10.8kN, </J = 3.16° 
b. 35.3 kN 2-13. F0 = 30.6 lb, Fb = 26.9 lb 
c. 5.32 m 2-14. F = 19.6 lb, Fb = 26.4 lb 

1-9. a. km/s 2-15. F = 917 lb, 8 = 31.8° 
b. mm 2-17. 8 '= 36.3°, <P = 26.4° 
c. Gs/kg 2-18. 8 '= 54.3°, FA = 686 N 
d. mm · N 2-19. FR = 1.23 kN, 8 = 6.08° 

1-10. a. kN · m 2-21. F8 = 1.61 kN, 8 = 38.3° 
b. Gg/m 2-22. FR = 4.01 kN, </J = 16.2° 
c. µN/s2 

2-23. 8 = 90°, Fs = 1 kN, FR = 1.73 kN 
d. GN/s 2-25. FR = 983 N, 8 = 21.8° 

1-11. a. 8.653 s 2-26. F 1 = {200i + 346j } N, F2 = { 177i - 177j } N 
b. 8.368 kN 2-27. FR = 413 N, 8 = 24.2° 
c. 893g 2-29. FR = 1.96 kN, 8 = 4.12° 

1-13. a. 27.1 N· m 2-30. F 1 = {30i + 40j} N, F2 = {- 20.7i - 77.3j} N, 
b. 70.7 kN/m3 

F3 = {30i}, FR= 54.2 N, 8 = 43.5° 
c. 1.27 mm/s 2-31. F1.x = 141 N, F1r = 141 N , F2r = - 130 N , 

1-14. a. 44.9(10)- 3 N2 
F2,. = 75 N 

b. 2.79( 103
) s2 

2-33. FR = 12.5 kN, 8 = 64. 1° 
c. 23.4s 2-34. F 1 = {680i - 510j} N, F2 = {- 312i - 54lj} N, 

1-15. 7.4lµN F3 = { - 530i + 530j} N 
1-17. a. 98.1 N 2-35. FR= 546N, 8 = 253° 

b. 4.90mN 2-37. FR = V FI + Ji + 2F1F2 cos </J, 
c. 44.J kN 

- '( F1 sin <P ) 8 '= tan 
F2 + F1 cos <P 

2-38. Fx = 40.0 lb, F,. = 56.6 lb, F, = 40.0 lb 
874 
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2-39. 

2-41. 
2-42. 

2-43. 

2-45. 

2-46. 
2-47. 

2-49. 
2-50. 

2-51. 

2-53. 

2-54. 

2-55. 
2-57. 

2-58. 

2-59. 

2-6L 
2-62. 

2-63. 
2-65. 

2-66. 

2-67. 

2-69. 
2-70. 

Fx = 40 N, F
7 

= 40 N, F_. = 56.6 N 

FR = 114 lb, a = 62. 1°, {3 = 113°, ')' = 142° 
F1 = {53.li - 44.5j + 40k} lb, a 1 = 48.4°, 

f31 = 124°. 'YI = 6ff. F2 = {-130k} lb, 

a 2 = 9<:!'. f3i = 9<:!'. 'Y2 = 180° 
F1 = { -106i + 106j + 260k} N, 

F2 = {250i + 354j - 250k} N, 
FR= { 144i + 460j + 9.81 k} N, FR = 482 N, 

a = 72.6°. (3 = 17.4°, ')' = 88.8° 
F3 = 428 lb, a = 88.3°, (3 = 20.6°, 'Y = 69.5° 

F1 = 250 lb, a = 87.0", (3 = 143°, 'Y = 53.1° 
FR = 430 N, a = 28.9°, (3 = 67.3°, 'Y = 107° 

Fi = 429 lb, a, = 62.2°, f31 = l lQ°, 'YI = 145° 
FR = 116 lb, COS a2 = 130", cos f3i = 81.9°, 

cos 'Y2 = 41.4° 
F1 = (72.0i + 54.0k} N, 
F2 = (53.0i + 53.0j + 130k} N, F3 = (200k} 

F1 = I 14.0j - 48.0kl lb, 
F2 = (90i - 127j + 90k} lb 

FRx = 90, FRy = - 11 3, FR, = 42, 
FR = {90i - I 13j + 42k} lb 

FR = 610 N. a = 19.4°, (3 = 77.5°, ')' = 105° 
F = {59.4i - 88.2j - 83.2k} lb, a = 63.9°, 

f3 = 131°, 'Y = 12s0 

F1 = {-26.2 i - 41.9j + 62.9k} lb, 
F2 = { 13.4 i - 26.7j - 40. 1 k} lb, 

FR = 73.5 lb. a = 100°. {3 = 159°, ')' = 71.9° 
x = - 5.06 m. y = 3.61 m. : = 6.51 m 

x = y = 4.42 m 
FAB = {97.3i - 129j - 191 k} N, 

FAc = (221 i - 27.7j - 332k} N, 
FR = 620 , COS a = 59. I 0 , cos (3 = 80.6°, 

cos')' = 147° 
FR= 1.17 kN, a = 66.9°, (3 = 92.0°, 'Y = 157° 
FBA = (-109i + 13 1j +306k} lb, 

FCA = I 103i + 103j + 479k} lb, 
FDA= {-52. li - 156j + 365k} lb 

Fe = (-324i - 130j + 195k} N, 
FB = ( -324i + 130j + 195k} N, 

FE= {- 194i + 29 1kl N 
FR = 757 N, a = 149°. (3 = 90.0°, ')' = 59.0° 
F = { 13.4i + 23.2j + 53.7k) lb 

FR = 194 N, cos a = 90.9°, cos (3 = 76.4°, 
COS')'= 166° 

2-73. 
2-74. 

2-75. 

2-77. 

2-78. 
2-79. 

2-SL 

2-82. 

2-83. 
2-85. 

2-86. 
2-87. 

2-89. 

2-90. 

2-91. 

R2-1. 

R2-2. 

SELECTED ANSWERS 8 7 5 

0 = 142° 

Fil = 0.182 kN 

0 = 36.4° 

0 = 705° 

F. = 246N 
Fj1 = 10.5 lb 
0 = 82.9° 

Proj fA B = (0.229i - 0.916j + l.15k} Jb 

0 = 74.4°,"' = 55.4° 
FAc = 25.87 lb, 
FA.c = (-18.0i - 15.4j + 10.3k} lb 

0 = 132° 
0 = 23.4° 

Fx = 75 N. F1 = 260 N 

FoA = 242 N 
TI1c magni tude is (Fi)F, = 5.44 lb 

FR = Y(300)2 + (500)2 - 2(300)(500) cos 95° 

= 605.1 = 605 N 
605. 1 500 
s in 95° = sin 0 
6 = 55.40° 
</> = 55.40° + 30° = 85.4° 

F 1u 250 
F1" = 129 N - sin 1os0 sin 30" 

Fi. 250 
F1• = 183 N - sin 1os0 sin 45° 

R2-3. FRx = F1x + Fix + Flx + Fu 

FRx = - 200 + 320 + 180 - 300 = 0 

FR, = F1y + Fir + Fly + F4y 

FRy = 0 - 240 + 240 + 0 = 0 
Thus,FR = 0 

R2-5. r = {SO sin 20-i + SO cos 20"j - 3Sk } ft 

T = V(17.10)2 + (46.98)2 + (-35)2 = 61.03 ft 

u = .!: = (0.280i + 0.770j - O.S73k) 
r 

F = Fu = {98. li + 269j - 201k } lb 

R2-6. F 1 =6oo(;)cos30°(+i) + 6oo(;)sin3Q°(-j) 

+ 6oo(~)<+k) 
= {41S.69i - 240j + 360k } N 

F 2 = Oi + 450 cos 45°(+j) + 450 sin 45°(+k) 
= {318.20j + 318.20k} N 
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R2-7. r 1 = { 400i + 250k } mm; r 1 = 471.70 mm 

r2 = {50i + 300j } mm; r2 = 304.14 mm 

r 1 • r2 = (400)(50) + 0(300) + 250(0) = 20 000 

_ _1(r' ·r2) _ -i( 20000 ) e - cos r,r2 - cos (471.70)(304.14) 

= 82.0° 

Chapter 3 
3-5. (MF)B = 4.125 kip· ft ), 

(M F,)B = 2.00 kip· ft ), 

(M F,)s = 40.0 lb· fl ) 

3-6. Mp = 341 in.·lb ) 

MF = 403 in.· lb) 

Not sufficient 

3-7. 

3-9. 

3-10. 
3-11. 

3-13. 

3-14. 

3-15. 

3-17. 

3-18. 

3-19. 

3-21. 

3-22. 
3-23. 

3-25. 

3-26. 

3-27. 
3-29. 

3-30. 

3-31. 

3-33. 
3-34. 

3-35. 

(MF.)A = 433 N · m) 
(MF,)A = l.30kN·m) 
(MF,)A = 800N·m) 

Ms = 90.6 lb · ft) , Mc = 141 lb · fl ) 

MA = 195 lb· fl ) 

(Mo)m:u = 48.0kN·m ), x = 9.8 1 m 

Ms = {- 3.36k} N · m, a = 90°, f3 = 90°, 
1' = 180° 

Mo = {0.5i + 0.866j - 3.36k} N · m, 
a= 81.8°, f3 = 75.7°, y = 163° 

(MA)c = 768 lb· ft ) 

(MA)B = 636 lb· ft ) 

Clockwise 

m = (d: 1)M 
Mp = (537.5cos e + 75 sin8) lb·fl 

F= 239lb 

F = 27.6 lb 

r = 13.3 mm 

(MR)A = (MR)B = 76.0kN·m ) 

(MAB )A = 3.88kip·ft ), 
(Msco)A = 2.05 kip· ft) , 
(M man) A = 2. 10 kip· fl ) 

(M R)A = 8.04 kip · fl ) 

Mo= {- 40i - 44j - 8k} kN·m 

M 0 = { - 25i + 6200j - 900k} lb· ft 

MA = { - 175i + 5600j - 900k} lb. ft 

Mp = {- 24i + 24j + 8k} kN·m 

F = 18.6 lb 

M 0 = 4.27N·m, a = 95.2°, {3 = 110°, y = 20.6° 

MA = {- 5.39i + 13.lj + I 1.4k} N · m 

3-37. 

3-38. 

3-39. 

3-41. 
3-42. 

3-43. 

3-45. 

3-46. 
3-47. 

3-49. 
3-50. 

3-51. 

3-53. 

3-54. 
3-55. 

3-57. 

3-58. 

3-59. 
3-61. 
3-62. 
3-63. 
3-65. 
3-66. 
3-67. 
3-69. 

3-70. 
3-71. 

3-73. 

3-74. 

3-75. 

3-77. 

3-78. 

3-79. 
3-81. 
3-82. 

3-83. 

y = 2m,z =Im 

y = I m,z = 3m, d = l.15m 

No, Yes 

My· = 464 lb· ft 

M-' = 440 lb · ft 

Mx = 15.0 lb· ft, M>, = 4.00 lb· fl, 

M, = 36.0 lb · ft 

M"' = 21.7N·m 

F = 139 

My = 282 lb· ft 

MBc = l65N·m 

M,CA = 226 N · m 

M, = {35.4 k }N·m 

M,, = 4.37 N · m, a = 33.7°, f3 = 90°, y = 56.3°, 
M=5.41N·m 

R = 28.9N 

F = 133 , P = 800 N 

(M R)c = 435 lb· ft ) 

F = 139 lb, anywhere 

MR = 64.0 lb· fl, a = 94.7°, f3 = 13.2°, y = 102° 

MR= 576 lb· in., a= 37.0°, f3 = 11 1°, y = 61.2° 

Mc = {- 65.0i - 37.5k} N · m 

F=l5.4N 

F = 832N 

Mc = 40.8 N · m, a= 11.3°, f3 = 101°, y = 90" 

F = 98.1 N 

(M c)R = 71.9 · m, a= 44.2°, f3 = 131°, y = 103° 

F2 = 112N, F1 = 87.2N, F3 = IOON 

FR = 365N, e = 10.8°7",(MR)o = 2364N·m ) 

FR = 5.93 kN, 8 = 77.8° "?", MR• = 34.8 kN · m ) 

FR = 5.93 kN, e = 11.8° r , 
MB = 11.6 kN · m (Counterdockwise) 

FR = 294 N, e = 40.1° r , 
MRo = 39.6N·m ) 

FR = 1.30 kN, 8 = 86.7° ~. 

(M R)B = 10.I kN · m ) 

FR = 416 lb, 8 = 35.2°..d!, 

(M R)A = 1.48 kip· ft (Clockwise) 

FR = 938N, e = 35.9°~,(MR)A = 680N·m ) 

FR = {270k } N, MRo = {- 2.22i} N · m 

FR = { - 200i + 700j - 600k} N, 

(MR)o = { -1200i + 450j + 1450k} N · m 

FR = {6i + 5j - 5k} kN, 

(MR)o = {2.5i - 7j } kN · m 
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3-85. 

3-86. 

3-87. 

3-89. 

3-90. 

3-9L 
3-93. 
3-94. 

FR= {-40j - 40k} N, 
MRA = { - I 2j + l 2k} N · m 
FR = {-28.3j - 68.3kl N, 

MRA = { -20.5j + 8.49k} N · m 
FR = 10.75 kip!. d = 13.7 ft 

F = 798 lb. 8 = 67.9° 7, x = 7.43 fl 

F = 798 lb. 8 = 67.9° 7, x = 6.57 fl 

F = 1302N.8 = 84.5°7,x = 7.36m 
FR= 1000 N, 8 = 53.1° '<l;, d = 2.17 m 

FR= 356N. 8 = 51.8°, d = b = 3.32m 

3-95. FR = 356 N. 8 = 51.8°, d = 1.75 m 

3-97. FR = 542 N, 8 = I 0.6° !"b, d = 2.17 m 
3-98. FR= -IOkN,x = 1 m, z = l.4m 

3-99. FR = 197 lb, 8 = 42.6°..d, d = 5.24 fl 

3-101. FR = 26 kN, y = 82.7 mm, x = 3.85 mm 

3-102. F11 = 18.0 kN, Fa = 16.7 kN, FR = 48.7 kN 

3-103. Fe = 600 N, F0 = 500 N 
3-105. F1 = 27.6 kN, F2 = 24.0 kN 

3-106. FR= 215 kN,y = 3.68 m,x = 3.54m 

3-107. FA = 30 kN. Fs = 20 kN, FR = 190 kN 

3-109. FR = 6.75 kN. X = 2.5 m 

3-110. FR = 21.0 kN. d = 3.43 m 

3-ID. 
3-113. 
3-114. 

3-115. 
3-117. 
R3-1. 

R3-2. 

R3-3. 

FR= 7 lb,x = 0.268 fl 
FR = 12.0 kN, 8 = 48.4° 7, d = 3.28 m 

FR = 12.0 kN. 8 = 48.4° 7, d = 3.69 m 

a = 1.26 m. b = 2.53 m 

FR = 43.6 lb. x = 3.27 ft 

20(1<>1) = 800(16cos3Cl°) + W(30cos30" + 2) 

w = 319 lb 

FR= 501b 
[ 

( IOi + 15j - 30k) l 
V< 10>2 + (15)2 + <- 30)2 

FR= { 14.3i + 21.4j - 42.9k} lb 

j 

45 
k 

0 

14.29 21.43 - 42.86 

= { - I 929i + 42.8.6j - 428.6k} lb. fl 

r ={4i}ft 

F = 24 lb ( 
-2i + 2j + 4k ) 

V<-2>2 + <2>2 + <4>2 

= { -9.80i + 9.80j + 19.60k} lb 

R3-5. 

R~. 
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0 I 0 

M = 4 0 0 = -78.41b ·fl ,. 
-9.80 9.80 19.60 

M,. = {-78.4j } lb·ft 

.:!+ !Fiu = !Fx; Fiu = 6( 
1
5
3

) - 4 cos 60" 

= 0.30769kN 

+f "<'F - "<'F • F = 6(g) -4 sin 60" 
"- Ry - "- 1' Ry 13 

= 2.0744kN 
~--~--~ 

FR= V(0.30769)2 + (2.0744)2 = 2.10 kN 

- -1[ 2.0744 ] - 0 8 - tan 0.30769 - 8 1.6 d!. 

<:+Mp= ! Mp; Mp= 8 - 6( : ~)(7) + 6( 1
5
3) (5) 

- 4 cos 60°(4) + 4 sin 60°(3) 

Mp = - 16.8 kN · m 

= 16.8 kN · m) 

.±. !(FR)x = !Fx; (FR)., = 200 cos 45° - 250(~) 
- 300 = -358.58 lb = 358.58 lb+-

+ t (FR),. = IF,: (FR>,. = -200 sin 45° - 2so(~) 
= -291.42 lb = 291.42 lb! 

FR = Y(FR); + (FR); = V358.582 + 291.422 

= 462.07 lb = 462 lb 

_ - l[(FR>:r] _ _1(291.42) _ 0 

8 - tan (FR)x - tan 35858 - 39.1 7 

<:+(MR >A = IMA: 358.58(d) = 250(~)(2.5) + 250(~)<4) 
+ 300(4) - 200cos 45°(6) - 200sin 45°(3) 

d = 3.07 ft 
R3-7. +tFR =IF,; FR = -20- 50 - 30 - 40 

= - 140 kN = 140kN! 

(M R)x = 'rMx; -140y = -50(3) - 30( 11 ) - 40(13) 
y = 7.14m 

(MR )y = '£M1 ; 140x = 50(4) + 20(10) + 40(10) 

x=5.7 1m 
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Chapter 4 
4-1. 

4-2. 

4-3. 

4-5. 

4-<i. 

4-7. 

4-9. 

4-10. 

4-11. 

4-13. 

4-14. 

4-15. 

4-17. 

4-18. 

4-19. 

4-21. 

4-22. 

4-23. 

4-25. 

4-26. 

4-27. 

4-29. 

4-30. 

4-31. 

4-33. 

4-34. 

4-35. 

4-37. 

4-38. 

4-39. 

4-41. 

4-42. 

Ax = 3.46kN, A,- = 8kN, MA = 20.2 kN·m 

NA = 750N, B,. = 600N, B.., = 450 N 

Ns = 3.46kN, Ax = l.73 kN, A1 = l.OOkN 

NA = 3.33 kN, Bx = 2.40 kN, 81 = 133 N 

A1 =5.00kN, N8 = 9.00kN, A" = 5.00kN 

F8 e = 1.82 kip, FA = 2.06 kip 

F = 14.0 kN 

NA = 173N, Ne =416N, N8 = 69.2 N 
(J = 3.82° 

P = 660N,NA = 442N,8 = 48.0°~ 

d = 3a 
4 

F8 e = 80 kN.Ax = 54 kN. A
1 

= 16 kN 

Fe = IOmN 

k = 250N/ m 

IVB = 2.19 kip/fl, \VA = 10.7 kip/ft 
a = 10.4° 

2P 4P 
w, = L ' W2 = l 
(J = 23.2°, 85.2° 

NA = 346N, N8 = 693N, a = 0.650 m 

T = 1.84 kN, F = 6.18 kN 

R0 = 22.6 kip, RE = 22.6 kip, RF = 13.7 kip 

NA = 28.6 lb. Ns = I0.7 lb, Ne = 10.7 lb 

T8 e = 43.9 N, N 8 = 58.9 N. A.., = 58.9 N, 

A1 = 39.2 N, A, = 177 N 

Tc = 14.8 kN, Ts = 16.5 kN, TA = 7.27 kN 

FAB = 467 N, FAe = 674 N, Dx = 1.04 kN, 

D,. = 0, D, = 0 

Ax = 633 lb, A,. = - 141 lb, Bx = - 721 lb 
B, = 895 lb, Cy = 200 lb, C, = - 506 lb 
F2 = 674 lb 

C. = 10.6 lb, D, = - 0.230 lb. . -
C1 = 0.230 lb, D.., = 5.17 lb, 

Cx = 5.44 lb, M = 0.459 lb · ft 

F80 = 294 N, F8 c = 589 N, Ax = 0, 
A1 = 589N, A, = 490.5 N 

T = 58.0 N, c = 87.0 N, c,. = 28.8 N, DX = 0, 
D,. = 79.2 N, D, = 58.0 N 

Foe = 0,A y = 0,A, = 800 1b, 

(MA)x = 4.80 kip· fl, (MA)y = 0, (MA), = 0 

p = 12.8kN 

4-43. N 8 = 2.43 kip, N c = 1.62 kip, F = 200 lb 

4-45. T = 3.67 kip 

4-46. 

