




SI Units and Prefixesa

SI Units Quantity Unit SI Symbol Formula

SI base units: Length meter m —
Mass kilogram kg —
Time second s —
Temperature kelvin K —

SI supplementary unit: Plane angle radian rad —
SI derived units: Energy joule J N �m

Force newton N kg �m/s2

Power watt W J/s
Pressure pascal Pa N/m2

Work joule J N �m
SI prefixes Multiplication Factor Prefix SI Symbol

1 000 000 000 000 = 1012 tera T
1 000 000 000 = 109 giga G

1 000 000 = 106 mega M
1 000 = 103 kilo k
0.01 = 10−2 centib c
0.001 = 10−3 milli m

0.000 001 = 10−6 micro μ
0.000 000 001 = 10−9 nano n

0.000 000 000 001 = 10−12 pico p
a Source: ASTM SI10-10, IEEE/ASTM SI 10 American National Standard for Metric Practice, ASTM International,
West Conshohocken, PA, 2010, www.astm.org

b To be avoided where possible.

http://www.astm.org


Conversion Factors and Definitions

Fundamental Dimension English Unit Exact SI Value Approximate SI Value

Length 1 in. 0.0254 m —
Mass 1 lbm 0.453 592 37 kg 0.454 kg
Temperature 1�F 5/9 K —

Definitions:
Acceleration of gravity: g=9:8066 m=s2 ð=32:174ft=s2Þ
Energy: Btu (British thermal unit) ≡ amount of energy required to raise the temperature of 1 lbm

of water 1�F (1 Btu = 778.2 ft � lbf )
kilocalorie ≡ amount of energy required to raise the temperature of 1 kg of water
1 K(1 kcal = 4187 J)

Length: 1 mile = 5280 ft; 1 nautical mile = 6076.1 ft = 1852 m (exact)
Power: 1 horsepower ≡ 550 ft � lbf/s
Pressure: 1 bar ≡ 105 Pa
Temperature: degree Fahrenheit, TF = 9

5TC +32 (where TC is degrees Celsius)
degree Rankine, TR = TF +459:67
Kelvin, TK = TC +273:15 (exact)

Viscosity: 1 Poise ≡ 0.1 kg/(m � s)
1 Stoke ≡ 0.0001 m2/s

Volume: 1 gal ≡ 231 in.3 (1 ft3 = 7.48 gal)

Useful Conversion Factors:
Length: 1 ft = 0.3048 m

1 in. = 25.4 mm
Mass: 1 lbm = 0.4536 kg

1 slug = 14.59 kg
Force: 1 lbf = 4.448 N

1 kgf = 9.807 N
Velocity: 1 ft/s = 0.3048 m/s

1 ft/s = 15/22 mph
1 mph = 0.447 m/s

Pressure: 1 psi = 6.895 kPa
1 lbf/ft2 = 47.88 Pa
1 atm = 101.3 kPa
1 atm = 14.7 psi
1 in. Hg = 3.386 kPa
1 mm Hg = 133.3 Pa

Energy: 1 Btu = 1.055 kJ
1 ft � lbf = 1.356 J
1 cal = 4.187 J

Power: 1 hp = 745.7 W
1 ft � lbf/s = 1.356 W
1 Btu/hr = 0.2931 W

Area 1 ft2 = 0.0929 m2

1 acre = 4047 m2

Volume: 1 ft3 = 0.02832 m3

1 gal (US) = 0.003785 m3

1 gal (US) = 3.785 L
Volume flow rate: 1 ft3/s = 0.02832 m3/s

1 gpm = 6.309 × 10– 5 m3/s
Viscosity (dynamic) 1 lbf � s/ft2 = 47.88 N � s/m2

1 g/(cm � s) = 0.1 N � s/m2

1 Poise = 0.1 N � s/m2

Viscosity (kinematic) 1 ft2/s = 0.0929 m2/s
1 Stoke = 0.0001 m2/s
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Preface

Introduction
This text is written for an introductory course in fluid mechan-
ics. Our approach to the subject, emphasizes the physical
concepts of fluid mechanics and methods of analysis that
begin from basic principles. The primary objective of this text
is to help users develop an orderly approach to problem sol-
ving. Thus we always start from governing equations, state
assumptions clearly, and try to relate mathematical results
to corresponding physical behavior. We emphasize the use
of control volumes to maintain a practical problem-solving
approach that is also theoretically inclusive.

Proven Problem-Solving Methodology
The Fox-McDonald solution methodology used in this text is
illustrated in numerous examples in each chapter. Solutions
presented in the examples have been prepared to illustrate good
solution technique and to explain difficult points of theory.
Examples are set apart in format from the text so that
they are easy to identify and follow. Additional important
information about the text and our procedures is given in
“Note to Students” in Section 1.1. We urge you to study this
section carefully and to integrate the suggested procedures into
your problem-solving and results-presentation approaches.

SI and English Units
SI units are used in about 70 percent of both example and end-
of-chapter problems. English Engineering units are retained
in the remaining problems to provide experience with this
traditional system and to highlight conversions among unit
systems.

Goals and Advantages of Using This Text
Complete explanations presented in the text, together with
numerous detailed examples, make this book understandable
for students, freeing the instructor to depart from conventional
lecture teaching methods. Classroom time can be used to
bring in outside material, expand on special topics (such as
non-Newtonian flow, boundary-layer flow, lift and drag, or
experimental methods), solve example problems, or explain
difficult points of assigned homework problems. In addition,
many example Excel workbooks have been developed for pre-
senting a variety of fluid mechanics phenomena, especially the

effects produced when varying input parameters. Thus each
class period can be used in the manner most appropriate to
meet student needs.

When students finish the fluidmechanics course, we expect
them to be able to apply the governing equations to a variety of
problems, including those they have not encountered previ-
ously. We particularly emphasize physical concepts throughout
to help students model the variety of phenomena that occur in
real fluid flow situations. Although we collect useful equations
at the end of each chapter, we stress that our philosophy is to
minimize the use of so-called “magic formulas” and emphasize
the systematic and fundamental approach to problem solving.
By following this format, we believe students develop confi-
dence in their ability to apply the material and to find that they
can reason out solutions to rather challenging problems.

The book is well suited for independent study by students
or practicing engineers. Its readability and clear examples help
build confidence. Answers to selected problems are included,
so students may check their own work.

Topical Coverage
The material has been selected carefully to include a broad
range of topics suitable for a one- or two-semester course at
the junior or senior level. We assume a background in rigid-
body dynamics, mathematics through differential equations,
and thermodynamics.

More advanced material, not typically covered in a first
course, has been moved to the website (these sections are
identified in the Table of Contents as being on the website).
Advanced material is available online at www.wiley.com/
college/pritchard so that it does not interrupt the topic flow
of the printed text.

Material in the printed text has been organized into broad
topic areas:

• Introductory concepts, scope of fluid mechanics, and fluid
statics (Chapters 1, 2, and 3)

• Development and application of control volume forms of
basic equations (Chapter 4)

• Development and application of differential forms of basic
equations (Chapters 5 and 6)

• Dimensional analysis and correlation of experimental data
(Chapter 7)

• Applications for internal viscous incompressible flows
(Chapter 8)

v
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• Applications for external viscous incompressible flows
(Chapter 9)

• Analysis of fluid machinery and system applications
(Chapter 10)

• Analysis and applicationsof open-channel flows (Chapter 11)

• Analysis and applications of one-dimensional compressible
flows (Chapter 12)

Chapter 4 deals with analysis using both finite and differ-
ential control volumes. The Bernoulli equation is derived as
an example application of the basic equations to a differential
control volume. Being able to use the Bernoulli equation in
Chapter 4 allows us to include more challenging problems deal-
ing with the momentum equation for finite control volumes.

Another derivation of the Bernoulli equation is presented
in Chapter 6, where it is obtained by integrating Euler’s equa-
tion along a streamline. If an instructor chooses to delay intro-
ducing the Bernoulli equation, the challenging problems from
Chapter 4 may be assigned during study of Chapter 6.

Text Features
This edition incorporates a number of features that enhance
learning:

• Chapter Summary andUseful Equations:At the end of each
chapter we collect for the student’s convenience the most
used or most significant equations of the chapter. Although
this is a convenience, we cannot stress enough the need for
the student to understand the assumptions and limitations of
each equation before using it!

• Design Problems: Where appropriate, we have provided
open-ended design problems. Students could be assigned
to work in teams to solve these problems. Design problems
encourage students to spend more time exploring applica-
tions of fluid mechanics principles to the design of devices
and systems. As in the previous edition, design problems
are included with the end-of-chapter problems.

• Open-Ended Problems: We have included many open-
ended problems. Some are thought-provoking questions
intended to test understanding of fundamental concepts,
and some require creative thought, synthesis, and/or narra-
tive discussion. We hope these problems will help instruc-
tors to encourage their students to think and work in more
dynamic ways, as well as to inspire each instructor to
develop and use more open-ended problems.

• End-of-Chapter Problems: Problems in each chapter are
arranged by topic, and grouped according to the chapter
section headings. Within each topic they generally increase
in complexity or difficulty. This makes it easy for the
instructor to assign homework problems at the appropriate
difficulty level for each section of the book.

• Answers to Selected Problems: Answers to odd-numbered
problems are listed at the end of the book as a useful aid for
students to check their understanding of the material.

• Examples: Several of the examples include Excel work-
books, available online at the text website, making them
useful for “what-if” analyses by students or by the
instructor.

New to This Edition
This edition incorporates a number of significant changes:

Many new end-of-chapter homework problems have been
developed, with the result that about 30 percent of the pro-
blems have not appeared in previous editions. These new pro-
blems were selected to require a spectrum of skills and
concepts. At one end of the spectrum are those problems that
focus on a single concept, which allows students to test their
understanding of basic material. At the other end are challeng-
ing situations that bring in several concepts and advanced
problem-solving skills, which allows students to assess their
ability to integrate the material. This wide spectrum allows
the instructor to match the complexity of the problem to stu-
dent ability, facilitating the assignment of more challenging
problems as students master the subject.

Each chapter is introduced with a case study that is an
interesting and novel application of the material in the chapter.
Our goal is to illustrate the broad range of areas that fall within
the discipline of fluid mechanics. In general, these are special-
ized subjects that cannot be covered in depth in a text such as
this one. We hope that these case studies stimulate the student
to explore further and not feel limited by the topics that can be
covered in this text.

Often, fluid behavior can best be understood though visu-
alization techniques that capture the dynamics of a flowing
fluid. For many of the chapter subjects, short videos are avail-
able that illustrate a specific phenomenon. These videos, which
are available online to both the student and the instructor on the
text’s companionwebsite, are indicated byan icon in themargin
of the text. We also include references to much more extensive
collections of videos on awide range of fluidmechanics topics.
We encourage both students and instructors to use these videos
to gain insight into the actual behavior of fluids.

The subject of compressible fluid flowwas covered in two
chapters in previous editions. These two chapters have now
been combined into one and the more advanced material
(Fanno flow, Rayleigh flow, and oblique shock and expansion
waves) has been removed from the text. These sections and the
corresponding problems are available on the companion web-
site for instructors and students. They provide an excellent
introduction for those interested in a more in-depth study of
compressible flow. The coverage of compressible flow in
the current edition parallels the coverage of open-channel
flow, emphasizing the similarity between the two topics.

Resources for Instructors
The following resources are available to instructors who
adopt this text. Visit the companion website www.wiley.com/
college/pritchard to register for a password.
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• Solutions Manual: The solutions manual for this edition
contains a complete, detailed solution for all homework
problems. The expected solution difficulty is indicated,
and each solution is prepared in the same systematic way
as the example solutions in the printed text. Each solution
begins from governing equations, clearly states assump-
tions, reduces governing equations to computing equations,
obtains an algebraic result, and finally substitutes numerical
values to obtain a quantitative answer. Solutions may be
reproduced for classroom or library use, eliminating the
labor of problem solving for the instructor.

• Problem Key: A list of all problems that are renumbered
from the eighth edition of this title, to the ninth edition.

• PowerPoint Lecture Slides: Lecture slides outline the con-
cepts in the book and include appropriate illustrations and
equations.

• Image Gallery: Illustrations are taken from the text in a for-
mat appropriate to include in lecture presentations.

• Sample Syllabi: Syllabi appropriate for use in teaching a
one-semester course in fluid mechanics are provided.
First-time instructors will find these a helpful guide to creat-
ing an appropriate emphasis on the different topics.

• Online-Only Chapter Content: These additional topics sup-
plement the material in the text. The topics covered are
fluids in rigid body motion, accelerating control volumes,
the unsteady Bernoulli equation, the classical laminar
boundary layer solution, and compressible flow (Fanno
flow, Rayleigh flow, and oblique shock and expansion
waves). These online-only sections also include appropriate
end-of-chapter problems.

• Videos: The videos referenced by icons throughout the text
(and inAppendixB) can be accessed from the text’s compan-
ion website. In Appendix B there is a reference to the “classic
videos” developed by the National Committee for Fluid
Mechanics Films and to the large number of videos available
from the Cambridge University Press. Excerpts from these
longer films are often helpful in explaining fluid phenomena.

• Appendix G: A Brief Review of Microsoft Excel: Prepared
by Philip Pritchard, this online-only resource coaches stu-
dents in setting up and solving fluid mechanics problems
using Excel spreadsheets.

• Excel Files: These Excel files and add-ins are for use with
specific examples from the text.

Resources for Students
The following resources are available on the text’s companion
website at www.wiley.com/college/pritchard for students
enrolled in classes that adopt this text.

• Appendix G: A Brief Review of Microsoft Excel: This
online-only material will aid students in using Excel to
solve the end-of-chapter problems.

• Excel Files: These Excel files and add-ins are for use with
specific examples from the text.

• Online-Only Chapter Content: The same additional topics
provided to instructors are also available to students.

• Videos: The videos referenced by icons throughout the text
and in Appendix B are accessed from the website.

WileyPLUS
WileyPLUS is an online learning and assessment environment,
where students test their understanding of concepts, get feed-
back on their answers, and access learning materials like the
eText and multimedia resources. Instructors can automate
assignments, create practice quizzes, assess students’ progress,
and intervene with those falling behind.
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the success of this text. In particular, Philip J. Pritchard, the
author of the previous edition, introduced many significant
revisions in the text and the online material that are included
in this ninth edition. We hope that colleagues and others
who use this book continue to provide input, for their
contributions are essential to maintaining the quality and rel-
evance of this work.

John W. Mitchell
July 2014
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C H A P T E R 1

Introduction
1.1 Introduction to Fluid Mechanics

1.2 Basic Equations

1.3 Methods of Analysis

1.4 Dimensions and Units

1.5 Analysis of Experimental Error

1.6 Summary

Case Study

At the beginning of each chapter we present a case study that shows
how the material in the chapter is incorporated into modern technol-
ogy. We have tried to present novel developments that show the
ongoing importance of the field of fluid mechanics. Perhaps, as a
creative new engineer, you’ll be able to use the ideas you learn in
this course to improve current fluid-mechanics devices or invent
new ones!

Wind Power
According to the July 16, 2009, edition of the New York Times, the
global wind energy potential is much higher than previously esti-
mated by both wind industry groups and government agencies.
Using data from thousands of meteorological stations, the
research indicates that the world’s wind power potential is about
40 times greater than total current power consumption; previous
studies had put that multiple at about seven times! In the lower
48 states, the potential from wind power is 16 times more than
total electricity demand in the United States, the researchers
suggested, againmuchhigher than a 2008Department of Energy
study that projected wind could supply a fifth of all electricity in
the country by 2030. The findings indicate the validity of the
often made claim that “the United States is the Saudi Arabia of
wind.” The new estimate is based the idea of deploying 2.5- to
3-megawatt (MW) wind turbines in rural areas that are neither

frozen nor forested and also on shallow offshore locations, and
it includes a conservative 20 percent estimate for capacity factor,
which is a measure of how much energy a given turbine actually
produces. It has been estimated that the total power from the
wind that could conceivably be extracted is about 72 terawatts
(TW 72×1012 watts). Bearing in mind that the total power con-
sumption by all humans was about 16 TW (as of 2006), it is clear
that wind energy could supply all the world’s needs for the fore-
seeable future!

One reason for the new estimate is due to the increasingly
common use of very large turbines that rise to almost 100m,
where wind speeds are greater. Previous wind studies were
based on the use of 50- to 80-m turbines. In addition, to reach
even higher elevations (and hence wind speed), two approaches
have been proposed. In a recent paper, Professor Archer at
California State University and Professor Caldeira at the
Carnegie Institution of Washington, Stanford, discussed some
possibilities. One of these is a design of KiteGen (shown in the
figure), consisting of tethered airfoils (kites) manipulated by a
control unit and connected to a ground-based, carousel-shaped
generator; the kites are maneuvered so that they drive the
carousel, generating power, possibly as much as 100 MW. This
approach would be best for the lowest few kilometers of the
atmosphere. An approach using further increases in elevation
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Sky Windpower’s flying electric generators would fly at
altitudes of about 10,000 m.
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KiteGen’s kites would fly at an altitude of about 1000 m
and spin a power carousel on the ground.
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1.1 Introduction to Fluid Mechanics
We decided to title this textbook “Introduction to …” for the following reason: After studying the text,
you will not be able to design the streamlining of a new car or an airplane, or design a new heart valve, or
select the correct air extractors and ducting for a $100 million building; however, you will have devel-
oped a good understanding of the concepts behind all of these, and many other applications, and have
made significant progress toward being ready to work on such state-of-the-art fluid mechanics projects.

To start toward this goal, in this chapter we cover some very basic topics: a case study, what fluid
mechanics encompasses, the standard engineering definition of a fluid, and the basic equations and
methods of analysis. Finally, we discuss some common engineering student pitfalls in areas such as unit
systems and experimental analysis.

Note to Students

This is a student-oriented book: We believe it is quite comprehensive for an introductory text, and a
student can successfully self-teach from it. However, most students will use the text in conjunction with
one or two undergraduate courses. In either case, we recommend a thorough reading of the relevant
chapters. In fact, a good approach is to read a chapter quickly once, then reread more carefully a second
and even a third time, so that concepts develop a context and meaning. While students often find fluid
mechanics quite challenging, we believe this approach, supplemented by your instructor’s lectures that
will hopefully amplify and expand upon the text material (if you are taking a course), will reveal fluid
mechanics to be a fascinating and varied field of study.

Other sources of information on fluid mechanics are readily available. In addition to your professor,
there are many other fluid mechanics texts and journals as well as the Internet (a recent Google search
for “fluid mechanics” yielded 26.4 million links, including many with fluid mechanics calculators and
animations!).

There are some prerequisites for reading this text. We assume you have already studied introductory
thermodynamics, as well as statics, dynamics, and calculus; however, as needed, we will review some of
this material.

It is our strong belief that one learns best by doing. This is true whether the subject under study is
fluid mechanics, thermodynamics, or soccer. The fundamentals in any of these are few, and mastery of
them comes through practice. Thus it is extremely important that you solve problems. The numerous
problems included at the end of each chapter provide the opportunity to practice applying fundamentals
to the solution of problems. Even though we provide for your convenience a summary of useful equa-
tions at the end of each chapter (except this one), you should avoid the temptation to adopt a so-called
plug-and-chug approach to solving problems. Most of the problems are such that this approach simply
will not work. In solving problems we strongly recommend that you proceed using the following log-
ical steps:

1 State briefly and concisely (in your own words) the information given.

2 State the information to be found.

3 Draw a schematic of the system or control volume to be used in the analysis. Be sure to label the
boundaries of the system or control volume and label appropriate coordinate directions.

4 Give the appropriate mathematical formulation of the basic laws that you consider necessary to solve
the problem.

5 List the simplifying assumptions that you feel are appropriate in the problem.

is to generate electricity aloft and then transmit it to the surface
with a tether. In the design proposed by Sky Windpower, four
rotors are mounted on an airframe; the rotors both provide lift
for the device and power electricity generation. The aircraft

would lift themselves into place with supplied electricity to
reach the desired altitude but would then generate up to
40 MW of power. Multiple arrays could be used for large-scale
electricity generation.
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6 Complete the analysis algebraically before substituting numerical values.

7 Substitute numerical values (using a consistent set of units) to obtain a numerical answer.

(a) Reference the source of values for any physical properties.

(b) Be sure the significant figures in the answer are consistent with the given data.

8 Check the answer and review the assumptions made in the solution to make sure they are reasonable.

9 Label the answer.

In your initial work this problem format may seem unnecessary and even long-winded. However, it is
our experience that this approach to problem solving is ultimately the most efficient; it will also prepare
you to be a successful professional, for which a major prerequisite is to be able to communicate infor-
mation and the results of an analysis clearly and precisely. This format is used in all examples presented
in this text; answers to examples are rounded to three significant figures.

Finally, we strongly urge you to take advantage of the many Excel tools available for this book on
the text website for use in solving problems. Many problems can be solved much more quickly using
these tools; occasional problems can only be solved with the tools or with an equivalent computer
application.

Scope of Fluid Mechanics

As the name implies, fluid mechanics is the study of fluids at rest or in motion. It has traditionally been
applied in such areas as the design of canal, levee, and dam systems; the design of pumps, compressors, and
piping and ducting used in the water and air conditioning systems of homes and businesses, as well as the
piping systems needed in chemical plants; the aerodynamics of automobiles and sub- and supersonic air-
planes; and the development of many different flow measurement devices such as gas pump meters.

While these are still extremely important areas (witness, for example, the current emphasis on
automobile streamlining and the levee failures in New Orleans in 2005), fluid mechanics is truly a
“high-tech” or “hot” discipline, and many exciting areas have developed in the last quarter-century.
Some examples include environmental and energy issues (e.g., containing oil slicks, large-scale wind
turbines, energy generation from ocean waves, the aerodynamics of large buildings, and the fluid
mechanics of the atmosphere and ocean and of phenomena such as tornadoes, hurricanes, and tsunamis);
biomechanics (e.g., artificial hearts and valves and other organs such as the liver; understanding of the
fluid mechanics of blood, synovial fluid in the joints, the respiratory system, the circulatory system, and
the urinary system); sport (design of bicycles and bicycle helmets, skis, and sprinting and swimming
clothing, and the aerodynamics of the golf, tennis, and soccer ball); “smart fluids” (e.g., in automobile
suspension systems to optimize motion under all terrain conditions, military uniforms containing a fluid
layer that is “thin” until combat, when it can be “stiffened” to give the soldier strength and protection,
and fluid lenses with humanlike properties for use in cameras and cell phones); and microfluids (e.g., for
extremely precise administration of medications).

These are just a small sampling of the newer areas of fluid mechanics. They illustrate how the dis-
cipline is still highly relevant, and increasingly diverse, even though it may be thousands of years old.

Definition of a Fluid

We already have a common-sense idea of when we are working with a fluid, as opposed to a solid: Fluids
tend to flow when we interact with them (e.g., when you stir your morning coffee); solids tend to deform
or bend (e.g., when you type on a keyboard, the springs under the keys compress). Engineers need amore
formal and precise definition of a fluid: A fluid is a substance that deforms continuously under the appli-
cation of a shear (tangential) stress nomatter how small the shear stress may be. Because the fluid motion
continues under the application of a shear stress, we can also define a fluid as any substance that cannot
sustain a shear stress when at rest.

Hence liquids and gases (or vapors) are the forms, or phases, that fluids can take. We wish to dis-
tinguish these phases from the solid phase of matter. We can see the difference between solid and fluid
behavior in Fig. 1.1. If we place a specimen of either substance between two plates (Fig. 1.1a) and then
apply a shearing force F, each will initially deform (Fig. 1.1b); however, whereas a solid will then be
at rest (assuming the force is not large enough to go beyond its elastic limit), a fluid will continue to
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deform (Fig. 1.1c, Fig. 1.1d, etc) as long as the force is applied. Note that a fluid in contact with a solid
surface does not slip—it has the same velocity as that surface because of the no-slip condition, an exper-
imental fact.

The amount of deformation of the solid depends on the solid’s modulus of rigidity G; in Chapter 2
we will learn that the rate of deformation of the fluid depends on the fluid’s viscosity μ. We refer to solids
as being elastic and fluids as being viscous. More informally, we say that solids exhibit “springiness.”
For example, when you drive over a pothole, the car bounces up and down due to the car suspension’s
metal coil springs compressing and expanding. On the other hand, fluids exhibit friction effects so that
the suspension’s shock absorbers (containing a fluid that is forced through a small opening as the car
bounces) dissipate energy due to the fluid friction, which stops the bouncing after a few oscillations. If
your shocks are “shot,” the fluid they contained has leaked out so that there is almost no friction as the car
bounces, and it bounces several times rather than quickly coming to rest. The idea that substances can be
categorized as being either a solid or a liquid holds for most substances, but a number of substances
exhibit both springiness and friction; they are viscoelastic. Many biological tissues are viscoelastic.
For example, the synovial fluid in human knee joints lubricates those joints but also absorbs some of
the shock occurring during walking or running. Note that the system of springs and shock absorbers
comprising the car suspension is also viscoelastic, although the individual components are not. We will
have more to say on this topic in Chapter 2.

1.2 Basic Equations
Analysis of any problem in fluid mechanics necessarily includes statement of the basic laws governing
the fluid motion. The basic laws, which are applicable to any fluid, are:

1 The conservation of mass

2 Newton’s second law of motion

3 The principle of angular momentum

4 The first law of thermodynamics

5 The second law of thermodynamics

Not all basic laws are always required to solve any one problem. On the other hand, in many problems it
is necessary to bring into the analysis additional relations that describe the behavior of physical proper-
ties of fluids under given conditions.

For example, you probably recall studying properties of gases in basic physics or thermodynamics.
The ideal gas equation of state

p= ρRT ð1:1Þ
is a model that relates density to pressure and temperature for many gases under normal conditions. In
Eq. 1.1, R is the gas constant. Values of R are given in Appendix A for several common gases; p and T
in Eq. 1.1 are the absolute pressure and absolute temperature, respectively; ρ is density (mass per unit
volume). Example 1.1 illustrates use of the ideal gas equation of state.

It is obvious that the basic laws with which we shall deal are the same as those used in mechanics and
thermodynamics. Our task will be to formulate these laws in suitable forms to solve fluid flow problems
and to apply them to a wide variety of situations.

F F F

Time

(a) Solid or fluid (b) Solid or fluid (c) Fluid only (d) Fluid only

Fig. 1.1 Difference in behavior of a solid and a fluid due to a shear force.
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We must emphasize that there are, as we shall see, many apparently simple problems in fluid
mechanics that cannot be solved analytically. In such cases we must resort to more complicated numer-
ical solutions and/or results of experimental tests.

1.3 Methods of Analysis
The first step in solving a problem is to define the system that you are attempting to analyze. In basic
mechanics, we made extensive use of the free-body diagram. We will use a system or a control volume,
depending on the problem being studied. These concepts are identical to the ones you used in thermo-
dynamics (except you may have called them closed system and open system, respectively). We can use
either one to get mathematical expressions for each of the basic laws. In thermodynamics they were
mostly used to obtain expressions for conservation of mass and the first and second laws of thermody-
namics; in our study of fluid mechanics, we will be most interested in conservation of mass and

Example 1.1 FIRST LAW APPLICATION TO CLOSED SYSTEM

A piston-cylinder device contains 0:95 kg of oxygen initially at a temperature of 27�C and a pressure due to the weight of
150 kPa ðabsÞ. Heat is added to the gas until it reaches a temperature of 627�C. Determine the amount of heat added during
the process.

Given: Piston-cylinder containing O2, m=0:95 kg.

T1 = 27�C T2 = 627�C

Find: Q1!2.

Solution: p= constant = 150 kPa ðabsÞ
We are dealing with a system, m=0:95 kg.

Governing equation: First law for the system, Q12−W12 =E2−E1

Assumptions: 1 E=U, since the system is stationary.

2 Ideal gas with constant specific heats.

Under the above assumptions,

E2−E1 =U2−U1 =mðu2−u1Þ=mcvðT2−T1Þ
The work done during the process is moving boundary work

W12 =
Z V--2

V--1
pdV--- = pðV---2−V---1Þ

For an ideal gas, pV--- =mRT . Hence W12 =mRðT2−T1Þ. Then from the first law equation,

Q12 =E2−E1 +W12 =mcvðT2−T1Þ+mRðT2−T1Þ
Q12 =mðT2−T1Þðcv +RÞ
Q12 =mcpðT2−T1Þ fR= cp−cvg

From the Appendix, Table A.6, for O2, cp =909:4J=ðkg �KÞ. Solving for Q12,
we obtain

Q12 = 0:95 kg× 909
J

kg �K ×600 K=518 kJ
Q12 ��������������������

This problem:
• Was solved using the nine logical steps
discussed earlier.

• Reviewed use of the ideal gas equation
and the first law of thermodynamics for a
system.

Q

W
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Newton’s second law of motion. In thermodynamics our focus was energy; in fluid mechanics it will
mainly be forces and motion. We must always be aware of whether we are using a system or a control
volume approach because each leads to different mathematical expressions of these laws. At this point
we review the definitions of systems and control volumes.

System and Control Volume

A system is defined as a fixed, identifiable quantity of mass; the system boundaries separate the system
from the surroundings. The boundaries of the system may be fixed or movable; however, no mass
crosses the system boundaries.

In the familiar piston-cylinder assembly from thermodynamics, Fig. 1.2, the gas in the cylinder is
the system. If the gas is heated, the piston will lift the weight; the boundary of the system thus moves.
Heat and work may cross the boundaries of the system, but the quantity of matter within the system
boundaries remains fixed. No mass crosses the system boundaries.

In mechanics courses you used the free-body diagram (system approach) extensively. This was log-
ical because you were dealing with an easily identifiable rigid body. However, in fluid mechanics we
normally are concerned with the flow of fluids through devices such as compressors, turbines, pipelines,
nozzles, and so on. In these cases it is difficult to focus attention on a fixed identifiable quantity of mass.
It is much more convenient, for analysis, to focus attention on a volume in space through which the fluid
flows. Consequently, we use the control volume approach.

A control volume is an arbitrary volume in space through which fluid flows. The geometric boundary
of the control volume is called the control surface. The control surface may be real or imaginary; it may be
at rest or in motion. Figure 1.3 shows flow through a pipe junction, with a control surface drawn on it.
Note that some regions of the surface correspond to physical boundaries (the walls of the pipe) and others
(at locations ⃝1 , ⃝2 , and ⃝3 ) are parts of the surface that are imaginary (inlets or outlets). For the control
volume defined by this surface, we could write equations for the basic laws and obtain results such as the
flow rate at outlet ⃝3 given the flow rates at inlet ⃝1 and outlet ⃝2 (similar to a problem we will analyze in
Example 4.1 in Chapter 4), the force required to hold the junction in place, and so on. Example 1.2 illus-
trates how we use a control volume to determine the mass flow rate in a section of a pipe. It is
always important to take care in selecting a control volume, as the choice has a big effect on the mathe-
matical form of the basic laws. We will illustrate the use of a control volume with an example.

Gas

Weight

Piston

CylinderSystem
boundary

Fig. 1.2 Piston-cylinder assembly.

Control volume

Control surface

1

2

3

Fig. 1.3 Fluid flow through a pipe junction.
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Differential versus Integral Approach

The basic laws that we apply in our study of fluid mechanics can be formulated in terms of infinitesimal
or finite systems and control volumes. As you might suspect, the equations will look different in the two
cases. Both approaches are important in the study of fluid mechanics and both will be developed in the
course of our work.

In the first case the resulting equations are differential equations. Solution of the differential equa-
tions of motion provides a means of determining the detailed behavior of the flow. An example might be
the pressure distribution on a wing surface.

Frequently the information sought does not require a detailed knowledge of the flow. We often
are interested in the gross behavior of a device; in such cases it is more appropriate to use integral
formulations of the basic laws. An example might be the overall lift a wing produces. Integral formula-
tions, using finite systems or control volumes, usually are easier to treat analytically. The basic laws of
mechanics and thermodynamics, formulated in terms of finite systems, are the basis for deriving the
control volume equations in Chapter 4.

Methods of Description

Mechanics deals almost exclusively with systems; you have made extensive use of the basic equations
applied to a fixed, identifiable quantity of mass. On the other hand, attempting to analyze thermody-
namic devices, you often found it necessary to use a control volume (open system) analysis. Clearly,
the type of analysis depends on the problem.

Example 1.2 MASS CONSERVATION APPLIED TO CONTROL VOLUME

A reducing water pipe section has an inlet diameter of 50 mm and exit diameter of 30 mm. If the steady inlet speed (averaged
across the inlet area) is 2:5 m=s, find the exit speed.

Given: Pipe, inlet Di =50mm, exit De =30 mm.
Inlet speed, Vi =2:5 m=s.

Find: Exit speed, Ve.

Solution:

Assumption: Water is incompressible (density ρ= constant).

The physical law we use here is the conservation of mass, which you learned in thermodynamics when studying turbines, boilers,
and so on. You may have seen mass flow at an inlet or outlet expressed as either _m=VA=v or _m= ρVAwhere V , A, υ and ρ are the
speed, area, specific volume, and density, respectively. We will use the density form of the equation.

Hence the mass flow is:
_m= ρVA

Applying mass conservation, from our study of thermodynamics,

ρViAi = ρVeAe

(Note: ρi = ρe = ρ by our first assumption.)
(Note: Even though we are already familiar with this equation from thermodynamics, we will derive it in Chapter 4.)

Solving for Ve,

Ve =Vi
Ai

Ae
=Vi

πD2
i =4

πD2
e=4

=Vi
Di

De

� �2

Ve =2:7
m
s

50
30

� �2

= 7:5
m
s

Ve ��������������������

Inlet Exit

Control volume

This problem:
• Was solved using the nine logical steps.
• Demonstrated use of a control volume
and the mass conservation law.
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Where it is easy to keep track of identifiable elements of mass (e.g., in particle mechanics), we use a
method of description that follows the particle. This sometimes is referred to as the Lagrangian method
of description.

Consider, for example, the application of Newton’s second law to a particle of fixed mass. Mathe-
matically, we can write Newton’s second law for a system of mass m as

ΣF
!
=ma! =m

dV
!

dt
=m

d2r!

dt2
ð1:2Þ

In Eq. 1.2, ΣF
!
is the sum of all external forces acting on the system, a! is the acceleration of the center

of mass of the system, V
!
is the velocity of the center of mass of the system, and r!is the position vector of

the center of mass of the system relative to a fixed coordinate system. In Example 1.3, we show how
Newton’s second law is applied to a falling object to determine its speed.

Example 1.3 FREE FALL OF BALL IN AIR

The air resistance (drag force) on a 200 g ball in free flight is given by FD =2× 10−4V2, where FD is in newtons and V is in meters
per second. If the ball is dropped from rest 500 m above the ground, determine the speed at which it hits the ground. What per-
centage of the terminal speed is the result? (The terminal speed is the steady speed a falling body eventually attains.)

Given: Ball, m=0:2 kg, released from rest at y0 = 500 m.
Air resistance, FD = kV2, where k=2×10−4 N�s2=m2.
Units: FDðNÞ, Vðm=sÞ.

Find:

(a) Speed at which the ball hits the ground.
(b) Ratio of speed to terminal speed.

Solution:

Governing equation: ΣF
!
=ma!

Assumption: Neglect buoyancy force.

The motion of the ball is governed by the equation

ΣFy =may =m
dV
dt

Since V =VðyÞ, we write ΣFy =m
dV
dy

dy
dt

=mV
dV
dy

Then,

ΣFy =FD−mg= kV2−mg=mV
dV
dy

Separating variables and integrating, Z y

y0
dy=

Z V

0

mVdV
kV2−mg

y−y0 =
m
2k

lnðkV2−mgÞ
h iV

0
=

m
2k

ln
kV2−mg
−mg

Taking antilogarithms, we obtain

kV2−mg= −mg e½ð2k=mÞðy−y0Þ�

Solving for V gives

V =
mg
k

�
1−e½ð2k=mÞðy−y0Þ�

�n o1=2

FD

x

y

y0

mg
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We could use this Lagrangian approach to analyze a fluid flow by assuming the fluid to be com-
posed of a very large number of particles whose motion must be described. However, keeping track of
the motion of each fluid particle would become a horrendous bookkeeping problem. Consequently, a
particle description becomes unmanageable. Often we find it convenient to use a different type of
description. Particularly with control volume analyses, it is convenient to use the field, or Eulerian,
method of description, which focuses attention on the properties of a flow at a given point in space
as a function of time. In the Eulerian method of description, the properties of a flow field are described
as functions of space coordinates and time. We shall see in Chapter 2 that this method of description is a
logical outgrowth of the assumption that fluids may be treated as continuous media.

1.4 Dimensions and Units
Engineering problems are solved to answer specific questions. It goes without saying that the answer
must include units. In 1999, NASA’s Mars Climate Observer crashed because the JPL engineers
assumed that a measurement was in meters, but the supplying company’s engineers had actually made
the measurement in feet! Consequently, it is appropriate to present a brief review of dimensions and
units. We say “review” because the topic is familiar from your earlier work in mechanics.

We refer to physical quantities such as length, time, mass, and temperature as dimensions. In terms
of a particular system of dimensions, all measurable quantities are subdivided into two groups—primary
quantities and secondary quantities. We refer to a small group of dimensions from which all others can
be formed as primary quantities, for which we set up arbitrary scales of measure. Secondary quantities
are those quantities whose dimensions are expressible in terms of the dimensions of the primary
quantities.

Units are the arbitrary names (and magnitudes) assigned to the primary dimensions adopted as
standards for measurement. For example, the primary dimension of length may be measured in units
of meters, feet, yards, or miles. These units of length are related to each other through unit conversion
factors ð1 mile = 5280 feet = 1609 metersÞ.

Systems of Dimensions

Any valid equation that relates physical quantities must be dimensionally homogeneous; each term in the
equation must have the same dimensions.We recognize that Newton’s second law ðF! / ma!Þ relates the

Substituting numerical values with y=0 yields

V = 0:2 kg× 9:81
m
s2

×
m2

2× 10−4N � s2 ×
N � s2
kg �m 1−e½2 × 2× 10−4=0:2ð−500Þ�

� �� �

V =78:7 m=s V ������������������������������������������
At terminal speed, ay =0 and ΣFy =0= kV2

t −mg.

Then, Vt =
mg
k

h i1=2
= 0:2 kg× 9:81

m
s2

×
m2

2× 10−4N � s2 ×
N � s2
kg �m

	 
1=2
= 99:0 m=s

The ratio of actual speed to terminal speed is

V
Vt

=
78:7
99:0

= 0:795, or 79:5%

V
Vt �������������������������������

This problem:
• Reviewed the methods used in particle
mechanics.

• Introduced a variable aerodynamic
drag force.

Try the Excel workbook for this
problem for variations on this

problem.
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four dimensions, F, M, L and t. Thus force and mass cannot both be selected as primary dimensions
without introducing a constant of proportionality that has dimensions (and units).

Length and time are primary dimensions in all dimensional systems in common use. In some sys-
tems, mass is taken as a primary dimension. In others, force is selected as a primary dimension; a third
system chooses both force and mass as primary dimensions. Thus we have three basic systems of dimen-
sions, corresponding to the different ways of specifying the primary dimensions.

(a) Mass ½M�, length ½L�, time ½t�, temperature ½T �
(b) Force ½F�, length ½L�, time ½t�, temperature ½T �
(c) Force ½F�, mass ½M�, length ½L�, time ½t�, temperature ½T �
In system a, force ½F� is a secondary dimension and the constant of proportionality in Newton’s second
law is dimensionless. In system b, mass ½M� is a secondary dimension, and again the constant of propor-
tionality in Newton’s second law is dimensionless. In system c, both force ½F� and mass ½M� have been
selected as primary dimensions. In this case the constant of proportionality, gc (not to be confused
with g, the acceleration of gravity!) in Newton’s second law (written F

!
=ma!=gc) is not dimensionless.

The dimensions of gc must in fact be ½ML=Ft2� for the equation to be dimensionally homogeneous. The
numerical value of the constant of proportionality depends on the units of measure chosen for each of
the primary quantities.

Systems of Units

There is more than one way to select the unit of measure for each primary dimension. We shall present
only the more common engineering systems of units for each of the basic systems of dimensions.
Table 1.1 shows the basic units assigned to the primary dimensions for these systems. The units in par-
entheses are those assigned to that unit system’s secondary dimension. Following the table is a brief
description of each of them.

a. MLtT
SI, which is the official abbreviation in all languages for the Système International d’Unités,1 is an exten-
sion and refinement of the traditional metric system. More than 30 countries have declared it to be the
only legally accepted system.

In the SI system of units, the unit of mass is the kilogram ðkgÞ, the unit of length is the meter (m), the
unit of time is the second ðsÞ, and the unit of temperature is the kelvin ðKÞ. Force is a secondary dimen-
sion, and its unit, the newton ðNÞ, is defined from Newton’s second law as

1 N≡ 1 kg �m=s2

In the Absolute Metric system of units, the unit of mass is the gram, the unit of length is the centi-
meter, the unit of time is the second, and the unit of temperature is the kelvin. Since force is a secondary
dimension, the unit of force, the dyne, is defined in terms of Newton’s second law as

1 dyne≡ 1 g � cm=s2

Table 1.1
Common Unit Systems

System of
Dimensions

Unit System Force
F

Mass
M

Length
L

Time
t

Temperature
T

a. MLtT Système International
d’Unités (SI)

(N) kg m s K

b. FLtT British Gravitational (BG) lbf (slug) ft s �R
c. FMLtT English Engineering (EE) lbf lbm ft s �R

1American Society for Testing and Materials, ASTM Standard for Metric Practice, E380–97. Conshohocken, PA: ASTM, 1997.
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b. FLtT
In the British Gravitational system of units, the unit of force is the pound ðlbfÞ, the unit of length is the
foot ðftÞ, the unit of time is the second, and the unit of temperature is the degree Rankine ð�RÞ. Since
mass is a secondary dimension, the unit of mass, the slug, is defined in terms of Newton’s second law as

1 slug≡ 1 lbf � s2=ft

c. FMLtT
In the English Engineering system of units, the unit of force is the pound force ðlbfÞ, the unit of mass is
the pound mass ðlbmÞ, the unit of length is the foot, the unit of time is the second, and the unit of tem-
perature is the degree Rankine. Since both force and mass are chosen as primary dimensions, Newton’s
second law is written as

F
!
=
ma!

gc

A force of one pound ð1 lbfÞ is the force that gives a pound mass ð1 lbmÞ an acceleration equal to the
standard acceleration of gravity on Earth, 32:2 ft=s2. From Newton’s second law we see that

1 lbf ≡
1 lbm×32:2 ft=s2

gc

or

gc ≡ 32:2 ft � lbm=ðlbf � s2Þ
The constant of proportionality, gc, has both dimensions and units. The dimensions arose because we
selected both force and mass as primary dimensions; the units (and the numerical value) are a conse-
quence of our choices for the standards of measurement.

Since a force of 1 lbf accelerates 1 lbm at 32:2 ft=s2, it would accelerate 32:2 lbm at 1 ft=s2. A slug
also is accelerated at 1 ft=s2 by a force of 1 lbf. Therefore,

1 slug≡ 32:2 lbm

Many textbooks and references use lb instead of lbf or lbm, leaving it up to the reader to determine
from the context whether a force or mass is being referred to.

Preferred Systems of Units

In this text we shall use both the SI and the British Gravitational systems of units. In either case, the
constant of proportionality in Newton’s second law is dimensionless and has a value of unity. Conse-
quently, Newton’s second law is written as F

!
=ma!. In these systems, it follows that the gravitational

force (the “weight”2) on an object of mass m is given by W =mg.
SI units and prefixes, together with other defined units and useful conversion factors, are on the

inside cover of the book. In Example 1.4, we show how we convert between mass and weight in the
different unit systems that we use.

Dimensional Consistency and “Engineering” Equations

In engineering, we strive to make equations and formulas have consistent dimensions. That is, each term
in an equation, and obviously both sides of the equation, should be reducible to the same dimensions.
For example, a very important equation we will derive later on is the Bernoulli equation

p1
ρ +

V2
1

2
+ gz1 =

p2
ρ +

V2
2

2
+ gz2

2Note that in the English Engineering system, the weight of an object is given by W =mg=gc.
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which relates the pressure p, velocity V , and elevation z between points 1 and 2 along a streamline for a
steady, frictionless incompressible flow (density ρ). This equation is dimensionally consistent because
each term in the equation can be reduced to dimensions of L2=t2 (the pressure term dimensions are
FL=M, but from Newton’s law we find F =M=Lt2, so FL=M =ML2=Mt2 = L2=t2.

Almost all equations you are likely to encounter will be dimensionally consistent. However, you
should be alert to some still commonly used equations that are not; these are often “engineering”

Example 1.4 USE OF UNITS

The label on a jar of peanut butter states its net weight is 510 g. Express its mass and weight in SI, BG, and EE units.

Given: Peanut butter “weight,” m=510 g.

Find: Mass and weight in SI, BG, and EE units.

Solution: This problem involves unit conversions and use of the equation relating weight and mass:

W =mg

The given “weight” is actually the mass because it is expressed in units of mass:

mSI = 0:510 kg mSI ���������������������
Using the conversions given inside the book cover,

mEE =mSI
1 lbm

0:454 kg

� �
=0:510 kg

1 lbm
0:454 kg

� �
=1:12 lbm mEE ���������������������

Using the fact that 1 slug = 32:2 lbm,

mBG =mEE
1 slug

32:2 lbm

� �
=1:12 lbm

1 slug
32:2 lbm

� �
=0:0349 slug mBG ���������������������

To find the weight, we use

W =mg

In SI units, and using the definition of a newton,

WSI = 0:510 kg× 9:81
m
s2

= 5:00
kg �m
s2

� �
N

kg �m=s2

� �

=5:00 N
WSI ��������������

In BG units, and using the definition of a slug,

WBG =0:0349 slug × 32:2
ft
s2

= 1:12
slug � ft

s2

= 1:12
slug � ft

s2

� �
s2 � lbf=ft

slug

� �
=1:12 lbf

WBG ���������
In EE units, we use the form W =mg=gc, and using the definition of gc,

WEE = 1:12 lbm× 32:2
ft
s2

×
1
gc

=
36:1
gc

lbm � ft
s2

= 36:1
lbm � ft
s2

� �
lbf � s2

32:2 ft � lbm
� �

=1:12 lbf
WEE ���������

This problem illustrates:
• Conversions from SI to BG and EE
systems.

• Use of gc in the EE system.
Notes:
The student may feel this example involves
a lot of unnecessary calculation details (e.g.,
a factor of 32.2 appears, then disappears),
but it cannot be stressed enough that such
steps should always be explicitly written out
to minimize errors—if you do not write all
steps and units down, it is just too easy, for
example, to multiply by a conversion factor
when you should be dividing by it. For the
weights in SI, BG, and EE units, we could
alternatively have looked up the conversion
from newton to lbf.
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equations derived many years ago, or are empirical (based on experiment rather than theory), or are pro-
prietary equations used in a particular industry or company. For example, civil engineers often use the
semi-empirical Manning equation

V =
R2=3
h S1=20

n

which gives the flow speed V in an open channel (such as a canal) as a function of the hydraulic radius Rh

(which is a measure of the flow cross-section and contact surface area), the channel slope S0, and a con-
stant n (the Manning resistance coefficient). The value of this constant depends on the surface condition
of the channel. For example, for a canal made from unfinished concrete, most references give n ≈ 0:014.
Unfortunately, the equation is dimensionally inconsistent! For the right side of the equation, Rh has
dimensions L, and S0 is dimensionless, so with a dimensionless constant n, we end up with dimensions
of L2=3; for the left side of the equation the dimensions must be L=t!A user of the equation is supposed to
know that the values of n provided in most references will give correct results only if we ignore the
dimensional inconsistency, always use Rh in meters, and interpret V to be in m/s! (The alert student will
realize that this means that even though handbooks provide n values as just constants, they must have
units of s=m1=3.) Because the equation is dimensionally inconsistent, using the same value for n with Rh

in ft does not give the correct value for V in ft/s.
A second type of problem is one in which the dimensions of an equation are consistent but use of

units is not. The commonly used EER of an air conditioner is

EER=
cooling rate

electrical input

which indicates how efficiently the AC works—a higher EER value indicates better performance. The
equation is dimensionally consistent, with the EER being dimensionless (the cooling rate and electrical
input are both measured in energy/time). However, it is used, in a sense, incorrectly, because the units
traditionally used in it are not consistent. For example, a good EER value is 10, which would appear to
imply you receive, say, 10 kW of cooling for each 1 kW of electrical power. In fact, an EER of 10 means
you receive 10 Btu/hr of cooling for each 1W of electrical power! Manufacturers, retailers, and custo-
mers all use the EER, in a sense, incorrectly in that they quote an EER of, say, 10, rather than the correct
way, of 10 Btu/hr/W. (The EER, as used, is an everyday, inconsistent unit version of the coefficient of
performance, COP, studied in thermodynamics.)

The two examples above illustrate the dangers in using certain equations. Almost all the equations
encountered in this text will be dimensionally consistent, but you should be aware of the occasional
troublesome equation you will encounter in your engineering studies.

As a final note on units, we stated earlier that we will use SI and BG units in this text. You will
become very familiar with their use through using this text but should be aware that many of the units
used, although they are scientifically and engineering-wise correct, are nevertheless not units you will
use in everyday activities, and vice versa; we do not recommend asking your grocer to give you, say,
22 newtons, or 0.16 slugs, of potatoes; nor should you be expected to immediately know what, say, a
motor oil viscosity of 5W20 means!

SI units and prefixes, other defined units, and useful conversions are given on the inside of the
book cover.

1.5 Analysis of Experimental Error
Most consumers are unaware of it but, as with most foodstuffs, soft drink containers are filled to plus or
minus a certain amount, as allowed by law. Because it is difficult to precisely measure the filling of a
container in a rapid production process, a 12-fl-oz container may actually contain 12.1, or 12.7, fl oz. The
manufacturer is never supposed to supply less than the specified amount; and it will reduce profits if it
is unnecessarily generous. Similarly, the supplier of components for the interior of a car must satisfy
minimum and maximum dimensions (each component has what are called tolerances) so that the final
appearance of the interior is visually appealing. Engineers performing experiments must measure not
just data but also the uncertainties in their measurements. They must also somehow determine how these
uncertainties affect the uncertainty in the final result.
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All of these examples illustrate the importance of experimental uncertainty, that is, the study of
uncertainties in measurements and their effect on overall results. There is always a trade-off in exper-
imental work or in manufacturing: We can reduce the uncertainties to a desired level, but the smaller the
uncertainty (the more precise the measurement or experiment), the more expensive the procedure will be.
Furthermore, in a complex manufacture or experiment, it is not always easy to see which measurement
uncertainty has the biggest influence on the final outcome.

Anyone involved in manufacturing, or in experimental work, should understand experimental
uncertainties. Appendix E has details on this topic; there is a selection of problems on this topic at
the end of this chapter.

1.6 Summary
In this chapter we introduced or reviewed a number of basic concepts and definitions, including:

✓ How fluids are defined, and the no-slip condition
✓ System/control volume concepts
✓ Lagrangian and Eulerian descriptions
✓ Units and dimensions (including SI, British Gravitational, and English Engineering systems)
✓ Experimental uncertainty

P R O B L E M S

Definition of a Fluid: Basic Equations
1.1 A number of common substances are

Tar Sand
“Silly Putty” Jello
Modeling clay Toothpaste
Wax Shaving cream

Some of these materials exhibit characteristics of both solid and fluid
behavior under different conditions. Explain and give examples.

1.2Give a word statement of each of the five basic conservation laws
stated in Section 1.2, as they apply to a system.

Methods of Analysis
1.3 The barrel of a bicycle tire pump becomes quite warm during use.
Explain the mechanisms responsible for the temperature increase.

1.4 Very small particles moving in fluids are known to experience a
drag force proportional to speed. Consider a particle of net weightW
dropped in a fluid. The particle experiences a drag force, FD = kV ,
where V is the particle speed. Determine the time required for the par-
ticle to accelerate from rest to 95 percent of its terminal speed, Vt , in
terms of k, W , and g.

1.5 In a combustion process, gasoline particles are to be dropped in
air at 200�F. The particles must drop at least 10 in. in 1 s. Find the
diameter d of droplets required for this. (The drag on these particles is
given by FD =3πμVd, where V is the particle speed and μ is the air
viscosity. To solve this problem, use Excel’s Goal Seek.)
1.6 In a pollution control experiment, minute solid particles (typical
mass 1 × 10−13 slug) are dropped in air. The terminal speed of the
particles is measured to be 0:2 ft=s. The drag of these particles is
given by FD = kV , where V is the instantaneous particle speed. Find
the value of the constant k. Find the time required to reach 99 percent
of terminal speed.

1.7 A rocket payload with a weight on earth of 2000 lb is landed
on the moon where the acceleration due to the moon’s gravity
gm≈gn=6. Find the mass of the payload on the earth and the moon
and the payload’s moon weight.

1.8A cubic metre of air at 101 kPa absolute and 15�Cweighs 12.0 N.
What is its specific volume? What is the specific volume if it is
cooled to −10�C at constant pressure?

1.9 Calculate the specific weight, specific volume, and density of air
at 40�F and 50 psia. What are these values if the air is then com-
pressed isentropically to 100 psia?

1.10 For Problem 1.6, find the distance the particles travel before
reaching 99 percent of terminal speed. Plot the distance traveled as
a function of time.

1.11 A sky diver with a mass of 70 kg jumps from an aircraft. The
aerodynamic drag force acting on the sky diver is known to be
FD = kV2, where k=0:25 N�s2=m2. Determine the maximum speed
of free fall for the sky diver and the speed reached after 100 m of fall.
Plot the speed of the sky diver as a function of time and as a function
of distance fallen.

1.12 The English perfected the longbow as a weapon after
the Medieval period. In the hands of a skilled archer, the longbow
was reputed to be accurate at ranges to 100 m or more. If the
maximum altitude of an arrow is less than h=10 m while traveling
to a target 100 m away from the archer, and neglecting air resistance,
estimate the speed and angle at which the arrow must leave the bow.
Plot the required release speed and angle as a function of height h.

Dimensions and Units
1.13 For each quantity listed, indicate dimensions using mass as a
primary dimension, and give typical SI and English units:

(a) Power

(b) Pressure
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(c) Modulus of elasticity

(d) Angular velocity

(e) Energy

(f) Moment of a force

(g) Momentum

(h) Shear stress

(i) Strain

(j) Angular momentum

1.14 The density of a sample of sea water is 1:99 slugs=ft3. What are
the values in SI and EE units?

1.15 A pump is rated at 50 hp. What is the rating in kW and Btu/hr?

1.16A fluid occupying 3:2 m3 has a mass of 4Mg. Calculate its den-
sity and specific volume in SI, EE, and BG units.

1.17 If a power plant is rated at 2000 MW output and operates (on
average) at 75% of rated power, how much energy (in J and ft.lbs)
does it put out in a year?

1.18 For each quantity listed, indicate dimensions using force as a
primary dimension, and give typical SI and English units:
(a) Power

(b) Pressure

(c) Modulus of elasticity

(d) Angular velocity

(e) Energy

(f) Momentum

(g) Shear stress

(h) Specific heat

(i) Thermal expansion coefficient

(j) Angular momentum

1.19 Derive the following conversion factors:
(a) Convert a pressure of 1 psi to kPa.

(b) Convert a volume of 1 liter to gallons.

(c) Convert a viscosity of 1 lbf�s=ft2 to N�s=m2.

