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1.5, to which all other solutions converge.

slopes are positive, and hence the solutions increase. The equilibrium solution appears to

For y > 1.5, the slopes are negative, and hence the solutions decrease. For y < 1.5, the
be y(t)
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For y > — 1.5, the slopes are positive, and hence the solutions increase. Fory < — 1.5

, the slopes are negative, and hence the solutions decrease. All solutions appear to

diverge away from the equilibrium solution y(¢) = — 1.5.
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y < — 1/2, theslopes are negative, and hence the solutions decrease. All solutions

Fory > — 1/2,the slopes are positive, and hence the solutions increase. For
diverge away from
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the equilibrium solution y(¢t) = — 1/2.
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For y > — 2,the slopes are positive, and hence the solutions increase. Fory < — 2,
the slopes are negative, and hence the solutions decrease. All solutions diverge away
from

the equilibrium solution y(t) = — 2.

8. For all solutions to approach the equilibrium solution y(¢) = 2/3, we must have
y' <0fory >2/3,and y’' > 0 fory < 2/3. The required rates are satisfied by the
differential equation y’' = 2 — 3y.

9. For solutions other than y(t) = 2 to diverge from y = 2, y(t) must be an increasing
function for y > 2, and a decreasing function for y < 2. The simplest differential
equation

whose solutions satisfy these criteriais y' =y — 2.

10. For solutions other than y(t) = 1/3 to diverge from y = 1/3, we must have y' < 0
fory < 1/3,and y’ > 0 fory > 1/3. The required rates are satisfied by the differential
equation y' =3y — 1.
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Note that y’ = 0 fory = 0 and y = 5. The two equilibrium solutions are y(¢) = 0 and
y(t) = 5. Based on the direction field, y’ > 0 for y > 5; thus solutions with initial
values greater than 5 diverge from the solution y(t) = 5. For 0 < y < 5, the slopes are
negative, and hence solutions with initial values between 0 and 5 all decrease toward the

page 2



WWV. ZI T e.Ir

CHAPTER 1. ——

solution y(¢) = 0. For y < 0, the slopes are all positive; thus solutions with initial
values
less than 0 approach the solution y(t) = 0.

14.
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Observe that y’ = 0 for y = 0 and y = 2. The two equilibrium solutions are y(¢) = 0
and y(¢) = 2. Based on the direction field, y’ > 0 for y > 2; thus solutions with initial
values greater than 2 diverge from y(¢) = 2. For 0 < y < 2, the slopes are also
positive, and hence solutions with initial values between 0 and 2 all increase toward the
solution

y(t) = 2. Fory < 0, the slopes are all negative; thus solutions with initial

values less than 0 diverge from the solution y(¢) = 0.

16. (a)Let M(t) be the total amount of the drug (in milligrams) in the patient's body at
any

given time ¢ (hrs). The drug is administered into the body at a constant rate of 500
mg/hr.

The rate at which the drug leaves the bloodstream is given by 0.4M (¢). Hence the
accumulation rate of the drug is described by the differential equation

dM
T 500 — 0.4 M (mg/hr).

(b)
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Based on the direction field, the amount of drug in the bloodstream approaches the
equilibrium level of 1250 mg (within a few hours).

18. (a) Following the discussion in the text, the differential equation is
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dv 9
m— =mg—yv
dt g—7
or equivalently,
dv V2
a9 m

(b) After a long time, Z@’ ~ 0. Hence the object attains a terminal velocity given by

mg
V=4 — .
v

(c¢) Using the relation yv?2 = mg, the required drag coefficient is v = 0.0408 kg/sec .

(d)
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All solutions appear to approach a linear asymptote (with slope equalto1). It is easy to
verify that y(¢) =t — 3 is a solution.

20.
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All solutions approach the equilibrium solution y

23.
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sin(t +

— 3
V2

which is also a solution corresponding to the initial value y(0) = — 5/2.

All solutions appear to diverge from the sinusoid y(t) =

25.
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= 0. First, the rate of change is small. The

All solutions appear to converge to y(t)

slopes

eventually increase very rapidly in magnitude.

26.
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The direction field is rather complicated. Nevertheless, the collection of points at which
the slope field is zero, is given by the implicit equation y*> — 6y = 2t>. The graph of
these points is shown below:

The y-intercepts of these curves are at y = 0, i\@ . It follows that for solutions with
initial values y > \/g , all solutions increase without bound. For solutions with initial
values in the range y < — \/g and 0 <y < \/g , the slopes remain negative, and

hence
these solutions decrease without bound. Solutions with initial conditions in the range

—4/6 <y < 0 initially increase. Once the solutions reach the critical value, given by
the equation 3® — 6y = 2t2, the slopes become negative and remain negative. These
solutions eventually decrease without bound.
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Section 1.2

1(a) The differential equation can be rewritten as

dy
5—y

=dt.

Integrating both sides of this equation results in — [n|5 — y| =t + ¢, or equivalently,
5—y=ce '. Applying the initial condition y(0) = y, results in the specification of
the constant as ¢ = 5 — y,. Hence the solutionis y(t) =5+ (y, — 5)e " .

D 2 PN g 10
All solutions appear to converge to the equilibrium solution y(¢) = 5.

1(c). Rewrite the differential equation as

d
b _ .
10 — 2y

Integrating both sides of this equation results in — %ln|10 —2y|=t+cy,or
equivalently,

5 —y = ce 2. Applying the initial condition 3(0) = y, results in the specification of
the constant as ¢ = 5 — . Hence the solution is y(¢) =5 + (y, — 5)e .

D 2 4 t6 8 10

All solutions appear to converge to the equilibrium solution y(¢) = 5, but at a faster rate
than in Problem la .

2(a). The differential equation can be rewritten as

page 7
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d
Y
y—95
Integrating both sides of this equation results in In|y — 5| = ¢ + ¢; , or equivalently,
y — 5= ce'. Applying the initial condition y(0) = ¥, results in the specification of
the constant as ¢ = y, — 5. Hence the solution is y(t) = 5 + (y, — 5)e’.

All solutions appear to diverge from the equilibrium solution y(¢) = 5.

2(b). Rewrite the differential equation as

dy
2y —5

dt .

Integrating both sides of this equation results in %ln!Qy — 5| =t + ¢, or equivalently,
2y — 5 = ce* . Applying the initial condition y(0) = ¥, results in the specification of
the constant as ¢ = 2y, — 5. Hence the solution is y(t) = 2.5 + (y, — 2.5)e? .

104
¥it) /

J'a.rl_r1m.h.u:n0:|
Fr |

All solutions appear to diverge from the equilibrium solution y(t) = 2.5.

2(c). The differential equation can be rewritten as

d
A
2y — 10

Integrating both sides of this equation results in %ln|2y — 10| =t + ¢, or equivalently,
y — 5 = ce? . Applying the initial condition 3(0) = y, results in the specification of
the constant as ¢ = y, — 5. Hence the solution is y(t) = 5 + (y, — 5)e* .

page 8
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All solutions appear to diverge from the equilibrium solution y(¢) = 5.

3(a). Rewrite the differential equation as

dy
= dt
b—ay ’

which is valid for y # b /a. Integrating both sides results in =Lin|b — ay| =t + ¢, , or
equivalently, b — ay = ce *". Hence the general solution is y(t) = (b — ce ) /a.
Note that if y = b/a, then dy/dt = 0, and y(t) = b/a is an equilibrium solution.

(b)

0 02 04 t06 08 1

(i)  As a increases, the equilibrium solution gets closer to y(¢) = 0, from above.
Furthermore, the convergence rate of all solutions, that is, a , also increases.

(79) As b increases, then the equilibrium solution y(¢) = b/a also becomes larger. In
this case, the convergence rate remains the same.

(7i7) If @ and b both increase (but b/a = constant), then the equilibrium solution
y(t) = b/a remains the same, but the convergence rate of all solutions increases.

5(a). Consider the simpler equation dy, /dt = — ay, . As in the previous solutions, re-
write the equation as

dy:
()1

= —adt.

at

Integrating both sides results in y,(t) = ce”
(b). Now set y(t) = y,(t) + k, and substitute into the original differential equation. We
find that

page 9
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—ay; +0= —a(y, +k)+0.

Thatis, —ak +b=0,and hence k =b/a.

(c). The general solution of the differential equation is y(¢) = ce * + b/a. This is
exactly the form given by Eq. (17) in the text. Invoking an initial condition y(0) = y,,
the solution may also be expressed as y(t) = b/a + (y, — b/a)e ™.

6(a). The general solution is p(t) = 900 + c €'/?, that is, p(t) = 900 + (p, — 900)e"/?.
With p, = 850, the specific solution becomes p(t) = 900 — 50¢"/. This solution is a
decreasing exponential, and hence the time of extinction is equal to the number of
months

it takes, say ¢, for the population to reach zero. Solving 900 — 50e’/? = 0, we find that
t; = 2In(900/50) = 5.78 months.

(b) The solution, p(t) = 900 + (p, — 900)e"/?, is a decreasing exponential as long as

Py < 900. Hence 900 + (p, — 900)e’/? = 0 has only one root, given by

900
to=on —— ).
J ”(900—;90)

(c). The answer in part (b) is a general equation relating time of extinction to the value
of
the initial population. Setting ¢; = 12 months , the equation may be written as
900 6

—— = 5

900 — py
which has solution p, = 897.7691 . Since p, is the initial population, the appropriate
answer is p, = 898 mice .

7(a). The general solution is p(t) = p, €. Based on the discussion in the text, time ¢ is
measured in months . Assuming 1 month = 30 days , the hypothesis can be expressed as
poe”! = 2p,. Solving for the rate constant, r = [n(2), with units of per month.

T™N/30

(b). N days = N /30 months. The hypothesis is stated mathematically as p,e™"° = 2p,

It follows that N /30 = In(2), and hence the rate constant is given by r = 30In(2)/N .
The units are understood to be per month .

9(a). Assuming no air resistance, with the positive direction taken as downward,
Newton's
Second Law can be expressed as

dv

m— =m
a9

in which g is the gravitational constant measured in appropriate units. The equation can
be

page 10
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written as dv/dt = g, with solution v(t) = gt + v,. The object is released with an
initial
velocity vy .

(b). Suppose that the object is released from a height of h units above the ground. Using
the

fact that v = dz/dt, in which z is the downward displacement of the object, we obtain
the

differential equation for the displacement as dz/dt = gt + v,. With the origin placed at
the point of release, direct integration results in z(t) = gt>/2 + v,t. Based on the
chosen

coordinate system, the object reaches the ground when z(¢) = h. Lett = T be the time
that it takes the object to reach the ground. Then ¢7?/2 + v,T = h . Using the
quadratic

formula to solve for 1",

— VoAV + 2gh
p .

T —

The positive answer corresponds to the time it takes for the object to fall to the ground.
The

negative answer represents a previous instant at which the object could have been
launched

upward (with the same impact speed ), only to ultimately fall downward with speed v, ,
from a height of A units above the ground.

(c). The impact speed is calculated by substituting ¢ = 7" into v(t) in part (a). That is,

v(T) = /vy + 2gh .

10(a,b). The general solution of the differential equation is Q(t) = ce ™. Given that
Q(0) = 100 mg, the value of the constant is given by ¢ = 100. Hence the amount of
thorium-234 present at any time is given by Q(¢) = 100 e . Furthermore, based on the
hypothesis, setting ¢ = 1 results in 82.04 = 100e™". Solving for the rate constant, we
find that » = — In(82.04/100) = .19796/week or r = .02828/day .

(c). Let T be the time that it takes the isotope to decay to one-half of its original
amount.

From part (a), it follows that 50 = 100 e "%, in which r = .19796/week. Taking the
natural logarithm of both sides, we find that 7" = 3.5014 weeks or T' = 24.51 days .

11. The general solution of the differential equation dQ/dt = —rQ is Q(t) = Qe ",
in which @, = Q(0) is the initial amount of the substance. Let 7 be the time that it takes
the substance to decay to one-half of its original amount, (), . Setting t = 7 in the
solution,

we have 0.5 Q, = Qe "". Taking the natural logarithm of both sides, it follows that
—r7 =1In(0.5) or r7 =1In2.

page 11
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12. The differential equation governing the amount of radium-226 is dQ/dt = —r @,
with solution Q(¢) = Q(0)e ™. Using the result in Problem 11, and the fact that the
half-life 7 = 1620 years, the decay rate is given by r = In(2)/1620 per year. The
amount of radium-226, after ¢ years, is therefore Q(¢) = Q(0)e 00012786 et T be
the time that it takes the isotope to decay to 3/4 of its original amount. Then setting
t="1T,

and Q(T) = 2Q(0), we obtain 3Q(0) = Q(0)e~ 0012767 " Solving for the decay
time, it follows that — 0.00042786 T = In(3/4) or T' = 672.36 years.

13. The solution of the differential equation, with Q(0) = 0, is
Q(t) = CV (1 — e lOR),
As t— o0, the exponential term vanishes, and hence the limiting value is @, = C'V.

14(a). The accumulation rate of the chemical is (0.01)(300) grams per hour. At any
giventime ¢, the concentration of the chemical in the pond is Q(t)/10° grams per gallon

Consequently, the chemical /eaves the pond at a rate of (3 x 107*)Q(t) grams per hour .
Hence, the rate of change of the chemical is given by
dQ

i 3 —0.0003Q(t) gm/hr.

Since the pond is initially free of the chemical, Q(0) = 0.

(b). The differential equation can be rewritten as

_ 4@

=0. dt .
10000 — 0.0003

Integrating both sides of the equation results in — (n[10000 — Q| = 0.0003t + C.
Taking

the natural logarithm of both sides gives 10000 — Q = c e %% Since Q(0) = 0, the
value of the constant is ¢ = 10000. Hence the amount of chemical in the pond at any
time

is Q(t) = 10000(1 — e~00%3%) orams . Note that 1 year = 8760 hours . Setting

t = 8760, the amount of chemical present after one year is Q(8760) = 9277.77 grams ,
that is, 9.27777 kilograms .

(c). With the accumulation rate now equal to zero, the governing equation becomes
dQ/dt = —0.0003 Q(t) gm/hr. Resetting the time variable, we now assign the new
initial value as Q(0) = 9277.77 grams .

(d). The solution of the differential equation in Part (c) is Q(t) = 9277.77 00003,
Hence, one year after the source is removed, the amount of chemical in the pond is
Q(8760) = 670.1 grams .

page 12
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(e). Letting t be the amount of time after the source is removed, we obtain the equation
10 = 9277.77 e700903¢ " Taking the natural logarithm of both sides, — 0.0003 ¢ =
= In(10/9277.77) or t = 22,776 hours = 2.6 years .

(f)

10000+
G000+
£000
4000 1

2000

U 3000 5000 10000 14000 18000 22000 25000
t

15(a). It is assumed that dye is no longer entering the pool. In fact, the rate at which the
dye leaves the pool is 200 - [¢(t)/60000] kg/min = 200(60,/1000)[q(t)/60] gm per hour

Hence the equation that governs the amount of dye in the pool is

d
d_jfl = —02q (gm/hr).

The initial amount of dye in the pool is ¢(0) = 5000 grams .

(b). The solution of the governing differential equation, with the specified initial value,
is q(t) = 5000 e 02,

(c). The amount of dye in the pool after four hours is obtained by setting ¢ = 4. That is,
q(4) = 5000 e~ "® = 2246.64 grams. Since size of the pool is 60, 000 gallons , the
concentration of the dye is 0.0374 grams/gallon .

(d). Let T be the time that it takes to reduce the concentration level of the dye to

0.02 grams/gallon . At that time, the amount of dye in the pool is 1,200 grams. Using
the answer in part (b), we have 5000 e~%2T = 1200 . Taking the natural logarithm of
both sides of the equation results in the required time 7" = 7.14 hours .

(e). Note that 0.2 = 200/1000. Consider the differential equation

@_ T
at 10001

Here the parameter r corresponds to the flow rate, measured in gallons per minute .
Using the same initial value, the solution is given by ¢(t) = 5000 ¢ "/ | In order
to determine the appropriate flow rate, set ¢t = 4 and ¢ = 1200. (Recall that 1200 gm of

page 13
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—r /250

dye has a concentration of 0.02 gm/gal). We obtain the equation 1200 = 5000 e
Taking the natural logarithm of both sides of the equation results in the required flow rate
r = 357 gallons per minute .

page 14
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Section 1.3

1. The differential equation is second order, since the highest derivative in the equation
is of order two. The equation is linear, since the left hand side is a linear function of y
and

its derivatives.

3. The differential equation is fourth order, since the highest derivative of the function y
is of order four. The equation is also l/inear, since the terms containing the dependent
variable is linear in y and its derivatives.

4. The differential equation is first order, since the only derivative is of order one. The
dependent variable is squared, hence the equation is nonlinear.

5. The differential equation is second order. Furthermore, the equation is nonlinear,
since the dependent variable y is an argument of the sine function, which is not a linear
function.

7. yi(t) = e = y/(t) =y/(t) = e'. Hence y/ —y, =0.
Also, y,(t) = cosht = y/(t) = sinht and y,'(t) = cosht. Thus y; —y, = 0.

9. y(t) = 3t +t*> = y'(t) = 3 + 2t. Substituting into the differential equation, we have
t(3 +2t) — (3t +t%) = 3t + 2t> — 3t — t> = t*. Hence the given function is a solution.

10. yy(t) =t/3 = y/(t) =1/3 and y/"(t) = v, (t) = y""(t) = 0. Clearly, y,(t) is
a solution. Likewise, y,(t) = e ' +t/3 = yj(t) = —e ' +1/3, y)/(t) =,

y) (t) = —e™ ', y,”"(t) = e”'. Substituting into the left hand side of the equation, we
find that e " +4( —e ") +3(e"+t/3) =e ' —4e "+ 3e "+t =t. Hence both
functions are solutions of the differential equation.

1. y(¢t) =t = y/(t) =t7*/2 and y/'(t) = — t~**/4. Substituting into the left
hand side of the equation, we have

207 (=t /4) + 3L (t2)2) — 1P = — 12 /2 4 3¢ )2 — 12
=0

Likewise, y,(t) =t' = y,(t) = —t*and y, (t) = 2¢™*. Substituting into the left
hand side of the differential equation, we have 2t*(2¢7%) + 3t( —t2) — ¢t = 4t~ —
— 3t ' —t' = 0. Hence both functions are solutions of the differential equation.

12. y(t) =t2=y/(t)= — 2t and y,"(t) = 6¢*. Substituting into the left hand
side of the differential equation, we have t2(6¢*) + 5t( — 2t %) + 42 = 62 —
—10t2+4t2=0. Likewise, y,(t) =t *Int = y,(t) =t* — 2t *Int and

y, (t) = —5t™* 4+ 6t *Int. Substituting into the left hand side of the equation, we have
t2( =5t + 6t nt) +5t(t° — 2t%Int) +4(t2nt) = — 5t +6t2Int +
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+5t2—10t2Int+4t%Int = 0. Hence both functions are solutions of the
differential equation.

13. y(t) = (cost)incost +tsint = y'(t) = — (sint)lncost + tcost and

y"(t) = — (cost)incost — t sint + sect. Substituting into the left hand side of the
differential equation, we have ( — (cost)lncost — tsint + sect) + (cost)lncost +
+tsint = — (cost)lncost —tsint + sect + (cost)lncost +tsint = sect .

Hence the function y(t) is a solution of the differential equation.

15. Let y(t) = ™. Theny”(t) = r?e", and substitution into the differential equation
results in 72e™ + 2™ = 0. Since "’ # 0, we obtain the algebraic equation r* + 2 = 0.

The roots of this equation are r,, = + z\/§ .

17. y(t) = e™ = y'(t) = re™ and y”(t) = r’e™ . Substituting into the differential
equation, we have r2e’ + re’’ — 6e™ = 0. Since €™ # 0, we obtain the algebraic
equation > +7r — 6 = 0, thatis, (r — 2)(r +3) = 0. Theroots are 7, = — 3, 2.

18. Let y(t) = €. Theny'(t) = re™, y"(t) = r?e" and y"'(t) = r3e™ . Substituting

the derivatives into the differential equation, we have r3e™ — 3r2e’ + 2re™ = 0. Since
e # 0, we obtain the algebraic equation r® — 3r2 + 2r = 0. By inspection, it follows
that r(r — 1)(r — 2) = 0. Clearly, the rootsare r, = 0,7, = 1 and 73 = 2.

20. y(t) =t"=y'(t) =rt"" andy”(t) = r(r — 1)t"*. Substituting the derivatives
into the differential equation, we have t2[r(r — 1)#"72] — 4t(rt"™') + 4" = 0. After
some algebra, it follows that (r — 1)t" — 4rt" +4t" = 0. Fort # 0, we obtain the
algebraic equation 72 — 57 4+ 4 = 0. The roots of this equation are 7, = 1 and 7, = 4.

21. The order of the partial differential equation is two, since the highest derivative, in
fact each one of the derivatives, is of second order. The equation is linear, since the left
hand side is a linear function of the partial derivatives.

23. The partial differential equation is fourth order, since the highest derivative, and in
fact each of the derivatives, is of order four. The equation is /inear, since the left hand
side is a linear function of the partial derivatives.

24. The partial differential equation is second order, since the highest derivative of the
function u(z, y) is of order two. The equation is nonlinear, due to the product u - u, on
the left hand side of the equation.

0%u 0%u
25. uy(x,y) = cosx coshy = G4 = — cosx coshyand W“’l = cosxcoshy.

It is evident that % + %2;? = 0. Likewise, given u,(z,y) = In(z* + y?), the second

derivatives are
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0%u, B 2 422
or2 :c2—|—y2 (x2+y2)2
821,(/2 . 2 4y2
3y2 - x2+y2 (:1:2—|—y2)2
Adding the partial derivatives,
827,1/2 4 62u2 . 2 4:1:2 4 2 4y2
8.%2 ayQ .',U2 _|_y2 (.%‘2 +y2)2 .’132 +y2 (.2172 +y2)2
B 4 4(2? 4+ 9?)
T2y @ty

=0.

Hence u,(x,y) is also a solution of the differential equation.

27. Let u,(z,t) = sin Ax sin Aat. Then the second derivatives are

%2;21 = — \sin Az sin Aat
3;:;1 = — Ma’sin Az sin \at
It is easy to see that a2% = % . Likewise, given u,(z,t) = sin(x — at), we have
%2;22 = — sin(x — at)
8;22 = — a’sin(z — at)

Clearly, u,(x, t) is also a solution of the partial differential equation.

28. Given the function u(xz,t) = \/7/t e *"/4 | the partial derivatives are
me—ﬁ/llazt \/ml.Qe—szaZt

a 202t * 4at?
Tt efx2/4a2t T x267x2/4a2t

Jaterht \fr

2t 4022/t

UCECE -

Ut = —

24 p2 71‘2/4(12t
It follows that o u,, = uy = — V7 (20%t—a%)e .

4022/t

Hence u(z,t) is a solution of the partial differential equation.
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29(a).

2,
a ¥

N T o=cendon
ll\.h'\.
L o~

.
A8

W=-mz

(b). The path of the particle is a circle, therefore polar coordinates are intrinsic to the
problem. The variable r is radial distance and the angle # is measured from the vertical.
Newton's Second Law states that > F = ma . In the tangential direction, the equation of

motion may be expressed as Y F;, = m ay, in which the tangential acceleration, that is,

the linear acceleration along the path is ay = L d*0/dt*. (ay is positive in the direction
of increasing # ). Since the only force acting in the tangential direction is the component
of weight, the equation of motion is

d*0

—mgsind =mlL—s; .

dt?
ote that the equation of motion in the radial direction will include the tension in the
Note that the equat f mot the radial direct 11 include the t th
rod).

(c). Rearranging the terms results in the differential equation

a0 g .
E-ﬁ-zsmH—O.
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Section 2.1
1(a).
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(b). Based on the direction field, all solutions seem to converge to a specific increasing
function.

(¢). The integrating factor is u(t) = €*, and hence y(t) =t/3 —1/9+ e 2 + ce 3.
It follows that all solutions converge to the function y,(¢t) =¢/3 —1/9.

2(a).

.
b

]
Y
W
W
LR AR
RN
N

It S O
I R et
T e

L
\

LIPS L)
g

ot ™ e T e
Ty e o ey oy o e
LT e T T T e e

i

1

L B

e T R

B R Uy

R
i

.
iy
=
—
[an]

P
Py
S
e
T
S

(b). All slopes eventually become positive, hence all solutions will increase without
bound.

(¢). The integrating factor is pu(t) = e~%, and hence y(t) = t3e* /3 4+ ce?. Itis
evident that all solutions increase at an exponential rate.

3(a)
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(b). All solutions seem to converge to the function y,(t) = 1.

(¢). The integrating factor is p(t) = e*, and hence y(t) = t’e /2 + 1+ cet. Itis
clear that all solutions converge to the specific solution y,(t) = 1.

4(a).

1 B O T A Y
3 %\\\kk\\k\w#/////Fx
LR SN ENCIN A Ry
B B T T T
it) R N NN N S S e
¥ R L S R
g N N N A N AN S e
et N A N e S S S e
(o e W S e T e
7 e Ny \\ *x—u-jf j_; "

! LS =
s SRR RS TS/ &
R EE A i B LA LL S L=
S B B NI I I
I A A B RN
§ R N N e e
2 I 7 e e PN
e T
o e S S S —
-3 VPSSP

(b). Based on the direction field, the solutions eventually become oscillatory.

(c). The integrating factor is u(¢) = ¢, and hence the general solution is

_ 3cos(2t) 3

y(t) pm + 53m(2t) +

SR NeY

in which ¢ is an arbitrary constant. As ¢ becomes large, all solutions converge to the
function y, (t) = 3sin(2t)/2.

5(a).
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(b). All slopes eventually become positive, hence all solutions will increase without
bound.

¢). The integrating factor is ;(t) = exp( — [2dt) = e?!. The differential equation
g g M q

can

be written as e 2y’ — 2e 2y = 3¢~!, that is, (e 2'y)’ = 3e!. Integration of both

sides of the equation results in the general solution y(t) = — 3e! + ce?. It follows that
all solutions will increase exponentially.

6(a)

e e e
J
J A e
Fils
S
oL

|
%
1
i
ﬁ
5

—
=
=
=
1
[

i T e Q
B B e Y LY
i
e M
e gy Ty
G
R Y

N
3
t
4
{

--..
—-e—-.,“

—
1
ey

2
(b). All solutions seem to converge to the function y,(¢) = 0.

(c). The integrating factor is (t) = t*, and hence the general solution is

cos(t) sin(2t) ¢

) = — -
y(t) " " "

in which ¢ is an arbitrary constant. As ¢ becomes large, all solutions converge to the
function y,(t) = 0.

7(a).
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exp(t?), and hence y(t)
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(b). All solutions seem to converge to the function y,(¢) = 0.

ﬁe*ﬁ—%ce’ﬂ.ltﬂ

)

a

(

clear that all solutions converge to the function y,(t) = 0.

(c). The integrating factor is p(t)

8

0.
[tan™'(t) + C]/(1 +*)°.
0.
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(1+ %)%, the general solution is y(t)

It follows that all solutions converge to the function y,(t)

a).

(

(b). All solutions seem to converge to the function y, (%)

(c). Since pu(t)

9
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(b). All slopes eventually become positive, hence all solutions will increase without
bound.

(c). The integrating factor is u(t) = exp([3dt) = e!/?. The differential equation can
be written as e!/2y’ + e'/%y/2 = 3t e!/? /2, that is, (¢'/2y/2)" = 3t e/ /2. Integration
of both sides of the equation results in the general solution y(t) = 3t — 6 +ce /2. All
solutions approach the specific solution y,(t) = 3t — 6.

10(a).
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(b). Fory > 0, the slopes are all positive, and hence the corresponding solutions
increase

without bound. For y < 0, almost all solutions have negative slopes, and hence solutions
tend to decrease without bound.

(c). First divide both sides of the equation by ¢. From the resulting standard form, the
integrating factor is p(t) = exp(— [}dt) = 1/¢. The differential equation can be
written as y'/t —y/t?> = te~, thatis, (y/t) = te~". Integration leads to the general
solution y(t) = —te '+ ct. For ¢ # 0, solutions diverge, as implied by the direction
field. For the case ¢ = 0, the specific solution is y(t) = — te~!, which evidently
approaches zero as t + 00 .

11(a).

I e T T T T e T S WL
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(b). The solutions appear to be oscillatory.
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(c). The integrating factor is p(t) = €', and hence y(t) = sin(2t) — 2cos(2t) +ce .

It is evident that all solutions converge to the specific solution y,(t) = sin(2t) — 2
cos(2t).

12(a).
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(b). All solutions eventually have positive slopes, and hence increase without bound.

(c). The integrating factor is u(t) = e*. The differential equation can be

written as e'/%y’ + e'/?y/2 = 3¢%/2, that is, (e'/? y/Q)/ = 3t2/2. Integration of both
sides of the equation results in the general solution y(t) = 3t — 12t + 24 + ¢ e 21t
follows that all solutions converge to the specific solution y,(t) = 3t2 — 12t + 24.

14. The integrating factor is u(t) = e*. After multiplying both sides by 1(t), the
equation can be written as (eZt y)/ =t . Integrating both sides of the equation results

in the general solution y(t) = t?e %' /2 + c e .. Invoking the specified condition, we
require that e 2 /2 + ce 2 = 0. Hence ¢ = — 1/2, and the solution to the initial value
problemis y(t) = (t* — 1)e % /2.

16. The integrating factor is yu(t) = ( [2dt) = t*. Multiplying both sides by p(t),
the equation can be written as (¢ y) 0s(t) . Integrating both sides of the equation
results in the general solution y(t) = ( )/t? + ct~2. Substituting t = 7 and setting

the value equal to zero gives ¢ = 0. Hence the specific solution is y(t) = sin(t)/t>.

17. The integrating factor is u(t) = e~%, and the differential equation can be written as
(e'y)" = 1. Integrating, we obtain e > y(t) = ¢ + c. Invoking the specified initial
condition results in the solution y(t) = (t + 2)e?

19. After writing the equation in standard form, we find that the integrating factor is
pu(t) = exp([3dt) = ¢*. Multiplying both sides by (), the equation can be written as

(t'y)" = te ! . Integrating both sides results in t'y(t) = — (t+ 1)e +c. Letting

t = — 1 and setting the value equal to zero gives ¢ = 0. Hence the specific solution of
the initial value problem is y(t) = — (¢ 2 + ¢ *)e "

21(a).
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The solutions appear to diverge from an apparent oscillatory solution. From the
direction

field, the critical value of the initial condition seems to be ¢y = — 1. Fora > — 1, the
solutions increase without bound. For a < — 1, solutions decrease without bound.

(b). The integrating factor is u(t) = e */2. The general solution of the differential
equation is y(t) = (8sin(t) — 4cos(t))/5 + ce'/?. The solution is sinusoidal as long
as ¢ = 0. The initial value of this sinusoidal solution is

ay = (8sin(0) — 4cos(0))/5 = —4/5.

(c). See part (b).

22(a).
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All solutions appear to eventually increase without bound. The solutions initially
increase

or decrease, depending on the initial value a. The critical value seemstobe ay = — 1.

(b). The integrating factor is u(t) = e*/2, and the general solution of the differential
equation is y(t) = — 3e'/? 4 ce!/2. Invoking the initial condition (0) = a, the
solution

may also be expressed as y(t) = — 3e!/3 + (a + 3) e!/2. Differentiating, follows that
y'(0)= —14(a+3)/2=(a+1)/2. The critical value is evidently a, = — 1.
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(¢). For ay = — 1, the solution is y(t) = — 3e!/3 4+ 2¢'/2, which (for large t) is
dominated by the term containing e'/2.

is y(t) = (8sin(t) — 4cos(t))/5 + c e/’

23(a).
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As t—0, solutions increase without bound if y(1) = a > .4, and solutions decrease
without bound if y(1) =a < 4.

(b). The integrating factor is pu(t) = exp([“Ldt) = te’. The general solution of the
differential equation is y(t) =te ' + ce '/t. Invoking the specified value y(1) = a,
we have 1 + ¢ = ae. Thatis,c = ae — 1. Hence the solution can also be expressed as
y(t) =te '+ (ae—1)e t/t. Forsmall values of t , the second term is dominant.
Setting a e — 1 = 0, critical value of the parameter is a, = 1/e.

(c). Fora > 1/e, solutions increase without bound. For a < 1/e, solutions decrease
without bound. When a = 1/e, the solution is y(t) = ¢t e~*, which approaches O as t —+0

24(a).
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As t—0, solutions increase without bound if y(1) = a > .4, and solutions decrease
without bound if y(1) =a < 4.
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(b). Given the initial condition, y( — 7/2) = a, the solution is y(t) = (an?/4 — cost)/t

Since %im cost = 1, solutions increase without bound if @ > 4/72, and solutions

—0
decrease without bound if a < 4/7?. Hence the critical value is
a, = 4/7% = 0.452847....

(¢). Fora = 4/7?, the solution is y(t) = (1 — cost)/t, and %ingy(t) = 1/2. Hence the

solution is bounded.

25. The integrating factor is 1(t) = exp( [ 3dt) = €'/*. Therefore general solution is
y(t) = [4cos(t) + 8sin(t)]/5 + c e /2. Invoking the initial condition, the specific
solution is y(t) = [4cos(t) + 8sin(t) — 9€'/?]/5. Differentiating, it follows that

y'(t) = [ — 4sin(t) + 8cos(t) + 4.5¢7%] /5
y"(t) = [ — 4cos(t) — 8sin(t) — 2.25¢ %] /5

Setting y’(t) = 0, the first solution is ¢, = 1.3643, which gives the location of the first
stationary point. Since y”(¢,) < 0, the first stationary point in a local maximum. The
coordinates of the point are (1.3643,.82008).

26. The integrating factor is p(t) = exp([ %dt) = ¢%/3, and the differential equation
can

be written as (e2/% y)' = /3 — ¢ /3 /2. The general solution is y(t) = (21 — 6t)/8 +
+ce /3, Imposing the initial condition, we have y(t) = (21 — 6t)/8 + (y, — 21/8)e~ /.
Since the solution is smooth, the desired intersection will be a point of tangency. Taking
the derivative, y'(t) = — 3/4 — (2y, — 21/4)e"*/3/3. Setting y'(t) = 0, the solution
is t; = 2In[(21 — 8y,)/9]. Substituting into the solution, the respective value at the
stationary point is y(t,) = 3 + §In3 — 3In(21 — 8y,). Setting this result equal to zero,
we obtain the required initial value y, = (21 — 9¢"?)/8 = — 1.643.

27. The integrating factor is u(t) = e'/*, and the differential equation can be written as
(et y)" = 3e!’* + 2e'/*cos(2t). The general solution is

y(t) = 12 + [8cos(2t) + 64sin(2t)]/65 + ¢ e /.
Invoking the initial condition, y(0) = 0, the specific solution is

y(t) = 12 + [8cos(2t) + 64sin(2t) — 788 e ] /65.

As t— o0, the exponential term will decay, and the solution will oscillate about an
average

value of 12, with an amplitude of 8/+/65 .
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29. The integrating factor is u(t) = e */2, and the differential equation can be written

as (%2 y) = 3te 32 4 22, The general solution is y(t) = — 2t —4/3 —4e’ +
+ c e*/2. Imposing the initial condition, y(t) = — 2t —4/3 — 4 e’ + (y, + 16/3) /2.
As t— 00, the term containing e*/? will dominate the solution. Its sign will determine
the divergence properties. Hence the critical value of the initial condition is

Yo = —16/3.

The corresponding solution, y(t) = — 2t — 4/3 — 4 €', will also decrease without
bound.

Note on Problems 31-34:

Let g(t) be given, and consider the function y(¢) = y,(¢) + ¢(t) , in which y,(¢) = o0
as t— oo . Differentiating, y'(t) = y/(t) + ¢’(t) . Letting a be a constant, it follows
that y'(t) + ay(t) = y/(t) + ayi(t) + ¢'(t) + ag(t). Note that the hypothesis on the
function y, (¢) will be satisfied, if y,(t) + ay,(t) = 0. Thatis, y,(t) = ce . Hence
y(t) = ce  + g(t), which is a solution of the equation y’ + ay = ¢'(t) + ag(t).
For convenience, choose a = 1.

31. Here ¢(t) = 3, and we consider the linear equation y’ + y = 3. The integrating
factor is p(t) = €', and the differential equation can be written as (e’ )’ = 3¢!. The
general solution is y(t) =3+ ce ™.

33. g(t) = 3 — t. Consider the linear equation y’ +y = — 1 4+ 3 — ¢ .The integrating
factor is su(t) = €', and the differential equation can be written as (e’ )’ = (2 — t)e’.
The general solution is y(t) =3 —t +ce™".

34. g(t) = 4 — t?. Consider the linear equation y’ +y = 4 — 2t — t* .The integrating
factor is 4u(t) = €', and the equation can be written as (e y)’ = (4 — 2t — t?)e'.
The general solution is y(t) = 4 — t> + ce™.
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Section 2.2

2. Forx # — 1, the differential equation may be written as y dy = [#?/(1 + z®)]dx .
Integrating both sides, with respect to the appropriate variables, we obtain the relation

Y’ /2 = %ln\1+x3| + ¢. Thatis, y(z) = i\/§1n|l+x3| +c.

3. The differential equation may be written as y 2dy = — sinx dz . Integrating both
sides of the equation, with respect to the appropriate variables, we obtain the relation
—y ' =cosx+c. Thatis, (C — cosz)y = 1, in which C is an arbitrary constant.
Solving for the dependent variable, explicitly, y(z) = 1/(C — cosx) .

5. Write the differential equation as cos ? 2y dy = cos’z dx, or sec?® 2y dy = cos’z dx.
Integrating both sides of the equation, with respect to the appropriate variables, we obtain
the relation tan 2y = sinxcosx + =+ c.

7. The differential equation may be written as (y + e¥)dy = (x — e”")dz . Integrating
both sides of the equation, with respect to the appropriate variables, we obtain the
relation

v +2e¥ =22 +2e " +ec.

8. Write the differential equation as (1 +3?)dy = x> dx . Integrating both sides of the
equation, we obtain the relation y + y3/3 = 23/3 + ¢, thatis, 3y +y> = 2® + C.

9(a). The differential equation is separable, with y~2dy = (1 — 2x)dz . Integration
yields —y™' = x — 2® + ¢. Substituting z = 0andy = — 1/6, we find thatc = 6.
Hence the specific solution is 3! = 2> — x — 6. The explicit form is

y(x) =1/(* — 2 -6).

(b)

-3

(¢). Note that 2 — z — 6 = (x + 2)(x — 3). Hence the solution becomes singular at
r= —2and z=3.

10(a). y(z) = — 2z — 222+ 4.
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10(b).

O o2 040608 1 1214 16 18
X

11(a). Rewrite the differential equation as z e"dx = — ydy. Integrating both sides
of the equation results in ze” — e® = — y?/2 + c. Invoking the initial condition, we
obtain ¢ = — 1/2. Hence y? = 2¢” — 2x e® — 1. The explicit form of the solution is

y(z) = \/2e" — 2z e” — 1 . The positive sign is chosen, since y(0) = 1.

(b).

|

0701 02 03 04 05 0F 07 OB
X

e
(c). The function under the radical becomes negative near t = — 1.7 and = = 0.76.

11(a). Write the differential equation as r~2dr = #~' df . Integrating both sides of the
equation results in the relation — ' = in# + ¢. Imposing the condition r(1) = 2, we
obtain ¢ = — 1/2. The explicit form of the solution is r(0) = 2/(1 — 2In9).
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(c). Clearly, the solution makes sense only if # > 0. Furthermore, the solution becomes
singular when In6 = 1/2, thatis, 0 = \/E_

13(a). y(z) = —/2In(1 +22)+ 4.

o)
104
o
.
|
]

AP
WE
£
-2
-10-

14(a). Write the differential equation as y~*dy = z(1 + 22)""* dx . Integrating both
sides of the equation, with respect to the appropriate variables, we obtain the relation
—y?/2=1+/1+2? + c¢. Imposing the initial condition, we obtain ¢ = — 3/2.
Hence the specific solution can be expressed as y 2 = 3 — 2y/1 + 22 . The explicit
Sform of the solution is y(z) = 1/\/3 —24y/1+4 22 . The positive sign is chosen to
satisfy the initial condition.
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(¢). The solution becomes singular when 21/1 + z2 = 3. Thatis, at z = +/5 /2.

15(a). y(x) = —1/2+ /2? —15/4 .
(b).

16(a). Rewrite the differential equation as 4y3dy = z(x? 4+ 1)dx . Integrating both
sides

of the equation results in y* = (22 +1)*/4 + c¢. Imposing the initial condition, we obtain
¢ = 0. Hence the solution may be expressed as (22 + 1) — 4y* = 0. The explicit form

of the solution is y(x) = — /(22 +1)/2 . The sign is chosen based on y(0) = —1/1/2.
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-1.24
-1.44
-1.61
-1.84

-2.24
-2.44
-2.61

(c). The solution is valid for all x € R.

17(a). y(z) = —5/2 — /a3 — e+ 13/4 .

(b).

(c). The solution is valid for = > — 1.45. This value is found by estimating the root of
4a% —4e” +13 =10.

18(a). Write the differential equation as (3 + 4y)dy = (e™" — e”)dx . Integrating both
sides of the equation, with respect to the appropriate variables, we obtain the relation

3y +2y* = — (e + e %) + c. Imposing the initial condition, y(0) = 1, we obtain
¢ = 7. Thus, the solution can be expressed as 3y + 23> = — (e + e %) + 7. Now by
completing the square on the left hand side, 2(y + 3/4)> = — (e” + e %) + 65/8.

Hence the explicit form of the solution is y(z) = — 3/4 + \/65/16 — cosh x .
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(c). Note the 65 — 16 coshx > 0, as long as |z| > 2.1. Hence the solution is valid on
the interval — 2.1 <z < 2.1.

19(a). y(z) = —7/3 + isin~'(3cos’z).

0.9
0.8

0.7

08 1 12 14,16 18 2 22

20(a). Rewrite the differential equation as y°dy = arcsinz/v/1 — 2% dz . Integrating
both sides of the equation results in y*/3 = (arcsinz)?/2 + ¢. Imposing the condition

y(0) = 0, we obtain ¢ = 0. The explicit form of the solution is y(z) = \:%g(arcsin z)*?.
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(c). Evidently, the solution is defined for — 1 < < 1.

22. The differential equation can be written as (3y> — 4)dy = 3x°dx . Integrating both
sides, we obtain y® — 4y = 2% + ¢. Imposing the initial condition, the specific solution
is y® — 4y = 23 — 1. Referring back to the differential equation, we find that y'— co as
y— 12/\/5. The respective values of the abscissas are x = — 1.276, 1.598.

i 1.2

| 3
\ 1

0.8
\ Y05
0.4

e 1 B
42008 04, 102040608 1421415
0.2 .
0.4
064 !

084 \
-14 1
-1.24 '

Hence the solution is valid for — 1.276 < x < 1.598.

24. Write the differential equation as (3 4 2y)dy = (2 — e”)dx . Integrating both sides,
we obtain 3y + y> = 2z — e* + ¢. Based on the specified initial condition, the solution
can be written as 3y + y? = 2x — e* 4+ 1. Completing the square, it follows that

y(r) = —3/2+4 \/2z — e* + 13/4 . The solution is defined if 2z — e* + 13/4 > 0,
thatis, — 1.5 <z < 2 (approximately). In that interval, y’ = 0, for x = In2. It can
be verified that y”(In2) < 0. In fact, y”(x) < 0 on the interval of definition. Hence
the solution attains a global maximum at z = In 2.

26. The differential equation can be written as (1+y?) 'dy = 2(1 + z)dx . Integrating
both sides of the equation, we obtain arctany = 2z + x* + c¢. Imposing the given
initial

condition, the specific solution is arctany = 2z + x?. Therefore, y(z) = tan(2z + z2).
Observe that the solution is defined as long as — 7/2 < 2z + 2? < 7/2. Itis easy to
see that 2 4+ 22 > — 1. Furthermore, 2z + 22 = /2 for x = — 2.6 and 0.6. Hence
the solution is valid on the interval — 2.6 < x < 0.6. Referring back to the differential
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equation, the solution is stationary at x = — 1. Since y” () > 0 on the entire interval
of
definition, the solution attains a global minimumat z = — 1.

28(a). Write the differential equation as ' (4 — y) 'dy = t(1 4+ ¢) 'dt. Integrating
both sides of the equation, we obtain In |y| — in|y — 4| = 4t — 4In|1 + t| + ¢ . Taking
the exponential of both sides, it follows that |y/(y — 4)| = C e /(1 +t)*. It follows
thatas t—o0, |y/(y —4)| =1+ 4/(y — 4)|» 0. Thatis, y(t)— 4.

(b). Setting y(0) = 2, we obtain that C = 1. Based on the initial condition, the solution
may be expressed as y/(y —4) = —e* /(1 +)". Note that y/(y — 4) < 0, for all

t > 0. Hence y < 4 forallt > 0. Referring back to the differential equation, it follows
that ' is always positive. This means that the solution is monotone increasing. We find
that the root of the equation e* /(1 +¢)" = 399 is near ¢t = 2.844.

(c). Note the y(t) = 4 is an equilibrium solution. Examining the local direction field,
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we see that if y(0) > 0, then the corresponding solutions converge to y = 4. Referring
back to part (a), we have y/(y — 4) = [yo/(yo — 4)]e* /(1 +t)", for y, # 4. Setting

t =2, weobtain y,/(y, — 4) = (3/62)4y(2)/(y(2) —4). Now since the function

fly) =y/(y —4) is monotone fory < 4 and y > 4, we need only solve the equations
Yo/ (yo — 4) = —399(3/¢?)'and 5,/ (yo — 4) = 401(3/¢?)*. The respective solutions

are y, = 3.6622 and y, = 4.4042.

30(f).

L UL S S S S
e ey s T e i
T e e e e S, e
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31(c)

32(a). Observe that (2% + 3y?)/2xy = %(%)‘1 + 3y,

is homogeneous.
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Hence the differential equation

(b). The substitution y = z v results in v + z v’ = (2% + 32?v?)/22%v. The
transformed equation is v’ = (1 + v?)/2zv. This equation is separable, with general
solution v> + 1 = cx. In terms of the original dependent variable, the solution is

22 +y? =ca’.

(c).

S
o
o
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e
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33(c).
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34(a). Observe that — (4z + 3y)/(2z +y) = —2 — £[2+ %] ", Hence the
differential equation is homogeneous.

(b). The substitution y = zvresultsin v + zv' = —2 —v/(2 + v). The transformed
equation is v’ = — (v2 + 5v +4)/(2 + v)z . This equation is separable, with general
solution (v+4)*|v+1| = C/2*. In terms of the original dependent variable, the solution
is (47 +y)*|z+y| = C.

().
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T A D

35(c).

36(a). Divide by 2% to see that the equation is homogeneous. Substituting y = v, we
obtain v’ = (1 + v)®. The resulting differential equation is separable.

(b). Write the equation as (1 + v) “dv = z~'dz . Integrating both sides of the equation,
we obtain the general solution — 1/(1 + v) = In|z| 4+ c¢. In terms of the original
dependent variable, the solution is y = z [C — In|z|] " — z.

page 37



WWV. ZI 1 e.lr

CHAPTER 2. ——

AU O S
B
R e

%, T

N i R

Ty T

R

T, e

Bt e e e

T

2\z
equation is homogeneous. The substitution y = x v results in zv’ = (1 — 50?)/2v.

Separating variables, we have ; 2; sdv = 1dz.
—oU T

37(a). The differential equation can be expressed as 3/ = 1 (%) = %% Hence the
1

1

(b). Integrating both sides of the transformed equation yields — z

In|1 —50% = In|z| + ¢,
thatis, 1 — 50> = C'/|z|”. In terms of the original dependent variable, the general
solution is 5y% = z2 — C/|xz|".
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(%)_1. Hence the
= (v? — 1)/2v, that

38(a). The differential equation can be expressed as y' = %
equation is homogeneous. The substitution y = z v results 1

18, Uffldv = %dx.

=N

1
2
xov'

(b). Integrating both sides of the transformed equation yields in|v* — 1| = In|x| + ¢,
that is, v> — 1 = C||z|. In terms of the original dependent variable, the general solution
is y? = C 2?|z| + 2%
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Section 2.3

5(a). Let @ be the amount of salt in the tank. Salt enters the tank of water at a rate of
2 %(1 + %sin t) = % + isint oz/min . It leaves the tank at a rate of 2(Q)/100 oz/min.
Hence the differential equation governing the amount of salt at any time is

dQ 1 1
T §+1827’Lt—Q/50.

The initial amount of salt is (), = 50 oz. The governing ODE is linear, with integrating
factor ju(t) = e'/°0. Write the equation as (et/E’OQ)/ = e!/%0(% + Lsint). The
specific solution is Q(t) = 25 + [12.5sint — 625cos t + 63150 e /%] /2501 oz.

(b).
a0
404
304
204

107

0720 a0 a0 't'aij 00" 120 140

(c). The amount of salt approaches a steady state, which is an oscillation of amplitude
1/4 about a level of 25 oz.

6(a). The equation governing the value of the investment is d.S/dt = r S. The value of
the investment, at any time, is given by S(t) = Sye". Setting S(T') = 25, , the required
time is 7' = In(2)/r.

(b). Forthecase r =7% = .07, T =99 yrs.

(c). Referring to Part(a), r = In(2)/T. Setting 1" = 8, the required interest rate is to
be approximately r = 8.66 % .

8(a). Based on the solution in Eg.(16), with S, = 0, the value of the investments with
contributions is given by S(t) = 25,000(e"" — 1). After fen years, person A has

S, = $25,000(1.226) = $30,640. Beginning at age 35, the investments can now be
analyzed using the equations S, = 30,640e%" and Sy = 25,000(e " — 1).

After thirty years, the balances are S, = $337,734 and Sy = $250,579.

(b). For an unspecified rate r , the balances after thirty years are S, = 30,640 3" and
Sy = 25,000(e3" — 1).
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(d). The two balances can never be equal.

11(a). Let S be the value of the mortgage. The debt accumulates at a rate of S, in
which r = .09 is the annual interest rate. Monthly payments of § 800 are equivalent to
89,600 per year. The differential equation governing the value of the mortgage is
dS/dt =.095 —9,600. Given that S, is the original amount borrowed, the debt is
S(t) = Sye™ —106,667(e" — 1). Setting S(30) = 0, it follows that

So = $99,500.

(b). The total payment, over 30 years, becomes § 288,000 . The interest paid on this
purchase is § 188, 500 .

13(a). The balance increases at a rate of S $/yr, and decreases at a constant rate of k
$ per year. Hence the balance is modeled by the differential equation d.S/dt =rS — k.
The balance at any time is given by S(t) = Spe’’ — £(e™ — 1).

(b). The solution may also be expressed as S(t) = (S, — £)e" + . Note that if the

r

withdrawal rate is k, = r S, , the balance will remain at a constant level S, .
(¢). Assuming that k > k,, S(T,) = 0 for T, = %ln[k_LkU]

(d). If r = .08 and k = 2k, , then T, = 8.66 years.

(€). Setting S(t) = 0 and solving for e in Part(b), e’ = k_]j,SU. Now setting t = T
results in k = rSpe™ /(e —1).

(f). Inpart(e), let k = 12,000, r = .08, and 7" = 20. The required investment
becomes S, = $119,715.

14(a). Let Q' = — r Q. The general solution is Q(t) = Q,e . Based on the
definition of &alf-life, consider the equation @Qy/2 = Qe >"". It follows that
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— 57307 = In(1/2), that is, 7 = 1.2097 x 10~* per year.

(b). Hence the amount of carbon-14 is given by Q(t) = Q, e~ 1.2097x107"t

(¢). Given that Q(T) = Q,/5, we have the equation 1/5 = ¢~ 12097107 Solying for
the decay time, the apparent age of the remains is approximately 7' = 13, 304.65 years.

15. Let P(t) be the population of mosquitoes at any time ¢. The rate of increase of the
mosquito population is 7P. The population decreases by 20,000 per day. Hence the
equation that models the population is given by dP/dt = rP — 20,000. Note that the
variable ¢ represents days . The solution is P(t) = Pye™ — 220 (e — 1), In the
absence of predators, the governing equation is d P, /dt = r P, with solution

P,(t) = Pje". Based on the data, set P,(7) = 2P, , thatis, 2P, = Pye™. The growth
rate is determined as r = In(2)/7 = .09902 per day. Therefore the population,
including the predation by birds, is P(t) = 2 x 10%e%" — 201, 997(e" — 1) =

= 201,997.3 — 1977.3 "%,

16(a). y(t) = exp[2/10 +t/10 — 2cos(t)/10]. The doubling-time is T ~ 2.9632 .

(b). The differential equation is dy/dt = y/10, with solution y(t) = y(0)e"/'°. The
doubling-time is given by 7 = 10in(2) ~ 6.9315.

(¢). Consider the differential equation dy/dt = (0.5 + sin(2nt))y/5. The equation is
separable, with %dy = (0.1 4 Lsin(27t))dt. Integrating both sides, with respect to the

appropriate variable, we obtain Iny = (7t — cos(2nt))/10m + ¢. Invoking the initial
condition, the solution is y(t) = exp[(1 + 7t — cos(2nt))/10x]. The doubling-time is
T & 6.3804 . The doubling-time approaches the value found in part(b).

(d).

17( ). The differential equation dy/dt = r(t)y — k is linear, with integrating factor
pu(t) = exp[ — [r(t)dt]. Write the equation as (py) = — k p(t). Integration of both
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sides yields the general solution y = [ — k[ u(7)d7 + yy #(0)] /p1(t) . In this problem,
the
integrating factor is u(t) = exp|(cost —t)/5].

24
1.84
164
1.44
1.24

E
0.8
0.6
0.4
0.2

TR T h

(b). The population becomes extinct, if y(t*) = 0, for some ¢t = t*. Referring to

part(a),
we find that y(t*) = 0 =

t*
/ exp|(cosT — 1) /5]dT = 5%y
0

It can be shown that the integral on the left hand side increases monotonically, from zero
to a limiting value of approximately 5.0893. Hence extinction can happen only if
5e'/5y, < 5.0893, that is, y. < 0.8333.

(c). Repeating the argument in part(b), it follows that y(t*) = 0 =

t 1
/ expl(cosT — 7)/5ldT = % el/y..
0
Hence extinction can happen only if e'/°y./k < 5.0893, that is, y, < 4.1667 k.
(d). Evidently, y. is a linear function of the parameter & .

19(a). Let Q(t) be the volume of carbon monoxide in the room. The rate of increase of
COis (.04)(0.1) = 0.004 ft*/min . The amount of CO leaves the room at a rate of
(0.1)Q(t) /1200 = Q(t) /12000 ft?/min . Hence the total rate of change is given by
the differential equation d@/dt = 0.004 — Q(¢)/12000. This equation is /inear and
separable, with solution Q(t) = 48 — 48 exp( — t/12000) ft*. Note that Q, = 0 ft>.
Hence the concentration at any time is given by z(t) = Q(t)/1200 = Q(t)/12 %.

(b). The concentration of CO in the room is z(t) = 4 — dexp( — t/12000) %. A level
0f 0.00012 corresponds to 0.012 %. Setting z(7) = 0.012, the solution of the equation
4 — dexp( —t/12000) = 0.012 is 7 ~ 36 minutes .
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20(a). The concentration is c¢(t) = k + P/r + (¢, — k — P/r)e "/ ltis easy to see
that c(t—»o0) = k + P/r.

(b). c(t) = coe V. The reduction times are Ty, = In(2)V /r and Ty, = In(10)V /r.
(c). The reduction times, in years, are Ts = In(10)(65.2)/12,200 = 430.85

Ty = In(10)(158) /4,900 = 71.4 ; T, = In(10)(175)/460 = 6.05
T, = In(10)(209) /16,000 = 17.63 .

21(c).
Pasition
“Welocity 50
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22(a). The differential equation for the motion is mdv/dt = — v/30 — mg. Given the
initial condition v(0) = 20 m/s , the solution is v(t) = — 44.1 + 64.1exp( —t/4.5).

Setting v(t;) = 0, the ball reaches the maximum height at ¢, = 1.683 sec. Integrating
v(t), the position is given by z(t) = 318.45 — 44.1¢ — 288.45 exp( — t/4.5). Hence
the maximum height is x(t,) = 45.78 m.

(b). Setting x(t,) = 0, the ball hits the ground at ¢, = 5.128 sec.

().
Yelocity Puosition
204
40
104
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y 2z U3 4 5
0 204
10 107
1 0 T 7 ;3 3 g
23(a). The differential equation for the upward motion is mdv/dt = — pv* — mg,
in which = 1/1325. This equation is separable, with —"—dv = — dt. Integrating
Hnost+mg
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both sides and invoking the initial condition, v(t) = 44.133 tan(.425 — .222t). Setting
v(t;) = 0, the ball reaches the maximum height at ¢, = 1.916 sec. Integrating v(t), the
position is given by z(t) = 198.75In[cos(0.222¢ — 0.425)] 4+ 48.57 . Therefore the
maximum height is x(t,) = 48.56 m.

(b). The differential equation for the downward motion is mdv/dt = + pv? —mg.

This equation is also separable, with mgi’L —dv = —dt. For convenience, sett = 0 at

the top of the trajectory. The new initial condition becomes v(0) = 0. Integrating both
sides and invoking the initial condition, we obtain In[(44.13 — v)/(44.13 + v)] = t/2.25

Solving for the velocity, v(t) = 44.13(1 — €/>%) /(1 + €"/**) . Integrating v(t), the
position is given by z(t) = 99.29n [et/z%/(l + Gt/2'25)2} + 186.2. To estimate the

duration of the downward motion, set x(¢,) = 0, resulting in ¢, = 3.276 sec. Hence the
total time that the ball remains in the air is ¢, + ¢, = 5.192 sec.

().
“elocity Position
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24(a). Measure the positive direction of motion downward . Based on Newton's 2nd
law,
the equation of motion is given by

dv { —0.75v+mg , 0<t<10

m%: —12v4+mg ,t>10

Note that gravity acts in the positive direction, and the drag force is resistive. During the
first ten seconds of fall, the initial value problem is dv/dt = — v/7.5 + 32, with initial

velocity v(0) = 0 fps. This differential equation is separable and linear, with solution
v(t) = 240(1 — e /7%). Hence v(10) = 176.7 fps .

(b). Integrating the velocity, with z(¢) = 0, the distance fallen is given by
z(t) = 240t + 1800 e /™ — 1800.
Hence x(10) = 1074.5 fi.
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(¢). For computational purposes, reset time to ¢ = 0. For the remainder of the motion,
the initial value problem is dv/dt = — 32v/15 + 32, with specified initial velocity

v(0) = 176.7 fps . The solution is given by v(t) = 15 + 161.7e /1>, Ast—oo,

v(t) > v, = 15 fps . Integrating the velocity, with z(0) = 1074.5, the distance fallen
after the parachute is open is given by z(¢) = 15¢ — 75.8 ¢ *?"/% + 1150.3. To find the
duration of the second part of the motion, estimate the root of the transcendental equation
15T — 75.8 ¢~ #7/15 4 1150.3 = 5000 . The resultis T = 256.6 sec.

(d).

“Welocity

“elocity
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25(a). Measure the positive direction of motion upward. The equation of motion is
given by mdv/dt = — kv — mg. The initial value problem is dv/dt = — kv/m — g,
with v(0) = v,. The solution is v(t) = — mg/k + (vo + mg/k)e /™. Setting

v(ty) = 0, the maximum height is reached at time ¢, = (m/k)In[(mg + kv,)/mg].
Integrating the velocity, the position of the body is

z(t) = —mgt/k+ [(%)29 + mkvo] (1 — e ktimy,

Hence the maximum height reached is

mu m\ 2 mg—|—]{iv
2= alt,) = 0~ g(7) l"[Tg}

(b). Recall that for § < 1, In(146) =68 — §8*+ £6° — 36+ ...

26(b). lim _mg+(k”“;mg)efkt/m = lim — L (kv, + mg)e /™ =

k—0 k—0

—gt.

(c). lim [— % + (%e4v,)e ¥/™m] = 0,since lim e /™ =0.

m—0 m—0

28(a). In terms of displacement, the differential equation is mvdv/dz = — kv + mg.

This follows from the chain rule: % = w4z — v The differential equation is

dt dx dt dt *
separable, with
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mv  mig, |mg—kv
#(v) = kR n mg

The inverse exists, since both x and v are monotone increasing. In terms of the given
parameters, z(v) = — 1.25v — 15.311n|0.0816 v — 1|.
dizplacement
309
254
204

u 2 4 6 8 10
(b). x(10) = 13.45 meters . The required value is k = 0.24.

(¢). Inpart(a), set v =10 m/s and x = 10 meters .

29(a). Let x represent the height above the earth's surface. The equation of motion is

given by m% = -G ( é‘i 7;)2 , in which G is the universal gravitational constant. The
symbols M and R are the mass and radius of the earth, respectively. By the chain rule,
dv Mm
mv— = —G——.
dx (R+ )

This equation is separable, with vdv = — GM (R + x)_de . Integrating both sides,
and

invoking the initial condition v(0) = \/2gR , the solution is v> = 2GM (R + =)' +
+2gR — 2GM /R . From elementary physics, it follows that g = GM /R?. Therefore

v(x) = /29 [R/\/R + :1;] (Note that g = 78,545 mi/hr®.)

(b). We now consider dz/dt = /2g [R/\/ R+ w] . This equation is also separable,

with /R + zdx = /29 Rdt. By definition of the variable x, the initial condition is
z(0) = 0. Integrating both sides, we obtain z(¢) = [3 (/29 Rt + %Rm)}?/g ~R.
Setting the distance z(7") + R = 240,000, and solving for T, the duration of such a
flight would be T ~ 49 hours.

32(a). Both equations are linear and separable. The initial conditions are v(0) = u cos
A
and w(0) = usin A. The two solutions are v(t) = ucos Ae " and w(t) = — g/r +

+ (usin A + g/r)e .
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(b). Integrating the solutions in part(a), and invoking the initial conditions, the
coordinates are z(t) = “cos A(1 —e"") and

y(t) = —gt/r+ (g+ursin A+ hr?) /1% — (gsz’nA + g/r2>e_”.
r
().

1201
1007
807
604
409

207

o g0 100 180 200 250 300

(d). Let T be the time that it takes the ball to go 350 f# horizontally. Then from above,
e T/5 = (ucos A —70)/ucos A. At the same time, the height of the ball is given by
y(T) = — 16071 + 267 + 125usin A — (800 + bu sin A)[(ucos A —70)/ucos A].
Hence A and u must satisfy the inequality

ucos A—T70

SOth[ oA

] + 267 + 125usin A — (800 + 5u sin A)[(ucos A — 70)/ucos A] > 10.

33(a). Solving equation (i), y'(z) = [(k* — y)/y]l/Q. The positive answer is
chosen, since y is an increasing function of x .

(b). Let y = k?sin’*t. Then dy = 2k’sint costdt. Substituting into the equation in
part(a), we find that

2k%sint costdt _cost

dx sint

Hence 2k2sin’t dt = dx .

(c). Letting 6 = 2t, we further obtain kQSiHZ% df = dx . Integrating both sides of the

equation and noting that ¢t = # = 0 corresponds to the origin, we obtain the solutions
2(0) = k*(0 — sin ) /2 and [from part(b)] y(0) = k*(1 — cos ) /2.

(d). Note that y/x = (1 — cos0)/(0 — sinf). Setting x = 1,y = 2, the solution of
the equation (1 — cos#)/(0 — sinf) = 2is 0 ~ 1.401. Substitution into either of the
expressions yields k£ ~ 2.193.
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Section 2.4

2. Considering the roots of the coefficient of the leading term, the ODE has unique
solutions on intervals not containing 0 or 4. Since 2 € (0,4), the initial value problem
has a unique solution on the interval (0,4) .

3. The function tant is discontinuous at odd multiples of 5 . Since § < 7 < 37” , the
initial value problem has a unique solution on the interval (g , 37”)

5. p(t) = 2t/(4—*)and g(t) = 3t*/(4 —t2). These functions are discontinuous at

x = £2. The initial value problem has a unique solution on the interval ( — 2, 2).

6. The function [nt is defined and continuous on the interval (0, 00). Therefore the
initial value problem has a unique solution on the interval (0, c0).

7. The function f(¢,y) is continuous everywhere on the plane, except along the straight
line y = — 2t/5. The partial derivative 9f /0y = — 7t/(2t + 5y)* has the same
region of continuity.

9. The function f(¢,y) is discontinuous along the coordinate axes, and on the hyperbola
t> —y?> = 1. Furthermore,
of _ +1 o Y In|tyl

Oy  y(1—2+12) T(1-2+42)>

has the same points of discontinuity.

10. f(t,y) is continuous everywhere on the plane. The partial derivative 0 f/Jy is also
continuous everywhere.

12. The function f(¢,y) is discontinuous along the lines t = +kmandy = — 1. The
partial derivative 9 f /Oy = cot(t)/(1 + y)* has the same region of continuity.

14. The equation is separable, with dy/y?> = 2tdt. Integrating both sides, the solution
is given by y(t) = y,/(1 — yot?). Fory, > 0, solutions exist as long as t*> < 1/y,.
For y, < 0, solutions are defined for all t .

15. The equation is separable, with dy/y® = — dt. Integrating both sides and invoking
the initial condition, y(t) = yo/+/2yst + 1. Solutions exist as long as 2y,t +1 > 0,
that is, 2y,t > — 1. If y, > 0, solutions exist fort > — 1/2y,. Ify, = 0, then the
solution y(¢) = 0 exists for all . If y, < 0, solutions exist fort < — 1/2y,.

16. The function f(¢,y) is discontinuous along the straight linest = — landy = 0.
The partial derivative J f /Oy is discontinuous along the same lines. The equation is
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separable, with y dy = t? dt/(1+¢*). Integrating and invoking the initial condition, the
solution is y(t) = [3In|1 + t*| + y] "2 Solutions exist as long as

%ln\1+t3| +y5 >0,

thatis, y2 > — 2In|1 + ¢3|. Forall y, (it can be verified that y, = 0 yields a valid

solution, even though Theorem 2.4.2 does not guarantee one) , solutions exists as long as

|1+ 3| > exp( — 3y2/2). From above, we must have ¢ > — 1. Hence the inequality

may be written as > > exp( — 3y?/2) — 1. It follows that the solutions are valid for
173

[exp( —3y2/2) — 1] <t < 00.

17.
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Based on the direction field, and the differential equation, for y, < 0, the slopes
eventually become negative, and hence solutions tend to — oo. For y, < 0, solutions
increase without bound if ¢, < 0. Otherwise, the slopes eventually become negative, and
solutions tend to zero . Furthermore, y, = 0 is an equilibrium solution. Note that slopes
are zero along the curves y = O and ty = 3.

19.
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For initial conditions (t,, y,) satisfying ty < 3, the respective solutions all tend to zero .
Solutions with initial conditions above or below the hyperbola ty = 3 eventually tend to
+00. Also, y, = 0 is an equilibrium solution.

20.
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Solutions with ¢, < 0 all tend to — co. Solutions with initial conditions (%, y,) to the
right of the parabola ¢t = 1 + y? asymptotically approach the parabola as t -+ oo . Integral
curves with initial conditions above the parabola (and y, > 0) also approach the curve.
The slopes for solutions with initial conditions below the parabola (and y, < 0) are all
negative. These solutions tend to — co.

21. Define y.(t) = 2(t — ¢)**u(t — ¢), in which u(t) is the Heaviside step function.

5(t—¢) )
Note that y.(c) = .(0) = 0 and . (c + (3/2)**) = 1.
(a). Letc =1 — (3/2)"".
(b). Letc =2 — (3/2)*".

c). Observe that y,(2) = 23/2,ypt 23/2f0r0<c<2,andthatyc 2) = 0 for
3 3
¢ >2. Soforany ¢ >0, £y.(2) € [ - 2,2].

26(a). Recalling Eq. (35) in Section 2.1,
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1 / c
y=——1[ wu(s)g(s)ds + ——=
u(t) (#Jale) u(t)
It is evident that y, (t) = ﬁ and v, (t f u(s
(b). By definition, 5 = exp( — [p(t)dt). Hencey/ = — p(t) 15 = — p(t)y-

That is, y{ + p(t)y: =

A
w

() vl = (=) 75 ) u()9(s) ds + (5 ) mBg() = = p(B) + g(0).

Thatis, y, + p(t)y. = g(t).

. 3
30. Since n = 3, setv = y . It follows that % = - 2y 3 ff,i{ and ZZ;’ = — Ly
Substitution into the differential equation yields — % % — ey = — oy?®, which further

results in v’ + 2ev = 20. The latter differential equation is linear, and can be written as

(e2")" = 20. The solution is given by v(t) = 20t e 2 + ce %", Converting back to
the original dependent variable, y = +v~'/2.

31. Since n = 3, set v = y 2. It follows t};at % = =2y 2 and dJ = - L f;tf
The differential equation is written as — % % — (Ccost + T)y = oy*, which upon

further substitution is v’ + 2(I'cost + T')v = 2. This ODE is linear, with integrating
factor u(t) = exp(2[ (Lcost + T)dt) = exp( — 2I'sint + 2T't). The solution is

t
v(t) = 2exp(2Tsint — 2Tt)/ exp( — 2TsinT 4 2T7)dT + cexp( — 2Tsint + 2T't).
0

Converting back to the original dependent variable, y = £v /2

33. The solution of the initial value problem 3/ + 2y, = 0, 3,(0) = 1is y,(¢) = e 2.
Therefore y(17) = 4,(1) = e 2. On the interval (1, 00), the differential equation is
ys + v, = 0, with y,(t) = ce~'. Therefore y(1*) = y,(1) = ce!. Equating the limits
y(17) = y(17), we require that c = e~ . Hence the global solution of the initial value
problem is

e, 0<t<1
et t>1 '

Note the discontinuity of the derivative

—27% 0<t<l1
t) = ’ .
y( ) { _ e—l—t’ t > 1
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Section 2.5

1.

D™ n2040608 1 12141618 2
¥

For y, > 0, the only equilibrium point is y* = 0. f’(0) = a > 0, hence the equilibrium
solution ¢(t) = 0 is unstable.

2.
o
e
L4
b2
ST 1‘
The equilibrium points are y* = —a/bandy* =0. f'( —a/b) < 0, therefore the
equilibrium solution ¢(t) = — a/b is asymptotically stable.
3.
4-
3_
2-
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g} L E= (] o
! 1 1 1 1

RE ¥

The only equilibrium point is y* = 0. f’(0) > 0, hence the equilibrium solution
¢(t) =0

1S unstable.

5.

A
. .

RE ¥

The only equilibrium point is y* = 0. f’(0) < 0, hence the equilibrium solution
¢(t) =0

is asymptotically stable.

6.

-0.24
-0.44
-0.64
-0.84
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The only equilibrium point is y* = 1. Note that f’'(1) = 0, and thaty’ < 0 fory # 1.
As long as y, # 1, the corresponding solution is monotone decreasing. Hence the
equilibrium solution ¢(t) = 1 is semistable.

9.

1.69
1.69
1.49
1.29

0.51
0.64
0.44
0.24

-t08 D 021 028406081 1.21.
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10.

1.5

0.5

A5 05 05 y 1 15
-0.5

-1.51

The equilibrium points are y* = 0,41. f’(y) = 1 — 3y?>. The equilibrium solution
¢(t) = 0 is unstable, and the remaining two are asymptotically stable.

11.
0.8
0.6
044
0.21
U 05 1 15 2 25 73
024 ¥
12.
A4
2_
1 1y
-2
e
£
-7
0
12
14

The equilibrium points are y* = 0,42. f’(y) = 8y — 4y*. The equilibrium solutions
¢(t) = —2and ¢(t) = + 2 are unstable and asymptotically stable, respectively. The
equilibrium solution ¢(t) = 0 is semistable.
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13.

0402 02 04 n.'eyn.'a 112 1.4
The equilibrium points are y* = 0 and 1. f'(y) = 2y — 6y + 4y>. Both equilibrium
solutions are semistable.

15(a). Inverting the Solution (11), Eq. (13) shows ¢ as a function of the population y
and
the carrying capacity K. With y, = K /3,

‘(1/3)[1—(y/K)]‘.

t= — 1ln
a (y/K)[1 = (1/3)]

r

Setting y = 2y,

T= ——In
r

(1/3)[1 = (2/3)] ‘
(2/3)[1 = (1/3)]

Thatis, 7 = %ln4. If r = 0.025 per year, T = 55.45 years.

(b). InEq. (13), set yo/K = aand y/K = (3. As a result, we obtain

1 el g
=5

r
Given a = 0.1, 8 = 0.9 and r = 0.025 per year, T = 175.78 years.

16(a).
r=075 K=B0ER
2417
1.5e+17
Te+17 ]
5e-HI5
0 o417  de+l7  Be+l7 sehgg
¥

page 57



WWV. ZI T e.Ir

CHAPTER 2. ——

17. Consider the change of variable u = In(y/K). Differentiating both sides with
respect

tot,u’ = y’'/y. Substitution into the Gompertz equation yields u’ = — ru, with
solution u = uye". It follows that in(y/K) = In(y,/K)e ™. Thatis,

% = exp [ln(yO/K)e’”} .

(a). Given K = 80.5 x 10°%, y,/K = 0.25 and r = 0.71 per year, y(2) = 57.58 x 10°.

(b). Solving for ¢,

In(y/K)

Setting y(7) = 0.75K, the corresponding time is 7 = 2.21 years.

1 [ln(y/K)]'

t= ——In
r

19(a). The rate of increase of the volume is given by rate of flow in — rate of flow out.
That is, dV /dt = k — aa/2gh . Since the cross section is constant, dV /dt = Adh/dt.
Hence the governing equation is dh/dt = (k — aay/2gh ) / A.

(b). Setting dh/dt = 0, the equilibrium height is h, = 2%} (i)z Furthermore, since

f'(h.) < 0, it follows that the equilibrium height is asymptotically stable.

(c). Based on the answer in part(b), the water level will intrinsically tend to approach h,.
Therefore the height of the tank must be greater than h.; that is, h, < V / A.

22(a). The equilibrium points are at y* = 0 and y* = 1. Since f'(y) = a — 2ay, the
equilibrium solution ¢ = 0 is unstable and the equilibrium solution ¢ = 1 is
asymptotically stable.

(b). The ODE is separable, with [y(1 — y)]'dy = adt. Integrating both sides and
invoking the initial condition, the solution is

_ Yo e(xt
L —yo+yoet

y(t)
It is evident that (independent of y;) tlim y(t) =0 and tlim y(t)=1.

23(a). y(t) = yye .

(b). From part(a), dz/dt = axy,e 7. Separating variables, dz/z = ay,e Pdt.
Integrating both sides, the solution is z(t) = z, exp[ay,/B(1 — e )].

(c). Ast—=o0, y(t)—=0 and z(t) > x,exp(ay,/F). Over along period of time, the
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proportion of carriers vanishes. Therefore the proportion of the population that escapes
the epidemic is the proportion of susceptibles left at that time, z, exp(a y,/3).

25(a). Note that f(x) = 2[(R — R.) —az?],and f'(x) = (R — R.) — 3ax?. Soif
(R — R.) < 0, the only equilibrium point is z* = 0. f’(0) < 0, and hence the solution
o(t) = 0 is asymptotically stable.

(b). If (R — R,) > 0, there are three equilibrium points z* = 0,++/(R — R.)/a .
Now f/(0) > 0, and f'(++/(R — R.)/a ) < 0. Hence the solution ¢ = 0 is unstable,
and the solutions ¢ = £./(R — R.)/a are asymptotically stable.

(c).

407
207

-207
-407
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Section 2.6

l. M(z,y) =2x+3and N(x,y) =2y — 2. Since M, = N, = 0, the equation is
exact. Integrating M with respect to «, while holding y constant, yields ¢ (z,y) =
=22+ 3z + h(y). Now ¢, = h'(y), and equating with N results in the possible
function h(y) = y* — 2y. Hence ¢(z,y) = 2* + 3z + 3> — 2y, and the solution is
defined implicitly as z* + 3z +y*> — 2y = c.

2. M(z,y) =2x + 4y and N (z,y) = 2z — 2y . Note that M, # N, , and hence the
differential equation is not exact.

4. First divide both sides by (2zy + 2). We now have M (z,y) = y and N(z,y) = .
Since M, = N, = 0, the resulting equation is exact. Integrating M with respect to x,
while holding y constant, results in ¢)(x,y) = xy + h(y) . Differentiating with respect
toy, 1, =x+ h'(y). Setting b, = N, we find that h'(y) = 0, and hence h(y) =0
is acceptable. Therefore the solution is defined implicitly as xy = c¢. Note that if

zy + 1 = 0, the equation is trivially satisfied.

6. Write the given equation as (az — by)dx + (bx — cy)dy . Now M (z,y) = ax — by
and N(z,y) = bx — cy. Since M, # N, , the differential equation is not exact.

8. M(z,y) =e"siny+ 3y and N(x,y) = — 3z + e”siny. Note that M, # N, , and
hence the differential equation is not exact.

10. M(z,y) =y/x + 6z and N(z,y) = Inx — 2. Since M, = N, = 1/z, the given
equation is exact. Integrating N with respect to y, while holding = constant, results in
W(z,y) = ylnx — 2y + h(x). Differentiating with respect to z, ¢, = y/x + h'(x).
Setting ), = M, we find that ' (z) = 6x, and hence h(x) = 3x2. Therefore the
solution

is defined implicitly as 32> + ylnxz — 2y = c.

1. M(z,y) =xlny+ xyand N(x,y) = ylnx + zy. Note that M, # N, , and hence
the differential equation is not exact.

13. M(z,y) =2z —yand N(z,y) = 2y — . Since M, = N, = — 1, the equation is
exact. Integrating M with respect to «, while holding y constant, yields ¢ (z,y) =

=22 — 2y + h(y). Now ), = — z + h'(y). Equating , with N results in h'(y) = 2y,
and hence h(y) = y?. Thus ¥(x,y) = ¥* — xy + y*, and the solution is given implicitly
as 2 — xy + y? = c. Invoking the initial condition y(1) = 3, the specific solution is
z? — zy + y* = 7. The explicit form of the solution is y(z) = 3 [x + /28 — 322 } :

Hence the solution is valid as long as 3x? < 28.

16. M(x,y) =ye*¥ +x and N(z,y) = bx e*¥. Note that M, = > + 2xy e*™,
and N, = b eV + 2bxy Y. The given equation is exact, as long as b = 1. Integrating
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N with respect to y, while holding  constant, results in 1(x,y) = €*¥/2 + h(z). Now
differentiating with respect to x, 1, = y e**¥ + h/(x). Setting 1), = M, we find that
h'(z) = x, and hence h(x) = x?/2. Conclude that 1(x,y) = €**¥/2 + x?/2. Hence
the solution is given implicitly as €**Y 4+ x* = c.

17. Integrating 1), = N, while holding = constant, yields

Y(w,y) = [ N(z,y)dy + h(z).

Taking the partial derivative with respect tox, ¢x i 8‘9 N(z,y)dy + h'(x). Now

set 1, = M (x,y) and therefore h/(x) = — [Z N(z,y)dy. Based on the fact
that M, = N, , it follows that (% W (z)] = 0. Hence the expression for 2’ (x) can be

integrated to obtain
:/M(x,y)dfc—/V;N(%y)dy}dw
x

18. Observe that a%[M(:c)] = Z[N(y)]=0.

20. M, =y 'cosy —y?siny and N, = — 2e "(cosz + sinx)/y. Multiplying
both sides by the integrating factor p(x,y) = ye”, the given equation can be written as
(e"siny — 2y sinx)dz + (e"cosy + 2cosx)dy = 0. Let M = uM and N = uN.
Observe that M, = N, , and hence the latter ODE is exact. Integrating N with respect
to i, while holdmg x constant, results in Y(z,y) = e"siny + 2y cosx + h(z). Now
differentiating with respect to x, 1, = e*siny — 2y sinx + h'(z). Setting 1), = M,
we find that A/(z) = 0, and hence h(z) = 0 is feasible. Hence the solution of the given
equation is defined implicitly by e*siny + 2y cosx = (3.

21. M, =1 and N, = 2. Multiply both sides by the integrating factor u(x,y) = y to
obtain y2d93 + (2zy — y?e¥)dy = 0. Let M = yM and N = yN. Itis easy to see that
M,=N,, and hence the latter ODE is exact. Integrating M with respect to x yields
Y(z,y) = xy? + h(y). Equating v, with N results in h'(y) = — y?eY, and hence
h(y) = — e¥(y* — 2y + 2). Thus ¥(z,y) = zy* — ¥ (y* — 2y + 2), and the solution
is defined implicitly by zy? — e¥(y? — 2y +2) = c.

24. The equation M + pNy' = 0 has an integrating factor if (uM) = (uN),, thatis,
w,M — ., N = uN, — uM, . Suppose that N, — M, = R (M — yN), in which R is
some function depending only on the quantity z = xy. It follows that the modified form
of the equation is exact, if u,M — pu,N = uR (zM —yN) =R (pzM — pyN). This
relation is satisfied if pu, = (ux)R and p, = (py)R. Now consider 4 = u(xy). Then
the partial derivatives are p, = p'y and pu, = p/x. Note that 4/ = dp/dz. Thus g must
satisfy p/(z) = R(z). The latter equation is separable, with dy = R(z)dz, and

= [R(z)dz. Therefore, given R = R(xy), it is possible to determine p = p(xy)
which becomes an integrating factor of the differential equation.
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28. The equation is not exact, since N, — M, = 2y — 1. However, (N, — M,)/M =

= (2y — 1)/y is a function of y alone. Hence there exists i = u(y), which is a solution
of the differential equation i/ = (2 — 1/y)u. The latter equation is separable, with
du/p =2 —1/y. One solution is u(y) = exp(2y — Iny) = €% /y. Now rewrite the
given ODE as e*dz + (2ze* — 1/y)dy = 0. This equation is exact, and it is easy to
see that (z,y) = xe? — Iny. Therefore the solution of the given equation is defined
implicitly by ze? —Iny =c.

30. The given equation is not exact, since N, — M, = 8z3/y> + 6/y*. But note that
(N, — M,)/M = 2/y is a function of y alone, and hence there is an integrating factor
p = p(y). Solving the equation p' = (2/y)u, an integrating factor is u(y) = y*>. Now
rewrite the differential equation as (42° + 3y)dx + (3z + 4y®)dy = 0. By inspection,
Y(z,y) = z* + 3zy + y*, and the solution of the given equation is defined implicitly by
2+ 3zy+yt=c.

32. Multiplying both sides of the ODE by u = [zy(2z + y)] ', the given equation is
equivalent to [(3z + y)/(22? + zy)]dz + [(z + y)/(2zy + y?)]dy = 0. Rewrite
the differential equation as

2—!— 2 dx + 1+ ! d 0
— x — =0.
r 2x4vy y 2x+4y Y

It is easy to see that M, = N,. Integrating M with respect to x, while keeping y
constant, results in ¢(x, y) = 2in|z| + In|2z + y| + h(y) . Now taking the partial
derivative with respect to i, 1, = (2o + %)~ + h'(y). Setting v», = N, we find that
h'(y) = 1/y, and hence h(y) = In|y|. Therefore

W(z,y) = 2n|x| + In]2x + y| + Inly|,

and the solution of the given equation is defined implicitly by 23y + 2%y* = c.
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Section 2.7

2(a). The Euler formula is v, = 9, + h(2y, — 1) = (1 +2h)y, — h.
(d). The differential equation is /inear, with solution y(t) = (1 + ') /2.
4(a). The Euler formula is y,., = (1 — 2h)y, + 3h cost, .

(d). The exact solution is y(t) = (6cost + 3sint —6e~2)/5.

5.
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All solutions seem to converge to ¢(t) = 25/9.
6.
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Solutions with positive initial conditions seem to converge to a specific function. On the
other hand, solutions with negative coefficients decrease without bound. ¢(¢) = 0 is an
equilibrium solution.

7.
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the other hand, solutions to the 'right’ of the curve seem to converge to zero. Also, ¢(t)
;
;
/‘
-

Solutions with initial conditions to the 'eft’ of the curve t = 0.1y? seem to diverge. On
is an equilibrium solution.

All solutions seem to converge to a specific function.

All solutions seem to diverge.

10.
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Solutions with positive initial conditions increase without bound. Solutions with
negative
initial conditions decrease without bound. Note that ¢(¢) = 0 is an equilibrium solution.

11. The Euler formulais y,,; = v, — 3h\/y, + 5h. The initial value is y, = 2.
12. The iteration formula is y,.; = (1 + 3h)y, — ht,y>. (to, ) = (0,0.5).
14. The iteration formula is 4, = (1 — ht, )y, + hy? /10. (to,5,) = (0,1).

17. The Euler formula is

h(yZ + 2t,y,)

n - 7l+
y+1 y 3+ti
The initial point is (¢y, yo) = (1,2).
18(a). See Problem 8.
19(a).
_../' - /'_.
e RN AR RN YRE,
K P S A S R . I N N AP e W
lx\—-/;xff:,;-fffff/—-\\k
]»‘\\\-—*fffyﬁ) f'fff/—\.\\}
b s e A L
L A T e T I
[H‘H‘ttf;z::kﬁﬂ%
HW e
'11@X\QH—#ﬂ—H \ﬂi\l
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(b). The iteration formula is v,,; = vy, + hy> — ht>. The critical value of @ appears
to be near oy ~ 0.6815. For y, > «, the iterations diverge.
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20(a). The ODE is linear, with general solution y(t) =t + ce’. Invoking the specified
initial condition, y(t,) = y,, we have y, = t, + ce®. Hence ¢ = (y, — t;)e . Thus
the solution is given by ¢(¢) = (yo — to)e' " +¢t.

(b). The Euler formulais y,.;, = (1+h)y, +h —ht,. Nowset k =n+1.

(c). Wehavey, = (1+h)yo+h —hty=(1+ h)y,+ (t, — ty) — ht,. Rearranging
the terms, 1, = (1 + h)(yo — to) + t;. Now suppose that 3, = (1 4+ h)"(yo — to) + s,
forsome k£ > 1. Theny,., = (1 + h)y, + h — ht,. Substituting for y,, we find that
Yr = (L+R)" (o —to)+ L+ R )ty +h—ht, = (L+ 1) (yo—to) +ti + 1.
Noting that t,,, = ¢, + k, the result is verified.

(d). Substituting h = (t — t;)/n, with t, = ¢,

t—to\"
yn:(1+ no) (yo_to)+t

Taking the limit of both sides, as n— oo, and using the fact that lim (1 + a/n)" = €°,

n—oo
pointwise convergence is proved.

21. The exact solution is ¢(t) = e’. The Euler formula is y,.;, = (1 + h)y, . Itis easy
to see that y, = (1 + h)"y, = (L + h)". Givent > 0, set h = t/n. Taking the limit,

we find that lim y, = lim (1 +¢/n)" = €.

23. The exact solution is ¢(t) = t/2 + e*. The Euler formula is y,,; = (1 + 2h)y, +
+h/2—ht,. Sincey, =1,y = (1 +2h)+h/2=(1+2h)+t,/2. Ttiseasy to

show by mathematical induction, that y, = (1 4+ 2h)" +¢,/2. Fort > 0,seth =t/n
and thus ¢, = ¢. Taking the limit, we find that nhrglo Yo = nhngo [(1+2t/n)"+t/2] =

= e?! +t/2. Hence pointwise convergence is proved.
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Section 2.8

2. Letz=y—3and 7 =t+ 1. It follows that dz/dT = (dz/dt)(dt/dT) = dz/dt .
Furthermore, dz/dt = dy/dt = 1 — y*. Hence dz/dT = 1 — (z + 3)®. The new initial
condition is z(7 = 0) = 0.

3. The approximating functions are defined recursively by ¢,,,(t) = fo 1]ds.
Setting ¢o(t) = 0, ¢,(t) = 2t. Continuing, ¢,(t) = 2t> + 2t , ¢5(t) = 4t3 —|— 2t2 + 2t,
¢(t) = 2t* + 3¢5+ 2t 4+ 2t ---. Given convergence, set
P(t) )+ Z Gra(t) — i(t)]
k=1
- k:_

Comparing coefficients, a;/3! =4/3,a,/4! =2/3,---. It follows that a; = 8,
a, = 16,
and so on. We find that in general, that a, = 2". Hence

k=1
=2 -1
errar

S0
] 40
251
207 304
151 a0
104

104
5_ -
0" 02040608 1 12141618 2 0° 02040608 1 12141618 2

t

t
5. The approximating functions are defined recursively by

o) = [ 1= 6u(s)/2 + slds.

Setting ¢ (t) = 0, ¢,(t) = t*/2. Continuing, ¢ (t) = t2/2 — t3/12,¢5(t) = t?/2 —
—3/12 +t1/96, ¢u(t) = t2/2 — t3/12 + t1/96 — t7/960, - -- . Given convergence, set
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$(t) = i(t) + Y _[drn(t) — i(t)]
=1
2 - Qg )
—t/2+§:kﬁ.
=3
Comparing coefficients, a;/3! = —1/12,a,/4' =1/96, a;/5! = —1/960, ---. We
find thatay = — 1/2,a, =1/4,a; = —1/8,---. In general, a;, = 27*"'. Hence
) 2—k+2 1
b) =3 (1)
=2
=de P+ 2t — 4,
errar
21 ]
1.8 0'5';
1.6 1
o D.AE
1.24 / 0 3_'
14 1
0.8 0.2
0.5 e ]
0.4 0.1
0.2 ]
070204 06 08 1t 12141618 2 U n2040808 1t 12141618 2

6. The approximating functions are defined recursively by

o) = [ 6,(s) + 1 — s]ds.

Setting ¢o(t) = 0, ¢i(t) =t — 2/2, ¢(t) = t — £3/6, ¢s(t) =t — t1/24, ¢,(t) =
=t— t5/120, ---. Given convergence, set

6(t) = ou(t) + i[@,ﬂ (t) - 64(2)

=t—12/2+ [t?/2 - £3/6] + [t3/6 — t*/24] + -
=t+0+0+---.

Note that the terms can be rearranged, as long as the series converges uniformly.
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Errar

2_
1.6 183
1.4 164
1.24 1.4
1 1.24
061 14
os{ . 0%
041 0.4
0.24 0.24

002 040608 1t 12141618 2 002040608 1t 12141618 2

8(a). The approximating functions are defined recursively by

t
Do (t) = / [s2q§n(s) — s]ds.
0
Set ¢ (t) = 0. The iterates are given by ¢,(t) = —t2/2, ¢,(t) = —t*/2 —1°/10,
Bs(t) = —t2/2 —17/10 — t3/80, ¢ (t) = — /2 — t5/10 — t3/80 — t'1/880 ,-- - .

Upon inspection, it becomes apparent that
1t 6 ()"

2]t
ou(t) = — 1t [2+2,5+2.5.8+ +2-5-8~~[2+3(n—1)]

_ tQi (t?))k*l
2425 82180k 1)

t
02040608 1 121416 18 2

i

-8

-10
The iterates appear to be converging.
9(a). The approximating functions are defined recursively by
o) = [ 1+ 62(9)ds.

Set ¢ (t) = 0. The first three iterates are given by ¢, () = t3/3, ¢,(t) = t3/3 +17/63,
B3(t) = t3/3 +7/63 + 2t11 /2079 + 119 /59535 .
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0" 02040608 1 12141618 2
t
The iterates appear to be converging.

10(a). The approximating functions are defined recursively by
t
buat) = [ [1=Gh(o)]ds.
0

Set ¢y (t) = 0. The first three iterates are given by ¢, (t) = t, ¢, (t) =t — t*/4,
By(t) =t —t*/4 + 3t7/28 — 3t /160 + ¢13/833.

(b).

U1 020406 08 g 1214 1618 2

-1

2]
The approximations appear to be diverging.

12(a). The approximating functions are defined recursively by

6
Note that 1/(2y —2) = — 1 > y" 4+ O(y"). For computational purposes, replace the
k=0

above iteration formula by
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b= —3 [

Set ¢y(t) = 0. The first four approximations are given by ¢, (t) = —t — > —t3/2,
G(t) = —t—t2/2+t3/6+t1/4 —t5/5 —15/24 + .-,

Bs(t) = —t—1t2/2+14/12 — 3t7/20 + 416 /45 + -,

Gu(t) = —t—t2/2+t1/8 —Tt°/60 +5/15 + ---

(b).

02 04 tog 08 1

The approximations appear to be converging to the exact solution,

G(t) =1 — /142t +22+ 13,

13. Note that ¢,,(0) =0and ¢,(1) =1,Vn >1. Leta € (0,1). Then ¢,(a) = a”.
Clearly, lim a" = 0. Hence the assertion is true.

n—oo

14(a). ¢,(0)=0,Yn>1. Leta € (0,1]. Then ¢,(a) = 2nae " = 2na/e" .
Using I'Hospital's rule, lim 2az/e®" = lim 1/ze% = 0. Hence lim ¢,(a)=0.

Z—00

b). [l 2nze " de = — e‘”""2|; =1 — e ". Therefore,

lim 1¢n(:c)dx7é 1lim ¢n(x)dx.
0

n—oo 0 n—oo

15. Let ¢ be fixed, such that (¢, y,), (t,y,) € D. Without loss of generality, assume that
Yy, < ¥y, . Since f is differentiable with respect to y, the mean value theorem asserts that

3¢ € (yi,y2) such that f(¢,y,) — f(t,y.) = fy(t,€)(ys — y2). Taking the absolute
value of both sides, | (¢, 1) — f(t,v2)| = |fy(t,€)||y: — vo|. Since, by assumption,
df /0y is continuous in D, f, attains a maximum on any closed and bounded subset of D
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Hence ‘f(tayl) —flt, )| < K|y — ?/2|-

16. For a sufficiently small interval of t, ¢, ,(t),d,(t) € D. Sl nce f satisfies a
Lipschitz condition, |f(t,®,(t)) — f(t, .1 ()| < K |p.(t) — ¢,1(t)|. Here
K = maz|f,|.

17(a). ¢(t) = [ f(s,0)ds. Hence |¢,(t)] < [ f(s,0)|ds < [\ Mds = M]t|, in
which M is the maximum value of | f(¢,y)| on D.

(b). By definition, ¢,(t) — = [1f( — f(s,0)]ds. Taking the absolute
value of both sides, |¢,(t) | < f't‘ [ (s)) — f(s,0)]|ds. Based on the
results in Problems 16 and 17 ]qbQ( & (1) | < me|q§1 — O|ds < KM [)|s|ds.

Evaluating the last integral, we obtain |¢2(t) o) <M K It|*/2.

(c). Suppose that

MKt
il

|$i(t) — i (t)| <

for some 7 > 1. By definition, ¢,,,(t) — = [T1( — f(s,¢i1(s))]ds.
It follows that
1t

P (t) — ¢i(t)] < ; |f(s,0i(s)) — f(s,¢i-1(s))|ds

It]
< K|¢i(s) — ¢i-1(s)|ds

0

[t] i—1
o [ g ME S
- ) il
_ ME" MK
G+ T G+

Hence, by mathematical induction, the assertion is true.
18(a). Use the triangle inequality, |a + b| < |a| + |b].

(b). For|t| < h, |p.(t)] < Mh,and |¢,(t) — ¢, 1(t)| < MK™'h"/(n!). Hence

n Kz—lhz
9u(D] < MY =
i=1 :

M (KD)
_E;
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(c). The sequence of partial sums in (b) converges to 3% (e®"

test, the sums in (a) also converge. Furthermore, the sequence |9, (t)| is bounded, and
hence has a convergent subsequence. Finally, since individual terms of the series must
tend to zero, |¢,(t) — ¢, 1 (t)| =0, and it follows that the sequence |¢,(t)| is convergent.

— 1). By the comparison

19(a). Let ¢(t) fO ))ds and w = [1f( . Then by linearity of
the integral, ¢(t) fo[f f(s,w( ))]ds.

(b). Tt follows that [¢(t) — $(t)] < [!1f(s. 6(s)) — f(s,%(s))|ds

(c). We know that f satisfies a Lipschitz condition,
|f(t>y1) - f(tay2)| < Klyl _y2|’
based on |0f/0y| < K in D. Therefore,
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Section 2.9

1. Writing the equation foreachn > 0,4y, = —0.9y,, .= —09y,,y3 = — 0.9y,
and so on, it is apparent that y, = ( — 0.9)" y, . The terms constitute an alternating
series, which converge to zero, regardless of ¥, .

3. Write the equation for eachn > 0, y, = \/§y0 s Y = \/4/2 Y1, ys = /D)3 Yy,
Upon substitution, we find that y, = /(4 -3)/2 y1, y3 = \/(5 4-3)/(3-2) yo, -
It can be proved by mathematical induction, that

1 [(n+2)
yn_ﬁ ol Yo
1
:ﬁ\/(n+1)(n+2)y0.

This sequence is divergent, except for y, = 0.

4. Writing the equation foreachn > 0, y1 = — Yy, Yo = Y1, Ys = — Yo, Ys = Y3,
and so on, it can be shown that

_ Yo , forn=4korn=4k—1
U= =y , forn=4k—2orn=4k—3

The sequence is convergent only for y, = 0.

6. Writing the equation for eachn > 0,

y1 = 0.5y, +6
Yo = 0.59; +6 = 0.5(0.5y, + 6) + 6 = (0.5)%y, 4+ 6 + (0.5)6
ys = 0.59, 4+ 6 = 0.5(0.5y, + 6) + 6 = (0.5)%yy + 6[1 4 (0.5) + (0.5)?]

g = (05)"90 + 12[1 — (0.5)"

which can be verified by mathematical induction. The sequence is convergent for all y, ,
and in fact y, —»12.

7. Let y, be the balance at the end of the n-th day. Then y,,, = (1 + r/356)y, . The
solution of this difference equation is y, = (1 4 r/365)" y, , in which y, is the initial
balance. At the end of one year, the balance is y;; = (1 + r/365)” y,. Given that

r = .07, yss = (1 +7/365)*" 35 = 1.0725 3, . Hence the effective annual yield is
(1.0725 90 — yo) /Yo = 7.25%.

8. Let y, be the balance at the end of the n-th month. Then y,.; = (1 +7/12)y, +25.
As in the previous solutions, we have
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y —p"[y 25 } n 25

n 0 1 —p 1 —p s
in which p = (1 + r/12). Here r is the annual interest rate, given as 8 %. Therefore
ys = (1.0066)* | 1000 + %] — U225 _ 9 983.63 dollars.

r

9. Let y, be the balance due at the end of the n-th month. The appropriate difference
equation is y,., = (1 +r/12)y, — P. Here r is the annual interest rate and P is the
monthly payment. The solution, in terms of the amount borrowed, is given by

P
1—p°

P
y":pn[yo—i_l ]
—p

in which p = (1 4+ r/12) and y, = 8,000 . To figure out the monthly payment, P, we
require that ¢33 = 0. That s,

P ] P

P36 [?JU + 1
—p

pr— 1 — p .
After the specified amounts are substituted, we find the P = $258.14.

11. Let y, be the balance due at the end of the n-th month. The appropriate difference

equation is y,,; = (1 +r/12)y, — P, in which r = .09 and P is the monthly payment.
The initial value of the mortgage is y, = 100,000 dollars. Then the balance due at the
end of the n-th month is

P}_P

where p = (1 +7/12). In terms of the specified values,

S 12P]  12P
y, = (0.0075)"10° — —=— | 4+ =

r r

Setting n = 30(12) = 360, and ys4 = 0, we find that P = 804.62 dollars. For the
monthly payment corresponding to a 20 year mortgage, set n = 240 and 3,y = 0.

12. Let y, be the balance due at the end of the n-t2 month, with y, the initial value of the
mortgage. The appropriate difference equation is y,.;, = (1 +r/12) y, — P, in which

r = 0.1 and P = 900 dollars is the maximum monthly payment. Given that the life of
the mortgage is 20 years, we require that 1,,, = 0. The balance due at the end of the n-
th month is

T P

In terms of the specified values for the parameters, the solution of
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240 12(1000) 12(1000)
(.00833)" " |y — ———— | = — ——
0.1 0.1
is yo = 103,624.62 dollars.
15.
p=25 p=2.8
° 073
L ol .
0.621 oooooooooooooooooooooooo 0.664 ° ° . °
0.6 o 0643 . o e c®a%eP00000R0000
1 062y _°
058 051
0.561 0] °
0.541 0.56+
0543
0521 0.5
054 : : : : , 0.54 : : : : ,
5 10 15 20 25 3D § 10 15 20 25 30
n n
p=3.2 p=3.4
0.5 g @ o 0 0 0 0o ® o ® 5 ® g ® g 0 0 O O O O O
o
Lo ® 0.8
074 °°
¢ g o
067 * e 077
0.5 R 0.6
0.4 s
0.31 e oo eCoto e oo
§ 10 15 20 253 & 1 15 2 25 3
n n
16. For example, take p = 3.5 and uy = 1.1:
ub=1.1
-2 -1 . i 2
_5_
_‘ll]_
_]5_
_2']_
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19(a). 6, = (pr — p1)/(ps — ps) = (3.449 — 3)/(3.544 — 3.449) = 4.7263 .

(b). % diff = 2 x 100 = L2 AT 5 100 ~1.22 % .