4-47. 

4-49. 

4-51. 

4-53. 

4-54. 

4-55. 

4-57. 

4-58. 

F = 2.76 kN 

F = 5.79 kN 

(a) No. (b) Yes 

4' = 9, P = W sin (a + 9) 

(J = 52.0° 

I.Lr = 0.23 1 
p = 1350 lb 

P = 14.4 N 

p = 50 lb 

4-59. No 

4-<il. p = 8. 18 lb 

4-<i2. P = 286 N 

4-<i3. O,, = 400 N. Ox = 46.4 N 

R4-1. C +I.MA = 0: F{6) + F{4) + F{2) - 3 cos 45°(2) = 0 

F = 0.3536 kN = 354 N 

R4-2. C + IMA = O; Ns(7) - 1400(3.5) - 300(6) = 0 

N8 = 957. 14 N = 957 N 

+j~F1 =0; A1 -1400 - 300 + 957=0 A
1

=743 N 

±.IFx = O; Ax = 0 

R4-3. c + IMA = 0: 10(0.6 + 1.2 cos 60") + 6(0.4) 

- NA(l.2 + 1.2 cos 60°) = 0 

NA = 8.00kN 

.±. IFx = 0: Bx - 6 cos 30" = O; Bx = 5.20 kN 

+j IF1 = 0 : B, + 8.00 - 6 sin30" - 10 = 0 

R4-5. 

R4-<i. 

"i.M1 = O; 

IMx = O; 

IM, = O; 

IF= O· x • 
IF. = O· )' . 
IF,= O; 

IFx = 0; 

"i.F1 = 0; 

IF, = 0: 

B,. = 5.00kN 

Ax = 0 

A,. +200=0 

A,. = - 200N 

A, - 150 = 0 

A, = !SON 

- 150(2) + 200(2) - (MA )x = 0 

(MA)x = 100 N · m 

IM1 = 0: (MA)y = 0 

IM, = 0: 200(2.5) - (MA), = 0 

(MA):= SOON·m 

1'(8) - 80( 10) = 0 p = 100 lb 

B,(28) - 80(14) = 0 B, = 40 lb 

- B..,(28) - 100(10) = 0 B" = -35.7 lb 
A.., + (-35.7) - 100 = 0 Ax =l361b 
B = 0 )' 

A ,+ 40 - 80 = 0 A, = 40 1b 
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R4-7. Assume that the ladder slips at A: 

FA = 0.4NA 
+tIFy = O; NA - 20 = 0 

NA = 20 lb 5-15. 
F,._ = 0.4(20) = 8 lb 

C+IM B = 0: P(4) - 20(3) + 20(6) - 8(8) = 0 
p = l lb 

.±. IFx = 0: NB + 1 - 8 = 0 5-17. 

NB= 71b > 0 
The ladde r will remain in contact with the wall. 5-18. 

Chapter 5 5-19. 

5-1. FeB = 0, Feo = 20.0 kN (C), 

Fos = 33.3 kN (T), FoA = 36.7 kN (C) 5-21. 

5-2. FeB = 0, Feo = 45.0 kN (C), 

Fos = 75.0 kN (T), FoA = 90.0 kN (C) 5-22. 

5-3. FAe = 150 lb (C), FAB = 140 lb (T). 5-23. 

Fso = 140 lb (T), F8 e = 0, Feo = 150 lb (T ). 5-25. 

FeE = 180 lb (C), FoE = 120 lb (C), 
FoF = 230 lb (T), FEF = 300 lb (C) 5-26. 

5-5. Feo = 5.2 1 kN (C), Fe8 = 4.17 kN(T), 

5-6. 

5-7. 

5-9. 

5-10. 

5-11. 

5-13. 

5-14. 

FA D = 1.46 kN (C), FAB = 4.17 kN(T), 

Fso = 4kN(T) 

Feo = 5.21 kN (C), FeB = 2.36 kN (T), 

FAD = 1.46 kN (C). FAB = 2.36 kN (T), 

Fao = 4 kN (T) 

FoE = 16.3 kN (C), Foe = 8.40 kN (T), 

FEA = 8.85 kN (C). FEe = 6.20 k.N (C). 

FeF = 8.77 kN (T). Fea = 2.20 kN (T). 

FaA = 3. 11 kN (T). FaF = 6.20 kN (C). 

FFA = 6.20 kN (T) 

P,..., = 849 lb 

P,..., = 849 lb 

Foe = 9.24 kN (T), FoE = 4.62 kN (C), 

FeE = 9.24 kN (C), Fea = 9.24 kN (T), 

FBE = 9.24 kN (C), FBA = 9.24 kN (T), 

F EA = 4.62 kN (C) 

FoE = 8.94 kN (T), Foe= 4.00 kN (C), 

Fes = 4.00 kN (C), FCE: = 0, 

FEB= 11.3 kN (C), FEF = 12.0 kN (T), 

FsA = 12.0 kN (C), F8 F = 18.0 kN (T), 

FFA = 20.1 kN (C), FFG = 21.0 kN (T) 

F0 £ = 13.4 kN (T), Foe = 6.00 kN (C), 

FeB = 6.00 kN (C), Fe£ = o. FEB = 17.0 kN (C), 

5-27. 

5-29. 

5-30. 

5-3L 

5-33. 

5-34. 

5-35. 

5-37. 

5-38. 

5-39. 

5-41. 

5-42. 

5-43. 

5-45. 

SELECTED ANSWERS 8 7 9 

FEF = 18.0 kN (T), FBA = 18.0 kN (C), 

FaF = 20.0 kN (T), FFA = 22.4 kN (C), 

F FG = 28.0 kN (T) 

Feo = FoE = FAF = 0. 
Fe£ = 16.9 kN (C). Fea = 10.1 kN (T). 

FaA = I 0.1 kN (T), FsE = 15.0 kN (T). 

FAE = 1.875 kN (C). FFE = 9.00 kN (C) 

Fm= 42.5 kN (T). F11e = 100 kN (T). 

Foe = 125 kN (C) 

Fc11 = 76.7 kN (T). FED = 100 kN (C), 

F£11 = 29.2 kN (T) 

F110 = 1125 lb (T). F0£ = 3375 lb (C), 

F£11 = 3750 lb (T) 

FK1 = 11.25 kip (T), Feo = 9.375 kip (C), 

Fe1 = 3. 125 kip (C), F01 = 0 

F11 = 7.50 kip (T), F£1 = 2.50 kip (C) 

FaF = 12.5 kN (C), Feo = 6.67 kN (T), Fee= 0 

Fne = 5.33 kN (C), FEF = 5.33 kN (T), 
FcF = 4.00 kN (T) 

FAF = 21.3 kN (T), F8e = 5.33 k.N (C), 

FsF = 20.0 kN (C) 

FEF = 14.0 kN (C), F8e = 13.0 kN (T), 

FaE = 1.41 kN (T), F8 F = 8.00 kN (T) 

Fae = I 0.4 kN (C). F11c = 9.16 kN (T), 

Fue = 2.24 kN (T) 

Feo = 11.2 kN (C). FeF = 3.21 kN (T). 

Fee = 6.80 kN (C) 

Fae = 18.0 kN (T), Fn; = 15.0 kN (C), 

FEB = 5.00 kN (C) 

a. P = 25.0 lb, b. P = 33.3 lb. c. P = 11.1 lb 

P = 18.9 N 

P = 368N 

Fe = 572 N, FA = 572 N, Fs = 478 N 

NE = 3.60 kN, Ns = 900 N,Ax = 0, 
A1 = 2.70kN,MA = 8.IOkN·m 

T = 350 lb, A
1 

= 700 lb, A,. = 1.88 kip, 

D.r = 1.70 kip, D,. = 1.70 kip 

A x = 0, A 1 = 2.025 kN, Bx = 1.80 kN, 
8

1 
= 2.025 kN 

Fm= 20. 1 kN, F80 = 25.5 kN, 

Member EDC: c; = 18.0 k.N , c;, = 12.0 kN 

Member A BC: c; = 12.0kN, c; = 18.0kN, 

Ax= 294 N, A1 = 196 N, Ne = 147 N, 

NE= 343N 

M = 3141b·ft 
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5-46. 
5-47. 
5-49. 

5-50. 

5-5L 

5-53. 

5-54. 

5-55. 

Fe = 19.6 kN 

F = 6.93 kN 

Na= Ne= 49.5N 

Fu = 8.18 kN (1), FAD = 158 kN (C) 

FcA = 12.9 kip, FAa = 11.9 kip, FAD = 2.39 kip 

F = 66.1 lb 

d = 0.638 ft 

NA= II.I kN(Bothwheels). F'co = 6.47kN, 

F'E = 5.88 kN 

5-57. 0 = 23.7° 

5-58. Ill = 26.0 kg 

5-59. M = 14.2 lb· ft 

5-61. lllL = 106 kg 

RS-L Joint 8: 

±. lF, = O; 
+f2F1 = O; 

Joint A: 

+f2F1 = O; 

Joint C: 

±. LFX = O; 

+ f'iF1 = O; 

Joint £: 

±. 'iF = O· x • 

+f2F
1 

= O; 
Joint D: 

+f2F1 = O; 

RS-2. Joint A: 

±. "'F = O· 4 .1' • 

+t2F,, = O; 

Joint B: 
±. lFx = O; 
+f'iF1 = O; 

Fae = 3 kN (C) 

FaA = 8 kN (C) 

3 
8.875 - 8 - 5 FA c = 0 

FA c = 1.458 = 1.46 kN (C) 
4 

FA F - 3 - 5(1.458) = 0 

FAF = 4.17 kN (f) 

4 
3 + 5Ct.458) - Fco = 0 

Fco = 4.167 = 4.17 kN (C) 
3 

FcF - 4 + S(l.458) = 0 

FcF = 3.125 = 3.12 kN (C) 

Fu= 0 
Fw = 13. 125 = 13.1 kN (C) 

3 
13. 125 - 10 - - FoF = 0 

5 
FoF = 5.21 kN (1) 

F;1a - FAG cos 45° = 0 

333.3 - FAG sin 45° = 0 

F;1 c = 47 1 lb (C) 

FAa = 333.3 = 333 lb (f) 

Fae = 333.3 = 333 lb (T) 

Fca = 0 

Joint D: 

±. 'iF = O· x • 

+f'iF1 = O; 

Joint£: 

±. LFX = O; 

+f 'iF,, = O; 

Joint C: 
+flF = O· )' . 

-Foe+ F0 Ecos45° = o 
666.7 - FoE sin 45° = 0 

FoE = 942.9 lb = 943 lb (C) 

Foe = 666.7 lb = 667 lb (1) 

-942.9 sin 45° + FEG = 0 
-FEc + 942.9 cos 45° = 0 

FEC = 666.7 lb = 667 lb (1) 

FEG = 666.7 lb = 667 lb (C) 

F0ccos45° + 666.7 - 1000 = O 
Fee = 471 lb (1) 

RS-3. C + 'I.Mc = O; -1000(10) + 1500(20) 

- F01 cos 30°(20 tan 30°) = 0 

Fc1 = 2.00 kip (C) 

+ j 2 F1 = O; - 1000 + 2(2000 cos 60°) - Fae = 0 

Fee = 1.00 kip (f) 

RS-5. CB is a two force member. 

Member AC: 

C + 'iM,.. = O; -600(0.75) + l.5(Fc8 sin 75°) = 0 

Fca = 310.6 

Bx = B1 = 310.6( ~) = 220N 

±. 'iFx = O; -Ax + 600 sin 60° - 3 10.6 cos 45° = 0 

Ax = 300 N 

+ f 'iF,. = O; A1 - 600 cos 60° + 310.6 sin 45° = 0 

A1 = 80.4 N 

RS-6. Member AB: 
C +2M,.. = O; -750(2) + B1(3) = 0 

B
1 

=SOON 

Member BC: 

C +I.Mc = O; -1200( 1.5) - 900(1) + Bz(3) - 500(3) = 0 

Bx = 1400N 

+flF1 = O; A1 - 750 + 500 = 0 

A1 = 250 N 

Member AB: 
±. 2F, = O; -Ax + 1400 = 0 

A.r = 1400 N = 1.40 kN 

Member BC: 

±. 2f, = O; Cx + 900 - 1400 = 0 

Cx = 500 N 

+ j 'iF1 = O; -500 - 1200 + C1 = 0 

C1 = 1700 N = 1.70 kN 

RS-7. Fo = 20.8 lb, FF = 14.7 lb, F,.. = 24.5 lb 
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Chapter 6 6-38. y = 79.7 mm 

6-L 
3 6-39. x = - 1.00 in. , y = 4.625 in. 

x = - a 
8 6-4L x = - 1.18 in. , y = 1.39 in. 

6-2. - 7T - 0 6-42. x = 1.57 in. , y = 1.57 in. y=3a,x= 

3 6-43. y = 2 in. 
6-3. x= - m 6-45. y = 0.75 in. 2 

3 6-46. z = 1.625 in. 
6-5. x= - b 

6-47. z = 122mm 4 

6-6. - 3 h 6-49. x = 5.07 ft, y = 3.80 ft 
y = 10 

6-50. h = 323mm 
6-7. x=6m 6-5L z = 128mm 
6-9. x = 0.398m 6-53. x = 19.0 ft, y = 11.0 ft 
6-10. y = l.OOm 6-54. x = 8.22in. 
6-lL y = 1.43 in. 6-55. 'I.m = 16.4 kg, x = 153 mm, 

6-13. 
/111 y= - 15mm, z= lllmm Y= 211 + I a3b 

hn + 1 6-57. I = 
6-14. y = 2(2n + 1) 

Y n. + 3 
6-58. Ix = 457(106) mm4 

6-15. 
3 6-59. Iy = 53.3(106) mm4 

x = I- fl s 6-6L Iy = 0.286 m4 
3 

6-17. x = - a 6-62. Ix= 0.267 m4 
8 

- 2h 6-63. I.= 1.22 m4 
6-18. y= -

; = l:._bh3 5 6-65. 
6-19. x = 3.20 ft, y = 3.20 ft, TA = 384 lb, x 15 

Tc= 384 lb, T8 = I.IS kip 6-66. I = 614m4 
x 

- 6 f 6-67. Iy = 85.3 m4 
6-2L y = - I 

7T s 6-69. Iy = - m4 
6-22. x = 50.0mm 2 

6-23. Y = 40.0mm 6-70. Ix= 205 in4 

h 6-7L I = 780 in4 

6-25. Y= -
y 

3 
6-73. 

b3h 
7T Iy = 6 

6-26. x= - a 
2 6-74. Ix= 0.267 m4 

110 
6-27. Y= - 6-75. Iy = 0.305 m4 

8 

x = [ 2(n + l)]a 
6-77. Iy = 0.571 m4 

6-29. 3ab3 
3(n + 2) 6-78. Ix= 35 

_ [ (4n + 1) ] 
6-30. y = 3(2n + 1) h 6-79. 

3a3b 
Iy = 35 

6-3L y = 2.61 ft 6-8L I = 533 in4 
6-33. z = 12.8in. 

y 
6-82. A = 14.0(103) mm2 

6-34. 
4 

6-83. Y = 91.7 mm , I, = 216(106 ) mm4 z= - m 
3 

6-85. Ix = 182 in4 

- 3 b - - 0 6-35. y = - x=z= 6-86. I = 966 in4 
8 ' y 

6-37. y = 249mm 6-87. Ix = 1.72(109) mm4 
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6-89. I, = 115 ( 106) mm4 

6-90. y = 207mm. /x. = 222 ( lcf>) mm4 

6-91. Ix = 511(1Cl6) mm4 

R6-l . Using an element of thickness clr. 

- lUJA 1bx(f<Lr) 1bc2 dx cxl: 
x= - -1 dA c In : c

2 
In : 

b 
c ln

a 

R6-2. Using an element of thickness dx. 

b - a 
- --

b 
In 

a 

_ 1ydA 1b(f )(~dx) fb~2clr 
)' = 1 dA - c2 In : -

_ c4 'b 
2x. c2(b - Cl) 

- -
b b 

c2 In - 2ab In -
{/ {/ 

R6-3. IxL = 0(4) + 2('1T)(2) = 12.5664 ft2 

"'2.yL = 0(4) + 2
(
2

) (7r)(2) = 8 ft2 
'7T 

I:L = 2(4) + 0(7TX2) = 8 ft2 

IL = 4 + 7T(2) = I 0.2832 ft 

x = Ix L = 12.5664 = l.Z2 ft 
IL 10.2832 

I yL 8 
ji = -- = = 0.778ft 

!.L 10.2832 
_ !.!L 8 
z = !.L = l0.2832 = 0.778 ft 

R6-5. 

b 
~In -

" 

Ix = 1 y2dA = 12 

y 2(4 - x)dy = 12 

y2
( 4 - (32)lyl )dy 

= 1.07 in4 

R6-6. 

11 = 1x2dA = 21
2 

x2(.r dx) = 21
2 

x2
( I - 0.25 x2 )dx 

= 2.13 ft4 

R6-7. Ix = [ ii<d)(d3
) + 0] + 4 [ 3

1

6 
{0.2887d) (~)

3 

+ ~ (0.2887d) (g) (~)2

) 
= 0.0954d4 

Chapter 7 
7-L NE= 0. VE= - 200lb,ME = - 2.4Qkip·fl 

7- 2. (a) N 0 = 500 lb, Va = 0, 

(b)Nb = 433 lb, V6 = 2501b 

7- 3. Vo-b = 2.475 kip, Nb- h = 0.390 kip, 

M h-b = 3.60 kip · ft 

7-5. NB= 0, VB = 288 lb, 

M.a = -l.15kip · ft 

7-6. N0 = 0.703 kN, V0 = 0.3125 kN, 

M D = 0.3125 kN · m 

7- 7. NF= l. 17kN.VF=O,MF = 0,NE=0.703kN, 

VE= -0.3 125kN.ME = 0.3125kN · m 

7- 9. ND= 0. V0 = - 3.25kN,Mo = 5.625kN·m 

7-10. NA = 0, v A = 450 lb, MA = - 1.125 kip . ft. 

NB = 0, VB = 850 lb, MB = - 6.325 kip · ft. 

Ve= O.Nc = - l.20 kip, Mc = -8.125 kip· ft 

7-11. No= -527 lb, Vo= - 373 lb, Mo= -373 lb· ft, 

NE = 75.0 lb, VE= 355 lb, ME = -727 lb · ft 

7-13. 

7-14. 

7-15. 

7- 17. 

7-18. 

7-19. 

7- 21. 

7- 22. 

7- 23. 

7- 25. 

7-26. 
7-27. 

7- 29. 

7- 30. 

7-3L 

Na-a= -100 N, Va- a = O,Ma- a = -15 N·m 

Nb-b= -86.6N,Vh- b = 50N,Mb-h= - 15N·m 

Ne= 0, Ve= - l.40kip,Mc = 8.80kip·ft 

(N0 )x = 0,(V0 )y = 154N,(V0 )_. = -171 N. 