1.20 Express the following in SI units:
(a) 5 acre�ft
(b) 150 in:3=s

(c) 3 gpm

(d) 3 mph/s

1.21 Express the following in SI units:
(a) 100 cfmðft3=minÞ
(b) 5 gal

(c) 65 mph

(d) 5.4 acres

1.22 Express the following in BG units:
(a) 50 m2

(b) 250 cc

(c) 100 kW

(d) 5 kg=m2

1.23 While you’re waiting for the ribs to cook, you muse about the
propane tank of your barbecue. You’re curious about the volume of

propane versus the actual tank size. Find the liquid propane volume
when full (the weight of the propane is specified on the tank). Com-
pare this to the tank volume (take some measurements, and approx-
imate the tank shape as a cylinder with a hemisphere on each end).
Explain the discrepancy.

1.24 Derive the following conversion factors:
(a) Convert a volume flow rate in cubic inches per minute to cubic

millimeters per minute.

(b) Convert a volume flow rate in cubic meters per second to gal-
lons per minute (gpm).

(c) Convert a volume flow rate in liters per minute to gpm.

(d) Convert a volume flow rate of air in standard cubic feet per
minute (SCFM) to cubic meters per hour. A standard cubic foot
of gas occupies one cubic foot at standard temperature and pres-
sure (T =15∘C and p=101:3 kPa absolute).

1.25 The kilogram force is commonly used in Europe as a unit of
force. (As in the U.S. customary system, where 1 lbf is the force
exerted by a mass of 1 lbm in standard gravity, 1 kgf is the force
exerted by a mass of 1 kg in standard gravity.) Moderate pressures,
such as those for auto or truck tires, are conveniently expressed in
units of kgf=cm2. Convert 32 psig to these units.

1.26 From thermodynamics, we know that the coefficient of perfor-
mance of an ideal air conditioner ðCOPidealÞ is given by

COPideal =
TL

TH−TL

where TL and TH are the room and outside temperatures (absolute). If
an AC is to keep a room at 20∘C when it is 40∘C outside, find the
COPideal. Convert to an EER value, and compare this to a typical
Energy Star–compliant EER value.

1.27 The maximum theoretical flow rate (slug/s) through a super-
sonic nozzle is

_mmax = 2:38
Atp0ffiffiffiffiffi
T0
p

where Atðft2Þ is the nozzle throat area, p0 (psia) is the tank pressure,
and T0ðRÞ is the tank temperature. Is this equation dimensionally cor-
rect? If not, find the units of the 2.38 term.Write the equivalent equa-
tion in SI units.

1.28 The mean free path λ of a molecule of gas is the average dis-
tance it travels before collision with another molecule. It is given by

λ=C
m
ρd2

where m and d are the molecule’s mass and diameter, respectively,
and ρ is the gas density. What are the dimensions of constant C
for a dimensionally consistent equation?

1.29 A container weighs 3:5 lbf when empty. When filled with
water at 90�F, the mass of the container and its contents is
2:5 slug. Find the weight of water in the container, and its volume
in cubic feet, using data from Appendix A.

1.30 A parameter that is often used in describing pump performance
is the specific speed, NScu , given by

Nscu =
NðrpmÞ½QðgpmÞ�1=2

½HðftÞ�3=4
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What are the units of specific speed? A particular pump has a spe-
cific speed of 2000. What will be the specific speed in SI units (angu-
lar velocity in rad=s)?

Analysis of Experimental Error
1.31 Calculate the density of standard air in a laboratory from the ideal
gas equation of state. Estimate the experimental uncertainty in the air
density calculated for standard conditions (29.9 in. of mercury and
59�F) if the uncertainty in measuring the barometer height is �0:1
in. of mercury and the uncertainty in measuring temperature is
�0:5∘F. (Note that 29.9 in. of mercury corresponds to 14.7 psia.)

1.32 The mass of the standard American golf ball is 1:62�0:01 oz
and its mean diameter is 1:68�0:01 in. Determine the density and
specific gravity of the American golf ball. Estimate the uncertainties
in the calculated values.

1.33 A can of pet food has the following internal dimensions:
102 mm height and 73 mm diameter (each �1 mm at odds of
20 to 1). The label lists the mass of the contents as 397 g. Evaluate
the magnitude and estimated uncertainty of the density of the pet food
if the mass value is accurate to �1 g at the same odds.

1.34 The mass flow rate in a water flow system determined by col-
lecting the discharge over a timed interval is 0:2 kg=s. The scales
used can be read to the nearest 0:05 kg and the stopwatch is accurate
to 0.2 s. Estimate the precision with which the flow rate can be cal-
culated for time intervals of (a) 10 s and (b) 1 min.

1.35 The mass flow rate of water in a tube is measured using a beaker
to catch water during a timed interval. The nominal mass flow rate is
100 g=s. Assume that mass is measured using a balance with a least
count of 1 g and a maximum capacity of 1 kg, and that the timer
has a least count of 0.1 s. Estimate the time intervals and uncertainties
in measured mass flow rate that would result from using 100, 500, and
1000 mL beakers. Would there be any advantage in using the largest
beaker? Assume the tare mass of the empty 1000 mL beaker is 500 g.

1.36 The mass of the standard British golf ball is 45:9�0:3 g and its
mean diameter is 41:1�0:3 mm. Determine the density and specific
gravity of the British golf ball. Estimate the uncertainties in the cal-
culated values.

1.37 From Appendix A, the viscosity μðN�s=m2Þ of water at tem-
perature TðKÞ can be computed from μ=A10B=ðT−CÞ, where
A=2:414× 10−5 N�s=m2,B=247:8 K, and C=140 K. Determine
the viscosity of water at 30∘C, and estimate its uncertainty if the
uncertainty in temperature measurement is �0:5∘C.
1.38An enthusiast magazine publishes data from its road tests on the
lateral acceleration capability of cars. The measurements are made
using a 150-ft-diameter skid pad. Assume the vehicle path deviates
from the circle by�2 ft and that the vehicle speed is read from a fifth-
wheel speed-measuring system to �0:5 mph. Estimate the experi-
mental uncertainty in a reported lateral acceleration of 0:7 g. How
would you improve the experimental procedure to reduce the
uncertainty?

1.39 The height of a building may be estimated by measuring
the horizontal distance to a point on the ground and the angle
from this point to the top of the building. Assuming these mea-
surements are L=100�0:5 ft and θ=30�0:2∘, estimate the height
H of the building and the uncertainty in the estimate. For the
same building height and measurement uncertainties, use Excel’s
Solver to determine the angle (and the corresponding distance
from the building) at which measurements should be made to
minimize the uncertainty in estimated height. Evaluate and plot
the optimum measurement angle as a function of building height
for 50≤H ≤ 1000 ft.

1.40 An American golf ball is described in Problem 1.32 Assum-
ing the measured mass and its uncertainty as given, determine the
precision to which the diameter of the ball must be measured so
the density of the ball may be estimated within an uncertainty of
�1 percent.
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C H A P T E R 2

Fundamental Concepts
2.1 Fluid as a Continuum

2.2 Velocity Field

2.3 Stress Field

2.4 Viscosity

2.5 Surface Tension

2.6 Description and Classification of Fluid Motions

2.7 Summary and Useful Equations

Case Study

Fluid Mechanics and Your Audio Player

Some people have the impression that fluid mechanics is old- or
low-tech: water flow in a household pipe, the fluid forces acting
on a dam, and so on. While it’s true that many concepts in
fluid mechanics are hundreds of years old, there are still lots
of exciting new areas of research and development. Everyone
has heard of the relatively high-tech area of fluid mechanics
called streamlining (of cars, aircraft, racing bikes, and racing
swimsuits, to mention a few), but there are many others. All
of these developments depend on understanding the basic ideas
behind what a fluid is and how it behaves, as discussed in this
chapter.

If you’re a typical engineering student, there’s a decent chance
that while reading this chapter you’re listening to music on an

audio player; you can thank fluid mechanics for your ability to
do this! The tiny hard disk drive (HDD) in many of these devices
typically holds about 250 gigabytes (GB) of data, so the disk plat-
ter must have a huge density (greater than 100,000 tracks per
inch); in addition, the read/write head must get very close to
the platter as it transfers data (typically the head is about
0:05 μm above the platter surface—a human hair is about
100 μm). The platter also spins at something greater than 500
revolutions per second! Hence the bearings in which the spindle
of the platter spins must have very low friction but also have vir-
tually no play or looseness—otherwise, at worst, the head will
crash into the platter or, at best, you won’t be able to read the
data (it will be too closely packed). The friction is due to both
the effect of air viscosity on the spinning disk and oil viscosity
in the bearings.

Designing such a bearing presents quite a challenge. Until a
few years ago, most hard drives used ball bearings (BBs), which
are essentially just like those in the wheel of a bicycle; they work
on the principle that a spindle can rotate if it is held by a ring of
small spheres that are supported in a cage. The problems with
BBs are that they have a lot of components; they are very difficult
to build to the precision needed for the HDD; they are vulnerable
to shock (if you drop an HDD with such a drive, you’re likely to
dent one of the spheres as it hits the spindle, destroying the bear-
ing); and they are relatively noisy.

Hard-drive makers are increasingly moving to fluid dynamic
bearings (FDBs). These are mechanically much simpler than
BBs; they consist basically of the spindle directly mounted in the
bearing opening, with only a specially formulated viscous lubri-
cant (such as ester oil) in the gap of only a fewmicrons. The spin-
dle and/or bearing surfaces have a herringbone pattern of grooves
to maintain the oil in place. These bearings are extremely durable
(they can often survive a shock of 500 g!) and low noise; they will
also allow rotation speeds in excess of 15,000 rpm in the future,
making data access even faster than with current devices. FDBs
have been used before, in devices such as gyroscopes, but making
themat such a small scale is new. Some FDBs even use pressurized
air as the lubrication fluid, but one of the problems with these is
that they sometimes stop workingwhen you take them on an air-
plane flight—the cabin pressure is insufficient to maintain the
pressure the bearing needs!
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In Chapter 1 we discussed in general terms what fluid mechanics is about, and described some of the
approaches we will use in analyzing fluid mechanics problems. In this chapter we will be more specific
in defining some important properties of fluids and ways in which flows can be described and
characterized.

2.1 Fluid as a Continuum
We are all familiar with fluids—the most common being air and water—and we experience them as
being “smooth,” i.e., as being a continuous medium. Unless we use specialized equipment, we are
not aware of the underlying molecular nature of fluids. This molecular structure is one in which the mass
is not continuously distributed in space, but is concentrated in molecules that are separated by relatively
large regions of empty space. The sketch in Fig. 2.1a shows a schematic representation of this. A region
of space “filled” by a stationary fluid (e.g., air, treated as a single gas) looks like a continuous medium,
but if we zoom in on a very small cube of it, we can see that we mostly have empty space, with gas
molecules scattered around, moving at high speed (indicated by the gas temperature). Note that the size
of the gas molecules is greatly exaggerated (they would be almost invisible even at this scale) and that we
have placed velocity vectors only on a small sample. We wish to ask:What is the minimum volume, δV---0,
that a “point” C must be, so that we can talk about continuous fluid properties such as the density at a
point? In other words, under what circumstances can a fluid be treated as a continuum, for which, by
definition, properties vary smoothly from point to point? This is an important question because the con-
cept of a continuum is the basis of classical fluid mechanics.

Consider how we determine the density at a point. Density is defined as mass per unit volume; in
Fig. 2.1a the mass δm will be given by the instantaneous number of molecules in δV--- (and the mass of
each molecule), so the average density in volume δV--- is given by ρ= δm=δV---. We say “average” because
the number of molecules in δV---, and hence the density, fluctuates. For example, if the gas in Fig. 2.1awas
air at standard temperature and pressure (STP1) and the volume δV--- was a sphere of diameter 0:01μm,
there might be 15 molecules in δV--- (as shown), but an instant later there might be 17 (three might enter
while one leaves). Hence the density at “point” C randomly fluctuates in time, as shown in Fig. 2.1b. In
this figure, each vertical dashed line represents a specific chosen volume, δV---, and each data point repre-
sents the measured density at an instant. For very small volumes, the density varies greatly, but above a
certain volume, δV---0, the density becomes stable—the volume now encloses a huge number of molecules.

(a) (b)

C
x

y

“Point” C at x,y,z
Volume δV
of mass δm

δm/δV

δVδV'

Fig. 2.1 Definition of density at a point.

In recent times the price and capacity of flash memory have
improved so much that many music players are switching to this
technology from HDDs. Eventually, notebook and desktop PCs

will also switch to flash memory, but at least for the next few
years HDDs will be the primary storagemedium. Your PC will still
have vital fluid-mechanical components!

1 STP for air are 15�C ð59�FÞ and 101:3 kPa absolute (14.696 psia), respectively.
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For example, if δV--- = 0:001 mm3 (about the size of a grain of sand), there will on average be 2:5× 1013

molecules present. Hence we can conclude that air at STP (and other gases, and liquids) can be treated as
a continuous medium as long as we consider a “point” to be no smaller than about this size; this is suf-
ficiently precise for most engineering applications.

The concept of a continuum is the basis of classical fluid mechanics. The continuum assumption is
valid in treating the behavior of fluids under normal conditions. It only breaks down when the mean free
path of the molecules2 becomes the same order of magnitude as the smallest significant characteristic
dimension of the problem. This occurs in such specialized problems as rarefied gas flow (e.g., as encoun-
tered in flights into the upper reaches of the atmosphere). For these specialized cases (not covered in this
text) wemust abandon the concept of a continuum in favor of themicroscopic and statistical points of view.

As a consequence of the continuum assumption, each fluid property is assumed to have a definite
value at every point in space. Thus fluid properties such as density, temperature, velocity, and so on are
considered to be continuous functions of position and time. For example, we now have a workable def-
inition of density at a point,

ρ≡ lim
δV--!δV--0

δm
δV---

ð2:1Þ

Since point C was arbitrary, the density at any other point in the fluid could be determined in the same
manner. If density was measured simultaneously at an infinite number of points in the fluid, we would
obtain an expression for the density distribution as a function of the space coordinates, ρ= ρðx,y,zÞ, at
the given instant.

The density at a point may also vary with time (as a result of work done on or by the fluid and/or heat
transfer to the fluid). Thus the complete representation of density (the field representation) is given by

ρ= ρðx,y,z, tÞ ð2:2Þ
Since density is a scalar quantity, requiring only the specification of a magnitude for a complete descrip-
tion, the field represented by Eq. 2.2 is a scalar field.

An alternative way of expressing the density of a substance (solid or fluid) is to compare it to
an accepted reference value, typically the maximum density of water, ρH2O (1000 kg=m3 at 4�C or
1:94 slug=ft3 at 39�F). Thus, the specific gravity, SG, of a substance is expressed as

SG=
ρ

ρH2O
ð2:3Þ

For example, the SG of mercury is typically 13.6—mercury is 13.6 times as dense as water. Appendix A
contains specific gravity data for selected engineering materials. The specific gravity of liquids is a
function of temperature; for most liquids specific gravity decreases with increasing temperature.

The specific weight, γ, of a substance is another useful material property. It is defined as the weight
of a substance per unit volume and given as

γ =
mg
V---
! γ = ρg ð2:4Þ

For example, the specific weight of water is approximately 9:81 kN=m3ð62:4 lbf=ft3Þ.

2.2 Velocity Field
In the previous section we saw that the continuum assumption led directly to the notion of the density
field. Other fluid properties also may be described by fields.

A very important property defined by a field is the velocity field, given by

V
!
= V

! ðx,y,z, tÞ ð2:5Þ

2Approximately 6× 10−8 m at STP (Standard Temperature and Pressure) for gas molecules that show ideal gas behavior [1].
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Velocity is a vector quantity, requiring a magnitude and direction for a complete description, so the
velocity field (Eq. 2.5) is a vector field.

The velocity vector, V
!
, also can be written in terms of its three scalar components. Denoting the

components in the x, y, and z directions by u, υ, and w, then

V
!
= uî+ υĵ+wk̂ ð2:6Þ

In general, each component, u, v, and w, will be a function of x, y, z, and t.
We need to be clear on what V

! ðx,y,z, tÞ measures: It indicates the velocity of a fluid particle that is
passing through the point x, y, z at time instant t, in the Eulerian sense. We can keep measuring the veloc-
ity at the same point or choose any other point x, y, z at the next time instant; the point x, y, z is not the
ongoing position of an individual particle, but a point we choose to look at. (Hence x, y, and z are inde-
pendent variables. In Chapter 5 we will discuss the material derivative of velocity, in which we choose
x= xpðtÞ, y= ypðtÞ, and z= zpðtÞ, where xpðtÞ,ypðtÞ,zpðtÞ is the position of a specific particle.) We con-
clude that V

! ðx,y,z, tÞ should be thought of as the velocity field of all particles, not just the velocity of an
individual particle.

If properties at every point in a flow field do not change with time, the flow is termed steady. Stated
mathematically, the definition of steady flow is

∂η
∂t

=0

where η represents any fluid property. Hence, for steady flow,

∂ρ
∂t

=0 or ρ= ρðx,y,zÞ

and

∂V
!

∂t
=0 or V

!
= V

!ðx,y,zÞ

In steady flow, any property may vary from point to point in the field, but all properties remain constant
with time at every point.

One-, Two-, and Three-Dimensional Flows

A flow is classified as one-, two-, or three-dimensional depending on the number of space coordinates
required to specify the velocity field.3 Equation 2.5 indicates that the velocity field may be a function of
three space coordinates and time. Such a flow field is termed three-dimensional (it is also unsteady)
because the velocity at any point in the flow field depends on the three coordinates required to locate
the point in space.

Although most flow fields are inherently three-dimensional, analysis based on fewer dimensions is
frequently meaningful. Consider, for example, the steady flow through a long straight pipe that has
a divergent section, as shown in Fig. 2.2. In this example, we are using cylindrical coordinates
ðr,θ,xÞ. We will learn (in Chapter 8) that under certain circumstances (e.g., far from the entrance of
the pipe and from the divergent section, where the flow can be quite complicated), the velocity distri-
bution may be described by

u= umax 1−
r
R

� �2	 

ð2:7Þ

This is shown on the left of Fig. 2.2. The velocity uðrÞ is a function of only one coordinate, and so the
flow is one-dimensional. On the other hand, in the diverging section, the velocity decreases in the x
direction, and the flow becomes two-dimensional: u= uðr,xÞ.

3 Some authors choose to classify a flow as one-, two-, or three-dimensional on the basis of the number of space coordinates
required to specify all fluid properties. In this text, classification of flow fields will be based on the number of space coordinates
required to specify the velocity field only.
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As you might suspect, the complexity of analysis increases considerably with the number of dimen-
sions of the flow field. For many problems encountered in engineering, a one-dimensional analysis is
adequate to provide approximate solutions of engineering accuracy.

Since all fluids satisfying the continuum assumption must have zero relative velocity at a solid sur-
face (to satisfy the no-slip condition), most flows are inherently two- or three-dimensional. To simplify
the analysis it is often convenient to use the notion of uniform flow at a given cross section. In a flow that
is uniform at a given cross section, the velocity is constant across any section normal to the flow. Under
this assumption,4 the two-dimensional flow of Fig. 2.2 is modeled as the flow shown in Fig. 2.3. In the
flow of Fig. 2.3, the velocity field is a function of x alone, and thus the flow model is one-dimensional.
(Other properties, such as density or pressure, also may be assumed uniform at a section, if appropriate.)

The term uniform flow field (as opposed to uniform flow at a cross section) is used to describe a
flow in which the velocity is constant, i.e., independent of all space coordinates, throughout the entire
flow field.

Timelines, Pathlines, Streaklines, and Streamlines

Airplane and auto companies and college engineering laboratories, among others, frequently use wind
tunnels to visualize flow fields [2]. For example, Fig. 2.4 shows a flow pattern for flow around a car
mounted in a wind tunnel, generated by releasing smoke into the flow at five fixed upstream points.
Flow patterns can be visualized using timelines, pathlines, streaklines, or streamlines.

If a number of adjacent fluid particles in a flow field are marked at a given instant, they form a line in
the fluid at that instant; this line is called a timeline. Subsequent observations of the line may provide
information about the flow field. For example, in discussing the behavior of a fluid under the action of
a constant shear force (Section 1.1) timelines were introduced to demonstrate the deformation of a fluid
at successive instants.

A pathline is the path or trajectory traced out by a moving fluid particle. To make a pathline visible,
we might identify a fluid particle at a given instant, e.g., by the use of dye or smoke, and then take a long
exposure photograph of its subsequent motion. The line traced out by the particle is a pathline. This
approach might be used to study, for example, the trajectory of a contaminant leaving a smokestack.

On the other hand, we might choose to focus our attention on a fixed location in space and identify,
again by the use of dye or smoke, all fluid particles passing through this point. After a short period of

u(r)

r

x

R
r

θ

u(r,x)

umax

Fig. 2.2 Examples of one- and two-dimensional flows.

x

Fig. 2.3 Example of uniform flow at a section.

4 This may seem like an unrealistic simplification, but actually in many cases leads to useful results. Sweeping assumptions such as
uniform flow at a cross section should always be reviewed carefully to be sure they provide a reasonable analytical model of the
real flow.
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time we would have a number of identifiable fluid particles in the flow, all of which had, at some time,
passed through one fixed location in space. The line joining these fluid particles is defined as a
streakline.

Streamlines are lines drawn in the flow field so that at a given instant they are tangent to the direction
of flow at every point in the flow field. Since the streamlines are tangent to the velocity vector at every
point in the flow field, there can be no flow across a streamline. Streamlines are the most commonly
used visualization technique. For example, they are used to study flow over an automobile in a computer
simulation. The procedure used to obtain the equation for a streamline in two-dimensional flow is illus-
trated in Example 2.1.

In steady flow, the velocity at each point in the flow field remains constant with time and, conse-
quently, the streamline shapes do not vary from one instant to the next. This implies that a particle
located on a given streamline will always move along the same streamline. Furthermore, consecutive par-
ticles passing through a fixed point in space will be on the same streamline and, subsequently, will remain
on this streamline. Thus in a steady flow, pathlines, streaklines, and streamlines are identical lines in the
flow field.

Figure 2.4 shows a photograph of ten streaklines for flow over an automobile in a wind tunnel.
A streakline is the line produced in a flow when all particles moving through a fixed point are
marked in some way (e.g., using smoke, as shown in Figure 2.4). We can also define streamlines.
These are lines drawn in the flow field so that at a given instant they are tangent to the direction of
flow at every point in the flow field. Since the streamlines are tangent to the velocity vector at every
point in the flow field, there is no flow across a streamline. Pathlines are as the name implies: They
show, over time, the paths individual particles take (if you’ve seen time-lapse photos of nighttime
traffic, you get the idea). Finally, timelines are created by marking a line in a flow and watching how
it evolves over time.

We mentioned that Fig. 2.4 shows streaklines, but in fact the pattern shown also represents stream-
lines and pathlines! The steady pattern shown will exist as long as smoke is released from the five fixed
points. If we were somehow to measure the velocity at all points at an instant, to generate streamlines,
we’d get the same pattern; if we were instead to release only one smoke particle at each location, and
film its motion over time, we’d see the particles follow the same curves. We conclude that for steady
flow, streaklines, streamlines, and pathlines are identical.
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Fig. 2.4 Streaklines over an automobile in a wind tunnel.
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Example 2.1 STREAMLINES AND PATHLINES IN TWO-DIMENSIONAL FLOW

A velocity field is given by V
!
=Axî−Ayĵ; the units of velocity are m/s; x and y are given in meters; A=0:3 s−1.

(a) Obtain an equation for the streamlines in the xy plane.
(b) Plot the streamline passing through the point ðx0,y0Þ=2:8.
(c) Determine the velocity of a particle at the point (2, 8).
(d) If the particle passing through the point ðx0,y0Þ is marked at time t=0, determine the location of the particle at time t=6 s.
(e) What is the velocity of this particle at time t=6 s?
(f) Show that the equation of the particle path (the pathline) is the same as the equation of the streamline.

Given: Velocity field, V
!
=Axî−Ayĵ; x and y in meters; A=0:3 s−1.

Find: (a) Equation of the streamlines in the xy plane.
(b) Streamline plot through point (2, 8).
(c) Velocity of particle at point (2, 8).
(d) Position at t=6 s of particle located at (2, 8) at t=0.
(e) Velocity of particle at position found in (d).
(f) Equation of pathline of particle located at (2, 8) at t=0.

Solution:

(a) Streamlines are lines drawn in the flow field such that, at a given instant, they are tangent to the direction of flow at every
point. Consequently,

dy
dx

�
streamline

=
υ

u
=

−Ay
Ax

=
−y
x

Separating variables and integrating, we obtain

Z
dy
y
= −

Z
dx
x

or

ln y= − lnx+ c1

This can be written as xy= c �����������������������������
(b) For the streamline passing through the point ðx0,y0Þ= ð2,8Þ the constant,

c, has a value of 16 and the equation of the streamline through the point
(2, 8) is

xy= x0y0 = 16 m2 ��������������������������������������
The plot is as sketched above.

(c) The velocity field is V
!
=Axî−Ayĵ. At the point (2, 8) the velocity is

V
!
=Aðxî−yĵÞ=0:3s−1ð2î−8ĵÞm=0:6î−2:4ĵm=s ��������������

(d) A particle moving in the flow field will have velocity given by

V
!
=Axî−Ayĵ

Thus

up =
dx
dt

=Ax and υp =
dy
dt

= −Ay

16

12

8

4

0
0 4 8 12 16

xy = 16 m2

x (m)

y
(m

)

2,8 = 0.6i – 2.4 j m/s
^^
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Things are quite different for unsteady flow. For unsteady flow, streaklines, streamlines, and path-
lines will in general have differing shapes. For example, consider holding a garden hose and swinging it
side to side as water exits at high speed, as shown in Fig. 2.5. We obtain a continuous sheet of water.
If we consider individual water particles, we see that each particle, once ejected, follows a straight-line
path (here, for simplicity, we ignore gravity): The pathlines are straight lines, as shown. On the other
hand, if we start injecting dye into the water as it exits the hose, we will generate a streakline, and this
takes the shape of an expanding sine wave, as shown. Clearly, pathlines and streaklines do not coincide
for this unsteady flow (we leave determination of streamlines to an exercise).

We can use the velocity field to derive the shapes of streaklines, pathlines, and streamlines. Starting
with streamlines: Because the streamlines are parallel to the velocity vector, we can write (for 2D)

dy
dx

�
streamline

=
υðx,yÞ
uðx,yÞ ð2:8Þ

Separating variables and integrating (in each equation) givesZ x

x0

dx
x
=
Z t

0
A dt and

Z y

y0

dy
y
=
Z t

0
−A dt

Then

ln
x
x0

=At and ln
y
y0

= −At

or

x= x0eAt and y= y0e−At

At t=6 s,

x=2m eð0:3Þ6 = 12:1 m and y=8m e−ð0:3Þ6 = 1:32 m

At t=6 s, particle is at (12.1, 1.32) m  ��������������������������������������
(e) At the point (12.1, 1.32) m,

V
!
=Aðxî−yĵÞ=0:3 s−1ð12:1î−1:32ĵÞm
=3:63î−0:396ĵm=s ������������������������������������

(f) To determine the equation of the pathline, we use the parametric equations

x= x0eAt and y= y0e−At

and eliminate t. Solving for eAt from both equations

eAt =
y0
y
=

x
x0

Therefore xy= x0y0 = 16 m2 ��������������������������������

Notes:
• This problem illustrates the method for
computing streamlines and pathlines.

• Because this is a steady flow, the
streamlines and pathlines have the same
shape—in an unsteady flow this would
not be true.

• When we follow a particle (the Lagran-
gian approach), its position ðx,yÞ and
velocity (up =dx=dt and υp =dx=dt) are
functions of time, even though the flow is
steady.

Pathlines of
individual

fluid particles

Streakline at
some instant

Streakline at a
later instant

Fig. 2.5 Pathlines and streaklines for flow from the exit of an oscillating garden hose.
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Note that streamlines are obtained at an instant in time; if the flow is unsteady, time t is held constant in
Eq. 2.8. Solution of this equation gives the equation y= yðxÞ, with an undetermined integration constant,
the value of which determines the particular streamline.

For pathlines (again considering 2D), we let x= xpðtÞ and y= ypðtÞ, where xpðtÞ and ypðtÞ are the
instantaneous coordinates of a specific particle. We then get

dx
dt

�
particle

= uðx,y, tÞ dy
dt

�
particle

= υðx,y, tÞ ð2:9Þ

The simultaneous solution of these equations gives the path of a particle in parametric form xpðtÞ, ypðtÞ.
The computation of streaklines is somewhat tricky. The first step is to compute the pathline of a

particle (using Eqs. 2.9) that was released from the streak source point (coordinates x0, y0) at time t0,
in the form

xparticleðtÞ= xðt,x0,y0, t0Þ yparticleðtÞ= yðt,x0,y0, t0Þ
Then, instead of interpreting this as the position of a particle over time, we rewrite these equations as

xstreaklineðt0Þ= xðt,x0,y0, t0Þ ystreaklineðt0Þ= yðt,x0,y0, t0Þ ð2:10Þ
Equations 2.10 give the line generated (by time t) from a streak source at point ðx0,y0Þ. In these equa-
tions, t0 (the release times of particles) is varied from 0 to t to show the instantaneous positions of all
particles released up to time t!

2.3 Stress Field
In our study of fluid mechanics, we will need to understand what kinds of forces act on fluid particles.
Each fluid particle can experience: surface forces (pressure, friction) that are generated by contact with
other particles or a solid surface; and body forces (such as gravity and electromagnetic) that are expe-
rienced throughout the particle.

The gravitational body force acting on an element of volume, dV---, is given by ρg!dV---, where ρ is the
density (mass per unit volume) and g! is the local gravitational acceleration. Thus the gravitational body
force per unit volume is ρg! and the gravitational body force per unit mass is g!.

Surface forces on a fluid particle lead to stresses. The concept of stress is useful for describing how
forces acting on the boundaries of a medium (fluid or solid) are transmitted throughout the medium. You
have probably seen stresses discussed in solid mechanics. For example, when you stand on a diving
board, stresses are generated within the board. On the other hand, when a body moves through a fluid,
stresses are developed within the fluid. The difference between a fluid and a solid is, as we’ve seen, that
stresses in a fluid are mostly generated by motion rather than by deflection.

Imagine the surface of a fluid particle in contact with other fluid particles, and consider the contact
force being generated between the particles. Consider a portion, δA

!
, of the surface at some point C. The

orientation of δA
!
is given by the unit vector, n̂, shown in Fig. 2.6. The vector n̂ is the outwardly drawn

unit normal with respect to the particle.

The force, δF
!
, acting on δA

!
may be resolved into two components, one normal to and the other

tangent to the area. A normal stress σn and a shear stress τn are then defined as

σn = lim
δAn!0

δFn

δAn
ð2:11Þ

δ

δ

A

δFn

Ft

C C

n^

δA

δF
δF

Fig. 2.6 The concept of stress in a continuum.
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and

τn = lim
δAn!0

δFt

δAn
ð2:12Þ

Subscript n on the stress is included as a reminder that the stresses are associated with the surface δA
!

through C, having an outward normal in the n̂ direction. The fluid is actually a continuum, so we could
have imagined breaking it up any number of different ways into fluid particles around pointC, and there-
fore obtained any number of different stresses at point C.

In dealing with vector quantities such as force, we usually consider components in an orthogonal
coordinate system. In rectangular coordinates we might consider the stresses acting on planes whose
outwardly drawn normals (again with respect to the material acted upon) are in the x, y, or z directions.
In Fig. 2.7 we consider the stress on the element δAx, whose outwardly drawn normal is in the x direction.
The force, δF

!
, has been resolved into components along each of the coordinate directions. Dividing the

magnitude of each force component by the area, δAx, and taking the limit as δAx approaches zero, we
define the three stress components shown in Fig. 2.7b:

σxx = lim
δAx!0

δFx

δAx

τxy = lim
δAx!0

δFy

δAx
τxz = lim

δAx!0

δFz

δAx

ð2:13Þ

We have used a double subscript notation to label the stresses. The first subscript (in this case, x) indi-
cates the plane on which the stress acts (in this case, a surface perpendicular to the x axis). The second
subscript indicates the direction in which the stress acts.

Consideration of area element δAy would lead to the definitions of the stresses, σyy, τyx, and τyz; use
of area element δAz would similarly lead to the definitions of σzz, τzx, τzy.

Although we just looked at three orthogonal planes, an infinite number of planes can be passed
through point C, resulting in an infinite number of stresses associated with planes through that point.
Fortunately, the state of stress at a point can be described completely by specifying the stresses acting
on any three mutually perpendicular planes through the point. The stress at a point is specified by the
nine components

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

2
4

3
5

where σ has been used to denote a normal stress, and τ to denote a shear stress. The notation for des-
ignating stress is shown in Fig. 2.8.

Referring to the infinitesimal element shown in Fig. 2.8, we see that there are six planes (two
x planes, two y planes, and two z planes) on which stresses may act. In order to designate the plane
of interest, we could use terms like front and back, top and bottom, or left and right. However, it is more
logical to name the planes in terms of the coordinate axes. The planes are named and denoted as positive
or negative according to the direction of the outwardly drawn normal to the plane. Thus the top plane, for
example, is a positive y plane and the back plane is a negative z plane.

C

x

z

y

C

x

z

y

δFz

δFx

δFy

(a) Force components (b) Stress components

τxz

σxx

τxy

Fig. 2.7 Force and stress components on the element of area δAx.
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It also is necessary to adopt a sign convention for stress. A stress component is positive when the
direction of the stress component and the plane on which it acts are both positive or both negative. Thus
τyx =5 lbf=in:2 represents a shear stress on a positive y plane in the positive x direction or a shear stress
on a negative y plane in the negative x direction. In Fig. 2.8 all stresses have been drawn as positive
stresses. Stress components are negative when the direction of the stress component and the plane
on which it acts are of opposite sign.

2.4 Viscosity
Where do stresses come from? For a solid, stresses develop when the material is elastically deformed
or strained; for a fluid, shear stresses arise due to viscous flow (we will discuss a fluid’s normal stresses
shortly). Hence we say solids are elastic, and fluids are viscous (and it’s interesting to note that many
biological tissues are viscoelastic, meaning they combine features of a solid and a fluid). For a fluid at
rest, there will be no shear stresses. We will see that each fluid can be categorized by examining the
relation between the applied shear stresses and the flow (specifically the rate of deformation) of
the fluid.

Consider the behavior of a fluid element between the two infinite plates shown in Fig. 2.9a. The
rectangular fluid element is initially at rest at time t. Let us now suppose a constant rightward force
δFx is applied to the upper plate so that it is dragged across the fluid at constant velocity δu. The relative

σyy

τyx

τyz

τzy

τzx

σzz

τxy

σxx
τxz

σyy

τyx

τyz

x

z

y

τzy

τzx

σzz

τxy

σxx 

τxz

Fig. 2.8 Notation for stress.
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δl2

M M' M'' P P' P''

Fig. 2.9 (a) Fluid element at time t, (b) deformation of fluid element at time t+ δt, and (c) deformation of fluid element
at time t+2δt.
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shearing action of the infinite plates produces a shear stress, τyx, which acts on the fluid element and is
given by

τyx = lim
δAy!0

δFx

δAy
=
dFx

dAy

where δAy is the area of contact of the fluid element with the plate and δFx is the force exerted by the plate
on that element. Snapshots of the fluid element, shown in Figs. 2.9a–c, illustrate the deformation of the
fluid element from positionMNOP at time t, toM0NOP0 at time t+2δt, toM00NOP00 at time t+2δt, due to
the imposed shear stress. As mentioned in Section 1.1, it is the fact that a fluid continually deforms in
response to an applied shear stress that sets it apart from solids.

Focusing on the time interval δt (Fig. 2.9b), the deformation of the fluid is given by

deformation rate = lim
δt!0

δα

δt
=
dα
dt

We want to express dα=dt in terms of readily measurable quantities. This can be done easily. The
distance, δl, between the points M and M0 is given by

δl= δuδt

Alternatively, for small angles,

δl= δyδα

Equating these two expressions for δl gives

δα

δt
=
δu
δy

Taking the limits of both sides of the equality, we obtain

dα
dt

=
du
dy

Thus, the fluid element of Fig. 2.9, when subjected to shear stress τyx, experiences a rate of deformation
(shear rate) given by du=dy. We have established that any fluid that experiences a shear stress will flow
(it will have a shear rate). What is the relation between shear stress and shear rate? Fluids in which shear
stress is directly proportional to rate of deformation are Newtonian fluids. The term non-Newtonian is
used to classify all fluids in which shear stress is not directly proportional to shear rate.

Newtonian Fluid

Most common fluids (the ones discussed in this text) such as water, air, and gasoline are Newtonian
under normal conditions. If the fluid of Fig. 2.9 is Newtonian, then

τyx /
du
dy

ð2:14Þ

We are familiar with the fact that some fluids resist motion more than others. For example, a container of
SAE 30W oil is much harder to stir than one of water. Hence SAE 30W oil is much more viscous—it has
a higher viscosity. (Note that a container of mercury is also harder to stir, but for a different reason!) The
constant of proportionality in Eq. 2.14 is the absolute (or dynamic) viscosity, μ. Thus in terms of the
coordinates of Fig. 2.9, Newton’s law of viscosity is given for one-dimensional flow by

τyx = μ
du
dy

ð2:15Þ

Note that, since the dimensions of τ are ½F=L2� and the dimensions of du=dy are ½1=t�, μ has dimensions
½Ft=L2�. Since the dimensions of force, F, mass, M, length, L, and time, t, are related by Newton’s
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second law of motion, the dimensions of μ can also be expressed as ½M=Lt�. In the British Gravitational
system, the units of viscosity are lbf �s=ft2 or slug=ðft �sÞ. In the Absolute Metric system, the basic unit of
viscosity is called a poise ½1 poise ≡ 1 g=ðcm �sÞ�; in the SI system the units of viscosity are kg/(m �s)
or Pa �s ð1 Pa �s = 1 N �s=m2Þ. The calculation of viscous shear stress is illustrated in Example 2.2.

In fluid mechanics the ratio of absolute viscosity, μ, to density, ρ, often arises. This ratio is given the
name kinematic viscosity and is represented by the symbol ν. Since density has dimensions ½M=L3�,
the dimensions of ν are ½L2=t�. In the Absolute Metric system of units, the unit for ν is a
stoke ð1 stoke ≡ 1 cm2=sÞ.

Viscosity data for a number of common Newtonian fluids are given in Appendix A. Note that for
gases, viscosity increases with temperature, whereas for liquids, viscosity decreases with increasing
temperature.

Example 2.2 VISCOSITY AND SHEAR STRESS IN NEWTONIAN FLUID

An infinite plate is moved over a second plate on a layer of liquid as shown. For small gap width, d, we assume a linear velocity
distribution in the liquid. The liquid viscosity is 0.65 centipoise and its specific
gravity is 0.88. Determine:
(a) The absolute viscosity of the liquid, in lbf �s=ft2.
(b) The kinematic viscosity of the liquid, in m2=s.
(c) The shear stress on the upper plate, in lbf=ft2.
(d) The shear stress on the lower plate, in Pa.
(e) The direction of each shear stress calculated in parts (c) and (d).

Given: Linear velocity profile in the liquid between infinite parallel plates as shown.

μ=0:65 cp
SG=0:88

Find: (a) μ in units of lbf � s=ft2.
(b) ν in units of m2=s.
(c) τ on upper plate in units of lbf=ft2.
(d) τ on lower plate in units of Pa.
(e) Direction of stresses in parts (c) and (d).

Solution:

Governing equation: τyx = μ
du
dy

Definition: ν=
μ

ρ
Assumptions:

1 Linear velocity distribution (given)

2 Steady flow

3 μ= constant

(a) μ=0:65 cp ×
poise
100 cp

×
g

cm � s � poise ×
lbm
454 g

×
slug

32:2 lbm
×30:5

cm
ft

×
lbf � s2
slug � ft

μ=1:36× 10−5 lbf � s=ft2 μ �����������������������������������
(b) ν=

μ

ρ
=

μ

SG ρH2O

= 1:36× 10−5 lbf � s
ft2

×
ft3

ð0:88Þ1:94 slug ×
slug � ft
lbf � s2 × ð0:305Þ2m

2

ft2

ν=7:41× 10−7 m2=s ν ����������������������

x

y

U = 0.3 m/s

d = 0.3 mm

x

y

U = 0.3 m/s

d = 0.3 mm
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Non-Newtonian Fluids

Fluids in which shear stress is not directly proportional to deformation rate are non-Newtonian. Although
we will not discuss these much in this text, many common fluids exhibit non-Newtonian behavior. Two
familiar examples are toothpaste and Lucite5 paint. The latter is very “thick” when in the can, but
becomes “thin” when sheared by brushing. Toothpaste behaves as a “fluid” when squeezed from the
tube. However, it does not run out by itself when the cap is removed. There is a threshold or yield stress
below which toothpaste behaves as a solid. Strictly speaking, our definition of a fluid is valid only for
materials that have zero yield stress. Non-Newtonian fluids commonly are classified as having time-
independent or time-dependent behavior. Examples of time-independent behavior are shown in the
rheological diagram of Fig. 2.10.

Numerous empirical equations have been proposed [3, 4] to model the observed relations between
τyx and du=dy for time-independent fluids. They may be adequately represented for many engineering
applications by the power law model, which for one-dimensional flow becomes

τyx = k
du
dy

� �n

ð2:16Þ

where the exponent, n, is called the flow behavior index and the coefficient, k, the consistency index.
This equation reduces to Newton’s law of viscosity for n=1 with k= μ.

5 Trademark, E. I. du Pont de Nemours & Company.

(c)
τupper = τyx,upper = μ

du
dy

�
y= d

Since u varies linearly with y,

du
dy

=
Δu
Δy

=
U−0
d−0

=
U
d

=0:3
m
s
×

1
0:3 mm

×1000
mm
m

=1000 s−1

τupper = μ
U
d
=1:36× 10−5 lbf � s

ft2
×
1000
s

= 0:0136 lbf=ft2
τupper ����������������������

(d) τlower = μ
U
d
=0:0136

lbf
ft2

× 4:45
N
lbf

×
ft2

ð0:305Þ2m2
×
Pa � m2

N

=0:651 Pa
τlower ������������������������

(e) Directions of shear stresses on upper and lower plates.

The upper plate is a negative y surface; so
positive τyx acts in the negative x direction:

� �

The lower plate is a positive y surface; so
positive τyx acts in the positive x direction:

� �
ðeÞ

 �������������������������������x

y

τupper

τ lower

Part (c) shows that the shear stress is:
• Constant across the gap for a linear
velocity profile.

• Directly proportional to the speed of the
upper plate (because of the linearity of
Newtonian fluids).

• Inversely proportional to the gap
between the plates.

Note that multiplying the shear stress by
the plate area in such problems computes
the force required to maintain the motion.
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To ensure that τyx has the same sign as du=dy, Eq. 2.16 is rewritten in the form

τyx = k
du
dy

����
����n−1du

dy
= η

du
dy

ð2:17Þ

The term η= kjdu=dyjn−1 is referred to as the apparent viscosity. The idea behind Eq. 2.17 is that we end
up with a viscosity η that is used in a formula that is the same form as Eq. 2.15, in which the Newtonian
viscosity μ is used. The big difference is that while μ is constant (except for temperature effects),
η depends on the shear rate. Most non-Newtonian fluids have apparent viscosities that are relatively high
compared with the viscosity of water.

Fluids in which the apparent viscosity decreases with increasing deformation rate ðn<1Þ are called
pseudoplastic (or shear thinning) fluids. Most non-Newtonian fluids fall into this group; examples
include polymer solutions, colloidal suspensions, and paper pulp in water. If the apparent viscosity
increases with increasing deformation rate ðn>1Þ the fluid is termed dilatant (or shear thickening). Sus-
pensions of starch and of sand are examples of dilatant fluids. You can get an idea of the latter when
you’re on the beach—if you walk slowly (and hence generate a low shear rate) on very wet sand,
you sink into it, but if you jog on it (generating a high shear rate), it’s very firm.

A “fluid” that behaves as a solid until a minimum yield stress, τy, is exceeded and subsequently
exhibits a linear relation between stress and rate of deformation is referred to as an ideal or Bingham
plastic. The corresponding shear stress model is

τyx = τy + μp
du
dy

ð2:18Þ

Clay suspensions, drilling muds, and toothpaste are examples of substances exhibiting this behavior.
The study of non-Newtonian fluids is further complicated by the fact that the apparent viscosity may

be time-dependent. Thixotropic fluids show a decrease in η with time under a constant applied shear
stress; many paints are thixotropic. Rheopectic fluids show an increase in ηwith time. After deformation
some fluids partially return to their original shape when the applied stress is released; such fluids are
called viscoelastic (many biological fluids work this way).

2.5 Surface Tension
You can tell when your car needs waxing: Water droplets tend to appear somewhat flattened out. After
waxing, you get a nice “beading” effect. These two cases are shown in Fig. 2.11. We define a liquid as
“wetting” a surface when the contact angle θ<90

�
. By this definition, the car’s surface was wetted

before waxing, and not wetted after. This is an example of effects due to surface tension. Whenever
a liquid is in contact with other liquids or gases, or in this case a gas/solid surface, an interface develops

Bingham
plastic

Pseudoplastic

Pseudoplastic

Dilatant Dilatant

Newtonian Newtonian

Deformation rate, du___
dy Deformation rate, du___
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Fig. 2.10 (a) Shear stress, τ, and (b) apparent viscosity, η, as a function of deformation rate for one-dimensional flow of
various non-Newtonian fluids.
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that acts like a stretched elastic membrane, creating surface tension. There are two features to this mem-
brane: the contact angle, θ, and the magnitude of the surface tension, σ ðN=m or lbf=ftÞ. Both of these
depend on the type of liquid and the type of solid surface (or other liquid or gas) with which it shares an
interface. In the car-waxing example, the contact angle changed from being smaller than 90�, to larger
than 90�, because, in effect, the waxing changed the nature of the solid surface. Factors that affect the
contact angle include the cleanliness of the surface and the purity of the liquid.

Other examples of surface tension effects arise when you are able to place a needle on a water
surface and, similarly, when small water insects are able to walk on the surface of the water.

Appendix A contains data for surface tension and contact angle for common liquids in the presence
of air and of water.

A force balance on a segment of interface shows that there is a pressure jump across the imagined
elastic membrane whenever the interface is curved. For a water droplet in air, pressure in the water is
higher than ambient; the same is true for a gas bubble in liquid. For a soap bubble in air, surface tension
acts on both inside and outside interfaces between the soap film and air along the curved bubble surface.
Surface tension also leads to the phenomena of capillary (i.e., very small wavelength) waves on a liquid
surface [5], and capillary rise or depression, discussed below in Example 2.3.

In engineering, probably the most important effect of surface tension is the creation of a curved
meniscus that appears in manometers or barometers, leading to a (usually unwanted) capillary rise
(or depression), as shown in Fig. 2.12. This rise may be pronounced if the liquid is in a small-diameter
tube or narrow gap, as shown in Example 2.3

Folsom [6] shows that the simple analysis of Example 2.3 overpredicts the capillary effect and
gives reasonable results only for tube diameters less than 0.1 in. (2.54 mm). Over a diameter range
0:1<D<1:1 in:, experimental data for the capillary rise with a water-air interface are correlated by
the empirical expression Δh=0:400=e4:37D.

Manometer and barometer readings should be made at the level of the middle of the meniscus. This
is away from the maximum effects of surface tension and thus nearest to the proper liquid level.

All surface tension data in Appendix A were measured for pure liquids in contact with clean vertical
surfaces. Impurities in the liquid, dirt on the surface, or surface inclination can cause an indistinct menis-
cus; under such conditions it may be difficult to determine liquid level accurately. Liquid level is
most distinct in a vertical tube. When inclined tubes are used to increase manometer sensitivity (see
Section 3.3) it is important to make each reading at the same point on the meniscus and to avoid use
of tubes inclined less than about 15� from horizontal.

(a) A “wetted” surface

θ < 90°

(b) A nonwetted surface

Water
droplet

θ > 90°

Fig. 2.11 Surface tension effects on water droplets.
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Fig. 2.12 Capillary rise and capillary depression inside and outside a circular tube.
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Example 2.3 ANALYSIS OF CAPILLARY EFFECT IN A TUBE

Create a graph showing the capillary rise or fall of a column of water or mercury, respectively, as a function of tube diameter D.
Find the minimum diameter of each column required so that the height magnitude will be less than 1 mm.

Given: Tube dipped in liquid as in Fig. 2.12

Find: A general expression for Δh as a function of D.

Solution: Apply free-body diagram analysis, and sum vertical forces.

Governing equation: X
Fz =0

Assumptions:

1 Measure to middle of meniscus

2 Neglect volume in meniscus region

Summing forces in the z direction: X
Fz = σπD cos θ−ρgΔV--- = 0 ð1Þ

If we neglect the volume in the meniscus region:

ΔV---≈
πD2

4
Δh

Substituting in Eq. 1 and solving for Δh gives

Δh=
4σ cos θ
ρgD

Δh ����������������������
For water, σ =72:8 mN=m and θ≈0�, and for mercury, σ =484 mN=m and θ=140� (Table A.4). Plotting,

Using the above equation to compute Dmin for Δh=1mm, we find for
mercury and water

DMmin = 11:2 mm and DWmin = 30 mm

Capillary effect in small tubes
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Notes:
• This problem reviewed use of the free-
body diagram approach.

• It turns out that neglecting the volume in
themeniscus region is only valid whenΔh
is large comparedwithD. However, in this
problem we have the result that Δh is
about 1 mm when D is 11.2 mm (or
30 mm); hence the results can only be
very approximate.

The graph and results were gener-
ated from the Excel workbook.
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Surfactant compounds reduce surface tension significantly (more than 40 percent with little change
in other properties [7]) when added to water. They have wide commercial application: Most detergents
contain surfactants to help water penetrate and lift soil from surfaces. Surfactants also have major indus-
trial applications in catalysis, aerosols, and oil field recovery.

2.6 Description and Classification of Fluid Motions
In Chapter 1 and in this chapter, we have almost completed our brief introduction to some concepts and
ideas that are often needed when studying fluid mechanics. Before beginning detailed analysis of fluid
mechanics in the rest of this text, we will describe some interesting examples to illustrate a broad clas-
sification of fluid mechanics on the basis of important flow characteristics. Fluid mechanics is a huge
discipline: It covers everything from the aerodynamics of a supersonic transport vehicle to the lubrica-
tion of human joints by sinovial fluid. We need to break fluid mechanics down into manageable propor-
tions. It turns out that the two most difficult aspects of a fluid mechanics analysis to deal with are: (1) the
fluid’s viscous nature and (2) its compressibility. In fact, the area of fluid mechanics theory that first
became highly developed (about 250 years ago!) was that dealing with a frictionless, incompressible
fluid. As we will see shortly (and in more detail later on), this theory, while extremely elegant, led
to the famous result called d’Alembert’s paradox: All bodies experience no drag as they move through
such a fluid—a result not exactly consistent with any real behavior!

Although not the only way to do so, most engineers subdivide fluid mechanics in terms of whether
or not viscous effects and compressibility effects are present, as shown in Fig. 2.13. Also shown are
classifications in terms of whether a flow is laminar or turbulent, and internal or external. We will
now discuss each of these.

Viscous and Inviscid Flows

When you send a ball flying through the air (as in a game of baseball, soccer, or any number of other
sports), in addition to gravity the ball experiences the aerodynamic drag of the air. The question arises:
What is the nature of the drag force of the air on the ball? At first glance, we might conclude that it’s due
to friction of the air as it flows over the ball; a little more reflection might lead to the conclusion that
because air has such a low viscosity, friction might not contribute much to the drag, and the drag might
be due to the pressure build-up in front of the ball as it pushes the air out of the way. The question arises:
Can we predict ahead of time the relative importance of the viscous force, and force due to the pressure
build-up in front of the ball? Can wemake similar predictions for any object, for example, an automobile,
a submarine, a red blood cell, moving through any fluid, for example, air, water, blood plasma? The
answer (which we’ll discuss in much more detail in Chapter 7) is that we can! It turns out that we

Continuum

fluid mechanics

Laminar Turbulent

ExternalInternalIncompressibleCompressible

Inviscid

   = 0μ
Viscous

Fig. 2.13 Possible classification of continuum fluid mechanics.
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can estimate whether or not viscous forces, as opposed to pressure forces, are negligible by simply com-
puting the Reynolds number

Re= ρ
VL
μ

where ρ and μ are the fluid density and viscosity, respectively, and V and L are the typical or “charac-
teristic” velocity and size scale of the flow (in this example the ball velocity and diameter), respectively.
If the Reynolds number is “large,” viscous effects will be negligible (but will still have important con-
sequences, as we’ll soon see), at least in most of the flow; if the Reynolds number is small, viscous
effects will be dominant. Finally, if the Reynolds number is neither large nor small, no general conclu-
sions can be drawn.

To illustrate this very powerful idea, consider two simple examples. First, the drag on your ball:
Suppose you kick a soccer ball ðdiameter = 8:75 in:Þ so it moves at 60mph. The Reynolds number (using
air properties from Table A.10) for this case is about 400,000—by any measure a large number; hence
the drag on the soccer ball is almost entirely due to the pressure build-up in front of it. For our second
example, consider a dust particle (modeled as a sphere of diameter 1 mm) falling under gravity at a ter-
minal velocity of 1 cm=s: In this case Re≈0:7—a quite small number; hence the drag is mostly due to the
friction of the air. Of course, in both of these examples, if we wish to determine the drag force, we would
have to do substantially more analysis.

These examples illustrate an important point: A flow is considered to be friction dominated (or not)
based not just on the fluid’s viscosity, but on the complete flow system. In these examples, the airflow
was low friction for the soccer ball, but was high friction for the dust particle.

Let’s return for a moment to the idealized notion of frictionless flow, called inviscid flow. This is the
branch shown on the left in Fig. 2.13. This branch encompasses most aerodynamics, and among other
things explains, for example, why sub- and supersonic aircraft have differing shapes, how a wing gen-
erates lift, and so forth. If this theory is applied to the ball flying through the air (a flow that is also incom-
pressible), it predicts streamlines (in coordinates attached to the sphere) as shown in Fig. 2.14a.

The streamlines are symmetric front-to-back. Because the mass flow between any two streamlines is
constant, wherever streamlines open up, the velocity must decrease, and vice versa. Hence we can see
that the velocity in the vicinity of points A and Cmust be relatively low; at point B it will be high. In fact,
the air comes to rest at points A and C: They are stagnation points. It turns out that (as we’ll learn in
Chapter 6) the pressure in this flow is high wherever the velocity is low, and vice versa. Hence, points
A and C have relatively large (and equal) pressures; point B will be a point of low pressure. In fact, the
pressure distribution on the sphere is symmetric front-to-back, and there is no net drag force due to pres-
sure. Because we’re assuming inviscid flow, there can be no drag due to friction either. Hence we have
d’Alembert’s paradox of 1752: The ball experiences no drag!

This is obviously unrealistic. On the other hand, everything seems logically consistent: We estab-
lished that Re for the sphere was very large (400,000), indicating friction is negligible. We then used
inviscid flow theory to obtain our no-drag result. How can we reconcile this theory with reality? It took
about 150 years after the paradox first appeared for the answer, obtained by Prandtl in 1904: The no-slip
condition (Section 1.1) requires that the velocity everywhere on the surface of the sphere be zero (in
sphere coordinates), but inviscid theory states that it’s high at point B. Prandtl suggested that even though
friction is negligible in general for high-Reynolds number flows, there will always be a thin boundary
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Fig. 2.14 Qualitative picture of incompressible flow over a sphere.