(d). A period 16 solutions appears near p =~ 3.565.
p=3.565
1 -

o o % o e % o e ® o
0.8

064
Y ] o ] o o ]

0.4+ o o o

0.21

Uso &0 70 , &0 90 100

(e). Note that (p,,1 — p.) = 6, (p, — pu_1). With the assumption that 6, = 8, we have
(Pns1 — Pu) = 6 (pn — pu_1), which is of the form y,,, = ay,,n > 3. It follows that
(pr — pk_l) 6% "(pg, — py) fork > 4. Then

Pr = Pt (2= p) (P = p2) + (pu = p) -+ (P = pi1)
=pit+(p—p)+(ps—p)[1+6"+67 4+ 67

1_54 n
= p1+ (pa— p1) + (3 — p2) 161 |

Hence lim p, = py + (ps — ps) [6%1] Substitution of the appropriate values yields
n—oo

lim p, = 3.5699

n—oo
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Miscellaneous Problems
1. Linear [y=c/a®+23/5].
2. Homogeneous [arctan(y/z) — In\/z2 + 42 = ¢ ].
3. Exact (2?2 + 2y —3y—y>=0].
4. Linear in z(y) [z =ceV+yeY].
5. Exact [y + 2y’ +x=c].
6. Linear [y=az'(1—e"")].
7. Letu = 2? (22 +1y2+1=ce’].
8. Linear [y = (4+cos2—cosz)/z?].
9. Exact [2?y+ 2 +9y° =c].
10. p = p(z) [y /2 +y/a? =c].
11. Exact [23/3 + 2y +e¥ =c].
12. Linear [y=ce " +e "In(l+e")].
13. Homogeneous [2\/y/x —In|z|=c].
14. Exact/Homogeneous [ z? + 2zy + 2y* = 34].
15. Separable [y =c/cosh?(x/2)].
16. Homogeneous | (2/\/§) arctan [(Zy - x)/\/gx} —In|z| = c].
17. Linear [y = ce’ — e ].
18. Linear/Homogeneous [y =cz 2 —x].
19. p = p(z) [3y — 22y — 10z = 0].
20. Separable [e" +e ¥ =c].
21. Homogeneous [e ¥/* +in|z| = c].
22. Separable [y + 3y — 2% + 3z = 2].
23. Bernoulli [1/y= —z[x2e* dx + cx].
24. Separable [ sin*z siny = c].
25. Exact [ 22y + arctan(y/x) = c].
26. p = p(x) [ 22 + 22%y — y? = c].
27. u= pu(z) [ sinx cos2y — § sin*z = c].
28. Exact  [2zy+azy® — 2P =c].
29. Homogeneous [arcsin(y/x) —In|z| = c].
30. Linearinz(y) [zy® —Inly| =0].
31. Separable [z +in|z|+z +y—2Inlyl =c].
32. p=p(y) [2%y® + oy’ = —4].
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Chapter Three
Section 3.1

1. Let y = €', sothaty’ = re" and y” = re". Direct substitution into the differential
equation yields (1% + 2r — 3)e" = 0. Canceling the exponential, the characteristic
equation is 72 + 2r — 3 = 0. The roots of the equation are 7 = — 3,1. Hence the
general solution is y = c,e! + c,e 3.

2. Let y = €. Substitution of the assumed solution results in the characteristic equation
72 4+ 3r +2 = 0. The roots of the equation are 7 = — 2, — 1. Hence the general
solution is y = c;e™ + c,e 2.

4. Substitution of the assumed solution y = e"* results in the characteristic equation
272 — 3r +1 = 0. The roots of the equation are 7 = 1/2,1. Hence the general
solution is y = ¢,e/2 + c,e.

6. The characteristic equation is 47> — 9 = 0, with roots r = £3/2. Therefore the
general solution is y = ¢;e 32 4 ¢,e%/2.

8. The characteristic equation is 7> — 27 — 2 = 0, with roots r = 1i\/§ . Hence the
general solution is y = clexp<1 — \/§)t + cgexp<1 + \/§> t.

9. Substitution of the assumed solution y = €' results in the characteristic equation

72 + 1 — 2 = 0. The roots of the equation are 7 = — 2,1. Hence the general
solution is y = c;e 2" + cyet. Its derivative is y’' = — 2c,e™% + c,e!. Based on the
first condition, y(0) = 1, we require that ¢, + ¢, = 1. In order to satisfy y'(0) =1,
we find that — 2¢; 4+ ¢; = 1. Solving for the constants, ¢; = 0 and ¢; = 1. Hence the
specific solution is y(t) = €.

11. Substitution of the assumed solution y = e’* results in the characteristic equation
6r> — 5r + 1 = 0. The roots of the equation are r = 1/3,1/2. Hence the general
solution is y = c,e'/? + c,e!/?. Its derivative is 3’ = c,e/3/3 + c,e!/? /2. Based

on the first condition, y(0) = 1, we require that ¢; + ¢; = 4. In order to satisfy the
condition y’(0) = 1, we find that ¢;/3 + ¢;/2 = 0. Solving for the constants, ¢; = 12

and ¢, = — 8. Hence the specific solution is y(t) = 12e'/? — 8 ¢!/2.

12. The characteristic equation is 72 + 3r = 0, with roots r = — 3, 0. Therefore the
general solution is y = ¢; + c,e ¥, with derivative y’ = — 3 c,e 3. In order to
satisfy the initial conditions, we find that ¢; + ¢, = —2,and — 3¢, = 3. Hence the
specific solution is y(t) = — 1 — e~ .

13. The characteristic equation is 7> + 5r + 3 = 0, with roots
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5 13

= — —+—
T12 9 9

The general solution is y = clexp( — 5=/ 13) t/2 + c2e:z:p< — 5+ 4/ 13) t/2, with
derivative
—5—+13 —54++4/13
y' = — clea:p< —5—1/ 13)t/2 + % cgexp< — 5+ 13>t/2.

In order to satisfy the initial conditions, we require that ¢; + ¢, = 1, and
_5_2\/E c+ _5+2‘/1—3 ¢, = 0. Solving for the coefficients, ¢, = (1 —5/4/13 ) /2 and

e, = (1+5/v/13) /2.

1.8
1.6
1.44
1.29

0.81
0.6
0.4
0.2

14. The characteristic equation is 2r® + r — 4 = 0, with roots

1. V33

o Voo
"2 171

The general solution is y = clewp( —1— 33) t/4+ cgexp( -1+ 33) t/4, with
derivative
—1—+/33 —14+/33
y' = — 1 clexp( e Y/ 33)t/4+ % cgexp< -1+ \/33)1&/4.

In order to satisfy the initial conditions, we require that ¢; + ¢; = 0, and
7174\/§ a+ 71+4\/§ ¢, = 1. Solving for the coefficients, ¢, = — 2/4/33 and
¢, = 2/4/33 . The specific solution is

y(t) = — 2[6:13‘]?( —1- \/ﬁ)t/él — e:z:p( -1+ \/ﬁ)lﬁ/@/\/ﬁ
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16. The characteristic equation is 47> — 1 = 0, with roots 7 = 4-1/2 . Therefore the
general solution is 3 = c,e /2 + ¢,e!/?. Since the initial conditions are specified at

t = — 2, is more convenient to write y = d,e~2/2 4 d,e(1+2)/2, The derivative
is givenby y' = — [die=("2/2] /2 + [dye™+?/2] /2. In order to satisfy the initial
conditions, we find that d, + d; = 1,and —d,/2+ d,/2 = — 1. Solving for the
coefficients, d, = 3/2,and d, = — 1/2. The specific solution is
3 1
_° —(t+2)/2 _ ~ (t+2)/2
y(t) 5¢ 5¢
_ 3 i € up
=3¢ ¢
14
124
104
8_
E_
_d.
2_
2 53 2 ? i 5 6
44
F
I
10
12
141

18. An algebraic equation with roots — 2 and — 1/2is 2r* + 57 + 2 = 0. This is the
characteristic equation for the ODE 2y” + 5y’ +2y =0.

20. The characteristic equation is 272 — 3r + 1 = 0, with roots r = 1 /2, 1. Therefore
the general solution is y = ¢,e”/? + c,e!, with derivative 3’ = c,e/?/2 + c,e!. In

order to satisfy the initial conditions, we require ¢; + ¢; = 2 and ¢;/2 + ¢, = 1/2.
Solving for the coefficients, c; = 3, and ¢, = — 1. The specific solution is

y(t) = 3e'/? — e'. To find the stationary point, sety’ = 3e'/?/2 — et = 0. There is

a unique solution, with ¢, = In(9/4). The maximum value is then y(t;) = 9/4. To find
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t/2

the x-intercept, solve the equation 3e'/? — e = 0. The solution is readily found to be

ty = In9 ~ 2.1972.

22. The characteristic equation is 472 — 1 = 0, with roots 7 = +1/2. Hence the
general solution is y = cie /2 + c,e!/?, with derivative y’ = — cie t/2/2 + cet/?)2.
Invoking the initial conditions, we require that ¢; +c¢; =2 and — ¢, + ¢, = 3.

The specific solution is y(t) = (1 — B)e /2 + (1 + 3)e'/?. Based on the form of the
solution, it is evident that as t + o0, y(t)—=0 aslongas f = — 1.

23. The characteristic equation is r* — (2a — 1) + a(a — 1) = 0. Examining the
coefficients, the roots are » = o, & — 1. Hence the general solution of the differential
equation is y(t) = c;e® 4 c,e(* V!, Assuming o € R, all solutions will tend to zero
as long as a < 0. On the other hand, all solutions will become unbounded as long as
a—1>0,thatis,a > 1.

25. y(t) =2€'?/5+3e72/5.

2.44
229

2_
1.5
1.6
1.44
1.24

1_
0.5
0.6
0.47
0.24

D 02040608 1 1.2 1.'4t1.'5 T8 2 22242628 3
The minimum occurs at (¢, ,1,) = (0.7167,0.7155).

26(a). The characteristic roots are » = — 3, — 2. The solution of the initial value
problem is y(t) = (6 + B)e > — (4 + B)e .

3(4+ﬂ)} _ 46+9)°
2645) |* 0 T s’

(b). The maximum point has coordinates ¢, = ln[

(c). yoz%24,aslongasﬁz6+6\/§.

d). limt, =In3. I = 00.
(@) fimto=ing. Jim = oo

29. Setv =y’ and v’ = y”. Substitution into the ODE results in the first order equation
tv' + v = 1. The equation is linear, and can be written as (tv)’ = 1. Hence the general
solutionis v =1+¢,/t. Hencey’ =1+ ¢, /t,and y =t + cilnt + ¢, .

31. Settingv =y’ and v’ = ", the transformed equation is 2t>v’ 4+ v = 2tv. This
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is a Bernoulli equation, with n = 3. Let w = v~2. Substitution of the new dependent
variable yields — t?w’ 4+ 1 = 2tw, or t>w’ + 2tw = = 1. Integrating, we find that
w= (t+c,)/t?. Hence v = &t/\/t + c,, thatis,y’ = +t/\/t + c,. Integrating one
more time results in y(t) = +2(¢ — 2¢,)\/t + ¢, +¢;. (Notethat v =0isalsoa
solution of the transformed equation).

32. Setting v =y’ and v’ = y”, the transformed equation is v’ + v = e~'. This ODE
is linear, with integrating factor u(t) = e'. Hence v =y’ = (t + ¢,)e"". Integrating,
we obtain y(t) = — (t+c)e '+ ¢, .

33. Setv =y’ and v’ = y”. The resulting equation is t>v’ = v?. This equation is
separable, with solution v =y’ = t/(1 + ¢,t). Integrating, the general solution is

y(t) =t/c; — ¢ n|l + et| + ¢y,

aslong as ¢; # 0. For ¢, = 0, the solution is y(¢) = t?/2 + ¢, . Note that v = 0 is
also a solution of the transformed equation.

35. Lety’ =wvand y” = vdv/dy. Then vdv/dy + y = 0 is the transformed equation
for v = v(y) . This equation is separable, with vdv = — ydy. The solution is given by
v> = — 9% + ¢,. Substituting for v, we find that y’ = ++/¢; — y2. This equation is
also

separable, with solution arcsin(y/ \/c_l) =+t+c,or y(t) =disin(t + d,).

36. Lety’ = vand y” = vdv/dy. It follows that vdv/dy + yv® = 0 is the differential
equation for v = v(y) . This equation is separable, with v dv = — ydy. The solution
is given by v = [y2/2 + ;] . Substituting for v, we find that y’ = [y2/2 + ¢,]"'. This
equation is also separable, with (y?/2 + ¢,)dy = dt. The solution is defined implicitly
by ¥*/6+cy+c, =t.

38. Settingy’ = vand y” = vdv/dy, the transformed equation is yvdv/dy — v* = 0.
This equation is separable, with v=> dv = dy/y . The solution is v(y) = [c; — In|y|] "
Substituting for v, we obtain a separable equation, (¢, — In|y|)dy = dz . The solution is
given implicitly by ¢,y — yln|y| + ¢ =t.

39. Lety’ = vand y” = vdv/dy . It follows that vdv/dy + v* = 2e™¥ is the equation
for v = v(y) . Inspection of the left hand side suggests a substitution w = v?. The
resulting

equation is dw/dy + 2w = 4e~ Y. This equation is linear, with integrating factor
p=e?.

We obtain d(e? w)/dy = 4 ¥, which upon integration yields w(y) = 4e™ + ce™%.
Converting back to the original dependent variable, y’ = +e Y\/4¢e¥ + ¢, . Separating
variables, e¥(4e¥ + cl)*l/2dy = +dt. Integration yields y/4e¥+ ¢, = +2t+c,.

41. Setting y’ = vand y” = vdv/dy, the transformed equation is vdv/dy — 3y = 0.
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This equation is separable, with vdv = 3y*dy . The solutionisy’ = v = /2y3 + ¢, .
The positive root is chosen based on the initial conditions. Furthermore, whent¢ = 0,
y =2,and y' = v = 4. The initial conditions require that ¢, = 0. It follows that

y' = /2y? . Separating variables and integrating, 1/ \/_ = — t/\/§ + ¢, . Hence
the solution is y(¢) = 2/(1 —¢)*.

42. Settingv =y’ and v’ = y”, the transformed equation is (1 + t?)v’ + 2tv =
= — 3t~2. Rewrite the equation as v’ + 2tv/(1 +t*) = — 3t72/(1 +t*). This
equation is /inear, with integrating factor u = 1 4 t>. Hence we have

[(1+)0] = -3t

Integrating both sides, v = 3t7!/(1 + t?) + ¢, /(1 + t?). Invoking the initial condition
v(l) = — 1, we require that ¢; = — 5. Hence y’ = (3 — 5t)/(t +t3). Integrating,
we obtain y(t) = 3In[t?/(1 + t*)] — 5arctan(t) + ¢, . Based on the initial condition
y(1) = 2, we find that ¢, = 3in2 + 27 + 2.
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Section 3.2
1.
W(e% 73t/2) _ o2t e—3t/2 -~ zet/Q
; 92t 331/ 27
3.
—2 te*Qt
Wie2t te2) = | © -
(e™te™) =| ) (1—2t)e%
5.
teint elcost
W (et sint . oteost) — e'sin — _ 2
(6 simnt,ecos ) et(sint-l-COSt) et(cost—sint) ‘

W(00829 ,1+ cos 29)

c0s0 1+ cos?260
—2sinfcos —2sin20

o

7. Write the equation as y” + (3/t)y’ = 1. p(t) = 3/t is continuous for all ¢ > 0.
Since t, > 0, the IVP has a unique solution for all ¢ > 0.

9. Write the equation as y"” + %y’ + 75y = 757 - The coefficients are not

continuous at ¢ = 0 and ¢ = 4. Since t, € (0,4), the largest interval is 0 < t < 4.

10. The coefficient 3in|t| is discontinuous att = 0. Since ¢, > 0, the largest interval
of existence is 0 <t < 00.

11. Write the equation as y” + —5y" + %y = 0. The coefficients are discontinuous

at  =0and z = 3. Since z, € (0, 3), the largest interval is 0 < z < 3.

13. y/' = 2. Wesee that t>(2) — 2(#?) = 0. y)/ = 2t 73, with t*>(yJ) — 2(y,) = 0.
Let ys = ;2 + ot 7%, then y)' = 2¢; + 2¢,t73. It is evident that ys is also a solution.

16. No. Substituting y = sin(¢?) into the differential equation,
— 4t*sin(t*) + 2cos(t*) + 2t cos(t*) p(t) + sin(t*)q(t) = 0.

For the equation to be valid, we must have p(t) = — 1/t¢, which is not continuous, or
even defined, att = 0.
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17. W(e?,g(t)) = e¥g'(t) — 2e*g(t) = 3e*. Dividing both sides by e, we find
that g must satisfy the ODE ¢’ — 2g = 3e?. Hence g(t) = 3t e? + ce?.

19. W(f,9)=fg' — f'g. Also, W(u,v) =W (2f —g,f+2g). Upon evaluation,
W(u,v)=5fg"—5f'g =5W(f,g).

20. W(f,9)=fg' — f'g =tcost—sint,and W(u,v) = —4fg" +4f'g.
Hence W(u,v) = —4tcost + 4sint.

22. The general solution is y = c;e 3 + c,e™!. W(e 3, e ) = 2e*, and hence

the exponentials form a fundamental set of solutions. On the other hand, the fundamental
solutions must also satisfy the conditions 3,(1) = 1,y/(1) =0;3,(1) =0,y,(1) = 1.
For y, , the initial conditions require ¢, + ¢, = e, — 3¢; — ¢, = 0. The coefficients are
c, = —e*/2,c, =3e/2. For the solution, y, , the initial conditions require ¢, + ¢, = 0
, —3c, — ¢, = e. The coefficients are ¢, = — €*/2, ¢, = ¢/2. Hence the fundamental
solutions are {y, = — e 37D 4 37D 1y, = — L7301 4 Le=(=1}

23. Yes. y/' = —4cos2t; y' = —4sin2t. W(cos2t,sin2t) =2.

24. Clearly, y, = €' is a solution. y, = (1 +t)e’, y;/ = (2 + t)e’. Substitution into the
ODE results in (2 +t)e! — 2(1 +t)e’ +te! = 0. Furthermore, W (e, te!) = e?.
Hence the solutions form a fundamental set of solutions.

26. Clearly, y, = x is a solution. y, = cosz,y, = — sinz. Substitution into the
ODE results in (1 — z cotx)( — sinx) — z(cosz) + sinxz = 0. W (y,,y.) = x cos
T — sinx,

which is nonzero for 0 < x < w. Hence {z, sin xz} is a fundamental set of solutions.

28. P=1,Q=x,R=1. Wehave P" — Q'+ R = 0. The equation is exact. Note
that (y')" + (zy)’ = 0. Hence y’ + 2y = c¢,. This equation is linear, with integrating
factor p = e?’/2, Therefore the general solution is

y(z) = clexp( — IE2/2> /xexp(u2/2)du + cgexp( — x2/2).

0

29. P=1,Q =32%, R =x. Note that P — Q' + R = — 5z, and therefore the
differential equation is not exact.

31. P=2?,Q=x2,R= —1. Wehave P" — Q'+ R = 0. The equation is exact.
Write the equation as (z2y’)’ — (zy)' = 0. Integrating, we find that 2%y’ — zy = c.
Divide both sides of the ODE by x?. The resulting equation is /inear, with integrating
factor u = 1/z. Hence (y/x)' = cx~>. The solution is y(t) = c,z~" + ¢,
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33. P=2%,Q =z, R = x> — v°. Hence the coefficients are 2P’ — () = 3z and
P" — Q'+ R = 22+1 — v%. The adjoint of the original differential equation is given
by 2°u" + 3z p'+(2*+1 — ) = 0.

35. P=1,Q =0, R = — x. Hence the coefficients are given by 2P’ — ) = 0 and
P" — Q'+ R = — x. Therefore the adjoint of the original equationis u” —xpu =0.
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Section 3.3

1. Suppose that « f(t) + Bg(t) = 0, that is, a(t? + 5t) + 3(t* — 5t) = 0 on some
interval /. Then (o + 8)t* + 5(a — 8)t = 0,Vt € I. Since a quadratic .has at most
wo

roots, we must have o+ 3 =0 and o — 3 = 0. The only solutionis o = = 0.
Hence the two functions are linearly independent.

3. Suppose that e*cos ut = A eMsin ut, for some A # 0, on an interval . Since the
function sin ut # 0 on some subinterval 1, C I, we conclude that tan ut = A on I,.
This is clearly a contradiction, hence the functions are linearly independent.

4. Obviously, f(z) = e g(x) for all real numbers = . Hence the functions are linearly
dependent.

5. Here f(x) = 3¢(x) for all real numbers. Hence the functions are linearly dependent.

8. Note that f(x) = g(x) forxz € [0,00), and f(z) = — g(x) forz € (—0c0,0]. It
follows that the functions are linearly dependent on R* and R~ . Nevertheless, they are
linearly independent on any open interval containing zero.

9. Since W (t) = t sint has only isolated zeros, W (t) cannot identically vanish on any
open interval. Hence the functions are linearly independent.

10. Same argument as in Prob. 9.

11. By linearity of the differential operator, ¢y, and c,y, are also solutions.
Calculating

the WI‘OIlSkiaIl, W(clyl y ngg) — (Clyl)(CZyQ)/ - (Clyl)/(CQyQ) = C1Co W(yl ,y2> .
Since W (y, ,y,) is not identically zero, neither is W (c,y, , ¢yys) .

13. Direct calculation results in

W(a1y1 + asys, biyr + bng) = aleW(yl ,yQ) - b1G2W(y1 73/2)
= (a1b2 — agbl)W(yl 7y2) .

Hence the combinations are also linearly independent as long as a,b, — a,b, # 0.

14. Leta(i+j)+ S(i—j)=0i+0j. Thena+ =0 and o — =0. The only
solution is @ = 3 = 0. Hence the given vectors are linearly independent. Furthermore,
any vector ai+ a.j = (% +%)([i+j)+ (% —%)0i—1]).

16. Writing the equation in standard form, we find that P(t) = sint/cost. Hence the
Wronskian is W (t) = bexp(— [22Ldt) = bexp(In|cost|) = bcost, in which b is

cost

some constant.
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17. After writing the equation in standard form, we have P(z) = 1/x. The Wronskian
is W(t) = cexp( — [1dz) = cexp( — In|z|) = ¢/|z|, in which ¢ is some constant.

18. Writing the equation in standard form, we find that P(z) = — 2z/(1 — x?). The
Wronskian is W (t) = cexp( — [2dz) = cexp( —In|l — 2?|) = c|l —2?| ",
in which ¢ is some constant.

19. Rewrite the equation as p(t)y” + p'(t)y’ + q(t)y = 0. After writing the equation
in standard form, we have P(t) = p’(t)/p(t) . Hence the Wronskian is

W(t) = cexp(—/p (t)dt> — cexp(— Inp(t)) = ¢/p(t).

p(t)

21. The Wronskian associated with the solutions of the differential equation is given by
W (t) = cexp( — [Z2dt) = cexp(—2/t). Since W (2) = 3, it follows that for the
hypothesized set of solutions, ¢ = 3e. Hence W (4) = 3,/e .

22. For the given differential equation, the Wronskian satisfies the first order differential
equation W' + p(t)W = 0. Given that W is constant, it is necessary that p(t) = 0.

23. Direct calculation shows that

W(fg,fh) =(fg —(f9)'(fh)
=(f

W)= (f'g+ fa")(fh)

=)
S—
=
3‘\/
+
K.'1/'\«

25. Since y; and y, are solutions, they are differentiable. The hypothesis can thus be
restated as y, (ty) = y, (ty) = 0 at some point ¢, in the interval of definition. This
implies that W (y: , v2)(t,) = 0. But W (y,,v,)(ty) = cexp( — [p(t)dt) , which
cannot be equal to zero, unless ¢ = 0. Hence W (y, ,y,) = 0, which is ruled out for
a fundamental set of solutions.
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Section 3.4
2. exp(2 — 3i) = e’e 3 = e*(cos 3 — isin3).

3. e =cosm+isinmt= —1.

4. e:cp(2 — %z) = 62(008% — 1 8in g) = —e%i.
6. m 1 = exp[( — 14 2i)Inw] = exp( — Inm)exp(2inmi) = L exp(2inTi) =

= Llcos (2Inm) + isin (2In)).

8. The characteristic equation is 7> — 2r + 6 = 0, with roots r = 1 + z\/g . Hence the
general solution is y = ciefcos /5t + ¢y el sin /5.

9. The characteristic equation is 72 + 2r — 8 = 0, with roots »r = — 4,2. The roots
are real and different, hence the general solution is y = ce 4 + ¢, €.

10. The characteristic equation is 72 + 2r + 2 = 0, with roots r = — 1+ i. Hence the
general solution is y = cie ‘cost + c,e " tsint.

12. The characteristic equation is 472 4+ 9 = 0, with roots r = :I:% i. Hence the
general solution is y = ¢,cos %t + ¢y 811 %t .

13. The characteristic equation is 72 + 2r + 1.25 = 0, with roots r = — 14 %z Hence
the general solution is y = c,e cos %t + e tsin %t.

15. The characteristic equation is 7 4 r 4+ 1.25 = 0, with roots r = — % + 7. Hence
the general solution is y = cie”*cost + c,e /?sint.
16. The characteristic equation is 7% + 4r + 6.25 = 0, with roots 7 = — 2 i% i. Hence

the general solution is y = c;e % cos %t + e ?sin %t.

17. The characteristic equation is 7> 4+ 4 = 0, with roots r = 4= 2i. Hence the general
solution is y = c;cos 2t + ¢, sin 2t . Its derivative is y' = — 2¢,sin 2t + 2¢,cos 2t .
Based on the first condition, y(0) = 0, we require that ¢; = 0. In order to satisfy the
condition y’(0) = 1, we find that 2¢, = 1. The constants are ¢; = 0 and ¢, = 1/2.
Hence the specific solution is y(t) = §sin 2t.

19. The characteristic equation is 7> — 2r + 5 = 0, with roots r = 14-2i. Hence the
general solution is y = c,e'cos 2t + ¢, e'sin 2t . Based on the condition, y(7/2) =0,
we require that ¢, = 0. It follows that y = ¢, e!sin 2t, and so the first derivative is
y' = cyelsin 2t + 2cye’cos 2t . In order to satisfy the condition y'(7/2) = 2, we find
that — 2e™?c, = 2. Hence we have ¢, = — e ™% . Therefore the specific solution is
y(t) = —el"™?sin2t.
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20. The characteristic equation is 72 + 1 = 0, with roots r = #14. Hence the general
solution is y = c;cost + ¢y sint. Its derivative is y' = — ¢isint + ¢, cost. Based
on the first condition, y(7/3) = 2, we require that ¢; + /3¢, = 4. In order to satisfy
the condition y/(7/3) = — 4, we find that — /3¢, + ¢, = — 8. Solving these for
the constants, ¢, = 1+2/3 and ¢, = /3 — 2. Hence the specific solution is a steady
oscillation, given by y(t) = (1 + 2\/§> cost + (\/3 - 2) sint.

21. From Prob. 15, the general solution is y = cie ?cost + c,e /?sint. Invoking

the first initial condition, y(0) = 3, which implies that ¢; = 3. Substituting, it follows
that y = 3e "?cost + c,e”"?sint, and so the first derivative is

3 , _ Co 4y .
y' = — Qe_tﬁcost—Se_t/2smt+cge ecost — 526 sint.

Invoking the initial condition, y’(0) = 1, we find that — % +c,=1,andso ¢, = % )

Hence the specific solution is y(t) = 3¢ "?cost + 3 e/ sint.

0 SN B R
0.5

24(a). The characteristic equation is 5r% + 27 + 7 = 0, with roots r = — %ﬂ: i@.
The solution is u = ¢,e ¥ cos @t + e Psin @t. Invoking the given initial
conditions, we obtain the equations for the coefficients: ¢; =2, — 2 + \/3_4 c,=095.
Thatis,c; =2, ¢ =7/ \/374 . Hence the specific solution is
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V34, 7 V34

u(t) = 2e Pcos Y—t + ——e Psin ~—t.

5 T 5

0.5 /\

0 o dTe N A
057

-14

(b). Based on the graph of w(t), 7" is in the interval 14 < t < 16. A numerical solution
on that interval yields 7" ~ 14.5115 .

26(a). The characteristic equation is 7> + 2a 7 + (a>+1) = 0, withroots r = —a+i.
Hence the general solution is y(t) = c;e”“cost + c,e “sint. Based on the initial
conditions, we find that ¢, = 1 and ¢, = a. Therefore the specific solution is given by

y(t) = e “cost +ae "sint
=V 1+a?e "cos(t—¢),

in which ¢ = tan™"'(a).

(b). For estimation, note that |y(¢)] < v/1+ a? e *. Now consider the inequality
V1+a? e <1/10. The inequality holds for ¢ > %ln [10 1+ aQ] Therefore

T < %ln[lO\/ 1+ aQ}. Setting @ = 1, numerical analysis gives 7'~ 1.8763 .

(¢). Similarly, T}/, ~ 7.4284, T}/, ~ 4.3003, T, ~ 1.5116, T; ~ 1.1496.

(d).

Twvals

2249
204
189
16
144
129
104

3

[RS=
Lua

3

D 02040608 1 12141618 2 22242628 3

page 96



WWV. ZI T e.Ir

CHAPTER 3. ——

Note that the estimates T}, approach the graph of %ln [10 v1+ aQ] as a gets large.

27. Direct calculation gives the result. On the other hand, it was shown in Prob. 3.3.23
that W(fg,fh)= f°W(g,h). Hence

W(e”cos ut , eMsin pt) = e*M W (cos it , sin ut)
= 2 [cos pt(sin ut)" — (cos put)'sin put]

— pe,

28(a). Clearly, y; and y, are solutions. Also, W (cost, sint) = cos*t + sin’*t = 1.
P it o s2 it it . . : _
(b). y' =ie",y" =i*e" = — e". Evidently, y is a solution and so y = ¢,y; + ¢,».

(c). Settingt =0, 1 =c,cos0+ c,sin0, and ¢, = 0. Differentiating, i e’ = ¢, cost.
Settingt = 0, i = ¢, cos0 and hence ¢, = i. Therefore e = cost +isint.

29. Euler's formulais ¢" = cost + isint. It follows that e™" = cost — i sint.
Adding these equation, e + e~ = 2 cost. Subtracting the two equations results in

e —e ™ =i sint.

30. Letr, = A\ +ipy,and ry = Ay + 25 . Then

exp(ry + 1)t = exp[(A + Aot +i(py + po)t]

= eM N eos (1 + po)t + i sin(p + po)i]

6()\1+)\2)t[(005 pit + isin pit)(cos pyt + isin pot)]

= M (cos put + isin pt) - e (cos put + isin pt)

Hence ettt — ent grt

32. If ¢(t) = u(t) + i v(t) is a solution, then
(u + )" + p(t)(u +iv) + q(t)(u+iv) =0,

and (u” +iv") 4+ p(t)(u' + ') + q(t)(u + iv) = 0. After expanding the equation and
separating the real and imaginary parts,

u" + p(t)u” + q(t)u =10
o+ pt)v" +q(t)v =0

Hence both wu(t) and v(t) are solutions.

1 dz dz dx

34(a). By the chain rule, y(z) = % 2'. In genera , 5= 9. Setting z = 3,

E_
d’y _ dz dr _ d [dy dz1 da d*y dx dy d [dx
we have W_Eﬁ_d:r[ﬁ E]T_ o w2549 However,
&Ly _ Ay [d_:c] 4+ by &z

dt dx dt*"

d [de]de _ [dx]|dt dz _

i L3t @ = [dﬁ} % = G Hence i = 7%
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(b). Substituting the results in Part(a) into the general ODE, y" + p(t)y’ + ¢(t)y = 0,
“we find that

Ay [dz]?  dy d*x dy dz
2 22 )2 == +q(t)y =0.
dac?{dt} T ae TP g Ay =0

Collecting the terms,

dz]*d%y d*z dx | dy
g S =2 =0.
[dt] i " [dﬁ () dt}da: +alt)y

(¢). Assuming [%]* = kg(t), and ¢(t) > 0, we find that % = | /k q(Z), which can
be integrated. Thatis, x = £(t) = [/kq(t) dt.

(d). Let k = 1. It follows that ‘57? +p(t) % = 9 4 p(t)et) = % +p./q . Hence

d*x dz] [dz]®  q'(t) + 2p(t)q(t)
[W + p(t)E:| / [a} = 2[q(t)]3/2 .

As long as dx/dt # 0, the differential equation can be expressed as

d’y  [q'()+2p()q(t) ]| dy
da? [ 2[q(6)]" ] ERR
*For the case ¢(t) < 0, write ¢(t) = — [ — ¢q(t)], and set [%]2 = —q(t).

36. p(t) = 3tand q(t) =t*. Wehave z = [tdt =t*/2. Furthermore,

q'(t) + 2p(t)q(t)
2[q(t))"?

The ratio is not constant, and therefore the equation cannot be transformed.

= (14 3t%) /¢*.

37. p(t) =t —1/t and q(t) = t*. We have x = [tdt = t*/2. Furthermore,
q'(t) +2p(t)q(t) _
2[q (1))

The ratio is constant, and therefore the equation can be transformed. From Prob. 35,
the transformed equation is

d*y  dy
ST Sy =o.
dxz? + dx Tty

Based on the methods in this section, the characteristic equation is 72 + r + 1 = 0, with

/3
roots r = — 1iz‘/7—

5 . The general solution is
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y(x) = cre?cos \/3x/2 + e Psin\/31/2.

Since z = t?/2, the solution in the original variable ¢ is

y(t) = et/ [clcos <\/§t2/4> + ¢ sin <\/§t2/4>} :

40. p(t) =4/t and ¢(t) = 2/t*. Wehave z = /2 [t"'dt = \/2 Int. Furthermore,

q'(t) +2p(t)g(t) _ 3
2[q(t))"" V2

The ratio is constant, and therefore the equation can be transformed. In fact, we obtain

d?y 3 dy

-— + —F= =0

dz? + V2 dx ty
Based on the methods in this section, the characteristic equation is \/2 r2 +3r++/2 =0,
with roots r = — \/5 , — 1/ \/5 . The general solution is

y(zr) = cle_ﬁx + ¢ e UV,
Since =z = \/5 Int, the solution in the original variable ¢ is

y(t) — Cle—2lnt + e e—lnt
=ct 2+t h

41. p(t) = 3/t and ¢(t) = 1.25/t*. We have = = /1.25 [t'dt = \/1.25 Int.
Checking the feasibility of the transformation,
q'(t) +2p(t)g(t) _ 4
2[q(t)]"" V5

The ratio is constant, and therefore the equation can be transformed. In fact, we obtain

&y

4 dy
dac2+\/3%

+y=0.

Based on the methods in this section, the characteristic equation is
2 _ ; 2 41 L
V572 +4r 4+ /5 =0, with roots r = 75 +ie The general solution is

y(z) = e Vocos /5 + cre M Vosin /5.

Since 2x/ f = [nt, the solution in the original variable ¢ is
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y(t) = cie™lcos (ln\/t_) + e Msin (lnﬁ)
=t! [clcos (ln\/l?) + ¢y 810 (lnﬁ)] .

42. p(t) = —4/t andq(t) = —6/t>. Set = /6 [t 'dt = /6 Int.
Checking the feasibility of the transformation (*see Prob. 34 d, with q < 0),
—q'() = 2p()g(t) _ =5

2—q)” V6

The ratio is constant, and therefore the equation can be transformed. In fact, we obtain

Based on the methods in this section, the characteristic equation is \/6 r?—5

r—\/€=0,

with roots r = \/g , — 1/ \/E . The general solution is
y(z) = c1eV" + e V0,
Since = = /6 Int, the solution in the original variable ¢ is

y(t) _ cleGInt + e e—lnt
= C1t6 + Cgt_l.
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Section 3.5

2. The characteristic equation is 97% + 6r + 1 = 0, with the double root r = — 1/3.
Based on the discussion in this section, the general solution is y(t) = c;e ? + ¢yt e /3.

3. The characteristic equation is 472 — 4r — 3 = 0, with roots 7 = — 1/2,3/2. The
general solution is y(t) = c,e "? + c,e™/2,

4. The characteristic equation is 472 4+ 12r + 9 = 0, with the double root r = — 3/2.
Based on the discussion in this section, the general solution is y(t) = (¢, + ¢, t)e V2.

5. The characteristic equation is *> — 2r + 10 = 0, with complex roots r = 1 = 3i.
The general solution is y(t) = c,e’cos 3t + c,elsin 3t.

6. The characteristic equation is 7> — 67 + 9 = 0, with the double root » = 3. The
general solution is y(t) = c,e* + c,t €.

7. The characteristic equation is 472 + 17r +4 = 0, with roots r = — 1 /4, —4.
The general solution is y(t) = c,e™¥/* + c,e™.

8. The characteristic equation is 16r% + 247 + 9 = 0, with the double root r = — 3/4.
The general solution is y(t) = c,e /4 4 ¢yt e /4,

10. The characteristic equation is 2r® + 2r + 1 = 0, with complex roots r = — % £ % 4.

The general solution is y(t) = c,e ¥/2cost/2 + c,e /?sint/2.

D=

L
2

11. The characteristic equation is 9r* — 12r + 4 = 0, with the double root r = 2/3..
The general solution is y(t) = c,e*/® + ¢yt €*/3. Invoking the first initial condition, it
follows that ¢, = 2. Now y'(t) = (4/3 + ¢,)e*’® + 2¢,t €*/% /3. Invoking the second
initial condition, 4/3 4+ ¢, = —1,0r ¢, = — 7/3. Hence y(t) = 2¢*/* — It e/,
Since the second term dominates for large t, y(t)—» — c©.

13. The characteristic equation is 972 + 67 + 82 = 0, with complex roots r = — % +31.
The general solution is y(t) = c,e */3cos 3t + c,e~*/3sin 3t . Based on the first initial
condition, ¢, = — 1. Invoking the second initial condition, 1/3 + 3¢, =2, 0r ¢, = 5.

9
Hence y(t) = — e /3cos3t + e 3sin3t.
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0.8
0.6

E:/\zAﬂf\ﬁ g
\/

0.29
-0.44
-0.64
-0.84

15(a). The characteristic equation is 47? + 12r 4+ 9 = 0, with the double root r = —
The general solution is y(t) = c;e /% + ¢,t e731/%, Invoking the first initial condition,
it follows that ¢; = 1. Now y'(t) = ( — 3/2 + ¢,)e*/* — 3¢yt €?/5. The second
initial condition requires that — 3/2+ ¢, = — 4, 0or ¢, = — 5/2. Hence the specific
solution is y(t) = e */? — 3¢e 5/,

[\SJ[eV]

1

0.8

0.6

0.4

0.2

u 1 2
021

(b). The solution crosses the x-axis at t = 0.4.
(¢). The solution has a minimum at the point (16/15, — 5e*/7/3).

(d). Given thaty’(0) = b, wehave —3/2+ ¢, =b,0r ¢, = b+ 3/2. Hence the
solution is y(t) = e+ (b + 2)t e~/ Since the second term dominates, the long-
term solution depends on the sign of the coefficient b + % The critical value is b = —

NSJ[e]

16. The characteristic roots are r;, = r, = 1/2. Hence the general solution is given by
y(t) = c1e'? + ¢yt €'/2. Invoking the initial conditions, we require that ¢, = 2, and that
1+ ¢, = b. The specific solution is y(t) = 2¢"/* + (b — 1)t e/?. Since the second term
dominates, the long-term solution depends on the sign of the coefficient b — 1. The
critical value is b = 1.
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18(a). The characteristic roots are v, = r, = — 2/3. Therefore the general solution is
given by y(t) = c,e /3 + ¢yt e */*. Invoking the initial conditions, we require that
¢, = a,and that — 2a/3 + ¢, = — 1. After solving for the coefficients, the specific

solution is y(t) = ae ?/* + (%a _ 1)te*2t/3,

(b). Since the second term dominates, the long-term solution depends on the sign of the

coefficient % — 1. The critical value is a = 3/2.

20(a). The characteristic equation is 72 + 2ar + a? = 0, with double root r = — a.
Hence one solution is y, (t) = c;e .

(b). Recall that the Wronskian satisfies the differential equation W' + 2aW = 0. The
solution of this equation is W (t) = ¢ e 2.

(¢). By definition, W = y, v, — y!y,. Hence cie "y, + acie "y, = ce 2,
Thatis, y, + ay, = c,e” . This equation is first order /inear, with general solution
Yo (t) = cote " + cye . Setting ¢, = 1 and ¢; = 0, we obtain y,(t) = te™ .

22(a). Write ar? +br +c = a(r’ + Lr + £). It follows that 2 = — 2r, and £ = r?.
Hence ar? + br + ¢ = ar? — 2ar;r + ar? = a(r? — 2rr +12) = a(r —r)*. We

find that Le™] = (ar? + br + ¢)e™ = a(r — r,)%e™. Setting 7 = r,, L[e"] = 0.

(b). Differentiating Eq.(¢) with respect to r,

%L [e"] = ate™ (r — ) + 2ae” (r — ).

Now observe that

0 o[ o

L) = o ag e 4o ()]

L) o (o) ()]

— ol (te”) b2 (te™)+c(te™).

ot? ot
Hence L[te’"] = ate’ (r — r,)* + 2ae™ (r — r,). Setting r = r,, L[te"!] = 0.
23. Set y,(t) = t>v(t) . Substitution into the ODE results in
(0" + 4tv’ + 20) — 4t (20" + 2tv) + 6t°v = 0.

After collecting terms, we end up with t'v” = 0. Hence v(t) = ¢; + ¢yt , and thus
y5(t) = 1t + c,t?. Setting ¢, = 0 and ¢, = 1, we obtain y,(t) = 3.

24. Set y,(t) = tv(t). Substitution into the ODE results in
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t2(tv” +20") + 2t(tv’ +v) —2tv = 0.

After collecting terms, we end up with t3v"” + 4t?v’ = 0. This equation is /inear in
the variable w = v’. It follows that v’ (t) = ct™*, and v(t) = ¢;t® + ¢, . Thus
y2(t) = c1t ™2 + ¢yt . Setting ¢, = 1 and ¢, = 0, we obtain y,(t) = ¢t 2.

26. Set y,(t) = tv(t). Substitution into the ODE results in v” — v’ = 0. This ODE
is linear in the variable w = v’. It follows that v'(¢) = c,e’, and v(t) = c,e! + ¢, .
Thus y,(t) = cite! + c,t. Setting ¢, = 1 and ¢, = 0, we obtain y,(t) = te'.
28. Set y,(x) = e"v(x). Substitution into the ODE results in
v”+—$_2v'20
r—1 )

This ODE is linear in the variable w = v’. An integrating factor is

= e:z:p(/i_idm)

Rewrite the equation as [;”1']/ = 0, from which it follows that v'(z) = c(z — 1)e 2.
Hence v(x) = cixze ™ + ¢, and y,(x) = ¢;x + cye”. Setting ¢, = 1 and ¢, =0, we

obtain y,(z) = .

29. Set yo(x) = yi(x) v(z), in which y,(z) = z'*exp(2,/x). It can be verified that
y, is a solution of the ODE, that is, x*y,” — (z — 0.1875)y, = 0. Substitution of the
given form of y, results in the differential equation

20" + (42" + ")’ = 0.
This ODE is linear in the variable w = v’. An integrating factor is
~1/2 1
U = exp 2077 4+ —|dz
2z
=/ exp(4\/5).
Rewrite the equation as [\/z exp(4,/z) v']" = 0, from which it follows that

v'(z) = cexp(—4y/7)/\/x .

Integrating, v(z) = c,exp( — 4,/) + ¢, and as a resul,

y(x) = clwmewp( — 2\/5) + chmexp(Q\/E).
Setting ¢, = 1 and ¢, = 0, we obtain y,(z) = z"*exp( — 2/x).
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32. Direct substitution verifies that y,(t) = exp( — 6x%/2) is a solution of the ODE.
Now set y»(z) = y;(x) v(x). Substitution of y, into the ODE results in

v’ —bxv' =0.

This ODE is linear in the variable w = v’. An integrating factor is ;. = exp( — 62%/2).
Rewrite the equation as [ exp( — 622/2)v’]" = 0, from which it follows that

v'(z) = ¢, exp(62?/2) .

Integrating, we obtain

X

v(x) = 01/';exp(6u2/2)du + v(x).

Hence
yo(z) = crexp(— (5x2/2)/ exp(du®/2)du + crexp( — 62%/2).

Setting ¢, = 0, we obtain a second independent solution.

34. After writing the ODE in standard form, we have p(¢) = 3/t. Based on Abel's
identity, W (y., 1) = clexp( — f%dt) = ¢,t73. As shown in Prob. 33, two solutions
of a second order linear equation satisfy

(y2/y1), = W (y, y2)/?/f .

In the given problem, y,(t) = ¢~'. Hence (tv,)’ = c,t~'. Integrating both sides of the
equation, 1, (t) = c;tlnt + eyt L.

36. After writing the ODE in standard form, we have p(z) = — z/(x — 1). Based on
Abel’s identity, W (y,y,) = c exp([-*;dx) = ¢ €”(x — 1). Two solutions of a
second order linear equation satisfy

(/1) = Wy, 2) /v

In the given problem, y,(x) = e”. Hence (e *y,)" = ce™(x — 1). Integrating both
sides of the equation, y,(x) = ¢,z + c,e”. Setting ¢, = 1 and ¢, = 0, we obtain
yo(z) = .

37. Write the ODE in standard form to find p(x) = 1/z. Based on Abel's identity,
W (y1,y2) = cexp(— [Ldx) = ca™. Two solutions of a second order linear ODE
satisfy (v,/y1) = W (y1,.)/y?. In the given problem, y,(z) = z~"*sinz . Hence

/
VT 1
. Ya = C —; IR
sinx sin°x
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Integrating both sides of the equation, y,(z) = c;x *cosx + ¢,z /*sin x. Setting
¢, = land ¢, =0, we obtain y,(z) = 27 cosx.

39(a). The characteristic equation is ar? + ¢ = 0. If a,c > 0, then the roots are
r, = +iy/c/a . The general solution is

[c [c
y(t) = cicosy [ —t + cpsing [ — ¢,
a a

(b). The characteristic equation is ar? + br = 0. The roots are 1, =0, — b/a,
and hence the general solution is y(t) = ¢, + cexp( — bt/a). Clearly, y(t)—=c; .

which is bounded.

40. Note that cost sint = %sin 2t. Sothatl — kcostsint =1 — %sm 2t. If
0 <k <2,then £sin2t < |sin2t|and — £sin2t > — |sin2t|. Hence

k
1—kcostsint =1 — §sin2t

> 1 — |sin 2t|
>0.

41. p(t) = — 3/t and q(t) = 4/t>. Wehave z = 2 [t 'dt = 2Int,and t = e"/%.
Furthermore,
q'(t) +2p(t)g(t) _
2[q(t)]"”

The ratio is constant, and therefore the equation can be transformed. In fact, we obtain

The general solution of this ODE is y(x) = ¢,€” + c;ze”. In terms of the original
independent variable, y(t) = c,t? + c,t*Int.
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Section 3.6

2. The characteristic equation for the homogeneous problem is r* + 2r +5 = 0, with
complex roots 7 = — 14+2i. Hence y.(t) = cie 'cos 2t + c,e 'sin 2t . Since the
function g(t) = 3 sin 2t is not proportional to the solutions of the homogeneous equation,
set Y = Acos2t+ Bsin2t. Substitution into the given ODE, and comparing the
coefficients, results in the system of equations B —4A =3 and A+ 4B = 0. Hence
Y = — cos2t + £sin2t. The general solution is y(t) = y.(t) + Y.

3. The characteristic equation for the homogeneous problem is r?> — 2r — 3 = 0, with
roots r = — 1,3. Hence y.(t) = cie™’ + c,e® . Note that the assignment Y = Ate™!
is not sufficient to match the coefficients. Try Y = Ate ™! + Bt?e~!. Substitution into
the differential equation, and comparing the coefficients, results in the system of
equations —4A +2B =0 and —8B = —3. Hence Y = te ' + 3t’e~". The
general

solution is y(t) = y.(t) + Y.

5. The characteristic equation for the homogeneous problem is 72 + 9 = 0, with
complex roots r = £3i. Hence y.(t) = ¢,cos3t + cysin 3t. To simplify the analysis,
set g;(t) = 6 and g,(t) = t?e*. By inspection, we have Y; = 2/3. Based on the form
of g, set Y, = Ae3 + Bte3 + Ct?e3. Substitution into the differential equation, and
comparing the coefficients, results in the system of equations 184 + 6B + 2C =0,
18 B+ 12C' =0, and 18C = 1. Hence

1 1

1
2= 1626 T 97¢ Tigte

The general solution is y(t) = y.(t) + Y, + V5.

7. The characteristic equation for the homogeneous problem is 272 + 3r + 1 = 0, with
roots r = — 1, —1/2. Hence y.(t) = cie™ + ¢, e */?. To simplify the analysis,

set g;(t) = t* and g,(t) = 3sint. Based on the form of g, , set Y, = A + Bt + Ct>.
Substitution into the differential equation, and comparing the coefficients, results in the
system of equations A +3B+4C =0,B+6C =0, and C' = 1. Hence we obtain
Y, = 14 — 6t + t2. On the other hand, set Y, = D cost + E sint. After substitution
into the ODE, we find that D = — 9/10 and £ = — 3/10. The general solution is
y(t) = y.(t) + Y1 + V2.

9. The characteristic equation for the homogeneous problem is 72 4+ w? = 0, with
complex roots r = + wyi. Hence y,.(t) = cicoswyt + ¢ysinwyt. Since w # wy,
setY = Acoswt + B sinwt. Substitution into the ODE and comparing the coefficients

results in the system of equations (w? — w?)A =1 and (w? — w?)B = 0. Hence

The general solution is y(t) = y.(¢t) + Y.
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10. From Prob. 9, y.(t) = c¢. Since coswyt is a solution of the homogeneous problem,
setY = Atcosw,t + Bt sinw,t. Substitution into the given ODE and comparing the
1

coefficients results in A = 0 and B = 5., - Hence the general solution is

y(t) = cicoswyt + cysinwyt + 2%032'71 wyt.

12. The characteristic equation for the homogeneous problem is > — 7 — 2 = 0, with
roots 7 = — 1,2. Hence y.(t) = cie”! + ¢, e*. Based on the form of the right hand
side, that is, cosh(2t) = (2 + e 2)/2,set Y = At e* + Be 2!, Substitution into the
given ODE and comparing the coefficients results in A = 1/6 and B = 1/8. Hence the
general solution is y(t) = cie ™t + ¢, e +te* /6 + e /8.

14. The characteristic equation for the homogeneous problem is 2 4+ 4 = 0, with roots
r = 4 2i. Hence y.(t) = c,cos2t + c,sin2t. SetY; = A + Bt + Ct?. Comparing
the coefficients of the respective terms, we findthat A= —1/8, B=0,C =1/4.
Now set Y, = De’, and obtain D = 3/5. Hence the general solution is

y(t) = cico82t + cysin2t — 1/8 +t2/4 + 3¢€! /5.

Invoking the initial conditions, we require that 19/40 + ¢, = 0 and 3/5 + 2¢, = 2.
Hence ¢, = — 19/40 and ¢, = 7/10.

15. The characteristic equation for the homogeneous problem is 72 — 2r + 1 = 0, with
a double root 7 = 1. Hence y,.(t) = c,e! + eyt e'. Consider g,(t) = te'. Note that

g1 is a solution of the homogeneous problem. Set Y, = At?e’ + Bt3e! (the first term is
not sufficient for a match). Upon substitution, we obtain Y; = t3¢! /6. By inspection,
Y, = 4. Hence the general solution is y(t) = c,e! + c,t ' + t3e! /6 + 4. Invoking the
initial conditions, we require that ¢, + 4 =1 and ¢; + ¢, = 1. Hencec;, = — 3 and
c,=4.

17. The characteristic equation for the homogeneous problem is % 4+ 4 = 0, with roots
r = +2i. Hence y.(t) = c¢,cos 2t + c,sin 2t . Since the function sin 2t is a solution of
the homogeneous problem, set Y = At cos 2t + Bt sin 2t. Upon substitution, we obtain

Y = — 3tcos2t. Hence the general solution is y(t) = ¢,c0s 2t + c,sin 2t — 1t cos2t .
Invoking the initial conditions, we require that ¢, = 2 and 2¢, — % = — 1. Hence
Ci = QandCQ = — 1/8

18. The characteristic equation for the homogeneous problem is 72 + 2r + 5 = 0, with
complex roots 7 = — 14 24. Hence v.(t) = cie tcos 2t + c,e!sin 2t . Based on the
form of g(t), setY = Ate'cos2t + Bte 'sin2t. After comparing coefficients, we
obtain Y = t e~'sin 2t . Hence the general solution is

y(t) = ce'cos 2t + ce 'sin 2t +tesin2t.

Invoking the initial conditions, we require that ¢, = 1 and — ¢; + 2¢, = 0. Hence
co=1landec, =1/2.
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20. The characteristic equation for the homogeneous problem is > 4+ 1 = 0, with
complex roots = + 4. Hence y,.(t) = c;cost + ¢ysint. Let g,(t) =t sint and
g2(t) = t. By inspection, it is easy to see that Y;(¢) = 1. Based on the form of ¢, (¢),
set Y, (t) = At cost + Bt sint + Ct*cost + Dt*sint. Substitution into the equation
and comparing the coefficients resultsin A =0, B=1/4,C = —1/4,and D = 0.
Hence Y (t) = 1+ jtsint — jt*cost.

21. The characteristic equation for the homogeneous problem is 72 — 5r + 6 = 0, with
roots r = 2,3. Hence y.(t) = c,e* + c,e®. Consider g, (t) = e*(3t + 4)sint, and
g2(t) = e'cos 2t. Based on the form of these functions on the right hand side of the
ODE,

set Y5(t) = e'(A1cos 2t + Aysin 2t), Yi(t) = (By + Byt )e*sint + (C, + Cot)e* cost.
Substitution into the equation and comparing the coefficients results in

Y(t)= — % (e'cos 2t + 3e'sin 2t) + gte%(cost — sint) + e (%cost — bsin t).
23. The characteristic roots are r = 2,2. Hence y.(t) = c;e* + c,te?. Consider the
functions g,(t) = 2t2, g,(t) = 4te*, and g;(t) = t sin 2t . The corresponding forms of
the respective parts of the particular solution are Y;(t) = A + At + Aqst?, Ys(t) =

= e?(Byt? + Bst?), and Y3(t) = t(Cicos 2t + Cysin 2t) + (Dycos2t + Dosin2t).
Substitution into the equation and comparing the coefficients results in

1 2 1 1
Y(t) = 1 (3 + 4t + 2t2) + §t362t + §t cos 2t + 1—6(005 2t — sin2t).

24. The homogeneous solution is y.(t) = ¢;cos 2t + cysin 2t. Since cos 2t and sin 2t
are both solutions of the homogeneous equation, set

Y (t) = t(Ag + Ait + Ast®)cos 2t + t(By + Byt + Bat?)sin 2t .

Substitution into the equation and comparing the coefficients results in

131, 1 .
Y(t) = (3—215— ﬁt >0032t—|— E(?&H— 13t )stt.

25. The homogeneous solution is y.(t) = c,e " + c,te . None of the functions on the
right hand side are solutions of the homogenous equation. In order to include all possible
combinations of the derivatives, consider Y (t) = e!(Ag + A1t + Ast?)cos 2t +

+ €e'(By + Bit + Bot?)sin 2t + e 1(Cicost + Casint) + De'. Substitution into the
differential equation and comparing the coefficients results in

Y(t) = et(AO + At + A2t2)cos 2t + + € (Bo + Bit + BQtQ)sin 2t +
+eft< — %cost#— gsint> +2¢'/3,

page 109



WWV. ZI T e.Ir

CHAPTER 3. ——

in which 4y = — 4105/35152, A, = 73/676, Ay = —5/52, By = — 1233/35152,
By =10/169, By = 1/52.

26. The homogeneous solution is y,(t) = c,e 'cos 2t + c,e 'sin 2t. None of the terms
on the right hand side are solutions of the homogenous equation. In order to include the
appropriate combinations of derivatives, consider Y (¢) = e *(At + Ast?)cos 2t +

+ e (Bt 4+ Bat?)sin 2t + e *(Cy + Cit)cos 2t + e *(Dy + Dit)sin 2t.
Substitution into the differential equation and comparing the coefficients results in

Y(t) = %teftcos 2t + theftsin 2t — %567%(7 + 10t)cos 2t +

+ %6_%(1 + 5t)sin 2t .

27. The homogeneous solution is y.(t) = c,cos At + c,sin At. Since the differential
operator does not contain a first derivative (and X\ # mm), we can set

N
Y(t) = ZC'msin mt.

m=1

Substitution into the ODE yields
N N N
— ZmQWQCmsin mmnt + )\QZCmsin mmnt = Zamsm mat .
m=1 m=1 m=1

Equating coefficients of the individual terms, we obtain

aTﬂ

ONL = A2 _ m2ﬂ'2 b

m=1,2---N.

29. The homogeneous solution is y,(t) = c,e 'cos 2t + c,e 'sin 2t. The input function
is independent of the homogeneous solutions, on any interval. Since the right hand side
is

piecewise constant, it follows by inspection that

C[1/5, 0<t<w/2
Y(t)_{() , t>m/2 '

For 0 <t < /2, the general solution is y(t) = c,e ‘cos 2t + c,e tsin2t +1/5.
Invoking the initial conditions y(0) = y’(0) = 0, we require that ¢, = — 1/5, and that
¢, = —1/10. Hence

1 1
y(t) = T (2e 'cos 2t + e 'sin 2t)

on the interval 0 < ¢ < 7/2. We now have the values y(7/2) = (1 + e ™?)/5, and
y'(w/2) = 0. For t > /2, the general solution is y(t) = d,e "cos 2t + dye 'sin 2t .
It follows that y(7/2) = — e ™2d, and y'(7/2) = e ™/?d, — 2¢~"/?d, . Since the
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solution is continuously differentiable, we require that

— e 24, = (1+ 64/2)/5
eiﬂ-/zdl — 2677r/2d2 =0.

Solving for the coefficients, d; = 2d, = — (e™? +1)/5.

0.244
0229

0.24
0184
0165
0.144
0124

0.14
0.084
0.064
0.044
0.024

0y 020406085 1 12141618 2 22242628 3
002 )
004

31. Since a,b,c > 0, the roots of the characteristic equation has negative real parts.
That is, r = a3+, where a < 0. Hence the homogeneous solution is

Y.(t) = cie™cos Bt + c,esin [t
If g(t) = d, then the general solution is
y(t) = d/c + ce*cos Bt + c,e sin Bt

Since a < 0, y(t)=»d/c ast—o0. If ¢ = 0, then that characteristic roots are = 0 and
r = —b/a. The ODE becomes ay” + by’ = d . Integrating both sides, we find that
ay’ + by = dt + ¢,. The general solution can be expressed as

y(t) = dt/b+ ¢, + ce

In this case, the solution grows without bound. If b = 0, also, then the differential
equation

can be written as y” = d/a, which has general solution y(t) = dt*/2a + ¢, + ¢, .
Hence the assertion is true only if the coefficients are positive.

32(a). Since D is a linear operator,

D?*y +bDy + cy = D*y — (ry + 1) Dy + riry
= DQZ/ — 13Dy — 1 Dy + riryy
= D(Dy — ryy) — ri(Dy — r5y)
=(D—-r)(D-—mr)y.

(b). Letu = (D — 7;)y. Then the ODE (i) can be written as (D — r,)u = ¢(t), that is,
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u’ — ryu = g(t). The latter is a linear first order equation in u . Its general solution is
t
u(t) = 67'1t/ e "Tg(T)dT + cret.
to

From above, we have y’ — r,y = u(t). This equation is also a first order ODE. Hence
the general solution of the original second order equation is

t
y(t) = e”t/ e "Tu(T)dT + ce™ .
to

Note that the solution y(¢) contains two arbitrary constants.

34. Note that (2D? + 3D + 1)y = (2D + 1)(D + 1)y. Letu = (D + 1)y, and solve
the ODE 2u’ + u = t*> + 3sint. This equation is a linear first order ODE, with solution

t
u(t) = et/2/ em? [72/2-1— %sinT dr +ce ?

to

=1? — 4t +8 — gcost+ gsimH— ce /2,
Now consider the ODE y’ + y = u(¢). The general solution of this first order ODE is
y(t) = e_t/teTu(T)dT + et
to
in which u(t) is given above. Substituting for u(t) and performing the integration,

9 3
y(t) = 2 _6t+14 — 1—Ocost — Esint + cleft/2 + e

35. Wehave (D* +2D+ 1)y = (D +1)(D+1)y. Letu = (D + 1)y, and consider
the ODE u’ + u = 2e'. The general solution is u(t) = 2te~! 4+ ce!. We therefore
have the first order equation u’ + u = 2te~' + c,e~*. The general solution of the latter
differential equation is

t
y(t) = e_t/ [27 4+ ¢, )dT + cre ™"

to
=e ! (t2 +cit + cg).

36. We have (D* +2D)y = D(D +2)y. Letu = (D + 2)y, and consider the equation
u’ = 3 + 4sin 2t . Direct integration results in u(t) = 3t — 2cos 2t + c¢. The problem
is reduced to solving the ODE vy’ + 2y = 3t — 2cos 2t + ¢. The general solution of this
first order differential equation is
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t
y(t) = e_Qt/ e’ [37 — 2c0s 2T + ¢ |dT + cre*
to

3 1
= §t - 5(608 2t + sin 2t) + ¢, + cre %,
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Section 3.7

1. The solution of the homogeneous equation is y,(t) = c,e? + ¢,e’. The functions
y,(t) = e and y,(t) = €3 form a fundamental set of solutions. The Wronskian of

these functions is W (y;,4,) = €. Using the method of variation of parameters, the
particular solution is given by Y () = u,(¢) y,(¢) + us(t) y»(¢), in which

_ et (2el)
w (t) = — W dt
=2¢ !
B 62t(26t)
uy(t) = 40 dt
2

Hence the particular solution is Y (t) = 2¢' — ¢! = €.

3. The solution of the homogeneous equation is y.(t) = c,e™* + c,te t. The functions
y1(t) = e ' and y,(t) = te”! form a fundamental set of solutions. The Wronskian of
these functions is W (y;,4,) = e !, Using the method of variation of parameters, the
particular solution is given by Y (¢) = u,(¢) y,(¢) + us(t) y»(¢), in which

te t(3e7t)
) = — [ =2 Ly
) W)
= —3t%/2

e '(3e7")

t) = | ————=dt
=0 = "
=3t
Hence the particular solution is Y'(t) = — 3t%e~*/2 + 3t?e™ = 3t?e ' /2.

4. The functions y;(t) = e/ and y,(t) = te'/?> form a fundamental set of solutions.
The Wronskian of these functions is W (y,, y,) = €. First write the equation in standard
form, so that g(t) = 4e'/?. Using the method of variation of parameters, the particular
solution is given by Y (¢) = u, (t) v1(t) + ux() y2(t), in which
tet/? (4et/2)
w (t) = 70 dt
= — 2t
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el/2 (4et/2)
t) = | ————=dt
e T
=4t
Hence the particular solution is Y (t) = — 2t%e!/? 4 4t%e!/? = 2t2%e!/? .

6. The solution of the homogeneous equation is y.(t) = ¢,cos 3t + ¢,sin 3t. The two

functions y, (t) = cos 3t and y,(t) = sin 3t form a fundamental set of solutions, with

W (y1,y,) = 3. The particular solution is given by Y (t) = u, () y,(t) + us(t) y»(t), in
which

sin 3t(9 sec?3t)
= —cscdt

[ cos3t(9sec?3t)
uy(t) = / W dt

= In|sec 3t + tan 3t|

Hence the particular solution is Y (t) = — 1 + (sin 3t)In|sec 3t + tan 3t|. The general
solution is given by y(t) = c¢,cos 3t + c,sin 3t + (sin 3t)in|sec 3t + tan 3t| — 1.

7. The functions ¥, (t) = e 2" and y,(t) = te ' form a fundamental set of solutions.
The Wronskian of these functions is W (y;,1,) = e~ *. The particular solution is given
by Y () = wi(t) y:(£) + us(t) y2(¢), in which

u1<t) = —/Mdt

W (t)
= —Int
o2 (126 21)
t) = | —————=dt
w) = [ i
— 1yt
Hence the particular solution is Y (t) = — e ?Int — e !, Since the second term is a

solution of the homogeneous equation, the general solution is given by y(t) = c;e % +
+ cote ™ — e nt.

8. The solution of the homogeneous equation is y.(t) = ¢,cos 2t + ¢,sin 2t. The two

functions y, (t) = cos 2t and y,(t) = sin 2t form a fundamental set of solutions, with

W (y1,y,) = 2. The particular solution is given by Y (t) = u, () y, (t) + us(t) y»(t), in
which

page 115



WWV. ZI T e.Ir

CHAPTER 3. ——
sin 2t(3 csc 2t)
= —3t/2
cos 2t(3 csc 2t)
t) = dt
wt) = [ 55
3 .
= Zln|8m 2t|
Hence the particular solution is Y (t) = — 3tcos 2t + 3(sin 3t)in|sin 2t|. The general

solution is given by y(t) = ¢,cos 2t + ¢ysin 2t — 3tcos 2t + 3(sin 3t)In|sin 2t|.

9. The functions y, (t) = cos (t/2) and y,(t) = sin(t/2) form a fundamental set of
solutions. The Wronskian of these functions is W (y,,y,) = 1/2. First write the ODE
in standard form, so that g(¢) = sec(t/2)/2. The particular solution is given by

Y (t) = ui(t) y1(t) 4+ uy(t) y2(t), in which

B cos (t/2)[sec(t/2)]
w(t) = — / e
= 2In[cos (t/2)]

t

[ sin(t/2)[sec(t/2)]
ua(t) = / oW ¢
=t

The particular solution is Y (t) = 2cos(t/2)In[cos (t/2)] + t sin(t/2). The general
solution is given by

y(t) = cicos (t/2) + cysin(t/2) + 2 cos(t/2) Infcos (t/2)] + t sin(t/2).

10. The solution of the homogeneous equation is y.(t) = c,e! + c,te’. The functions
y,(t) = e’ and y,(t) = te' form a fundamental set of solutions, with W (y;,,) = e*.
The particular solution is given by Y (¢) = w,(¢) y1(t) + us(t) y»(t), in which

B te'(el)
=~ [
= — %ln(l + %)

_ e'(el)

0 = [ e

= arctant

The particular solution is Y (¢) = — L€’ In(1 +2) + te’ arctan(t). Hence the general
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solution is given by y(t) = cie’ + cote’ — L€' In(1 + %) + te' arctan(t).

12. The functions y,(t) = cos 2t and y,(t) = sin 2t form a fundamental set of
solutions, with W (y,, y,) = 2. The particular solution is given by Y (t) = u,(t)

Y1 (t) + us(t) ya(1),
in which

1 t
uy(t) = 5/ g(s)cos2sds
Hence the particular solution is
1 ! 1 !
Y(t)= — 5608 2t/ g(s) sin2sds + 537)71 2t/ g(s)cos2sds.

Note that sin 2t cos 2s — cos 2t sin 2s = sin(2t — 2s). It follows that

Y(t) = %/lg(s)sin(% —2s)ds.

The general solution of the differential equation is given by

1 t
y(t) = c1co8 2t + cysin 2t + 5/ g(s)sin(2t — 2s)ds.

13. Note first that p(t) = 0,q(t) = — 2/t* and g(t) = (3t> — 1)/t>. The functions
y:1(t) and y,(t) are solutions of the homogeneous equation, verified by substitution. The
Wronskian of these two functions is W (y,,y,) = — 3. Using the method of variation of
parameters, the particular solution is Y (¢) = u,(¢) y1(t) + ua(t) y»(¢), in which

B 132 - 1)

=t2/6+Int

[ B -1)
uy(t) —/Wdt

= —t3/34+1/3
Therefore Y (t) = 1/6 + t%Int —t?/3 + 1/3. Hence the general solution is
y(t) = cit’ + et FPInt +1/2.
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15. Observe that g(t) = te*. The functions y,(t) and y,(t) are a fundamental set of
solutions. The Wronskian of these two functions is W (y,,1,) = t e’. Using the method
of variation of parameters, the particular solution is Y (t) = u, () y,(t) + us(t) yo(t),

in which
Gt(t th)
w (t) = —/ W@ dt
- _ 62t/2
[+t (te™)
=teé'
Therefore Y (t) = — (1 +t)e* /2 +te* = —e*/2+te? /2.

16. Observe that g(t) = 2(1 — t) e~ '. Direct substitution of ;(¢) = e’ and y,(t) =t
verifies that they are solutions of the homogeneous equation. The Wronskian of the two
solutions is W (y,,y,) = (1 — t) e'. Using the method of variation of parameters, the
particular solution is Y'(t) = u,(t) y;(¢) + ua(t) y»(t), in which

wn(t) = — / 7%(1”; (26 dt

=te 2 +e7%)/2

o [201-1)
uy(t) —/ 720 dt

= —2¢7!

Therefore Y (t) =te ' +e /2 —2tet = —te !+ e7/2.

17. Note that g(x) = Inx . The functions y,(x) = z? and y,(z) = z%In z are solutions
of the homogeneous equation, as verified by substitution. The Wronskian of the solutions
is W (y1,y,) = 2®. Using the method of variation of parameters, the particular solution is

Y(z) = ui(z) yi(z) + ua(x) yo(),
in which

2Inx(l
w(z) = — x nx(nx)dx

W (z)
= —(Inz)*/3
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xQ(lnx
W) ¢
= (Inx)?/2

Therefore Y (z) = — 22(lnz)*/3 4 22(Inx)’ /2 = 22(In )’ /6.

19. First write the equation in standard form. Note that the forcing function becomes
g(x)/(1 —z). The functions y,(z) = e” and y,(x) = z are a fundamental set of
solutions,

as verified by substitution. The Wronskian of the solutions is W (y,y,) = (1 — z)e”.
Using the method of variation of parameters, the particular solution is

Y(z) = ui(w) yi(z) + us(z) ya(2),

in which
B G )
w@) = - [ T o
_ 7 €e(g(n)
“2(”3)_/ A=
Therefore
Y L Cco) NN e 1 N
v = - [ et g
:/”3 (re™ — € T)g(T)dT‘
(1—7)%"

20. First write the equation in standard form. The forcing function becomes g(z)/z> .
The functions 3, (z) = z~"*sin x and y,(r) = 2~"/*cos z are a fundamental set of
solutions. The Wronskian of the solutions is W (y,,42) = — 1/z. Using the method
of variation of parameters, the particular solution is

Y(z) = ui(w) yi(z) + us(z) va(2),

in which
wie) = [ ' "’Of—ﬁf”m
uy(z) = — /x Ln:\(/i—(ﬂ)ch
Therefore
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sinx [* COST(g(T))dt_ cosx [* sinT(g(T))d

Tz /T NG /T
1 T st —
_ / sin(x — 1) g(T) dr
\/E T\/;
21. Lety,(t) and y,(t) be a fundamental set of solutions, and W (t) = W (y,, y,) be the

corresponding Wronskian. Any solution, u(t), of the homogeneous equation is a linear
combination u(t) = a,y,(t) + a,y»(t). Invoking the initial conditions, we require that

T

Yo = alyl(to) + ay y?(to)
/ / /
Yo = 1 ¥y, (to) + gy (to)

Note that this system of equations has a unique solution, since W (¢,) # 0. Now consider
the nonhomogeneous problem, L[v] = g(t) ,with homogeneous initial conditions. Using
the method of variation of parameters, the particular solution is given by

i) = _yl(t>/t %dswxw[ %ds.

The general solution of the IVP (i) is

v(t) = B (t) + Boya(t) + Y (1)
= By (t) + By (t) + yu (D) ua(t) + ya(t)ua(t)

in which u, and w, are defined above. Invoking the initial conditions, we require that

0= @yl(to) + 6292(t0) + Y(to)
0= ﬁlyll(t()) + ﬂQ?J;(tO) + Y/(to)

Based on the definition of u; and wus, Y(¢,) = 0. Furthermore, since y,u; + you, =0,
it follows that Y''(¢,) = 0. Hence the only solution of the above system of equations is
the trivial solution. Therefore v(t) = Y (t). Now consider the function y = u+v. Then
L[yl = L[u+ v] = L[u] 4+ L]v] = g(t). Thatis, y(t) is a solution of the
nonhomogeneous

problem. Further, y(to) = u(ty) + v(to) = yo , and similarly, y'(¢y) = y,. By the
uniqueness theorems, y(t) is the unique solution of the initial value problem.

23. A fundamental set of solutions is y,(t) = cost and y,(t) = sint. The Wronskian
W(t) = y1yy — y/y, = 1. By the result in Prob. 22,

_ ["cos(s) sin(t) — cos(t) sin(s)
Y (t) _/t[, W) g(s)ds

= /t [cos(s) sin(t) — cos(t) sin(s)]g(s)ds .

0

Finally, we have cos(s) sin(t) — cos(t) sin(s) = sin(t — s).
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24. A fundamental set of solutions is ¥, (t) = e and y,(t) = € . The Wronskian
W(t) = y1ys — yya = (b — a)exp[(a + b)t]. By the result in Prob. 22,

t jas bt _ _at bs
Y(t) = / e’ —eTel s)ds
tO

W (s)
1 teasebt _ eatebs
= ds.
b— a/tu expl(a + b)s] 9(s)ds
Hence the particular solution is
1

t
Y (t) / [eb(tfs) - e“(tfs)]g(s)ds.
ty

:b—a

26. A fundamental set of solutions is y,(t) = e and y,(t) = te® . The Wronskian
W (t) = yiys — y/y, = €**. By the result in Prob. 22,

teasebt . 6atebs
vi) = [ =2 —5 % (s)d
(1 / s

1 te(l,sebt _ eatebs
= ds.
b— a/tn expl(a + b)s] 9(s)ds

Hence the particular solution is

1 ' —S alt—Ss
Y(t) = -~ G/t [eb(t ) — ol )}g(s)ds.

26. A fundamental set of solutions is y,(¢) = e and y,(t) = te® . The Wronskian
W (t) = yys — y/y, = €2*. By the result in Prob. 22,

tteaerat — 3 eat+as
Y(t) = / g(s)ds
(t) A W) (s)

t (t _ 8)6a3+at
= / ————9g(s)ds.
to €

Hence the particular solution is

27. Depending on the values of a, b and c, the operator aD? 4+ bD + ¢ can have three
types of fundamental solutions.

(i) The characteristic roots 7, = a, 3; a # . vy (t) = e* and y,(t) = €.
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(#4) The characteristic roots 7, = a, 8; a = 3. y(t) = e and y,(t) = te™.
K(t) =te™,

A A

(i71) The characteristic roots 71, = A+ i . y,(t) = eMcos ut and y,(t) = eMsin ut.

1
K(t) = —eMsinput .
w

28. Let y(t) = v(t)y:(t), in which y, (¢) is a solution of the homogeneous equation.
Substitution into the given ODE results in

vy 20"y oy 4+ p()['y + vy + a()oy = g(t) -
By assumption, y/” + p(t)y, + q(t)y, = 0, hence v(¢) must be a solution of the ODE
vy + 2y + p(Oylo” = g(t).
Setting w = v’, we also have w’y, + [2y, + p(t)y,Jw = g(t).
30. First write the equation as y” + 7t 'y + 5t~2y = ¢t~'. As shown in Prob. 28, the
function y(t) = ¢t 'v(t) is a solution of the given ODE as long as v is a solution of
"+ [ =274+ =t

that is, v” + 5¢' v’ = 1. This ODE is linear and first order in v’. The integrating
factor is pu = t°. The solution is v’ = /6 + ct~°. Direct integration now results in
v(t) =t2/12+ it + ¢,. Hence y(t) = t/12 + it + ¢t ™.

31. Write the equation as y” —t'(1+t)y +t 'y = te*. Asshown in Prob. 28, the
function y(t) = (1 + ¢)v(t) is a solution of the given ODE as long as v is a solution of

(L+t)v" +[2—t A+ )]0 =te*,

O S - AR A ) ; SR : o oith .
that is, v o V= e This equation is first order linear in v', with integrating

factor o = t~'(1 4 t)%e". The solution is v’ = (t2e2 + ¢,te')/(1+t)®. Integrating,
we obtain v(t) = e*/2 — e* /(t + 1) + cie'/(t + 1) + ¢, . Hence the solution of the
original ODE is y(t) = (t — 1)e? /2 + cie! + co(t + 1)

32. Write the equation as y” +¢(1 —t) 'y — (1 —t)" 'y = 2(1 — t) e~*. The function
y(t) = e'v(t) is a solution to the given ODE as long as v is a solution of
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e’ + [2e" +t(1—t) e v =2(1 —t) e,

thatis, v” + [(2 — t)/(1 — t)]v’ = 2(1 — t) e~ *. This equation is first order linear in
v’, with integrating factor yn = €' /(¢ — 1). The solution is

o' =(t—1)(2e " + ).
Integrating, we obtain v(t) = (1/2 — t)e 2 — ¢;te~! + ¢, . Hence the solution of the
original ODE is y(t) = (1/2 — t)e™ ! — ¢t + cye’.

Section 3.8

1. Rcosé =3and Rsind =4 = R = /25 =5andé = arctan(4/3). Hence
u = 5cos(2t — 0.9273).

3. Rcosé =4and Rsiné = —2 = R=+/20 =2v/5 and 6 = — arctan(1/2).
Hence

u=2v/5 cos(3t + 0.4636).

4. Rcosé = —2and Rsind = —3 = R = /13 and 6 = 7+ arctan(3/2).
Hence

u = /13 cos(mt — 4.1244).

5. The spring constant is k = 2/(1/2) = 4 Ib/ft. Mass m = 2/32 = 1/16 Ib-s*/ft.
Since there is no damping, the equation of motion is

1
Eu'/+4u:0,

thatis, u” 4+ 64w = 0. The initial conditions are w(0) = 1/4 f¢, u/(0) = Ofps . The
general solution is u(t) = A cos 8t + B sin 8t. Invoking the initial conditions, we have
u(t) = icos 8t. R =3 inches, 6 =0rad, wy=8rad/s,and T = 7/4 sec.

7. The spring constant is k = 3/(1/4) = 12 Ib/ft. Mass m = 3/32 Ib-s*/ft. Since
there is no damping, the equation of motion is

3
ﬁu” +12u =0,
that is, u” 4+ 128u = 0. The initial conditions are u(0) = — 1/12ft, v/(0) = 2 fps .

The general solution is u(t) = A cos8v/2t + B sin8+/2t. Invoking the initial
conditions, we have
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1 1
u(t) = —ECOS8\/515+ sin8v/2t.

1,/2

R = \/ﬁ/12ft,5: 7r—atan<3/\/§) rad, wy = 8+/2 rad/s, andT:W/<4\/5) sec.

10. The spring constant is k = 16/(1/4) = 64 Ib/ft. Mass m = 1/2 Ib-s*/ft. The
damping coefficient is v = 2 [b-sec/ft. Hence the equation of motion is

1
§u”—|—2u’—|—64u =0,

thatis, u” + 4u’ 4+ 128u = 0. The initial conditions are «(0) = 0%, v’ (0) = 1/4 fps.
The general solution is u(t) = Acos2+/31t + B sin24/31t. Invoking the initial
conditions, we have

u(t) = 531 e sin24/31t.

0.0161
0.0147
0.0124
0.014
0.0087
(0.006 5
0.0044
0.002 3

oomd 02\04 P 0.8\1‘/1.2 1416 18 2
-0.004
-0.008
-0.008

-0.014

Solving u(t) = 0, on the interval [0.2, 0.4], we obtain ¢ = 7/2+/31 = 0.2821 sec.
Based on the graph, and the solution of u(¢) = 0.01, we have |u(t)| < 0.01 for
t>71=0.2145.

11. The spring constant is k = 3/(.1) = 30 N/m . The damping coefficient is given as
~v = 3/5 N-sec/m . Hence the equation of motion is

2u” + %u/+30u =0,

thatis, u” 4+ 0.3u’ 4+ 15u = 0. The initial conditions are «(0) = 0.05 m and
u'(0) = 0.01m/s. The general solution is u(t) = A cos ut + B sin ut , in which
= 3.87008 rad/s . Invoking the initial conditions, we have

u(t) = e *151(0.05¢c0s pt 4 0.00452sin pt) .

Also, 1/w, = 3.87008/+/15 ~ 0.99925 .

page 124



WWV. ZI T e.Ir

CHAPTER 3. ——

13. The frequency of the undamped motion is w, = 1. The quasi frequency of the
damped

motion is p = §1/4 —~2 . Setting p1 = 3w, , we obtain v = %\/g

14. The spring constant is k = mg/L . The equation of motion for an undamped system
is
mg

Lu:().

mu 1 +
Hence the natural frequency of the system is wy = /4 . The period is 7' = 27 /wj .

15. The general solution of the system is u(t) = Acos~y(t — t,) + Bsiny(t — t,) .
Invoking the initial conditions, we have u(t) = ugcosy(t — t,) + (u./7)siny(t — t,).
Clearly, the functions v = uycosy(t — t,) and w = (u,/7y)siny(t — t,) satisfy the given
criteria.

16. Note that r sin( wyt — 0) = r sinw,t cos 8 — r coswyt sinf . Comparing the given

expressions, we have A = —rsinf and B =rcosf. Thatis,r = R = /A% + B2,
and tanf = — A/B = — 1/tan 6. The latter relation is also tan + cot 6 = 1.

18. The system is critically damped, when R = 2./L/C . Here R = 1000 ohms .

21(a). Letu = Re ""/?"cos(ut — ). Then attains a maximum when ut, — § = 2k.
Hence T; =t — t, = 27/ 1.

(). u(te)/u(tes) = exp(—yti/2m)/exp( —typ1/2m) = exp|(Vtrer — i)/ 2m].
Hence u(t;)/u(tr 1) = exp[y(2n/pn)/2m] = exp(yTy/2m).

(©). A= Infuty)/utn)] = ~y(2r/p)/2m = 7y /pm .

22. The spring constant is k = 16/(1/4) = 64 Ib/ft. Mass m = 1/2 [b-s*/ft. The
damping coefficient is v = 2 [b-sec/ft . The quasi frequency is u = 21/31 rad/s.

_ 2
Hence A = v 1.1285.

25(a). The solution of the IVP is u(t) = e */* (2 cos %\/?t + 0.252sin gﬁt).
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: va WA
t
-0.57

Using the plot, and numerical analysis, 7 ~ 41.715.

(b). Fory=0.5,7~20.402; fory=1.0,7~9.168; fory= 15,7~ 7.184.

().

404
351
304
281

201

(d). Fory=1.6,7~7.218; fory= 17,7~ 6.767; fory= 1.8, 7 ~ 5.473;
fory=1.9, 7~ 6.460. 7 steadily decreases to about 7,,;,, ~ 4.873, corresponding to
the critical value v, ~ 1.73.

(¢). We have u(t) = 2 cos(ut — §) ,in which 1 = }1/2 =77 , and

_ a e /2
6 = tan 1\/417 . Hence |u(t)| < jm .

26(a). The characteristic equation is mr* + yr 4+ k = 0. Since 4> < 4km , the roots
are 7y, = — 5-+i 7W . The general solution is

\Amk — 2 Vamk — 2
u(t) = e MM Acos#t—i—Bsin%t :
m m

Invoking the initial conditions, A = u, and

(2muvy, — yuy)

Amk —~2
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(b). We can write u(t) = Re "/*"cos(ut — 6), in which
(2mu, — *)/uo)Z
R = 2 ,
\/uo + dmk — 2
and
6 = arctan (2my — yu)
Ugr/4mk —~2 |
. 2 (2muv,— u(, m(ku? +’yu(,vu+muo) . a+b
(C)' R= \/’LLO + dmk ’Y'y 2\/ Amk—~? - 4mk77yz '

It is evident that R increases (monotonically) without bound as v — (2\/ mk:) )

28(a). The general solutlon is u(t) = Acos /2t + Bsin\/2t. Invoking the initial
conditions, we have u(t) = \/2 sin /2 t.

(b).

-
L

02040608 1 121)4

The condition v’(0) = 2 implies that u(t) initially increases. Hence the phase point
travels clockwise.
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29. u(t) = %e*t/gsin @t.

31. Based on Newton's second law, with the positive direction to the right,
ZF = mu”
where

ZF: — ku —~yu'.

Hence the equation of motion is mu"” 4+ yu’ + ku = 0. The only difference in this
problem is that the equilibrium position is located at the unstretched configuration of
the spring.

32(a). The restoring force exerted by the spring is F, = — (ku + cu®). The opposing
viscous force is F; = — yu’'. Based on Newton's second law, with the positive direction
to the right,

F,+ F;=mu”.

Hence the equation of motion is mu” + yu’ + ku +cu® = 0.

(b). With the specified parameter values, the equation of motion is u” +u = 0. The
general solution of this ODE is u(t) = A cost + B sint. Invoking the initial
conditions,

the specific solution is u(t) = sint. Clearly, the amplitude is R = 1, and the period of
the motion is 7" = 2.

(¢). Given e = 0.1, the equation of motion is u” +u + 0.1u? = 0. A solution of the
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IVP can be generated numerically:
eps=.1
1 H
0.5
0.5
0.43
0.2
2 i E 10 1
0.2
0.4
05
0.8
EE
(d).
=0.2
ERe eps=0.3
081 0.5
087 0.6]
0.4 0.4
0.2

0.249

2 s 8 | fz I R R R B NN N I
0.2 0.2
0.4 044
-0.61 05
0.5 -0.84

(e). The amplitude and period both seem to decrease.

(f)-
14
0.5
0.6
0.4
0.21
2

-0.24
-0.4
-0.61
-0.81

eps=-.1

/)
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eps=-0.2

eps=-0.3
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Section 3.9

2. We have sin(a+3) = sinacos 3+ cos a sin (3. Subtracting the two identities, we
obtain sin(a + () — sin(a — ) = 2cosasin 3. Setting a + § = Tt and o — 3 = 6t,
o = 6.5t and 3 = 0.5¢. Hence sin Tt — sin 6t = 2 sin £ cos 13 .

3. Consider the trigonometric identity cos(a+f3) = cosacos 3 F sina sin 3. Adding

the two identities, we obtain cos(a — ) + cos(a + ) = 2cos acos 3. Comparing the
expressions, set « + 3 = 27t and o — 3 = wt. Hence o« = 37t/2 and § = nt/2. Upon

substitution, we have cos(wt) + cos(2nt) = 2 cos(3nt/2) cos(nt/2).

4. Adding the two identities sin(a=%[3) = sin a cos 3+ cos a sin [3, it follows that
sin(a — ) 4+ sin(a + ) = 2sinacos 3. Setting a + § = 4t and a — § = 3t, we
have a = 7t/2 and 5 = t/2. Hence sin 3t + sin 4t = 2 sin(7t/2) cos(t/2).

6. Using mks units, the spring constant is k£ = 5(9.8)/0.1 = 490 N/m , and the damping
coefficient is 7 = 2/0.04 = 50 N-sec/m . The equation of motion is

5u’ + 50u’ + 490u = 10 sin(t/2).

The initial conditions are u(0) = 0 m and u'(0) = 0.03 m/s .

8(a). The homogeneous solution is u,(t) = Ae 'cos/ 73t + Be 'sin\/73t. Based
on the method of undetermined coefficients, the particular solution is

Ut) = —

153281
Hence the general solution of the ODE is u(t) = u.(t) + U (¢). Invoking the initial
conditions, we find that A = 160/153281 and B = 383443+/73 /1118951300 . Hence
the response is

1 3834434/ 73
t) = 160 e 'cos /T3t + ——— e sin\/T3t| + U(t).
u(t) 153981 60e "cos /T3t + 300 ¢ Sin 3t +U(t)

[ — 160 cos(t/2) + 3128 sin(t/2)].

(b). wu.(t) is the transient part and U (¢) is the steady state part of the response.
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0.024

0.014

-0.011

-0.024

(d). Based on Egs. (9) and (10), the amplitude of the forced response is given by
R =2/A, in which

A= \/25(98 — w?)® + 25002

The maximum amplitude is attained when A is a minimum. Hence the amplitude is

maximum at w = 44/ 3 rad/s .
9. The spring constant is £ = 12 [b/ft and hence the equation of motion is

6
3—2u” +12u =4cosTt,

thatis, u” + 64u = S cos 7t. The initial conditions are u(0) = 0 f, w'(0) = 0 fps.

The general solution is u(t) = Acos 8t + Bsin 8t + $tcos 7t. Invoking the initial

conditions, we have u(t) = — $cos8t + Sicos Tt = Bsin(t/2)sin(15¢/2).

12. The equation of motion is

2u” +u' + 3u = 3cos 3t — 2sin 3t.

Since the system is damped, the steady state response is equal to the particular solution.

Using the method of undetermined coefficients, we obtain
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1
U (t) = é(szn 3t — cos 3t).

Further, we find that R = /2 /6 and § = arctan( — 1) = 37 /4. Hence we can write
Uy (t) = gcos(i’)t — 37/4).

13. The amplitude of the steady-state response is given by
Fy

\/mQ(wg — w2)2 + 2 w?

Since Fj is constant, the amplitude is maximum when the denominator of R is minimum .

Let 2 = w?, and consider the function f(z) = m2(w? — z)° + 42z Note that f(z) is

a quadratic, with minimum at z = w? — v*/2m?. Hence the amplitude R attains a

R =

maximum at w? = w? —v*/2m?. Furthermore, since w? = k/m , and therefore
2
2 _ 2 2
Winaz = W |:1 - 2km:| :

2

maxr

into the expression for the amplitude,
E
R = 4 2 | A2 0 2 _ 2 2
VA2 + 92 (W] — 72/2m?)
V3 = am?
Fy

Ywor/1 —~2/dmk

Substituting w? = w

14(a). The forced response is u,,(t) = Acoswt + Bsinwt. The constants are obtain by
the method of undetermined coefficients. That is, comparing the coefficients of cos wt
and sin wt, we find that

—mw?A+ywB+ kA =F,,and — mw’B —ywA+ kB =0.
Solving this system results in

A=m(w —w?)/A and B=w/A,

in which A = \/ m?(w? — w?)” + 42w? . It follows that

yw

tanb = B/A = ————.
o= B R =)

(b). Herem =1, = 0.125,w, = 1. Hence tan § = 0.125w/(1 — w?).
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phase

01" 02 04 06 08

17(a). Herem = 1,7 =0.25,w} = 2, F, = 2. Hence u,,(t) = %cos(wt — ),
where A = \/(2 — W)+ w?/16 = i\/64 — 63w? 4+ 16w , and tan é = o

(b). The amplitude is

8
R = .
V64 — 63w? + 16 w*
(c).
Armplitude
5_
4
3_
2_
1_
o 08 1 18 2 25 3
Wy

(d). See Prob. 13. The amplitude is maximum when the denominator of R is minimum.
That is, when w = w,,,, = 3v/14 /8 ~ 1.4031. Hence R(w = wy..) = 64/+/127 .

18(a). The homogeneous solution is u.(t) = Acost + Bsint. Based on the method of
undetermined coefficients, the particular solution is

Hence the general solution of the ODE is u(t) = w.(t) + U (¢). Invoking the initial
conditions, we find that A = 3/(w? — 1) and B = 0. Hence the response is
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104

T

u(t) = - sl coswt — cost].

-10+
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304

20

\/ 10 20 30 40 50 \/ﬁ'ﬂ
t

-204

-30

Note that

19(a). The homogeneous solution is u,(t) = Acost + Bsint. Based on the method of
undetermined coefficients, the particular solution is

U(t)

= ﬁcoswt.
—w

Hence the general solution is u(t) = u,.(t) + U (t). Invoking the initial conditions, we
find that A = (w? +2)/(w? - 1) and B = 1. Hence the response is

u(t) [3coswt — (w* +2)cost] + sint.

12

(b.)
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304

204

101 /\
i

\/ 10 20 3ﬂ 40 50 \fh

-104

-2 0

_3 l]_

Note that
6 1—-w)t
u(t) = . 25@”{( w) ]sin{(w_+ ]—Fcost%—smzt.
20.
w =07
104
5_
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21. The general solution is u(t) = u.(t) + U (¢), in which

__—t/16 171358 \/255t 257758 _ \/255?5

(’t - -
u(t) =e 132721 7716 | 132721255 16

and

U(t) [436800 cos(.3t) + 18000 sin(.3t)] .

~ 132721
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o 10 20 Va0 J4n ls0 [ED 0
t

_1—

_2—

-34

e

23. The general solution is u(t) = u.(t) + U(t), in which

4 V2 12 V2
w(t) = et/ | 9746 55 58 . /255

1105 cos 16 t+ 921 /250 sin 6
and
1 .
U(t) = m[ — 1536 cos(3t) + 72 sin(3t)] .
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24.

25(a).

2'& ' 1 12W5M20V2528305(2
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0.4

R

A

0.4+

249 @
2.29

1,69
1.44 o
1.23

0.6
0.41 +

(c). The amplitude for a similar system with a /inear spring is given by

5
R = :
V25 — 4902 + 25w!
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Armplitude

06
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Chapter Four
Section 4.1

1. The differential equation is in standard form. Its coefficients, as well as the function
g(t) = t, are continuous everywhere. Hence solutions are valid on the entire real line.

3. Writing the equation in standard form, the coefficients are rational functions with
singularities at ¢t = 0 and ¢ = 1. Hence the solutions are valid on the intervals ( — 00,0),
(0,1),and (1,00).

4. The coefficients are continuous everywhere, but the function g(¢) = Int is defined
and
continuous only on the interval (0, cc0). Hence solutions are defined for positive reals.

5. Writing the equation in standard form, the coefficients are rational functions with a
singularity at z, = 1. Furthermore, p,(x) = tanx/(x — 1) is undefined, and hence not
continuous, at x, = £(2k + 1)7/2, k =0,1,2,---. Hence solutions are defined on any
interval that does not contain x, or x, .

6. Writing the equation in standard form, the coefficients are rational functions with
singularities at x = £+ 2. Hence the solutions are valid on the intervals ( — oo, — 2),
(—2,2),and (2,00).

7. Evaluating the Wronskian of the three functions, W ( f, f», fs) = — 14. Hence the
functions are linearly independent.

9. Evaluating the Wronskian of the four functions, W (f,, f», f3, f1) = 0. Hence the
functions are linearly dependent. To find a linear relation among the functions, we need
to find constants c¢,, ¢, c3, ¢y , not all zero, such that

e fi(t) + eafo(t) + csfs(t) +cufi(t) = 0.
Collecting the common terms, we obtain
(CQ +2C3 +C4)t2 + (261 — C3 +C4)t+ ( - 361 +CQ +C4) == 09

which results in three equations in four unknowns. Arbitrarily setting ¢, = — 1, we can
solve the equations ¢, +2¢; =1,2¢; —¢c; =1, — 3¢, + ¢, = 1, to find that ¢, = 2/7,
¢, =13/7,¢; = —3/7. Hence

2f1(t) +13/2(t) = 3f5(t) — 7/fu(t) = 0.

10. Evaluating the Wronskian of the three functions, W (f,, f,, fs) = 156 . Hence the
functions are linearly independent.
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11. Substitution verifies that the functions are solutions of the ODE. Furthermore, we

have
W(1,cost,sint) =1.

12. Substitution verifies that the functions are solutions of the ODE. Furthermore, we
have W (1,t,cost,sint) = 1.

14. Substitution verifies that the functions are solutions of the ODE. Furthermore, we
have W (1,t,e7t,te™?) = e 2.

15. Substitution verifies that the functions are solutions of the ODE. Furthermore, we
have W (1, z,2%) = 6x.

16. Substitution verifies that the functions are solutions of the ODE. Furthermore, we
have W (z,2?,1/z) = 6/x.
18. The operation of taking a derivative is linear, and hence

)(k’) (k) (k)

(Y1 + Yo =yt ey, .

It follows that
I . m (n) (n-1) -7,
[y + cayp] = iy + ey, + [0191 + Y, ] + o 4 pufeiy + eyl

Rearranging the terms, we obtain L[c,y, + ¢y,] = ¢, L{y1] + ¢, L[y,]. Since y, and y,
are solutions, L[c,y, + ¢,y,] = 0. The rest follows by induction.

19(a). Note that d*(t")/dt* = n(n —1)---(n —k+ 1)t" % fork =1,2,---,n.
Hence

L[t"] = agn! + ay[n(n — 1)--2)t + - a,_ nt" ' 4 a,t".

(b). We have d*(e")/dtk = r¥e™, for k = 0,1,2,---. Hence

L|:€7't] = q, Tnert + alrn—lert 4o a, T ert + a, e’rt

= [ao a4 a4 an]e”.

(¢). Sety = e, and substitute into the ODE. It follows that r* — 572 +4 = 0, with
r = 41,4 2. Furthermore, W (e!, e, %, e72) = 72.

20(a). Let f(t) and g(t) be arbitrary functions. Then W (f,g) = fg’ — f'g. Hence
W’(f,g) _ f/g/+fg//_f//g_f/g/ _ fg"—f"g. That is,
W’(f,g) = ‘ff// gg// .

Now expand the 3-by-3 determinant as
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/ / / / / /
Yo Y3 Y Y Y Y
W ) yYs) — - + : .
(yl Y2 ys) U yQ// yg// Yo yll/ y‘s” Ys yl// yQ//
Differentiating, we obtain
/ / / / / /
W) =ui| g =l g bl
/ / / / / /
+ U y/Z// y/g// — Y2 y/lll y/3// + Y3 y}// y/2// .
2 Ys 1 Ys 1 2

The second line follows from the observation above. Now we find that

/

) Y, ?JQ/ yyf Y1 Ys Y3
Wiy, yesys) = |9 ¥ ¥ |+ W ¥ Ui

" i " "

y!' oy oyl "y oy

Hence the assertion is true, since the first determinant is equal to zero.

(b). Based on the properties of determinants,

Psyr P3Y2 PsYs
pZ(t)pS(t)W/ =Dy Py DY
yll// yz/// y3///
Adding the first two rows to the third row does not change the value of the determinant.
Since the functions are assumed to be solutions of the given ODE, addition of the rows
results in

/ YZ D3 Y2 D3Ys
y%) (t)p‘s (t)W = Do y{ Do ygl Do yg/
— D y{’ — D yQN — D 3/3//

It follows that p,(t)ps(H)W' = — pi(t)p.(t)ps(t)W . As long as the coefficients are not
zero, we obtain W' = — p,(t)W.

(c). The first order equation W' = — p,(¢t)W is linear, with integrating factor u(t) =
= exp([pi(t)dt). Hence W (t) = cexp(— [pi(t)dt) . Furthermore, W (t) is zero
onlyifc =0.

(d). Tt can be shown, by mathematical induction, that

Y1 Yo e Yn— Yn
/ / !/ /
yl y? T yn—l yn
W,(ylay%"'ayn) = (: 2 (n-2) (n-2) :
n— n— n— n—
'y Yoo Yo
w ey
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Based on the reasoning in Part(b), it follows that
P(t)ps() P ()W = — pi()pa(t)ps(8) - pu ()W,
and hence W' = — p,(t)W.

22. Inspection of the coefficients reveals that p,(¢) = 0. Based on Prob. 20, we find
that W/’ =0, and hence W = c.

23. After writing the equation in standard form, observe that p,(¢) = 2/¢t. Based on the
results in Prob. 20, we find that W/ = ( — 2/t)W , and hence W = ¢/t%.

24. Writing the equation in standard form, we find that p, (¢) = 1/t. Using A4bel's
formula, the Wronskian has the form W (t) = cexp( — [1dt) = c/t.

25(a). Assuming that ¢,y (t) + coys(t) + -+ + ¢y, (t) = 0, then taking the first n — 1
derivatives of this equation results in

k k :
ey’ () + e (1) + -+ ey () = 0
for k=0,1,---,n — 1. Setting t = t,, we obtain a system of n algebraic equations with
unknowns ¢, ¢y, -+, ¢, . The Wronskian, W (yy, ys, -+, ¥ )(t0), is the determinant of the
coefficient matrix. Since system of equations is homogeneous, W (yy, 42, -+, ¥, ) (o) 7# O
implies that the only solution is the #rivial solution, ¢, = ¢, = --- =¢, = 0.

(b). Suppose that W (y,, ys, -+, y,)(ty) = 0 for some ¢,. Consider the system of
algebraic
equations

ey () + ey () + - + ey (1) = 0,

k=0,1,---,n — 1, with unknowns ¢, ¢,, - - -, ¢, . Vanishing of the Wronskian, which is
the determinant of the coefficient matrix, implies that there is a nontrivial solution of the
system of homogeneous equations. That is, there exist constants ¢y, ¢, - -+, ¢, , not all
zero, which satisfy the above equations. Now let

y(t) = e (t) + caa(t) + -+ + coya(t).

Since the ODE is linear, y(t) is also a nonzero solution. Based on the system of algebraic
equations above, y(t,) = y'(t,) = --- = y" Y(t,) = 0. This contradicts the uniqueness
of the identically zero solution.

26. Let y(t) = yi(t)v(t). Theny' =y/v+yv', y” =y/'v+2y/v' + y,v”, and
y" =y v+ 3y"v" + 3y/v"” + yv0"”. Substitution into the ODE results in

"

y"v + 3y + 3yiv” +yv” + oyl v+ 2yiv 4+ yiv”] + poyiv + yiv'] + payiv = 0.

Since y, is assumed to be a solution, all terms containing the factor v(¢) vanish. Hence
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yiv"” + oy + 3y " + By, + 2piy) + pyi|v’ =0,

which is a second order ODE in the variable u = v’.

28. First write the equation in standard form:

" t+2 1 t+1 / 6
— 6 —
t(t+3)y * t2(t+3)y t2(t+3

=0

Let y(t) = t?v(t). Substitution into the given ODE results in

H+q)

t2 " 3
S

=0.

Set w = v”. Then w is a solution of the first order differential equation

t+4

/
3
R Tra

w =

This equation is /inear, with integrating factor ;(t) = t*/(t + 3). The general solution
is w = c(t + 3)/t*. Integrating twice, it follows that v(t) = c;t ™ + ¢;t 72 + ¢yt + cs.
Hence y(t) = cit + ¢; + ct3 + c5t%. Finally, since y,(t) = t? and 1, (¢) = t3are given
solutions, the third independent solution is y;(t) = ¢t + ¢; .
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Section 4.2

1. The magnitude of 1 +1iis R = \/5 and the polar angle is /4 . Hence the polar
form is given by 14 i = /2 e/™/4.

3. The magnitude of — 3 is R = 3 and the polar angle is 7. Hence — 3 = 3¢,

4. The magnitude of — i is R = 1 and the polar angle is 37/2. Hence — i = €’™/2,
5. The magnitude of \/3 — i is R = 2 and the polar angle is — 7/6 = 117/6. Hence
the polar form is given by /3 — i = 2 e!1m/6,

6. The magnitude of — 1 —11s R = \/5 and the polar angle is 57 /4 . Hence the polar
form is given by — 1 — i = /2 "™/4,

7. Writing the complex number in polar form, 1 = e?™™_ where m may be any integer.
Thus 1/ = ¢?"7/3_ Setting m = 0, 1, 2 successively, we obtain the three roots as
113 =1,1Y% = /3 113 = ¢*i/3_ Equivalently, the roots can also be written as

1, cos(2n/3) + i sin(2n/3) = %( —1+ \/§>, cos(4n/3) + isin(4n/3) = %( —1+ \/§>

9. Writing the complex number in polar form, 1 = e?™™, where m may be any integer.
Thus 1V* = ¢?"7i/4 Setting m = 0, 1, 2, 3 successively, we obtain the three roots as
1V =1,1Y = e™/2 1/ = ¢™ 1Y* = ¢37/2, Equivalently, the roots can also be
written as 1, cos(w/2) + i sin(w/2) =i, cos(w) +isin(w) = — 1, cos(37/2) +

+isin(37/2) = —i.