(T o)x = 0. (M o)y = - 94.3 N · m, 

(M o): = -149N·m 

(Nc>x = 0,(Vc)
1 

= - 246N,(Vc): = -171 N, 

(T c)x = 0, (M c)1 = - 154 N • m, 

(Mc):= -123N · m 

(V A).r = 0, (N,dy = - 25 lb, (VA), = 43.3 lb, 

(M A)x = 303 lb · in. , (TA)y = - 130 lb· in., 

(M11 ): = -751b · in. 

Ne= -2.94 kN, VE = - 2.94 kN, 

M E = -2.94 kN·m 

Fsc = 1.39 kN, FA = 1.49 kN, No = 120 N. 

Vo= 0. M 0 = 36.0N·m 

NE= 0. VE= l20N, ME = 48.0N·m, 

Short link: V = 0, N = 1.39 kN, M = 0 

V 8 = 496 lb, N8 = 59.8 lb, M 8 = 480 lb · ft , 

Ne = 495 lb, Ve = 70.7 lb, Mc= 1.59 kip · ft 
1'avg = 119 MPa 

IV = 16.0 kN/m 
F = 22.5 kip, d = 0.833 in. 

P o11ow = 9.12 kip 

er= 78.9psi 

7- 33. er = 2.92 psi. T = 8.03 psi 
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7-34. 

7-35. 

7-37. 

7-38. 
7-39. 

7-4L 

7-42. 

7-43. 
7-45. 

7-46. 
7-47. 

7-49. 
7-50. 

7-5L 

7-53. 

7-54. 
7-55. 

7-57. 

7-58. 

7-59. 

7-6L 
7-62. 

7-63. 

7-65. 

7-66. 

7-67. 

7-69. 

7-70. 

7-7L 
7-73. 

7-74. 

7-75. 

7-77. 
7-78. 

7-79. 

7-8L 

{ 
1.528 cos e } 

uec = sin (45o + 8/2) ksi 

(uavg)ec = 159 MPa, (uavg)Ac = 95.5 MPa 
(u •• g)A8 = 127 MPa 
(Tavg)A = 50.9 MPa 

Ts =Tc= 81.9 MPa, TA = 88.l MPa 
P = 4.54 kN 

u AB = 333 MPa, u co = 250 MPa 

d = 1.20 m 

Ts = 324 MPa, TA = 324 MPa 

u a- a = 90.0 kPa, Ta- a = 52.0 kPa 
u = 4.69 MPa, T = 8.12 MPa 
u = {46.9 - 7.50x2} MPa 

u = 66. 7 psi, T = 115 psi 
uA8 = 127 MPa, uAc = 129 MPa 

dAs = 11.9 mm 

d=5.7 1 mm 

p = 0.491 kip 
p = 3.26 kip 

FH = 20.0 kN, F8F = FAG = 15.0 kN, 

dEF =dee = 11 .3 mm 
For A': Use a 3 in. x 3 in. plate, 

For B': Use a 4! in. x 4~ in. plate 

Pauow = 1.16 kip 
dAB = 4.81 mm, dA c = 5.22 mm 
p = 5.83 kN 

d = 13.8 mm, t = 7.00 mm 

(F.S.)si = 2. 14, (F.S.)000 = 3.53 

w = 680 lb 
7. 

Use= 
8 

m. 

4is = 15.5 mm, 4c = 13.0 mm 
p = 7.54kN 

E = 0.167 in.fin. 
ECE = 0.00250 mm/mm, E80 = 0.00107 mm/mm 

(Eavs)AH = 0.0349 mm/mm, 

(Eavg)cc = 0.0349 mm/mm, 

( Eavg) DF = 0.0582 mm/mm 
Yxy = - 0.0200 rad 

(Eavg)Ac = 6.04(10- 3) mm/mm 
EAS = 0.0343 

0.5~L 
EAB = 

L 

(Yxy)c = 25.5(10-3) rad, (Yxy)D = 18.1(10- 3) rad 

7-82. 

7-83. 

7-85. 
7-86. 

7-87. 

7-89. 
7-90. 
7-9L 

R7-1. 

R7-2. 

R7-3. 

SELECTED A NSWERS 8 8 3 

(E,)A = 0, (E
1
,)A = 1.80(10-3) mm/mm, 

(Yxy)A = 0.0599 rad, Es£ = - 0.0198 mm/mm 

EAD = 0.0566 mm/mm, EcF = - 0.0255 mm/mm 

(yc),y = 11.6(10- 3
) rad, (Yo)xy = 11.6(10- 3

) rad 
EAc = 1.60(10-3) mm/mm, 

Eos = 12.8(10-3
) mm/mm 

Ex = - 0.03 in.Jin., Ey = 0.02 in.Jin. 

Ex = 0.00443 mm/mm 
E.,· = 0.00884 mm/mm 

YA = 0, YB = 0.199 rad 
N0 = - 2.16 kip, V0 = 0, M 0 = 2.16 kip · ft 
V £ = 0.540 kip, N £ = 4.32 kip, M £ = 2.16 kip· ft 

u, = 208 MPa, (Tavg)a = 4.72 MPa, 

(Tavg)b = 45.5 MPa 
I I 13 

r = 4 in., dA = 18in., de= 16 in. 

R7-5. Tavg = 25.5 MPa, ub = 4.72 MPa 

R7-6. u a- a = 200 kPa, Ta- a = 115 kPa 

R7-7. (Eavg)CA = - 5.59( 10- 3) mm/mm 

R7-9. At (b /2, a /2): Yxy = tan-'[~ ( ~o)], 

At (b, a): Yxy = tan- '[ 3( ~) ] 

Chapter 8 
8-L (uu)approx = 110 ksi, (uf).pprox = 93.l ksi, 

(ur)approx = 55 ksi, Eapprox = 32.0(103) ksi 

in· lb 
8-2. E = 55.3 ( I a3) ksi, u, = 9.96 - .- 3-m 

8-3. 

8-5. 

8-6. 

8-7. 

8-9. 

8-10. 

8-lL 

8-13. 
8-14. 
8-15. 

8-17. 

in · lb 
(11,)approx = 85.0 - .- 3-

lfl 

Elastic recovery = 0.00350 in., 

Permanent elongation = 0.1565 in. 
in . lb in . kip 

(11,).pprox = 20.0 iiJ' (11,).pprox = 18.0 in3 

f,AB = 0.152 in. 

8 = 0.979 in. 

Eapprox = 10.0( ta3) ksi, Py = 9.82 kip, 
Pu= 13.4 kip 

Elastic recovery = 0.012 in. , 

Permanent elongation = 0.0680 in. 
E = 28.6(la3) ksi 

f,BD = 0.0632 in. 
p = 570lb 

f,AB = 0.0913 in. 
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8 8 4 SELECTED A NSWERS 

8-18. 
8-19. 
8-21. 
8-22. 
8-23. 
8-25. 
8-26. 
8-27. 

8-29. 

RS-1. 
RS-2. 
RS-3. 
RS-5. 
RS-6. 
RS-7. 

w = 228 lb/ft 

urs = 2.03 MPa 
p = 741 kPa, 8 = 7.41 mm 

v = 0.350 

L = 51.14 mm, d = 12.67 mm 
y = 3.06 ( 10- 3) rad 

i'p = 0.0189 rad 

£" = 0.0075 in.fin ., Ey = - 0.00375 in./in., 

y ..,. = 0.0122 rad 
Pa 

8 = 2bhG 

G.1 = 4.3 l(la3) ksi 

d' = 0.4989 in. 

x = 1.53 m, dA = 30.008 mm 
p = 6.48 kip 

IE = 0.000999 in.fin., Eunscr = 0 
L = 10.17 in. 

RS-9. Eb= 0.00227 mm/mm,£.,= 0.000884 mm/mm 

RS-10. G = 5 MPa 

Chapter 9 
9-1. 88 = 2.93 mm! , 8A = 3.55 mm! 

9-2. 
9-3. 

9-5. 
9-6. 

9-7. 
9-9. 
9-10. 
9-11. 
9-13. 
9-14. 

9-15. 

9-17. 

9-18. 
9-19. 

9-21. 
9-22. 
9-23. 

8A/D = 0.111 in. away from end D 

uA 8 = 22.2 ksi (T), u 8 c = 41.7 ksi (C), 

uco = 25.0 ks i (C), 
8A/D = 0.00157 in. towards end D 

8A/E = 0.697 mm 
uA = 13.6 ks i, u 8 = 10.3 ksi, uc = 3.2 ksi, 

80 = 2.99 fl 
8c = 0.0975 mm -> 

8F = 0.453 mm 
p = 4.97 kN 

81 = 0.0260 in. 

80 = 17.3 mm 

F = 8.00 kN, 8A/B = - 0.3 1 l mm 

F = 4.00 kN, 8A/B = - 0.259 mm 

FmAxL FmaxL2 

P= 8=--
2 ' 3AE 

88 = 0.262 in. 

p = 57.3 kip 

dAs = 0.841 in., dco = 0.486 in. 

X = 4.24 ft, IV = J.02 kip/fl 

8A/D = 0.129 mm, 
h' = 49.9988 mm, w' = 59.9986 mm 

9-25. 
9-26. 
9-27. 
9-29. 

9-30. 

9-31. 
9-33. 
9-34. 
9-35. 

9-37. 

9-38. 
9-39. 
9-41. 
9-42. 

9-43. 
9-45. 
9-46. 
9-47. 
9-49. 
9-50. 
9-51. 
9-53. 
9-54. 
9-55. 

9-57. 
9-58. 
9-59. 
9-61. 
9-62. 
9-63. 

9-65. 

9-66. 
9-67. 
9-69. 
9-70. 
9-71. 
9-73. 

8c = 0.00843 in., 8E = 0.00169 in., 88 = 0.0333 in. 

p = 6.80 kip 
p = 11.8 kip 

8 = 2.37 mm 

8 
= 2.63P 

7TrE 
u con = 2.29 ksi, u st = 15.8 ksi 

u.1 = 27.5 MPa, u,. = 79.9 MPa 

u con = 1.64 ksi, u" = 11.3 ksi 
p = 114kip 

[ 
9(8ka + 7TtPE) ] 

F. = p 
c l 36ka + 187Td2£ ' 

F = ( 64ka + 97TtPE )P 
A l 36ka + l87Td2£ 

T;1c = 0.806 kip, TAB = 1.19 kip 

AAB = 0.0144 in2 

p = 126 kN 

u,_, = 102 MPa, ube = 50.9 MPa 

uAs = u co = 26.5 MPa, uEF = 33.8 MPa 

Pb= 14.4 kN 
F0 = 20.4 kN, FA = 180 kN 
p = 198 kN 

88 = 0.0733 in. 

8 = 0.0875° 
88 = 0.00257 in. 

F0 = 71.4 kN, Fe= 329 kN 

F0 = 219 kN, Fe= 181 kN 

usE = 96.3 MPa, uAD = 79.6 MPa, 
ucF = 11 3 MPa 

u al = 2.46 ksi, ube = 5.52 ksi, u" = 22. l ksi 

F = 0.510 kip 

Tz = l l2°F, UaJ = Ucu = 25.6 ksi 
u = 19.1 ksi 

F = 7.60 kip 

8 = 0.348 in., F = 19.5 kip 
aAE 

F = - 2 - (Ts - TA) 

u=l80MPa 

u = 105 MPa 

F=904N 

Tz = 244°C 
FAc = FA 8 = 10.0 lb, FAD = 136 lb 

FAB = FEF = 1.85 kN 

www.konkur.in



9-74. 

R9-1. 

R9-2. 

( 
2£2 + £ 1 ) d= w 

3(£2 + £ 1) 
ub = 33.5 MPa, Ur= 16.8 MPa 
T = 501°c 

R9-3. FAB = FAe = FAD = 58.9 kN (C) 
R9-5. F8 = 2.13 kip, FA = 2.14 kip 

R9-6. P = 4.85 kip 

R9-7. F8 = 86.6 lb, Fe = 195 lb 

Chapter 10 
10-1. r' = 0.84lr 
10-2. r' = 0.707 r 

10-3. T = 19.6 kN · m, T' = 13.4 kN · m 

10-5. 'TA = 3.45 ksi, 'TB = 2.76 ksi 

10-6. 

10-7. 

10-9. 

10-10. 
10-11. 

10-13. 

10-14. 

10-15. 
10-17. 

10-18. 

10-19. 

10-21. 
10-22. 

10-23. 
10-25. 

10-26. 

10-27. 

10-29. 

10-30. 

10-31. 

10-33. 

10-34. 

10-35. 

10-37. 
10-38. 

(T1 )max = 2.37 kN · m, (r max)eD = 35.6 MPa, 

(rmax)DE = 23.3 MPa 
'Tabs = 44.8 MPa max 
'TB = 6.79 MPa, 'TA = 7.42 MPa 

'Tmax = 14.5 MPa 
r A8 = 7.82 ks~ r 8 e = 2.36 ksi 

r ; = 34.5 MPa, r 0 = 43.l MPa 
3 

Used= 14 in. 

(rAB)max = 23.9 MPa, (rsc)max = 15.9 MPa 
'T max = 4.89 ksi 

'T max = 7.33 ksi 

'TA = J.3 1 ksi, 'TB = 2.62 ksi 

r A = 9.43 MPa, r 8 = 14.1 MPa 
'TiJ,~ = 0 occurs at x = 0.700 m, 

'TiJ,~ = 33.0 MPa occurs at x = 0. 
d = 34.4mm 

d = 46.7mm 

'T max = 3.44 MPa 

'T max = 856 psi 

'T max = 1.07 ksi 

Use d= i-in. 
U d 

ll. 
se . = 

16 
m. 

(rmax)eF = 12.5 MPa (r mAx)Be = 7.26 MPa 
rabs = 12.5 MPa n1ax 
'T max = 44.3 MPa, </> = 11.9° 

<f>B/A = 0.730° l(C 

rabs = I 0.2 MPa max 

SELECTED ANSWERS 8 8 5 

10-39. T = 5.09 kN · m, <f>A/e = 3.53° 
10-41. </>A = J.57° '1$1 

10-42. Use d = 22 mm, <f>A/D = 2.54° '1$1 

10-43. Use d = 25 mm 

10-45. 
10-46. 
10-47. 

10-49. 

10-50. 

10-51. 

10-53. 

10-54. 
10-55. 

10-57. 

10-58. 
10-59. 

10-61. 

10-62. 
10-63. 

10-65. 
10-66. 
10-67. 

10-69. 
10-70. 

10-71. 

10-73. 
10-74. 

10-75. 

10-77. 

10-78. 

10-79. 

Rl0-1. 
Rl0-2. 

Rl0-3. 

Rl0-5. 

'Tmax = 9.12 MPa, <f>E/B = 0.585° 

'Tmax = 14.6MPa, <f>8 /E = 1.1 1° 

<f>B/D = J.15° 

r~.t, = 20.4 MPa, 
For 0 < x < 0.5 m, 
<f>(x) = { 0.005432 (x 2 + x)} rad 

For 0.5 m < x < I m, 

<f>(x) = {- 0.01086x2 + 0.02173x - 0.004074} rad 

r~.t, = 24.3 MPa, <f>D/A = 0.929° 

<f>A/e = 5.45° 
<f>D/e = 0.0823 rad, r~.t, = 34.0 ks i 

t = 7.53 mm 
w = 131 rad/ s 

k = 1.20(106
) N/ m2, </> = 3.56° 

k = 12.3(10) N/ m213
, </> = 2.97° 

d, = 201 mm, <f> = 3.30° 

<f>F/E = 0.999 (10)- 3 rad, <f>F/D = 0.999( 10)- 3 rad, 

'Tmax = 3.12MPa 

(r Ac)max = 14.3 MPa, (res)max = 9.55 MPa 
rabs = 9.77 MPa max 
F = 23.4 lb 
'T max = 389 psi 

( 'T max) A e = 68.2 MPa, ( r max)se = 90.9 MPa 

T = 4.34 kN · m, <f>A = 2.58° 

(rsi)max = 86.5 MPa, (r.,g)max = 41.5 MPa, 

(r mg) I p=0.02m = 20.8 MPa 
Te = 22.2 N · m, TA = 55.6 N · m 

d = 42.7 mm 
rabs = 64. 1 MPa max 
(r eD)mAx = 4.35 ks~ (rAe)max = 2.17 ksi 
rabs = 93.1 MPa n1ax 

37 152 
Te = l89T, TA = 189T 

7toL 3toL 
Te = lZ' TA = - 4-

Use d = 26 mm, <f>A/e = 2.11° 
Use d= 28 mm. 
r = 88.3 MPa, <f> = 4.50° 

3 
Use d= lg in. 
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RlO--O. 

Rl0-7. 

Rl0-9. 

(T,,,.,)As = 3.60 ksi, (Tmu)sc = 10.7 ksi 

p = 2.80 kip 

P= l.IOkW,T.,., = 825kPa 

Chapter 11 
11- L ForO s x < 3 ft: 

v = 170 lb. 

11-2. 

11- 3. 

11-5. 

11-6. 

M = I 170x I lb· ft. 

For 3 ft < x < 5 ft: 

v = -630 lb, 

M = {-630x + 2400) lb· ft, 

For 5 ft < x :s 6 ft: 

v = 500 lb, 

M = {500x - 3250) lb· ft 

For 0 < x :s 4 ft: 

v = -250 lb, 

M = {-250x) lb· ft, 

For 4 fl :s x :s 10 ft: V = { 1050 - 150x) lb, 

M = (-75x2 + l050x - 4000) lb· ft , 

For 10 ft < x :s 14 ft: V = 250 lb, 

M = ( 250x - 3500 I lb . ft 

For 0 s x < 6 ft: 

v = (30.0 - 2x) kip, 

M = {-x2 + 30.0x - 216) kip· ft, 

For 6 ft < x :s I 0 ft: 

v = 8.00 kip, 

M = I 8.00x - 120 I kip • ft 

V = (-300 - 16.67x2 ) lb. 

M = {-300.r - 5.556x3) lb· ft 

v (lb) 

i-----------1-x 

-3001----~ 

-900 

M (lb·ft) 

-3000 

V = 15.6N,M = ( 15.6x + IOO) N·m 

11-7. 

11-9. 

l woL woL 
For 0 < x < -: V = - M = -x 2 24 • 24 • 

For l < x < L· V = wo [L2 - 6(2x - L)2 ] 2 . ~l . 

wo [ , 3] M = - L-x - (2x - l) 
24l 

v 
woL 
24 J====:;::~0~.70-l~L:_~L:_x 

0 05L 

s --woL 
24 

M 0.0208 w0 L 2 0.0265 w0L 2 
-. ...... 

0.5 L 0.704 L L 

T1 = 250 lb, T2 = 200 lb 
V(lb) 

....--..200 

- soi----

M (lb·in.) 

-600 

11-10. V(lb) 

&2.2 

li.24 35 
' x 

- I 08 '-----' 

M ( lb·in.) 

1151 1196 

-420 
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11-11. 

11-13. 

v (lb) 

1200 

t--~--+-~~~-+--1 -x 
-20001---" 

M (lb· in.) 

Mo 
V= -T· 

-6000 

ForO s x < ~. M = M0 -(:
0
) x, 

For L < x S L M = - (Mo) x 
2 ' L 

11-14. For 0 s x < 5 ft: 
V = (-2r) kip, 

M = { - x2
} kip · ft, 

For 5 n < x < 10 ft: 

v = -0.5 kip, 

M = ( -22.5 - 0.5x I kip· ft. 

For IO ft < x s 15ft: 

v = -0.5 kip. 

M = (7.5 - 0.5x} kip· ft 

11-15. v (lb) 

11-17. 

11-18. 