Video: Examples
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layer, in which friction is significant and across the width of which the velocity increases rapidly from
zero (at the surface) to the value inviscid flow theory predicts (on the outer edge of the boundary layer).
This is shown in Fig. 2.14b from point A to point B, and in more detail in Fig. 2.15.

This boundary layer immediately allows us to reconcile theory and experiment: Once we have friction
in a boundary layer wewill have drag. However, this boundary layer has another important consequence: It
often leads to bodies having awake, as shown in Fig. 2.14b from pointD onwards. PointD is a separation
point, where fluid particles are pushed off the object and cause a wake to develop. Consider once again
the original inviscid flow (Fig. 2.14a): As a particle moves along the surface from point B to C, it moves
from low to high pressure. This adverse pressure gradient (a pressure change opposing fluid motion)
causes the particles to slow down as they move along the rear of the sphere. If we now add to this the fact
that the particles are moving in a boundary layer with friction that also slows down the fluid, the particles
will eventually be brought to rest and then pushed off the sphere by the following particles, forming the
wake. This is generally very bad news: It turns out that the wake will always be relatively low pressure,
but the front of the sphere will still have relatively high pressure. Hence, the sphere will now have a quite
large pressure drag (or form drag—so called because it’s due to the shape of the object).

This description reconciles the inviscid flow no-drag result with the experimental result of signif-
icant drag on a sphere. It’s interesting to note that although the boundary layer is necessary to explain the
drag on the sphere, the drag is actually due mostly to the asymmetric pressure distribution created by the
boundary layer separation—drag directly due to friction is still negligible!

We can also now begin to see how streamlining of a body works. The drag force in most aerodynam-
ics is due to the low-pressure wake: If we can reduce or eliminate the wake, drag will be greatly reduced.
If we consider once again why the separation occurred, we recall two features: Boundary layer friction
slowed down the particles, but so did the adverse pressure gradient. The pressure increased very rapidly
across the back half of the sphere in Fig. 2.14a because the streamlines opened up so rapidly. If we make
the sphere teardrop shaped, as in Fig. 2.16, the streamlines open up gradually, and hence the pressure will
increase slowly, to such an extent that fluid particles are not forced to separate from the object until they
almost reach the end of the object, as shown. The wake is much smaller (and it turns out the pressure will
not be as low as before), leading to much less pressure drag. The only negative aspect of this streamlining
is that the total surface area on which friction occurs is larger, so drag due to friction will increase a little.

We should point out that none of this discussion applies to the example of a falling dust particle:
This low-Reynolds number flow was viscous throughout—there is no inviscid region.

Finally, this discussion illustrates the very significant difference between inviscid flow ðμ=0Þ and
flows in which viscosity is negligible but not zero ðμ! 0Þ.

Laminar and Turbulent Flows

If you turn on a faucet (that doesn’t have an aerator or other attachment) at a very low flow rate the water
will flow out very smoothly—almost “glass-like.” If you increase the flow rate, the water will exit in a

Boundary layer

Point of
separation

Wake

Fig. 2.16 Flow over a streamlined object.

Inviscid
flow

Viscous
boundary
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Fig. 2.15 Schematic of a boundary layer.

Video: Bound-
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churned-up, chaotic manner. These are examples of how a viscous flow can be laminar or turbulent,
respectively. A laminar flow is one in which the fluid particles move in smooth layers, or laminas; a
turbulent flow is one in which the fluid particles rapidly mix as they move along due to random
three-dimensional velocity fluctuations. Typical examples of pathlines of each of these are illustrated
in Fig. 2.17, which shows a one-dimensional flow. In most fluid mechanics problems—for example,
flow of water in a pipe—turbulence is an unwanted but often unavoidable phenomenon, because it gen-
erates more resistance to flow; in other problems—for example, the flow of blood through blood
vessels—it is desirable because the random mixing allows all of the blood cells to contact the walls
of the blood vessels to exchange oxygen and other nutrients.

The velocity of the laminar flow is simply u; the velocity of the turbulent flow is given by the mean
velocity �u plus the three components of randomly fluctuating velocity u0, υ0, and w0.

Although many turbulent flows of interest are steady in the mean (�u is not a function of time), the
presence of the random, high-frequency velocity fluctuations makes the analysis of turbulent flows
extremely difficult. In a one-dimensional laminar flow, the shear stress is related to the velocity gradient
by the simple relation

τyx = μ
du
dy

ð2:15Þ

For a turbulent flow in which the mean velocity field is one-dimensional, no such simple relation is valid.
Random, three-dimensional velocity fluctuations (u0, υ0, and w0) transport momentum across the mean
flow streamlines, increasing the effective shear stress. (This apparent stress is discussed in more detail in
Chapter 8.) Consequently, in turbulent flow there is no universal relationship between the stress field and
the mean-velocity field. Thus in turbulent flows we must rely heavily on semi-empirical theories and on
experimental data.

Compressible and Incompressible Flows

Flows in which variations in density are negligible are termed incompressible; when density variations
within a flow are not negligible, the flow is called compressible. The most common example of com-
pressible flow concerns the flow of gases, while the flow of liquids may frequently be treated as
incompressible.

For many liquids, density is only a weak function of temperature. At modest pressures, liquids may
be considered incompressible. However, at high pressures, compressibility effects in liquids can be
important. Pressure and density changes in liquids are related by the bulk compressibility modulus,
or modulus of elasticity,

Ev≡
dp
ðdρ=ρÞ ð2:19Þ

If the bulk modulus is independent of temperature, then density is only a function of pressure (the fluid is
barotropic). Bulk modulus data for some common liquids are given in Appendix A.

Water hammer and cavitation are examples of the importance of compressibility effects in liquid
flows. Water hammer is caused by acoustic waves propagating and reflecting in a confined liquid,
for example, when a valve is closed abruptly. The resulting noise can be similar to “hammering” on
the pipes, hence the term.

Cavitation occurs when vapor pockets form in a liquid flow because of local reductions in pressure
(for example at the tip of a boat’s propeller blades). Depending on the number and distribution of par-
ticles in the liquid to which very small pockets of undissolved gas or air may attach, the local pressure at

x

y

z

 = ui

= (u + u') i  + υ'j  + w'k

Laminar

Turbulent

^

^ ^ ^

Fig. 2.17 Particle pathlines in one-dimensional laminar and turbulent flows.
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the onset of cavitation may be at or below the vapor pressure of the liquid. These particles act as nucle-
ation sites to initiate vaporization.

Vapor pressure of a liquid is the partial pressure of the vapor in contact with the saturated liquid at a
given temperature. When pressure in a liquid is reduced to less than the vapor pressure, the liquid may
change phase suddenly and “flash” to vapor.

The vapor pockets in a liquid flow may alter the geometry of the flow field substantially. When
adjacent to a surface, the growth and collapse of vapor bubbles can cause serious damage by eroding
the surface material.

Very pure liquids can sustain large negative pressures—as much as −60 atmospheres for distilled
water—before the liquid “ruptures” and vaporization occurs. Undissolved air is invariably present near
the free surface of water or seawater, so cavitation occurs where the local total pressure is quite close to
the vapor pressure.

It turns out that gas flows with negligible heat transfer also may be considered incompressible pro-
vided that the flow speeds are small relative to the speed of sound; the ratio of the flow speed, V , to the
local speed of sound, c, in the gas is defined as the Mach number,

M ≡
V
c

For M <0:3, the maximum density variation is less than 5 percent. Thus gas flows with M <0:3 can be
treated as incompressible; a value of M =0:3 in air at standard conditions corresponds to a speed of
approximately 100 m=s. For example, although it might be a little counterintuitive, when you drive your
car at 65 mph the air flowing around it has negligible change in density. As we shall see in Chapter 12,
the speed of sound in an ideal gas is given by c=

ffiffiffiffiffiffiffiffiffi
kRT
p

, where k is the ratio of specific heats, R is the
gas constant, and T is the absolute temperature. For air at STP, k=1:40 and R=286:9 J=kg �K
ð53:33 ft � lbf=lbm � �RÞ. Values of k and R are supplied in Appendix A for several selected common
gases at STP. In addition, Appendix A contains some useful data on atmospheric properties, such as
temperature, at various elevations.

Compressible flows occur frequently in engineering applications. Common examples include com-
pressed air systems used to power shop tools and dental drills, transmission of gases in pipelines at high
pressure, and pneumatic or fluidic control and sensing systems. Compressibility effects are very impor-
tant in the design of modern high-speed aircraft and missiles, power plants, fans, and compressors.

Internal and External Flows

Flows completely bounded by solid surfaces are called internal or duct flows. Flows over bodies
immersed in an unbounded fluid are termed external flows. Both internal and external flows may be
laminar or turbulent, compressible or incompressible.

We mentioned an example of internal flow when we discussed the flow out of a faucet—the flow in
the pipe leading to the faucet is an internal flow. It turns out that we have a Reynolds number for pipe
flows defined as Re= ρVD=μ, where V is the average flow velocity andD is the pipe diameter (note that
we do not use the pipe length!). This Reynolds number indicates whether a pipe flow will be laminar or
turbulent. Flow will generally be laminar for Re≤ 2300 and turbulent for larger values: Flow in a pipe of
constant diameter will be entirely laminar or entirely turbulent, depending on the value of the velocity V .
We will explore internal flows in detail in Chapter 8.

We already saw some examples of external flows when we discussed the flow over a sphere
(Fig. 2.14b) and a streamlined object (Fig. 2.16). What we didn’t mention was that these flows could
be laminar or turbulent. In addition, we mentioned boundary layers (Fig. 2.15): It turns out these also
can be laminar or turbulent. When we discuss these in detail (Chapter 9), we’ll start with the simplest
kind of boundary layer—that over a flat plate—and learn that just as we have a Reynolds number for the
overall external flow that indicates the relative significance of viscous forces, there will also be a bound-
ary-layer Reynolds number Rex = ρU∞x=μwhere in this case the characteristic velocityU∞ is the veloc-
ity immediately outside the boundary layer and the characteristic length x is the distance along the plate.
Hence, at the leading edge of the plate Rex =0, and at the end of a plate of length L, it will be
Rex = ρU∞L=μ. The significance of this Reynolds number is that (as we’ll learn) the boundary layer
will be laminar for Rex ≤ 5× 105 and turbulent for larger values: A boundary layer will start out laminar,
and if the plate is long enough the boundary layer will transition to become turbulent.
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It is clear by now that computing a Reynolds number is often very informative for both internal and
external flows. We will discuss this and other important dimensionless groups (such as the Mach num-
ber) in Chapter 7.

The internal flow through fluid machines is considered in Chapter 10. The principle of angular
momentum is applied to develop fundamental equations for fluid machines. Pumps, fans, blowers, com-
pressors, and propellers that add energy to fluid streams are considered, as are turbines and windmills
that extract energy. The chapter features detailed discussion of operation of fluid systems.

The internal flow of liquids in which the duct does not flow full—where there is a free surface sub-
ject to a constant pressure—is termed open-channel flow. Common examples of open-channel flow
include flow in rivers, irrigation ditches, and aqueducts. Open-channel flowwill be treated in Chapter 11.

Both internal and external flows can be compressible or incompressible. Compressible flows can be
divided into subsonic and supersonic regimes. We will study compressible flows in Chapters 12 and 13
and see among other things that supersonic flows ðM >1Þ will behave very differently than subsonic
flows ðM <1Þ. For example, supersonic flows can experience oblique and normal shocks, and can also
behave in a counterintuitive way—e.g., a supersonic nozzle (a device to accelerate a flow) must be diver-
gent (i.e., it has increasing cross-sectional area) in the direction of flow! We note here also that in a
subsonic nozzle (which has a convergent cross-sectional area), the pressure of the flow at the exit plane
will always be the ambient pressure; for a sonic flow, the exit pressure can be higher than ambient; and
for a supersonic flow the exit pressure can be greater than, equal to, or less than the ambient pressure!

2.7 Summary and Useful Equations
In this chapter we have completed our review of some of the fundamental concepts we will utilize
in our study of fluid mechanics. Some of these are:

✓ How to describe flows (timelines, pathlines, streamlines, streaklines).
✓ Forces (surface, body) and stresses (shear, normal).
✓ Types of fluids (Newtonian, non-Newtonian—dilatant, pseudoplastic, thixotropic, rheopectic,

Bingham plastic) and viscosity (kinematic, dynamic, apparent).
✓ Types of flow (viscous/inviscid, laminar/turbulent, compressible/incompressible, internal/

external).

We also briefly discussed some interesting phenomena, such as surface tension, boundary layers,
wakes, and streamlining. Finally, we introduced two very useful dimensionless groups—the Rey-
nolds number and the Mach number.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to
refer to their page numbers for details!

Useful Equations
Definition of
specific gravity:

SG=
ρ

ρH2O

(2.3) Page 19

Definition of
specific weight:

γ =
mg
V---
! γ = ρg (2.4) Page 19

Definition of
streamlines ð2DÞ:

dy
dx

�
streamline

=
υðx,yÞ
uðx,yÞ

(2.8) Page 24

Definition of
pathlines ð2DÞ:

dx
dt

�
particle

= uðx,y, tÞ dy
dt

�
particle

= υðx,y, tÞ (2.9) Page 25

Definition of
streaklines ð2DÞ:

xstreaklineðt0Þ= xðt,x0,y0, t0Þ ystreaklineðt0Þ= yðt,x0,y0, t0Þ (2.10) Page 25

Newton’s law of
viscosity (1D flow):

τyx = μ
du
dy

(2.15) Page 28

Shear stress for a
non-Newtonian
fluid (1D flow):

τyx = k

����dudy
����n−1 du

dy
= η

du
dy

(2.17) Page 31
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P R O B L E M S

Velocity Field
2.1 For the velocity fields given below, determine:
(a) whether the flow field is one-, two-, or three-dimensional,
and why.

(b) whether the flow is steady or unsteady, and why.
(The quantities a and b are constants.)

1 V
!
= ½ðax+ tÞeby �̂i

2 V
!
= ðax−byÞî

3 V
!
= axî+ ½ebx� ĵ

4 V
!
= axî+ bx2 ĵ+ axk̂

5 V
!
= axî+ ½ebt� ĵ

6 V
!
= axî+ bx2 ĵ+ ayk̂

7 V
!
= axî+ ½ebt� ĵ+ ayk̂

8 V
!
= axî+ ½eby� ĵ+ azk̂

2.2 For the velocity fields given below, determine:
(a) whether the flow field is one-, two-, or three-dimensional,
and why.

(b) whether the flow is steady or unsteady, and why.
(The quantities a and b are constants.)

1 V
!
= ½ay2e−bt �̂i

2 V
!
= ax2 î+ bxĵ+ ck̂

3 V
!
= axyî−bytĵ

4 V
!
= axî−byĵ+ ctk̂

5 V
!
= ½ae−bx �̂i+ bt2 ĵ

6 V
!
= aðx2 + y2Þ1=2ð1=z3Þk̂

7 V
!
= ðax+ tÞî−by2 ĵ

8 V
!
= ax2 î+ bxzĵ+ cyk̂

2.3A viscous liquid is sheared between two parallel disks; the upper
disk rotates and the lower one is fixed. The velocity field between the
disks is given by V

!
= êθrωz=h. (The origin of coordinates is located

at the center of the lower disk; the upper disk is located at z= h.) What

are the dimensions of this velocity field? Does this velocity field
satisfy appropriate physical boundary conditions? What are they?

2.4 For the velocity field V
!
=Ax2yî+Bxy2 ĵ, where A=2m−2s−1

and B=1m−2s−1, and the coordinates are measured in meters,
obtain an equation for the flow streamlines. Plot several streamlines
in the first quadrant.

2.5 A fluid flow has the following velocity components: u=1m=s
and υ=2x m=s. Find an equation for and sketch the streamlines of
this flow.

2.6 When an incompressible, nonviscous fluid flows against a
plate in a plane (two-dimensional) flow, an exact solution for the
equations of motion for this flow is u=Ax,υ= −Ay,with A>0 for
the sketch shown. The coordinate origin is located at the stagnation
point 0, where the flow divides and the local velocity is zero. Plot the
streamlines in the flow.

x
O

y

V
P

θ

P2.6

2.7 For the free vortex flow the velocities are υt =5=r and υr =0.
Assume that lengths are in feet or meters and times are in seconds.
Plot the streamlines of this flow. How does the velocity vary with
distance from the origin? What is the velocity at the origin (0,0)?

2.8 For the forced vortex flow the velocities are υt =ωr and υr =0.
Plot the streamlines of this flow. How does the velocity vary with
distance from the origin? What is the velocity at the origin (0,0)?

2.9 A velocity field is specified as V
!
= axyî+ by2 ĵ, where a=

2m−1s−1, b= −6 m−1s−1, and the coordinates are measured in
meters. Is the flow field one-, two-, or three-dimensional? Why?
Calculate the velocity components at the point ð2, 1
2Þ. Develop an
equation for the streamline passing through this point. Plot several
streamlines in the first quadrant including the one that passes through
the point ð2, 1
2Þ.
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2.10 A velocity field is given by V
!
= ax3 î+ bxy3 ĵ, where

a=1m−2s−1 and b=1m−3s−1. Find the equation of the stream-
lines. Plot several streamlines in the first quadrant.

2.11 The velocity for a steady, incompressible flow in the xy plane is
given by V

!
= îA=x+ ĵAy=x2, where A=2m2=s, and the coordinates

are measured in meters. Obtain an equation for the streamline that
passes through the point ðx,yÞ= ð1,3Þ. Calculate the time required
for a fluid particle to move from x=1m to x=2m in this flow field.

2.12 The flow field for an atmospheric flow is given by

V
!
= −

Ky
2πðx2 + y2Þ î+

Kx
2πðx2 + y2Þ ĵ

where K =105 m2=s, and the x and y coordinates are parallel to the
local latitude and longitude. Plot the velocity magnitude along the
x axis, along the y axis, and along the line y= x, and discuss the veloc-
ity direction with respect to these three axes. For each plot use a range
x or y= −1 km to 1 km, excluding jxj or jyj<100 m. Find the equa-
tion for the streamlines and sketch several of them. What does this
flow field model?

2.13 For the velocity field V
!
=Axî−Ayĵ, where A=2s−1, which

can be interpreted to represent flow in a corner, show that the para-
metric equations for particle motion are given by xp = c1 eAt and
yp = c2 e−At . Obtain the equation for the pathline of the particle
located at the point ðx,yÞ= ð2,2Þ at the instant t=0. Compare this
pathline with the streamline through the same point.

2.14 A velocity field in polar coordinates is given with the radial
velocity as Vr = −A=r and the tangential velocity as Vθ =A=r, where
r is in meters and A=10 m2. Plot the streamlines passing through
the location θ=0 for r=1m, 2 m, and 3 m.What does the flow field
model?

2.15 The flow of air near the Earth’s surface is affected both by the
wind and thermal currents. In certain circumstances the velocity field
can be represented by V

!
= aî+ b

�
1− y

h

�
ĵ for y< h and by V

!
= aî for

y> h. Plot the streamlines for the flow for b=a=0:01, 0:1, and 1.

2.16A velocity field is given by V
!
= aytî−bxĵ, where a=1 s−2 and

b=4 s−1. Find the equation of the streamlines at any time t. Plot
several streamlines at t=0 s, t=1 s, and t=20 s.

2.17 Air flows downward toward an infinitely wide horizontal flat
plate. The velocity field is given by V

!
= ðaxî−ayĵÞð2+ cosωtÞ,

where a=5 s−1, ω=2π s−1, x and y (measured in meters) are hori-
zontal and vertically upward, respectively, and t is in s. Obtain an
algebraic equation for a streamline at t=0. Plot the streamline that
passes through point ðx,yÞ= ð3,3Þ at this instant. Will the streamline
change with time? Explain briefly. Show the velocity vector on your
plot at the same point and time. Is the velocity vector tangent to the
streamline? Explain.

2.18 Consider the flow described by the velocity field V
!
=

Bxð1+AtÞî+Cyĵ, with A=0:5 s−1 and B=C=1 s−1. Coordinates
are measured inmeters. Plot the pathline traced out by the particle that
passes through the point (1, 1) at time t=0. Compare with the stream-
lines plotted through the same point at the instants t=0, 1, and 2 s.

2.19 Consider the velocity field V = axî+ byð1+ ctÞĵ, where
a= b=2 s−1 and c=0:4 s−1. Coordinates are measured in meters.
For the particle that passes through the point ðx,yÞ= ð1,1Þ at the
instant t=0, plot the pathline during the interval from t=0 to

1.5 s. Compare this pathline with the streamlines plotted through
the same point at the instants t=0, 1, and 1.5 s.

2.20 Consider the flow field given in Eulerian description by the
expression V

!
= axî+ bytĵ, where a=0:2 s−1, b=0:04 s−2, and the

coordinates are measured in meters. Derive the Lagrangian position
functions for the fluid particle that was located at the point
ðx,yÞ= ð1,1Þ at the instant t=0. Obtain an algebraic expression
for the pathline followed by this particle. Plot the pathline and com-
pare with the streamlines plotted through the same point at the
instants t=0, 10, and 20 s.

2.21 A velocity field is given by V
!
= axtî−byĵ, where A=0:1 s−2

and b=1 s−1. For the particle that passes through the point
ðx,yÞ= ð1,1Þ at instant t=0 s, plot the pathline during the interval
from t=0 to t=3 s. Compare with the streamlines plotted through
the same point at the instants t=0, 1, and 2 s.

2.22Consider the garden hose of Fig. 2.5. Suppose the velocity field
is given byV

!
= u0 î+ υ0sin½ωðt−x=u0Þ�̂j, where the x direction is hor-

izontal and the origin is at the mean position of the hose, u0 = 10 m=s,
υ0 = 2 m=s, and ω=5 cycle=s. Find and plot on one graph the instan-
taneous streamlines that pass through the origin at t=0 s, 0.05 s,
0.1 s, and 0.15 s. Also find and plot on one graph the pathlines of
particles that left the origin at the same four times.

2.23 Consider the velocity field of Problem 2.18. Plot the streakline
formed by particles that passed through the point (1, 1) during the
interval from t=0 to t=3 s. Compare with the streamlines plotted
through the same point at the instants t=0, 1, and 2 s.

2.24 Streaklines are traced out by neutrally buoyant marker fluid
injected into a flow field from a fixed point in space. A particle of
the marker fluid that is at point ðx,yÞ at time t must have passed
through the injection point ðx0,y0Þ at some earlier instant t= τ.
The time history of a marker particle may be found by solving the
pathline equations for the initial conditions that x= x0, y= y0 when
t= τ. The present locations of particles on the streakline are obtained
by setting τ equal to values in the range 0≤ τ≤ t. Consider the flow
field V

!
= axð1+ btÞî+ cyĵ, where a= c=1 s−1 and b=0:2 s−1.

Coordinates are measured in meters. Plot the streakline that passes
through the initial point ðx0,y0Þ= ð1,1Þ, during the interval from
t=0 to t=3 s. Compare with the streamline plotted through the same
point at the instants t=0, 1, and 2 s.

2.25 Consider the flow field V
!
= axtî+ bĵ, where a=1=4 s−2 and

b=1=3 m=s. Coordinates are measured in meters. For the particle
that passes through the point ðx,yÞ= ð1,2Þ at the instant t=0,
plot the pathline during the time interval from t=0 to 3 s. Compare
this pathline with the streakline through the same point at the
instant t=3 s.

2.26 A flow is described by velocity field V
!
= ay2 î+ bĵ, where

a=1m−1 s−1 and b=2m=s. Coordinates are measured in meters.
Obtain the equation for the streamline passing through point (6, 6).
At t=1 s, what are the coordinates of the particle that passed through
point (1, 4) at t=0? At t=3 s, what are the coordinates of the particle
that passed through point ð−3,0Þ 2 s earlier? Show that pathlines,
streamlines, and streaklines for this flow coincide.

2.27 Tiny hydrogen bubbles are being used as tracers to visualize
a flow. All the bubbles are generated at the origin ðx=0,y=0Þ.
The velocity field is unsteady and obeys the equations:

u=1m=s υ=2 m=s 0≤ t<2 s
u=0 υ= −1 m=s 0≤ t≤ 4 s
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Plot the pathlines of bubbles that leave the origin at t=0, 1, 2, 3, and
4 s. Mark the locations of these five bubbles at t=4 s. Use a dashed
line to indicate the position of a streakline at t=4 s.

2.28 A flow is described by velocity field V
!
= aî+ bxĵ, where

a=2m=s and b=1 s−1. Coordinates are measured in meters.
Obtain the equation for the streamline passing through point
(2, 5). At t=2 s, what are the coordinates of the particle that
passed through point (0, 4) at t=0? At t=3 s, what are the coordi-
nates of the particle that passed through point (1, 4.25) 2 s earlier?
What conclusions can you draw about the pathline, streamline, and
streakline for this flow?

2.29 A flow is described by velocity field V
!
= ayî+ btĵ, where

a=0:2 s−1 and b=0:4 m=s2. At t=2 s, what are the coordinates
of the particle that passed through point (1, 2) at t=0? At t=3 s,
what are the coordinates of the particle that passed through point
(1, 2) at t=2 s? Plot the pathline and streakline through point
(1, 2), and plot the streamlines through the same point at the instants
t=0, 1, 2, and 3 s.

2.30 A flow is described by velocity field V
!
= atî+ bĵ, where

a=0:4 m=s2 and b=2m=s. At t=2 s, what are the coordinates of
the particle that passed through point (2, 1) at t=0? At t=3 s, what
are the coordinates of the particle that passed through point (2, 1) at
t=2 s? Plot the pathline and streakline through point (2, 1) and com-
pare with the streamlines through the same point at the instants t=0,
1, and 2 s.

Viscosity
2.31 The variation with temperature of the viscosity of air is repre-
sented well by the empirical Sutherland correlation

μ=
bT1=2

1+ S=T
Best-fit values of b and S are given in Appendix A. Develop an equa-
tion in SI units for kinematic viscosity versus temperature for air at
atmospheric pressure. Assume ideal gas behavior. Check by using
the equation to compute the kinematic viscosity of air at 0�C and
at 100�C and comparing to the data in Appendix A (Table A.10); plot
the kinematic viscosity for a temperature range of 0�C to 100�C,
using the equation and the data in Table A.10.

2.32 The variation with temperature of the viscosity of air is corre-
lated well by the empirical Sutherland equation

μ=
bT1=2

1 + S=T

Best-fit values of b and S are given in Appendix A for use with SI
units. Use these values to develop an equation for calculating air
viscosity in British Gravitational units as a function of absolute
temperature in degrees Rankine. Check your result using data from
Appendix A.

2.33 Some experimental data for the viscosity of helium at 1 atm are

T,�C 0 100 200 300 400
μ,N �s=m2(×105) 1:86 2:31 2:72 3:11 3:46

Using the approach described in Appendix A.3, correlate these data
to the empirical Sutherland equation

μ=
bT1=2

1 + S=T

(where T is in kelvin) and obtain values for constants b and S.

2.34 The velocity distribution for laminar flow between parallel
plates is given by

u
umax

= 1−
2y
h

� �2

where h is the distance separating the plates and the origin is placed
midway between the plates. Consider a flow of water at 15�C, with
umax = 0:10 m=s and h=0:1 mm. Calculate the shear stress on the
upper plate and give its direction. Sketch the variation of shear stress
across the channel.

2.35 What is the ratio between the viscosities of air and water at
10�C? What is the ratio between their kinematic viscosities at this
temperature and standard barometric pressure?

2.36 Calculate velocity gradients and shear stress for y=0, 0.2,
0.4, and 0.6 m, if the velocity profile is a quarter-circle having
its center 0.6 m from the boundary. The fluid viscosity is
7:5× 10−4 Ns=m2.

10 m/s

0.6 m

P2.36

2.37A very large thin plate is centered in a gap of width 0.06 mwith
different oils of unknown viscosities above and below; one viscosity
is twice the other. When the plate is pulled at a velocity of 0:3 m=s,
the resulting force on one square meter of plate due to the viscous
shear on both sides is 29 N. Assuming viscous flow and neglecting
all end effects, calculate the viscosities of the oils.

2.38 A female freestyle ice skater, weighing 100 lbf, glides on one
skate at speed V = 20 ft=s. Her weight is supported by a thin film of
liquid water melted from the ice by the pressure of the skate blade.
Assume the blade is L=11:5 in. long and w=0:125 in. wide, and
that the water film is h=0:0000575 in. thick. Estimate the decelera-
tion of the skater that results from viscous shear in the water film, if
end effects are neglected.

2.39A block of mass 10 kg and measuring 250 mm on each edge
is pulled up an inclined surface on which there is a film of SAE
10W-30 oil at 30�F (the oil film is 0.025 mm thick). Find the steady
speed of the block if it is released. If a force of 75 N is applied to pull
the block up the incline, find the steady speed of the block. If the
force is now applied to push the block down the incline, find the
steady speed of the block. Assume the velocity distribution in
the oil film is linear. The surface is inclined at an angle of 30� from
the horizontal.

2.40 A 73-mm-diameter aluminum ðSG=2:64Þ piston of 100-mm
length resides in a stationary 75-mm-inner-diameter steel tube lined
with SAE 10W-30 oil at 25�C. A mass m=2 kg is suspended from
the free end of the piston. The piston is set into motion by cutting a
support cord. What is the terminal velocity of mass m? Assume a lin-
ear velocity profile within the oil.
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Oil film
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P2.40, P2.44

2.41 A vertical gap 25 mm wide of infinite extent contains oil
of specific gravity 0.95 and viscosity 2:4 Pa �s. A metal plate
1:5 m×1:5 m× 1:6 mm weighing 45 N is to be lifted through the
gap at a constant speed of 0:06 m �s. Estimate the force required.

2.42 A cylinder 8 in. in diameter and 3 ft long is concentric with a
pipe of 8.25 in. i.d. Between cylinder and pipe there is an oil film.
What force is required to move the cylinder along the pipe at a
constant velocity of 3 fps? The kinematic viscosity of the oil is
0:006 ft2=s; the specific gravity is 0.92.

2.43 Crude oil at 20�C fills the space between two concentric cylin-
ders 250 mm high and with diameters of 150 mm and 156 mm. What
torque is required to rotate the inner cylinder at 12 r=min, the outer
cylinder rernaining stationary?

2.44 The piston in Problem 2.40 is traveling at terminal speed. The
mass m now disconnects from the piston. Plot the piston speed vs.
time. How long does it take the piston to come within 1 percent of
its new terminal speed?

2.45 A block of mass M slides on a thin film of oil. The film thick-
ness is h and the area of the block is A. When released, massm exerts
tension on the cord, causing the block to accelerate. Neglect friction
in the pulley and air resistance. Develop an algebraic expression for
the viscous force that acts on the block when it moves at speed V .
Derive a differential equation for the block speed as a function of
time. Obtain an expression for the block speed as a function of time.
The massM =5 kg,m=1 kg, A=25 cm2, and h=0:5 mm. If it takes
1 s for the speed to reach 1 m=s, find the oil viscosity μ. Plot the curve
for VðtÞ.

M

Block

h

mMass

Oil film
(viscosity,   )μ

V

g

Cord

P2.45

2.46A block 0.1 m square, with 5 kg mass, slides down a smooth
incline, 30� below the horizontal, on a film of SAE 30 oil at 20�C
that is 0.20 mm thick. If the block is released from rest at t=0, what
is its initial acceleration? Derive an expression for the speed of the
block as a function of time. Plot the curve for VðtÞ. Find the speed

after 0.1 s. If we want the mass to instead reach a speed of
0:3 m=s at this time, find the viscosity μ of the oil we would have
to use.

2.47 A torque of 4 N � m is required to rotate the intermediate
cylinder at 30 r=min. Calculate the viscosity of the oil. All cylinders
are 450 mm long. Neglect end effects.

0.003 m

0.003 m

0.15 m R

P2.47

2.48 A circular disk of diameter d is slowly rotated in a liquid of
large viscosity μ, at a small distance h from a fixed surface. Derive
an expression for the torque T necessary to maintain an angular
velocity ω. Neglect centrifugal effects.

2.49 The fluid drive shown transmits a torque T for steady-
state conditions (ω1 and ω2 constant). Derive an expression for
the slip ðω1−ω2Þ in terms of T , μ, d, and h. For values d=6 in:,
h=0:2 in:, SAE 30 oil at 75�F, a shaft rotation of 120 rpm, and a
torque of 0.003 ft-lbf, determine the slip.

Fluid μ

DrivenDriver

Disks
d

h

ω
1

ω
2

P2.49

2.50 A block that is amm square slides across a flat plate on a
thin film of oil. The oil has viscosity μ and the film is hmm thick.
The block of mass M moves at steady speed U under the influence
of constant force F. Indicate the magnitude and direction of the
shear stresses on the bottom of the block and the plate. If the force
is removed suddenly and the block begins to slow, sketch the result-
ing speed versus time curve for the block. Obtain an expression
for the time required for the block to lose 95 percent of its ini-
tial speed.

2.51 In a food-processing plant, honey is pumped through an annular
tube. The tube isL=2m long, with inner and outer radii ofRi =5 mm
and Ro =25mm, respectively. The applied pressure difference is
Δp=125 kPa, and the honey viscosity is μ=5 N �s=m2. The theoret-
ical velocity profile for laminar flow through an annulus is:

uzðrÞ= 1
4μ

Δp
L

� �
R2
i −r2−

R2
o−R2

i

ln
Ri

Ro

� � � ln r
Ri

� �2
664

3
775

Show that the no-slip condition is satisfied by this expression. Find
the location at which the shear stress is zero. Find the viscous forces
acting on the inner and outer surfaces, and compare these to the force
ΔpπðR2

o−R2
i Þ. Explain.
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2.52 SAE 10W-30 oil at 100�C is pumped through a tube L=10m
long, diameter D=20mm. The applied pressure difference is
Δp=5 kPa. On the centerline of the tube is a metal filament of diam-
eter d =1 μm. The theoretical velocity profile for laminar flow
through the tube is:

VðrÞ= 1
16μ

Δp
L

� �
d2−4r2−

D2−d2

ln
d
D

� � � ln 2r
d

� �2
664

3
775

Show that the no-slip condition is satisfied by this expression. Find
the location at which the shear stress is zero, and the stress on the tube
and on the filament. Plot the velocity distribution and the stress dis-
tribution. (For the stress curve, set an upper limit on stress of 5 Pa.)
Discuss the results.
2.53 The lubricant has a kinematic viscosity of 2:8× 10−5 m2=s and
specific gravity of 0.92. If the mean velocity of the piston is 6 m=s,
approximately what is the power dissipated in friction?

150.2 mm d
150 mm d

300 mm

Lubricant

P2.53

2.54 Calculate the approximate viscosity of the oil.

12

13
5

0.05 in. oil flim

2 ft x 2 ft square plate

W = 25 lb

V = 0.6

ft/s

P2.54

2.55 Calculate the approximate power lost in friction in this ship
propeller shaft bearing.

0.36 m d
shaft

0.23 mm
Oil200 rpm

μ = 0.72 Pa.s

1m

P2.55

2.56 Fluids of viscosities μ1 = 0:1 N �s=m2 and μ2 = 0:15 N �s=m2

are contained between two plates (each plate is 1 m2 in area). The

thicknesses are h1 = 0:5 mm and h2 = 0:3 mm, respectively. Find
the force F to make the upper plate move at a speed of 1 m=s. What
is the fluid velocity at the interface between the two fluids?

F, V

h
2μ

2

μ
1

h
1

P2.56

2.57 A concentric cylinder viscometer may be formed by rotating
the inner member of a pair of closely fitting cylinders. The annular
gap is small so that a linear velocity profile will exist in the liquid
sample. Consider a viscometer with an inner cylinder of 4 in. diam-
eter and 8 in. height, and a clearance gap width of 0.001 in., filled
with castor oil at 90�F. Determine the torque required to turn the
inner cylinder at 400 rpm.

Vm

Pulley
Cordr

a

ω

H R
M

P2.57, P2.58

2.58A concentric cylinder viscometer is driven by a falling mass M
connected by a cord and pulley to the inner cylinder, as shown. The
liquid to be tested fills the annular gap of width a and height H. After
a brief starting transient, the mass falls at constant speed Vm. Develop
an algebraic expression for the viscosity of the liquid in the device
in terms of M, g, Vm, r, R, a, and H. Evaluate the viscosity of the
liquid using:

M = 0:10 kg r = 25 mm
R= 50 mm a= 0:20 mm
H = 80 mm Vm = 30 mm=s

2.59A shaft with outside diameter of 18 mm turns at 20 revolutions
per second inside a stationary journal bearing 60 mm long. A thin
film of oil 0.2 mm thick fills the concentric annulus between the shaft
and journal. The torque needed to turn the shaft is 0:0036 N � m. Esti-
mate the viscosity of the oil that fills the gap.

2.60 A shock-free coupling for a low-power mechanical drive is to
be made from a pair of concentric cylinders. The annular space
between the cylinders is to be filled with oil. The drive must transmit
power, �=10W. Other dimensions and properties are as shown.
Neglect any bearing friction and end effects. Assume the minimum
practical gap clearance δ for the device is δ=0:25 mm. Dow manu-
factures silicone fluids with viscosities as high as 106 centipoise.
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Determine the viscosity that should be specified to satisfy the require-
ment for this device.

L = 20 mm

ω2 ≥ 9000 rpm

(outer cylinder)

δ = Gap clearance

R = 10 mm

ω1 = 10,000 rpm

𝒫 = 10 W

P2.60

2.61 A proposal has been made to use a pair of parallel disks to
measure the viscosity of a liquid sample. The upper disk rotates at
height h above the lower disk. The viscosity of the liquid in the
gap is to be calculated from measurements of the torque needed to
turn the upper disk steadily. Obtain an algebraic expression for the
torque needed to turn the disk. Could we use this device to measure
the viscosity of a non-Newtonian fluid? Explain.

z
r

R

h

ω

P2.61

2.62 The cone and plate viscometer shown is an instrument used
frequently to characterize non-Newtonian fluids. It consists of a flat
plate and a rotating cone with a very obtuse angle (typically θ is less
than 0.5 degrees). The apex of the cone just touches the plate surface
and the liquid to be tested fills the narrow gap formed by the cone and
plate. The viscometer is used to measure the apparent viscosity of a
fluid. The data below are obtained. What kind of non-Newtonian
fluid is this? Find the values of k and n used in Eqs. 2.16 and 2.17
in defining the apparent viscosity of a fluid. (Assume θ is 0.5
degrees.) Predict the viscosity at 90 and 100 rpm.

Speed (rpm) 10 20 30 40 50 60 70 80
μ(N � s/m2) 0:121 0:139 0:153 0:159 0:172 0:172 0:183 0:185

ω

θ

R

Sample

P2.62

2.63 A viscometer is used to measure the viscosity of a patient’s
blood. The deformation rate (shear rate)–shear stress data is shown
below. Plot the apparent viscosity versus deformation rate. Find

the value of k and n in Eq. 2.17, and from this examine the aphorism
“Blood is thicker than water.”

duldy (s−1) 5 10 25 50 100 200 300 400
τ (Pa) 0:0457 0:119 0:241 0:375 0:634 1:06 1:46 1:78

2.64 A concentric-cylinder viscometer is shown. Viscous torque is
produced by the annular gap around the inner cylinder. Additional
viscous torque is produced by the flat bottom of the inner cylinder
as it rotates above the flat bottom of the stationary outer cylinder.
Obtain an algebraic expression for the viscous torque due to flow
in the annular gap of width a. Obtain an algebraic expression for
the viscous torque due to flow in the bottom clearance gap of height
b. Prepare a plot showing the ratio, b=a, required to hold the bottom
torque to 1 percent or less of the annulus torque, versus the other geo-
metric variables. What are the design implications? What modifica-
tions to the design can you recommend?

ω

R a

b

H

P2.64

2.65 Design a concentric-cylinder viscometer to measure the
viscosity of a liquid similar to water. The goal is to achieve a
measurement accuracy of �1 percent. Specify the configuration
and dimensions of the viscometer. Indicate what measured parameter
will be used to infer the viscosity of the liquid sample.

2.66 A cross section of a rotating bearing is shown. The spherical
member rotates with angular speed ω, a small distance, a, above the
plane surface. The narrow gap is filled with viscous oil, having
μ=1250 cp. Obtain an algebraic expression for the shear stress act-
ing on the spherical member. Evaluate the maximum shear stress that
acts on the spherical member for the conditions shown. (Is the max-
imum necessarily located at the maximum radius?) Develop an alge-
braic expression (in the form of an integral) for the total viscous shear
torque that acts on the spherical member. Calculate the torque using
the dimensions shown.

θ

ω
R = 75 mm

= 70 rpm

a = 0.5 mm

Oil in gap

R0 = 20 mm

P2.66
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Surface Tension
2.67 Small gas bubbles form in soda when a bottle or can is opened.
The average bubble diameter is about 0.1 mm. Estimate the pressure
difference between the inside and outside of such a bubble.

2.68You intend to gently place several steel needles on the free sur-
face of the water in a large tank. The needles come in two lengths:
Some are 5 cm long, and some are 10 cm long. Needles of each length
are available with diameters of 1 mm, 2.5 mm, and 5 mm. Make a
prediction as to which needles, if any, will float.

2.69According to Folsom [6], the capillary riseΔh ðin:Þ of a water-
air interface in a tube is correlated by the following empirical
expression:

Δh=Ae−b �D

where D ðin:Þ is the tube diameter, A=0:400, and b=4:37. You do
an experiment to measure Δh versus D and obtain:

D ðin:Þ 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1 1:1
Δh ðin:Þ 0:232 0:183 0:09 0:059 0:052 0:033 0:017 0:01 0:006 0:004 0:003

What are the values of A and b that best fit this data using Excel’s
Trendline feature? Do they agree with Folsom’s values? How good is
the data?

2.70 Calculate and plot the maximum capillary rise of water ð20�CÞ
to be expected in a vertical glass tube as a function of tube diameter
for diameters from 0.5 to 2.5 mm.

2.71 Calculate the maximum capillary rise of water (20�C) to
be expected between two vertical, clean glass plates spaced 1 mm
apart.

2.72 Calculate the maximum capillary depression of mercury to be
expected in a vertical glass tube 1 mm in diameter at 15.5�C.

Description and Classification of Fluid Motions
2.73 Water usually is assumed to be incompressible when evaluat-
ing static pressure variations. Actually it is 100 times more compress-
ible than steel. Assuming the bulk modulus of water is constant,
compute the percentage change in density for water raised to a gage
pressure of 100 atm. Plot the percentage change in water density as
a function of p=patm up to a pressure of 50,000 psi, which is
the approximate pressure used for high-speed cutting jets of water

to cut concrete and other composite materials. Would constant
density be a reasonable assumption for engineering calculations
for cutting jets?

2.74 The viscous boundary layer velocity profile shown in Fig. 2.15
can be approximated by a cubic equation,

uðyÞ= a+ b
y
δ

� �
+ c

y
δ

� �3
The boundary condition is u=U (the free stream velocity) at the
boundary edge δ (where the viscous friction becomes zero). Find
the values of a, b, and c.

2.75 In a food industry process, carbon tetrachloride at 20�C flows
through a tapered nozzle from an inlet diameter Din = 50 mm to an
outlet diameter of Dout. The area varies linearly with distance along
the nozzle, and the exit area is one-fifth of the inlet area; the nozzle
length is 250mm. The flow rate isQ=2 L=min. It is important for the
process that the flow exits the nozzle as a turbulent flow. Does it? If
so, at what point along the nozzle does the flow become turbulent?

2.76 What is the Reynolds number of water at 20�C flowing at
0:25 m=s through a 5-mm-diameter tube? If the pipe is now heated,
at what mean water temperature will the flow transition to turbu-
lence? Assume the velocity of the flow remains constant.

2.77 A supersonic aircraft travels at 2700 km=hr at an altitude of
27 km. What is the Mach number of the aircraft? At what approxi-
mate distance measured from the leading edge of the aircraft’s wing
does the boundary layer change from laminar to turbulent?

2.78 SAE 30 oil at 100�C flows through a 12-mm-diameter stain-
less-steel tube. What is the specific gravity and specific weight of
the oil? If the oil discharged from the tube fills a 100-mL graduated
cylinder in 9 seconds, is the flow laminar or turbulent?

2.79 A seaplane is flying at 100 mph through air at 45�F. At what
distance from the leading edge of the underside of the fuselage does
the boundary layer transition to turbulence? How does this boundary
layer transition change as the underside of the fuselage touches the
water during landing? Assume the water temperature is also 45�F.

2.80 An airliner is cruising at an altitude of 5.5 km with a speed
of 700 km=hr. As the airliner increases its altitude, it adjusts its
speed so that the Mach number remains constant. Provide a sketch
of speed vs. altitude. What is the speed of the airliner at an altitude
of 8 km?
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C H A P T E R 3

Fluid Statics
3.1 The Basic Equation of Fluid Statics

3.2 The Standard Atmosphere

3.3 Pressure Variation in a Static Fluid

3.4 Hydrostatic Force on Submerged Surfaces

3.5 Buoyancy and Stability

3.6 Fluids in Rigid-Body Motion (on the Web)

3.7 Summary and Useful Equations

Case Study

Wave Power: Wavebob

Humans have been interested in tapping the
immense power of the ocean for centuries, but with
fossil fuels (oil and gas) becoming depleted, the
development of ocean energy technology is becom-
ing important. Wave power in particular is attractive
to a number of countries with access to a suitable
resource. Geographically and commercially it’s
believed the richest wave energy resources currently
are off the Atlantic coast of Europe (in particular
near Ireland, the UK, and Portugal), the west coast
of North America (from San Francisco to British
Columbia), Hawaii, and New Zealand.

A family of devices called point absorbers is being
developed by a number of companies. These are
usually axisymmetric about a vertical axis, and by
definition they are small compared to the wave-
length of the waves that they are designed to
exploit. The devices usually operate in a vertical
mode, often referred to as heave; a surface-piercing
float rises and falls with the passing waves and
reacts against either the seabed or something
attached to it. These devices ultimately depend on
a buoyancy force, one of the topics of this chapter.

A company named Wavebob Ltd. has developed
one of the simplest of these devices. This innovative
eponymous device, as shown in the figure, is proving
to be successful for extractingwave energy. The fig-
ure does not indicate the size of the device, but it is
quite large; the upper chamber has a diameter of
20 m. It looks like just another buoy floating on
the surface, but underneath it is constantly harvest-
ing energy. The lower component of the Wavebob is
tethered to the ocean floor and so remains in its
vertical location, while the section at the surface
oscillates as the waves move over it. Hence the dis-
tance between the two components is constantly
changing, with a significant force between them;

work can thus be done on an electrical generator.
The two components of themachinery contain elec-
tronic systems that can be controlled remotely or
self-regulating, and these make the internal mech-
anism automatically react to changing ocean and
wave conditions by retuning as needed, so that
at all times the maximum amount of energy is
harvested.
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Schematic of Wavebob.

It has already been tested in theAtlanticOceanoff
the coast of Ireland and is designed to have a 25-year
life span and to be able to survive all but the very
worst storms. Each Wavebob is expected to produce
about 500 kW of power or more, sufficient electricity
for over a thousand homes; it is intended to be part
of a large array of such devices. It seems likely this
device will become ubiquitous because it is relatively
inexpensive, very lowmaintenance, and durable, and
it takes up only a small area.
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In Chapter 1, we defined a fluid as any substance that flows (continuously deforms) when it experiences
a shear stress; hence for a static fluid (or one undergoing “rigid-body” motion) only normal stress is
present—in other words, pressure. We will study the topic of fluid statics (often called hydrostatics, even
though it is not restricted to water) in this chapter.

Although fluid statics problems are the simplest kind of fluid mechanics problems, this is not the
only reason we will study them. The pressure generated within a static fluid is an important phenomenon
in many practical situations. Using the principles of hydrostatics, we can compute forces on submerged
objects, develop instruments for measuring pressures, and deduce properties of the atmosphere and
oceans. The principles of hydrostatics also may be used to determine the forces developed by hydraulic
systems in applications such as industrial presses or automobile brakes.

In a static, homogeneous fluid, or in a fluid undergoing rigid-body motion, a fluid particle retains its
identity for all time, and fluid elements do not deform. We may apply Newton’s second law of motion to
evaluate the forces acting on the particle.

3.1 The Basic Equation of Fluid Statics
The first objective of this chapter is to obtain an equation for computing the pressure field in a static
fluid. We will deduce what we already know from everyday experience, that the pressure increases with
depth. To do this, we apply Newton’s second law to a differential fluid element of mass dm= ρ dV---, with
sides dx, dy, and dz, as shown in Fig. 3.1. The fluid element is stationary relative to the stationary
rectangular coordinate system shown. (Fluids in rigid-body motion will be treated in Section 3.6 on
the web.)

From our previous discussion, recall that two general types of forces may be applied to a fluid: body
forces and surface forces. The only body force that must be considered in most engineering problems is
due to gravity. In some situations body forces caused by electric or magnetic fields might be present; they
will not be considered in this text.

For a differential fluid element, the body force is

dF
!
B = g!dm= g!ρ dV---

where g! is the local gravity vector, ρ is the density, and dV--- is the volume of the element. In Cartesian
coordinates dV--- = dx dy dz , so

dF
!
B = ρg! dx dy dz

In a static fluid there are no shear stresses, so the only surface force is the pressure force. Pressure is a
scalar field, p= pðx,y,zÞ; in general we expect the pressure to vary with position within the fluid. The net
pressure force that results from this variation can be found by summing the forces that act on the six faces
of the fluid element.

O

Pressure, p
y

dx

dz

dy

z

p 𝜕p dy
(dx dz) ( j )

2
+–

𝜕y p 𝜕p dy
(dx dz) (–j)

2𝜕y

x

^ ^

Fig. 3.1 Differential fluid element and pressure forces in the y direction.
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Let the pressure be p at the center, O, of the element. To determine the pressure at each of the six
faces of the element, we use a Taylor series expansion of the pressure about point O. The pressure at the
left face of the differential element is

pL = p+
∂p
∂y
ðyL−yÞ= p+

∂p
∂y

−
dy
2

� �
= p−

∂p
∂y

dy
2

(Terms of higher order are omitted because they will vanish in the subsequent limiting process.) The
pressure on the right face of the differential element is

pR = p+
∂p
∂y
ðyR−yÞ= p+

∂p
∂y

dy
2

The pressure forces acting on the two y surfaces of the differential element are shown in Fig. 3.1.
Each pressure force is a product of three factors. The first is the magnitude of the pressure. This mag-
nitude is multiplied by the area of the face to give the magnitude of the pressure force, and a unit vector is
introduced to indicate direction. Note also in Fig. 3.1 that the pressure force on each face acts against the
face. A positive pressure corresponds to a compressive normal stress.

Pressure forces on the other faces of the element are obtained in the same way. Combining all such
forces gives the net surface force acting on the element. Thus

dF
!
S = p−

∂p
∂x

dx
2

� �
ðdy dzÞðîÞ+ p+

∂p
∂x

dx
2

� �
ðdy dzÞð− îÞ

+ p−
∂p
∂y

dy
2

� �
ðdx dzÞðĵÞ+ p+

∂p
∂y

dy
2

� �
ðdx dzÞð− ĵÞ

+ p−
∂p
∂z

dz
2

� �
ðdx dyÞðk̂Þ+ p+

∂p
∂z

dz
2

� �
ðdx dyÞð− k̂Þ

Collecting and canceling terms, we obtain

dF
!
S = −

∂p
∂x

î+
∂p
∂y

ĵ+
∂p
∂z

k̂
� �

dx dy dz ð3:1aÞ

The term in parentheses is called the gradient of the pressure or simply the pressure gradient and may be
written grad p or ∇p. In rectangular coordinates

grad p≡∇p≡ î
∂p
∂x

+ ĵ
∂p
∂y

+ k̂
∂p
∂z

� �
≡ î

∂
∂x

+ ĵ
∂
∂y

+ k̂
∂
∂z

� �
p

The gradient can be viewed as a vector operator; taking the gradient of a scalar field gives a vector field.
Using the gradient designation, Eq. 3.1a can be written as

dF
!
S = −grad pðdx dy dzÞ= −∇p dx dy dz ð3:1bÞ

Physically the gradient of pressure is the negative of the surface force per unit volume due to pressure.
Note that the pressure magnitude itself is not relevant in computing the net pressure force; instead what
counts is the rate of change of pressure with distance, the pressure gradient. We shall encounter this term
throughout our study of fluid mechanics.

We combine the formulations for surface and body forces that we have developed to obtain the total
force acting on a fluid element. Thus

d F
!
= dF

!
S + dF

!
B = ð−∇p+ ρg!Þdx dy dz= ð−∇p+ ρg!ÞdV---

or on a per unit volume basis

dF
!

dV---
= −∇p+ ρg! ð3:2Þ

For a fluid particle, Newton’s second law gives F
!
= a! dm= a!ρdV---. For a static fluid, a! =0. Thus

dF
!

dV---
= ρa! =0
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Substituting for dF
!
=dV--- from Eq. 3.2, we obtain

−∇p+ ρg! =0 ð3:3Þ
Let us review this equation briefly. The physical significance of each term is

−∇p + ρg! =0
net pressure force
per unit volume

at a point

8<
:

9=
;+

body force per
unit volume
at a point

8<
:

9=
;=0

This is a vector equation, which means that it is equivalent to three component equations that must be
satisfied individually. The component equations are

−
∂p
∂x

+ ρgx =0 x direction

−
∂p
∂y

+ ρgy =0 y direction

−
∂p
∂z

+ ρgz =0 z direction

9>>>>>>=
>>>>>>;

ð3:4Þ

Equations 3.4 describe the pressure variation in each of the three coordinate directions in a static
fluid. It is convenient to choose a coordinate system such that the gravity vector is aligned with one
of the coordinate axes. If the coordinate system is chosen with the z axis directed vertically upward,
as in Fig. 3.1, then gx =0, gy =0, and gz = −g. Under these conditions, the component equations become

∂p
∂x

=0
∂p
∂y

=0
∂p
∂z

= −ρg ð3:5Þ

Equations 3.5 indicate that, under the assumptions made, the pressure is independent of coordinates x
and y; it depends on z alone. Thus since p is a function of a single variable, a total derivative may be used
instead of a partial derivative. With these simplifications, Eqs. 3.5 finally reduce to

dp
dz

= −ρg≡ −γ ð3:6Þ

Restrictions:

1 Static fluid.

2 Gravity is the only body force.

3 The z axis is vertical and upward.

In Eq. 3.6, γ is the specific weight of the fluid. This equation is the basic pressure-height relation of fluid
statics. It is subject to the restrictions noted. Therefore it must be applied only where these restrictions are
reasonable for the physical situation. To determine the pressure distribution in a static fluid, Eq. 3.6 may
be integrated and appropriate boundary conditions applied.

Before considering specific applications of this equation, it is important to remember that pressure
values must be stated with respect to a reference level. If the reference level is a vacuum, pressures are
termed absolute, as shown in Fig. 3.2.

pabsolute

pgage

Pressure level

Atmospheric pressure:
101.3 kPa (14.696 psia)

at standard sea level
conditions

Vacuum
Fig. 3.2 Absolute and gage pressures, showing
reference levels.
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Most pressure gages indicate a pressure difference—the difference between the measured pressure
and the ambient level (usually atmospheric pressure). Pressure levels measured with respect to atmos-
pheric pressure are termed gage pressures. Thus

pgage = pabsolute−patmosphere

For example, a tire gage might indicate 30 psi; the absolute pressure would be about 44.7 psi.
Absolute pressures must be used in all calculations with the ideal gas equation or other equations
of state.

3.2 The Standard Atmosphere
Scientists and engineers sometimes need a numerical or analytical model of the Earth’s atmosphere in
order to simulate climate variations to study, for example, effects of global warming. There is no single
standard model. An International Standard Atmosphere (ISA) has been defined by the International Civil
Aviation Organization (ICAO); there is also a similar U.S. Standard Atmosphere.