10. In polar form, 2(cos /3 + i sinm/3) = 2e™/3+¥"7 in which m is any integer.
Thus [2(cos 7/3 + i sin/3)]"* = 2'/2 &!™/0+m7  With m = 0, one square root is

given by 21/2¢™/6 = <\/§ + z> /+/2 . With m = 1, the other root is given by

21/26i77r/6: (_ \/§_1>/\/§
3 2

11. The characteristic equation is 7° —r* —r 4+ 1 =10. Therootsarer = — 1,1,1.
One root is repeated, hence the general solution is y = c,e™! + c,e! + cstel.

13. The characteristic equation is r* — 2r2 —r +2 = 0, withroots» = — 1,1,2. The
roots are real and distinct, hence the general solution is y = c,e ™" 4 c,e! + cze?.

14. The characteristic equation can be written as r?(r? — 4r + 4) = 0. The roots are
r =0,0,2,2. There are two repeated roots, and hence the general solution is given by
Y=c +ct+ 03€2t + C4t62t.

15. The characteristic equation is 7% + 1 = 0. The roots are given by 7 = ( — 1)"/°,
that is, the six sixth roots of — 1. They are e ™/6+m7/3 1y = 0,1, ---,5. Explicitly,
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r= (\/5—@')/2, (\/§+z'>/2,z', _s, (— \/§+z‘)/2, (— \/§—@)/2. Hence
the general solution is given by y = ¢V3t/2 [cicos (1/2) 4 cysin (t/2)] 4 czcost +
cisint + e V312 [escos (t/2) + cgsin (t/2)].

16. The characteristic equation can be written as (r*> — 1)(r*> —4) = 0. The roots

are given by r = + 1, =2. The roots are real and distinct, hence the general solution is
y = cre !+ cel + cie? 4 e

17. The characteristic equation can be written as (72 — 1)3 = 0. The roots are given by
r = £ 1, each with multiplicity three. Hence the general solution is

Yy = ce t 4 ete ™t + c3t26_t +ciel + c5tet + c6t2€t.

18. The characteristic equation can be written as 72 (r4 — 1) = 0. The roots are given
by r =0,0,41,47. The general solution is y = ¢, + ¢t + cse™ ! + cie! + cscost +
+ cgsint.

19. The characteristic equation can be written as 7(r* — 3r® + 3r? — 3r + 2) = 0.
Examining the coefficients, it follows that 74 — 3r® + 3r? —3r +2 = (r — 1)(r — 2) x
(r? 4+ 1). Hence the roots are 7 = 0, 1,2, &4 . The general solution of the ODE is given
by y = ¢ + cel + ;e + cicost + cssint.

20. The characteristic equation can be written as 7(r3 — 8) = 0, with roots r = 0 ,
2e2mmi/3 ' =0,1,2. Thatis, 7 = 0,2, — 1 +i1/3 . Hence the general solution is

y=c +ce¥ +et [03003\/§t + c4sin\/§t} )

21. The characteristic equation can be written as (7“4 + 4) ? = 0. The roots of the
equation r* +4 = Oarer = 1 +i, — 14+14. Each of these roots has multiplicity two.
The general solution is y = e'[c,cost + cysint| + tel[cscost + cysint] +

+ e escost + cgsint ] + te te;cost + cgsint].

22. The characteristic equation can be written as (7> + 1)2 = 0. The roots are given
by r = £ 14, each with multiplicity two. The general solution is y = c,cost + c,sin
t+

+ tlescost + eysint .

24. The characteristic equation is 7> + 5r + 6r + 2 = 0. Examining the coefficients,
we find that 7% + 572 4+ 67 + 2 = (r + 1)(r? 4+ 47 + 2). Hence the roots are deduced as

r=—1, —2 j:ﬁ. The general solution is y = c;e ™ + c2e(_2+‘/§)t + cge(_Q_\/E)t.

25. The characteristic equation is 1873 4 2172 + 14r + 4 = 0. By examining the first
and last coefficients, we find that 187 + 2172 + 147 + 4 = (2r + 1)(972 + 67 + 4).
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Hence the roots are r = — 1/2, ( — 1j:\/§ ) /3. The general solution of the ODE is
given by y = ¢,e /2 4 ¢71/3 [czcos (t/\/g) + c38in (t/\/g) } )

26. The characteristic equation is 7! — 773 + 672 4 307 — 36 = 0. By examining the
first and last coefficients, we find that

rt —7r® 4+ 6r° +30r — 36 = (r — 3)(r +2)(r* — 6r +6).
The rootsare r = —2,3,3 :I:\/§ . The general solution is

Y = 0167% + c2e3t + 036(37\/§)t + c4e(g+\/§)t.

28. The characteristic equation is 74 4 673 4 1772 4 22r + 14 = 0. It can be shown
that % + 673 + 17r? + 22r + 14 = (r? + 2r + 2)(r? + 4r + 7). Hence the roots are
r= —1+i, —2+i\/3. The general solution is

Yy = eft[clcost + cysint] + e 2 |:CgCOS\/§t + c4sin\/§t] .

30. y(t) = %e‘t/ﬁsin(t/ﬁ> - %et/ﬁsin(t/ﬁ).

32. The characteristic equation is ™ —r24+r—1=0,withroots =1, +i. Hence
the general solution is y(t) = c,e’ + c,cost + c3sint. Invoking the initial conditions,
we obtain the system of equations

¢+ =2
C1 + C3 = — ]_
CiL — C = — 2
with solution ¢, = 0, ¢, = 2, ¢ = — 1. Therefore the solution of the initial value

problem is y(t) = 2cost — sint.
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1 4
o : 5 10 12
11
oa
33. The characteristic equation is 2r* — 73 — 97> + 4r + 4 =0, withroots 7 = — 1/2,

1, +2. Hence the general solution is y(t) = c;e /2 + c,e + c;e72 + c,e?' . Applying
the initial conditions, we obtain the system of equations

a+ce+cegte=—2

1
—501+Cg_203+204:0

1

ZCl+Cg+4Cg+4C4: -2

1
_§CI+02_803+8C4:0

with solution ¢, = — 16/15,¢, = —2/3,¢3 = —1/6,¢, = — 1/10. Therefore the
solution of the initial value problem is y(t) = — 8e~1/2 — 2¢f — Le=20 _ L2t

2
-2.21
-2.44
-2.61

-2.81

31

-3.21
1] 0.2 o4 4 06 0.8 1

The solution decreases without bound.

34. y(t) = Ze '+ €' [Zcost + Lsint].
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304

204

The solution is an oscillation with increasing amplitude.

35. The characteristic equation is 6 % + 572 + 7 = 0, withroots 7 = 0, — 1/3, — 1/2.
The general solution is y(t) = ¢; + c,e*/® 4+ c;e /2. Invoking the initial conditions,
we require that

Cq + Co + Cy = — 2
1 1
— gCQ — 503 =2
1 1
502 + 103 =0
with solution ¢; = 8, ¢, = — 18, ¢; = 8 . Therefore the solution of the initial value

problem is y(t) = 8 — 18e7/3 + 8e~/2.

a4

36. The general solution is derived in Prob.(28) as
y(t) = e '[eicost + cysint] + e [cgcosﬁt + c43in\/37t} :

Invoking the initial conditions, we obtain the system of equations
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citec=1
—C1+CQ—263—|—\/_C4= 2

—2¢cy + ¢35 — 4[04—0

201+2CQ+1003+9fc4:3

with solution ¢; = 21/13,¢, = —38/13,¢3 = —8/13,¢, = 17\/5/39.

14
0.8
0.6
0.4

0.2

The solution is a rapidly-decaying oscillation.

38.

W(et,e_t,cost, sint) = -8
W(cosht,sinht,cost,sint) =4

40. Suppose that c,e™ 4 c,e™ + --- + ¢,e™! = 0, and each of the r, are real and
different. Multiplying this equation by e "%, ¢, + c,e™ ™)t ... 4 ¢ et = (.,
Differentiation results in

cy(ry —m)e (ra=r)t 44 Co(rn — 11 )e(”*”)t =0.
Now multiplying the latter equation by e~(">="1_and differentiating, we obtain
es(ry — 1) (rs — ) e e (= 1) (1 — 1 )eT T =0
Following the above steps in a similar manner, it follows that
Co(ry — 1) (1 — rl)e(""_r”*l)t =0.
Since these equations hold for all ¢, and all the r;, are different, we have ¢, = 0. Hence
e+ e 4o, €t =0, —co<t<oo.

The same procedure can now be repeated, successively, to show that

co=¢c=-=c¢,=0.
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Section 4.3

2. The general solution of the homogeneous equation is y, = c,e! + c,e ™" + cscost +
+ ¢eysint. Let g,(t) = 3t and g,(t) = cost. By inspection, we find that Y;(t) = — 3t.
Since g¢,(t) is a solution of the homogeneous equation, set Y, (t) = t(Acost + Bsint).
Substitution into the given ODE and comparing the coefficients of similar term results in
A =0and B= —1/4. Hence the general solution of the nonhomogeneous problem is

t
y(t) = y.(t) — 3t — Zsint.

3. The characteristic equation corresponding to the homogeneous problem can be written
as (r+1)(r* + 1) = 0. The solution of the homogeneous equation is y, = c;e™ +

+ cycost + czsint. Let g(t) = e ' and g,(t) = 4t. Since g,(t) is a solution of the
homogeneous equation, set Y;(t) = Ate'. Substitution into the ODE results in A = 1/2.
Now let Y;(t) = Bt + C. We find that B = — C' = 4. Hence the general solution of
the nonhomogeneous problem is y(t) = y.(t) +te /2 + 4(t — 1).

4. The characteristic equation corresponding to the homogeneous problem can be written
as r(r+1)(r — 1) = 0. The solution of the homogeneous equation is y. = ¢, + c,e’ +
+ cse". Since g(t) = 2 sint is not a solution of the homogeneous problem, we can set
Y (t) = Acost + B sint. Substitution into the ODE resultsin A = 1 and B =0.

Thus

the general solution is y(t) = ¢; + c,e! + cse ™! + cost.

6. The characteristic equation corresponding to the homogeneous problem can be written
as (r2+1)> = 0. It follows that Yo = 1c08t + cysint + t(czcost + eysint). Since

¢g(t) is not a solution of the homogeneous problem, set Y (¢) = A + Bcos 2t + Csin 2t .
Substitution into the ODE results in A = 3, B = 1/9, C' = 0. Thus the general solution
is y(t) = y.(t) + 3+ scos2t.

7. The characteristic equation corresponding to the homogeneous problem can be written
as 73(r® +1) = 0. Thus the homogeneous solution is

Yo =1+ ot + st + ciet + et/? [c5cos<\/§t/2) +cgsin<\/§t/2)]

Note the g(t) = t is a solution of the homogenous problem. Consider a particular
solution

of the form Y (t) = t3(At + B). Substitution into the ODE results in A = 1/24 and
B = 0. Thus the general solution is y(t) = y.(t) + t*/24.

8. The characteristic equation corresponding to the homogeneous problem can be written
as 73(r + 1) = 0. Hence the homogeneous solution is y, = ¢; + ¢, t + c5t% + et

Since ¢(t) is not a solution of the homogeneous problem, set Y (t) = Acos 2t + Bsin 2t .
Substitution into the ODE results in A = 1/40 and B = 1/20. Thus the general solution
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is y(t) = y.(t) + (cos 2t + 2sin 2t) /40.

10. From Prob. 22 in Section 4.2, the homogeneous solution is
Yo = 108t + cysint + + t[ezcost + cysint].

Since g(t) is not a solution of the homogeneous problem, substitute Y (¢) = At + B into
the ODE to obtain A = 3 and B = 4. Thus the general solution is y(t) = y.(t) + 3t + 4.
Invoking the initial conditions, we findthatc, = —4,¢, = —4,c3=1,¢, = — 3/2.
Therefore the solution of the initial value problem is

y(t) = (t —4)cost — (3t/2 +4)sint + 3t + 4.

B0
a0
407
30

207

11. The characteristic equation can be written as 7(r?> — 3r + 2) = 0. Hence the
homogeneous solution is y. = ¢; + c,e! + cse?’. Let gy (t) = e’ and g,(t) = t. Note
that g, is a solution of the homogeneous problem. Set Y;(¢) = Ate'. Substitution into
the ODE results in A = — 1. Now let Y,(t) = Bt*> + C't. Substitution into the ODE
results in B = 1/4 and C' = 3/4. Therefore the general solution is

y(t) = c1 + e’ + cye* —te' + (t* 4 3t) /4.

Invoking the initial conditions, we find that ¢, = 1, ¢, = ¢; = 0. The solution of the
initial value problem is y(t) = 1 — te’ + (t + 3t) /4.
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12. The characteristic equation can be written as (r — 1)(r + 3)(r? + 4) = 0. Hence

the homogeneous solution is y, = c;e’ + c,e ' + cycos 2t + c4sin 2t. None of the

terms in g(t) is a solution of the homogeneous problem. Therefore we can assume a form
Y(t) = Ae ' + Bceost + Csint. Substitution into the ODE results in A = 1/20,

B= —2/5,C = —4/5. Hence the general solution is

y(t) = cie’ + e + cyc08 2t + cy5in 2t + 71 /20 — (2cost + 4sint) /5.
Invoking the initial conditions, we find that ¢, = 81/40, ¢, = 73/520, ¢; = 77/65,
¢ = —49/130.

36
36

3.4

3.21

14. From Prob. 4, the homogeneous solution is 3. = ¢, + c,e’ + c;e”!. Consider the
terms g,(t) = te”' and ¢,(t) = 2cost. Note that since r = — 1 is a simple root of the
characteristic equation, Table 4.3.1 suggests that we set Y, (¢) = t(At + B)e™'. The
function 2cos t is not a solution of the homogeneous equation. We can simply choose
Y,(t) = Ccost + Dsint. Hence the particular solution has the form

Y (t) = t(At + B)e " + Ccost + Dsint.

15. The characteristic equation can be written as (r* — 1)2 = 0. The roots are given
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as r = =+ 1, each with multiplicity two. Hence the solution of the homogeneous problem
is y. = cie! + cote! + cse + cqte!. Let g, (t) = e! and g,(t) = sint. The function

e’ is a solution of the homogeneous problem. Since r = 1 has multiplicity two, we set
Yi(t) = At?e’. The function sin t is not a solution of the homogeneous equation. We
can set Y, (t) = Bcost + Csint. Hence the particular solution has the form

Y (t) = At*e¢' + Bcost + Csint.

16. The characteristic equation can be written as 72(r? 4+ 4) = 0, with roots r = 0, 4-2i.
The root » = 0 has multiplicity two, hence the homogeneous solution is y. = ¢, + cot +
+ c3c08 2t + ¢,sin 2t . The functions g, (t) = sin 2t and ¢,(t) = 4 are solutions of the
homogenous equation. The complex roots have multiplicity one, therefore we need to set
Yi(t) = At cos2t + Bt sin2t. Now g,(t) = 4 is associated with the double root r = 0.
Based on Table 4.3.1, set Y5(t) = C't?. Finally, gs(t) = te! (and its derivatives) is
independent of the homogeneous solution. Therefore set Y;(¢) = (Dt + E)e'. Conclude
that the particular solution has the form

Y (t) = At cos 2t + Bt sin 2t + Ct* + (Dt + E)e'.

18. The characteristic equation can be written as 72(r? 4+ 2r + 2) = 0, with roots 7 = 0,
with multiplicity two, and r = — 1 +¢. The homogeneous solution is y. = ¢; + ¢t +
+ csecost + cietsint. The function g, (t) = 3e! + 2te™?, and all of its derivatives,
is independent of the homogeneous solution. Therefore set Y;(t) = Ae! + (Bt + C)e .
Now ¢,(t) = e 'sint is a solution of the homogeneous equation, associated with the
complex roots. We need to set Y;(t) = t(De ‘cost + Ee 'sint). It follows that the
particular solution has the form

Y(t) = Ae' + (Bt + C)e " + t(D e lcost+ Eetsin t).

19. Differentiating y = u(t)wv(t), successively, we have

y' =u'v+uv’
y// — u//’U—i_ 2u/'U/ —"—U’U”

=3 (”) (190
=0 \J

Setting v(t) = e, 1) = ade®. So foranyp=1,2,---,n,

p
YO =y <1?) )

=0 \J

It follows that
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Lle*] = e Z [a n_,,i (]7 ) o ul? —ﬁ] (%)

=0 =o \J
It is evident that the right hand side of Eq. (x) is of the form
et [k:o u™ ke u™ Y ek, qu + Ky, u} .

Hence operator equation L[e®u] = e (byt™ + by t™ 1 + --- +b,,_1t + b, ) can be
written as

ko U(n) + ]ﬁ U(nil) + -+ kn_lu’ + knu =

=D t" + bt b, by,

The coefficients k;,7 = 0,1, ---,n can be determined by collecting the like terms in

the double summation in Eq. (). For example, k; is the coefficient of u(™). The only
term that contains ©(™ is when p=mnand j=0. Hence k, = a,. On the other hand,

k, is the coefficient of w(¢). The inner summation in () contains terms with u, given by
aPu (when j = p), foreach p =0,1,---,n. Hence

n
k, = E appal.
p=0

21(a). Clearly, € is a solution of 3’ — 2y = 0, and te™" is a solution of the differential
equation y” + 2y’ +y = 0. The latter ODE has characteristic equation (r 4+ 1)* = 0.
Hence (D — 2)[3e%] = 3(D — 2)[e*] = 0 and (D + 1)*[te!] = 0. Furthermore,

we have (D — 2)(D + 1)*[te™"] = (D — 2)[0] = 0, and (D — 2)(D + 1)*[3e¥] =

= (D+1)*(D - 2)[3¢%] = (D +1)%[0] = 0.

(b). Based on Part (a),
(D—2)(D+1)°[(D-2*D+1)Y] = (D—2)(D+1)*[3e* — te]
=0,

since the operators are linear. The implied operations are associative and commutative.
Hence

(D-2"(D+1)’Y =0.

The operator equation corresponds to the solution of a linear homogeneous ODE with
characteristic equation (r — 2)*(r 4+ 1)* = 0. The roots are » = 2, with multiplicity 4
and r = — 1, with multiplicity 3. It follows that the given homogeneous solution is

Y(t) = cre?t 4 epte® + cyt?e® + et3e + cse Tt + cte ! + ertle

which is a linear combination of seven independent solutions.
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22(15). Observe that (D — 1)[e!] = 0 and (D? + 1)[sint] = 0. Hence the operator
H(D) = (D — 1)(D? + 1) is an annihilator of e’ + sint. The operator corresponding

to the left hand side of the given ODE is (D? — 1)2. It follows that
(D+1)*(D-1)*(D*+1)Y =0.
The resulting ODE is homogeneous, with solution
Y(t) = e’ + eyte ™ + czel + eyte! + estPe! 4 cocost + crsint.

After examining the homogeneous solution of Prob. 15, and eliminating duplicate terms,
we have

Y (t) = cstde’ + cocost + crsint .

22(16). We find that D[4] = 0, (D — 1)*[te’] = 0, and (D? + 4)[sin2t] = 0.
The operator H (D) = D(D — 1)*(D? + 4)is an annihilator of 2 + te’ 4+ sin 2t. The
operator corresponding to the left hand side of the ODE is D?(D? + 4). It follows that

DD —1)*(D*+4)Y =0.
The resulting ODE is homogeneous, with solution
Y (t) = ¢, + ot + c5t® + cie’ + cste! + cgeos 2t + cr5in 2t + cstcos 2t + cotsin 2t

After examining the homogeneous solution of Prob. 16, and eliminating duplicate terms,
we have

Y(t) = C3t2 + el + este! + cgtcos 2t + cotsin 2t .

22(18). Observe that (D — 1)[e!] = 0, (D + 1)*[te™"] = 0. The function e 'sint is
a solution of a second order ODE with characteristic roots r = — 1+4. It follows that
(D* + 2D + 2)[e 'sint] = 0. Therefore the operator

H(D) = (D —1)(D+1)*(D*+2D +2)

is an annihilator of 3e! + 2te™! + e~!sint. The operator corresponding to the left hand
side of the given ODE is D?(D? 4 2D + 2). It follows that

D*(D —1)(D+1)*(D*+2D +2)°Y = 0.
The resulting ODE is homogeneous, with solution

Y(t) = ¢ + et + e’ +eet +este T +
+ e (cgeost + crsint) + te ' (cscost + cysint ).

After examining the homogeneous solution of Prob. 18, and eliminating duplicate terms,
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we have

Y(t) = cse’ + cie Tt 4 este T + t€7t<CgCOSt + cosint).
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Section 4.4

2. The characteristic equation is r(r> — 1) = 0. Hence the homogeneous solution is
y.(t) = ¢, + cye’ + cse . The Wronskian is evaluated as W (1, e', e ") = 2. Now
compute the three determinants

0 e et
W1<t): 0 t _eit = —2
1 e et
1 0 et
Wot)=10 0 —et|=¢"
0 1 et
1 ¢ 0
Wi(t) =10 e 0|=¢
0 e 1
The solution of the system of equations (10) is
/ th (t)
t) = = —1
! tWQ (t) —t
i) = Gy =t
tWis(t
ug(t) = 10, = te'/2

W (t)

Hence u,(t) = —t?/2,u,(t) = —e '(t +1)/2,us(t) = €'(t — 1)/2. The particular
solution becomes Y (t) = —t?/2 — (t+1)/2+ (t —1)/2 = —?/2 — 1. The constant
is a solution of the homogeneous equation, therefore the general solution is

y(t) = ¢, + cre’ + et —t2/2.

3. From Prob. 13 in Section 4.2, y.(t) = ce™t + cye! + cse*'. The Wronskian is
evaluated as W (e, €', e*) = 6 ¢*. Now compute the three determinants

0 et 627,‘
Wit) =10 e 2% |=¢e"
1 e 4e*
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et 0 e
Wo(t)=| —e? 0 2e%*|= — 3¢

et 1 4e*

et el 0
Wit)=|—et e 0|=2
et |
Hence u(t) = €’ /6, ul(t) = — €3/2,ul(t) = €* /3. Therefore the particular solution

can be expressed as
Y(t) =e [ /30] —e'[e¥/6] + e* [e* /6]
= ¢'/30.

6. From Prob. 22 in Section 4.2, y.(t) = c,cost + cysint + t[czcost + cysint]. The
Wronskian is evaluated as W (cost, sint,tcost,t sint) = 4. Now compute the four
auxiliary determinants

0 sint tcost tsint
10 cost cost —tsint sint+tcost | .
Wi(t) = 0 —sint —2sint—tcost 2cost—tsint | 2sint + 2t cost
1 —cost —3cost+tsint —3sint—tcost
cost 0 tcost tsint
| —sint 0 cost —tsint sint+tcost | .
Wa(t) = —cost 0 —2sint—tcost 2cost—tsint = 2tsint + 2cost
sint 1 —3cost+tsint —3sint—tcost
cost sint 0 tsint
| —sint cost 0 sint+tcost |
Wi(t) = —cost —sint 0  2cost—tsint | 2cost
sint —cost 1 —3sint—tcost
cost sint tcost 0
—sint cost cost —tsint 0 )
Wi(t) = —cost —sint —2sint—tcost 0] — 2sint
sint —cost —3cost+tsint 1
It follows that u/(t) = [ — sin’t +tsintcost]/2, ul(t) = [tsin’t + sintcost]/2,
ul(t) = — sintcost/2, ul(t) = — sin*t/2. Hence

u,(t) = [3sintcost — 2t cos’t — t] /8
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uy(t) = [sin’t — 2cos’t — 2t sintcost +t*]/8
us(t) = — sin’t/4

uy(t) = [costsint —t]/4
Therefore the particular solution can be expressed as
Y (t) = costu,(t)] + sint[uy(t)] + t cost [uz(t)] + t sint [uy(t)]
= [sint — 3tcost — t*sint] /8.

Note that only the last term is not a solution of the homogeneous equation. Hence the
general solution is

y(t) = cicost + cysint + tlescost + cysint] — t2sint /8.

8. Based on the results in Prob. 2, y.(t) = ¢, + coe’ + cse . It was also shown that
W(l,e' e ) =2,with W,(t) = —2, W,(t) = e ", Ws(t) = e'. Therefore we have
u/(t) = —csct, u)(t) =e'csct /2, uj(t) = e'csct /2. The particular solution can
be expressed as Y (t) = [u,(t)] + e '[uy(t)] + €' [us(t)]. More specifically,

t

t gt
Y (t) = In|esc(t) + cot(t)| + %/ e *csc(s)ds + %/ e’csc(s)ds
to to

= In|esc(t) + cot(t)| + / cosh(t — s)csc(s)ds.

to

9. Based on Prob. 4, u/(t) = sect, uj(t) = — 1, us(t) = — tant. The particular
solution can be expressed as Y (t) = [u,(t)] + cost [uy(t)] + sint [us(t)]. Thatis,

Y (t) = In|sec(t) + tan(t)| — t cost + sintin|cos(t)|.
Hence the general solution of the initial value problem is
y(t) = ¢ + cecost + czsint + In|sec(t) + tan(t)| — tcost + sintin|cos(t)|.

Invoking the initial conditions, we require that ¢, +¢c, =2,¢c3=1, —¢c, = — 2.
Therefore

y(t) = 2cost + sint + In|sec(t) + tan(t)| — t cost + sintin|cos(t)|
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224

217

1.97

1.84

1.71

10. From Prob. 6, y(t) = c,cost + c,sint + cst cost + cit sint — t?sint /8. In
order to satisfy the initial conditions, we require that ¢, = 2, ¢, + ¢3 =0,
—¢+2¢=—1, —3/4— ¢, —3c;s = 1. Therefore

y(t) = 2cost + [Tsint — Ttcost + 4t sint — t’sint]/8.

107

12. From Prob. 8 , the general solution of the initial value problem is

t

¢ ot
/efscsc(s)ds—i— — | €e’cse(s)ds.
to

to

et

y(t) = ¢, + cre’ + cse”" + Infesc(t) + cot(t)| + 5

In this case, t, = 7/2. Observe that y(7/2) = y.(7/2), y'(7/2) = y/(7/2), and
y"(m/2) = y!"(7/2). Therefore we obtain the system of equations
e + cre™? + e 2 = 2
cre™? — cpem™? =1

cr€™? e = —1

Hence the solution of the initial value problem is
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t
y(t) =3 — A In|ese(t) + cot(t)| + / cosh(t — s)csc(s)ds.
to

0 02040608 1 12141618 2 227242528 3
t

13. First write the equation as "' + x~'y” — 227?y’ + 2273y = 22 . The Wronskian
is evaluated as W (x, 2, 1/x) = 6/x. Now compute the three determinants

0 22 1/z
Wi(x) =10 2z —1/2*|= —3
1 2 2/
x 0 1/z
Wyz)=11 0 —1/2*|=2/x
0o 1 2/
r 22 0
Wi(z)=|1 2z 0|=2"
0 2 1
Hence u](z) = — 2%, uj(x) = 2x/3, ul(x) = x*/3. Therefore the particular solution
can be expressed as
1
Y(z) =] —2°/3] + 2°[2%/3] + E[:C5/15]

=21/15.

15. The homogeneous solution is y.(t) = c,cost + cysint + cscosht + ¢ysinht. The
Wronskian is evaluated as W (cost, sint, cosht, sinht) = 4. Now the four additional

determinants are given by W,(t) = 2sint, W,y(t) = — 2cost, Wi(t) = — 2sinht,
W, (t) = 2cosht. If follows that u/(t) = g(t) sin(t)/2, uy(t) = — g(t) cos(t)/2,
us(t) = — g(t) sinh(t)/2, uj(t) = g(t) cosh(t)/2. Therefore the particular solution
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can be expressed as

Y(t) = co;(t)/t g(s) sin(s)ds — S”;(t)/t g(s) cos(s)ds —
- %h(t)/tolg(s) sinh(s)ds + Smh(t)/tog(s) cosh(s)ds.

Using the appropriate identities, the integrals can be combined to obtain

1

Y(t) = 5/,‘9(8) sinh(t — s)ds — %/fg(s) sin(t — s)ds.

17. First write the equation as ¥’ — 3z7'y” + 6272y’ — 62y = g(z) /2. Itcan
be shown that y,(z) = ¢,z + c,2* + ¢; ? is a solution of the homogeneous equation.
The Wronskian of this fundamental set of solutions is W (x, 2%, 23) = 223, The three
additional determinants are given by W,(z) =z, Wy(z) = — 223, W;(x) = 22
Hence u/(z) = g(x)/22%, ul(z) = — g(z) /23, u)(x) = g(x)/22*. Therefore the
particular solution can be expressed as

_ 9 2/‘”@ 3/‘”@
Y(x) —xéo o2 dt — x P dt + = : 2t4dt

1 [*]x 2202 g3
e B LT P
2/% Lﬂ e +t4}g(>
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Chapter Five
Section 5.1
1. Apply the ratio test :
' |($ . 3)n+1 ‘ ‘
lim ———5+— = lim |z —3| = |z — 3|
nto (@ -3 nie

Hence the series converges absolutely for [z — 3| < 1. The radius of convergence is
p = 1. The series diverges for x = 2 and x = 4, since the n-th term does not approach
Zero.

3. Applying the ratio test,

‘n| x2n/+2| ) 1.2

1' _ = =
nooo|(n+ 1) a2 nsen + 1

The series converges absolutely for a// values of . Thus the radius of convergence is
p = 00.

4. Apply the ratio test :

2n+1 n+1
tim 2T i o] = 2lal.
7 — 00 |2nxn| 71— 00
Hence the series converges absolutely for 2|x|, or |z| < 1/2. The radius of convergence
is p = 1/2. The series diverges for z = +1/2, since the n-th term does not approach

Z€ro.

6. Applying the ratio test,

fim @ =)
n—oo|(n+ 1)(z — x,)"| n—oomn+ 1

(= 2)| = [(z = 2)|.

Hence the series converges absolutely for |(z — x,)| < 1. The radius of convergence is
p=1. Atz =z, + 1, we obtain the harmonic series, which is divergent. At the other
endpoint, z = x, — 1, we obtain

o0 _1Tl
P

n=1

which is conditionally convergent.

7. Apply the ratio test :
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3t 1) (@ 4+ 2)" . (n+1)?
lim lim ——*~

n— oo |3n+1n2(aj+2)n| - n— oo 3n2

(2 +2)] = 31z +2)].

Hence the series converges absolutely for %|:1; +2| < 1,0r|z+2| < 3. The radius of

convergenceis p = 3. Atz = — 5 and x = + 1, the series diverges, since the n-th
term does not approach zero.

8. Applying the ratio test,
_n(n 4 1)t n" 1

’n,—>oc‘<,n+ 1)n+1n|xn‘ B ’IL—)ngo (n_|_ 1>n‘$| = g|x|a

since

nn 1 —n
lim —— = lim (14— el
n— 00 (n—|—1> n— 00 n

Hence the series converges absolutely for |z| < e. The radius of convergence is p = e.
At x = =+ e, the series diverges, since the n-th term does not approach zero. This follows
from the fact that

. nle™
lim ——M =1.

n—00 NN, /27'('71/

10. We have f(x) = e, with f™(x) = e”, for n = 1,2, ---. Therefore £ (0) = 1.
Hence the Taylor expansion about z, = 0 is

00
e.”L' — §
n=>0

| 8

n
| .

3

Applying the ratio test,

, Inlz™ | 1
Iim ——— = 1i
n—oo|(n+ 1)l z"| n—oomn + 1

|z| = 0.
The radius of convergence is p = <.

11. We have f(z) = x, with f'(z) =1 and f™(z) =0, for n = 2,---. Clearly,
f(1) =1and f'(1) = 1, with all other derivatives equal to zero. Hence the Taylor
expansion about x, = 1 is

r=1+(z—1).

Since the series has only a finite number of terms, the converges absolutely for all z .

14. Wehave f(z) =1/(1+2), f'(z) = —1/Q +2)% f"(z) =2/(1 +2)®,---
with f)(z) = (= 1)"n!/(1 +2)""", for n > 1. It follows that £ (0) = ( —1)"n!
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for n > 0. Hence the Taylor expansion about z, = 0 is

Applying the ratio test,

The series converges absolutely for |x| < 1, but divergesatxz = +1.

15. Wehave f(x) = 1/(1 — ), f'(z) = 1/(1 —x)*, f"(z) = 2/(1 — x)°,---
with £ (z) =n!/(1 —x)""", for n > 1. It follows that £ (0) = n!, forn > 0.
Hence the Taylor expansion about z, = 0 is

n=0
Applying the ratio test,
| 7L+1|
lim = lim |z| = |z|.
n— 00 | xn | n— 00

The series converges absolutely for |x| < 1, but divergesatxz = +1.

2/(1— ),
2)

=(-1 )an' for

16. Wehave f(z) =1/(1—x), f'(z) =1/(1 —:c) , f(x)
with £ (z) =n!/(1 —z)"*", for n > 1. It follows that (")
n > 0. Hence the Taylor expansion about z, = 2 is

L Y (a2

L—z n=>0

"

Applying the ratio test,

. n+1
lim ‘(x 2) ‘

B2 1 im |z —2| = |z — 2|
o (@2

The series converges absolutely for |z — 2| < 1, but divergesatz =1 and = = 3.

17. Applying the ratio test,
fim (2D
n— 00 | n:L‘"| n— 00

] = |].

The series converges absolutely for |z| < 1. Term-by-term differentiation results in
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o0
:Zn%”*l =1+4x+ 922+ 162> + ---
—1

Z (n—1) 2" =4 + 18z + 48z% 4+ 100z> + - --

Shifting the indices, we can also write

o0

Z (n+41)*z" and y”:Z(n+2)2(n—|—1)x”

n=>0

20. Shifting the index in the second series, that is, settingn = k + 1,

[e)e] [ee]
d a2t = a2
k=0 n=1

Hence

o0 o0 o0 o0

ket k k
g apaxt + E apx”tt = E ap " + E ak_la:
k=0 k=0 k=0

o0
k+1
:a1+2 ak+1—|—ak1 .

21. Shifting the index by 2, that is, setting m = n — 2,

o0

;n(n — Dayx i;
2

(m+2)(m+ 1)ayoz™

n+2)(n+ 1apoz".

22. Shift the index down by 2, that is, set m = n + 2. It follows that

n+2 __ m
§ Qp — E Ap—2T
m=2
0
- g Ap—2T
n=2

24. Clearly,
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0 o0 0
(1- xQ)Zn(n — Da,z"? = Zn(n — Dayx"™ Z n(n — 1)a,z".
n=2 n=2 =

Shifting the index in the first series, that is, setting k = n — 2,

o0

Zn(n — Dayz" % = Z(k + 2)(k + 1)ajo z*
n=2 k=0
= Z(n +2)(n+ 1)ay 22",
n=0
Hence
(1- xQ)Zn(n Ya,x Z n+2)(n+1)ay2z" — Zn Da, z".
n=2 n= =

Note that when n = 0 and n = 1, the coefficients in the second series are zero. So that

(1= nln — Daga™ = 3 [0+ 2)(n + Danes —nln — Dala”
n=2 n=0

26. Clearly,
o0 0 0 o0
Znan "4 Zan " = Znan 4 Zan "
n=1 n=0 n=1 n=0
Shifting the index in the first series, that is, setting k =n — 1,
o0 [e.¢]
Znan " = Z(k + 1)ak+1:ck.
n=1 k=0

Shifting the index in the second series, that is, setting k = n + 1,

00

_ k

ap T - Q1T .
k=1

n=0

Combining the series, and starting the summation atn = 1,

o0 o0 o0
E na, z" '+ x E a, " = E n+ 1ay1 + ap-1]z".

27. We note that
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o 0 o o
xZn(n —Da, 2" 2 + Zan "t = Zn(n — Da, "' + Zan z".
n=2 n=0 n=2 n=0

Shifting the index in the first series, that is, setting k =n — 1,

M]3

Zn(n —Dap,z" ' =Y k(k+ Dagp 2"
n=2

B
Il

1

[
M]3

k(k 4 1)ap 1zt

B
I

0

since the coefficient of the term associated with k£ = 0 is zero. Combining the series,

o0

o0 o0
T Zn(n - 1a, "2 4 Zan " = Z[n(n + Dap1 + aylz”.
n=>0 n=>0

n=2
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Section 5.2

1. Lety = ay + a1z + ax® + --- + a,z" + ---. Then

o0 [e.0]
Z (n—1Dayz"" :Z (n+2)(n+1)ay22".
= n=0

Substitution into the ODE results in

o0 o0
Z (n+2)(n+ Dayoz" — Z apx" =
n=>0 n=>0

or
Z n+2)(n+1)ay2 —ay)z” =0.

Equating all the coefficients to zero,
(n+2)(n+1aps2 —a, =0, n=0,1,2,--

We obtain the recurrence relation

nt2 = (n+1é)17(ln+2) > =012,
The subscripts differ by two, so for £ =1,2,---
ayp = —22 A2k 4 = M
(2k —1)2k  (2k —3)(2k — 2)(2k — 1)2k (2k)!
and
(psy = A2k—1  _ a2k—3 -
2k(2k+1)  (2k—2)(2k — 1)2k(2k + 1) (2k +1)!
Hence
0o .2k 0 p2k+1
v= “0,;) 2 " GII;O(% )

The linearly independent solutions are

$2 $4 $6
Y :Cbo(l—l—g—l-?"‘ﬁ‘i‘"') = agcosh

B 2 2 B nh
Yo = G x—|—§+5 +F+m =a18tnhx.
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4. Lety = ay + ax + ax> + --- + apx™ + ---. Then
[e.¢] 0
Z (n—1)a,z" :Z (n+2)(n+ 1)a,2z".
n= n=0
Substitution into the ODE results in
o0
Z (n 4 2)(n + Day 22" + k*x QZanx =0.
= n=0
Rewriting the second summation,
o0
Z n+2)(n+ a2 x" +Zk¢ an_o " =0,
n=>0 n=2
that is,
o
2a9 +3-2a3x + Z [(n+2)(n+ 1agss + k*ap_o]z" = 0.
n=2
Setting the coefficients equal to zero, we have ay = 0, a3 =0, and
(n+2)(n+ Daps + k*a,_ o =0, for n=2,34,--
The recurrence relation can be written as

k2an—2
= — , n=23.4,-
Int2 mt2)n+r1)’ "

The indices differ by four, so a4, ag, a,,,--- are defined by

k2a0 k2a4 k2a8
4= — ——,08= — ——,0)p = — —(———
4 4.3 "8 8.7 " 12-11°
Similarly, a5, a9, a,3,--- are defined by
k2a1 k2a5 k2a9
ar = — ———, Qg = — —— , Qi3 = —
’ 5.4° 7 9.8 " 13-12°

The remaining coefficients are zero. Therefore the general solution is

kQ 4 k4 8 kﬁ 12
— 1— 2 _ .
Y “O{ 13" T8 743" "2nsr4a3 T }+
+a’1[x_5_4x T9 854" " 1312.9.84.4" +}

Note that for the even coefficients,
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k2a4m—4
m= - — =1,2,3,---
“ (4m—Dam>
and for the odd coefficients,
k2a4m73
m = - —, :1,2,37"'
(Hm-+1 dm(@m+1)°

X (
- Z: T (4m+3)(4m+4)

B 0 (_1)m+1(k2x4)m+1
p(z) =2 1+Z4.5.8.9---(4m+4)(4m+5)

6. Lety = ay + a,x + axx® + --- + a,z" + ---. Then

[0.9] o
= E na,T E (n+ Day1z"
n=1 n=>0

and

:i (n —1)a,a” :in—i—2 Y(n 4+ Dagyox".

n=

o

Substitution into the ODE results in

o0

o0 o0
(2 + xz)z (n+2)(n+1)ay22" — :L’Z(n + Dapz" + 42 a,z" = 0.
n=0 n=0 n=0

Before proceeding, write

o o
Zn—I—Z Dayiox Z (n —1)a,z"

and

o0
E n+1 aon = E n T
n— n=1

It follows that

o0

dag + 4as + (3a1 + 12a3)x Z (n+2)(n+1)ap2 +n(n — 1a, nan—|—4an]xn =0.
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Equating the coefficients to zero, we find that ay = — ag, a3 = — a1/4, and
n?—2n+4
Ay - - an , n:0,1,2,...
2 2(n+2)(n + 1)
The indices differ by two, so for £k =0,1,2,---
(2k)? — 4k + 4
a = — a
22 202k +2)(2k + 1) "
and
(2k +1)* — 4k + 2
a2p+3 = —

2(2k + 3)(2k + 2) "

Hence the linearly independent solutions are

4 :L‘6

X
—1— -
()— IL‘_3+7_£L‘5 19:1:7_1_
P =T T 160~ 1920

7. Lety = ay + a1z + axx® + --- + a,z" + ---. Then

o0 o
:Z na,x"" :Zn—l—lanﬂx

=0

3

and
o 0
Z (n—1)a,z" :Zn+2(n+1)an+2x
= n=
Substitution into the ODE results in

i n+2)(n+1)ayoz" —I—xz (n+ 1Da 12" +22an:1: =0.

First write

o0

o.¢]
QJ'Z(TL + Day12" = Zn apx".

n=0 n=1

We then obtain

o0
2a9 + 2a¢ + Z[(n +2)(n+ 1)ay2 + na, + 2a,]z" =0.

n=1
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It follows that as = — ap and a2 = —a,/(n+1),n=0,1,2,---. Note that the
indices differ by two, so for k =1,2,---
a = — a2k72 et a2k74 —— ( _ 1)ka0
2 2k —1  (2k—3)(2k — 1) 1-3-5---(2k —1)
and
o oamer ays (= Dfa
A2k+1 = — = == :
2k (2k —2)2k 2.4-6--(2k)
Hence the linearly independent solutions are
2 4 6 0 n, on
x x x (- 1"z
=1 = — =1
n(@) 1713 135 +nzll 3-5--(2n—1)
3 5 7 % n_on+1
x x x (- 1"z
(@) =z -5+ 5 - 2-4-6+"'_x+;2-4-6---(2n)'
9. Lety = ay + a1z + axx® + --- + a,z" + ---. Then
:Znan Z (n+ Day1z"
n=1 n=>0
and
Z Dayz (n+2)(n+1)ay2z"
n= n=0
Substitution into the ODE results in
(1 + ;1;2)2 (n+2)(n+ 1apoz" — 43:2 n+ Da, 12" + 62 axz” =0.
n=>0 n= n=>0

Before proceeding, write

o0

in—l—Z Dayox Z (n —1a,z"

and

It follows that
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o0
6ag + 2as + (2a1 + 6az)x + Z [(n +2)(n+ Dapgo + n(n — Da, — 4na, + 6a”]$n =0.
n=2
Setting the coefficients equal to zero, we obtain as = — 3ag, a3 = — a1/3, and
(n—2)(n—3)

Qpy2 = — Ay, n:0,1727""

(n+1)(n+2)

Observe that for n = 2 and n = 3, we obtain a4 = a5 = 0. Since the indices differ by
two, we also have a,, = 0 for n > 4. Therefore the general solution is a polynomial

y = ag + a1 — 3agxr® — a12°/3.
Hence the linearly independent solutions are

yi(r) =1—32> and y(z) =z —2°/3.

10. Lety = ay + a1z + ax® + --- + a,z" + ---. Then
o
Z (n—1Dayz"" :Z (n+2)(n+1)ay22".
= n=0
Substitution into the ODE results in
o
( — 22 Z (n+2)(n+ a2 x" —I—QZanx =0.
n=0 n=0

First write
a:QZ (n+2)(n+ Day22" = Z n(n —1)a,z"
n=0
It follows that

2ag + 8as + (2a1 + 24a3)x + Z [4(n+2)(n + Va2 — n(n — 1)a, + 2a,]x" = 0.

We obtain as = — ag/4,a3 = —ay/12 and
4(n+2)apio =(n—2)a,, n=0,1,2,---.

Note that for n = 2, a4, = 0. Since the indices differ by two, we also have as;, = 0 for
k =2,3,---. On the other hand, for k = 1,2, ---,

(2k — 3)a2k_1 . (2k' — 5)(2k — 3)a2k_3 o — a

42k +1) 422k -1)(2k+1) 4Rk —1)(2k+1)°

a2k+1 =

Therefore the general solution is
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$2 00 x2n+l
Yy =ay+ ax —ay—

4 alnzlzw(m —1)(2n+1)"

Hence the linearly independent solutions are y,(z) = 1 — z?/4 and

2n+1

T o0
B =T =5 -9 T T Z Cn—-1D)@n+1)

11. Lety = ay + a1z + aa® + --- + a,z" + ---. Then

o0 o0
y' = E na,x"” E (n+ Da,qz"
n=1 n=0
and

= Z n(n —1)a,z"? = Z(n +2)(n+ 1)ayi92".
n=2

n=

o

Substitution into the ODE results in

oo o
Zn+2 (n+ 1Day2z" — Zn—klanﬂx —Zanm =0.
= = n=>0

Before proceeding, write

o0
QZ (n+2)(n+ a2z Z (n—1)a,z"
n=0 n=
and
o0 o0
QJ'Z(TL + Day12" = Zn apx".
n=20 n=1
It follows that
o0
6as — ap + ( — 4ay + 18as)x + Z [B(n +2)(n + 1)ay2 — n(n — a, — 3na, —a,)z" = 0.
n=2

We obtain ay = a¢/6, 2a3 = a1/9, and
3(n+2)apo =(n+1)a,, n=0,1,2,---
The indices differ by two, so for £ =1,2,---

. <2k— 1)a2k_2 . (2k—3)(2k— l)agk_4 o 3'5"'(2]6— 1)&0
T30 0 322k—2)(2k) 3F-2-4---(2k)

and
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(2k)agk—1 (2k — 2)(2k)agk—3 2:4-6---(2k) ay
a = = — .
P32k + 1) 322k — 1)(2k + 1) 35.3-5---(2k + 1)

Hence the linearly independent solutions are
x?  at 5af X 3-5---(2n — 1)z
nw) =1+t o T +nzl 37-2-4--(2n)
223 8x° 1627 X.2-4-6---(2n) x>t
pe) =2k S gy =T Y S e 1)

n=1

12. Lety = ay + a1z + ax® + --- + a,z" + ---. Then

0 0
y/ = Z nanm”_l = Z(’I’L + 1)an+1:c”

n=1 n=0

and

[e.¢] 0

Z n(n —1)a,z" * = (n+2)(n+1)a,2z".

n= n=0

Substitution into the ODE results in
o0 [e.0] o0
(1-— :I?)Z (n+2)(n+ Dagox" + :I:Z(n + Dap1z" — Z apz” =0.
n=0 n=0 n=0
Before proceeding, write
o o

x Z (n+2)(n+ 1ag22" = Z(n + Dnayz”

n=>0 n=1

and

o0 o0
x E (n+ 1a,12" = E na,x"
n=0 n=1

It follows that

2a9 — ap + Z [(n+2)(n+ Dapi2 — (n+ Dnaysr + na, —ay)z" = 0.
n=1
We obtain as = ay/2 and
(n+2)(n+1aps — (n+1)napm + (n—1)a, =0

for n =0,1,2,---. Writing out the individual equations,
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3-2a3——2-1a2::0
4-3a4—3'2a3+a2:0
5-4da5—4-3as+2a3=0
6-5a6—5~4a5+3a4=0

The coefficients can be calculated successively as a3 = a¢/(2-3), ay = a3/2 — ay/12
= ap/24, a5 = 3a4/5 — a3/10 = ao/120, ---. We can now see that forn > 2, a,, is
proportional to ag. In fact, forn > 2, a, = ag/(n!). Therefore the general solution is

a ZE2 a 1133 a 334

o T3 T

y=ay+ax+

Hence the linearly independent solutions are y,(z) = x and

x)zl%—ii—?.
n=2"""

13. Lety = ay + a1,z + a2’ + --- + a,z" + ---. Then

o0 o0
y' = Z na,z" ' = Z(n + Dap1z"
n=1 n=0
and
o0 o
Z (n — Dayz"™ =Zn+2(n+1)an+2x

o

n=

Substitution into the ODE results in

2 Z (n+2)(n+ 1apo 2" + $Z(TL + Day, 2" + BZ ap,z” =0.
n=0

n=>0 n=>0

First write

[e.¢] o0
x E (n+ 1Da,12" = E na,x"
n=0 n=1

We then obtain

4das + 3ag + Z[Q(n +2)(n+ 1)ayi2 +na, + 3a,]z" =0.
n=1

It follows that as = — 3ay/4 and
2(n+2)(n+ Dayo+ (n+3)a, =0
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forn =0,1,2,---. The indices differ by two, so for k =1,2,---
(21{? —+ 1)@2]@,2 . (2]{3 — 1)(2]{3 —+ 1)@2]@,4

G T T 90k — 1)(2k) | 22(2k — 3)(2k — 2)(2k — 1)(2k)
(=135 (26 + 1)
- ok (2k)! o
and
a _ (2]{3 + 2)&2]@,1 _ (2k)(2]€ + 2)a2]€,3 _
bt 2(2k)(2k +1)  22(2k—2)(2k— 1)(2k)(2k + 1)
(DM 6ER)RE )
2k (2k +1)! b
Hence the linearly independent solutions are
3 5 7 — ~(2n+1)
—q1_2232 4 O 2n
n(@) = 1= gat o+ goat = g+ nzo on ( 2n) ’
_ s, 15 7 _ ~(—1)"-6--2n+2) 5,4
A R TR 2 9" (2n + 1)
15(a). From Prob. 2, we have
x 113'2” x 2nn!$2n+l
= — and yo(x) =
;]2 n = 2n+1)

Since ayp = y(0) and a; = y'(0), we have y(z) = 2y,(x) + yo(z). That s,

1 1 1 1
y(z) :2—|—:z:—|—x2—|—§a:3—|— Zx4—|—1—5x5+ ﬁxﬁ—i—m.
The four- and five-term polynomial approximations are
pr=2+z+z°+2°/3
ps=2+z+2*+2%/3+2"/4.
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Partial Sums - p4 is solid

408 06 04 02 02 04,06 08 1

(¢). The four-term approximation p, appears to be reasonably accurate (within 10%)
on the interval |z| < 0.7.
17(a). From Prob. 7, the linearly independent solutions are

-1 nx2n

00 ( )
() :1+;1.3.5...(2n—1)

Since ayp = y(0) and a; = y'(0), we have y(z) =4y, (x) — yo(z). That s,
1 4

1 4
:4_ _42 =3 -4 -5 76
y(z) r —4x” + 5% + 3% g% T % +

The four- and five-term polynomial approximations are
1
p4:4—33—4x2+§x3

1 4
p5:4—x—4x2+§x3+§:134.
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Partial Sums - pd is solid

A 05 05 04 02 02 04,06 08 1

(c). The four-term approximation p, appears to be reasonably accurate (within 10%)
on the interval |z| < 0.5.

18(a). From Prob. 12, we have

oo xn
p(e)=1+3 0 and (o) ==,
n=2""

Since ap = y(0) and a; = y'(0), we have y(x) = — 3y, (z) + 2y,(x). Thatis,
3 1 1 1 1
- _ 2 22 -3 -4 5 6
ylo) = =3+ 20— ga” = 5w — g = 5%~ 5pp”

The four- and five-term polynomial approximations are

3 1
P4 = —3+2$—§$2—§$3

3 1 1
ps = —3+2x—§x2—§x3—§x4.

page 186



WWV. ZI T e.Ir

CHAPTER 5. ——

Partial Sums - pd is solid

A4 708 04 D02040608 11214
H

(c). The four-term approximation p, appears to be reasonably accurate (within 10%)
on the interval |z| < 0.9.

20. Two linearly independent solutions of Airy's equation (about x, = 0) are

o 3n

yi(z) = 1+22~3---(3n— 1)(3n)

371+1

T Z 3.4---(3n)@Bn+1)
Applying the ratio test to the terms of y, (),
2-3--3n — 1)(3n) 2*" 3| 1

lz> = 0.

li =1
n5o]2-3--(3n + 2)(3n + 3) 23] noo (3n + 1)(3n + 2)(3n + 3)

Similarly, applying the ratio test to the terms of y,(x),

|3-4---(3n)(3n + 1) z*" ™| , 1
lim =

— 1 5=0.
R o POt g gy e R v o e

Hence both series converge absolutely for all x .

21. Lety:a0+a1x+a2x2+---+anx”+---. Then

00 00
y/ = Z nanx Z n + 1 (17,+1.717

n=1 n=>0

and
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o0 o
Z (n — Dayz"™ =Zn+2(n+1)an+2x

n=0
Substitution into the ODE results in
(0.0
Z (n+2)(n+ a2 2" —2932 (n+1ay 12" +)\Zanaz =0.
= n=>0 n=0

First write

[e.¢] o0
x E (n+ 1a,12" = E na,x"
n=>0 n=1

We then obtain

2a, +)\a0+2[(n+2)(n+ Va2 —2na, + Aa,)z" =0.

n=1
Setting the coefficients equal to zero, it follows that

(2n — \)
(nt+ Dn+2) "

Ap4+2 =

for n =0,1,2,---. Note that the indices differ by two, so for k =1,2,---
(4k —4 — )\)CLQ}C,Q . (4]€ —8— )\)(4]6 —4 — )\)agk74 .

as = (2k —1)2k  (2k —3)(2k — 2)(2k — 1)2k
B 1k)\...(/\_4k;+8)()\—4k+4)
= (-1 (2k)! -

and

@k —2—-XNag1  (4k—6—-N)(4k —2— Nag-—3

GRS TRk 1 1) (k—2)@k—12k@k+ 1)
A2 (A -k 4 6N — 4k £ 2)
=(=1 2k + 1) o

Hence the linearly independent solutions of the Hermite equation (about x, = 0) are

A(A—4 AA—=4)(A—8
2 A0 MO0

Yo(r) =2 — )\?)_!251:3+ ()\_2;(!)\_6)335 _ =2 ;!6)()‘_ 10)$7+

(b). Based on the recurrence relation
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(2n — )
(n+D(n+2) ™

Qpy2 =

the series solution will terminate as long as \ is a nonnegative even integer. If A = 2m,
then one or the other of the solutions in Part (b) will contain at most m/2 + 1 terms. In
particular, we obtain the polynomial solutions corresponding to A = 0,2,4,6, 8,10 :

A=0 |wyl(z )—1

A=2 | (@)=

A=4 yl(:v)—l—Qx

A=6 |y(x)=x—22%/3

A=8 |y(x)=1-42>+ 42/3
A=10 | yo(x) = ¢ — 423 /3 + 425 /15

(c). Observe that if A = 2n, and ag = a; = 1, then

p2n---(2n — 4k 4+ 8)(2n — 4k + 4)

aze = (= 1) (2h)!

and

r(2n—2)---2n —4k+6)(2n — 4k + 2)
(2k + 1)! ’

fork =1,2,---[n/2]. 1t follows that the coefficient of 2", in y, and y,, is

agprr = (—1)

(—1)]“2““)' for n = 2k

(—l)k(ifl') for n =2k + 1

Ay =

Then by definition,

Hn(x) = { (- ) 2 Ejkk)' yl('%.) =(- 1)k %yl(ﬂf) for n = 2k

(— 0 2 S () = (- ) 26 () for n =2k + 1

Therefore the first six Hermite polynomials are

= 162* — 482% + 12
= 322° — 1602° + 120z

23. The series solution is given by
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1 1 1 1
y(ill')=1—|-—£lj2—|— 4 6 8_‘_.__

2 92917 T osgt Tt iy
Partial Sums

?_

6_

54

24. The series solution is given by

4 :IZ'G .%'8

X
1?4 24
y() Tt T30 120"

Partial Sums
2_

N R

25. The series solution is given by

3 5 7 9

(@) =c— %+ 5 +
y\aw == 2.4-6-8

x
2 2-4 2-4-6
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Parttial Sums
2_

3 5 $7 $9

12 240 2240 16128

Partial Sums
1.4

1.2

0.5
0.6+
0.44
0.24

2
0.4
06
087

| RE
é=_// -1.24

-1.44

27. The series solution is given by

@=1-Z 4% T
YW =27 19 T 672~ 88704
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Partial Sums
1.2

‘-h—,_____r\i
.
N
.
=
(o]
;
-
5]

0.4

28. Lety = ay +a;x + ax® +--- +a,z" + ---. Then

o0 o0
y' = E na,x"” E (n+ Da,qz"
n=1 n=>0
and

= Z n(n —1)a,z"? = Z(n +2)(n+ 1)ay192".
n=2

n

o

Substitution into the ODE results in

o0

o
1—xz (n+2)(n+ 1ag2x" +xz n+ 1)a, 12" 2Zanx”:().

= n=0
After appropriately shifting the indices, it follows that

205 — 2a0+ Y _ [(n+2)(n + D)ansa — (n+ D)nanss + na, — 2a,)2" = 0.

n=1
We find that as = ag and
(n+2)(n+1)ap2 — (n+1)nays + (n—2)a, =0
for n =1,2,.--. Writing out the individual equations,

3'2@3—2'10,2—0,1:0
4-3a4—3-2a3:O
5-4a—4-3a4+a3=0
6-5a¢—5-4a5+2a4=0

Since ag = 0 and a; = 1, the remaining coefficients satisfy the equations
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3:-2a3—1=0
4-3a4—3-2a3=0
5-4da5—4-3a4+a3=0
6-5a¢—5-4a5+2a4=0

Thatis, a3 = 1/6,a4 = 1/12,a5 = 1/24,a¢ = 1/45,---. Hence the series solution
of the initial value problem is

1 1 1 1 13
yr)=z+ —2* + —a'+ =2 + —2f +

[ 7 .« oo
6 12 24" T 15 008" T

Partial Surns
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Section 5.3

2. Let y = ¢(x) be a solution of the initial value problem. First note that

y" = — (sinx)y’ — (cosx)y.

Differentiating twice,
n

— (sinx)y" —2(cosx)y’ + (sinx)y

iv "o

y" — (sinx)y

Given that ¢(0) = 0 and ¢’(0) = 1, the first equation gives ¢”(0) = 0 and the last
two equations give ¢”’(0) = —2and ¢*(0) = 0.

3(cosx)y” + 3(sinz)y’ + (cosx)y.

3. Let y = ¢(x) be a solution of the initial value problem. First write

w_ 14z, 3inz
y" = y' - —v.
x? x
Differentiating twice,
—1
y" = — [(z+2*)y" + Bzlnz —z —2)y’ + (3—6Inz)y].

1
y = — [(1’2 +2¥)y" + (32°Inz — 22 — da)y" +
x
+ (6 +8x — 12zilnz)y’ + (18Inx — 15)y].

Given that ¢(1) = 2 and ¢'(1) = 0, the first equation gives ¢" (1) = 0 and the last
two equations give ¢"’(0) = — 6and ¢"(0) = 42.

4. Let y = ¢(x) be a solution of the initial value problem. First note that

y" = —x*y’ — (sinz)y.
Differentiating twice,
y" = —2%y" — 2z + sinz)y’ — (cosx)y
y" = —2ty"” — (dx + sinzx)y” — (2 + 2cosx)y’ + (sinx)y.

Given that ¢(0) = ag and ¢'(0) = a4, the first equation gives ¢"”(0) = 0 and the last
two equations give ¢"'(0) = — ag and ¢™(0) = — 4aj.

5. Clearly, p(x) = 4 and q(z) = 6x are analytic for all . Hence the series solutions
converge everywhere.

7. The zeroes of P(x) = 1 + 3 are the three cube roots of — 1. They all lie on the
unit circle in the complex plane. So for xy = 0, ppin = 1. For xy, = 2, the nearest
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root is €'™/3 = (1 + Z\/§> /2, hence poin = \/3 .

8. The only root of P(z) = x is zero. Hence pm = 1.

9(b). p(x) = —x and g(x) = — 1 are analytic for all x .
(¢). p(x) = —x and g(x) = — 1 are analytic for all z.

(d). p(z) =0 and g(z) = ka?* are analytic for all z .

(e). The only root of P(x) =1 —xis 1. Hence ppi, = 1.
(9). p(z) =z and gq(x) = 2 are analytic for all z .

(). The zeroes of P(x) =1+ % are 4. Hence ppi, = 1.
(7). The zeroes of P(z) =4 — x? are 2. Hence ppin = 2.
(k). The zeroes of P(z) = 3 — 2% are £1/3 . Hence poin = /3 .
(I). The only root of P(z) =1 —xis1. Hence py;, = 1.
(m). p(x) =x/2 and q(x) = 3/2 are analytic for all x .

(n). p(x) = (1+x)/2 and g(x) = 3/2 are analytic for all z .

12. The Taylor series expansion of e, about z, = 0, is
o0 ,'En
=D
n=0
Lety = ay + a;x + a,2® + -+ + a,x™ + ---. Substituting into the ODE,

poei

o0 0
Z(n+2)(n+1)an+2x" —l—xZanq:":O.
n=0

First note that

o0 [e.e]
x E a,x" = E Ap 12" = ayx + a18° + ayx® + -+ ap_ 2"+ -
n=0 n=1

The coefficient of " in the product of the two series is

1 1
12
(n—l)!Jr CL4(n—2)!

Expanding the individual series, it follows that

1
C, = 2agm + 6as +--+m+1Dnap + (n+2)(n+ 1apss .

2a5 + (2ay + 6a3)x + (ag + 6as + 12a4)2”* + (as + 6as + 12a4 + 20a5)z> + -+ +
+apx +az? +Faxd+---=0.
Setting the coefficients equal to zero, we obtain the system 2a, = 0, 2a, + 6as + a, = 0,

as + 6as + 12a4 + a1 = 0, ay + 6as + 12a4 + 20a5 + a3 = 0,---. Hence the
general solution is
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3 4 o 6
y(x) = ap+ a1z — ao% + (ag — al):f2 + (2a1 — ao) 0 <4a0 - al) 120

We find that two linearly independent solutions are

563 I4 Is
_1__ -
v(2) 6 "12 10 "
.%'4 .%'5 .%'6
yg(m)zx—ﬁ—}—%—@—}—

Since p(x) = 0 and g(x) = ze™ " converge everywhere, p = co

13. The Taylor series expansion of cos x, about x, = 0, is

o0
COST = E

Lety = ay + a;x + ayx® + -+ + a,z" + ---. Substituting into the ODE,

[i(_(;ii:!ﬁ] [i(n +2)(n+ Dapoz™| + f:nana:” — Qi apx =0.

n=0 n=0 n=1 n=0

n2n

The coefficient of x" in the product of the two series is
C, = 2a9b, + 6azb,—1 + 12a4b, 2+ -+ (n+ Dnap1br + (n+ 2)(n + Dayi9bo ,
in which cosx = by + byx + byx? + -+ + b,x" + ---. It follows that
o o0
2a9 — 2ag + Z cpx” + Z(n —2)ayz" =0.
n=1 n=1
Expanding the product of the series, it follows that

2ay — 2ag + 6azz + ( — as + 12a4)x* + ( — 3az + 20as)z® +

—a1x+a3w3+2a4x4+---=0.
Setting the coefficients equal to zero, as — ag =0, 6a3 —a; =0, —ay + 12a4 =0,
— 3as + 20a; + a3 = 0, --- . Hence the general solution is
(ac)—a+am+ax2+ax—3+a$—4+ax5+ax—6+ax—7+
YE) = GoF 1% 7 o 6 T2 T %60 T 120 T 560

We find that two linearly independent solutions are

4 xG

=1 -
Y (z) + 22 +12+120+
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:L’3 1175 $7
y( )—x+€+@+%+

The nearest zero of P(x) = coszisatx = /2. Hence pim = 7/2.

14. The Taylor series expansion of In(1 + x), about x, = 0, is

n(l+ x) i

n=1

n+1

Lety = ay + a,x + ayx® + --- + a,x" + ---. Substituting into the ODE,

n=00<J ( "+1 nz N
+ Z ]Zn-l— Japi1x" —J:Zanx =0.
n=1 n=0

The first product is the series
2ay + ( — 2ay + 6az)x + (ag — 6az + 12a4)2” + ( — ay + 6az — 12a4 + 20a;3)x> 4 - - - .
The second product is the series
a1z + (2a9 — (JL1/2)x2 + (3ag —as + a1/3)x3 + (4aq4 — 3a3/2 + 2a2/3 — a1/4)x3 +
Combining the series and equating the coefficients to zero, we obtain
2a9 =0
— 2a9 4+ 6as +a; —ag =0

120,4 - 6&3 —|—3CL2 - 3&1/2 =0
20a5 — 12a4 + 9a3 — 3a- +6L1/3 =0

Hence the general solution is

6

3 x? 75 5 T
y(z) _ao+a1x+(ag—a1)€+(2ao+a1)24 +aigs + ( 1—ao) TR

We find that two linearly independent solutions are

Xr
I
m@)=1+e+5 -5
() x3+x4+7x"+
)= — —+ — .
& 6 24 120

The coefficient p(x) = e”In(1 + z) is analytic at x, = 0, but its power series has a
radius of convergence p = 1.
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15. If y; = z and y, = x? are solutions, then substituting v, into the ODE results in
2 P(z) + 22 Q(x) + 2*R(z) = 0.

Setting = 0, we find that P(0) = 0. Similarly, substituting y; into the ODE results
in Q(0) = 0. Therefore P(z)/Q(x) and R(x)/P(z) may not be analytic. If they were,
Theorem 3.2.1 would guarantee that y, and y, were the only two solutions. But note
that an arbitrary value of y(0) cannot be a linear combination of 3, (0) and y,(0). Hence
xy = 0 must be a singular point.

16. Lety = ay + a;x + a,x® + --- + a,x" + ---. Substituting into the ODE,

00 00
Z(n + Dayp " — Z apz” =0.
n=0 n=0

That is,
S [(n+ Dt — agla” =0,
n=0

Setting the coefficients equal to zero, we obtain

Qn
Qpy1 =
T T
for n=0,1,2,---. Itis easy to see that a,, = ag/(n!). Therefore the general solution

1S
1 (EQ xS
y(w)—ao +l’+§+§+

= ape”.

The coefficient ay = y(0), which can be arbitrary.

17. Lety = ay + a,x + ayx® + -+ + a,z" + ---. Substituting into the ODE,

[e.0]
(n+ 1Dap4 2" — :UZ a,z" = 0.
0 n=0

1

3

That is,

in-i—l Yani1 " —Zan " =0.

n=1

Combining the series, we have
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ay + Z[(n + Dayi1 —ap—1]z" =0.

n=1

Setting the coefficient equal to zero, a; = 0 and a1 = ap—1/(n+1) forn =1,2,---
Note that the indices differ by two, so for £k =1,2,---

Qs = e A2k 4 .
T2k T (2k — 2)(2k) 2. 4--(2k)
and
asgp4+1 = 0.

Hence the general solution is

B . 2 564 32‘6 x2n
e e T S TR F TR Tr B
= apexp(z*/2).

The coefficient ap = y(0), which can be arbitrary.

19. Lety = ay + ;= + axx® + --- + a,x" + ---. Substituting into the ODE,

1—J:Zn+ Apiq T —Zan =0.
= n=0

That is,

Combining the series, we have

[e.0]
a1 —ag + Z[(n + Dap1 —na, —ay]z" =0.
n=1

Setting the coefficients equal to zero, a; = ag and a,+1 = a, for n =0,1,2,---
Hence the general solution is

y(z) =a[l+a+2>+2°+ - +2" + -]
1
1—2z

= aO
The coefficient ag = y(0), which can be arbitrary.

21. Lety = ay + a1z + a,x® + --- + a,2" + ---. Substituting into the ODE,
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o0
(n+1)an+1x"+x2ana¢”:1+x.
0 n=0

I M8

<

3

That is,

o0

Z (n+ a1 2" + Zan ' =1+z.

- n=1
Combining the series, and the nonhomogeneous terms, we have
o0
(e — 1)+ (2a2 +ag — 1)z + Z[(n + Day1 +ap1] 2" =0.
n=2

Setting the coefficients equal to zero, we obtaina; = 1, 2as + a9 — 1 =0, and

Ap—2

ap = — , n=34,--
n
The indices differ by two, so for £ = 2,3, ---
R = S (—1)]971@2: (= 1)(ap—1)
2 (2k) — (2k — 2)(2k) 4.6---(2k)  2-4-6---(2k)
and for k =1,2,---
" I B a2k—3 _ (— 1)
2h (2k+1)  (2k—1)(2k+1) 3.5--(2k+1)
Hence the general solution is
() n +1—a02 x3+ x4+935 0
r)=a+T+—F]—2" — —a —
Y 0 2 3 9291 T35 W93
Collecting the terms containing ay,
z? x? x0
y<x):“°[1_?+ﬁ_23—m+"' *
x2 $3 I4 $5 $6 $7
+[x+§_§_222!+3-5+233!_3-5-7+"']'

Upon inspection, we find that

$2 x3 $4 $5 $6 $7
— —2%/9 - _ .
y(x) = agexp( x/)+{x+2 5 2221 "3.5 731 3.5.7 " }

Note that the given ODE is first order linear, with integrating factor u(t) = ¢’ /2. The
general solution is given by
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y(z) = ex2/2/ e“du + (y(0) — e ™ /2 4+1.
0

23. Ifa =0, then y,(x) = 1. If @ = 2n, then ay,, =0 form > n+ 1. Asaresult,

=1

a=0]|1
a=2]1-23z2
a=4 1—103:2—}—%:134

If a« =2n+ 1, then a9y, 1 =0 form >n+ 1. Asaresult,

=1

|4
a=3|x— 3w

a=5|x— 4 Uy

3 5

24(a). Based on Prob. 23,
a=2|1-32> ()= —2
a=4 1—10:132-1—?})—51'4 yl(l)zg

Normalizing the polynomials, we obtain

P()(JJ) =1
1 3
Pz(l’): —§+§I2
3 15 39

Py(x) = 3 Z:/r:2 3 z?
a=1|=z y(l) =1
a=3|x %x‘g (1) = — %
a=5|z- Y+ 255 | yp(l)=32

Similarly,
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P(z)=1=z
3 )
Pg(.’]f) = — §.T+ 5[133
15 35 63 -
Py(z) = e ng + gl‘o
(b).
Legendre Palynomials
1
0.5
0B

(¢). Py(z) has no roots. P,(z) has one root at x = 0. The zeros of P,(x) are at
r=4 1/\/§ The zeros of Py(x) are z = 0,4+/3/5 . The roots of P,(x) are given

by 2? = (15 + 2\/%) /35, (15 — 2\/%) /35 . The roots of P;(x) are given by

2 =0 and 22 = (35+2\/%)/63, <35 - 2\/%)/63.

25. Observe that

(—1)" &2 (= 1D)f@n -2k
20 £~k I(n— k)l(n — 2k)!
= (= 1)"Py(1).

Pn(_l) =

But P,(1) = 1 for all nonnegative integers n.

27. We have

" n _ 1)71,—kn!
(CCQ . 1) — ( ka"
= kl(n—k)!

which is a polynomial of degree 2n. Differentiating n times,

" t(—1)""n!
ddxn (:I?2 - 1)” = Zﬂ%(?k)@k — 1)- --(2]{ —n+ 1);52/67”,

in which the lower index is ;1 = [n/2] + 1. Note thatif n = 2m + 1, then py = m + 1.
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Now shift the index, by setting

k=n-—j.
Hence
d” 22— 1)n |
(@ =1) :; —2j)(2n — 2 — 1)--(n — 2j + 1)a" ¥
_ ’Z 2n—2]) oy
= jl(n —2j)!

Based on Prob. 25,
dn

dxm

(z* — l)n =nl2"P, (z).

29. Since the n + 1 polynomials F,, P, ---, P, are linearly independent, and the degree
of P, is k, any polynomial, f, of degree n can be expressed as a linear combination

x) = iakPk.(x)
k=0

Multiplying both sides by P, and integrating,

/_1f(:v)Pm(x)d:z: = ;}ak/_lpk(flf)Pm(:v)dx.

Based on Prob. 28,

1 2m+1
Hence
1 2
P,(z)dx = m
@Ry @) = 5
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Section 5.4

2. We see that P(z) = 0 whenx = 0 and 1. Since the three coefficients have no
factors
in common, both of these points are singular points. Near x = 0,

2

limz p(z) = lim :/zr:—:l;2 =2.

x—0 z—0 3;2(1 — .T)

. 2 . 2 4

limr“g(z) = lim2° ———— = 4.

x—0 x—0 $2(1 — x)

The singular point « = 0 is regular. Considering x = 1,
2x

lim(z — 1)p(z) =lim(z — 1) ——— .
lim(e = Dp(e) = lim (7 = 1) =

The latter limit does not exist. Hence x = 1 is an irregular singular point.

3. P(x) =0whenz =0 and 1. Since the three coefficients have no common factors,
both of these points are singular points. Near x = 0,

) . T —2
lime p(z) =M@ g0y -

The limit does not exist, and so x = 0 is an irregular singular point. Considering z = 1,

. . T —2

};IE}(CC — 1)p(x) :alrlg} (x — l)m =1.
lim(z — 1)%(z) = lim (z — 1)’ % _ =g
;,ILI}'T q(x —xlir%x 562(1_33)_ .

Hence = = 1 is a regular singular point.

4. P(x) =0whenz = 0and £ 1. Since the three coefficients have no common factors,
both of these points are singular points. Near z = 0,

2
li =limer——.
Ilil’(l)xp(:l]) xlir(l)xl‘g(l — 332)
The limit does not exist, and so = 0 is an irregular singular point. Nearz = — 1,
2
li 1 =1 1) —————-= —1.
xin;ll(x + Dp(z) P (z+ )x3(1 —z?)
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2
. 2 . 2
Jim, (@ +1)"g(e) = lim, (@ + 15—y = 0.

Hence x = — 1 is a regular singular point. Atz =1,

lim (2 — 1)p(z) = lim (z — 1)m 1.

. ) _ s 2
lim(z = 1)q(w) = lim (z = 1)" 57 —5y = 0-

Hence z = 1 is a regular singular point.

6. The only singular point is at x = 0. We find that

X
Ii =1 —=1.
limz p(x) = lim 2

2 _ 2
. . x*—v
limz?q(x) = lim z* = — V2,
z—0 z—0 T

Hence = = 0 is a regular singular point.
7. The only singular point is at z = — 3. We find that

lim (2 + 3)p(z) = lim (2 + 3)——

=6.
r——3 x——3 z+3

1 — 2

li 3)%q(z) = li 3)? =
Ig{lg(:z:%— ) a(z) xirzl3(x+ ) r+3

Hence x = — 3 is a regular singular point.

8. Dividing the ODE by z(1 — 2?)”, we find that

1 2
Pr) = gy and al) = 2(1+ 221 —2)

The singular points are at t = 0 and £1. For x = 0,

1
limzple) = limz 5
. 2 . 2 2
limz*g(x) = limx 5 5 =0.
z—0 =0 z(l14+2)°(1—2x)
Hence x = 0 is a regular singular point. Forx = — 1,
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lim (2 + p(z) = lim (z4+1)—— = 1
o ) =1 & r(l—z2) 27

lim (z +1)%q(z) = lim_(z + 1)° : :

im (x x) =lim (x = ——.

z——1 1 z——1 (1+z)*(1 - )’ 4

Hence x = — 1 is a regular singular point. For x = 1,

lim(z — 1)p(z) = lim (2~ 1)~ = —
lim(z — 1)%q(z) = lim (z — 1) 2
7—1 =1 (1+z)*(1 - )

The latter limit does not exist. Hence x = 1 is an irregular singular point.

9. Dividing the ODE by (z + 2)*(z — 1), we find that
-2
(x+2)(x—1)

3
p(x) = m and q(z) =

The singular points areatx = —2and 1. Forz = — 2,

3
Iim (z +2)p(z) =lim (z +2)— .
Jim, 2)pla) = fim, (+2)

The limit does not exist. Hence x = — 2 is an irregular singular point. For x =1,

3
lim(z — Dp(z) =lim(x —1)—= = 0.
fim(z — Dp(e) = lim (7 = 1)

. 2 Y 12 —2 B
ilg}(x_l) q(x)_ilg}@ 1 (r+2)(x—1) =0

Hence x = 1 is a regular singular point.

10. P(z) =0whenz =0 and 3. Since the three coefficients have no common factors,
both of these points are singular points. Near x = 0,

lima p(z) = limz— " —
rzp(z) =limer——— = -.
z—0 P z—0 :L‘(3 — ZL‘) 3
limz?q(x) = lim 3:2_—2 =0.
z—0 z—0 x(?) — LE)

Hence = = 0 is a regular singular point. For z = 3,
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. . r+1
lim (2 — 3)p(x) = lim (z — 3)m = -

Lol W~

-2
lin(z = 3e) =lim (0 = 3)" ;=5 =0-

Hence x = 3 is a regular singular point.

11. Dividing the ODE by (2? 4+ x — 2), we find that

r+1 2
P = oo ™ = oee o

The singular points areatz = —2and 1. Forz = — 2,

r+1 1
li 2 =1l =-.
A, (@ +2)p(r) = lim, 777 = 3

. 2 o 2(z+2)

=0.

Hence x = — 2 is a regular singular point. For xz = 1,

rz+1 2
li -1 =1 = — .

. 2 T _
li(a — 1'ae) =l

Hence x = 1 is a regular singular point.

13. Note that p(x) = In|z| and ¢(x) = 3z . Evidently, p(z) is not analytic at z, = 0.
Furthermore, the function x p(z) = x In|z| does not have a Taylor series about x, = 0.
Hence x = 0 is an irregular singular point.

14. P(x) = 0 whenz = 0. Since the three coefficients have no common factors, z = 0
is a singular point. The Taylor series of e* — 1, about x = 0, is

" —1=x+2%/2+2%/6+---.

Hence the function = p(z) = 2(e* — 1)/x is analytic at x = 0. Similarly, the Taylor
series of e “cosx, about x = 0, is

e lcosr=1—ax+23/3—2"/6+ .

The function z2¢(z) = e “cos z is also analytic at x = 0. Hence z = 0 is a regular
singular point.
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15. P(z) = 0 when z = 0. Since the three coefficients have no common factors, z = 0
is a singular point. The Taylor series of sin x, about x = 0, is

sinw =x—2° /3! +2° /5 — .-,

Hence the function x p(x) = — 3sinx/x is analytic at z = 0. On the other hand, ¢(z)
is a rational function, with

51+ 22
2

,l.in%qu(x) =limx =1.

z—0 T
Hence x = 0 is a regular singular point.

16. P(xz) = 0whenz = 0. Since the three coefficients have no common factors, z = 0
is a singular point. We find that

li =li —=1.

Although the function R(z) = cot = does not have a Taylor series about = 0, note that
2?q(z) =z cotw =1—2%/3 — 2 /45 — 22°/945 — ---. Hence x = 0 is a regular
singular point. Furthermore, ¢(z) = cot z/x? is undefined at * = &= nn. Therefore the
points z = &+ n7 are also singular points. First note that

lim (zFnm)p(x) = lim (x:FmT)l =0.
T

r—Enm r—+nmT
Furthermore, since cot x has period 7,

q(x) = cotx/x = cot(x Fnm)/z

1
— cot .
cot(x F nm) EFnn) Lo
Therefore
(z Fnm)’q(z) = (x F nr)cot(x F n) [%] '
From above,

(z Fnm)cot(z For) =1 — (xFnn)?/3 — (x Fomr)' /45 — ..

Note that the function in brackets is analytic near x = £ nm. It follows that the function
(z F nm)?q(z) is also analytic near = + nar. Hence all the singular points are regular.

18. The singular points are located at x = £=nm, n =0, 1,---. Dividing the ODE by
x sinz, we find that 2 p(z) = 3cscz and 2°q(x) = x’cscx . Bvidently, x p(x) is
not even defined at x = 0. Hence z = 0 is an irregular singular point. On the other
hand, the Taylor series of = cscx, about x = 0, is
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rescx =14 2%/6 + T2*360 + - -
Noting that csc(x Fnw) = (—1)"cscx,
(x Fnm)p(x) =3(—1)"(x Fnr)cse(x Fnr)/x
1
= 3( _ 1)!7(@ + mr)csc(x F n7r) {m] .

It is apparent that (z F n7)p(x) is analytic at x = £ nr. Similarly,

(z Fnn)’q(z) = (@ Fnr)lesca
= (= 1)"(z Fnr)esc(z Fow),

which is also analytic at z = 4+ nm. Hence all other singular points are regular.

20. z = 0 is the only singular point. Dividing the ODE by 222, we have p(z) = 3/(2z)
and ¢(z) = — 27 2(1 4 x)/2. It follows that

3 3
limz p(z) = limzr— = 3

x—0 z—0 2T
o, —(+x) 1
fimea(o) = Mo 5 = 3

Hence = = 0 is a regular singular point. Lety = ag + a7 + a,x® + -+ + a,z" + -+ .
Substitution into the ODE results in

2x22 (n+2)(n+ 1ap42 " +3mz n+ 1Da,z" — (1 + ) Z =

n=0 n=0
That is,
o0
Z (n—1)a,z" —I—SZnanx — Zanx —Zan 1"
It follows that

[e.0]
—ag+ (2a1 — ap)x + Z 2n(n —1)a, + 3na, —a, — ap—1|z" =
n=2

Equating the coefficients to zero, we find that ag = 0, 2a; — a9 = 0, and
2n—1)(n+1)a, = ap-1, n=2,3,---

We conclude that a/l the a,, are equal to zero. Hence y(x) = 0 is the only solution that
can be obtained.

22. Based on Prob. 21, the change of variable, x = 1/¢, transforms the ODE into the
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form

2
§4d£‘7§+2§3—€+y—0

Evidently, ¢ = 0 is a singular point. Now p(§) = 2/¢ and ¢(£) = 1/£%. Since the value
of flin%SQq(f) does not exist, £ = 0, that is, z = 0o, is an irregular singular point.

24. Under the transformation x = 1/¢, the ODE becomes

o, 1\ d% sy L1 o 1| dy
&1 52 7 + [2¢8°( 1 & +2£§ d£+oz(a+1)y 0,

that is,
d?
(& —¢ )dé/ +2530l—5 tafa+1)y=0.
Therefore £ = 0 is a singular point. Note that
28 ala+1)
p(§) £-1 and ¢(¢§) = 2@ 1)
It follows that
lime p(6) = limé 7 = 0.
: a+1
limé?g(€) = lim ¢ &2 = —ata-+1).

Hence £ = 0 (x = 00) is a regular singular point.

26. Under the transformation x = 1/¢, the ODE becomes

g d§2 {2§3+2§2€]2—§+)\ =0,
that is,
5 de 2(£3+£)3—Z +Ay=0.
Therefore & = 0 is a singular point. Note that
) = 2 ana g = 3

It immediately follows that the limit %inéﬁ p(§) does not exist. Hence { =0 (z = 00)
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is an irregular singular point.

27. Under the transformation = = 1/¢, the ODE becomes

d?y dy 1
4 3
— + 20— —-y=0.
Therefore £ = 0 is a singular point. Note that
2 -1
p(§) = zand ¢(§) = —.
(€) ¢ (€) &
We find that
2
lim =limé- =2,
limg p(¢) fim&e
but

(=1
&

The latter limit does not exist. Hence £ = 0 (x = o0) is an irregular singular point.

li 2 — li 2
51335 q(¢) 513[1)5
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Section 5.5

1. Substitution of y = " results in the quadratic equation F'(r) = 0, where

Fir)y =r(r—1)+4r+2
=r’+3r+2.
The roots are r = — 2, — 1. Hence the general solution, for z # 0, is

Y= clx_2 + ¢ x L.

3. Substitution of y = 2" results in the quadratic equation F'(r) = 0, where

F(r)y=r(r—1)—3r+4
=72 —dr+4.

The root is » = 2, with multiplicity two . Hence the general solution, for x # 0, is

y = (c1 + ¢ In|z|) 2*.

5. Substitution of y = 2" results in the quadratic equation F'(r) = 0, where

F(r)y=r(r—1)—r+1
=72 —2r+1.

The root is » = 1, with multiplicity two . Hence the general solution, for = # 0, is

y= (a1 +elinlz|)x.

6. Substitution of y = (x — 1)" results in the quadratic equation F'(r) = 0, where
F(ry=r*+1Tr+12.
The roots are r = — 3, — 4. Hence the general solution, for z # 1, is

y=c(z—1 " +e@@-1)""

7. Substitution of y = z" results in the quadratic equation F'(r) = 0, where

F(ry=r*+5r—1.
The roots are r = — (5 + 29> /2. Hence the general solution, for x # 0, is

(5+\/@)/2 (5—\/5)/2.

y=cilz| + elz|

8. Substitution of y = z" results in the quadratic equation F'(r) = 0, where
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F(r)y=r*=3r+3.

The roots are complex, with r = (3 £ Z\/g ) /2. Hence the general solution, for x # 0,

1S

y = ¢ |z[**cos (@ ln|x|) + |z ?sin (@ ln|x|)

10. Substitution of y = (x — 2)" results in the quadratic equation F'(r) = 0, where
F(r)=r?+4r+8.
The roots are complex, with » = — 2+ 2¢. Hence the general solution, for x # 2, is

y=c (z—2)cos(2In|z — 2|) + co(x — 2) sin(2In|z — 2|).

11. Substitution of y = " results in the quadratic equation F'(r) = 0, where
Fry=r*4r+4.

The roots are complex, with r = — (1 +14/15 ) /2. Hence the general solution, for
x #0,1s

y = c |z| V2cos (@ ln|x|) + cg|:c|_1/23in(@ ln|x|)

12. Substitution of y = z" results in the quadratic equation F'(r) = 0, where
F(r)y=7r*—5r+4.
The roots are » = 1, 4. Hence the general solution, for x # 0, is

y:clx+02x4.

14. Substitution of y = z" results in the quadratic equation F'(r) = 0, where
F(r)=4r* 4+ 4r +17.

The roots are complex, with » = — 1/2 4 2i. Hence the general solution, for
x> 0,is

y=cz Ycos(2inz) + e, a2 sin(2In ).

Invoking the initial conditions, we obtain the system of equations
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C = 2
1
- — 2c,= —3
201 + 2¢y
Hence the solution of the initial value problem is

y(z) =227 2cos(2Inz) — 2 2sin(2In x).

40608 1 1214 TH18 2 22242628 3

As £ — 07", the solution decreases without bound.

15. Substitution of y = " results in the quadratic equation F'(r) = 0, where
F(r)y=7r*—4r +4.
The root is » = 2, with multiplicity two. Hence the general solution, for z < 0, is
y = (c, + ¢ In|z|) 2
Invoking the initial conditions, we obtain the system of equations

01:2
—201—02:3

Hence the solution of the initial value problem is

y(x) = (2 — Tin|z|) 2*.
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2.2

1.8
F1.6
1.4
1.2

.8
H.6
0.4
F0.2

A 0.8 06 0.4 02 0
We find that y(z) >0 asz—0".

18. Substitution of y = z" results in the quadratic equation 7> — r + 3 = 0. The roots
are

1+/1-48
5 .

If 3> 1/4, the roots are complex, with 7, = (1£14y/43 — 1) /2. Hence the general
solution, for x # 0, is

1 1
y=c \x|l/2003<§\/4ﬂ -1 ln|x|) + 02|x|1/28in<§\/46 -1 ln\x|)

Since the trigonometric factors are bounded, y(x)—0as x—0. If 3 = 1/4, the roots
are equal, and

r =

Y2 In|z|.

y=clz|'? + ||
Since limox/\x|ln|a:| =0, y(x)=>0as x—=0. If § < 1/4, the roots are real, with
r2 = (1£+/1—43)/2. Hence the general solution, for z # 0, is

y=c |$|1/2+V1_4ﬁ/2 + 02|m|1/2—\/1—4[3/2'

Evidently, solutions approach zero as long as 1/2 — /1 —4(3/2 > 0. That s,
0<p<1/4.

Hence all solutions approach zero, for g > 0.

19. Substitution of 3 = " results in the quadratic equation 7> — r — 2 = 0. The roots
are 7 = — 1, 2. Hence the general solution, for x # 0, is

Y= clx_l +c z2.

Invoking the initial conditions, we obtain the system of equations
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G +e=1
—c+2c =y

Hence the solution of the initial value problem is

2= 4 147
y(x) = 3 ¢ + 5 &

The solution is bounded, as x—0,1if v = 2.

20. Substitution of y = 2" results in the quadratic equation 72 + (o — 1)r +5/2 = 0.
Formally, the roots are given by

_l-a+ a? —2a—9
2

1—ai\/(a—1—\/ﬁ>(a—1+\/ﬁ)

5 .

(7) The roots 7, will be complex, if |1 — a| < /10 For solutions to approach zero,
as x—o00,weneed — \/ﬁ< 1-a<0.

(i7) The roots will be equal, if |1 — | = \/10 . In this case, all solutions approach
zeroaslongas 1 —a = — \/ﬁ

(iii) The roots will be real and distinct, if |1 — | > 1/10. It follows that

l—a+ Va2—2a-9
5 .

Tmaf, -

For solutions to approach zero, weneed 1 — a + vV a? —2a — 9 < 0. That s,
l-a< —+/10.

Hence all solutions approach zero, as z =00, aslongas a > 1.

23(a). Giventhat z = e?, y(x) = y(e®) = w(z). By the chain rule,

dy d () dw dz 1 dw
= —wE)=—— = - —.
dx dx dz dx T dz
Similarly,
By _drde] L 1dwa
dz?  dzx |z dz 2 dz 1z dz2? dx
1d_w 1 d*w

(b). Direct substitution results in
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1 d*w 1 dw 1 dw
2\ - _ - 77 - = =
T2 a2 xde] ozx[m dz]—i_ﬁw 0,
that is,
d*w dw
- —1)— =
7.2 + (« )dz + fw

The associated characteristic equation is r? + (o — 1)r + 3 = 0. Since z = Inz,
it follows that y(x) = w(in x).

(c). Ifthe roots r, are real and distinct, then

y — 0167‘12 + 0267‘22
=2 + ",

(d). If the roots r, , are real and equal, then

y =c e+ cze'?
=cz"' +czlng.

(e). If the roots are complex conjugates, then r = X\ +ip, and

y = eM(cicos pz + ¢, sin pz)
= 2Me,cos(pinz) + ¢ sin(pln x)].

24. Based on Prob. 23, the change of variable x = e transforms the ODE into

d*w  dw
— — — —2w=0.
dz?2 dz
The associated characteristic equation is r> —r —2 = 0, withroots r = — 1, 2.

Hence w(z) = cie* + ,e?*, and y(z) = ¢,z ! + ¢, 2%

26. The change of variable x = e* transforms the ODE into

d*w dw .
The associated characteristic equation is > +6r +5 =0, withroots r = —5, — 1.
Hence w,(2) = c;e™* + c,e %, Since the right hand side is not a solution of the
homogeneous equation, we can use the method of undetermined coefficients to show
that a particular solution is W = e”/12. Therefore the general solution is given by
w(z) = cie™* + e % + 7 /12, thatis, y(z) = o '+ 270 + /12,

27. The change of variable x = e* transforms the given ODE into
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d*w dw 9z

The associated characteristic equation is r> — 37 +2 = 0, withroots r =1, 2.
Hence w,(z) = c,e* + c,e?*. Using the method of undetermined coefficients, let
W = Ae?* + Bze?* + Cz + D. It follows that the general solution is given by
w(z) = c;€* + c,e* + 3ze* + z + 3/2, that is,

y(z) = clx+cza:2+3x2ln:r+lnx+3/2.

28. The change of variable x = e* transforms the given ODE into

d*w 4 )
— W= sinz.
dz?

The solution of the homogeneous equation is w,(z) = ¢,cos 2z + c¢,sin 2z . The right

hand side is not a solution of the homogeneous equation. We can use the method of

undetermined coefficients to show that a particular solution is W = %sin z. Hence

the general solution is given by w(z) = ¢,cos 2z + c;sin 2z + 3sin z, that is,
y(z) = cicos(2Inx) + cysin(2inz) + 3sin(in).

29. After dividing the equation by 3, the change of variable x = e* transforms the ODE
into

The associated characteristic equation is v* + 37 + 3 = 0, with complex roots
r= — (3 +iy/3 ) /2. Hence the general solution is

w(z) = e 32 [c1c03<\/§z/2) + cgsin(\/gz/Zﬂ ,

and therefore

y(z) = x~%? [clcos (@ In x) + c23m<§ In :1:)]

30. Letx < 0. Settingy = ( — )", successive differentiation gives y’ = —r( — )
and y” = r(r —1)( — z)"*. It follows that

Li(=2)]=r( -1z - x)T_Q —arz(— x)7'_1 +6(—x)".

Since 2? = ( — x)°, we find that
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LI(=2)] =r(r=1)(=2) +ar(-z)"+6(—z)
=(—a)[r(r—1)+ar+7g.
Given that r, and 7, are roots of F'(r) = r(r — 1) + ar + 3, we have L[( — 2)"] = 0.

Therefore y, = (— x)"™ and y, = ( — x)" are linearly independent solutions of the
differential equation, L[y] = 0, forx < 0, as long as r, # r,.
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Section 5.6

1. P(xz) =0whenx = 0. Since the three coefficients have no common factors, z = 0
is a singular point. Near x = 0,

1 1
| =1 — = =
limz p(w) = lim 25> = 3
lima?q(x) = hm :1:21 =0.
x—0 —0 2

Hence = = 0 is a regular singular point. Let
o0
Yy = :I:T(ao + a4 ayx® + -+ apz” + ) = Zanx””

Then

o0
E 7"+7’L anl,rJrnfl
n=>0

and

o0

Z r+n)(r+n—1)a,z" "2

Substitution into the ODE results in

2 Z (r+n)(r+n—1a, 2™ + Z(r +n)a,x "+
n=0 —

o0
_|_ E anxT+’n+1 — O .
n=>0

That is,
o0
22(r+n)(r+n—1)an ”"-I—Z T+nanxr+”+2an 22" =0.
n=0 n=0 =
It follows that

agl2r(r — 1) +rlz" + a1 2(r + D)r +r + 1]x7'+1 +

_|_

Nk

2(r +n)(r+n—1a, + (r+n)a, +a, o]z =0.

n=2

Assuming that ay # 0, we obtain the indicial equation 2r* — r = 0, with roots r, = 1/2
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and r, = 0. It immediately follows that a; = 0. Setting the remaining coefficients
equal
to zero, we have

— ap-2

“E Rt 1 "

For r = 1/2, the recurrence relation becomes

— Ap—2

2 =23,
n(1+ 2n) "

Ay =

Since a; = 0, the odd coefficients are zero. Furthermore, fork =1,2,---,

— k2 agk—4 _ (—1)*aq

YT ORI+ 4k)  (2k—2)(2k)(4k —3)(4k + 1)  2FKI5-9-13---(4k + 1)

For r = 0, the recurrence relation becomes

— Qp—2

2 —92.3 ...
n(2n—1)° e

an =

Since a; = 0, the odd coefficients are zero, and for k = 1,2, ---,

— Qgp—2 A2k —4 B (—1)fag

2k(4k —1)  (2k —2)(2k)(4k —5)(4k — 1)  2+E!3-7-11---(4k — 1)~

Qg =

The two linearly independent solutions are

(_1>k 2k
yi(z) =z 1+22kkl5 9.13---(4k + 1)

1 (= 1)F g2
Yo(w) = +22kk'3 7-11---(4k — 1)

3. Note that z p(z) = 0 and x°q(x) = =, which are both analytic at z = 0. Set
y=12"(ay+ ayx + x4 - 4 apa” + --+). Substitution into the ODE results in

NgE

(r+n)(r+n—1a, 2™ + i a,x’ =0,
n=0

q
Il
o

and after multiplying both sides of the equation by =,

Zr-l—n (r+mn-—1a, T+"+Zan 1" =0.

n=1

It follows that
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ap[r(r —1)]z" + i [(r+n)(r+n—1a,+a, 1]z"" =0.

n=1

Setting the coefficients equal to zero, the indicial equation is r(r — 1) = 0. The roots
are r;, =1 and r, = 0. Herer;, — r, = 1. The recurrence relation is

— Qp—1 1.9
an = > M= 1,4,
(r+n)(r+n-1)
Forr=1,
— Qp—1
n — 5 _1727
¢ n(n+1)
Hence forn > 1,
S Qn—2 _ .- (=D
" nn+1) (n—1)n%(n+1) nl(n+ 1)

Therefore one solution is

5. Here x p(z) = 2/3 and z%q(x) = 2?/3, which are both analytic at x = 0. Set
y = 2" (ay + a1z + a,x® + -+ + a,x"™ + --+). Substitution into the ODE results in

32 (r+n)(r+n-—1a,2""" + 22 (r+n)a, ™" + Z apx™t? =0.
n=0 n=0 n=0
It follows that
ag[3r(r — 1) + 2r)z" 4+ a[3(r + 1)r + 2(r + 1)]z" +
+ 2[3(7“ +n)(r+mn—1)a, +2(r +n)a, +a, 2]z’ =0.
n=2

Assuming ag # 0, the indicial equation is 3r* —r = 0, with roots r; = 1/3,7r,=0.
Setting the remaining coefficients equal to zero, we have a; = 0, and

(r+n)[3(r;n) —1]°

an = n=223,--.
It immediately follows that the odd coefficients are equal to zero. Forr =1/3,

— Ap—2

=%, =23,
n(1+ 3n) "

Qn

Sofork=1,2,---,
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Qo = ——2h=2 G2k—4 _ (= 1)"aq
T 2k(6k+ 1) (2k — 2)(2k)(6k — 5)(6k+1)  2FkIT-13---(6k+ 1)

Forr =0,
— Gp-2
n= e =23,
¢ n(3n —1) "
Sofork=1,2,---,
I — Gok—2 A2k—4 _ (_1)ka0
2k 2k(6k — 1)  (2k —2)(2k)(6k —7)(6k —1)  2FK!5-11---(6k —1)°

The two linearly independent solutions are

_ 1 N (-1 2\
yi(z) = '/ 1+;k!7.13---(6k+1)(5)]

s (2D ey
yz(x)—1+;k!5.11...(6k_1)(?) '

6. Note that z p(x) = 1 and z%q(x) = x — 2, which are both analytic at z = 0. Set
y=12"(ay+ ayx + a4+ - 4 apa” + --+). Substitution into the ODE results in

o0

o
Z (r+n)(r+mn-1a,z"" + Z (r+mn)a, ™" +
n=0 n=0

o0 o0
+ Z apx T — 22 a7 =0.
n=0 n=0
After adjusting the indices in the second-to-last series, we obtain

aglr(r—1) 4+ r —2]z" + Z[(r—i— n)(r+n—Da, + (r +n)a, — 2a, + a,_i]z" " = 0.
n=1

Assuming ag # 0, the indicial equation is r* — 2 = 0, with roots 7 = & \/5 . Setting
the remaining coefficients equal to zero, the recurrence relation is

TS
(r+mn)”—2
First note that (7’+n)2—2: (r+n+ \/5)(7’+n—\/§>. Soforr:ﬁ,
4y = —— L =19

n<n+2\/§>
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It follows that

an = (= 1D%ag  n=1,2,.

n!(1+2\/§) <2+2\/§)---(n+2\/§)
For r = — \/5,
an:$, n=12---,
n(n—Qﬁ)

and therefore

ay = (= 1)ag = 1,2

n(i-2v2)(2-2v2)(n-2v2)

The two linearly independent solutions are

o= ;n!(1+2\/5)(2+2\/5)---<n+2\/5>
2 =g V2 1 - (="
= e (2 2v3) (=)
7. Here zp(z) =1 — 2 and 2?q(r) = — x, which are both analytic at z = 0. Set

y = 2"(ay + a1z + ayx® + -+ + a,x" + --+). Substitution into the ODE results in

o
Z r+n)(r+n—1a, 2™ +

r+n—1 _

M2

(r+mn)a, x
0

00 00
— E (7‘ + n)a” xr—i—n . § : anxr+n =0
n=0 n=0

3
|

After multiplying both sides by x,

o
Z r+n)(r+mn-—1)a, ”"%—Z r+n)a, " —

n=0
00

0
} : et } : +nt
T—|—7’L an T Pl I anx7+” 1 _ 0.
n=0

After adjusting the indices in the last two series, we obtain
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ao[r(r —1) +rjz" + Z[(r +n)(r+n—1a, + (r+n)a, — (r+n)a, ]z " = 0.

n=1

Assuming ay # 0, the indicial equation is r*> = 0, with roots r, = r, = 0. Setting
the remaining coefficients equal to zero, the recurrence relation is

ap—1

a, = s 7@::1,27”.
" r+n
Withr =0,
an::an_l’ n::l,Z
n
Hence one solution is
2 n
_ T ¥ LT e
yl(x)—1+1!+2!+ +n!+ =e".

8. Note that x p(z) = 3/2 and 2?q(z) = 2% — 1/2, which are both analytic at z = 0.
Set y = 2"(ay + ayx + ax* + -+ + a,x™ + ---). Substitution into the ODE results in

22 (r+n)(r+mn-1a,z"" + 32 (r+mn)a, ™™ +
n=0 n=0

) )
+ 2§ anxT+n+2 _ E anxT+n =0.
n=0 n=>0

After adjusting the indices in the second-to-last series, we obtain

apl2r(r—1)+3r—1]z" + a12(r+ D)r+3(r+1) — 1] +

o0

+ 3 2(r +0)(r + 1 — Day + 3(r + n)ay — ay + 2a,_oJa™" = 0.

n=2

Assuming ag # 0, the indicial equation is 2r* +r — 1 = 0, with roots r, = 1/2 and
ry = — 1. Setting the remaining coefficients equal to zero, the recurrence relation is

_2an—2 n_23
(r+n+D[20r+n) -1~ 77

ap =
Setting the remaining coefficients equal to zero, we have a; = 0, which implies that all
of the odd coefficients are zero. Withr =1/2,

- 2an—2

L= 2 93
¢ n(2n + 3) "

Sofork=1,2,---,
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- — Q2k—2 _ Aok —4 _ ( — 1)ka0
T k(4k+3) (k- Dk(dk —5)(4k+3)  Kkl7-11---(4dk+3)

Withr = —1,
_2an72
W= o =2,3,
¢ n(2n — 3) "
Sofork=1,2,---,
T Q2 a2} —4 _ (—1)ka0
A2k =

k(4k —3)  (k—1)k(4k —11)(4k —3)  k!5-9---(4k —3) °

The two linearly independent solutions are

_ l)n 2n
1
y(z) +Zn'7 11---(4n +3)
n _.2n
- )"z
1
ve(2) +Zn'5 9. 4n—3)]
9. Note that z p(r) = — 2 — 3 and z°q(x) = x + 3, which are both analytic atz = 0.

Sety = z"(ay + a1 + a,x® + -+ + a,z" + ---). Substitution into the ODE results in

o0 o0
Zr%—n(r—i—n—lan Zr—l—nan rintl _ Zr—i—nan
n=>0

i nxr+n+1 + 32 anl,rJrn —0.