SELECTED ANSWERS 8 8 7 

v = 1050 - 150x 

M = -15x2 + 1050x - 3200 

v (lb) 

450 

-450 

M (lb·ft) 475 

-2001--~ 
-200 

V(lb) 

115 
9 r-----40 
o~~1 -+--------'-x 

- 6 

,,,-1 --... 
- 378.8 I I - 393.8 

I I 

I : 
I , 

M (lb·in) 

150 -3875 

Ot-----+------1'--X (ft) 
1.5 3 

M (lb· ft) 

225 

-225 

11-19. a = 0.866 L ,M.,., = 0.134 PL 

11-21. For 0 < x < 5 ft: 

V = (-2r} kip, 

M = { -20.0 - x2
} kip· ft, 

For 5 ft < x < 10 ft: 

v = 3.00 kip, 

M = (-20.0 + 3x) kip· ft, 

For I 0 ft < x s 15 ft: 

v = (23 - 2x) kip, 

M = { - 120 + 23x - x2 } kip· ft 
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11-22. For 0 :s x < 12 ft: 

V = { 10 - ix2
} kip. 

M ={•ox - -1 
x3 }kip·ft 24 • 

For 12 ft < x :s 18 ft: 

v = -8 kip. 

M = (8(18 - x)] kip· ft 

11-23. M max = 281 lb · ft 
V(lb) 

11-25. 

11-26. 
11-27. 

M (lb·ft) 

V(kip) 
7 

111 (kip· ft) 

75 

-75 

281 

7 

j-6..-6. . 
VAB = -l.625kip.MB = -18kip·ft 
v 

7 w0L 

36 

I 18 

l-0.707 L--1 

M 
0.0345 IVoL 2 

-0.0617 ivoL 2 

11-29. 

11-30. 

ll-3L 

V8 = -45kN, M 8 = -63kN·m 

V Ix= IS ft= 1.12 kjp,Mlx• IS = -1.95 kip·ft 

v 

M 

wL2 

2 r----

L 

-wL 

1-----------"1-x 
L 

11-33. V(N) 

650 i---- --

2 3 
0 r----;----ii------t-X (m) 

-250 

M(N·m) 

650 
400 

I 
x(m) 0 

2 3 

11-34. V(kN) 

2 

0 x(m) 
1.5 3 

M(kN·m) 

1.5 3 
x (m) 0 
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11-35. For 0 :s x < 3 m: V = 200 N, M = {200x) N · m, 

For 3 m < x :s 6 m: V = {- 1~ x2 + 500} N, 

M = {-I~ x3 + SOOx - 600} N · m 

V(N) 

200 ~==:::+!~.lr7~~6~ ot-- 3 x(m) 

-700 

M(N·m) 

0 i.c:::..-___,,_,._~-x (m) 
3 3.87 6 

11-37. V (kN) 

112.5 

- 112.5 

M(kN·m) 

I/ 169 

l ~IX 
11-38. V(kN) 

6 

o~---+f->---+---..::>i-- x(m) 
6 

M(kN·m) 

2.95 3.25 
2.75 ( 4 6 

() k------H-1---+----::o-l-X (m) 

-II\ '-- -10.5 
-11.4 

SELECTED ANSWERS 8 8 9 

11-39. V(lb) 

600 

-600 

M (lb·ft) 

3 6 9 12 
0~--t---+-----t--,+-X (ft) 

I 

-300 

-1200 -1200 

11-41. V(N) 

11-42. 

10001-----. 

400 

-400 

M(N·m) 

2 200 
~-_;---,::io+"=i=-x (m) 

4 

- 2&Xl 

V(kN) 
10.0 

5.00 
0 t---"!.,:,-1--+.--I- x ( m) 

M (kN·m) 

2.50 

-10.0 

5 6 
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11-43. 

11-45. 

11-46. 
11-47. 
11-49. 
11-50. 
11-51. 
11-53. 
11-54. 
11-55. 
11-57. 
11-58. 
11-59. 
11-61. 
11-62. 
11-63. 
11-65. 

V(kN) 

6.5 I------. 

- 4.5 

M (kN·m) 

3.375 
~------,,.,i""":::::::j::::::::""+- x ( m) 

3 4.5 6 

V (kN) 

14.25 1 ----
7.5 
I 6 7.5 

01--------+---+--+-·l x (m) 
4.5 ._______. 

- 7.S 

M (kN·m) 

11.25 

4.5 6 7.5 

- 54 

a= 0.207L 

r = 909 mm, M = 61.9 N · m 

(u ,)mAx = 3.72 ksi, (uc)max = 1.78 ksi 

u max = 1.46 ksi 
F = 10.5 kip 

F = 4.56kN 

(u maxlc = 78.I MPa, (umAx), = 165 MPa 
M = 50.3 kN · m 

M = 15.6kN · m, umax = 12.0MPa 

u max = 93.0 psi 
F = 753 lb 

% of moment carried by web = 22.6% 

u A = 199 MPa, u s = 66.2 MPa 

u max = 20.4 ksi 
(a) u max = 497 kPa, (b) u max = 497 kPa 

11-66. (a) u max = 249 kPa, (b) u max = 249 kPa 

11-67. 
11-69. 
11-70. 
11-71. 
11-73. 
11-74. 

11-75. 
11-77. 

11-78. 

11-79. 
11-81. 

11-82. 

11-83. 
11-85. 

11-86. 

11-87. 

11-89. 
11-90. 
11-91. 
11-93. 
11-94. 

11-95. 
11-97. 

11-98. 

11-99. 
11-101. 
11-102. 
11-103. 
Rll-L 

Rll-2. 

Rll-3. 
Rll-5. 

Rll-6. 

Rll-7. 

Umax = 158MPa 

u max = 12.2 ksi 

u max = 2.70 ksi 
umax = 21.1 ksi 

d = 1.28 in. 

u max = 45. I ksi 

u max = 52.8 MPa 

w = 18.75 kN/ m 
5 

useb=3
8

in. 

Wm = 4 15 lb/ fl 

a= 66.9mm 

' 23wo L-
u = 

max 36 bh2 

u max = 119 MPa 
uabs = 24.0 ksi 

max 

Uabs = 6.88 ksi 
max 

3 
Used= 18in. 

p = 114kip 

u max = 7.59 ksi 

u max = 22.1 ksi 

d = 410mm 

w = 937.5 N/ m 
Uabs = 10.7 MPa 

max 

u A = - 119 kPa, u s = 446 kPa, u 0 = - 446 kPa, 

U£ = 119 kPa 

a=Ob= - c = (
M/y + M/1, ) M/, + M/1, 

' I/, - !~, ' I/, - 1;., 
u A = 21.0 ksi (C) 

d = 62.9mm 

u max = 163 MPa 

u A = 20.6 MPa (C) 

k = 1.22 
2wL w 2 2wL w 3 V = -- - - x M = --x - - x 
27 2L ' 27 6L 

u max = 0.410 MPa 
V = 20 - 2x, M = - x2 + 20x - 166 

Case (a), du max = 2.49 (;) 

V lx=600 mm- = - 233N, M lx=600mm = - 50N · m 
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Chapter 12 
12-1. -rA = 2.56 MPa 

12-2. 

12-3. 

12-5. 

12-6. 

12-7. 

12-9. 

'T max = 3.46 MPa 

v .. = 19.0kN 

'T max = 3.91 MPa 

Vmax= IOOkN 

'Tmax = 17.9 MPa 

V max= 32.1 kip 

12-10. 'T max = 4.48 ksi 

12-11. 'Tmax = 45.0MPa 

12-13. 

12-14. 

12-15. 

12-17. 

12-18. 

12-19. 

12-21. 

12-22. 

12-23. 

12-25. 

12-26. 

12-27. 

12-29. 

12-30. 

12-31. 

12-33. 

12-34. 

12-35. 

12-37. 

12-38. 

12-39. 

12-41. 

12-42. 

12-43. 
12-45. 
12-46. 
12-47. 

'T max = 4.22 MPa 

vmax = 190kN 

v = 9.96 kip 

-r A = 1.99 MPa, -r 8 = 1.65 MPa 

'T max = 4.62 MPa 

Vw = 27.1 kN 

P max = 1.28 kip 

Wmax = 2.1 5 kip/ft 

'T max = 298 psi 

'T max = 4.85 MPa 

w = 11.3 kip/ft, 'T max = 53 1 psi 

'T max = 22.0 MPa, ( 'T mAx)s = 66.0 MP a 

-r8 = 4.41 MPa 

'T max = 3.67 MPa 

a = 1.27 in. 

F = 300 lb 

S1 = 1.42 in. , Sb = 1.69 in. 

v = 4.97 kip, s, = 1. 14 in. , 

Sb = 1.36 in. 

v = 499kN 

p = 4.97 kip. 

For regions AB and CD, 

S1op = 1.14 in., sixmom = 1.36 in. 

For region CD, theoretically no nails are 
required. 
F = 12.5 kN 

s = 71.3 mm 

I 
V max = 8.82 kip, use s = I 8 in. 

Pmax = 317 lb 

'T max = 1.83 ksi 

Wo = 983 lb/ft 

s = 8.66 in., s' = 1.21 in. 
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R12-1. Fe= 197 lb, F0 = 1.38 kip 

R12-2. V = 131 kN 

R12-3. 

R12-5. 

RU-6. 
R12-7. 

R12-9. 

qA = 0, qe = 1.21 kN/m, qc = 3.78 kN/m 

-r8 = 795 psi, -r c = 596 psi 

'T max = 928 psi 

VAB = 1.47 kip 

'T max = 7.38 ksi 

Chapter 13 
13-1. t = 18.8 mm 

13-2. 

13-3. 

13-5. 

13-6. 

13-7. 

13-9. 

13-10. 

13-11. 

13-13. 

13-14. 

13-15. 

13-17. 

13-18. 

13-19. 

13-21. 

13-22. 

13-23. 

13-25. 

13-26. 

13-27. 

13-29. 

r,, = 75.5 in. 

(a) u 1 = 1.04 ksi, u 2 = 0, 

(b) u 1 = 1.04 ksi, u 2 = 520 psi 

u 1 = 7.07 MPa, u 2 = 0 

P = 848N 

(a) u 1 = 127 MPa, 

(b)u1' = 79.IMPa, 

(c) (-ravg)b = 322 MPa 

u1ioop = 7 .20 ksi, u1ons = 3.60 ksi 

u 1 = 1.60 ksi,p = 25 psi, 8 = 0.00140 in. 

U2 = 11.5 ksi, UJ = 24 ksi 

7 1 = 128°F,u1 = 12.1 ksi,p = 252psi 

' pr; 
81'.· = - '-----

' E(r0 - r;) 
E(r2 - r3) 

p= ? ' '2 ---=--- + '3 

pr T pr 
U jif = + - U = 

t + t'w/L wt'' w t + t'w/L 

d = 66.7 mm 

d = 133 mm 

Umax =Us = 13.9 ks i (T), UA = 13.6 ksi (C) 

Pmax = 2.01 kip 

u max = 22.4 ksi (T) 

Pmax = 128 kN 

u max = 44.0 ksi (T) 

u max = 44.0 ksi (T), u min = 4 1.3 ksi (C) 

u A = 0.800 ks i (T), Us = 5.20 ksi (C), 

'TA= 1.65 ks i , 'T9 = 0 

T 

Lt 

13-30. 

13-31. 

13-33. 

13-34. 

uA = 25 MPa (C), us = 0, 'TA = 0, -r8 = 5 MPa 

UA = 28.8 ksi, 'TA = 0 

uA = 70.0 MPa (C) , u 8 = 10.0 MPa (C) 

uA = 70.0MPa(C), u 8 = 10.0MPa(C), 

uc = 50.0 MPa (T), u 0 = 10.0 MPa (C) 
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13-35. 

13-37. 

13-38. 
13-39. 
13-41. 

13-42. 

13-43. 

13-45. 

13-46. 

13-47. 

13-49. 

13-50. 
13-51. 
13-53. 

R13-L 
R13-2. 
R13-3. 
Rl3-5. 
R13-6. 

R13-7. 

UA = 27.3 ks i (T), Us = 0.289 ksi (I'), 

TA = 0, Ts = 0.750ksi 

u s = 1.53 MPa (C), (T_" )s = 0, 
(Txy)s = 100 MPa 

u 0 = - 88.0 MPa, To = 0 

u E = 57.8 MPa, T£ = 864 kPa 
u s = 27.5 MPa (C), (T_" )s = - 8.81 MPa, 

(Txy)S = 0 

(u A)y = 16.2 ksi (T) , (TA)yx = - 2.84 ksi, 

(TA)yz = 0 
(u s)y = 7 .80 ksi (T), (Ts\, = 3.40 ksi, 

(Ts)yx = 0 

u A = J.OOks i (C), u s = 3.00ksi (C), 

u c = 1.00 ksi (C), u 0 = 1.00 ksi (f) 

8mAx1T( ri - r1) 
p = ? 

~ + r; + 4er0 

u A = 224 MPa (T) , (Tx, )A = - 30.7 MPa, 

(Txy)A = 0 
u c = 295 MPa (C), (Txy)c = 25.9 MPa, 

(Txz)c = 0 
(u ma.)1 = 106 MPa, (umax)c = - 159 MPa 

Pmax = 9.08 kN 
UF = 17.7 ksi (C), U£ = 125 ksi (C), 
(Tx) E = - 62.4 ksi, (Txy)E = 0, (Txy)F = 67.2 ksi, 

(Txz)F = 0 

(u ,)mAx = 15.8 ksi, (uc)max = - 10.S ksi 

u E = 802 kPa, T£ = 69.8 kPa 
UF = 695 kPa (C), TA = 31.0 kPa 

u max = 236 psi (C) 
8 = 0.286° 

u c = 11.6 ksi, Tc = 0, u 0 = - 23.2 ksi, To = 0 

Chapter 14 
14-2. u x' = 31.4MPa, Tx'y' = 38.I MPa 
14-3. Ux' = - 388 psi, Tx'y' = 455 psi 

14-5. Ux' = 1.45 ksi, Tx'y' = 3.50 ksi 
14-6. u x' = - 4.05 ksi, Tx'y' = - 0.404 ksi 

14-7. Ux' = - 61.5 MPa, Tx•y• = 62.0 MPa 

14-9. Ux' = 36.0 MPa, Tx•y• = - 37.0 MPa 

14-10. Ux' = 36.0 MPa, Tx•y• = - 37.0 MPa 
14-ll u x' = 47.5 MPa, u ,., = 202 MPa, 

Tx'y' = - 15.8MPa 

14-13. 
14-14. 

14-15. 

14-17. 

14-18. 
14-19. 

14-21. 
14-22. 
14-23. 
14-25. 

14-26. 

14-27. 
14-29. 

14-30. 
14-3L 
14-33. 

14-34. 

14-35. 
14-37. 
14-38. 
14-39. 
14-41. 
14-42. 
14-43. 
14-45. 
14-46. 

u x' = - 62.5 MPa, T x'y' = - 65.0 MPa 

u 1 = 319 MPa, u 2 = - 219 MPa, 8p 1 - 10.9°, 
8 , = - 79.1°, Tmax = 269MPa, P-

in-plane 

8, = - 34.1° and 55.9°, u,.8 = 50.0 MPa 

u 1 = 53.0 MPa, u 2 = - 68.0 MPa, 8p1 = 14.9°, 

8P2 = - 75.1°, Tmax = 60.S MPa, 
in-plane 

U = - 7 50MPa 8 = - 30.1° and 59.9° avg · ' s 

u 1 = 137 MPa, u 2 = - 86.8 MPa, 

8p1 = -1 3.3°, 8p2 = 76.7°, T!""" = 112 MPa, 
1n-pJane 

8, = 31.7° and 122°, u,.8 = 25 MPa 
U = 33 0 MPa, u = 137 MPa, T,y = - 30 MPa x . y . 

u 1 = 5.90 MPa, u 2 = - 106 MPa, 

8P1 = 76.7° and 8p2 = -1 3.3°, 

T max = 55.9MPa, u,.8 = - 50MPa, 
in.'-pbne 

8, = 31.7° and 122° 

T a = -1.96 ksi, u 1 = 80.1 ksi, u 2 = 19.9 ksi 

u x' = - 63.3 MPa, T.<'y' = 35.7 MPa 

u 1 = 2.29 MPa, u 2 = - 7.20 kPa, 8P = - 3.21° 
16 6 MPa - O ~ = 8.30 MPa U l = · , U 2 - ' ' max 

in-plane 

u 1 = 14.2 MPa, u 2 = - 8.02 MPa, 

T max = I I.I MPa 
in.'-pbne 

M = 8.73 kip· in. 

Point A: u 1 = u >' = 0, u 2 = u x = - 30.5 MPa, 
Point B: u 1 = 0.541 MPa, u 2 = - 1.04 MPa, 

8p1 = - 54.2°, 8p2 = 35.8° 

Tx'y' = 160 kPa 
u x' = - 191 kPa 

Point A: u 1 = 37.8 kPa, u 2 = - 10.8 MPa 
Point B: u 1 = 42.0 MPa, u 2 = -10.6 kPa 

u 1 = 233 psi, U 2 = - 774 psi, T max = 503 psi 
· in-plane 

u 1 = 382psi, u 2 = - 471 psi, Tmax = 427 psi 
. . in-plane 

u 1. = 838 psi, u 2 = - 37.8 psi 

u 1. = 628 psi, u 2 = - 166 psi 

u 1. = 198 MPa, u 2 = -1.37 MPa 
u 1. =Il l MPa, u 2 = 0 
u 1 = 2.40 MPa, u 2 = - 6.68 MPa 

u x' = 31.4 MPa, T x'y' = 38. I MPa 

u x' = - 4.05 ksi, Tx'y' = - 0.404 ksi 

u x' = 47.5 MPa, T.<' y' = - 15.8 MPa, 
u y' = 202 MPa 
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14-47. 

14-50. 

14-51. 

14-55. 

14-57. 

14-58. 

14-59. 

14-61. 

14-62. 

14-63. 

14-65. 

1~. 

14-67. 

14-69. 
14-70. 

14-71. 

14-73. 

14-74. 

14-75. 

14-79. 

14-81. 

14-82. 

CT1 = 53.0 MPa, CT2 = -68.0 MPa, 

Opt = 14.9° counlerclockwise, 'I' max = 60.5 MPa, 
in-plane 

CT,.,= -7.50 MPa,0,1 = 30.1° clockwise 

CT"' = -40.0 MPa, CT t = 32.1 MPa, 

CTz = - 112 MPa. Opt = 28.2°, 'l'm;u = 72.I MPa, 
o. = - 16.8° in-plane 

CT.,, = -4.00 ksi. CTt = 14.9 ksi, 
CTz = -22.9ksi,OP1 = -74.0",'l'_max = - 18.9ksi, 
8, = -29.Q° m-pbn< 

CT avg = 60.0 MPa, CT1 = 117 MPa, 
CTz = 3.43 MPa, 'I' ma = -56.6 MPa, 8, = 22.5°, 

U.-pbnc 

opt = 22.5° (Oockwise) 
CTt = 64.1 MPa, CT2 = - 14.1 MPa, Op= 25.1°, 

CTavg = 25.0 MPa, '1'11,,, = 39.1 MPa, 8, = -19.9° 
in-pbnc 

Op= - 14.9°, CTt = 227 MPa, u 2 = - 177 MPa, 

'!'max = 202 MPa, CTovg = 25 MPa, 8, = 30.1° 
in-plane 

CTt = l 2.3 ksi, CT2 = - 17.3 ksi , Op = - 16.3°, 

'I' max = 14.8 ksi, CTavg = -2.5 ksi , 8, = 28.7° 
in·planc 

CT,· = 19.5 kPa, 'l'x•y• = -53.6 kPa 
'I' max = 41.0 psi. CTt = 0.976 psi, u , = - 81.0 psi 

inoPlilnc -

CT._, = 5 MPa, CTt = 88.8 MPa, u 2 = - 78.8 MPa, 

Op= 36.3° (Co1111terclockwise), 'l'ma = 83.8 MPa, 
in·pbn< 

8, = 8.68° (Clockwise) 

CT,· = 75.3 kPa. 'l'x'r' = -78.5 kPa 
CT,• = -45.0 kPa. 'I',·,· = 45.0 kPa 

CT1 = 3.85 ksi, CTz = -2.08 ksi, 'l'm;u = 2.96 ksi 
in-pl>o< 

Mohr's circle is a point located at ( 4.80, 0). 