The temperature profile of the U.S. Standard Atmosphere is shown in Fig. 3.3. Additional property
values are tabulated as functions of elevation in Appendix A. Sea level conditions of the U.S. Standard
Atmosphere are summarized in Table 3.1.
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Fig. 3.3 Temperature variation with altitude in the U.S. Standard Atmosphere.

Table 3.1
Sea Level Conditions of the U.S. Standard Atmosphere

Property Symbol SI English

Temperature T 15�C 59�F
Pressure p 101:3 kPa ðabsÞ 14:696 psia
Density ρ 1:225 kg=m3 0:002377 slug=ft3

Specific weight γ — 0:07651 lbf=ft3

Viscosity μ 1:789× 10−5 kg=ðm �sÞðPa �sÞ 3:737× 10−7 lbf �s=ft2
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3.3 Pressure Variation in a Static Fluid
We proved that pressure variation in any static fluid is described by the basic pressure-height relation

dp
dz

= −ρg ð3:6Þ

Although ρg may be defined as the specific weight, γ, it has been written as ρg in Eq. 3.6 to emphasize
that both ρ and g must be considered variables. In order to integrate Eq. 3.6 to find the pressure distri-
bution, we need information about variations in both ρ and g.

For most practical engineering situations, the variation in g is negligible. Only for a purpose such as
computing very precisely the pressure change over a large elevation difference would the variation in g
need to be included. Unless we state otherwise, we shall assume g to be constant with elevation at any
given location.

Incompressible Liquids: Manometers

For an incompressible fluid, ρ= constant. Then for constant gravity,

dp
dz

= −ρg= constant

To determine the pressure variation, we must integrate and apply appropriate boundary conditions. If the
pressure at the reference level, z0, is designated as p0, then the pressure, p, at level z is found by
integration: Z p

p0
dp= −

Z z

z0
ρg dz

or

p−p0 = −ρgðz−z0Þ= ρgðz0−zÞ
For liquids, it is often convenient to take the origin of the coordinate system at the free surface (reference
level) and to measure distances as positive downward from the free surface as in Fig. 3.4.

With h measured positive downward, we have

z0−z= h

and obtain

p−p0 =Δp= ρgh ð3:7Þ

Equation 3.7 indicates that the pressure difference between two points in a static incompressible fluid can
be determined by measuring the elevation difference between the two points. Devices used for this
purpose are called manometers. Use of Eq. 3.7 for a manometer is illustrated in Example 3.1.

Manometers are simple and inexpensive devices used frequently for pressure measurements.
Because the liquid level change is small at low pressure differential, a U-tube manometer may be dif-
ficult to read accurately. The sensitivity of a manometer is a measure of how sensitive it is compared to a
simple water-filled U-tube manometer. Specifically, it is the ratio of the deflection of the manometer to

0

Reference
level and
pressure

Location and
pressure of
interest

z

z
0

z < z
0

p
0

p > p
0

h

Fig. 3.4 Use of z and h coordinates.

52 Chapter 3 Fluid Statics



that of a water-filled U-tube manometer, due to the same applied pressure difference Δp. Sensitivity can
be increased by changing the manometer design or by using two immiscible liquids of slightly different
density. Analysis of an inclined manometer is illustrated in Example 3.2.

Students sometimes have trouble analyzing multiple-liquid manometer situations. The following
rules of thumb are useful:

1 Any two points at the same elevation in a continuous region of the same liquid are at the same
pressure.

2 Pressure increases as one goes down a liquid column (remember the pressure change on diving into a
swimming pool).

Example 3.1 SYSTOLIC AND DIASTOLIC PRESSURE

Normal blood pressure for a human is 120=80 mmHg. Bymodeling a sphygmomanometer pressure gage as a U-tube manometer,
convert these pressures to psig.

Given: Gage pressures of 120 and 80 mmHg.

Find: The corresponding pressures in psig.

Solution: Apply hydrostatic equation to points A, A0, and B.

Governing equation:
p−p0 =Δp= ρgh ð3:1Þ

Assumptions:

1 Static fluid.

2 Incompressible fluids.

3 Neglect air density ð�Hg densityÞ.
Applying the governing equation between points A0 and B (and pB is atmospheric and therefore zero gage):

pA0 = pB + ρHggh= SGHgρH2Ogh

In addition, the pressure increases as we go downward from point A0 to the bottom of the manometer, and decreases by
an equal amount as we return up the left branch to point A. This means points A and A0 have the same pressure, so we end
up with

pA = pA0 = SGHgρH2Ogh

Substituting SGHG =13:6 and ρH2O = 1:94 slug=ft3 from Appendix A.1 yields for the systolic pressure ðh=120 mmHgÞ

psystolic = pA =13:6× 1:94
slug
ft3

× 32:2
ft
s2

× 120 mm×
in:

25:4 mm

×
ft

12 in:
×

lbf �s2
slug � ft

psystolic = 334 lbf=ft2 = 2:32 psi
psystolic ��������������������������

By a similar process, the diastolic pressure ðh=80 mmHgÞ is

pdiastolic = 1:55 psi
pdiastolic �����������������������������������

Blood
pressure

Air

Hg

h
B

A'A

Notes:
• Two points at the same level in a
continuous single fluid have the same
pressure.

• In manometer problems we neglect
change in pressure with depth for a
gas: ρgas� ρliquid.

• This problem shows the conversion from
mmHg to psi, using Eq. 3.7: 120mmHg is
equivalent to about 2.32 psi. More gen-
erally, 1 atm=14:7 psi= 101 kPa=
760mmHg.
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Example 3.2 ANALYSIS OF INCLINED-TUBE MANOMETER

An inclined-tube reservoir manometer is constructed as shown. Derive a general expression for the liquid deflection, L, in the
inclined tube, due to the applied pressure difference, Δp. Also obtain an expression for the manometer sensitivity, and discuss the
effect on sensitivity of D, d, θ, and SG.

Given: Inclined-tube reservoir manometer.

Find: Expression for L in terms of Δp.
General expression for manometer sensitivity.
Effect of parameter values on sensitivity.

Solution: Use the equilibrium liquid level as a reference.

Governing equations:

p−p0 =Δp= ρgh SG=
ρ

ρH2O

Assumptions:

1 Static fluid.

2 Incompressible fluid.

Applying the governing equation between points 1 and 2

p1−p2 =Δp= ρlgðh1 + h2Þ ð1Þ
To eliminate h1, we recognize that the volume of manometer liquid remains constant; the volume displaced from the reservoir
must equal the volume that rises in the tube, so

πD2

4
h1 =

πd2

4
L or h1 = L

d
D

� �2

In addition, from the geometry of the manometer, h2 = L sin θ. Substituting into Eq. 1 gives

Δp= ρlg L sin θ+ L
d
D

� �2
" #

= ρlgL sin θ+
d
D

� �2
" #

Thus

L=
Δp

ρlg sin θ+
d
D

� �2
" #

L ��������������������������������
To find the sensitivity of the manometer, we need to compare this to the deflection h a simple U-tube manometer, using water
(density ρ), would experience,

h=
Δp
ρg

The sensitivity s is then

s=
L
h
=

1

SGl sin θ+
d
D

� �2
" #

S �����������������������������
where we have used SGl = ρl=ρ. This result shows that to increase sensitivity, SGl, sin θ, and d=D each should be made as small as
possible. Thus the designer must choose a gage liquid and two geometric parameters to complete a design, as discussed below.

D L

d

Gage liquid, ρl

1

h
2

h
1

Equilibrium
liquid level

2
Δp

θ

D L

d
Δp

θ
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To find the pressure difference Δp between two points separated by a series of fluids, we can use the
following modification of Eq. 3.1:

Δp= g
X
i

ρihi ð3:8Þ

where ρi and hi represent the densities and depths of the various fluids, respectively. Use care in applying
signs to the depths hi; they will be positive downwards, and negative upwards. Example 3.3 illustrates
the use of a multiple-liquid manometer for measuring a pressure difference.

Gage Liquid

The gage liquid should have the smallest possible specific gravity to increase sensitivity. In addition, the gage liquid must be safe
(without toxic fumes or flammability), be immiscible with the fluid being gaged, suffer minimal loss from evaporation, and
develop a satisfactory meniscus. Thus the gage liquid should have relatively low surface tension and should accept dye to
improve its visibility.

Tables A.1, A.2, and A.4 show that hydrocarbon liquids satisfy many of these criteria. The lowest specific gravity is about 0.8,
which increases manometer sensitivity by 25 percent compared to water.

Diameter Ratio

The plot shows the effect of diameter ratio on sensitivity for a vertical reservoir manometer with gage liquid of unity specific
gravity. Note that d=D=1 corresponds to an ordinary U-tube manometer; its sensitivity is 0.5 because for this case the total
deflection will be h, and for each side it will be h=2, so L= h=2. Sensitivity doubles to 1.0 as d=D approaches zero because
most of the level change occurs in the measuring tube.

The minimum tube diameter d must be larger than about 6 mm to avoid excessive capillary effect. The maximum reservoir
diameterD is limited by the size of the manometer. IfD is set at 60 mm, so that d=D is 0.1, then ðd=DÞ2 = 0:01, and the sensitivity
increases to 0.99, very close to the maximum attainable value of 1.0.

Inclination Angle

The final plot shows the effect of inclination angle on sensitivity for ðd=DÞ=0. Sensitivity increases sharply as inclination angle
is reduced below 30 degrees. A practical limit is reached at about 10 degrees: The meniscus becomes indistinct and the level hard
to read for smaller angles.

Summary

Combining the best values (SG=0:8, d=D=0:1, and θ=10 degrees) gives a
manometer sensitivity of 6.81. Physically this is the ratio of observed gage
liquid deflection to equivalent water column height. Thus the deflection in the
inclined tube is amplified 6.81 times compared to a vertical water column. With
improved sensitivity, a small pressure difference can be read more accurately than
with a water manometer, or a smaller pressure difference can be read with the
same accuracy.

θ = 90°
SG = 1

1.00.80.60.40.20
0.0

0.2

0.4

0.6

0.8

1.0

S
e
n
si

ti
vi

ty
,

s 
(—

)

Diameter ratio, d/D (—)

d/D = 0

SG = 1

9080706050403020100
0

1

2

3

4

5

6

S
e
n
si

ti
vi

ty
,

s 
(—

)

Angle, θ (degrees)

The graphs were generated from
the Excel workbook for this

problem. This workbook has more detailed
graphs, showing sensitivity curves for a
range of values of d=D and θ.
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Example 3.3 MULTIPLE-LIQUID MANOMETER

Water flows through pipes A and B. Lubricating oil is in the upper portion of the inverted U. Mercury is in the bottom of the
manometer bends. Determine the pressure difference, pA−pB, in units of lbf=in:2

Given: Multiple-liquid manometer as shown.

Find: Pressure difference, pA−pB, in lbf=in:2

Solution:

Governing equations:

Δp= g
X
i

ρihi SG=
ρ

ρH2O

Assumptions:

1 Static fluid.

2 Incompressible fluid.

Applying the governing equation, working from point
B to A

pA−pB =Δp= gðρH2Od5 + ρHgd4−ρoild3

+ ρHgd2−ρH2Od1Þ
ð1Þ

This equation can also be derived by repeatedly using
Eq. 3.1 in the following form:

p2−p1 = ρgðh2−h1Þ
Beginning at point A and applying the equation
between successive points along the manometer gives

pC−pA = + ρH2Ogd1

pD−pC = −ρHggd2

pE−pD = + ρoilgd3

pF−pE = −ρHggd4

pB−pF = −ρH2Ogd5

Multiplying each equation by minus one and adding, we obtain Eq. 1

pA−pB = ðpA−pCÞ+ ðpC−pDÞ+ ðpD−pEÞ+ ðpE−pFÞ+ ðpF−pBÞ
= −ρH2Ogd1 + ρHggd2−ρoilgd3 + ρHggd4 + ρH2Ogd5

Substituting ρ= SGρH2O with SGρHg = 13:6 and SGoil =0:88 (Table A.2), yields

pA−pB = gð−ρH2Od1 + 13:6ρH2Od2−0:88ρH2Od3 + 13:6ρH2Od4 + ρH2Od5Þ
= gρH2Oð−d1 + 13:6d2−0:88d3 + 13:6d4 + d5Þ

pA−pB = gρH2Oð−10+ 40:8−3:52+ 68+ 8Þin:
pA−pB = gρH2O × 103:3 in:

=32:2
ft
s2

× 1:94
slug
ft3

× 103:3 in:×
ft

12 in:
×

ft2

144 in:2
×

lbf �s2
slug � ft

pA−pB =3:73 lbf=in:2
pA−pB ����������������������������������

A

10" 4"

4"
5"

8"

3"

H2O

Oil

Hg

H2O

B

A

d1 = 10" 4"

d3 = 4"
d4 = 5"

d5 = 8"

d2 = 3"

H2O

Oil

Hg

H2O

B

D

C
E

F
h

z

z = h = 0

This problem shows use of both Eq. 3.1 and
Eq. 3.8. Use of either equation is a matter
of personal preference.
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Atmospheric pressure may be obtained from a barometer, in which the height of a mercury column
is measured. The measured height may be converted to pressure using Eq. 3.1 and the data for specific
gravity of mercury given in Appendix A, as discussed in the Notes of Example 3.1. Although the vapor
pressure of mercury may be neglected, for precise work, temperature and altitude corrections must be
applied to the measured level and the effects of surface tension must be considered. The capillary effect
in a tube caused by surface tension was illustrated in Example 2.3.

Gases

In many practical engineering problems density will vary appreciably with altitude, and accurate results
will require that this variation be accounted for. Pressure variation in a compressible fluid can be eval-
uated by integrating Eq. 3.6 if the density can be expressed as a function of p or z. Property information or
an equation of state may be used to obtain the required relation for density. Several types of property
variation may be analyzed as shown in Example 3.4.

The density of gases generally depends on pressure and temperature. The ideal gas equation of state,

p= ρRT ð1:1Þ
where R is the gas constant (see Appendix A) and T the absolute temperature, accurately models
the behavior of most gases under engineering conditions. However, the use of Eq. 1.1 introduces the
gas temperature as an additional variable. Therefore, an additional assumption must be made about tem-
perature variation before Eq. 3.6 can be integrated.

In the U.S. Standard Atmosphere the temperature decreases linearly with altitude up to an
elevation of 11.0 km. For a linear temperature variation with altitude given by T = T0−mz, we obtain,
from Eq. 3.6,

dp= −ρg dz= −
pg
RT

dz= −
pg

RðT0−mzÞdz

Separating variables and integrating from z=0 where p= p0 to elevation z where the pressure is p givesZ p

p0

dp
p

= −
Z z

0

gdz
RðT0−mzÞ

Then

ln
p
p0

=
g
mR

ln
T0−mz
T0

� �
=

g
mR

ln 1−
mz
T0

� �

and the pressure variation, in a gas whose temperature varies linearly with elevation, is given by

p= p0 1−
mz
T0

� �g=mR

= p0
T
T0

� �g=mR

ð3:9Þ

Hydraulic systems are used to transmit forces from one location to another using a fluid as the
medium. For example, automobile hydraulic brakes develop pressures up to 10 MPa (1500 psi); aircraft
and machinery hydraulic actuation systems frequently are designed for pressures up to 40 MPa
(6000 psi), and jacks use pressures to 70 MPa (10,000 psi). Special-purpose laboratory test equipment
is commercially available for use at pressures to 1000 MPa (150,000 psi)!

Although liquids are generally considered incompressible at ordinary pressures, density changes
may be appreciable at high pressures. Bulk moduli of hydraulic fluids also may vary sharply at high
pressures. In problems involving unsteady flow, both compressibility of the fluid and elasticity of
the boundary structure (e.g., the pipe walls) must be considered. Analysis of problems such as water
hammer noise and vibration in hydraulic systems, actuators, and shock absorbers quickly becomes com-
plex and is beyond the scope of this book, although the same principles apply as in this section.
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Example 3.4 PRESSURE AND DENSITY VARIATION IN THE ATMOSPHERE

The maximum power output capability of a gasoline or diesel engine decreases with altitude because the air density and hence the
mass flow rate of air decrease. A truck leaves Denver (elevation 5280 ft) on a day when the local temperature and barometric
pressure are 80�F and 24.8 in. of mercury, respectively. It travels through Vail Pass (elevation 10,600 ft), where the temperature is
62�F. Determine the local barometric pressure at Vail Pass and the percent change in density.

Given: Truck travels from Denver to Vail Pass.

Denver: z=5280 ft Vail Pass: z=10,600 ft
p=24:8 in:Hg T =62�F
T =80�F

Find: Atmospheric pressure at Vail Pass.
Percent change in air density between Denver and Vail.

Solution:

Governing equations:
dp
dz

= −ρg p= ρRT

Assumptions:

1 Static fluid.

2 Air behaves as an ideal gas.

We shall consider four assumptions for property variations with altitude.

(a) If we assume temperature varies linearly with altitude, Eq. 3.9 gives

p
p0

=
T
T0

� �g=mR

Evaluating the constant m gives

m=
T0−T
z−z0

=
ð80−62Þ�F

ð10:6− 5:28Þ103 ft = 3:38× 10−3 �F=ft

and

g
mR

=32:2
ft
s2

×
ft

3:38× 10−3�F
×

lbm � �R
53:3 ft � lbf ×

slug
32:2 lbm

×
lbf �s2
slug � ft = 5:55

Thus

p
p0

=
T
T0

� �g=mR

=
460+ 62
460+ 80

� �5:55

= ð0:967Þ5:55 = 0:830

and

p=0:830 p0 = ð0:830Þ24:8 in:Hg=20:6 in:Hg p ����������������
Note that temperature must be expressed as an absolute temperature in the ideal gas equation of state.

The percent change in density is given by

ρ−ρ0
ρ0

=
ρ

ρ0
−1=

p
p0

T0
T
−1=

0:830
0:967

−1= −0:142 or −14:2%

Δρ

ρ0 ����������������
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3.4 Hydrostatic Force on Submerged Surfaces
Now that we have determined how the pressure varies in a static fluid, we can examine the force on a
surface submerged in a liquid.

In order to determine completely the resultant force acting on a submerged surface, we must specify:

1 The magnitude of the force.

2 The direction of the force.

3 The line of action of the force.

We shall consider both plane and curved submerged surfaces.

Hydrostatic Force on a Plane Submerged Surface

A plane submerged surface, on whose upper face we wish to determine the resultant hydrostatic force, is
shown in Fig. 3.5. The coordinates are important: They have been chosen so that the surface lies in the xy

(b) For ρ assumed constant ð= ρ0Þ,

p= p0−ρ0gðz−z0Þ= p0−
p0gðz−z0Þ

RT0
= p0 1−

gðz−z0Þ
RT0

	 


p=20:2 in:Hg and
Δρ

ρ0
= 0

p,
Δρ

ρ0 ������������������
(c) If we assume the temperature is constant, then

dp= −ρg dz= −
p
RT

g dz

and Z p

p0

dp
p

= −
Z z

z0

g
RT

dz

p= p0 exp
−gðz−z0Þ

RT

	 

For T = constant = T0,

p=20:6 in:Hg and
Δρ

ρ0
= −16:9%

p,
Δρ

ρ0 ������������������
(d) For an adiabatic atmosphere p=ρk = constant,

p= p0
T
T0

� �k=k−1

= 22:0 in:Hg and
Δρ

ρ0
= −8:2%

p,
Δρ

ρ0 ����������������
We note that over the modest change in elevation the predicted pressure is not

strongly dependent on the assumed property variation; values calculated under
four different assumptions vary by a maximum of approximately 9 percent. There
is considerably greater variation in the predicted percent change in density. The
assumption of a linear temperature variation with altitude is the most reasonable
assumption.

This problem shows use of the ideal gas
equation with the basic pressure-height
relation to obtain the change in pressure
with height in the atmosphere under
various atmospheric assumptions.
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plane, and the origin O is located at the intersection of the plane surface (or its extension) and the free
surface. As well as the magnitude of the force FR, we wish to locate the point (with coordinates x0,y0)
through which it acts on the surface.

Since there are no shear stresses in a static fluid, the hydrostatic force on any element of the surface
acts normal to the surface. The pressure force acting on an element dA= dx dy of the upper surface is
given by

dF = p dA

The resultant force acting on the surface is found by summing the contributions of the infinitesimal
forces over the entire area.

Usually when we sum forces we must do so in a vectorial sense. However, in this case all of the
infinitesimal forces are perpendicular to the plane, and hence so is the resultant force. Its magnitude is
given by

FR =
Z
A
p dA ð3:10aÞ

In order to evaluate the integral in Eq. 3.10a, both the pressure, p, and the element of area, dA, must be
expressed in terms of the same variables.

We can use Eq. 3.7 to express the pressure p at depth h in the liquid as

p= p0 + ρgh

In this expression p0 is the pressure at the free surface ðh=0Þ.
In addition, we have, from the system geometry, h= y sin θ. Using this expression and the above

expression for pressure in Eq. 3.10a,

FR =
Z
A
p dA=

Z
A
ðp0 + ρghÞdA=

Z
A
ðp0 + ρgy sin θÞdA

FR = p0

Z
A
dA+ ρg sin θ

Z
A
y dA= p0A+ ρg sin θ

Z
A
y dA

The integral is the first moment of the surface area about the x axis, which may be writtenZ
A
y dA= ycA

where yc is the y coordinate of the centroid of the area, A. Thus,

FR = p0A+ ρg sin θ ycA= ðp0 + ρghcÞA
or

FR = pcA ð3:10bÞ

h

O
Liquid surface

dF

FR
Liquid,
density = ρ

Edge view

y

y

z

x
dx

y'dAx'

dy

xy xy plane viewed from above

Point of application of FR
(center of pressure)

Ambient pressure, p0

θ

Fig. 3.5 Plane submerged surface.
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where pc is the absolute pressure in the liquid at the location of the centroid of area A. Equation 3.10b
computes the resultant force due to the liquid—including the effect of the ambient pressure p0—on one
side of a submerged plane surface. It does not take into account whatever pressure or force distribution
may be on the other side of the surface. However, if we have the same pressure, p0, on this side as we do
at the free surface of the liquid, as shown in Fig. 3.6, its effect on FR cancels out, and if we wish to obtain
the net force on the surface we can use Eq. 3.10b with pc expressed as a gage rather than absolute
pressure.

In computing FR we can use either the integral of Eq. 3.10a or the resulting Eq. 3.10b. It is important
to note that even though the force can be computed using the pressure at the center of the plate, this is not
the point through which the force acts!

Our next task is to determine ðx0,y0Þ, the location of the resultant force. Let’s first obtain y0 by recog-
nizing that the moment of the resultant force about the x axis must be equal to the moment due to the
distributed pressure force. Taking the sum (i.e., integral) of the moments of the infinitesimal forces
dF about the x axis we obtain

y0FR =
Z
A
yp dA ð3:11aÞ

We can integrate by expressing p as a function of y as before:

y0FR =
Z
A
yp dA=

Z
A
yðp0 + ρghÞdA=

Z
A
ðp0y+ ρgy2 sin θÞdA

= p0

Z
A
y dA+ ρg sin θ

Z
A
y2dA

The first integral is our familiar ycA. The second integral,
R
A y

2dA, is the secondmoment of area about the
x axis, Ixx. We can use the parallel axis theorem, Ixx = Ix̂x̂ +Ay2c , to replace Ixx with the standard second
moment of area, about the centroidal x̂ axis. Using all of these, we find

y0FR = p0ycA+ ρg sin θðIx̂x̂ +Ay2cÞ= ycðp0 + ρgyc sin θÞA+ ρg sin θ Ix̂x̂
= ycðp0 + ρghcÞA+ ρg sin θIx̂x̂ = ycFR + ρg sin θIx̂x̂

Finally, we obtain for y0:

y0 = yc +
ρg sin θ Ix̂x̂

FR
ð3:11bÞ

Equation 3.11b is convenient for computing the location y0 of the force on the submerged side of the
surface when we include the ambient pressure p0. If we have the same ambient pressure acting on
the other side of the surface we can use Eq. 3.10b with p0 neglected to compute the net force,

FR = pcgage A= ρghc A= ρgyc sin θ A

and Eq. 3.11b becomes for this case

h

O
Liquid surface

Liquid,
density = ρ

Edge view

y

z

Ambient pressure, p0

FR

θ

Fig. 3.6 Pressure distribution on plane submerged surface.
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y0 = yc +
Ix̂x̂
Ayc

ð3:11cÞ

Equation 3.11a is the integral equation for computing the location y0 of the resultant force; Eq. 3.11b is a
useful algebraic form for computing y0 when we are interested in the resultant force on the submerged
side of the surface; Eq. 3.11c is for computing y0 when we are interested in the net force for the case when
the same p0 acts at the free surface and on the other side of the submerged surface. For problems that have
a pressure on the other side that is not p0, we can either analyze each side of the surface separately or
reduce the two pressure distributions to one net pressure distribution, in effect creating a system to be
solved using Eq. 3.10b with pc expressed as a gage pressure.

Note that in any event, y0 > yc—the location of the force is always below the level of the plate cen-
troid. This makes sense—as Fig. 3.6 shows, the pressures will always be larger on the lower regions,
moving the resultant force down the plate.

A similar analysis can be done to compute x0, the x location of the force on the plate. Taking the sum
of the moments of the infinitesimal forces dF about the y axis we obtain

x0FR =
Z
A
x p dA ð3:12aÞ

We can express p as a function of y as before:

x0FR =
Z
A
xp dA=

Z
A
xðp0 + ρghÞdA=

Z
A
ðp0x+ ρgxy sin θÞdA

= p0

Z
A
x dA+ ρg sin θ

Z
A
xy dA

The first integral is xcA (where xc is the distance of the centroid from y axis). The second integral isR
A xy dA= Ixy. Using the parallel axis theorem, Ixy = Ix̂ŷ +Axc yc, we find

x0FR = p0xcA+ ρg sin θðIx̂ŷ +AxcycÞ= xcðp0 + ρgyc sin θÞA+ ρg sin θ Ix̂ŷ

= xcðp0 + ρghcÞA+ ρg sin θ Ix̂ŷ = xcFR + ρg sin θ Ix̂ŷ

Finally, we obtain for x0:

x0 = xc +
ρ g sin θ Ix̂ŷ

FR
ð3:12bÞ

Equation 3.12b is convenient for computing x0 when we include the ambient pressure p0. If we have
ambient pressure also acting on the other side of the surface we can again use Eq. 3.10b with p0 neglected
to compute the net force and Eq. 3.12b becomes for this case

x0 = xc +
Ix̂ŷ
Ayc

ð3:12cÞ

Equation 3.12a is the integral equation for computing the location x0 of the resultant force; Eq. 3.12b can
be used for computations when we are interested in the force on the submerged side only; Eq. 3.12c is
useful when we have p0 on the other side of the surface and we are interested in the net force.

In summary, Eqs. 3.10a through 3.12a constitute a complete set of equations for computing the mag-
nitude and location of the force due to hydrostatic pressure on any submerged plane surface. The direc-
tion of the force will always be perpendicular to the plane.

We can now consider several examples using these equations. In Example 3.5 we use both the inte-
gral and algebraic sets of equations, and in Example 3.6 we use only the algebraic set.
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Example 3.5 RESULTANT FORCE ON INCLINED PLANE SUBMERGED SURFACE

The inclined surface shown, hinged along edge A, is 5 m wide. Determine the resultant force, FR, of the water and the air on the
inclined surface.

Given: Rectangular gate, hinged along A, w=5m.

Find: Resultant force, FR, of the water and the air on the gate.

Solution: In order to completely determine FR, we need to find (a) the magnitude and (b)
the line of action of the force (the direction of the force is perpendicular to the surface). We
will solve this problem by using (i) direct integration and (ii) the algebraic equations.

Direct Integration

Governing equations:

p= p0 + ρgh FR =
Z
A
p dA η0FR =

Z
A
ηp dA x0FR =

Z
A
xp dA

Because atmospheric pressure p0 acts on both
sides of the plate its effect cancels, and we
can work in gage pressures ðp= ρghÞ. In
addition, while we could integrate using the
y variable, it will be more convenient here
to define a variable η, as shown in the figure.

Using η to obtain expressions for h and
dA, then

h=D+ η sin 30∘ and d A=w dη

Applying these to the governing equation for
the resultant force,

FR =
Z
A
pdA=

Z L

0
ρgðD+ η sin 30∘Þw dη

= ρgw D η+
η2

2
sin 30∘

	 
L
0
= ρgw DL+

L2

2
sin 30∘

	 

=999

kg
m3 × 9:81

m
s2

× 5m 2 m×4m+
16 m2

2
×
1
2

	 

N �s2
kg �m

FR =588 kN
FR ���������������������������������������������������������

For the location of the force we compute η0 (the distance from the top edge of the plate),

η0FR =
Z
A
ηp dA

Then

η0 =
1
FR

Z
A
ηpdA=

1
FR

Z L

0
ηpw dη=

ρgw
FR

Z L

0
ηðD+ η sin 30∘Þdη

=
ρgw
FR

Dη2

2
+
η3

3
sin 30∘

	 
L
0
=
ρgw
FR

DL2

2
+
L3

3
sin 30∘

	 


=999
kg
m3 × 9:8

m
s2

×
5 m

5:88× 105 N
2 m×16 m2

2
+
64 m3

3
×
1
2

	 

N �s2
kg �m

η0 = 2:22 m and y0 =
D

sin 30∘
+ η0 =

2m
sin 30∘

+2:22 m=6:22 m
y0 ����������������������

D = 2 m

A

L = 4 m30°

h

z

y

Net hydrostatic pressure distribution on gate.

η

D = 2 m

A

L = 4 m30°
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Also, from consideration of moments about the y axis through edge A,

x0 =
1
FR

Z
A
xp dA

In calculating the moment of the distributed force (right side), recall, from your earlier courses in statics, that the centroid of the
area element must be used for x. Since the area element is of constant width, then x=w=2, and

x0 =
1
FR

Z
A

w
2
p dA=

w
2FR

Z
A
p dA=

w
2
= 2:5 m x0 ����������������������

Algebraic Equations

In using the algebraic equations we need to take care in selecting the appropriate set. In this problem we have p0 = patm on both
sides of the plate, so Eq. 3.10b with pc as a gage pressure is used for the net force:

FR = pcA= ρghiA= ρg D+
L
2
sin 30∘

� �
Lw

FR = ρgw DL+
L2

2
sin 30∘

	 

This is the same expression as was obtained by direct integration.

The y coordinate of the center of pressure is given by Eq. 3.11c:

y0 = yc +
Ix̂x̂
Ayc

ð3:11cÞ

For the inclined rectangular gate

yc =
D

sin30∘
+
L
2
=

2 m
sin 30∘

+
4m
2

=6m

A= Lw=4m×5m=20 m2

Ix̂x̂ =
1
12

wL3 =
1
12

× 5 m× ð4 mÞ3 = 26:7 m2

y0 = yc +
Ix̂x̂
Ayc

=6m+26:7m4 ×
1

20m2 ×
1

6m2 =6:22 m
y0 ����������������������

The x coordinate of the center of pressure is given by Eq. 3.12c:

x0 = xc +
Ix̂ŷ
Ayc

ð3:12cÞ

For the rectangular gate Ix̂ŷ = 0 and x0 = xc =2:5 m: ����������������x0
This problem shows:
• Use of integral and algebraic equations.
• Use of the algebraic equations for
computing the net force.

Example 3.6 FORCE ON VERTICAL PLANE SUBMERGED SURFACE WITH
NONZERO GAGE PRESSURE AT FREE SURFACE

The door shown in the side of the tank is hinged along its bottom edge. A pressure of 100 psfg is applied to the liquid free surface.
Find the force, Ft, required to keep the door closed.

Given: Door as shown in the figure.

Find: Force required to keep door shut.
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Solution: This problem requires a free-body diagram (FBD) of the door. The pressure distributions
on the inside and outside of the door will lead to a net force (and its location) that will be included in the
FBD. We need to be careful in choosing the equations for computing the resultant force and its loca-
tion. We can either use absolute pressures (as on the left FBD) and compute two forces (one on each
side) or gage pressures and compute one force (as on the right FBD). For simplicity we will use gage
pressures. The right-hand FBD makes clear we should use Eqs. 3.2 and 3.11b, which were derived for
problems in which we wish to include thc effects of an ambient pressure ðp0Þ, or in other words, for
problems when we have a nonzero gage pressure at the free surface. The components of force due to
the hinge are Ay and Az. The force Ft can be found by taking moments about A (the hinge).

Governing equations:

FR = pcA y0 = yc +
ρg sin θ Ix̂x̂

FR

X
MA =0

The resultant force and its location are

FR = ðp0 + ρghcÞA= p0 + γ
L
2

� �
bL ð1Þ

and

y0 = yc +
ρg sin 90∘ Ix̂x̂

FR
=
L
2
+

γbL3=12

p0 + γ
L
2

� �
bL

=
L
2
+

γL2=12

p0 + γ
L
2

� � ð2Þ

Taking moments about point A X
MA =FtL−FRðL−y0Þ=0 or Ft =FR 1−

y0

L

� �
Using Eqs. 1 and 2 in this equation we find

Ft = p0 + γ
L
2

� �
bL 1−

1
2
−

γ L2=12

p0 + γ
L
2

� �
2
664

3
775

Ft = p0 + γ
L
2

� �
bL
2

+ γ
bL2

12
=
p0bL
2

+
γbL2

6

= 100
lbf
ft2

× 2 ft × 3 ft ×
1
2
+100

lbf
ft3

× 2 ft × 9 ft2 ×
1
6

Ft =600 lbf
Ft ���������������������������������������

ð3Þ

Hinge

2'

3'

Ftp = 100 lbf/ft2 (gage)

Liquid, = 100 lbf/ft3γ

Hinge

h y

z

x Ft

p0 + patm patm

p0 + patm + gLr

Ft

Az
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AL = 3'

2'
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p0 (gage) + gL

Ft
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A

Free-body diagrams of door

p0 = 100 lb/ft2 (gage)

ρ
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y'
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Force free-body diagram
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Hydrostatic Force on a Curved Submerged Surface

For curved surfaces, we will once again derive expressions for the resultant force by integrating the pres-
sure distribution over the surface. However, unlike for the plane surface, we have a more complicated
problem—the pressure force is normal to the surface at each point, but now the infinitesimal area ele-
ments point in varying directions because of the surface curvature. This means that instead of integrating
over an element dA we need to integrate over vector element dA

!
. This will initially lead to a more com-

plicated analysis, but we will see that a simple solution technique will be developed.
Consider the curved surface shown in Fig. 3.7. The pressure force acting on the element of area, dA

!
,

is given by

d F
!
= −p dA

!

where the minus sign indicates that the force acts on the area, in the direction opposite to the area normal.
The resultant force is given by

F
!
R = −

Z
A
pdA

! ð3:13Þ

We can write

F
!
R = îFRx + ĵFRy + k̂FRz

where FRx, FRy, and FRz are the components of F
!
R in the positive x, y, and z directions, respectively.

To evaluate the component of the force in a given direction, we take the dot product of the force with
the unit vector in the given direction. For example, taking the dot product of each side of Eq. 3.13 with
unit vector î gives

FRx =F
!
R � î=

Z
d F
! � î= −

Z
A
p d A

! � î= −
Z
Ax

p dAx

where dAx is the projection of dA
!
on a plane perpendicular to the x axis (see Fig. 3.7), and the minus sign

indicates that the x component of the resultant force is in the negative x direction.

z

x

y

dA

dAx

dAz

dAy

z = z
0

Fig. 3.7 Curved submerged surface.

We could have solved this problem by considering the two separate pressure distributions on each side of the door, leading to
two resultant forces and their locations. Summing moments about point A with these forces would also have yielded the same
value for Ft. Note also that Eq. 3 could have been obtained directly (without sep-
arately finding FR and y0) by using a direct integration approach:

X
MA =FtL−

Z
A
y p dA=0

This problem shows:
• Use of algebraic equations for nonzero
gage pressure at the liquid free surface.

• Use of themoment equation from statics
for computing the required applied
force.
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Since, in any problem, the direction of the force component can be determined by inspection, the use
of vectors is not necessary. In general, the magnitude of the component of the resultant force in the l
direction is given by

FRl =
Z
Al

p dAl ð3:14Þ

where dA1 is the projection of the area element dA on a plane perpendicular to the l direction. The line of
action of each component of the resultant force is found by recognizing that the moment of the resultant
force component about a given axis must be equal to the moment of the corresponding distributed force
component about the same axis.

Equation 3.14 can be used for the horizontal forces FRx and FRy . We have the interesting result that
the horizontal force and its location are the same as for an imaginary vertical plane surface of the same
projected area. This is illustrated in Fig. 3.8, where we have called the horizontal force FH .

Figure 3.8 also illustrates how we can compute the vertical component of force: With atmospheric
pressure at the free surface and on the other side of the curved surface the net vertical force will be equal
to the weight of fluid directly above the surface. This can be seen by applying Eq. 3.14 to determine the
magnitude of the vertical component of the resultant force, obtaining

FRz =FV =
Z

p d Az

Since p= ρgh,

FV =
Z

ρgh dAz =
Z

ρg dV---

where ρgh dAz = ρg dV--- is the weight of a differential cylinder of liquid above the element of surface area,
dAz, extending a distance h from the curved surface to the free surface. The vertical component of the
resultant force is obtained by integrating over the entire submerged surface. Thus

FV =
Z
Az

ρgh dAz =
Z
V---
ρg dV--- = ρgV---

In summary, for a curved surface we can use two simple formulas for computing the horizontal and
vertical force components due to the fluid only (no ambient pressure),

FH = pcA and FV = ρgV--- ð3:15Þ

where pc and A are the pressure at the center and the area, respectively, of a vertical plane surface of the
same projected area, and V--- is the volume of fluid above the curved surface.

It can be shown that the line of action of the vertical force component passes through the center of
gravity of the volume of liquid directly above the curved surface as shown in Example 3.7.

We have shown that the resultant hydrostatic force on a curved submerged surface is specified in
terms of its components. We recall from our study of statics that the resultant of any force system can be
represented by a force-couple system, i.e., the resultant force applied at a point and a couple about that
point. If the force and the couple vectors are orthogonal (as is the case for a two-dimensional curved
surface), the resultant can be represented as a pure force with a unique line of action. Otherwise the
resultant may be represented as a “wrench,” also having a unique line of action.

Curved surface

+
FH

FV
FV =   gV

FH = pcA

Liquid volume

ρ

Fig. 3.8 Forces on curved submerged surface.
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Example 3.7 FORCE COMPONENTS ON A CURVED SUBMERGED SURFACE

The gate shown is hinged atO and has constant width, w=5m. The equation of the surface is x= y2=a, where a=4m. The depth
of water to the right of the gate isD=4m. Find the magnitude of the force, Fa, applied as shown, required to maintain the gate in
equilibrium if the weight of the gate is neglected.

Given: Gate of constant width, w=5m.
Equation of surface in xy plane is x= y2=a, where a=4m.
Water stands at depth D=4m to the right of the gate.
Force Fa is applied as shown, and weight of gate is to be neglected. (Note that for
simplicity we do not show the reactions at O.)

Find: Force Fa required to maintain the gate in equilibrium.

Solution: We will take moments about point O after finding the magnitudes and locations of the horizontal and vertical forces
due to the water. The free body diagram (FBD) of the system is shown above in part (a). Before proceeding we need to think about
how we compute FV , the vertical component of the fluid force—we have stated that it is equal (in magnitude and location) to
the weight of fluid directly above the curved surface. However, we have no fluid directly above the gate, even though it is clear
that the fluid does exert a vertical force! We need to do a “thought experiment” in which we imagine having a system with
water on both sides of the gate (with null effect), minus a system with water directly above the gate (which generates fluid
forces). This logic is demonstrated above: the system FBDðaÞ= the null FBDðbÞ− the fluid forces FBDðcÞ. Thus the vertical
and horizontal fluid forces on the system, FBD(a), are equal and opposite to those on FBD(c). In summary, the magnitude
and location of the vertical fluid force FV are given by the weight and location of the centroid of the fluid “above” the gate;
the magnitude and location of the horizontal fluid force FH are given by the magnitude and location of the force on an equivalent
vertical flat plate.

Governing equations:

FH = pcA y0 = yc +
Ix̂x̂
Ayc

FV = ρgV--- x0 =water center of gravity

For FH , the centroid, area, and second moment of the equivalent vertical flat plate are, respectively, yc = hc =D=2,A=Dw,
and Ix̂x̂ =wD3=12.

FH = pcA= ρghcA

= ρg
D
2
Dw= ρg

D2

2
w=999

kg
m3 × 9:81

m
s2

×
ð4 m2Þ

2
× 5 m×

N �s2
kg �m

FH =392 kN

ð1Þ

and

y0 = yc +
Ix̂x̂
Ayc

=
D
2
+
wD3=12
wDD=2

=
D
2
+
D
6

y0 =
2
3
D=

2
3
× 4 m=2:67 m ð2Þ

(a) System FBD

x

y
Fa

FH
FV

(b) Null fluid forces (c) Fluid forces
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–
O
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x =
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___
a
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O
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3.5 Buoyancy and Stability
If an object is immersed in a liquid, or floating on its surface, the net vertical force acting on it due to
liquid pressure is termed buoyancy. Consider an object totally immersed in static liquid, as shown
in Fig. 3.9.

The vertical force on the body due to hydrostatic pressure may be found most easily by considering
cylindrical volume elements similar to the one shown in Fig. 3.9.

For FV , we need to compute the weight of water “above” the gate. To do this we define a differential column of volume
ðD−yÞw dx and integrate

FV = ρgV--- = ρg
Z D2=a

0
ðD−yÞw dx= ρgw

Z D2=a

0
ðD−

ffiffiffi
a
p

x1=2Þdx⁣

= ρgw Dx−
2
3
ffiffiffi
a
p

x3=2
	 
D3=a

0
= ρgw

D3

a
−
2
3
ffiffiffi
a
p D3

a3=2

	 

=
ρgwD3

3a

FV =999
kg
m3 × 9:81

m
s2

× 5 m×
ð4Þ3m3

3
×

1
4 m

×
N � s2
kg � m =261 kN ð3Þ

The location x0 of this force is given by the location of the center of gravity of the water “above” the gate. We recall from statics
that this can be obtained by using the notion that the moment of FV and the moment of the sum of the differential weights about
the y axis must be equal, so

x0FV = ρg
Z D2=a

0
xðD−yÞw dx= ρgw

Z D2=a

0
ðD−

ffiffiffi
a
p

x3=2Þdx

x0FV = ρgw
D
2
x2−

2
5
ffiffiffi
a
p

x5=2
	 
D2=a

0
= ρgw

D5

2a2
−
2
5
ffiffiffi
a
p D5

a5=2

	 

=
ρgwD5

10a2

x0 =
ρgwD5

10a2FV
=
3D2

10a
=

3
10

×
ð4Þ2 m2

4 m
=1:2 m ð4Þ

Now that we have determined the fluid forces, we can finally take moments about O (taking care to use the appropriate signs),
using the results of Eqs. 1 through 4X

MO = − lFa + x0FV + ðD−y0ÞFH =0

Fa =
1
l
½x0FV + ðD−y0ÞFH �

=
1
5 m
½1:2 m×261 kN+ ð4−2:67Þm×392 kN�

Fa =167 kN
Fa �������������������������

This problem shows:
• Use of vertical flat plate equations for the
horizontal force, and fluid weight equa-
tions for the vertical force, on a curved
surface.

• The use of “thought experiments” to
convert a problem with fluid below a
curved surface into an equivalent prob-
lem with fluid above.

z

h
h

1

h
2

p0

Liquid,
density = ρd

dA

V

Fig. 3.9 Immersed body in static liquid.

693.5 Buoyancy and Stability



We recall that we can use Eq. 3.7 for computing the pressure p at depth h in a liquid,

p= p0 + ρgh

The net vertical pressure force on the element is then

dFz = ðp0 + ρgh2ÞdA−ðp0 + ρgh1ÞdA= ρgðh2−h1ÞdA
But ðh2−h1ÞdA= dV---, the volume of the element. Thus

Fz =
Z

dFz =
Z
V---
ρgdV--- = ρgV---

where V--- is the volume of the object. Hence we conclude that for a submerged body the buoyancy force
of the fluid is equal to the weight of displaced fluid,

Fbuoyancy = ρgV--- ð3:16Þ

This relation reportedly was used by Archimedes in 220 B.C. to determine the gold content in the
crown of King Hiero II. Consequently, it is often called “Archimedes’ Principle.” In more current tech-
nical applications, Eq. 3.16 is used to design displacement vessels, flotation gear, and submersibles [1].

The submerged object need not be solid. Hydrogen bubbles, used to visualize streaklines and time-
lines in water (see Section 2.2), are positively buoyant; they rise slowly as they are swept along by the
flow. Conversely, water droplets in oil are negatively buoyant and tend to sink.

Airships and balloons are termed “lighter-than-air” craft. The density of an ideal gas is proportional to
molecular weight, so hydrogen and helium are less dense than air at the same temperature and pressure.
Hydrogen ðMm =2Þ is less dense than helium ðMm =4Þ, but extremely flammable, whereas helium is
inert. Hydrogen has not been used commercially since the disastrous explosion of the German passenger
airshipHindenburg in 1937. The use of buoyancy force to generate lift is illustrated in Example 3.8.

Example 3.8 BUOYANCY FORCE IN A HOT AIR BALLOON

A hot air balloon (approximated as a sphere of diameter 50 ft) is to lift a basket load of 600 lbf. To what temperature must the air
be heated in order to achieve liftoff?

Given: Atmosphere at STP, diameter of balloon d=50 ft, and load Wload =600 lbf.

Find: The hot air temperature to attain liftoff.

Solution: Apply the buoyancy equation to determine the lift generated by atmosphere, and apply
the vertical force equilibrium equation to obtain the hot air density. Then use the ideal gas equation
to obtain the hot air temperature.

Governing equations:

Fbuoyancy = ρgV---
P

Fy =0 p= ρRT

Assumptions:

1 Ideal gas.

2 Atmospheric pressure throughout.

Summing vertical forces X
Fy¼Fbuoyancy−Whot air−Wload¼ ρatmgV---−ρhot airgV---−Wload¼ 0

Rearranging and solving for ρhot air (using data from Appendix A),

Air at STP

Basket

Hot air
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Equation 3.16 predicts the net vertical pressure force on a body that is totally submerged in a single
liquid. In cases of partial immersion, a floating body displaces its own weight of the liquid in which
it floats.

The line of action of the buoyancy force, which may be found using the methods of Section 3.4, acts
through the centroid of the displaced volume. Since floating bodies are in equilibriumunder body and buoy-
ancy forces, the locationof the lineofactionof thebuoyancyforcedetermines stability, as showninFig. 3.10.

The weight of an object acts through its center of gravity, CG. In Fig. 3.10a, the lines of action of the
buoyancy and the weight are offset in such a way as to produce a couple that tends to right the craft. In
Fig. 3.10b, the couple tends to capsize the craft.

Ballast may be needed to achieve roll stability. Woodenwarships carried stone ballast low in the hull
to offset the weight of the heavy cannon on upper gun decks.Modern ships can have stability problems as
well: overloaded ferry boats have capsized when passengers all gathered on one side of the upper deck,
shifting theCG laterally. In stacking containers highon the deckof a container ship, care is needed to avoid
raising the center of gravity to a level that may result in the unstable condition depicted in Fig. 3.10b.

For a vessel with a relatively flat bottom, as shown in Fig. 3.10a, the restoring moment increases as
roll angle becomes larger. At some angle, typically that at which the edge of the deck goes below water
level, the restoring moment peaks and starts to decrease. The moment may become zero at some large
roll angle, known as the angle of vanishing stability. The vessel may capsize if the roll exceeds this angle;
then, if still intact, the vessel may find a new equilibrium state upside down.

The actual shape of the restoring moment curve depends on hull shape. A broad beam gives a large
lateral shift in the line of action of the buoyancy force and thus a high restoring moment. High freeboard
above the water line increases the angle at which the moment curve peaks, but may make the moment
drop rapidly above this angle.

ρhot air = ρatm−
Wload

gV---
= ρatm−

6Wload

πd3g

=0:00238
slug
ft3

−6×
600 lbf

πð50Þ3 ft3 ×
s2

32:2 ft
×
slug � ft
s2 � lbf

ρhot air = ð0:00238−0:000285Þslug
ft3

= 0:00209
slug
ft3

Finally, to obtain the temperature of this hot air, we can use the ideal gas equation
in the following form

phot air
ρhot airRThot air

=
patm

ρatmRTatm
and with phot air = patm

Thot air = Tatm
ρatm
ρhot air

= ð460+ 59Þ∘R×
0:00238
0:00209

= 591∘R

Thot air = 131∘F
Thot air �����������������������������������

Notes:
• Absolute pressures and temperatures are
always used in the ideal gas equation.

• This problem demonstrates that for
lighter-than-air vehicles the buoyancy
force exceeds the vehicle weight—that is,
the weight of fluid (air) displaced exceeds
the vehicle weight.

buoyancy

buoyancygravity

gravity

(a) Stable (b) Unstable

CG

CG

Fig. 3.10 Stability of floating bodies.
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Sailing vessels are subjected to large lateral forces as wind engages the sails (a boat under sail in a
brisk wind typically operates at a considerable roll angle). The lateral wind force must be counteracted by
a heavily weighted keel extended below the hull bottom. In small sailboats, crew members may lean far
over the side to add additional restoring moment to prevent capsizing [2].

Within broad limits, the buoyancy of a surface vessel is adjusted automatically as the vessel rides
higher or lower in the water. However, craft that operate fully submerged must actively adjust buoyancy
and gravity forces to remain neutrally buoyant. For submarines this is accomplished using tanks which
are flooded to reduce excess buoyancy or blown out with compressed air to increase buoyancy [1]. Air-
ships may vent gas to descend or drop ballast to rise. Buoyancy of a hot-air balloon is controlled by
varying the air temperature within the balloon envelope.

For deep ocean dives use of compressed air becomes impractical because of the high pressures (the
Pacific Ocean is over 10 km deep; seawater pressure at this depth is greater than 1000 atmospheres!).
A liquid such as gasoline, which is buoyant in seawater, may be used to provide buoyancy. However,
because gasoline is more compressible than water, its buoyancy decreases as the dive gets deeper.
Therefore it is necessary to carry and drop ballast to achieve positive buoyancy for the return trip
to the surface.

The most structurally efficient hull shape for airships and submarines has a circular cross-section.
The buoyancy force passes through the center of the circle. Therefore, for roll stability the CG must be
located below the hull centerline. Thus the crew compartment of an airship is placed beneath the hull
to lower the CG.

3.6 Fluids in Rigid-Body Motion (on the Web)

3.7 Summary and Useful Equations
In this chapter we have reviewed the basic concepts of fluid statics. This included:

✓ Deriving the basic equation of fluid statics in vector form.
✓ Applying this equation to compute the pressure variation in a static fluid:

• Incompressible liquids: pressure increases uniformly with depth.
• Gases: pressure decreases nonuniformly with elevation (dependent on other thermody-

namic properties).
✓ Study of:

• Gage and absolute pressure.
• Use of manometers and barometers.

✓ Analysis of the fluid force magnitude and location on submerged:
• Plane surfaces.
• Curved surfaces.

✓ Derivation and use of Archimedes’ Principle of Buoyancy.
✓ Analysis of rigid-body fluid motion (on the web).

Note: Most of the equations in the table below have a number of constraints or limitations—be sure
to refer to their page numbers for details!

Useful Equations
Hydrostatic pressure variation: dp

dz
= −ρg≡−γ

(3.6) Page 50

Hydrostatic pressure variation (incompressible
fluid):

p−p0 =Δp= ρgh (3.7) Page 52
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Table (Continued)

Hydrostatic pressure variation (several
incompressible fluids):

Δp= g
P

i ρihi (3.8) Page 55

Hydrostatic force on submerged plane (integral
form):

FR =
Z
A
p dA

(3.10a) Page 60

Hydrostatic force on submerged plane: FR = pcA (3.10b) Page 60

Location y0 of hydrostatic force on submerged
plane (integral):

y0FR =
Z
A
yp dA

(3.11a) Page 61

Location y0 of hydrostatic force on submerged
plane (algebraic):

y0 = yc +
ρg sin θ Ix̂x̂

FR

(3.11b) Page 61

Location y0 of hydrostatic force on submerged
plane (p0 neglected):

y0 = yc +
Ix̂x̂
Ayc

(3.11c) Page 62

Location x0 of hydrostatic force on submerged
plane (integral):

x0FR =
Z
A
x p dA

(3.12a) Page 62

Location x0 of hydrostatic force on submerged
plane (algebraic):

x0 = xc +
ρg sin θ Ix̂ŷ

FR

(3.12b) Page 62

Location x0 of hydrostatic force on submerged
plane (p0 neglected):

x0 = xc +
I x̂ŷ

A yc
(3.12c) Page 62

Horizontal and vertical hydrostatic forces on
curved submerged surface:

FH = pcA
and FV = ρgV---

(3.15) Page 67

Buoyancy force on submerged object: Fbuoyancy = ρgV--- (3.16) Page 70

We have now concluded our introduction to the fundamental concepts of fluid mechanics, and the
basic concepts of fluid statics. In the next chapter we will begin our study of fluids in motion.

R E F E R E N C E S
1. Burcher, R., and L. Rydill, Concepts in Submarine Design.
Cambridge, UK: Cambridge University Press, 1994.

2. Marchaj, C. A., Aero-Hydrodynamics of Sailing, rev. ed.
Camden, ME: International Marine Publishing, 1988.

P R O B L E M S

Standard Atmosphere
3.1 Because the pressure falls, water boils at a lower temperature
with increasing altitude. Consequently, cake mixes and boiled eggs,
among other foods, must be cooked different lengths of time. Deter-
mine the boiling temperature of water at 1000 and 2000 m elevation
on a standard day, and compare with the sea-level value.

3.2 Ear “popping” is an unpleasant phenomenon sometimes experi-
enced when a change in pressure occurs, for example in a fast-
moving elevator or in an airplane. If you are in a two-seater airplane
at 3000 m and a descent of 100 m causes your ears to “pop,” what
is the pressure change that your ears “pop” at, in millimeters of
mercury? If the airplane now rises to 8000 m and again begins

descending, how far will the airplane descend before your ears
“pop” again? Assume a U.S. Standard Atmosphere.

3.3When you are on a mountain face and boil water, you notice that
the water temperature is 195�F. What is your approximate altitude?
The next day, you are at a location where it boils at 185�F. How high
did you climb between the two days? Assume a U.S. Standard
Atmosphere.

3.4Your pressure gauge indicates that the pressure in your cold tires
is 0.25 MPa gage on a mountain at an elevation of 3500 m. What is
the absolute pressure? After you drive down to sea level, your tires
have warmed to 25�C. What pressure does your gauge now indicate?
Assume a U.S. Standard Atmosphere.
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Pressure Variation in a Static Fluid
3.5 A 125-mL cube of solid oak is held submerged by a tether as
shown. Calculate the actual force of the water on the bottom surface
of the cube and the tension in the tether.

SG = 0.8

Oil

Water

patm

0.3 m

0.5 m

P3.5

Diameter, D = 50 mm

h = 25 mm

d = 10 mm

H = 200 mm

F

P3.6

3.6 The tube shown is filled with mercury at 20�C. Calculate the
force applied to the piston.

3.7 Calculate the absolute and gage pressure in an open tank of crude
oil 2.4 m below the liquid surface. If the tank is closed and pressurized
to 130 kPa, what are the absolute and gage pressures at this location?