After adjusting the indices in the second-to-last series, we obtain
aglr(r—1) —3r + 3|z" +
+ Z[(r +n)(r+n—1)a,—(r+n—2)a,_1 —3(r+n-1)a,)z"" =0.
n=1

Assuming ay # 0, the indicial equation is r*> — 4r + 3 = 0, with roots r, = 3 and

ry, = 1. Setting the remaining coefficients equal to zero, the recurrence relation is
(r+n—2)a,1

(r+n—1)(r+n—23)

an = , n=1,2 -

With r =3,

page 226



WWV. ZI T e.Ir

CHAPTER 5. ——
Da,_
a, = M’ n=1,2,-
n(n + 2)
It follows that forn > 1,
(n+1)an1 An—2 2a9
a’TL = = == —
n(n + 2) (n—1)(n+2) n!(n+2)

Therefore one solution is

—I

1+Zn' n+2]

10. Here x p(z) = 0 and 2?q(x) = x* + 1/4, which are both analytic at x = 0.
Sety = z2"(ay + a,x + ayx® + -+ + a,z" + ---). Substitution into the ODE results in

o0

Z r+n)(r+n-—1)a, 7+”+Zanx7+“+2+ Zan Hno— ),
n=0

After adjusting the indices in the second series, we obtain

1:| xr+1 +

“0[7"(7“—1)4'%]%" +a1[(r+1)r+ 1

> 1
+ Z |:(T—|—7’L)<T’ +n— 1)an + Zan + an2:| errn =0.

Assuming ay # 0, the indicial equation is > — r + i = 0, with roots r, =7, = 1/2.
Setting the remaining coefficients equal to zero, we find that a; = 0. The recurrence
relation is

Gy= M2 93
To2r+2m—1)% o
Withr = 1/2,

Since a1 = 0, the odd coefficients are zero. So for k > 1,

k
a?k‘ prnd _ a2k72 frnd a2k74 — . = 7( _ 1) aO
4k? A2(k — 1)%k2 4k (kN?

Therefore one solution is
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T 2Y T2l
Forxz =1,
T 1
po = lim(z — Dp(x) = lim —— = 5
o = lim(r —1'g(a) = tim T g,
Forz = —1,
. T 1
po = Jim (o + 1p(x) =lim 777 =5
qo = Ili@l(x +1)%q(z) ::Elir{ll % =0.
Hence both x = — 1 and x = 1 are regular singular points. As shown in Example 1,

the indicial equation is given by
r(r—1)+ por+qo=0.

In this case, both sets of roots are 7, = 1/2 and 7, = 0.

(b). Lett =2 — 1, and u(t) = y(t + 1). Under this change of variable, the differential
equation becomes

(+2t)u” + (t+1u’ —a’u=0.

o0
Based on Part (a), t = 0 is a regular singular point. Set u =Y a, t"*". Substitution
n=0
into the ODE results in

o
Z (r+n)( r+n—1)ant’"+n+22 (r+n)(r+n—1a, ™"+
n=0

o0
Z r+n)a, ™" + Z r+n)a,t™ " 1 QZ a,t’t" =

Upon inspection, we can also write
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o0

[0.9]
(7“ + TL) (r +n— %)an prn=1 _ QQZ antwrn = 0.

00
Z (r+n)’an t™" + 2
n=>0 n=>0 n=>0

After adjusting the indices in the second series, it follows that

o0
IN] = 1
ao[Zr(r—§>}t 1y E [(r+n)2an+2(r+n+1)<r+n+ 5>an+1—a2an

n=>0

t7‘+71, — 0

Assuming that ay # 0, the indicial equation is 2r* —r = 0, with roots r = 0, 1/2.
The recurrence relation is

1
(T—i—n)2a7,/—|—2(r+n—|—1)(7’—l—n—l—§>an+1_a2an:0, 7’1,:0,1,2,..‘_

With r, = 1/2, we find that forn > 1,
40 — (2n —1)*
Ay = Qp—1
dn(2n + 1)
_(_1p [1—4a?][9 — 4a?]---[(2n — 1)* — 4a?]
B 27(2n + 1)!

ag .

With r, = 0, we find that forn > 1,
o2 —(n—1)>
n(2n —1)
al —a)[l —a?][4 - a2]---[(n — 1)2 — aQ]

ap = An—1

— _ 1 n .
(=1 nl-3-5--(2n — 1) 0
The two linearly independent solutions of the Chebyshev equation are
N P PO e 10 ok 0 0 (G Vs PN
ple) =l =11+ D (- 20(2n + 1)! (z—-1)

13. Here x p(z) = 1 — x and x?q(z) = X\ =, which are both analytic atz = 0.
In fact,

Po = lir%x p(zr) =1and ¢y = lin})xQQ(m) =0.

Hence the indicial equation is r(r — 1) +r = 0, with roots r,, = 0. Set
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y=ay+ax+ ax? + - +ax" + -

Substitution into the ODE results in

I Mé%
3
-
§
]
S
S
|

That is,
i (n+ Dap 2" + i n+ Day 2" —
- Znanm’ -I—)\Z a,x"
n=1
It follows that
a; + Aag + i [(n+ 1 2ap41 — (n — Na,|z" =0.
n=1
Setting the coefficients equal to zero, we find that a; = — Aag, and
L C PP
That is, forn > 2,
0 = (n—1-=2X) 4 == (=N =X)-(n=1-=X) a.

n2

(n!)?

Therefore one solution of the Laguerre equation is

n—1—MX
— 1—1—2 (7)1')( )x".

Note that if A\ = m, a positive integer, then a,, = 0 for n > m + 1. In that case, the
solution is a polynomial

RN NE\ (E SR e

n=1 (TL')
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Section 5.7

2. P(x) =0 only for z = 0. Furthermore, x p(z) = — 2 —z and z%q(x) = 2 + 2%
It follows that

p =lim(-2-z)= —2
qo =1im (2 + 2%) =2
and therefore x = 0 is a regular singular point. The indicial equation is given by
r(r—1)—2r+2=0,

thatis, 7> —3r +2 =0, withroots 7, =2 and r, = 1.

4. The coefficients P(z), Q(z), and R(x) are analytic for all x € R. Hence there are
no singular points.

5. P(z) =0 only for z = 0. Furthermore, z p(z) = 3*2% and z%q(z) = — 2. It
follows that
po=lim3 2% =3
z—0 T
qo — lim—-2= —2

z—0
and therefore z = 0 is a regular singular point. The indicial equation is given by
r(r—1)+3r—2=0,

thatis, 72 +2r — 2 =0, withroots 7, = —1++/3 and r, = — 1 — /3.

6. P(z)=0 forz =0 and z = — 2. We note that p(z) =z '(z+2)"'/2, and

q(z) = — (x+2)""/2. For the singularity at z = 0,
i 1 1
=lim — = -
Po x—0 2(IE+2) 4
2
-z
O =220z 1 2)

and therefore = = 0 is a regular singular point. The indicial equation is given by

1
r(r—l)—l—ZT:O,

2_3

that is, r 1

r = 0, with roots r, = % and r, = 0. For the singularity at x = — 2,
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— lim (2 + 2)p(z) = lim — = — *
po=lim, (v + Dp(z) =lim, 57 = — 5
— 2
g = lim (2 +2)%g(z) = lim — =T _g
T——2 T——2 2
and therefore x = — 2 is a regular singular point. The indicial equation is given by

B

thatis, r* — 27 = 0, withroots r, = 2 and r, = 0.

+ ST and 2%q(x) = 1. It

7. P(z) = 0 only for x = 0. Furthermore, z p(z) = 5

follows that

1
2

po = lim xp(z) = 1

q = lim 2%q(z) = 1
z—0

and therefore = = 0 is a regular singular point. The indicial equation is given by
rr—=1)+r+1=0,
thatis, 72> + 1 = 0, with complex conjugate roots r = £ i.
8. Note that P(z) = 0 only forx = — 1. We find that p(z) = 3(x — 1)/(z + 1), and
q(z) = 3/(z +1)°. It follows that
o ::,;l_ilel (x + 1)p(x) ::L.lln_n1 3x—1)= —6
= Jim, (o 1a(o) = lim,3 =3

and therefore z = — 1 is a regular singular point. The indicial equation is given by

r(r—1)—6r+3=0,

that is, 7> — 7r +3 = 0, with roots 7, = (7 + \/37)/2 and r, = (7 . \/37>/2.

10. P(z) =0 forz =2 and = — 2. We note that p(z) = 2z(x — 2) *(z +2)"",
and q(z) = 3(x —2) ' (2 +2)"". For the singularity at z = 2,

i (&~ 2p(e) = iy .

which is undefined. Therefore x = 0 is an irregular singular point. For the singularity
at x = — 2,

page 232



WWV. ZI T e.Ir

CHAPTER 5. ——
2z 1
=li 2 =lim ——— = — -
po = lim, (+2)p(e) = lim, 7om = g
T 2 o 3@+2)
o = lim, (e +27ale) = im, =57 =0
and therefore x = — 2 is a regular singular point. The indicial equation is given by
1
r(r—1)— ZT:O,
that is, > — %r = 0, with roots r, = g and r, = 0.
I1. P(z) =0 forx =2 and z = — 2. We note that p(x) = 2z/(4 — 2?), and
q(z) = 3/(4 - 2?). For the singularity atx = 2,
— 2z
=li -2 =1 = -1
o = lim (o~ 2)p(a) = lim —=7
. 32— 1)
=1 —2)%q(z) =1 0
qo = lim (z —2)"q(z) = lim ———

and therefore © = 2 is a regular singular point. The indicial equation is given by

r(r—1)—r=0,

thatis, 7> — 2r = 0, with roots 7, = 2 and 7, = 0. For the singularity at x = — 2,
2x
=i 2 =1 = -1
P xEEQ(x—i_ (@) xinfz 22—z
. . 3(x+2)
=1 2)? =1 -
P =11, (z+2)q(x) P’ 2—zx 0
and therefore x* = — 2 is a regular singular point. The indicial equation is given by
r(r—1)—r=20,

thatis, r> — 2r = 0, withroots , =2 and r, = 0.

12. P(z) =0 forz = 0and z = — 3. We note that p(z) = — 2z (z +3) ', and

q(z) = —1/(z + 3)*. For the singularity at z = 0,
. . -2 2
m=limepln) =ln 25 = 73
’ lim —2
=lim 2°¢(z) = lm —— =
q0 20 q( ) 20 ($+3)2

and therefore © = 0 is a regular singular point. The indicial equation is given by
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2
—1)—=-r=0,
r(r—1) 5"
that is, > — gr = 0, with roots r, = % and r, = 0. For the singularity at x = — 3,
—lim (z+3)p(z) = li -2 2
Po= A W) = A T T 3
q = lim3 (x4 3)%q(z) = lim3 (-1)= -1
and therefore x = — 3 is a regular singular point. The indicial equation is given by

2
r(r—l)—i-gr—l:O,

thatis, ? — 37 — 1 = 0, with roots r, = (1+ \/37)/6 and r, = (1 - \/37)/6.

13(a). Note the p(x) = 1/x and ¢(z) = — 1/2. Furthermore, z p(z) = 1 and
2?q(r) = — x. It follows that
go = lim(—2) =0

and therefore x = 0 is a regular singular point.

(b). The indicial equation is given by
rr—1)+r=0,

2

thatis, 7 = 0, withroots r, = r, = 0.

(c). Lety = ag+ ayx + ayx® + -+ + a,x” + ---. Substitution into the ODE results in

Z (n42)(n 4 Va2 2™ + Z(n + Dapz" — Z a,x” =0.
n=0

n=0 n=0
After adjusting the indices in the first series, we obtain
o0
a; —ap + Z[n(n + Dapi1 + (n+ 1)apsr — ay)z" = 0.
n=1

Setting the coefficients equal to zero, it follows that for n > 0,
an

a = .
n+1 (n+ 1)2

Soforn>1,
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a :Gn—lz QAn—2 L 1 ag
oot (-1 (n))?
With ag = 1, one solution is
1 1
y(z)=1+z+ -2+ 2+ -+ —=a"+ -

47 " 36 (n!)

For a second solution, set y,(z) = v, (z) Inx + byx + byw® + - + bz + ---.
Substituting into the ODE, we obtain

Liy,(z)] - Inx +2y/(z) + L ibnx" =0.
n=1
Since L[y (z)] = 0, it follows that
L [ibn :1:”] = —2y/(x).
n—=1
More specifically,
b1 + i[n(n + Dbps1 + (n+ 1)bpyy — bylz" =
n=1

:_Q_x_lﬁ_i s_ 1 4_ ...

6" ~ 72" " 1440”
Equating the coefficients, we obtain the system of equations
by = —2
4by — by = —1
9b3 —by = —1/6
16by —bs = —1/72

Solving these equations for the coefficients, by = — 2, by = — 3/4, by = — 11/108,
by = — 25/3456, ---. Therefore a second solution is

3 11 25
Yo(x) =y(x)Inc + | — 2z — ZxQ - mx?’ - %:ﬁl -

14(a). Here zp(z) = 2z and 2?q(x) = 6 ze* . Both of these functions are analytic at
x = 0, therefore x = 0 is a regular singular point. Note that py = gy = 0.

(b). The indicial equation is given by
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r(r—1)=0,

2

thatis, 7 —r =0, withroots r, =1 and r, = 0.

o0
(¢). In order to find the solution correspondingto r; = 1,set y = = Y, a,z™. Upon
n=>0
substitution into the ODE, we have

i(n+2)(n+1)an+l xn+1+2§:(n+1)anlﬂ+l+6€$§: anxﬂJrl =0.
n=>0 n=>0 n=0

After adjusting the indices in the first two series, and expanding the exponential function,

Z n(n+ 1)a, " + 2Zn an12" + 6 agz + (6ag + 6ay)z* +
n=1 n=1
+ (6ag + 6a1 + 3a0):c3 + (6ag + 6as + 3a; + ao)x4 +---=0.

Equating the coefficients, we obtain the system of equations

2a1 + 2a9 + 6ag =0

6ay + 4a1 + 6ag + 6a; =0

12a3 + 6a9 + 6as + 6a1 + 3ag =0
20a4 + 8as + 6as + 6as +3a; + a9 =0

Setting ag = 1, solution of the system results in a; = — 4, a9 =17/3, a3 = — 47/12,
as = 191/120, ---. Therefore one solution is
17 47
yl(ﬂ?) =T — 41‘2 + EZES - EIA +

The exponents differ by an integer. So for a second solution, set
y(x) = ay(x)Ine + 14+ cx+ e + -+ cpr™ + -

Substituting into the ODE, we obtain

a L[y, (z)] - Inz + 2ay/(x) + 2ay,(z) — a% + L

1+§:cnx”] =0.

n=1

Since L[y (z)] = 0, it follows that

L

1+§:cnx"] = —2avy,(r) — 2ay () +ay1($) :

n=1

More specifically,

page 236



WWV. ZI T e.Ir

CHAPTER 5. ——

o0
Zn (n+ Deppz” +2chnac +6 + (6 + 6¢1)x +
n=1 n=1

61 193
+ (6c2 + 6c; + 3)z® + -+ = —a+10ax—§a:1: +§aa: +-

Equating the coefficients, we obtain the system of equations

6= —a
202 + 801 + 6 = 10a
61
6c3 + 10cy + 6¢1 + 3 = —-?;a
193
12¢4 + 12¢3 + 6¢c9 + 3c1 + 1 = Ea
Solving these equations for the coefficients, a = — 6. In order to solve the remaining

equations, set c; = 0. Then ¢ = — 33, ¢3 =449/6,¢4 = —1595/24,---.
Therefore a second solution is
449 5 1595 v

= — 1— St Bt
Yo () 6y (z)Inx + 3322 + 5 " 51

15(a). Note the p(z) = 6x/(x — 1) and ¢(z) = 3z~ '(z — 1)~ . Furthermore,
rp(z) = 62°/(xr — 1) and 2?q(z) = 3z/(x — 1) . It follows that

622
=1 =
Po xlir(l).%‘—l 0
3z
=1 =
% 7%:1}—1 0

and therefore z = 0 is a regular singular point.
(b). The indicial equation is given by
r(r—1)=0,

thatis, r> —r = 0, withroots r, =1 and r, = 0.

o0
(¢). In order to find the solution correspondingto r; = 1,set y =z Y, a,z™. Upon
n=>0

substitution into the ODE, we have
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Mg

n(n+ a, z" +

o0
Z n(n+ 1)a, 2"
n=1

3

7 L

o
(n 4 Da,z"? + SZ apz" ™t =0.
0 n=0

+6

3
Il

After adjusting the indices, it follows that

o0 o0

Z (n—1)a,_1 2" —Zn(n+1)anx7”+

= n=

+6i n—1)a,_ 2m”+3Zan 1" =0.
n=1

n=

(V]

That is,
—2a; + 3ap + Z[ —n(n+1)a, + (n* —n+3)ay_1 +6(n — 1)a,_oJz" = 0.
n=2
Setting the coefficients equal to zero, we have a; = 3aq/2, and forn > 2,
n(n+ 1)a, = (n2 —n+ S)a,,,,_l +6(n—1)a, 2.

If we assign ag = 1, then we obtain a; = 3/2, a2 =9/4, a3 = 51/16, ---
Hence one solution is

111

35,95 51,
() =z + o+ -+ —at 4+ —a" + -

2 4 16" 40
The exponents differ by an integer. So for a second solution, set

y(z) = ay(x)Ine + 1+ cz+ e + -+ cpr™ + -

Substituting into the ODE, we obtain

+ L

2ax y, (v) — 2ay, (z) + 6az y,(v) — ay (z) + aylff)

1+ icn x"] =0,
n=1

since L[y, (x)] = 0. It follows that

L1 + ch Qj”] = 2a yll(m) — 2ax yl/(.’]f) —+ ayl(x) — 6azx yl(x) o ayliaf) .

Now

L 1+chx"] =3+ (—2cy+3c))x + (—6c3 + 5y + 6cy)x® +
B + (= 12¢4 + 9c3 + 12¢9)7* + ( — 20¢5 + 15¢4 + 18¢3)z* + -+

Substituting for y,(x), the right hand side of the ODE is
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+ + +§ 3 &7 4 44_1 r+
a 2ax 4a,x G 20 ar 10 ar

Equating the coefficients, we obtain the system of equations

3=a
7
— 202 + 361 = 5&
3
— 6c3 + 5cy + 61 = Za
33
—12¢4 +9¢c3 + 12¢9 = —a

We find that a = 3. In order to solve the second equation, set ¢; = 0. Solution of the
remaining equations results in ¢o = —21/4,¢c3 = —19/4,¢4 = — 597/64,---
Hence a second solution is

21 , 19 3 597

= 1 22 22,8 270
yo(z) =3y (x) Inx + T 17 64w+

16(a). After multiplying both sides of the ODE by x, we find that x p(x) = 0 and
2%q(z) = x. Both of these functions are analytic at x = 0, hence z = 0 is a regular
singular point.

(b). Furthermore, py = gy = 0. So the indicial equation is r(r — 1) = 0, with roots
leland TQZO.

o0
(¢). In order to find the solution corresponding to r, = 1,set y = = > . a,x”. Upon
n=0

substitution into the ODE, we have

o0

Z (n+1) anx"—i—Zan ntl— .

n= n=0

That is,
Z n(n+ 1)a, +ap,—1]2" =0.
n=1

Setting the coefficients equal to zero, we find that for n > 1,
— Qp—1

fin = n(n+1)"

It follows that
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e N Q2 _ .= (=D'a
"Tnn+1) (n—1n%(n+1) (n))*(n+1)"
Hence one solution is
_ 1, 1 4 r 5
y(z) ==z 2:1: +12a: 144:1: +2880$ 4

The exponents differ by an integer. So for a second solution, set
yo(z) = ay(z)ine + 14 x4+ cx® + - F ez + -+

Substituting into the ODE, we obtain

L 1 2 ! . yl(x) L1 " nl _ 0
aLly(2)] - Inz +2ay,(z) —a=—+ +;C x
Since Ly, (z)] = 0, it follows that
L 1+icnx” = —2ay’(ac)+ayl<x) :
n=1 1 x

Now

L

1+ e, x"] =1+ (2¢c2 +c1)x + (6c3 + co)x® 4 (12¢4 + c3)x® +
et + (20c5 + c4)z* + (30cg 4 c5)x° + ---.
Substituting for y,(x), the right hand side of the ODE is

—a+ -ar — —ar” + —ax” — ——ax" +---.
2 12 144 320

Equating the coefficients, we obtain the system of equations

1= —a
3
2co 41 = 5@
5)
6c3 +cp = — 2%
12405 = ——
ATE =
Evidently, a = — 1. In order to solve the second equation, set c; = 0. We then find
that co = —3/4,¢3 =7/36,c, = — 35/1728,---. Therefore a second solution is
3 7 35
y(z) = —y(z)ine+ |1 — “2? + o — ——a* +..-].

4 36 1728
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19(a). After dividing by the leading coefficient, we find that
y—(1+a+p)x

po = limz p(z) = lim
z—0

z—0 11—z
_ . —afz
= limz’q(z) = lim =0.
P = 250" a(x) 220 11—z 0

Hence x = 0 is a regular singular point. The indicial equationis r(r — 1) +yr =0,
withroots , =1 —~v and r, = 0.

(b). Forx =1,
—v+(14+a+P)x

=l pe) = lim AT <ty
Qo leiirr%(x— 1)2q(:c) = limM =0.

z—1 x
Hence x = 1 is a regular singular point. The indicial equation is
P —(y—a-B8)r=0,
withroots r, =y —a —f3 and r, = 0.

o0
(c). Given that r; — r, is not a positive integer, we can set y = > a,x". Substitution
n=0

into the ODE results in

o0 o0
z(l—=x Zn Dayx"™ 2 - (1+a+ ﬁ)x}Zn anz" !t — aﬁZan:c" =0
n=1 n=0

That is,

Zn (n+ Day1z" — Zn Da,z" ~|—’yZ n+ a2z —

n=1 n=2 n=0

—(14+a+p) Znanm —aﬂZan =

n=1
Combining the series, we obtain
var —afag+ [(2+2v)as — (1+a+ B+ af)al]r + ZA,,,,:C" =0,
n=2

in which
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Ay = (4 1)(n+ a1 — [n(n = 1) + (1 + a+ Bn + afla,

Note that n(n — 1) + (1 + a + B)n + af = (n + «a)(n + B) . Setting the coefficients
equal to zero, we have ya; — afag = 0, and

(n+a)(n+f)
(n+1)(n+7)

ap4+1 = an

for n > 1. Hence one solution is

of aletDBB+]) ,

v - 1! y(iy+1)-2!

oo+ D(e+2)BB+1D(BE+2) 5
Yy + 1) (v +2) -3

Since the nearest other singularity is at x = 1, the radius of convergence of y, () will
be at least p = 1.

yi(z) =1+

o0
(d). Given that r; — 7, is not a positive integer, we can set y = ' > b,z". Then

n=>0
Substitution into the ODE results in
o0
(1 — :L')Z(n +1—9)(n—"7)a,z" 7t +
B o0 o0
+h-(tatfa)d (n+1=7)aa"" —apfd ax™ 7 =0.
n=0 =
That is,
Y1) (n—yaa"" =Y (n+1—7)(n—y)aa" +
n=0 n=>0
+ vz (n+1—-7)az"7—(1+a+p) Z (n+1-— "t — aﬂZanx”+1‘7 =0.
n=20 n=>0 n=>0

After adjusting the indices,

[&°]

i(” +1=)(n—Yanz"" =Y (n=y)(n—1=7ag 1" +

=0 n=1

<

in—i—l— " 1+a+ﬂi

00
Yap—12"7 — af E an—12" 7 =0.
n=1 n=1

Combining the series, we obtain

o0
n—y __
E B,x"7 =0,

n=1

in which
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B, =n(n+1-7b,—[(n—7)(n—v+a+p8)+ablb,1.

Note that (n —y)(n—y+a+p)+af=n+a—7v)(n+ 6 —7). Setting B, =0,
it follows that for n > 1,

(n+ta—7)n+p-7)
nn+1-—7)

b, = bp_1.

Therefore a second solution is

Ly (Lra—)+8-7)
) = o1 |1 SR

(l+a—-7)C+a-7)A+8-72+8-7) 5,
+ 2-B-2! o ]'

T+

(e). Under the transformation z = 1/¢, the ODE becomes

2
541<1_1)Z_§+{2§33(1—1> —52[7—(1+a+ﬂ)1]}@—045?/:0-

£ £ £ 3 £1) d§

That is,

(53—52)@+ 262 - £2+(—1+a+6)€}@ —afy=0

de 7 dé =
Therefore £ = 0 is a singular point. Note that
2 — -1 —
pe = BT D g g - 27

It follows that

o = limg p(e) = lim = NEHCL¥RD) g

= -1
0 = limg?(¢) = lim 1 = af

Hence £ = 0 (x = o) is a regular singular point. The indicial equation is
rr—1)+(1—-a—-08)r+as8=0,

or 72 — (a+ B)r + af = 0. Evidently, the roots are 7 = a and r = (3.

21(a). Note that

page 243



WWV. ZI T e.Ir

CHAPTER 5. ——

It follows that

limz p(z) = lima z' ",
z—0 z—0

. 2 1 2—s
ygg& q(é)—éhggﬁrc :

Hence if s > 1 or t > 2, one or both of the limits does not exist. Therefore x = 0 is an
irregular singular point.

(c). Let y = apz” + ajz" ™ + -+ + @,z + ---. Write the ODE as
:Egy”—i-oszy’-l—ﬁy:O.

Substitution of the assumed solution results in

0.

o
Z n+r)(n+r—1Daz"" 1+ ozz n 4+ r)a,z" 4 ﬁzan
Adjusting the indices, we obtain
Z n—1+r)(n+7r—2)a, 12" nr —|—O¢Z (n—1+7r)a, 12" nr —I-ﬁZan mr— ).
n= n=1 =
Combining the series,
o0
ﬁaO+ZAnxn+r:
n=1

in which A, = fBa,+(n—1+7r)(n+7r+ a—2)a,_1. Setting the coefficients equal
to zero, we have ayp = 0. Butforn > 1,

—1 -2
0 = (n +7‘)(nﬁ+r+a )Gn—l-

Therefore, regardless of the value of r, it follows that a,, =0, for n =1,2,---
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Section 5.8

3. Here zp(z) = 1 and 2°q(x) = 2z, which are both analytic everywhere. We set
y = 2" (ay + a1z + a,x® + --- + a,x"™ + --+). Substitution into the ODE results in

o
Z r+n)(r+n-1)a, T+"+Z P+ n)a, T 7+n+22a“ rentl _

n=>0 n=>0

After adjusting the indices in the /ast series, we obtain

aplr(r = 1) +7]a7 + Y[+ w7+ 1= Do + ¢+ m)as + 20 22" = 0.

n=1

Assuming ag # 0, the indicial equation is r* = 0, with double root r = . Setting the
remaining coefficients equal to zero, we have forn > 1,

2

m an—1(r) .

an(r) = -

It follows that

an(r) = (-p72 5a0, n>1.
[(n+r)(n+7r—1)-(1+7)]

Since r = 0, one solution is given by

y1(x) = ii( — 2 "

n=>0 (TL')2

For a second linearly independent solution, we follow the discussion in Section 5.7 .
First

note that
/ 1 1 1
a’n<r) - _ 2 .. _|_
an(r) n+r n4+r—1 1+r
Settingr =0,
— 1)t
a'(0) = —2H,a,(0) = —2Hn( )2
(n!)
Therefore,

(—1)" Q"H
yo(z) = y1(x ln:c—?Z x".

4. Here x p(r) = 4 and x?q(x) = 2 + x, which are both analytic everywhere. We set
y = 2" (ay + a1z + a,x® + - -+ + a,x"™ + --+). Substitution into the ODE results in
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o0 o0
Z (r+n)(r+n—1a, 2"+ Z (r+mn)a, 2" +
n: :0

o0

o0
+ E CanH_n-H + 2§ a/nxr-i-n =0
n=0

After adjusting the indices in the second-to-last series, we obtain

o0
aolr(r = 1) +4r + 22" + Y _[(r+n)(r +n — Day +4(r +n)ay +2a, + ay_1]a’" = 0.

n=1

Assuming ag # 0, the indicial equation is v* + 3r + 2 = 0, with roots r, = — 1 and
r, = — 2. Setting the remaining coefficients equal to zero, we have forn > 1,

@ 1 )

an(r) = — an—1(7).

: m+r+Dn+r+2) "

It follows that
— 1"
an(r) = ) ap, n>1.

[(n+r+Dn+7r)--C+r)l(n+r+2)(n+r)--@+7r)

Since r; = — 1, one solution is given by
o
— E n

For a second linearly independent solution, we follow the discussion in Section 5.7 .
Since v, — r, = N = 1, we find that

1
B TN

with ap = 1. Hence the leading coefficient in the solution is

a:‘limQ(r+2) ap(r)= —1.

Further,

(="

Let A, (r) = (r+2)ay(r). It follows that

Al (r) 1 1 1
A (r) n+r+2 n+r+1 n+r 3+
Setting r =1r, = — 2,
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A’ 2) 1 1 1
n = —-_-_-9 o1
An(—2) n n—l_l—n—Q+ +
- - Hn - anl
Hence
Cn( - 2) = - (Hn + Hn—l) An( - 2)
(="
- - Hn Hn— .
(Hy + 1)n!(n - 1)!
Therefore,
_ > —1 H +H, 1)
= — [ n )
o) = = lapine 421 3 o) o
6. Let y(x z)/y/z . Then y' = 2720 — 273 v/2 and y" = a2 v" —

z 2 —I—Sx ’/2 v/4. Substitution into the ODE results in
1
[2°7 0" — 20 + 327 /4] + [2"7 0" — a7 u/2] + (51:2 — Z)x_mv =0.

Simplifying, we find that
v +0v=0,
with general solution v(x) = ¢,cosx + ¢, sinx . Hence

y(z) = c.x?cosx + ey ?sinz.

&. The absolute value of the ratio of consecutive terms is

Qoo T2 |2 [>™2 22 (m 4 1) m) _ Els
Oy T27 2 222 (m 4 2)(m 4+ 1) 4(m+2)(m+1)
Applying the ratio test,
2m+2 2
. a‘?'m,-‘rQ X . |x‘
1 _ | = 1 - O .
mggo Qs T2 mgréo 4m+2)(m+1)

Hence the series for J,(x) converges absolutely for all values of . Furthermore,
since the series for .J;(x) also converges absolutely for all z, term-by-term differentiation
results in
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_ l)mem—l

Jo (@) = Z 227(”—1 m!(m —1)!

1
_ 1)m+ x2m+1

o (
=2 22m+1(m, + 1)1 m!

—1 mem

T o
522 Im!

Therefore, J/(z) = — Ji(x).

9(a). Note that z p(z) = 1 and z%q(x) = 2% — 1%, which are both analytic at x=0.
Thus x = 0 is a regular singular point. Furthermore, py = 1 and ¢y = — v?. Hence
the indicial equation is > — v*> = 0, withroots r, = v and r, = — v.

(b). Set y = x"(ag + a;x + a,x® + -+ + a,x™ + ---). Substitution into the ODE
results in

o
Z r+n)(r+n—1)a, ”"%—Z r+n)a, 2"+
= n=0

[0.9] o
+ E apx T — 2 E a,z’" =0

After adjusting the indices in the second-to-last series, we obtain
ag[r(r—1)+r—v*a" +a[(r+ Dr+ (r+1) — %] +

+3 [+ n)(r +n = Day + (r +n)a, — va, + a, o)™ = 0.

n=2

Setting the coefficients equal to zero, we find that a; = 0, and

—1
An = — 5 - An-2,
o) =2
for n > 2. It follows that a3 = a5 = -+ = a9,4.1 = --- = 0. Furthermore, with
r=v,
-1
= A
n (n+21/) n—2
Soform=1,2,---,
-1
Aoy = ———————— A9y
2 2m(2m + 2v) 2m=2

( _ 1)7TL

22nml(1+v)24v)--(m—14v)(m+v) ¢
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Hence one solution is

yi(z) = 2"

o (_1)m T\ 2m
: +mz_1 m(1+v)2+v)--(m—1+v)(m+v) (5) ]

(c). Assuming that r, — r, = 2v is not an integer, simply setting » = — v in the above
results in a second linearly independent solution

S (-0 vy
43 e T () ]

m=1

yo(w) = 27"

(d). The absolute value of the ratio of consecutive terms in y,(z) is

2m+2 |'_,1»/.|27n"'_2 22m m‘(l + U)' . (m + ]/)

Qo2 L _
Qg T 2> 22m+2(m 4+ D1+ v)---(m + 14 v)
_ £
Am+1)(m+1+v)’
Applying the ratio test,
hm Qo2 x2m+2 — llm |x‘2 _
m—oo| Qg L m—oo 4(m+ 1)(m+ 1+ v)

Hence the series for y,(z) converges absolutely for all values of . The same can be
shown for y,(z). Note also, that if v is a positive integer, then the coefficients in the
series for y,(x) are undefined.

10(a). It suffices to calculate L[.Jy(x)In x|. Indeed,

(@) gl = I () i+ 28
X
and
J) ()  Jy(x
[Jo(z)inz]" = J) (z)Inz + 2 Ox( — ;2 ) :
Hence

L[Jy(z) Inz] = 2*J) (2) Inx + 22 J/ (x) — Jo(z) +
+aJ)(z)Inz + Jy(z) + 2Ty () Inz.

Since z2J) (z) + z J/(z) + 2*Jy(z) = 0,
L{Jy(z)Inz] =2z J)(x).
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(b). Given that L[y,(z)] = 0, after adjusting the indices in Part (a), we have

bix + 22b2 z? + Z (n2bn + bn—Q)xn = —2z JO/(:C) :
n=3
Using the series representation of J/(z) in Problem 8,

[ee] TL 277/)
2 _
bz + 22by 22 +Z by + byo)z" = Zl 2%”'

(c). Equating the coefficients on both sides of the equation, we find that
by=b3=-=byp1=--=0.
Also, withn = 1, 22by = 1/(11)*, that is, by = 1/[22(1!)2]. Furthermore, for m > 2,

(—1)"(2m)
22m(ml)?

by = L (]
1T T g2y 2

be — 1+1+1
67 924242 2 '3

It can be shown, in general, that

(2m)%bay, + boy 2 = — 2

More explicitly,

m HTTL
b = (— 1) I
22m (m)!)

11. Bessel's equation of order one is
?y" +zy + (2 - 1)y =0.

Based on Problem 9, the roots of the indicial equation are r, =1 and r, = — 1. Set
y=1z"(ay+ ayx + a4+ -+ apa” + --+). Substitution into the ODE results in

o0

o0
Z (r+n)(r+n—1a,z""" + Z (r+n)a, ™" +
n=0 n=0

o

o0
+ a xr+n+2__ a 1¢+n __0
E n E n — V.
n=0

After adjusting the indices in the second-to-last series, we obtain
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aglr(r—1)+r—1jz"+ a1 [(r+ Dr+ (r+1) - 1]+

+ Z[(r +n)(r+mn—1)a, + (r+n)a, —a, + a, o)z"™" = 0.
n=2

Setting the coefficients equal to zero, we find that a; = 0, and

-1

ap(r) = ———— a,_9o(r
( ) (7“ +n)2 1 2( )
_ (1)
= an—o(r),
m+r+)n+r—1) "7
for n > 2. It follows that a3 = a5 = -+ = ag;,+1 = --- = 0. Solving the recurrence
relation,
— 1)
agm (1) = ( ) a.

@m+r+1)2m+r—1)%(r+3)*(r+1)
With r =r, =1,

(=D"

D) = g 1)1l

For a second linearly independent solution, we follow the discussion in Section 5.7 .
Since r;, — r, = N = 2, we find that
1

N )

with ap = 1. Hence the leading coefficient in the solution is

1
a :,.lim1 (r+1)as(r) = — 5

Further,

( _ 1)’]7),

(r 1) azm(r) = @m+r+1)[2m+r—1)--@+r)]

Let A, (r) = (r+ 1) a,(r). It follows that

Al 1 1 1
M:_i_Q S W )

Aoy (1) 2m +r+1 2m +r —1 3+r
Setting » = r, = — 1, we calculate
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CQm( — 1) = (Hm + Hm 1)A2m( - 1)

( _ 1)7TL
om[(2m — 2)---2]°

(=D"
22m=1ml(m — 1)1

(Hp + Hy1)

(Hm + Hm 1)

[\DI)—k l\DIH[\DI)—‘

Note that ag,,+1(7) = 0 implies that Ay, 1(r) =0, so

d
Com1(—1) = |:%A2m+1<7’):| - =0.
Therefore,
1 S T\ 2m 0 m(H + H,_ 1) 2m
o) = = o3 i (5) i |- 3 e e (27

Based on the definition of .J,(x),

y(z) = — Ji(x )lnm+

-3 S0 ) (27

12. Consider a solution of the form
= /7 f(az”).
Then

,:ﬂ'aﬁxﬂ_}_f(f)
AN NG

in which ¢ = ax®. Hence

B df e’ [
©de x\/g d¢ x\/7 4:1:\/5 ’

and

ny'/:a2ﬁ2g;2ﬁ\/;iZ2 af? Bf___ff
Substitution into the ODE results in
d*f zgdf_} 2 25 1 50 B
d£2+ af i 4f(§)+< B + 7 Vﬁ)f(f)—o.

Simplifying, and setting ¢ = ax®, we find that

52 203
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2
et ret i @-nr9=0, v

which is a Bessel equation of order v . Therefore, the general solution of the given ODE
1s

y(z) =z [c1 fi(az?) + ¢, fo(az?)],
in which f,(£) and f£,(¢) are the linearly independent solutions of ().
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Chapter Six
Section 6.1

3.

0.87
0.6
0.47

0.2

The function f(¢) is continuous.

4.

1.8
1.6
1.44
1.24

0.8
064
0.44
0.2

i

u 05 1i'5 2 25
The function f(t) has a jump discontinuity at t = 1.

7. Integration is a linear operation. It follows that

A 1 A
/ coshbt - e *'dt = —/ e e dt + / =0t o=ty
0 2.Jo 2
1 A
:_/ (b— sfdt / b+sfdt
2.Jo

1— e*(b‘FS)A

s+b

Hence

1
2

A b—s)A
1{1—elt)
/coshbt-e_‘gtdt:—lei
0 2 s—b

Taking a limit, as A— o,
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o 1[0 1 17 1
hbt-e *dt = = -
/0 cos ¢ 2[3—b]+2[s+b}
s
22
Note that the above is valid for s > |b].
8. Proceeding as in Prob. 7,
A b—s)A —(b+s)A
1{1—elt) 1{1—e ()
/ sinhbt e~ Stdt = ~ | — | — = ¢
0 2 S—b 2 S+b

Taking a limit, as A— o,

o 11 1 11 1
mh bt - e *'dt = = - =
/0 s ‘ 2|:S—b:| 2|:S—|—b:|

The limit exists as long as s > |b].

10. Observe that e sinh bt = (el — el@=0)) /2 It follows that

A _ latb—s)A _ —(b—a+s)A
1)1 1
/ e sinh bt - e ' dt = 3 [6— e—] .
0

1
s—a-+b 2 s+b—a

Taking a /imit, as A— oo,

o 1 1 1 1

@ sinhbt-edt = S| ———— | — - | =
/0 oo c 2[s—a+b] 2[s+b—a]
b
(s—a)* — b2

The limit exists as long as s —a > |b].

11. Using the /inearity of the Laplace transform,
1

. 1 ib —ib
L[sinbt] = Zﬁ[e - Zﬁ[e .
Since
/Ooe(a-i-ib)te—stdt — 1 _
0 s—a—1b
we have
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0 ) 1
/ eizbt efstdt — _
0 sF b

Therefore
1 1 1
Llsinbt] = — -
[sin b4 QiL—z’b s + ib
B b
s2 4027

12. Using the linearity of the Laplace transform,
1

L[cosbt] = 5,6[67:“] + %E[e_ibt].

oL 1
/ e:I: bt e—stdt — |
0 sFib

From Prob. 11, we have

Therefore
1 1 1
bt] = =
Lleos bl 2[s—ib+s+ib
B s
o242

14. Using the /inearity of the Laplace transform,
1 - 1 -
L]e"cosbt] = §£ [e(aﬂb)t] + §£ [e(“_“’)t] :

Based on the integration in Prob. 11,

00 ] 1
/ e(aizb)tefstdt: _
0 s—aFib
Therefore
1 1 1
Lle™cosbt] = =
[e cos ] 2[3—@—ib+s—a+ib
B s—a
(s—a)’ +b2°

The above is valid for s > a .

15. Integrating by parts,
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A A 1

+ [ e
0 0 S—a
1 — eA(a—s) + A(a _ S>€A(a,—s)

(5 —a)”

A _
/ te e dt = — tet
0

sS—a

Taking a limit, as A— o,

o0 1
/ te® . etdt = —.
0 (s —a)

Note that the limit exists as long as s > a.

17. Observe that t cosh at = (te™ +te ™)/2. For any value of ¢,

A (c—s)t |4 A
t 1
/ et . ety = — 25 +/ G
0 0 0 S—C

s—c
1 —ed9) 4 A(c — 5)ede?)

(s —c)’

Taking a limit, as A— o,

>0 1
/ te et = ——— .
0 (s —c)

Note that the limit exists as long as s > |c|. Therefore,

o0 : 1 1 1
/ tcoshat - e *tdt = = 5 + 5
0 2| (s—a) (s+a)

2+ a?
(s—a)(s+a)®

18. Integrating by parts,

A a—s)t
/ te e dt = — ey
0

A A
+ / B pntlas)t gy
S—a 0

0 sSs—a

n,—(s—a)A A
- _ w _|_/ n tn—le(a—s)tdt '
0

Ss—a sS—a

Continuing to integrate by parts, it follows that
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A - — —
n_a —5 Ane(a 5)4 nA" 1@(“ 5)A
/te’t~e‘tdt:_ _ I
0 s—a (s —a)
nlAelo—9)4 nl(ele=94 — 1)
(TL — 2)'(3 — CL)3 (S . a)n—i-l
That is,
. |
tneat . efstdt =, A . e(afs)A + n. ’
A p ( ) (8 - a>n+1

in which p, (&) is a polynomial of degree n. For any given polynomial,

lim p,(A)-e =94 =0,

A—o0

as long as s > a. Therefore,
> , n!
/ tnea,t . e_“dt — — .
0 (s —a)

20. Observe that t?sinh at = (t?e® — t?e¢~%) /2. Using the result in Prob. 18,

o0 1 21 21
/ t’sinhat - e *tdt = = 5 — 3
0 2|(s—a)” (s+a)

2a(3s% + a?)

(" =)

The above is valid for s > |a|.

A A A
/ te ldt = —tet| + / e tdt
0 0 0

=1—e4 - Ae 4.

/ teldt=1—¢e4.
0

23. Based on a series expansion, note that for ¢ > 0,

22. Integrating by parts,

Taking a limit, as A— o,

Hence the integral converges .

el >1+t+1t2/2>1/2.
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It follows that for ¢ > 0,

t_2 t

Hence for any finite A > 1,

A
A—1
/ t2etdt > .
) 2

It is evident that the limit as A = oo does not exist.

24. Using the fact that |cost| < 1, and the fact that

/ e tdt =1,
0

it follows that the given integral converges.

25(a). Let p > 0. Integrating by parts,

A
/ e xldr = —e "zl
0

Taking a limit, as A— o,
/ e “xPdr = p/ e TP .
0 0
Thatis, I'(p+1) = pI'(p).

(b). Setting p=0,

(c¢). Let p=n. Using the result in Part (b),

I'(n+1) =nl(n)
= n(n —1)I'(n—1)

—n(n—1)(n—2)--2-1-T(1).
Since I'(1) =1, I'(n+ 1) =n!.

(d). Using the result in Part (b),
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F(p+n) =(p+n—1)T(p+n-1)
=(p+n—1(p+n-2T(p+n-—2)

=(@+n-1p+n-2)-(p+1)pl(p).
Hence

I'(p+n)
['(p)

Given that T'(1/2) = /7 , it follows that

=plp+Dp+1)---(p+n—-1).

and
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Section 6.2

1. Write the function as

3 3 2
s2+4  2s24+4
Hence £L7'[Y(s)] = 2 sin2t.
3. Using partial fractions,
2 21 1
s2+3s—4 5ls—1 s+4]

Hence LY (s)] = 2(e' — e ™).

5. Note that the denominator s? + 2s + 5 is irreducible over the reals. Completing the
square, s>+ 2545 = (s 4 1)> 4+ 4. Now convert the function to a rational function
of the variable £ = s+ 1. That is,
2s+2  2(s+1)
s24+254+5  (s+1)°4+4

We know that
2¢
-1 .
L [52 +4] = 2cos2t.
Using the fact that L[e® f(¢)] = L[f(#)],1s_y»
-1 ﬂ =2 ‘cos2t.
$2+2s+5
6. Using partial fractions,
2s—3 1| 1 7
2 1 T :
s—4 4|s—2 s+42

Hence £7![Y(s)] = 1(e* + 7e~"). Note that we can also write

25—3_2 S 3 2
s2—4 Ts2—4 282-—4

8. Using partial fractions,

832—4s+12_31+5 s 5 2
s(s2+4) s s2+4 s2+4
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Hence £1[Y(s)] =3+ 5cos2t — 2 sin2t.

9. The denominator s?> + 4s + 5 is irreducible over the reals. Completing the square,

s?+4s+5 = (s +2)” + 1. Now convert the function to a rational function of the
variable £ = s + 2. That s,

1-2s  5-2(s+2)
s?+45s4+5  (s+2)°%+1°

We find that
£ [£2i1 - 522_5 J =5Hsint —2cost.
Using the fact that L[e™ f(¢)] = L[f(t)] 5y »
-1 [%} = e (5sint — 2cost).

10. Note that the denominator s* + 2s + 10 is irreducible over the reals. Completing

the square, s? + 2s + 10 = (s + 1)2 + 9. Now convert the function to a rational
function of the variable £ = s+ 1. That s,

2s—3  2(s+1)-5
2 +25+10  (s+1)°+9°

We find that

T 2¢ 5
£ [§2+9_§2+9

Using the fact that L[e” f ()] = L[f(t)]
£ |:82 +2s+ 10

12. Taking the Laplace transform of the ODE, we obtain
s2Y (s) — sy(0) —y'(0) +3[s Y (s) — y(0)] +2Y(s) = 0.

] = 2cos 3t — gsin?)t.

S$s—a ?

e’ (2 cos 3t — g sin 3t) .

Applying the initial conditions,
s2Y(5)+3sY(s) +2Y(s) —s —3=0.
Solving for Y'(s), the transform of the solution is

Y(s) = 5+ 3

s243s+2°
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Using partial fractions,

s+ 3 2 1
2+35s+2 s+1 s+2°

Hence y(t) = L71[Y(s)] = 2e7t — e 2.

13. Taking the Laplace transform of the ODE, we obtain
s2Y(s) —sy(0) —y'(0) —2[s Y(s) —y(0)] +2Y(s) = 0.
Applying the initial conditions,
s°Y(s) —2sY(s) +2Y(s) —1=0.
Solving for Y'(s), the transform of the solution is

1

Y(s)= .
(5) §2—2s54+2

Since the denominator is irreducible, write the transform as a function of { = s — 1.

That is,

1 B 1
s2—25+2 (s—1)72+1

First note that

E_l[@il] = sint.

Using the fact that L[e® f(t)] = L[f(t)]

Ss—a ?

1
-1 ot
L |:—82—28—|—2:| =e'sint.

Hence y(t) = e'sint.

15. Taking the Laplace transform of the ODE, we obtain
S Y(s) = sy(0) = y'(0) = 2[s Y (s) — y(0)] = 2Y () = 0.
Applying the initial conditions,
s*Y(s) —25Y(s) —2Y(s) =25 +4 =0.
Solving for Y'(s), the transform of the solution is

2s — 4

Y(s)= -0 =
(5) §2 —25—2

Since the denominator is irreducible, write the transform as a functionof £ = s — 1.
Completing the square,
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2s -4 2(s—1)-2
2—2s—2 (s—1)°—3

First note that

£—1|:§22_§3 _ 522_3:| :2cosh\/§t— %Sinh\/gt.

the solution of the IVP is

Using the fact that L[e® f(t)] = L[f(¢)]

Ss—a ?

y(t) =1 {%] = ¢l (2008h \/§t— %Sinh \/§t> .

16. Taking the Laplace transform of the ODE, we obtain
s2Y (s) — sy(0) —y'(0) + 2[s Y(s) — y(0)] +5Y(s) = 0.
Applying the initial conditions,
s*Y(s) +25Y(s)+5Y(s) =25 —3=0.
Solving for Y'(s), the transform of the solution is

2s+3
Y = —
(5) s2+2s+5

Since the denominator is irreducible, write the transform as a function of £ = s+ 1.
That is,

2s+3 2(s+1)+1
s24+25+5  (s+1)7+4

We know that

Lt 2¢ + L —20082t+lsin2t
£2+4  £+4) 2 '

Using the fact that L[e® f(t)] = L[f(t)] the solution of the IVP is

S$s—a ?

2s+3 1
t) = = = -t —S7 .
y(t)=L [82+2s+5] e (20082254—28271225)

17. Taking the Laplace transform of the ODE, we obtain

'Y (s) = ’y(0) — s”y'(0) — sy"(0) —y"(0) = 4[s°Y (s) — s”y(0) — s3(0) —y"(0)] +
+6[s*Y(s) —sy(0) —y'(0)] —4[sY(s) —y(0)] + Y(s) =0

Applying the initial conditions,
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sV (5) —45°Y (s) + 65 Y (s) —4sY(s) + Y(s) — s> +4s —7=0.
Solving for the transform of the solution,

Y()— s2—4s+ 7T _82—48+7
VT 431652 —4s + 1 (s—1*

Using partial fractions,

Sods+7_ 42 1
s—1"  (s—=D" (s=1)° (s-1)7"
Note that £[#"] = (n!)/s""! and L[e* f(t)] = L[f(t)],., ,- Hence the solution
of the IVP is
2 4s+ T 2
O ] iy RN
y(t) [ 1) 3

18. Taking the Laplace transform of the ODE, we obtain
s'Y (s) = 5°y(0) — s°y"(0) — sy"(0) —y""(0) = Y(s) = 0.
Applying the initial conditions,
sV (s) = Y(s) —s*—s=0.

Solving for the transform of the solution,

s
s2—1"

Y(s) =

By inspection, it follows that y(t) = L[] = cosht.

s2—1
19. Taking the Laplace transform of the ODE, we obtain
s'Y(s) = s°y(0) — s°y"(0) —sy"(0) —y""(0) —4Y (s) = 0.
Applying the initial conditions,
sV (s) — 4Y(s) — s> + 25 = 0.

Solving for the transform of the solution,

S

Y(s)= — |
() s2+2

It follows that y(t) = £7![2%5] = cos V2t

20. Taking the Laplace transform of both sides of the ODE, we obtain
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S

s2Y (s) —sy(0) —y'(0) + w* Y (s) = R

Applying the initial conditions,

g ="
S Y(s)—l—w Y(s) S 24
Solving for Y(s), the transform of the solution is
S S

Y(s) =

(s2 +w?)(s% +4) T +w?’

Using partial fractions on the first term,

S B 1 S S
(82 +w?)(s24+4) 4—uw?|s2+w?  s244]
First note that

s
s2 44

Lt {L} = coswt and El{

PR }zcos?t.
s w

Hence the solution of the IVP is

1 1
y(t) = 1 coswt — 2 cos 2t + coswt

— W2 — w2

cos 2t .
4 — w2 —w?

21. Taking the Laplace transform of both sides of the ODE, we obtain
s
2417

sY (s) — sy(0) —y'(0) — 2[s Y (s) — y(0)] +2Y(s) =

Applying the initial conditions,

5 s
Y(s)—2sY 2Y(s) — 2=
s°Y(s) —2sY(s)+2Y(s) —s+ 71
Solving for Y'(s), the transform of the solution is
s s—2

Y(s) = .
(5) (2 —2s4+2)(s>+1) +32—23+2

Using partial fractions on the first term,

S 1 s—=2 s—4
(s2—25+2)(s2+1) 5|s2+1 s2—2s5+2]°

Thus we can write
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1 s 2 1 +2 25 — 3
5241 58241 H5Hs2—2s+2°

Y{(s)

For the last term, we note that s> — 25+ 2 = (s — 1)> + 1. So that
25—3  2As—1)—1
s2—2s+2 (s—1)°+1

We know that

2¢ 1
-1 . .
L [£2+1—52+1}—2c03t—8mt.

Based on the translation property of the Laplace transform,

25 — 3
-1 ¢ o
L |:—82—28—|—2:| =e'(2cost — sint).

Combining the above, the solution of the IVP is

1 2 2
y(t) = gcost— gsmt+ get(2cost— sint).

23. Taking the Laplace transform of both sides of the ODE, we obtain

4

Y (s) = sy(0) = y'(0) +2[s Y (s) — y(0)] + Y (s) = pan

Applying the initial conditions,
4

2
Y 2sY Y —2s—3= .
s°Y(s)+2sY(s)+ Y(s) S po|

Solving for Y'(s), the transform of the solution is

4 n 2s+3
(s+1)°  (s+1)*

Y(s) =

First write

(s+1)  (s+1)7%  s+1  (s+1)*

2543 _2s+1)+1_ 2 1

We note that

c‘l{é+§+€—12} =282+ 2+¢.

So based on the translation property of the Laplace transform, the solution of the IVP is
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y(t) =2t% " +te ' +2e".

25. Let f(t) be the forcing function on the right-hand-side. Taking the Laplace
transform
of both sides of the ODE, we obtain

SY(s) — sy(0) —y'(0) + Y(s) = LIF(1)].
Applying the initial conditions,
s*Y (s) + Y(s) = L[f(t)].

Based on the definition of the Laplace transform,

Clf(0) = / N

1
= / te Stdt
0

s? s s?
Solving for the transform,
1 s+ 1
Y(s) = o .
(s) s2(s?2+1) s2(s?2+1)
Using partial fractions,
1 1 1

and

We find, by inspection, that
1
LY ———
e
Referring to Line 13, in Table 6.2.1,
Lluc(t)f(t—c)] = e “LIf(?)].

] =t—sint.

Let

s+1 1 1 S 1

Llgt)]|=55—<=—+—5 — — :
L9(®)] s2(s2 4+ 1) s+s2 $24+1 s2+1
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Then g(t) = 1+t — cost — sint. It follows, therefore, that

s+1

L1 [es . m] =u(t)[1+(t—1)—cos(t—1)—sin(t—1)].

Combining the above, the solution of the IVP is
y(t) =t —sint —u (t)[1+ (t = 1) —cos(t — 1) — sin(t — 1)].

26. Let f(t) be the forcing function on the right-hand-side. Taking the Laplace
transform
of both sides of the ODE, we obtain

'Y (s) = sy(0) —y'(0) +4Y (s) = LIf(1)].
Applying the initial conditions,
s2Y(s) + 4Y(s) = L[f(2)].

Based on the definition of the Laplace transform,

CIf(1) = / f) et

1 00
= / te Stdt + / e stdt
0 1

1 e’
2
Solving for the transform,
1 1
Y(s) = —e’ .
() s2(s?2+4) ¢ s2(s?2 +4)

Using partial fractions,

We find that

1 1 1
o S
L [32(32+4)} 4t Ssmt.

Referring to Line 13, in Table 6.2.1,
Lluc(t) f(t —c)] = e LI (1))
It follows that
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c {e—s - m] — i (t) E(t - ésin(t - 1)}.

Combining the above, the solution of the IVP is

1 1

o) =4t gsmt—ul(t)E(t— 1) - ésin(t— 1)}.

28(a). Assuming that the conditions of Theorem 6.2.1 are satisfied,

Fi(s) = 2 / e f (1)t

/ g5 I
= [ 1= tes)ar

(b). Using mathematical induction, suppose that for some k& > 1,
FOs) = [ et rw)]ar
0
Differentiating both sides,
d o0

Fl(s) = - 0 et [(—t)k f(t)}dt

- /OOO% e (= 0 1 (1) at

:/OOO[—te—S’f(—t)’“f(t)}dt

29. We know that

Based on Prob. 28,
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Therefore,
1
Llte"] = 5
s—a)
31. Based on Prob. 28,
n d"
LI 0)"] = S]]
_4a1
Cds" | s |
Therefore,
" o (=1)"n!
o) = (-
n!
= gntl ’

33. Using the translation property of the Laplace transform,

b

L [@(Lt sin bt] = m .

Therefore,

L [t e sin bt] =

d [ b
2b(s — a)
(s2 — 2as + a2 4 b2)*

34. Using the translation property of the Laplace transform,

,C[e“t cos bt] = # )
(s —a)” + b2
Therefore,
d _
E[te”tcosbt] = — — %
ds | (s —a)” + b2
(s —a)*—b2

(s — 2as + a? + b2)*

35(a). Taking the Laplace transform of the given Bessel equation,
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Llty")+ L[yl + L[ty] =0.
Using the differentiation property of the transform,

d " / d _

LI+ Ly = Ly =0.

That is,

It follows that
(1+s°)Y'(s) +sY(s) =0.

(b). We obtain a first-order linear ODE in Y (s):

Y'(s) + Y(s)=0,

s24+1

s
p(s) = exp(/mds) =Vvs2+1.

The first-order ODE can be written as

with integrating factor

%[ s2+1 -Y(s)} =0,

with solution

C

Y(s) = —F/———.
(s) o

(c). In order to obtain negative powers of s, first write

1 1 1772
SRS T
s?+1 s s
. NV .
Expanding (1 + ?> in a binomial series,
1 1 1-3 1-3-5
]ty 0
ST T3

V14 (1/s?%) 2

valid for s72 < 1. Hence, we can formally express Y (s) as

Y() 1 11+1-31 1-3-51+
S)=¢Cc|l—— — — —_—  _
s 28 248 2.4.6s7

—6
S _|_...’
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Assuming that term-by-term inversion is valid,
0 . 1t2+1-3t4 1-3-5t6+
= C R — _ [— “oe
y 2921 2441 2-4-6 6
{ 2! ¢2 4! 4 6! 6 }
=c

rat e en 2. oea

It follows that

1, 1 4 1
y(t) :C|:1_2_2t +22,42t _22,42,62

S (_1)ﬂ 2n
= CZ 2”(n!)2 .

The series is evidently the expansion, about z = 0, of J,(¢).

t6_|_...:|

[\

36(b). Taking the Laplace transform of the given Legendre equation,
Lly"—L[Py"] —2L[ty']+ala+1)L[y] =0.

Using the differentiation property of the transform,

Ly =L ety + 29 20yl + ala+ 1)Lly] = 0.

ds? ds
That is,
(2 () — 59(0) ~ y/(0)] — 5 [*¥ (5) — 53(0) ~y'(0)] +
+ 2%[3 Y(s) = y(0)] + a(a+1)Y(s) =0

Invoking the initial conditions, we have

s°Y(s) —1— % [s°Y(s) — 1] + 2%[3 Y(s)|+ala+1)Y(s) =0.

After carrying out the differentiation, the equation simplifies to

% [s*Y (s)] — 2%[8 Y(s)] - [s*+ala+1)]Y(s) = —1.
That is,
, d° d 5 B
s @Y(s) + 2s EY(S) — [+ ala+1)]Y(s) = — 1.

37. By definition of the Laplace transform, given the appropriate conditions,
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00 t
L[g(t)] :/ e st {/ f(T)dT:| dt
0 0
oo pt
= / / e S f(r)drdt.
0o Jo
Assuming that the order of integration can be exchanged,
L[g(t)] :/ f(r) [/ eStdt] dr
0 T
o0 6757'
= /0 f(r) [ . :|d7'.

[Note the region of integration is the area between the lines 7(¢) =t and 7(¢) = 0.]
Hence

£lo0) = - / Cfm) e dr
Lerren
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Section 6.3

o
—
kA
IRy
=
[y}
o

104
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0.5

0.6

0.4

0.2

7. Using the Heaviside function, we can write
F(8) = (¢ =2)" us(t).
The Laplace transform has the property that
Llu(t)f(t —c)] = e “LIf(1)].
Hence

2 6728
5 -

L[(t—2)us(t)] =

S

9. The function can be expressed as
f(t) = (t —m)[ug(t) — ugr(t)]-
Before invoking the translation property of the transform, write the function as
f@) = (t —m)ug(t) — (t — 2m) ugr(t) — wuar(t).
It follows that

10. It follows directly from the translation property of the transform that

3s —4s

128 6% .
S S S

e’ e

LLF@)] =

11. Before invoking the translation property of the transform, write the function as

F@) = (t = 2) ug(t) — ua(t) — (¢ = 3) ua(t) — us(t).
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It follows that

12. It follows directly from the translation property of the transform that

1 e ?
RO
13. Using the fact that L[e™ f(t)] = L[f(t)] sy »

SEE
8 JR—

15. First consider the function

2(s—1

Gls) = 52(—284?2'
Completing the square in the denominator,

G(s) = 2(s —21) .

(s—1)"+1

It follows that

LG (s)] =2¢€ cost.
Hence

L7 e #G(s)] =2 e eos (t — 2) uy(t) .

16. The inverse transform of the function 2/(s? — 4) is f(t) = sinh 2t. Using the
translation property of the transform,

‘|

2 —2s
¢ 4} — sinh 2(t — 2) - us(t).

s2 —

17. First consider the function

Completing the square in the denominator,
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(s =2

G(s) = m

It follows that
L7G(s)] = e* cosht.

Hence

— Ne

18. Write the function as

It follows from the translation property of the transform, that

. e S + 6—28 _ 8—35 _ 6—48

S

L

] = w1 (t) + ua(t) — us(t) — wa(t).

19(a). By definition of the Laplace transform,
L[ f(ct)] = / e f(ct)dt.
0

Making a change of variable, 7 = ct, we have

clrten) = [ et pmar
L e [
| et

Cc

Hence L] f(ct)] =1 F(2), where s/c > a.

C

(b). Using the result in Part (a),

Hence
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(c). From Part (b),
£V F(as)] = %f(é)

Note that as + b = a(s + b/a). Using the fact that L[e“ f(¢)] = L[f(¢)]

S—¥s—c ?

LV [F(as+b)] = e Ly (3> |

a a

20. First write

n!
(§)"+1.
2

Let G(s) = n!/s"*1. Based on the results in Prob. 19,

1o [o(3)] -

F(s) =

in which ¢(¢) = ¢". Hence
LF(s)] =2 (2t)" = 2",

23. First write

Now consider

24. By definition of the Laplace transform,
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That is,

25. First write the function as f(¢) = uo(t) — ui(t) + wua(t) — us(t). It follows that

1 3
L[ f(t)] :/0 e dt +/2 e ®ldt.

That is,
1—¢ 5 6—25 _ 6—38
LIf)] =
F(B) = ——+
B 1—e 5+ 6723 _ 6735
N S

26. The transform may be computed directly. On the other hand, using the translation
property of the transform,

2n+1 ks
S

L] =+ Y (-
k=1

e

5 k=0

1 1 _ ( _ e_s)2n+2
s 14+e3

That is,

el =+

29. The given function is periodic, with T' = 2. Using the result of Prob. 28,

1 ? -
CIF@)] = 1_625/0 e F()dt = ﬁ/o et

That is,
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1—e
s(1—e %)
1
s(1+e9)"

31. The function is periodic, with T' = 1. Using the result of Prob. 28,

1
LIf#)] = : _168/0 te dt.

It follows that

£ = i o

32. The function is periodic, with T' = 7. Using the result of Prob. 28,

L[f(t)] = ;/ﬂsmt e tdt .
0

- 1 — e~ TS

We first calculate

T 14+e™
/ sint-e Stdt = ——— .
0

1+ s2
Hence
1+e™™
£[f(t)] = (1 _ e,ﬂs)(l + 82) :
33(a).
1 ¥ = fit)
LIf(#)] = L[1] = Llua (2)]
_ 1 e
s s
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y=al)

0.5

0.6

0.4

0.2

(c).
¥ = hit)
14
0.5
0.5
0.4]
0.2
o i 2 3 i
t

Let G(s) = L[g(t)]. Then

1—e° s1—e?
= —e
52 52
a2
(1—e™)
52
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34(a).

0.584
0.6
0.44

0.24

(b). The given function is periodic, with T'= 2. Using the result of Prob. 28,

i) = — /O eI p(t)dt

= 1— 6—25

Based on the piecewise definition of p(t),

2 1 2
/e—“p(t)dt :/te_Stdt—l—/ (2 —t)e 'dt
0 0 1

= éu —e %)%
Hence
(=€)
‘C[p(t)] - 82(1 +€—s) :

(c). Since p(t) satisfies the hypotheses of Theorem 6.2.1,
Lp'(t)] = s L[p(t)] - p(0).
Using the result of Prob. 30,

We note the p(0) = 0, hence
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Section 6.4

2. Let h(t) be the forcing function on the right-hand-side. Taking the Laplace transform
of both sides of the ODE, we obtain

'Y (s) = sy(0) —y'(0) + 2[s Y (s) — y(0)] +2Y (s) = L[ (t)].
Applying the initial conditions,
s2Y(s) +25Y(s) +2Y(s) — 1 = L[h(t)].
The forcing function can be written as h(t) = u,(t) — ug.(t) . Its transform is

—TSs __ e—27rs

Solving for Y'(s), the transform of the solution is

1 e~ 6727r5

82+23—|—2+s(52+28+2)'

Y(s) =

First note that

1 1
s2+254+2  (s+1)7°+1

Using partial fractions,

1 111 (s+1)+1

s(s2+254+2) 25 2(s+1)7%4+1

Taking the inverse transform, term-by-term,

1 1 S
——— | =L|————| = ¢ 'sint.
s2+2s+2 (s+1)%+1
Now let
1
G(s) = .
() s(s? +2s+2)
Then
1 1 1
L7G(s)] = 3~ §e*tcost — —e'sint.
Using Theorem 6.3.1,
—11,—cs _ l _ 1 —(t—c) _ . _
L e “G(s)] = 2uc(t) 5¢ [cos(t — ¢) + sin(t — ¢)]u.(t) .

Hence the solution of the IVP is
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y(t) = e 'sint + 1u7r(1f) — %e(t”) [cos(t — ) + sin(t — m)|ux(t) —

2
1 1
— §u27r(t) + 56_@_2”) [cos(t — 2m) + sin(t — 27)]ua. (1) .

That is,

1 1
y(t) = e 'sint + i[uﬁ(t) — ug(t)] + 56_(’5_”) [cost + sint]u,(t) +
1

+ 567(“%) [cost + sintlug,(t) .

hit)

0.8

0.6

0.44

0.21

0.587

0.47

0.3

0.21

0.11

0 24 6 (8 t0 12 14

The solution starts out as free oscillation, due to the initial conditions. The amplitude
increases, as long as the forcing is present. Thereafter, the solution rapidly decays.

4. Let h(t) be the forcing function on the right-hand-side. Taking the Laplace transform
of both sides of the ODE, we obtain

Y (s) = sy(0) — y'(0) +4Y (s) = L[h(?)].

Applying the initial conditions,
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s2Y (s) +4Y(s) = L[h(t)].
The transform of the forcing function is

LIh@®)] =

1 + €_7TS
s24+1 s241°

Solving for Y'(s), the transform of the solution is

1 6777'8
D)2 +1) (A1)

Y(s) =

Using partial fractions,

1 B 1 1 B 1
(s2+4)(s2+1)  3|s2+1 s24+4]
It follows that
1 1 1
_1 _ - . - .
{(32—#4)(324—1)} —3[smt 5 sm2t].

Based on Theorem 6.3.1,

£ [ e Z); K 1)} _ % {sz’n(t - % sin(2t — 27)} un(t)

Hence the solution of the IVP is

() = S sint— = sin2t| — | sint+ = sin2t|u.(t)
= —|stnt — — stn — — | Sth — Sin Ur .
YW=3 2 3 2
hit)

1_

0.84

0.6

0.44

0.2
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0.4

¥it)
0.3
0.2
0.1
o 2 4 B : 10 12
0.1
0.2
0.3

Since there is no damping term, the solution follows the forcing function, after which
the response is a steady oscillation about y = 0.

5. Let f(t) be the forcing function on the right-hand-side. Taking the Laplace transform
of both sides of the ODE, we obtain

s Y (s) = sy(0) —y'(0) + 3[s Y(s) — y(0)] +2Y (s) = LIf(1)].
Applying the initial conditions,
s2Y(s) +3sY(s) +2Y(s) = L[f(t)].

The transform of the forcing function is

Solving for the transform,

v 1 67105
() = s(s24+3s+2) s(s2+3s+2)°

Using partial fractions,

Hence

Based on Theorem 6.3.1,

—10s
-1 € 1 —2(t-10 —(t—10)
£ {S(S2+3s+2)} = 5 (L e —2e7 Wy (1),

Hence the solution of the IVP is
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1 e 1 —(2t-20) —(t-10)
y(t) = 5[1 —uo(t)] + -5 = e [e — 2e }u (t)
1t
1
0.6
0.6
0.44
0.24

U T 10 12 14 16 18 20

yit)
054
0.4
0.3
024

0.1

a 2':iéé=1t'u1'21'41ia1'82i3

The solution increases to a temporary steady value of y = 1/2. After the forcing ceases,
the response decays exponentially toy = 0.

6. Taking the Laplace transform of both sides of the ODE, we obtain

Y (s) — s(0) — y'(0) +3[s Y(s) — y(0)] +2Y(s) = & :

s
Applying the initial conditions,

6—25

s2Y(s)+3sY(s) +2Y(s) — 1=

S

Solving for the transform,
1 6725

82+3s+2+s(82+38+2)'

Y(s) =

Using partial fractions,
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1 1 1
$24+35+2 s+1 s+2

and

1 A, 2
s(s24+35+2) 2|s s+2 s+1]

Taking the inverse transform. term-by-term, the solution of the IVP is

1 1
y(t) =e ' —e 2+ {5 —e 72 4 562@2)} us(t) .
fit)
1_
0.5
067
0.4
0.2]
0 1 2 ? 4 5 5
¥t
0.5
0.4
0.3
0.2
0.1
g 2 1, 6 ! 10

Due to the initial conditions, the response has a transient overshoot, followed by an
exponential convergence to a steady value of y, = 1/2.

7. Taking the Laplace transform of both sides of the ODE, we obtain

6737&9

Y (s) = sy(0) —y'(0) + Y (s) =

S

Applying the initial conditions,
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6737rs
S2Y(s)+ Y(s)—s =
S
Solving for the transform,
—37s
s e
Y(s) = .
(s) s2+1  s(s2+1)
Using partial fractions,
1 1 S
s(s2+1) s s2+1

Hence

S 1 S
Y _ —3ns | = )
(5) 32+1+e [s 32—1—1]

Taking the inverse transform, the solution of the IVP is

y(t) = cost+ [1 — cos(t — 3m)]us,(t)
= cost + [1 + cost|us,(t).

fit)

0.51

067

0.47

0.24

g ﬁfiéE'i1iJ1'2t1'41'E1'82'02'22'4

il

o \Ué v 12 13@1'8 QEWQA
t
14

Due to initial conditions, the solution temporarily oscillates about y = 0. After the
forcing is applied, the response is a steady oscillation about y,, = 1.
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9. Let g(t) be the forcing function on the right-hand-side. Taking the Laplace transform
of both sides of the ODE, we obtain

s*Y (s) — sy(0) —y'(0) + Y (s) = L[g(t)].
Applying the initial conditions,
s*Y (s) +Y(s) — 1 = L[g(t)].

The forcing function can be written as

o) = 2[1 — ug(t)] + 3ug(t)

t 1
- — _(t— t
9 9 (t = 6)ug(t)
with Laplace transform
1 6765
Llgt)] = — —
[g( )] 282 282
Solving for the transform,
1 1 e %

Y(s) = — .
(s) s2+1 * 2s2(s24+1)  2s2(s?2+1)

Using partial fractions,

1 11 1
252(s2+1)  2|s2 s2+1)
Taking the inverse transform, and using Theorem 6.3.1, the solution of the IVP is
1 1
y(t) = sint + 5[75 — sint] — 5[(1& —6) — sin(t — 6)]ug(t)

1 _ 1 :
= 5[75 + sint] — 5[(15 —6) — sin(t — 6)]ug(t).

art)
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yt)

U754 % E'=1t|1'2t1}11i31'82'u2'2214

The solution increases, in response to the ramp input, and thereafter oscillates about a
mean value of y,, = 3.

11. Taking the Laplace transform of both sides of the ODE, we obtain

e~ T 6737r5
2Y(s) = 5y(0) = y'(0) +4Y(s) = —— = &
Applying the initial conditions,
—ms —3ms
9 e e
Y 4Y (s) = —

SV () +4Y () = =

Solving for the transform,
e~ TS efSTrs

Using partial fractions,
1 11 s
s(s24+4)  4|s s24+4]
Taking the inverse transform, and applying Theorem 6.3.1,

y(t) = iu — cos(2t — 2m)|us(t) — 3[1 — cos(2t — 67)]ug(£)

1

= Z[Uﬂ'(t) - USW(t)] - iCOS 2t - [uﬂ'(t) - u37"(t)] ’
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0.8

0.6

0.4

0.24

0.5

0.4

0.3

0.2

0.1

A D A - R T T RV

Since there is no damping term, the solution responds immediately to the forcing input.
There is a temporary oscillation about y = 1/4.

12. Taking the Laplace transform of the ODE, we obtain

S (s) — $25(0) — s%'(0) — 5" (0) — y"(0) — Y(s) = — —

Applying the initial conditions,

—5 —2s
4 e e
Y(s)— Y(s) = —
Y (s) = Vis) = = &
Solving for the transform of the solution,
e s 6*28

Yis) = s(st—1) s(st—1)"

Using partial fractions,

It follows that
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1 1

Based on Theorem 6.3.1, the solution of the IVP is

1
y(t) = = [ur(t) —ua(®)] + 5 [e=0Y D 1 2cos(t — 1)]us(t) —
1
~1 [e_(t_Q) +e2 £ 2cos(t — 2)]ua(t) .
ft)
1_
0.8]
0.6
0.4
0.21
0 27, 3 4 g
yit)
B_
E-
d_
2-
u 1 2 4 3 4 g

The solution increases without bound, exponentially.

13. Taking the Laplace transform of the ODE, we obtain
'Y (s) = s°y(0) — sy’ (0) — sy"(0) —y""(0) +
1
+ 5[82Y(s) —sy(0) —y'(0)] +4Y(s) = . ¢

—TSs

S

Applying the initial conditions,

6*7’1’8

s'Y (s) + 55%Y (s) + 4Y(s) = % -

Solving for the transform of the solution,
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Y(s) = !

6*71'8

s(s* 4+ 5s% +4)

Using partial fractions,

12

1 IRNE
s(s*+5s2+4) s

It follows that

1 1
£ |:S(S4 + 552 4 4)

s(st+5s24+4)°

S 4s

+82—|—4_82—|—1 '

1
= —I(3 +cos2t —4cost|.
12

Based on Theorem 6.3.1, the solution of the IVP is

R

y(t) =

That 1s,

y(t) =

> =

ol =

fit)

0.8

067

0.4

0.2

12
12 CoSs 0

[1—u.(t)] + 1—12

[cos 2t — 4 cost] —

4cos(t — m)]ur(t).

[cos 2t — 4 cost] —

[cos 2t + 4 cos t|ux(t) .
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yit)
0.5
0.4
0.2
0 2 A Ve TR m T2
0.2
0.4
06
After an initial transient, the solution oscillates about y,, = 0.
14. The specified function is defined by
0, 0<t<t
f)=3 2t—t), ty<t<t +k
h, t>to+k
which can conveniently be expressed as
h h
ft) = E(t — o) ugy (t) — E(t —ty — k) w1k (t) -
15. The function is defined by
0, 0<t<t
(1) = Lt —t), ty<t<t,+k
TIOZN bty —2k), ty+k<t<ty+2k
0, t >t + 2k
which can also be written as
h 2h h
g(t) = E(t — to) Uto(t) — ?(t — to — k’) Ut0+k(t) + E(t — to — 2]{7) Ut0+2k(t).

16(d). From Part (c), the solution is

w(t) = 4k g n(t) h(t - g) Ak us(t) h(t _ 5),

where

1
4 84 8 4

7 37t 1 37t
— £ e”%in(—) — e M3¢cos (%)

Due to the damping term, the solution will decay to zero. The maximum will occur
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shortly after the forcing ceases. By plotting the various solutions, it appears that the
solution will reach a value of y = 2, aslong as k > 2.51.

(e).
uft)y [k=21]

163

1.4]

123

“I_

063

06

043

023

ool 2 U 10 th 18,20 22 24726 28 30
0.4

0.6
0.8
RE

Based on the graph, and numerical calculation, |u(t)| < 0.1 for ¢ > 25.6773.

17. We consider the initial value problem

Y+ Ay = %[(t S5 us(t) — (t— 5 — k) us (b)),
with y(0) =y'(0) =0.

(a). The specified function is defined by

0, 0<t<5
ft)=1< z(t=5), 5<t<5+k
1, t>5+k
fit
1_
081
06
0.44
0.2
o 2004 6 48 w12 14

(b). Taking the Laplace transform of both sides of the ODE, we obtain
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) / o5 o (5tk)s
s°Y(s) —sy(0) —y'(0) +4Y(s) = T

Applying the initial conditions,

—5s e—(5+k)s

92 o e
s7Y(s)+4Y(s) = 2 he?

Solving for the transform,
—5s e—(5+k)s

ks2(s>+4)  ks?(s2+4)°

1 1
s s244]

Y(s) =

Using partial fractions,
1
s2(s2+4) 4
It follows that
1
S Frsey
Using Theorem 6.3.1, the solution of the IVP is

y(t) = LIh(t — 5)us(t) — h(t — 5~ K usa )]

1 1

in which h(t) = §t — §sin2t.

(c). Note that for ¢ > 5 + k, the solution is given by

1 1 1

= - — —sin(2t —1 — sin(2t — 10 — 2

y(t) 1 8k8m< t—10) + % sin(2t — 10 — 2k)

1 sink

= - — 2t — 10 — k).
1 P cos(2t — 10 — k)

So for t > 5 + k, the solution oscillates about y,, = 1/4, with an amplitude of
|sin (k)|
A= )
4k
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0.44

0.31

0.21

0.11

k=3

0.2624
0.26
0.2587
0.2569
0.2544
0.2524
0.254
0.2487
0.246
0.2444
0.2424
0.244
0.2384

10 12 14

0.281

0.26

0.241

0.22

16 18 20
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18(a).

fit) [k=2]

0.243
0.224

0187
0.167
0147
0124

0.084
0.064
0.047
0.024

(b). The forcing function can be expressed as

Fult) = g (1) — (1)

Taking the Laplace transform of both sides of the ODE, we obtain
—(4—k)s

e ef(
s Y (s) — sy(0) —y'(0) + %[s Y(s)— y(0)] +4Y(s) = ST

4+k)s

Applying the initial conditions,

—(4—k)s

1 e 67(
2 L _ _
s°Y(s) + 3SY(3) +4Y(s) T T

4+k)s

Solving for the transform,
3 67(4*]6)8 3 67(4+k‘)s

Y(s) = - .
() 2ks(3s2+s+12)  2ks(3s® + s+ 12)

Using partial fractions,

1 1 1+ 3s
s(3s2+s54+12) 12 352 4+ 5+ 12

Let

It follows that
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vV 143

143t
5 .
Based on Theorem 6.3.1, the solution of the IVP is
y(t) =h(t —4+k)us 4 (t) —h(t —4 — k) ug 1 (2) .

0.17
0.054
0.06 4
0.041
0.0z /\

0 A5 20
o] \/ E‘\/ V15 B 2

1 el 143 ¢
h(t) = £7H(s)] = o - e8k [ sm< . ) + cos

-0.044

A Lo

0 R
ool v \)q 1V14 YE 1820

0.1

0157

0.39

0.2 /\
0.1

2 va\?/\vﬁ\w 1820
0.1

[

0.21

As the parameter k decreases, the solution remains null for a longer period of time.

page 301



WWV. ZI T e.Ir

CHAPTER 6. ——

Since the magnitude of the impulsive force increases, the initial overshoot of the
response also increases. The duration of the impulse decreases. All solutions eventually
decayto y = 0.

19(a).

0737788 8 0 1z 14 1B 18
t

(c). From Part (b),

u(t) =1—cost + 2&( — D1 = cos(t — k)] (t).
k=1

304
204

10+

-104

ﬁh/\EJ\ﬂD o, [ ko) | g0
vv\/\/

204

-301
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21(a).

189
167
1.4
124

0.84
064
0.49
0.2

R M R T T TR TR
t

2_
1.84
1.6
1.44
1.24

1
0.8
0.6
0.4
024

D777 46 8 10 12 14 16 18
t

(b). Taking the Laplace transform of both sides of the ODE, we obtain

n - keflmrs
SU(s) - su(0) —u'(0) + U(s) = L4 2D

S h—1 S

Applying the initial conditions,

n k_—kns
32U(s)+U(s)=§+Zﬂ
k=1

. .
Solving for the transform,

n _ ke_kﬁs
U(S) — ; + ZL .

s(s2+1)

Using partial fractions,

Let
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h(t) = L‘l[s( !

T]_):| =1—-cost.

Applying Theorem 6.3.1, term-by-term, the solution of the IVP is

u(t) = h(t) + zn:( — DFR(t — k) (t).
k=1

Note that
h(t — km) = u(t — km) — cos(t — k)
= u,(t) — (= DFcost.
Hence
u(t) =1—cost+ Z( — )"y (t) — (cos t)Zuk.W(t) .
k=1 k=1
(c).

164
144
124

.y
[ =
TR

on Bors
TR

A AT
AT

10
121
14
164

The ODE has no damping term. Each interval of forcing adds to the energy of the
system.

Hence the amplitude will increase. Forn = 15, g(¢) = 0 when ¢ > 157 . Therefore the
oscillation will eventually become steady, with an amplitude depending on the values of
u(157) and w'(157).

(d). As n increases, the interval of forcing also increases. Hence the amplitude of the

transient will increase with n. Eventually, the forcing function will be constant. In fact,
for large values of ¢,

1, neven
g(t) = {0, n odd

Further, for t > n,
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1—(-1)"
u(t)zl—cost—ncost—%

Hence the steady state solution will oscillate about 0 or 1 , depending on n, with an
amplitude of A =n+1.

In the limit, as n— oo, the forcing function will be a periodic function, with period 27 .
From Prob. 27, in Section 6.3,

1

Llg(t)] = sAte )

As n increases, the duration and magnitude of the transient will increase without bound.

22(a). Taking the initial conditions into consideration, the transform of the ODE is

k —k7rs
s2U(s) +0.1sU(s) + ——-I-Z
Solving for the transform,
1 ( . 1)k —kms
Ul(s) =
O = P ots+ 1) Z: (2+01s+1)
Using partial fractions,
1 1 5+0.1

s(s?+0.1s+ 1) T s S2401ls+1°

Since the denominator in the second term is irreducible, write

s+0.1  (s+0.05)+0.05
s2+0.1s+1  (s+0.05)* + (399/400) -

Let

Ay (3-50.05) - 0.05 ]
s (s+0.05)% +(399/400) (s 4 0.05)% + (399/400)

Lt/ v/ 399 1 . v/ 399
= e cos| ——t | + sin t]]|.
20 \/399 20

Applying Theorem 6.3.1, term-by-term, the solution of the IVP is

= h(t) + Z( — 1)*h(t — k) u(t) .

page 305



WWV. ZI T e.Ir

CHAPTER 6. ——

For odd values of n, the solution approaches y = 0.

n==5a

/\A/\/\f\r\
vvvyvm

)

For even values of n, the solution approaches y = 1.

n=6

| /\1\ |
i

(b). The solution is a sum of damped sinusoids, each of frequency w = /399 /20 ~ 1.
Each term has an 'initial' amplitude of approximately 1. For any given n, the solution
contains n + 1 such terms. Although the amplitude will increase with n, the amplitude
will also be bounded by n + 1.

(c). Suppose that the forcing function is replaced by ¢(t) = sint. Based on the

methods
in Chapter 3, the general solution of the differential equation is

c cos( /399 t) + ¢y sin( /399 t)

+ u,(t).

_ /20
u(t) = e 20 20

Note that u,(t) = Acost + B sint. Using the method of undetermined coefficients,
A= —10 and B = 0. Based on the initial conditions, the solution of the IVP is
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\/ 1 \/
u(t) =10 e~ t/20 [cos( 399 t) + sin( 399 t)] —10cost.

20 20

v 399

Observe that both solutions have the same frequency, w = 1/399/20 ~ 1.

uit)

—_
o
1 1

—
——

e B = I S e
R

I
=
=
=
[}
-

L,
=]
o

23(a). Taking the initial conditions into consideration, the transform
k e~ (11k/4)s
sU(s)+U(s) = - + 2 Z
Solving for the transform,
1)k e—(11k/9)s
U(s) = —|— 2 Z 32 Y

Using partial fractions,

Let

m} =1—-cost.

Applying Theorem 6.3.1, term-by-term, the solution of the IVP is

of the ODE is

D425 (= fnfe- BE Uya(t)
EEPNESI(EE < PO

That is,
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u(t) =1 — cost + 2;”:( —1)* [1 — cos (t - %)] Uy (t) .

=1

n=235

bk
=

/ .
AR

!

(c). Based on the plot, the 'slow period' appears to be 88. The 'fast period' appears to
be about 6. These values correspond to a 'slow frequency' of w, = 0.0714 and a 'fast
frequency' w; = 1.0472.

(d). The natural frequency of the system is wy, = 1. The forcing function is initially
periodic, with period T'= 11/2 = 5.5. Hence the corresponding forcing frequency is
w = 1.1424 . Using the results in Section 3.9, the 'slow frequency' is given by

g = 2 =0.0712
2
and the 'fast frequency' is given by
Wy = |w—;w0| = 1.0712.

Based on theses values, the 'slow period' is predicted as 88.247 and the 'fast period' is
given as 5.8656.
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Section 6.5

2. Taking the Laplace transform of both sides of the ODE, we obtain
Y (s) —sy(0) —y'(0) 4+ 4Y (s) = e ™ — 2™,
Applying the initial conditions,
s2Y(s) +4Y(s) = e ™ — e 2,
Solving for the transform,

. CI 6727rs e~ T 6727rs

Y(s) = — - .
(5) s2+4 s24+4 s244

Applying Theorem 6.3.1, the solution of the IVP is
1 1
y(t) = ism(% — 2m)u,(t) — isin(% — A7) Uy, (1)
1
= §sin(2t)[u,r(t) — Uy (t) ]
yit)

0.4+

0.2

0.2

-0.49

4. Taking the Laplace transform of both sides of the ODE, we obtain
Y (s) —sy(0) —y'(0) = Y(s) = —20e .
Applying the initial conditions,
2 Y(s) —Y(s) —s= —20e ™.
Solving for the transform,

S 20 3%

Y(S)ZSQ—l_ s2—1"

Using a table of transforms, and Theorem 6.3.1, the solution of the IVP is
y(t) = cosht — 20 sinh(t — 3)us(t) .
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40

301

20

6. Taking the initial conditions into consideration, the transform of the ODE is
s*Y(s) +4Y(s) — /2 = e 1™,
Solving for the transform,

8/2 6747rs

Y = )
(5) s2+4+32+4

Using a table of transforms, and Theorem 6.3.1, the solution of the IVP is
1 1
y(t) = 5608 2t + ism(Zt — 87y, (t)

1 1
= 5c0s 2t + §sin(2t) U (1) .

¥it)

0.69

0.4
0.2
P G la] 1 12 14 (6|18 20 F2 |24
0 !
0.4

-0.61

]

8. Taking the Laplace transform of both sides of the ODE, we obtain
S2Y(s) — sy(0) —y'(0) + 4Y(s) = 2~ ™/D5,
Applying the initial conditions,
S2Y(s) +4Y (s) = 2e /s,

Solving for the transform,
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2 e—(7/4)s
Yo =31

Applying Theorem 6.3.1, the solution of the IVP is

y(t) = sin (275 - g)uﬂm(t) = —cos(2t) uz(t).

¥t)
1.
0.5
0.6
0.47
0.2
o 2 i, 16 B 10
-0.21
0.4
0.6
-0.8
-14

9. Taking the initial conditions into consideration, the transform of the ODE is

—(7/2)s —27s
€ (/2 + 36—(37r/2)s . €
S S

Y (s)+Y(s) =

Solving for the transform,
e—(w/Q)s 3 e—(37r/2)s e—2ms

@11 #11 s(E1D)

Y(s) = .

Using partial fractions,

1 1 S

s(s24+1) s s2+1°

Hence

ef(ﬂ/Z)s Sef(ﬂ/Z)s N 367(37r/2)s e—2ms N g e 2ms
s s24+1 s24+1 s s24+1°

Based on Theorem 6.3.1, the solution of the IVP is

Y(s) =

3T

y(t) = u,p(t) — cos(t - g)um(t) +3sin (t - E)U?ﬂ/g(t) -
g (t) + cos(t — 2m)us (1)
That is,
y(t) = [1 — sin(t)] wye(t) + 3 cos(t) uso(t) — [1 — cos(t)] ua ().
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10. Taking the transform of both sides of the ODE,

25°Y (s) + sY(s) +4Y (s) = / e 6(75 — %)sintdt
0

_ % o (w/6)s.
Solving for the transform,
e—(m/6)s
Yis) = 2282 +s+4)°
First write
1 _ i
2024548 (5127 8

It follows that

0.144
0124

014
0.034
0.087

0.043
0.02

0 S SN SN N 4
ol 2L AR e T
-0.043

-0.06
-0.03-
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11. Taking the initial conditions into consideration, the transform of the ODE is
s
s2+1

sY(s)+2sY(s) +2Y(s) = T e (/s

Solving for the transform,
S e—(m/2)s

(s24+1)(s2+ 25+ 2) +52+23—|—2'

Y(s) =

Using partial fractions,

S 1 S 2 s+ 4

(2+1)(s2+25+2) 5 S2+1+S2+1_S2+28+2 '

We can also write

s+4  (s+1)+3
$2+25+2  (s+1)7+1
Let
S
Yi(s) = .
) = Fr D 1255 2)
Then

1 2 1
L7HY1(s)] = R cost + = sint — 5 e '[cost + 3 sint].

Applying Theorem 6.3.1,
o~ (7/2)s

s24+25+2

-1

= ¢ (5) sz’n(t - g)um(t) .

Hence the solution of the IVP is

1 2 1
y(t) = gcost+ 5sint— ge_t[cost—f—?)smt] -

— e (75) cos(t) Unpa(t) -
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0.4

0.2

0.2

0.4

12. Taking the initial conditions into consideration, the transform of the ODE is

Solving for the transform,

Using partial fractions,

It follows that

‘|

'Y (s) = Y(s) =e ",

1
st—1

= 1 sinht — = sint
—QSZ’H 282’”.

|

Applying Theorem 6.3.1, the solution of the IVP is

1
y(t) = E[smh(t —1) —sin(t — 1)]u,(t) .
i)
5_
‘.1_
3_
2_
1_
0 i 3 4

— i
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14(a). The Laplace transform of the ODE is

s*Y(s) + %s Y(s)+ Y(s) =e".

Solving for the transform of the solution,

678

Y(s)= — .
(s) s2+s/2+1

First write

1 1

s2+s/2+1: (S+i)2+%'

Taking the inverse transform and applying both shifting theorems,

4 v/ 15
t) = e~ t=/4 gin
y( ) \/175 4

(t—1)w(t).

0.67
0.4

0.27

0 R L AT AT
0.2

(b). As shown on the graph, the maximum is attained at some ¢, > 2. Note that for
t>2,

4
y(t) = ﬁ

Setting y'(t) = 0, we find that ¢, ~ 2.3613. The maximum value is calculated as
y(2.3613) ~ 0.71153.

v 15
e =D/ gip

(t—1).

(c). Setting v = 1/4, the transform of the solution is

e—S

Y(s) = —o .
(s) s2+s/4+1

Following the same steps, it follows that
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8 34/7

_ S @18 . 9V I
Yy(t) = e sin t—1)u(t).
0 =57 (-1 (t)

yit)

0.8

05

0.4

0.2 /\

o b i e B 10

02

0.4

Once again, the maximum is attained at some ¢, > 2. Setting y'(¢) = 0, we find that
t, ~ 2.4569, with y(¢,) ~ 0.8335.

(d). Now suppose that 0 < v < 1. Then the transform of the solution is

—S

e
Y(s) = R
First write
1 B 1
s2+ys+1 (s+7/2)° 4+ (1—~2/4)
It follows that
At = £ [32 + is + 1] RVZ 2— v? B_WQSM(\/W ' t)'

Hence the solution is
y(t) = h(t — 1) u(t).

The solution is nonzero only if ¢ > 1, in which case y(t) = h(t — 1). Setting y'(t) =0

5

we obtain
1
tcm[\/l —2/4 - (t— 1)] = —y/4—72,
Y
that is,

tan[y/1—~2/4 - (t —1)]
Ny

2
.
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As y—0, we obtain the formal equation tan(t — 1) = oco. Hence ¢, »1+ 7. Setting
t =7/2 in h(t), and letting v— 0, we find that y; - 1. These conclusions agree with
the case v = 0, for which it is easy to show that the solution is

y(t) = sin(t — 1) u,(t) .

15(a). See Prob. 14. It follows that the solution of the IVP is

4k Vv 15

y(t) = ——=e D/ gip
V15 4

This function is a multiple of the answer in Prob. 14(a). Hence the peak value occurs at

t; ~ 2.3613. The maximum value is calculated as y(2.3613) ~ 0.71153 k. We find
that the appropriate value of k is &k, = 2/0.71153 ~ 2.8108.

(t—1)u(t).

(b). Based on Prob. 14(c), the solution is

8k 37

y(t) = —=e DB gip V7
37

Since this function is a multiple of the solution in Prob. 14(c), we have ¢, ~ 2.4569,

with y(¢,) ~ 0.8335 k. The solution attains a value of y = 2, for k;, = 2/0.8335,
that is, k; ~ 2.3995.

(t—1)u(t).

(c). Similar to Prob. 14(d), for 0 < v < 1, the solution is
y(t) = h(t = 1w (t),

in which

2k

h(t) = ﬁ eﬂt/zsin<\/ 1-— ’}/2/4 . t) .
-

It follows that ¢, — 1 -7 /2. Setting ¢t = 7/2 in h(t), and letting y— 0, we find that

y, — k. Requiring that the peak value remains at y = 2, the limiting value of £ is

k, = 2. These conclusions agree with the case v = 0, for which it is easy to show

that the solution is

y(t) = ksin(t — 1) u(t).

16(a). Taking the initial conditions into consideration, the transformation of the ODE is

1 —(4—k)s —(4+k)s
s2Y(s)+ Y(s) = o7 [e ¢ :

S S

Solving for the transform of the solution,
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1 —(4—k)s —(4+k)s
Y(s)= — | < _° .
2k | s(s2+1)  s(s2+1)
Using partial fractions,
1 1 S

Now let

h(t) = L7 {m} =1—cost.

Applying Theorem 6.3.1, the solution is

B, k) = S bt~ 4+ k) i (t) — bt — 4 — K) (1)

That is,
ot k) = i[uzlk(t) — wgip(t)] —
1
- ﬁ[cos(t — 44+ k)u, 1 (t) — cos(t —4 — k) uy i (2)].

(b). Consider various values of ¢. For any fixedt < 4, ¢(t,k) =0, as long as
4—k>t Ift>4,thenfor4+k<t,

o(t, k)= — %[cos(t—él%—k) —cos(t—4—k)].

It follows that

, L cos(t —4+ k) —cos(t —4 — k)
fimoit.4) = fn, i
=sin(t —4).
Hence

l}er}) ot k) = sin(t —4) uy(t) .

(c). The Laplace transform of the differential equation
y' +y=0(t—4),
with y(0) =y’(0) =0, is
7Y (s)+ Y(s) = e ™.

Solving for the transform of the solution,
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6—45

Y(s) = .
(S) 82+1

It follows that the solution is

do(t) = sin(t — 4) uy(t) .

0.6
0.6
0.4
0.2

0.2
0.4
il
0.6

12

18(b). The transform of the ODE (given the specified initial conditions) is

20

SY(s)+ Y(s) =) (-1 et
k=1
Solving for the transform of the solution,
1 2L k+1 —krs
Y(s) = o ;(—1) ehms,

Applying Theorem 6.3.1 , term-by-term,

y(t) = Z( — )" sin(t — k) u (t)

20

= —sin(t) - Z Ui (1) -

k=1

page 319



WWV. ZI T e.Ir

CHAPTER 6. ——

101

-20+

204

104

m/\/\/\/\

=

\ffh\;’f{u/ UauU :ti 5 N

19(b). Taking the initial conditions into consideration, the transform of the ODE is

Solving for the transform of the solution,

20
82 Y(S) + Y(S) — ZB_(IW/Q)S_
k=1

Y(s) =

52

Applying Theorem 6.3.1 , term-by-term,

1.4

1.2

0.8

0.6

0.4

0.2

y(t) = :Zolszn (t - %”) U (£)

1 220 (km/2)
—(km/2)s
e .
+1 i

10

0

a0

40
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20(b). The transform of the ODE (given the specified initial conditions) is

20
Y (s Z k+1 —(km/2)s
Solving for the transform of the solution,
20 —(km/2)s
Y(s) = L .
0= (-0

Applying Theorem 6.3.1 , term-by-term,

20 Lk
= Z( - 1)k+15in (t - 7) /U/kﬂ—/g(t) .
k=1

0.8
0.61
0.4
0.24

0.2
0.4
067
0.8

22(b). Taking the initial conditions into consideration, the transform of the ODE is

k L~
SQY +1,-(11k/4)s

” Mo

Solving for the transform of the solution,

—(11k/4)s

40
_ Z( . 1)k+1€—
— s2+1 7

Applying Theorem 6.3.1 , term-by-term,
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23(b). The transform of the ODE (given the specified initial conditions) is

SY(s)+01sY(s)+ Y(s) = > (=1 et
k=1

Solving for the transform of the solution,

20 eflmrs
Y(s) = —_—
(=) kleQ—f—O.ls—{—l
First write
1 B 1
2 - 1\2 | 399 °

It follows that

20

s2+0.1s+1

E_l[ 1 } _ 2 e_t/Qosin< 399 t).
v/ 399

Applying Theorem 6.3.1, term-by-term,
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20

y(t) = (= D" h(t — k) un(t),

k=1
in which
20 v/ 399
h(t) = t/20 t].
(t) =90 sin 50

(c).

24(b). Taking the initial conditions into consideration, the transform of the ODE is
15
s2Y(s) +0.1s Y (s Z (2k=1)m

Solving for the transform of the solution,

15 —(2k—1)7s
Y(s) = .

-
= +0.1s+1

As shown in Prob. 23,

E_l[ 1 } = 20 e 1 gin (ﬂ t).

s24+0.1s+1 \/399

Applying Theorem 6.3.1, term-by-term,

th— (2k — 1)) wapr)x (1)

in which
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25(a). A fundamental set of solutions is ¥, () = e ‘cost and y,(t) = e 'sint .
Based on Prob. 22, in Section 3.7, a particular solution is given by

~ [Ty(8)ya(t) = yi(t)ya(s)
w)= | Wy 9)(5)

f(s)ds.

In the given problem,

Yp(1)

_ /O ¢ eos(s)sin(t) — sinls)eos®)]

exp( — 2s)
= /te(ts)sin(t —s)f(s)ds.
0

Given the specified initial conditions,

(b). Let f(t) = 6(t — ). Itiseasytoseethatift < m, y(t)=0. If t >,
¢
/ e sin(t — 5)6(s — m)ds = e sin(t — 7).
0

Setting t = m + £, and letting ¢ » 0, we find that y(7) = 0. Hence
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y(t) = e T sin(t — 1) up(t) .

(c). The Laplace transform of the solution is

6*71'5

2+ 25+ 2

6*7'!'5

(s+1)°+1

Y(s) =

Hence the solutions agree.
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Section 6.6

1(a). The convolution integral is defined as

Frot= [ 't = Dg(r)dr

Consider the change of variable v =t — 7. It follows that

/Otf@—f dT—/f ot — u)( — du)

- / g(t — u) f (u)du

0

=gxf(t).

(b). Based on the distributive property of the real numbers, the convolution is also
distributive.

(c). By definition,

f*(gxh)(t /ft—T [gxh (T)ldT

_ / se=n| [ atr = mncninas
= /Ot/OTf(t —7)g(T —n)h(n) dndr.

The region of integration, in the double integral is the area between the straight lines
n=0,n=7 and 7 =t. Interchanging the order of integration,

/OtATf(t — 7)g(r — n)h(n) dndr = /Ot/ntf(t — P)g(r — )h(n) drdy

-/ | =)0t e ey an
Now let 7 —n = w. Then

/ft—T T—n dT_/ ft—n—u)g(u)du
=[xg(t—mn).

Hence

[s6-mlg=ntar = [ 17490~ mine)ar.
0 0
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2. Let f(t) =¢'. Then

3. It follows directly that
t
fxf(t) = / sin(t — 7) sin(7) dr
0

- /O [cos(t — 27) — cos(t))dr
_ %[sin(t) — teos(t)).

The range of the resulting function is R .

5. Wehave Lle '] =1/(s+ 1) and L[sint] = 1/(s*>+1). Based on Theorem 6.6.1,
! 1 1
L[/ e~ sin(r) dT:| = :
0

s+1 s2+1
1

(s+1)(s2+1)

6. Let g(t) =t and h(t) = e'. Then f(t) = gxh (t). Applying Theorem 6.6.1,
! 11
c| [ gt — () dr| = =
[ote=nnmar] =51
B 1
S os2(s—1)°

7. Wehave f(t) = gxh (t),in which g(t) = sint and h(t) = cost. The transform
of the convolution integral is

c Uotg(t — P)h(r) dT} _ ! s

241 s2+1
B S
(s2+1)°

9. Itis easy to see that
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L_l[ 1 ]:e_t and E‘l{

} = cos 2t.
s+1

s2+4
Applying Theorem 6.6.1,

¢
~1 S _ —(t—7)
L [(3+1)(32+4)] /Oe cos 2T dT .

10. We first note that

1
(s+1)°

-1

1 1
=te ! and £‘1{ 2+4} :§8in2t.
S

Based on the convolution theorem

1 1/
£t 5 = —/ (t —m)e " sin2r dr
(s+1)7°(s*+4)]  2Jo
1

t
= —/ Te "sin(2t — 27)dT.
2.Jo

11. Let g(t) = L7YG(s)]. Since L7'[1/(s> +1)] = sint, the inverse transform of

the product is
t
£t [ G(s) ] = / g(t — 1) sinTdr
0

= /Otsm(t —7)g(T)dT.