CTx· = 500 MPa, 'l'x·,.· = -167 MPa 

CTx· = 470 kPa. 'I',·,,· = 592 kPa 
CTt = 2.97 ksi, CT2 = -2.97 ksi, Op1 = 45.0°, 

Op2 = -45.0", '1'111ox = 2.97 ksi, 8, = 0 
Ot·pbnc 

CTt = 2.59 ksi, <Tz = -3.61 ksi, opl = - 40.3°, 

Ori = - 49.7°, '1'111ax = 3.10 ksi, 8, = 4.73° 
in-plane 

'1'111ax = 322 psi, CT1 = 639 ps i, u 2 = - 5.50 psi 
in-plane 

CT111ax = 158 psi, CT mu• = - 8.22 psi , 
CT int = 0 psi, 'I' abs = 83.2 psi 

max 
CTt = 222 MPa. CT2 = - 102 MPa, 'Tab, = 162 MPa 

CTt = 6.73 ksi, CTz = -4.23 ksi, 'I' abs = 5.48 ksi 
max 
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14-85. E,.• = 248(10-6), 'Yx'y' = -233(10-6), 

E:r· = - 348( I o-6) 

14-86. Ex· = 55.1( 10- 6). 'Yx'y' = 133(10-6), 

E:r· = 325(10-6) 

14-87. Ex• = 325(10-6). 'Yx•1• = -133(10-6), 

Ey• = 55.1(10-6) 
14-89. Ex· = -116(10-6), E

1
• = 466(10-6), 

'Yx'y' = 393(10- 6) 

14-90. Ex• = 466(10- 6), E,,· = - 11 6(10-6
), 

'Yx'y' = -393(10-6} 

14-91. Et = 385(10- 6). E2 = 195(10-6), 

opt = 54.2°. Ori = -35.8°. 
'Y!""x = 190(10- 6), 

m-plane 

8, = 9.22° and -80.8°, Eavg = 290( 10-6
) 

14-93. (a) E1 = 713( 10- 6), E2 = 36.6(10-6), Opl = 133°, 

(b) 'Y~iax = 677(10-6), Eavg = 375(10-6
), 

in-plane 

o. = -2.12° 
14-94. Ex• = 649( 10- 6), 'Y.<'y' = - 85. 1 ( 10-6), 

Ey• = 201 ( 10- 6) 

14-95. Ex• = - 365( 10- 6 ), 'Yx'y' = -27 1(10-6
), 

Ey• = - 35.0( I0- 6 ) 

14-97. Et = 368( I o-6). Ez = 182( I o-6), 

OP1 = -52.8° and Bpi = 37.2°, 
'Ymou = 187(10-6). o. = -7.76° and 82.2°, 

n-planc 

E.,g = 275(10-6) 
14-99. Et = 114(10-6). Ez = -314(10-6), 

(Op)t = 79.7°. (Op)z = -10.3°. 
'Ymou = 427 ( 10-6), 

•plane 

8, = 34.7° and 125°. E.,
1 

= - 100( 10-6) 

14-lOL Ex• = 325(10- 6), 'Yx'y' = - 133(10- 6), 

Ey• = 55.1(10-6) 

14-102. E,• = 77.4( 10-6), 'Yx'y' = 1279( 10-6
), 

Ey• = 383(10- 6) 

14-103. Eavg = 290( 10-<>), £1 = 385( IO-<>), 

Ez = 195( 10-<>), 81>1 = 54.2° (Counterclockwise), 
'Ypiax = 190( 10- 6), 

in-plane 

8, = 9.22° (Counterclockwise) 

14-105. (a) Et = 773( 10- 6), Ez = 76.8(10-6
), 

(b) 'Y~iax = 696( 10-6), (c) 'Yobs = 773(10- 6
) 

in-plane max 
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14-106. 

14-107. 

14-111. 
14-113. 
14-114. 
14-115. 

14-117. 

SELECTED A NSWERS 

Ei = 870( 10- 6), £2 = 405( 10- 6), 

'Y!"ax = 465(10- 6), 'Yab< = 870(10- 6) 
10-plane max. 

Ei = 946( 10- 6), £2 = 254( 10- 6), 

'Y!""" = 693(10- 6
), 'Yab< = 946(10- 6

) 
10-p)ane max. 

E = 30.7( 103) ksi, v = 0.291 
/:i(J = - 0.0103° 

l'pvc = 0.164 
p = 3.43 MPa r !""" = O r:;,! = 85.7 MPa 

' 1n· p1ane ' 

p = 0.967 ksi, 'Y!""x = 1.30(10- 3) 
1n· p1ane 

14-118. Ui = 10.2 ksi, U 2 = 7.38 ks i 

14-119. P = 26.1 kip, 'Yxy = - 27.5( 10-6) rad 

14-121. Ex = 2.35( 10- 3), Ey = - 0.972(10- 3), 
£ , = - 2.44( 10- 3) 

14-122. Ui = 8.37 ksi, U 2 = 6.26 ks i 

14-123. a' = 2.00302 in., b' = 2.00553 in., 
t ' = 0.24964 in. 

R14-1. ui = 119 psi, u 2 = - 119 psi 

R14-2. ui = 329 psi, u 2 = - 72.I psi 

R14-3. u x' = - 0.61 1 ksi, r."y' = 7.88 ksi, u 1• = - 3.39 ksi 

R14-6. 80 = 0.367 mm, 86 = - 0.255 mm, 
81 = - 0.00167 mm 

R14-7. 
R14-9. 

Ei = 0.0243, £2 = - 0.03 11 
€ avg = 83.3( 10- 6), Ei = 880(10- 6), 

£2 = - 713( 10- 6), (JP = 54.8° (clockwise), 

'Y!""" = -1593(10- 6), 
10-plane 

6, = 9.78° (clockwise) 

Chapter 15 
15-1. b = 211 mm, h = 264 mm 

15-2. Use b = 4 in. 
15-3. Use b = 5 in. 

15-5. Use Wl2 x 16. 

15-6. Yes 
15-7. Use Wl2 x 22. 

15-9. Use W360 x 45. 

15-10. Yes, it can. 

15-11. Use s= s" = 2 in ., 
Uses' = I in. 

15-13. h = 8.0 in., p = 3.20 kip 

15-14. s = 1.93 in., s ' = 2.89 in., 
s" = 5.78 in. 

15-15. Uses= l~ in., s ' = 1..!.. in., 
8 8 

I 
s" = 38 in. 

15-17. p = 103 kN 

15-18. 
I 

Use a = 38 in. 

15-19. p = 750 1b 

15-21. P = 85.9N 

15-22. b = 3.40 in. 

15-23. Use W t6 x 31. 

15-25. Used= 3 in. 

Chapter 16 
16-1. u = 3.02 ksi 
16-2. u = 75.5 ksi 

16-3. u = 582 MPa 
16-5. 

16-6. 

16-7. 

16-9. 

16-10. 

16-11. 

Ve = - 6.11 mm 

(J = _ MoL 
max El ' 

M ox2 
v = ---

2El ' 

MoL2 

Vmax = - 2El 

p = 336 fl, 
M 0 L 

(}max = EI)' 

MoL2 

Vmax = - 2£1 

Vi = l:E/2xt - 3Lxf), 

PL2 

V 2 = 48E/- 6x2 + L) 

l VlLt t ? 

Vi = 
12

El (2x- - 9axi ), 

w ( 4 1 4 
V 2 = 

24
El - x2 + 28a-x2 - 4la ), 

6 
_ _ w<i" v _ _ 4 1wa4 

c - El ' 8 - 24El 
l VlLt I ? 

Vi = -- (2x- - 9axi ), 
l2El 

V3 = ~ (-x~ + Sax~ - 24a2xj + 4a3x3 - a4
), 

24El 

7wa3 1wa4 

6s = - 6El , Ve = - 12El 
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16-13. 

16-14. 

16-15. 

16-17. 

16-18. 

16-19. 

16-21. 

16-22. 

16-23. 

16-25. 

16-26. 

16-27. 

16-29. 

16-3-0. 

Mr:11 5Moel 
6A = - 2Ef ' Vmax - 8Ef 

3PL3 

Vmax = 256Ef 

p = 40.0 lb, s = 0.267 in. 

Px1 ( , ' ) v 1 = 
12

EI - xj + L- , 

p ( 3 2 3 ) V2 = 
24

EI - 4x2 + 1L x 2 - 3L , 

PL3 

Vmax = 8Ef 

3PL2 PL3 

6A = - 8Ef , Ve = - 6Ef 

1 IPL3 

Ve= - 48Ef 

Vmax = - 11 .5 mm 

v = -1 
(2.25x3 - 0.002778x5 - 40.5x2) kip · ft3, 

El 

errnlX = - 0.00466 rad, vrrnlX = - 0.369 in. 

4Mof- M0 , 
6 - --' v - --(- x3 + L-x ) e - 3Ef <'' I - 6E/L I I • 

Mo , ' 3 v = --( - 3Lx- + 8L-x - SL ) 2 6EIL 2 2 , 

5MoL2 

Ve = 
6EI 
18.8 kip . fr3 

V max = -
El 

Vmax = - 0.396 in. 

2yL3 

6A = 3t2E ' 

yL4 
v = --

A 2t2E 

wa3 
6e = - 6EI' 

w ( 4 3 ?- 2) Vi = 
24

Ef - x i + 4tLX1 - 6c X1 , 

wti' 
v, = --(- 4x, + a), 

- 24EI -

wa3 

Ve = 24E/- 4L + a) 

wa3 wx~ ( , ') 
6e = -

6
Ef' V 1 = 

24
Ef - xj + 4lLX 1 - 6<r , 

wti' wa3 
v, = --(4x3 + a - 4L), v 8 = --(a - 4L) 

- 24EI 24EI 

16-31. 

16-33. 

16-34. 

16-35. 

16-37. 

16-38. 

16-39. 
16-41. 

16-42. 

16-43. 

16-45. 
16-46. 
16-47. 
16-49. 
16-50. 
16-51. 
16-53. 
16-54. 

16-55. 

16-57. 

16-58. 
16-59. 
16-61. 

SELECTED A NSWERS 8 9 5 

v = _I [ - Pb x3 + P(a + b) (x _ a}3 + Pab x] 
El 6a 6a 6 

Pa , , 
E = 24d/ (3L- - 4<r) 

p 
V = 

12
E

1
[ - 2 (x - a}3 + 4 (x - 2a}3 + t?-x ], 

(v J = 0.106Pti' v = _ 3Pa3 
ma AB El • e 4EI 

v = -1
[ - 25x2 + 2(x - 4 ) 3 _ _!_ (x - 4 )4 

El . 8 

1 
+ 2 (x - 12 )3 + g (x - 12 }4 

- 24x + 136] kip · ft3 

Mo [ ( L)2 ( 2 )2 J v = 
6
EI 3 x - 3 - 3 x - 3 L - Lx , 

5Mof-2 

v = -
rrnlX 72£/ 

I 
v = - (- 8.33x3 + 17.1 (x - 12 }3 

El 

- 13.3 (x - 36 }3 + 1680.x - 5760] lb ·in3 

vrrnlX = - 12.9 mm 

(vmaJ,. = 0.0867 in. 

1920 6720 lb . in2 

eA = - E!, ee = EI 

v = -1 
[ - 0.0833x3 + 3 (x - 8 }2 

El 
+ 3 (x - 16 } 2 + 8.00x ] kip · ft3 

Be = - 0.00778 rad, Ve = 0.981 in.! 

ee = 2.08°, vs = 3.61 in.! 
Ve = J.20 in.! 
Ve = 0.429 in. ! 
eA = - 0.283°, es = 0.427° 

6A = 0.00458 rad, Ve = 0.187 in.! 
(vA)., = 0.0737 in. , (vA)k = 0.230 in. 

VA = 0.593 in. ! 

v = PL 2 ( ..!.. + ...!:__) 
k 3EI 

VA = PL3 (1~/ + 8~1)! 
d 0 = 3.23 in.! 
F = 0.349 N, a = 0.800 mm 

By = 550N, Ay = 125N, C1 = 125N 
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8 9 6 SELECTED A NSWERS 

16-62. 

16-63. 

16-65. 

16-66. 

16-67. 

16-69. 

16-70. 

16-71. 

16-73. 

R16-L 

R16-2. 

R16-3. 

Rl6-5. 

R16-6. 

R16-7. 

R16-9. 

5wL 3wL 
Ax= O, BY = -

4
- ,c, -

8 
5 wL ! 7 

BY =gwLj , C1 = 16 , A1 =16wL f 

Ax = 0, By = 35.0 kip, A ,. = 15.0 kip, 

MA = 40.0 kip. fl 

1P 3P PL 
Ax= 0, B1 = 4 , A,. = 4 . MA = 4 

1wL 57wL 9wL2 
Ax= 0, By = 

128 
, A1 = )28• MA = J28 

I I 
MA = M8 = 

24
PL, A ,. = B1 =6P, 

I 
Cy = D,. = 3P, Dx = 0 

3wA 2E2L1 
TA c = -----=---=---'---

8( 3E ,I ,L2 + A1E2L1) 

PL 2EI PL 3 otL 
M = S -~· ~mAx = 192EI + 4 
a = L - (72~E/) 1/4 

Wo 

v = -
1 

[ - 30x3 + 46.25 (x - 12 )3 

EI 

- 11.7 (x - 24 )3 + 38,700.x - 412,560 ] lb· in3 

I 
v, = E/4.44xt - 640x 1) lb· in3

, 

I 
V2 = E/-4.44x~ + 640xi) lb· in3 

woL2 woL 2 

M = -- M = --
8 30 'A 20 

wL4 

(vi.)max = • ;;: 
18 v3E/ 
4 

v = woL ! 
A Eth~ 

~G = 5.82 in.! 

~c = 0.644 in.! 

Chapter 17 

17-L 

17-2. 

17-3. 

17-5. 
17-6. 

5kL 
Per = 4 

per = kL 

Use d= 1~ in. 

Per = 1.84 MN 

Per = 902 kN 

17-7. 
17-9. 
17-10. 
17-lL 
17-13. 
17-14. 
17-15. 
17-17. 
17-18. 
17-19. 

17-2L 

17-22. 
17-23. 
17-25. 
17-26. 

17-27. 

17-29. 

17-3-0. 
17-3L 
17-33. 
17-34. 
17-35. 
17-37. 
17-38. 

17-39. 

17-4L 

17-42. 

17-43. 

17-46. 
17-47. 
17-49. 
17-50. 
17-5L 
17-53. 

F.S. = 1.87 

Pc. = l.30MN 

Pc. = 325 kN 

P,T = 20.4 kip 

p = 42.8 kN 

P,T = 575 kip 

P,T = 70.4 kip 

Pc. = 2.92 kip 

Pc. = 5.97 kip 

p = 17.6 kip 

U se d; = 1.!. in. 
8 

w = 4.31 kN 

W = 5.24kN, d = l.64m 

p = 62.3 kip 

p = 2.42 kip 

Use dA8 = 2iin., d8 c = 2~in. 

U se dA8 = l~in., d8c = 1%in. 

p = 129 lb 

w = 1.17 kN/ m 

p = 14.8 kN 

Use d= 62 mm. 

Use d= 52 mm. 

p = 37.5 kip 

p = 5.79 kip 

U se d= I~ in. 

Mmax = _ w:I [sec ( ~ Jf) -I] 
Mmax = -~ fjtan (~ )f) 

'ff
2 El 

Per = - ,-
4L-

p = 31.4 kN 

Vmax = 0.387 in. 

Pa!llow = 7.89 kN 

L = 8.34m 

P = 3.20 MN, Vmax = 70.5 mm 

p = 45.7 kip 

17-54. Yes 

17-55. P,T = 12.6 kN 
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17-57. 

17-58. 

17-59. 

17-61. 
17-62. 

17--63. 

Rl7- 1. 

R17-2. 

L = 21.2 ft 

Pm:u = 16.9 kN 

p = 76.6 kip 

P = 174 kN, Vmax = 16.5 mm 

Vmax = 1.23 in., Umax = 15.6 ksi 

p = 88.5 kip 

a= 103mm 
2k 

Per= -
L 

R17-3. 

R17-5. 

R17-6. 

R17-7. 

R17-9. 
R17-10. 

Pa = 12.1 kN 

p = 12.5 kip 

I 
Used= 28 in. 

t = 5.92 mm 

P011ow = 77.2 kN 

SELECTED ANSWERS 897 

It docs not buckle or yield. 
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INDEX 
A 
Absolute maximum shear strain, 678-679, 695 
Absolute maximum shear stress, 6S5-QS8, 694 
Allowable stress (uauow), 346-347, 70S, TIS 
Allowable stress design (ASD), 346-3S3, 37S 
Angle of twist, 4S4-4SS, 474-481, 49S 

circular shafts, 4S4-4SS 
constant cross-sectional area (A), 47~76 
internal torque and, 474-47S, 478 
multiple torques. 476 
procedure for analysis of, 478 
sign convention for. 477 
torsion and, 4S4-4SS, 474-481, 49S 
torsional deformation and, 4S4-4SS 

Angles (8), 17, 41-43, 64, 74-7S, 201-203. 
See also Angle of twist 

Cartesian vectors, 41-43 
coordinate direction (a, {3, y), 41-42, 74-7S 
dot products and, 64, 7S 
dry friction (4>), 201-202 
horizontal , 42-43 
kinetic friction ( 4>k). 202- 203 
line of action (direction) and, 17 
static friction (cf>,). 201, 203 
vertical (cf>). 42-43 

Anisotropic material, 328 
Area (A). 272, 292- 296, 301-303, 307- 308, 38S, 414-41S, 

449,814-SlS 
centroid ( C) of, 272, 307, 814-81S 
composite, 301-303, 308 
constant cross-sectional, 414-41S, 449 
moment of inertia(/) for, 292-296, 

301-303,308,814-81S 
parallel-axis theorem for, 293-296, 308 
percent reduction in, 385 
procedures for analysis of, 294, 301 

Arrow notation.17, 31, 73 
Axes, 80, 101- 105. 143-147, 1S2, S25-528, 530. 544-S4S 

bending applied to. S25-528 
direction and, 80 
distributed loading along single, 143-147 
line o f action, 101, 1S2 
longitudinal, S2S-S27 
moment,80 
moment of force about, 101-lOS, 1S2 
neutral, 525, S30, S44, S47 
principal, S44-S4S 
projection.102 

898 

resultant force on, 101-lOS, 1S2 
scalar analysis of, 101 
unsymmetric bending and, S44-S4S 
vector analysis of, 102- 103 

Axial loads, 328-334, 374, 410-4Sl, 777-779, 798-803, 807 
bars, 328-334, 374 
buckling from, 777- 779, 798-803, 807 
columns,777-779.798-803,807 
constant cross-sectional area (A), 

414-41S, 449 
cross section of. 328 
displacement (o), 413-420, 429-434, 449 
eccentric applications. 798-803, 809 
elastic deformation in members, 

413-420,449 
force (flexibility) method of analysis, 43S-436 
principle o( superposition for, 428, 449 
procedures for analysis of, 416, 430, 43S-436 
relative displacement ( o), 413-420, 448 
Saint-Venant 's principle for, 411-413, 448 
sign convention for, 41S, 449 
statically indeterminate members, 