3.8 An open vessel contains carbon tetrachloride to a depth of 6 ft
and water on the carbon tetrachloride to a depth of 5 ft. What is
the pressure at the bottom of the vessel?

3.9 A hollow metal cube with sides 100 mm floats at the interface
between a layer of water and a layer of SAE 10W oil such that 10% of
the cube is exposed to the oil. What is the pressure difference
between the upper and lower horizontal surfaces?What is the average
density of the cube?

3.10 Compressed nitrogen ð140 lbmÞ is stored in a spherical tank of
diameter D=2:5 ft at a temperature of 77�F. What is the pressure
inside the tank? If the maximum allowable stress in the tank is
30 ksi, find the minimum theoretical wall thickness of the tank.

3.11 If at the surface of a liquid the specific weight is γo, with z and p
both zero, show that, if E=constant, the specific weight and pressure
are given by

γ =
E

ðz+E=γoÞ
and p= −E ln 1+

γoz
E

� �
Calculate specific weight and pressure at a depth of 2 km assuming
γo =10:0 kN=m3 and E=2070MPa.

3.12 In the deep ocean the compressibility of seawater is significant
in its effect on ρ and p. If E=2:07× 109 Pa, find the percentage
change in the density and pressure at a depth of 10,000 metres as
compared to the values obtained at the same depth under the incom-
pressible assumption. Let ρo =1020 kg=m3 and the absolute pres-
sure po =101:3 kPa

3.13 Assuming the bulk modulus is constant for seawater, derive an
expression for the density variation with depth, h, below the surface.
Show that the result may be written

ρ ≈ ρ0 + bh

where ρ0 is the density at the surface. Evaluate the constant b. Then,
using the approximation, obtain an equation for the variation of pressure

with depth below the surface. Determine the depth in feet at which the
error in pressure predicted by the approximate solution is 0.01 percent.

3.14An inverted cylindrical container is lowered slowly beneath the
surface of a pool of water. Air trapped in the container is compressed
isothermally as the hydrostatic pressure increases. Develop an expres-
sion for the water height, y, inside the container in terms of the con-
tainer height, H, and depth of submersion, h. Plot y=H versus h=H.

3.15Awater tank filledwith water to a depth of 16 ft has an inspection
cover ð1 in:×1 in:Þ at its base, held in place by a plastic bracket. The
bracket can hold a load of 9 lbf. Is the bracket strong enough? If it is,
what would the water depth have to be to cause the bracket to break?

3.16 A partitioned tank as shown contains water and mercury. What
is the gage pressure in the air trapped in the left chamber? What pres-
sure would the air on the left need to be pumped to in order to bring
the water and mercury free surfaces level?

Mercury

Water

1 m

0.75 m 3.75 m

2.9 m 3 m

3 m

P3.16

3.17 Consider the two-fluid manometer shown. Calculate the
applied pressure difference.

l =

10.2 mm

Water

Carbon
tetrachloride

p1 p2

++

P3.17

3.18 The manometer shown contains water and kerosene. With both
tubes open to the atmosphere, the free-surface elevations differ by
H0 = 20:0 mm. Determine the elevation difference when a pressure
of 98.0 Pa gage is applied to the right tube.

Kerosene

Water

H0 =

20 mm

P3.18

3.19 Determine the gage pressure in kPa at point a, if liquid A has
SG=1:20 and liquid B has SG=0:75. The liquid surrounding point
a is water, and the tank on the left is open to the atmosphere.
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Liquid B

Liquid A

0.25 m

0.4 m
0.125 m

0.9 m

Water
a

P3.19

3.20 With the manometer reading as shown, calculate px.

Oil
(SG 0.85)

30 in.

60 in.Mercury

px

P3.20

3.21 Calculate px−py for this inverted U-tube manometer.

20 in.

10 in.

Oil(SG 0.90)

60 in.

Water

py

px

P3.21

3.22 An inclined gauge having a tube of 3-mm bore, laid on a slope
of 1:20, and a reservoir of 25-mm-diameter contains silicon oil (SG
0.84). What distance will the oil move along the tube when a pressure
of 25-mm of water is connected to the gauge?

3.23 Water flows downward along a pipe that is inclined at 30∘

below the horizontal, as shown. Pressure difference pA−pB is due
partly to gravity and partly to friction. Derive an algebraic expression
for the pressure difference. Evaluate the pressure difference if L=5 ft
and h=6 in.

Mercury h__
2

h__
2

z g

A

B

L

Water

a

30°

P3.23

3.24 A reservoir manometer has vertical tubes of diameter
D=18mm and d =6mm. The manometer liquid is Meriam red
oil. Develop an algebraic expression for liquid deflection L in the
small tube when gage pressure Δp is applied to the reservoir. Evaluate
the liquid deflection when the applied pressure is equivalent to
25 mm of water gage.

D = 18 mm

x

L

Dp

Equilibrium level

d = 6 mm

P3.24

3.25A rectangular tank, open to the atmosphere, is filled with water
to a depth of 2.5 m as shown. A U-tube manometer is connected to
the tank at a location 0.7 m above the tank bottom. If the zero level of
the Meriam blue manometer fluid is 0.2 m below the connection,
determine the deflection l after the manometer is connected and all
air has been removed from the connecting leg.

l

0.2 m

Zero
level

0.7 m

2.5 m
3 m

P3.25

3.26 The sketch shows a sectional view through a submarine. Cal-
culate the depth of submergence, y. Assume the specific weight of
seawater is 10:0 kN=m3.

Atmos. pressure 74 mm Hg

60ʺ

200 mm

Conventional
barometer

200 mm

840 mm

Hg
Hg

P3.26

3.27 Themanometer reading is 6 in. when the funnel is empty (water
surface at A). Calculate the manometer reading when the funnel is
filled with water.
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Mercury

5 ft d

A

Water

10 ft

P3.27

3.28A reservoir manometer is calibrated for use with a liquid of spe-

cific gravity 0.827. The reservoir diameter is 5=8 in: and the vertical

tube diameter is 3=16 in. Calculate the required distance between

marks on the vertical scale for 1 in. of water pressure difference.

3.29 The inclined-tube manometer shown has D = 96 mm and

d = 8 mm. Determine the angle, θ, required to provide a 5:1 increase

in liquid deflection, L, compared with the total deflection in a regular

U-tube manometer. Evaluate the sensitivity of this inclined-tube

manometer.

D L

d
Δp

θ

P3.29, P3.30

3.30 The inclined-tube manometer shown has D = 76 mm and

d = 8 mm, and is filled with Meriam red oil. Compute the angle, θ,

that will give a 15-cm oil deflection along the inclined tube for an

applied pressure of 25 mm of water gage. Determine the sensitivity

of this manometer.

3.31 A barometer accidentally contains 6.5 inches of water on top of

the mercury column (so there is also water vapor instead of a vacuum

at the top of the barometer). On a day when the temperature is 70�F,

the mercury column height is 28.35 inches (corrected for thermal

expansion). Determine the barometric pressure in psia. If the ambient

temperature increased to 85�F and the barometric pressure did not

change, would the mercury column be longer, be shorter, or remain

the same length? Justify your answer.

3.32 A water column stands 50 mm high in a 2.5-mm diameter

glass tube. What would be the column height if the surface tension

were zero? What would be the column height in a 1.0-mm diame-

ter tube?

3.33 Consider a small-diameter open-ended tube inserted at the

interface between two immiscible fluids of different densities.

Derive an expression for the height difference Δh between the inter-

face level inside and outside the tube in terms of tube diameter D,

the two fluid densities ρ1 and ρ2, and the surface tension σ and

angle θ for the two fluids’ interface. If the two fluids are water

and mercury, find the height difference if the tube diameter is 40 mils

ð1 mil = 0:001 in:Þ.
3.34 Compare the height due to capillary action of water exposed

to air in a circular tube of diameter D = 0:5 mm, and between two

infinite vertical parallel plates of gap a = 0:5 mm.

3.35Based on the atmospheric temperature data of the U.S. Standard

Atmosphere of Fig. 3.3, compute and plot the pressure variation with

altitude, and compare with the pressure data of Table A.3.

3.36 At ground level in Denver, Colorado, the atmospheric pressure

and temperature are 83:2 kPa and 25�C. Calculate the pressure on

Pike’s Peak at an elevation of 2690 m above the city assuming

(a) an incompressible and (b) an adiabatic atmosphere. Plot the ratio

of pressure to ground level pressure in Denver as a function of ele-

vation for both cases.

3.37 If atmospheric pressure at the ground is 101:3 kPa and temper-

ature is 15�C, calculate the pressure 7.62 km above the ground,

assuming (a) no density variation, (b) isothermal variation of density

with pressure, and (c) adiabatic variation of density with pressure.

3.38 If the temperature in the atmosphere is assumed to vary line-

arly with altitude so T = To−αz where To is the sea level temperature

and α= −dT=dz is the temperature lapse rate, find pðzÞ when air is

taken to be a perfect gas. Give the answer in terms of po, α, g, R and

z only.

3.39 A door 1 m wide and 1.5 m high is located in a plane vertical

wall of a water tank. The door is hinged along its upper edge, which is

1 m below the water surface. Atmospheric pressure acts on the outer

surface of the door and at the water surface. (a) Determine the mag-

nitude and line of action of the total resultant force from all fluids

acting on the door. (b) If the water surface gage pressure is raised

to 0.3 atm, what is the resultant force and where is its line of action?

(c) Plot the ratios F=F0 and y0=yc for different values of the surface

pressure ratio ps=patm. (F0 is the resultant force when ps=patm.)

3.40 A hydropneumatic elevator consists of a piston-cylinder

assembly to lift the elevator cab. Hydraulic oil, stored in an accu-

mulator tank pressurized by air, is valved to the piston as needed

to lift the elevator. When the elevator descends, oil is returned to

the accumulator. Design the least expensive accumulator that can

satisfy the system requirements. Assume the lift is 3 floors, the

maximum load is 10 passengers, and the maximum system pressure

is 800 kPa gage. For column bending strength, the piston diameter

must be at least 150 mm. The elevator cab and piston have a com-

bined mass of 3000 kg, and are to be purchased. Perform the anal-

ysis needed to define, as a function of system operating pressure,

the piston diameter, the accumulator volume and diameter, and

the wall thickness. Discuss safety features that your company

should specify for the complete elevator system. Would it be

preferable to use a completely pneumatic design or a completely

hydraulic design? Why?

Hydrostatic Force on Submerged Surfaces
3.41 Semicircular plane gate AB is hinged along B and held by hor-

izontal force FA applied at A. The liquid to the left of the gate is water.

Calculate the force FA required for equilibrium.

FAA

B

R = 10 ft

H = 25 ft

Gate:
side view

P3.41
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3.42 A circular gate 3 m in diameter has its center 2.5 m below a
water surface and lies in a plane sloping at 60∘. Calculate magnitude,
direction, and location of total force on the gate.

3.43 For the situation shown, find the air pressure in the tank in psi.
Calculate the force exerted on the gate at the support B if the gate is
10 ft wide. Show a free body diagram of the gate with all the forces
drawn in and their points of application located.

3
ft

2 ft

6 ftWater

Hinge

Rectangular
gate

Air at pα
A

B

P3.43

3.44 What is the pressure at A? Draw a free body diagram of the
10-ft wide gate showing all forces and the locations of their lines
of action. Calculate the minimum force P necessary to keep the gate
closed.

6 ft

4 ft

8 ft
Air

Air

Hinge

A

P

0il (SG = 0.90)

P3.44

3.45 A plane gate of uniform thickness holds back a depth of water
as shown. Find the minimum weight needed to keep the gate closed.

θ L = 3 m
= 30°

Water

w = 2 m

P3.45

3.46 A rectangular gate (width w=2m) is hinged as shown, with a
stop on the lower edge. At what depth H will the gate tip?

Hinge

Stop

Water

0.55 m

0.45 m

H

P3.46

3.47 Gates in the Poe Lock at Sault Ste. Marie, Michigan, close a
channel W =34 m wide, L=360 m long, and D=10m deep. The
geometry of one pair of gates is shown; each gate is hinged at the
channel wall. When closed, the gate edges are forced together at
the center of the channel by water pressure. Evaluate the force
exerted by the water on gate A. Determine the magnitude and direc-
tion of the force components exerted by the gate on the hinge.
Neglect the weight of the gate.

x

yPlan view:
Hinge

Gate A
W = 34 m

15°

Water

P3.47

3.48 Calculate the minimum force P necessary to hold a uniform
12 ft square gate weighing 500 lb closed on a tank of water under
a pressure of 10 psi. Draw a free body of the gate as part of your
solution.

Water

12
 ft Hinge

45°

Air
at

p = 0

O

P

Air
at

p = 10 psi

P3.48

3.49 Calculate magnitude and location of the resultant force of
water on this annular gate.

Hub3 m d 1.5 m d

1m

Gate

Water

P3.49
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3.50 A vertical rectangular gate 2.4 m wide and 2.7 m high is sub-
jected to water pressure on one side, the water surface being at the
top of the gate. The gate is hinged at the bottom and is held by a hor-
izontal chain at the top. What is the tension in the chain?

3.51 A window in the shape of an isosceles triangle and hinged at
the top is placed in the vertical wall of a form that contains liquid
concrete. Determine the minimum force that must be applied at
point D to keep the window closed for the configuration of form
and concrete shown. Plot the results over the range of concrete depth
0≤ c≤ a

b = 0.3 m

a = 0.4 m
c = 0.25 m

D

Hinge line

P3.51

3.52 A large open tank contains water and is connected to a 6-ft-
diameter conduit as shown. A circular plug is used to seal the conduit.
Determine the magnitude, direction, and location of the force of the
water on the plug.

D = 6 ft

9 ft

Plug

Water

P3.52

3.53 The circular access port in the side of a water standpipe has a
diameter of 0.6 m and is held in place by eight bolts evenly spaced
around the circumference. If the standpipe diameter is 7 m and the
center of the port is located 12 m below the free surface of the water,
determine (a) the total force on the port and (b) the appropriate bolt
diameter.

3.54 The gate AOC shown is 6 ft wide and is hinged along O.
Neglecting the weight of the gate, determine the force in bar AB.
The gate is sealed at C.

6 ft
O

8 ft

12 ft

3 ft

Water

A B

C

P3.54

3.55 The gate shown is hinged at H. The gate is 3 m wide normal to
the plane of the diagram. Calculate the force required at A to hold the
gate closed.

F

A

30°

3 m
Water

1.5 m
H

P3.55

3.56 A solid concrete dam is to be built to hold back a depth
D of water. For ease of construction the walls of the dam must be
planar. Your supervisor asks you to consider the following dam
cross-sections: a rectangle, a right triangle with the hypotenuse in
contact with the water, and a right triangle with the vertical in contact
with the water. The supervisor wishes you to determine which of
these would require the least amount of concrete. What will your
report say? You decide to look at one more possibility: a nonright tri-
angle, as shown. Develop and plot an expression for the cross-section
area A as a function of a, and find the minimum cross-sectional area.

Water

D

b

b

a

P3.56

3.57 For the dam shown, what is the vertical force of the water on
the dam?

Top

Front Side

Water

3 ft

3 ft

3 ft

3 ft

3 ft 3 ft 3 ft6 ft 3 ft 3 ft 3 ft

3 ft

3 ft

3 ft

3 ft

P3.57

3.58 The parabolic gate shown is 2 m wide and pivoted at O;
c=0:25 m−1,D=2m, and H =3m. Determine (a) the magnitude
and line of action of the vertical force on the gate due to the water,
(b) the horizontal force applied at A required to maintain the gate in
equilibrium, and (c) the vertical force applied at A required to main-
tain the gate in equilibrium.
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H
D

O

Gate

y = cx2

x

A

y

Water

P3.58

3.59 An open tank is filled with water to the depth indicated. Atmos-

pheric pressure acts on all outer surfaces of the tank. Determine the

magnitude and line of action of the vertical component of the force of

the water on the curved part of the tank bottom.

10 ft

12 ft

10 ft

4 ft

Water

P3.59

3.60 A dam is to be constructed using the cross-section shown.

Assume the dam width is w= 160 ft. For water height H = 9 ft, cal-

culate the magnitude and line of action of the vertical force of water

on the dam face. Is it possible for water forces to overturn this dam?

Under what circumstances will this happen?

7 ft 1.67 ft

H = 9 ft

A = 1 ft
B = 10 ft2

xy – Ay = B

Water

y
x

10 ft

2 ft

P3.60

3.61 The quarter cylinder AB is 10 ft long. Calculate magnitude,

direction, and location of the resultant force of the water on AB.

5 
ft 

R

8 ft

A

B

P3.61

3.62 Calculate the magnitude, direction (horizontal and vertical

components are acceptable), and line of action of the resultant force

exerted by the water on the cylindrical gate 30 ft long.

10 ft

P3.62

3.63 A hemispherical shell 1.2 m in diameter is connected to

the vertical wall of a tank containing water. If the center of the

shell is 1.8 m below the water surface, what are the vertical and

horizontal force components on the shell? On the top half of

the shell?

3.64 A gate, in the shape of a quarter-cylinder, hinged at A and

sealed at B, is 3 m wide. The bottom of the gate is 4.5 m below

the water surface. Determine the force on the stop at B if the gate

is made of concrete; R= 3 m.

R
B

A 

D

Water

P3.64

3.65 A cylindrical weir has a diameter of 3 m and a length of 6 m.

Find the magnitude and direction of the resultant force acting on the

weir from the water.

1.5 m

D = 3.0 m3.0 m

P3.65

3.66 A curved surface is formed as a quarter of a circular cylinder

with R= 0:750 m as shown. The surface is w= 3:55 m wide. Water

stands to the right of the curved surface to depth H = 0:650 m. Cal-

culate the vertical hydrostatic force on the curved surface. Evaluate

the line of action of this force. Find the magnitude and line of action

of the horizontal force on the surface.

θ
R

Water H

P3.66
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Buoyancy and Stability
3.67 If you throw an anchor out of your canoe but the rope is too
short for the anchor to rest on the bottom of the pond, will your canoe
float higher, lower, or stay the same? Prove your answer.

3.68 The cylinder shown is supported by an incompressible liquid
of density ρ, and is hinged along its length. The cylinder, of massM,
length L, and radius R, is immersed in liquid to depth H. Obtain a
general expression for the cylinder specific gravity versus the ratio
of liquid depth to cylinder radius, α=H=R, needed to hold the cyl-
inder in equilibrium for 0≤ α<1. Plot the results.

H

R

Hinge

P3.68

3.69 A hydrometer is a specific gravity indicator, the value being
indicated by the level at which the free surface intersects the stem
when floating in a liquid. The 1.0 mark is the level when in distilled
water. For the unit shown, the immersed volume in distilled water is
15 cm3. The stem is 6 mm in diameter. Find the distance, h, from the
1.0 mark to the surface when the hydrometer is placed in a nitric acid
solution of specific gravity 1.5.

h
1.0

Nitric

acid

P3.69

3.70A cylindrical can 76 mm in diameter and 152 mm high, weigh-
ing 1.11 N, contains water to a depth of 76 mm. When this can is
placed in water, how deep will it sink?

3.71 If the l0-ft-long box is floating on the oil-water system, calcu-
late how much the box and its contents must weigh.

2 ft

1 ft

8 ft

Oil (SG = 0.80)

Water

P3.71

3.72 The timber weighs 40 lb=ft3 and is held in a horizontal position
by the concrete ð150 lb=ft3Þ anchor. Calculate the minimum total
weight which the anchor may have.

6 in. × 6 in. × 20 ft

Timber Water

Anchor

P3.72

3.73 Find the specific weight of the sphere shown if its volume
is 0:025m3. State all assumptions. What is the equilibrium position
of the sphere if the weight is removed?

10 kg

Water
= 0.025 m3V

P3.73

3.74 The fat-to-muscle ratio of a person may be determined from a
specific gravity measurement. The measurement is made by immer-
sing the body in a tank of water and measuring the net weight.
Develop an expression for the specific gravity of a person in terms
of their weight in air, net weight in water, and SG= f ðTÞ for water.
3.75 An open tank is filled to the top with water. A steel cylindrical
container, wall thickness δ=1mm, outside diameter D=100 mm,
and height H =1m, with an open top, is gently placed in the water.
What is the volume of water that overflows from the tank? Howmany
1 kg weights must be placed in the container to make it sink? Neglect
surface tension effects.

3.76 If the timber weighs 670 N, calculate its angle of inclination
when the water surface is 2.1 m above the pivot. Above what depth
will the timber stand vertically?

152 mm × 152 mm × 3.6 m

2.1 m

P3.76

3.77 The barge shown weighs 40 tons and carries a cargo of 40 tons.
Calculate its draft in freshwater.

50 ft

8 ft

40 ft

20 ft

20 ft

P3.77

3.78 Quantify the experiment performed by Archimedes to identify
thematerial content of King Hiero’s crown. Assume you canmeasure
the weight of the king’s crown in air, Wa, and the weight in water,
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Ww. Express the specific gravity of the crown as a function of these
measured values.

3.79 Hot-air ballooning is a popular sport. According to a recent
article, “hot-air volumes must be large because air heated to 150�F
over ambient lifts only 0:018 lbf=ft3 compared to 0.066 and 0.071
for helium and hydrogen, respectively.” Check these statements
for sea-level conditions. Calculate the effect of increasing the hot-
air maximum temperature to 250�F above ambient.

3.80 It is desired to use a hot air balloon with a volume of
320;000 ft3 for rides planned in summer morning hours when the
air temperature is about 48�F. The torch will warm the air inside
the balloon to a temperature of 160�F. Both inside and outside pres-
sures will be “standard” (14.7 psia). Howmuchmass can be carried by
the balloon (basket, fuel, passengers, personal items, and the compo-
nent of the balloon itself ) if neutral buoyancy is to be assured? What
mass can be carried by the balloon to ensure vertical takeoff accelera-
tion of 2:5 ft=s2? For this, consider that both balloon and inside air
have to be accelerated, as well as some of the surrounding air (to make
way for the balloon). The rule of thumb is that the total mass subject to
acceleration is the mass of the balloon, all its appurtenances, and twice
its volume of air. Given that the volume of hot air is fixed during the
flight, what can the balloonists do when they want to go down?

3.81 The opening in the bottom of the tank is square and slightly less
than 2 ft on each side. The opening is to be plugged with a wooden
cube 2 ft on a side.

(a) What weightW should be attached to the wooden cube to insure
successful plugging of the hole? The wood weighs 40 lb=ft3.

(b) What upward force must be exerted on the block to lift it and
allow water to drain from the tank?

W

Water
5 ft

2 ft

2 ft

P3.81

3.82 A balloon has a weight (including crew but not gas) of 2:2 kN
and a gas-bag capacity of 566 m3. At the ground it is partially inflated
with 445 N of helium. How high can this balloon rise in the U.S.
Standard Atmosphere (Appendix A) if the helium always assumes
the pressure and temperature of the atmosphere?

3.83 A helium balloon is to lift a payload to an altitude of 40 km,
where the atmospheric pressure and temperature are 3.0 mbar and
−25�C, respectively. The balloon skin is polyester with specific grav-
ity of 1.28 and thickness of 0.015 mm. To maintain a spherical shape,
the balloon is pressurized to a gage pressure of 0.45 mbar. Determine
the maximum balloon diameter if the allowable tensile stress in the
skin is limited to 62MN=m2. What payload can be carried?

3.84 The stem of a glass hydrometer used to measure specific grav-
ity is 5 mm in diameter. The distance between marks on the stem is
2 mm per 0.1 increment of specific gravity. Calculate the magnitude
and direction of the error introduced by surface tension if the
hydrometer floats in kerosene. (Assume the contact angle between
kerosene and glass is 0∘.)

3.85 A sphere of radius R is partially immersed to depth d in
a liquid of specific gravity SG. Obtain an algebraic expression
for the buoyancy force acting on the sphere as a function of
submersion depth d. Plot the results over the range of water depth
0≤ d≤ 2R.

3.86 A sphere of 1-in.-radius made from material of specific
gravity of SG=0:95, is submerged in a tank of water. The sphere
is placed over a hole of 0.075-in.-radius in the tank bottom. When
the sphere is released, will it stay on the bottom of the tank or float
to the surface?

a = 0.075 in.

H = 2.5 ft R = 1 in.

P3.86

3.87You are in the Bermuda Triangle when you see a bubble plume
eruption (a large mass of air bubbles, similar to foam) off to the side
of the boat. Do you want to head toward it and be part of the action?
What is the effective density of the water and air bubbles in the draw-
ing on the right that will cause the boat to sink? Your boat is 10 ft
long, and weight is the same in both cases.

Floating

1ft

7ft

60°

Sea water

Sinking

Water rushing in!

Sea water

and air

bubbles

P3.87

3.88 Three steel balls (each about half an inch in diameter) lie at the
bottom of a plastic shell floating on the water surface in a partially
filled bucket. Someone removes the steel balls from the shell and
carefully lets them fall to the bottom of the bucket, leaving the plastic
shell to float empty. What happens to the water level in the bucket?
Does it rise, go down, or remain unchanged? Explain.

3.89 A proposed ocean salvage scheme involves pumping air into
“bags” placed within and around a wrecked vessel on the sea bottom.
Comment on the practicality of this plan, supporting your conclu-
sions with analyses.

81Problems



C H A P T E R 4

Basic Equations in Integral Form
for a Control Volume
4.1 Basic Laws for a System

4.2 Relation of System Derivatives to the
Control Volume Formulation

4.3 Conservation of Mass

4.4 Momentum Equation for Inertial Control Volume

4.5 Momentum Equation for Control Volume
with Rectilinear Acceleration

4.6 Momentum Equation for Control Volume
with Arbitrary Acceleration (on the Web)

4.7 The Angular-Momentum Principle

4.8 The First and Second Laws of Thermodynamics

4.9 Summary and Useful Equations

Case Study

Ocean Current Power: The Vivace

The flow ofwater in the currents of the ocean and rivers represent
a large source of renewable power. Although ocean and river cur-
rents move slowly compared to typical wind speeds, they carry a
great deal of energy because water is about 1000 times as dense
as air, and the energy flux in a current is directly proportional to
density. Hence water moving at 10 mph exerts about the same
amountof forceasa 100-mphwind.Oceanandriver currents thus
contain an enormous amount of energy that can be captured and
converted to a usable form. For example, near the surface of the
Florida Straits Current, the relatively constant extractable energy
density is about 1 kW=m2 of flow area. It has been estimated that
capturing just 1/1000th of the available energy from the Gulf
Streamcould supply Floridawith 35 percent of its electrical needs.

Ocean current energy is at an early stage of development, and
only a small number of prototypes and demonstration units have
so far been tested. A team of young engineers at the University of
Strathclyde in Scotland recently did a survey of current develop-
ments. They found that perhaps the most obvious approach is to

use submerged turbines. The first figure shows a horizontal-axis
turbine (which is similar to a wind turbine) and a vertical-axis
turbine. In each case, columns, cables, or anchors are required
to keep the turbines stationary relative to the currentswithwhich
they interact. For example, they may be tethered with cables, in
such a way that the current interacts with the turbine tomaintain
its location and stability; this is analogous to underwater kite
flying in which the turbine plays the role of kite and the
ocean-bottom anchor, the role of kite flyer. Turbines can include
venturi-shaped shrouds around the blades to increase the flow
speed and power output from the turbine. In regions with pow-
erful currents over a large area, turbines could be assembled in
clusters, similar to wind turbine farms. Space would be needed
between the water turbines to eliminate wake-interaction
effects and to allow access bymaintenance vessels. The engineers
at Strathclyde also discuss the third device shown in the figure, an
oscillating foil design, in which a hydrofoil’s angle of attackwould
be repeatedly adjusted to generate a lift force that is upward,
then downward. The mechanism and controls would use this
oscillating force to generate power. The advantage of this design
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A horizontal- and a vertical-axis turbine, and an oscillating foil device.
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We are now ready to study fluids in motion, so we have to decide how we are to examine a flowing fluid.
There are two options available to us, discussed in Chapter 1:

1 We can study the motion of an individual fluid particle or group of particles as they move through
space. This is the system approach, which has the advantage that the physical laws (e.g., Newton’s
second law, F

!
= dP

!
=dt, where F

!
is the force and dP

!
=dt is the rate of momentum change of the fluid)

apply to matter and hence directly to the system. One disadvantage is that in practice the math asso-
ciated with this approach can become somewhat complicated, usually leading to a set of partial dif-
ferential equations.Wewill look at this approach in detail in Chapter 5. The system approach is needed
if we are interested in studying the trajectory of particles over time, for example, in pollution studies.

2 We can study a region of space as fluid flows through it, which is the control volume approach. This is
very often the method of choice, because it has widespread practical application; for example, in aero-
dynamics we are usually interested in the lift and drag on a wing (which we select as part of the control
volume) rather than what happens to individual fluid particles. The disadvantage of this approach is

is that there are no rotating parts that could become fouled, but
the disadvantage is that the control systems involved would be
quite complex.

For ocean current energy to be commercially successful, a
number of technical challenges need to be addressed, including
cavitation problems, prevention of marine growth buildup on
turbine blades, and corrosion resistance. Environmental concerns
include the protection of wildlife (fish and marine mammals)
from turning turbine blades.

As the research in these types of turbines and foils continues,
engineers are also looking at alternative devices. A good example
is the work of Professor Michael Bernitsas, of the Department of
Naval Architecture and Marine Engineering at the University of
Michigan. He has developed a novel device, called a VIVACE
converter, which uses the well-known phenomenon of vortex-
induced vibrations to extract power from a flowing current. We
are all familiar with vortex-induced vibrations, in which an object
in a flow ismade to vibrate due to vortices shedding first fromone
side and then the other side of the object’s rear. For example,
cables or wires often vibrate in the wind, sometimes sufficiently
to make noise (Aeolian tones); many factory chimneys and car
antennas have a spiral surface built into them specifically to sup-
press this vibration. Another famous example is the collapse of
the Tacoma Narrows Bridge in Washington State in 1940, which
many engineers believe was due to vortex-shedding of cross
winds (a quite scary, but fascinating, video of this can easily be
found on the Internet). Professor Bernitas has made a source of
energy froma phenomenon that is usually a nuisance or a danger!

The figure shows a conceptualization of his device, which con-
sists of an assemblage of horizontal submerged cylinders. As the
current flows across these, vortex shedding occurs, generating an
oscillating up-and-down force on each cylinder. Instead of the
cylinders being rigidly mounted, they are attached to a hydraulic
system designed in such a way that, as the cylinders are forced up
and down, they generate power. Whereas existing turbine sys-
tems need a current of about 5 knots to operate efficiently, the
Vivace can generate energy using currents that are as slow as
1 knot (most of the earth’s currents are slower than 3 knots).

The device also does not obstruct views or access on the water’s
surface because it can be installed on the river or ocean floor. It’s
probable that this new technology is gentler on aquatic life
because it is slowmoving andmimics the natural vortex patterns
created by the movement of swimming fish. An installation of
1× 1:5 km (less than 1=2mi2) in a current of 3 knots could gener-
ate enoughpower for 100,000homes. A prototype, funded by the
U.S. Department of Energy and the Office Naval Research, is cur-
rently operating in the Marine Hydrodynamics Laboratory at the
University of Michigan.

The design of a device such as the VIVACE converter brings in
the basic relations for a control volume as presented in this chap-
ter. The flow of water through it is governed by the conservation
of mass principle, the forces by the momentum principles, and
the energy produced by thermodynamic laws. In addition to these
basic relations, the phenomenon of vortex shedding is discussed
in Chapter 9; the vortex flowmeter, which exploits the phenom-
enon to measure flow rate, is discussed in Chapter 8. We will dis-
cuss airfoil design in Chapter 9 and concepts behind the operation
of turbines and propellers in Chapter 10.

C
o

ur
te

sy
 P

ro
fe

ss
o

r 
M

ic
ha

el
 B

er
ni

ts
as

A VIVACE converter.
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that the physical laws apply to matter and not directly to regions of space, so we have to perform some
math to convert physical laws from their system formulation to a control volume formulation.

We will examine the control volume approach in this chapter. The alert reader will notice that this chap-
ter has the word integral in its title, and Chapter 5 has the word differential. This is an important dis-
tinction: It indicates that we will study a finite region in this chapter and the motion of a particle (an
infinitesimal) in Chapter 5 (although in Section 4.4 we will look at a differential control volume to derive
the famous Bernoulli equation). The agenda for this chapter is to review the physical laws as they apply
to a system (Section 4.1); develop some math to convert from a system to a control volume (Section 4.2)
description; and obtain formulas for the physical laws for control volume analysis by combining the
results of Sections 4.1 and 4.2.

4.1 Basic Laws for a System
The basic laws we will apply are conservation of mass, Newton’s second law, the angular-momentum
principle, and the first and second laws of thermodynamics. For converting these system equations to
equivalent control volume formulas, it turns out we want to express each of the laws as a rate equation.

Conservation of Mass

For a system (by definition a specified amount of matter,M, we have chosen) we have the simple result
thatM = constant. However, as discussed above, we wish to express each physical law as a rate equation,
so we write

dM
dt

�
system

= 0 ð4:1aÞ

where

Msystem =
Z
MðsystemÞ

dm=
Z
V--ðsystemÞ

ρ dV--- ð4:1bÞ

Newton’s Second Law

For a systemmoving relative to an inertial reference frame, Newton’s second law states that the sum of all
external forces acting on the system is equal to the time rate of change of linear momentum of the system,

F
!
=
dP
!

dt

!
system

ð4:2aÞ

where the linear momentum of the system is given by

P
!
system =

Z
MðsystemÞ

V
!
dm=

Z
V--ðsystemÞ

V
!
ρ dV--- ð4:2bÞ

The Angular-Momentum Principle

The angular-momentum principle for a system states that the rate of change of angular momentum is
equal to the sum of all torques acting on the system,

T
!
=
dH
!

dt

!
system

ð4:3aÞ

where the angular momentum of the system is given by

H
!
system =

Z
MðsystemÞ

r! × V
!
dm=

Z
V--ðsystemÞ

r! × V
!
ρ dV--- ð4:3bÞ
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Torque can be produced by surface and body forces (here gravity) and also by shafts that cross the system
boundary,

T
!
= r! ×F

!
s +
Z
MðsystemÞ

r! × g! dm+ T
!
shaft ð4:3cÞ

The First Law of Thermodynamics

The first law of thermodynamics is a statement of conservation of energy for a system,

δQ−δW = dE

The equation can be written in rate form as

_Q− _W =
dE
dt

�
system

ð4:4aÞ

where the total energy of the system is given by

Esystem =
Z
MðsystemÞ

e dm=
Z
V--ðsystemÞ

e ρ dV--- ð4:4bÞ

and

e= u+
V2

2
+ gz ð4:4cÞ

In Eq. 4.4a, _Q (the rate of heat transfer) is positive when heat is added to the system from the surround-
ings; _W (the rate of work) is positive when work is done by the system on its surroundings. In Eq. 4.4c, u
is the specific internal energy, V the speed, and z the height (relative to a convenient datum) of a particle
of substance having mass dm.

The Second Law of Thermodynamics

If an amount of heat, δQ, is transferred to a system at temperature T , the second law of thermodynamics
states that the change in entropy, dS, of the system satisfies

dS≥
δQ
T

On a rate basis we can write

dS
dt

�
system

≥
1
T
_Q ð4:5aÞ

where the total entropy of the system is given by

Ssystem =
Z
MðsystemÞ

s dm=
Z
V--ðsystemÞ

s ρ dV--- ð4:5bÞ

4.2 Relation of System Derivatives to the
Control Volume Formulation
We now have the five basic laws expressed as system rate equations. Our task in this section is to develop
a general expression for converting a system rate equation into an equivalent control volume equation.
Instead of converting the equations for rates of change ofM, P

!
, H
!
, E, and S (Eqs. 4.1a, 4.2a, 4.3a, 4.4a,

and 4.5a) one by one, we let all of them be represented by the symbol N. Hence N represents the amount
of mass, or momentum, or angular momentum, or energy, or entropy of the system. Corresponding to
this extensive property, we will also need the intensive (i.e., per unit mass) property η. Thus

Nsystem =
Z
MðsystemÞ

η dm=
Z
V--ðsystemÞ

η ρ dV--- ð4:6Þ
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Comparing Eq. 4.6 with Eqs. 4.1b, 4.2b, 4.3b, 4.4b, and 4.5b, we see that if:

N =M, then η=1
N =P

!
, then η=V

!

N =H
!
, then η= r!×V

!

N =E, then η= e
N = S, then η= s

How can we derive a control volume description from a system description of a fluid flow? Before
specifically answering this question, we can describe the derivation in general terms. We imagine select-
ing an arbitrary piece of the flowing fluid at some time t0, as shown in Fig. 4.1a—we could imagine
dyeing this piece of fluid, say, blue. This initial shape of the fluid system is chosen as our control volume,
which is fixed in space relative to coordinates xyz. After an infinitesimal time Δt the system will have
moved (probably changing shape as it does so) to a new location, as shown in Fig. 4.1b. The laws we
discussed above apply to this piece of fluid—for example, its mass will be constant (Eq. 4.1a). By
examining the geometry of the system/control volume pair at t= t0 and at t= t0 +Δt, we will be able
to obtain control volume formulations of the basic laws.

Derivation

From Fig. 4.1 we see that the system, which was entirely within the control volume at time t0, is partially
out of the control volume at time t0 +Δt. In fact, three regions can be identified. These are: regions I and
II, which together make up the control volume, and region III, which, with region II, is the location of the
system at time t0 +Δt.

Recall that our objective is to relate the rate of change of any arbitrary extensive property, N, of the
system to quantities associated with the control volume. From the definition of a derivative, the rate of
change of Nsystem is given by

dN
dt

�
system

≡ lim
Δt!0

NsÞt0 +Δt−NsÞt0
Δt

ð4:7Þ

For convenience, subscript s has been used to denote the system in the definition of a derivative
in Eq. 4.7.

From the geometry of Fig. 4.1,

NsÞt0 +Δt = ðNII +NIIIÞt0 +Δt = ðNCV−NI +NIIIÞt0 +Δt

and

NsÞt0 = ðNCVÞt0

y

x
z

y

x
z

Streamlines
at time, t0 Subregion (1)

of region I

Subregion (3)
of region III

I

II

III

System

Control volume

(b) Time, t0 + ∆t(a) Time, t0

Fig. 4.1 System and control volume configuration.
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Substituting into the definition of the system derivative, Eq. 4.7, we obtain

dN
dt

�
s
= lim

Δt!0

ðNCV−NI +NIIIÞt0 +Δt−NCVÞt0
Δt

Since the limit of a sum is equal to the sum of the limits, we can write

dN
dt

�
s
= lim

Δt!0

NCVÞt0 +Δt−NCVÞt0
Δt
�1

+ lim
Δt!0

NIIIÞt0 +Δt

Δt
�2

− lim
Δt!0

NIÞt0 +Δt

Δt
�3

ð4:8Þ

Our task now is to evaluate each of the three terms in Eq. 4.8.
Term�1 in Eq. 4.8 simplifies to

lim
Δt!0

NCVÞt0 +Δt−NCVÞt0
Δt

=
∂NCV

∂t
=

∂
∂t

Z
CV

η ρ dV--- ð4:9aÞ

To evaluate term�2 we first develop an expression for NIIIÞt0 +Δt by looking at the enlarged view of a
typical subregion (subregion (3)) of region III shown in Fig. 4.2. The vector area element d A

!
of the

control surface has magnitude dA, and its direction is the outward normal of the area element. In general,
the velocity vector V

!
will be at some angle α with respect to dA

!
.

For this subregion we have

dNIIIÞt0 +Δt = ðη ρ dV---Þt0 +Δt

We need to obtain an expression for the volume dV--- of this cylindrical element. The vector length of the
cylinder is given by Δl

!
=V
!
Δt. The volume of a prismatic cylinder, whose area d A

!
is at an angle α to its

length Δ l
!
, is given by dV--- =Δl dA cos α=Δl

!� dA!=V
! � dA!Δt. Hence, for subregion (3) we can write

dNIIIÞt0 +Δt = η ρV
! � dA!Δt

Then, for the entire region III we can integrate and for term�2 in Eq. 4.8 obtain

lim
Δt!0

NIIIÞt0 +Δt

Δt
= lim

Δt!0

R
CSIII

dNIIIÞt0 +Δt

Δt
= lim

Δt!0

R
CSIII

η ρV
! � dA!Δt

Δt
=
Z
CSIII

η ρV
! � dA! ð4:9bÞ

We can perform a similar analysis for subregion (1) of region I, and obtain for term in Eq. 4.8

lim
Δt!0

NIÞt0 +Δt

Δt
= −

Z
CS1

η ρV
! � dA! ð4:9cÞ

For subregion (1), the velocity vector acts into the control volume, but the area normal always (by con-
vention) points outward (angle α> π=2), so the scalar product in Eq. 4.9c is negative. Hence the minus
sign in Eq. 4.9c is needed to cancel the negative result of the scalar product to make sure we obtain a
positive result for the amount of matter that was in region I (we can’t have negative matter).

This concept of the sign of the scalar product is illustrated in Fig. 4.3 for (a) the general case of an
inlet or exit, (b) an exit velocity parallel to the surface normal, and (c) an inlet velocity parallel to the
surface normal. Cases (b) and (c) are obviously convenient special cases of (a); the value of the cosine in
case (a) automatically generates the correct sign of either an inlet or an exit.

Control surface III

System boundary
at time t0 + ∆t

∆l = V∆t

V
dA

α

Fig. 4.2 Enlarged view of subregion (3) from Fig. 4.1.

874.2 Relation of System Derivatives to the Control Volume Formulation



We can finally use Eqs. 4.9a, 4.9b, and 4.9c in Eq. 4.8 to obtain

dN
dt

�
system

=
∂
∂t

Z
CV

η ρ dV--- +
Z
CS1

η ρV
! � dA!+

Z
CSIII

η ρV
! � dA!

and the two last integrals can be combined because CSI and CSIII constitute the entire control surface,

dN
dt

�
system

=
∂
∂t

Z
CV

η ρ dV--- +
Z
CS

η ρV
! � dA! ð4:10Þ

Equation 4.10 is the relation we set out to obtain. It is the fundamental relation between the rate of
change of any arbitrary extensive property, N, of a system and the variations of this property associated
with a control volume. Some authors refer to Eq. 4.10 as the Reynolds Transport Theorem.

Physical Interpretation

It took several pages, but we have reached our goal: We now have a formula (Eq. 4.10) that we can use
to convert the rate of change of any extensive property N of a system to an equivalent formulation for
use with a control volume. We can now use Eq. 4.10 in the various basic physical law equations
(Eqs. 4.1a, 4.2a, 4.3a, 4.4a, and 4.5a) one by one, with N replaced with each of the properties M, P

!
,

H
!
, E, and S (with corresponding symbols for η), to replace system derivatives with control volume expres-

sions. Because we consider the equation itself to be “basic” we repeat it to emphasize its importance:

dN
dt

�
system

=
∂
∂t

Z
CV

η ρ dV--- +
Z
CS

η ρV
! � dA! ð4:10Þ

We need to be clear here: The system is the matter that happens to be passing through the chosen control
volume, at the instant we chose. For example, if we chose as a control volume the region contained by an
airplane wing and an imaginary rectangular boundary around it, the system would be the mass of the air
that is instantaneously contained between the rectangle and the airfoil. Before applying Eq. 4.10 to the
physical laws, let’s discuss the meaning of each term of the equation:

dN
dt

�
system

is the rate of change of the system extensive property N. For example, if N =P
!
, we

obtain the rate of change of momentum.
∂
∂t

Z
CV

η ρ dV--- is the rate of change of the amount of property N in the control volume. The termR
CV η ρ dV--- computes the instantaneous value of N in the control volume (

R
CV ρ dV---

is the instantaneous mass in the control volume). For example, if N =P
!
, then η=V

!

and
R
CV V

!
ρdV--- computes the instantaneous amount of momentum in the control

volume.Z
CS
η ρV

! � dA! is the rate at which property N is exiting the surface of the control volume. The term
ρV
! � dA! computes the rate of mass transfer leaving across control surface area

element dA
!
; multiplying by η computes the rate of flux of property N across the

element; and integrating therefore computes the net flux of N out of the control
volume. For example, ifN =P

!
, then η=V

!
and

R
CSV

!
ρV
! � dA! computes the net flux of

momentum out of the control volume.

V · dA = VdA cos

V

dA

CS

(a) General inlet/exit

V · dA = +VdA

V

CS

(b) Normal exit

V · dA = –VdA

V

CS

(c) Normal inlet

dA dA

α

α

Fig. 4.3 Evaluating the scalar product.
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We make two comments about velocity V
!
in Eq. 4.10. First, we reiterate the discussion for Fig. 4.3

that care should be taken in evaluating the dot product: Because A
!
is always directed outwards, the dot

product will be positive when V
!
is outward and negative when V

!
is inward. Second, V

!
is measured with

respect to the control volume: When the control volume coordinates xyz are stationary or moving with a
constant linear velocity, the control volume will constitute an inertial frame and the physical laws
(specifically Newton’s second law) we have described will apply.1

With these comments we are ready to combine the physical laws (Eqs. 4.1a, 4.2a, 4.3a, 4.4a, and
4.5a) with Eq. 4.10 to obtain some useful control volume equations.

4.3 Conservation of Mass
The first physical principle to which we apply this conversion from a system to a control volume descrip-
tion is the mass conservation principle: The mass of the system remains constant,

dM
dt

�
system

= 0 ð4:1aÞ

where

Msystem =
Z
MðsystemÞ

dm=
Z
V--ðsystemÞ

ρ dV--- ð4:1bÞ

The system and control volume formulations are related by Eq. 4.10,

dN
dt

�
system

=
∂
∂t

Z
CV

η ρ dV--- +
Z
CS

η ρV
! � dA! ð4:10Þ

where

Nsystem =
Z
MðsystemÞ

η dm=
Z
V--ðsystemÞ

η ρ dV--- ð4:6Þ

To derive the control volume formulation of conservation of mass, we set

N =M and η=1

With this substitution, we obtain

dM
dt

�
system

=
∂
∂t

Z
CV

ρ dV--- +
Z
CS

ρV
! � dA! ð4:11Þ

Comparing Eqs. 4.1a and 4.11, we arrive (after rearranging) at the control volume formulation of the
conservation of mass:

∂
∂t

Z
CV

ρ dV--- +
Z
CS

ρV
! � dA!=0 ð4:12Þ

In Eq. 4.12 the first term represents the rate of change of mass within the control volume; the second term
represents the net rate of mass flux out through the control surface. Equation 4.12 indicates that the rate
of change of mass in the control volume plus the net outflow is zero. The mass conservation equation is
also called the continuity equation. In common-sense terms, the rate of increase of mass in the control
volume is due to the net inflow of mass:

Rate of increase
of mass in CV

=
Net influx of

mass
∂
∂t

Z
CV

ρdV--- = −
Z
CS
ρV
! � dA!

1 For an accelerating control volume (one whose coordinates xyz are accelerating with respect to an “absolute” set of coordinates
XYZ), we must modify the form of Newton’s second law (Eq. 4.2a). We will do this in Sections 4.6 (linear acceleration) and 4.7
(arbitrary acceleration).

Video: Mass
Conservation:
Filling a Tank
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Once again, we note that in using Eq. 4.12, care should be taken in evaluating the scalar product
V
! � dA!=VdA cos α: It could be positive (outflow, α< π=2), negative (inflow, α> π=2), or even zero
ðα= π=2Þ. Recall that Fig. 4.3 illustrates the general case as well as the convenient cases α=0 and α= π.

Special Cases

In special cases it is possible to simplify Eq. 4.12. Consider first the case of an incompressible fluid, in
which density remains constant. When ρ is constant, it is not a function of space or time. Consequently,
for incompressible fluids, Eq. 4.12 may be written as

ρ
∂
∂t

Z
CV

dV--- + ρ

Z
CS

V
! � dA!=0

The integral of dV--- over the control volume is simply the volume of the control volume. Thus, on divid-
ing through by ρ, we write

∂V---
∂t

+
Z
CS

V
! � dA!=0

For a nondeformable control volume of fixed size and shape, V--- = constant. The conservation of mass for
incompressible flow through a fixed control volume becomesZ

CS
V
! � dA!=0 ð4:13aÞ

A useful special case is when we have (or can approximate) uniform velocity at each inlet and exit.
In this case Eq. 4.13a simplifies to

X
CS
V
! � A!=0 ð4:13bÞ

Note that we have not assumed the flow to be steady in reducing Eq. 4.12 to the forms 4.13a and 4.13b.
We have only imposed the restriction of incompressible fluid. Thus Eqs. 4.13a and 4.13b are statements
of conservation of mass for flow of an incompressible fluid that may be steady or unsteady.

The dimensions of the integrand in Eq. 4.13a are L3=t. The integral of V
! � dA! over a section of the

control surface is commonly called the volume flow rate or volume rate of flow. Thus, for incompressible
flow, the volume flow rate into a fixed control volume must be equal to the volume flow rate out of the
control volume. The volume flow rate Q, through a section of a control surface of area A, is given by

Q=
Z
A
V
! � dA! ð4:14aÞ

The average velocity magnitude, V
!
, at a section is defined as

V
!
=
Q
A
=
1
A

Z
A
V
! � dA! ð4:14bÞ

Consider now the general case of steady, compressible flow through a fixed control volume. Since
the flow is steady, this means that at most ρ= ρðx,y,zÞ. By definition, no fluid property varies with time
in a steady flow. Consequently, the first term of Eq. 4.12 must be zero and, hence, for steady flow, the
statement of conservation of mass reduces to

Z
CS

ρV
! � dA!=0 ð4:15aÞ

A useful special case is when we have (or can approximate) uniform velocity at each inlet and exit.
In this case, Eq. 4.15a simplifies to

X
CS

ρV
! � A!=0 ð4:15bÞ
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Thus, for steady flow, the mass flow rate into a control volume must be equal to the mass flow rate out of
the control volume.

We will now look at three examples to illustrate some features of the various forms of the conser-
vation of mass equation for a control volume. Example 4.1 involves a problem in which we have uniform
flow at each section, Example 4.2 involves a problem in which we do not have uniform flow at a location,
and Example 4.3 involves a problem in which we have unsteady flow.

Example 4.1 MASS FLOW AT A PIPE JUNCTION

Consider the steady flow in a water pipe joint shown in the diagram. The areas are: A1 = 0:2 m2, A2 = 0:2 m2, and A3 = 0:15 m2. In
addition, fluid is lost out of a hole at , estimated at a rate of 0:1 m3=s. The average speeds at sections and are V1 = 5 m=s
and V3 = 12 m=s, respectively. Find the velocity at section .

Given: Steady flow of water through the device.

A1 = 0:2 m2 A2 = 0:2 m2 A3 = 0:15 m2

V1 = 5 m=s V3 = 12 m=s ρ=999 kg=m3

Volume flow rate at = 0:1 m3=s

Find: Velocity at section .

Solution: Choose a fixed control volume as shown. Make an assumption that
the flow at section is outwards, and label the diagram accordingly (if this
assumption is incorrect our final result will tell us).

Governing equation: The general control volume equation is Eq. 4.12, but
we can go immediately to Eq. 4.13b because of assumptions (2) and (3) below,X

CS
V
! � A! =0

Assumptions:

1 Steady flow (given).

2 Incompressible flow.

3 Uniform properties at each section.

Hence (using Eq. 4.14a for the leak)

V
!
1 � A

!
1 +V

!
2 � A

!
2 +V

!
3 � A

!
3 +Q4 = 0 ð1Þ

where Q4 is the flow rate out of the leak.

Let us examine the first three terms in Eq. 1 in light of the discussion of
Fig. 4.3 and the directions of the velocity vectors:

V
!
1 � A

!
1 = −V1A1 V1

A1

1
Sign of V

!
1 �A

!
1 is

negative at surface

� �

V
!
2 � A

!
2 = +V2A2

V2

A2

2

Sign of V
!
2 �A

!
2 is

positive at surface

� �

= 30°

1
4

3

2

1
4

3

2

CV
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V
!
3 � A

!
3 = +V3A3 V3

A3

3

Sign of V
!
3 �A

!
3 is

positive at surface

� �

Using these results in Eq. 1,

−V1A1 +V2A2 +V3A3 +Q4 = 0
or

V2 =
V1A1−V3A3−Q4

A2

=
5
m
s
× 0:2 m2−12

m
s
× 0:15 m2−

0:1 m3

s
0:2 m2

= −4:5 m=s V2 ��������������������
Recall that V2 represents the magnitude of the velocity, which we assumed was
outwards from the control volume. The fact that V2 is negative means that in fact
we have an inflow at location —our initial assumption was invalid.

This problem demonstrates use of the sign
convention for evaluating

R
AV
!� dA! or

ΣCSV
!� A!. In particular, the area normal is

always drawn outwards from the control
surface.

Example 4.2 MASS FLOW RATE IN BOUNDARY LAYER

The fluid in direct contact with a stationary solid boundary has zero velocity; there is no slip at the boundary. Thus the flow over a
flat plate adheres to the plate surface and forms a boundary layer, as depicted below. The flow ahead of the plate is uniform with
velocity V

!
=Uî; U =30 m=s. The velocity distribution within

the boundary layer ð0≤ y≤ δÞ along cd is approximated as
u=U = 2ðy=δÞ−ðy=δÞ2.

The boundary-layer thickness at location d is δ=5mm. The
fluid is air with density ρ=1:24 kg=m3. Assuming the plate
width perpendicular to the paper to be w=0:6 m, calculate the
mass flow rate across surface bc of control volume abcd.

Given: Steady, incompressible flow over a flat plate, ρ=1:24 kg=m3. Width of plate, w=0:6 m
Velocity ahead of plate is uniform: V

!
=Uî, U =30 m=s.

At x= xd :

δ=5mm
u
U

=2
y
δ

� �
−

y
δ

� �2

Find: Mass flow rate across surface bc.

Solution: The fixed control volume is shown by the dashed lines.

Governing equation: The general control volume equation is
Eq. 4.12, but we can go immediately to Eq. 4.15a because of
assumption (1) below, Z

CS
ρV
! � d A! =0

CV

Edge of
boundary

layer

a d

b c

U U

x

y

CV

a d

b c

U U

x

y
δ = 5 mm
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Assumptions:

1 Steady flow (given).

2 Incompressible flow (given).

3 Two-dimensional flow, given properties are independent of z.

Assuming that there is no flow in the z direction, then

no flow
across da

� �
Z
Aab

ρV
! � dA!þ

Z
Abc

ρV
! � dA!þ

Z
Acd

ρV
! � dA!þ

Z
Ada

ρV
!

��
�!� dA!¼ 0

∴ _mbc¼
Z
Abc

ρV
! � dA!¼ −

Z
Aab

ρV
! � dA!−

Z
Acd

ρV
! � dA!

ð1Þ

We need to evaluate the integrals on the right side of the equation.
For depth w in the z direction, we obtainZ
Aab

ρV
! � dA!= −

Z
Aab

ρu dA= −
Z yb

ya
ρuw dy

= −
Z δ

0
ρuw dy= −

Z δ

0
ρUw dyZ

Aab

ρV
! � dA!= − ½ρUwy�δ0 = −ρUwδ

Z
Acd

ρV
! � dA!=

Z
Acd

ρu dA=
Z yc

yd
ρuw dy

=
Z δ

0
ρuw dy=

Z δ

0
ρwU 2

y
δ

� �
−

y
δ

� �2	 

dy

Z
Acd

ρV
! � dA!= ρwU

y2

δ
−

y3

3δ2

	 
δ
0
= ρwUδ 1−

1
3

	 

=
2ρUwδ

3

dA

V

b

a

V
!� dA! is negative

dA=wdy

� �
fu=U over area abg

dA

V

c

d

V
!� dA! is positive

dA=wdy

� �

Substituting into Eq. 1, we obtain

∴ _mbc = ρUwδ−
2ρUwδ

3
=
ρUwδ
3

=
1
3
× 1:24

kg
m3 × 30

m
s
× 0:6 m×5mm×

m
1000 mm

_mbc =0:0372 kg=s
Positive sign indicate flow
out across surface bc:

� �
_mb �������������������������������� This problem demonstrates use of the

conservation of mass equation when we
have nonuniform flow at a section.