12. Taking the initial conditions into consideration, the transform of the ODE is
s2Y(s) — 14+ W’ Y(s) = G(s).
Solving for the transform of the solution,

1 G(s)

Y = .
(5) s24w? s 4 w?

As shown in a related situation, Prob. 11,

cl[ G(s) ] _ l/otsinw(t—T) o(r)dr.

52 + w? w

Hence the solution of the IVP is
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1 1
y(t) = — sinwt + —/ sinw(t — 1) g(T)dT.
0

w w
14. The transform of the ODE (given the specified initial conditions) is
45 Y (s) +4sY (s) + 17Y (s) = G(s).
Solving for the transform of the solution,

G(s)
452 4 4s + 17"

Y(s) =

First write
1 _
482 +4s+ 17 (s+ 1) +4°

Based on the elementary properties of the Laplace transform,

t/2

= —e "“sin2t.

1 1
482 +4s+ 17 8
Applying the convolution theorem, the solution of the IVP is

1

t
y(t) = 3 / e 2 sin 2(t — 1) g(7) dr.
0

16. Taking the initial conditions into consideration, the transform of the ODE is
s2Y(s) — 25 +3+4[sY(s) — 2] +4Y(s) = G(s).
Solving for the transform of the solution,

2545 G(s)
YO = T et

We can write

25+ 5 2 1

= + .
(s+2)° s+2 (s+2)°

It follows that

1
(s +2)°

El{ ~2|—2} =22 and £7!
s

Based on the convolution theorem, the solution of the IVP is
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t
y(t) = 2% f e+ / (t — T)€_2(t_T)g(T) dr.
0

18. The transform of the ODE (given the specified initial conditions) is

'Y (s) — Y(s) = G(s).

Solving for the transform of the solution,

First write

It follows that

_ G(s)
st

1

s2—1 s241]

1
[,1[ ! 1] =§[sinht—sint].

Based on the convolution theorem, the solution of the IVP is

y(t) = %/0 [sinh(t — ) — sin(t — 7)]|g(T) dT .

19. Taking the initial conditions into consideration, the transform of the ODE is

'Y (s) — s +552Y(s) — bs +4Y (s) = G(s).

Solving for the transform of the solution,

s> + bs

Y(s) =

G(s)

Using partial fractions, we find that

s3 + 5s
(s2+1)(s>+4)

and

1
(s2+1)(s>+4)

It follows that

(s2+1)(s>+4)

i

3

ir

3

(s24+1)(s2+4)

4s s
|s2+1 244
1 1
(241 244
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1
= —cost — = cos2t,
3

= e |-3

T2+ 4] 3
and
1 1 1
-1 e — Zsinot.
£ [(32+1)(52+4)} gomt g

Based on the convolution theorem, the solution of the IVP is

4 1 L[
y(t) = 3 cost — 3 €08 2t + 6/ [2sin(t — 1) — sin2(t — 7)]g(7) dT.
0

21(a). Let ¢(t) = u”(t). Substitution into the integral equation results in
¢
u”(t) + / (t—&u"(€&)dé = sin2t.
0

Integrating by parts,
=t

/ (t—&u"(©)de = (t—Ou'(©)| + / W (€) de
0 £=0 0
= —tu'(0) + u(t) — u(0).

Hence

u"(t) +u(t) — tu'(0) — u(0) = sin2t.

(b). Substituting the given initial conditions for the function wu(t),
u”(t) + u(t) = sin2t.

Hence the solution of the IVP is equivalent to solving the integral equation in Part (a).

(¢). Taking the Laplace transform of the integral equation, with ®(s) = L[¢(¢)],

1 2
@(8)4—8—2-(1)(8): R

Note that the convolution theorem was applied. Solving for the transform ®(s) ,

252
(s2+1)(s2+4)

d(s) =

Using partial fractions, we can write
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(s2+1)(s>+4) 3

25 o[ 4 1
244 241\

Therefore the solution of the integral equation is

4 2
o(t) = gsin%— gsint.

(d). Taking the Laplace transform of the ODE, with U(s) = L[u(t)],

2
2 _
SU(S)"‘U(S)—m

Solving for the transform of the solution,

2

Ve =erneEra

Using partial fractions, we can write

2 [ 2 2
(s24+1)(s24+4) 3|s2+1 s24+4]

It follows that the solution of the IVP is

(1) = Zsint — - sin2t
u(t) = —sint — = sin2t.
3 3

We find that u”(t) = — %sint + 5 sin2t.

22(a). First note that

b
fly 1
/ ) dy = x f | (b).
0 vVb—y VY
Take the Laplace transformation of both sides of the equation. Using the convolution
theorem, with F(s) = L[f(y)],

Hence
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with

(b). Combining equations (i) and (iv),

2
ZQTUZ — 1+ d_ﬂ? .
T2y dy

Solving for the derivative dz/dy,

dz 200 — y

dy y

in which « = gT? /7.

(¢). Consider the change of variable y = 2 sin®(6/2). Using the chain rule,

dy . do

%9 _ 9 9 2). 27

o asin(f/2)cos(0/2) .
and

dx 1 dx

dy ~ 2a sin(0/2)cos(6/2) do -

It follows that

i . cos?(6/2)
o =2 sin(60/2)cos(60/2) sin?(0/2)
=2« 0082(9/2)
—a+acost.

Direct integration results in

z(0) =ab+asinfd+C.

Since the curve passes through the origin, we require y(0) = z(0) = 0. Hence C' = 0,
and z(0) = a0 + asinf. We also have
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y(0) = 2asin*(0/2)
=a—«acost.
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Chapter Seven
Section 7.1

1. Introduce the variables x; = u and x, = u’. It follows that =] = x, and
xy =u"
= —2u—05u".
In terms of the new variables, we obtain the system of two first order ODEs

/
Ty = To
!/
Ty = — 2z —0.57,.

3. First divide both sides of the equation by ¢2, and write

1 1
"no__ /

Set x; = u and x, = u’. It follows that x| = x, and

I
Ty = U

1, 1 1
= ——-u' — - — |u.
t 4¢?

We obtain the system of equations

!/
Ty = Ty

1 1
T, = — (1—E>x1—¥x2.

6. One of the ways to transform the system is to assign the variables
Y=o, 9225171/ , Ys =Ty , y4::1:2/.

Before proceeding, note that

1
xl” = E[ — (l{fl + ]{12)1'1 + k2$2 + Fl(t)]
1
1
2l = —[kywy — (ko + ks)xy + Fy(t)] .
my

Differentiating the new variables, we obtain the system of four first order equations
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Y =Y

= [ O R+ g+ Fi(0)
Ys = Ys

Y, = miﬂ@yl — (ky + k3)ys + Fy(1)] -

7(a). Solving the first equation for x,, we have x, = x| + 2x, . Substitution into the
second equation results in

(z] +22,) = 21 — 2(z] + 22,).

Thatis, ' + 4z + 3x, = 0. The resulting equation is a second order differential
equation with constant coefficients. The general solution is

T,(t) = cre™t 4 e

With z, given in terms of x,, it follows that

T5(t) = ce — et

(b). Imposing the specified initial conditions, we obtain

c+cy = 2
Ci — Cy = 3,
with solution ¢, = 5/2 and ¢, = — 1/2. Hence
5 1 5 1
x,(t) = ie_t - 56_‘% and x,(t) = ie_t + 56_:%
().
4
3
¥2 21
]
0 i 2 3 i

10. Solving the first equation for x,, we obtain z, = (x; — x/)/2. Substitution into
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the second equation results in
(z, —z))' )2 =3z, — 2(z; — z)).
Rearranging the terms, the single differential equation for z; is
' +3x+2x,=0.
The general solution is
z,(t) = e 4 e
With x, given in terms of x, , it follows that

3
Ty(t) = cre” ' + 5026_3t

Invoking the specified initial conditions, c, = — 7 and ¢, = 6. Hence

z(t)= —Te ' +6e % and z,(t) = —Te ' +9e7.

11. Solving the first equation for x,, we have x, = x//2. Substitution into the
second equation results in

/2= —2ux,.
The resulting equation is x;" + 4z, = 0, with general solution
x,(t) = c1c08 2t + cysin 2t .
With z, given in terms of x, , it follows that
xy(t) = — e18in 2t + ¢y cos 2t .

Imposing the specified initial conditions, we obtain ¢; = 3 and ¢, = 4. Hence

x1(t) = 3cos2t + 4sin 2t and x,(t) = — 3sin 2t + 4cos 2t.
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12. Solving the first equation for z,, we obtain =, = x;/2 + x,/4. Substitution into
the second equation results in

v/ 242/ /A= —2x, — (x]/2+x,/4)/2.

Rearranging the terms, the single differential equation for z; is

17
$1/I+.CU1/—|—Z£E1=0.

The general solution is
z,(t) = e ?[e,co8 2t + cysin 2t].
With x, given in terms of x, , it follows that
() = e 7% — ¢icos 2t + cysin 2t] .
Imposing the specified initial conditions, we obtain ¢, = — 2 and ¢, = 2. Hence

2, (t) = e %[ — 2c0s 2t + 2sin 2t] and z,(t) = e /*[2c0s 2t + 2sin 2t] .

w2
1_
52 K; J 3
-2
3

13. Solving the first equation for V', we obtain V = L - I’. Substitution into
the second equation results in
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Rearranging the terms, the single differential equation for [ is

LRC-1"+L-I'+R-1=0.

15. Direct substitution results in
(11 (1) + e2za(t)) = pu(t) [ () + coza(t)] + pro(B)[cryn () + coys(t)]
(cryi(t) + e (t)) = pau(D)[erzi (t) + c2ma(t)] + pa(t) [y () + ey (1)) -
Expanding the left-hand-side of the first equation,

iy (t) + exy(t) = ci[pu(t)zi(t) + p()y: (t)] +
+ cy [pu(t)% (t) + p12(t)y2 (t)] .

Repeat with the second equation to show that the system of ODEs is identically satisfied.

16. Based on the hypothesis,

xl/(t) = pll(t)xl(t) + Pty (t) + gi(t)
xz/(t) = pn(t)%(t) + pra(t)ya(t) + gi(t) -

Subtracting the two equations,

() — 25(t) = pu )]z (t) — 2,(0)] + pa(t) [y) (t) — w2 (2)]
Similarly,

yi(t) =y, (8) = pa(®)[z](t) — 25(6)] + P2 (D) [y (£) — , (1))

Hence the difference of the two solutions satisfies the homogeneous ODE.

17. For rectilinear motion in one dimension, Newton's second law can be stated as
E F=mz".

The resisting force exerted by a linear spring is given by Fy; = k¢, in which ¢ is the
displacement of the end of a spring from its equilibrium configuration. Hence, with

0 < z; < x4, the first two springs are in tension, and the last spring is in compression.
The sum of the spring forces on m is

Fl = — klxl — k‘g(flfg — xl) .

S

The total force on m; 1s
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ZFl - — klxl + kQ(IQ - :L‘l) + Fl(t) .

Similarly, the fotal force on my is

ZFQ - — kQ(IQ - :L“l) - k:gxg + FQ(t) .

18(a). Taking a clockwise loop around each of the paths, it is easy to see that voltage
drops are givenby V; — Vo =0,and V5, — V3 =0.

(b). Consider the right node. The current in is given by I + I . The current leaving
the node is — I3. Hence the current passing through the node is (I; + Iz) — ( — I3).
Based on Kirchhoff's first law, Iy + I, + 13 = 0.

(c). In the capacitor,

cv/ =1I.
In the resistor,

Vo=RI,.
In the inductor,

LI;=V;.

(d). Based on part (a), V3 = V5 = V4. Based on part (b),

1
CW+§%+Q:U

It follows that

1
cCV = —EVl—Ig and LI, =V].

20. Let Iy, I5, I3, and I, be the current through the resistors, inductor, and capacitor,
respectively. Assign Vi, V5, Vi, and V) as the respective voltage drops. Based on
Kirchhoff's second law, the net voltage drops, around each loop, satisfy

Vi+Va+Vy=0,Vi+Vs+Vo=0and V,—Vo=0.
Applying Kirchhoff's first law to the upper-right node,
Is— (Iy+14) =0.

Likewise, in the remaining nodes,
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L—Iy=0and b+ 1,— 1, =0.
That is,
Vi—-Vo=0,Vi+Vs+Vy=0and Io+ 1, —1I3=0.
Using the current-voltage relations,
Vi=Rih, Vo=Roly, LI; =V3, CV/ =1,

Combining these equations,

v
Ris+ LI, +V,=0and CV,/ =1I5— 54'
2
Now set I3 = I and V; = V', to obtain the system of equations
/ / V
LlI'= —RI—-V and CV' =1— —.
Ry
22(a).
3 gal/min 1 galimin
— -——
qloz*’gal 3 q,02/gal
Eﬁ"‘——\\ S~ (
2 gal/min
O e lp—r 0 L
1 gal/min

Tank 2 ' 2 galimin

Let Q1(t) and Q2(t) be the amount of salt in the respective tanks at time ¢ . Note that
the volume of each tank remains constant. Based on conservation of mass, the rate of
increase of salt, in any given tank, is given by

rate of increase = ratein — rateout.

For Tank 1, the rate of salt flowing into Tank 1 is
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o oz gal Q2 oz [ gal]
Tin = [%gal] [3min] T |:100 gal:| 1min

- Q2 0z

The rate at which salt flow out of Tank 1 is

Tout = {%%} [4g_al} - % 0z

60 gal minl 15 min
Hence
dQ1 Q2
i 20T 00 15
Similarly, for Tank 2,
iQ:_ Q3@
dt 730 100
The process is modeled by the system of equations
Q1 Q>
/
= -4+ —43
@ 15 100 °®
Q1 3Q
, e —
@2= 35 700 %

The initial conditions are @1(0) = QY and Q2(0) = QY.

(b). The equilibrium values are obtain by solving the system

Q1 | @ B
15 T10p T30 =Y
Q1 3Q B
30 100 T2

Its solution leads to Q¥ =54¢, +6¢, and Q¥ =60¢q +40¢,.

(c). The question refers to possible solution of the system

60q, +40¢g, = 50.

It is possible for formally solve the system of equations, but the unique solution gives

s d%:—loz

_7
Q1—6 2w’

gal

which is not physically possible.
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(d). We can write

FE

q> = _9(114‘%
3 QF
4> = _591"' 409

which are the equations of two lines in the ¢, ¢,-plane:

0 : ; 3 y
q1

The intercepts of the first line are QF /54 and QF /6. The intercepts of the second
line are Q% /60 and QF /40. Therefore the system will have a unique solution, in the
first quadrant, as long as QF /54 < Q¥ /60 or Q¥ /40 < Q¥ /6. That is,

E
W _QF 20
9 ~QF = 3
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Section 7.2
2(a).
Ngp_ (1Fi—2 —1420-6)_( 1-i —T+2i
“\3+2i-4 2-i+4i )T\ —1+2 243
(b).
C(343i+i —3+6i+3) _ (3+4 6
3AJFB_(9+6¢+2 6—&—2i>_(ﬂﬁﬁi6—50'
().

_ ()i 2(—=14+2i) 3(1+4) + (= 1+ 2i)(—2i)
AB_( (B+20i +22—1)  3(3+2)+ (2~ i)~ 2) )

(=345 T+5i
“\ 244 742 )

(d).
BA — (1 +4)i+3(3+ 2i) (—1+2i)i+3(2—1)
T2+ )+ (20034 20) 2(—1+42)+(—2)(2—1)
(84T 4—4i
“\6—4 —4 )
3.
-2 1 2 1 3 =2
AT+BT = | 1 0 —-1]+]2 -1 1
2 -3 1 3 —1 0
-1 4 0
= 3 -1 0
5 —4 1
= (A+B)".
4(b)

(c). By definition, A* = (AT) = (A)".

5.
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5 3 —2 10 6 —4
204+B)=2[0 2 5 |=|0 4 10
1 2 3 2 4 6

7. Let A = (a;;) and B = (b;;) . The given operations in (a) — (d) are performed
elementwise. That is,

(a). a;; + bLJ = b,] + a;;.
(b) a;; + (bU + Cz‘j) = (aij + sz) + ¢ij.
(C). a(aij +b¢j) = aaij-l-abij.
(d) (Oé + 6) aij = aij + « aij .
In the following, let A = (a;;), B = (b;;)and C = (¢;;) -

(e). Calculating the generic element,
(Bc)z‘j = Z bzk Ckj -
k=1

Therefore

[A(BC)];; = Z Qir (Z by, ij)
r=1 k=1
= Z Zair brk Ckj

r=1 k=1

The last summation is recognized as

n

Z Qi brk = (AB)lk 5

r=1

which is the 7k-th element of the matrix AB.

(f). Likewise,
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[A(B + C)],L-j = air(brj + cxj)
k=1

= @y b + Z Qij; Cij
=1 =1
= (AB)V:J' + (Ac)ij'

8(a). xly =2(—1+4)+2(3i) + (1 —i)(3—1) = 4i.
(b (=14 +22+(3—i)’=12—8i.
Ez)) (XaY):%(—1—i)+2(3i)+(1—i)(3+i):2+2i.

(y,y)=(—14+i)(—1—-4)+22+(3—14)(3+1i) =16.
9. Indeed,
X'y=) zjy;=y'x,
=1
and

(,¥) =Dz =) ya=p Yz = (y.%) .
J=1 j=1 J=1

11. First augment the given matrix by the identity matrix:

wn=(3 38 Y)

Divide the first row by 3, to obtain

1 1
Y
6 2 0 1

Adding — 6 times the first row to the second row results in

1 1
L -3 5 0}
0 4 -2 1

Divide the second row by 4, to obtain

1 1
0 1 -3 1

Finally, adding 1/3 times the second row to the first row results in
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Hence

13. The augmented matrix is

1 1 -1 1 0 O
2 -1 1 010
1 1 2 0 01

Combining the elements of the first row with the elements of the second and third rows
results in

1 1 -1 1 0 O
0 -3 3 -2 1 0
0 O 3 -1 0 1

Divide the elements of the second row by — 3, and the elements of the third row by 3 .
Now subtracting the new second row from the first row yields

1 1
Lo o0 50
01 -1 5 -3 0
oo 1 -1 o !

Finally, combine the third row with the second row to obtain

1 1
01031—§§
o001 -1 o |

Hence
11—1‘11110
2 -1 1 :§1—11
1 1 2 -1 0 1

15. Elementary row operations yield
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2 101 0 0 1 503 00
021010]-{01 35 0 4§ 0]
0 0 2 0 0 1 00 1 0 0 %
1 1 1 1 1 1
1o -z 3 -3 0 10 -z 3 -3 0
o1 0o o &+ —-ii)sjo1 o o L -1
00 1 0 0 3 00 1 0 0 3
Finally, combining the first and third rows results in
1004 -4
1 1
o100 & -1
0010 0 3
16. Elementary row operations yield
1 -1 -1 1 0 0 1 -1 -1 1 0 0
2 1 0O 01 0|-»|0 3 2 -2 1 0]-
3 -2 1 0 0 1 0 1 4 -3 0 1
1 1 1 1 3 1
IR P S T T
P S S P I A T T
00 5 -3 -3 1 00 3 -3 -3 1
Finally, normalizing the /ast row results in
1 3 1
010 % % -
7 1 3

17. Elementary row operations on the augmented matrix yield the row-reduced form of
the augmented matrix

=
I 3=
= o

0
0
1

o O =
o = O
O ~lw

|

[\

|

—

The left submatrix cannot be converted to the identity matrix. Hence the given matrix is
singular.

18. Elementary row operations on the augmented matrix yield
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1 0 0 -1 1 0 0 O 1 0 0 -1 1 0 0 O
0 -1 1 0 0 1 00 . 0 -1 1 0 01 00 .
-1 0 1 0 0 0 10 0 1 -1 1 0 1 0
0 1 -1 1 0 0 0 1 0 1 -1 1 0 0 0 1
1 0 O -1 1 0 0 0 100 01 101
01 -1 0 0 =1 00 o 01 001011
0 0 1 -1 1 0 1 0 00101111
00 O 1 0 1 01 0001 0101
19. Elementary row operations on the augmented matrix yield
1 -1 2 0 1 0 00 1 -1 2 0 1 0 00
-1 2 -4 2 01 00 . 0 1 -2 2 1 1 00 5
1 0 1 3 0 010 0 1 -1 3 -1 010
-2 2 0 -1 0 0 0 1 0 0 4 -1 2 0 0 1
1 0 O 2 2 1 0 0 1 0 0 2 2 1 0 O
o1 -2 2 1 1 0 0 . 01 0 4 -3 -1 2 0
0 0 1 1 -2 -1 10 0 0 1 1 -2 -1 1 0
0 0 4 -1 2 0 01 0 00 =5 10 4 -4 1

Normalizing the /ast row and combining it with the others results in

1002 2 1 0 0 1ooo0o 6 2 -% 3
0104 =3 -1 2 0 oroo 5 ¥ -% 2
0011 -2 -11 0 |7loo10 0o 1Lt 1 1

44 1 S I ) 9
0001 -2 -5 35 —3 o001 -2 -4+ + 1

20. Suppose that A is nonsingular, and that there exist matrices B and C, such that
AB =1Tand AC = 1. Based on the properties of matrices, it follows that

AB—-C)=AY=0,,,.
Write the difference of the two matrices, Y , in terms of its columns as
Y = [y y?) |y

The j-th column of the product matrix, AY , can be expressed as Ayl . Now since all
columns of the product matrix consist only of zeros, we end up with n homogeneous
systems of linear equations

Ayl =0,.,, j=1,2,---,n.

Since A is nonsingular, each system must have a trivial solution. Thatis,y} =0, ,
forj=1,2,---,n. Hence Y=0,,, and B=C.

21(a).
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et 2et 2 Get 3e~t 9%t
A+3B = | 28 et —e2 |+ | —3et 6Get 3%t
—et 3e7t 2e2 9¢! —3et —3e%

10e?t

262t

2

5e~t

Te! g
—el Tet
8e! 0

) |

(b). Based on the standard definition of matrix multiplication,
2e% — 2 4 3e3t 1+ 4e 2 — et 3e3t 4 2et — e
AB = 4e? — 1 — 3e3t 2+ 2e % 4 et 6e3t + et + et
—2e? —34+6e3 — 14662 -2t —3e3 + et — 2
(c).
JA et — 27t 2%
s = 2¢t — et — 2¢2
—et —3et 4e?
(d). Note that
el —2et )2
/A(t)dt =1 2 —et —€*/2|4+C.
_ et _3et o2t
Therefore
1 e —2l €22 1 =2 1/2
/A(t)dt 2 —et e |- 2 -1 —1p2
0 —e —3e! e? -1 =3 1
e—1 2—-21 €2/2-1/2
=12-2 1—-e! 1/2—¢€2/2
l—e 3—3e! e? —1
The result can also be written as
L2 gle+1)
e—1f 2 L —1e+1)
-1 % e+1

23. First note that
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x’:(é)et+2<i)(et+tet):(2?1;??).
We also have
(5 2= (0 22)0) (5 22 (e
-Gy (oo

. 2¢et + 2t el
T\ 3et +2tet )

e A U A P 3¢’ + 2t e
3 -2 —1)7  \ 2 +2te' )

24. It is easy to see that

It follows that

-6 0 — 6e !
x' = 8 lel+ 4 e = 8e !+ 4e
4 —4 et — 42

On the other hand,
1 1 1 1 1 6 1 1 1 0
1 —1lx=[2 1 -1 —8let+|2 1 -1 2 e
-1 1 0 —1 1 —4 0 -1 1 -2
-6 0
= 8 et 4+ 4 et
4 —4

26. Differentiation, clementwise, results in

SN =

el —2e72t 33t
U= —4det 2% 6
— el 2e 2 3e¥

On the other hand,
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1 —1 4 1 —1 4 et e 2 et
3 2 -1 1T =13 2 -1 —4et — e 2e¥
2 1 — 1 2 1 — 1 — et — e_2t egt
615 _ 26—2t 36315
= | —4et 272 Gedt
— et Qe 2 3est
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Section 7.3

4. The augmented matrix is

1 2 —11] 0
2 1 1 |0
1 -1 2 | 0

Adding — 2 times the first row to the second row and subtracting the first row from the
third row results in

1 2 —-11]0
0 -3 3 | 0
0 -3 3 | 0

Adding the negative of the second row to the third row results in

1 2 —-11]0
0 -3 3 | 0
0o 0 0 |0

We evidently end up with an equivalent system of equations

$1+2x2_fﬂ320

— Xy + T3 = O .
Since there is no unique solution, let x3 = a/, where « is arbitrary. It follows that
T, = v, and x; = — «. Hence all solutions have the form
—1
X =« 1
1

5. The augmented matrix is

Adding — 3 times the first row to the second row and adding the first row to the last row
yields

O O =
=)

- 0
3 10
1 0

Now add the negative of the second row to the third row to obtain
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10 —1 ] 0
01 3 | 0
00 —2 1] 0

We end up with an equivalent linear system

:L’l—xg,:()

Hence the unique solution of the given system of equations is z; = z, = 3 = 0.

7. Write the given vectors as columns of the matrix

2 0 -1
X=|[|11 2
00 O

It is evident that det(X) = 0. Hence the vectors are linearly dependent. In order to find
a linear relationship between them, write x4 e,x 4 ch(3) = 0. The latter
equation is equivalent to

2 0 -1 c 0
11 2 c |l =160
0 0 O 3 0
Performing elementary row operations,
2 0 -1 1] 0 1 0 —-1/2 | 0
11 2 | 0]-(0 1 5/2 | 0
o0 0 | O 0 0 0 | 0
We obtain the system of equations
Ci — 03/2 = 0
¢ +5¢3/2=0.
Setting c; = 2, it follows that ¢, =1 and ¢; = — 5. Hence

xM) — 5x®@ + 2x3) = 0.

9. The matrix containing the given vectors as columns is

12 -1 3
2 3 0 -1
X=1-1 1 2 1
0 -1 2 3
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We find that det(X) = — 70. Hence the given vectors are linearly independent.

10. Write the given vectors as columns of the matrix

1 3 2 4
X = 2 1 -1 3
-2 0 1 -2

The four vectors are necessarily linearly dependent. Hence there are nonzero scalars
such that ¢, x1) 4 ¢,x®@ + ¢,x3) + ¢,x = 0. The latter equation is equivalent to

1 3 2 4 o 8
2 1 -1 3 o= 0
3
2 0 1 2 e 0
Performing elementary row operations,
1 3 2 4 | 0 1 0 01 ] 0
2 1 -1 3 | 0f->10 1 0 1 | O
-2 0 1 -2 |0 001 0| O
We end up with an equivalent linear system
¢ +ec,=0
Cy + Cy = O
C3 = 0.
Let ¢, = — 1. Then ¢; = 1 and ¢, = 1. Therefore we find that

11. The matrix containing the given vectors as columns, X, is of size n x m . Since

n < m, we can augment the matrix with m — n rows of zeros. The resulting matrix, X,
is of size m x m. Since X is square matrix, with at least one row of zeros, it follows
that det ()~() = 0. Hence the column vectors of X are linearly dependent. That is, there

is a nonzero vector, ¢, such that X¢ = 0,1 . If we write only the first n rows of the
latter equation, we have X ¢ = 0,,«; . Therefore the column vectors of X are linearly
dependent.

12. By inspection, we find that

ot
xD() —2x(¢) = ( Oe ) .
Hence 3xW(¢) — 6x)(t) + x®)(t) = 0, and the vectors are linearly dependent.

13. Two vectors are linearly dependent if and only if one is a nonzero scalar multiple
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of the other. However, there is no nonzero scalar, ¢, such that 2 sint = ¢ sint and
sint = 2c sint forall ¢t € (— 0o, 00). Therefore the vectors are linearly independent.

16. The eigenvalues A and eigenvectors x satisfy the equation

3—A -2 T . 0
4 —1-Xx)\z /) \o/)
For a nonzero solution, we must have (3 —A)(—1—\) +8 =0, that is,

A2\ +5=0.

The eigenvalues are A, =1 — 27 and A\, = 1 4+ 24. The components of the eigenvector
xV are solutions of the system

2424 -2 r\ (0
4 —2+2iJ\z,) \0)°
The two equations reduce to (14 4)z; = 2,. Hence x) = (1,1 +i)". Now setting
A= =142, wehave

17. The eigenvalues A and eigenvectors x satisfy the equation

(7 L)) 6)

For a nonzero solution, we must have ( —2 — A\)(—2 — ) — 1 =0, that s,
N 4+4x4+3=0.

The eigenvalues are A, = — 3 and A\, = — 1. For A\, = — 3, the system of equations

becomes
1 1 I . 0
1 1 Ty —\o /)’

which reduces to 2; + x, = 0. A solution vector is given by x) = (1, — 1)".
Substituting A = A\, = — 1, we have

-1 1 x\ (0
1 -1 T - 0/
The equations reduce to z; = x,. Hence a solution vector is given by x? = (1,1)".

19. The eigensystem is obtained from analysis of the equation
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() 6)=6)

For a nonzero solution, the determinant of the coefficient matrix must be zero. That is,
M —4=0.

Hence the eigenvalues are \; = — 2 and A\, = 2. Substituting the first eigenvalue,

A= —2,yields
(5200

The system is equivalent to the equation \/§ x; + x; = 0. A solution vector is given
T
by xV = (1, — \/§> . Substitution of A = 2 results in

—1 /3 (:cl) B <0)
\/§ -3 T 0 ’
T
which reduces to 2, = \/3 z,. A corresponding solution vector is x? = (\/§ , 1) :

20. The eigenvalues A and eigenvectors x satisfy the equation
-3—-X 3/4 i\ _ (0
-5 1—A T BRYA
For a nonzero solution, we must have ( —3 — A)(1 — \) + 15/4 = 0, that is,

A +20+3/4=0.

Hence the eigenvalues are A, = — 3/2 and A, = — 1/2. In order to determine the
eigenvector corresponding to A, , set A = — 3/2. The system of equations becomes

—3/2 3/4\[(x\ (0
5 5/2)\ 4 0)’
which reduces to — 2z, + 2, = 0. A solution vector is given by xV = (1,2)".
Substitution of A = A\, = — 1/2 results in

—5/2 3/4\ (=) (0
-5 3/2)\x/) \0)’
which reduces to 102; = 3z, . A corresponding solution vector is x? = (3,10)".

22. The eigensystem is obtained from analysis of the equation
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3—A 2 2 T 0
1 4—-A 1 | =10
-2 -4 —-1-A T3 0

The characteristic equation of the coefficient matrix is A3 — 6\ + 11\ — 6 = 0, with
roots \y =1, A\, =2 and A\; = 3. Setting A =\, = 1, we have

2 2 2 T 0
1 3 1 Tz | =10
-2 -4 =2 T3 0

This system is reduces to the equations
T, +x3;=0
Ty = 0.
A corresponding solution vector is given by x) = (1,0, — 1)". Setting A = \, = 2,
the reduced system of equations is
T, + 2 Ty = 0

A corresponding solution vector is given by x® = ( —2,1,0)". Finally, setting
A = A3 = 3, the reduced system of equations is
T = O

xg_f—xg:

s

A corresponding solution vector is given by x® = (0,1, —1)".

23. For computational purposes, note that if A is an eigenvalue of B, then c A is an
eigenvalue of the matrix A = ¢ B . Eigenvectors are unaffected, since they are only
determined up to a scalar multiple. So with

1 -2 8
B=| -2 2 10|,
8 10 5
the associated characteristic equation is p® — 18u% — 81 + 1458 = 0, with
roots u;, = — 9, u, = 9 and pz; = 18. Hence the eigenvalues of the given matrix, A,
are A\, = —1,X, =1 and \; =2. Setting A = A\, = — 1, (which corresponds to
using p; = — 9 in the modified problem) the reduced system of equations is
2 T + T3 = 0
Ty + x5 =0.

A corresponding solution vector is given by xV) = (1,2, —2)". Setting A = \, = 1,
the reduced system of equations is
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562_21/'3:0.

A corresponding solution vector is given by x? = (2, —2, — 1)". Finally, setting
A = X\, = 1, the reduced system of equations is

Il_x:;:o
2x2—x3:0.

A corresponding solution vector is given by x® = (2,1,2)".

25. Suppose that Ax = 0, but that x # 0. Let A = (a;;). Using elementary row
operations, it is possible to transform the matrix into one that is not upper triangular.
If it were upper triangular, backsubstitution would imply that x = 0. Hence a linear

combination of all the rows results in a row containing only zeros. That is, there are
n scalars, (3;, one for each row and not all zero, such that for each for column 7,

Zﬁiazj:o-

1=1

Now consider A* = (b;;). By definition, b;; = @j; , or a;; = bj; . It follows that
for each j,

ﬁ’bb_jl: Z b]_kﬁ]g = Z bjk@ZO.
i=1 k=1 k=1
Lety = (E, By, -+, E)T We therefore have nonzero vector, y, such that A*y = 0.

26. By definition,

I
e
5
<

Now note that
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Therefore

28. By linearity,

AV 4+ af) = Ax" + a A
—b+0
=b.

29. Let ¢;; = aj; . By the hypothesis, there is a nonzero vector, y , such that
n n
Z cz-jyj = Z a_ﬂyj = 0, = 1,2,"',7‘!,.
j=1 j=1
Taking the conjugate of both sides, and interchanging the indices, we have
n
Z az-j E =0.
i=1

This implies that a linear combination of each row of A is equal to zero. Now consider
the augmented matrix [A |b]. Replace the /ast row by

Zn: E[ailaa"ﬂa'”?ainabi] = [0707"'7072”: Ebzl

i=1 =1

We find that if (b,y) = 0, then the last row of the augmented matrix contains only zeros.
Hence there are n — 1 remaining equations. We can now set x,, = o/, some parameter,
and solve for the other variables in terms of « . Therefore the system of equations

Ax = b has a solution.

30. If A = 0 is an eigenvalue of A, then there is a nonzero vector, x, such that

Ax =)Ax=0.

That is, Ax = 0 has a nonzero solution. This implies that the mapping defined by A is
not I-to-1, and hence not invertible. On the other hand, if A is singular, then

det(A) = 0.

Thus, Ax = 0 has a nonzero solution. The latter equation can be written as Ax = 0x.

31. Asshown in Prob. 26, (Ax,y) = (x,A"y). By definition of a Hermitian matrix,
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A=A"
32(a). Based on Prob. 31, (Ax,x) = (x,AX).

(b). Let x be an eigenvector corresponding to an eigenvalue A . It then follows that
(Ax,x) = (Ax,x) and (x, Ax) = (x, Ax) . Based on the properties of the inner product,
(Ax,x) = A(x,x) and (x, Ax) = A(x,x). Then from Part (a),

A(x,X) = A(x,X).

(c). From Part (b),
(A=) (x,x)=0.

Based on the definition of an eigenvector, (x,x) = ||x||*> > 0. Hence we must have
A — A = 0, which implies that X is real.

33. From Prob. 31,

Hence
M\ (X(l) ’X(2)) — )\_2(X(1) ,x(Q)) =\ (X(l) 7X(2)) ’
since the eigenvalues are real. Therefore
(A — Ag)(x(l) ,X(Q)) =0.

Given that A\; # Ay, we must have (x(l) ,X(Q)) =0.
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Section 7.4

3. Eq. (14) states that the Wronskian satisfies the first order linear ODE

aw

ﬁ = (pn + P+ - +pnn)W-

The general solution is
W(t) = Cemp[/(pn + P+ +pnn)dt:| >

in which C' is an arbitrary constant. Let X; and X, be matrices representing two sets
of fundamental solutions. It follows that

det(X;) = Wy(t) = Crexp U(pn + po e+ pnn)dt:|
det(XQ) = WZ(t) - 02€$P |:/(p11 + D22 + -+ pnn)dt:| .

Hence det(X;)/det(X2) = C1/Cy. Note that Cy # 0.

4. First note that p;; + p» = — p(t). As shown in Prob. (3),
Wx® ,x®)] = ¢ e/,

For second order linear ODE, the Wronskian (as defined in Chap. 3) satisfies the first
order differential equation W' + p(t)IW = 0. It follows that

W[y(l) ,y(2)] — ¢y e JP®L,
Alternatively, based on the hypothesis,

1
y( ) = Q1 Ty + Qi o

y(2) = Q91 T11 + Qg2 Tyo .
Direct calculation shows that

Qq T+ Qia T Qg Tip + Qg Typ
/ / !/ !/
A&y + Qua®yy Qg Ty + Qg Ty

Wy, y®) =

!/ !/
= (04110522 - 04120421>~’L’1151712 - (04110422 - 04120421)551251711
= (04110422 - 04120421)%1%2 - (04110422 - 04120421)%21'21«

Here we used the fact that =/ = z,. Hence

W [y(l) 7y(2):| = (10 — a0 )W [X(l) 7X(2)} .

5. The particular solution satisfies the ODE [x(p)], =P(t)x?) + g(t). Now let
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X = ¢(t) be any solution of the homogeneous equation. Thatis, x’ = P(¢)x . We know
that x = x°, in which x¢ is a linear combination of some fundamental solution. By
linearity of the differential equation, it follows that x = x(*) 4+ x“ is a solution of the
ODE. Based on the uniqueness theorem, all solutions must have this form.

7(a). By definition,

t2 et

WO X0 =1

= (* —2t)e".

(b). The Wronskian vanishes at t, = 0 and ¢, = 2. Hence the vectors are linearly
independent on D = ( —00,0) U (0,2) U (2,00).

(c). Tt follows from Theorem 7.4.3 that one or more of the coefficients of the ODE
must be discontinuous at £, = 0 and ¢, = 2. If not, the Wronskian would not vanish.

(d). Let
t? e
=)+ (0)
Then
r 2t el
X = 9 + ¢ o
On the other hand,

D1 D2 X =¢ D1 Di2 t? + e D1 D2 ef
Da1 D2 Da1 D2 2t Po1 P2 et
_ (Cl [p11t2 + 2p12t] + co [pll + pl?]et)
C1 [p21t2 + 2p22t] + co [p21 + p22]€t

Comparing coefficients, we find that

p11t2 + 2pot = 2t

pu+pe=1
]321752 + 2ppt = 2
P+ P = 1.

Solution of this system of equations results in

2 — 2t 2 -2

pn(t) =0 7p12(t) =1 7p21(t) = m 7p22(t) =

Hence the vectors are solutions of the ODE
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oo L 0 t2—2tx
22t \2—-2t t2-2

8. Suppose that the solutions xV, x? ... x are linearly dependent att = t,. Then
there are constants ¢, , ¢,, - -+, ¢, (not all zero) such that

arxV(ty) + e X (tg) + -+ + ¢, X" (t) = 0.

Now let z(t) = ¢;xV(t) + ¢, xXP(t) + -+ + ¢,, X" (t) . Then clearly, z(t) is a
solution of x’ = P(¢)x, with z(t,) = 0. Furthermore, y(¢) = 0 is also a solution,
with y(t,) = 0. By the uniqueness theorem, z(t) = y(t) = 0. Hence

ex(8) + ¢ XD () + -+ 0 X () = 0

on the entire interval « < ¢t < (3. Going in the other direction is trivial.

9(a). Let y(t) be any solution of x’ = P(¢)x. It follows that
2(t) + y(t) = exV(t) + c XV () + -+ + e, X" (2) + ¥(2)
is also a solution. Now let ¢, € (v, 3). Then the collection of vectors
xV (to), x? (to), -+, x(™ (to), y(to)

constitutes n + 1 vectors, each with n components. Based on the assertion in Prob. 11,
Section 7.3, these vectors are necessarily linearly dependent. That is, there are n + 1
constants b, , by, -+, b,, b, (not all zero) such that

bixV (o) + by X (tg) 4 +++ + by X" (t) + by ¥(t) = 0.
From Prob. 8, we have
DX (t) + by X2 () 4+ + b, X" () + by y(t) = 0

forallt € (a,3). Now b,,; # 0, otherwise that would contradict the fact that the
first n vectors are linearly independent. Hence

1
y(t) = — (bxV(t) + by xP(t) + -+ + b, x" (1)),

bn+1

and the assertion is true.

(b). Consider z(t) = ¢,xV(t) + ¢ xX?(¢) + -+ + ¢, x"(¢), and suppose that we also
have

2(t) = kyxW(t) + ky x@(t) + -+ k, x(t).

Based on the assumption,
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(kl - Cl)X<1)(t) + (kg - CQ)X<2)(t) + A + (kn, - C,I)X(n’)(t) = 0 .
The collection of vectors
X<1) (t)v X(Q) (t)a T X(n>(t)

is linearly independent on o < t < (3. It follows that k; —c¢; =0,for : =1,2,---,n.
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Section 7.5

2. Setting x = £ e, and substituting into the ODE, we obtain the algebraic equations

1—r -2 SRNAL
3 - 4 - T 52 - 0 '
For a nonzero solution, we must have det(A — r1) = r> + 3r +2 = 0. The roots of the
characteristic equation are r, = — 1 and r, = — 2. For r = — 1, the two equations
reduce to & = &, . The corresponding eigenvector is £ = (1,1)". Substitution of

r = — 2 results in the single equation 3¢, = 2&,. A corresponding eigenvector is
£€® = (2,3)". Since the eigenvalues are distinct, the general solution is

e e
cat

a2 S ICNCCCNEN

e
g e g o g

3. Setting x = £ "’ results in the algebraic equations

(57 S5 )E) =)

For a nonzero solution, we must have det(A — 1) = r?> — 1 = 0. The roots of the

characteristic equation are 7, =1 and r, = — 1. For r = 1, the system of equations
reduces to & = &,. The corresponding eigenvector is £V = (1,1)". Substitution of
r = — 1 results in the single equation 3&;, = &, . A corresponding eigenvector is

£€? = (1,3)". Since the eigenvalues are distinct, the general solution is

1Y\ 1\
X20116—|—0236.
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R T T, N

The system has an unstable eigendirection along £€" = (1,1)". Unless ¢; = 0, all
solutions will diverge.

4. Solution of the ODE requires analysis of the algebraic equations

(7 —a)(@) =)

For a nonzero solution, we must have det(A — r1) = 72 + 7 — 6 = 0. The roots of the

characteristic equation are r;, = 2 and 7, = — 3. For r = 2, the system of equations
reduces to & = &,. The corresponding eigenvector is £ = (1,1)". Substitution of
r = — 3 results in the single equation 4&, + & = 0. A corresponding eigenvector is

£? = (1, —4)". Since the eigenvalues are distinct, the general solution is

1 1
X = 61(1)62t+02( _4)€3t.

R L R "
L AL Ny T
\ N s
] e e
™ e S
P
| 7
A NN AN /)
o PRNax
Ll 4 IR
£ Iy ! {
L F
Py
b P
Z
s 1
|

The system has an unstable eigendirection along £V = (1,1)". Unless ¢, = 0, all
solutions will diverge.

8. Setting x = £ e results in the algebraic equations
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(0 =) (@)= 6)

For a nonzero solution, we must have det(A — r1) = 7?2 —r = 0. The roots of the
characteristic equation are r;, = 1 and 7, = 0. With » = 1, the system of equations
reduces to & + 3¢, = 0. The corresponding eigenvector is £V = (3, — 1)". For the
case r = (, the system is equivalent to the equation &, 4+ 2&, = 0. An eigenvector is
£? = (2, —1)". Since the eigenvalues are distinct, the general solution is

T T T T T T T T T T T T
e M e Tl M
e e e e e T
T T A T T T e T T T e,
“‘H-;"‘-\—\..“——.“"-\—\..“‘H—_“'H—;“H‘H-."‘-\—Y

e T e e e

i e e e R
e e T e e e e
T e T T P e T Py
R = e S S
-‘:E“-:"%_ T T T
H HHH?!HHW
o Wt P,

L S S S =,
e e e
e T L

L L S S S Sl
— . o, U L
T R T T T T T T T T T T T T T

e i L, i e e e e e e
L L WU S S S S L

The entire line along the eigendirection £® = (2, — 1)" consists of equilibrium points.
All other solutions diverge. The direction field changes across the line z; 4+ 2z, = 0.
Eliminating the exponential terms in the solution, the trajectories are given by

x1+3x2: — Cy.

10. The characteristic equation is given by

2 —T 2 + Z 2 . .
1 iy =r"—(1—-i)r—i=0.
The equation has complex roots r, = 1 and r, = — i. For r = 1, the components of the
solution vector must satisfy &, + (2 +7)§, = 0. Thus the corresponding eigenvector is
€Y = (2414, —1)". Substitution of 7 = — i results in the single equation ¢, + &, = 0.

A corresponding eigenvector is £® = (1, — 1)". Since the eigenvalues are distinct, the
general solution is
2+1 1 4
x:cl( _1)€t—|—62< _1)6 @,

11. Setting x = £ € results in the algebraic equations
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1—r 1 2 & 0
1 2—r 1 L1 =10
2 1 1—r & 0
For a nonzero solution, we must have det(A — r1) = r® — 4r> —r + 4 = 0. The roots
of the characteristic equation are », =4,r, =1 and r; = — 1. Setting r =4, we
have
-3 1 2 & 0
1 -2 1 L1 =10
2 1 -3 & 0

This system is reduces to the equations
§i—&=0
§&—&=0.

A corresponding solution vector is given by €V = (1,1,1)". Setting A =1,
the reduced system of equations is

§i—&=0
§+28=0.
A corresponding solution vector is given by £ = (1, —2,1)". Finally, setting
A = — 1, the reduced system of equations is
§i+&=0
52 - 0 .

A corresponding solution vector is given by £€® = (1,0, — 1)". Since the eigenvalues
are distinct, the general solution is

1 1 1
x=c |1 ]|et4+e| —2 | +e 0 et
1 1 -1

12. The eigensystem is obtained from analysis of the equation

3—r 2 4 £, 0
2 - T 2 52 = 0
4 2 3-r)\& 0

The characteristic equation of the coefficient matrix is 73 — 672 — 15r — 8 = 0, with
roots 1, =8,7, = — 1 and r; = — 1. Setting » = r, = 8, we have
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—5 2 4 £ 0
4 2 —5)\g 0
This system is reduced to the equations
§i—&=0
2 52 - 53 =0.
A corresponding solution vector is given by £ = (2,1,2)". Setting » = — 1, the

system of equations is reduced to the single equation
26 +&6&+25=0.
Two independent solutions are obtained as
€P = (1, -2,0)" and €% = (0, —2,1)".

Hence the general solution is

2 1 0
x=c, | 1]|e¥4ec| —2|et4+e| —2 |
2 0 1

13. Setting x = £ € results in the algebraic equations

1—7r 1 1 & 0
2 1—7r —1 &1 =10
-8 -5 =3-r & 0
For a nonzero solution, we must have det(A — r1) = 73 + 72 — 4r — 4 = 0. The roots
of the characteristic equation are 7, = 2,r, = — 2 and r; = — 1. Setting r = 2, we
have
—1 1 1 & 0
-8 -5 =5 &; 0

This system is reduces to the equations

& =0
&+&=0.
A corresponding solution vector is given by £V = (0,1, — 1)". Setting A = — 1,
the reduced system of equations is
2 fl +3 53 =0
§&—286=0.
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A corresponding solution vector is given by £® = (3, —4, —2)". Finally, setting

A = — 2, the reduced system of equations is
76 +46 =0
7€ —58=0.

A corresponding solution vector is given by £€®) = (4, — 5, — 7)". Since the
eigenvalues are distinct, the general solution is

0 3 4
x=c, | 1 |e¥+¢c| —4|et+e| =5 |e?.
1 9 7

15. Setting x = £ " results in the algebraic equations

(75" (@)= ()

For a nonzero solution, we must have det(A — r1) = 72 — 6r + 8 = 0. The roots of
the characteristic equation are r, = 4 and r, = 2. With r = 4, the system of equations
reduces to & — & = 0. The corresponding eigenvector is £ = (1,1)". For the

case r = 2, the system is equivalent to the equation 3¢, — & = 0. An eigenvector is
£€® = (1,3)". Since the eigenvalues are distinct, the general solution is

1 1
X = 61(1>64t+62<3)62t.

Invoking the initial conditions, we obtain the system of equations

c; + ¢y =2
c+3c,= —1.
Hence ¢, = 7/2 and ¢, = — 3/2, and the solution of the IVP is

(1 4y 3(1) 4
X"2(1>6 2(3)8'

17. Setting x = £ " results in the algebraic equations

1—r 1 2 £ 0
0 2—r 2 “l=1o

For a nonzero solution, we must have det(A — r1) = r3 — 67> + 11r — 6 = 0. The
roots of the characteristic equation are r, = 1,7, =2 and r; = 3. Setting r =1,
we have
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0 1 2 & 0
0 1 2 &L =10
-1 1 2 & 0
This system is reduces to the equations
§& =0
52 + 2 53 — 0 .

A corresponding solution vector is given by £ = (0, —2,1)". Setting A = 2, the
reduced system of equations is
§i—& =0
53 == O .

A corresponding solution vector is given by £® = (1,1,0)". Finally, upon setting
A = 3, the reduced system of equations is

51_‘253::0
52'— 255:: 0.

A corresponding solution vector is given by €@ = (2,2,1)". Since the eigenvalues
are distinct, the general solution is

0 1 2
x=c,| =2 |el+e| 1] +e)| 2|
1 0 1

Invoking the initial conditions, the coefficients must satisfy the equations

CQ+203:2
—201+CQ+2C3:0
Cl+C3:1.

It follows that ¢, = 1, ¢, = 2 and ¢; = 0. Hence the solution of the IVP is

0 1
x= | —2 e +2| 1]
1 0

18. The eigensystem is obtained from analysis of the equation

- T 0 -1 51 0
2 - T 0 52 = 0
-1 2 4 —r 53 0

The characteristic equation of the coefficient matrix is 7> — 47> —r +4 = 0, with
roots r;, = —1,r, =1 and r; = 4. Setting r =r, = — 1, we have

page 372



WWV. ZI T e.Ir

CHAPTER 7. ——

-1 0 -1\/& 0
-1 2 3 & 0

This system is reduced to the equations

51—53:0
£2+253:0-

A corresponding solution vector is given by £V = (1, —2,1)". Setting r = 1, the
system reduces to the equations

51“‘5320
£2+253:0-

The corresponding eigenvector is £2 = (1,2, — 1)". Finally, upon setting r = 4,
the system is equivalent to the equations

46 +&=0
88 + 53 =0.
The corresponding eigenvector is £€® = (2,1, — 8)". Hence the general solution is
1 1 2
x=c | =2 let+el| 2 |e+e| 1 |t
1 -1 -8

Invoking the initial conditions,

Cl+C2+203:7
—201+202+03:5
01_02_863:5.

It follows that ¢, = 3, ¢, = 6 and ¢; = — 1. Hence the solution of the IVP is
1 1 2
x=3 -2 ]et+6[ 2 |- 1 |e"
1 -1 -8

19. Set x = £t". Substitution into the system of differential equations results in
t-rt" '€ = A€,

which upon simplification yields is, A& — r€ = 0. Hence the vector £ and constant r
must satisfy (A —r1)€ = 0.

21. Setting x = £ t" results in the algebraic equations
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(75" 2)(e) =)

For a nonzero solution, we must have det(A — r1) = r? — 6r + 8 = 0. The roots of
the characteristic equation are r;, = 4 and r, = 2. With r = 4, the system of equations
reduces to & — & = 0. The corresponding eigenvector is £ = (1,1)". For the

case r = 2, the system is equivalent to the equation 3¢, — & = 0. An eigenvector is
£€® = (1,3)". It follows that

1 1
W= {7 )t"and x? = { _ |¢*.
W= (1) anaxe = ()

The Wronskian of this solution set is W [x, x?] = 2¢%. Thus the solutions are linearly
independent for ¢ > 0. Hence the general solution is

1 1
X = 01(1)t4+62<3)t2.

22. As shown in Prob. 19, solution of the ODE requires analysis of the equations

(5 S0 )E) =)

For a nonzero solution, we must have det(A — r1) = r? + 2r = 0. The roots of the

characteristic equation are , = 0 and r, = — 2. For r = 0, the system of equations
reduces to 4&, = 3&,. The corresponding eigenvector is £ = (3,4)". Setting
r = — 2 results in the single equation 2¢&, — & = 0. A corresponding eigenvector is

€% = (1,2)". It follows that

3 1
xV = (4) and x? = (2)t2.

The Wronskian of this solution set is W [x!), x®] = 2¢72. These solutions are
linearly independent for £ > 0. Hence the general solution is

3 1\,
X=C 4 "‘CQ 2 t .

23. Setting x = £ t" results in the algebraic equations

(2 L2 )E)-(6)

For a nonzero solution, we must have det(A — r1) = r> —r — 2 = 0. The roots of
the characteristic equation are r, = 2 and r, = — 1. Setting r = 2, the system of
equations reduces to & — 2&, = 0. The corresponding eigenvector is £ = (2,1)".
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With » = — 1, the system is equivalent to the equation 2, — & = 0. An eigenvector
is £€® = (1,2)". It follows that

2 1
xV = (1)752 and x? = (2>t1.

The Wronskian of this solution set is W[x", x®] = 3¢. Thus the solutions are linearly
independent for ¢ > 0. Hence the general solution is

2 1
X = Cl(1>t2 +CQ(2)t_1.

24(a). The general solution is
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O 05040608 1 12141618 2 22242628 3
1

26(a). The general solution is

110 12 14
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10

1804
1604
1404
1207
100
804
B0
404
204

0702 04 0B 08 1 12 14 15 18 2

28(a). We note that (A — r,1)é® =0, for i = 1,2.
(b). Tt follows that (A — r,1)éW) = A& — 7€) = £0) — p ()

(¢). Suppose that £) and ¢ are linearly dependent. Then there exist constants ¢,
and ¢, , not both zero, such that clf(l) + 025(2) = 0. Assume that ¢, # 0. Itis clear
that (A — r.I) (€W + ¢, €?) = 0. On the other hand,

(A = 70) (&Y + ¢, €¥) = ci(r — 1)€Y + 0
= ¢ (r —r)gl.

Since 7, # 15, we must have ¢, = 0, which leads to a contradiction.

(d). Note that (A — r1)€®) = (r, —r)€@.
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(e). Letn = 3, with r; # 7, # r5. Suppose that £V, €@ and £®) are indeed linearly
dependent. Then there exist constants ¢, , ¢, and c3, not all zero, such that

€Y + 6 + " = 0.

Assume that ¢; # 0. Itis clear that (A — 7,1) (015(1) + @ 4+ 035(3)) =10. Onthe
other hand,

(A = D) (€Y + 6, €% + c€W) = (= ;)€Y + ey(ry — 1)€Y,

It follows that ¢, (r; — 1)€Y + ¢;(ry — 7,)€®) = 0. Based on the result of Part (a),
which is actually not dependent on the value of n, the vectors €Vand £€®) are linearly
independent. Hence we must have ¢, (r, — ry) = ¢3(rs — r,) = 0, which leads to

a contradiction.

29(a). Letx, =y and z, = y'. It follows that =] = z, and

‘IQI y/l
1( b ,)
= — —(cy+ .
Yy Yy

In terms of the new variables, we obtain the system of two first order ODEs
!/
:L‘l = X9

1
T, = — E(C$1+b$2)~

(b). The coefficient matrix is given by

()
A - ¢ N Q .
Setting x = & " results in the algebraic equations
—r 1 &\ (0
- )e) =)
For a nonzero solution, we must have
b
det(A —rI) =r* 4+ —r + £oo.
a a
Multiplying both sides of the equation by a, we obtain ar? +br +c¢ = 0.
30. Solution of the ODE requires analysis of the algebraic equations
1—r 1 SANENAL
4 —2—-rJ\&)  \o)°

For a nonzero solution, we must have det(A — rI) = 0. The characteristic equation is
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8072 +247r+1 =0, withroots 7, = —1/4 and 7, = — 1/20. With r = —1/4,
the system of equations reduces to 2&, + & = 0. The corresponding eigenvector is
€V = (1, —2)". Substitution of » = — 1/20 results in the equation 2¢, — 3& = 0.

A corresponding eigenvector is £® = (3,2)". Since the eigenvalues are distinct, the

general solution is
1 N 3\ _
x:cl( _2>e t/4+c2(2)e t/20

Invoking the initial conditions, we obtain the system of equations

G +3c=—17
_261+262: —21.

Hence ¢, =29/8 and ¢, = — 55/8, and the solution of the IVP is

X_s(—2>e 8(2)6 '

ul & %2

& koo
et

'
]
1

-124
-144
-164
181
-207

(c). Both functions are monotone increasing. It is easy to show that — 0.5 < z,(¢) < 0
and — 0.5 < xz,(t) < 0 provided that t > T' ~ 74.39.

31(a). For @ = 1/2, solution of the ODE requires that

—1—r -1 SRNAL

—1/2 —-1-r)\&) \o)
The characteristic equation is 27° + 47+ 1 =0, withroots r, = — 1+ 1/ \/5 and
rp=—1-1/ \/5 . With r= —14+1/ \/5 , the system of equations reduces to

T
V/2& +2& = 0. The corresponding eigenvector is £1) = < /2, 1) . Substitution
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of r=—1- 1/\/5 results in the equation \/551 —2& = 0. An eigenvector is
T
£® = (\/5 , 1) . The general solution is

( V2 )<f>/(f )ewﬁw

1 1
The eigenvalues are distinct and both negative. The equilibrium point is a stable node.

(b). For o = 2, the characteristic equation is given by 72 + 27 — 1 = 0, with roots
r=—1+ ﬁand ry= —1-— \/5 With r = — 1+ ﬁ,thesystemofequations
reduces to \/551 + &, = 0. The corresponding eigenvector is £V = (1 . — \/i)T
Substitutionof r = — 1 — \/5 results in the equation \/551 — & = 0. An eigenvector
is €% = (1 , \/§)T The general solution is

e L) e )

The eigenvalues are of opposite sign, hence the equilibrium point is a saddle point.
32. The system of differential equations is

A= D)6

Solution of the system requires analysis of the eigenvalue problem

)OO

A AL
The characteristic equation is 72 + 37 + 2, withroots r, = — 1 and r, = — 2. With
r = — 1, the equations reduce to &, — & = 0. A corresponding eigenvector is given

by €W = (1,1)". Setting r = — 2, the system reduces to the equation 3¢, — & = 0.
An eigenvector is £€® = (1,3)". Hence the general solution is

()=o)

(b). The eigenvalues are distinct and both negative. We find that the equilibrium point
(0,0) is a stable node. Hence all solutions converge to (0,0).

NG ENIE

33(a). Solution of the ODE requires analysis of the algebraic equations
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0
0)

=0.

(4

1
i3 ( & )
1
—om ") \&
The characteristic equation is

T2+ L+CR1R2 T+R1+R2
LCRQ LCRQ

The eigenvectors are real and distinct, provided that the discriminant is positive.
That is,

L 2
+CR1R2 _ 4 Ry + Ry >0,
LCR, LCR;

which simplifies to the condition
1 R\ 4
—— ) —— >0.
(C’ Ry, L ) LC

(b). The parameters in the ODE are all positive. Observe that the sum of the roots is

_ L+CRiR,
LCR,

=

<0.

Also, the product of the roots is

Ry + Ry

7LC’R2 > 0.

It follows that both roots are negative. Hence the equilibrium solution I =0,V =0
represents a stable node, which attracts a// solutions.

(c). If the condition in Part (a) is not satisfied, that is,
2
RV 4
CRy, L LC —
then the real part of the eigenvalues is

L+ CR1R,
R@(T‘Lg) = — TC% .

As long as the parameters are all positive, then the solutions will still converge to the
equilibrium point (0, 0).
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Section 7.6

2. Setting x = £ €' results in the algebraic equations

(7 8)E)=6)

For a nonzero solution, we require that det(A — 7 1) = r> + 2r +5 = 0. The roots of
the characteristic equation are » = — 1+ 2¢. Substituting » = — 1 — 27, the two
equations reduce to & + 2i &, = 0. The two eigenvectors are £V = ( —2i,1)" and
€ = (2i,1)". Hence one of the complex-valued solutions is given by

x = ( B Qi)e(1+2i)t
1

9
= ( . Z)e_t(co,SQt—isinZt)

T 2s1n 2t viet( T 2cos2t
N cos 2t —sin2t )
Based on the real and imaginary parts of this solution, the general solution is

x— ot —2sin2t feet 2cos 2t
- cos 2t ? sin2t )

ﬂf—‘f'f'f'/,-)/—',-"/

3. Solution of the ODE:s is based on the analysis of the algebraic equations

2—r -5 51 . 0
(7 2)(@)-6)
For a nonzero solution, we require that det(A — 7 1) = 72 + 1 = 0. The roots of the
characteristic equation are » = =+i. Setting r = 7, the equations are equivalent to
& — (2+14)& = 0. The eigenvectors are €V = (2 +4,1)" and £€? = (2 —4,1)".
Hence one of the complex-valued solutions is given by
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91
:( i_z>(cost+isint)

2cost — sint [ cost+2sint
= +1 . .
cost sint

Therefore the general solution is

2cost — sint cost+ 2sint
X=¢ + ¢ . .
cost sint

The solution may also be written as
< dcost n dsint
=c c :
"\ 2cost+ sint *\ —cost+ 2sint

T e e e e e e e e e
e e e e e e e e e e e e T e e e e e e
e e e B
e e e e e e e e e e e e e e e
e e e e e e B e

e g e e e e e
T e e i e e e [ T
L g
g e e
0 -

T e
R ey
A

P e e e T T T T
e e e e e e e e e e e e e ™
e e e R T
T e e R
e e e L T R T T
e e e e e e e R T T e T e

4. Setting x = £ " results in the algebraic equations

2 — T — 5/2 51 . 0

9/5 —1—-r)\&) \0)°
For a nonzero solution, we require that det(A — 1) = r2 — r + % = (. The roots of
the characteristic equation are » = (1 £3¢)/2. With » = (1 + 34)/2, the equations

reduce to the single equation (3 — 37)&;, —5&, = 0. The corresponding eigenvector is
given by €V = (5,3 — 34)" . Hence one of the complex-valued solutions is
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5 .
n _ (1+43i)t/2
¥ (3 - Bi) ‘

241 3 3
:( Tz)et/2<cos§t+isin§t)

3¢ _ aim 3 3 iy 3
:et/2<20032t stt)—I—iet/2<6082t+28m2t>.

3 iy 3
cos 2t sim 2t

The general solution is

2cos 3t — sin 3t cos 3t + 2 sin 3t
chlet/Q 2 ; 2 +c2et/2 2 ] 2" )
cos §t sin it

The solution may also be written as
5cos 3t 5 sin 3t
x=clet/2 . 2" , +626t/2 . 2" .
3cos 5t + 3sin 5t — 3cos 5t + 3sin 5t

i T T T e
T T T

T T T T T T T
T T T T T T T T
T T T T T T T T T
T T T T T T T

5. Setting x = £ ¢" results in the algebraic equations

1-— T -1 51 . 0
(5" 5= 6)
The characteristic equation is 72 + 27 + 2 = 0, with roots 7 = — 1 4. Substituting
r = — 1 — i reduces the system of equations to (2 4 )&, — & = 0. The eigenvectors
are £V = (1,2+i)" and £€® = (1,2 —4)". Hence one of the complex-valued
solutions is given by
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xV — 1 o (L+i)t
241

> e '(cost —isint)

I
N
—

2+1

. cost et — sint
=e ie .
2cost+ sint cost — 2sint

The general solution is

ot cost feet sint
! 2cost+ sint ? —cost+ 2sint )’

P T e e e e e
[ S S S S S

o ih S SN, S
Rl i S

T T T T T e e

—

e e e o]

'

e et e
o
B

e e e
e e e .
B e e e P "

6. Solution of the ODE:s is based on the analysis of the algebraic equations

(5 -)(@)=6)

For a nonzero solution, we require that det(A — rI) = r> +9 = 0. The roots of the
characteristic equation are » = £ 34. Setting r = 3¢, the two equations reduce to

(1 —3i)& +2& = 0. The corresponding eigenvector is £ = ( — 2,1 — 3i)". Hence
one of the complex-valued solutions is given by

—9 ,
n _ 34t
¥ (1—3z’)€

(2 (cos 3t + i sin 3t)
= 1—3 CcOS 181N

B — 2cos 3t nw —2sin 3t
~ \cos3t+ 3sin3t ¢ —3cos3t+ sin3t )’

The general solution is
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— 2cos 3t n 2sin 3t
X=c¢ c .
! cos 3t + 3 sin 3t >\ 3cos 3t — sin 3t

P
Pl
i e
e
i T

QE%EE&QEE ) t H

LN

OO R RN T /i /

R N VA

R L L L N SN O B |
NN N e S S ]

8. The eigensystem is obtained from analysis of the equation

—3-r 0 2\ /& 0
1 —1-—r 0 52 = 0
-2 -1 - & 0

The characteristic equation of the coefficient matrix is r* + 472 + 7r + 6 = 0, with
roots r; = — 2,1y = —1—\/51' and 7y = —1—1—\/52'. Setting r = — 2, the
equations reduce to

-6 +25=0
51+'52::0-

The corresponding eigenvector is £ = (2, —2,1)". With r = —1— /2 i, the
system of equations is equivalent to

(2-iv2)e —26 =0
& +iV26=0.

T
An eigenvector is given by £@ = < —iv/2,1,—1— zﬁ) . Hence one of the

complex-valued solutions is given by
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—iV2 7(1+i\/§>it
x? = 1 e
—1—1iy2
— 14/ 2
= 1 e_t<cos ﬁt—isin \/gt)
—1-iV/?2
— /2 sin /2t — /2 cos /2t
—cos\/2t — /2 sin /2t — V2 cos /2t — sin+/2t
The other complex-valued solution is x® = £® ¢™. The general solution is
2
X=c¢| —2 e 24
1
ﬁsin ﬁt ﬁcos \/Et
+cye” — cos /2t +eze! sin\/2t
cos\/2t + /2 sin\/2t V2 cos /2t + sin /2t

It is easy to see that all solutions converge to the equilibrium point (0,0, 0) .

10. Solution of the system of ODEs requires that

(T )E)-()

The characteristic equation is > + 47 + 5 = 0, with roots » = — 244. Substituting
r = — 2+ 1, the equations are equivalent to £, — (1 — )&, = 0. The corresponding
eigenvector is £V = (1 —1i,1)". One of the complex-valued solutions is given by

x = (1 I i>e(2+i)t

1
— ( . Z)e_%(cost—kisint)

_o [ cost + sint . o —cost+ sint
=e + e _ .
cost sint

Hence the general solution is

_o [ coSt + sint _o[ —cost+sint
X=ce +ce . .
cost sint

Invoking the initial conditions, we obtain the system of equations

01_02:1
C = —2.
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Solving for the coefficients, the solution of the initial value problem is

5 _Qt(cost+sint) 3 _2t<—cost+sint)
X = — e - e

cost sint

_ cost —Hsint
N —2cost —3sint)’

Y }e’s‘,f
T £E
TN PSS
e Y LAY
N\} £
\} Py
NS e
L T
e
e il i e e i i it

\
\
!
\
\
\

11(a). With x(0) = (2 ,2)", the solution is

- 2cost —2sint .
2cost

11(b).

wl & w2
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11(c).

12. Solution of the ODEs is based on the analysis of the algebraic equations

—3-r 2 &\ _ [0
1 o \e) T o)
The characteristic equation is 2572 — 107 + 26 = 0, with roots r = % + 1. Setting

r = 1/5+ i, the two equations reduce to &, — (1 — )&, = 0. The corresponding
eigenvector is £V = (1 —i,1)". One of the complex-valued solutions is given by

xV — (1Ii>e(%+i)t

1—4\ s
= < ) Z)et/"(cost—i—isz'nt)

_ et/5(cost+sint) —I—z'et/5< —cost—l—sint).

cost sint

Hence the general solution is

< — ¢ ol cost + sint 4 eell? —cost+ sint
! cost ? sint '

(b). Letx(0) = (2! ,23)". The solution of the initial value problem is

_ 0t/ cost+sint 0 oy t/5( —cost+ sint
X =x,¢€ + (z, —x))e . .
2 < cost (=, ! sint

15 [ Tlcost + (2x) — xf)sint
=e :
xycost + (x) — x¥)sint

With x(0) = (1 ,2)", the solution is
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t/5 [ cost+3sint
X=¢e i .
2cost+ sint

144
124

10

14
161
181

—
[ S i
TN T

w1 & %2

dodn b ra
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3|:|'_
201
10 - 40
A
-101 10
] 15

13(a). The characteristic equation of the coefficient matrix is * — 2ar + 1 + o2, with
roots r = a 1.

(b). When a < 0 and a > 0, the equilibrium point (0, 0) is a stable spiral and an
unstable spiral, respectively. The equilibrium point is a center when o = 0.

(c).
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T P, e T e e e

2

14(a). The roots of the characteristic equation, 7 — ar +5 =0, are

a 1

== +>va2—20.
T2 5 5 (6%

(b). Note that the roots are complex when — /20 < a < /20 . For the case when
a € ( — /20, 0), the equilibrium point (0, 0) is a stable spiral. On the other hand,

when a € (O , v/ 20 ), the equilibrium point is an unstable spiral. For the case o = 0,

the roots are purely imaginary, so the equilibrium point is a center. When a? > 20,
the roots are real and distinct. The equilibrium point becomes a node, with its stability
dependent on the sign of o . Finally, the case a® = 20 marks the transition from spirals
to nodes.

().
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a=-05

e e e

17. The characteristic equation of the coefficient matrix is 72 + 2r + 1+« = 0, with
roots given formally as 7, = — 1+ ./ — a . The roots are real provided that o« < 0.
First note that the sum of the roots is — 2 and the product of the roots is 1 + ««. For
negative values of «, the roots are distinct, with one always negative. When v < — 1,
the roots have opposite signs. Hence the equilibrium point is a saddle. For the case

— 1 < a < 0, the roots are both negative, and the equilibrium point is a stable node.
a = — 1 represents a transition from saddle to node. When v = 0, both roots are
equal. For the case o > 0, the roots are complex conjugates, with negative real part.
Hence the equilibrium point is a stable spiral.

a=-15

e e o
e e e

N e

g
i

/|
2
I
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19. The characteristic equation for the system is given by
4+ (4 —a)r+10 — 4a = 0.
The roots are

ris = —2+%i\/a2+8a—24.

First note that the roots are complex when — 4 — 2\/5 <a< —4+ 2\/5 . We also
find that when —4 — 21/10 < a < 2, the equilibrium point is a stable spiral. For the
case o = 2, the equilibrium point is a center. When2 < o < —4 + 2\/ﬁ , the
equilibrium point is an unstable spiral. For all other cases, the roots are real. When

a > 2.5, the roots have opposite signs, with the equilibrium point being a saddle. For

the case —4 + 21/10 < a < 2.5, the roots are both positive, and the equilibrium point
is an unstable node. Finally, when o < — 4 — 24/10 , both roots are negative, with the
equilibrium point being a stable node.

o e T i S
T e e
e T e e e
T T T,

e e e T T e S e
R L L S
e e e e e e e e
e e e e e e
e T T T e T T T e
e e e e e e e e

e e e e e e
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— 3, both roots
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e
o ™

(24 + 8a)

b e e e e e e,
e T T e e T

+29

=

a

o e T

NP Moy
o T e T T e

T IS

— 25/8. Since the real part is negative, the origin

WWW. ZI | e.

711’2: _lj:

R L S L,

s S S "
oy
ey oA Y
T =]

R,
fomany, SN SRS

are negative, and hence the equilibrium point is a stable node. For « > — 3

is a stable spiral. Otherwise the roots are real. When — 25 < a <
are of opposite sign and the origin is a saddle.

20. The characteristic equation is 72 + 27 —
The roots are complex when o <

e e M

é!{.f!z{

o e g g )
e
T e
o e M
T ey e e g
I N Yy

0
ey
@)
o
=
=
X ~,
W B T T e e R, e e e e
ﬂw b, A LN L
H/ A AL P e e e P
Il : A I SO\ S N O e,
3 = T RN I e e
o0 —— N o P o P P
+ ii[l\f R s L
o)
N

22. Based on the method in Prob. 19 of Section 7.5, setting x = £ ¢" results in the
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algebraic equations

7 ST)E)-(6)

The characteristic equation for the system is 72 4+ 1 = 0, with roots r,, = 4=7. With
r = i, the equations reduce to the single equation &, — (2 + )&, = 0. A corresponding
eigenvector is £V = (24 1i,1)". One complex-valued solution is

2410
W= ¢
<= ()

We can write ¢! = e!'"*, Hence

x — (2 + i)eilnt
1

_ (2 N Z) [cos(int) + i sin(int)]
_ (2003(lnt) - sin(lnt)) _l_i(cos(lnt) 4 zsm(zm))

cos(Int) sin(lnt)
Therefore the general solution is

. (QCos(lnt) - sin(lnt)) e <cos(lnt) +2 sin(lnt))

cos(Int) sin(lnt)

Other combinations are also possible.

24(a). The characteristic equation of the system is

2 81 17
3 2
Il Bt S
TEET TR 160
with eigenvalues 7, = 1/10,and o3 = — 1/4+ 4. For r = 1/10, simple calculations
reveal that a corresponding eigenvectoris &% = (0,0,1)". Setting r = — 1/4 — i,

we obtain the system of equations

51—i€2:0
53:0-

A corresponding eigenvector is €% = (i, 1,

1
xO — (

Another solution, which is complex-valued, is given by

T . .
. Hence one solution is

0)
0
0 et/lO.
1
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7
x? = | 1 e GHit
0
7
= |1 |e*(cost—isint)
0
sint cost
=e | cost | +ie | — sint
0 0

Using the real and imaginary parts of x®, the general solution is constructed as

0 sint cost
x=c | 0|’ +ce | cost | +cse | —sint
1 0 0

(b). Let x(0) = («¥, 2y, %) . The solution can be written as

0 zy sint + xY cost
X = 0 + e 2l cost — 20 sint
g et/10 0

With x(0) = (1,1, 1), the solution of the initial value problem is

0 sint+ cost
X = 0 +e_t/4 cost — sint
et/lo 0

5 R /i\ 1\ 3
S
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25(a). Based on Probs. 18 — 20 of Section 7.1, the system of differential equations is

H0-(F L))
dt\V z - |4

With R, = Ry, = 4o0hms, C = % farads and L = 8 henrys , the eigenvalue problem is
—5-r -3 &\ _ (0
2 NS 0/

(b). The characteristic equation of the system is 7° + r + % = 0, with eigenvalues

1 1.
Tio = — 5 + 57, .
Setting r = — 1/2 + /2, the algebraic equations reduce to 4i&, + & = 0. It follows

that £V = (1, — 4i)". Hence one complex-valued solution is
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o)
\" _ (1 NS
Vv — 4

_ ( _142_) e 2[cos(t/2) + i sin(t)2)]

s e (s )

Therefore the general solution is
I _ oo th? cojs(t/Q) et sin(t/2) '
Vv 4 sin(t/2) —4cos(t/2)

(c). Imposing the initial conditions, we arrive at the equations ¢, = 2 and ¢, = —
and

=

(v) = (ot aomtra)):

(d). Since the eigenvalues have negative real parts, all solutions converge to the origin.

26(a). The characteristic equation of the system is

with eigenvalues

_ 1,1 [ Tarc
"2 = T 9RC T 2RC L

The eigenvalues are real and different provided that

B 4R*C

1 > 0.

The eigenvalues are complex conjugates as long as

AR*C
1— <0.
L
(b). With the specified values, the eigenvalues are r,, = — 1+¢. The eigenvector
corresponding to » = — 1+ is &Y = (1, — 44)". Hence one complex-valued solution

1S
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m
" _ L s
v 14

1
= ( _1 +i)e_t(cost+isint)

—t cost I sint
=e . + 1€ . .
—cost — sint cost — sint

Therefore the general solution is

I y cost Lot sint
= cie cye .
Vv ! —cost — sint ? cost — sint

(¢). Imposing the initial conditions, we arrive at the equations

01:2
—a+e=1,

with ¢; = 2 and ¢, = 3. Therefore the solution of the IVP is
I [ 2cost+ 3sint
= e .
%4 cost — dsint
(d). Since Re(r;,) = — 1, all solutions converge to the origin.

27(a). Suppose that c;a+ c;b = 0. Since a and b are the real and imaginary parts of
the vector £V, respectively, a = (£% + £1) /2 and b = (¢ — £0) /2. Hence

o (€9 + ) — (6 - E7) =0,
which leads to
(e, — i)Y + (¢; +ic,)€ED = 0.
Now since £V and €U are linearly independent, we must have

c,—1c, =0
Cl‘i_iCQ:O.

It follows that ¢, = ¢, = 0.

(c). Recall that

u(t) = eM(acos ut — b sin ut)
v(t) = eM(acos ut + b sin ut) .

Consider the equation c,u(t) + ¢;v(ty) = 0, for some ¢,. We can then write
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ce’(acos puty — b sin pity) + e (

acos uty +bsin ut)) = 0. (x)
Rearranging the terms, and dividing by the exponential,

(¢, + ¢y)cos ptoa + (¢y — ¢)sinuty, b = 0.
From Part (b), since a and b are linearly independent, it follows that

(¢ + ¢y)cos pty = (cy — ¢p)sinuty = 0.

Without loss of generality, assume that the trigonometric factors are nonzero. Otherwise
proceed again from Equation (x), above. We then conclude that

Cl+02:o and 02_0120,
which leads to ¢, = ¢, = 0. Thus u(t,) and v(t,) are linearly independent for some ¢,

and hence the functions are linearly independent at every point.

28(a). Letx; = u and x, = u’. It follows that ] = z, and

/
Ty =U

k
= — —u.
m

In terms of the new variables, we obtain the system of two first order ODEs
!/
CEI = X9
, k

3:2: — — T .
m

(b). The associated eigenvalue problem is

—Tr 1 61 o 0
—k/m —rJ\&) \0)
The characteristic equation is 72 + k/m = 0, with roots r,, = +i\/k/m .

(c). Since the eigenvalues are purely imaginary, the origin is a center. Hence the phase
curves are ellipses, with a clockwise flow. For computational purposes, let k = 1 and
m=2.
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(d). The general solution of the second order equation is

k , k
u(t) = cicos | —t + cysiny| —t.
m m

The general solution of the system of ODE:s is given by
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,/% sim/%t \/%cos\/%t
X =¢ + .
cos\/%t —sin\/%t

It is evident that the natural frequency of the system is equal to Im(r;,).
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Section 7.7

1. The eigenvalues and eigenvectors were found in Prob. 1, Section 7.5.

1 2
T = —1, 5(1): (2>, 7”2:2, 6(2): (1)

The general solution is
e ! 2 et

Hence a fundamental matrix is given by
We now have

So that

_ —e 4+ 4e?  2e7t — 2e%
o) = wiow o) = (o T

3. The eigenvalues and eigenvectors were found in Prob. 3, Section 7.5. The general

solution of the system is
_ el et
X = ot + c 3e—t |

Given the initial conditions x(0) = e!’), we solve the equations

cte=1
c + 302 =0 .
to obtain ¢, = 3/2, ¢, = — 1/2. The corresponding solution is

Given the initial conditions x(0) = e, we solve the equations

C1+02:O
¢, +3c=1,

to obtain ¢, = — 1/2, ¢, = 1/2. The corresponding solution is

page 404



WWV. ZI T e.Ir

CHAPTER 7. ——

_ %et + %eft
Therefore the fundamental matrix is
1/ 3el —et —el et
d(t) = - .
(*) 2 (3et —3e! —el4+3e!
5. The general solution, found in Prob. 3, Section 7.6, is given by

H5cost n 5sint
X=c c .
! 2cost+ sint ’ —cost+2sint

Given the initial conditions x(0) = eV, we solve the equations

501:1
261—62:0,

resulting in ¢, = 1/5, ¢, = 2/5. The corresponding solution is

< — cost+ 2sint
- sint )

Given the initial conditions x(0) = e, we solve the equations

501 - 0
201 — Cy = 1,
resulting in ¢, =0, c, = — 1. The corresponding solution is

—5sint
X = .
cost — 2sint

Therefore the fundamental matrix is

B(t) = (

cost+ 2sint —5Hsint
sint cost—2sint )’

7. The general solution, found in Prob. 15, Section 7.5, is given by

B o2t olt
X=0 3e2t + 6 edt |-

Given the initial conditions x(0) = eV, we solve the equations

Cl+02:1
3C1+02:O,
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resulting in ¢, = — 1/2, ¢, = 3/2. The corresponding solution is
X=— )
2\ — 3e?t + 3ett
The initial conditions x(0) = e® require that
CL+c = 0
3c,+c =1,
resulting in ¢, =1/2, ¢, = — 1/2. The corresponding solution is

1 €2t _ e4t
X= 2 (3th — e4t>'
Therefore the fundamental matrix is

_ 6215 + 3647,‘ 6215 _ 647,‘
B(t) = =
( ) 9 ( - 3627,‘ +3€4t 3627,‘ _ e4t

8. The general solution, found in Prob. 5, Section 7.6, is given by

s cost Yoot sint
X = ¢e€ cye .
! 2cost+ sint ’ —cost+2sint

The specific solution corresponding to the initial conditions x(0) = e is

;[ cost+2sint
X=e . .
osint

For the initial conditions x(0) = e, the solution is

s —sint
X=¢e . .
cost — 2sint

Therefore the fundamental matrix is

_ _4fcost+2sint —sint
o(t) =e ( S5sint cost — 2sint )’

9. The general solution, found in Prob. 13, Section 7.5, is given by

de~2t 3e ! 0
x=c¢| =52 | +e| —det | 5| €*
— Te 2 — 27t — et

Given the initial conditions x(0) = e!”), we solve the equations
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401"’302:1
_501_4CQ+03:0
—701—202—0320,

resultingin ¢, = — 1/2,¢, =1, ¢s = 3/2. The corresponding solution is

—2¢7 2t 4 3¢t
~2t _ fet 4 B2
2

e
o2 _ 9ot _ %€2t

[N NN Nl [

The initial conditions x(0) = e, we solve the equations

4:Cl+302:0
—501—402‘1‘03:1
—701—202—03:0,

resultingin ¢, = —1/4,¢, =1/3, ¢; = 13/12. The corresponding solution is

The initial conditions x(0) = e®, we solve the equations

4C1+302:O
—501—4CQ+03:0
—Tci—2¢c—c3 =1,

resultingin ¢, = —1/4, ¢, =1/3, ¢; = 1/12. The corresponding solution is

—e et
ot 4t | 1 9t
3¢ + 5€

e
-2t 2 -t 1 2t
e e 3¢

Therefore the fundamental matrix is

— 272 4 3e7? —e 2 f et —e et
% go—t 1 3.2 5 -2 A _—t | 13 2
de™" + ge e €+ €

e 5 5
1 1
2 _o,—t _ 3.2 T,-2t_ 2,—t_ 13,2 T,-2 _ 2,—t_ 12
e 2e ge 1€ € e 1

B(t) =

SIS RN (S

12. The solution of the initial value problem is given by

page 407



WWV. ZI T e.Ir

CHAPTER 7. ——
=®(t
(e tcos 2t —2etsin2t\ (3
o %e Fsin 2t e tcos 2t 1
_ 3608 2t — 2sin 2t
N sm 2t + cos 2t
13. Let
i (t) 1" (t)
U(t) = :
zP(t) M (t)
It follows that
(k) o 2 (k)
W(t)) = : :
P (ty) - x(t)

is a scalar matrix, which is invertible, since the solutions are linearly independent.
Let ¥'(¢y) = (¢;). Then

II:<11) (t) e x(ln) (t) i cen Cin
‘I'(t)‘I’_l(to) = : : :
CC<1) (t) s .T(”) (t) Cnl o Cpp

n

The j-th column of the product matrix is

W) =3 e x®,
k=1

which is a solution vector, since it is a linear combination of solutions. Furthermore, the
columns are all linearly independent, since the vectors x*) are. Hence the product is

a fundamental matrix. Finally, setting ¢t = t,, W(¢,) ¥ '(¢,) = I. This is precisely the
definition of ®(¢).

14. The fundamental matrix ®(¢) for the system
=1
S \4 1

1/ 2e% +2et 3 —et
o(t) = 4 (4€3t —4et 23 4 2¢71

is given by

Direct multiplication results in
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@(t)@(s) B i 26315 + 26—15 6315 _ e—t 2635 + 2¢~8 635 —e 8
16\ 4e¥ —de7t 2e3t 4 2t 4e35 — de™  2e3 4 2e7F

B 1 8( 3t+3s + eftfs) 4(63t+35 _ eftfs)
- 16 16( 3t+3s __ eftfs) 8(€3t+38 _{_eftfs) :

Hence

1 [ 2e3(45) 4 9e=(t4s)  3lits) _ o (t4s)
= Z 4e3t+s) _ go—(t+s)  9o3(t+s) + 2¢~(t+s)

15(a). Let s be arbitrary, but fixed, and ¢ variable. Similar to the argument in Prob. 13,
the columns of the matrix ®(¢)®(s) are linear combinations of fundamental solutions.
Hence the columns of ®(¢)®(s) are also solution of the system of equations. Further,
settingt = 0, ®(0)®(s) =1®(s) = ®(s). Thatis, ®(¢t)®(s) is a solution of the
initial value problem Z' = AZ, with Z(0) = ®(s). Now consider the change of
variable 7 =t + s. Let W(7) = Z(7 — s). The given initial value problem can be
reformulated as

d

d—W AW , with W(s) = ®(s).

-

Since ®(t) is a fundamental matrix satisfying ®' = A®, with ®(0) =1, it follows
that

|
oA
\i

Thatis, ®(t + s) = ®(7) = W(7) = Z(t) = ®(1)P(s) .

(b). Based on Part (a), ®(£)®( —t) = ®(t+ (—t)) = ®(0) = I. Hence
&(—t) = (1)

(¢). It also follows that ®(t — s) = ®(t + (—5)) = B(1)®( — s) = ®()® !(s).

16. Let A be a diagonal matrix, with A = [a,eV, a,e®,--- a,e™]. Note that for any

positive integer, k ,
Al = [alf eV ale?®, ... o e™].

It follows, from basic matrix algebra, that
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ik
kzoaly 0 0
LN _0 S gt 0
k: ' . . .
QL ktF
0 0 Zanm
k=0

It can be shown that the partial sums on the left hand side converge for all ¢. Taking the
limit (as m — co) on both sides of the equation, we obtain

e 0 -~ 0
at |
exp(At) = 0 € : 0
0 0 v e“nt

Alternatively, consider the system x’ = Ax . Since ODEs are uncoupled, the vectors
xV = exp(a;t) eV, j=1,2,---n,are a set of linearly independent solutions. Hence
the matrix

X = [exp(a;t) eV, exp(ast) e?, - exp(a,t) "]
is a fundamental matrix. Finally, since X(0) = I, it follows that

lexp(ait) eV, exp(ast) e, -+, exp(a,t) e™] = ®(t) = exp(At).

17(a). Assuming that x = ¢(¢) is a solution, then ¢’ = A¢, with ¢(0) = x°. Integrate
both sides of the equation to obtain

$(t) — $(0) = / Ad(s)ds

Hence

o(t) =x"+ /0 A¢(s)ds.

(b). Proceed with the iteration
t

(1) =x" + / AdW(s)ds.

0

With ¢©(t) = x°, and noting that A is a constant matrix,
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t
pV(t) =x" + / Ax’ds
0
=x"4 Ax"t.
That is, ¢V (t) = (I + At)x".

(c). We then have

t

pD(t) =x" + / A(I+ At)xds
0
2

t
=x"+ Ax’t + AQXOE

£2
= <I + At + A25>x°.
Now suppose that

t2 t"
o™ (t) = (I+At+A2§ N +A”—'>x°.
n.

It follows that
t t2 tn
/A(I+At+A2— + .- +A"—)x0ds =
0 2 n'
t2 2t3 tn+1 .
=AlIt+A—+A"— +.-.-+ A"
( + 2+ 3!+ + (n+1>!>x
o 12 t3 tn
= (At + A A o AT X
2 3! n!
Therefore

¢(”+1)(t) — I—|—At—|—A2ﬁ 4. +An+1ﬂ x’.
2 (n+1)!

By induction, the asserted form of ¢(™(t) is valid for alln. > 0.

(d). Define ¢ (t) = lim ¢™ (). It can be shown that the limit does exist. In fact,

¢ (t) = exp(At)x".

Term-by-term differentiation results in
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d £
— ¢ (t) = (I+At+A22 +-~—|—A”—'+)x°
.

(n—1)!

tnfl
<I+At+A2—+ A" 1—)—|—)x°.

dt
tn—l
<A At + .-+ A" +)x°
=A
(n—1)!

That is,

d ) _ oo
S0 (1) = AO(1).

Furthermore, ¢ (0) = x’. Based on uniqueness of solutions, ¢(t) = ¢©)(t).
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Section 7.8
2. Setting x = £t results in the algebraic equations
4—r -2 SRNAL
8 - 4 - T 52 - 0 '
The characteristic equation is 72 = 0, with the single root » = 0. Substituting r = 0
reduces the system of equations to 2§, — & = 0. Therefore the only eigenvector is

& =(1,2)". One solution is
- (1
2 b

which is a constant vector. In order to generate a second linearly independent solution,
we must search for a generalized eigenvector. This leads to the system of equations

4 -2 T . 1

8 - 4 772 o 2 '
This system also reduces to a single equation, 21, — 7, = 1/2. Setting 1, = k, some
arbitrary constant, we obtain 7, = 2k — 1/2. A second solution is

= () 1)
_ (;>t+ ( _?/2) +k<;)

Note that the /ast term is a multiple of x" and may be dropped. Hence

¥= (o) (L)
() ()

The general solution is
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All of the points on the line z, = 2x, are equilibrium points. Solutions starting at all
other points become unbounded.

3. Solution of the ODE:s is based on the analysis of the algebraic equations
()0
A A
The characteristic equation is 7* + 27 + 1 = 0, with a single root » = — 1. Setting

r = — 1, the two equations reduce to &; — 2§, = 0. The corresponding eigenvector is
£ =(2,1)". One solution is
= (2)e
1

A second linearly independent solution is obtained by finding a generalized eigenvector.
We therefore analyze the system

)6)-6)

-1 3/ \m 2
The equations reduce to the single equation — n, + 21, = 2. Letn, = 2k. We obtain
1, = 1 + k, and a second linearly independent solution is

2 2k
@ _ te! —t
X (1> e+ ( 14 k) e
2 0 2
= (1>te_t + (1)6_t + k(l)e_t.
Dropping the last term, the general solution is

ool e ()]
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4. Solution of the ODE requires analysis of the algebraic equations

) (@)= 6)
— % 2 T 52 0 '
For a nonzero solution, we must have det(A — rI) = r* +r + 1 = 0. The only root
is r = — 1/2, which is an eigenvalue of multiplicity two. Setting r = — 1/2 is the

coefficient matrix reduces the system to the single equation — &, + & = 0. Hence the
corresponding eigenvector is £ = (1,1)". One solution is

1
(1 _ —t/2

o= (D)
In order to obtain a second linearly independent solution, we find a solution of the system

= )G =0)

- U 1)
There equations reduce to — 51, + 51, = 2. Setn, = k, some arbitrary constant. Then
ny =k +2/5. A second solution is

1 k
2 _— t —t/2 —t/2
= (1) (s
1 0 1
_ te—t/2 ~t/2 4 . /2
<1) e +>(2/5)e + 1 e

Dropping the /ast term, the general solution is

1 1
cea(Jeeel (e ()7

| rolen

DU DOt
[\l [e28 Y[

T T T T T TR T e
T T T T T T T T T T T et o
T T T T T T T T T T ot e T
T T T T
LSS I AP e
R ol . .
e / : <

e 4 -
_ e
Py = o~ i
i . o
- = R
s : e
T T W
,///{j/?.wf/////////
R Rl G N
T e o T B T
Tt T o T T T
S et 7 AR i
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6. The eigensystem is obtained from analysis of the equation

- T 1 1 51 0
1 - T 1 52 = 0
1 1 —T 53 0
The characteristic equation of the coefficient matrix is > — 3r — 2 = 0, with
roots r, = 2 and 73 = — 1. Setting r = 2, we have
-2 1 1 & 0
1 -2 1 &L 1=10
1 1 -2 & 0

This system is reduced to the equations

51"5322 0
52—‘53:=0-
A corresponding eigenvector vector is given by £V = (1,1,1)". Setting r = — 1,
the system of equations is reduced to the single equation
S +&6E+E=0.
An eigenvector vector is given by €% = (1,0, — 1)T. Since the last equation has two
free variables, a third linearly independent eigenvector (associated with r = — 1) is
£€¥ = (0,1, —1)". Therefore the general solution may be written as
1 1 0
x=c¢ |1 e + Cy 0 e+ ey 1 e t.
1 -1 -1

7. Solution of the ODE requires analysis of the algebraic equations

(2 )E)=6)

For a nonzero solution, we must have det(A — r1) = r? 4+ 67 + 9 = 0. The only root
is » = — 3, which is an eigenvalue of multiplicity two. Substituting » = 3 into the
coefficient matrix, the system reduces to the single equation & — & = 0. Hence the
corresponding eigenvector is & = (1,1)". One solution is

1
1 — —3t
X (1)6 .

For a second linearly independent solution, we search for a generalized eigenvector.
Its components satisfy
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(=) G)=0)

that is, 4n, — 4n, = 1. Let 7, = k, some arbitrary constant. Then 7, =k + 1/4.
It follows that a second solution is given by

1 - k+1/4 _
@ _ 3t 3t
X (1>te +< 1 )e
_ 1 —3t 1/4 —3t L\ _5
—(1>te +<O)e +kle .

Dropping the last term, the general solution is

X = cl(i)e?’t +c2[<1)te3t - (1é4)e3t].

Imposing the initial conditions, we require that

1
Cl+102:3
61:2,

which results in ¢, = 2 and ¢, = 4. Therefore the solution of the IVP is

_ 3\ s 4 —3t
X—(2>6 +<4)te .

%1
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x1

&) _ (0
T 52 0 '
The characteristic equation is > + 27 + 1 = 0, with a single root 7 = — 1. Setting
r = — 1, the two equations reduce to — & + & = 0. The corresponding eigenvector is

¢ = (1,1)". One solution is
o (e

A second linearly independent solution is obtained by solving the system

EIONY

_ % s 1/)°
The equations reduce to the single equation — 37, + 31, = 2. Letn, = k. We obtain
ny = 2/3 + k, and a second linearly independent solution is

= G)te‘t + (233)e‘t +I<:G)e—t.

Dropping the last term, the general solution is

oo (Jerel (e ()]

Imposing the initial conditions, find that

N DN
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C = 3
2
¢+ gCQ = -1,
so that ¢; = 3 and ¢, = — 6. Therefore the solution of the IVP is

()

w1

10. The eigensystem is obtained from analysis of the equation

() (@)= ()

The characteristic equation is > = 0, with a single root » = 0. Setting 7 = 0, the two
equations reduce to & + 3¢, = 0. The corresponding eigenvector is & = ( —3,1)".
Hence one solution is
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w3
1 2

which is a constant vector. A second linearly independent solution is obtained from the

system

3 9 Ty -3

-1 =-3)\n/) \ 1)
The equations reduce to the single equation 7, + 31, = — 1. Letn, = k. We obtain
n = — 1 — 3k, and a second linearly independent solution is

-3 —1-3k
@ _
<= (30) ()
-3 -1 -3
-(3)e () (7))
Dropping the last term, the general solution is
x=ef )4 e (T
901 )T 0 )]

Imposing the initial conditions, we require that

— 301 — Cy = 2
CL = 4 ,
which results in ¢, = 4 and ¢, = — 14. Therefore the solution of the IVP is

= () ()
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#1

400+

300+

200+

1004

12. The characteristic equation of the system is 873 4+ 6072 4+ 126 + 49 = 0. The

eigenvalues are r, = — 1/2 and ry3 = — 7/2. The eigenvector associated with r;
is €V = (1,1,1)". Setting » = — 7/2, the components of the eigenvectors must
satisfy the relation
51 + fz + fs =0.

An eigenvector vector is given by £ = (1,0, — 1)". Since the last equation has two
free variables, a third linearly independent eigenvector (associated with r = — 7/2)
is £ = (0,1, —1)". Therefore the general solution may be written as

1 1 0

x=c¢ |1 e t? 4 Cy 0 e T2 4 Cs 1 e 2,
1 -1 —1

Invoking the initial conditions, we require that

¢+ =2
C1 + C3 = 3
Ci —C — C3 = — 1.
Hence the solution of the IVP is
1 1 0
X = é 1 e—t/2 + g 0 e—?t/Q + é 1 6_7t/2.
3\ 1 3\ 1 3\ —1

13. Setting x = £ t" results in the algebraic equations

(7 )E)=(6)

The characteristic equation is 7> — 2r + 1 = 0, with a single root of T2 = 1. With
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r = 1, the system reduces to a single equation &, — 2&, = 0. An eigenvector is given by
¢ =(2,1)". Hence one solution is
2
n —
X = t.
(1)

In order to find a second linearly independent solution, we search for a generalized
eigenvector whose components satisfy

(=) ()= ()

These equations reduce to n;, — 27, = 1. Let 1, = k, some arbitrary constant. Then

m = 1+ 2k . [Before proceeding, note that if we set u = Int, the original equation is
transformed into a constant coefficient equation with independent variable u . Recall that
a second solution is obtained by multiplication of the first solution by the factor w. This
implies that we must multiply first solution by a factor of Int.]| Hence a second linearly

independent solution is
2 1+ 2k
@ = tint t
<= (3 ()

=) ()=o)

Dropping the last term, the general solution is

ool ()]

15. The characteristic equation is
r* —(a+d)r+ad —bc=0.

Hence the eigenvalues are

a-+d
2

To =

:I:%\/(a+d)2—4(ad—bc) |

16(a). Using the result in Prob. 15, the eigenvalues are
1 n vV L? —4R?*CL
2RC 2RCL '

The discriminant vanishes when L = 4R2C'L .

T = —
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(b). The system of differential equations is
d(I\ _ (0 1 I
a\v) \ -1 —-1)J\V)
The associated eigenvalue problem is
-T i 51 _ 0
-1 —1-7r/)\& 0)
The characteristic equation is 72 + 7 + 1/4 = 0, with a single root of 7, = — 1/2.
Setting » = — 1/2, the algebraic equations reduce to 2§, + & = 0. An eigenvector is

given by &€ = (1, —2)". Hence one solution is

()=

A second solution is obtained from a generalized eigenvector whose components satisfy

BB
-1 - % Up -2
It follows that 7, = k and 7, = 4 — 2k . A second linearly independent solution is
\" 1 k
_ % —t/2
(v) = o) (i)
_ (1 —t/2 0\ _ipo L\ 4
—(_2)156 +(4)e +k o)

Dropping the last term, the general solution is

(v)=e( o)l (Lo e ()]

Imposing the initial conditions, we require that

01:1
—201—|—402:2,

which resultsin ¢; = 1 and ¢, = 1. Therefore the solution of the IVP is
Iy (1 —t/2 1 —t/2
(1) Q)L

18(a). The eigensystem is obtained from analysis of the equation
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5—r -3 —2\ /& 0
8 —5-r —4|l&sl=1o0

The characteristic equation of the coefficient matrix is 73 — 372 +3r — 1 = 0, witha
single root of multiplicity three, r = 1. Setting r = 1, we have

4 -3 -2\ /& 0
8 -6 —4|le]=10
—4 3 2 & 0

The system of algebraic equations reduce to a single equation
4:51 _352_253 :O.

An eigenvector vector is given by £ = (1,0,2)". Since the last equation has two
free variables, a second linearly independent eigenvector (associated with r = 1) is
£€® = (0,2, —3)". Therefore two solutions are obtained as

0
e! and x? = Y I
-3

< —

N O =

(b). It follows directly that x’ = £te! + €e! + ne! . Hence the coefficient vectors must
satisfy £te! + €e! + pe! = A€te! + Anel. Rearranging the terms, we have

ge! = (A —T)&te' + (A —T)pe'.
Given an eigenvector &, it follows that (A — I)p = £.
(c). Note that a linear combination of two eigenvectors, associated with the same

eigenvalue, is also an eigenvector. Consider the equation (A — 1) = ;€Y + ¢,€?.
The augmented matrix is

4 -3 -2 ‘ Cq
8 —6 —4 | 202
-4 3 2 | 2¢ -3¢

Using elementary row operations, we obtain

4 -3 =2 | C1
0 O 0 | —2¢+2¢
0 0 0 | 3C1 — 302

It is evident that a solution exists provided ¢, = ¢, .

(d). Let ¢, = ¢, = 2. The components of the generalized eigenvector must satisfy

page 424



WWV. ZI T e.Ir

CHAPTER 7. ——

4 -3 -2\ [m 2
4 3 2 )\ —9

Based on Part (¢), the equations reduce to the single equation 417, — 3n, — 213 = 2.
Let 7, = « and 7, = 23, where « and (3 are arbitrary constants. We then have

so that
o 0 1 0
n= 203 = 0 +al 0| +8 2
—142a—33 -1 2 -3

Observe that 7 = €Y + €. Hence a third linearly independent solution is

(e). Given the three linearly independent solutions, a fundamental matrix is given by

el 0 2t et
Tit)=1 0 2¢! 4t e
2¢t —3e! —2tel — ¢!

(f). We construct the transformation matrix

1 2 0
T=1]0 4 0 ,
2 -2 -1
with inverse
1 —1/2 0
T'=1|0 1/4 0
2 -3/2 -1

The Jordan form of the matrix A is

e )

1 0
J=T'AT=|0 1
0 0

20(a). Direct multiplication results in
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XMoo 0 X0 0 M0 0
=10 X 20,F=[0 X 3x2|,J=|0 ) 4)3
0 0 M\ 0o 0 M 0 0 )

A0 0
J'’=1 0 M n\!
0 O A"
Then
A0 0 A0 O
Jt = 0 M\ npi\v1 0 X 1
0 O A" 0O 0 A
A A” 0 0
= 0 DD D RS W Ui
0 0 A"

Hence the result follows by mathematical induction.

(c). Note that J is block diagonal. Hence each block may be exponentiated. Using the
result in Prob. (19),

el 0 0
exp(Jt) = | 0 e teM
0 0 eM

(d). Setting A = 1, and using the transformation matrix T in Prob. (18),

1 2 0 et 0 0
Texp(Jt) = | 0 4 0 0 e te
2 -2 —-1)\o 0o ¢
et 2¢e! 2t et
=1 0 4e! 4t et
2¢t  — 2t —2tel —éf

Based on the form of J, exp(Jt) is the fundamental matrix associated with the solutions
y(l) - §(1)et, y(2) = (25(1) + 25(2))et and y<3) - (25(1) + 25(2))t6t + "7€t-

Hence the resulting matrix is the fundamental matrix associated with the solution set
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[EWe! | (26 + 26 ¢!, (26D + 262 te! + e’}
as opposed to the solution set in Prob. (18), given b
PP g y
{S”et L EDel (25(1> + 2§<2>)tet + net}.