428-434, 449 
stress (u) and, 328-334. 374 
thermal stress and. 441-444, 449 

Axis of symmetry. S25, 544 

B 
Ball-and-socket joints, 18S 
Base units, 8 
Beams, 498- 5S7, S58- S89, 698-71S, 716-77S, 816-821 

bearing plates, 700 
bending, 498-SS7 
built-up members, S78-S82, S87, 704, 71S 
cantilevered, 821 
concentrated forces and moments, SOS 
deflection of, 700, 716-77S, 820--821 
deformation of. S25-S28 
design of, 698-71S 
discontinuity functions for, 739-747, 772 
distributed loads. S06-S08 
equations for, 820--821 
fastener spacing, 579, S87 
flexure formula for, S29-S3S, SSS 
force (flexibility) method for, 7S9-762 
glulam, 704 
graphical representations of, S06-S1S, SS4 
load-displacement relationships, 7S9-762 
longitudinal shear stress in, SS9-S60 
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method of integration for, 721-731, 772 
method of superposition for, 750-754, 758-767, 773 
moment diagrams, 717-731, 772 
plate girders, 701 
prismatic, 702-709 
procedures for analysis of, 501, 509, 532, 566, 705, 

724, 744, 762 
section modulus (S), 702 
shear and moment diagrams, 499-515, 554 
shear flow (q), 578-582, 587 
shear formula for, 560-571, 587 
sign convention for, 500, 508, 554 
sin1ply supported, 820 
statically indeterminate members, 

758-767, 773 
steel sections, 703 
stress trajectories, 701 
transverse shear, 558-589 
unsymmetric bending, 544-550, 555 
warping, 560 
wide-flange sections, 816-819 
wood sections, 703 

Bearing plates, 700 
Bearing supports, 185 
Bending, 498-557 

axis of syn1metry, 525, 544 
beams, 498-557 
defomiation, 525-528 
flexure formula for, 

529-535, 555 
neutral axis, 525, 530, 544, 547 
neutral surface, 525, 544 
principal axis, 544-545 
procedures for analysis of, 501, 

509,532 
shear and moment diagrams, 

499-515,554 
straight members, 525-528, 555 
unsymmetric, 544-550, 555 

Bending moment (M) , 313-314, 508, 525-528, 530-531, 
544-550, 554-555 

arbitrarily applied, 546 
defomiation of straight members, 

525-528, 554 
flexure formula for, 530-531, 555 
internal resultant loadings, 313-314 
principal axis, applied to, 544-545, 555 
shear and moment diagram regions of concentration, 508 
unsymmetric bending, 544-550, 555 

Bending stress, 705, 715 
Biaxial stress, 593 
Bifurcation point, 779 
Bridge trusses, 224 

Brittle materials, 387, 406 
Buckling, 776-809 

axial loads, 777-779, 798-803, 807 
bifurcation point, 779 
columns, 776-809 
critical load (P0,) for, 777-779, 807 
eccentric loading, 798-803, 807 
equilibrium and, 778-779 
lateral deflection, 777-779 

INDEX 899 

Built-up members, 578-582, 587, 704-705, 715 
design of, 704-705, 715 
fastener spacing, 579, 587, 705 
plate girders for, 704 
shear flow (q) in, 578-582, 587 

Bulk modulus (k), 685, 695 

c 
Cartesian stress and strain components, 363 
Cartesian vectors, 32, 40-46, 52-57, 63, 74-75, 84-85, 

87-89, 151 
addition of, 43 
coordinate direction angles (a) , 41-42 
coplanar forces, notation of, 32 
cross product, formulation of, 

84-85, 151 
direction of, 40-43, 74-75 
dot product and, 63, 75 
force vectors, 55-57 
horizontal angle (8) , 42-43 
magnitude of, 41, 74 
position vectors for, 52-54, 151 
rectangular components, 40 
resultant forces, formulation of, 43-44, 75 
resultant moments, formulation of, 

87-89, 151 
right-hand rule for, 40, 83-84 
three-dimensional components, 40-43 
unit vectors, 40-43, 55-57, 74 
vertical angle ( </> ) , 42-43 
x, y , z coordinates, 41-42, 52 

Center of gravity ( G), 162, 269-271, 273, 283-284, 307 
compoisite bodies, 283-284, 307 
free-body diagram location, 162 
procedures for analysis of, 273, 284 
rigid-body equilibrium and, 162 
specific weight (constant density) and, 283 
weight (W) and, 162, 269-271, 307 

Centroid ( C), 144, 153, 271-276, 307, 
814-815 

area (A), 272, 307, 814-815 
distributed loading, 144, 153 
procedure for analysis of, 273 
volume (V), 271, 307, 814-815 
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Circular shafts, torsional deformation o~ 453-455, 495 
Coefficients of friction (µ.), 201-203, 219 
Cohesive material, 326 
Collinear vectors, 19, 73 
Columns. 776-809 

critical load (Per) of. 777-779, 
782-783.786.802,807 

deflection equations for, 780-783, 
799-800 

design of. 802 
eccentric loading, 798-803, 807 
effective length, 787 
Euler load, 782, 807 
fixed-supported (braced), 786 
ideal, 780-785 
lateral deflection of, 777-779 
pin-supported, 780-785 
Secant formula for, 798-803, 807 

Combined loadings, 590-617 
biaxial stress, 593 
cylindrical (hoop) stress, 592-593, 614 
cylindrical vessels, 592-593, 614 
procedure for analysis of, 598-599 
radial stress, 593 
spherical vessels, 593, 614 
state of stress caused by, 598-605, 614 
thin-walled pressure vessels, 591-594, 614 

Compatibility (kinematic) 
conditions, 429 

Component vectors, 18, 20-21, 31-36 
Composite bodies. 283-286, 301-303, 307-308 

area (A). 301-303, 308 
center of gravity (G) and centroid of, 283-284, 307 
moment of inertia for, 301-303. 308 
procedures for analysis of, 284, 30 I 
specific weight and, 283 

Compression test. 379-380 
Compressive forces. 225-226, 239-240 
Concentrated force, 4 
Concurrentforces.32.43,75, 131 , 175 

couple system simplification, 131 
three-force member equilibrium, 175 
resultants, 32, 74 

Continuous material, 326 
Coplanar forces, 31- 36, 74, 120-122, 131, 143, 159-167, 

169-176,314 
Cartesian vector notation, 32 
couple system simplification, 

120-122,131 
distributed loads, 143 
equations of equilibrium for, 169-174 
internal resultant loadings, 314 
procedures for analysis of, 164, 170 
resultants, 32-33. 74 

rigid-body equilibrium and.159-167, 169-176 
scalar notation, 31 
support reactions for, 159-167 
three-force members.175-176 
two-force members, 175-176 

Cosine law, 22 
Coulomb friction, 200. See also 

Dry friction 
Couple, 110-115, 120-125, 131-136. 

152-153.159 
concurrent force systems.131 
coplanar force systems, 120-122, 

131, 159 
equivalent, 111 
moment of, 110-115, 152 
parallel force systems, 132 
procedures for analysis of, 122, 132 
resultant moment (MR), 111-112 
rigid-body equilibrium and, 159 
scalar formulation, 110 
system simplification, 120-125, 

131-136,lL53 
vector formulation, 110, 152 

Critical load (P cr), 777-779, 782-783, 786, 802, 807 
bifurcation point, 779 
buckling and, 777- 779, 807 
column design and, 802 
deflection and, 780-783 
equilibrium and, 778-779 
Euler load, 782, 807 
fixed supported (braced), 786 
pin-supported columns. 782-783, 807 

Cross product.83-85, 151 
Cross sections. 312-314. 326-330, 374. 414-415, 449 

axially loads, 328-330. 414-415. 449 
constant area (A).414-415,449 
internal resultant loading, 

312-314,374 
stress distribution, 326-330 
transverse shear moment (Q), 562-563 

Cylindrical (hoop) stress, 592-593, 614 
Cylindrical vessels, 592-593, 614 

D 
Deflection, 700, 716-775, 777-779, 

798-803, 807, 820-821. See also Buckling 
beams, 700, 716-775, 820-821 
boundary conditions, 722 
cantilevered beams, 820 
column buckling, 777-779, 

798-803, 807 
continuity conditions, 722 
coordinates for, 723 
critical load (P cr), 777-779, 807 
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discontinuity functions for, 
739-747, 772 

eccentric loading, 798-803, 807 
elastic curve, 717-721, 772, 820-821 
flexural rigidity (£!), 722 
lateral (buckling), 777-779 
method of integration for, 

721-731, 772 
method of superposition for, 750-754, 758-767, 773 
moment-curvature relationship, 720 
moment diagrams, 717-731, 772 
procedures for analysis o~ 724, 744, 762 
Secant formula for, 798-803, 807 
sign conventions for, 733 
simply supported beams, 820 
slope equations, 721-731, 772, 820-821 
statically indetem1inate members, 

758-767, 773 
Deformation, 328, 361-367, 375, 379-380, 382-383, 

385-399, 406-407, 411-420, 525-528, 555, 560 
axially loaded members, 413-420 
bending, 525-528, 555 
brittle materials, 387, 406 
ductile materials, 385-386, 406 
displacement (o) and,413-420, 

429-434,449 
elastic, 413-420, 449 
localized, 411-412 
necking, 383 
pem1anent, 382, 406 
plastic, 382 
Poisson's ratio ( v) for, 398-399, 407 
relative displacement (o), 413-420 
Saint-Venant's principle for, 

411-413,448 
small strain analysis, 364 
straight members (beams), 

525-528,555 
strain and, 362-367, 375 
strain energy from, 389-393, 407 
strain hardening, 383 
stress-strain diagrams for, 

382-383,406 
tension and compression tests for, 379-380 
circular shafts, 453-455, 495 
torsional, 453-455, 495 
twisting, 453-455 
uniform, 328 
warping, 560 
yielding, 382 

Degree of indeterminacy, 758 
Derivatives, 812 
Design, see Structural design 
Determinant notation, 85 

Dilatation (e), 684-685, 695 
Dimensional homogeneity, 10 
Dimensionless quantity, 362, 375 

INDEX 901 

Direction, 17, 20, 31, 40-43, 52-53, 55, 73-75, 80, 83-84, 86, 
110,151-152, 226,232,240,701 

angle (,9) for, 17, 42-43 
arrow notation for, 31 
by inspection, 226, 232, 240 
Cartesian vectors, 40-43, 74-75 
coordinate angles (a, {3, y), 41-42, 74-75 
cosines, 41-42 
couple moments, 110 
cross product, 83-84 
force and, 55-57, 64, 74-75, 80, 84-85, 86, 151-152 
line of action, 17 
moment axis, 80, 152 
position vectors, 52-53 
resultant forces, 20-21 
resultant moments (MR), 80, 84-85, 151-152 
right-hand rule for, 40, 80, 84-85, 86, 110, 151 
scalar formulation and, 80, 151 
sense of, 17, 73 
sign convention for, 80 
stress trajectories, 701 
truss member forces, 226, 232, 240 
vectors and, 17, 20, 31, 40-43, 52-53, 55, 73-74, 84-85, 86 
unit vectors, 32, 40, 55-57, 74 

Discontinuity functions, 739-747, 772 
applications o~ 743 
deflection and, 739-747, 772 
Macaulay functions, 740 
procedure for analysis of, 744 
singularity functions, 741-742 

Displacement (o), 413-420, 429-434, 449 
axially loaded members, 413-420, 430-434 
compatibility (kinematic) conditions for, 429-434, 449 
constant cross-sectional area (A), 

414-415, 449 
principle of superposition for, 428, 449 
procedure for analysis of, 416 
relative, 413-420 
statical!ly indeterminate members, 

429-434, 449 
Distributed loading, 143-147, 153, 326-327, 459, 506-508, 

739-747, 772 
axially loaded members, 328-330 
axis (single), along, 143-147 
centroid ( C) location, 144, 153 
coplanar, 143-147, 153 
cross sections for, 326-330 
deflection and, 739-747, 772 
discontinuity functions for, 739-747, 772 
Macaulay functions and, 740 
magnitude of resultant force, 143 
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Distributed loading (continued) 
resultant forces of, 144-147 
shear and moment diagram regions, 506-508 
singularity functions, 741-742 
shear stress ( r ), 459 
stress (u) and, 326-330 
torsion and, 459 

Dot notation, 9 
Dot product, 63-67, 75, 102 
Dry friction, 200-217, 219 

angles ( </>) of, 201-203 
coefficients of(µ,) , 201-203, 219 
distributed and frictional loads, 200 
impending motion (static) and, 201, 203, 204-210, 219 
motion (kinetic), 202-203, 219 
normal forces and, 200 
procedure for analysis of, 207 
rigid-body equilibrium and, 200-217, 219 
rolling and, 203 
slipping (sliding) and, 201-205, 219 
theory of, 200 
tipping and, 200, 206 

Ductile materials, 385-386, 406 

E 
Eccentric loading, 798-803, 807 
Effective length, 787 
Elastic behavior, 381-383, 413-420, 

449,381-383 
axially loaded members, 413-420, 449 
defom1ation and, 413-420, 449 
stress-strain diagrams for, 381-383 
stress/strain transformation and, 684-685 

Elastic curve, 717-721, 772, 820-821 
Electrical-resistance strain gage, 380 
Engineering notation, 10 
Engineering (nominal) stress/strain, 381 
Equilibrium, 156-221, 329-330, 336, 778-779 

bifurcation point, 779 
column buckling and, 778-779 
conditions for, 157-158 
column buckling and, 778-779 
dry friction and, 200-217 
equations of, 169-174, 190-193 
free-body diagrams for, 159-167, 185-189 
friction force equations and, 200, 205 
neutral, 779 
procedures for analysis of, 164, 170, 

191, 207 
rigid bodies, 156-221 
scalar equations of, 190 
shear stress ( r) and, 336 
stable, 778 

stress ( u) and, 329-330, 336 
support reactions, 159-161, 185-189, 218-219 
three-dimensional rigid-bodies, 185-199, 219 
two-din1ensional rigid bodies, 158-184, 219 
unstable, 201, 778 
vector equations of, 190 
zero force for, 158 

Equivalent system, 120-125 
Euler load, 782, 807 
Extensometer, 380 
External effects of force systems, 120. 

See also Rotation; Translation 

F 
Factor of safety (F.S.), 346-347, 375 
Fastener spacing in built-up beams, 579, 587, 705 
Fixed supports, 159, 786 
Flexibility (force) method, 759-762 
Flexural rigidity (EI), 722 
Flexure fom1ula, 529-535, 555 

bending moment (M) for, 530-531, 555 
bending stress from, 529-535, 555 
moment of inertia(/) for, 531 
neutral axis location for, 530 
procedure of analysis for, 532 

Foot-pound-second system of units, 327, 362 
Force (f), 4-8, 16-77, 101-105, 110-115, 151-152, 158-162, 

175-176, 200-219,225-226, 239-240, 313-314,361, 
374-375, 508. See also Dry friction; Frictional forces; 
Weight 

addition of, 20-25 
axis, moment of about, 101-105, 152 
component vectors of, 20-21 
compressive, 225-226, 239-240 
concentrated, 5 
concept of, 4 
concurrent, 32, 43, 75, 175 
coplanar, 31-36, 74, 314 
couple, moment of, 110-115, 152 
deformation from, 361, 375 
directed along a line, 55-57, 64, 75 
free-body diagrams for, 159-162 
frictional, 200-217, 219 
gravitational, 7 
internal resultant loadings, 313-314, 374 
internal, 162 
moment (M0 ) of, 101-105, 152 
Newton's laws and, 6-7 
nom1al (N) , 200, 313-314 
parallelogram laws for, 18, 22 
position vectors and, 52-54, 75 
procedure for analysis of, 22 
resultants of, 20-21, 32-33, 43, 73-75, 111, 152 
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rigid-body equilibrium and, 158-162 
scalar detem1ination of, 17-18, 101, 110, 151 
shear(V), 313-314 
shear and moment diagram regions of concentration, 508 
tensile, 225-226, 239-240 
triangle rule for, 18-19, 73 
two-and three-force members, equilibrium of, 175-176 
units of, 8 
unknown forces, 159, 170, 185, 188, 191, 218-219, 226 
vector detem1ination of, 16-77, 102-103, 110, 151 
zero, 158 

Force (flexibility) method of analysis, 435-436, 759-762 
Force systems, 78-155, 156-221, 224-225, 264 

axis, moment of about, 101-105, 152 
Cartesian vector formulation, 84-85, 87-89, 151 
concurrent, 131, 153, 175, 224, 264 
coplanar, 121-122, 131, 143, 159-167, 169-176, 224 
couple moments, 110-115, 120-125, 

131-136,152-153, 159 
cross product, 83-85, 151 
distributed loads, 143-147, 153 
dry friction and, 200-217, 225 
equilibrium of, 156-221 
equivalent, 120-125, 153 
external effects from, 120 
free-body diagrams for, 159-167, 185-189 
frictional forces on, 200-217, 219 
moments (Mo), 79-89, 101-105, 110-115, 151 
parallel, 132, 153, 175 
perpendicular, 131 
principle of moments, 90-92, 151 
principle of transmissibility, 86, 120 
procedures for analysis of, 122, 132, 164, 170, 191 
resultants, 78-155 
rigid-bodies, 156-221 
rotational motion and, 120-122, 159, 185 
scalar fom1ulation of, 79-82, 101, 110, 151 
simplification of, 120-125, 131-136, 153 
support reactions and, 159-161, 

185-189,218-219 
three-dimensional rigid-bodies, 185-199, 219 
translational motion and, 120-122, 159, 185 
truss members, 224-225, 264 
two-dimensional (coplanar) rigid bodies, 158-184, 218 
vector formulation of, 85-87, 102-103, 110, 151 

Fracture stress (a 1), 383 
Frames, 248-263, 265 

free-body diagrams for, 248-255, 265 
multiforce members of, 248 
procedure for analysis of, 251 
structural analysis of, 248-263, 265 

Free-body diagrams, 159-167, 170, 185-189, 191, 200-201, 
218-219,226-233, 239-244,248-255, 264-265 

center of gravity ( G), 162 
frames and machines, 248-255, 265 
frictional forces, 200-201, 219 
idealized models, 162-163 
internal forces and, 162 

INDEX 903 

procedures for analysis using, 164, 170, 191 
springs, 162 
structural analysis using, 226-233, 239-244, 248-255, 

264-265 
support reactions, 159-161, 185-189 
three-dimensional rigid bodies, 

185-189, 191, 219 
trusses, 226-233, 239-244, 264-265 
two-di1mensional rigid bodies, 

159-167, 170, 218 
unknown forces, 159, 170, 185, 188, 191, 

218-219 
weight (W), 162 

Free vector, 110, 120-121 
Friction, 200. See also Frictional forces; Dry friction 
Frictional forces, 200-217, 219. See also Dry friction 

angles ( </>) of, 201-203 
coefficients of(µ.) , 201-203, 219 
dry friction and, 200-217 
equilibrium equations and, 200, 205, 219 
free-body diagran1s for, 200-201, 219 
kinetic (motion), 202-203, 219 
normal (N), 200 
procedure for analysis of, 207 
rigid-body equilibrium and, 200-217, 219 
static (impending motion), 201, 203, 

204-210 

G 
Gage-length distance (L0), 380 
Glulan1 bean1s, 704 
Gravitat ional attraction, 7 
Gravity, see Center of gravity; Weight 
Gusset plate, 224 

H 
Hinge supports, 185 
Homogeneous material, 328 
Hooke's law, 382, 384, 389-400, 406, 

682-683, 695 
linear e lastic behavior and, 389-400 
modulus of elasticity from, 382, 384, 406 
shear modulus of elasticity from, 400 
stress/strain transformation and, 

682-683, 695 
Hoop (cylindrical) stress, 592-593, 614 
Horizontal angle ( 8), 42-43 
Hydrostatic loading, 685, 695 
Hyperbolic functions, 812 
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Idealized models of rigid bodies, 162- 163 
Impending motion, 201, 203, 204-210 
Inertia, see Moment of inertia 
Inflection point, 718-719 
In-plane shear strain, 666 
In-plane shear stress, 627--633, 693 
Integrals, 813 
Integration, see Method of integration 
Internal forces, 162 
Internal resultant loadings, 312-325, 374 

bending moment (M) in, 313-314 
coplanar systems, 314 
cross sections for, 312-314, 374 
normal force (N) in, 313-314 
procedure for analysis of, 315 
shear force (V) in, 313-314 
three-dimensional components, 313 
torsional moment (7) in, 313 

Internal torque, 456-457, 474-475, 478 
International System (SI) of units, 8- 9 
Isotropic material, 328 

J 
Joint connections, 224 

K 
Kilogram {kg), unit of, 8 
Kinetic frictional forces (motion), 202-203, 219 

L 
Lateral contraction, 398 
Lateral deflection, 777- 779 
Length, units of, 8 
Line of action, 17, 101, 120, 131, 144, 151 
Linear coefficient of thermal 

expansion (a), 441 
Load-displacement relationships, 426-434, 449, 759-762 

axially loaded members, 426-434, 449 
beam deflection and, 759-762 
statically indeterminate members, 

426-434, 449, 759- 762 
Loads, see Axial loads; Combined 

loadings; Distributed loadings; Internal resultant 
loadings 

Longitudinal axis, 525-527 
Longitudinal elongation, 398 
Longitudinal shear stress, 559-560 

M 
Macaulay functions, 740 
Machines, 248. See also Frames; Structural analysis 
Magnitude, 17, 20-21. 31, 41, 73-74, 80, 83. 86, 

110, 143, 151 
arrow notation for, 17, 31 

Cartesian vectors, 41 , 74 
coplanar force systems, 31 
couple moments, 110 
cross product and, 83 
distributed loadings and, 143 
moments of a force and, 80, 83, 86 
resultant forces, 20-21, 143 
scalar detel"mination of, 17, 73, 80, 151 
vectors and, 17,20-21,31,41, 73-74,86 

Mass, quanti ty of, 4 
Mass, units of, 8 
Material properties, 379-409. 682--689, 689 

brittle materials, 387, 406 
compression test for, 379-380 
dilatation (e), 684-685, 695 
ductile materials, 385-386, 406 
elastic behavior, 381-383. 684-685 
Hooke's law, 382, 384, 400, 406. 