Example 4.3 DENSITY CHANGE IN VENTING TANK

A tank of 0:05 m3 volume contains air at 800 kPa (absolute) and 15�C. At t=0, air begins escaping from the tank through a valve
with a flow area of 65 mm2. The air passing through the valve has a speed of 300 m=s and a density of 6 kg=m3. Determine the
instantaneous rate of change of density in the tank at t=0.

Given: Tank of volume V--- = 0:05 m3 contains air at p=800 kPa ðabsoluteÞ, T =15�C. At t=0, air escapes through a valve. Air
leaves with speed V =300 m=s and density ρ=6 kg=m3 through area A=65 mm2.
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4.4 Momentum Equation for Inertial Control Volume
We now wish to obtain a control volume form of Newton’s second law. We use the same procedure we
just used for mass conservation, with one note of caution: the control volume coordinates (with respect to
which we measure all velocities) are inertial; that is, the control volume coordinates xyz are either at rest
or moving at constant speed with respect to an “absolute” set of coordinates XYZ. (Sections 4.6 and 4.7
will analyze noninertial control volumes.) We begin with the mathematical formulation for a system and
then use Eq. 4.10 to go from the system to the control volume formulation.

Find: Rate of change of air density in the tank at t=0.

Solution: Choose a fixed control volume as shown by the dashed line.

Governing equation:
∂
∂t

Z
CV

ρ dV--- +
Z
CS

ρV
! � dA!=0

Assumptions:

1 Properties in the tank are uniform, but time-dependent.

2 Uniform flow at section .

Since properties are assumed uniform in the tank at any instant, we can take ρ out from within the volume integral of the
first term,

∂
∂t

ρCV

Z
CV

dV---
	 


+
Z
CS
ρV
! � dA!=0

Now,
R
CVdV--- =V---, and hence

∂
∂t
ðρV---ÞCV +

Z
CS

ρV
! � dA!=0

The only place where mass crosses the boundary of the control volume is at surface . HenceZ
CS
ρV
! � dA!=

Z
A1

ρV
! � dA! and

∂
∂t
ðρV---Þ+

Z
A1

ρV
! � dA!=0

At surface the sign of ρV
! � dA! is positive, so

∂
∂t
ðρV---Þ+

Z
A1

ρV dA=0

Since flow is assumed uniform over surface , then

∂
∂t
ðρV---Þ+ ρ1V1A1 = 0 or

∂
∂t
ðρV---Þ= −ρ1V1A1

Since the volume, V---, of the tank is not a function of time,

V---
∂ρ
∂t

= −ρ1V1A1

and

∂ρ
∂t

= −
ρ1V1A1

V---
At t=0,

∂ρ
∂t

= −6
kg
m3 × 300

m
s
× 65 mm3 ×

1
0:05 m3 ×

m2

106 mm2

∂ρ
∂t

= −2:34ðkg=m3Þ=s
fThe density is decreasing:g ∂ρ

∂t ���������������������������������

A1

V1

CV

y

x

1

This problem demonstrates use of the
conservation ofmass equation for unsteady
flow problems.
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Recall that Newton’s second law for a system moving relative to an inertial coordinate system was
given by Eq. 4.2a as

F
!
=
dP
!

dt

!
system

ð4:2aÞ

where the linear momentum of the system is given by

P
!
system =

Z
MðsystemÞ

V
!
dm=

Z
V--ðsystemÞ

V
!
ρ dV--- ð4:2bÞ

and the resultant force, F
!
, includes all surface and body forces acting on the system,

F
!
=F
!
S +F

!
B

The system and control volume formulations are related using Eq. 4.10,

dN
dt

�
system

=
∂
∂t

Z
CV

η ρ dV--- +
Z
CS

η ρV
! � dA! ð4:10Þ

To derive the control volume formulation of Newton’s second law, we set

N =P
!

and η=V
!

From Eq. 4.10, with this substitution, we obtain

dP
!

dt

!
system

=
∂
∂t

Z
CV

V
!
ρ dV--- +

Z
CS
V
!
ρV
! � dA! ð4:16Þ

From Eq. 4.2a

dP
!

dt

!
system

=F
!Þon system ð4:2aÞ

Since, in deriving Eq. 4.10, the system and the control volume coincided at t0, then

F
!Þon system =F

!Þon control volume

In light of this, Eqs. 4.2a and 4.16 may be combined to yield the control volume formulation of Newton’s
second law for a nonaccelerating control volume

F
!
=F
!
S +F

!
B =

∂
∂t

Z
CV

V
!
ρdV--- +

Z
CS

V
!
ρV
! � dA! ð4:17aÞ

For cases when we have uniform flow at each inlet and exit, we can use

F
!
=F
!
S +F

!
B =

∂
∂t

Z
CV

V
!
ρdV--- +

X
CS

V
!
ρV
! � A! ð4:17bÞ

Equations 4.17a and 4.17b are our (nonaccelerating) control volume forms of Newton’s second law. It
states that the total force (due to surface and body forces) acting on the control volume leads to a rate of
change of momentum within the control volume (the volume integral) and/or a net rate at which momen-
tum is leaving the control volume through the control surface.

We must be a little careful in applying Eqs. 4.17a. The first step will always be to carefully choose a
control volume and its control surface so that we can evaluate the volume integral and the surface integral
(or summation); each inlet and exit should be carefully labeled, as should the external forces acting. In
fluid mechanics the body force is usually gravity, so

F
!
B =
Z
CV

ρg!dV--- =W
!
CV =Mg!

954.4 Momentum Equation for Inertial Control Volume



where g! is the acceleration of gravity andW
!
CV is the instantaneous weight of the entire control volume.

In many applications the surface force is due to pressure,

F
!
S =
Z
A
−pdA

!

Note that the minus sign is to ensure that we always compute pressure forces acting onto the control
surface (recall dA

!
was chosen to be a vector pointing out of the control volume). It is worth stressing

that even at points on the surface that have an outflow, the pressure force acts onto the control volume.
In Eqs. 4.17 we must also be careful in evaluating

R
CSV

!
ρV
! � dA! or ΣCSV

!
ρV
! � A! (this may be easier to

do if we write themwith the implied parentheses,
R
CS V

!
ρðV! � dA!Þ or ΣCS V

!
ρðV! � A!Þ). The velocity V!must

be measured with respect to the control volume coordinates xyz, with the appropriate signs for its vector
components u, υ, and w; recall also that the scalar product will be positive for outflow and negative for
inflow (refer to Fig. 4.3).

The momentum equation (Eqs. 4.17) is a vector equation. We will usually write the three scalar
components, as measured in the xyz coordinates of the control volume,

Fx =FSx +FBx =
∂
∂t

Z
CV

u ρ dV--- +
Z
CS

u ρV
! � dA! ð4:18aÞ

Fy =FSy +FBy =
∂
∂t

Z
CV

υ ρ dV--- +
Z
CS

υ ρV
! � dA! ð4:18bÞ

Fz =FSz +FBz =
∂
∂t

Z
CV

w ρ dV--- +
Z
CS

w ρV
! � dA! ð4:18cÞ

or, for uniform flow at each inlet and exit,

Fx =FSx +FBx =
∂
∂t

Z
CV

u ρ dV--- +
X
CS

u ρV
! � A! ð4:18dÞ

Fy =FSy +FBy =
∂
∂t

Z
CV

υ ρ dV--- +
X
CS

υ ρV
! � A! ð4:18eÞ

Fz =FSz +FBz =
∂
∂t

Z
CV

w ρ dV--- +
X
CS

w ρV
! � A! ð4:18fÞ

Note that, as we found for the mass conservation equation (Eq. 4.12), for steady flow the first term on the
right in Eqs. 4.17 and 4.18 is zero.

We will now look at five Examples to illustrate some features of the various forms of the momentum
equation for a control volume. Example 4.4 demonstrates how intelligent choice of the control volume
can simplify analysis of a problem, Example 4.5 involves a problem in which we have significant body
forces, Example 4.6 explains how to simplify surface force evaluations by working in gage pressures,
Example 4.7 involves nonuniform surface forces, and Example 4.8 involves a problem in which we have
unsteady flow.

Example 4.4 CHOICE OF CONTROL VOLUME FOR MOMENTUM ANALYSIS

Water from a stationary nozzle strikes a flat plate as shown. The water leaves the nozzle at 15 m=s; the nozzle area is 0:01 m2.
Assuming the water is directed normal to the plate, and flows along the plate, determine the horizontal force you need to resist to
hold it in place.

Given: Water from a stationary nozzle is directed normal to the plate; subsequent flow is
parallel to plate.

Jet velocity, V
!
=15îm=s

Nozzle area, An =0:01 m2
Nozzle

Plate

Video:
Momentum
Effect: A Jet
Impacting a
Surface
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Find: Horizontal force on your hand.

Solution: We chose a coordinate system in defining the problem above.Wemust now choose
a suitable control volume. Two possible choices are shown by the dashed lines below.

In both cases, water from the nozzle crosses the control surface through area A1 (assumed
equal to the nozzle area) and is assumed to leave the control volume tangent to the plate surface
in the + y or −y direction. Before trying to decide which is the “best” control volume to use, let
us write the governing equations.

F
!
=F
!
S +F

!
B =

∂
∂t

Z
CV

V
!
ρdV--- +

Z
CS
V
!
ρV
! � dA! and

∂
∂t

Z
CV

ρ dV--- +
Z
CS
ρV
! � dA!=0

Assumptions:

1 Steady flow.

2 Incompressible flow.

3 Uniform flow at each section where fluid crosses the CV boundaries.

Regardless of our choice of control volume, assumptions (1), (2), and (3) lead to

F
!
=F
!
S +F

!
B =
X

CS
V
!
ρV
! � A! and

X
CS
ρV
! � A!=0

Evaluating the momentum flux term will lead to the same result for both control volumes. We
should choose the control volume that allows the most straightforward evaluation of the forces.

Remember in applying the momentum equation that the force, F
!
, represents all forces acting on

the control volume.
Let us solve the problem using each of the control volumes.

CVI
The control volume has been selected so that the area of the left surface is equal to the area of the right
surface. Denote this area by A.

The control volume cuts through your hand. We denote the components of the reaction force of
your hand on the control volume as Rx and Ry and assume both to be positive. (The force of the
control volume on your hand is equal and opposite to Rx and Ry.)

Atmospheric pressure acts on all surfaces of the control volume. Note that the pressure in a free
jet is ambient, i.e., in this case atmospheric. (The distributed force due to atmospheric pressure has
been shown on the vertical faces only.)

The body force on the control volume is denoted as W .
Since we are looking for the horizontal force, we write the x component of the steady flow momentum equation

FSx +FBx =
X

CS
u ρV

! � A!

There are no body forces in the x direction, so FBx =0, and

FSx =
X

CS
u ρV

! � A!

To evaluate FSx , we must include all surface forces acting on the control volume

FSx = patmA
force due to atmospheric
pressure acts to right
ðpositive directionÞ
on left surface

− patmA
force due to atmospheric
pressure acts to left
ðnegative directionÞ
on right surface

+ Rx
force of your hand on
control volume
ðassumed positiveÞ

y
x

Ry Rx
W

patmpatm

V

y

x

A

y

x

CV
I

1

y

x

CV
II

1 Ap
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Consequently, FSx =Rx, and

Rx =
X

CS
u ρV

!�A!= u ρV
!�A!j1 fFor top and bottom surfaces, u=0g

Rx = −u1 ρV1A1

At , ρV
!
1 �A
!
1 = ρð−V1A1Þ since

V
!
1 and A

!
1 are 180∘ apart:

Note that u1 =V1g

Rx = −15
m
s
× 999

kg
m3 × 15

m
s
× 0:01 m2 ×

N � s2
kg � m fu1 = 15 m=sg

Rx = −2:25 kN fRx acts opposite to positive direction assumed:g

The horizontal force on your hand is

Kx = −Rx =2:25 kN fforce on your hand acts to the rightg Kx ���������������������������������
CVII with Horizontal Forces Shown
The control volume has been selected so the areas of the left surface and of the right surface are equal to
the area of the plate. Denote this area by Ap.

The control volume is in contact with the plate over the entire plate surface. We denote the horizontal
reaction force from the plate on the control volume as Bx (and assume it to be positive).

Atmospheric pressure acts on the left surface of the control volume (and on the two horizontal
surfaces).

The body force on this control volume has no component in the x direction.
Then the x component of the momentum equation,

FSx =
X

CS
uρV

! � A!

yields

FSx = patm Ap +Bx = u ρV
! � A!j1 = −u1V1A1 = −2:25 kN

Then

Bx = −patm Ap−2:25 kN

To determine the net force on the plate, we need a free-body diagram of the plate:

P
Fx =0= −Bx−patmAp +Rx

Rx = patmAp +Bx

Rx = patmAp + ð−patmAp−2:25 kNÞ= −2:25 kN

Then the horizontal force on your hand is Kx = −Rx =2:25 kN.
Note that the choice of CVII meant we needed an additional free-body dia-

gram. In general it is best to select the control volume so that the force sought
acts explicitly on the control volume.

patm

Bx

Ry

Rx

patm

Bx

Notes:
• This problem demonstrates how
thoughtful choice of the control volume
can simplify use of the momentum
equation.

• The analysis would have been greatly
simplified if we had worked in gage
pressures (see Example 4.6).

• For this problem the force generated was
entirely due to the plate absorbing the
jet’s horizontal momentum.
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Example 4.5 TANK ON SCALE: BODY FORCE

Ametal container 0.61m high, with an inside cross-sectional area of 0:09 m2, weighs 22.2 Nwhen empty. The container is placed
on a scale and water flows in through an opening in the top and out through the two equal-area openings in the sides, as shown in
the diagram. Under steady flow conditions, the height of the water in the tank
is 0:58 m.

A1 = 0:009 m2

V
!
1 = −3ĵm=s

A2 =A3 = 0:009 m2

Your boss claims that the scale will read the weight of the volume of water in the
tank plus the tank weight, i.e., that we can treat this as a simple statics problem.
You disagree, claiming that a fluid flow analysis is required.Who is right, and what
does the scale indicate?

Given: Metal container, of height 0.61 m and cross-sectional area A=0:09 m2, weighs 22.2 lbf when empty. Container rests on
scale. Under steady flow conditions water depth is h=0:58 m. Water enters vertically at section and leaves horizontally
through sections and

A1 = 0:009 m2

V
!
1 = −3ĵm=s

A2 =A3 = 0:009 m2

Find: Scale reading.

Solution: Choose a control volume as shown; Ry is the force of the scale on the
control volume (exerted on the control volume through the supports) and is assumed
positive.

The weight of the tank is designated Wtank; the weight of the water in the tank is WH2O.
Atmospheric pressure acts uniformly on the entire control surface, and therefore has no net effect on the control volume.

Because of this null effect we have not shown the pressure distribution in the diagram.

Governing equations: The general control volume momentum and mass conservation equations are Eqs. 4.17 and 4.12,
respectively,

¼ 0 1ð Þ

F
!
SþF

!
B¼ ∂

∂t��
�!

Z
CV

V
!
ρ dVþ

Z
CS
V
!
ρV
! � dA!

¼ 0 1ð Þ

��
�!∂

∂t

Z
CV

ρ dVþ
Z
CS
ρV
! � dA!¼ 0

Note that we usually start with the simplest forms (based on the problem assumptions, e.g., steady flow) of the mass conservation
and momentum equations. However, in this problem, for illustration purposes, we start with the most general forms of the
equations.

Assumptions:

1 Steady flow (given).

2 Incompressible flow.

3 Uniform flow at each section where fluid crosses the CV boundaries.

We are only interested in the y component of the momentum equation

3

1

2

V3

h

y

x

Wtank

WH
2
O

Ry

CV

V2

V1

3

1

2

V1

h

y

x

Scale

V3 V2
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FSy +FBy =
Z
CS
υρV

! � dA! ð1Þ

FSy =Ry fThere is no net force due to atmosphere pressure:g
FBy = −Wtank−WH2O fBoth body forces act in negative y direction:g

WH2O = ρgV--- = γAhZ
CS
υ ρV

! � dA! =
Z
A1

υ ρV
! � dA!=

Z
A1

υð−ρV1dA1Þ V
!� dA! is negative at
υ=0 at sections and

( )

= υ1ð−ρV1A1Þ
We are assuming uniform

properties at

� �
Using these results in Eq. 1 gives

Ry−Wtank−γAh= υ1ð−ρV1A1Þ
Note that υ1 is the y component of the velocity, so that υ1 = −V1, where we recall that V1 = 3 m=s is the magnitude of velocity V

!
1.

Hence, solving for Ry,

Ry =Wtank + γAh+ ρV2
1A1

= 22:2 N+9800
N
m3 × 0:09 m2 × 0:58 m+1000

kg
m3 × 9

m2

s2
× 0:009 m2 ×

N � s2
kg � m

=22:2 N+511:6 N+81 N

Ry =614:8 N
Ry �����������������������������������������������

Note that this is the force of the scale on the control volume; it is also the reading
on the scale. We can see that the scale reading is due to: the tank weight (22.2 N),
the weight of water instantaneously in the tank (511.6 N), and the force involved
in absorbing the downward momentum of the fluid at section (81 N). Hence
your boss is wrong—neglecting the momentum results in an error of almost
13 percent.

This problem illustrates use of the
momentum equation including significant
body forces.

Example 4.6 FLOW THROUGH ELBOW: USE OF GAGE PRESSURES

Water flows steadily through the 90� reducing elbow shown in the diagram. At the inlet to the elbow, the absolute pressure is
220 kPa and the cross-sectional area is 0:01 m2. At the outlet, the cross-sectional area is 0:0025 m2 and the velocity is 16 m=s. The
elbow discharges to the atmosphere. Determine the force required to hold the elbow in place.

Given: Steady flow of water through 90� reducing elbow.

p1 = 220 kPa ðabsÞ A1 = 0:01 m2 V
!
2 = −16 ĵm=s A2 = 0:0025 m2

Find: Force required to hold elbow in place.

Solution: Choose a fixed control volume as shown. Note that we have several surface force
computations: p1 on area A1 and patm everywhere else. The exit at section is to a free jet,
and so at ambient (i.e., atmospheric) pressure. We can use a simplification here: If we subtract
patm from the entire surface (a null effect as far as forces are concerned) we can work in gage
pressures, as shown.

Note that since the elbow is anchored to the supply line, in addition to the reaction forces Rx and Ry (shown), there would also
be a reaction moment (not shown).

2

1

y

x
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Governing equations:

¼ 0 4ð Þ
F
!¼F

!
SþF

!
B¼ ∂

∂t��
�!

Z
CV

V
!
ρ dVþ

Z
CS
V
!
ρV
! � dA!

¼ 0 4ð Þ
∂
∂t��

�!

Z
CV

ρ dVþ
Z
CS
ρV
! � dA!¼ 0

Assumptions:

1 Uniform flow at each section.

2 Atmospheric pressure, patm = 101 kPa ðabsÞ.
3 Incompressible flow.

4 Steady flow (given).

5 Neglect weight of elbow and water in elbow.

Once again (although we didn’t need to) we started with the most general form of the governing equations. Writing the x com-
ponent of the momentum equation results in

FSx =
Z
CS
uρV

! � dA!=
Z
A1

uρV
! � dA! fFBx =0 and u2 = 0g

p1gA1 +Rx =
Z
A1

u ρV
! � dA!

so

Rx = −p1gA1 +
Z
A1

u ρV
! � dA!

= −p1gA1 + u1ð−ρV1A1Þ
Rx = −p1gA1−ρV2

1A1

Note that u1 is the x component of the velocity, so that u1 =V1. To find V1, use the mass conservation equation:Z
CS
ρV
! � dA!=

Z
A1

ρV
! � dA!+

Z
A2

ρV
! � dA!=0

∴ð−ρV1A1Þ+ ðρV2A2Þ=0

and

V1 =V2
A2

A1
= 16

m
s
×
0:0025
0:01

= 4 m=s

We can now compute Rx

Rx = −p1gA1−ρV2
1A1

= −1:19× 105
N
m2 × 0:01 m2−999

kg
m3 × 16

m2

s2
× 0:01 m2 ×

N � s2
kg � m

Rx = −1:35 kN
Rx ������������������������������������

V2CV

p1 p1g

patm

patm

patm– =
W

Ry

Rx

Ry

Rx W

1

2

V1
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Writing the y component of the momentum equation gives

FSy +FBy =Ry +FBy =

Z
CS

υ ρV
! � dA!=

Z
A2

υ ρV
! � dA! fυ1 = 0g

or

Ry = −FBy +
Z
A2

υ ρV
!� dA!

= −FBy + υ2ðρV2A2Þ
Ry = −FBy −ρV2

2A2

Note that υ2 is the y component of the velocity, so that υ2 = −V2, where V2 is the magnitude of the exit velocity.
Substituting known values

Ry = −FBy + −ρV2
2A2

= −FBy −999
kg
m3 × ð16Þ

2m2

s2
× 0:0025 m2 ×

N � s2
kg � m

= −FBy −639 N
Ry �����������������������

Neglecting FBy gives

Ry = −639 N
Ry �������������������������� This problem illustrates how using gage

pressures simplifies evaluation of the sur-
face forces in the momentum equation.

Example 4.7 FLOW UNDER A SLUICE GATE: HYDROSTATIC PRESSURE FORCE

Water in an open channel is held in by a sluice gate. Compare the horizontal force of the water on the gate (a) when the gate is
closed and (b) when it is open (assuming steady flow, as shown). Assume the flow at sections and is incompressible and
uniform, and that (because the streamlines are straight there) the pressure distributions are hydrostatic.

Given: Flow under sluice gate. Width =w.

Find: Horizontal force (per unit width) on the closed and open gate.

Solution: Choose a control volume as shown for the open gate. Note
that it is much simpler to work in gage pressures, as we learned in
Example 4.6.

The forces acting on the control volume include:

• Force of gravity W .

• Friction force Ff .

• Components Rx and Ry of reaction force from gate.

• Hydrostatic pressure distribution on vertical surfaces, assumption (6).

• Pressure distribution pbðxÞ along bottom surface (not shown).

Apply the x component of the momentum equation.

Governing equation:

¼ 0 2ð Þ¼ 0 3ð Þ
FSxþFBx��

�!¼ ∂
∂t��

�!

Z
CV

u ρdVþ
Z
CS

u ρV
! � dA!

21

Water

D1 = 3 m

V1 = 1 m/s

D2 = 0.429 m
V2 = 7 m/s

102 Chapter 4 Basic Equations in Integral Form for a Control Volume



Assumptions:

1 Ff negligible (neglect friction on channel bottom).

2 FBx =0.

3 Steady flow.

4 Incompressible flow (given).

5 Uniform flow at each section (given).

6 Hydrostatic pressure distributions at and (given).

Then

FSx =FR1 +FR2 +Rx = u1ð−ρV1wD1Þ+ u2ðρV2wD2Þ
The surface forces acting on the CV are due to the pressure distributions and the unknown force Rx. From assumption (6), we can
integrate the gage pressure distributions on each side to compute the hydrostatic forces FR1 and FR2 ,

FR1 =
ZD1

0

p1 dA=w
ZD1

0

ρgy dy= ρgw
y2

2

����D1

0
=
1
2
ρgwD2

1

where y is measured downward from the free surface of location , and

FR2 =
ZD2

0

p2 dA=w
ZD2

0

ρgy dy= ρgw
y2

2

����D2

0
=
1
2
ρgwD2

2

where y is measured downward from the free surface of location . (Note that we could have used the hydrostatic force equation,
Eq. 3.10b, directly to obtain these forces.)

Evaluating FSx gives

FSx =Rx +
ρgw
2
ðD2

1−D2
2Þ

Substituting into the momentum equation, with u1 =V1 and u2 =V2, gives

Rx +
ρgw
2
ðD2

1−D2
2Þ= −ρV2

1wD1 + ρV2
2wD2

or

Rx = ρwðV2
2D2−V2

1D1Þ− ρgw
2
ðD2

1−D2
2Þ

The second term on the right is the net hydrostatic force on the gate; the first term “corrects” this (and leads to a smaller net force)
for the case when the gate is open.What is the nature of this “correction”? The pressure in the fluid far away from the gate in either
direction is indeed hydrostatic, but consider the flow close to the gate: Because we have significant velocity variations here (in
magnitude and direction), the pressure distributions deviate significantly from hydrostatic—for example, as the fluid accelerates
under the gate there will be a significant pressure drop on the lower left side of the gate. Deriving this pressure field would be a
difficult task, but by careful choice of our CV we have avoided having to do so!

1

Water

D1 = 3 m

V1 = 1 m/s
D2 = 0.429 m
V2 = 7 m/s

W
Rx

p2(y)

p1(y)

Ff

Ry
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We can now compute the horizontal force per unit width,

Rx

w
= ρðV2

2D2−V2
1D1Þ− ρg

2
ðD2

1−D2
2Þ

=999
kg
m3 × ½ð7Þ

2ð0:429Þ−ð1Þ2ð3Þ�m
2

s2
m×

N � s2
kg � m

−
1
2
× 999

kg
m3 × 9:81

m
s2

× ½ð3Þ2−ð0:429Þ2�m2 ×
N � s2
kg � m

Rx

w
=18:0 kN=m−43:2 kN=m

Rx

w
= −25:2 kN=m

Rx is the external force acting on the control volume, applied to the CV by the gate. Therefore, the force of the water on the gate is
Kx, where Kx = −Rx. Thus,

Kx

w
= −

Rx

w
=25:2 kN=m

Kx

w ���������������
This force can be compared to the force on the closed gate of 44.1 kN (obtained
from the second term on the right in the equation above, evaluated with D2 set to
zero because for the closed gate there is no fluid on the right of the gate)—the
force on the open gate is significantly less as the water accelerates out under
the gate.

This problem illustrates the application
of the momentum equation to a control
volume for which the pressure is not
uniform on the control surface.

Example 4.8 CONVEYOR BELT FILLING: RATE OF CHANGE OF MOMENTUM IN CONTROL VOLUME

A horizontal conveyor belt moving at 0:9 m=s receives sand from a hopper. The sand falls vertically from the hopper to the belt at
a speed of 1:5 m=s and a flow rate of 225 kg=s (the density of sand is approximately 1580 kg=m3). The conveyor belt is initially
empty but begins to fill with sand. If friction in the drive system and rollers is negligible, find the tension required to pull the belt
while the conveyor is filling.

Given: Conveyor and hopper shown in sketch.

Find: Tbelt at the instant shown.

Solution: Use the control volume and coordinates shown. Apply
the x component of the momentum equation.

Governing equations:

¼ 0 2ð Þ
FSx þFB

��
�!x ¼

∂
∂t

Z
CV

u ρdVþ
Z
CS

u ρV
! � dA! ∂

∂t

Z
CV

ρdVþ
Z
CS

ρV
! � dA!¼ 0

Assumptions:

1 FSx = Tbelt = T .

2 FBx =0.

3 Uniform flow at section .

4 All sand on belt moves with Vbelt =Vb.

Hopper

Sand

1

2

Vbelt = 0.9 m/s

Vsand = 1.5 m/s

CV

Tbelt

y

x
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Differential Control Volume Analysis

The control volume approach, as we have seen in the previous examples, provides useful results when
applied to a finite region.

If we apply the approach to a differential control volume, we can obtain differential equations
describing a flow field. In this section, we will apply the conservation of mass and momentum equations
to such a control volume to obtain a simple differential equation describing flow in a steady, incompress-
ible, frictionless flow, and integrate it along a streamline to obtain the famous Bernoulli equation.

Let us apply the continuity and momentum equations to a steady incompressible flow without fric-
tion, as shown in Fig. 4.4. The control volume chosen is fixed in space and bounded by flow streamlines,
and is thus an element of a stream tube. The length of the control volume is ds.

Because the control volume is boundedby streamlines, flowacross the bounding surfaces occurs only
at the end sections. These are located at coordinates s and s+ ds, measured along the central streamline.

Properties at the inlet section are assigned arbitrary symbolic values. Properties at the outlet
section are assumed to increase by differential amounts. Thus at s+ ds, the flow speed is assumed to
be Vs + dVs, and so on. The differential changes, dp, dVs, and dA, all are assumed to be positive in setting
up the problem. (As in a free-body analysis in statics or dynamics, the actual algebraic sign of each dif-
ferential change will be determined from the results of the analysis.)

Then
T =

∂
∂t

Z
CV

uρ dV--- + u1ð−ρV1A1Þ+ u2ðρV2A2Þ

Since u1 = 0, and there is no flow at section ,

T =
∂
∂t

Z
CV

uρ dV---

From assumption (4), inside the CV, u=Vb = constant, and hence

T =Vb
∂
∂t

Z
CV

ρ dV--- =Vb
∂Ms

∂t

whereMs is the mass of sand on the belt (inside the control volume). This result is perhaps not surprising—the tension in the belt
is the force required to increase the momentum inside the CV (which is increasing because even though the velocity of the mass in
the CV is constant, the mass is not). From the continuity equation,

∂
∂t

Z
CV

ρ dV--- =
∂
∂t
Ms = −

Z
CS
ρV
! � dA!= _ms =225 kg=s

Then

T =Vb _ms =0:9
m
s
× 225

kg
s
×

N � s2
kg � m

T =203:4 N T ����������������������

Differential control volume

Streamlines

p + dp

p

Vs + dVs

Vs

A + dA

FSb

ds

A

x
y

z

g

Fig. 4.4 Differential control volume for momentum analysis of flow through a stream tube.

This problem illustrates application of the
momentum equation to a control volume in
which the momentum is changing.
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Now let us apply the continuity equation and the s component of the momentum equation to the
control volume of Fig. 4.4.

a. Continuity Equation

¼ 0 1ð Þ
Basic equation :

∂
∂t��

�!

Z
CV

ρ dVþ
Z
CS

ρV
! � dA!¼ 0 ð4:12Þ

Assumptions:

1 Steady flow.

2 No flow across bounding streamlines.

3 Incompressible flow, ρ= constant.

Then

ð−ρVsAÞ+ fρðVs + dVsÞðA+ dAÞg=0

so

ρðVs + dVsÞðA+ dAÞ= ρVsA ð4:19aÞ
On expanding the left side and simplifying, we obtain

Vs dA+A dVs + dA dVs =0

But dA dVs is a product of differentials, which may be neglected compared with VsdA or A dVs. Thus

Vs dA+A dVs = 0 ð4:19bÞ

b. Streamwise Component of the Momentum Equation

¼ 0 1ð Þ

Basic equation : FSS þFBS ¼
∂
∂t��

�!

Z
CV

us ρ dVþ
Z
CS

us ρV
! � dA!

ð4:20Þ

Assumption: (4) No friction, so FSb is due to pressure forces only.
The surface force (due only to pressure) will have three terms:

FSs = pA−ðp+ dpÞðA+ dAÞ+ p+
dp
2

� �
dA ð4:21aÞ

The first and second terms in Eq. 4.21a are the pressure forces on the end faces of the control surface.
The third term is Fsb , the pressure force acting in the s direction on the bounding stream surface of the
control volume. Its magnitude is the product of the average pressure acting on the stream surface,
p+ 1

2dp, times the area component of the stream surface in the s direction, dA. Equation 4.21a
simplifies to

FSs = −A dp−
1
2
dp dA ð4:21bÞ

The body force component in the s direction is

FBs = ρgs dV--- = ρð−g sin θÞ A+
dA
2

� �
ds

But sin θ ds= dz, so that

FBs = −ρg A+
dA
2

� �
dz ð4:21cÞ

The momentum flux will beZ
CS
us ρV

! � dA!=Vsð−ρVsAÞ+ ðVs + dVsÞfρðVs + dVsÞðA+ dAÞg
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since there is no mass flux across the bounding stream surfaces. The mass flux factors in parentheses and
braces are equal from continuity, Eq. 4.19a, soZ

CS
us ρV

! � dA!=Vsð−ρVsAÞ+ ðVs + dVsÞðρVsAÞ= ρVsA dVs ð4:22Þ

Substituting Eqs. 4.21b, 4.21c, and 4.22 into Eq. 4.20 (the momentum equation) gives

−A dp−
1
2
dp dA−ρgA dz−

1
2
ρg dA dz= ρVsA dVs

Dividing by ρA and noting that products of differentials are negligible compared with the remaining
terms, we obtain

−
dp
ρ
−g dz=Vs dVs = d

V2
s

2

� �
or

dp
ρ

+ d
V2
s

2

� �
+ g dz=0 ð4:23Þ

Because the flow is incompressible, this equation may be integrated to obtain

p
ρ
+
V2
s

2
+ gz= constant ð4:24Þ

or, dropping subscript s,

p
ρ
+
V2
s

2
+ gz= constant ð4:24Þ

This equation is subject to the restrictions:

1 Steady flow.

2 No friction.

3 Flow along a streamline.

4 Incompressible flow.

We have derived one form of perhaps the most famous (and misused) equation in fluid mechanics—
the Bernoulli equation. It can be used only when the four restrictions listed above apply, at least to
reasonable accuracy! Although no real flow satisfies all these restrictions (especially the second), we
can approximate the behavior of many flows with Eq. 4.24.

For example, the equation is widely used in aerodynamics to relate the pressure and velocity in a
flow (e.g., it explains the lift of a subsonic wing). It could also be used to find the pressure at the inlet of
the reducing elbow analyzed in Example 4.6 or to determine the velocity of water leaving the sluice gate
of Example 4.7 (both of these flows approximately satisfy the four restrictions). On the other hand,
Eq. 4.24 does not correctly describe the variation of water pressure in pipe flow. According to it, for
a horizontal pipe of constant diameter, the pressure will be constant, but in fact the pressure drops sig-
nificantly along the pipe—we will need most of Chapter 8 to explain this.

The Bernoulli equation, and the limits on its use, is so important we will derive it again and discuss
its limitations in detail in Chapter 6. In Example 4.9 we will show the use of the Bernoulli equation for a
situation in which all of the limitations apply.

Example 4.9 NOZZLE FLOW: APPLICATION OF BERNOULLI EQUATION

Water flows steadily through a horizontal nozzle, discharging to the atmosphere. At the nozzle inlet the diameter is D1; at the
nozzle outlet the diameter is D2. Derive an expression for the minimum gage pressure required at the nozzle inlet to produce a
given volume flow rate, Q. Evaluate the inlet gage pressure if D1 = 75 mm, D2 = 25 mm, and the desired flow rate is 0:02 m3=s.
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Given: Steady flow of water through a horizontal nozzle, discharging to the atmosphere.

D1 = 75 mm D2 = 25 mm p2 = patm

Find: (a) p1g as a function of volume flow rate, Q.
(b) p1g for Q=0:7 ft3=s.

Solution:

Governing equations:
p1
ρ
+
V2
1

2
+ gz1 =

p2
ρ
+
V2
2

2
+ gz2

¼ 0 1ð Þ
∂
∂t��

�!
Z
CV

ρ dVþ
R
CS ρ V

! � dA!¼ 0

Assumptions:

1 Steady flow (given).

2 Incompressible flow.

3 Frictionless flow.

4 Flow along a streamline.

5 z1 = z2.

6 Uniform flow at sections and .

Apply the Bernoulli equation along a streamline between points and to evaluate p1. Then

p1g = p1−patm = p1−p2 =
ρ

2
ðV2

2 −V2
1 Þ=

ρ

2
V2
1

V2

V1

� �2

−1

" #

Apply the continuity equation

ð−ρV1A1Þ+ ðρV2A2Þ=0 or V1A1 =V2A2 =Q

so that
V2

V1
=
A1

A2
and V1 =

Q
A1

Then

p1g =
ρQ2

2A2
1

A1

A2

� �2

−1

" #

Since A= πD2=4, then

p1g =
8ρQ2

π2 D4
1

D1

D2

� �4

−1

" #
p1g ����������������������������

(Note that for a given nozzle the pressure required is proportional to the square of the flow rate—not surpising since we have used
Eq. 4.24, which shows that p	V2	Q2.) With D1 = 75 mm D2 = 25 mm, and ρ=1000 kg=m3,

p1g =
8
π2

× 1000
kg
m3 ×

1

ð0:075Þ4m4
×Q2½ð3:0Þ4−1� N � s

2

kg � m ×
Pa � m2

N2

p1g =2049:44× 106Q2N � s2
m8 ×

Pa � m2

N

With Q=0:02 m3=s then

p1 = 819;776 kPa
p1g �������������������������������

D1

D2

CV

Streamline

This problem illustrates application of the
Bernoulli equation to a flow where the
restrictions of steady, incompressible,
frictionless flow along a streamline are
reasonable.

108 Chapter 4 Basic Equations in Integral Form for a Control Volume



Control Volume Moving with Constant Velocity

In the preceding problems, which illustrate applications of the momentum equation to inertial control
volumes, we have considered only stationary control volumes. Suppose we have a control volume mov-
ing at constant speed. We can set up two coordinate systems: XYZ, “absolute,” or stationary (and there-
fore inertial), coordinates, and the xyz coordinates attached to the control volume (also inertial because
the control volume is not accelerating with respect to XYZ).

Equation 4.10, which expresses system derivatives in terms of control volume variables, is valid for
any motion of the control volume coordinate system xyz, provided that all velocities are measured rel-
ative to the control volume. To emphasize this point, we rewrite Eq. 4.10 as

dN
dt

�
system

=
∂
∂t

Z
CV

η ρ dV--- +
Z
CS
η ρ V

!
xyz � dA

! ð4:25Þ

Since all velocities must be measured relative to the control volume, in using this equation to obtain the
momentum equation for an inertial control volume from the system formulation, we must set

N =P
!
xyz and η=V

!
xyz

The control volume equation is then written as

F
!
=F
!
S +F

!
B =

∂
∂t

Z
CV

V
!
xyz ρ dV--- +

Z
CS
V
!
xyz ρ V

!
xyz � dA

! ð4:26Þ

Equation 4.26 is the formulation of Newton’s second law applied to any inertial control volume (sta-
tionary or moving with a constant velocity). It is identical to Eq. 4.17a except that we have included
subscript xyz to emphasize that velocities must be measured relative to the control volume. (It is helpful
to imagine that the velocities are those that would be seen by an observer moving with the control vol-
ume.) Example 4.10 illustrates the use of Eq. 4.26 for a control volume moving at constant velocity.

Example 4.10 VANE MOVING WITH CONSTANT VELOCITY

The sketch shows a vane with a turning angle of 60�. The vane moves at constant speed, U =10m=s, and receives a jet of water
that leaves a stationary nozzle with speed V =30 m=s. The nozzle has an exit area of 0:003 m2. Determine the force components
that act on the vane.

Given: Vane, with turning angle θ=60�, moves with constant velocity, U
!
=10îm=s. Water from a constant area nozzle,

A=0:003 m2, with velocity V
!
=30îm=s, flows over the vane as shown.

Find: Force components acting on the vane.

Solution: Select a control volume moving with the vane at constant velocity, U
!
, as shown

by the dashed lines. Rx and Ry are the components of force required to maintain the velocity
of the control volume at 10îm=s.

The control volume is inertial, since it is not accelerating ðU = constantÞ.
Remember that all velocities must be measured relative to the control volume
in applying the basic equations.

Governing equations:

F
!
S +F

!
B =

∂
∂t

Z
CV

V
!
xyzρ dV--- +

Z
CS
V
!
xyz ρ V

!
xyz � dA

!

∂
∂t

Z
CV

ρ dV--- +
Z
CS
ρV
!
xyz � d A

!
=0

U
V

= 60°

Rx

Ry

X

Y
1

2x

y

CV

UV

= 60°
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Assumptions:

1 Flow is steady relative to the vane.

2 Magnitude of relative velocity along the vane is constant: jV!1j= jV
!
2j=V−U.

3 Properties are uniform at sections and .

4 FBx =0.

5 Incompressible flow.

The x component of the momentum equation is

¼ 0 4ð Þ¼ 0 1ð Þ
FSx þ FB

��
�!x ¼

∂
∂t��

�!

Z
CV

uxyz ρ dVþ
Z
CS

uxyz ρ V
!
xyz � dA

!

There is no net pressure force, since patm acts on all sides of the CV. Thus

Rx =
Z
A1

uð−ρVdAÞ+
Z
A2

uðρVdAÞ= + u1ð−ρV1A1Þ+ u2ðρV2A2Þ

(All velocities are measured relative to xyz.) From the continuity equationZ
A1

ð−ρVdAÞ+
Z
A2

ðρVdAÞ= ð−ρV1A1Þ+ ðρV2A2Þ=0

or

ρV1A1 = ρV2A2

Therefore,

Rx = ðu2−u1ÞðρV1A1Þ
All velocities must be measured relative to the CV, so we note that

V1 =V−U V2 =V−U

u1 =V−U u2 = ðV−UÞcos θ
Substituting yields

Rx = ½ðV−UÞ cos θ−ðV−UÞ�ðρðV−UÞA1Þ= ðV−UÞðcos θ−1ÞfρðV−UÞA1g

= ð30−10Þm
s
× ð0:50−1Þ× 999

kg
m3 ð30−10Þm

s
× 0:003 m2

� �
×

N � s2
kg � m

Rx = −599N fto the leftg
Writing the y component of the momentum equation, we obtain

¼ 0 1ð Þ
FSy þFBy ¼

∂
∂t��

�!

Z
CV

υxyzρ dVþ
Z
CS

υxyzρ V
!
xyz � dA

!

Denoting the mass of the CV as M gives

Ry−Mg=
Z
CS
υρV

!� dA!=
Z
A2

υρV
!� dA! fυ1 = 0g

=
Z
A2

υðρVdAÞ= υ2ðρV2A2Þ= υ2ðρV1A1Þ

= ðV−UÞsin θfρðV−UÞA1g

= ð30−10Þm
s
× ð0:866Þ× ð999Þkg

n3
ð30−10Þm

s
× 0:003m2

� �
×

N � s2
kg � m

All velocities are
measured relative to
xyz:

8<
:

9=
;

fRecall ρV2A2 = ρV1A1:g
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4.5 Momentum Equation for Control Volume
with Rectilinear Acceleration
For an inertial control volume (having no acceleration relative to a stationary frame of reference), the
appropriate formulation of Newton’s second law is given by Eq. 4.26,

F
!
=F
!
S +F

!
B =

∂
∂t

Z
CV

V
!
xyz ρ dV--- +

Z
CS
V
!
xyz ρV

!
xyz � dA

! ð4:26Þ

Not all control volumes are inertial; for example, a rocket must accelerate if it is to get off the
ground. Since we are interested in analyzing control volumes that may accelerate relative to inertial coor-
dinates, it is logical to ask whether Eq. 4.26 can be used for an accelerating control volume. To answer
this question, let us briefly review the two major elements used in developing Eq. 4.26.

First, in relating the system derivatives to the control volume formulation (Eq. 4.25 or 4.10), the
flow field, V

!ðx,y,z, tÞ, was specified relative to the control volume’s coordinates x, y, and z. No restric-
tion was placed on the motion of the xyz reference frame. Consequently, Eq. 4.25 (or Eq. 4.10) is valid at
any instant for any arbitrary motion of the coordinates x, y, and z provided that all velocities in the equa-
tion are measured relative to the control volume.

Second, the system equation

F
!
=
dP
!

dt

!
system

ð4:2aÞ

where the linear momentum of the system is given by

P
!
system =

Z
MðsystemÞ

V
!
dm=

Z
V--ðsystemÞ

V
!
ρ dV--- ð4:2bÞ

is valid only for velocities measured relative to an inertial reference frame. Thus, if we denote the inertial
reference frame by XYZ, then Newton’s second law states that

F
!
=
dP
!
XYZ

dt

!
system

ð4:27Þ

Since the time derivatives of P
!
XYZ and P

!
xyz are not equal when the control volume reference frame

xyz is accelerating relative to the inertial reference frame, Eq. 4.26 is not valid for an accelerating control
volume.

To develop the momentum equation for a linearly accelerating control volume, it is necessary to
relate P

!
XYZ of the system to P

!
xyz of the system. The system derivative dP

!
xyz=dt can then be related to

control volume variables through Eq. 4.25. We begin by writing Newton’s second law for a system,
remembering that the acceleration must be measured relative to an inertial reference frame that we have
designated XYZ. We write

F
!
=
dP
!
XYZ

dt

!
system

=
d
dt

Z
MðsystemÞ

V
!
XYZdm=

Z
MðsystemÞ

dV
!
XYZ

dt
dm ð4:28Þ

Ry−Mg=1:04 kN fupwardg
Thus the vertical force is

Ry =1:04 kN+Mg fupwardg
Then the net force on the vane (neglecting the weight of the vane and water within
the CV) is

R
!
= −0:599î+1:04ĵ kN R

!

 ����������������������
This problem illustrates how to apply the
momentum equation for a control
volume in constant velocity motion by
evaluating all velocities relative to
the control volume.
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The velocities with respect to the inertial ðXYZÞ and the control volume coordinates ðxyzÞ are related
by the relative-motion equation

V
!
XYZ =V

!
xyz +V

!
rf ð4:29Þ

where V
!
rf is the velocity of the control volume coordinates xyz with respect to the “absolute” stationary

coordinates XYZ.
Since we are assuming the motion of xyz is pure translation, without rotation, relative to inertial

reference frame XYZ, then

dV
!
XYZ

dt
= a!XYZ =

dV
!
xyz

dt
+
dV
!
rf

dt
= a!xyz + a!rf ð4:30Þ

where
a!XYZ is the rectilinear acceleration of the system relative to inertial reference frame XYZ,
a!xyz is the rectilinear acceleration of the system relative to noninertial reference frame xyz

(i.e., relative to the control volume), and
a!rf is the rectilinear acceleration of noninertial reference frame xyz (i.e., of the control volume)

relative to inertial frame XYZ.

Substituting from Eq. 4.30 into Eq. 4.28 gives

F
!
=
Z
MðsystemÞ

a!rf dm+
Z
MðsystemÞ

dV
!
xyz

dt
dm

or

F
!
−
Z
MðsystemÞ

a!rf dm=
dP
!
xyz

dt

!
system

ð4:31aÞ

where the linear momentum of the system is given by

P
!
xyzÞsystem =

Z
MðsystemÞ

V
!
xyzdm=

Z
V--ðsystemÞ

V
!
xyzρ dV--- ð4:31bÞ

and the force, F
!
, includes all surface and body forces acting on the system.

To derive the control volume formulation of Newton’s second law, we set

N =P
!
xyz and η=V

!
xyz

From Eq. 4.25, with this substitution, we obtain

dP
!
xyz

dt

!
system

=
∂
∂t

Z
CV

V
!
xyzρ dV--- +

Z
CS
V
!
xyzρV

!
xyz�dA

! ð4:32Þ

Combining Eq. 4.31a (the linear momentum equation for the system) and Eq. 4.32 (the system–
control volume conversion), and recognizing that at time t0 the system and control volume coincide,
Newton’s second law for a control volume accelerating, without rotation, relative to an inertial reference
frame is

F
!
−
Z
CV

a!rf ρ dV--- =
∂
∂t

Z
CV

V
!
xyz ρ dV--- +

Z
CS
V
!
xyz ρV

!
xyz � dA

!

Since F
!
=F
!
S +F

!
B, this equation becomes

F
!
S +F

!
B−
Z
CV

a!rf ρ dV--- =
∂
∂t

Z
CV

V
!
xyz ρ dV--- +

Z
CS
V
!
xyz ρV

!
xyz � dA

! ð4:33Þ

Comparing this momentum equation for a control volume with rectilinear acceleration to that for a non-
accelerating control volume, Eq. 4.26, we see that the only difference is the presence of one additional
term in Eq. 4.33. When the control volume is not accelerating relative to inertial reference frame XYZ,
then a!rf =0, and Eq. 4.33 reduces to Eq. 4.26.
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The precautions concerning the use of Eq. 4.26 also apply to the use of Eq. 4.33. Before attempting
to apply either equation, one must draw the boundaries of the control volume and label appropriate coor-
dinate directions. For an accelerating control volume, one must label two coordinate systems: one ðxyzÞ
on the control volume and the other ðXYZÞ an inertial reference frame.

In Eq. 4.33, F
!
S represents all surface forces acting on the control volume. Since the mass within the

control volume may vary with time, both the remaining terms on the left side of the equation may be
functions of time. Furthermore, the acceleration, a!rf , of the reference frame xyz relative to an inertial
frame will in general be a function of time.

All velocities in Eq. 4.33 are measured relative to the control volume. The momentum flux,
V
!
xyzρV

!
xyz � dA

!
, through an element of the control surface area, dA

!
, is a vector. As we saw for the non-

accelerating control volume, the sign of the scalar product, ρV
!
xyz � dA

!
, depends on the direction of the

velocity vector, V
!
xyz, relative to the area vector, dA

!
.

Themomentum equation is a vector equation. As with all vector equations, it may be written as three
scalar component equations. The scalar components of Eq. 4.33 are

FSx +FBx −
Z
CV

arfx ρdV--- =
∂
∂t

Z
CV

uxyz ρdV--- +
Z
CS
uxyz ρV

!
xyz � d A

! ð4:34aÞ

FSy +FBy −
Z
CV

arfy ρdV--- =
∂
∂t

Z
CV

υxyz ρdV--- +
Z
CS
υxyz ρV

!
xyz � d A

! ð4:34bÞ

FSz +FBz −
Z
CV

arfz ρdV--- =
∂
∂t

Z
CV

wxyz ρdV--- +
Z
CS
wxyz ρV

!
xyz � d A

! ð4:34cÞ

We will consider two applications of the linearly accelerating control volume: Example 4.11 will
analyze an accelerating control volume in which the mass contained in the control volume is constant;
Example 4.12 will analyze an accelerating control volume in which the mass contained varies with time.

Example 4.11 VANE MOVING WITH RECTILINEAR ACCELERATION

A vane, with turning angle θ=60�, is attached to a cart. The cart and vane, of massM =75 kg, roll on a level track. Friction and
air resistance may be neglected. The vane receives a jet of water, which leaves a stationary nozzle horizontally at V =35 m=s. The
nozzle exit area is A=0:003 m2. Determine the velocity of the cart as a function of time and plot the results.

Given: Vane and cart as sketched, with M =75 kg.

Find: UðtÞ and plot results.

Solution: Choose the control volume and coordinate sys-
tems shown for the analysis. Note that XY is a fixed frame,
while frame xy moves with the cart. Apply the x component
of the momentum equation.

Governing equations:
¼ 0 1ð Þ¼ 0 2ð Þ ’ 0 4ð Þ
F

��
��!Sx þ F

��
��!Bx −

Z
CV

arfx ρ dV ¼
∂
∂t��

��!

Z
CV

uxyzρ dVþ
Z
CS

uxyzρV
!
xyz � dA

!

Assumptions:

1 FSx =0, since no resistance is present.

2 FBx =0.

3 Neglect the mass of water in contact with the vane compared to the cart mass.

4 Neglect rate of change of momentum of liquid inside the CV.

∂
∂t

Z
CV

uxyz ρ dV---’ 0

θ = 60°2

1
y

x
CV

UM

= 999 kg/m3
ρ

V = 35 m/s
A = 0.003 m2

X

Y
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5 Uniform flow at sections and .

6 Speed of water stream is not slowed by friction on the vane, so jV!xyz1 j= jV
!
xyz2 j.

7 A2 =A1 =A.

Then, dropping subscripts rf and xyz for clarity (but remembering that all velocities are measured relative to the moving coor-
dinates of the control volume),

−
Z
CV

ax ρ dV--- = u1ð−ρV1A1Þ+ u2ðρV2A2Þ
= ðV−UÞf−ρðV−UÞAg+ ðV−UÞcos θfρðV−UÞAg
= −ρðV−UÞ2A+ ρðV−UÞ2Acos θ

For the left side of this equation we have

−
Z
CV

ax ρ dV--- = −axMCV = −axM = −
dU
dt

M

so that

−M
dU
dt

= −ρðV−UÞ2A+ ρðV−UÞ2Acos θ
or

M
dU
dt

= ð1−cos θÞρðV−UÞ2 A

Separating variables, we obtain

dU

ðV−UÞ2 =
ð1−cos θÞρA

M
dt= bdt where b=

ð1−cosθÞρA
M

Note that since V = constant, dU = −dðV−UÞ. Integrating between limits U =0 at t=0, and U =U at t= t,Z U

0

dU

ðV−UÞ2 =
Z U

0

−dðV−UÞ
ðV−UÞ2 =

1
ðV−UÞ

#U
0

=
Z t

0
bdt= bt

or 1
ðV−UÞ −

1
V
=

U
VðV−UÞ = bt

Solving for U, we obtain
U
V

=
Vbt

1+Vbt
Evaluating Vb gives

Vb=V
ð1−cos θÞρA

M

Vb=35
m
s
×
ð1−0:5Þ
75 kg

× 999
kg
m3 × 0:003 m2 = 0:699 s−1

Thus
U
V
=

0:699t
1+ 0:699t

ðt in secondsÞ UðtÞ
 �����������������������������������������������

Plot:

The graph was generated from an
Excel workbook. This workbook

is interactive: It allows one to see the effect
of different values of ρ, A, M, and θ on U=V
against time t, and also to determine the
time taken for the cart to reach, for
example, 95 percent of jet speed.

0
0

0.5

1.0

5 10

Time, t (s)
15 20

U___
V
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Example 4.12 ROCKET DIRECTED VERTICALLY

A small rocket, with an initial mass of 400 kg, is to be launched vertically. Upon ignition the rocket consumes fuel at the rate of
5 kg=s and ejects gas at atmospheric pressure with a speed of 3500 m=s relative to the rocket. Determine the initial acceleration of
the rocket and the rocket speed after 10 s, if air resistance is neglected.

Given: Small rocket accelerates vertically from rest.
Initial mass, M0 = 400 kg.
Air resistance may be neglected.
Rate of fuel consumption, _me =5 kg=s.
Exhaust velocity, Ve =3500 m=s, relative to rocket, leaving at atmospheric pressure.

Find: (a) Initial acceleration of the rocket.
(b) Rocket velocity after 10 s.

Solution: Choose a control volume as shown by dashed lines. Because the control volume is accel-
erating, define inertial coordinate system XY and coordinate system xy attached to the CV. Apply the y
component of the momentum equation.

Governing equation:

FSy +FBy −
Z
CV

arfy ρ dV--- =
∂
∂t

Z
CV

υxyz ρ dV--- +
Z
CV

υxyz ρV
!
xyz � d A

!

Assumptions:

1 Atmospheric pressure acts on all surfaces of the CV; since air resistance is neglected, FSy =0.

2 Gravity is the only body force; g is constant.

3 Flow leaving the rocket is uniform, and Ve is constant.

Under these assumptions the momentum equation reduces to

FBy −
Z
CV

arfy ρ dV--- =
∂
∂t

Z
CV

υxyz ρ dV--- +
Z
CS

υxyz ρV
!
xyz � dA

!