21(a). Direct multiplication results in

2224 1 A3 3)\2 3\ A 4N 62
=10 XX 22|,F=[0 X 3X|,F=0 X 4)
0 0 )2 0 0 M 0 0 M

(b). Suppose that

P n)\nfl n(n;l) )\n72

J'=10 X nA" !
0 0 A"
Then
A" pAl ’”/(”2—1) A2 A1 0
=10 ot 0 A 1
0 0 A\ 0 0 A
AN N ph- N gl ’"1(”2—1))\ L\ 2
= 0 A A A" 4\ - A
0 0 A AT

The result follows by noting that

n)\nfl + n(nz_ 1))\ . )\7172 _ |:n + n(n _ 1):| )\nfl

(c). We first observe that
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i)\nﬁ — AT
— n!
D N AT te
n=0 ! n=1 (TL 1)'
in(n 1) n Qﬁ — ﬁi n—2 tn_2 — ﬁ At
= 2 n! 24 (n—2)! 2
Therefore
M et t;eAt
exp(Jt) =1 0 eM teM

(d). Setting A = 2, and using the transformation matrix T in Prob. (17),

2 42t 2 o

0 1 2 e 7€
Texp(Jt) = 1 1 0 0 2 et
-1 03/\0o o ¢
0 62t t62t + 26215
_ o2t te2t + o2t %6215 + te2t
2t _ o2t _ ﬁem + 32t

2
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Section 7.9

5. As shown in Prob. 2, Section 7.8, the general solution of the homogeneous equation

1S
1 t
X, = ¢ 9 + ¢ 2t—% .

An associated fundamental matrix is

w(t) = (; 2tt—%>'

The inverse of the fundamental matrix is easily determined as

o [A—3 —2+2
v (t)_(St—S —4t+5>'

We can now compute

A G

B3\ —2t—4
and
— 4 —2Int
\/a = 2 :
Jwwenan= (72 )
Finally,
V() =) [ ¥ gl
where
1 -2 -1
v (t) = — §t +2t7 = 2Int—2
vy(t) =5t —4int —4.

Note that the vector (2,4)" is a multiple of one of the fundamental solutions. Hence we
can write the general solution as

x=c,)+e 2 1) " E\ o +5 (5 ) —2mt(, ).
(o) relal ) =2 () () ~2me()

6. The eigenvalues of the coefficient matrix are », = 0 and r, = — 5. It follows that
the solution of the homogeneous equation is
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1 — 2e 0
Xe =C 9 + ¢ o5t .

The coefficient matrix is symmetric. Hence the system is diagonalizable. Using the
normalized eigenvectors as columns, the transformation matrix, and its inverse, are

o1 (1 =2\ ., 11 2
T—ﬁ(z ) _ﬁ<—2 )
Setting x = Ty, and h(t) = T 'g(t), the transformed system is given, in scalar form,
as

, 548t

Y= \/gt
?/2/: _5y2+ﬁ.

The solutions are readily obtained as
4

N

4
y(t) = VbInt+ ——t+¢, and Yo (t) = cre ™ +

V5

Transforming back to the original variables, we have x = Ty, with

(s
_ %(;)yl(t) + %( _12)y2(t).

Hence the general solution is,
(D) r( ") o (Dmer 2 (Ve (2
X = = il _
"\ 2 2\ et 2 )" T 5\2) "5\ 1

7. The solution of the homogeneous equation is

B e—t e3t
X, = C _ 2€_t + Cy 263t .

Based on the simple form of the right hand side, we use the method of undetermined
coefficients. Set v = ae’. Substitution into the ODE yields

()= () () (20

In scalar form, after canceling the exponential, we have
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a,=a,+ay+2
a2:4a/1+a/2_1,

with a; = 1/4 and a, = — 2. Hence the particular solution is

1/4
o= ()
so that the general solution is
et et 1/ ¢
= Cl( - Qe_t) +C2(263t) + Z( — Set)'

8. The eigenvalues of the coefficient matrix are 7, =1 and r, = — 1. It follows that
the solution of the homogeneous equation is

_ 1t+ Ly
Xc—011€ 0236.

Use the method of undetermined coefficients. Since the right hand side is related to one
of the fundamental solutions, set v = ate’ + be’. Substitution into the ODE yields

() ()= (6 Za) ()
(3 =) (L)

(a1 + bl)et + altet = (2&1 — a,g)tet + (2b1 — bg)et + et
(ay + by)e' + aste’ = (3a, — 2a,)te’ + (3b, — 2b,)e’ — e,

In scalar form, we have

Equating the coefficients in these two equations, we find that
a; = 2@1 — Q9
a1+b1:2b1—b2+1
ay, = 3a; — 2a,
a2+b2:3b1_2b2_1.
It follows that a; = a,. Setting a; = a, = a, the equations reduce to

bl—bQZG—l
3b1—3b2:1+a.

Combining these equations, it is necessary that a = 2. Asaresult, b, = b, + 1.
Choosing a; = a, = 2, and b, = k£, some arbitrary constant, a particular solution is
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=G ()= () G

Since the second vector is a fundamental solution, the general solution can be written as
1\ , n 1\ N 2 tel + 1\ ,
X = .
alq)etel,)e 5 Jte 0)¢

9. Note that the coefficient matrix is symmetric. Hence the system is diagonalizable.
The eigenvalues and eigenvectors are given by

1 1 1
= — — <1): = — (2>:
T 2,§ (1)andr2 2, & (_1).

Using the normalized eigenvectors as columns, the transformation matrix, and its inverse,
are

1 /1 1 L1 /1 1
T—ﬁ(l L) —ﬁ(l L)
Setting x = Ty, and h(t) = T 'g(t), the transformed system is given, in scalar form,
as

y, = — %yﬁ— \/§t+%et
gl = — 2y + V2t — %et.
Using any elementary method for first order linear equations, the solutions are
() = ke % 4 get —4V/2 + 22t
Yy (1) = kpe 2 — ﬁet - ﬁ + % t.

Transforming back to the original variables, x = Ty, the general solution is
- 1 o 1 [17 1/5 1/1Y\ ,
— U . - t - b
¥ 01(1>6 +CQ<—1 © ~3\5) T2\3) TE\3)°

10. Since the coefficient matrix is symmetric, the differential equations can be
decoupled.
The eigenvalues and eigenvectors are given by
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r o= —4,§<1):<Y§1> and r, = —1,§<2>:(\}§>.

Using the normalized eigenvectors as columns, the transformation matrix, and its inverse,

are
T = L \/5 1 T ! = L \/5 —1
Va3l -1 V2’ Va3l 1 V2 )
Setting x = Ty, and h(¢) = T 'g(t), the transformed system is given, in scalar form,
as

1
Y = —4y1+%(1+\/5)et

wi=—wt oo (1-v2)e

The solutions are easily obtained as

1
yi(t) = ke ™ + e (1 + \/5) e’

3\/3

Yo () = koe ' + % (1 - \/§>t6_t.

Transforming back to the original variables, the general solution is

e V3)ewa( ) b ) 4 (R e

Note that
2+2+3v3\ [ 242 s !
3ve—v2-1) | —v2-1 V2 )
The second vector is an eigenvector, hence the solution may be written as
_ \/5 —4¢ 1 e 12V L 1(1-V2),
x_cl<_1>e +CQ(\/§>6 +§<_\/§_1 e ~|—§ 59 te .
11. Based on the solution of Prob. 3 of Section 7.6, a fundamental matrix is given by

Hcost Hsint
T(t) = (2cost+sint — cost+25mt>'

The inverse of the fundamental matrix is easily determined as
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1 o .
ol = (cost 2sint  Ssint )

T 5\ 2cost+ sint — beost
It follows that
costsint
T (g(t) = ,
e = (")
and

Lsint
O (t)g(t)dt = 2 .
/ ()g() <—lcostsint—%t

2

A particular solution is constructed as
V() = w0) [ ¥ 0l
where
5 _ ,, 5
v (t) = §costsmt — cos“t + Et +1
. | 1
vy(t) = costsint — 5¢08 t+t+ -.

2

Hence the general solution is
dcost n dsint
X =¢C C: —
"\ 2cost + sint *\ = cost+ 2sint

—tsint<5{2) + (tcost—i—sint)(l(/)Q).

13(a). As shown in Prob. 25 of Section 7.6, the solution of the homogeneous system is

(4] = Y a2,

Therefore the associated fundamental matrix is given by

_¢/2f cos(t/2) sin(t/2)
Wit)=e /(43m(t/2) —4008(75/2))'

(b). The inverse of the fundamental matrix is

L1 €7 (dcos(t)2)  sin(t)2)
v (t>__(4sm(t/2) —cos(t/2)>'
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It follows that
and

A particular solution is constructed as
V) = w(0) [ 9 gl dr

where
U1 (t) = O
vy(t) =4e 2,

Hence the general solution is

R IR

Imposing the initial conditions, we require that

0120
—462“1‘4:0,

which results in ¢; = 0 and ¢, = 1. Therefore the solution of the IVP is

x=e (4 —Sinc(Z(zt)/m )

15. The general solution of the homogeneous problem is

()
x| 1Y\, 2\
() = () e(D)e

which can be verified by substitution into the system of ODEs. Since the vectors are
linearly independent, a fundamental matrix is given by

=1 22

The inverse of the fundamental matrix is
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Dividing both equations by ¢, we obtain

g(t) = (tg :?_1)-

Proceeding with the method of variation of parameters,
2/4 | 24 2
2yt 4 2y 2
Wl@ﬂﬂZ( G 4p 1 ),
— gt — §t72 + gti?)
and

2 45 142 2
=17+ 3t° — 3t
U (t)g(t) dt = ( o) 5 )
/ — th -+ gtil — 6t72

Hence a particular solution is obtained as

( — 1t 43t 1
V= 1 s |-
ot +2t—3
The general solution is

a5 (O ()

16. Based on the hypotheses,
¢'(t) = P(t)p(t) +g(t) and v'(t) = P(t)v(t) + g(t) -
Subtracting the two equations results in
¢'(t) —v'(t) = P(t)$(t) — P(t)v(t),
that is,
[6(t) = v()]" = P()[o(t) — v(t)].

It follows that ¢(t) — v(t) is a solution of the homogeneous equation. According to
Theorem 7.4.2,

d(t) —v(t) = crxV(t) + ex(t) + -« + ¢, x"(2).

Hence
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in which u(t) is the general solution of the homogeneous problem.

17(a). Setting t, = 0 in Eq. (34),
x = ®(t)x" + <I>(t)/0 @ !(s)g(s)ds
= ®(t)x’ +/0 &(1)® '(s)g(s)ds.

It was shown in Prob. 15(c) in Section 7.7 that ®(¢t)®!(s) = ®(¢ — s). Therefore

t

x=®(t)x" + /0 ®(t—s)g(s)ds.

(b). The principal fundamental matrix is identified as ®(¢) = exp(At). Hence

t

x = exp(At)x’ + /O/e.rp[A(t — s)]g(s)ds.

In Prob. 26 of Section 3.7, the particular solution is given as

Y(t)= [ K(t—s)g(s)ds,

t(J

in which the kernel K (¢) depends on the nature of the fundamental solutions.
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Chapter Eight
Section 8.1
2. The Euler formula for this problem is
Yn+1 = Yn + h(5tn -3 Yn )7
in which ¢, = t, +nh. Since t, = 0, we can also write
Ynt+l = Yn + 5nh2 - 3h\/ Yn »
Wlth yo — 2 .
(a). Euler method with h = 0.05 :
n=2 n=4 n==~6 n==~8
t, | 0.1 0.2 0.3 0.4
yn | 1.59980 | 1.29288 | 1.07242 | 0.930175
(b). Euler method with h = 0.025 :
n=4 n=3~8 n=12 | n=16
t, | 0.1 0.2 0.3 0.4
yn | 1.61124 | 1.31361 | 1.10012 | 0.962552

The backward Euler formula is

Yn+l = Yn + h(5 b1 — 34/ Yn+i ):

in which t¢,, = t, +nh. Since t, = 0, we can also write

Yn+1 = Un + 5(” + 1)h2 - Bh\/ Yn+1 5

with y, = 2. Solving for y,1, and choosing the positive root, we find that

2

3. 1
Yni = | = 5h+ §\/(20n +29)h2 + 4y,

page 438



WWV. ZI T e.Ir

CHAPTER 8. ——
(c¢). Backward Euler method with h = 0.05 :
n=2 n=4 n==~6 n==~8
t, | 0.1 0.2 0.3 0.4
yn | 1.64337 | 1.37164 | 1.17763 | 1.05334
(d). Backward Euler method with h = 0.025 :
n =4 n=3~8 n=12 | n=16
t, | 0.1 0.2 0.3 0.4
yn | 1.63301 | 1.35295 | 1.15267 | 1.02407
3. The Euler formula for this problem is
Yn+1 = Un + h(2 Yn — Stn );
in which ¢, = ¢, +nh. Sincet, =0,
Ynt1 = Yn + 2hy, — 3nh? s
Wlth yo - 1.
(a). Euler method with h = 0.05 :
n=2 |n=414 n==~6 n==~8
t, | 0.1 0.2 0.3 0.4
Yn | 1.2025 | 1.41603 | 1.64289 | 1.88590
(b). Euler method with h = 0.025 :
n=4 n=2_§ n=12 | n=16
t, | 0.1 0.2 0.3 0.4
Yn | 1.20388 | 1.41936 | 1.64896 | 1.89572

The backward Euler formula is

Yntl = Yn + h(2 Yn+1 — 3tn+1 )a

in which ¢, = t, +nh. Since t, = 0, we can also write

Yn+1 = YUn + 2h Yn+1 — 3(” + 1)h2 5
with y, = 1. Solving for y,, 1, we find that

Yp — 3(n + 1)h?
1—-2h

Yn+1 =
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(c). Backward Euler method with h = 0.05 :
n =2 n=4 n==6 n==3y
t, | 0.1 0.2 0.3 0.4
yn | 1.20864 | 1.43104 | 1.67042 | 1.93076
(d). Backward Euler method with h = 0.025 :
n=4 n=2~8 n=12 | n=16
t, | 0.1 0.2 0.3 0.4
yn | 1.20693 | 1.42683 | 1.66265 | 1.91802
4. The Euler formula is
Yn+l = Yn + h[z by + €$P( —tn yn)]
Since ¢, = t, + nh and t, = 0, we can also write
Yni1 = Yn + 20nh% + hexp( — nhy,),
Wlth yo - 1.
(a). Euler method with h = 0.05 :
n =2 n =4 n=~06 n =3y
t, | 0.1 0.2 0.3 0.4
Yo | 1.10244 | 1.21426 | 1.33484 | 1.46399
(b). Euler method with h = 0.025 :
n =4 n==_§ n=12 | n=16
t, | 0.1 0.2 0.3 0.4
yn | 1.10365 | 1.21656 | 1.33817 | 1.46832

The backward Euler formula is
Yni1 = Yn + P21 + exp( — tui1 Yni1)]-
Since t, = 0 and t,,11 = (n + 1)h, we can also write
Ynt1 = Yn + 2h%(n + 1) + hexp[ — (n + Dhyn],

with y, = 1. This equation cannot be solved explicitly for y, 1. At each step, given
the current value of ¥, the equation must be solved numerically for 1, 1.
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(c¢). Backward Euler method with h = 0.05 :
n=2 n=4 n==~6 n==~8
t, | 0.1 0.2 0.3 0.4
yn | 1.10720 | 1.22333 | 1.34797 | 1.48110
(d). Backward Euler method with h = 0.025 :
n =4 n=3~8 n=12 | n=16
t, | 0.1 0.2 0.3 0.4
yn | 1.10603 | 1.22110 | 1.34473 | 1.47688
6. The Euler formula for this problem is
UYnt+1l = Yn + h(ti — yi)sz’nyn.
Here t, = 0 and ¢t,, = nh. So that
Ynt+l = Yn + h(n2h2 - yTQL)SZn Yn »
Wlth yo - - 1.
(a). Euler method with h = 0.05 :
n =2 n =4 n=~06 n =3,
t, | 0.1 0.2 0.3 0.4
Yn | —0.920498 | —0.857538 | — 0.808030 | — 0.770038
(b). Euler method with h = 0.025 :
n =4 n==~8 n=12 n=16
t, | 0.1 0.2 0.3 0.4
yn | —0.922575 | —0.860923 | — 0.82300 | — 0.774965
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The backward Euler formula is

Ynt+l = Yn + h(tiJrl - y72t+1 )sm Yn+1-

Since t, = 0 and t,,11 = (n + 1)h, we can also write

with y, = — 1. Note that this equation cannot be solved explicitly for y,,+;. Given y,,,

Yn+1 = Yn + h [(n + 1)2h2 - y’IQH-l] SUM Yn+1 5

the transcendental equation

Yn+1 + h yZ—FlSin Yn+1 = Un + h(n + 1)2h2

must be solved numerically for y,,.1.

(c). Backward Euler method with h = 0.05 :

n =2 n=4 n==6 n==3y
t, | 0.1 0.2 0.3 0.4
Yn | —0.928059 | — 0.870054 | — 0.824021 | — 0.788686
(d). Backward Euler method with A = 0.025 :
n=4 n=2~8 n =12 n =16
t, | 0.1 0.2 0.3 0.4
Yn | —0.926341 | — 0.867163 | — 0.820279 | — 0.784275
8. The Euler formula
Yn+l = Yn + h(5tn —3\/Yn )7
in which ¢, = t, + nh . Since t, = 0, we can also write
Yn+1 = Yn + 5nh2 - 3h\/ Yn »
with y, = 2.
(a). Euler method with h = 0.025 :
n =20 n=40 | n=60 | n=380
t, | 0.5 1.0 1.5 2.0
yn | 0.891830 | 1.25225 | 2.37818 | 4.07257
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(b). Euler method with h = 0.0125 :
n =40 n=80 | n=120| n =160
t, | 0.5 1.0 1.5 2.0
yn | 0.908902 | 1.26872 | 2.39336 | 4.08799

The backward Euler formula is

Yn+l = Yn + h(5 b1 — 34/ Yn+1 ):

in which ¢, = t, +nh. Since t, = 0, we can also write

Yn+1 = Un + 5(” + 1)h2 - Bh\/ Yn+1 5

with y, = 2. Solving for y,,1, and choosing the positive root, we find that

1
Yni1 = | — §h + §\/(20n +29)h? + 4y,

(¢). Backward Euler method with A = 0.025 :

3

2

n = 20 n=40 |n=60 | n=280
t, | 0.5 1.0 1.5 2.0
Yn | 0.958565 | 1.31786 | 2.43924 | 4.13474
(d). Backward Euler method with h = 0.0125 :
n = 40 n=2380 | n=120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 0.942261 | 1.30153 | 2.24389 | 4.11908

9. The Euler formula for this problem is

Yn+1 = Yn +h \V ty, + Yn -

Here t, = 0 and ¢,, = nh. So that

yn+1:yn+h\/nh+yn 5
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10. The Euler formula is
Yn+1 = Un + h[2 tn + exp( - tn yn)]
Since t, = t, + nh and t, = 0, we can also write
Ynil = Yn + onh® + h exp( —nhy,),
with y, = 1.
(a). Euler method with h = 0.025 :
n=20 |n=40 |n=60 | n=280
t, | 0.5 1.0 1.5 2.0
yn | 1.60729 | 2.46830 | 3.72167 | 5.45963
(b). Euler method with h = 0.0125 :
n=40 |n=80 | n=120| n =160
t, | 0.5 1.0 1.5 2.0
Yn | 1.60996 | 2.47460 | 3.73356 | 5.47774

The backward Euler formula is

Yn+1 = Un + h[z thrl + eacp( - thrl ynJrl)]'

Since t, = 0 and t,,,1 = (n + 1)h, we can also write

Yni1 = Yn + 203 (n + 1) + hexp] — (n 4+ 1)h ypi1),

with y, = 1. This equation cannot be solved explicitly for y, 1. At each step, given
the current value of v, the equation must be solved numerically for y,, 1.

(c). Backward Euler method with h = 0.025 :

n=20 |n=40 |n=60 | n=280
t, | 0.5 1.0 1.5 2.0
yn | 1.61792 | 2.49356 | 3.76940 | 5.53223
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(d). Backward Euler method with A = 0.0125 :
n=40 |n=80 | n=120| n =160
t, | 0.5 1.0 1.5 2.0
yn | 1.61528 | 2.48723 | 3.75742 | 5.51404
11. The Euler formula is
Yn+l = Yn + h(4 — 1ty yn)/(l + yﬁ)
Since t, = t, + nh and t, = 0, we can also write
Yntl = Yn + (4h - nhz yn)/(l + yi)’
(a). Euler method with h = 0.025 :
n = 20 n =40 n=60 [ n=2~80
t, | 0.5 1.0 1.5 2.0
Yn | — 1.45865 | — 0.217545 | 1.05715 | 1.41487
(b). Euler method with h = 0.0125 :
n =40 n =80 n =120 | n = 160
t, | 0.5 1.0 1.5 2.0
yn | —1.45322 | — 0.180813 | 1.05903 | 1.41244

The backward Euler formula is
tnt1 yn+1)/(1 + yiﬂ)'
Since t, = 0 and t,,11 = (n + 1)h, we can also write

Y1 (L+vi1) = v (L +viy1) + [4h — (0 + D2 yoi],

Yn+1 = Un + h<4 -

with y, = — 2. This equation cannot be solved explicitly for y,,.1. At each step, given
the current value of v, the equation must be solved numerically for y,, 1.

page 445



WWV. ZI T e.Ir

CHAPTER 8. ——
(c). Backward Euler method with h = 0.025 :
n = 20 n =40 n=60 | n=80
t, | 0.5 1.0 1.5 2.0
yn | — 1.43600 | — 0.0681657 | 1.06489 | 1.40575

(d). Backward Euler method with h = 0.0125 :

n = 40 n = 80 n =120 | n = 160
t, | 0.5 1.0 1.5 2.0
yn | — 1.44190 | — 0.105737 | 1.06290 | 1.40789

12. The Euler formula is
Ynr1 = Yo + h(ye +2t,90) /(3 +12).
Since ¢, = t, + nh and t, = 0, we can also write
Yni1 = yn + (hyp + 20k y,)/ (3 +n’h?),

with y, = 0.5.

(a). Euler method with h = 0.025 :

n = 20 n = 40 n=60 | n=280
t, | 0.5 1.0 1.5 2.0
Yn | 0.587987 | 0.791589 | 1.14743 | 1.70973

(b). Euler method with h = 0.0125 :

n = 40 n = 80 n =120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 0.589440 | 0.795758 | 1.15693 | 1.72955

The backward Euler formula is
Yni1 = Yn +h (Va1 + 2tns1 Yn1) /(B + 0 11)-
Since t, = 0 and t,,,1 = (n + 1)h, we can also write
Yns1 [3+ (n+ 1)°R%] = ho2 ) = ya[3+ (0 +1)°A2] 4+ 2(n + 1D)A? yup,

with y, = 0.5. Note that although this equation can be solved explicitly for y,, 41, it is
also possible to use a numerical equation solver. At each time step, given the current
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value of y,,, the equation may be solved numerically for y,, 1.
(¢). Backward Euler method with A = 0.025 :
n = 20 n = 40 n =60 | n=80
t, | 0.5 1.0 1.5 2.0
Yn | 0.593901 | 0.808716 | 1.18687 | 1.79291
(d). Backward Euler method with h = 0.0125 :
n = 40 n = 80 n =120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 0.592396 | 0.804319 | 1.17664 | 1.77111
13. The Euler formula for this problem is
Yn+1 = YUn + h(l - tn + 4yn )7

in which ¢, = t, +nh. Since t, = 0, we can also write
Yni1 = Yo +h —nh® +4hy,,
with y, = 1. With A = 0.01, a total number of 200 iterations is needed to reach t = 2.
With h = 0.001, a total of 2000 iterations are necessary.
14. The backward Euler formula is
Ynt1 = Yn + h(1 = tos1 +4Yns1 ).

Since the equation is linear, we can solve for y,, . in terms of y,, :

yn+h_htn+l
1—4h

Herety = 0 and y, = 1. With h = 0.01, a total number of 200 iterations is needed to
reacht = 2. With h = 0.001, a total of 2000 iterations are necessary.

Yn+1 =

18. Let ¢(t) be a solution of the initial value problem. The local truncation error for the
Euler method, on the interval ¢, <t < t,.1, is given by

En+l =

1 "¢z 2
— th)h
50" (tn)

where ¢, < I, < t,41. Since ¢'(t) = 2 + [¢(t)]%, it follows that

¢"(t) =2t +2¢(t)¢'(t)
= 2t + 2624 (t) +

2[6 (1)),
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Hence
’6n+1| S [tn-H + tghLan-H + M3+1]h29

in which M, 1 = maz{¢(t)|t, <t <t,41}.

20. Given that ¢ () is a solution of the initial value problem, the /ocal truncation error
for the Euler method, on the interval ¢, <t <t,.q,1s

1 _
En+1 = Qd),/( tn)hQa

where t, < t, < t,.1. Based onthe ODE, ¢'(t) = /t + ¢(¢), and hence

w1+ o'(t)
o7 = 2/t + 6(1)

1 1
2/t +o(t) 2

Therefore

1 1
€n < |1+ hZ.
el < tn+¢(tn)]

21. Let ¢(t) be a solution of the initial value problem. The /ocal truncation error for the
Euler method, on the interval ¢, <t <¢,.4, is given by

1 _
En+1 = 5@5//( tn)hQa

where ¢, < t, < t,+1. Since ¢'(t) = 2t + exp[ — t ¢(t)], it follows that

¢"(t) =2—2[¢(t) +t¢'(t)] - exp[ — t §(t)]
=2—{o(t) + 2> + texp| — t 4(t)]} - exp[ — t ¢(1)).

Hence

2

en = 17 = 5 {(8) + 28 + Taeapl — g (B)] } - eaml — Fug(B)]

22(a). Direct integration yields ¢(t) = --sin 5t + 1.
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1.1
1.08+
1.064
1.044
1.021
0 0.1 0z 03 0.4 0.5 0.6
(d). Since ¢"(t) = — 5w sin 5wt , the local truncation error for the Euler method, on
the interval ¢, <t <t,,1, 1s given by
5th? _
entl = — sindmt, .
In order to satisfy
h2
lens1] < 7; <0.05,
it is necessary that
1
h < ~ 0.08.
v/ 507

25(a). The Euler formula is
Yn+1 = YUn + h(l - tn + 4yn )

n=2|n=4|n=6|n==§
t, | 0.1 0.2 0.3 0.4
yo | 1.55 | 234 | 3.46 | 5.07

(b). The Euler formula for this problem is
Yn+1 = YUn + h(3 +tn - yn)-

n=2|n=4|n=6|n=3~§
t, | 0.1 0.2 0.3 0.4
yo | 1.20 | 1.39 | 1.57 | 1.74

(c). The Euler formula is
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Yn+1 = YUn + h(2 Yn — 3tn>-

n=2|n=4|n=6|n=3~§
t, | 0.1 0.2 0.3 0.4
yn | 1.20 | 1.42 1.65 1.90

26(a).
1000 - ‘(238 é% ‘ =1000-(0) =0.
(D).
1000 - ‘ 28(1) é%g‘ = 1000(0.06) = 60 .
(c).
1000 - ‘ 38(1)2 é8083 ‘ = 1000( — 0.09216) = — 92.16.

27. Rounding to three digits, a(b — ¢) ~ 0.224. Likewise, to three digits, ab ~ 0.702
and ac ~ 0.477. It follows that ab — ac ~ 0.225.
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Section 8.2

1. The improved Euler formula for this problem is

1 1 h?
Yn+1 = YUn + hi{3 + §tn + §tn+1 —Yn | — 7(3 + tn - yn)~

Since t, = t, + nh and t, = 0, we can also write

h? nh?
Yn+1 = Yn + h’(3 - yn) + ?(yn -2+ 2’Tl) - T »
(a). h=0.05:
n =2 n =4 n=~06 n =3y
t, | 0.1 0.2 0.3 0.4
yn | 1.19512 | 1.38120 | 1.55909 | 1.72956
(b). h =0.025 :
n =4 n==_§ n=12 | n=16
t, | 0.1 0.2 0.3 0.4
yn | 1.19515 | 1.38125 | 1.55916 | 1.72965
(c). h=0.0125 :
n==~§ n=16 |n=24 | n=32
t, | 0.1 0.2 0.3 0.4
yn | 1.19516 | 1.38126 | 1.55918 | 1.72967

2. The improved Euler formula is

h h
Yn+1 :yn+§(5tn_3\/y_n) +§(5tn+1_3\/ K, )7

in which K, =y, + h(5tn —3\/Yn ) Since t,, = t, + nh and t, = 0, we can also
write

h h
Yot = v+ 5 (57 =3/ ) + 5[5 (n+ Dh = 3V/E, |,
with y, = 2.

(a). h=0.05:
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n=2 n=4 n==~6 n==~8
t, | 0.1 0.2 0.3 0.4
yn | 1.62283 | 1.33460 | 1.12820 | 0.995445
(b). h =0.025 :
n=4 n=2~8 n=12 | n=16
t, | 0.1 0.2 0.3 0.4
yn | 1.62243 | 1.33386 | 1.12718 | 0.994215
(c). h=0.0125 :
n ==, n=16 |n=24 | n=32
t, | 0.1 0.2 0.3 0.4
yn | 1.62234 | 1.33368 | 1.12693 | 0.993921

3. The improved Euler formula for this problem is

h
Yntl = Yn T 5(4.%1 — 3ty — 3tn+1) + h2(2yn - 3tn)-

Since t, = t, + nh and t, = 0, we can also write

with 4o = 1.

(a). h=0.05 :

(b). h =0.025 :

(¢). h=0.0125 :

2

h
mH1=yn+2hyn+~§{4%,—3—6n)—3nh3,

n =2 n =4 n==6 n==3y
t, | 0.1 0.2 0.3 0.4
Yn | 1.20526 | 1.42273 | 1.65511 | 1.90570
n=4 n=2~8 n=12 [n=16
t, | 0.1 0.2 0.3 0.4
yn | 1.20533 | 1.42290 | 1.65542 | 1.90621
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n =3y n=16 | n=24 | n=32
t, | 0.1 0.2 0.3 0.4
Yn | 1.20534 | 1.42294 | 1.65550 | 1.90634
5. The improved Euler formula is
+2tn Yn K72;,+2tn+1Kn

y2
— h n

28 +1t2,,)
in which

+hy§+2tnyn

Kn =Yn 3+ t%

Since ¢, = t, + nh and t, = 0, we can also write

Y2 + 2nhy, K2 +2(n+1)hK,
Ynt1 = Yn +h ooy 2797 °
2(3 + n%h?) 2[3+ (n+1)°h?]
(a). h=10.05 :
n=2 n=4 n==~6 n=3~8
t, | 0.1 0.2 0.3 0.4
yn | 0.510164 | 0.524126 | 0.54083 | 0.564251
(b). h=0.025 :
n=4 n =38 n =12 n =16
t, | 0.1 0.2 0.3 0.4
Yn | 0.510168 | 0.524135 | 0.542100 | 0.564277
(c). h=0.0125 :
n=-3~ n =16 n=24 n =32
t, | 0.1 0.2 0.3 0.4
yn | 0.51069 | 0.524137 | 0.542104 | 0.564284
6. The improved Euler formula for this problem is
h( o 2\ o h o 2\ o
Yn+1 = Yn + 5 (tn - yn) SN Yn + 5 (tn—i-l - Kn) Sin Kn’
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in which
K,=y,+h (ti — yi) SIN Yy, -

Since t, = t, + nh and t, = 0, we can also write

Yni1l = Yn + ﬁ (n2h2 — yi) siny, + ﬁ [(n + 1)2h2 — K,ﬂ sin K,,,

2 2
(a). h=0.05:
n =2 n =4 n=~06 n =3,
t, | 0.1 0.2 0.3 0.4
Yn | —0.924650 | — 0.864338 | — 0.816642 | — 0.780008
(b). h =0.025
n=4 n=2~8 n=12 n =16
t, | 0.1 0.2 0.3 0.4
Yn | —0.924550 | —0.864177 | —0.816442 | — 0.779781
(c). h=0.0125 :
n=2~8 n =16 n =24 n =32
t, | 0.1 0.2 0.3 0.4
Yn | —0.924525 | —0.864138 | — 0.816393 | — 0.779725

7. The improved Euler formula for this problem is

h
Ynt1 = Yn + 5(4% —ty =ty + 1) + A2y, — t, + 0.5).

Since t, = t, + nh and t, = 0, we can also write

Ynt+l = Yn + h(2 Yn + 05) + h2(2 Yn — TL) — nh? s

with y, = 1.
(a). h =0.025 :
n=20 |n=40 |n=60 | n=80
t, | 0.5 1.0 1.5 2.0
Yn | 2.96719 | 7.88313 | 20.8114 | 55.5106
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(b). h =0.0125 :
n=40 |n=80 | n=120| n =160
t, | 0.5 1.0 1.5 2.0
Yn | 2.96800 | 7.88755 | 20.8294 | 55.5758

8. The improved Euler formula is

h h
Yn+1 = Yn + 5(5 tn - 3\/y7) + 5 (5 tn—i—l -3 V Kn )7

in which K, =y, + h(5 tn — 3\/Yn ) Since ¢, = t, + nh and ¢, = 0, we can also

write
Ynt+1 = yn+ ﬁ(5”]1_3\/yn ) + ﬁ|:5<n+ 1)h_?’\/ Kn}
2 2 ’
with y, = 2.
(a). h =0.025 :
n =20 n=40 |n=60 |n =280
t, | 0.5 1.0 1.5 2.0
Yn | 0.926139 | 1.28558 | 2.40898 | 4.10386
(b). h=0.0125 :
n =40 n=80 |n=120| n =160
t, | 0.5 1.0 1.5 2.0
Yn | 0.925815 | 1.28525 | 2.40869 | 4.10359
9. The improved Euler formula for this problem is
h h
yn+1:yvz+§ tn+yn +§\/ tn—i—l"‘Kns

in which K, = y, + h

t, + yn . Since t, =ty + nh and t, = 0, we can also write

h h
Yn+1 :y7),+§\/ nh"‘yn +§\/(n+1)h+Kn,

(a). h =0.025 :
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n=20 |n=40 |n=60 | n=80
t, | 0.5 1.0 1.5 2.0
Yn | 3.96217 | 5.10887 | 6.43134 | 7.92332
(b). h =0.0125 :
n=40 |n=80 | n=120| n =160
t, | 0.5 1.0 1.5 2.0
Yn | 3.96218 | 5.10889 | 6.43138 | 7.92337

10. The improved Euler formula is

h h
Yn+1 = YUn + 5 [2 tn + €$p( - tn yn)] + 5 [2 tn—i—l + €~Tp( - tn—i—lKn)]a

in which K,, =y, + h[2t, + exp( — t, yn)]. Since t,, = t, + nh and t, = 0, we can
also write

h h
Ynt+1 = Yn + 5[2 nh + 6:17])( —nh yn)] + 5{2(% + 1)h’ + e:z:p[ - (TL + 1)h’Kn]}:

with 4y, = 1.
(a). h =0.025 :
n=20 |n=40 |n=60 | n=280
t, | 0.5 1.0 1.5 2.0
Yn | 1.61263 | 2.48097 | 3.74556 | 5.49595
(b). h=0.0125 :
n=40 |n=80 | n=120| n =160
t, | 0.5 1.0 1.5 2.0
Yo | 1.61263 | 2.48092 | 3.74550 | 5.49589
12. The improved Euler formula is
+hy721+2tnyn K721+2tn+1Kn
Yn+1 = YUn 5
i 23 +13) 2(3+12,1)
in which
2 2t71 n
Kn,:yn,_"hiyn—i_ y

3+t
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Since ¢, = t, + nh and t, = 0, we can also write

y2 +2nhy, . K24 2(n+1)hK,
Yntl = Yn TN 5o 557 557
2(3 + n?h?) 2[3+ (n+1)°h?]
(a). h =0.025 :
n = 20 n =40 n=60 | n=280
t, | 0.5 1.0 1.5 2.0
Yn | 0.590897 | 0.799950 | 1.16653 | 1.74969
(b). h=0.0125 :
n = 40 n = 80 n =120 | n =160
t, | 0.5 1.0 1.5 2.0
Yn | 0.590906 | 0.799988 | 1.16663 | 1.74992

16. The exact solution of the initial value problem is ¢(t) = % + %e%. Based on the
result in Prob. 14(c¢), the local truncation error for a /inear differential equation is

1 _
Cn+1 = 6@5/”( tn)h?’a

4 e%, the local truncation error is

2 _
€nil = gexp(Z t)he.

where ¢, < t, < t,41. Since ¢"'(t) =

Furthermore, with 0 <¢, <1,

2
lent1] < 3 e?h3.

It also follows that for h = 0.1,

2
< 2a92001)% = 0.2
el < 57007 = 1555 ¢
Using the improved Euler method, with A = 0.1, we have y; ~ 1.11000. The exact

value is given by ¢(0.1) = 1.1107014 .

17. The exact solution of the initial value problem is given by ¢(t) = %t + e%. Using

the modified Euler method, the local truncation error for a /inear differential equation is

1 _
En+l = 6¢m< tn>h3a
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where t, < t, < t,;1. Since ¢"(t) = 8%, the local truncation error is

4 _
Enil = gea:p(2 tn)h?’.

Furthermore, with 0 < ¢, < 1, the local error is bounded by
4
lent1] < gezh?’.
It also follows that for h = 0.1,

4 1
< 202(01)3 = 1 02
lerf < 5 €7(0.0)7 = g

Using the improved Euler method, with h = 0.1, we have y; ~ 1.27000. The exact
value is given by ¢(0.1) = 1.271403.
18. Using the Euler method,

y =1+0.105—-0+2-1)
—=1.25.

Using the improved Euler method,

yr =140.05(0.5—0-+2-1)+0.05(0.5 — 0.1 +2-1.25)
= 1.27.

The estimated error is e; ~ 1.27 — 1.25 = 0.02. The step size should be adjusted by
a factor of 1/0.0025/0.02 ~ 0.354. Hence the required step size is estimated as

h ~ (0.1)(0.36) = 0.036.
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20. Using the Euler method,

y =3+0.1/0+3

= 3.173205.

Using the improved Euler method,

Y, =34 0.051/0+ 3 +0.05,/0.1 + 3.173205
= 3.177063 .

The estimated error is e; ~ 3.177063 — 3.173205 = 0.003858 . The step size should
be adjusted by a factor of \/ 0.0025/0.003858 = 0.805. Hence the required step size
is estimated as

h ~ (0.1)(0.805) = 0.0805 .

21. Using the Euler method,

(0.5)* 40

— 05401
yl + 310

= 0.508334
Using the improved Euler method,

(0.5)*+0 . 0.05 (0.508334)° + 2(0.1)(0.508334)
3+0 ' 34 (0.1)°

= 0.510148.

The estimated error is e; ~ 0.510148 — 0.508334 = 0.0018 . The local truncation error
is less than the given tolerance. The step size can be adjusted by a factor of
1/0.0025/0.0018 ~ 1.1785. Hence it is possible to use a step size of

h ~ (0.1)(1.1785) ~ 0.117.

22. Assuming that the solution has continuous derivatives at least to the third order,

¢" (tn) " (t,)
STRIRET

P(tni1) = d(ta) + &' (ta)h + h?,

where t, < t, < t,.1. Suppose that y, = ¢(t,).

(a). The local truncation error is given by
En+l = ¢<tn+1) — Yn+1-

The modified Euler formula is defined as
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1 1
Yn+1 = YUn + h f |:tn + ih y Yn + ih f(tm yn):| .

Observe that ¢'(t,) = f(t,,d(t,)) = f(tn,ys). It follows that
ent1 = P(tnt1) — Ynt1

=h f(tn,yn) + d)HQ(!t”)hz + ¢/;(!t")

1 1
_hf|:tn+§hayn+§hf(tn>yn):|'

B3 —

(b). As shown in Prob. 14(b),
¢"(tn) = fi(tu s yn) + fy(tn , yn) f(tn , yn) -

Furthermore,
1 1 h
f t, + ih’y” + §h f(tnvyn)] - f(tn 5 yn) + ft(tn >yn)§ + fy(tn 7yn) k+

1 [h? 5
2t 4 t=£,y=n

in which k = 1h f(t,,yn) and ¢, < & <ty +h/2, yo <1 <y, + k. Therefore
qb///(gn) h [hQ

_ 3 2
nt+l = 30 h o1 2 fuu +hE fr, +k fyy} ey

Note that each term in the brackets has a factor of k2. Hence the local truncation error
is proportional to h?.

(c). If f(t,y) is linear, then fy = f;, = f,, =0, and
d)/l/(%n)

_ 3
€nt+1 = 3' h°.

23. The modified Euler formula for this problem is

1 1
Yn+1 = Un + h{3 + tn + §h - |:y’n, + §h(3 + tn - yn):| }

2

h
:yn+h(3+tn_yn)+7(yn_tn_2)'

Since t, = t, + nh and t, = 0, we can also write

2

Yn+1 :yn+h<3+nh_yn)+E(yn_nh_Q) >

with yo = 1. Setting h = 0.1, we obtain the following values :
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25. The modified Euler formula is

3
Ynil = Yn + h |2y, — 3t, — ih + h(2y, — 3t,)

2

Since t, = t, + nh and t, = 0, we can also write

2

CHAPTER 8. ——
n=1 n=2 n=23 n=4
t, | 0.1 0.2 0.3 0.4
Yn | 1.19500 | 1.38098 | 1.55878 | 1.72920

h
Yn + h(2y, — 3t,) + 7(4% — 6t, — 3).

h
Ynt1 = Yn + h(2y, — 3nh) + 3(4% —6nh —3),

with yo = 1. Setting h = 0.1, we obtain :

n=1 n=2 n=3 n =4
t, | 0.1 0.2 0.3 0.4
Yn | 1.20500 | 1.42210 | 1.65396 | 1.90383

26. The modified Euler formula for this problem is

h
Yn+l = Yn + h{2tn +h+ exp[— (tn + §)Kn:| }a

in which K, =y, + %[Qtn + exp( — toyn)]. Now t, = t, + nh, with ¢, = 0 and

yo = 1. Setting h = 0.1, we obtain the following values :

n=1 n=2 n=3 n=4
t, | 0.1 0.2 0.3 0.4
yn | 1.104885 | 1.21892 | 1.34157 | 1.472724
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27. Let f(t,y) be linear in both variables. The improved Euler formula is

1
Yn+1 = Un + ih[f(t’n,; yn) + f(tn + h, Yn + hf(tm yn))]
=y () + hF (b 9) + g, B )]
= 1f () + 50 ST S s )

The modified Euler formula is

1 1
Yn+1 = Un + hf |:tn + §h7 Yn + ihf(tm yn):|

= )+ 1 1 5 )

Since f(t,y) is linear in both variables,
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Section 8.3

1. The ODE is linear, with f(¢,y) = 3 + t — y. The Runge-Kutta algorithm requires

the evaluations

knl = f(tnvyn)

1 1
kn? :f<tn+§hayn+§hkn1>
1 1

kn4:f(tn+h,yn+hkn3>-

The next estimate is given as the weighted average

h
Yn+1 :yn+_(knl+2kn2+2kn3+kn4)

6
(a). For h=10.1:
n=1 n=2 n=3 n=4
t, | 0.1 0.2 0.3 0.4
Yn | 1.19516 | 1.38127 | 1.55918 | 1.72968
(b). For h =0.05:
n =2 n =4 n=~06 n =3y
t, | 0.1 0.2 0.3 0.4
Yn | 1.19516 | 1.38127 | 1.55918 | 1.72968

The exact solution of the IVP is y(t) =2+t — e ".

2. In this problem, f(t,y) = 5t — 3\/5 . At each time step, the Runge-Kutta algorithm

requires the evaluations

knl - f(tnyyn)
1 1
knz - f(tn + _h;y’n, + —hk nl)

2 2
1 1
kn3—f<tn+§hayn+§hkn2>

kn4 - f(tn + h y Yn + hk 77,3)-

The next estimate is given as the weighted average

h
Yn+1 :yn+E(kn1+2kn2+2kn3+kn4)
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(a). For h=0.1:
n=1 n =2 n=3 n=4
t, | 0.1 0.2 0.3 0.4
yn | 1.62231 | 1.33362 | 1.12686 | 0.993839
(b). For h =0.05:
n=2 n=4 n==~06 n=3~§
t, 0.1 0.2 0.3 0.4
yn | 1.62230 | 1.33362 | 1.12685 | 0.993826
The exact solution of the IVP is given implicitly as
1 V2

3. The ODE is linear, with f(¢,y) = 2y — 3t. The Runge-Kutta algorithm requires

the evaluations

@y +5t) (= y)® 512

knl = f(tnvyn)
1
kn? - f(tn+ §hayn+ —hkm)

1
kn3:f<tn+§hayn+
kn4:f(tn+h,yn+hkn3>-

1
2
1

The next estimate is given as the weighted average

§hk n2>

h
Yn+1 :yn+_(knl+2kn2+2kn3+kn4)

(a). For h=10.1:

n=1 n =2 n=3 n=4
t, | 0.1 0.2 0.3 0.4
yn | 1.20535 | 1.42295 | 1.65553 | 1.90638
(b). For h =0.05:
n =2 n =4 n=~06 n =3y
t, | 0.1 0.2 0.3 0.4
Yn | 1.20535 | 1.42296 | 1.65553 | 1.90638

The exact solution of the IVP is y(t) = e* /4 + 3t/2 + 3 /4.

5. In this problem, f(t,y) = (v* + 2ty)/(3 + t?) . The Runge-Kutta algorithm
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requires the evaluations

k= f(tmyn)

1 1
km—f<tn+§hayn+§hkm>

1 1
k n3 — tn =h s Yn —hk n
3 f?< + 9 Y ‘+‘2 2)

kn4:f(tn+h7yn+hkn3)-

The next estimate is given as the weighted average
h
Yn+1 = yn+ g(knl +2kn2 +2kn3 +kn4)

(a). For h=0.1:

n=1 n=2 n=3 n=4
t, | 0.1 0.2 0.3 0.4
Yn | 0.510170 | 0.524138 | 0.542105 | 0.564286

(b). For h =0.05:

n =2 n=4 n==6 n==3y
t, | 0.1 0.2 0.3 0.4
Yn | 0.520169 | 0.524138 | 0.542105 | 0.564286

The exact solution of the IVP is y(t) = (3 +t2)/(6 —t).

6. In this problem, f(t,y) = (* — y*)siny. At each time step, the Runge-Kutta
algorithm requires the evaluations

knl == f(tnyyn)
1 1
knz - f(tn + _h;yn + —hk nl)

2 2
1 1
kn3—f<tn+§hayn+§hkn2>

kn4 - f(tn + h y Yn + hk 77,3)-

The next estimate is given as the weighted average

h
Yn+1 :yn+E(kn1+2kn2+2kn3+kn4)
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(a). For h=0.1:
n=1 n=2 n=3 n=4
t, | 0.1 0.2 0.3 0.4
Yn | —0.924517 | —0.864125 | — 0.816377 | — 0.779706
(b). For h =0.05:
n =2 n=4 n==6 n==3y
t, | 0.1 0.2 0.3 0.4
Yn | —0.924517 | —0.864125 | — 0.816377 | — 0.779706
7. (a). For h=0.1:
n=2=u n=10 [n=15 | n =20
t, | 0.5 1.0 1.5 2.0
Yn | 2.96825 | 7.88889 | 20.8349 | 55.5957
(b). For h =0.05 :
n=10 [n=20 |n=30 | n=140
t, | 0.5 1.0 1.5 2.0
Yn | 2.96828 | 7.88904 | 20.8355 | 55.5980
The exact solution of the IVP is y(t) = e* + /2.
8. See Prob. 2. for the exact solution.
(a). For h =0.1:
n=>5 n=10 |[n=15 | n=20
t, | 0.5 1.0 1.5 2.0
Yn | 0.925725 | 1.28516 | 2.40860 | 4.10350
(b). For h =0.05 :
n =10 n=20 |n=30 | n=40
t, | 0.5 1.0 1.5 2.0
yn | 0.925711 | 1.28515 | 2.40860 | 4.10350
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9(a). For h =0.1:
n=>5 n=10 |n=15 | n=20
t, | 0.5 1.0 1.5 2.0
Yn | 3.96219 | 5.10890 | 6.43139 | 7.92338
(b). For h =0.05:
n=10 |n=20 |n=30 | n=140
t, | 0.5 1.0 1.5 2.0
Yn | 3.96219 | 5.10890 | 6.43139 | 7.92338

The exact solution is given implicitly as

ln{L]ﬁ-Q\/tﬁ- —2a7’ctcmh\/t+y=t+2\/_—2arctcmh\/3_.

y+t—1

10. See Prob. 4.

(a). For h=10.1:

(b). For h =0.05:

12. See Prob. 5. for the exact solution.

(a). For h =0.1:

(b). For h =0.05 :

n=>5 n=10 |n=15 | n=20
t, | 0.5 1.0 1.5 2.0
Yn | 1.61262 | 2.48091 | 3.74548 | 5.49587
n=10 |n=20 | n=30 | n=40
t, | 0.5 1.0 1.5 2.0
Yn | 1.61262 | 2.48091 | 3.74548 | 5.49587
n=>5 n =10 n =15 n = 20
t, | 0.5 1.0 1.5 2.0
Yn | 0.590909 | 0.800000 | 1.166667 | 1.75000
n = 10 n = 20 n = 30 n = 40
t, | 0.5 1.0 1.5 2.0
Yn | 0.590909 | 0.800000 | 1.166667 | 1.75000

13. The ODE is linear, with f(¢,y) = 1 — t + 4y. The Runge-Kutta algorithm requires
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the evaluations

k= f(tmyn)

1 1
km—f<tn+§hayn+§hknl>

1 1
kn.‘} - f(tn + ih;yn + ihk n2>
kn4 = f(tn+h7yn+hkn3)-

The next estimate is given as the weighted average
h
Yn+1 = yn+ g(knl +2kn2 +2kn3 +kn4)
. . _ 19 4t 1 3
The exact solution of the IVP is y(t) = jie* + 3t — 1.

16

(a). For h=10.1:

n=>5 n =10 n =15 n = 20
t, | 0.5 1.0 1.5 2.0
Yn | 8.7093175 | 64.858107 | 478.81928 | 3535.8667

(b). For h =0.05:

n =10 n = 20 n =30 n = 40
t, | 0.5 1.0 1.5 2.0
Yn | 8.7118060 | 64.894875 | 479.22674 | 3539.8804

15(a).
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(b). For the integral curve starting at (0, 0), the slope becomes infinite near t,; =~ 1.5.
Note that the exact solution of the IVP is defined implicitly as

P —dy =t
02 04 0f ‘og 1 12 14
——
\
02] \
-0.44 \

¥ 0.6

-0.81

1

|

Using the classic Runge-Kutta algorithm, with h = 0.01, we obtain the values

n ="70 n = 80 n =90 n =95
t, | 0.7 0.8 0.9 0.95
Yo | —0.08591 | —0.12853 | — 0.18380 | — 0.21689

(c). Based on the direction field, the solution should decrease monotonically to the

limiting value y = — 2/ \/§ . In the following table, the value of ¢, corresponds to
the approximate time in the iteration process that the calculated values begin to increase.

h tar
0.1 1.9
0.05 | 1.65
0.025 | 1.55
0.01 | 1.455

(d). Numerical values will continue to be generated, although they will not be associated
with the integral curve starting at (0,0). These values are approximations to nearby
integral curves.

(e). We consider the solution associated with the initial condition y(0) = 1. The exact
solution is given by

P —dy=1t3—-3.
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D.ai T
0.6

0.4
0.21

02 04 06 08ty 12 16 18

-0.2
0.4

-0.6 \
-0.81

For the integral curve starting at (0, 1), the slope becomes infinite near t,; ~ 2.0. In
the following table, the values of ¢,, corresponds to the approximate time in the iteration
process that the calculated values begin to increase.

h 2]
0.1 1.85
0.05 1.85
0.025 | 1.86
0.01 1.835
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Section 8.4

1(a). Using the notation f, = f(t,,yn) , the predictor formula is

h
Ynt1 = Yn + ﬂ(55fn - 59fn71 + 37fn72 - 9fnf3)-

With f,11 = f(tni1, Yns1), the corrector formula is

h
Ynt1 = Yn + ﬂ(gfmrl + 19fn - 5fnfl + fan) .

We use the starting values generated by the Runge-Kutta method :

n=0|n=1 n =2 n=3
t, 0.0 0.1 0.2 0.3
y, | 1.0 1.19516 | 1.38127 | 1.55918

n =4(pre) | n =4(cor) | n=5(pre) | n = 5(cor)
t, | 04 0.4 0.5 0.5
Yn | 1.72967690 | 1.72986801 | 1.89346436 | 1.89346973

(b). With f, 1 = f(tns1,Yns1), the fourth order Adams-Moulton formula is

h
Yn+1 = Un + ﬁ(g fn-i—l +19 fn -5 fn—l + fn—2) .

In this problem, f,.; = 3 + t;,11 — Yny1 - Since the ODE is /inear, we can solve for

yn-i-l - m[24 yn + 27h + 9h tn—H + h(lg fn - 5 fn—l + fn—z)] .
n=4 n=>5
t, | 0.4 0.5

Yn | 1.7296800 | 1.8934695

(c). The fourth order backward differentiation formula is
1
Yn+1 = %[48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn—3 + 12hfn+1]-
In this problem, f,,, = 3 + t,41 — Y11 - Since the ODE is /inear, we can solve for

1
Ynt1 = mBG h+12ht, 1 + 48y, — 36 Y1 + 16 Yy — 3Yn—s) .
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n=4 n=>5
t, | 0.4 0.5
yn | 1.7296805 | 1.8934711

The exact solution of the IVP is y(t) =2+t — e ".

2(a). Using the notation f,,

yn-l—l - yn 24

With f,11 = f(tni1, Ynsi1), the corrector formula is

f(t, ,yn) , the predictor formula is

(55 fn, - 59 fn—l + 37 fn—2 - 9 fn—.‘})-

h
Yn+1 = Yn + ﬂ(gfnJrl + 19fn - 5fn71 + fﬂ*?) .

We use the starting values generated by the Runge-Kutta method :

CHAPTER 8. ——

n=0|n=1 n =2 n=3
t, 0.0 0.1 0.2 0.3
Yn | 2.0 1.62231 | 1.33362 | 1.12686
n = 4(pre) | n =4(cor) | n=>5(pre) | n = 5(cor)
t, | 04 0.4 0.5 0.5
Yn | 0.993751 0.993852 0.925469 0.925764

(b). With f,11 = f(tn+1,Ynt1), the fourth order Adams-Moulton formula is

h
Yn+1 = Un + ﬁ(gfn—l-l + 19fn - 5fn—1 + fn—?) .

In this problem, f,,+, = 5t,,11 — 3\/Yn+1 - Since the ODE is nonlinear, an equation
solver is needed to approximate the solution of

[45t71,+1 - 27\/ Yn+1 + 19 fn - 5 fn—l + fn—2}

yn-l—l - yn 24

at each time step. We obtain the approximate values:

n=4 n=>5
t, | 0.4 0.5
Yn | 0.993847 | 0.925746

(c). The fourth order backward differentiation formula is
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1
= _[48 Yn — 36 Yn—1 T 16 Yn—2 — 3yn—3 + 12hfn+1]-

yn—H 2 5

Since the ODE is nonlinear, an equation solver is used to approximate the solution of

1
= o2 [48yn — 36 Y1 + 169> — 3yn—s + 121 (5tss — 31/yns1 )]

Yn+1 25

at each time step.

n=4 n=>5
t, | 0.4 0.5
Yn | 0.993869 | 0.925837

The exact solution of the IVP is given implicitly by

1 V2
2y +5t)°(t—/y)" 512

3(a). The predictor formula is

h
Yn+1 = Un + ﬂ(55 fn, — 59 fn—l + 37 fn—2 -9 fn—.‘})-

With f,11 = f(tni1, Ynii1), the corrector formula is

h
Yn+1 = Un + ﬂ(gfnJrl + 19fn - 5fn71 + fﬂ*?) .

Using the starting values generated by the Runge-Kutta method :

n=0|n=1 n =2 n=3
t, | 0.0 0.1 0.2 0.3
yn | 1.0 1.205350 | 1.422954 | 1.655527
n = 4(pre) | n =4(cor) | n=>5(pre) | n = 5(cor)
t, | 04 0.4 0.5 0.5
Yn | 1.906340 1.906382 2.179455 2.179567

(b). With f, 11 = f(tn+1,Ynt1), the fourth order Adams-Moulton formula is

h
Yn+1 = Un + ﬁ(gfn—l-l + 19fn - 5fn—1 + fn—?) .

In this problem, f,,+, = 2y, — 3t,+1 . Since the ODE is linear, we can solve for
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T 24_18h

n=4 n=>5
t, | 0.4 0.5
Yn | 1.906385 | 2.179576

[24 yn — 27h tn+1 + h(lg fn — 5 fn—l + fn_g)] .

(c). The fourth order backward differentiation formula is

1
Yn+1 = %[48 Yn — 36 Yp—1 + 16y — 3yp—3 + 12hfn+1]-

In this problem, f,, 1, = 2y, — 3t,+1 . Since the ODE is linear, we can solve for

Yn+1 = [48 Yn — 36 Yp—1 + 16 Yo — 3yn—s — 36h tn+1] .

25 — 24 h
n=4 n=>5
t, | 0.4 0.5
Yn | 1.906395 | 2.179611

The exact solution of the IVP is y(t) = e* /4 + 3t/2 + 3 /4.

5(a). The predictor formula is

h
Ynt1 = Yn + ﬂ(55fn - 59fn71 + 37fn72 - 9fnf3)-

With f,11 = f(tni1, Ynsi1), the corrector formula is

h
Ynt1 = Yn + ﬂ(gfnﬂ + 19fn - 5fnfl + fan) .
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Using the starting values generated by the Runge-Kutta method :

n=0

n=1

n =2

n=3

t, |1 0.0

0.1

0.2

0.3

Yn | 0.5

0.51016950

0.52413795

0.54210529

n = 4(pre)

n = 4(cor)

n = 5(pre)

n = 5(cor)

0.4

0.4

0.5

0.5

Yn

0.56428532

0.56428577

0.59090816

0.59090918

(b). With f,11 = f(tn+1,Ynt1), the fourth order Adams-Moulton formula is

In this problem,

Since the ODE is nonlinear, an equation solver is needed to approximate the solution of

Yn+1

at each time step.

h
Yn+1 = Un + ﬁ(gfn—l-l + 19fn - 5fn—1 + fn—?) .

fn+1 =

y721+1 + 2041 Ynsa

3+th

Rl v+ 2t Ynn
24 3+t2,,
n=4 n=2=u
tn | 0.4 0.5
Yn | 0.56428578 | 0.59090920

(c). The fourth order backward differentiation formula is

Yn+1 =

Since the ODE is nonlinear, an equation solver is needed to approximate the solution of

Yn+1

25

1
= % 48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn73 +12h

at each time step. We obtain the approximate values:

+ 19fn - 5fn71 + fnf2

1
_[48 yn - 36 yn—l + 16 yn—2 - 3yn—3 + 12hfn+1]-

y72L+1 + 201 Yna

n =4 n=>5
t, | 0.4 0.5
Yn | 0.56428588 | 0.59090952

3+ th
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The exact solution of the IVP is y(t) = (3 +12)/(6 — t).

6(a). The predictor formula is

h
Yn+1 = Un + ﬂ(55fn - 59fn71 + 37fn72 - 9fnf3)-

With f,11 = f(tni1, Yns1), the corrector formula is

h
Ynt1 = Yn + ﬂ(gfmrl + 19fn - 5fnfl + fan) .

We use the starting values generated by the Runge-Kutta method :

n=>0

n=1

n=2

n=3

tn

0.0 0.1

0.2

0.3

y7 3

- 1.0

—0.924517

— 0.864125

— 0.816377

n = 4(pre)

n = 4(cor)

n = 5(pre)

n = 5(cor)

0.4

0.4

0.5

0.5

— 0.779832

— 0.779693

—0.753311

—0.753135

(b). With f,11 = f(tni1,Yns1), the fourth order Adams-Moulton formula is

h
Yn+1 = Un + ﬁ(g fn-i—l +19 fn -5 fn—l + fn—2) .
In this problem, f,+, = (2., — 42,,)sin Yn+1 . Since the ODE is nonlinear, we obtain
the implicit equation

h
yn—i-l - yn ‘I' P |:9(t721+1 - y721+1)37:n yn—i-l + 19 fn - 5 fn—l + fn—z] .

24

n=4

n=>5

0.4

0.5

Yn

—0.779700

—0.753144
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(c). The fourth order backward differentiation formula is

1
Yn+1 = %[48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn—3 + 12hfn+1]-

Since the ODE is nonlinear, we obtain the implicit equation

1 .
Yn+1 = 2% [48 Yn — 36yp—1 +16yp—o — 3yn—3 + 120 (tiﬂ - yiﬂ)szn yn+1]-

n=4 n=>5
t, | 0.4 0.5
Yo | —0.779680 | — 0.753089

8(a). The predictor formula is

h
Yn+1 = Un + ﬂ(55 fn, — 59 fn—l + 37 fn—2 -9 fn—.‘})-

With f,11 = f(tni1, Ynsi1), the corrector formula is

h
Yn+1 = Un + ﬂ(gfnJrl + 19fn - 5fn71 + fﬂ*?) .

We use the starting values generated by the Runge-Kutta method :

n=0|n=1 n=2 n=3
t, | 0.0 0.05 0.1 0.15
Yn | 2.0 1.7996296 | 1.6223042 | 1.4672503

n =10 n = 20 n =30 n = 40
t, | 0.5 1.0 1.5 2.0
yn | 0.9257133 | 1.285148 | 2.408595 | 4.103495

(b). Since the ODE is nonlinear, an equation solver is needed to approximate the

solution of

h
yn-i-l - yn + ﬂ [45t71,+1 - 27\/ yn—H + 19 fn - 5 fn—l + fn—2}

at each time step. We obtain the approximate values:

n =10 n = 20 n =30 n = 40
t, | 0.5 1.0 1.5 2.0
Yn | 0.9257125 | 1.285148 | 2.408595 | 4.103495
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(c). The fourth order backward differentiation formula is

Yn+1 =

Since the ODE is nonlinear, an equation solver is needed to approximate the solution of

3v/yn )]

Yn+1 = 25

at each time step.

25

[48 y,, —

36 yn—l + 16 yn—2 - 3 yn—3 + 12hfn+1]'

[48 yn - 36 yn—l + 16 yn—2 - 3 yn—3 + 12h (Stn—i-l -

n =10

n = 20

n = 30

n = 40

tn

0.5

1.0

1.5

2.0

Yn

0.9257248

1.285158

2.408594

4.103493

The exact solution of the IVP is given implicitly by

1

V2

2y +50) (t—fy)? 512

9(a). The predictor formula is

Wlth fn_;'_l —

24

f(tnt1, Ynt1), the corrector formula is

h
Yntr1 = Yn T _(55fn - 59fn71 + 37fn72 - 9fn73)-

h
Yn+1 = Un + ﬁ(gfn+l + 19fn - 5fn—1 + fn—?) .

Using the starting values generated by the Runge-Kutta method :

n=>0

n=1

n=2

n=3

tn

0.0

0.05

0.1

0.15

Yn

3.0

3.087586

3.177127

3.268609

n =10

n =20

n = 30

n = 40

tn

0.5

1.0

1.5

2.0

Yn

3.962186

5.108903

6.431390

7.923385

(b). With f,11 = f(tns1,Yns1), the fourth order Adams-Moulton formula is

h
Yn+1 = Yn + ﬂ(gfnJrl + 19fn - 5fn71 + fﬂ*?) .

page 479

CHAPTER 8. ——




WWV. ZI T e.Ir

CHAPTER 8. ——

In this problem, f,, 1, = \/ts+1 + yn+1 - Since the ODE is nonlinear, an equation
solver must be implemented in order to approximate the solution of

h
Ynt1 = Yn + 21 [9\/ bt + Ynsr £19 fn =5 fra + fn—?]

at each time step.

n =10 n =20 n =30 n = 40
t, | 0.5 1.0 1.5 2.0
Yn | 3.962186 | 5.108903 | 6.431390 | 7.923385

(c). The fourth order backward differentiation formula is

1
Yn+1 = %[48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn—3 + 12hfn+1]-

Since the ODE is nonlinear, an equation solver is needed to approximate the solution of

1
Yni1 = 52 [48 Y, — 36 Y1 + 16 Y — 3yn—y + 12h\/tpis + Yot |

at each time step.

n = 10 n =20 n =30 n = 40
t, | 0.5 1.0 1.5 2.0
Yn | 3.962186 | 5.108903 | 6.431390 | 7.923385

The exact solution is given implicitly by

2 +2\/t+y—2a7“ctanh\/t+y=t+2\f—2arctanh\/37.

"lyre—1)
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10(a). The predictor formula is

h
Yntr1 = Yn + _(55fn - 59fn71 + 37fn72 - 9fn73)-

24

With f,+1 = f(tnt1, Yni1), the corrector formula is

h
Yn+1 = Un + ﬁ(gfn+l + 19fn - 5fn—1 + fn—?) .

We use the starting values generated by the Runge-Kutta method :

n=3
0.15
1.160740

n=2
0.1
1.104843

n=1
0.05
1.051230

n=>0
0.0
1.0

tn
Yn

n = 40
2.0
5.495872

n =10
0.5
1.612622

n =20
1.0
2.480909

n =30
1.5
3.7451479

tn
Yn

(b). With f, 11 = f(tns1,Yns1), the fourth order Adams-Moulton formula is

h
Yn+1 = Un + ﬂ(gfnJrl + 19fn - 5fn71 + fﬂ*?) .

In this problem, f,, 1, = 2¢,41 + exp( — t,11yus1) - Since the ODE is nonlinear, an
equation solver must be implemented in order to approximate the solution of

h
Yn+1 = YUn + —{9[2 tn—H + eﬂfp( - t71,+1 yn—&-l)] + 19 fn -5 fn—l + fn—z}

24

at each time step.

n =10 n =20 n =30 n = 40
t, | 0.5 1.0 1.5 2.0
Yn | 1.612622 | 2.480909 | 3.7451479 | 5.495872

(c). The fourth order backward differentiation formula is

Yn+1 =

25

1
[48 yn - 36 yn—l + 16 yn—2 - 3 yn—3 + 12hfn+1]-

Since the ODE is nonlinear, we obtain the implicit equation

1
Yn+1 = g{48 Yn — 36 Yn—1 + 16 Yn—2 — 3 Yn—3 + 12h[2 toy1 +exp( — tog yn+1)]}'
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n =10 n =20 n =30 n = 40
t, | 0.5 1.0 1.5 2.0
yn | 1.612623 | 2.480905 | 3.7451473 | 5.495869

11(a). The predictor formula is

h
Yntr1 = Yn + ﬂ(55fn - 59fn71 + 37fn72 - 9fn73)-

With f, 11 = f(tnt1, Yni1), the corrector formula is

h
Yn+1 = Un + ﬁ(gfn+l + 19fn - 5fn—1 + fn—?) .

Using the starting values generated by the Runge-Kutta method :

n=0|n=1 n=2 n=3
t, | 0.0 0.05 0.1 0.15
Yo | —2.0 ] —1.958833 | —1.915221 | — 1.868975

n =10 n = 20 n = 30 n = 40
t, | 0.5 1.0 1.5 2.0
Yn | — 1447639 | — 0.1436281 | 1.060946 | 1.410122

(b). With f,11 = f(tns1,Yns1), the fourth order Adams-Moulton formula is

h
Yn+1 = Un + ﬂ(gfnJrl + 19fn - 5fn71 + fﬂ*?) .

In this problem,

4 —tpt1 Yns

f +1 =
" 1+ yr%-s-l

Since the differential equation is nonlinear, an equation solver is used to approximate
the solution of

h 4 —tny1 Y
n+1 — Yn =9 19 fn =5 fu- n—
Yn+1 y+24 T+ 02, +19 f, Jn + o
at each time step.
n =10 n = 20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
Yn | — 1447638 | — 0.1436767 | 1.060913 | 1.410103
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(c). The fourth order backward differentiation formula is

1
Yn+1 = %[48 Yn — 36 Yn—1 + 16 Yn—2 — 3ynf3 + 12hfn+1]

Since the ODE is nonlinear, an equation solver must be implemented in order to
approximate the solution of

1 4=ty Ynn
1 = — |48y, — 36y, + 16 y,,—o — 3yp_s + 12h—————
Yn+1 25 Y Yn—1 + 10 Yn— Yn—3 + T+ 02,
at each time step.
n =10 n =20 n =30 n = 40

t, | 0.5 1.0 1.5 2.0
yn | — 1.447621 | —0.1447619 | 1.060717 | 1.410027

12(a). The predictor formula is

h
Ynt1 = Yn + ﬂ(55fn - 59fn71 + 37fn72 - 9fnf3)-

With f,11 = f(tni1, Ynsi1), the corrector formula is

h
Ynt1 = Yn + ﬂ(gfmrl + 19fn - 5fnfl + fan) .

We use the starting values generated by the Runge-Kutta method :

n=0|n=1 n =2 n=3
t, 0.0 0.05 0.1 0.15
Yn | 0.5 0.5046218 | 0.5101695 | 0.5166666

n = 10 n =20 n =30 n = 40
t, | 0.5 1.0 1.5 2.0
Yn | 0.5909091 | 0.8000000 | 1.166667 | 1.750000

(b). With f, 1 = f(tns1,Yns1), the fourth order Adams-Moulton formula is

h
Yn+1 = Un + ﬁ(g fn-i—l +19 fn -5 fn—l + fn—2) .

In this problem,
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f _ yiﬂ + 28041 Ynta
n+1 3+t%+1 .

Since the ODE is nonlinear, an equation solver is needed to approximate the solution of

h 9 y?ﬁ-l +2 tn—i—l Yn+1

n+1 — Yn a0 19 n — 5 n— n—
Yn+1 y+24 3+t%+1 +19 f S+ foa
at each time step.
n =10 n = 20 n =30 n =40
t, | 0.5 1.0 1.5 2.0
Yn | 0.5909091 | 0.8000000 | 1.166667 | 1.750000

(c). The fourth order backward differentiation formula is
1
Yn+1 = %[48 Yn — 36 Yn—1 + 16 Yn—2 — 3 Yn—3 + 12hfn+1]-

Since the ODE is nonlinear, we obtain the implicit equation

1
Ynt+1 = % 48 Yn — 36 Yn—1 + 16 Yn—2 — 3yn—3 + 12h

yiﬂ + 2 tnt1 Ynt1

3+
n =10 n =20 n =30 n = 40
t, | 0.5 1.0 1.5 2.0
yn | 0.5909092 | 0.8000002 | 1.166667 | 1.750001

The exact solution of the IVP is y(t) = (3 +2)/(6 —t).

13. Both Adams methods entail the approximation of f(¢,y), on the interval [¢,, , t,,1],
by a polynomial. Approximating ¢'(t) = P,(t) = A, which is a constant polynomial,
we have
tnt1
¢(tn+1) - ¢(tn) = / Adt
tn
Setting A =\ f, + (1 — \) f,,_1, where 0 < X\ < 1, we obtain the approximation
Yn+1 = Un + h[)\ fn + (1 - )\)f71,—1]~
An appropriate choice of A yields the familiar Euler formula. Similarly, setting

A:)‘fn_‘_(l_)‘)fn—i-la

where 0 < A < 1, we obtain the approximation
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Yn+1 = Yn + h[)\ fn + (1 - )\)fn-‘rl]'

14. For a third order Adams-Bashforth formula, we approximate f(¢,y), on the interval
[tn , tni1], DY @ quadratic polynomial using the points (¢,—o, Yn—2) , (tn—1,Yn—1) and
(tn,yn). Let Py(t) = At*> + Bt + C'. We obtain the system of equations
Ati_Q + Bt 5 + C= fnf2
At%_l + Btn—l + C = fn—l
At2 + Bt, +C = f,.

For computational purposes, assume that ¢, = 0, and ¢, = nh . It follows that

A= fn - anfl + fn72

2 h?
B B=2n)fp+U@n—4)fr1+ (1 —2n)fr
2h
> —3n+2 2 —
C = %fn + (2/)’L — /)’LQ)fn_l + n 2 nfn_Q-
We then have
tn+l
Ynt1— Yn = / [At* + Bt + C]dt
tn
3( .2 1 2 1
= Ah’(n +n+§ + Bh n+§ + Ch,
which yields

h
Yn+1 — Yn = E(ngn - 16fn71 + 5fn72) .

15. For a third order Adams-Moulton formula, we approximate f(¢,y), on the interval
[tn s tni1], bY @ quadratic polynomial using the points (¢, ,Yn—1) » (tn , yn) and
(tni1,Yns1). Let Py(t) = at? 4+ Bt + ~. This time we obtain the system of algebraic
equations

ati_1 + ﬁtn—l + Y= fn—l
@t%‘i‘ﬁtn‘*"}’:fn
O‘tiﬂ + Bt +7 = for-

For computational purposes, again assume that t, = 0, and ¢,, = nh . It follows that
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o = fn,—l - 2fn + f’n,—&-l
2 h?
—@2n+ 1) fo+4nf, + (1 —2n) fun
b= 2h
nz—%71 n®—n
Y= fn71+(1_n2)fn+7fn+l'

2 2

We then have
tn+1 9
Ynt1 = Yn =/ [ot® + Bt + ] dt
t?l

1 1
:ah3(n2+n+§> +6h2<n+ 5) +~h,

which results in

h
Yn+1 — Yn = E<5fn+1 + an - fn—l) .
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Section 8.5

1(a). The general solution of the ODE is y(t) = ce’ + 2 — t. Imposing the initial
condition, y(0) = 2, the solution of the IVP is ¢,(t) =2 —t.

(b). If instead, the initial condition y(0) = 2.001 is given, the solution of the IVP is
&y(t) = 0.001 e’ +2 —t. We then have ¢,(t) — ¢, (¢) = 0.001 ¢’ .

3. The solution of the initial value problem is ¢(t) = e 100% +¢.

(a,b). Based on the exact solution, the local truncation error for both of the Euler
methods is

10* .
‘eloc| S TeflootnhZ.

Hence |e,,| < 5000 h?, forall 0 < £, < 1. Furthermore, the local truncation error is
greatest near t = 0. Therefore |e;| < 5000 k% < 0.0005 for h < 0.0003. Now the
truncation error accumulates at each time step. Therefore the actual time step should be
much smaller than h ~ 0.0003. For example, with A = 0.00025, we obtain the data

Euler B.Euler | ¢(t)
t=0.05| 0.056323 | 0.057165 | 0.056738
t=0.1 | 0.100040 | 0.100051 | 0.100045

Note that the total number of time steps needed to reach ¢t = 0.1 1s N = 400.

(c). Using the Runge-Kutta method, comparisons are made for several values of h :

h=0.1:
d)(t) Yn Yn — d)(tn)
t =0.05 | 0.056738 | 0.057416 | 0.000678
t=0.1 0.100045 | 0.100055 | 0.000010
h = 0.005 :
¢(t) Yn Yn — ¢(tn)
t =0.05 | 0.056738 | 0.056766 | 0.000027
t=0.1 0.100045 | 0.100046 | 0.0000004

6(a). Using the method of undetermined coefficients, it is easy to show that the general
solution of the ODE is y(t) = c e + t2. Imposing the initial condition, it follows that
¢ = 0 and hence the solution of the IVP is ¢(t) = ¢2.

(b). Using the Runge-Kutta method, with ~ = 0.01, numerical solutions are generated
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for various values of \ :
A=1:
¢(t) Yn |yn — ¢(tn)|
t=0.251]0.0625 | 0.0624999.. | 2 x 107"
t=0.5 0.25 0.25 0
t=0.75 1 0.5625 | 0.5625 0
t=1.0 1.0 1.0 0
A=10:
¢(t) Yn |yn — ¢(tn)|
t=0.25| 0.0625 | 0.0624998.. | 2.215 x 1077
t=0.5 0.25 0.249997 2.920 x 107¢
t=0.75 | 0.5625 | 0.562464 3.579 x 107°
t=1.0 1.0 0.999564 4.362 x 1074
A =20
¢(t) Yn ‘yn - ¢(tn)|
t=10.251]0.0625 | 0.062889.. | 1.10 x 1073
t=0.5 |0.25 0.248342 1.658 x 1073
t=0.75 1| 0.5625 | 0.316458 0.246042
t=1.0 1.0 —35.5139 | 36.5139
A=D50:
¢(t) Yn |yn — ¢(tn)|
t =0.25 1] 0.0625 | — 0.044803.. 0.107303
t=0.5 0.25 — 28669.55 28669.804
t=0.7510.5625 | —7.66014 x 10° | 7.66014 x 10°
t=1.0 1.0 — 2.04668 x 10" | 2.04668 x 10"

The following table shows the calculated value, y, , at the first time step :

y1(>‘ =1)

y1(>\ = 10)

y1(>‘ = 20)

yl(>\ = 50)

o[t
0

—4

9.99999 x 1077

9.99979 x 1077

9.99833 x 1077

9.97396 x 1077

(¢). Referring back to the exact solution given in Part(a), if a nonzero initial condition,
say y(0) = €, is specified, the solution of the IVP becomes

o:(t) = ceM + 2.

We then have |¢(t) — ¢-(t)| = || . Itis evident that for any ¢ > 0,
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1im [6() — 6.(1)] = oo.

This implies that virtually any error introduced early in the calculations will be magnified
as A— oo . The initial value problem is inherently unstable.
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1. In vector notation, the initial value problem can be written as

d

dt

(

Y

(a). The Euler formula is

That is,

(

T

LTn+1

)=

Yn+1

(

‘T'IL

y7 3

rt+y+t
dx — 2y

)
)+

x(0)

(

Tn+ Yn +tn
4~T’n, - 22/7),

Lp+l = T + h(xn + Yn + tn)
Yn+1 = Yn + h(4xn - 2yn>-

With h = 0.1, we obtain the values

1
0

)
)

n=2[n=4 |n==~6 n==3, n =10
t, | 0.2 0.4 0.6 0.8 1.0
z, | 1.26 1.7714 | 2.58991 | 3.82374 | 5.64246
Yn | 0.76 1.4824 | 2.3703 | 3.60413 | 5.38885

(b). The Runge-Kutta method uses the following intermediate calculations:

knl = (In + Yn + tn 745671 - 2yn)T

h

kn2 = |:xn + §k1111 + UYn +
h 1

an = |z, + §kn2 + Yn +

h
57%31 +t

h
§k,§2 +t

h
n+_74

h
n+_74

2

2

( h
Ty +
(ot

§k1111

— !

Koy = [T, + hk)y + yn + Wkl + t + B 4(z, + hEL,) —

With h = 0.2, we obtain the values:

2

)
h h
2 ’I”LQ) - 2 (yTL +

(yn + hk72L3)]T'

n=1 n=2 n=3 n=4 n=>5
t, | 0.2 0.4 0.6 0.8 1.0
z, | 1.32493 | 1.93679 | 2.93414 | 4.48318 | 6.84236
Yn | 0.758933 | 1.57919 | 2.66099 | 4.22639 | 6.56452

(c). With h = 0.1, we obtain
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n=2 n=4 n==~06 n==~§ n =10

t, | 0.2 0.4 0.6 0.8 1.0

z, | 1.32489 | 1.9369 | 2.93459 | 4.48422 | 6.8444

yn | 0.759516 | 1.57999 | 2.66201 | 4.22784 | 6.56684

The exact solution of the IVP is

2 1 2
t) = 2t —_3t——t—_
o(t) ="+ ge 379

8 2 1
N2t St _ 2y L

3(a). The Euler formula is
n n _tn n - n_l
o) =G )
Yn+1 Yn L

Tn+1 :xn+h( _tnxn —Yn — 1)
Yn+1 = Un + h(xn)-

That is,

With h = 0.1, we obtain the values

n=2|n=4 n==~6 n=2~8 n =10
t, | 0.2 0.4 0.6 0.8 1.0
z, | 0.582 | 0.117969 | — 0.336912 | — 0.730007 | — 1.02134
yn | 1.18 1.27344 | 1.27382 1.18572 1.02371

(b). The Runge-Kutta method uses the following intermediate calculations:

k, = (_tnxn_yn_laxn)T

h h h h T
h h h ho 1"
K,; = |:— (tn + 5) (xn + §k'r1L2> - (yn + 51{37212) —1,z,+ 514771&]

Koy = [ = (tn +h)(z, + hk}zg) — (Y + hkfm) -1,z + hk}w]T'
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With h = 0.2, we obtain the values:
n=1 n=2 n=23 n=4 n=>5
t, 0.2 0.4 0.6 0.8 1.0
T, | 0.568451 | 0.109776 | — 0.32208 | — 0.681296 | — 0.937852
yn | 1.15775 | 1.22556 | 1.20347 1.10162 0.937852
(c¢). With h = 0.1, we obtain
n=2 n=4 n==~6 n=3~8 n =10
t, 0.2 0.4 0.6 0.8 1.0
T, | 0.56845 | 0.109773 | — 0.322081 | — 0.681291 | — 0.937841
yn | 1.15775 | 1.22557 | 1.20347 1.10161 0.93784
4(a). The Euler formula gives
Tpil = Ty + h(xn — UYn + Ty yn)
Yn+1 = YUn + h(3$n - 2yn — Ty yn)-
With h = 0.1, we obtain the values
n=2 n=4 n==~6 n=2~8 n =10
t, | 0.2 0.4 0.6 0.8 1.0
T, | —0.198 | —0.378796 | — 0.51932 —0.594324 | — 0.588278
Yn | 0.618 0.28329 —0.0321025 | —0.326801 | — 0.57545

(b). Given

ft,z,y) =z —y+axy
g(t,x,y) :31’—2?/—1'?4,

the Runge-Kutta method uses the following intermediate calculations:

knl - [ tnaxnmyn) g(tnaxnayn)]
h oo \1"
TL2_ 1'714—2 nl?yn+2 nl 9| tn +2 xn+2 nlayn+ anl
b h h h h 4
|:f< 2 xn+ 2]%}1127%4‘ 2k7212 » g t + 2 xn+ 2k71127yn+ 2k7212>:|

= [f(tn + hyzy + hk}g, yo + hk2s), g(tn + by 2y + B, yn + hkng)] .
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With h = 0.2, we obtain the values:
n=1 n=2 n=3 n=4 n=>5
t, | 0.2 0.4 0.6 0.8 1.0
r, | —0.196904 | —0.372643 | — 0.501302 —0.561270 | — 0.547053
Yn | 0.630936 0.298888 —0.0111429 | — 0.288943 | — 0.508303
(c¢). With h = 0.1, we obtain
n=2 n=4 n==~6 n=3~8 n =10
t, | 0.2 0.4 0.6 0.8 1.0
x, | —0.196935 | — 0.372687 | — 0.501345 —0.561292 | — 0.547031
Yn | 0.630939 0.298866 —0.0112184 | — 0.28907 — 0.508427
5(a). The Euler formula gives
Tpi1 = xp + hlz,(1 =05z, —0.5y,)]
Ynt+1 = Yn + hlyn( — 0.25 + 0.5 x,)].
With h = 0.1, we obtain the values
n=2 n=4 n==~6 n=2~8 n =10
t, | 0.2 0.4 0.6 0.8 1.0
T, | 2.96225 | 2.34119 | 1.90236 | 1.56602 | 1.29768
Yn | 1.34538 | 1.67121 | 1.97158 | 2.23895 | 2.46732

(b). Given

flt,z,y) =2(1—0.52—0.5y)
g(t,z,y) =y(—0.25+0.52),

the Runge-Kutta method uses the following intermediate calculations:

knl - [ tnaxnmyn) g(tnaxnayn)]
h oo \1"
TL2_ 1'714—2 nl?yn+2 nl 9| tn +2 xn+2 nlayn+ anl
b h h h h 4
|:f< 2 xn+ 2]%}1127%4‘ 2k7212 » g t + 2 xn+ 2k71127yn+ 2k7212>:|

= [f(tn + hyzy + hk}g, yo + hk2s), g(tn + by 2y + B, yn + hkng)] .
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With h = 0.2, we obtain the values:

n=1

n=2

n=3

n=4

n==>5

tn

0.2

0.4

0.6

0.8

1.0

xn

3.06339

2.44497

1.9911

1.63818

1.3555

Yn

1.34858

1.68638

2.00036

2.27981

2.5175

(c¢). With h = 0.1, we obtain

n=2

n=4

n=~06

n=2~8

n =10

tn

0.2

0.4

0.6

0.8

1.0

T

3.06314

2.44465

1.99075

1.63781

1.35514

yTL

1.34899

1.68699

2.00107

2.28057

2.51827

6(a). The Euler formula gives

Tp+l = Tn + h[e:z:p( — T, + yn> -
Ynt1 = Yn + hlsin(z, —

With h = 0.1, we obtain the values

3yn)]'

COS Ty

n=2

n=4

n==~6

n==~8

n =10

tn

0.2

0.4

0.6

0.8

1.0

Ln

1.42386

1.82234

2.21728

2.61118

2.9955

Yn

2.18957

2.36791

2.53329

2.68763

2.83354

(b). The Runge-Kutta method uses the following intermediate calculations:

Kot = [f(tn, Tn, Yn), g(tn,xn,yn

CHAPTER 8. ——

h h oy \1"
K= |f tn+2 mn+2 7117y77+2 nl »9 tn+2 xn+2 nlayn+ anl

[ ( o ’;%)r
[/

(tn + hy @ + By Yo + BEZ), g (tn + 1y @ + By + BEZ)]

h h h
2k71127yn+ 2k22 %Y tn+ 57xn+ rilﬂayn"‘
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With h = 0.2, we obtain the values:
n=1 n=2 n=3 n=4 n=2>5
t, | 0.2 0.4 0.6 0.8 1.0
T, | 1.41513 | 1.81208 | 2.20635 | 2.59826 | 2.97806
Yn | 2.18699 | 2.36233 | 2.5258 | 2.6794 | 2.82487
(c¢). With h = 0.1, we obtain
n=2 n=4 n==~6 n=2~8 n =10
t, | 0.2 0.4 0.6 0.8 1.0
x, | 1.41513 | 1.81209 | 2.20635 | 2.59826 | 2.97806
Yn | 2.18699 | 2.36233 | 2.52581 | 2.67941 | 2.82488

7. The Runge-Kutta method uses the following intermediate calculations:

]T

knl - [xn —4 Yn, — Tn + Yn

h h h hoo 1"
kn2 - |:-1'n + §k,lL1 - 4<yn + §k31)7 - (xn + 514;11&) + Yn + §k31:|

h h h hoo 1"
an - |:-1'n + §k,lL2 - 4<yn + §k32)7 - (xn + 514;11@2) + Yn + §k32:|

Kns = [0 + hkly — 4(yn + hEZ), — (w0 + kL) + yn + B2

Using h = 0.04, we obtain the following values:

n=>5 n =10 n =15 n =20 n =25
t, | 0.2 0.4 0.6 0.8 1.0
z, | 1.3204 1.9952 3.2992 5.7362 10.227
yn | —0.25085 | —0.66245 | — 1.3752 | — 2.6435 | —4.9294
The exact solution is given by
et 4 3t et _ et
t — ’ t - )
ot) = - bl =
and the associated tabulated values:
n=>5 n =10 n=15 n = 20 n =25
t, 0.2 0.4 0.6 0.8 1.0
o(t,) | 1.3204 1.9952 3.2992 5.7362 10.227
W(t,) | —0.25085 | —0.66245 | — 1.3752 | —2.6435 | — 4.9294

8. Let y = x’. The second order ODE can be transformed into the first order system
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with initial conditions z(0) =1, y(0) = 2. Given

the Runge-Kutta method uses the following intermediate calculations:

g yn, —3 ton:|T
h h h T
[y”+ 3l (t” 52 @+ 5 kanyn + ko )]
h h h 4
|:y n27 (tn+ 2 xn—i_ 2kn27yn+ Zk ):|

T

n4 — [ n + hkn?,; (tn + h y LT + hkn?ﬂ Yn + hknB)]

With h = 0.1, we obtain the following values:

n=>5 n =10
t, | 0.5 1.0

T, | 1.543 0.07075
yn | 1.14743 | — 1.3885

9. The predictor formulas are

£(55 fn —99 fn—1 + 37fn—2 - 9fn—3>

Tpi1 = Ty +

24
h
Yn+1 = Un + — 24 (55 gn — 99 In—1 + 37 gn—2 — 9gn—3>-
With f,.1 =201 —4yn and g1 = — Ty + Yoo, the corrector formulas are

h
Tp41 = Tp + ﬂ(g fn+1 +19 fn - 5.][.77,71 + fﬂ*?)

h
+ A 9gn+1 + 19 gn — 5gn71 + gn,72)~

Yn+1 = Yn 24(
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We use the starting values from the exact solution :
n=0|n=1 n =2 n=3
tn |0 0.1 0.2 0.3
z, | 1.0 1.12883 1.32042 1.60021
Yn | 0.0 —0.11057 | —0.250847 | — 0.429696

One time step using the predictor-corrector method results in the approximate values:

n=4(pre) | n = 4(cor)
t, |04 0.4
Tn | 1.99445 1.99521
Yn | — 0.662064 | — 0.662442
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Chapter Nine
Section 9.1

2(a). Setting x = & " results in the algebraic equations

5—r —1 51 . 0
3 1-7)\&/) \o/)
For a nonzero solution, we must have det(A — r1) = r> — 67 + 8 = 0. The roots of
the characteristic equation are r;, = 2 and 7, = 4. For r = 2, the system of equations

reduces to 3¢, = &,. The corresponding eigenvector is £V = (1,3)". Substitution of
r = 4 results in the single equation & = &,. A corresponding eigenvector is

£ =(1,1)".

(b). The eigenvalues are real and positive, hence the critical point is an unstable node.

(c,d).
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A am=-2, 320 =-2 w210 =-2 520 = 2
02 04 ' 0 08 1 02 0: U oog 08 ;
u 0

-0
40
B0
-0

1007

120

140

1807

1804

200

20

40

-60

-60

-100

3(a). Solution of the ODE requires analysis of the algebraic equations

(5 50 )E)=(6)

For a nonzero solution, we must have det(A — r1) = r> — 1 = 0. The roots of the

characteristic equation are , = 1 and r, = — 1. For r = 1, the system of equations
reduces to & = &,. The corresponding eigenvector is £ = (1,1)". Substitution of

r = — 1 results in the single equation 3¢, — & = 0. A corresponding eigenvector is
£ =(1,3)".

(b). The eigenvalues are real, with 7, 7, < 0. Hence the critical point is a saddle.

(c,d).

7
/
<
A
e
7
s
7
v
7
-
s
e
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W) i =-2 k20 = 2
A A =-2 20 = -2

2
4 2
)
8 4
0
212 B
14
B 8
18
20 10
22
224 12
26
-28 14
0 02 04 0% 08 wt 1278 82 0 02 04 06 08 1 12 14 16 18 2
t
W) K@= 2, %20 = -2 )ty x10y= 2 200 = 2
284 144
26
247 124
224
20 109
187
16 1
14 B
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109 B
8
B 4
PE
P ey P ey
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
t 1

5(a). The characteristic equation is given by

1—r -5 2 .
‘ 1 _3_r‘—r +2r+2=0.
The equation has complex roots r, = —1+d¢and r, = —1—14. Forr= —1+1,
the components of the solution vector must satisfy & — (2 4 )&, = 0. Thus the
corresponding eigenvector is € = (2 +4,1)". Substitution of » = — 1 — 4 results

in the single equation &, — (2 — )&, = 0. A corresponding eigenvector is
£ =(2—-14,1)".

(b). The eigenvalues are complex conjugates, with negative real part. Hence the origin
is a stable spiral.
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(c,d).
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m
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fil

6(a). Solution of the ODE:s is based on the analysis of the algebraic equations

i SR)E)-(6)

For a nonzero solution, we require that det(A — rI) = r> + 1 = 0. The roots of the
characteristic equation are » = 4. Setting r = 7, the equations are equivalent to
& — (2414)& = 0. The eigenvectors are £V = (2+i,1)" and €2 = (2 —1i,1)".

(b). The eigenvalues are purely imaginary. Hence the critical point is a center.
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(¢, d).
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7(a). Setting x = £ " results in the algebraic equations

(i ) =(6)

For a nonzero solution, we require that det(A — 7 1) = r? — 2r +5 = 0. The roots
of the characteristic equation are » = 1 £ 2¢. Substituting » = 1 — 27, the two
equations reduce to (1 + )& — & = 0. The two eigenvectors are €0 = (1,1 +4)"
and €% = (1,1 —1i)".

(b). The eigenvalues are complex conjugates, with positive real part. Hence the origin
is an unstable spiral.
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N
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RN

i) xy= 2, w2l = 2 Wity wll)= 2, 2= -2
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8(a). The characteristic equation is given by

1—-7r -5
’ 1 _S_T‘—(r+1)(r+0.25)—0,
with roots 7, = — 1l and r, = — 0.25. For r = — 1, the components of the solution
vector must satisfy & = 0. Thus the corresponding eigenvector is £V = (1,0)".
Substitution of » = — 0.25 results in the single equation 0.75&, +& = 0. A

corresponding eigenvector is £? = (4, — 3)”.

(b). The eigenvalues are real and both negative. Hence the critical point is a stable
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A xly=-2, Q0= 2

-0.24
-0.44
-0.64
-0.64

0] 0.4
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o] i 2R TR
04
1.8 0B
2 08

9(a). Solution of the ODE:s is based on the analysis of the algebraic equations

L)) =6)

For a nonzero solution, we require that det(A — 71) = 7> — 2r + 1 = 0. The single
root of the characteristic equation is 7 = 1. Setting » = 1, the components of the
solution vector must satisfy &, —2¢&, = 0. A corresponding eigenvector is

£E=(2,1".

(b). Since there is only one linearly independent eigenvector, the critical point is an
unstable, improper node.

page 504



WWV. ZI T e.Ir

CHAPTER 9. ——

A T e e e e ]
e e e ]
B e e
— e — 1

— e
T
B

e T
—_—
e
= —
—"" e e
B i e
e
L

i k=2, x20= 2 W) k1= 2 620 = -2

82 _04 05 08 1I 12 14 16 18 2 1804
1604
1404
1204
100
6o
60
-30 40
20
-404 0

-20

02 04 0F 08 g 2714718 18 2

10(a). The characteristic equation is given by

1—7r 2
-5 —-1-r

The equation has complex roots r,, = £ 3i. For r = — 31, the components of the
solution vector must satisfy 5 & + (1 — 3¢)§, = 0. Thus the corresponding eigenvector
is € = (1 —3i, —5)". Substitution of r = 3i resultsin 5&, + (1 +3i)&, =0. A
corresponding eigenvector is £% = (143, —5)".

(b). The eigenvalues are purely imaginary, hence the critical point is a center.
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(c,d).
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12(a). Setting x = £ e" results in the algebraic equations

2—r —5/2 &\ (0

95 —1-r)\&) " \o)
For a nonzero solution, we require that det(A — 1) = r? — r +5/2 = 0. The roots
of the characteristic equation are » = 1/2+3i/2. Substituting » = 1/2 — 3i/2, the

equations reduce to (3 + 37)&; — 5&, = 0. Therefore the two eigenvectors are
€V =(5,34+3i)" and £€® = (5,3 — 34)".

(b). Since the eigenvalues are complex, with positive real part, the critical point is an
unstable spiral.

(c,d).

T e T T T T T T
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14. Setting x’ = 0, that is,

(7 L))

we find that the critical point is X" = ( — 1,0)". With the change of dependent variable,
x = x’ + u, the differential equation can be written as

du [ —2 1
%— 1 _9 u.

The critical point for the transformed equation is the origin. Setting u = £ e" results in

the algebraic equations
—2—r 1 &\ (0
1 -2-rJ\&/) \o)

For a nonzero solution, we require that det(A — r1) = r? + 4r + 3 = 0. The roots
of the characteristic equation are » = — 3, — 1. Hence the critical point is a stable
node.

15. Setting x" = 0, that is,

-1 -1 < — 1
2 —-1)7 \=5)’
we find that the critical point is X" = ( — 2,1)". With the change of dependent variable,
x = x’ + u , the differential equation can be written as

du (-1 -1
it~ \ 2 —1)%
The characteristic equation is det(A — 1) = r? + 2r + 3 = 0, with complex conjugate

roots r = — 1=+ 2\/5 . Since the real parts of the eigenvalues are negative, the critical
point is a stable spiral.

16. The critical point x° satisfies the system of equations
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0 -8\, [ —«a
(¢ )=(57)
It follows that 2 = /6 and y° = /(3. Using the transformation, x = x" + u , the
differential equation can be written as

du 0o —-p

dt (6 0 )“'
The characteristic equation is det(A — 1) = r> + 36 = 0. Since 86 > 0, the roots
are purely imaginary, with » = +4,/(36 . Hence the critical point is a center.

20. The system of ODEs can be written as
d_X _ (G G X.
dt Qs A
The characteristic equation is 72 — pr + ¢ = 0. The roots are given by

pV/P —dg _pEt VA
2 2

T =

The results can be verified using Table 9.1.1.

21(a). If ¢ > 0 and p < 0, then the roots are either complex conjugates with negative
real parts, or both real and negative.

(b). If ¢ > 0 and p = 0, then the roots are purely imaginary.

(c). If ¢ < 0, then the roots are real, with r, - 7, > 0. If p > 0, then either the roots
are real, with r, - 7, > 0 or the roots are complex conjugates with positive real parts.
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Section 9.2

2. The differential equations can be combined to obtain a related ODE

dy 2

de  x
The equation is separable, with

dy  2dx

y oz

The solution is given by y = C x~2. Note that the system is uncoupled, and hence we
also have = = zye ! and y = y,e*.

L T T T T T T S W S T
L T T T T T T S N W N N N
a0 LI T T T T S N N
B T T T e A T N M W N N
I B T T T T T A e N
R R R R T e S e
e I L T A R A
F T L A T A
I T T T T T T ST NN
I . R T T T T T
B R T T
A0 4 R 800 SN N S R e
R T T T e e T S
R S e T
L N T L L
20 % % e SNy e e T e e e e e e e e
B
i T

e e e
Olge 1 185 2 25 3 35 4

In order to determine the direction of motion along the trajectories, observe that for
positive initial conditions, x will decrease, whereas y will increase.
4. The trajectories of the system satisfy the ODE
dy  bx
de  ay’
The equation is separable, with
aydy = —bxdx.

Hence the trajectories are given by b z? + a y? = C?, in which C is arbitrary. Evidently,
the trajectories are ellipses. Invoking the initial condition, we find that C? = ab. The
system of ODEs can also be written as

dx 0 a
E— —b O X.

Using the methods in Chapter 7, it is easy to show that

T = \/ECOS\/@t
y= — \/gsin\/%t.

page 510



WWV. ZI T e.Ir

CHAPTER 9. ——

4

Note that for positive initial conditions, x will increase, whereas y will decrease.

5(a). The critical points are given by the solution set of the equations

z(l—y)=0
y(1+2z)=0.
Clearly, (0,0) is a solution. Ifz # 0,theny = 1 and x = — 1/2. Hence the critical
points are (0,0) and (—1/2,1).
(D).
YR B B
SCRSREE
i
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Iy f,/,/:i;i:i::
B SR ——-y
Yo e e
PRI YRR
AL RN
S o T g e D RN
R oo JUR MR, Y N N H
\mw—/f b NN
R e & BRI, N
B e R R

(c). Based on the phase portrait, all trajectories starting near the origin diverge. Hence
the critical point (0,0) is unstable. Examining the phase curves near the critical point

(—1/2,1),
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the equilibrium point has the properties of a saddle, and hence it is unstable.

6(a). The critical points are solutions of the equations

1+2y=20
1-322=0.

There are two equilibrium points, ( —1//3, — 1/2) and (1/\/§, — 1/2).

(b).
".\.___ Q\\“‘
N
by vy
v Lo
3 |
Ly :.
- I
1 1
;o 7y

(c). Locally, the trajectories near the point < -1//3, -1/ 2) resemble the behavior near
a saddle. Hence the critical point is unstable. Near the point (1 /V3, -1 /2), the
solutions are periodic. Therefore the second critical point is stable.

8(a). The critical points are solutions of the equations

—@-y(l-z-y)=0
z(24+y)=0.

frx=y,thenz=y=0o0orxz=y= —-2. frxr=1—y,thenx=0andy =1, or
x=3and y = — 2. It follows that the critical points are (0,0), (—2, —2),(0,1)
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and (3, — 2).
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Near the critical point (0, 1), the trajectories resemble those of a stable spiral. Hence the

(c). Near the origin, the trajectories resemble those of a saddle, and hence it is unstable.
equilibrium point is asymptotically stable.
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Closer examination reveals that the point ( — 2, — 2) is asymptotically stable, whereas

Based on the global phase portrait, it is evident that the other critical points are nodes.
the point (3, — 2) is unstable.
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9(a). The critical points are given by the solution set of the equations

y2—z—y)=0
—rz—y—2z2y=0.

Clearly, (0,0) is a critical point. If z = 2 — y, then it follows that y(y —2) = 1. The

additional critical points are (1 — V2,14 \/5) and (1 +42,1- \/2_)
(b).

IRy N e /
.
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(c). The behavior near the origin is that of a stable spiral. Hence the point (0, 0) is
asymptotically stable.

R L
e e e e e vt
B S
R Lasth L L R ey A L Y

At the critical point (1 — \/5 , 1+ \/5 ), the trajectories resemble those near a saddle.
Hence the critical point is unstable.
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Near the point (1 + \/5 ,1— \/5 ) , the trajectories resemble those near a saddle.

Hence the critical point is also unstable.
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10(a). The critical points are solutions of the equations

theny = 0. If z = y, then either

The origin is evidently a critical point. Ifz = — 2,

y=0orx =y = —1lorz =y =2. Hence the other critical points are ( — 2,0),

(=1, —1)and (2,2).
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(c). Based on the global phase portrait, the critical points (0,0) and ( — 2, 0) have the
characteristics of a saddle. Hence these points are unstable. The behavior near the
remaining two critical points resembles those near a stable spiral. Hence the critical
points ( — 1, — 1) and (2, 2) are asymptotically stable.

11(a). The critical points are given by the solution set of the equations
z(1—2y)=0
y—a*—y*=0.