682--683, 695 
necking, 383 
Poisson's ratio ( v) for, 398-399, 407 
shear stress-strain diagrams for, 400-403, 407 
stiffness, 388 
strain energy, 389-393, 407 
strain hardening, 383, 388 
stress and strain transformation effects, 682--689 
stress-strain diagrams for, 381- 388, 

400-403, 406-407 
tension test for, 379-380 
volume (hydrostatic loading), 685, 695 
yielding. 382 

Mechanics of materials, 3-7. 310-377. 
See also Material properties 

deformation, 361, 375 
engineering study of, 3-4, 311 
fundamental concepts of, 5-7 
internal resultant loadings, 312- 325, 374 
Newton's laws for, 6-7 
procedure for analysis of problems, 11-12 
strain ( e ), 362- 372, 375 
stress (u) , 326-360, 374-375 

Meter (m), unit of, 8 
Method of integration, 721- 731, 772 

boundary conditions, 722 
continuity conditions, 722 
flexural rigidity (El) , 722 
procedure for analysis of. 724 
slope equations, 721-731, 772 

Method of joints, 226-231, 264 
Method of sections, 239-244, 265 
Method of superposition.see Superposition 
Modulus of elasticity(£). 382, 684-685 
Modulus of rnsilience (11,). 389 
Modulus of rigidity {G),400 
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Modulus of toughness (111), 390 
Mohr's circle, 643-649. 670-674, 694-695 

plane strain, 670-674, 695 
plane stress, 643-649, 694 

Momeni arm (distance),80 
Momeni axis (direction), 80 
Moment-curvature relationship, 720 
Momeni diagrams, 717- 731, 772 

elastic curve, 717-721, 772 
inflection point, 718-719 

Moment of inertia (I), 292-296, 301-303, 308, 456, 531, 
544-545, 555,783,814-815 

area (A), 292-296, 301-303, 308. 814-815 
column buckling, 783 
composite bodies, 301-303. 308 
flexure formula and, 531 
least, 783 
parallel-axis theorem for, 293- 296, 308 
polar,292, 308,457-458 
principal axis of, 544-545, 555 
procedures for analysis of, 294, 301 
product of, 545 
torsion formula and, 456 
unsymmetric bending and, 544-545. 555 

Moments (M), 78-155, 313-314, 508, 562-563. See also 
Bending moment; 
Moment of inertia 

Cartesian vector formulation. 84-85, 87-89, 151 
couple, 11(}..115, 12(}..125, 131- 136.152-153 
cross product for, 83-85 
cross-sectional (Q), 562-563 
direction of, 80, 83-84, 86, 151 
dot product for, 102 
force about an axis, 101-105, 152 
force and couple systems, simplification of, 12(}..125, 131-

136, 153 
internal (M0) loadings, 313-314 
magnitude of, 80, 83, 86, 151 
principle of, 9(}..92 
principle of transmissibility, 86. 120 
procedures for analysis of, 122, 132 
resultant (MR), 80-82. 87-89 
right-hand rule for, 80, 83-84, 151-152 
scalar formulation of, 79-82, 101.110, 151 
shear and moment diagram regions of concentration, 508 
sign convention for, 80 
torque as, 79 
torsional (T), 313 
transverse shear and, 562-563 
vector formulation of, 86-89, 102- 103, 110, 151 

Motion, 6, 12(}..125, 159, 185, 20(}..217, 204-210 
force and couple system simplification, 12(}..125 
frictional forces and, 20(}..217, 219 
impending, 201, 203, 204-210. 219 

INDEX 905 

kinetic frictional forces, 202- 203, 219 
Newton's laws of, 6 
rigid-body equilibrium and, 20(}..217 
rolling. 203 
rotational , 12(}..122, 159, 185 
slipping (sliding), 201-205 
static frictional force and, 201, 203 
supports for prevention of, 159, 185 
tipping, 200, 206 
translational, 12(}..122, 159, 185 

Multiiorce members, 248 

N 
Necking. 383 
Neutral axis. 525, 530, 544, 547 
Neutral equilibrium, 779 
Newton (N), unit of, 8 
Newton·s law of gravitational attraction, 7 
Newton·s laws of motion, 6 
Nominal (engineering) stress/strain, 381 
Nominal dimensions, 703 
Normal force (N), internal resultant loadings, 

313-314 
Normal strain ( e), 362-364, 375 
Normal stress (u), 327-334, 374, 

624-625 
Numerical calculations, engineering use o(, 1(}..11 

0 
Offset method, 385 

p 
Parallel force systems, 132, 175 
Parallel-axis theorem, 293-296, 308 
Parallelogram law, 18-19, 22, 73 
Particles, concept of, 5 
Pascal (Pa), unit of, 327 
Percent elongation, 385, 406 
Percent reduction in area, 385, 406 
Perfectly plastic materials, 382 
Permanent set, 388 
Perpendicular force systems, 131 
Pin connections, 224-225 
Pin supports, 185, 78(}..785 
Planar trusses, 223 
Plane strain, 661-679, 695 

absolute maximum shear strain, 678-679, 695 
equations for transfom1ation, 662-670 
maxim um in-plane shear strain, 666 
Mohr's circle for, 670-674, 695 
normal and shear strain components, 663-665 
principle strains, 666 
procedures for analysis of, 670-671 
sign convention for, 662 
transformation of, 661-670 
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Plane stress, 619-658, 693-694 
absolute maximum shear stress, 655-658, 694 
equations for transformation, 624-626 
in-plane shear stress, 627-633, 693 
Mohr's circle for, 643-649, 694 
normal and shear stress components, 624-625 
principle stresses, 627-633 
procedures for analysis of, 621, 625, 645-646 
sign convention for, 624 
transformation of, 619-626 

Plastic deformation, 382 
Plate girders, 701 
Poisson's ratio ( v), 398-399, 407 
Polar moment of inertia, 292, 308, 457-458 
Position vectors, 52-54, 75, 151 
Power transmission, 464-465, 495 
power-series expansion, 812 
Primary beam, 759 
Principal axis, 544-545, 555 
Principle of moments, 90-92, 151 
Principle of transmissibility, 86, 120 
Principle strains, 666 
Principle stresses, 627-633 
Prismatic bean1s, 702-709 
Product of inertia (J), 545 
Projection of a moment, 102 
Proportional limit ( u pl), 381, 400 
Pur lins, 223 
Pythagorean theorem, 811 

Q 
Quadratic formula, 812 

R 
Radial stress, 593 
Radius of gyration, 783 
Rectangular components, 32-33, 40-46, 52-53, 74-75 

three dimensional, 40-46, 52-53, 74-75 
two dimensional, 32-33, 74 

Redundants, 758-761, 773 
Relative displacement (8), 413-420 
Resultants, 18-21, 32-33, 43-46, 73-75, 78-155, 

312-325,374 
axis, moment of force about, 101-105, 143-147 
Cartesian vector formulation, 43-44, 75, 84-85, 

87-89, 151 
centroid ( C) location and, 144 
collinear vectors, 19, 73 
concurrent forces, 32, 43, 75, 131 
coplanar force, 32-33, 74, 131 
couple moments, 110-115, 120-125, 

131-136,152-153 
cross product, 83-85, 151 

direction of, 80, 83-84, 86, 151 
distributed loadings, 143-147 
equivalent !force systems, 120-125 
force components, 20-21 
force and couple moments, 

simplification of, 120-125, 
131-136,153 

force systems, 78-155 
internal loadings, 312-325, 374 
magnitude of, 80, 83, 86, 143 
moments (MR), 80-82, 87-89, 

111-112, 120-125 
parallel force systems, 132 
parallelogram law for, 18, 22, 73 
perpendicular force systems, 131 
principle of moments, 90-92 
principle of transmissibility, 86, 120 
procedures for analysis of, 122, 132 
rectangular components, 32-33, 74 
right-hand rule for, 80, 83-84, 86, 110 
scalar formulation of moment, 80, 110, 151 
triangle rule for, 18-19, 73 
vector addition for, 18-20, 43-46, 75 
vector formulation of moment, 86-89, 

110,151 
vector subtraction for, 19 

Right-hand rule, 40, 80, 83-84, 86, 110 
Rigid bodies, 5, 156-221 

center of gravity ( G), 162 
concept of, 5 
dry friction and, 200-217, 219 
equations of equilibrium for, 169-174, 190-193 
equilibrium of, 156-221 
free-body diagran1s for, 159-167, 185-189, 218, 219 
frictional forces on, 200-217, 219 
idealized models of, 162-163 
impending n1otion (static) of, 201, 203, 204-210 
internal forces and, 162 
procedures for analysis of, 164, 170, 191, 207 
rotational motion of, 159, 185 
springs, 162 
support reactions, 159-161, 185-189, 218-219 
three-dimensional, equilibrium of, 

185-199,219 
three-force members, 175-176 
translational motion of, 159, 185 
two-dimensional (coplanar), 

equilibrium of, 158-184, 218 
two-force members, 175-176 
weight (W) , 162 

Rolled shapes, 703 
Roller supports, 159 
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Rolling motion, 203 
Roof trusses, 223-224 
Rotational motion, 120-122, 159, 185 

force and couple system 
simplification, 120-122 

supports for prevention of, 159, 185 
Rounding off numbers, 11 

s 
Saint-Venant's principle, 411-413, 448 
Scalar triple product, 102 
Scalars, 17-18, 31, 73, 79-82, 101, 110, 

151, 190 
coplanar forces, notation for, 31 
couple moments, 110 
division of a vector by, 18 
equations of equilibrium, 190 
moment of force about an axis, 101 
multiplication of a vector by, 18 
quantity, 17, 73 
moment of a force, formulation of, 79-82, 101, 110, 151 
sign convention for, 80, 151 

Secant formula, 798-803, 807 
Seconds (s) , unit of, 8 
Section modulus (S), 702 
Shafts, 453-455, 464-465, 474-481, 

488-491,495 
angle of twist, 454-455, 474-481, 495 

circular, 453-455, 495 
internal torque, 474-475, 478 
power transmission, design for, 464-465 
procedures for analysis of, 478, 489 
statically indeterminate, 488-491, 495 
torsional deformation, 453-455, 495 

Shear and moment diagran1s, 
499-515,554 

bean1s, 499-515, 554 
concentrated forces and moments, 508 
distributed loads, 506-508 
graphical methods for, 506-515, 554 
procedures for analysis of, 501, 509 
sign convention for, 500, 508, 554 

Shear flow (q), 578-582, 587 
Shear force (V), internal resultant 

loadings, 313-314 
Shear fom1ula, 560-571, 587 
Shear modulus ( G), 400, 407, 684, 695 
Shear strain ( y), 363, 375, 456, 661-669, 678-679, 695 

absolute maximum, 678-679, 695 
deformation and, 363, 375 
linear variation in, 456 
maximum in-plane, 666 
plane strain components, 663-665 
plane strain transformation and, 661-669, 678-679, 695 

INDEX 907 

Shear stress ( T) , 327, 335-339, 374, 456, 459, 559-561, 
624-633, 655-658,693-694. 
See also Transverse shear 

absolute maximum, 655-658, 694 
beams 559-561 
direct (simple), 335 
distribl.ltion of, 327, 459, 560-561 
equilibrium, 336 
in-plane, 627-633, 693 
linear variation in, 456 
longitudinal, 559-560 
plane stress components, 624-625 
plane stress transformation and, 624-633, 655-658, 

693-694 
procedure for analysis of, 337 
torsion and, 456, 459 

Shear stress-strain diagrams, 
400-403, 407 

Significant figures, 10-11 
Sine law, 22 
Singularity functions, 741-742 
Slenderness ratio, 783-784 
Sliding vector, 86, 120 
Slipping (sliding), 201-205, 219 
Slope equations, 721-731, 772, 

820-821 
Small strain analysis, 364 
Specific weight (constant density), 283 
Spherical vessels, 593, 614 
Springs, free-body diagrams of, 162 
Stable equilibrium, 778 
Static frictional forces (in1pending 

motion), 201, 203, 204-210, 219 
Statically indeterminate members, 428-436, 449, 488-491, 

495, 758-767, 773 
axially loaded, 428-436, 449 
beams, 758-767, 773 
compatibility (kinematic) conditions for, 429-434, 449 
deflection of, 758-767, 773 
degree of indeterminacy, 758 
force (flexibility) method of analysis, 435-436, 

759-762 
load-diisplacement relationships, 429-434, 449, 

759-762 
method of superposition for, 428-434, 

758-767, 773 
procedures for analysis of, 430, 489, 762 
redundants (reactions) of, 758-761, 773 
shafts, 488-491, 495 
torque loaded, 488-491,495 

Steel, stress-strain diagram for, 384 
Steel sections, structural design and, 703 
Stiffness., 388 
Straight members, see Bean1s 
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Strain ( € ), 362-372, 375, 381, 666. 
See also Plane strain 

Cartesian components, 363 
deformation and, 362-367, 375 
dimensionless quantity o~ 362, 375 
nominal (engineering), 381 
normal(€), 362-364,375 
principle, 666 
shear ( y ), 363, 375 
small strain analysis, 364 
units of, 362 

Strain energy, 389-393, 407 
Strain hardening, 383, 388 
Strain rosettes, 680-681 
Stress (CT), 326-360, 374-375, 381-382, 

441-444, 449, 592-593, 598-605, 614,627-633, 682, 
705, 715. 
See also Plane stress 

allowable (CTauow), 346-347, 705, 715 
allowable stress design (ASD), 

346-353, 375 
axially loaded bars, 328-334, 374 
bending, 705, 715 
biaxial, 593 
combined loadings and, 592-593, 598-605, 614 
cylindrical (hoop), 592-593, 614 
equilibrium and, 329-330, 336 
factor of safety (F.S.), 346-347, 375 
loading distribution and, 326-327 
nominal (engineering), 381 
normal (CT), 327-334, 374 
principle, 627-633 
procedure for analysis o~ 331, 337, 348 
radial , 593 
shear (T), 327, 335-339, 374, 

705, 715 
state of, 327, 598-605, 614 
them1al, 441-444, 449 
triaxial , 682 
ultimate (CT u), 382 
uniaxial, 330 
uni ts of, 327 

Stress and strain transfomrntion, 618-697 
absolute maximun1 shear strain, 

678-679, 695 
absolute maximun1 shear stress, 

655-658, 694 
bulk modulus (k) and, 685, 695 
dilatation ( e), 684-685, 695 
equations for, 624-626, 662-670 
Hooke's law and, 682-683, 695 
in-plane shear stress, 627-633, 693 
material property relationships, 682-689 

modulus of elasticity (£) and, 684-685 
Mohr's circle for, 643-649, 670-674, 694-695 
plane strain, 661-679, 695 
plane stress, 619-658, 693-694 
principle stresses, 627-633 
procedures for analysis of, 621, 625, 

645-646, 670-671 
shear modwus ( G) and, 684, 695 
strain rosettes, 680-681 
triaxial stress, 682 

Stress-strain diagran1s, 381-403, 406-407 
brittle material behavior from, 

387, 406 
conventional, 381-388, 406 
ductile mate rial behavior from , 

385-386, 406 
elastic behavior, 381-383 
fracture stress (CT 1), 383 
modulus of resilience (u,), 389 
modulus of rigidity ( G), 400 
modulus of toughness (u,), 390 
nominal (engineering) stress/strain for, 381 
proportional limit (CTpJ), 381, 400 
shear, 400-403, 407 
steel, 384 
true, 383 
ultimate stress (CT

11
) , 383, 400 

yield point (CTy), 382, 388, 390, 
406-407 

Young's modulus of elasticity (£), 382 
Stress trajectories, 701 
Structural analysis, 222- 267 

frames, 248-263, 265 
free-body diagran1s for, 226-233, 239- 244, 248-255, 

264-265 
machines, 248-263, 265 
method of joints, 226-231, 264 
method of sections, 239-244, 265 
procedures for, 227, 241, 251 
trusses, 223- 247, 264-265 
zero-force members, 232-234 

Structural design, 224-225, 346-353, 375, 464-465, 
698-715 

allowable bending and shear stress, 
705, 715 

allowable stress design (ASD), 
346-353, 375 

beams, 698-715 
trusses, 224-225 
stress trajectories, 701 
prismatic beams, 702-709 
section modulus (S), 702 
shafts, 464-465 
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Superposition, 428-434, 449, 750-754, 758-767, 773 
axial loads and. 428-434, 449 
beams, 750-754, 758-767, 773 
deflection and, 750-754. 758-767, 773 
displacement (cS) and, 428, 449 
force (flexibility) method for, 759-762 
load-displacement relationships, 428-434, 

449,759-762 
method of, 750-754, 758-767, 773 
primary beam for, 759 
principle o( 428, 449 
procedure for analysis of, 762 
redundants (reactions) from, 

758-761, 773 
statically indeterminate members, 

429-434, 449, 758-767, 773 
Support reactions, 159-161, 185-189, 218-219 

free-body diagrams for, 159-161, 185-189 
prevention of motion by, 159, 185 
three-dimensional rigid-bodies, 

185- 189,219 
two-dimensional rigid bodies, 159-161, 218 
types of, 160-161, 186-187 

T 
Tensile forces, 225-226, 239-240 
Tension test, 379-380 
Thermal stress. 441-444,449 
Thin-walled pressure vessels, 

591-594,614 
Three-dimensional rigid-bodies, 

185-199,219 
equilibrium of. 185-199 
support reactions. 185-189, 219 
equations of equilibrium, 190-193,219 
procedure for analysis of, 191 
free-body diagrams for, 185-189 
unknown forces in, 185, 188, 191, 219 