ð1Þ

Let us look at the equation term by term:

FBy = −
Z
CV

g ρ dV--- = −g
Z
CV

ρ dV--- = −gMCV fsince g is constantg

The mass of the CV will be a function of time because mass is leaving the CV at rate _me. To determineMCV as a function of time,
we use the conservation of mass equation

∂
∂t

Z
CV

ρ dV--- +
Z
CS
ρV
! � dA!=0

Then

∂
∂t

Z
CV

ρ dV--- = −
Z
CS
ρV
! � dA!= −

Z
CS
ðρVxyzdAÞ= − _me

The minus sign indicates that the mass of the CV is decreasing with time. Since the mass of the CV is only a function of time,
we can write

dMCV

dt
= − _me

To find the mass of the CV at any time, t, we integrateZ M

M0

dMCV =
Z t

0
_me dt where at t=0, MCV =M0, and at t= t ,MCV =M

X

Y

CV

y

x

Ve
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Then, M−M0 = − _met, or M =M0− _met.
Substituting the expression for M into term , we obtain

FBy = −
Z
CV

g ρ dV--- = −gMCV = −gðM0− _metÞ

−
Z
CV

arfy ρ dV---

The acceleration, arfy , of the CV is that seen by an observer in the XY coordinate system. Thus arfy is not a function of the coor-
dinates xyz, and

−
Z
CV

arfy ρ dV--- = −arfy

Z
CV

ρ dV--- = −arfy MCV = −arfyðM0− _metÞ

∂
∂t

Z
CV

υxyz ρ dV---

This is the time rate of change of the y momentum of the fluid in the control volume measured relative to the control volume.
Even though the y momentum of the fluid inside the CV, measured relative to the CV, is a large number, it does not change

appreciably with time. To see this, we must recognize that:

1 The unburned fuel and the rocket structure have zero momentum relative to the rocket.

2 The velocity of the gas at the nozzle exit remains constant with time as does the velocity at various points in the nozzle.

Consequently, it is reasonable to assume that

∂
∂t

Z
CV

υxyz ρ dV---≈0

Z
CS
υxyz ρV

!
xyz � dA

!
=
Z
CS
υxyzðρVxyz dAÞ= −Ve

Z
CS
ðρVxyz dAÞ

The velocity υxyz (relative to the control volume) is −Ve (it is in the negative y direction), and is a constant, so was taken outside
the integral. The remaining integral is simply the mass flow rate at the exit (positive because flow is out of the control volume),Z

CS
ðρVxyzdAÞ= _me

and so Z
CS
υxyz ρV

!
xyz � dA

!
= −Ve _me

Substituting terms through into Eq. 1, we obtain

−gðM0− _metÞ−arfyðM0− _metÞ= −Ve _me

or

arfy =
Ve _me

M0− _met
−g ð2Þ

At time t=0,

arfyÞt=0 =
Ve _me

M0
−g=3500

m
s
× 5

kg
s
×

1
400 kg

−9:81
m
s2

arfyÞt=0 = 33:9 m=s2
arfyÞt=0 ��������������������������������������������

The acceleration of the CV is by definition

arfy =
dVCV

dt
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4.6 Momentum Equation for Control Volume
with Arbitrary Acceleration (on the Web)

4.7 The Angular-Momentum Principle
Our next task is to derive a control volume form of the angular-momentum principle. There are two obvi-
ous approaches we can use to express the angular-momentum principle: We can use an inertial (fixed)
XYZ control volume; we can also use a rotating xyz control volume. For each approach we will: start with
the principle in its system form (Eq. 4.3a), then write the system angular momentum in terms of XYZ or
xyz coordinates, and finally use Eq. 4.10 (or its slightly different form, Eq. 4.25) to convert from a system
to a control volume formulation. To verify that these two approaches are equivalent, we will use each
approach to solve the same problem, in Examples W4.1 and W4.2 (on the web), respectively.

There are two reasons for the material of this section: We wish to develop a control volume equation
for each of the basic physical laws of Section 4.2; and we will need the results for use in Chapter 10,
where we discuss rotating machinery.

Equation for Fixed Control Volume

The angular-momentum principle for a system in an inertial frame is

T
!
=
dH
!

dt

!
system

ð4:3aÞ

where

T
!
= total torque exerted on the system by its surroundings, and

H
!
= angular momentum of the system.

H
!
=
Z
MðsystemÞ

r!×V
!
dm=

Z
V--ðsystemÞ

r!×V
!
ρ dV--- ð4:3bÞ

All quantities in the system equation must be formulated with respect to an inertial reference frame.
Reference frames at rest, or translating with constant linear velocity, are inertial, and Eq. 4.12 can be used
directly to develop the control volume form of the angular-momentum principle.

The position vector, r!, locates each mass or volume element of the system with respect to the coor-
dinate system. The torque, T

!
, applied to a system may be written

T
!
= r! ×F

!
s +
Z
MðsystemÞ

r!× g!dm+ T
!
shaft ð4:3cÞ

Substituting from Eq. 2,

dVCV

dt
=

Ve _me

M0− _met
−g

Separating variables and integrating gives

VCV =
Z VCV

0
dVCV =

Z t

0

Ve _medt
M0− _met

−
Z t

0
gdt= −Ve ln

M0− _met
M0

	 

−gt

At t=10 s,

VCV = −3500
m
s
× ln

350 kg
400 kg

	 

−9:81

m
s2

× 10 s

VCV =369 m=s
VCVÞt=10⁣s �������������������������������

The velocity-time graph is shown
in an Excel workbook. This work-

book is interactive: It allows one to see
the effect of different values of Mo, Ve, and
_me on VCV versus time t. Also, the time at

which the rocket attains a given speed, e.g.,
2000m=s, can be determined.
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where F
!
s is the surface force exerted on the system.

The relation between the system and fixed control volume formulations is

dN
dt

�
system

=
∂
∂t

Z
CV

η ρ dV--- +
Z
CS

η ρV
! � dA! ð4:10Þ

where

Nsystem =
Z
MðsystemÞ

η dm

If we set N =H
!
, then η= r!×V

!
, and

dH
!

dt

!
system

=
∂
∂t

Z
CV

r!×V
!
ρ dV--- +

Z
CS

r!×V
!
ρV
! � dA! ð4:45Þ

Combining Eqs. 4.3a, 4.20, and 4.45, we obtain

r!×F
!
s +
Z
MðsystemÞ

r!× g!dm+ T
!
shaft =

∂
∂t

Z
CV

r!×V
!
ρ dV--- +

Z
CS
r!×V

!
ρV
! � dA!

Since the system and control volume coincide at time t0,

T
!
= T
!
CV

and

r!×F
!
s +
Z
CV

r!× g!ρ dV--- +T
!
shaft =

∂
∂t

Z
CV

r!×V
!
ρ dV--- +

Z
CS

r!×V
!
ρV
! � dA! ð4:46Þ

Equation 4.46 is a general formulation of the angular-momentum principle for an inertial control vol-
ume. The left side of the equation is an expression for all the torques that act on the control volume.
Terms on the right express the rate of change of angular momentum within the control volume and
the net rate of flux of angular momentum from the control volume. All velocities in Eq. 4.46 are meas-
ured relative to the fixed control volume.

For analysis of rotating machinery, Eq. 4.46 is often used in scalar form by considering only the
component directed along the axis of rotation. This application is illustrated in Chapter 10.

The application of Eq. 4.46 to the analysis of a simple lawn sprinkler is illustrated in Example 4.13.
This same problem is considered in Example W4.2 (on the web) using a rotating control volume. The
equation for the angular-momentum principle applied to a rotating control volume is developed in the
web Section 4.7 “Equation for a Rotating Control Volume.”

Example 4.13 LAWN SPRINKLER: ANALYSIS USING FIXED CONTROL VOLUME

A small lawn sprinkler is shown in the sketch at right. At an inlet gage pressure of 20 kPa, the total volume flow rate of water
through the sprinkler is 7.5 liters per minute and it rotates at 30 rpm. The diameter of each jet is 4 mm. Calculate the jet speed
relative to each sprinkler nozzle. Evaluate the friction torque at the sprinkler pivot.

Given: Small lawn sprinkler as shown.

Find: (a) Jet speed relative to each nozzle.
(b) Friction torque at pivot.

Solution: Apply continuity and angular momentum equations using fixed
control volume enclosing sprinkler arms.

V
rel

V
rel

ω

R = 150 mm

Q = 7.5 L/min
= 30 rpmω

α = 30°

psupply = 20 kPa (gage)
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Governing equations:

¼ 0 1ð Þ
∂
∂t��

�!

Z
CV

ρdVþ
Z
CS

ρV
! � dA!¼ 0

r!×F
!
s +
Z
CV

r!× g!ρdV--- + T
!
shaft =

∂
∂t

Z
CV

r!×V
!
ρdV--- +

Z
CS

r!×V
!
ρV
! � dA! ð1Þ

where all velocities are measured relative to the inertial coordinates XYZ.

Assumptions:

1 Incompressible flow.

2 Uniform flow at each section.

3 ω
! = constant:

From continuity, the jet speed relative to the nozzle is given by

Vrel =
Q

2Ajet
=
Q
2

4
πD2

jet

=
1
2
× 7:5

L
min

×
4
π

1

ð4Þ2 mm2
×

m3

1000 L
× 106

mm2

m2 ×
min
60 s

Vrel = 4:97 m=s Vrel �������������������������������������������������������
Consider terms in the angular momentum equation separately. Since atmospheric pressure acts on the entire control surface, and
the pressure force at the inlet causes no moment about O, r! ×F

!
s = 0. The moments of the body (i.e., gravity) forces in the two

arms are equal and opposite and hence the second term on the left side of the equation is zero. The only external torque acting on
the CV is friction in the pivot. It opposes the motion, so

T
!
shaft = −Tf K̂ ð2Þ

Our next task is to determine the two angular momentum terms on the right side of Eq. 1. Consider the unsteady term:
This is the rate of change of angular momentum in the control volume. It is clear that although the position r!and velocity
V
!
of fluid particles are functions of time in XYZ coordinates, because the sprinkler rotates at constant speed the control volume

angular momentum is constant in XYZ coordinates, so this term is zero; however, as an exercise in manipulating vector quantities,
let us derive this result. Before we can evaluate the control volume integral, we need to develop expressions for the instantaneous
position vector, r!, and velocity vector, V

!
(measured relative to the fixed coordinate system XYZ) of each element of fluid in the

control volume. OA lies in the XY plane; AB is inclined at angle α to the XY plane; point B0 is the projection of point B on the
XY plane.

We assume that the length, L, of the tip AB is small compared with the length, R, of the horizontal arm OA. Consequently we
neglect the angular momentum of the fluid in the tips compared with the angular momentum in the horizontal arms.

VrelVrel

R = 150 mm

α = 30°

psupply = 20 kPa (gage)

CV

(Control volume
is fixed

wrt XYZ )

Q = 7.5 L/min
= 30 rpm

Z
Y

X
Tf

ω

ω

O

O

A
B

B'

Isometric view Plan view

X

Y

Z

O

O

A

X
B'

Y

α

ω

θ

θ

θ
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Consider flow in the horizontal tubeOA of length R. Denote the radial distance fromO by r. At
any point in the tube the fluid velocity relative to fixed coordinates XYZ is the sum of the velocity
relative to the tube V

!
t and the tangential velocity ω

! × r!. Thus

V
!
= ÎðVt cos θ−rω sin θÞ+ ĴðVt sin θ+ rω cos θÞ

(Note that θ is a function of time.) The position vector is

r!= Îr cos θ+ Ĵr sin θ

and

r! × V
!
= K̂ðr2ω cos2θ+ r2ω sin2 θÞ= K̂r2ω

Then Z
V--OA

r! × V
!
ρ dV--- =

Z R

O
K̂r2ωρA dr= K̂

R3ω

3
ρA

and

∂
∂t

Z
V--OA

r! × V
!
ρ dV--- =

∂
∂t

K̂
R3ω

3
ρA

	 

=0 ð3Þ

where A is the cross-sectional area of the horizontal tube. Identical results are obtained for the other horizontal tube in the control
volume. We have confirmed our insight that the angular momentum within the control volume does not change with time.

Now we need to evaluate the second term on the right, the flux of momentum across the control surface. There are three
surfaces through which we have mass and therefore momentum flux: the supply line (for which r! × V

!
=0) because r!=0

and the two nozzles. Consider the nozzle at the end of branch OAB. For L�R, we have

r!jet = r!B ≈ r!jr=R = ðÎr cos θ+ Ĵr sin θÞjr=R = ÎR cos θ+ ĴR sin θ

and for the instantaneous jet velocity V
!
j we have

V
!
j =V

!
rel +V

!
tip = ÎVrel cos α sin θ− ĴVrel cos α cos θ+ K̂Vrel sin α− ÎωR sin θ+ ĴωR cos θ

V
!
j = ÎðVrel cos α−ωRÞsin θ− ĴðVrel cos α−ωRÞcos θ+ K̂Vrel sin α

r!B ×V
!
j = ÎRVrel sin α sin θ−J

!
RVrel sin α cos θ−K̂RðVrel cos α−ωRÞðsin2 θ+ cos2 θÞ

r!B ×V
!
j = ÎRVrel sin α sin θ−J

!
RVrel sin α cos θ−K̂RðVrel cos α−ωRÞ

The flux integral evaluated for flow crossing the control surface at location B is thenZ
CS
r!×V

!
j ρV

! � dA!= ÎRVrel sin α sin θ− ĴRVrel sin α cos θ−K̂RðVrel cos α−ωRÞ� �
ρ
Q
2

The velocity and radius vectors for flow in the left arm must be described in terms of the same unit vectors used for the right
arm. In the left arm the Î and Ĵ components of the cross product are of opposite sign, since sinðθ+ πÞ= −sinðθÞ and
cosðθ−πÞ= −cosðθÞ. Thus for the complete CV,Z

CS
r!×V

!
j ρV

! � dA!= −K̂RðVrel cos α−ωRÞρQ ð4Þ

Substituting terms (2), (3), and (4) into Eq. 1, we obtain

−Tf K̂ = − K̂RðVrel cos α−ωRÞρQ
or

Tf =RðVrel cos α−ωRÞρQ
This expression indicates that when the sprinkler runs at constant speed the friction torque at the sprinkler pivot just balances the
torque generated by the angular momentum of the two jets.

r

r

Y

A

Vt

X
O

Plan view

ω

θ

θ
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4.8 The First and Second Laws of Thermodynamics
The first law of thermodynamics is a statement of conservation of energy. Recall that the system for-
mulation of the first law was

_Q− _W =
dE
dt

�
system

ð4:4aÞ

where the total energy of the system is given by

Esystem =
Z
MðsystemÞ

e dm=
Z
V--ðsystemÞ

e ρ dV--- ð4:4bÞ

and

e= u+
V2

2
+ gz

In Eq. 4.4a, the rate of heat transfer, _Q, is positive when heat is added to the system from the surround-
ings; the rate of work, _W , is positive when work is done by the system on its surroundings. (Note that
some texts use the opposite notation for work.)

To derive the control volume formulation of the first law of thermodynamics, we set

N =E and η= e

in Eq. 4.10 and obtain
dE
dt

�
system

=
∂
∂t

Z
CV

e ρ dV--- +
Z
CS
e ρV

! � dA! ð4:53Þ

Since the system and the control volume coincide at t0,

½ _Q− _W �system = ½ _Q− _W �control volume

In light of this, Eqs. 4.4a and 4.53 yield the control volume form of the first law of
thermodynamics,

_Q− _W =
∂
∂t

Z
CV

e ρ dV--- +
Z
CS

e ρV
! � dA! ð4:54Þ

where
e= u+

V2

2
+ gz

Note that for steady flow the first term on the right side of Eq. 4.54 is zero.
Is Eq. 4.54 the form of the first law used in thermodynamics? Even for steady flow, Eq. 4.54 is not

quite the same form used in applying the first law to control volume problems. To obtain a formulation
suitable and convenient for problem solutions, let us take a closer look at the work term, _W .

From the data given,

ωR=30
rev
min

× 150 mm×2π
rad
rev

×
min
60 s

×
m

1000 mm
=0:471 m=s

Substituting gives

Tf =150 mm×
�
4:97

m
s
× cos 30�−0:471

m
s

�
999

kg
m3 × 7:5

L
min

×
m3

1000 L
×
min
60 s

×
N � s3
kg � m ×

m
1000 mm

Tf =0:0718 N � m Tf �������������������������������

This problem illustrates use of the angular
momentum principle for an inertial control
volume. Note that in this example the
fluid particle position vector r

!
and velocity

vector V
!
are time-dependent (through θ)

in XYZ coordinates. This problem is also
solved using a noninertial (rotating) xyz
coordinate system in Example W4.2
(on the web).
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Rate of Work Done by a Control Volume

The term _W in Eq. 4.54 has a positive numerical value when work is done by the control volume on the
surroundings. The rate of work done on the control volume is of opposite sign to the work done by the
control volume.

The rate of work done by the control volume is conveniently subdivided into four classifications,

_W = _Ws + _Wnormal + _W shear + _Wother

Let us consider these separately:

1. Shaft Work
We shall designate shaft workWs and hence the rate of work transferred out through the control surface
by shaft work is designated _Ws. Examples of shaft work are the work produced by the steam turbine
(positive shaft work) of a power plant, and the work input required to run the compressor of a refrigerator
(negative shaft work).

2. Work Done by Normal Stresses at the Control Surface
Recall that work requires a force to act through a distance. Thus, when a force, F

!
, acts through an infin-

itesimal displacement, ds!, the work done is given by

δW =F
!� ds!

To obtain the rate at which work is done by the force, divide by the time increment, Δt, and take the limit
as Δt! 0. Thus the rate of work done by the force, F

!
, is

_W = lim
Δt!0

δW
Δt

= lim
Δt!0

F
!� ds!
Δt

or _W =F
! � V!

We can use this to compute the rate of work done by the normal and shear stresses. Consider the segment
of control surface shown in Fig. 4.5. For an element of area dA

!
we can write an expression for the normal

stress force dF
!
normal: It will be given by the normal stress σnn multiplied by the vector area element dA

!

(normal to the control surface).
Hence the rate of work done on the area element is

dF
!
normal � V

!
= σnn dA

!� V!

Since the work out across the boundaries of the control volume is the negative of the work done on the
control volume, the total rate of work out of the control volume due to normal stresses is

_Wnormal = −
Z
CS

σnn dA
!� V!= −

Z
CS

σnnV
! � dA!

3. Work Done by Shear Stresses at the Control Surface
Just as work is done by the normal stresses at the boundaries of the control volume, so may work be done
by the shear stresses.

As shown in Fig. 4.5, the shear force acting on an element of area of the control surface is given by

dF
!
shear = τ

!dA

where the shear stress vector, τ!, is the shear stress acting in some direction in the plane of dA.
The rate of work done on the entire control surface by shear stresses is given byZ

CS
τ
!dA � V!=

Z
CS

τ
!� V!dA

dFshear =   dA
dA

τ

dFnormal = nndA
Control surfaceNormal stress force

Shear stress force

σ

Fig. 4.5 Normal and shear stress forces.
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Since the work out across the boundaries of the control volume is the negative of the work done on the
control volume, the rate of work out of the control volume due to shear stresses is given by

_W shear = −
Z
CS

τ
!� V! dA

This integral is better expressed as three terms

_W shear = −
Z
CS
τ
!� V! dA

= −
Z
AðshaftsÞ

τ
!� V! dA−RAðsolid surfaceÞτ!� V! dA−RAðportsÞτ!� V! dA

We have already accounted for the first term, since we included _Ws previously. At solid surfaces, V
!
=0,

so the second term is zero (for a fixed control volume). Thus,

_Wshear = −
Z
AðportsÞ

τ
!� V! dA

This last term can be made zero by proper choice of control surfaces. If we choose a control surface that
cuts across each port perpendicular to the flow, then dA

!
is parallel to V

!
. Since τ! is in the plane of dA, τ! is

perpendicular to V
!
. Thus, for a control surface perpendicular to V

!
,

τ
!�V!=0 and _W shear = 0

4 Other Work
Electrical energy could be added to the control volume. Also electromagnetic energy, e.g., in radar or
laser beams, could be absorbed. In most problems, such contributions will be absent, but we should note
them in our general formulation.

With all of the terms in _W evaluated, we obtain

_W = _Ws−
Z
CS
σnnV

! � dA!+ _W shear + _Wother ð4:55Þ

Control Volume Equation

Substituting the expression for _W from Eq. 4.55 into Eq. 4.54 gives

_Q− _Ws +
Z
CS
σnnV

! � dA!− _Wshear− _Wother =
∂
∂t

Z
CV

e ρ dV--- +
Z
CS
e ρV

! � dA!

Rearranging this equation, we obtain

_Q− _Ws− _W shear− _Wother =
∂
∂t

Z
CV

e ρ dV--- +
Z
CS
e ρV

! � dA!−
Z
CS
σnnV

! � dA!

Since ρ=1=υ, where υ is specific volume, thenZ
CS
σnnV

! � dA!=
Z
CS
σnn υ ρV

! � dA!

Hence

_Q− _Ws− _Wshear− _Wother =
∂
∂t

Z
CV

e ρ dV--- +
Z
CS
ðe−σnnυÞρV

! � dA!

Viscous effects can make the normal stress, σnn, different from the negative of the thermodynamic pres-
sure, −p. However, for most flows of common engineering interest, σnn’ −p. Then

_Q− _Ws− _Wshear− _Wother =
∂
∂t

Z
CV

e ρ dV--- +
Z
CS
ðe+ pυÞρV! � dA!
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Finally, substituting e= u+V2=2+ gz into the last term, we obtain the familiar form of the first law for a
control volume,

_Q− _Ws− _W shear− _Wother =
∂
∂t

Z
CV

e ρ dV--- +
Z
CS

u+ pυ+
V2

2
+ gz

� �
ρV
! � dA! ð4:56Þ

Each work term in Eq. 4.56 represents the rate of work done by the control volume on the surroundings.
Note that in thermodynamics, for convenience, the combination u+ pυ (the fluid internal energy plus
what is often called the “flow work”) is usually replaced with enthalpy, h≡ u+ pυ (this is one of the
reasons hwas invented). Example 4.14 illustrates the application of the first law to a steady flow system,
and Example 4.15 shows how to apply the first law to a system in which the flow is unsteady.

Example 4.14 COMPRESSOR: FIRST LAW ANALYSIS

Air at 101 kPa, 21�C, enters a compressor with negligible velocity and is
discharged at 344 kPa, 38�C through a pipe with 0:09 m2 area. The flow
rate is 9 kg=s. The power input to the compressor is 447 kW. Determine
the rate of heat transfer.

Given: Air enters a compressor at and leaves at with conditions as
shown. The air flow rate is 9 kg=s and the power input to the compressor is
447 kW.

Find: Rate of heat transfer.

Solution:

Governing equations:

¼ 0 1ð Þ
∂
∂t��

�!

Z
CV

ρ dVþ
Z
CS
ρV
! � dA!¼ 0

¼ 0 4ð Þ¼ 0 1ð Þ

_Q− _Ws− _Wshear

��
�!¼ ∂

∂t��
�!

Z
CV

e ρ dVþ
Z
CS

u+ pυ+
V2

2
+ gz

� �
ρV
! � dA!

Assumptions:

1 Steady flow.

2 Properties uniform over inlet and outlet sections.

3 Treat air as an ideal gas, p= ρRT .

4 Area of CV at and perpendicular to velocity, thus _W shear = 0.

5 z1 = z2.

6 Inlet kinetic energy is negligible.

Under the assumptions listed, the first law becomes

_Q− _Ws =
Z
CV

u+ pυ+
V2

2
+ gz

� �
ρV
! � dA!

_Q− _Ws =
Z
CS

h+
V2

2
+ gz

� �
ρV
! � dA!

1
2

p1 = 101 kPa

T1 = 21°C

V1= 0

p2 = 344 kPa

T2 = 38°C

A2 = 0.09m2

CV
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or
_Q= _Ws +

Z
CS

h+
V2

2
+ gz

� �
ρV
! � dA!

For uniform properties, assumption (2), we can write

≈0 6ð Þ

_Q¼ _Wsþ h1þV
2
1

2��
�!þgz1

� �
−ρ1V1A1ð Þþ h2þV2

2

2
þgz2

� �
ρ2V2A2ð Þ

For steady flow, from conservation of mass, Z
CS
ρV
! � dA!=0

Therefore, −ðρ1V1A1Þ+ ðρ2V2A2Þ=0, or ρ1V1A1 = ρ2V2A2 = _m. Hence we can write

¼ 0 5ð Þ
_Q¼ _Wsþ _m h2−h1ð ÞþV2

2

2
þg z2−z1ð Þ

��
�!

	 

Assume that air behaves as an ideal gas with constant cp. Then h2−h1 = cpðT2−T1Þ, and

_Q= _Ws + _m cpðT2−T1Þ+ V2
2

2

	 

From continuity V2 = _m=ρ2A2. Since p2 = ρ2RT2,

V2 =
_m
A2

RT2
p2

=
9 kg
s

×
1

0:09 m2 × 287
j

kg � �K × ð38þ273Þ�K×
1

344,000 Pa
×
Pa � m2

N
×
N � m
j

V2 = 25:9 m=s

Note that power input is to the CV, so _Ws = −447 kW, and

_Q= _Ws + _mcpðT2−T1Þ+ _m
V2
2

2

_Q= −447;000W×9
kg
s
× 1005

j
kg � �K × ½ð273+38Þ−ð273+ 21Þ��K×

W � s
j

+ 9
kg
s
×
ð25:9Þ2

2
m2

s2
×

N � s2
kg � m ×

W � s2
N � m

_Q= −290:2 kW
fheat rejectiong _Q �����������������������������

This problem illustrates use of the first law
of thermodynamics for a control volume.
It is also an example of the care that must
be taken with unit conversions for mass,
energy, and power.

Example 4.15 TANK FILLING: FIRST LAW ANALYSIS

A tank of 0:1 m3 volume is connected to a high-pressure air line; both line and tank are initially at a uniform temperature of 20�C.
The initial tank gage pressure is 100 kPa. The absolute line pressure is 2.0MPa; the line is large enough so that its temperature and
pressure may be assumed constant. The tank temperature is monitored by a fast-response thermocouple. At the instant after the
valve is opened, the tank temperature rises at the rate of 0.05�C/s. Determine the instantaneous flow rate of air into the tank if heat
transfer is neglected.

Given: Air supply pipe and tank as shown. At t=0+ , ∂T=∂t=0:05�C=s.

Find: _m at t=0+ .
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Solution: Choose CV shown, apply energy equation.

Governing equations:

¼ 0 1ð Þ¼ 0 2ð Þ ¼ 0 3ð Þ¼ 0 4ð Þ

_Q

��
�!− _Ws

��
�!− _Wshear

��
�!− _Wother

��
�!¼ ∂

∂t

Z
CV

e ρ dVþ
Z
CS

eþpυð ÞρV! � dA!

’ 0 5ð Þ’ 0 6ð Þ

e¼ uþV
2

2��
�!þgz

��
�!

Assumptions:

1 _Q=0 (given).

2 _Ws =0.

3 _Wshear = 0.

4 _Wother = 0.

5 Velocities in line and tank are small.

6 Neglect potential energy.

7 Uniform flow at tank inlet.

8 Properties uniform in tank.

9 Ideal gas, p= ρRT ,du= cυdT .

Then

∂
∂t

Z
CV

utankρ dV--- + ðu+ pυÞjlineð−ρVAÞ=0

This expresses the fact that the gain in energy in the tank is due to influx of fluid energy (in the form of enthalpy h= u+ pυ) from
the line. We are interested in the initial instant, when T is uniform at 20�C, so utank = uline = u, the internal energy at T; also,
pυline =RTline =RT , and

∂
∂t

Z
CV

u ρ dV--- + ðu+RTÞð−ρVAÞ=0

Since tank properties are uniform, ∂=∂t may be replaced by d=dt, and

d
dt
ðuMÞ= ðu+RTÞ _m

(where M is the instantaneous mass in the tank and _m= ρVA is the mass flow rate), or

u
dM
dt

+M
du
dt

= u _m+RT _m ð1Þ

The term dM=dt may be evaluated from continuity:

Governing equation:

∂
∂t

Z
CV

ρdV--- +
Z
CS
ρV
! � dA!=0

dM
dt

+ ð−ρVAÞ=0 or
dM
dt

= _m

Substituting in Eq. 1 gives

u _m+Mcυ
dT
dt

= u _m+RT _m

Tank    = 0.1 m3

Initial conditions: T = 20°C
p = 100 kPa (gage)

V

Valve

High-pressure line

T = 20°C
p = 20 MPa

      (absolute)

CV
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The second law of thermodynamics applies to all fluid systems. Recall that the system formulation
of the second law is

dS
dt

�
system

≥
1
T
_Q ð4:5aÞ

where the total entropy of the system is given by

Ssystem =
Z
MðsystemÞ

s dm=
Z
V--ðsystemÞ

s ρ dV--- ð4:5bÞ

To derive the control volume formulation of the second law of thermodynamics, we set

N = S and η= s

in Eq. 4.10 and obtain

dS
dt

�
system

=
∂
∂t

Z
CV

s ρ dV--- +
Z
CS
s ρV

! � dA! ð4:57Þ

The system and the control volume coincide at t0; thus in Eq. 4.5a,

1
T
_QÞsystem =

1
T
_QÞCV =

Z
CS

1
T

_Q
A

� �
dA

In light of this, Eqs. 4.5a and 4.57 yield the control volume formulation of the second law of
thermodynamics

∂
∂t

Z
CV

s ρ dV--- +
Z
CS
s ρV

! � dA!≥
Z
CS

1
T

_Q
A

� �
dA ð4:58Þ

In Eq. 4.58, the factor ð _Q=AÞ represents the heat flux per unit area into the control volume through
the area element dA. To evaluate the term Z

CS

1
T

_Q
A

� �
dA

both the local heat flux, ð _Q=AÞ, and local temperature, T , must be known for each area element of the
control surface.

or

_m=
McυðdT=dtÞ

RT
=
ρV---cυðdT=dtÞ

RT
ð2Þ

But at t=0, ptank = 100 kPa (gage), and

ρ = ρtank =
ptank
RT

= ð1:00+ 1:01Þ105 N
m2 ×

kg � K
287 N � m ×

1
293 K

=2:39 kg=m3

Substituting into Eq. 2, we obtain

_m=2:39
kg
m3 × 0:1 m3 × 717

N � m
kg � K ×0:05

K
s

×
kg � K

287 N � m ×
1

293 K
× 1000

g
kg

_m=0:102 g=s _m ��������������������������������
This problem illustrates use of the first law
of thermodynamics for a control volume.
It is also an example of the care that must
be taken with unit conversions for mass,
energy, and power.
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4.9 Summary and Useful Equations
In this chapter we wrote the basic laws for a system: mass conservation (or continuity), Newton’s
second law, the angular-momentum equation, the first law of thermodynamics, and the second
law of thermodynamics. We then developed an equation (sometimes called the Reynolds Trans-
port Theorem) for relating system formulations to control volume formulations. Using this we
derived control volume forms of:

✓ The mass conservation equation (sometimes called the continuity equation).
✓ Newton’s second law (in other words, a momentum equation) for:

• An inertial control volume.
• A control volume with rectilinear acceleration.
• A control volume with arbitrary acceleration (on the web).

✓ The angular-momentum equation for:
• A fixed control volume.
• A rotating control volume (on the web).

✓ The first law of thermodynamics (or energy equation).
✓ The second law of thermodynamics.

We discussed the physical meaning of each term appearing in these control volume
equations, and used the equations for the solution of a variety of flow problems. In particular,
we used a differential control volume to derive a famous equation in fluid mechanics—the
Bernoulli equation—and while doing so learned about the restrictions on its use in solving
problems.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to
refer to their page numbers for details!

Useful Equations
Continuity (mass
conservation), incompressible
fluid:

Z
CS
V
! � dA!=0

(4.13a) Page 90

Continuity (mass
conservation), incompressible
fluid, uniform flow:

X
CS
V
! � A!=0

(4.13b) Page 90

Continuity (mass
conservation), steady flow:

Z
CS

ρV
! � dA!=0

(4.15a) Page 90

Continuity (mass
conservation), steady flow,
uniform flow:

X
CS
ρV
! � A!=0

(4.15b) Page 90

Momentum (Newton’s
second law): F

!
=F
!
S +F

!
B =

∂
∂t

Z
CV

V
!
ρ dV--- +

Z
CS
V
!
ρV
! � dA! (4.17a) Page 95

Momentum (Newton’s
second law), uniform flow: F

!
=F
!
S +F

!
B =

∂
∂t

Z
CV

V
!
ρ dV--- +

X
CS
V
!
ρV
! � A! (4.17b) Page 95

Momentum (Newton’s
second law), scalar
components:

Fx =FSx +FBx =
∂
∂t

Z
CV

u ρ dV--- +
Z
CS

u ρV
! � dA!

Fy =FSy +FBy =
∂
∂t

Z
CV

υ ρ dV--- +
Z
CS

υ ρV
! � dA!

Fz =FSz +FBz =
∂
∂t

Z
CV

w ρ dV--- +
Z
CS

w ρV
! � dA!

(4.18a)

(4.18b)

(4.18c)

Page 96
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Table (Continued)

Momentum (Newton’s second
law), uniform flow, scalar
components:

Fx =FSx +FBx =
∂
∂t

Z
CV

u ρ dV--- +
X

CS
u ρV

! � A!

Fy =FSy +FBy =
∂
∂t

Z
CV

υρ dV--- +
X

CS
υ ρV

! � A!

Fz =FSz +FBz =
∂
∂t

Z
CV

w ρ dV--- +
X

CS
w ρV

! � A!

(4.18d)

(4.18e)

(4.18f)

Page 96

Bernoulli equation (steady,
incompressible, frictionless,
flow along a streamline):

p
ρ
+
V2

2
+ gz= constant

(4.24) Page 107

Momentum (Newton’s second
law), inertial control volume
(stationary or constant speed):

F
!
=F
!
S +F

!
B =

∂
∂t

Z
CV

V
!
xyz ρ dV--- +

Z
CS
V
!
xyz ρ V

!
xyz � dA

! (4.26) Page 109

Momentum (Newton’s second
law), rectilinear acceleration of
control volume:

FS
!

+FB
!

−
Z
CV

a!rf ρ dV--- =
∂
∂t

Z
CV

V
!
xyz ρ dV---

Z
CS
V
!
xyz ρV

!
xyz � dA

! (4.33) Page 112

Angular-momentum principle:
r!×F

!
s +
Z
CV

r!× g!ρ dV--- + T
!
shaft =

∂
∂t

Z
CV

r!×V
!
ρ dV--- +

Z
CS
r!×V

!
ρV
! � dA! (4.46) Page 118

First law of thermodynamics: _Q− _Ws− _Wshear− _Wother

=
∂
∂t

Z
CV

e ρ dV--- +
Z
CS

u+ pυ+
V2

2
+ gz

� �
ρV
! � dA!

(4.56) Page 124

Second law of
thermodynamics:

∂
∂t

Z
CV

s ρ dV--- +
Z
CS
s ρV

! � dA!≥
Z
CS

1
T

_QAÞdA� (4.58) Page 127

P R O B L E M S

Basic Laws for a System
4.1 An ice-cube tray containing 250 mL of freshwater at 15�C is
placed in a freezer at −5�C. Determine the change in internal energy
(kJ) and entropy (kJ/K) of the water when it has frozen.

4.2 A hot air balloon with an initial volume of 2600 m3 rises from
sea level to 1000 m elevation. The temperature of the air inside the
balloon is 100�C at the start and drops to 90�C at 1000 m. What are
the net amounts of heat and work transferred between the balloon and
the atmosphere?

4.3 A fully loaded Boeing 777-200 jet transport aircraft has a mass
of 325,000 kg. The pilot brings the 2 engines to full takeoff thrust of
450 kN each before releasing the brakes. Neglecting aerodynamic
and rolling resistance, estimate the minimum runway length and time
needed to reach a takeoff speed of 225 km/hr. Assume engine thrust
remains constant during ground roll.

4.4 On the Milford Trek in New Zealand, there is a pass with a cliff
known as the “12 second drop” for the time it takes a rock to hit the
ground below from the pass. Estimate the height of the pass assuming
that you throw a 5 cm diameter rock that weighs 200 g over the edge,
for the case of (a) no air resistance and (b) a drag force given by the
expression FD =KV , where FD is the force in N, V is the instantane-
ous velocity in m/s and K = 0.01. Explain why there is a difference in
the calculated height.

4.5 A high school experiment consists of a block of mass 2 kg slid-
ing across a surface (coefficient of friction μ=0:6). If it is given an

initial velocity of 5 m=s, how far will it slide, and how long will it
take to come to rest? The surface is now roughened a little, so with
the same initial speed it travels a distance of 2 m. What is the new
coefficient of friction, and how long does it now slide?

4.6 For a small particle of styrofoam ðdensity= 19:2 kg=m3Þ that is
spherical with a diameter d=1:0 mm falling in standard air at speed
V , the drag is given by FD =3πμVd where μ is the air viscosity. Find
(a) the maximum speed of the particle starting from rest and (b) the
time it takes to reach 95% of this speed. Plot the speed (m/s) as a func-
tion of time.

4.7Air at 20�C and an absolute pressure of 101.3 kpa is compressed
adiabatically in a piston-cylinder device, without friction, to an abso-
lute pressure of 905.3 kpa in a piston-cylinder device. Find the work
done (MJ).

4.8 A block of copper of mass 5 kg is heated to 90�C and then
plunged into an insulated container containing 4 L of water at
10�C. Find the final temperature of the system. For copper, the
specific heat is 385 J=kg � K, and for water the specific heat
is 4186 J=kg � K.
4.9 The average rate of heat loss from a person to the surroundings
when not actively working is about 85 W. Suppose that in an audito-
rium with volume of approximately 3:5× 105 m3, containing 6000
people, the ventilation system fails. How much does the internal
energy of the air in the auditorium increase during the first 15 min
after the ventilation system fails? Considering the auditorium and
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people as a system, and assuming no heat transfer to the surround-
ings, how much does the internal energy of the system change?
How do you account for the fact that the temperature of the
air increases? Estimate the rate of temperature rise under these
conditions.

Conservation of Mass
4.10 Thevelocity field in the region shown is given byV

!
= ðaĵ+ byk̂Þ

where a=10m=s and b=5 s−1. For the 1 m×1m triangular control
volume (depth w=1m perpendicular to the diagram), an element of
area�1 may be represented by dA

!
1 =wdzĵ − wdyk̂ and an element of

area�2 by dA
!
2 = −wdyk̂.

y

z

Control

volume1

2

P4.10

(a) Find an expression for V
! � dA1.

(b) Evaluate
R
A1
V
! � dA1.

(c) Find an expression for V
! � dA2.

(d) Find an expression for V
!ðV! � dA2Þ.

(e) Evaluate
R
A2
V
!ðV! � dA2Þ.

4.11 The area shown shaded is in a flow where the velocity field is
given by V

!
= axî+ byĵ+ ck̂; a= b=2 s−1 and c=1m=s. Write a vec-

tor expression for an element of the shaded area. Evaluate the inte-
grals

R
AV
! � dA and

R
AV
!ðV! � dA!Þ over the shaded area.

x

y

5 m

4 m

3 m

z

P4.11

4.12 Obtain an expression for the kinetic energy flux,
R ðV2=2Þ

ρV
! � dA!, through cross section�1 of the control volume shown.

h

V

CVu
1

x

y

Width = w
P4.12

4.13 A 0.3 m by 0.5 m rectangular air duct carries a flow of
0:45 m3=s at a density of 2 kg=m3. Calculate the mean velocity in
the duct. If the duct tapers to 0.15 m by 0.5 m size, what is the mean
velocity in this section if the density is 1:5 kg=m3 there?

4.14Across a shock wave in a gas flow there is a great change in gas
density ρ. If a shock wave occurs in a duct such that V =660 m=s and
ρ=1:0 kg=m3 before the shock and V =250 m=s after the shock,
what is ρ after the shock?

4.15 Water flows in a pipeline composed of 75-mm and 150-mm
pipe. Calculate the mean velocity in the 75-mm pipe when that in
the 150-mm pipe is 2:5 m=s. What is its ratio to the mean velocity
in the 150-mm pipe?

4.16 The velocity distribution for laminar flow in a long circular
tube of radius R is given by the one-dimensional expression,

V
!
= uî= umax 1−

r
R

� �2	 

î

For this profile obtain expressions for the volume flow rate and the
momentum flux through a section normal to the pipe axis. Obtain an
expression for the kinetic energy flux,

R ðV2=2ÞρV! � dA!, through a
section normal to the pipe axis.

4.17 A farmer is spraying a liquid through 10 nozzles, 3-mm-ID, at
an average exit velocity of 3 m=s. What is the average velocity in the
25-mm-ID head feeder? What is the system flow rate, in L/m?

4.18 A university laboratory that generates 15 m3=s of air flow
at design condition wishes to build a wind tunnel with variable
speeds. It is proposed to build the tunnel with a sequence of three cir-
cular test sections: section 1 will have a diameter of 1.5 m, section 2 a
diameter of 1 m, and section 3 a diameter such that the average
speed is 75 m=s.

(a) What will be the speeds in sections 1 and 2?

(b) What must the diameter of section 3 be to attain the desired
speed at design condition?

4.19 Hydrogen is being pumped through a pipe system whose tem-
perature is held at 273 K. At a section where the pipe diameter is
10 mm, the absolute pressure and average velocity are 200 kPa
and 30 m=s. Find all possible velocities and pressures at a down-
stream section whose diameter is 20 mm.

4.20Calculate the mean velocities for these two-dimensional veloc-
ity profiles If υc =3m=s.

Parabola Parabola

EqualEqual

Circle

(a)

υc υc υc υc υc

(b) (c) (d) (e)

4.21 If the velocity profile in a passage of width 2R is given by
the equation υ=υc = ðy=RÞ1=n, derive an expression for V=υc in terms
of n: (a) for a two-dimensional passage, and, (b) for a cylindrical
pass age.

4.22 Fluid with 1040 kg=m3 density is flowing steadily through
the rectangular box shown. Given A1 = 0:046 m2, A2 = 0:009 m2,
A3 = 0:056 m2, V

!
1 = 3îm=s and V

!
2 = 6ĵm=s, determine velocity V

!
3.
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60°
A1

A3

A2 x

y

P4.22

4.23A rice farmer needs to fill a 150 m×400 m field with water to a
depth of 7.5 cm in 1 hr. How many 37.5-cm-diameter supply pipes
are needed if the average velocity in each must be less than 2:5 m=s?

4.24 In your kitchen, the sink is 60 cm by 45.7 cm. by 30.5 cm.
deep. You are filling it with water at the rate of 252 × 10−6 m3/s.
How long will it take (in min) to half fill the sink? After this you turn
off the faucet and open the drain slightly so that the tank starts to drain
at 63 × 10−6 m3/s. What is the rate (m/s) at which the water
level drops?

4.25 Fluid passes through this set of thin closely spaced blades.
What flow rate q is required for the velocity V to be 10 ft=s?

Radial line

30°

V

2 ft

P4.25

4.26 A pipeline 0.3 m in diameter divides at a Y into two branches
200 mm and 150 mm in diameter. If the flow rate in the main line is
0:3 m3=s and the mean velocity in the 200-mm pipe is 2:5 m=s, what
is the flow rate in the 150-mm pipe?

4.27Amanifold pipe of 3 in. diameter has four openings in its walls
spaced equally along the pipe and is closed at the downstream end.
If the discharge from each opening is 0.50 cfs, what are the mean
velocities in the pipe between the openings?

4.28You are trying to pump stormwater out of your basement during
a storm. The pump can extract 27.5 gpm. The water level in the base-
ment is now sinking by about 4 in./hr. What is the flow rate (gpm)
from the storm into the basement? The basement is 20 ft × 30 ft.

4.29 In the incompressible flow through the device shown, veloci-
ties may be considered uniform over the inlet and outlet sections.
The following conditions are known: A1 = 0:1 m2, A2 = 0:2 m2,
A3 = 0:6 m2, V1 = 10e− t=2 m=s, and V2 = 2cosð2πtÞm=s (t in sec-
onds). Obtain an expression for the velocity at section�3, and plot
V3 as a function of time. At what instant does V3 first become zero?
What is the total mean volumetric flow at section�3?

2

1 3

Flow

Flow

P4.29

4.30 Water enters a wide, flat channel of height 2h with a uniform
velocity of 2:5 m=s. At the channel outlet the velocity distribution is
given by

u
umax

= 1−
y
h

� �2
where y is measured from the centerline of the channel. Determine
the exit centerline velocity, umax.

4.31 Find the average efflux velocity V if the flow exits from a hole
of area 1 m2 in the side of the duct as shown.

V

5 m3/s10 m3/s

30°

Hole

P4.31

4.32 Find V for this mushroom cap on a pipeline.

V

V

3 m3/s

45°

2 m r18 m r

1 m d

P4.32

4.33 Incompressible fluid flows steadily through a plane diverging
channel. At the inlet, of height H, the flow is uniformwith magnitude
V1. At the outlet, of height 2H, the velocity profile is

V2 =Vmcos
πy
2H

� �
where y is measured from the channel centerline. Express Vm in terms
of V1.

4.34 A two-dimensional reducing bend has a linear velocity profile
at section�1. The flow is uniform at sections�2 and�3. The fluid is
incompressible and the flow is steady. Find the maximum velocity,
V1,max, at section�1.

V1,max 

V2 = 1 m/s

h2 = 0.2 m

h1 = 0.5 m

V3 = 5 m/s

h3 = 0.15 m

3

2
1

30°

P4.34

4.35 Water enters a two-dimensional, square channel of constant
width, h=75:5 mm, with uniform velocity, U. The channel makes
a 90� bend that distorts the flow to produce the linear velocity profile
shown at the exit, with Vmax = 2 Vmin. Evaluate Vmin, if U =7:5 m=s.
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Vmax

Vmin
V

hU

x

y

P4.35

4.36 Viscous liquid from a circular tank, D=300 mm in diameter,
drains through a long circular tube of radius R=50mm. The velocity
profile at the tube discharge is

u= umax 1−
r
R

� �2	 


Show that the average speed of flow in the drain tube is V = 1
2umax.

Evaluate the rate of change of liquid level in the tank at the instant
when umax = 0:155 m=s.

4.37 A rectangular tank used to supply water for a Reynolds flow
experiment is 230 mm deep. Its width and length are W =150 mm
and L=230 mm. Water flows from the outlet tube (inside diameter
D=6:35 mm) at Reynolds number Re=2000, when the tank is half
full. The supply valve is closed. Find the rate of change of water level
in the tank at this instant.

4.38 A cylindrical tank, 0.3 m in diameter, drains through a hole in
its bottom. At the instant when the water depth is 0.6 m, the flow rate
from the tank is observed to be 4 kg=s. Determine the rate of change
of water level at this instant.

4.39Air enters a tank through an area of 0:018 m2 with a velocity of
4:6 m=s and a density of 15:5 kg=m3. Air leaves with a velocity of
1:5 m=s and a density equal to that in the tank. The initial density
of the air in the tank is 10:3 kg=m3. The total tank volume is
0:6 m3 and the exit area is 0:04 m2. Find the initial rate of change
of density in the tank.

4.40 A cylindrical tank, of diameter D=50mm, drains through
an opening, d =5mm., in the bottom of the tank. The speed of the
liquid leaving the tank is approximately V =

ffiffiffiffiffiffiffi
2gy
p

where y is the
height from the tank bottom to the free surface. If the tank is initially
filled with water to y0 = 0:4 m, determine the water depths at
t =60 sec, t =120 sec, and t =180 sec. Plot y (m) versus t for the first
180 sec.

4.41 A conical flask contains water to height H =36:8 mm, where
the flask diameter is D=29:4 mm. Water drains out through a
smoothly rounded hole of diameter d =7:35 mm at the apex of
the cone. The flow speed at the exit is V =

ffiffiffiffiffiffiffi
2gy
p

, where y is the
height of the liquid free surface above the hole. A stream of water
flows into the top of the flask at constant volume flow rate,
Q=3:75× 10−7 m3=hr. Find the volume flow rate from the bottom
of the flask. Evaluate the direction and rate of change of water surface
level in the flask at this instant.

4.42 Water flows steadily past a porous flat plate. Constant
suction is applied along the porous section. The velocity profile at
section cd is

u
U∞

=3
y
δ

h i
−2

y
δ

h i3=2
Evaluate the mass flow rate across section bc.

L = 2 m

V = –0.2j mm/s
^ d

a

c

u
δ = 1.5 mm

Width,

w = 1.5 m

y

x

U = 3 m/s

b

P4.42

4.43 A tank of fixed volume contains brine with initial density, ρi,
greater than water. Pure water enters the tank steadily and mixes thor-
oughly with the brine in the tank. The liquid level in the tank remains
constant. Derive expressions for (a) the rate of change of density of
the liquid mixture in the tank and (b) the time required for the density
to reach the value ρf , where ρi > ρf > ρH2O.

m
in

•

m
out

•

H
2
O

V = constant

ρ

ρ

P4.43

4.44 A conical funnel of half-angle θ=30� drains through a small
hole of diameter d =6:25 mm. at the vertex. The speed of the liquid
leaving the funnel is V =

ffiffiffiffiffiffiffi
2gy
p

, where y is the height of the liquid free
surface above the hole. The funnel initially is filled to height
y0 = 300 mm. Obtain an expression for the time, t, for the funnel
to completely drain, and evaluate. Find the time to drain from
300 mm to 150 mm (a change in depth of 150 mm), and from
150 mm to completely empty (also a change in depth of 150 mm).
Can you explain the discrepancy in these times? Plot the drain time t
as a function diameter d for d ranging from 6.25 mm to 12.5 mm.

Momentum Equation for Inertial Control Volume
4.45 Evaluate the net rate of flux of momentum out through the con-
trol surface of Problem 4.22.

4.46 Water flows steadily through a pipe of length L and radius
R=75mm. The velocity distribution across the outlet is given by

u= umax 1−
r2

R2

	 

and umax = 3 m=s. Evaluate the ratio of the x-direction momentum
flux at the pipe outlet to that at the inlet.

L

R
x

r
U

P4.46
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4.47 Evaluate the net momentum flux through the bend of Problem
4.34, if the depth normal to the diagram is w=1m.

4.48 Evaluate the net momentum flux through the channel of
Problem 4.35. Would you expect the outlet pressure to be higher,
lower, or the same as the inlet pressure? Why?

4.49 A conical enlargement in a vertical pipeline is 5 ft long and
enlarges the pipe diameter from 12 in. to 24 in. Calculate the magni-
tude and direction of the vertical force on this enlargement when
10 cfs of water flow upward through the line and the pressure at
the smaller end of the enlargement is 30 psi.

4.50 A 100-mm nozzle is bolted (with 6 bolts) to the flange of a
300-mm-diameter horizontal pipeline and discharges water into the
atmosphere. Calculate the tension load on each bolt when the gage
pressure in the pipe is 600 kPa. Neglect vertical forces.

4.51 The projectile partially fills the end of the 0.3 m pipe. Calculate
the force required to hold the projectile in position when the mean
velocity in the pipe is 6 m=s.

F6 m/s 0.3 m d 0.25 m d

P4.51

4.52 Considering that in the fully developed region of a pipe, the
integral of the axial momentum is the same at all cross sections,
explain the reason for the pressure drop along the pipe.

4.53 A jet of water issuing from a stationary nozzle at
10 m=sðAj =0:1 m2Þ strikes a turning vane mounted on a cart as
shown. The vane turns the jet through angle θ=40�. Determine
the value of M required to hold the cart stationary. If the vane angle
θ is adjustable, plot the mass, M, needed to hold the cart stationary
versus θ for 0≤ θ≤ 180�.

V

M

θ

P4.53

4.54 A circular cylinder inserted across a stream of flowing water
deflects the stream through angle θ, as shown. (This is termed the
“Coanda effect.”) For a=12:5 mm, b=2:5 mm, V =3m=s, and
θ=20�, determine the horizontal component of the force on the
cylinder caused by the flowing water.

V

V

b
a

θ

P4.54

4.55 A 6-in.-diameter horizontal pipeline bends through 90� and
while bending changes its diameter to 3 in. The pressure in the

6-in. pipe is 30 psi. Calculate the magnitude and direction of the hor-
izontal force on the bend when 2.0 cfs of water flow therein. Both
pipes are in the same horizontal plane.

4.56 The axes of the pipes are in a vertical plane. The flow rate is
2:83 m3=s of water. Calculate the magnitude, direction, and location
of the resultant force of the water on the pipe bend.

0.9 m d

0.9 m d
34.5 kPa

1.5 m R

0.6 m R

P4.56

4.57 Water flows through a tee in a horizontal pipe system. The
velocity in the stem of the tee is 15 ft=s, and the diameter is 12 in.
Each branch is of 6 in. diameter. If the pressure in the stem is
20 psi, calculate magnitude and direction of the force of the water
on the tee if the flow rates in the branches are the same.

4.58 In a laboratory experiment, the water flow rate is to be meas-
ured catching the water as it vertically exits a pipe into an empty
open tank that is on a zeroed balance. The tank is 10 m directly
below the pipe exit, and the pipe diameter is 50 mm. One student
obtains a flow rate by noting that after 60 s the volume of water
(at 4�C) in the tank was 3 m3. Another student obtains a flow rate
by reading the instantaneous weight accumulated of 3150 kg indi-
cated at the 60-s point. Find the mass flow rate each student com-
putes. Why do they disagree? Which one is more accurate? Show
that the magnitude of the discrepancy can be explained by any con-
cept you may have.

4.59A gate is 1 m wide and 1.2 m tall and hinged at the bottom. On
one side the gate holds back a 1-m-deep body of water. On the other
side, a 5-cm diameter water jet hits the gate at a height of 1 m. What
jet speed V is required to hold the gate vertical? What will the
required speed be if the body of water is lowered to 0.5 m?What will
the required speed be if the water level is lowered to 0.25 m?

Water jet

V

1 m

P4.59

4.60Water flows steadily through a fire hose and nozzle. The hose
is 75-mm-ID, and the nozzle tip is 35-mm-ID; water gage pressure in
the hose is 510 kPa, and the stream leaving the nozzle is uniform. The
exit speed and pressure are 32 m=s and atmospheric, respectively.
Find the force transmitted by the coupling between the nozzle and
hose. Indicate whether the coupling is in tension or compression.
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4.61 Two types of gasoline are blended by passing them through a
horrzontal “wye” as shown. Calculate the magnitude and direction
of the force exerted on the “wye” by the gasoline. The gage pressure
p3 = 145 kPa.

200 mm d

30 I/s

200 mm d

200 mm d
3.4 I/s

2

3

1

30°

45°

P4.61

4.62 The lower tank weighs 224 N, and the water in it weighs
897 N. If this tank is on a platform scale, what weight will register
on the scale beam?

75 mm d
Q

Q

Q

1.8 m

1.8 m

6.0 m

P4.62

4.63 The pressure difference results from head loss caused by
eddies downstream from the orifice plate. Wall friction is negligible.
Calculate the force exerted by the water on the orifice plate. The flow
rate is 7.86 cfs.

6.5 in. d

24.0 psi 20.1 psi

12 in. d 8 in. d

P4.63

4.64 Obtain expressions for the rate of change in mass of the
control volume shown, as well as the horizontal and vertical forces
required to hold it in place, in terms of p1, A1, V1, p2, A2, V2, p3,
A3, V3, p4, A4, V4, and the constant density ρ.

2 (Inlet)

5

12

1

1

5

3
4

12
1 (Inlet)

4 (Outlet)

3 (Outlet)

P4.64

4.65 Water is flowing steadily through the 180� elbow shown. At
the inlet to the elbow the gage pressure is 103 psi. The water dis-
charges to atmospheric pressure. Assume properties are uniform
over the inlet and outlet areas: A1 = 2500 mm2, A2 = 650 mm2, and
V1 = 3 m=s. Find the horizontal component of force required to hold
the elbow in place.

1

2

V1

P4.65

4.66Water flows steadily through the nozzle shown, discharging to
atmosphere. Calculate the horizontal component of force in the
flanged joint. Indicate whether the joint is in tension or compression.