Ifz =0, theneithery =0ory =1. Ify = 1/2, thenz = +1/2. Hence the critical
points are at (0,0), (0,1), (—1/2,1/2)and (1/2,1/2).

(0).
15

g %,
G e iy
e\ N
Y \{3 AN j; 7
Q\ \Khﬁ_né. .// 5

y y :

(c). The trajectories near the critical points ( — 1/2,1/2) and (1/2,1/2) are closed
curves. Hence the critical points have the characteristics of a center, which is stable.
The trajectories near the critical points (0,0) and (0, 1) resemble those near a saddle.
Hence these critical points are unstable.
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13(a). The critical points are solutions of the equations
2+ x)(y—x)=0
(4—2)(y+x)=0.
Ify=x,theneitherx =y=0o0orx=y=4. fxr = —2,theny=2. lfzr = —y,

then y = 2 or y = 0. Hence the critical points are at (0,0), (4,4) and ( — 2, 2).
(b).
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(c). The critical point at (4, 4) is evidently a stable spiral, which is asymptotically

stable. Closer examination of the critical point at (0, 0) reveals that it is a saddle,
which is unstable.
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The trajectories near the critical point ( — 2, 2) resemble those near an unstable node.
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14(a). The critical points consist of the solution set of the equations

It is easy to see that the only critical point is at (0, 0).

—P L T

[N
E
)

(c). The origin is an unstable spiral.

16(a). The trajectories are solutions of the differential equation

4x

dy

dx

b

Y

which can also be written as 4x dx + ydy = 0. Integrating, we obtain

2 12 =2

4x

Hence the trajectories are ellipses.
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Based on the differential equations, the direction of motion on each trajectory is
clockwise.

17(a). The trajectories of the system satisfy the ODE

dy 2rx+y
de y

which can also be written as (2x + y)dz — ydy = 0. This differential equation is
homogeneous. Setting y = x v(z), we obtain

dv 2
v+r—=-+1,
de v

that is,

dv  2+v—1°
r— = ——.

dx v
The resulting ODE is separable, with solution 23 (v + 1)(v — 2)> = C. Reverting back
to the original variables, the trajectories are level curves of

H(z,y) = (z+y)(y—22)"
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The origin is a saddle. Along the line y = 2z, solutions increase without bound. Along
the line y = — x, solutions converge toward the origin.

18(a). The trajectories are solutions of the differential equation

dy z+y

dr  x—vy

b

which is homogeneous. Setting y = = v(x), we obtain

that is,

The resulting ODE is separable, with solution

arctan(v) = In|z|v/ 1+ v2.

Reverting back to the original variables, the trajectories are level curves of

H(x,y) = arctan(y/z) — In\/ x> + 3% .

page 520



WWV. ZI T e.Ir

CHAPTER 9. ——

The origin is a stable spiral.

20(a). The trajectories are solutions of the differential equation

dy — 2xy* + 62y
de 222y — 322 — 4y’

which can also be written as (2zy* — 6 xy)dz + (2z%y — 322 — 4y)dy = 0. The
resulting ODE is exact, with

OH OH
—— =2zxy® — 62y and — = 22%y — 3% — 4y.

ox 0y
Integrating the first equation, we find that H (z,y) = z*y* — 3z%y + f(y). It follows
that

OH
Dy =227y — 32" + f'(y).
Comparing the two partial derivatives, we obtain f(y) = — 23> + ¢. Hence

H(zx,y) = z*y* — 32y — 20/°.
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(b).
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The associated direction field shows the direction of motion along the trajectories.

— ]

P A |
e A
T
e

S e —
T e

AT S e o A LV W VS
\me/j!\\xmmm

Sy, e T o oo
N S T
R,

SUCEE R W T S AN B P e

NS L s e
PV SN S S b
e T T T

————— e e ]

—w NN VTS
LN
il i

L .

1——-——FT~——_' R T T T e e
w—-_v-ﬁr-—.hm_.m_“mz:'\ I e iy Ry
L R I T T A e e
R LTI T A e T Pl
N T - S A B A g e
L N T A U A Y R gy
R T T B g R W B A A
SNNNAAN T SN LS s
R T T T T T O O A A
N T A A O A A A AV AV Y

22(a). The trajectories are solutions of the differential equation
@/_-—6x+x3
dr 6y
which can also be written as (6 x — 2°)dz + 6 ydy = 0. The resulting ODE is exact,
with
0H o0H

%:61/‘—%3 anda—y:(iy

Integrating the first equation, we have H(z,y) = 322 — x'/4 + f(y). It follows that

0H

8—y = f'(y).

Comparing the two partial derivatives, we conclude that f(y) = 3y*> + c. Hence
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Section 9.3

1. Write the system in the form x’ = Ax + g(x). In this case, it is evident that
d (z 1 0 T — 2
_ — + Yy .
i,)=( %) G+ ()

That is, g(x) = (-2 2?)". Using polar coordinates, ||g(x)|| = r2v/sin’0 + cos*6
and ||x|| = r. Hence

lir% HgH(xXH)H = lirr%] r/ sint0 + costd =0,

and the system is almost linear. The origin is an isolated critical point of the linear

system %(i) _ G _02) (i)

The characteristic equation of the coefficient matrix is 7> + r — 2 = 0, with roots
ry =1 and r, = — 2. Hence the critical point is a saddle, which is unstable.

2. The system can be written as

7= (20 200+ ()

Following the discussion in Example 3, we note that F'(x,y) = — = + y + 2xy and
G(x,y) = —4x —y + 2° — y>. Both of the functions F and G are twice differentiable,
hence the system is almost linear. Furthermore,

Fo=—-142y, Fy=1+2z,G, = —4+2z2,G, = —1-2y.

The origin is an isolated critical point, with
F.(0,0) F,(0,00\ (-1 1
G,(0,0) G,0,0)) \ -4 —1)°
The characteristic equation of the associated linear system is 72 + 27 + 5 = 0, with

complex conjugate roots 7, = — 1=£2¢. The origin is a stable spiral, which is
asymptotically stable.

5(a). The critical points consist of the solution set of the equations
24+2)(y—2x)=0
(4—z)(y+2x)=0.

As shown in Prob. 13 of Section 9.2, the only critical points are at (0,0), (4,4) and
( —2 ) 2)
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(b, c). Firstnote that F(z,y) = (2+z)(y —x) and G(x,y) = (4 —z)(y + x). The
Jacobian matrix of the vector field is

B Gac('r:y) Gy(xvy) B 4—y—23§‘ 4—x)

At the origin, the coefficient matrix of the linearized system is

J(0,0) = ( _42 i)

with eigenvalues r, =1 —+/17 and r, = 1+ /17 . The eigenvalues are real, with
opposite sign. Hence the critical point is a saddle, which is unstable. At the equilibrium
point ( — 2, 2), the coefficient matrix of the linearized system is

s-2.2= (g o).

with eigenvalues r;, = 4 and r, = 6. The eigenvalues are real, unequal and positive,
hence the critical point is an unstable node. At the point (4 ,4), the coefficient matrix

of the linearized system is
—6 6
s =( 23 0):

with complex conjugate eigenvalues r,, = — 3 £171/39 . The critical point is a stable
spiral, which is asymptotically stable.

Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.

(d).
N I 7277
—— N S
= b [ ST
s W) IArAry/d
o AT &
Py s VAN
ey AV avs ey ivai
/I
5 §|f£ A \—A1‘E
s’f"j i }/ﬁhﬁ—d—
! { L=
! . N
Zﬁﬁ—-———-—q—
T —
! g - o
4 T
//.a—"'.ro—'-.-—m—q—q—q—-—
O e

7(a). The critical points are solutions of the equations
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1—y=0
(z—y)(z+y)=0.

The first equation requires that y = 1. Based on the second equation, z = 4+ 1. Hence
the critical points are (— 1,1) and (1,1).

(b,c). F(z,y) =1—1y and G(x,y) = 2> — y*. The Jacobian matrix of the vector

field is
At the critical point ( — 1, 1), the coefficient matrix of the linearized system is

J(—1,1):(_02 :;)

with eigenvalues r, = — 1 — /3 and 7, = — 1+ /3 . The eigenvalues are real, with
opposite sign. Hence the critical point is a saddle, which is unstable. At the equilibrium
point (1, 1), the coefficient matrix of the linearized system is

J(1,1) = ((2) :;)

with complex conjugate eigenvalues 7, = — 1 £¢. The critical point is a stable
spiral, which is asymptotically stable.
(d).
g IS
5 77
I s
¢ P
/ e
; N
4 'T
f B
23
i
ey
vy
A7

Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.

8(a). The critical points are given by the solution set of the equations
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z(l—xz—y)=0
y(2—y—3x)=0.
Ifz =0, theneithery =0ory=2. fy=0,thenz =0o0rz=1. fy=1—-2x,

then eitherz = 1/2orz = 1. Ify =2 — 3z, thenz = 0 or x = 1/2. Hence the
critical points are at (0,0), (0,2), (1,0) and (1/2,1/2).

(b,c). Note that F(z,y) =2 — 2*> — 2y and G(x,y) = (2y — y*> — 3xy)/4. The
Jacobian matrix of the vector field is

1=(ain o) =(T8n" o)

At the origin, the coefficient matrix of the linearized system is

wo=(2 1)

with eigenvalues r; = 1 and r, = 1/2. The eigenvalues are real and both positive.
Hence the critical point is an unstable node. At the equilibrium point (0, 2), the
coefficient matrix of the linearized system is

02=(2y )

with eigenvalues r, = — 1 and 7, = — 1/2. The eigenvalues are both negative, hence
the critical point is a stable node. At the point (1,0), the coefficient matrix

of the linearized system is
-1 -1
0= (5" 7))

with eigenvalues 7, = — 1 and r, = — 1/4. Both of the eigenvalues are negative, and
hence the critical point is a stable node. At the critical point (1/2,1/2), the coefficient
matrix of the linearized system is

with eigenvalues , = —5/16 — /57 /16 and r, = — 5/16 + /57 /16. The
eigenvalues are real, with opposite sign. Hence the critical point is a saddle, which is
unstable.

OO D=

J(1/2,1/2) = (:

W D=
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Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each

critical point.

9(a). Based on Prob. 8, in Section 9.2, the critical points are at (0,0),( —2, — 2),

(0,1)and (3, —2).

(b,c). Firstnotethat F'(z,y) = — (x —y)(1 —xz —y) and G(z,y) = (2 +y). The
Jacobian matrix of the vector field is
J— 20 —1 1—-2y
\2+y x

At the origin, the coefficient matrix of the linearized system is
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-1 1
with eigenvalues 7, = 1 and r, = — 2. The eigenvalues are real, with opposite sign.

Hence the critical point is a saddle, which is unstable. At the critical point (0, 1),
the coefficient matrix of the linearized system is

J(0,1) = ( _31 _01>,

with complex conjugate eigenvalues 7, = — 1/241i4/11 /2. The critical point is a
stable spiral, which is asymptotically stable. At the point ( — 2, — 2), the coefficient
matrix of the linearized system is

J<—2,—2>:(‘05 _52),

with eigenvalues r, = — 2 and r, = — 5. The eigenvalues are unequal and negative,
hence the critical point is a stable node. At the point (3, — 2), the coefficient matrix

of the linearized system is
5 9

with eigenvalues 7, = 3 and r, = 5. The eigenvalues are unequal and positive, hence
the critical point is an unstable node.

(d).

Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.
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11(a). The critical points are solutions of the equations

2z +y+ay’ =0
r—2y—xy=0.

Substitution of y = z/(z + 2) into the first equation results in
32" + 132° + 282 + 20z = 0.

One root of the resulting equation is z = 0. The only other real root of the equation is

¢ = é {(287 n 18\/2019>1/3 — 83 (287 n 18\/2019)1/3 . 13} .

Hence the critical points are (0,0) and ( — 1.19345...,1.4797...).

(b,c). F(z,y) = —2®> —zy and G(z,y) = (2y — y* — 3zy)/4. The Jacobian
matrix of the vector field is

J— (Fx(x,y) Fy(m,y)) _ (2+y3 1+3xy2).

At the origin, the coefficient matrix of the linearized system is

J(0,0):(? _12)

with eigenvalues 7, = \/g and r, = — \/g . The eigenvalues are real and of opposite
sign. Hence the critical point is a saddle, which is unstable. At the equilibrium point
(—1.19345...,1.4797...), the coefficient matrix of the linearized system is

—1.2399 — 6.8393)

J(—1.19345,1.4797) = ( — 24797  — 0.8065

with complex conjugate eigenvalues r,, = — 1.0232+£4.1125¢. The critical point is
a stable spiral, which is asymptotically stable.
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In both cases, the nonlinear terms do not affect the stability and type of the critical point.

12(a). The critical points are given by the solution set of the equations

(1+z)siny =0

1—x—cosy=0.

If x = — 1, then we must have cosy = 2, which is impossible. Therefore siny = 0,
which implies that y = nm,n =0,+1,2,.... Based on the second equation,

r=1-—cosnm.
It follows that the critical points are located at (0, 2k7) and (2, (2k + 1)m) , where
E=0,£1,2,....

(b,c). Giventhat F(z,y) = (1 +z)siny and G(x,y) =1 —x — cosy, the
Jacobian matrix of the vector field is

(siny (1+x)cosy)
J= . .
-1 siny

At the critical points (0, 2k), the coefficient matrix of the linearized system is

30, 2km) = ( Y é)

with purely complex eigenvalues 7, = &£ 4. The critical points of the associated linear
systems are centers, which are stable. Note that Theorem 9.3.2 does not provide a
definite conclusion regarding the relation between the nature of the critical points of the
nonlinear systems and their corresponding linearizations. At the points (2, (2k + 1)),
the coefficient matrix of the linearized system is

32, (2 + 1)7] = ( Y _03),
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with eigenvalues r; = \/§ and r, = — \/§ . The eigenvalues are real, with opposite
sign. Hence the critical points of the associated linear systems are saddles, which are
unstable.

(d).

/
I
|
i
\
\

As asserted in Theorem 9.3.2, the trajectories near the critical points (2, (2k + 1))
resemble those near a saddle.

———————
B T Ry

Upon closer examination, the critical points (0, 2k7) are indeed centers.

T T e e
T T e e

A
N
N
~
S
~
~
.
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13(a). The critical points are solutions of the equations
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x—y2:O
y—z>=0.

Substitution of y = z? into the first equation results in
r—z'=0,

with real roots z = 0, 1. Hence the critical points are at (0,0) and (1,1).

(b, c). In this problem, F(x,y) = 2z —y* and G(x,y) = y — 2*. The Jacobian
matrix of the vector field is
_( 1 =2
J= ( — 2 1 )

At the origin, the coefficient matrix of the linearized system is

3(0,0) = (é 2)

with repeated eigenvalues r;, = 1 and r, = 1. Itis easy to see that the corresponding
eigenvectors are linearly independent. Hence the critical point is an unstable proper
node. Theorem 9.3.2 does not provide a definite conclusion regarding the relation
between the nature of the critical point of the nonlinear system and the corresponding
linearization. At the critical point (1, 1), the coefficient matrix of the linearized system

J(1,1) = ( _12 _12)

with eigenvalues r;, = 3 and 7, = — 1. The eigenvalues are real, with opposite sign.
Hence the critical point is a saddle, which is unstable.
(d).

o P e T A e e

Closer examination reveals that the critical point at the origin is indeed a proper node.
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14(a). The critical points are given by the solution set of the equations

l—2y=0

T — y3 =0.
After multiplying the second equation by y, it follows that y = £ 1. Hence the critical
points of the system are at (1,1) and (— 1, — 1).

b,c). Note that F(z,y) =1— 2y and G(z,y) = = — y*. The Jacobian matrix of
( y y y y

the vector field is
I N
J— ( R ) |

At the critical point (1, 1), the coefficient matrix of the linearized system is
-1 -1
= (51 25
with eigenvalues r, = — 2 and r, = — 2. The eigenvalues are real and equal. It is
easy to show that there is only ore linearly independent eigenvector. Hence the critical
point is a stable improper node. Theorem 9.3.2 does not provide a definite conclusion

regarding the relation between the nature of the critical point of the nonlinear system and
the corresponding linearization. At the point ( — 1, — 1), the coefficient matrix of the

linearized system is
1 1

with eigenvalues r, = — 14+ /5 and 7, = — 1 — /5 . The eigenvalues are real,
with opposite sign. Hence the critical point of the associated linear system is a saddle,
which is unstable.
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Closer examination reveals that the critical point at (1, 1) is indeed a stable improper
node, which is asymptotically stable.
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15(a). The critical points are given by the solution set of the equations
—2x—y—:c(a§2+y2) =0
a:—y+y(a;2+y2) =0.

It is clear that the origin is a critical point. Solving the first equation for y, we find that

— 141 — 822 — 44
y: 2 *
xr

Substitution of these relations into the second equation results in two equations of the
form f,(z) =0 and f,(x) = 0. Plotting these functions, we note that only fi(x) =0
has real roots given by =z ~ +0.33076 . It follows that the additional critical points are
at (— 0.33076,1.0924) and (0.33076, — 1.0924).
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(b, c¢). Given that
F(z,y) = —2:1:—y—x(:1:2+y2)
Glz,y) =z —y+y(a®+1°),
the Jacobian matrix of the vector field is
J— —2—32% — g —1—-2xy
B 1+ 2zy —1+22+3y2 )

At the critical point (0, 0), the coefficient matrix of the linearized system is
-2 -1
s0.0-(77 21)

with complex conjugate eigenvalues r,, = ( -3+ z\/g ) /2. Hence the critical point

is a stable spiral, which is asymptotically stable. At the point ( — 0.33076,1.0924),
the coefficient matrix of the linearized system is

—3.5216 —0.27735
J(— 0.33076,1.0924) = ( 0.27735  2.6895 )

with eigenvalues r, = — 3.5092 and r, = 2.6771. The eigenvalues are real, with
opposite sign. Hence the critical point of the associated linear system is a saddle,
which is unstable. Identical results hold for the point at (0.33076, — 1.0924) .

(d).
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A closer look at the origin reveals a spiral:
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Near the point (0.33076, — 1.0924) the nature of the critical point is evident:
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Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.

16(a). The critical points are solutions of the equations
y+x(1—x2—y2) =0
—x+y(1—x2—y2) =0.

Multiply the first equation by y and the second equation by x. The difference of the
two equations gives x? + y? = 0. Hence the only critical point is at the origin.

(b,c). With F(z,y) =y +x(1—2?—y*)and G(z,y) = —z +y(l —2*> - y?),
the Jacobian matrix of the vector field is

J— 1—3x% — 9 1 —2zy
S\ —1-2zy 1-22-32)°

At the origin, the coefficient matrix of the linearized system is

3(0,0) = ( ! })

with complex conjugate eigenvalues r,, = 1 +7. Hence the origin is an unstable
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spiral.
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17(a). The Jacobian matrix of the vector field is

0 1
J = (1+63:2 O)'

At the origin, the coefficient matrix of the linearized system is

30,0) = ((1) (f)

with eigenvalues r;, = 1 and r, = — 1. The eigenvalues are real, with opposite sign.
Hence the critical point is a saddle point.

(b). The trajectories of the linearized system are solutions of the differential equation

dy @
de vy’
which is separable. Integrating both sides of the equation z dx — y dy = 0, the solution
is 22 —y?> = C. The trajectories consist of a family of hyperbolas.
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It is easy to show that the general solution is given by z(t) = c,e’ + c,e”? and
t

y(t) = cie! — c,e”!. The only bounded solutions consist of those for which ¢, = 0.

In that case, z(t) = c,e ™' = — y(t).

(c). The trajectories of the given system are solutions of the differential equation
dy =+ 213
de  y
which can also be written as (x + 223)dx — y dy = 0. The resulting ODE is exact,
with
0H

H
%:x-i-ng and%—y: — .

Integrating the first equation, we find that H (z,y) = 22/2 + z'/2 + f(y). It follows
that

OH ,
8—y = f'(y).
Comparing the partial derivatives, we obtain f(y) = — y?/2 + c¢. Hence the solutions

are level curves of the function
H(x,y) = */2 +a* )2 — /2.

The trajectories approaching to, or diverging from, the origin are no longer straight lines.
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19(a). The solutions of the system of equations
y=0
—W’sinz =0
consist of the points (£ n7,0),n=0,1,2,---. The functions F(x,y) = y and

G(x,y) = — w’sinx are analytic on the entire plane. It follows that the system is
almost linear near each of the critical points.

(b). The Jacobian matrix of the vector field is

0 1
J= ( — WPcosx 0>'

At the origin, the coefficient matrix of the linearized system is

s0.0=( ", o).

with purely complex eigenvalues 7, = +iw. Hence the origin is a center. Since the
eigenvalues are purely complex, Theorem 9.3.2 gives no definite conclusion about the
critical point of the nonlinear system. Physically, the critical point corresponds to the
state # = 0, 6’ = 0. That is, the rest configuration of the pendulum.

(c). At the critical point (7, 0), the coefficient matrix of the linearized system is

J(m,0) = <£2 é)

with eigenvalues 7, = £ w. The eigenvalues are real and of opposite sign. Hence the
critical point is a saddle. Theorem 9.3.2 asserts that the critical point for the nonlinear
system is also a saddle, which is unstable. This critical point corresponds to the state

6 =, 60" = 0. Thatis, the upright rest configuration.
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(d). Let w? = 1. The following is a plot of the phase curves near (0, 0).

PP . S S

e e e e e
1' e "

(€).

It should be noted that the phase portrait has a periodic pattern, since 6 = x mod 27 .

20(a). The trajectories of the system in Problem 19 are solutions of the differential
equation

2

dy  —wsinw
dr y ’
which can also be written as w?sin x dx + ydy = 0. The resulting ODE is exact,
with
on _ w’sinz and 8_H =
or oy v
Integrating the first equation, we find that H (z,y) = — w?cosx + f(y). It follows
that
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OH

3—y = f,(y)-

Comparing the partial derivatives, we obtain f(y) = y*>/2 + C'. Hence the solutions
are level curves of the function

H(z,y) = —w?cosx +y*/2.

Adding an arbitrary constant, say w?, to the function H (z ,y) does not change the nature
of the level curves. Hence the trajectories are can be written as

1
§y2 +w?(1—cosz) =c,

in which c is an arbitrary constant.

(b). Multiplying by mL? and reverting to the original physical variables, we obtain

1 A%
§mL2 (%> + mL**(1 — cos@) = mL’c.

Since w? = g/L, the equation can be written as

1, (do\>
§mL — ) +mgL(1 —cosf)=F,

in which E = mIL2c.

(c). The absolute velocity of the point mass is given by v = L df/dt. The kinetic
energy of the mass is 7' = mv?/2. Choosing the rest position as the datum, that is, the
level of zero potential energy, the gravitational potential energy of the point mass is

V =mgL(1 — cos ).

It follows that the total energy, I + V, is constant along the trajectories.

21(a). A=0.25
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A=025
0.27
X
0.1
3y 5 B
0.1
-0.24

Since the system is undamped, and y(0) = 0, the amplitude is 0.25. The period is
estimated at 7 ~ 3.16.

(b).

A=05
- /\ / :
1 2 3 5 [
-0.2
02 -0.4
-0.6
04 -0.5
A=148 A=20
13 2
0.69
D.fi:
02 ] 3 3 A ] ; i ’ ] 11 5 B
26, 4
14
-1.24
1.4 5
R T
A=0510513.20
A=1.0|1.013.35
A=15|151|3.63
A=2012014.17

(c). Since the system is conservative, the amplitude is equal to the initial amplitude. On
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the other hand, the period of the pendulum is a monotone increasing function of the
initial
position A .

3.4

32, o
04 0B 08 1 A1.'2 14 16 18 2

It appears that as A — 0, the period approaches 7, the period of the corresponding linear
pendulum (27 /w).

(d).

104

0 Z 4, B 5
The pendulum is released from rest, at an inclination of 4 — 7 radians from the vertical.
Based on conservation of energy, the pendulum will swing past the lower equilibrium
position (# = 27) and come to rest, momentarily, at a maximum rotational displacement
of Oppar = 3™ — (4 — m) = 4w — 4. The transition between the two dynamics occurs

at A = m, that is, once the pendulum is released beyond the upright configuration.

24(a). It is evident that the origin is a critical point of each system. Furthermore, it is
easy to see that the corresponding linear system, in each case, is given by

dr _
dt
dy _
dt

Y

—X.

The eigenvalues of the coefficient matrix are 7, = £ 4. Hence the critical point of the
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linearized system is a center.

(b). Using polar coordinates, it is also easy to show that

el
P x]

Alternatively, the nonlinear terms are analytic in the entire plane. Hence both systems
are
almost linear near the origin.

(c). For system (i), note that

dx dy
r— +y— =azy—2° (2 +y*) — 2y — y*(2* + ).
dt dt
Converting to polar coordinates, and differentiating the equation r* = x? + y? with
respect to ¢, we find that

dr  dx dy 9 . N2 4
Ta—xa—FyE— (3? +y) = .
Thatis, r' = — 73. It follows that r? = 1/(2t + ¢), where ¢ = 1/r2. Since r—0 as

t—0, regardless of the value of r,, the origin is an asymptotically stable equilibrium
point.

On the other hand, for system (i),

dr  dx dy 5 N2 4
T T i G

Thatis, ' = 73. Solving the differential equation results in

T —m

Imposing the initial condition r(0) = r,, we obtain a specific solution

2
2 Ty

= -2
272t —1

Since the solution becomes unbounded as t—1/2r? , the critical point is unstable.

25. The characteristic equation of the coefficient matrix is 7> + 1 = 0, with complex
roots 7, = * 1. Hence the critical point at the origin is a center. The characteristic
equation of the perturbed matrix is 7> — 2er + 1 + ¢ = 0, with complex conjugate
roots ., = e+ ¢. Aslongas e # 0, the critical point of the perturbed system is a
spiral point. Its stability depends on the sign of € .

26. The characteristic equation of the coefficient matrix is (r + 1)2 = 0, with roots
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r, =r, = — 1. Hence the critical point is an asymptotically stable node. On the
other hand, the characteristic equation of the perturbed systemis 7> +2r +1+¢ =0,
withroots 7, = — 1%,/ —€. Ife >0, then r,, = — 1+4,/€ are complex roots.
The critical point is a stable spiral. 1f e < 0, then 7, = — 14 /|¢| are real and

both negative (|¢| < 1). The critical point remains a stable node.

27(d). Set k = sin(a/2) = sin(A/2) and g/L = 4.
Period T

16

141

121

107
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Section 9.4
1(a).
24 L T A S A e
}\%{t ffszf///////
18y [ 7 | A A
LT {!K[f////////
1.6 L A
L A N B P S
1.4 P 077 7 D o o o i
1.2 A7 ’}“‘m_a—'r"’f”r"'f""f‘"-r‘”-r"’f‘"’
I
I A A A A BN ——
08 AR AR RN
05 LA A R A I B e
f///////ff}'\mw—ﬁ
0ad | i S S A TF
f//////////;}\ahmﬁﬁ
N2l 7 7l i N e
T T e e i i ™ T e
02 04 06 08 1, 12 14 16 18 2

(b). The critical points are solutions of the system of equations

(15 -z —-0.5y)=0
y(2—y—0.752) =0.

The four critical points are (0,0), (0,2), (1.5,0) and (0.8,1.4).

(¢). The Jacobian matrix of the vector field is

_(3/2—2x—y/2
J_< —3y/4

—x/2
2—-3x/4—-2y

)

At the critical point (0, 0), the coefficient matrix of the linearized system is

3(0,0) = (3(/)2 g)

The eigenvalues and eigenvectors are

ro=3/2, &Y = (

The eigenvalues are positive, hence the origin is an unstable node.

At the critical point (0, 2), the coefficient matrix of the linearized system is

3(0,2) = ( _1{9)2/2 _02)

The eigenvalues and eigenvectors are
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1 0
g (1): * = — (2>:
rn=1/2, & (—0.6)’ Ty 2, €& (1)

The eigenvalues are of opposite sign. Hence the critical point is a saddle, which is
unstable.

At the critical point (1.5 ,0), the coefficient matrix of the linearized system is

~15 —0.75
J(L.5,0) = ( 0  0.875 )

The eigenvalues and eigenvectors are

n=—15, &Y= <(1)) 7y =0.875, €2 = (_0'?1579).

The eigenvalues are of opposite sign. Hence the critical point is also a saddle, which is
unstable.

At the critical point (0.8, 1.4), the coefficient matrix of the linearized system is

~08 —04
J(0.8,1.4) = ( o 1'4).

The eigenvalues and eigenvectors are

11 B ) 11 Bl ey 1
Tl—*EJFTag =\ 3-y51 | > TQ—*E*Tag = 3+2/5_1 .

4

The eigenvalues are both negative. Hence the critical point is a stable node, which is
asymptotically stable.

(d,e).

21 Lol
1.8 “}_{l&
1.6 a4
1.4 );' ’
1.2 f; f
f 1
0.6 A
0.5 /
0.4 ;’r

¥
—

0.2

=L I '\ —_—

02 04 06 08 1, 12 14 16 18 2

(f). Except for initial conditions lying on the coordinate axes, almost all trajectories
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converge to the stable node at (0.8 ,1.4).
2(a).

LE RN A A S AV AT AT SV AV S S
Y A A A A S A S e
N O A A A A S
Rl A A S S A VA P A G
SR A A S

37 A A A A S A S S S S
— LSS s

NS L L LSS LSS

VA N S S S S A

¥ol — LSS
VA S S A P ey
}////////////////

[ i i s

I R

11 F 5 0 7 o o i e
Pl 7 s o o e o e e e
/ T e T e

1 2x 3 4

(b). The critical points are the solution set of the system of equations

(1.5 —2—0.5y)=0
y(2—-05y—15x)=0.

The four critical points are (0,0), (0,4), (1.5,0) and (1,1).

(c). The Jacobian matrix of the vector field is

3/2—2x—y/2 —x/2
J:( —3y/2y 2—3w/2—y)'

At the origin, the coefficient matrix of the linearized system is

3(0,0) = (362 g)

The eigenvalues and eigenvectors are

ez = (D): ez e ()

The eigenvalues are positive, hence the origin is an unstable node.

At the critical point (0, 4), the coefficient matrix of the linearized system is

J(0,4) = ( __1é2 _O2>.

The eigenvalues and eigenvectors are
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1

rn=—1/2, £V = (_4); ry=—2, &%= (?)

The eigenvalues are both negative, hence the critical point (0, 4) is a stable node, which
is asymptotically stable.

At the critical point (3/2, 0), the coefficient matrix of the linearized system is

J(3/2,0) = ( _5’/2 :i’;i).

The eigenvalues and eigenvectors are

rn=—3/2, &Y= <(1)); = —1/4, €9 = (_35)

The eigenvalues are both negative, hence the critical point is a stable node, which is
asymptotically stable.

At the critical point ( 1, 1), the coefficient matrix of the linearized system is
B -1 —1/2
J(l’l)_(—3/2 —1/2)'

The eigenvalues and eigenvectors are

—3+4/13 1 3+ /13 0
7“1:74\/7,§<1):<_1+\/ﬁ>97"2:— f,§(2)2<1+¢ﬁ>-
2

2

The eigenvalues are of opposite sign, hence ( 1, 1) is a saddle, which is unstable.

(d,e).

(f). Trajectories approaching the critical point (1, 1) form a separatrix. Solutions on
either side of the separatrix approach either (0,4) or (1.5,0).
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(b). The critical points are solutions of the system of equations

z(1.5—-05z—y)=0
y(0.75 —y — 0.1252) = 0.

The four critical points are (0,0), (0,3/4), (3,0) and (2,1/2).
(c). The Jacobian matrix of the vector field is
¥y 3/2—xz—y -z
N —y/8 3/4—x/8—2y )’
At the origin, the coefficient matrix of the linearized system is

3(0,0) = (362 3(/)4).

The eigenvalues and eigenvectors are

ro=3/2, &Y = (é) s ry=3/4, €9 = ((1))

The eigenvalues are positive, hence the origin is an unstable node.
At the critical point (0, 3/4), the coefficient matrix of the linearized system is

3/4 0
3(0,3/4) = ( —3/32 —3/4)'

The eigenvalues and eigenvectors are

The eigenvalues are of opposite sign, hence the critical point (0, 3/4) is a saddle, which
is unstable.
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At the critical point (3, 0), the coefficient matrix of the linearized system is

J(3,0) = ( _5’/2 3_/;)’>

The eigenvalues and eigenvectors are

mn=—3/2, &Y = (é) r=23/8, £¥ = (;8)

The eigenvalues are of opposite sign, hence the critical point (0, 3/4) is a saddle, which
is unstable.

At the critical point (2, 1/2), the coefficient matrix of the linearized system is

J(2,1/2) = ( __1/116 —_132)'

The eigenvalues and eigenvectors are

~3+/3 1 3+/3 0
= 4f7€(1):<_1+8ﬁ>9r2:_ 4\/a§(2>:<1§\/§)'

The eigenvalues are negative, hence the critical point (2, 1/2) is a stable node, which
is asymptotically stable.

(d,e).

1.8
1.6
1.4
1.2
Y13

4]
R o P e e e
e oo o P B e T e e TR

e, N N

e
e P P, R T T T
N )
y

o

2

7
A

0.54

- oS .. U
i

021 s NI

- - SR

02040608 1 12141618 2 22242628 3
¥
(f). Except for initial conditions along the coordinate axes, almost all solutions

converge
to the stable node (2,1/2).
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7. It follows immediately that
(1X + 0,Y)? —40,0,XY = 02X + 20,0, XY + 02Y? — 40,0, XY
= (0’1X — O'QY)Q.
Since all parameters and variables are positive, it follows that
(UlX + UQY)2 — 4(0102 — Oéloég)XY 2 0.

Hence the radicand in Eq.(39) is nonnegative.

10(a). The critical points consist of the solution set of the equations

x(e; — o —ayy) =0
y(e; — oy — ) = 0.

If x =0, theneithery =0ory = ¢€,/0,. If ¢, — 012 — a;y = 0, then solving for
results in © = (€, — ayy)/o;. Substitution into the second equation yields

(0109 — 061042>y2 - (‘7152 - 61042)3/ =0.

Based on the hypothesis, it follows that (e, — € ,05)y = 0. Soif 016, — €, # 0,
then y = 0, and the critical points are located at (0,0), (0, ¢€,/0,) and (¢, /0y, 0).

For the case 0,€, — € ,a,, = 0, y can be arbitrary. From the relation x = (¢, — ayy) /o,
we conclude that all points on the line o,x + o,y = €, are critical points, in addition to
the point (0, 0).

(b). The Jacobian matrix of the vector field is

J— € — 200 — Yy — oz
o — auy € — 205y — x|’

At the origin, the coefficient matrix of the linearized system is

u0ﬁ>=(3 2),

with eigenvalues r, = ¢; and r, = ¢, . Since both eigenvalues are positive, the origin
1S an unstable node.

At the point (0, €,/ ), the coefficient matrix of the linearized system is

Jm@wa=<@%—m@m2 0>,

62042/0'2 — €2

with eigenvalues 7, = (6,0 — 016;)/ay and 7, = — €,. If 0,6, — €, > 0, then
both eigenvalues are negative. Hence the point (0, €,/0,) is a stable node, which is
asymptotically stable. If o,e, — €,y < 0, then the eigenvalues are of opposite sign.
Hence the point (0, €,/0,) is a saddle, which is unstable.
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At the point (¢, /01, 0), the coefficient matrix of the linearized system is

J(el/al,O):(_Oel ( —an/o )

016 — 61062)/01

with eigenvalues r, = (0,6, — €,y) /oy and 7, = — ¢, If 0,6, — €,y > 0, then

the eigenvalues are of opposite sign. Hence the point (¢, /0,,0) is a saddle, which is
unstable. If o,€; — €, < 0, then both eigenvalues are negative. In that case the point
(€,/01,0) is a stable node, which is asymptotically stable.

(c). Asshown in Part (a), when o,€;, — €, = 0, the set of critical points consists of
(0,0) and all of the points on the straight line o,z + o,y = ¢, . Based on Part (b), the
origin is still an unstable node. Setting y = (¢, — 0,2)/a, , the Jacobian matrix of the
vector field, along the given straight line, is

J— — O X — T
—052(61—0'11')/0&1 042:6—61042/01 '

The characteristic equation of the matrix is

2

€10 — Q01X + 07X

r? + Zlr=0.
01

Using the given hypothesis, (€,a, — auo17 + 02x) /oy = €, — aux + 0. Hence the
characteristic equation can be written as

ey — ux + o) = 0.

First note that 0 < z < ¢,/0,. Since the coefficient in the quadratic equation is linear,
and

€y, at =0

€y — QX + 0T =
€, at x =¢€ /o,

it follows that the coefficient is positive for 0 < x < €, /o,. Therefore, along the straight
line o, + o,y = €, one eigenvalue is zero and the other one is negative. Hence the
continuum of critical points consists of stable nodes, which are asymptotically stable.

11(a). The critical points are solutions of the system of equations

z(l—z—y)+d6a=0
y(0.75 —y —0.5x) + 6b = 0.

Assume solutions of the form

T =x)+ 1,6 + 16° + -
Y=y +y6+16”+ -

Substitution of the series expansions results in
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To(1 — 20 — yo) + (21 — 23129 — Toyy — T1Yo + )0+ --- =0

(b). Taking a limit as 6 = 0, the equations reduce to the original system of equations.
It follows that z, =y, = 0.5.
(c). Setting the coefficients of the linear terms equal to zero, we find that

-y /2—2,/24a=0

—n /4=y /2+b=0,
with solution z, =4a — 4b and y, = — 2a + 4b.
(d). Consider the ab - parameter space. The collection of points for which b < a
represents an increase in the level of species 1. At points where b > a, x,0 < 0.

Likewise, the collection of points for which 2b > a represents an increase in the level
of species 2. At points where 2b < a, y,6 < 0.

104 /

81 -~

It follows that if b < a < 2b, the level of both species will increase. This condition is
represented by the wedge-shaped region on the graph. Otherwise, the level of one
species

will increase, whereas the level of the other species will simultaneously decrease. Only
for a = b = 0 will both populations remain the same.

13(a). The critical points consist of the solution set of the equations
—y=0
—yy—xz(zx—0.15)(z —2) =0.

Setting y = 0, the second equation becomes x(z — 0.15)(x — 2) = 0, with roots = 0,
0.15 and 2. Hence the critical points are located at (0,0), (0.15,0) and (2,0). The
Jacobian matrix of the vector field is
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, 0 ~1
o\ —=3224432-03 —o /)

At the origin, the coefficient matrix of the linearized system is

on-( % ~))

with eigenvalues

1
iy = — %iﬁx/2572+30 .

Regardless of the value of +, the eigenvalues are real and of opposite sign. Hence (0, 0)
18 a saddle, which 1s unstable.

At the critical point (0.15, 0), the coefficient matrix of the linearized system is

0o -1
J(0.15,0) = (0.2775 ~ 7),

with eigenvalues

s = — %i %\/10072 — 111,
If 100y% — 111 > 0, then the eigenvalues are real. Furthermore, since 7,7, = 0.2775,
both eigenvalues will have the same sign. Therefore the critical point is a node, with its
stability dependent on the sign of . If 100y — 111 < 0, the eigenvalues are complex
conjugates. In that case the critical point (0.15,0) is a spiral, with its stability dependent
on the sign of .

At the critical point (2, 0), the coefficient matrix of the linearized system is

o= 1)

7 1
y = — —+ —1/25~2 + .
T12 210 54+ 370

with eigenvalues

Regardless of the value of +y, the eigenvalues are real and of opposite sign. Hence (2, 0)
is a saddle, which is unstable.
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gamma = 0.8

It is evident that for v = 0.8, the critical point (0.15,0) is a stable spiral.

gamma=1.5
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(c). Based on the phase portraits in Part (b), it is apparent that the required value of -y
satisfies 0.8 < v < 1.5. Using the initial condition x(0) = 2 and y(0) = 0.01, itis
possible to solve the initial value problem for various values of . A reasonable first

guess is 7 = 4/ 1.11 . This value marks the change in qualitative behavior of the critical
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point (0.15,0). Numerical experiments show that the solution remains positive for

v~ 1.20.

page 558




WWV. ZI T e.Ir

CHAPTER 9. ——
Section 9.5
1(a).
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(b). The critical points are solutions of the system of equations

2(1.5—0.5y) =0
y(— 05+ z)=0.

The two critical points are (0,0) and (0.5, 3).

(¢). The Jacobian matrix of the vector field is

y_ (3/2—y/2 — /2 )

Y —-1/2+x

At the critical point (0, 0), the coefficient matrix of the linearized system is

J(0,0) = (362 _2/2).

The eigenvalues and eigenvectors are

r=23/2, &Y = <(1)) sy = —1/2, &9 = ((1))

The eigenvalues are of opposite sign, hence the origin is a saddle, which is unstable.

At the critical point (0.5, 3), the coefficient matrix of the linearized system is

J(0.5,3) = (g _3/4)

The eigenvalues and eigenvectors are

VB o (0N B (1
ZT’§<)_(—2i\/§>’ 7“2—"7’5”—(2@- 3)-

r =
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The eigenvalues are purely imaginary. Hence the critical point is a center, which is
stable.

(d,e).

N e BT PP
R
R P
N it T F T
e R T
oy e P T AT
et T P T T
e T
AN
T e T R T
Ty e T T
A T

R
o T e e T e T T T T T
1 B e B
g - - e e e e e

S —

02040608 1 12141618 2 22242628 3
X

(f). Except for solutions along the coordinate axes, almost all trajectories are closed
curves about the critical point (0.5, 3).

2(a).
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(b). The critical points are the solution set of the system of equations

z(1—-05y)=0
y(—0.254+052)=0.

The two critical points are (0,0) and (0.5, 2).

(c). The Jacobian matrix of the vector field is

J= (1 ;/%/2 - 174%29;/2)'

At the critical point (0, 0), the coefficient matrix of the linearized system is
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J(0,0):((l) _2/4).

The eigenvalues and eigenvectors are

r=1, &Y= ((1)), ry= —1/4, ¥ = ((1))

The eigenvalues are of opposite sign, hence the origin is a saddle, which is unstable.

At the critical point (0.5, 2), the coefficient matrix of the linearized system is
(0 —1/4
J(O.5,2)—(1 0 )

The eigenvalues and eigenvectors are

The eigenvalues are purely imaginary. Hence the critical point is a center, which is
stable.

(d,e).

e T e e T T T

S

02040608 1 12141618 2 22 24 25
¥

(f). Except for solutions along the coordinate axes, almost all trajectories are closed
curves about the critical point (0.5, 2).
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(b). The critical points are the solution set of the system of equations

z(9/8 —x—y/2) =0
y(—1+ 2)=0.

The three critical points are (0,0), (9/8,0) and (1,1/4).

(¢). The Jacobian matrix of the vector field is

J— <9/8 — 2;« —y/2 _—13;42%)'

At the critical point (0, 0), the coefficient matrix of the linearized system is

3(0,0) = (9(/)8 _01)

The eigenvalues and eigenvectors are

r=9/8, £V = ((1)), ry= —1, &Y = ((1))

The eigenvalues are of opposite sign, hence the origin is a saddle, which is unstable.

At the critical point (9/8,0), the coefficient matrix of the linearized system is

J(9/8,0) = ( _3/8 _1%16).

The eigenvalues and eigenvectors are
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The eigenvalues are of opposite sign, hence the critical point (9/8,0) is a saddle, which
is unstable.

At the critical point (1,1/4), the coefficient matrix of the linearized system is

J(1,1/4) = (i}i _3/2).

The eigenvalues and eigenvectors are

i o () e o ()

r = 1

The eigenvalues are both negative. Hence the critical point is a stable node, which is
asymptotically stable.

(d, e).
1.4
1.2
1
ool {1
Lo
0B
R
o4 4o
1
u.2 My e
Ty T
0.2 0.4 0E& 0 1 1.2 1.4

(f). Except for solutions along the coordinate axes, all solutions converge to the critical
point (1,1/4).

5(a).

3] L S A B e
75 L A B L
] I B B e
2.6 O N B A NN,
2.4 L B
224 F O T T i e
2] [ T e e e e T e e e
) T M P T, e e e e e e
1.8 I o T T P e e
144 L1 Lo e N e e
194 [ NN T N T e e e
19 [ By e [ e e e e e
081 i L T L S S
08) 1 411N NSl N

56 A A S AANE 7

029 7 7 )] e

02040608 1 12141618 2 22242628 3

X
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(b). The critical points are solutions of the system of equations

z(—-1+252-03y—2°)=0
y(—1.54+ z)=0.

The four critical points are (0,0), (1/2,0), (2,0) and (3/2,5/3).

(¢). The Jacobian matrix of the vector field is

—1+5x—32*—3y/10 —3x/10
J = .
Y —-3/2+4+x

At the critical point (0, 0), the coefficient matrix of the linearized system is

J(0,0) = ( _01 _%/2)

The eigenvalues and eigenvectors are

rn= -1, &Y= (é); ry= —3/2, €% = ((1))

The eigenvalues are both negative, hence the critical point (0, 0) is a stable node, which
is asymptotically stable.

At the critical point (1/2,0), the coefficient matrix of the linearized system is

3(1/2.0) = (3(/)4 —3/120).

The eigenvalues and eigenvectors are

3 1 3
= — (1> == N = — (2) ==
T 4 ’ £ (O) s T 1 ) § (35)

The eigenvalues are of opposite sign, hence the critical point (1/2,0) is a saddle, which
is unstable.

At the critical point (2, 0), the coefficient matrix of the linearized system is
(-3 —=3/5
J(2,0)—( 0 1/2 )

The eigenvalues and eigenvectors are

1 6
r= -3, f(l): (0> ; ry=1/2, 5(2): <_35)'

The eigenvalues are of opposite sign, hence the critical point (2, 0) is a saddle, which
is unstable.
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At the critical point (3/2,5/3), the coefficient matrix of the linearized system is

J(3/2,5/3) = ( _5%4 B %/20).

The eigenvalues and eigenvectors are

. —9413+/39 . —9—i3+v/39
o= 3+1iv39 5(1) _ 720 o = 3 —14/39 6(2) _ —ZO
1 ] s 1 s 2 ] 5 1 .

The eigenvalues are complex conjugates. Hence the critical point (3/2,5/3) is a stable
spiral, which is asymptotically stable.

(d,e).

02040608 1 12141618 2 2224 25
X

(f). The single solution curve that converges to the node at (1/2,0) is a separatrix.
Except for initial conditions on the coordinate axes, trajectories on either side of the
separatrix converge to the node at (0, 0) or the stable spiral at (3/2,5/3).

6. Given that ¢ is measured from the time that x is a maximum, we have
c cK

— + — cos(y/ac t)
8l Y
a
Q

—|—Kg gsin( act).

Tr =

y:

The period of oscillation is evidently 7" = 27 /,/ac . Both populations oscillate about
a mean value. The following is based on the properties of the cos and sin functions

The prey population (z) is maximum att = 0 and t = T'. Itis a minimum att =T/2.
Its rate of increase is greatest at t = 37 /4. The rate of decrease of the prey population

is greatestat t = 1'/4.

The predator population (y) is maximum att = T'/4. It is a minimum att = 3T /4.
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The rate of increase of the predator population is greatest at ¢ = 0 and ¢ = I". The rate
of decrease of the predator population is greatest at t = 7'/2.

In the following example, the system in Problem 2 is solved numerically with the initial
conditions z(0) = 0.7 and y(0) = 2. The critical point of interest is at (0.5, 2).
Since a = 1 and ¢ = 1/4, it follows that the period of oscillationis 7" =4 7.

Frey Predator
0.7

231
065

221
0.6

0559 21
057

0.457 193

0.44 189

0.357 173

Predator vs Prey

2.3
2.2
2.1
Yo
1.91

1.87

1.71

03 04 045 05, 05 06 085 07

8(a). The period of oscillation for the linear system is T = 27/ /ac . In system (2),
a=1andc=0.75. Hence the period is estimated as T = 27/+/0.75 ~ 7.2552.

(b). The estimated period appears to agree with the graphic in Figure 9.5.3 .

(c). The critical point of interest is at (3,2). The system is solved numerically, with
y(0) =2 and x(0) = 3.5,4.0,4.5,5.0. The resulting periods are shown in the table:

2(0) =35 | 2(0) = 4.0 | #(0) = 4.5 | 2(0) = 5.0
T | 7.26 7.29 7.34 7.42

The actual amplitude steadily increases as the amplitude increases.
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9. The system

4 e(-143)

is solved numerically for various values of the parameters. The initial conditions are
z(0) =5, y(0) =2.

(a). a=land b=1:
a=1,b=1

3.24

2849
2564
2.44
y 2.2

1.8
1.6
1.49
1.249

3 oE 3,35 4 45 5

The period is estimated by observing when the trajectory becomes a closed curve. In this
case, '~ 6.45.

(b). a=3anda=1/3,withb=1:

a=1,b=1 a=13 b=1
32

3 4]

28

253

2.4 3

y22 ¥

2

1.8 ey

1.6

1.4

1.24 "

225 3,35 445 s 228 3,35 4 4 s

Fora =3, T~ 3.69. Fora=1/3, T ~ 11.44.
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(¢). b=3andb=1/3,witha =1

a=1,b=3 a=1,b=143

2 25 3,35 4 445 5 2 25 3,35 4 445 4

Forb=3, T~ 3.82. Forb=1/3, T~ 11.06.

(d). Tt appears that if one of the parameters is fixed, the period varies inversely with
the other parameter. Hence one might postulate the relation

"=

10(a). Since T' = 27/+/ac , we first note that

A+T A4T
/ cos(\/act-l—qb)dt:/ sin(y/ac t + ¢)dt =0.
A

A

Hence

(b). One way to estimate the mean values is to find a horizontal line such that the area
above the line is approximately equal to the area under the line. From Figure 9.5.3, it
appears that * ~ 3.25 and y ~ 2.0. InExample 1,a=1,¢c=0.75, a« = 0.5 and

~v = 0.25. Using the result in Part (a), T =3 and y = 2.

(c). The system
dx Y
“r _ (1 - _>
at " ( 2
dy 3 =
'a—ﬂ<‘z+z>
is solved numerically for various initial conditions.

xz(0) =3 and y(0) =2.5:
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387
2.4
36
349 22]
329
x] v5]
28
26 18
24
16
b2 & 6 w1z T B0 1z 1
x(0) =3 and y(0) =3.0:
189 34
16
443 28
12
4] 26
381
243
367
34 22
321
33 27
281
257 18
2.4 16
22
23 143
183
A A T R R T V1 T B 1z 1
x2(0) = 3 and y(0) = 3.5:
3.4
324
5 3
28
o 261
2.4
x v2.2]
e %
1.8
16
2 1.4
12
vz 18 n 2 18 02 5 10 1z 1

t

1
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It is evident that the mean values increase as the amplitude increases. That is, the mean
values increase as the initial conditions move farther from the critical point.

12. The system of equations in model (1) is given by

dx
%—x(a—ay)

Based on the hypothesis, let the death rate of the insect population and the predators be
px and qy, respectively. The modified system of equations becomes

d_x— ( _ )_
dt—xa Oéy pl’

d
d—§f=y(—c+w)—qy,

in which p > 0, ¢ > 0. The critical points are solutions of the system of equations

zla—p—ay)=0
y(—c—q+y2z)=0.
It is easy to see that the critical points are now at (0, 0) and (% , %”) Furthermore,
since (¢ + q)/~v > ¢/, the equilibrium level of the insect population has increased.
On the other hand, since (a — p)/a < a/a, equilibrium level of the predators has
decreased. Indeed, the introduction of insecticide creates a potential to significantly
affect the predator population (a = p).
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Section 9.6

2. We consider the function V (z,y) = ax? + cy?. The rate of change of V along any
trajectory is

. dx dy
V =V,— +V,—
dt + Ydt

1
= 2@3:( - 5:1:3 + Qxyz) + QCy( — y3)

= —az’ + daz?y® — 2cy’.

2

Letu=2%,v=9y>,a= —a,B =4a,andy = — 2c. We then have

— az + dax’y® — 2cyt = au® + fuv + 02

Ifa > 0and ¢ > 0, then V (z,y) is positive definite. Furthermore, « < 0. Recall that
Theorem 9.6.4 asserts that if 4ay — 3% = 8ac — 16 a®> > 0, then the function

au® + Buv + v

is negative definite. Hence if ¢ > 2a, then V (x,) is negative definite. One such
example is V (z,y) = 2® + 3y?. It follows from Theorem 9.6.1 that the origin is an
asymptotically stable critical point.

4. Given V(x,y) = ax® + cy?, the rate of change of V along any trajectory is

i dx dy
= 2ax (:1:3 — y3) + 2cy(23:y2 + da’y + 2y3)

= 202" + (4¢ — 2a)xy® + 8c x*y* + 4cy’.
Setting a = 2c,

V =dcat + 8ca’y? + dey?
> dext + eyt

As long as a = 2¢ > 0, the function V (z, y) is positive definite and V (z,y) is also
positive definite. Tt follows from Theorem 9.6.2 that (0, 0) is an unstable critical point.

5. Given V (z,y) = c(z? + y?), the rate of change of V along any trajectory is

. dx dy
VeV
=2cxly —xf(x,y)] + 2cy[ —z — yf(z,y)]

= —2c(z® +9*) f(z,y).

If ¢ > 0, then V(x,y) is positive definite. Furthermore, if f(x,y) is positive in some
neighborhood of the origin, then V' (x,y) is negative definite. Theorem 9.6.1 asserts that
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the origin is an asymptotically stable critical point.

On the other hand, if f(z,y) is negative in some neighborhood of the origin, then

Vi(z,y)
and V (x, y) are both positive definite. Tt follows from Theorem 9.6.2 that the origin is an
unstable critical point.

9(a). Letting x = u and y = u’, we obtain the system of equations

dz _
dt
dy _
dt

y
—g(z) —y.

Since g(0) = 0, it is evident that (0, 0) is a critical point of the system. Consider the
function

L,

Viz,y) = 3Y +/Omg(8)d8-

It is clear that V' (0,0) = 0. Since g(u) is an odd function in a neighborhood of u = 0,
/ g(s)ds > 0for x >0,
0

and

T 0
/ g(s)ds = — / g(s)ds >0 forz < 0.
0 x

Therefore V (z,y) is positive definite.

The rate of change of V' along any trajectory is

i dx dy
V=V—-+V-=
dt + Ydt

=g(@) - (y) +y[— g(z) —y]
_ 2
= —y".
It follows that V' (z,y) is only negative semidefinite . Hence the origin is a stable critical
point.
(b). Given
1

1 T
Viz,y) = §y2 + Y sin(z) —i—/o sin(s)ds,

It is easy to see that V' (0,0) = 0. The rate of change of V along any trajectory is
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i dx dy
V=V—+V-2
dt+ Ydt

. Yy I .
= sznx+§cosx](y)+ Y+ 5N [— sinx — Y]

1 1
= §y2 cos T — 537)712

T — ysin:v — 9
5 :

For — /2 < x < /2, we can write sinx =z — ax?/6 and cosx =1 — 31?/2,
in which o = a(z), 8 = f(z). Note that 0 < o, 3 < 1. Then

2 2 3\ 2 3
; _ Yy BEr\ 1 axt\T oyl ezt

Using polar coordinates,

2
V(r,0) = — %[1+sin60039+h(r,9)]

T2

1
= —— |14 =sin2 .
5 [ +28'm 9—|—h(7’,9)]

It is easy to show that

1 1
< —r? 4 —rt

So if 7 is sufficiently small, then |h(r,0)| < 1/2 and |}sin20 + h(r,6)| < 1. Hence
V(x,y) is negative definite.

Now we show that V' (x, y) is positive definite. Since g(u) = sinu,

1 1
Viz,y) = §y2 + §y sin(z) +1—cosz.
This time we set
x? x?
-1 i
CcoS T 5 + 51

Note that 0 < v < 1 for — /2 < x < w/2. Converting to polar coordinates,

2 2 2
Vir,8) = 5 [1 + sinfcosf — Esin 0 cos®0 — v ﬁcos40]
2 1 2 2
= % [1 + §sin 20 — %sinﬁ cos®0 — ;—400840] .
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Now
— gsinﬁcos30 - ’7%00849 > — % forr < 1.
It follows that when r > 0,
V(r,0) > %Q{g + %sinQ@] > 31—;2 > 0.

Therefore V (x, y) is indeed positive definite, and by Theorem 9.6.1, the origin is an
asymptotically stable critical point.

12(a). We consider the linear system

2\’ [ an ap x

Yy Qo1 Q2 Yy '
Let V(z,y) = Az? + Bzy + Cy?, in which

2 2
ay + ay, + (a1 — a15a2)

A= —
2A
Q12020 + Q1109
B = 202 T Gulxn
A
C = _ a3, + a3, + (41102 — a1pa2)
2A ’

and A = (ay; + ax)(aas — apa,). Based on the hypothesis, the coefficients A and
B are negative. Therefore, except for the origin, V' (x, y) is negative on each
of the coordinate axes. Along each trajectory,

V = (2Az + By)(an & + any) + (2Cy + Br)(ax & + axny)

= — 22—

Hence V (z,y) is negative definite. Theorem 9.6.2 asserts that the origin is an unstable
critical point.

(b). We now consider the system
4 /: (au a12)<x) n (Fl(xay))
y Gy Gz )\ y Gi(z,y))’
in which Fi(z,y)/r—0 and G,(x,y)/r—0 as r—=0. Let

Viz,y) = Az® + Bxy + C’yQ,

in which
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2 2
a5, + A5 + (a11a22 — algagl)
2A

Q12099 + Q1109
A
a’%l + a%a + (1102 — a12a9;)
2A ’
and A = (ay; + ay)(anas — apay ). Based on the hypothesis, A, B > 0. Except
for the origin, V' (x, y) is positive on each of the coordinate axes. Along each trajectory,

V =2+ ¢’ + (24z + By)Fi(z,y) + (2Cy + Bz)Gi(z,y) .

A=

O =

Converting to polar coordinates, for r # 0,
V =1?+r(2Acos0 + Bsin®) F, + r(2Csin 6 + Bcos ) G,

F
=72 fr? [(QACOS 0 + Bsin®) — + (2Csin 6 + Bcos b) ﬁ] .

T

r

Since the system is a/most linear, there is an R such that

F G 1
‘(2A0059+Bsz’n9) 71 + (2Csin 6 + Bcos0) 71 < 3
and hence
F) G 1
(2Acos 6 4+ Bsin6) 71 + (2Csin 6 + Bcos ) 71 > -5

for r < R. It follows that

. 1
V>
5"
aslongas 0 <7 < R. Hence V is positive definite on the domain
D ={(z,y)|2* +y* < R*}.

By Theorem 9.6.2, the origin is an unstable critical point.
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Section 9.7

3. The equilibrium solutions of the ODE
dr

= =r(r—1)(r—23)

are givenby 7 = 0,7, =1 and r; = 3. Note that

%>Ofor0<r<1andr>3; %<Ofor1<r<3.

r = 0 corresponds to an unstable critical point. The equilibrium solution r, = 1 is
asymptotically stable, whereas the equilibrium solution 73 = 3 is unstable. Since the
critical values are isolated, a limit cycle is given by

r=1 , 0=t + to
which is asymptotically stable. Another periodic solution is found to be
T = 3 5 9 - t + tU

which is unstable.

5. The equilibrium solutions of the ODE

dr )

— = Sinmr

dt
are givenby r = n, n=0,1,2,---. Based on the sign of r'in the neighborhood of
each critical value, the equilibrium solutions » = 2k, k =1,2,--- correspond to

unstable periodic solutions, with § = t + t,. The equilibrium solutions r» = 2k + 1,
k=0,1,2,--- correspond to stable limit cycles, with § =t + t,. The solution r = 0
represents an unstable critical point.

10. Given F(z,y) =anx + apy and G(z,y) = ay x + ay y, it follows that
Fx+Gy:a11+a22.

Based on the hypothesis, F;, + G, is either positive or negative on the entire plane.
By Theorem 9.7.2, the system cannot have a nontrivial periodic solution.

12. Given that F(z,y) = — 2z — 3y — xy? and G(x,y) = y + 2° — 2%y,
F,+G,= —1—a2® -y

Since F, + G, < 0 on the entire plane, Theorem 9.7.2 asserts that the system cannot
have a nontrivial periodic solution.
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14(a). Based on the given graphs, the following table shows the estimated values:

p=02|T~=6.29
pw=10|T = 6.66
pw=>50|T=11.60

(b). The initial conditions were chosen as z(0) = 2, y(0) = 0.

mu=0.5

2+ mu =05
R
\\J;/ B 8\\;;/0 14\<i//8 20
t
14
24
T~ 6.38.
mu=20
24
H1A
14
a4
T~ T7.65.
mu=3.0 mu =30
24
14 /_\
2 B
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T ~ 8.86.

mu=4.0

®14

-2

T~ 10.25.

(c). The period, T', appears to be a quadratic function of 1.

117

104

91 -
B_
£
?_
£
. &
1 P 3 1 3

15(a). Setting z = v and y = u’, we obtain the system of equations

ar _
ar ~ Y

dy 1,
Y 1- -2 )y.
T x+u( 3y>y

(b). Evidently, y = 0. It follows that z = 0. Hence the only critical point of the system
is at (0,0). The components of the vector field are infinitely differentiable everywhere.
Therefore the system is almost linear.
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The Jacobian matrix of the vector field is

0 1
J= .
(—1 u—uf)

At the critical point (0, 0), the coefficient matrix of the linearized system is
0 1
s0.0=( " )

w1
==+ 24,
7“132 2 2 I[L

with eigenvalues

If = 0, the equation reduces to the ODE for a simple harmonic oscillator. For the case
0 < p < 2, the eigenvalues are complex, and the critical point is an unstable spiral. For
1 > 2, the eigenvalues are real, and the origin is an unstable node.

(¢). The initial conditions were chosen as 2:(0) = 2, y(0) = 0.

=110 mu=1.0

2
H /\ /\ /\ [\
T T T T T T T T T T T T }
45&1\10/214U20vzaz n 24 B8 1 12U182U2425U
-1
2

mu=1.0

(3]

=

ra

A~216 and T ~ 6.65.

(d).
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mu =02

*14

>
>
>
>

24

A=~2.00and T =~ 6.30.

mu=05

T

A=~204 and T ~ 6.38.

[gul

mu=2.0

| //\\ //W\ //q\
\75 g 110 12) 14 15V ] QU 30
t

A~26and T =~ 7.62.

[gul

ra
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rmu =150
ru = 5.0
41 54
xz- /\ /\ 3"1_
10 20 E 40
t
2
44
A=~437and T ~ 11.61.
(e).
A T
=02 ]2.00]6.30
(=05 204638
=1.0]216 | 6.65
1 =20]26 |7.62
w=>5.01437|11.61
4.4
Aii 11
38
367 10
34
£3.23 k]
7]
281 8
257
247 ]
221
21 :
1 2 i 1 P 3 4 g
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Section 9.8

6. r = 28, with initial point (5,5, 5):

16

o & ko

12
14
16

r = 28, with initial point (5.01,5,5):

16
14
12
10

*g

S N g ]

20 & b R

10
12
14
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9(a). r =100, initial point ( — 5, —13,55) :
140
120
Lo
L5n
.30 20 10 D e, 0
20
E
104
| . 3 4 5
A0
220
230

The period appears tobe 7'~ 1.12.

(b). 7 =99.94, initial point (— 5, — 13,55) :

30 20 -10 0 oo, 0

The periodic trajectory appears to have split into two strands, indicative of a period-
doubling. Closer examination reveals that the peak values of z(¢) are slightly different:
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1401
120
- 100
a0
B0
16 17 18 19 20

r = 99.7, initial point (— 5, —13,55) :

140

120

2 100

80

Sy
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(¢). r=99.6, initial point (— 5, — 13,55) :

s 2 o ﬁ L S0
The strands again appear to have split.
140+
120+
L 100
30+

60

® 17 s 1w M
t

Closer examination reveals that the peak values of z(t) are different:
1457

144.57

144 7

z 14354

143

14257

1427595 17 1B 19 20
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10(a). r = 100.5, initial point ( — 5, — 13,55 ) :
F140
F120
F100 z
Fa0
I-jﬂ o -jD o I-{D o 1] o 1h I . o 2h
140
1201
z 1004
a0
B0
15 17 t1'8 13 20
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r = 100.7, initial point (— 5, — 13,55) :

140

30 20 0 010 Ig il
140
120
z 100
80
B0
16 17 18 19
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(b). » =100.8, initial point (— 5, — 13,55) :

140

r = 100.81, initial point (— 5, — 13,55 ) :

140

40 o 40 0 w20

The strands of the periodic trajectory are beginning to split apart.
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r = 100.82, initial point (— 5, — 13,55 ) :

140
1201
z 1001

a0-

ED:

15

19
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r = 100.83, initial point (— 5, — 13,55 ) :

1404
1201
7 1007

80

B0

15 15 17 18 15

page 591



WWV. ZI 1 e.lr

CHAPTER 9. ——

r = 100.84, initial point (— 5, — 13,55 ) :

140

1204

z 100

a0 1

B0

15 16 17 18 19
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Chapter Ten
Section 10.1

1. The general solution of the ODE is y(x) = ¢, cos x + ¢, sin x . Imposing the first
boundary condition, it is necessary that ¢, = 0. Therefore y(x) = ¢, sinx. Taking its
derivative, y'(z) = ¢, cos x . Imposing the second boundary condition, we require that
c; cosm = 1. The latter equation is satisfied only if ¢, = — 1. Hence the solution of
the boundary value problem is y(z) = — sinz.

4. The general solution of the differential equation is y(x) = ¢, cosx + ¢, sinx . It
follows that y'(z) = — ¢, sinx + ¢, cos x . Imposing the first boundary condition, we
find that ¢, = 1. Therefore y(x) = ¢, cos x + sin x . Imposing the second boundary
condition, we require that ¢, cos L + sin L = 0. If cos L # 0, that is, as long as

L # (2k — 1)7/2, with k an integer, then ¢, = — tanL . The solution of the boundary
value problem is

y(z) = —tanLcosx + sinz.

If cos L = 0, the boundary condition results in sin L. = 0. The latter two equations
are inconsistent, which implies that the BVP has no solution.

5. The general solution of the homogeneous differential equation is
y(x) =cicosz+ ¢y sinc.

Using any of a number of methods, including the method of undetermined coefficients, it
is easy to show that a particular solution is Y (x) = = . Hence the general solution of
the given differential equation is y(z) = ¢, cos x + ¢, sinx + x . The first boundary
condition requires that ¢; = 0. Imposing the second boundary condition, it is necessary
that ¢, sinm + m = 0. The resulting equation has no solution. We conclude that the
boundary value problem has no solution.

6. Using the method of undetermined coefficients, it is easy to show that the general

solution of the ODE is () = ¢, cos\/2x + ¢, sin\/2x + /2. Imposing the first
boundary condition, we find that ¢; = 0. The second boundary condition requires that

¢y siny/2m+ /2 =0. It follows that ¢, = — 7r/23in\/§7r . Hence the solution of
the boundary value problem is

s x
Ylr) = — —=—sinvV2zx+ —.
@) 2siny/2 2

8. The general solution of the homogeneous differential equation is
y(x) = ¢, cos2x + ¢, sin 2w .

Using the method of undetermined coefficients, a particular solution is Y (z) = sinx /3.
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Hence the general solution of the given differential equation is
1
y(x) = ¢, cos2x + ¢, sin 2z + gsinsc .

The first boundary condition requires that ¢, = 0. The second boundary requires that
Cy SN 2T + %sin m = 0. The latter equation is valid for a// values of ¢, . Therefore the
solution of the boundary value problem is

y(x) = ¢y sin 2z + gsinx.

9. Using the method of undetermined coefficients, it is easy to show that the general
solution of the ODE is y(z) = ¢, cos 2x + ¢, sin2x + cos z/3 . It follows that

y'(x) = — 2¢, sin2x + 2¢, cos 2x — sinx /3. Imposing the first boundary condition,
we find that ¢, = 0. The second boundary condition requires that

1
— 2¢y sin 2w — §sin7r =0.

The resulting equation is satisfied for all values of ¢,. Hence the solution is the family of
functions

1
y(x) = ¢, cos2x + 3608 %.

10. The general solution of the differential equation is
1
y(z) = ¢ cos\/3x + ¢ sin/3x + 5COST.

Its derivative is y'(z) = — /3¢ siny/3z + /3¢ cos\/3x — sinx/2. The first
boundary condition requires that ¢, = 0. Imposing the second boundary condition, we
obtain — \/5 c Sin \/5 m = 0. It follows that ¢, = 0. Hence the solution of the BVP
is y(z) = cosx/2.

12. Assuming that A > 0, we can set A\ = . The general solution of the differential
equation is

y(x) = ¢ cos px + ¢, sin px,

sothat y'(z) = — pe, sin px + pe, cos px . Imposing the first boundary condition, it
follows that ¢, = 0. Therefore y(z) = ¢, cos px . The second boundary condition
requires that ¢, cos um = 0. For a nontrivial solution, it is necessary that cos umr =0,
that is, um = (2n — 1)7/2, with n = 1,2, ---. Therefore the eigenvalues are

(2n —1)*

)\n -
4

,n=1,2,---.
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The corresponding eigenfunctions are given by
2n —1
gy = cos PP VT g
2
Assuming that A < 0, we can set A\ = — p?. The general solution of the differential

equation is
y(x) = ¢, cosh px + ¢, sinh px

so that y'(z) = pe, sinh px + pc, cosh px . Imposing the first boundary condition, it
follows that ¢, = 0. Therefore y(z) = ¢, cosh px . The second boundary condition
requires that ¢, cosh yum = 0, which results in ¢, = 0. Hence the only solution is the
trivial solution. Finally, with A = 0, the general solution of the ODE is

y(x) =cx+c,.

It is easy to show that the boundary conditions require that ¢, = ¢, = 0. Therefore all of
the eigenvalues are positive.

13. Assuming that A > 0, we can set A = u?. The general solution of the differential
equation is

y(x) = ¢, cos px + ¢, sin px,

sothat y'(z) = — pc, sin px + pe, cos px . Imposing the first boundary condition, it
follows that ¢, = 0. The second boundary condition requires that ¢, sin um = 0. Fora
nontrivial solution, we must have ymr = nm,n = 1,2, ---. It follows that the eigenvalues
are

>\n :n27 n = 1327”'3

and the corresponding eigenfunctions are
Yo =cosnr, n=1,2,---.
Assuming that A < 0, we can set \ = — p?. The general solution of the differential
equation is
y(x) = ¢; cosh px + ¢, sinh px
so that y'(z) = pe, sinh px + pc, cosh px . Imposing the first boundary condition, it

follows that ¢, = 0. The second boundary condition requires that ¢, sinh um = 0. The
latter equation is satisfied only for ¢, = 0.

Finally, for A = 0, the solution is y(x) = ¢, + ¢,. Imposing the boundary conditions,
we find that y(z) = ¢,. Therefore A = 0 is also an eigenvalue, with corresponding
eigenfunction y,(z) = 1.
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14. It can be shown, as in Prob. 12, that A > 0. Setting A = p?, the general solution
of the resulting ODE is

y(z) = ¢, cos px + ¢, sin px,

with y'(z) = — pe, sin px + pe, cos px . Imposing the first boundary condition, we
find that ¢, = 0. Therefore y(x) = ¢, cos pz . The second boundary condition requires
that ¢, cos u. = 0. For a nontrivial solution, it is necessary that cos . = 0, that is,
p= 2n—1)r/(2L), with n =1,2,---. Therefore the eigenvalues are

(2n —1)* 72

)\n:T,TLZI,Q,'“.

The corresponding eigenfunctions are given by

(2n — 1)z

=1,2,-.
2L ’n )=

Yp = COS

16. Assuming that A\ > 0, we can set A\ = 2. The general solution of the differential
equation is

y(x) = ¢, cosh px + ¢, sinh px .

The first boundary condition requires that ¢; = 0. Therefore y(x) = ¢, sinh pz and
y'(x) = ¢, cosh px . Imposing the second boundary condition, it is necessary that

¢y cosh L = 0. The latter equation is valid only for ¢, = 0. The only solution is the
trivial solution.

Assuming that A > 0, we set \ = — pu2. The general solution of the resulting ODE is
y(x) = ¢ cos px + ¢, sin px .

Imposing the first boundary condition, we find that ¢, = 0. Hence y(z) = ¢, sin px and
y'(x) = ¢, cos px . In order to satisfy the second boundary condition, it is necessary that
¢, cos pL = 0. For a nontrivial solution, u = (2n — 1)7/(2L),, with n = 1,2, ---.
Therefore the eigenvalues are

(2n —1)* 72

)\n: _T,nzl,z,"‘.

The corresponding eigenfunctions are given by

(2n — 1)z

—=1.2....
2L )n =

Yn = SIN

Finally, for A = 0, the general solution is /inear. Based on the boundary conditions, it
follows that y(z) = 0. Therefore all of the eigenvalues are negative.
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17(a). Setting A = 2, write the general solution of the ODE y” + p%y = 0 as
y(x) = ke + kye” 1,
Imposing the boundary conditions y(0) = y(7) = 0, we obtain the system of equations

kl + kg - O
kie"™ 4 kye” T =),
The system has a nontrivial solution if and only if the coefficient matrix is singular. Set
the determinant equal to zero to obtain

e T _ T — ()

(b). Let u = v +io. Then iur = ivw — or, and the previous equation can be written
as

0T~ WT _ o=0moivm _ ()

Using Euler's relation, €™ = cos vw + i sin v, we obtain

“M(cosv +isinv) =0.

e’"(cosv —isinv) —e
Equating the real and imaginary parts of the equation,

(7" —e "Mcosvm =0
(e +e "M)sinvr =0.

(c). Based on the second equation, v = n, n € . Since cosnm # 0, it follows that
e’" =e %", or 2" =1. Henceoc = 0,and p=n,n € 1.
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Section 10.2

1. The period of the function sin ax is T' = 27/a.. Therefore the function sin 5z has
period T'=27/5.

2. The period of the function cos ax is also 1" = 27/« . Therefore the function cos

2mx
has period 7' = 27 /27 = 1.

4. Based on Prob. 1, the period of the function sinnz/L is T = 27 /(w/L) = 2L.

6. Let T > 0 and consider the equation (x + T')* = 22. It follows that 2Tz + T2 = 0
and 2z + T = 0. Since the latter equation is not an identity, the function z? cannot be
periodic with finite period.

8. The function is defined on intervals of length (2n + 1) — (2n — 1) = 2. On any two
consecutive intervals, f(x) is identically equal to 1 on one of the intervals and alternates
between 1 and — 1 on the other. It follows that the period is 7' = 4.
9. On the interval L < x < 2L, a simple shift to the right results in
fx)= —(x—2L)=2L — .
On the interval — 3L < x < — 2L, a simple shift to the left results in
fle)= —(z+2L)= —2L —=z.

11. The next fundamental period to the left is on the interval — 2L < x < 0. Hence the
interval — L < x < 0 is the second half of a fundamental period. A simple shift to the
left results in

flz)=L—(x+2L)= —L—=x.

12. First note that

COS——— = — 4+ cos

mrx  nmr 1 (m —n)mrx (m+n)rz
cos— 7 5 |08 7 7

and

Ccos SIN—— = —

mrx . nrxr  1[  (n—m)rz
7 7 5 |51
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It follows that
L L
1 _
/Lcosmgmcos%dx = §/L {cosw + COSM} dx
1L {sin[(m—n)rz/L] N sin[(m +n)mz/L] ) |*
27 m—n m-+n I
=0,
as long as m + n and m — n are not zero. For the case m =n,
L L
nwx)z ﬁ{/‘[ 2nwx]
cos— ) dx = - 1+ cos dx
L/iL< L 2)_1 L
1 +_shﬂ2nﬂx/L) L
= - €T _—_—
2 2nm/L I
=1L.
Likewise,
L L
1 —
/_Lcosmgxsmzﬂdx = 5/_L [smw + sm%] dx
_ 1L {fcos[(n—m)mz/L] cos[(m+n)rz/L] L
27 m-—n m+n _I
=0,
as long as m + n and m — n are not zero. For the case m =n,
/w max . PIE I{/L ,2nﬂxd
cos sin—-dxr = - [ sin x
7 L L 2)1 L
1 fcos(2nmx/L) L
2 2nm/L .

=0.
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14(a). For L =1,

(b). The Fourier coefficients are calculated using the Euler-Fourier formulas:

1 L
a =7 _Lf(:c)da:

Forn >0,
1 L
a, = — f(x)cos@dx
LJj_g
1 0
= E/LcosnLﬂdx
Likewise,

/ f(z sin@d:p

nmwT
= Z/_Lsdex
=14+ (=1)
- nmw

It follows that by, = 0 and by, , = — 2/[(2k — 1)7], k =1,2,3,---. Therefore the
Fourier series for the given function is

1 x 2k — 1)z
—5—;2 o
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16(a).

(b). The Fourier coefficients are calculated using the Euler-Fourier formulas:

_ %/if(m)dm

0 1
= (x+ 1)dz + /0 (1 —2x)dx

-1

=1.
Forn >0,
/ f(z cos@dx
1
= / (x + 1)cosnmx dx + / (1 —x)cosnrx dx
-1 0
-1 —1)\"
el Gt
n2m?
It follows that a,, = 0 and ay_, = 4/[(2k — 1)*7%], k =1,2,3,---. Likewise,

/ f(x sz’nwda:

1
:/ (x+1)sznn7rmdm+/ (1 — x)sinnmrdx
-1 0
=0.

Therefore the Fourier series for the given function is

f(x) = 7r2 Z cos(2k — )7z
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17(a). ForL =1,

1.84
1.67
1.44
1.24

0.4
0.2

(b). The Fourier coefficients are calculated using the Euler-Fourier formulas:

a, = /f

1 L
—Z/_L(:c—l—L)dx+L/O Ldx

= 3L/2.
Forn > 0,
a, = / f(x cos@dx
1 (L
= E/L(JC-I-L)cos—dx L/o LCOSnLﬂdI
L(1 — cosnm)
- n2m? .
Likewise,

nmwr

b, = /f sin—da:

1 (L
= E/L( +L)sm—da:+ L/o Lsin%dm

Lcosnm

nm

Note that cosnm = (— 1)". It follows that the Fourier series for the given function is
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3L L& 2 2n—Umz (—-1)"r . nmz
flx) = e + — 7; @n_ 1)2608 7 - sinp

18(a).

1 L

Forn > 0,
1 L
an =7 Lf(x)cos—mgxdx
1/1 nmcd
=— | zcos—dx
2/ L
Likewise,
1 (L
b, = E/Lf(x)sm—nzmdm
1/1 . nﬁxd
=— | zsin—dx
2/, L
= —(2 sin@ — mrcosm).
n?m? 2 2

page 603



WWV. ZI T e.Ir

CHAPTER 10. —

Therefore the Fourier series for the given function is

[ 4  nr 2 nr| . nmx
flz) = ,,2_:1 [W SN~ = — oS- | sin——.

19(a).

(b). The Fourier cosine coefficients are given by

/ f(x COS@dIE

/ nm:d +1/2 mrxd
= — — cos——dzx cos——dzx
2/ 9 2 2 /o 2

=0.

The Fourier sine coefficients are given by

/ f(x sinmdx

/ ,nmcd +1/2, nwxd
= — — sin——dx sin——dx
2/, 2 2 /o 2

1 —cosnm

nim

Therefore the Fourier series for the given function is

4 1 . (2n— 1)z
f(x)_%;%—lsm 2
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(c).
1.2
1
na
0G
0.4
nz
1 2
H
20(a).
27
"I_
3 ) 1, 2 3

(b). The Fourier cosine coefficients are given by

/ f(z cos@dx

—/ rcosnrmxdr
1
=0.

The Fourier sine coefficients are given by
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nmwx

1 /L
b, = Z/_Lf(x)siana:
1

= / T sinnmrdx
-1

cosnm
= -2

nm

Therefore the Fourier series for the given function is

flxz) = — % io: (= l)nsinnmc.

n=1 n

0.8
06
0.4
0.z

02 04_ 06 08 1
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22(a).

(b). The Fourier cosine coefficients are given by

/ fla

— 5/_2(x+2)dx—|— ;/02(2—23:)@3

2

and forn > 0,

/ flx cos@dx

1 2
= 5/_2(3:—#2)0057@:4- 2/0 (2 —2x)cos ?dl’

(I —cosnm)
=0 n?m?

The Fourier sine coefficients are given by

/ f(z sin@dx

1 2
= —/ (x+ 2)3m—dm + / (2 — 2x)sin DY g
2/, 2/, 2
_ pcosnm
nm

Therefore the Fourier series for the given function is
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23(a).

1.8

164
1.44
1.24

084
067

0.2 x
0.4
06
0.8

(b). The Fourier cosine coefficients are given by
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| —

[ o

T I
1[0 1
:_/ (—— da:—{— /(2m——x2>dx
2/, 2
=11/6,
and forn > 0,
1 L
f(x cos@dx

L/,
1 /0 1 /2 1
= 5/_2(— g)cos%dm‘ﬁ- 2/0 (2:5‘— 5:172)603 n—gxd:z:

(5 — cosmm)

n2m2

The Fourier sine coefficients are given by

/ f(z sm@d:p

1 [? 1
= 5/_2( ;)sm?dm—l— 2/0 (2:6— ixQ)sm ?dm

4 — (4 + n*n?)cosnm
n3ms ’

Therefore the Fourier series for the given function is

= [(—1)" —5] nmwx
f(z) _E+ Z:l cos 9 +
> [4- (4+ )( n" .
LR AC
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(c).
24(a).
5]
4
3
21
1:
8 B 4 2 12 :i'}{' BB
1

(b). The Fourier cosine coefficients are given by
1 L
ay = E/Lf(x)dx
3
2

1
:5/0 (3 —x)dz
—9/4,

and forn > 0,
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/ f(x coswdaﬁ

nmnx

= 5/0 2%(3 — x)cos Tdm

2

(6 — 6 cosnm + n’r*cosnr)

= —27

nimd

The Fourier sine coefficients are given by

/ f(z sin@d:p

= g/o 2*(3 — x)sin %dm

_ 5y 1+ 230038 nmw
nsm

Therefore the Fourier series for the given function is

f(z) :2—272{6[1‘(—1>"]+(—1)" T

nimd n2m? 3

54 Z 1+2(-1)"] . nmz

Sin
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m=5 m=10
0s 026
0.24
0.223
0.4 0.23
0.183
03 015
0.4
0,123
0.2 0.1
0,084
0,05
b 0.04
0,023
O 0040606 1 12141618 2 22242628 3 D02 040608 1 12141618 2 22242628 3
¥ H
m=20
0.124
0.14
0.084
0.06
0.044
0.024

D702 040508 1 12141618 2 222426238 3
®

It is evident that |e,,,(z)| is greatest at = + 3. Increasing the number of terms in the
partials sums, we find that if m > 27, then |e,,(z)| < 0.1, forall z € [— 3, 3].

m=27
0.14

0.084
0.064
0.044

0.024

0702040608 1 12141618 2 22242628 3
H
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Graphing the partial sum s,;(x), the convergence is as predicted:

527 ()
4 4

28. Let z =T +a, forsome a € [0,T]. First note that for any value of A,

fle+h)—f(z) =f(T+a+h)— f(T+a)
= fla+h)— f(a).

Since f is differentiable,

f'(w) = lim, h
o flat k)~ f(@)
h—0 h

Thatis, f'(a +T) = f'(a). By induction, it follows that f'(a + T') = f'(a) for every
value of a .

On the other hand, if f(x) = 1 + cos z, then the function

T
F(z) = / [1+ cost]dt
0
=z 4+ sinx
is not periodic, unless its definition is restricted to a specific interval.
29(a). Based on the hypothesis, the vectors v, , v, and v; are a basis for R3. Given any

vector u € R?, it can be expressed as a linear combination u = a,v; + a,v, + azvs.
Taking the inner product of both sides of this equation with v; , we have

u-v; = (a,vy + ayvy + asvs) - v;
= a; ViV,
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since the basis vectors are mutually orthogonal. Hence

u-v;

,i=1,2,3.

a,; —
V;-V;

Recall that u - v; = uv; cos 6, in which 6 is the angle between u and v;. Therefore

ucos

i =

(%

Here w cos 6 is interpreted as the magnitude of the projection of u in the direction of v; .

(b). Assuming that a Fourier series converges to a periodic function, f(z),
a o o0
f(z) = §0¢0(x) + Z m @ () + Z by ()
m=1 m=1
Taking the inner product, defined by

(u,v) = /_Lu(x)'u(m)da:,

L

of both sides of the series expansion with the specified trigonometric functions, we have

(f,qbn)— 2 (o, bn) +Zam Grm + Bn) +Zb (Vm » 6n)

m=1 m=1

forn=0,1,2,---

(c). Ttalso follows that

(f ) = 5 (@0, n) +Zam G > Vn) +Zb (¥m > )

m=1 m=1
forn =1,2,---. Based on the orthogonality conditions,

(¢m,¢n) = L(Smn ) (wmal/}n) = Lémﬂ 5
and (¥, , ) = L 6y, . Note that (¢, ¢y) = 2L . Therefore

2y = (zwo_ /f ooz

and

ap = (¢n ,¢n / f ¢n n = 1727
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Likewise,

L
= % — 1] f@unade, n=1.2
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Section 10.3

1(a). The given function is assumed to be periodic with 2. = 2. The Fourier cosine
coefficients are given by

= %/LLf(x)d:c
:/_?(—1)dw+/01(1)d:1:
-0,

and forn > 0,

/ f(x coswdac

1
— —/ cosnmzda:+/ cos nmx dx
1 0
=0.

The Fourier sine coefficients are given by

/ f(x sin@dz‘

1
= —/ sin mrxd:c—l—/ sin nwxr dx
-1 0

1— cosnm
=2—
nmw

Therefore the Fourier series for the specified function is

4 & 1

= — in (2n — 1
f(x) g T sin (2n — 1)z

n=1
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(o]
[a]
—
— 4
kg
[NED.

2

The function is piecewise continuous on each finite interval. The points of discontinuity
are at integer values of x. At these points, the series converges to

[f(z =)+ flz+)]=0.

3(a). The given function is assumed to be periodic with 7" = 2L . The Fourier cosine
coefficients are given by
/ fla

and forn > 0,

1 L
=71 Lf coswda:

1

0 1 L
= E/_L(L + x)cos nzx dz + Z/o (L — z)cos n;r:z: dx

1 — cosnm

=2L

n2m?

The Fourier sine coefficients are given by

/ f(z sm—d:z:

nwT 1 [k nwT
L/_L( + z)sin 7 dx + L/o (L — z)sin 7 dx
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Therefore the Fourier series of the specified function is
L AL & 1 (2n — 1)z
T)= 5+ —7 cos
f< ) 2 ? n=1 (2n - 1)2 L
(b). For L =1,
1.4
1.2
3 2 a1 2 3

K

Note that f(z) is continuous. Based on Theorem 10.3.1, the series converges to the
continuous function f(x).

5(a). The given function is assumed to be periodic with 2. = 27r. The Fourier cosine
coefficients are given by
-1 1@
/2

= ;/ﬂ/z(l)dﬂv

=1,

and forn > 0,

nmx
/ f(x)cos —dw
/2

= — 1)cos nx dx
7T/7r/2( )

2 . (nﬂ)
= —gsinl—).
nmw 2

The Fourier sine coefficients are given by
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1 L
b, = Z/_Lf(x)sz'n?dx

1 /2

= —/ (1)sin nx dx
™ —T/2

=0.

Observe that
nmw 0, n=2k
n| — | = k=1,2,.--.
Sm(2) {(—1)k+l,n:2k—1 ’ -

Therefore the Fourier series of the specified function is

f(x) = % - %i%cos@n—l)x.
n=1

29
1.84
167
1.44
1.24

1
0.87
064

[+]
0.44
0.24

-2
024 ®
0.44

The given function is piecewise continuous, with discontinuities at odd multiples of /2.
At x, =2k —-1)m/2,k =0,1,2,---, the series converges to

|f($d_)+f($d+)|:1/2-

6(a). The given function is assumed to be periodic with 2L = 2. The Fourier cosine
coefficients are given by

ay = %/ f(x)dz

L
-
1
:/@2
0

~1/3,

dx

and forn > 0,
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/ f(z cos@dx

:/ 2’cos nrr dx
0

2cosnm
n2m?

The Fourier sine coefficients are given by

. nTx
/ f(x sm—dm
:/ x’sin nrr dx
0
2 — 2cosnm + n’w?cosnw

n3m3

Therefore the Fourier series for the specified function is

fx) = 1—1—% i(_an)n cosnmr —

6 =

n37r3 nmw

[1—( —1)" —"7 .
—Z{ )]-I-( ) SINNMTT .

n=1

161
161
1.4
1.2

0.8
067
0.43
0.23

m_
a2
A
s}
L

023 X
0.4

The given function is piecewise continuous, with discontinuities at the odd integers .
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At x;=2k—1,k=0,1,2,---, the series converges to

|f(xg =) + flza+)[=1/2.
8(a). As shown in Problem 16 of Section 10.2,

flx) = 1-+-:£-:§i ———;E——;—cos(2n/——1)wax

41 08 05 04 02 02 04,06 08 |

n= 20
0.014

0.003

0.006

0.004

1 08 06 04 02 02 04,06 08 1

n= 40
0.0054

0.004
0.003

0.002

0.001

408 06 04 02 02 04,06 08 1
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n= 21

0.008 1

0.006

0.004

0.00

41 08 06 04 02 02 04,06 08 1

9(a). As shown in Problem 20 of Section 10.2,

flx)= — % Z (=1) Ismmr,r.
n=1

n

408 06 04 02 02 04,06 08 1

n= 20

Ll

408 0B 04 02 02 04,06 08 1
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n= 40
1_
0.8
0.6
0.4
0.2
41 08 05 04 02 02 04,06 08 1

(c). The given function is discontinuous at x = £ 1. At these points, the series will
converge to a value of zero. The error can never be made arbitrarily small.

10(a). As shown in Problem 22 of Section 10.2,

1 12 & 1 2n —1 2 = (—=1)"
flz) =+ = cos< n - lmz + —Z( ) sin 2L
T

n= 10

0.5
0.6
0.4+

0.2

[gul
[gul

0.5

0.6

0.4+

0.2+

ra
ra
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n= 40

1_

0.8

06

0.4

024 FMIM
2 -1 1 2

(c). The given function is discontinuous at x = + 2. At these points, the series will
converge to a value of — 1. The error can never be made arbitrarily small.

11(a). As shown in Problem 6, above ,

flz) = 1+ 2 i(_l)n CoOSNTL —

2 n?
n=1

(o —(—1)"] (-1)"] .
_Zl{[ ( )]—f—( ) sinnwx .

(@)

n3m3 nmw

n= 10
0.5

408 06 04 02 02 04,06 08 1
n= 20
0.5
0.4
0.3
0.2]

0.14

R,

1 08 06 04 02 02 04,06 08 1
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n= 40
0.59

0.44
0.39
0.24

0.14

he...

408 06 04 02 02 04,06 08 |

(c). The given function is piecewise continuous, with discontinuities at the odd integers .
At x;=2k—1,k=0,1,2,---, the series converges to

|f($d_)+f($d+)|:1/2-

At these points the error can never be made arbitrarily small.

13. The solution of the homogenous differential equation is
y.(t) = ¢, coswt + ¢, sinwt .

Given that w? # n?, we can use the method of undetermined coefficients to find a
particular solution

Hence the general solution of the ODE is

y(t) = cicoswt + ¢ sinwt + ———— sinnt.
w?—n
Imposing the initial conditions, we obtain the equations
C, = O
w e =0.
> + 2
It follows that ¢, = — n/[w(w? — n?)]. The solution of the IVP is
) 1 ot n ol
= ———=sinnt — ———— sinwt.
Y w? — n? w(w? — n?)

If w? = n?, then the forcing function is also one of the fundamental solutions of the
ODE.

The method of undetermined coefficients may still be used, with a more elaborate trial
solution. Using the method of variation of parameters, we obtain
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. 2 t t . t
Y(t) = —cosnt/sm " dt+sz‘nnt/mdt
n n

sinnt —ntcosnt
2n2 ’

In this case, the general solution is

t
y(t) = ¢, cosnt + ¢y sinnt — 3, €08 nt.
n

Invoking the initial conditions, we obtain ¢, = 0 and ¢, = 1/2n?. Therefore the
solution
of the IVP is

t
t) = —=sinnt — — cosnt.
y(t) = 2n? 2n

16. Note that the function f(¢) and the function given in Problem 8 have the same
Fourier
series. Therefore

ft) = % + % Z mcos@n— 1)mt.

The solution of the homogeneous problem is

y.(t) = ¢, coswt + ¢, sinwt .

Using the method of undetermined coefficients, we assume a particular solution of the
form

Y(t)=A+ Z A, cosnmt.
n=1

Substitution into the ODE and equating like terms results in A4, = 1/2w? and

an
Ay = 2 —n2n2”
It follows that the general solution is
4 — cos( 2n — )t
t) =c coswt +c smwt—i— — .
Setting y(0) = 1, we find that
Cl_l__Q_ii cosQn—l)wt .
2w —(2n-1) 7T2]

page 626



WWV. ZI T e.Ir

CHAPTER 10. —

Invoking the initial condition y’(0) = 0, we obtain ¢, = 0. Hence the solution of the
initial value problem is

1 cos( 2n - 1)7rt — coswt
y(t) = coswt — 2—coswt+ 5.2 + ﬁ Z

w? — (2n — 1)’ 2] .
17. Let
nmwx
by '——]
+ nz_:l [an cos + sin 7
Squaring both sides of the equation, we formally have
|f x —i—Z[a cos’ —i—bQ } +agz [an cos —&—bn sm? +
+ Z [cmn cos sm?} .
m#n

Integrating both sides of the last equation, and using the orthogonality conditions,

L 2d . La(Q)d+OO LQ 2nﬂ'xd LbQ,Qmm‘d
_L|f(x)| xr = —ax Z /_ancos I x—l—/_L nsmT T

:%L+§:aL+M

n=1

Therefore,
I 2 ag (2 2
ZZN“”MZ?+Z¥%+W‘

19(a). As shown in the Example, the Fourier series of the function

0, —L<z<0
ﬂ@_{g O<z<L,

is given by

L N 2L~ 1 (2n—1)mx
= sin
2 o — 1 3

Setting L =1,
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It follows that
ni?’ﬂl— sin(2n — 1)mx = g [f(m) — %] (i)
(b). Given that
g(x) = i% sin(2n — )7z, (1)

and subtracting Eq.(i4) from Eq.(7), we find that

T 1 — 2n —1 .
g(x) — B) [f(x) — —} = ;m sin(2n — 1)mx —

o
— Z ! sin(2n — 1)z
—2n—1

Based on the fact that
2n —1 1 1

1+@2n—17 20—1  @n-D[1+@2n-1)7"

and the fact that we can combine the two series, it follows that

glz) = g{ ] i (2n QSZ? 2n+_<;:rf ONN
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Section 10.4
1. Since the function contains only odd powers of x, the function is odd.

2. Since the function contains both odd and even powers of x, the function is neither
even nor odd.

4. We have secx = 1/cos x . Since the quotient of two even functions is even, the
function is even.

5. We can write |z|* = |z| - |2|> = |z| - 2. Since both factors are even, it follows that
the function is even.

8. L=2.

Ewven Extension
2_

Odd Extension
2_
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Even Extension

0dd Extension
2_

11. L =2.

Even Extension
2_
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Odd Extension
2_

am
rad

12. L=1.

Even Extension
5_

e

A7 08 05 04 02 02 04,06 08 1

Odd Extension

4_\

408 He Oa 02 03 D.'axu.'a o8 1

2

\-r

16. L = 2. For an odd extension of the function, the cosine coefficients are zero. The
sine coefficients are given by
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nmwx

b, = /f sm—d:c

2
:/ xsmwd:ﬁ—l—/ Sin@dx
0 2 | 2

2 sm7 — NT COSNT
=2 2.9
nAm
Observe that
nmw 0, n=2k
— | = ’ k=1,2,
szn(2) {( 1)k+1,n:2k_1
Likewise,
1, n=2k _
cosmr—{ .n=2k—1 yk=1,2,--

Therefore the Fourier sine series of the specified function is

D"+ -1 . (2n— 1)z

:——Z—sznnmp—i—pz n—1)2 sin 5

n=1

A
AV

17. L = w. For an even extension of the function, the sine coefficients are zero.
The cosine coefficients are given by

ay = %/OLf(x)dx
_ %/Oﬂ(l)dx

=2,

page 632



WWV. ZI T e.Ir

CHAPTER 10. —

and forn > 0,

/ fx coswdx

The even extension of the given function is a constant function. As expected, the Fourier
cosine series 18

19. L = 3. For an odd extension of the function, the cosine coefficients are zero. The
sine coefficients are given by

/ f(x sin@d:p

3

n 2 n
sm—dx + — 2 sin—dx
T 37 x 3 3 3
2cosnm — cos%7r — cos 2’:;”
nm

Therefore the Fourier sine series of the specified function is

2 X1 nmw 2nm . nx
f(x) = — E —|cos— + cos—— — 2cosnm| sin—.
T “—~n 3 3 3
n=1
3_
—_— 2_ —_— —_—
o o o
- 1_ - -
o o [+]
20 i o, 20
[+ [+] [+]
—_— R "]_ R
o o o
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21. Extend the function over the interval [ — L, L] as

f(z) = z+ L, —L<zx<0
| L—=x, 0<z<L.

Since the extended function is even, the sine coefficients are zero. The cosine
coefficients
are given by

and forn > 0,
9 L
an = Z .

9 (L
= E/o (L — :v)cosnl_/ix dx

1 —cosnm

f(x)cos?d:c

=2L 12

Therefore the Fourier cosine series of the extended function is

L AL & 1 (2n — 1)z
f(x)—g—i—pz(%z_lfcos 7 :

n=1

In order to compare the result with Example 1 of Section 10.2, set L = 2. The cosine
series converges to the function graphed below:

3_

-1

This function is a shift of the function in Example 1 of Section 10.2.
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22. Extend the function over the interval [ — L, L] as

oy [ roL. —L<z<0
t)= L—x, 0<$§L,

with f(0) = 0. Since the extended function is odd, the cosine coefficients are zero. The
sine coefficients are given by

9 (L
b, = Z/o f(x)sinnl_/ﬂdx
9 (L

= z/o (L — x)sm? dx
B 2L
o

Therefore the Fourier cosine series of the extended function is

2L <1 . nmx
f(a:):?;ﬁsm 7
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Setting L. = 2, for example, the series converges to the function graphed below:

2_

4
e 4
o

23(a). L = 27. For an even extension of the function, the sine coefficients are zero.
The cosine coefficients are given by
=2 [ 1)

——/ rdx
T™Jo

=7/2,

and forn > 0,

/ f(z cos@dx

== " a
7'('/0 336082 x

2008( ) —H’msm(%) -2
2 i .

Therefore the Fourier cosine series of the given function is

2 & 2
flz) = Z + — nz_:l [Esmm + ﬁ<cosm — 1)]003@.

Observe that

Likewise,
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nmy [ (=1D", n=2k o
cos( )—{ 0 n—=2k_1 s k=1,2

4
3_
2_
[+ [+ [+ [+] [+] [+]
a5 0 3 g 10 15
E
(c).

m=10 m=40

24(a). L = 7. For an odd extension of the function, the cosine coefficients are zero.
Note that f(x) = —x on 0 < x < 7. The sine coefficients are given by

/ flx sin@dm

= — — xsmmsda:
T™Jo

2cosnm

n

Therefore the Fourier sine series of the given function is
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o0 n
_ (-1" .
f(x) =2 Z ——sinna.
n=1
(b).
‘ii_
3_
2_
1_
A0 & 2 2[4, 6% 8 [0
-1
2
-3
4
(c).

m =40

3

5]

]

3 2 1 1 2 3

26(a). L =4. For an even extension of the function, the sine coefficients are zero. The
cosine coefficients are given by

9 L
ay = Z/o f(x)dz
1 4

-5/ (@ ~20)s

—8/3,

and forn > 0,
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/ f(z COS@CZQT

= 5/ (x —Qx)cosan:I:

0
1+ 3cosnm

=16 22

Therefore the Fourier cosine series of the given function is

4 16 =1+3(-1)" nmx
f(x):§+pn:1 o cos— —.

=40

m
5
G- ]
44 44
21 5]
U 3 i 43 w
kS

page 639



WWV. ZI T e.Ir

CHAPTER 10. —

27(a).

Odd

=3,
and forn > 0,
o L
=7 f(x cos—da:
0

9 3
= §/0 (3— x)cos% dz
. L—cosnm
N n2m?

Therefore the Fourier cosine series of the given function is

1— —1 nmwe
9( = W2ZI 083.

For an odd extension of the function, the sine coefficients are given by

b, = / f(x zn—da:

= §/0 (3 — :z:)smn% dz

6

nmw

Therefore the Fourier sine series of the given function is
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(d). Since the even extension is continuous, the series converges uniformly. On the

other
hand, the odd extension is discontinuous. Gibbs' phenomenon results in a finite error for

all values of n .
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29(a).

(b). L = 2. For an even extension of the function, the cosine coefficients are given by
=2 [ e
4z — 3
= / [—a: ] dx
0 4

= —5/6,

/ f(x cos—d:c
/ [ —4x — 3] nwr
= ————— |cos—— dx
0 4 2

:41+3cosn7r

and forn > 0,

n?m?

Therefore the Fourier cosine series of the given function is

1+ 3( —1)” nwx
g(az)——— WQZ cos——.

For an odd extension of the function, the sine coefficients are given by

/ f(z sm—dm

/ [ —4x — 3] . nmx
= sin dx
0 4 2

32 + 3n272 + 5n?rlcos nm — 32 cosnw
2n3m3 ’

Therefore the Fourier sine series of the given function is
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1 X 32(1 — cosnm n?m2(3 + 5cosnm nmw
h(x) = — Z ( )+ B+ ) sin :
23 = n3 2
n=1
(c). For the even extension:
m=10 m =40
1.24

14 1]
0.8 08
067 061
D."l_ D‘.l_
0.2' Dz_

N 1 027 i ? 2 i 2

-0.44
-0.64
-0.

-14

For the odd extension:

(d). Since the even extension is continuous, the series converges uniformly. On the
other

hand, the odd extension is discontinuous. Gibbs' phenomenon results in a finite error for
all values of n .
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30(a).