Tune. units of, 8 
Tipping, 200, 206 
Torque, 79,453. See also Moments (M) 
Torsion, 452-497 

angle of twist , 454-455, 474-481, 495 
circular shafts, 453-455, 495 
constant cross-sectional area (A), 475-476 
deformation, 453-455, 495 
internal torque and, 456-457, 474-475, 478 
polar moment of inertia and, 292, 

308, 457-458 
power transmission, 464-465, 495 
procedures fo r analysis o f, 460, 

478,489 
shafts, 453-455, 464-465, 488-491, 495 
shear stress distribution, 459 

statically indeterminate members, 
488-491, 495 

torsion formula, 456-463, 495 
Torsional moment (7), internal 

resultant loadings, 313 

INDEX 909 

Translational motion, 120-122, 141 , 159, 185 
force and couple system 

simplification, 120-122 
supports for prevention of, 159, 185 

Transmissibility. principle of, 86, 120 
Transverseshear.558-589 

beams, 558-589 
built-up members, 578-582, 587 
cross-sectional moment (Q), 562-563 
longitudinal shear stress and, 559-560 
procedures for analysis of, 566 
shear flow (q), 578-582, 587 
shear formula for, 560-571, 587 
shear-stress distribution, 560-561, 587 

Triangle rule, 18- 19, 73 
Triaxial stress, 682 
Trigonometric functions and identities, 811-812 
True stress-strain diagram, 383 
Trusses, 223-247, 264-265 

compressive forces, 225-226, 239- 240 
design assumptions, 224-225 
forces determined by inspection, 226, 

232,240 
free-body diagrams for, 226-233, 239- 244, 264-265 
joint connections, 224 
method of joints, 226-231, 264 
method of sections. 239-244, 265 
procedures for analysis of. 227, 241 
simple, 223-225. 264 
structural analysis of. 223-247. 264-265 
tensile forces. 225-226, 239-240 
zero-force members. 232-234 

Twisting. 453-455 
Two-dimensional (coplanar) rigid 

bodies.158-184,218 
equations of equilibrium, 169-174 
equilibrium of, 158-184, 218 
free-body diagrams for, 159-167 
procedures for analysis of, 164, 170 
support reactions, 159-161, 218 
three-force members, 175-176 
two-force members, 175-176 
unknown forces in, 159, 170, 218 

u 
Ultimate stress (u.,) , 383, 400 
U niaxiaJ stress, 330 
Uniform deformation, 328 
Unit vectors, 32, 40-43. 55, 55-57, 74 
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910 INDEX 

Units of measurement, 8-9, 10, 327, 362. 375, 464. 703 
base units, 8 
derived units, 8 
dimensional homogeneity, 10 
dimensionless quantity and, 362, 375 
foot-pound-second system, 327, 362 
force, 8 
International System (SI), 8-9 
length, 8 
mass,8 
nominal dimensions, 703 
power,464 
rules for use. 9 
SI prefLXes. 8-9 
strain. 362 
stress, 327 
time, 8 
weight,8 

Unstable equilibrium, 201, 778 
Unsymmetric bending, 544-550, 555 

bending moment (M) of, 544-550, 555 
moment arbitrarily applied, 546 
neutral axis orientation, 547 
principal axis, moment applied to, 

544-545. 555 
product of inertia (/ ) for, 545 

v 
Varignon·s theorem. 90-92 
Vectors, 16-77. 83-89, 102-103, 110, 120-125, 151- 152, 190 

addition.18-19, 20-25, 31-36, 43-46, 7'3-75 
angle (0). 17. 41-43, 64, 74-75 
arrow notation, 17, 31, 73 
Cartesian, 32, 40-46, 52- 57, 63, 74-75, 84-85, 87- 89, 151 
collinear, 19, 73 
component,18,20-21,31- 36 
coplanar forces, 31-36 
couple moments, 110, 152 
cross product for, 83-85, 151-152 
directed along a line, 55-57, 64, 75 
direction of.17. 20. 31, 40-43, 52-53, 55, 83-84. 86 
division of by a scalar, 18, 73 
dot product, 63-67, 75, 102 
equations of equilibrium, 190 
force and. 16-77, 110, 151 
force and couple systems, 120-125 
free, 11 0,120-121 
line of action, 17, 101, 120, 151 
magnitude of, 17, 31, 41, 73-74, 83, 86 

moment of force about an axis, 
102-103, 151 

multiplication by a scalar, 18. 73 
parallelogram law for.18-19, 22, 73 
position, 52-54. 75, 151 
procedures of analysis for, 22 
rectangular components, 32-33, 40-46, 52-53, 74-75 
resultant moments and, 87-89, 151 
resultants of a force, 18-20, 32-33, 73, 75, 83-89, 

111-112, 151 
right-hand rule for, 40 
scalars and, 17-18. 31. 73 
several forces, 21 
sliding, 86, 120 
subtract ion. 19 
three-dimensional components, 40-46, 

52-53,74-75 
two-dimensional components, 32-33, 74 
triangle rule for, 18-19, 73 
unit, 32, 40-43, 55, 55-57, 74 
x,y, z coordinates, 40-42, 52, 74-75 

Vertical angle (</> ), 42-43 
Volume (V), centroid of, 271, 307, 814-815 
Volume changes (hydrostatic loading), 685, 695 

w 
Warping, 560 
Weight (W), 7, 8, 162. 269-271, 307 

center of gravity (G) and.162, 
269-271,307 

free-body diagrams and, 162 
gravitational force and, 7 
rigid-body equilibrium and, 162 
units of, 8 

Wide-flange sections, 816-819 
Wood, ductility of, 386 
Wood sections, structural design and, 703 

x 
x ,y, z coordinates. 40-42, 52, 74-75 

y 
Yield point (uy).382. 388. 390,406-407 
Yield strength, 385-386 
Yielding, 382 
Young's modulus (£), 382 

z 
Zero force, 158. See also Equilibrium 
Zero-force members, 232-234 
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Fundamental Equations of Statics and Mechanics of Materials--""" 
Cartesian Vector 

A = Axi + A1,j + A,k 
Magnilude 

Direcrions 

A A,. Ay . A, 
UA = - = -1 + -J + -k 

A A A A 
= cos a i + cos flj + cos y k 

cos2 a + cos2 fl + cos2 'Y = 1 

Dot Product 
A · B = AB cos 9 

=Ax Bx + AyBy + A, B, 

Cross Product 

c = A x B = I ~, 1y ~ 
~x Br B, 

Cartesian Position Vector 

r = (x2 - x1)i + {y2 - y,)j + (z2 - z1)k 

Cartesian Force Vector 

F =Fu = F(~) 
Moment of a Force 

M0 = Fd 

Mo= r X F = 
i 

r, 

Fx 

j k 

ry r, 

F,, F, 

Moment of a Force About a Specified Axis 

lia~ tt0 1 u., 
M 0 = U 0 • (r X F) - r, ry r, 

F, F,, F, 

Simplification of a Force and Couple System 
FR= LF 

Equilibrium 
Panicle 

(MR)o = L Mc + L Mo 

LF_, = 0, LF,. = 0, LF, = 0 

Rigid Body-Two Dimensions 

LG = 0, LFy = 0, LM0 = 0 

Rigid Body-Three Dimensions 

LF, = 0, LF, = 0, LF, = 0 

LM,· = 0, LMy· = 0, LM,- = 0 

Friction 

Static (maximum) 

Kinetic 

F,=µ.,N 

Fk = J.Lk N 

Center of Gravity 
Particles or Discrete Parts 

Body 

LrW i' = --
LW 

f r dW 

jdw i' = 

Area Moment of Inertia 

Parallel-Axis Theorem 

Radius of Gyrarion 

Axial Load 
Normal Stress 

Displacement 

I= fr 2dA 

I= 7 + Ad 2 

p 
u= -

A 

JL P(x)dx PL 
8 = 

0 
A(x)E ,8 = LAE , 8r= ailTL 

Torsion 
Shear Stress in Circular Sh.aft 

Tp 
-r= -

J 

where 
7T 

J = -zc4 solid cross section 

J = ~ (c~ - c;4
) tubular cross section 

Power 

Angle of Twist 
P = Tw = 27TfT 

JL T(x)dx 
</> = 

0 I(x)G 
</>=LIL 

JG 
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Bending 
Normal Stress 

UnsymmetrU: Bending 

My 
u= -

l 

M, y Myz 
u = --- + --, 

I, ly 

I , 
tan a = - tan 8 r,. 

Shear 
Average Direct Shear Siress 

v 
"avg= A 

Transverse Shear Siress 
VQ 

-r= -
lt 

Shear Flow 

VQ 
q= 

l 

Stress in Thin-Walled Pressure Vessel 
Cylinder 

Sphere 

pr 
U1 = - , 

t 

pr 
u,= -

- 2t 

pr 
u1=u2=2r 

Stress Transformation Equations 

Ux - U 
___ Y sin 28 + -r, .. cos 28 Tx'y' = - 2 ,r 

Principal Stress 

tan 28P = (a:, _ uy)/2 
~~-'--~.,.....---a:, + Uy l(Ux Uy)2 2 

UJ2 = 2 ± " 2 + T xy 

Maximum In-Plane Shear Stress 

tan 28, = -
(u, - uy)/2 

_ )(a:' - u,.)2 2 - + -r,,. 2 . 

u, +Uy 
Uavg -

2 
Absolute Maximum Shear Siress 

Material Property Relations 
Poisson's Ratio 

€Jat 
v= ---

Etong 

Generalized Hooke's Law 

1 
Ex = E [ux - v(uy + u, )] 

1 
Ey = E [uy - v(ux + u, )] 

1 
Ez = E [u, - v(ux + u,.)] 

1 1 1 
1'9· = c"xy. 'Yyz = c"rz, 'Y,., = c"zx 

where 

G= E 
2(1 + v) 

Relations Between w, V, M 
dV 
dx = w(x), dM = V 

dx 

Elastic Curve 

Buckling 

Critical Axial Load 

Critical Stress 

Ucr = 
Secant Formula 

1 
p 

M = -
El 

d4v 
El - = w(x) 

dx4 

d3v 
EI dx3 = V(x) 

d2v 
EI dx2 = M(x) 

p = er 
7T2EI 

(KL)2 

7T2E r =VI/A 
(KL/r)2 ' t· 

u'"~' = ~[1 +:~sec(~,~~)] 
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S,.ak 
!llao..W. "•i&M Y 

(II/ Ir') 

1'.teta llic 

Aluminum [ 2014-T6 0.10 1 

Wrought Alloy• 6{W;J.T6 0.098 

c.,1 Iron[ Gray ASTM 20 0 .260 

Alloys Mill lea bk ASTM A· I "1 0 .263 

Copper[ Red Brass CR.3400 0.316 

A llO)'!I; Bronze 0\6100 0.319 

~1.agnoium 
(Am IO~-T6 1) 0.066 Alloy t S1ruc1ural A-36 0.284 

Steel Struclural A992 0.284 

Alk>yt S tainless 304 0.284 

ToolL2 0.295 

Titanium 
lli-Ml-4V) 0 .160 

Alloy -
Nonmctalbc 

Concre [ t.mr.• Strength O.<& •• High S1rcng1h O.<& 

Pbslic [ Kc\br 49 0.0S24 

Rcinfora:d 30% Gia» 0.0S24 

Wood [ Oo.igju Fir 0.017 
Sdect Struciunl 

Grade While Spurx 0.130 

Average Mechanical Properties of Typical Engineering Materials• 

(U.S. Customary Units) 

M-ol M..W•ol Y..WSU...(bi) UltiooMo SlftM (bil 
Ellntidl) E ~G " t "• 

(It') bl (10'1 bl T .... ~· Sloow T .... c..,.• s-

10.6 3.9 60 60 25 68 68 ~2 

10.0 3.7 37 37 19 42 42 27 

10.0 3.9 - - - 26 96 -
25.0 9.8 - - - 40 83 --
14.6 5.4 11.4 11.4 - 35 35 -
15.0 5.6 so 50 - 35 35 -

-

6.48 2.5 22 22 - 40 40 22 

-
29.0 11.0 36 36 - S8 58 -
29.0 11.0 50 50 - 65 65 -
28.0 11.0 30 30 - 75 15 -
29.0 ILO 102 102 - 116 116 --
17.4 6.4 134 134 - 145 145 -

- -

320 - - - 1.8 - - -
420 - - - 5.5 - - -
19.0 - - - - I~ 70 10.2 

10.5 - - - - 13 19 -
1.90 - - - - 0.30' 3.78" 0.90" 

1.40 - - - - 0.36' 5.111" 0.97" 

c..r.orn.n.. 
'Jro[I01oplioe 18 - ·· Es..-U-a 
21a..,._ R.tlo ,, ( lt ... )/'F 

10 o.35 12.8 

12 o.35 13.1 

0.6 0.28 6.70 

5 0.28 6.60 ,_ . 
35 0.35 9.80 

20 0.34 9.60 ,_ 

I 0.30 14.3 
,_ 

30 0.32 6.60 

30 0.32 6.60 

40 0.27 9.60 

22 0.32 6.50 ,_ . 
16 0 .36 520 

- 0.15 6.0 

- 0.15 6.0 
-

2.8 031 -
- 031 -
- o.29' -
- o.31' -

.. Specific \'3lues may \-'31)' ror a pan.cular male rial due to alloy or mineral composition. mechanical "'·or Icing of the specimen.. or he as treatment. For a more exact value 
reference books for the material should be consulted. 

.,The yield and ultimate stresses ror ductile materials can be assumed equal ror bolb tension and comprt!SSion. 

c Measured perpendicular to the grain. 

d Measured parallel 10 1hc grain. 

c D erorm:uion measu red perpendicular 10 the grain when the load is applied ak>ng the grain. 
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l\b...W. o.....,.,. 
CM«f•'> 

~lelalhc 

Aluminum [ 2014-T6 2.79 
Wrought AllO)> 6(WiJ.T6 2.71 

Casi Iron [ Groy AST~l 20 7.19 

ALIO)'> Mnllenblc J\STh.I A·l97 7.28 

Copper [ Red Br1as11; 00400 8.74 

Alloys Bronze C86100 8.83 

Magne~ium 
IAm 100-l-T6ll 1.83 

Alloy 

~ Struc1urnl A·36 1.85 
Steel Structural A992 1.85 
Alloys S1ainless 304 7.86 

Tool L2 8.16 

Titanium 
Alloy 

ITI-6Al-4VJ 4.43 
-

Nonmc1aJhc 

Low Streng.th 2.38 
Concre1e[ 

2.37 High S1t"<og1h -Plas1ic [ Kc\ lar 49 L45 

Rcinforo<d 30'!1. ai. .. L45 

Wood 0.47 [ Dougb< f"tr 
Sclcct Suuctunl . 

Gra<k- Wh11c Spruce 3.60 

Average Mechanical Properties of Typical Engineering Materials• 

(SI Units) 

Modlll•of M...-or r ..... s.....Pll'aJ ~•SctttaCM""I 
Eloolldl) E lligMllJ G '" "• '-Eloop1io.i. 

CG""I CG"") To ... Co-· ·- T .... c-• si.... "-·-· 
73.1 27 414 414 172 469 469 290 10 

68.9 26 255 255 131 2~ 290 186 12 

610 27 - - - 179 669 - 0.6 
172 68 - - - 276 572 - 5 

- ,._ 
IOI 37 70.0 70.0 - 241 241 - 35 
103 38 345 345 - 655 655 - 20 

44.7 18 152 152 - 276 276 152 I 

200 15 250 250 - 400 400 - 30 

200 15 345 345 - 450 450 - JO 
193 15 207 207 - 517 511 - 40 
200 15 703 703 - 800 800 - 22 

- 1 ~ 

120 44 924 924 - 1.000 1.000 - 16 
-

22.1 - - - 12 - - - -
29.0 - - - 38 - - - -
131 - - - - 717 483 20.3 2.8 
72.4 - - - - \lO 131 - -
13.1 - - - - 2..1" 26' 62" -
9.6S - - - - 2-.S" 36" 6.1" -

co.r.orn..... - ·· Esp . .,.. « -· Cll"')/"C 

0.35 23 

0.35 24 
-

028 12 

028 12 
-

0.35 18 

0.34 17 
-

0.30 26 
-

0.32 12 

0.32 12 

0.27 17 

0.32 12 . 
0.36 9.4 

0.15 JI 

OJS JI 
-

0.34 -
0.34 -
0.29' -
031• -

~Specific values 11l3Y \11ry for a part0&lar matenaJ due to alloy or mineral composition.. mechanical v.~ortcing or the specimen. or heat trcauncnl. For a more exact \'3..lue 
reference books for 1he material should be oonsulted. 

bTbe yield and uh1mate s1resses ror ductde niatena.ls an be assumed equal for both te-nsion and compression. 
c ~1easured perpendicular to the gram. 
4 Measured parallel 10 the gm1n. 
" Deformation measured pcrpendicuJar to the grain when the lood is applied along the grain. 
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CM«f•'> 

~lelalhc 

Aluminum [ 2014-T6 2.79 
Wrought AllO)> 6(WiJ.T6 2.71 

Casi Iron [ Groy AST~l 20 7.19 

ALIO)'> Mnllenblc J\STh.I A·l97 7.28 

Copper [ Red Br1as11; 00400 8.74 

Alloys Bronze C86100 8.83 
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IAm 100-l-T6ll 1.83 

Alloy 

~ Struc1urnl A·36 1.85 
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Tool L2 8.16 
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Alloy 

ITI-6Al-4VJ 4.43 
-
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Low Streng.th 2.38 
Concre1e[ 

2.37 High S1t"<og1h -Plas1ic [ Kc\ lar 49 L45 

Rcinforo<d 30'!1. ai. .. L45 

Wood 0.47 [ Dougb< f"tr 
Sclcct Suuctunl . 

Gra<k- Wh11c Spruce 3.60 

Average Mechanical Properties of Typical Engineering Materials• 

(SI Units) 

Modlll•of M...-or r ..... s.....Pll'aJ ~•SctttaCM""I 
Eloolldl) E lligMllJ G '" "• '-Eloop1io.i. 

CG""I CG"") To ... Co-· ·- T .... c-• si.... "-·-· 
73.1 27 414 414 172 469 469 290 10 

68.9 26 255 255 131 2~ 290 186 12 

610 27 - - - 179 669 - 0.6 
172 68 - - - 276 572 - 5 

- ,._ 
IOI 37 70.0 70.0 - 241 241 - 35 
103 38 345 345 - 655 655 - 20 

44.7 18 152 152 - 276 276 152 I 

200 15 250 250 - 400 400 - 30 

200 15 345 345 - 450 450 - JO 
193 15 207 207 - 517 511 - 40 
200 15 703 703 - 800 800 - 22 

- 1 ~ 

120 44 924 924 - 1.000 1.000 - 16 
-

22.1 - - - 12 - - - -
29.0 - - - 38 - - - -
131 - - - - 717 483 20.3 2.8 
72.4 - - - - \lO 131 - -
13.1 - - - - 2..1" 26' 62" -
9.6S - - - - 2-.S" 36" 6.1" -

co.r.orn..... - ·· Esp . .,.. « -· Cll"')/"C 

0.35 23 

0.35 24 
-

028 12 

028 12 
-

0.35 18 

0.34 17 
-

0.30 26 
-

0.32 12 

0.32 12 

0.27 17 

0.32 12 . 
0.36 9.4 

0.15 JI 

OJS JI 
-

0.34 -
0.34 -
0.29' -
031• -

~Specific values 11l3Y \11ry for a part0&lar matenaJ due to alloy or mineral composition.. mechanical v.~ortcing or the specimen. or heat trcauncnl. For a more exact \'3..lue 
reference books for 1he material should be oonsulted. 

bTbe yield and uh1mate s1resses ror ductde niatena.ls an be assumed equal for both te-nsion and compression. 
c ~1easured perpendicular to the gram. 
4 Measured parallel 10 the gm1n. 
" Deformation measured pcrpendicuJar to the grain when the lood is applied along the grain. 
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