Even Odd

(b). L = 3. For an even extension of the function, the cosine coefficients are given by

/f

:—/ (w — 522 +5:L'+1)d
3.Jo

=1/2,

and forn > 0,

N
a, = /f cos—d:c

:—/ (x — 522 +5x+1)cos@da:
3Jo 3

162 — 15n27? + 6 n’w2cosnm — 162 cos nw
nimt '

Therefore the Fourier cosine series of the given function is

1 2 162(1 — cosnm) — 3n*7*(5 — 2cosnw) nmx
9(>_Z+—Z " cos—o—.
n=1

For an odd extension of the function, the sine coefficients are given by

/ f(x sm—dm

25/0 ( — 52 +5x+1)sdex

90 4+ n?x2 4+ 2n2n2cosnw + 72 cosnw

=2
n3m3

Therefore the Fourier sine series of the given function is
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sin
n3 3

2 K 18(5 +4cosnm) + n*n?(1+2cosnm) . nmx
hiz) =5 ) .

For the odd extension:

m=10 m =40

(d). Since the even extension is continuous, the series converges uniformly. On the

other
hand, the odd extension is discontinuous. Gibbs' phenomenon results in a finite error for

all values of n ; particularly at x = £+ 3.

33. Let f(x) be a differentiable even function. For any z in its domain,
fl—z+h)=f(—2)=flz—h)-fz).

It follows that
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h—0 h
S h) - f@)
h—0 h
e fle—h) - f(=z)
= M
Setting h = — 6, we have
o @8~ f@)
—6—0 0

= @),
Therefore f/'( —xz) = — f'(z).

If f(z) is a differentiable odd function, for any z in its domain,

fl=z+h)=f(—2)= - flz—h)+ fz).

It follows that
o S =)+ (@)
h—0 h
_ o fl@=h) = f(z)
=T =R
Setting h = — 6, we have
S8~ f)
—5—0 )
= f'(z).

Therefore f'( —z) = f'(x).
36. From Example 1 of Section 10.2, the function

-z, —2<xz<0
f(ac)—{ x, 0<z<?2,

(L = 2) has a convergent Fourier series
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- -4 2 2, 4 B

Since f(x) is continuous, the series converges everywhere. In particular, at x = 0,
we have

It follows immediately that

i ety
— 2n_1 32 52 72 :

40. Since one objective is to obtain a Fourier series containing only cosine terms, any
extension of f(z) should be an even function. Another objective is to derive a series
containing only the terms

(2n — 1)z
RSt —-1.9....
cos 5T , N , 2,
First note that the functions
nmT
— =12
cos 7 n ,2,

are symmetric about x = L. Indeed,
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nmw(2L — x) <2 nm;)
co§——— = cos(2nm — —
L L
B ( nm;)
= cos| — —
L
nw
= cos—.
L

It follows that if f(x) is extended into (L ,2L) as an antisymmetric function about
=1L,
thatis, f(2L —xz) = — f(z) for 0 < x < 2L, then

2L

f(x)cosw dr=0.
0 L

This follows from the fact that the integrand is antisymmetric function about x = L.
Now
extend the function f(z) to obtain

Yo f(x), 0<z<L
f(x)_{ —f(2L-1z), L<z<2L.

Finally, extend the resulting function into ( — 2L, 0) as an even function, and then as a
periodic function of period 4L.

By construction, the Fourier series will contain only cosine terms. We first note that

) 2L

Cl():_ f()

_ / f(z)dz — —/ F2L — 2)da
_ f/o F(z)da — f/o F(u)du

=0.
Forn > 0,
2 [~ nmr
n — 571 —d
a f (x)cos 5L 4%
1 2L
/ f(x cos@dx— /), f(2L—x)cos%dx.
For the second integral, let ©w = 2L — x. Then
2L
cos L COSM =(-1)" cos

2L 2L 2L
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and therefore

nmtu

2L nmx ok
/L f(2L — x)cosidaj =(—-1) /0 f(u)cosfdu.

Hence

1—(—-1 n L
a, = #/0 f(m)cos%dm.

It immediately follows that a,, = 0 forn =2k, k=0,1,2,---, and

2 F 2k — 1
o1 = E/ f(x)cos%dm, for k=1,2,---.
0

The associated Fourier series representation

R (2n — )7z
f(x) = 7;0@2,,,,_1605 5T

converges almost everywhere on ( — 2L ,2L) and hence on (0, L).

For example, if f(z) = x for 0 < x < L = 1, the graph of the extended function is:
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Section 10.5

1. We consider solutions of the form u(z,t) = X (z)T'(¢). Substitution into the partial
differential equation results in

2 X"T+ XT' =0.
Divide both sides of the differential equation by the product X'7T" to obtain

X// + T/ B O
Tx T T
so that
X// B T/
X T

Since both sides of the resulting equation are functions of different variables, each must
be equal to a constant, say A. We obtain the ordinary differential equations

X" - AX=0and T'+ \T =0.

2. In order to apply the method of separation of variables, we consider solutions of the
form u(x,t) = X(z)T'(t). Substituting the assumed form of the solution into the partial
differential equation, we obtain

tX'"T+xXT' =0.
Divide both sides of the differential equation by the product ¢t X7 to obtain

XII T /
X T =Y
so that
X// T !/
X T

Since both sides of the resulting equation are functions of different variables, it follows
that
X// T/
— = - — =\
X tT
Therefore X (x) and 7T'(t) are solutions of the ordinary differential equations

X' X X=0and T+ XMT =0.
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4. Assume that the solution of the PDE has the form w(z,t) = X (z)T'(¢). Substitution
into the partial differential equation results in

[p(x)X')'T —r(z)XT" = 0.

Divide both sides of the differential equation by the product r(x) X7 to obtain

p@x) T
r(z)X T ’
that is,
pl) X _T"
r(r)X T

Since both sides of the resulting equation are functions of different variables, each must
be equal to a constant, say — A. We obtain the ordinary differential equations

[p(2)X'] + Mr(z)X =0 and T" + AT =0.

6. We consider solutions of the form u(x,y) = X(z)Y (y). Substitution into the partial
differential equation results in

X"Y + XYY" +2XY =0.
Divide both sides of the differential equation by the product XY to obtain

X// Y//

x Ty te=0
that is,

X// Y/l

X Ty

Since both sides of the resulting equation are functions of different variables, it follows
that
X// Y//

2 4= -1 = .
x 7 Y

We obtain the ordinary differential equations

X'+ (xz+MN)X=0and Y- XY =0.

7. The heat conduction equation, 100 u,, = u;, and the given boundary conditions are
homogeneous. We consider solutions of the form u(z,t) = X(z)7'(t). Substitution
into

the partial differential equation results in
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100 X"T = XT'.
Divide both sides of the differential equation by the product X7 to obtain
X/l T/
X 1007

Since both sides of the resulting equation are functions of different variables, it follows
that

X// T/

= = — .
X 100T

Therefore X (x) and T'(t) are solutions of the ordinary differential equations
X"+AXX=0and T'+100AT =0.

The general solution of the spatial equation is X = ¢,cos \?*x + ¢, sin A\V?z . In order
to satisfy the homogeneous boundary conditions, we require that ¢, = 0, and

A2 =,

Hence the eigenfunctions are X,, = sin nwx , with associated eigenvalues \, = n’7?.

We thus obtain the family of equations 7"/ + 100\, 7" = 0. Solution are given by
T — o 1000t

Hence the fundamental solutions of the PDE are

—100n27%t

u,(x,t) =e sinnme,
which yield the general solution
> 2,2
u(x,t) = g ¢, e 0T sin nra
n=1

Finally, the initial condition u(x,0) = sin 27z — sin 5mx must be satisfied. Therefore
is it necessary that

o0

ch SINNTE = SN 27T — SINOHTX .
n=1
It follows from the othogonality conditions that ¢, = — ¢; = 1, with all other ¢, = 0.

Therefore the solution of the given heat conduction problem is

6—25007r2t

—4007% :
u(z,t) = e " sin 2w — sin b .
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9. The heat conduction problem is formulated as

Ugpy = Ut , 0<ax<40, t>0;
u(0,t) =0, u(40,t) =0, t > 0;
u(z,0) =50, 0 <z <40.

Assume a solution of the form w(z,t) = X (z)T'(t). Following the procedure in this
section, we obtain the eigenfunctions X,, = sinnmx /40, with associated eigenvalues
A\, = n?72/1600. The solutions of the temporal equations are

T, = e M,

Hence the general solution of the given problem is

d > nwx
— 2 :C —n’r t/1600 sin )
40

n=1

The coefficients ¢, are the Fourier sine coefficients of u(x,0) = 50. That is,

/ f(x sinwdx

nmwx
= - —d
2/0 sin 10 ®

The sine series of the initial condition is

sin

1001 — cosnm . nrx
50 = T Z n 40 -

n=1

Therefore the solution of the given heat conduction problem is

100 1 —cosnm 20 nm
u(z,t) = - Zl p e £/1600 mﬂ'

11. Refer to Prob. 9 for the formulation of the problem. In this case, the initial condition
is given by

0, 0<z<10,
u(z,0) =< 50, 10<z <30,
0, 30<x<40.

All other data being the same, the solution of the given problem is
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o0

nmTx
U(:L‘ ’ t) _ ch e " 7r2t/1600 znﬂ .

n=1

The coefficients ¢, are the Fourier sine coefficients of u(x,0). Thatis,

/ f(x sin@dm

. nrT
= — sin——dx
2 /10 40

nro__ 3nm
cos™ 4 COS=5~

=100
nmw

Therefore the solution of the given heat conduction problem is

0 nm 3nm
100 COST™ — COSTm 21600 . ML
e sin——.
n 40

u(x,t) = -
n=1

12. Refer to Prob. 9 for the formulation of the problem. In this case, the initial condition
is given by
u(z,0) =z, 0<ax<40.

All other data being the same, the solution of the given problem is

00
_ 2 nmTx
_ 207 n’r f/lGOO sin )
a 40

The coefficients ¢, are the Fourier sine coefficients of u(x,0) = = . That s,

/ f(x sin@dx

Therefore the solution of the given heat conduction problem is

n+1

80 oA /1600 o) VL
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13. Substituting x = 20, into the solution, we have

100 X1 — ‘
u(20,t) = - Z c:s o e_"zﬂ/moosin% :

n=1

We can also write

200 - (—1)k+1 —(2k—1)*7%t/160
u(20,t) = e~ (2k—1)"mt/1600
T ]; 2k -1

Therefore,

00 k’+1 2 s
(20,5) Z ~(2k=1)"72/320

Let

n+1
A, = (-1 1200 67(21671)271'2/320
m(2k — 1) '

It follows that | A;| < 0.005 for k > 9. So for n = 2k — 1 > 17, the summation is
unaffected by additional terms.

For t = 20,

00 k+1 2

Let

A, = (— 1)n+1200 67(%71)2#2/80
m(2k — 1) '

It follows that | A;| < 0.003 for k > 5. So for n = 2k — 1 > 9, the summation is
unaffected by additional terms.

For t = 80,
o0 k'+1
(20 80 Z 2k 1)2 2/20
Let
Ay = (- 1)n+1200 e—(2k—1)27r2/20.
m(2k — 1)

It follows that | A;| < 0.00005 for k > 3. So for n = 2k — 1 > 5, the summation is
unaffected by additional terms.
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The series solution converges faster as t increases.

14(a). The solution of the given heat conduction problem is

[o¢]
100 T COSTUT__n2r2i/1600 o, VT
40

M

U

Setting ¢ = 5, 10, 20, 40, 100, 200 :

a0

401

307

u

207

104

(b). Setting x = 5,10, 15,20 :

501
45
40

U35_
30

257

201

30 40 50
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(c). Surface plot of u(x,t) :

(d). 0 <wu(x,t) <1 fort>675sec.

t=675

14

0.8

0.6

u

0.4

0.2

a 10 0 30 40

16(a). The solution of the given heat conduction problem is

3nm
100 X cos™™ — cos® 5, . nTx
u(z,t) = Z 1 ,—n?rt/1600
™ n=1

4
n zn40
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Setting ¢ = 5, 10, 20, 40, 100, 200 :

504
400
307

201

(b). Setting = = 5,10, 15,20 :
50
407
207

u
207

. 10 W, o 40 50

(¢). Surface plot of u(x,1t) :
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(d). 0 <wu(x,t) <1 fort>615sec.

t=E15
1 4
0.5
0.6
u
0.41
0.2
u 10 20 30 40

17(a). The solution of the given heat conduction problem is
80 <X (— )" s
u(z,t) = ;;';ggg——jﬁl——-6_”7r”1mm3inzzgg.
Setting ¢ = 5,10, 20, 40, 100, 200 :

307
25—3
20
U5
10—3

5

T - -

(b). Analyzing the individual plots, we find that the 'hot spot' varies with time:

t |5 | 10|20 |40 | 100 | 200
T, [ 331311292622 |21
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Location of the 'hot spot', x;, , versus time :

@

324
304
281
xh
26 .

24

221 ¢

0740 B0 8D 1@ BT T8 30
Evidently, the location of the greatest temperature migrates to the center of the rod.

(¢). Setting x = 5,10, 15,20 :

304
281
26
244
224
U2D-
184
16
144
123
10

0 20 0, 60 a0 100

(d). Surface plot of u(x,t) :

page 660



WWV. ZI T e.Ir

CHAPTER 10. —

(e). 0 <wu(x,t) <1 fort>525sec.

t=45825

0.84
0.6
0.4

0.2

19. The solution of the given heat conduction problem is

n

200 =1 — :
u(x , t) _ - Z CT(ZS nm 6_”2720‘2’5/40051' n;)x .

n=1

Setting x = 10cm,,

w(10,1) = 200 i 1 —cosnm eanWzazt/Zloosin% '
7T

n=1 n

A two-term approximation is given by

u(10,t) ~ 40—0 [3 e~ t/400 _ —97m%a?t/400 |
3m
From Table 10.5.1 :
o2
silver 1.71

aluminum | 0.86
cast iron 0.12
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2

(a). a* =1.71:

100

50

50

404

20

(b). a® = 0.86 :

1001

804

G0

404

204

(c). > =0.12:
1004
80
G0
404

204

u(10 4

0 40 B0 &0 100

w10,y

20 40 80 100 120 140

[}

w104

[am)

200 400 500 800 1000
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21(a). Given the partial differential equation
aUyy —bus +cu=0,

in which a, b, and c are constants, set u(x,t) = e*w(z,t). Substitution into the PDE
results in

aew,, — b(6 elw + e‘%wt) +ecefw=0.
Dividing both sides of the equation by e, we obtain
AWy —bw, + (¢ —bd)w =0.
Aslong as b # 0, choosing 6§ = ¢/b yields

a
_w:px_wt:():

b

which is the heat conduction equation with dependent variable w .

23. The heat conduction equation in polar coordinates is given by
9 1 1
« urr+_u7'+_2u90 = Ut .
r r

We consider solutions of the form u(r, 6 ,t) = R(r)O(0)T'(t). Substitution into the
PDE
results in

o’ [R”@T +irery % R@”T] = ROT'.
r r

Dividing both sides of the equation by the factor RO, we obtain
R"” 1R 16" T’

R rR 720 o
Since both sides of the resulting differential equation depend on different variables, each
side must be equal to a constant, say — \. That is,

R/l 1 R/ 1 @// T/
R TRTEe T ar
It follows that T/ + o?X?>T = 0, and
R/I 1 RI 1 @Il
RTRTPe

— A\,

— — 2.

Multiplying both sides of this differential equation by 72, we find that

" / "
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which can be written as

R// RI @//
2°v v 22: _
r I +7r 7 + \°r 5

Once again, since both sides of the resulting differential equation depend on different
variables, each side must be equal to a constant. Hence
1 !/ @ 1/

7“2%4—7“?—#)\21"2:#2 and — 5

The resulting ordinary equations are
?R"+rR' + (Nr? — > )R =0
0"+ u*0=0
T' 4+ a*X°T =0.
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Section 10.6

1. The steady-state solution, v(x), satisfies the boundary value problem

v"(z) =0, 0 <z <50, v(0) =10 ,v(50) = 40.
The general solution of the ODE is v(x) = Az + B. Imposing the boundary conditions,
we have

40 — 10 3T
50 T+ 5 +

v(x)

2. The steady-state solution, v(x), satisfies the boundary value problem
v"(z) =0, 0 <z <40, v(0) =30 ,v(40) = —20.

The solution of the ODE is /inear. Imposing the boundary conditions, we have

—20 — 30 5
— i E+30=— - +30.

v(x) =

4. The steady-state solution is also a solution of the boundary value problem given by
v"(z) =0, 0 <z < L, and the conditions v’(0) = 0, v(L) = T. The solution of the
ODE is v(x) = Az + B. The boundary condition v’(0) = 0 requires that A = 0. The
other condition requires that B = T'. Hence v(z) =T .

5. Asin Prob. 4, the steady-state solution has the form v(x) = Az + B. The boundary
condition v(0) = 0 requires that B = 0. The boundary condition v’(L) = 0 requires
that A = 0. Hence v(z) =0.

6. The steady-state solution has the form v(z) = Ax + B. The first boundary
condition, v(0) = T, requires that B = T'. The other boundary condition, v'(L) =0,
requires that A = 0. Hence v(z) =T .

8. The steady-state solution, v(x), satisfies the differential equation v”(z) = 0, along
with the boundary conditions
v(0)=T , v'(L)+v(L)=0.

The general solution of the ODE is v(z) = Ax + B. The boundary condition v'(0) = 0
requires that B = T'. It follows that v(z) = Az + T, and

v'(L)+v(L)=A+AL+T.

The second boundary condition requires that A = — 7'/(1+ L). Therefore

o(z) = — Tx

T.
1—|—L+
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10(a). Based on the symmetry of the problem, consider only /eft half of the bar. The
steady-state solution satisfies the ODE v” (z) = 0, along with the boundary conditions
v(0) = 0 and v(50) = 100. The solution of this boundary value problem is v(z) = 2.
It follows that the steady-state temperature is the entire rod is given by

fz) = 20, 0<x<50
T)'T1200— 22, 50 <z < 100.

(b). The heat conduction problem is formulated as

Py, = Uy, 0<z<100, t>0;

w(0,1) = 20, w(100,4) =0, ¢t > 0;

u(z,0) = f(z), 0<x<100.
First express the solution as u(x ,t) = g(x) + w(z,t), where g(x) = — x/5 + 20 and
w satisfies the heat conduction problem

Qwg, = wy, 0<xz<100,t>0;

w(0,t) =0, w(100,t) =0, t > 0;

w(z,0) = f(z) —g(x), 0<x<100.

Based on the results in Section 10.5,

o0

—n2r2a2 . nNTx
w(x t) — c, e n o t/IOOOOSZ’N,—
’ 100’

n=1

in which the coefficients ¢, are the Fourier sine coefficients of f(z) — g(x). That is,

L s
o =1 [ V@)= g(@)sin™ T da
1 [0 nmwx
= 50/, [f(z) — g(@)]sinq5dz

20 sm”{ —nm
=40

n2m?
Finally, the thermal diffusivity of copper is 1.14 cm?/sec . Therefore the temperature
distribution in the rod is

Wz t) = 20 — x N @ ©_9() sin% —nm o1 14n22%/10000 nwL '
b oo™ n? 100

page 666



WWV. ZI T e.Ir

CHAPTER 10. —

(c). t =5,10,20,40 sec :

501
B0
401

20

t = 100, 200, 300, 500 sec :

. 20 0, & 80 100

w=25cm
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=150 cm
95
954
94
924
90
85
854
84
824
804
784
761 .
0 20 440 4 ED a0 100
¥=75cm
a0+
49.84
49,64
49.44
49.21
494
43.84
0 20 40 &0 a0 100

(d). The steady-state temperature of the center of the rod will be g(50) = 10°C'.

¥ =4a0cm
1001
801
B0
401
20
D 1000 2000 2000 1000 5000

t

Using a one-term approximation,

800 — 407 o~ 11472/10000

u(z,t) ~ 10 + 5

™

Numerical investigation shows that 10 < u(50,t) < 11 fort > 3755 sec.
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11(a). The heat conduction problem is formulated as
Upy = Ut , 0<xz<30,t>0;
u(0,t) = 30, u(30,t) =0, t>0;
u(z,0) = f(z), 0<x<30,

in which the initial condition is given by f(z) = x(60 — x)/30. Express the solution as
u(z,t) = v(z) +w(x,t), where v(z) = 30 — = and w satisfies the heat conduction
problem

Wy = Wy, 0<xz<30,t>0;
w(0,t) =0, w(30,6)=0, t>0;
w(z,0) = f(z) —v(x), 0<z<30.

As shown in Section 10.5,

o
Z o nAmt/900 o VT
n b
— 30

in which the coefficients ¢, are the Fourier sine coefficients of f(z) — v(x). That s,

g m
Cp = %/0 [f(z) — g(x )]sznan;c
30 -
— 5| @)~ gosin’s do
60 2(1 — cosnm) — n?m*(1 + cosnm)

n3ms

Therefore the temperature distribution in the rod is

w(z,t) =30 —x+ i_o HZ:I 2(1 — cosnm) *nng 731+ cosnm) /900 n% ‘

(b). t =5,10,20,40 sec :
304
25
20
u15

107
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t = 50, 75,100,200 sec :
304
251
201

U154

249

229

201

o

20 0, & 80 100

22

214
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x=225

214
20,61
2061
20.43
20.2

201

RREEE
19.6
19.4
19.23

19
18.8
0 20 0, &0 80 100

Based on the heat conduction equation, the rate of change of the temperature at any given
point is proportional to the concavity of the graph of u versus x, that is, u,, . Evidently,
near ¢t = 60, the concavity of u(z,t) changes.

13(a). The heat conduction problem is formulated as

Upw = duy, 0<x<40,t>0;
uz(0,t) =0, uzy(40,t) =0, t > 0;
u(z,0) = f(z), 0<x <40,

in which the initial condition is given by f(z) = (60 — x)/30.

As shown in the discussion on rods with insulated ends, the solution is given by

00
Co 22,2 nmx
u(x,t):5+ § :cne n7rat/160()cosﬂ,

n=1

where ¢, are the Fourier cosine coefficients. In this problem,
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/fdx

0 2(60 — x)
)y
20 . 30 °
— 400/9,

and forn > 1,

/ f(x coswdm

02(60 — ) nwx
= d
20 . 30 “a ™
_ 160(3 + cosnm)

3n2m2

Therefore the temperature distribution in the rod is

200 160 = (34 cosnm) 20 nwL
u(r,t) = 5 " 3.2 - e t/64oocosﬁ.
n=1

(b). t = 50,100, 150,200 sec :

26
263
24
224
20

183
163
14
123
10

8_
0 10 20 0 40
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t = 40, 600, 800, 1000 sec :

261
241
221
201

187

0 10 20 a0 40

=
I
o
=
I
=]

16+
187
141 17.64
12 1754
17.43
104
172
U U174
. 168
166
4 16.4
21 162
16
0 100 200 300 00 0 100 200 300 400
t t
- ®=40
"= 88
2669
261 20.49
28.23
2
] 78
u uet
2767
24 27.43
723
23] 73
2689 ‘ .
o 100 200 300 0o 0 100 2o 300 400
1
(c). Since
2.2 nmwx
: —n m-t/6400
lim e /6400065~ = )
t— 00 40

for each x , it follows that the steady-state temperature is u,, = 200/9.
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(d). We first note that

200 160 o~ (= 1)"(3+ cosnm) 2026000
_ (& .

9 32 n?
n=1

u(40,t) =

287
27
287
287
247

237

0 200 400 600 800 mt'nuubnmbmahmabn 2000

For large values of ¢, an approximation is given by

200 320
u(40,t) ~ ? + ﬁ e*Tl'Qt/6400'

Numerical investigation shows that 22.22 < u(40,t) < 23.22 fort > 1550 sec .

16(a). The heat conduction problem is formulated as

Ugy = Ut , O0<x<d30,t>0;
u(0,t) =0, uz(30,t) =0, t >0;
u(z,0) = f(z), 0<x<30,

in which the initial condition is given by f(z) = 30 — x. Based on the results of Prob.
15,
the solution is given by

0
2, nmwTx
w(z,t) = c, e—(2n—1)z7rzt/36005in_’
@)= e -

in which

L
c, = %/0 f(x)sin%dm
1 (2n — 1)z
T 15/, 60
2cosnm+ (2n — )7

(2n — 1)*n?

(30 — x)sin dz

=120
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Therefore the solution of the heat conduction problem is

Sin

2003n7r+ 2n— D7 o0 12223600 . NI
xt-l?OZ e o~ (n—17%/ -0 -

n=1

(b). t = 10,20, 30,40 sec :

20
18
16
14

¢ = 40, 60,80, 100 sec :
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t = 100, 150, 200, 250 sec :
E_
E-
1]
44
2.
0 5 10 15 20 25 30
¥
¥ =10 ¥=20
204
104
184
164 9
144 g
124 7
u u
104 .
B_
E 5
4 4
2 : : . . 3 : : . : ]
u] 100 200 t 300 400 s00 0 100 200 t 300 400 500
¥ =230
8_
E_
u
44
2_
0 100 200 300 400 500

page 676



WWV. ZI T e.Ir

CHAPTER 10. —

20 40 B0 , B0 100 120 140
The location of x5, moves fromz = 0 to x = 30.

(d).

304
251
261
24
22
uh 207
184
161
144
124
104 e

17(a). The heat conduction problem is formulated as

Ugpy = Ut , 0<ax<30,t>0;
u(0,t) = 40, uz(30,t) =0, t > 0;
u(z,0) =30 —x, 0<x<30,

The steady-state temperature satisfies the boundary value problem
v" =0, v(0) =40 and v'(30) = 0.
It easy to see we must have v(x) = 40. Express the solution as

u(z,t) =40+ w(z, 1),
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in which w satisfies the heat conduction problem
Wyy = Wi, 0<ax<30,t>0;
w(0,t) =0, w,(30,t) =0, t>0;
w(xz,0) = —10 — =z, 0<z<30.

As shown in Prob. 15, the solution is given by

00
_ _1)2.2 . nmx
w(sc t) _ c, e (2n 1)7rt/360087,n—,
)
n=1

60
in which
2 [* 2n — 1
Cn = Z/o f(x)sin%dx

I 2n — 1
=15 i (—10— x)sin%dz
_ 4060087’Lﬂ' - (2721 — )

(2n — 1) 72

Therefore the solution of the original heat conduction problem is

6 —(2n -1 2
cos nm — ( ? )T o~ (2n—1)7/3600 o VL
(2n — 1)"7? 60

u(z,t) =40+40 )

n=1

(b). t =10,30,50,70 sec :
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t = 100, 200, 300, 400 sec :

w =30

x=1a 204
28
2] 5
30 247
221
28 20
254 184
u 163
u 244 143
] 12_
22 123
204 5
E B3
18 ]
16 23

0 0 200, 30 400 00 0 100 20, 30 400 500

(c). Observe the concavity of the curves. Note also that the temperature at the insulated
end tends to the value of the fixed temperature at the boundary x = 0.

18. Setting A = p2, the general solution of the ODE X" + p2X = 0 is
X(2) = ke’ 4 ke 7,
The boundary conditions y’(0) = y'(L) = 0 lead to the system of equations

| why — gk2 =0 (%)
pkie™t — pk,e” " =0,

If © = 0, then the solution of the ODE is X = Az 4+ B. The boundary conditions
require that X = B.

If p # 0, then the system algebraic equations has a nontrivial solution if and only if the
coefficient matrix is singular. Set the determinant equal to zero to obtain

e~ b _ginl —
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Let 4 =v + 0. Then iyl =L — oL, and the previous equation can be written
as

eGLeAWVL __efaLezVL =0.

Using Euler's relation, e’ = cosvL + i sinvL , we obtain

—UL(

e"F(cosv —isinv) —e L(cosv +isinv)=0.

Equating the real and imaginary parts of the equation,

(e”L - e_”L) cosvL =0

(e”L + e_"L) sinvL = 0.

Based on the second equation, vL. = nmw, n € . Since cosnL # 0, it follows that

el =e L or et =1. Henceoc =0,and y=nw/L,n €.

Note that if o # 0, then the last two equations have no solution. It follows that the
system
of equations (x) has no nontrivial solutions.

20(a). Consider solutions of the form u(z,t) = X (x)T'(¢). Substitution into the partial
differential equation results in

*X'T =T’

Divide both sides of the differential equation by the product X7 to obtain
)(H IM
X Q2T

Since both sides of the resulting equation are functions of different variables, each must
be equal to a constant, say — A\. We obtain the ordinary differential equations

X'+AX=0and 7'+ a*T =0.
Invoking the first boundary condition,
u(0,t) = X(0)T(t) =0.
At the other boundary,
uy(L,t) +yu(L,t)=[X"(L)+~vyX(L)]T(t) =0.
Since these conditions are valid for all ¢ > 0, it follows that

X(0)=0and X'(L)+~vX(L)=0.
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(b). We consider the boundary value problem

X' +XX=0,0<z<0L; (%)
X(0)=0, X(L)+~vX(L)=0.

Assume that \ is real, with A\ = — p2. The general solution of the ODE is
X(z) = ¢icosh(ux) + cysinh(ux) .

The first boundary condition requires that ¢; = 0. Imposing the second boundary
condition,

¢y peosh(puLl) + vy cysinh(pul) = 0.
If ¢, # 0, then pcosh(puL) + 7 sinh(uL) = 0, which can also be written as
(n+7)e't = (+y)e ™ =0.

If vy = — p, then it follows that cosh(uL) = sinh(uL), and hence pp = 0. Ify # — p,
then e*f = e # again implies that u = 0. For the case . = 0, the general solution is
X(x) = Az + B. Imposing the boundary conditions, we have B = 0 and

A+~AL=0.
Ify= —1/L,then X(x) = Az is a solution of (x). Otherwise A =0.

(c). Let A = p?, with u > 0. The general solution of (*) is
X(x) = eicos(pux) + eysin(pr) .

The first boundary condition requires that ¢, = 0. From the second boundary condition,
¢y peos(pul) + vy casin(ul) = 0.
For a nontrivial solution, we must have

pcos(pL) + v sin(pL) =0.
(d). The last equation can also be written as
tanul = — ) (k)
g

The eigenvalues A obtained from the solutions of (), which are infinite in number.
In the graph below, we assume vL = 1.
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rnul
245 810,12 14 18 18,70 22 24

[ Y
Lo

'
o
|

12
143
16
18
.20
222
224

For vL = —1:

244
229
204
1849
169
144
Y124
104

L

27476 8 10 12 14 18 18 20 22 24
rul

Denote the nonzero solutions of (k) by 14, o, i3, -+ .

(€). We can in principle calculate the eigenvalues )\, = u? . Hence the associated
eigenfunctions are X, = sin u,r . Furthermore, the solutions of the temporal equations
are T, = exp( — o®p? t). The fundamental solutions of the heat conduction problem
are given as

o2t
u,(z,t) = e “Felsin p,x,

which lead to the general solution

o0

—a2y? .
u(z,t) = E o e Fnlsin

n=1
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Section 10.7

2(a). The initial velocity is zero. Therefore the solution, as given by Eq. (20), is

o0
nmwe nrat

t) = n n— )
u(x,t) Cn SIN—F— COS—F

n=1

in which the coefficients are the Fourier sine coefficients of f(x). That is,

/f sin@dm
2

/L/44J: ) nm:d +/3L/4 . mrxd +/L 41, — 4x . nm:d
= — —sin——dzx sin——dx sin T
Llj), L L L/4 srja L L

sinnm/4 + sin 3n7r/4
8 2.2
n’m

Therefore the displacement of the string is given by

8 & [ ) BnW] . nrx nmat
= — Z n— + sin Sin coS .
72 —

4 L L

(b). Witha =1 and L = 10,

8 & 3 t
= —Z sinﬂ—l—sm nn sinmm cosn7T
7r2n:1 4 4 )

10 10

0.8 -0.24
0.6
u

0.44
0.2

-0.4]

021 x
0.4
061 -0.81
-0.89
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t=20

119
0.8
0.6

u
0.4
024

.24
044
061
0.8

11

14
0.8
0.6

u
0.4
0.2

rad
]

oo

024
0.4
05
087

0.67
u

0.24
-0.44
0.6
0.6

0.8

0.44
0.2

0.4

nz

0.84
0.6
u
0.44
0.2

-0.24
-0.44
-0.64
0.8

K=758

o
po
]
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3(a). The initial velocity is zero. As given by Eq. (20), the solution is

o0

t
u(x,t) = ch sinn% cos m;a ,

n=1

in which the coefficients are the Fourier sine coefficients of f(z). That is,
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/ f(x sinwda}

L 2
8z(L —x)” . nmx
= E/O 73 sin— dx

2+ cosnm

=32 373

Therefore the displacement of the string is given by

3224 cosnm . nmx nmat
u(:v,t)—; 3 sin—— cos—

n=1

(b). Witha =1 and L = 10,

o0
(2.1) 32 24 cosnm | nmx nmt
u\x , = — Sin coSs .
3 = n3 10 10
n=1
t=25
t=5
071 0.41
069
051 ulz2
4 0.49
0.3 B & 10
0.29
-0.2-
014
0 2 i, 6 E gl
t=10 t=125
2 4 * g g 10 2 4 F g g 10
0 0
0.2 0.1
-0.21
-0.41
-0.3]
u-0.67 U4
0.8 051
067
214
0.7
-1.21
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0.44

u 0.2

t=20

081
u0.B
) 10
0.49
029
]
2 i, . g 10
(c).
x=5
¥=25
1_
14 087
sl 05
0.44
4067
024
0.4
0 10 a0 e 40 a0
021 02] !
o 10 D ® 40 g0 0.4
024 0.6
0.4 0.8
RE
¥=7Ah
0.4
0.2
10 2 o 40 50
]
029
049
U059
089
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4(a). As given by Eq. (20), the solution is

in which the coefficients are the Fourier sine coefficients of f(z). That is,
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/ f(x sin@dx
/L/2+1 ‘ nﬂ—xd
= — sin——dzx
LJypa L
_ sin'g sin't
nm
Therefore the displacement of the string is given by
451 t
u(x,t) = - ;E [sm% sm%] sin% cosm;a .

(b). Witha =1 and L = 10,

1 [ mr} . nmx nt
Z— sm— sin— | sin—— cos— .
on 10°""710 “* 10

t=0 t=25
1 ns
0.8 0.4+
05 0.3
u u
0.4 0.2
0.2 0.1
0 h 0
2 4, 6 B 10 2 4, B 8 10
t=75
t=5
2 4 F 5 g 10
= o
0.8
UD.E- 014
0.4
0.2 02]
0 3 17778 3 10 u
024 0.3
-0.49
069 4]
089
1 s
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t=10 t=125
* g 10 2 4 ' 8 g 10
] i
0.2 0.1
0.4 021
u u
067 03]
0.8] 041
14 057
(c).
=248 ®=45
13
0.4 0.
" 05
0.24 n.44
0.2
o g] a0 h2 ha e B 2 07 2T 46 8 1012 14 18 18 20
t 024 t
-0.21 0.4
05
0.4 -0.84
14
=75
0.4
u
0.2
u 24 I 14 15 18 20
-0.24
-0.44
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5(a). The initial displacement is zero. Therefore the solution, as given by Eq. (34), is

o
t
u(x,t) = an sz’nnl_/ﬂ sinm;a ,
n=1

in which the coefficients are the Fourier sine coefficients of w;(x,0) = g(z). It follows
that
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2 L

nmwa
2

nmwa

0

J

L/2

= 8L

n3mia

Therefore the displacement of t

u(x,t) =

(b). Witha =1 and L = 10,

u(z,t) =

1.8
1.6
1.4
1.4

0.51
0.67
0.44
0.24

ams

nmwx

g(x)sian:c

nmx

Lo —x) .
sin—

o L

2r . nrx
—sin——dx

7 17 dx

),

sinnm/2

he string is given by

8L

> nrat

L

1 . nm . nmx
— 8in— stn—— Sin
n_1n3 2 L

80 X1 . nm . nmx . nut
— — Sin— Sin—— Sin— .
3 n3 2 10 10

n=1

1.81
164
1.4
1.21
RE
0.8
0.6
0.44
0.24

10

0.84

0.6
u

0.4

0.2

-0.24
-0.44
0.6
-0.57

10
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t=125 t=15
4 g 10 2 4 * & g 10
0 0
02 E
0.4
04 .
06 -0.84
08 1
iy 012
1.4
12 169
4 184
224
1B 223
18 2.4
(c).
¥=25 ¥=5
15 21
ul u
1]
05
0 & 0246811121416180
05
=14
-
1.5] 2]
=78
157
u 1
059
o i 6 &
-0.51
-14
-1.57

page 693



WWV. ZI T e.Ir

CHAPTER 10. —

20
S
R
%%:Wmf

o e
SRe

]

=

7(a). The initial displacement is zero. As given by Eq. (34), the solution is

(o ¢]
t
u(zx,t) = an sin? sinm;a ,
n=1

in which the coefficients are the Fourier sine coefficients of w;(z,0) = g(x). It follows
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that

2 L nwT
k, = — in—:d
ol g(x)sin 7 de

2 [(l8x(L—2z)* . nmx
= ) d
nwa/o L3 s

2+ cosnmw

= 32L

niria
Therefore the displacement of the string is given by

(2.1) 2L KX 2+cosnm . nmx . nmat
u(z,t) = sin sin
amt — nt L L

(b). Witha =1 and L = 10,

320 X 2+ cosnm . nmx . nmt

u(x,t) = sin sin :
md n* 10 10
n=1
t=25 t=5
267
2.43
22 3
2 25
18]
157 2
RE: )
1]
0.6 1
0.6
0.4 05
0.2
o 2 i, 8 ) 10 o 3 i, B g 10
1=75 t=10
26
2.4] ]
2.2 0.59
2 4053
18 3
s 0.4
o 14 023
12 0 :
3 3 & g 10
! 0.2 x
0.8
0 0.4
0.4 067
0.2 08
] 2 2 B g 10 1
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t=125 t=15
2 4 % g g 10 2 4 X g 3 10
0 0
029
0.4 05
0]
089 1
=11
4.2 14
YUoyad
169 2
-1.89
o 25
229
249 3
264
(c).
¥=24a ¥=5
3
2]
5]
u u

¥=74
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15
S
t\tﬂ“ m }} 5'! 4

""’ "I J.ll

8(a). As given by Eq. (34), the solution is

in which the coefficients are the Fourier sine coefficients of w;(z,0) = g(x). It follows
that
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2 [F nmwx
k, = — n—d
= ma ), g(x)sin 7 de

2 L/2+1 nrx
= — sin——dx
nma. )1 L
szn% szn"L—7r
=4 —
nmia

Therefore the displacement of the string is given by

u(x,t) =

— — |sth— sitn— | stn—— Sin
am? n2 2 L L L

n=1

4, & 1[ nmw nﬁ} nrx . nmat

(b). Witha =1 and L = 10,

o0
40 1r. nm  nmy . nmx . nnt
u(z,t) = — Y —5|sin—- sin——|sin—— sin—-.
T n 2 10 10 10
n=1
t=25 t=5
1 1
0.8 0.8
0.5 0.6
u u
0.4 0.4+
0.2 0.21
0 z i, 6 g 10 0 2 i, 6 E 10
t=7.5 t=10
11 13
0.84
0.8
UD.E'
0.44
069 05
. .
o , : ; . .
0.4 o] 3 I g 1D
-0.49
02 Y
-0.84
0 3 3 & 8 10 1
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t=125 t=15
4 g n 2 4 % B 8 10
D D .
'D.z_ _D.z_
-0.41 -0.4
u u
0.6 0.6
-0.81 081
11 14
(c).
¥=25 x=5
13 19
0.6 0.64
UE 4087
0.4 0.49
0.2 0.29
D g 10 i D277 s e
0.24 t -0.24
0.49 -0.49
-0.69 069
0.8 0.84
-4 -14
=75
1 |
0.5
0.6
u
0.44
0.24
o R I 20
-0.24 t
-0.44
064
-0.54
RE
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11(a). As shown in Prob. 9, the solution is

= (2n—Dmz  (2n—1)wat

u(x,t) = ;cn sin 5T cos 5T

in which the coefficients are the Fourier sine coefficients of f(x). It follows
that
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/f )sin 2= Ve 2n—1) z
:_/0 (L_““)Qsm(zn_l) dz

L L3 2L
2n —1
519 3cosn7r+(11 )
(2n — 1) 7

Therefore the displacement of the string is given by

2n _ 1) sStn o7, COS o,

_ 512 i 3cosnmt+ (2n—1)r . 2n—1)mz  (2n— 1)mat
Note that the periodis T'=4L/a.

(b). Witha =1 and L = 10,
512 K 3cosnm+ (2n— 1) . 2n—Drxz (2n— 1)t

u(x,t) = sin cos
4 4 2 2
d n=1 (277, - 1) 0 0
t=0 t=25
1.2
074
1]
067
0.8 T
UG w04
0.39
0.4
0.24
0.24 1]
L P i, b g 10 o P i, 6B g 10
t=5 t=10
14 1
0.89 089
057
0.6
) 0.4
044 0.24
0 : : :
0.2 o] 2 4B E] 10
: 0.4
L p) i B g 10
X 057
0.2 0]
0.4 -3
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t=12.5 t=15
0.44
0.4 02
0.24 2 Foog 10
I 8 M o ' : - : -
]
021 02
0.4 -0.43
U069 _g .
0.1
-0.89
14
14
t=175 t=20
2 4 * 8 1n 2 4 * g ] 10
o 0
0.1 0]
0.2
0.4
0.3
U049 u-089
-0.57 -084
05
-1
077
124
(c).
x=7.h =5
1_
1_
089
084
L6 L0
.44 0.49
L REVANEA
o i a0 3 40 u D 20 3 40
024 t 023 t
044 047
069 061
089
089
=14
214
®¥=75 w=10
1.2
061 13
EE
uld.44 MiL:E
0.2 0.4
0.23
L 1 ] ] 40 o 1 i 0
027 ! 029 i
044
049 0.6
8]
067 1
123
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10 2777

\1. "
‘ l\s ﬁf 0 T ]‘ f i "
10 4 “ 65‘4' v, \1\1’ 1;’,,};[;;} A0

II

\\\“_

‘ﬁ .

12. The wave equation is given by
20U
“orr T e
Setting s = /L, we have
Ju Ouds 10u

dx  Osdx LOs’
It follows that
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Pu 1 du
Ox?2 L2 0s?
Likewise, with 7 = at/L,

o _atu | Ou_ a0
ot Lot o2 L2972

Substitution into the original equation results in

u  O*u

s> Or*

15. The given specifications are L = 5ft,T = 501b, and weight per unit length
v = 0.026 Ib/ft. 1t follows that p = 7/32.2 = 80.75 x 10~° slugs/ft.

(a). The transverse waves propagate with a speed of a = /T'/p = 248 ft/sec .

(b). The natural frequencies are w, = nma/L = 49.8 mn rad/sec .

(¢). The new wave speed is a = /(T + AT')/p . For a string with fixed ends, the
natural modes are proportional to the functions

nwx
n = s1 o
M, (x) = sin 7

which are independent of a .
19. The solution of the wave equation
a*0yy = vt
in an infinite one-dimensional medium subject to the initial conditions
v(xz,0) = f(z), w(x,0)=0, —oco<z<o0

is given by

[f(x —at) + f(z + at)].

N | —

v(x,t) =

The solution of the wave equation
@’ Wep = Wy ,
on the same domain, subject to the initial conditions
w(z,0) =0, w(z,0)=g(zr), —c0<z<0

is given by
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T+at
wa )= 5o [ gléde.

at

Let u(x,t) = v(x,t) + w(z,t). Since the PDE is linear, it is easy to see that u(z , )
is a solution of the wave equation a’u,, = uy . Furthermore, we have

u(z,0) =v(z,0) +w(z,0) = f(x)
and
ug(x,0) = v(2z,0) + w(x,0) = g(x) .

Hence u(z,t) is a solution of the general wave propagation problem.

20. The solution of the specified wave propagation problem is

. nmx nrat
Ecnsm—cos 7

n=1
Using a standard trigonometric identity,

. nmx nrat B 11 . nmwx n nrat 4 s nmwe nmat
sin i cos I~ 3 sin i i sin i i

—1['@(+t)+ n"" (z — at)|
—>2~%n<L X a S”ll; T a .

We can therefore also write the solution as
u(x,t) Zc [smnf(x + at) + sm%(m - at)}

Assuming that the series can be split up,

[Zc sm (x —at) + Zc SZTL%(:I? +at)|.

n=1 n=1

Comparing the solution to the one given by Eq. (28), we can infer that

00
. T

h(z) = nr.
(z) C ST~

n=1

21. Let h(€) be a 2L-periodic function defined by

_ f(§), 0<¢<L;
MO_{—fo% L<e<o.

Set u(z,t) = 3[h(x — at) + h(z + at)]. Assuming the appropriate differentiability
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conditions on A ,

% = %[h’(w —at) + h'(x + at)]
and

% — %[h”(m —at) +h"(z + at)].
Likewise,

% — a;[h”(x —at) + h"(x + at)].

It follows immediately that
,0%u  O%u
O = = = .
ox?  Ot?
Lett > 0. Checking the first boundary condition,
1 1
u(0,t) = §[h( —at) + h(at)] = 5[ — h(at) + h(at)] =0.
Checking the other boundary condition,
w(L,t) = =[h(L — at) + h(L + at)]

[ — h(at — L) + h(at + L)].

N =D =

Since h is 2L-periodic, h(at — L) = h(at — L + 2L). Therefore u(L,t) =0.
Furthermore, for0 < z < L,

1
u(@,0) = 5[h(z) + h(z)] = h(z) = f(=).
Hence u(z,t) is a solution of the problem.

23. Assuming that we can differentiate term-by-term,

ou icnn . nmx . nrwat
— = —T7a sin 5in
ot 2. 3
and
ou X.c,n  nTT nmat
B = W; 7 Cos—— Cos—
Formally,
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ou\’ X1 c,m? t
((‘%) = Z (an> sin’ nzx sin’ m;a +
+ 72a? Zan z,t)
n#m

and

in which F,,,(z,t) and G, (x,t) contain products of the natural modes and their
derivatives. Based on the orthogonality of the natural modes,

ou L& /c,n\2 . ,nmat
[ (5 ae- 5> () o'

1

and

0 L3N /e,n\2 t
/0 (GZ) dx—7r2§Z(CLn> cos® n7;a .

n=1

Recall that a> = T'/p. It follows that

LErou\? ou\ ZyTLNyc,n\2 . 4nmat
/0 [,O(E) +T(%) der=m TZ( ) sin I +
2

Therefore,
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Chapter Eleven
Section 11.1

1. Since the right hand sides of the ODE and the boundary conditions are all zero, the
boundary value problem is homogeneous.

3. The right hand side of the ODE is nonzero. Therefore the boundary value problem is
nonhomogeneous.

6. The ODE can also be written as
g+ A1+ a)y = 0.

Although the second boundary condition has a more general form, the boundary value
problem is homogeneous.

7. First assume that A = 0. The general solution of the ODE is y(z) = ¢;x + ¢,. The
boundary condition at x = 0 requires that ¢, = 0. Imposing the second condition,

61(7'("}—1)—“02:0.

It follows that ¢; = ¢, = 0. Hence there are no nontrivial solutions.

Suppose that A = — 2. In this case, the general solution of the ODE is
y(x) = cicosh px + cysinh px .
The first boundary condition requires that ¢; = 0. Imposing the second condition,
¢i (cosh pm + psinh pm) + ¢y(sinh pm + pcosh pm) = 0.
The two boundary conditions result in
cy(tanh pm + p) = 0.

Since the only solution of the equation tanh um +p =0 1s p=0,wehavec, = 0.
Hence there are no nontrivial solutions.

Let A\ = p2, with > 0. Then the general solution of the ODE is
y(x) = ¢1co8 px + cysin px .
Imposing the boundary conditions, we obtain ¢, = 0 and
¢i (cos pm — psin pum) + cy(sin pm + peos pmw) = 0.
For a nontrivial solution of the ODE, we require that sin um 4+ pcos um = 0. Note that
cosum =0= sinur =0,

which is false. It follows that tan ym = — . From a plot of mtan 7w and — 7p,
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2 4 P g g 10

0

2]

e

5

8]
10
121
214

we find that there is a sequence of solutions, p, ~ 0.7876, u, ~ 1.6716,---; For large

values of n,

s
T oy R (2n—1)§.

Therefore the eigenfunctions are ¢, (x) = sin pu,z , with corresponding eigenvalues
A &~ 0.6204, A\, &~ 2.7943,--- .

Asymptotically,

8. With A = 0, the general solution of the ODE is y(x) = ¢,z + ¢, . Imposing the two
boundary conditions, ¢;, = 0 and 2¢; + ¢, = 0. It follows that ¢, = ¢, = 0. Hence
there are no nontrivial solutions.

Setting A = — w2, the general solution of the ODE is
y(x) = ¢jcosh pux + cysinh px .
The first boundary condition requires that ¢, = 0. Imposing the second condition,
i (cosh p+ psinh p) + co(sinh p + pcosh ) = 0.
The two boundary conditions result in
ci(14+ ptanhp) =0.
Since ptanh p > 0, it follows that ¢; = 0, and there are no nontrivial solutions.
Let A\ = p2, with > 0. Then the general solution of the ODE is
y(x) = ¢1co8 px + cy8in px .

Imposing the boundary conditions, we obtain ¢, = 0 and
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¢i (cos pu — psin ) + cy(sin p+ pcosp) = 0.

For a nontrivial solution of the ODE, we require that cos u — psin = 0. First note
that

cosp=0=pu=0o0r sinpu=0.

Therefore we find that 1 — ptan pu = 0. From a plot of ptan u, there is a sequence of

144
124
104
8_
2 4 g 10

solutions, u; ~ 0.8603, uy ~ 3.4256,---; For large n,

pn = (n— 1),
Therefore the eigenfunctions are ¢, (x) = cos p,x , with corresponding eigenvalues
A~ 0.7402, A\, &~ 11.7349, --- .
Asymptotically,

A & (n—1)°72.

12. First note that P(z) =1, Q(z) = — 2z and R(z) = A. Based on Prob. 11, the
integrating factor is a solution of the ODE
p'(z) = — 22 p(z).

The differential equation is first order linear, with solution p(z) = cexp(— 2?). It then
follows that the Hermite equation can be written as

/ .
[e“”Qy'] +Ae P y=0.

14. For the Laguerre equation, P(z) = x,Q(z) =1 —x and R(xz) = A. Using the
result of Prob. 11, the integrating factor is a solution of the ODE

wp'(r) = —zp(z).

X

The general solution of p/(z) = — u(x) is p(x) = ce™*. Therefore the Laguerre

equation can be written as
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[ze %y’ + Ne Py =0.

15. For the Chebyshev equation, P(z) =1 — 2%, Q(z) = — x and R(x) = o?. The
integrating factor is a solution of the ODE

(1—2?)p'(z) =z p(z).
The differential equation is separable, with
dn _ @
o 1—a2
The general solution of the resulting ODE is

p(w) =

C
1—a?
Recall that the Chebyshev equation is typically defined for |z| < 1. Therefore it can also

be written as

012

V1— a2

/
[ 1—x2y']—|— y=20.

16. We consider solutions of the form u(x,t) = X (x)T'(t). Substitution into the PDE
results in

XT"+c¢XT' +kXT =o’X"T.
Dividing both sides of the equation by XI', we obtain

XT" | XT' L X'T
xT " SxT TP TY X7
that is,
TII T/ QX//
T e Ty ok

Since both sides of the resulting equation are functions of different variables, each must
be
equal to a constant, say — A. Therefore we obtain two ordinary differential equations

X"+ AN=k)X=0 and T" +cT'+ T =0.

17(a). Setting y = s(z)u,we have y' = s'u+ su' and y” = s"u+ 2s'u’ + su”.
Substitution into the given ODE results in

s"u+2s"u" +su" —2(s'u+su')+ (1+N)su=0.
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Collecting the various terms,
su"+ (28" —2s)u’ +[s" — 25"+ (1 + \)sjJu=0.

The second term on the left vanishes as long as s’ = s.

(b). With s(x) = e”, the transformed differential equation can be written as
v + X =0.

Since the boundary conditions are homogeneous, we also have u(0) = u(1) = 0. It now

follows that the eigenfunctions are u,, = sin /A, , with corresponding eigenvalues
\, = n’r.

Therefore the eigenfunctions for the original problem are ¢, (z) = e*sin nmx, with
corresponding eigenvalues

14+ )\, =1+ n72
(c). The given equation is a second order constant coefficient differential equation. The

characteristic equation is

r—2r+(14X) =0,
withroots 7, =1+ — A .

If A = 0, then the general solution is y = c¢,e” + ¢, xe®. Imposing the two boundary
conditions, we find that ¢, = ¢, = 0, and hence there are no nontrivial solutions. If
A < 0, then the general solution is

Yy = clexp(l + Vv - A):c + czexp(l -V - /\)ZE.
It again follows that ¢, = ¢, = 0, and hence there are no nontrivial solutions.

Therefore A > 0, and the general solution is
y = cie’cos V/ Az + ¢, e”sin \/Xac )

Invoking the boundary conditions, we have ¢; = 0 and c,e sz’n\/x =0. Fora
nontrivial

solution, \/X =nr.

19. First write the differential equation as
y"+ 1+ Ny + Ay =0,

which is a second order constant coefficient differential equation. The characteristic
equation is
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4+ (1+Nr+A=0,
with roots 7, = — 1 and 7, = — A. For A # 1, the general solution is
y=ce " +ce V.

Imposing the boundary conditions, we require that ¢, + ¢, = 0 and c,e ™! + c,e™ = 0.
For a nontrivial solution, it follows that e=* = e, and hence A\ = 1, which is contrary
to the assumption.
If A =1, then the general solution is

y=ce " +cyre”.
The boundary conditions require that ¢; = 0 and c;e™ + ¢, e™! = 0. Hence there are

no nontrivial solutions.

21. Suppose that A = 0. In that case the general solution is y = ¢;x 4 ¢,. The
boundary
conditions require that ¢, + 2¢, = 0 and ¢, + ¢, = 0. We find that ¢, = ¢, = 0, and
hence there are no nontrivial solutions.
(a). Let A = p?, with u > 0. Then the general solution of the ODE is
y(x) = ¢1co8 px + cy8in px .
The boundary conditions require that
2c; +pcy, =0 and cicosp+cpsinp = 0.
These equations have a nonzero solution only if
2stnp — peospu =0,
which can also be written as

2tanp —pu=0.

. 24 e 821

Based on the graph, the positive roots of the determinantal equation are
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™

py A= 4.2748 , py &~ 7.5965 ,--- ; for large n, u, =~ (2n + 1) 5

Therefore the eigenvalues are

27T2

A~ 18.2738, A\, &= 57.7075 -+ ; for large n, A\, =~ (2n + 1) T

(b). Setting A\ = — pu? < 0, the general solution of the ODE is
y(x) = c,cosh px + cysinh px .
Imposing the boundary conditions, we obtain the equations
2¢, + pcy, =0 and cicosh p+ cysinh = 0.
These equations have a nonzero solution only if
2sinh p — pcosh u=0.
The latter equation is satisfied only for 4 = 0 and p = +1.9150. Hence the only

negative eigenvalue is A_; = 3.6673.

24. Based on the physical problem, A = mw?/EI > 0. Let A\ = pu*. The characteristic
equation is r* — ' = 0, with roots r,, = & i, r; = — p and r, = . Hence the
general solution is

y(x) = cicosh px + cysinh px + 3008 px + ¢48in P .

(a). Simply supported on both ends : y(0) =y"(0) =0; y(L)=y"(L)=0.
Invoking the boundary conditions, we obtain the system of equations
¢, +c;=0
cg—c3=0
cicosh pL 4 cysinh pL + czcos pL + eysin pl = 0
ciplcosh pL + cyp’sinh pL — cyp?cos pL — cyp’sinpL = 0.

The determinantal equation is
plsinh pL sin pL = 0.

The nonzero roots are p, = nw/L, n=1,2,---. The first two equations result in
¢, = c3 = 0. The last two equations,

cysinhnm + cysinnm = 0
csinhnm —esinnm =0,

imply that ¢, = 0. Therefore the eigenfunctions are ¢,, = sin u,x , with corresponding
eigenvalues \, = nir?/L%.
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(b). Simply supported : y(0) =y”(0) =0; clamped : y(L) =y'(L) =0.
Invoking the boundary conditions, we obtain the system of equations

c,+c;=0
c,—c;=0
cicosh pL + cysinh pL + czcos pL 4 cysin pl = 0
¢, usinh pL + ¢y pcosh p — c3 psin pul + ¢4 pcos pL = 0.

The determinantal equation is

2u3sinh pL cos pL — 2udcosh pL sin pl = 0.

180
160
140
1204

det 1007

80
B0
407
20

0 =3 2
=204

Based on numerical analysis, u, =~ 3.9266/L and p, ~ 7.0686/L.

The first two equations result in ¢, = ¢; = 0. The last two equations,

cysinh pp L 4 cysin i, L = 0
¢y cosh p, L 4+ c,cos pup, L =0,

imply that
s L
Co= — —(——F—C4.
? sinh p, L !
Therefore the eigenfunctions are
n L ,
On = — S Hn Y ik, UnT + SIN
sinh p, L

with corresponding eigenvalues )\, = pu? .

(¢). Clamped : y(0) =y'(0) =0; free : y"(L)=y" (L) =0.
Invoking the boundary conditions, we obtain the system of equations
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c,+c;=0
peo 4+ pey =0

aip’cosh pL + cp’sinh pL — csp?cos pL — ey sin ul = 0
¢ pPsinh pL + ¢y pcosh puL + c; psin pL — ¢, pcos pL = 0.

The determinantal equation is

1+ coshuLcospul =0.

B0
det 407

201

02 04 0B 08 T—12 14 16 18§ 2
mul
-201

The first two nonzero roots are p, ~ 1.8751/L and p, ~ 4.6941/L. With¢; = — ¢,
and ¢, = — ¢, the system of equations reduce to

[}

ci(cosh p, L 4 cos p, L) + ¢o(sinh p, L + sin p, L) = 0
ci(sinh pn, L — sin p, L) + ¢y(cosh pp, L + cos p, L) = 0.

Let A, = (cosh p, L + cos u,L)/(sinh pu,L + sin u,L) . The eigenfunctions are
given by
On(x) = cosh ppx — cos ppx + Ay (sin ppx — sinh p,x),

with corresponding eigenvalues \, = p .

25(a). Assume that the solution has the form w(x,t) = X (z)7'(t). Substitution into
the
PDE results in

EX//T — XT "

p

Dividing both sides of the equation by XT', we obtain
EX"T  XT"
p XT — XT°

that is,
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X// p T//
XTET
Since both sides of the resulting equation are functions of different variables, each must

be
equal to a constant, say — A\. Therefore we obtain two ordinary differential equations

FE
X"+AXX =0 and T"+X=T=0.
P

(b). Given that u(0,t) = X(0)T'(t) fort > 0, it follows that X(0) = 0. The second
boundary condition can be expressed as

EAX'(L)T(t) + mX(L)T"(t) =0, ¢t>0.

From the result in Part (a),

EAX'(L)T(t) — Am%X(L)T(t) _0, t>0.

Since the condition is to be satisfied for all ¢ > 0, we arrive at the boundary condition

X'(L) - )\p—AX(L) =0.

(c). If A = 0, the general solution of the spatial equation is
X(x)=cx+c,.

The boundary condition require that ¢, = ¢, = 0. Hence there are no nontrivial
solutions.
If A = — u? < 0, then the general solution is

X (x) = ¢icosh px + cysinh px .

The first boundary condition implies that ¢, = 0. The second boundary condition
requires
that

cycosh pL + ¢, ,uﬁsinh ul=0.
pA

The solution is nontrivial only if
A
ptanh pl = — P2 .
m

Since ptanh L > 0, there are no nontrivial solutions.

Let A = p? > 0. The general solution of the spatial equation is

X(z) = cicos px + cysin px .

page 729



WWV. ZI T e.Ir

CHAPTER 11. ——

The first boundary condition implies that ¢, = 0. The second boundary condition
requires
that

¢y cos L — ¢, uﬁsin uL =10.
pA

For a nontrivial solution, it is necessary that

cos L — u%sinul) =0,
P

or
A
tan uL = il .
mp
For the case (m/pAL) = 0.5,
5.
44
3_
2_
1_
0 1' A RS B

we find that 4, L ~ 1.0769 and p,L ~ 3.6436 . Therefore the eigenfunctions are given
by ¢,(z) = sin p,x. The corresponding eigenvalues are solutions of

cosﬁnf:_g@smmho.

The first two eigenvalues are approximated as A\, ~ 1.1597/L? and \, ~ 13.276/L>.
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Section 11.2

2. Based on the boundary conditions, A > 0. The general solution of the ODE is

y(z) = crcosV/ Az + crsiny/ Az |

The boundary condition y’(0) = 0 requires that ¢, = 0. Imposing the second boundary

condition, we find that ¢,cosy/A = 0. So for a nontrivial solution, \/A = (2n — 1)7/2,
n =1,2,---. Therefore the eigenfunctions are given by

on(x) = kncosw .

In this problem, r(z) = 1, and the normalization condition is

T (2n -z’
i [ [eos 2 e =1
0

It follows that k2 = 2. Therefore the normalized eigenfunctions are

2n —1
¢n(x):\/§cosw’ n:]_,z’...

3. Based on the boundary conditions, A > 0. For A = 0, the eigenfunction is

d)o(fﬁ) = ko.
Set ky = 1. With A > 0, the general solution of the ODE is

y(x) = 1005V Az + cysiny/ Az .

Invoking the boundary conditions, we require that ¢, = 0 and ¢, \A sinﬁ =0.
Since

A > 0, the eigenvalues are \,, = n?

7%, n =1,2,---, with corresponding eigenfunctions
¢n(x) = kycosnme.

The normalization condition is
1
ki/ cos’nrwr dr = 1.
0

It follows that k2 = 2. Therefore the normalized eigenfunctions are

do(z) =1, and ¢, (z) = V2cosnmz, n=1,2,

4. From Prob. 8 in Section 11.1, the eigenfunctions are ¢, (x) = k,cos \/ A\, x, in
which
cos\/ A\p — \/ Ap stny/ A, = 0. The normalization condition is
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1
k:?,/ cos*\/ A\, xdr =1,
0

First note that

/1"’052\/7”(11;: cos V/An sin v/ A+ An-
0

2v/ A\,

Based on the determinantal equation,

cos\/ Ap Sin\/An +/An 1+ sin® /A,
2v/\n B 2

3 —cos2\/ N\,

= f.

Therefore
4

3—0082\/)\771

and the normalized eigenfunctions are given by

2 _
kn_

2cos\/ A\, x

\/3—0032 n

6. As shown in Prob. 1, the normalized eigenfunctions are

2n — 1
_ ﬂsmw, n=1,9

¢71

Based on Eq. (34), with r(x) = 1, the coefficients in the eigenfunction expansion are

given by
1
- [ f@ona)do

_\/—/ @m—Ymz

(2m - 1)
Therefore we obtain the formal expansion

2[2 L (2n—Dme

n—l 2

1=
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8. We consider the normalized eigenfunctions

(2n— 1)
(bn fSZTL n 9 n= 1727"'

Based on Eq. (34), with r(x) = 1, the coefficients in the eigenfunction expansion are
given by

1 cos T

T @m-)r

Therefore we obtain the formal expansion

(@) 2[ 3 {1 o2 1)7r]8m (2n — Drz

n=1 4 2

9. The normalized eigenfunctions are
2n —1
_ ﬁsmw, n=1,9

Based on Eq. (34), with r(x) = 1, the coefficients in the eigenfunction expansion are

given by
1
- [ f@n@)ds

1/2 _
—\/_/ 2xsm dx—i—\/_/ '2m71da:

8 [ . mm mﬂ}

=  —— |StTN—— — COS—— | .
(2m — 1)*72 2 2

Therefore the formal expansion of the given function is

Sin

EiSZTLT—COSQ . (2n -1z
—~ (2n—1) 2 '

11. From Prob. 4, the normalized eigenfunctions are given by

2cos\/ A\, x
\/3—0082 An
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in which the eigenvalues satisfy cosy/ A, — v/ A, siny/ A, = 0. Based on Eq. (34), the
coefficients in the eigenfunction expansion are given by

en = /0 £(@) () dac
2

1
= T cos\/ Ay, xdx
\/3 — 082~/ A\, /0

ﬁ(QcosM—l)

Am O,

2

in which «,, = \/1 + sin?y\/ A, .

12. The normalized eigenfunctions are given by
2cos\/ A\, x

)= \/3—0032 An ,

in which the eigenvalues satisfy cosy/ A, — v/ Ay siny/ A, = 0. Based on Eq. (34), the
coefficients in the eigenfunction expansion are given by

bn(z

1
Cm :/0 f(l')qu(.fE)dl'
2

1
= 1 —z)cos\/ A\, xdx
\/3—0082\/)\7,1 /0 (
\/5(1 — cos\/Am)

A O,
in which «,, = \/1 + sin?y/ A, .

13. We consider the normalized eigenfunctions

3

2cos\/ A\, x

)= \/3—0032 An ,

in which the eigenvalues satisfy cosy/\, — \/ A, siny/ A\, = 0. The coefficients in the
eigenfunction expansion are given by

bn(z
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o = [ 1@on@s
2

1/2
/ cos v/ \, xdx
0

- \/3—0032 An

_ VEsin(y/R/2)

b
ATL a’IL

in which «,, = /1 + sin2\/\, .

15. The differential equation can be written as

[(1+2%)y] +y=0,
with p(z) = — 1 —2? and ¢(x) = 1. The boundary conditions are homogeneous and

separated. Hence the BVP is self-adjoint.

16. Since the boundary conditions are not separated, the inner product is computed:
Given u and v, sufficiently smooth and satisfying the boundary conditions,

(L[u],v) :/0 [u"v + uv]dz

1 1
:u’v‘ —/ [u'v" + uv]dx
0 Jo
1
= [u'v —uv'] ‘0 + (u, L[v)).

Based on the given boundary conditions,
uw' (Dv(1) —u'(0)v(0) = u(0)v(1) + 2u(1)v(0)
—u(1)v'(1) + u(0)v'(0) = — u(1)v(0) — 2u(0)v(1) .
Since

mw—quzummm—mmmm,

the BVP is not self-adjoint.
18. The differential equation can be written as
- [y/]/ = >\y )

with p(z) =1, ¢(z) =0, and r(z) = 1. The boundary conditions are homogeneous
and separated. Hence the BVP is self-adjoint.
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19. If a, = 0, then
W(1o(1) — w1’ (1) = = ') + 200 (1) =0,
and since u(0) = v(0) =0,
u'(0)v(0) — u(0)v'(0) = 0.
If b, = 0, then u(1) = v(1) = 0 implies that
u'(1)v(1) —u(1)v'(1) = 0.
Furthermore,
u'(0)v(0) — u(0)v'(0) = — Z—?u'(O)v’(O) + Z—?u'(O)v’(O) =0

Clearly, the results are also true if a, = b, = 0.

20. Suppose that ¢, (z) and ¢,(x) are linearly independent eigenfunctions associated
with an eigenvalue A. The Wronskian is given by

W1, 0:)(x) = d1(2)dy(x) — do() ¢y ().

Each of the eigenfunctions satisfies the boundary condition a,y(0) + a,y'(0) = 0. If
either a; = 0 or a, = 0, then clearly W (¢, ,¢,)(0) = 0. On the other hand, if a, is
not equal to zero, then

W(¢1 5 ¢2)(0) = ¢1(0)¢2/(0) - ¢2(0)¢1/(O)
— — L6,(0),(0) + Z—;¢2(0)¢1<0>

By Theorem 3.3.2, W(¢,,¢,)(x) =0 forall 0 <z < 1. Based on Theorem 3.3.3,
¢1(z) and ¢,(x) must be linearly dependent. Hence A must be a simple eigenvalue.

22. We consider the operator
Lly) = — [p(x)y"] +a(z)y
on the interval 0 < x < 1, together with the boundary conditions
a,y(0) + ay’'(0) =0, biy(l) +by'(1) =0.

Let u =¢ + i1 and v = €& + 9. Ifu and v both satisfy the boundary conditions, then
the real and imaginary parts also satisfy the same boundary conditions. Using the inner
product

(u,v) = /Olu(m)@(x)dx,

page 736



WWV. ZI T e.Ir

CHAPTER 11. ——

(Llu],v) = / [~ [p(@)u] 7+ q(z)ut]do
:/{ z)(¢' + iy )]v+q uv}dm

= p(@)(@ + i) /{p (' + )0 + q(z)uv}da

Integrating by parts, again,

[ @6 + w5z = (0 + ]~ [ i) u}e.
Collecting the boundary terms,

P[0+ )T — (6 +i)0']|| = p(@)[(6' + )€~ in) — (& + i) (€'~ in)]]

The real part is given by
= p@)(¢'c — 6€") + (6'n — v,
= p@)l9'¢ — 9¢'|, + p()lw'n — ]|

p()[(8'€ + ') — (66" + vn)]|

Since ¢, ¢, £ and 7 satisfy the boundary conditions, it follows that

1
p(@)[(@'E+9"n) = ($€" +ym)]| =
Similarly, the imaginary part also vanishes. That is,

p(@)[($'E —vE') = (6'n— én’)] ; _

Therefore

The result follows from the fact that (w, L[v]) = (u, L[v]).

24. Based on the physical problem, A = P/EI > 0. Let A\ = p?. The characteristic
equation is 7* + p?r? = 0, with roots r,, = 0, r; = — ui and 7, = pi. Hence the
general solution is

y(z) = ¢1 + ¢y x + c3c08 px + c48in px .
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(a). Simply supported on both ends : y(0) =y"(0) =0; y(L)=y"(L)=0.
Invoking the boundary conditions, we obtain the system of equations

¢ +ec;=0
C3 = 0
cscos pL + cysinpl =0
¢+ L+ cscos pL+ cysinpl = 0.
The determinantal equation is
sinul = 0.
The nonzero roots are p, = nw/L, n=1,2,---. Therefore the eigenfunctions are

¢n = sin p,x , with corresponding eigenvalues )\, = n?7?/L?. Hence the smallest
eigenvalue is A\, = 72 /L2

(b). Simply supported : y(0) = y”(0) =0; clamped : y(L) =y'(L) =0.
Invoking the boundary conditions, we obtain the system of equations

c+ec;=0
C3 = O
¢y — czpsin L + cypicos pL = 0
¢, +cL+cscospul+cysinpl =0.
The determinantal equation is

uLcospul —sinpl =0.

It follows that the eigenfunctions are given by

On(z) = Sin\/)\_nx — (\/)\_nCOS\/)\_nL)EB,

and the eigenvalues satisfy the equation L+/ )\, cos /A, L — sin\/ A\, L =0.
The smallest eigenvalue is estimated as A, ~ (4.4934)%/L2.

(c). Clamped : y(0) =y’(0) =0; clamped : y(L) =y'(L) =0.
Invoking the boundary conditions, we obtain the system of equations

¢ +ec;=0
Cy+ pcy, =0
¢+ e L+ cycos pL 4+ cysin pl =0
¢y — ¢z psin pL + ¢y pcos pL = 0.
The determinantal equation is

2 —2cospul = pLsinpl .

It follows that the eigenfunctions are given by
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On(x) =1 —cos\/ A\, z,

and the eigenvalues satisfy the equation 2 — 2cos \/ A\, L = \/ A\, Lsin /A, L.
The smallest eigenvalue is \, = (27)> /L.

26. As shown is Prob. 25, the general solution is
y(z) = ¢ + ¢y + 3008 px + ¢ysin P .

Imposing the boundary conditions, we obtain the system of equations

C2:0
Cl+03:O
CQ+,LLC4:0

cscos pL 4+ cysinpl = 0.
For a nontrivial solution, it is necessary that
cospuL =0.
We find that ¢, = ¢, = 0, and hence the eigenfunctions are given by

On(x) =1 —cosv/ A,z

The corresponding eigenvalues are A, = (2n — 1)*72/4L%, n = 1,2,---. The smallest
eigenvalue is \, = 72 /4L>,
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Section 11.3

4. The eigensystem of the associated homogeneous problem is given in Prob. 11 of
Section 11.2. The normalized eigenfunctions are

\/5 cos\/ A\, x
1+ sin2\/\,
in which the eigenvalues satisfy cos\/ A, — v/ A, siny/ A, = 0. Rewrite the given

differential equation as — y” = 2y + = . Since u = 2 # A, , the formal solution of
the nonhomogeneous problem is

Pn(T) =

=Yt

n=1

o = [ 1@

1
= L/ T cos\/ A\, zdx
\/1—|—sin2\//\_” 0

\/5(2 cos v/ A, — 1)
A/ 1+ sin2y/ N\,
Therefore we obtain the formal expansion

— 2608\/7—1)008\/733
; Mg = 2) (1 + sin2/N,)

in which

5. The solution follows that in Prob. 1, except that the coefficients are given by

= [ s@onaas

1/2
_f/ Q;L'sznnﬂ'xdaj—}—f 2—2:17 sinnmr dx

\/—sm n7r/2

n?m?

Therefore the formal solution is

_q Zsm (nm/2) sinnmx

— n?m?(n?n? — 2)
n=1
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6. The differential equation can be written as — y” = uy + f(x). Note that g(x) =0
and r(z) = 1. As shown in Prob. 1 in Section 11.2, the normalized eigenfunctions are

¢n($) = ﬁsznw >

with associated eigenvalues \, = (2n — 1)°7%/4. Based on Theorem 11.3.1, the
formal solution is given by

y(z) = V2 i (/\nci 0 sin (@n—l)z

2 b
as long as u # A, . The coefficients in the series expansion are computed as

B ! . (2n—1)z
Cp = \/5/0 f(as)sm# dz.

7. As shown in Prob. 1 in Section 11.2, the normalized eigenfunctions are
2n —1
On(x) = \/5003—( n 5 )z ,

with associated eigenvalues A, = (2n — 1)°72/4. Based on Theorem 11.3.1, the
formal solution is given by

y(w)=\/5§:

n=1

Cn Lo (2n —1)x
O‘n - N) 2 ’

as long as p # A, . The coefficients in the series expansion are computed as

! n—1)x
Cp = \/5/0 f(ac)cos% dz

9. The normalized eigenfunctions are

V2cos /A, @
1+ sin2\/\,

The eigenvalues satisfy cos+/\, — /A, siny/ A, = 0. Based on Theorem 11.3.1, the
formal solution is given by

y(m)=\/§§: Cncos\/An x ’

nzl()\n—,u,) 1+sin2\/)\n

as long as p # A\, . The coefficients in the series expansion are computed as

on(z) =
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)eos /A, x da .

Cp = V2 /1f(ac
\/1+ sin2y/X, 70

13. The differential equation can be written as — y” = w2y + cos 7z — a. Note that
p=m?and f(x) = cosmx — a. Furthermore, 1 = 7 is an eigenvalue corresponding

to the eigenfunction ¢,(z) = \/2sinmz. A solution exists only if f(z) and ¢, (z) are
orthogonal. Since

1
/ (cosmr —a)sinTxdr = — 2a/7,
0

there exists a solution as long as a = 0. In that case, the ODE is
y” + 7T2y = —CcOoSTI.

The complementary solution is y.(x) = ¢,cos Tz + cysinmx . A particular solution is
Y (x) = Az cos mx + Bz sinmx . Using the method of undetermined coefficients, we

find that A =0 and B = — 1/27. Therefore the general solution is
y(z) = ¢cos Tx + cysin T — zisin T .
™

The boundary conditions require that ¢, = 0. Hence the solution of the boundary value
problem is

y(x) = cysinmr — 2 sinma.
2T
15. Let y(z) = ¢1(x) + ¢o(x) . It follows that L[y] = L[¢p,] + L]p,] = f(x). Also,

a1y(0) + axy'(0) = a161(0) + a16,(0) + a2¢,(0) + a>¢,(0)
= 4161 (0) + a2$/(0) + a:1¢(0) + a2, (0)

= .

Similarly, the boundary condition at z = 1 is satisfied as well.

16. The complementary solution is y.(x) = ¢,cos mx + cy;sin7x . A particular solution
is Y(x) = A + Bz. Using the method of undetermined coefficients, we find that A = 0
and B = 1. Therefore the general solution is

y(x) = cicosmx + cysinma + x.

Imposing the boundary conditions, we find that ¢, = 1. Therefore the solution of the
BVP is

y(r) = cosmx + csinmx + T .

Now attempt to solve the problem as shown in Prob. 15. Let BVP-1 be given by
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uw" 4+ 7 = 1,
u(0) =0, u(l)=0.
The general solution of the ODE is

u(x) = ccos T + sinTr + T .

The boundary conditions require that ¢, = 0 and — ¢, +1 = 0. We find that BVP-1 has
no solution. Let BVP-2 be given by

The general solution of the ODE is v(x) = ¢,cos mx + cysinmx . Imposing the
boundary conditions, we obtain ¢, = 1 and — ¢, = 0. Thus BVP-2 has no solution.

17. Setting y(x) = u(x) 4+ v(x), substitution results in
u +v" + p(@)u + 0T+ q(x)[u+v] = v + plx)u’ + q(z)u +
+ 0" + p(z)v' + q(z)v.
Since the left hand side of the equation is zero,
u” + p(x)u' + qlx)u= — " + plx)v’ + q(x)v].

Furthermore, 4(0) = y(0) —v(0) = 0 and u(1) = y(1) —v(1) = 0. The simplest
function having the assumed properties is v(z) = (b — a)x + a. In this case,
)

g(z) = (a = b)p(x) + (a = b)x q(z) —aq(z).

20. The associated homogeneous PDE is u; = u,,, 0 < z < 1, with
uz(0,t) =0, u,(1,t) +u(l,t) =0 and u(x,0) =1 — =x.

Applying the method of separation of variables, we obtain the eigenvalue problem
X"+ AX = 0, with boundary conditions X'(0) =0 and X'(1) + X(1) = 0. It was
shown in Prob. 4, in Section 11.2, that the normalized eigenfunctions are

2cos\/ A\, T
bn(z) = \/_ >

1+ sin2y/\,

where cosy/A, — /A, siny/A, = 0.

We assume a solution of the form

page 743



WWV. ZI T e.Ir

CHAPTER 11. ——

Substitution into the given PDE results in

o0

> 0 00nt) = 3000w+

n=1
= =) Mabu(t)n(x) + 77,
n=1

that is,

i + )‘”b” )]¢7L(x) =e '

n=1

We now note that

_ i \/Esm\/x oul(2).

:1\/)‘771 1 +sin2\//\7n

Therefore

-t _ Zﬁn e_td)n(x)
n=1
in which 3, = ﬁsz’n\/)\n/ [\/)\n 1+ sinQ\/)\n] . Combining these results,

S B4(E) + Auba(t) — e () = 0

n=1
Since the resulting equation is valid for 0 < z < 1, it follows that
by () + Aubn(t) = Bpe™', n=1,2,--

Prior to solving the sequence of ODEs, we establish the initial conditions. These are
obtained from the expansion

w(z,0)=1—z= ia,@n(x)
n=1

in which o, = /2 (1 — cos\/\,)/ {)\n 1+ sz‘n2\/>\7]. That is, b, (0) = o, .

Therefore the solutions of the first order ODEs are

671 (eft _ ef)wt)

—Ant
n n’ :172;"'
o —1) + ape n

b, (t) =

Hence the solution of the boundary value problem is
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00 —t =Mt
e =3 2 e .

n=1

21. Based on the boundary conditions, the normalized eigenfunctions are given by

On(x \/ 2sinnrz,

2

with associated eigenvalues )\, = n?m%. We now assume a solution of the form

u(x,t) = ibn(t)qﬁn(x) .

Substitution into the given PDE results in

ib,;(t)%(x) = an )+1—[1—2z]

n=1

- i)‘nbn(t)(ﬁn(x) +1—[1-2x|,

n=1
that is,
> [ba () + Anba(B)]dn(z) = 1 — |1 — 2a].
n=1

It was shown in Prob. 5 that

=1 — 2] = 24\/_sznn7r/2¢()

n2m?

Substituting on the right hand side and collecting terms, we obtain

i’: £+ b (t) — \/sznmr/Q o) = 0.

2.2
=1 n=m

Since the resulting equation is valid for 0 < z < 1, it follows that

fsm (nm/2)

2
bl (t) + n*m?b,(t) = ) ,n=1,2--
Based on the given initial condition, we also have b, (0) =0, for n =1,2,---. The
solutions of the first order ODEs are
\/_sm (nm/2) 22
bn(t) TL47T4 ( —¢€ )7 n = 1727"'

Hence the solution of the boundary value problem is
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8 o~ st 2
u(z,t) = — ZM (1 —e " ”H) sinnmx .

23(a). Let u(x,t) be a solution of the boundary value problem and v(z) be a solution
of the related BVP. Substituting for u(z,t) = w(x,t) + v(x), we have

r(z)u; = r(x)w,
and

p(x)us], — g(@)u+ F(z) = [p(e)ws], — q(@)w + [p(x)v]" — q(z)v + F(x)
[p(z)w,], — q(x)w — F(z) + F(z)
[

= p(x)wr]I - Q(IZT)U)

Hence w(x ,t) is a solution of the homogeneous PDE
r(@)wr = [p(x)w.], — q(z)w
The required boundary conditions are

w(0,t) =u(0,t) —v(0) =0,
w(l,t) =u(l,t) —v(1) =0.

The associated initial condition is w(z ,0) = u(z,0) —v(x) = f(x) — v(z).
(b). Let v(x) be a solution of the ODE

[p(z)v'] = g(x)o = — F(x),

and satisfying the boundary conditions v’(0) — h,v(0) =17 , v'(1) + hyv(1) =Tp.
If w(z,t) =u(z,t) — v(x), then it is easy to show the w satisfies the PDE and initial
condition given in Part (a). Furthermore,

wz(0,t) — hyw(0,t) = uy(0,t) —v'(0) — hyu(0,t) + hyv(0)
= u,(0,t) — hu(0,t) — v'(0) + hyv(0)
=0.

Similarly, the other boundary condition is also homogeneous.
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25. In this problem, F'(z) = — m?cos mx . First find a solution of the boundary value
problem

v" = r*cosmx , v'(0) =0, v(l) =1.

The general solution is v(x) = Az + B — cos . Imposing the initial conditions, the
solution of the related BVP is v(x) = — cosmz. Now let w(z,t) = u(x,t) + cos .
It follows that w(x ,t) satisfies the hlomogeneous boundary value problem, and the initial
condition w(z,0) = cos(3mx/2) — cosmx — ( — cosmx) = cos(3mx/2).

We now seek solutions of the homogeneous problem of the form

Zb )n (2

in which ¢, (z) = \/2 cos (2n — 1)7z/2 are the normalized e1genfunct1ons of the
homogeneous problem and \, = (2n —1)*72/4, with n = 1,2, ---. Substitution into
the PDE for w, we have
Y baOn(z) =D ba(t)dy (x)
n=1 n=1
= - ZAnbn(t)¢n(m) .
n=1

Since the latter equation is valid for 0 < z < 1, it follows that
by(t) + Ay (t) =0, n=1,2,---,
with b, (t) = b, (0)exp( — \,t). Hence

o0

w(z,t) =Y ba(0)exp( — At)dn() .

n=1

Imposing the initial condition, we require that

- 2n —1
V2 an(O)cos (2n - Drz = cos?m—x :
n=1

2 2
It is evident that all of the coefficients are zero, except for by(0) = 1/1/2 . Therefore
3
w(z,t) = exp( — 97r2t/4)cos%x ,

and the solution of the original BVP is

3
u(z,t) = exp( — 97T2t/4)008%$ — CcoSTT .
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26(a). Let u(x,t) = X(x)T(t). Substituting into the homogeneous form of (i),
r(2)XT" = [p(x)X']'T — q(z)XT .
Now divide both sides of the resulting equation by X'I" to obtain

T XY @) _
T r(z)X r(x) '

It follows that
— [p(@)X'] + g(2) X = Ar(z) X
Since the boundary conditions (i7) are valid for all ¢ > 0, we also have

X'(0) = mX(0)=0, X'(1)+hX(1)=0.

(b). Let A\, and ¢, (x) denote the eigenvalues and eigenfunctions of the BVP in Part (a).
Assume a solution, of the PDE (i), of the form

o0

e t) = Ybl6)oulo)
Substituting into (7), _
(o) ibg’<t>¢n - ibnu)ﬂp(mw’ b} + Fla 1)
= 3 b0 = Ar(@)] + Fo 1

Rearranging the terms,
(2) DB/ (2) + Aaba(D)6n = Fla 1),

or

i + )\nbn )]¢71, = F(~T,t) .

n=1 T(I)

Now expand the right hand side in terms of the eigenfunctions. That is, write

t) = i’yn (t)¢n (x)

in which
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Combining these results, we have
[e e}

S 102 () + Auba(t) = ()] ba = 0.

n=1

It follows that
b (t) + Aabn(t) = 7u(t) , n=1,2,---

In order to solve this sequence of ODEs, we require initial conditions b,,(0) and b, (0) .
Note that

0¢] 0.¢]

u(@,0) = bu(0)pn(z) and w(z,0) = b)(0)¢n().

n=1 n=1

Based on the given initial conditions,

o0

f(z) = ibnmm(as) and g(x) = 3 01(0)0(x).

n=1

Hence b,(0) = a, and b, (0) = 3, , the expansion coefficients for f(z) and g(z) in
terms of the eigenfunctions, ¢, ().

27(a). Since the eigenvectors are orthogonal, they form a basis. Given any vector b,

b= ibg@.

i=1
Taking the inner product, with £, of both sides of the equation, we have

(b,§u§ :Zy(gm,gu»_

(b). Consider solutions of the form

n
X = Zaié'(”.
i=1

Substituting into Eq. (), and using the above form of b,
D A" =Y pai? = big"
i=1 i=1 i=1

It follows that
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n

Z[az)\z —pna; — bi]E(i) =0.

i=1
Since the eigenvectors are linearly independent,
ai\i —pa;—b; =0, fori =1,2,---/n.
That is,
a; =bi/(Ni—p), i=1,2--n.
Assuming that the eigenvectors are normalized, the solution is given by

_(b.€Y)

as long as p is not equal to one of the eigenvalues.

29. First write the ODE as y” +y = — f(z). A fundamental set of solutions of the
homogeneous equation is given by

Yy, = cosx and y, = sinx.

The Wronskian is equal to Wcosx, sinx] = 1. Applying the method of variation of
parameters, a particular solution is

Y(z) = yi(@)us(w) + ya(x)us() ,

in which
u(z) = /Oxsin(s)f(s)ds and u,(z) = — /O:Ecos(s)f(s)ds.
Therefore the general solution is
y = ¢(x) = cicosx + eysinx + cos x/oxsin(s)f(s)ds — sin x/oxcos(s)f(s)ds.
Imposing the boundary conditions, we must have ¢, = 0 and
¢y sin 1+ cos 1/013in(s)f(s)ds — sin 1/Olcos(s)f(s)ds =0.

It follows that

1
sinl

Cy =

/Olsmu _ $)f(s)ds.

and
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sinx

¢(x) =

1 z
e 1/0 sin(l —s)f(s)ds — /0 sin(z — s) f(s)ds.
Using standard identities,

sinx - sin(l —s) —sinl-sin(x —s) = sins- sin(l — x).
Therefore

sinx - sin(1 — s) sins - sin(l —x)

—sin(z — s) =

sinl sinl

Splitting up the first integral, we obtain

Ysins-sin(l —x Lsina - sin(l —s
o) = [ pgas B9 1)

sinl sinl
1
- [[Ga.s)(s)ds,
0

in which

sin z-sin(1—s) r<s<1

sin 1 ’ —

sin s-sin(l—x)
G(m,s):{T: 0<s<zx

31. The general solution of the homogeneous problem is
Yy=c +cx.

By inspection, it is easy to see that y,(z) = 1 satisfies the BC y’(0) = 0 and that the
function y,(z) = 1 — x satisfies the BC y(1) = 0. The Wronskian of these solutions is
Wy, ,y2] = — 1. Based on Prob. 30, with p(z) = 1, the Green's function is given by

1—2), 0<s<x
G<x’s):{gl—s)), r<s<l1.

Therefore the solution of the given BVP is

mwzé7umﬁ@M+/a—@ﬂmw

32. The general solution of the homogeneous problem is
Yy=c +cx.

We find that y,(z) = = satisfies the BC y(0) = 0. Imposing the boundary condition
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y(1) +y'(1) = 0, we must have ¢, + 2¢, = 0. Hence choose y,(z) = — 2+ x . The
Wronskian of these solutions is Wy, ,v,] = 2. Based on Prob. 30, with p(x) = 1, the
Green's function is given by

_Js(x-2)/2, 0<s<z
G(%S)—{x(s—z)/m r<s<l1.

Therefore the solution of the given BVP is

b(z) = —/Oxs(as ) f(s)ds + %/ (s — 2)f(s)ds

34. The general solution of the homogeneous problem is
Y=C+CT.
By inspection, it is easy to see that y, () = x satisfies the BC y(0) = 0 and that the

function y,(z) = 1 satisfies the BC y’(1) = 0. The Wronskian of these solutions is
Wy, ,y,) = — 1. Based on Prob. 30, with p(x) = 1, the Green's function is given by

s, 0<s<z
G(x’s)_{:c, r<s<1.

Therefore the solution of the given BVP is

o) = [ sreps+ | e (s)ds.

35(a). We proceed to show that if the expression given by Eq. (iv) is substituted into
the

integral of Eq. (ii7), then the result is the solution of the nonhomogeneous problem. As
long as we can interchange the summation and integration,

Note that

Therefore
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as given by Eq. (13) in the text. It is assumed that the eigenfunctions are normalized and
Ai F

(b). For any fixed value of z, G(z, s, 1) is a function of s and the parameter 1. With
appropriate assumptions on GG, we can write the eigenfunction expansion

G(z,s,p) Zaw 1) ¢i(s

i=1

Since the eigenfunctions are orthonormal with respect to r(z),
1
/ G(x,s,u)r(s)pi(s)ds = a;j(z,p).
0
Now let
1
=[G s prosas
0

Based on the association f(z) = r(x)¢;(z), it is evident that
Llyi| = pr(z)y:(z) + r(z)di(z).

In order to evaluate the left hand side, we consider the eigenfunction expansion

£) = bide(x)
k=1

It follows that

Z ik L0
Z ik Ak () Pr () .

Therefore

and since 7(z) # 0,
mem qum + ¢i(x).

Rearranging the terms, we find that
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0i() = > b — )n(e)
k=1

Since the eigenfunctions are linearly independent, b;z(Ay — i) = 6ix , and thus

ule) = D3 ) = o).

We conclude that

which verifies that

36. First note that — d?y/ds*> = 0 for s # x. On the interval 0 < s < x, the solution
of the ODE is y,(s) = ¢; + ¢3s. Given that y(0) = 0, we have y,(s) = ¢;s. On the
interval z < s < 1, the solution is y,(s) = d, + d,s. Imposing the condition (1) =0,
we have y,(s) = d;(1 — s). Assuming continuity of the solution, at s = z,

cr=d(l—1),

which gives ¢, = d,(1 — x)/x. Next, integrate both sides of the given ODE over an
infinitesimal interval containing s = x :

+

I+d2 x
—/x_ d—s‘gds:/x_ 6(s—x)ds=1.

y'(@)—y'@") =1,
and hence ¢, — ( — d;) = 1. Solving for the two coefficients, we obtain ¢, = 1 — z and
d, = x . Therefore the solution of the BVP is given by

(s) = s(l—z), 0<s<ux
yis) = x(1—s), z<s<1,

It follows that

which is identical to the Green's function in Prob. 28.

page 754



WWV. ZI T e.Ir

CHAPTER 11. ——

Section 11.4

1. Let ¢,(x) = J; (\ / An x) be the eigenfunctions of the singular problem

—(xy) =Xy, O<z<1,
v,y bounded as z—0, y(1) =0.

Let ¢(z) be a solution of the given BVP, and set

=S bu(a). (+)
n=>0

Then
—(20) = pxo + f(x)
:uxqb+x@.

Substituting (), we obtain

Zb A Op(x) = px anqbn + xicngbn(x)
n=>0

in which the ¢, are the expansion coefficients of f(z)/x forz > 0. That s,

YA€
[0Sy

1
rwuxna/f =)n(z

Cp =

It follows that if « # 0,
Z[Cn —by(An — #)]Cbn(x) =0
n=0

As long as u # A, , linear independence of the eigenfunctions implies that

Cn

bn: 5
Ap — b

n=12:--.
Therefore a formal solution is given by
= i)\ . JO( v )\nx),
n=0""1" " K

in which /), are the positive roots of J;(z) = 0.
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3(a). Setting ¢t = /A z, it follows that

dy dy d’y | d%

— =vVA—= and — =)\ —.

an = VAG ™ = A
The given ODE can be expressed as

—ﬁ%(%ﬁ‘;—i)ﬁgf i,

or

_d(,dy +ﬁ_t
at\" dt S

An equivalent form is given by
dy dy
2+t + (P-k)y=0
at lar T )y =0,

which is known as a Bessel equation of order k. A bounded solution is Jj(t) .

(b). Jy (\/X a:) satisfies the boundary condition at x = 0. Imposing the other
boundary
condition, it is necessary that Jj <\/X ) = 0. Therefore the eigenvalues are given by

An,n =1,2--- where y/\, are the positive zeroes of J;(z). The eigenfunctions of
the BVP are ¢,(z) = Ji,(v/ Ao 7).
(¢). The BVP is a singular Sturm-Liouville problem with

]{72

Ly = — (zy") + —yand r(z) = 1.

We note that

1

)\n/o x On(x) o (x)dx :/0 L{oy] dm(z)dx

1
= )\m/o x On () om(z)dx .

Therefore

1
()\’n, - )\m)/o 3:¢n($)¢m($)dx =0.

page 756



WWV. ZI T e.Ir

CHAPTER 11. ——

So for n # m, we have A\, # A\, and

1
/0 x ¢p(x)dm(z)dz = 0.

(d). Consider the expansion

= iand)n(x)

Multiplying both sides of equation by x ¢;(x) and integrating from 0 to 1, and using the
orthogonality of the eigenfunction,

/ F(2)éi(z)dw _Zan/ T ¢j(z)pn(z)dx
—af 1x¢j<x>¢j<x>dx

Therefore

o= [ @ s [ sl @Par, =12,

(e). Let ¢(z) be a solution of the given BVP, and set

_ ibnm:c), (+)

where ¢, (z) = Jk(mx) Then

Ll¢] = pxo + f(x)

:,ux¢+x@.

Substituting (*), we obtain

an)\,,x ¢n(x) = px an¢n +z icnﬁbn(x)
n=>0

in which the ¢, are the expansion coefficients of f(x)/x for x > 0. That is,

= L le(:z:) z)dz
o = ||¢n<x>||2/o z n(@)

1 1
= it/ Fn (V) ds,
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It follows that if  # 0,
Z[Cn - bn()\n - U)]Jk<\/ )\’n, «'13> =0.
n=>0

As long as i # A, , linear independence of the eigenfunctions implies that

, n=1,2 -

Therefore a formal solution is given by

5(a). Setting A = o in Prob. 15 of Section 11.1, the Chebyshev equation can also be
written as

Note that

plx) =vV1—2?,q(x)=0,and r(z) =1/V1— 22,

hence both boundary points are singular.
(b). Observe that p(1 —¢) = /2e —¢? and p(—1+¢) = /2e —? . It follows
that if u(z) and v(x) satisfy the boundary conditions (i7i), then
lin&p(l —g)u'1—ew(l—¢e)—u(l—¢e)'(1-¢)]=0
g —

and

limp(—1+4+e)u'(-1+e)v(—1+¢)—u(—1+e)w'(—1+¢)]=0.

e— 0t

Therefore Eq. (17) is satisfied and the boundary value problem is self-adjoint.

(c). Forn #0,

n2/_j%\/%(f)dx = /lTu(a:)LT dz

Il
)
I~
!

since L[T)] =0T, = 0. Otherwise,
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lTn
2 [ B [ i o
1 1——x2
:/ ) L[T,]d
LT, (2) T,
V1— 22
Therefore
(nQ—m2)/ —@dx:().
1 /1 =22
So for n # m,
x)dfz::O.

Lﬁ
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Section 11.5

3. The equations relating to this problem are given by Egs. (2) to (17) in the text. Based
on the boundary conditions, the eigenfunctions are ¢, (x) = Jy(A,7) and the associated
eigenvalues Aj, \,,--- are the positive zeroes of Jy(A). The general solution has the
form

o
Z CnJo(Ant) cos Apat + kyJy (A1) sin Ayat].
The initial conditions require that

= icn']()()‘nr) = f(r)

and
0) = > alikndo(Aar) = g(r).
n=1

The coefficients ¢, and k, are obtained from the respective eigenfunction expansions.
That is,

cp = r)Jo(Anr)
”JO nT)|? / ol

and
1 1
k, = /r ) Jo(Anr)dr,
O f, T (ar)
in which
1
1o ()2 = / ()
0
forn=1,2, ---

8. A more general equation was considered in Prob. 23 of Section 10.5. Assuming a
solution of the form u(r,t) = R(r)T(t), substitution into the PDE results in

1
o’ {R”T + = R’T} = RT'.
T

Dividing both sides of the equation by the factor RT', we obtain
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R// 1 R/ T/
R TR T

Since both sides of the resulting differential equation depend on different variables, each
side must be equal to a constant, say — A\?. That s,
Rl/ 1 R/ T/
— - — = = — )2,
R * r R T
It follows that T/ + o?X?>T = 0, and
R" 1R
R FR
which can be written as 72R” +r R’ + A\?>r R = 0. Introducing the variable £ = \r,
the last equation can be expressed as £&2R” + ¢ R’ + ¢2R = 0, which is the Bessel
equation of order zero.

= —)\?

The temporal equation has solutions which are multiples of 7'(¢) = exp( — a?A*t). The
general solution of the Bessel equation is

R(r) = by Jy( A1) + b Yo (A\yr) .

Since the steady state temperature will be zero, all solutions must be bounded, and hence
we set b, = 0. Furthermore, the boundary condition u(1,¢) = 0 requires that R(1) = 0
and hence Jy(\) = 0. It follows that the eigenfunctions are ¢,(z) = Jy(A\,r), with the
associated eigenvalues A;, Ay, -+ , which are the positive zeroes of J;(\). Therefore
the fundamental solutions of the PDE are w,(r,t) = Jy(A,7)exp( — a?A2t), and the
general solution has the form

o0

u(r,t) = ZCRJO()\nT)exp( — a®A2t).

n=1

The initial condition requires that
u(r,0) = chJo()\nr) = f(r).
n=1

The coefficients in the general solution are obtained from the eigenfunction expansion of
f(r). Thatis,

1 1
Cp = —HJO()\ 7’)”2/(; Tf(T)JO()\nT)dr,
in which

||J0()\nr)||2:/0r[JO(Anr)]er (n=1,2, ).
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Section 11.6

1. The sine expansion of f(z) =1,0n 0 < x < 1, is given by

.1 —cosmm
flx) = 22 Tsinmmc,
m=1

with partial sums

n

1—
Sp(x) =2 Z S cosmm SINMTT .

m=1 mi

The mean square error in this problem is

1
R, = / 11— S, (z)*dz.
0

Several values are shown in the Table :

n |95 10 15 20
R, 1 0.067 | 0.04 | 0.026 | 0.02

Further numerical calculation shows that R,, < 0.02 for n > 21.
3(a). The sine expansion of f(x) =xz(1 —z),on 0 < x < 1, is given by

o0 1_
flx) = QZﬂsinmwx,

—  mr
with partial sums
"\ 1 —cosmm
Sp(x) =4 E ——— 5 sinmmz.
— mir

(b, ¢). The mean square error in this problem is

1
an/o |z(1 —2) — Sp(x)|"dx.
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hean Sguare Error
Se-051

d4e-051

Je-05

2e-051

1e-051

o 2 3 4 5
We find that R, = 0.000048. The graphs of f(x) and S,(x) are plotted below :

n=1

0.264
0.247
0.224
0.24
0184
0167
0.144
0124
0.14
0.054
0.06
0.044
0024

0 02 0.4 05 0.5 1

6(a). The function is bounded on intervals not containing = = 0, so for € > 0,
1 1
/ flx)dx = / eV dr =2 —24/¢.
g &

Hence the improper integral is evaluated as

1 1
/ f(z)de =lim [ 72 dz=2.
0

e—07 [
On the other hand, f?(z) = 1/z for x # 0, and
1 1
/ fA(z)dx = / e dr = —Iny/e.
3 &

Therefore the improper integral does not exist.

(b). Since f*(x) = 1, it is evident that the Riemann integral of f*(x) exists. Let
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Py = {02151751/’27"';37N+1 = 1}

be a partition of [0, 1] into equal subintervals. We can always choose a rational point,
&, , in each of the subintervals so that the Riemann sum

a 1
R(éla&% "'75]\’) - Zf(gn)ﬁ =1.
n=1

Likewise, can always choose an irrational point, 7; , in each of the subintervals so that
the Riemann sum

N 1

R(mﬂh, "'7771\*) = Zf(nn)N = —1.
n=1

It follows that f(z) is not Riemann integrable.

8. With Py(z) =1 and P,(z) = x, the normalization conditions are satisfied. Using
the usual inner producton [ —1,1],

/1 Py(2) P, (x)dz = 0

1
and hence the polynomials are also orthogonal. Let P,(z) = ayz* + a,x + a,. The
normalization condition requires that a, + a, + a, = 1. For orthogonality, we need

1

1
/ (anQ + ax + ao)dx =0 and / x(a2m2 +ax+ ao)d:): =0.
-1 -1

It follows that a, = 3/2,a, =0 and a, = — 1/2. Hence Py(z) = (32* —1)/2.
Now let Py(z) = a3x® + a,x® + a,z + a,. The coefficients must be chosen so that
as + ay + a; + a; = 1 and the orthogonality conditions

1
| P@P@is=0 (£
-1
are satisfied. Solution of the resulting algebraic equations leads to a; = 5/2,a, =0,

a, = —3/2 and ay = 0. Therefore P;(z) = (52 — 3z)/2.

11. The implied sequence of coefficients is a,, = 1,n > 1. Since the limit of these
coefficients is not zero, the series cannot be an eigenfunction expansion.

13. Consider the eigenfunction expansion

@)= aii(a).

1=1

Formally,
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fx) = Zafcb?(fﬁ) +2) aia;¢i(w)¢;(x).

i=1 i#j

Integrating term-by-term,

17“:1: 2(x :l::oo 1a27“x 2 \dx 1@,@_7,3741, () d
[ r@p@is = Y- [Car@et @iz 2 [ s r@ot

i=1 i#j V0
00 1

= Za?/ o2 (z)dz,

i=1 J0

since the eigenfunctions are orthogonal. Assuming that they are also normalized,

o0

/Olr(x)fQ(x)da: = Za? :

1=1
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