= 30°

d = 15 cm

p = 15 kPa (gage)

D = 30 cm

V1 = 1.5 m/s
θ

P4.66

4.67 The pump, suction pipe, discharge pipe, and nozzle are all
welded together as a single unit. Calculate the horizontal component
of force (magnitude and direction) exerted by the water on the unit
when the pump is developing a head of 22.5 m.

0.6 m d
0.3 m d

20° 
1.2 m

1.8 m

1.5 m

0.75 m d

P4.67
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4.68 The passage is 1.2 mwide normal to the paper. What will be the
horizontal component of force exerted by the water on the structure?

1.5 m

0.6 m
0.9 m

P.4.68

4.69 If the two-dimensional flow rate through this sluice gate is
50 cfs=ft, calculate the horizontal and vertical components of force
on the gate, neglecting wall friction.

60°

8 ft x 6 ft wide

4 ft x 6 ft wide

P4.69

4.70 Assume the bend of Problem 4.35 is a segment of a larger
channel and lies in a horizontal plane. The inlet pressure is 170
kPa absolute, and the outlet pressure is 130 kPa absolute. Find the
force required to hold the bend in place.

4.71 A flat plate orifice of 50 mm diameter is located at the end of
a 100-mm-diameter pipe. Water flows through the pipe and orifice at
57 m3=s. The diameter of the water jet downstream from the orifice is
38 mm. Calculate the external force required to hold the orifice in
place. Neglect friction on the pipe wall.

D = 100 mm

d = 38 mm

Q = 0.57 m3/s

p = 138 Mpa gage

P4.71

4.72At rated thrust, a liquid-fueled rocket motor consumes 80 kg=s
of nitric acid as oxidizer and 32 kg=s of aniline as fuel. Flow leaves
axially at 180 m=s relative to the nozzle and at 110 kPa absolute. The
nozzle exit diameter is D=0:6 m. Calculate the thrust produced by
the motor on a test stand at standard sea-level pressure.

4.73 Flow from the end of a two-dimensional open channel is
deflected vertically downward by the gate AB. Calculate the force
exerted by the water on the gate. At and downstream from B the
flow may be considered a free jet.

0.52 m

B

A

1.89 m
1.55 m

1.13 m

P4.73

4.74 Calculate the magnitude and direction of the vertical and hor-
izontal components and the total force exerted on this stationary
blade by a 50 mm jet of water moving at 15 m=s.

45°

30°

50 mm d

P4.74

4.75 This water jet of 50 mm diameter moving at 30 m=s is divided
in half by a “splitter” on the stationary flat plate. Calculate the mag-
nitude and direction of the force on the plate. Assume that flow is in a
horizontal plane.

V = 30 m/s

60°
50 mm d

P4.75

4.76 If the splitter is removed from the plate of Problem 4.75 prob-
lem and sidewalls are provided on the plate to keep the flow two-
dimensional, how will the jet divide after striking the plate?

4.77 Consider flow through the sudden expansion shown. If the
flow is incompressible and friction is neglected, show that the pres-
sure rise, Δp= p2−p1, is given by

Δp
1
2ρV

2
1

= 2
d
D

� �2

1−
d
D

� �2
" #

Plot the nondimensional pressure rise versus diameter ratio to deter-
mine the optimum value of d=D and the corresponding value of the
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nondimensional pressure rise. Hint: Assume the pressure is uniform
and equal to p1 on the vertical surface of the expansion.

V1

d

D

1 2

P4.77

4.78 A conical spray head is shown. The fluid is water and the exit
stream is uniform. Evaluate (a) the thickness of the spray sheet at a
radius of 400 mm and (b) the axial force exerted by the spray head on
the supply pipe.

= 30° 

V = 10 m/s

Q = 0.03 m/s

p1 = 150 kPa absolute

D = 300 mm

θ

θ

P4.78

4.79A curved nozzle assembly that discharges to the atmosphere is
shown. The nozzle mass is 4.5 kg and its internal volume is 0:002 m3.
The fluid is water. Determine the reaction force exerted by the nozzle
on the coupling to the inlet pipe.

D2 = 2.5 cm

= 30°

V2

p1 = 125 kPa absolute

D1 = 7.5 cm

V1 = 2 m/s

g

θ

P4.79

4.80 The pump maintains a pressure of 10 psi at the gauge. The
velocity leaving the nozzle is 34 ft=s. Calculate the tension force
in the cable.

Jet-propelled

motorboat Tank

Cable

6-in. nozzle

5 ft

P

P4.80

4.81 A motorboat moves up a river at a speed of 9 m=s relative to
the land. The river flows at a velocity of 1:5 m=s. The boat is powered
by a jet-propulsion unit which takes in water at the bow and dis-
charges it beneath the surface at the stern. Measurements in the jet
show its velocity relative to the boat to be 18 m=s. For a flow rate

through the unit of 0:15 m3=s, calculate the propulsive force
produced.

4.82 A 30� reducing elbow is shown. The fluid is water. Evaluate
the components of force that must be provided by the adjacent pipes
to keep the elbow from moving.

g

Q = 0.11 m3/s

1

2p1 = 200 kPa absolute
A1 = 0.0182 m2

p2 = 120 kPa absolute

V2

30°

Internal volume,   = 0.006 m3V

Elbow mass, M = 10 kg

A2 = 0.0081 m2

P4.82

4.83 A monotube boiler consists of a 6 m length of tubing with
9.5-mm-ID. Water enters at the rate of 0:135 kg=s at 3.45 MPa abso-
lute. Steam leaves at 2.76 MPa gage with 12:4 kg=m3 density. Find
the magnitude and direction of the force exerted by the flowing fluid
on the tube.

4.84 Water is discharged at a flow rate of 0:3 m3=s from a narrow
slot in a 200-mm-diameter pipe. The resulting horizontal two-
dimensional jet is 1 m long and 20 mm thick, but of nonuniform
velocity; the velocity at location�2 is twice that at location�1. The
pressure at the inlet section is 50 kPa gage. Calculate (a) the velocity
in the pipe and at locations�1 and�2 and (b) the forces required at the
coupling to hold the spray pipe in place. Neglect the mass of the pipe
and the water it contains.

Q = 0.3 m3

V1

V2 = 2V1

D = 200 mm

Thickness, t = 20 mm

P4.84

4.85A nozzle for a spray system is designed to produce a flat radial
sheet of water. The sheet leaves the nozzle at V2 = 10 m=s, covers
180� of arc, and has thickness t=1:5 mm. The nozzle discharge
radius is R=50mm. The water supply pipe is 35 mm in diameter
and the inlet pressure is p1 = 150 kPa absolute. Evaluate the axial
force exerted by the spray nozzle on the coupling.

Water

p1
V2

R

Thickness, t
P4.85
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4.86 The horizontal velocity in the wake behind an object in an air
stream of velocity U is given by

uðrÞ=U 1−cos2
πr
2

� �h i
jrj≤ 1

uðrÞ=U jrj>1

where r is the nondimensional radial coordinate, measured perpen-
dicular to the flow. Find an expression for the drag on the object.

4.87 An incompressible fluid flows steadily in the entrance region
of a circular tube of radius R=75mm. The flow rate isQ=0:1 m3=s.
Find the uniform velocity U1 at the entrance. The velocity distribu-
tion at a section downstream is

u
umax

= 1−
r
R

� �2
Evaluate the maximum velocity at the downstream section. Calculate
the pressure drop that would exist in the channel if viscous friction at
the walls could be neglected.

1 2

r

z

U1

= 850 kg/m3

R

u

ρ

P4.87

4.88 Consider the incompressible flow of fluid in a boundary layer
as depicted in Example 4.2. Show that the friction drag force of the
fluid on the surface is given by

Ff =
Z δ

0
ρuðU−uÞw dy

Evaluate the drag force for the conditions of Example 4.2.

4.89 Air at standard conditions flows along a flat plate. The undis-
turbed freestream speed is U0 = 20 m=s. At L=0:4 m downstream
from the leading edge of the plate, the boundary-layer thickness is
δ=2mm. The velocity profile at this location is approximated as
u=U0 = y=δ. Calculate the horizontal component of force per unit
width required to hold the plate stationary.

4.90Gases leaving the propulsion nozzle of a rocket are modeled as
flowing radially outward from a point upstream from the nozzle
throat. Assume the speed of the exit flow, Ve, has constant magni-
tude. Develop an expression for the axial thrust, Ta, developed by
flow leaving the nozzle exit plane. Compare your result to the
one-dimensional approximation, T = _mVe. Evaluate the percent error
for α=15�. Plot the percent error versus 0≤ α≤ 22:5�.

R

Ve

α

P4.90

4.91 Two large tanks containing water have small smoothly con-
toured orifices of equal area. A jet of liquid issues from the left tank.
Assume the flow is uniform and unaffected by friction. The jet
impinges on a vertical flat plate covering the opening of the right

tank. Determine the minimum value for the height, h, required to
keep the plate in place over the opening of the right tank.

Water Water

h
H = const.

Jet

A

P4.91

4.92 Students are playing around with a water hose. When they
point it straight up, the water jet just reaches one of the windows
of an office, 10 m above. If the hose diameter is 1 cm, estimate the
water flow rate (L/min). A student places his hand just above the
hose to make the jet spray sideways axisymmetrically. Estimate
the maximum pressure, and the total force that he feels. The next
day the students again are playing around, and this time aim at
another window, 15 m above. Find the flow rate (L/min) and the
total force and maximum pressure when the window pane blocks
the flow.

4.93 A 2-kg disk is constrained horizontally but is free to move
vertically. The disk is struck from below by a vertical jet of water.
The speed and diameter of the water jet are 10 m=s and 25 mm at
the nozzle exit. Obtain a general expression for the speed of the water
jet as a function of height, h. Find the height to which the disk will
rise and remain stationary.

V0 = 10 m/s

h
d = 25 mm

M = 2 kg

P4.93

4.94 A stream of water from a 50-mm-diameter nozzle strikes a
curved vane, as shown. A stagnation tube connected to a mercury-
filled U-tube manometer is located in the nozzle exit plane. Calculate
the speed of the water leaving the nozzle. Estimate the horizontal
component of force exerted on the vane by the jet. Comment on each
assumption used to solve this problem.

Stagnation
tube

Fixed vane

Free
water jet

Open

Hg 0.75 m

Water

30°

50 mm dia.

P4.94
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4.95 A plane nozzle discharges vertically 1200 L=s per unit width
downward to atmosphere. The nozzle is supplied with a steady flow
of water. A stationary, inclined, flat plate, located beneath the nozzle,
is struck by the water stream. The water stream divides and flows
along the inclined plate; the two streams leaving the plate are of une-
qual thickness. Frictional effects are negligible in the nozzle and in
the flow along the plate surface. Evaluate the minimum gage pressure
required at the nozzle inlet.

h = 0.25 m

H = 7.5 m

V3

Water

w = 0.25 mm

Nozzle

Q = 1200 L/s-m

V2= 20

W = 80 mm

V

V

= 30°θ
θ

P4.95

4.96 In ancient Egypt, circular vessels filled with water sometimes
were used as crude clocks. The vessels were shaped in such a way
that, as water drained from the bottom, the surface level dropped
at constant rate, s. Assume that water drains from a small hole of area
A. Find an expression for the radius of the vessel, r, as a function of
the water level, h. Obtain an expression for the volume of water
needed so that the clock will operate for n hours.

4.97 Incompressible fluid of negligible viscosity is pumped at total
volume flow rate Q through a porous surface into the small gap
between closely spaced parallel plates as shown. The fluid has only
horizontal motion in the gap. Assume uniform flow across any ver-
tical section. Obtain an expression for the pressure variation as a
function of x. Hint: Apply conservation of mass and the momentum
equation to a differential control volume of thickness dx, located at
position x.

L
V (x)

x

Q
P4.97

4.98 The narrow gap between two closely spaced circular plates ini-
tially is filled with incompressible liquid. At t =0 the upper plate, ini-
tially h0 above the lower plate, begins to move downward toward the
lower plate with constant speed, V0, causing the liquid to be squeezed
from the narrow gap. Neglecting viscous effects and assuming uni-
form flow in the radial direction, develop an expression for the veloc-
ity field between the parallel plates. Hint: Apply conservation of
mass to a control volume with the outer surface located at radius
r. Note that even though the speed of the upper plate is constant,
the flow is unsteady. For V0 = 0:01 m=s and h0 = 2 mm, find the

velocity at the exit radius R=100 mm at t =0 and t =0:1 s. Plot
the exit velocity as a function of time, and explain the trend.

4.99 Design a clepsydra (Egyptian water clock), which is a vessel
from which water drains by gravity through a hole in the bottom and
that indicates time by the level of the remaining water. Specify the
dimensions of the vessel and the size of the drain hole; indicate
the amount of water needed to fill the vessel and the interval at which
it must be filled. Plot the vessel radius as a function of elevation.

4.100 Water from a stationary nozzle impinges on a moving vane
with turning angle θ=120�. The vane moves away from the nozzle
with constant speed, U =10m=s, and receives a jet that leaves
the nozzle with speed V =30m=s. The nozzle has an exit area of
0:004 m2. Find the force that must be applied to maintain the vane
speed constant.

U

V
A

θ
ρ

P4.100

4.101 A freshwater jet boat takes in water through side vents
and ejects it through a nozzle of diameter D=75 mm; the jet
speed is Vj. The drag on the boat is given by Fdrag = kV2, where
V is the boat speed. Find an expression for the steady speed, V ,
in terms of water density ρ, flow rate through the system of Q, con-
stant k, and jet speed Vj. A jet speed Vj =15 m=s produces a boat
speed of V =10m=s.

(a) Under these conditions, what is the new flow rate Q?

(b) Find the value of the constant k.

(c) What speed V will be produced if the jet speed is increased
to Vj =25m=s?

(d) What will be the new flow rate?

4.102 The Canadair CL-215T amphibious aircraft is specially
designed to fight fires. It is the only production aircraft that can
scoop water, at up to 6120 gallons in 12 seconds, from any lake,
river, or ocean. Determine the added thrust required during water
scooping, as a function of aircraft speed, for a reasonable range
of speeds.

4.103Water, in a 100-mm-diameter jet with speed of 30 m=s to the
right, is deflected by a cone that moves to the left at 14 m=s. Deter-
mine (a) the thickness of the jet sheet at a radius of 230 mm. and
(b) the external horizontal force needed to move the cone.

VcVj

Cone

= 60°

V
θ

P4.103

4.104 Consider a series of turning vanes struck by a continuous jet
of water that leaves a 50-mm-diameter nozzle at constant speed,
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V =86:6 m=s. The vanes move with constant speed, U =50 m=s.
Note that all the mass flow leaving the jet crosses the vanes. The cur-
vature of the vanes is described by angles θ1 = 30� and θ2 = 45�, as
shown. Evaluate the nozzle angle, α, required to ensure that the jet
enters tangent to the leading edge of each vane. Calculate the force
that must be applied to maintain the vane speed constant.

U

V
1

2θ

θ
α

P4.104

4.105 A steady jet of water is used to propel a small cart along a
horizontal track as shown. Total resistance to motion of the cart
assembly is given by FD = kU2, where k=0:92 N � s2=m2. Evaluate
the acceleration of the cart at the instant when its speed
is U =10m=s.

D = 25.0 mm

V = 30.0 m/s

= 30°

M = 15.0 kg

U = 10.0 m/s

θ

P4.105, P4.106, P4.110

Momentum Equation for Control Volume with
Rectilinear Acceleration
4.106 The cart of Problem 4.105 is accelerated by a jet of water
that strikes the curved vane. The cart moves along a level track with
negligible resistance. At any time its speed is U. Calculate the time
required to accelerate the cart from rest to U =V=2.

4.107 A vane/slider assembly moves under the influence of a liquid
jet as shown. The coefficient of kinetic friction for motion of the
slider along the surface is μk =0:30. Calculate the terminal speed
of the slider.

V = 20 m/s

= 999 kg/m3

A = 0.005 m2

M = 30 kg

U

k = 0.30μ

ρ

P4.107, P4.109, P4.114, P4.115

4.108 A cart is propelled by a liquid jet issuing horizontally from a
tank as shown. The track is horizontal; resistance to motion may be
neglected. The tank is pressurized so that the jet speed may be

considered constant. Obtain a general expression for the speed of
the cart as it accelerates from rest. If M0 = 100 kg, ρ=999 kg=m3,
and A=0:005 m2, find the jet speed V required for the cart to reach
a speed of 1:5 m=s after 30 seconds. For this condition, plot the cart
speedU as a function of time. Plot the cart speed after 30 seconds as a
function of jet speed.

U
V

A

Initial mass, M0

ρ

P4.108

4.109 For the vane/slider problem of Problem 4.107, find and plot
expressions for the acceleration and speed of the slider as a function
of time.

4.110 If the cart of Problem 4.105 is released at t=0, when would
you expect the acceleration to be maximum? Sketch what you would
expect for the curve of acceleration versus time. What value of θ
would maximize the acceleration at any time? Why? Will the cart
speed ever equal the jet speed? Explain briefly.

4.111 The wheeled cart shown rolls with negligible resistance. The
cart is to accelerate to the right at a constant rate of 2:5 m=s2. This is
to be accomplished by “programming” the water jet speed, VðtÞ, that
hits the cart. The jet area remains constant at 50 mm2. Find the initial
jet speed, and the jet speed and cart speeds after 2.5 s and 5 s. The-
oretically, what happens to the value of ðV−UÞ over time?

   = 999 kg/m3

A = 50 mm2

V (t)

120°

U
M =
5 kg

ρ

P4.111

4.112A rocket sled is to be slowed from an initial speed of 300 m=s
by lowering a scoop into a water trough. The scoop is 0.3 m wide; it
deflects the water through 150�. The trough is 800 m long. The mass
of the sled is 8000 kg. At the initial speed it experiences an aerody-
namic drag force of 90 kN. The aerodynamic force is proportional to
the square of the sled speed. It is desired to slow the sled to 100 m=s.
Determine the depth D to which the scoop must be lowered into
the water.

D

Rail

Water trough

30°

P4.112

4.113 Starting from rest, the cart shown is propelled by a hydraulic
catapult (liquid jet). The jet strikes the curved surface and makes a
180� turn, leaving horizontally. The mass of the cart is 100 kg and
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the jet of water leaves the nozzle (of area 0:001 m2) with a speed of
35 m=s. There is an aerodynamic drag force proportional to the
square of cart speed, FD = kU2, with k=2:0 N � s2=m2. Derive an
expression for the cart acceleration as a function of cart speed and
other given parameters. Evaluate the acceleration of the cart at
U =10 m=s. What fraction is this speed of the terminal speed of
the cart?

A
V

1

Mass, M
U

ρ

P4.113

4.114 Solve Problem 4.107 if the vane and slider ride on a film of
oil instead of sliding in contact with the surface. Assume motion
resistance is proportional to speed, FR = kU, with k=7:5 N � s=m.

4.115 For the vane/slider problem of Problem 4.114, plot the
acceleration, speed, and position of the slider as functions of time.
(Consider numerical integration.)

4.116A rectangular block of massM, with vertical faces, rolls with-
out resistance along a smooth horizontal plane as shown. The block
travels initially at speed U0. At t=0 the block is struck by a liquid jet
and its speed begins to slow. Obtain an algebraic expression for the
acceleration of the block for t>0. Solve the equation to determine the
time at which U =0.

U

A
VMass, M

ρ

P4.116, P4.117

4.117 In Problem 4.116, if M =100 kg, ρ=999 kg=m3, and
A=0:01 m2, find the jet speed V required for the cart to be brought
to rest after one second if the initial speed of the cart is U0 = 5 m=s.
For this condition, plot the speedU and position x of the cart as func-
tions of time.What is the maximum value of x, and how long does the
cart take to return to its initial position?

4.118A vertical jet of water impinges on a horizontal disk as shown.
The disk assembly mass is 30 kg. When the disk is 3 m above the
nozzle exit, it is moving upward at U =5m=s. Compute the vertical
acceleration of the disk at this instant.

V = 15 m/s

h = 3 m
A = 0.005 m2

M = 30 kg
U = 5 m/s

P4.118

4.119 A rocket sled traveling on a horizontal track is slowed by a
retro-rocket fired in the direction of travel. The initial speed of the
sled is U0 = 500 m=s. The initial mass of the sled is M0 = 1500 kg.
The retro-rocket consumes fuel at the rate of 7:75 kg=s, and the
exhaust gases leave the nozzle at atmospheric pressure and a speed
of 2500 m=s relative to the rocket. The retro-rocket fires for 20 s.
Neglect aerodynamic drag and rolling resistance. Obtain and plot
an algebraic expression for sled speed U as a function of firing time.
Calculate the sled speed at the end of retro-rocket firing.

4.120 A rocket sled accelerates from rest on a level track with neg-
ligible air and rolling resistances. The initial mass of the sled is
M0 = 600 kg. The rocket initially contains 150 kg of fuel. The rocket
motor burns fuel at constant rate _m=15 kg=s. Exhaust gases leave
the rocket nozzle uniformly and axially at Ve =2900 m=s relative
to the nozzle, and the pressure is atmospheric. Find the maximum
speed reached by the rocket sled. Calculate the maximum accelera-
tion of the sled during the run.

4.121 A rocket sled with initial mass of 900 kg is to be accelerated
on a level track. The rocket motor burns fuel at constant rate
_m=13:5 kg=s. The rocket exhaust flow is uniform and axial. Gases
leave the nozzle at 2750 m=s relative to the nozzle, and the pressure is
atmospheric. Determine the minimum mass of rocket fuel needed to
propel the sled to a speed of 265 m=s before burnout occurs. As a first
approximation, neglect resistance forces.

4.122 A rocket sled with initial mass of 3 metric tons, including
1 ton of fuel, rests on a level section of track. At t=0, the solid fuel
of the rocket is ignited and the rocket burns fuel at the rate of
75 kg=s. The exit speed of the exhaust gas relative to the rocket
is 2500 m=s, and the pressure is atmospheric. Neglecting friction
and air resistance, calculate the acceleration and speed of the sled
at t=10 s.

4.123 A “home-made” solid propellant rocket has an initial mass of
9 kg; 6.8 kg of this is fuel. The rocket is directed vertically upward
from rest, burns fuel at a constant rate of 0:225 kg=s, and ejects
exhaust gas at a speed of 1980 m=s relative to the rocket. Assume that
the pressure at the exit is atmospheric and that air resistance may be
neglected. Calculate the rocket speed after 20 s and the distance trav-
eled by the rocket in 20 s. Plot the rocket speed and the distance trav-
eled as functions of time.

4.124 Neglecting air resistance, what speed would a vertically
directed rocket attain in 5 s if it starts from rest, has initial mass of
350 kg, burns 10 kg=s, and ejects gas at atmospheric pressure with
a speed of 2500 m=s relative to the rocket? What would be the max-
imum velocity? Plot the rocket speed as a function of time for the first
minute of flight.

4.125 The vane/cart assembly of mass M =30 kg, shown in Prob-
lem 4.100, is driven by a water jet. The water leaves the stationary
nozzle of area A=0:02 m2, with a speed of 20 m=s. The coefficient
of kinetic friction between the assembly and the surface is 0.10. Plot
the terminal speed of the assembly as a function of vane turning
angle, θ, for 0≤ θ≤ π=2. At what angle does the assembly begin
to move if the coefficient of static friction is 0.15?

4.126 The moving tank shown is to be slowed by lowering a scoop
to pick up water from a trough. The initial mass and speed of the tank
and its contents areM0 and U0, respectively. Neglect external forces
due to pressure or friction and assume that the track is horizontal.
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Apply the continuity and momentum equations to show that at any
instant U =U0M0=M. Obtain a general expression for U=U0 as a
function of time.

U

Water trough

Tank initial
mass, M0

P4.126

4.127 A model solid propellant rocket has a mass of 69.6 g, of
which 12.5 g is fuel. The rocket produces 5.75 N of thrust for a dura-
tion of 1.7 s. For these conditions, calculate the maximum speed and
height attainable in the absence of air resistance. Plot the rocket speed
and the distance traveled as functions of time.

The Angular-Momentum Principle
4.128 The 90� reducing elbow of Example 4.6 discharges to atmos-
phere. Section�2 is located 0.3 m to the right of Section�1. Estimate
the moment exerted by the flange on the elbow.

4.129 Crude oil ðSG=0:95Þ from a tanker dock flows through a
pipe of 0.25 m diameter in the configuration shown. The flow rate
is 0:58 m3=s, and the gage pressures are shown in the diagram. Deter-
mine the force and torque that are exerted by the pipe assembly on its
supports.

Q = 0.58 m3/s

p = 345 kPa

p = 332 kPa

D = 0.25 m

L = 20 m

P4.129

4.130 The simplified lawn sprinkler shown rotates in the horizon-
tal plane. At the center pivot, Q=15 L=min of water enters verti-
cally. Water discharges in the horizontal plane from each jet. If
the pivot is frictionless, calculate the torque needed to keep the sprin-
kler from rotating. Neglecting the inertia of the sprinkler itself,
calculate the angular acceleration that results when the torque is
removed.

d = 5 mm

R = 225 mm

P4.130, P4.134

4.131 Calculate the torque about the pipe’s centerline in the plane of
the bolted flange that is caused by the flow through the nozzle. The
nozzle centerline is 0.3 m above the flange centerline. What is the
effect of this torque on the force on the bolts? Neglect the effects
of the weights of the pipe and the fluid in the pipe.

50 mm d
150 mm d

150 mm d56.5 L/s

P4.131

4.132 A fire truck is equipped with a 66 ft long extension ladder
which is attached at a pivot and raised to an angle of 45�. A 4-in.-
diameter fire hose is laid up the ladder and a 2-in.-diameter nozzle
is attached to the top of the ladder so that the nozzle directs the stream
horizontally into the window of a burning building. If the flow rate is
1 ft3=s, compute the torque exerted about the ladder pivot point. The
ladder, hose, and the water in the hose weigh about 10 lb=ft.

4.133 Calculate the torque exerted on the flange joint by the fluid
flow as a function of the pump flow rate. Neglect the weight of
the 100 mm diameter pipe and the fluid in the pipe.

1 m 0.3 m

P
Dike

2.5 m

P4.133

4.134 Consider the sprinkler of Problem 4.130 again. Derive a dif-
ferential equation for the angular speed of the sprinkler as a function
of time. Evaluate its steady-state speed of rotation if there is no fric-
tion in the pivot.

4.135Water flows out of the 2.5-mm slots of the rotating spray sys-
tem, as shown. The velocity varies linearly from a maximum at the
outer radius to zero at the inner radius. The flow rate is 3 L=s. Find
(a) the torque required to hold the system stationary and (b) the
steady-state speed of rotation after it is released.

300 mm

250 mm

Dia. = 25 mm

P4.135

4.136 The lawn sprinkler shown is supplied with water at a rate of
68 L=min. Neglecting friction in the pivot, determine the steady-state
angular speed for θ=30�. Plot the steady-state angular speed of the
sprinkler for 0≤ θ≤ 90�.
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R = 152 mm

d = 6.35 mm

θ

P4.136

4.137 A small lawn sprinkler is shown. The sprinkler operates at a
gage pressure of 140 kPa. The total flow rate of water through the
sprinkler is 4 L=min. Each jet discharges at 17 m=s (relative to the
sprinkler arm) in a direction inclined 30� above the horizontal.
The sprinkler rotates about a vertical axis. Friction in the bearing
causes a torque of 0:18 N � m opposing rotation. Evaluate the torque
required to hold the sprinkler stationary.

Vrel

R = 200 mm

30°
ω

P4.137

4.138 When a garden hose is used to fill a bucket, water in the
bucket may develop a swirling motion. Why does this happen?
How could the amount of swirl be calculated approximately?

4.139 A pipe branches symmetrically into two legs of length L,
and the whole system rotates with angular speed ω around its axis
of symmetry. Each branch is inclined at angle α to the axis of rotation.
Liquid enters the pipe steadily, with zero angular momentum, at
volume flow rate Q. The pipe diameter, D, is much smaller than
L. Obtain an expression for the external torque required to turn the
pipe. What additional torque would be required to impart angular
acceleration _ω?

L

D

Q__
2

Q__
2

Q
ω

α

P4.139

4.140 For the rotating sprinkler of Example 4.13, what value of α
will produce the maximum rotational speed?What angle will provide
the maximum area of coverage by the spray? Draw a velocity

diagram (using an r, θ, z coordinate system) to indicate the absolute
velocity of the water jet leaving the nozzle. What governs the steady
rotational speed of the sprinkler? Does the rotational speed of the
sprinkler affect the area covered by the spray? How would you esti-
mate the area? For fixed α, what might be done to increase or
decrease the area covered by the spray?

θ
ρ

V

V

V
h3

h2

h

Point O

P4.140

The First Law of Thermodynamics
4.141 Compressed air is stored in a pressure bottle with a volume of
100 L, at 500 kPa absolute and 20�C. At a certain instant, a valve is
opened and mass flows from the bottle at _m=0:01 kg=s. Find the rate
of change of temperature in the bottle at this instant.

4.142 A turbine is supplied with 0:6 m3=s of water from a 0.3 m
diameter pipe; the discharge pipe has a 0.4 m diameter. Determine
the pressure drop across the turbine if it delivers 60 kW.

4.143Air is drawn from the atmosphere into a turbomachine. At the
exit, conditions are 500 kPa gage and 130�C. The exit speed is
100 m=s and the mass flow rate is 0:8 kg=s. Flow is steady and there
is no heat transfer. Compute the shaft work interaction with the
surroundings.

4.144 At high speeds the compressor and turbine of the jet
engine may be eliminated entirely. The result is called a ramjet
(a subsonic configuration is shown). Here the incoming air is slo-
wed and the pressure increases; the air is heated in the widest part
by the burning of injected fuel. The heated air exhausts at high
velocity from the converging nozzle. What nozzle area A2, is
needed to deliver a 90 kN thrust at an air speed of 270 m=s if the
exhaust velocity is the sonic velocity for the heated air, which is at
1000 K. How much fuel energy (kW) is required? Assume that the
jet operates at an altitude of 12 km and neglect the fuel mass and pres-
sure differentials.

Fuel Jets

Diffuser Combustion

Nozzle
V2

V1

P4.144

4.145 Transverse thrusters are used to make large ships fully
maneuverable at low speeds without tugboat assistance.
A transverse thruster consists of a propeller mounted in a duct; the
unit is then mounted below the waterline in the bow or stern of
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the ship. The duct runs completely across the ship. Calculate the
thrust developed by a 1865 kw unit (supplied to the propeller) if
the duct is 2.8 m in diameter and the ship is stationary.

4.146All major harbors are equipped with fire boats for extinguish-
ing ship fires. A 75-mm-diameter hose is attached to the discharge of
a 11 kW pump on such a boat. The nozzle attached to the end of the
hose has a diameter of 25 mm. If the nozzle discharge is held 3 m
above the surface of the water, determine the volume flow rate
through the nozzle, the maximum height to which the water will rise,
and the force on the boat if the water jet is directed horizontally over
the stern.

4.147 A pump draws water from a reservoir through a 150-mm-
diameter suction pipe and delivers it to a 75-mm-diameter discharge
pipe. The end of the suction pipe is 2 m below the free surface of the
reservoir. The pressure gage on the discharge pipe (2 m above the
reservoir surface) reads 170 kPa. The average speed in the discharge
pipe is 3 m=s. If the pump efficiency is 75 percent, determine the
power required to drive it.

4.148 Liquid flowing at high speed in a wide, horizontal open chan-
nel under some conditions can undergo a hydraulic jump, as shown.
For a suitably chosen control volume, the flows entering and leaving
the jump may be considered uniform with hydrostatic pressure
distributions (see Example 4.7). Consider a channel of width w,
with water flow at D1 = 0:6 m and V1 = 5 m=s. Show that in general,

D2 =D1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 8V2

1=gD1
p

−1
h i

=2.

D1 = 0.6 m

V1 = 5 m/s

V2
D2

P4.148

Evaluate the change in mechanical energy through the hydraulic
jump. If heat transfer to the surroundings is negligible, determine
the change in water temperature through the jump.
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C H A P T E R 5

Introduction to Differential Analysis
of Fluid Motion
5.1 Conservation of Mass

5.2 Stream Function for Two-Dimensional
Incompressible Flow

5.3 Motion of a Fluid Particle (Kinematics)

5.4 Momentum Equation

5.5 Introduction to Computational Fluid Dynamics

5.6 Summary and Useful Equations

Case Study

Wave Power: Aquamarine Oyster Wave

Energy Converter
Aquamarine Power, a wave energy company located in Scotland,
has developed an innovative hydroelectric wave energy con-
verter, known as Oyster; a demonstration-scale model was
installed in 2009 and began producing power for homes in some
regions of Scotland. They eventually plan to have commercially
viable Oyster wave power farms around the world, the first
planned for 2013. A farm of 20 Oyster wave power devices would
provide enough energy to power 9000 homes, offsetting carbon
emissions of about 20,000 metric tons.

Oyster consists of a simple mechanical hinged flap, as shown
in the figure, connected to the seabed at around a 10-mdepth. As
each wave passes by, it forces the flap to move; the flap in turn
drives hydraulic pistons to deliver high-pressure water, via a
pipeline, to an onshore electrical turbine. Oyster farms using

multiple devices are expected to be capable of generating
100 MW or more.

Oyster has a number of advantages: It has good efficiency and
durability, and, with its low-cost operation, maintenance, and
manufacture, it is hoped it will produce reliable cost-competitive
electricity from the waves for the first time. The device uses
simple and robust mechanical offshore component, combined
with proven conventional onshore hydroelectric components.
Designed with the notion that simple is best, less is more, it has a
minimum of offshore submerged moving parts; there are no
underwater generators, power electronics, or gearboxes. Oyster is
designed to take advantage of the more consistent waves found
near the shore; for durability, any excess energy fromexceptionally
large waves simply spills over the top of Oyster’s flap. Its motion
allows it to literally duck under such waves. Aquamarine Power
believes its device is competitive with devices weighing up to five
times asmuch, and, withmultiple pumps feeding a single onshore

Oyster® Wave
Energy Converter Hydroelectric

Power Conversion Plant

Seawater Piston

High-Pressure
Flow Line
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A schematic of Aquamarine’s Oyster device.
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In Chapter 4, we developed the basic equations in integral form for a control volume. Integral equations
are useful when we are interested in the gross behavior of a flow field and its effect on various devices.
However, the integral approach does not enable us to obtain detailed point-by-point knowledge of the
flow field. For example, the integral approach could provide information on the lift generated by a wing;
it could not be used to determine the pressure distribution that produced the lift on the wing.

To see what is happening in a flow in detail, we need differential forms of the equations of motion.
In this chapter we shall develop differential equations for the conservation of mass and Newton’s second
law of motion. Since we are interested in developing differential equations, we will need to analyze infin-
itesimal systems and control volumes.

5.1 Conservation of Mass
In Chapter 2, we developed the field representation of fluid properties. The property fields are defined by
continuous functions of the space coordinates and time. The density and velocity fields were related
through conservation of mass in integral form in Chapter 4 (Eq. 4.12). In this chapter we shall derive
the differential equation for conservation of mass in rectangular and in cylindrical coordinates. In both
cases the derivation is carried out by applying conservation of mass to a differential control volume.

Rectangular Coordinate System

In rectangular coordinates, the control volume chosen is an infinitesimal cube with sides of length
dx,dy,dz as shown in Fig. 5.1. The density at the center, O, of the control volume is assumed to be
ρ and the velocity there is assumed to be V

!
= îu+ ĵυ+ k̂w.

To evaluate the properties at each of the six faces of the control surface, we use a Taylor series
expansion about point O. For example, at the right face,

ρÞx+ dx=2 = ρ+
∂ρ
∂x

� �
dx
2
+

∂2ρ
∂x2

� �
1
2!

dx
2

� �2

+ � � �

Neglecting higher-order terms, we can write

ρÞx+ dx=2 = ρ+
∂ρ
∂x

� �
dx
2

generator, Oyster will offer good economies of scale. As a final
bonus, Oyster uses water instead of oil as its hydraulic fluid for
minimum environmental impact and generates essentially no
noise pollution.

The design and analysis of the flow around and through a
device such as Oyster, and the determination of the forces
produced by the flow on the surfaces, often uses computer

software. In these programs, the basic differential equations
describing the motion of the fluid are programmed and solved,
usually numerically. The equations that describe fluid motion
will be developed in this chapter. Computational Fluid Dynamics
(CFD) is the name given to the use of software to simulate
fluid flow, and CFD techniques are discussed at the end of this
chapter.

dy

dz
dx

Control volume

x

y

z

Ow

υ
u

Fig. 5.1 Differential control volume in rectangular coordinates.

1455.1 Conservation of Mass



and

uÞx+ dx=2 = u+
∂u
∂x

� �
dx
2

where ρ,u,∂ρ=∂x, and ∂u=∂x are all evaluated at point O. The corresponding terms at the left face are

ρÞx−dx=2 = ρ+
∂ρ
∂x

� �
−
dx
2

� �
= ρ−

∂ρ
∂x

� �
dx
2

uÞx−dx=2 = u+
∂u
∂x

� �
−
dx
2

� �
= u−

∂u
∂x

� �
dx
2

We can write similar expressions involving ρ and υ for the front and back faces and ρ and w for the top
and bottom faces of the infinitesimal cube dx dy dz. These can then be used to evaluate the surface inte-
gral in Eq. 4.12 (recall that

R
CSρV

! �dA! is the net flux of mass out of the control volume):

∂
∂t

Z
CV

ρdV--- +
Z
CS
ρV
! �dA!=0 ð4:12Þ

Table 5.1 shows the details of this evaluation. Note: We assume that the velocity components u, υ, and w
are positive in the x, y, and z directions, respectively; the area normal is by convention positive out of the
cube; and higher-order terms [e.g., ðdxÞ2] are neglected in the limit as dx, dy, and dz! 0.

The result of all this work is

∂ρu
∂x

+
∂ρυ
∂x

+
∂ρw
∂x

	 

dx dy dz

This expression is the surface integral evaluation for our differential cube. To complete Eq. 4.12, we
need to evaluate the volume integral (recall that ∂=∂t

R
CV ρdV--- is the rate of change of mass in the control

volume):
∂
∂t

Z
CV

ρdV---! ∂
∂t
½ρdx dy dz�= ∂ρ

∂t
dx dy dz

Table 5.1
Mass Flux Through the Control Surface of a Rectangular Differential Control Volume

Surface Evaluation of
Z

ρV
! �dA!

Left
ð−xÞ

= − ρ−
∂ρ
∂x

� �
dx
2

	 

u−

∂u
∂x

� �
dx
2

	 

dy dz= −ρu dy dz+

1
2

u
∂ρ
∂x

� �
+ ρ

∂u
∂x

� �	 

dx dy dz

Right
ð+ xÞ

= ρ+
∂ρ
∂x

� �
dx
2

	 

u+

∂u
∂x

� �
dx
2

	 

dy dz= ρu dy dz+

1
2

u
∂ρ
∂x

� �
+ ρ

∂u
∂x

� �	 

dx dy dz

Bottom
ð−yÞ

= − ρ−
∂ρ
∂y

� �
dy
2

	 

υ−

∂υ
∂y

� �
dy
2

	 

dx dz= −ρυ dx dz+

1
2

υ
∂ρ
∂y

� �
+ ρ

∂υ
∂y

� �	 

dx dy dz

Top
ð+ yÞ

= ρ+
∂ρ
∂y

� �
dy
2

	 

υ+

∂υ
∂y

� �
dy
2

	 

dx dz= ρυ dx dz+

1
2

υ
∂ρ
∂y

� �
+ ρ

∂υ
∂y

� �	 

dx dy dz

Back
ð−zÞ

= − ρ−
∂ρ
∂z

� �
dz
2

	 

w−

∂w
∂z

� �
dz
2

	 

dx dy= −ρw dx dy+

1
2

w
∂ρ
∂z

� �
+ ρ

∂w
∂z

� �	 

dx dy dz

Front
ð+ zÞ

= ρ+
∂ρ
∂z

� �
dz
2

	 

w+

∂w
∂z

� �
dz
2

	 

dx dy= ρw dx dy+

1
2

w
∂ρ
∂z

� �
+ ρ

∂w
∂z

� �	 

dx dy dz

Adding the results for all six faces,Z
CS

ρV
!�dA!= u

∂ρ
∂x

� �
+ ρ

∂u
∂x

� �� �
+ υ

∂ρ
∂y

� �
+ ρ

∂υ
∂y

� �� �
+ w

∂ρ
∂z

� �
+ ρ

∂w
∂z

� �� �	 

dx dy dz

or Z
CS
ρV
! �dA!= ∂ρu

∂x
+
∂ρυ
∂y

+
∂ρw
∂z

	 

dx dy dz
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Hence, we obtain (after canceling dx dy dz) from Eq. 4.12 a differential form of the mass conserva-
tion law

∂ρu
∂x

+
∂ρυ
∂y

+
∂ρw
∂z

+
∂ρ
∂t

=0 ð5:1aÞ

Equation 5.1a is frequently called the continuity equation.
Since the vector operator, ∇, in rectangular coordinates, is given by

∇= î
∂
∂x

+ ĵ
∂
∂y

+ k̂
∂
∂z

then
∂ρu
∂x

+
∂ρυ
∂y

+
∂ρw
∂z

=∇ �ρV!

Note that the del operator ∇ acts on ρ and V
!
. Think of it as ∇ � ðρV!Þ. The conservation of mass may be

written as

∇ �ρV!+ ∂ρ
∂t

=0 ð5:1bÞ

Two flow cases for which the differential continuity equation may be simplified are worthy of note.
For an incompressible fluid, ρ= constant; density is neither a function of space coordinates nor a

function of time. For an incompressible fluid, the continuity equation simplifies to

∂u
∂x

+
∂υ
∂y

+
∂w
∂z

=∇ �V!=0 ð5:1cÞ

Thus the velocity field, V
!ðx,y,z, tÞ, for incompressible flow must satisfy ∇ �V!=0.

For steady flow, all fluid properties are, by definition, independent of time. Thus ∂ρ=∂t=0 and at
most ρ= ρðx,y,zÞ. For steady flow, the continuity equation can be written as

∂ρu
∂x

+
∂ρυ
∂y

+
∂ρw
∂z

=∇ �ρV!=0 ð5:1dÞ

(and remember that the del operator ∇ acts on ρ and V
!
). Example 5.1 show the integration of the

continuity equation for an incompressible flow, and Example 5.2 shows its application to a compressible
unsteady flow.

Example 5.1 INTEGRATION OF TWO-DIMENSIONAL DIFFERENTIAL CONTINUITY EQUATION

For a two-dimensional flow in the xy plane, the x component of velocity is given by u=Ax. Determine a possible y component for
incompressible flow. How many y components are possible?

Given: Two-dimensional flow in the xy plane for which u=Ax.

Find: (a) Possible y component for incompressible flow.
(b) Number of possible y components.

Solution:

Governing equation: ∇ �ρV!+ ∂ρ
∂t

=0

For incompressible flow this simplifies to ∇ �V!=0. In rectangular coordinates

∂u
∂x

+
∂υ
∂y

+
∂w
∂z

=0
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For two-dimensional flow in the xy plane, V
!
=V
!ðx,yÞ. Then partial derivatives with respect to z are zero, and

∂u
∂x

+
∂υ
∂y

=0

Then

∂υ
∂y

= −
∂u
∂x

= −A

which gives an expression for the rate of change of υ holding x constant. This equation can be integrated to obtain an expression
for υ. The result is

υ=
Z

∂υ
∂y

dy+ f ðx, tÞ= −Ay+ f ðx, tÞ υ �����������������������������������
{The function of x and t appears because we had a partial derivative of υ with
respect to y.}

Any function f ðx, tÞ is allowable, since ∂=∂y f ðx, tÞ=0. Thus any number of
expressions for υ could satisfy the differential continuity equation under the given
conditions. The simplest expression for υwould be obtained by setting f ðx, tÞ=0.
Then υ= −Ay, and

V
!
=Axî−Ayĵ V

!

 ���������������������������������������������

This problem:
• Shows use of the differential continuity
equation for obtaining information on a
flow field.

• Demonstrates integration of a partial
derivative.

• Proves that the flow originally discussed
in Example 2.1 is indeed incompressible.

Example 5.2 UNSTEADY DIFFERENTIAL CONTINUITY EQUATION

A gas-filled pneumatic strut in an automobile suspension system behaves like a piston-cylinder apparatus. At one instant when
the piston is L=0:15 m away from the closed end of the cylinder, the gas density is uniform at ρ=18 kg=m3 and the piston begins
to move away from the closed end at V =12 m=s. Assume as a simple model that the gas velocity is one-dimensional and pro-
portional to distance from the closed end; it varies linearly from zero at the end to u=V at the piston. Find the rate of change of gas
density at this instant. Obtain an expression for the average density as a function of time.

Given: Piston-cylinder as shown.

Find: (a) Rate of change of density.
(b) ρðtÞ.

Solution:

Governing equation: ∇ �ρV!+ ∂ρ
∂t

=0

In rectangular coordinates,
∂ρu
∂x

+
∂ρυ
∂y

+
∂ρw
∂z

+
∂ρ
∂t

=0

Since u= uðxÞ, partial derivatives with respect to y and z are zero, and

∂ρu
∂x

+
∂ρ
∂t

=0

Then

∂ρ
∂t

= −
∂ρu
∂x

= −ρ
∂u
∂x

−u
∂ρ
∂x

L = 0.15 m

x

u = V x__
L

= 18 kg/m3
V = 12 m/s
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Cylindrical Coordinate System

A suitable differential control volume for cylindrical coordinates is shown in Fig. 5.2. The density at
the center, O, of the control volume is assumed to be ρ and the velocity there is assumed to be
V
!
= êrVr + êθVθ + k̂Vz, where êr, êθ, and k̂ are unit vectors in the r, θ, and z directions, respectively,

and Vr,Vθ, and Vz are the velocity components in the r, θ, and z directions, respectively. To evaluateR
CS ρV

! �dA!, we must consider the mass flux through each of the six faces of the control surface. The
properties at each of the six faces of the control surface are obtained from a Taylor series expansion about
pointO. The details of the mass flux evaluation are shown in Table 5.2. Velocity components Vr,Vθ, and
Vz are all assumed to be in the positive coordinate directions and we have again used the convention that
the area normal is positive outwards on each face, and higher-order terms have been neglected.

We see that the net rate of mass flux out through the control surface (the term
R
CS ρV

! �dA! in Eq. 4.12
is given by

ρVr + r
∂ρVr

∂r
+
∂ρVθ

∂θ
+ r

∂ρVz

∂z

	 

dr dθ dz

The mass inside the control volume at any instant is the product of the mass per unit volume, ρ, and the
volume, rd θ dr dz. Thus the rate of change of mass inside the control volume (the term ∂=∂t

R
CV ρdV--- in

Eq. 4.12 is given by

∂ρ
∂t
r dθ dr dz

Since ρ is assumed uniform in the volume,
∂ρ
∂x

=0, and
∂ρ
∂t

=
dρ
dt

= −ρ
∂u
∂x
.

Since u=V
x
L
,
∂u
∂x

=
V
L
, then

dρ
dt

= −ρ
V
L
. However, note that L= L0 +Vt.

Separate variables and integrate,Z ρ

ρ0

dρ
ρ

= −
Z t

0

V
L
dt= −

Z t

0

V dt
L0 +Vt

ln
ρ

ρ0
= ln

L0
L0 +Vt

and ρðtÞ= ρ0
1

1+Vt=L0

	 

ρðtÞ

 �����������������
At t=0,

∂ρ
∂t

= −ρ0
V
L
= −18

kg
m3 × 12

m
s
×

1
0:15 m

= −1440 kg=ðm3 � sÞ
∂ρ
∂t ��������

This problem demonstrates use of the
differential continuity equation for
obtaining the density variation with time
for an unsteady flow.

The density-time graph is
shown in an Excel workbook. This

workbook is interactive: It allows one to see
the effect of different values of ρ0,L,
and V on ρ versus t. Also, the time at
which the density falls to any prescribed
value can be determined.

θ r

z

Vθ

Vz

Vr

O

θd dr

r

(a) Isometric view (b) Projection on r   planeθ

θ

Fig. 5.2 Differential control volume in cylindrical coordinates.
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In cylindrical coordinates the differential equation for conservation of mass is then

ρVr + r
∂ρVr

∂r
+
∂ρVθ

∂θ
+ r

∂ρVz

∂z
+ r

∂ρ
∂t

=0

or

∂ðrρVrÞ
∂r

+
∂ρVθ

∂θ
+ r

∂ρVz

∂z
+ r

∂ρ
∂t

=0

Dividing by r gives

1
r
∂ðrρVrÞ

∂r
+
1
r
∂ðρVθÞ
∂θ

+
∂ðρVzÞ
∂z

+
∂ρ
∂t

=0 ð5:2aÞ

In cylindrical coordinates the vector operator ∇ is given by

∇= êr
∂
∂r

+ êθ
1
r

∂
∂θ

+ k̂
∂
∂z

ð3:19Þ

Equation 5.2a also may be written1 in vector notation as

∇ �ρV!+ ∂ρ
∂t

=0 ð5:1bÞ

Table 5.2
Mass Flux Through the Control Surface of a Cylindrical Differential Control Volume

Surface Evaluation of
Z

ρV
! �dA!

Inside
ð−rÞ

= − ρ−
∂ρ
∂r

� �
dr
2

	 

Vr−

∂Vr

∂r

� �
dr
2

	 

r−

dr
2

� �
dθ dz = −ρVr rdθ dz+ ρVr

dr
2
dθ dz+ ρ

∂Vr

∂r

� �
r
dr
2
dθ dz+Vr

∂ρ
∂r

� �
r
dr
2
dθ dz

Outside
ð+ rÞ

= ρ+
∂ρ
∂r

� �
dr
2

	 

Vr +

∂Vr

∂r

� �
dr
2

	 

r+

dr
2

� �
dθ dz= ρVr rdθdz+ ρVr

dr
2
dθ dz+ ρ

∂Vr

∂r

� �
r
dr
2
dθ dz+Vr

∂ρ
∂r

� �
r
dr
2
dθ dz

Front
ð−θÞ

= − ρ−
∂ρ
∂θ

� �
dθ
2

	 

Vθ−

∂Vθ

∂θ

� �
dθ
2

	 

dr dz = −ρVθ dr dz+ ρ

∂Vθ

∂θ

� �
dθ
2
dr dz+Vθ

∂ρ
∂θ

� �
dθ
2
dr dz

Back
ð+ θÞ

= ρ+
∂ρ
∂θ

� �
dθ
2

	 

Vθ +

∂Vθ

∂θ

� �
dθ
2

	 

dr dz = ρVθ dr dz+ ρ

∂Vθ

∂θ

� �
dθ
2
dr dz+Vθ

∂ρ
∂θ

� �
dθ
2
dr dz

Bottom
ð−zÞ

= − ρ−
∂ρ
∂z

� �
dz
2

	 

Vz−

∂Vz

∂z

� �
dz
2

	 

rdθ dr = −ρVzrdθ dr+ ρ

∂Vz

∂z

� �
dz
2
rdθ dr+Vz

∂ρ
∂z

� �
dz
2
rdθ dr

Top
ð+ zÞ

= ρ+
∂ρ
∂z

� �
dz
2

	 

Vz +

∂Vz

∂z

� �
dz
2

	 

rdθ dr = ρVzr dθ dr+ ρ

∂Vz

∂z

� �
dz
2
rdθ dr+Vz

∂ρ
∂z

� �
dz
2
rdθ dr

Adding the results for all six faces,Z
CS

ρV
! �dA!= ρVr + r ρ

∂Vr

∂r

� �
+Vr

∂ρ
∂r

� �� �
+ ρ

∂Vθ

∂θ

� �
+Vθ

∂ρ
∂θ

� �� �
+ r ρ

∂Vz

∂z

� �
+Vz

∂ρ
∂z

� �� �	 

dr dθ dz

or Z
CS

ρV
! �dA!= ρVr + r

∂ρVr

∂r
+
∂ρVθ

∂θ
+ r

∂ρVz

∂z

	 

dr dθ dz

1 To evaluate ∇ �ρV! in cylindrical coordinates, we must remember that

∂êr
∂θ

= êθ and
∂êθ
∂θ

= − êr
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For an incompressible fluid, ρ= constant, and Eq. 5.2a reduces to

1
r
∂ðrVrÞ
∂r

+
1
r
∂Vθ

∂θ
+
∂Vz

∂z
=∇ �V!=0 ð5:2bÞ

Thus the velocity field, V
!ðx,y,z, tÞ, for incompressible flow must satisfy ∇ �V!=0. For steady flow,

Eq. 5.2a reduces to

1
r
∂ðrρVrÞ

∂r
+
1
r
∂ðρVθÞ
∂θ

+
∂ðρVzÞ
∂z

=∇ �ρV!=0 ð5:2cÞ

(and remember once again that the del operator ∇ acts on ρ and V
!
).

When written in vector form, the differential continuity equation (the mathematical statement of
conservation of mass), Eq. 5.1b, may be applied in any coordinate system. We simply substitute the
appropriate expression for the vector operator ∇. In retrospect, this result is not surprising since mass
must be conserved regardless of our choice of coordinate system. Example 5.3 illustrates the application
of the continuity equation in cylindrical coordinates.

*5.2 Stream Function for Two-Dimensional Incompressible Flow
We already briefly discussed streamlines in Chapter 2, where we stated that they were lines tangent to the
velocity vectors in a flow at an instant

dy
dx streamline

=
υ

u

��� ð2:8Þ

Example 5.3 DIFFERENTIAL CONTINUITY EQUATION IN CYLINDRICAL COORDINATES

Consider a one-dimensional radial flow in the rθ plane, given by Vr = f ðrÞ and Vθ =0. Determine the conditions on f ðrÞ required
for the flow to be incompressible.

Given: One-dimensional radial flow in the rθ plane: Vr = f ðrÞ and Vθ =0.

Find: Requirements on f ðrÞ for incompressible flow.

Solution:

Governing equation: ∇ �ρV!+ ∂ρ
∂t

=0

For incompressible flow in cylindrical coordinates this reduces to Eq. 5.2b,

1
r

∂
∂r
ðrVrÞ+ 1

r
∂
∂θ

Vθ +
∂Vz

∂z
=0

For the given velocity field, V
!
=V
!ðrÞ �Vθ =0 and partial derivatives with respect to z are zero, so

1
r

∂
∂r
ðrVrÞ=0

Integrating with respect to r gives

rVr = constant

Thus the continuity equation shows that the radial velocity must be Vr = f ðrÞ=C=r for one-dimensional radial flow of an incom-
pressible fluid. This is not a surprising result: As the fluid moves outwards from the center, the volume flow rate (per unit depth in
the z direction) Q=2πrV at any radius r is constant.

∗This section may be omitted without loss of continuity in the text material.
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We can now develop a more formal definition of streamlines by introducing the stream function, ψ .
This will allow us to represent two entities—the velocity components uðx,y, tÞ and υðx,y, tÞ of a two-
dimensional incompressible flow—with a single function ψðx,y, tÞ.

There are various ways to define the stream function. We start with the two-dimensional version of
the continuity equation for incompressible flow (Eq. 5.1c):

∂u
∂x

+
∂υ
∂y

=0 ð5:3Þ

We use what looks at first like a purely mathematical exercise (we will see a physical basis for it later)
and define the stream function by

u≡
∂ψ
∂y

and υ≡ −
∂ψ
∂x

ð5:4Þ

so that Eq. 5.3 is automatically satisfied for any ψðx,y, tÞ we choose! To see this, use Eq. 5.4
in Eq. 5.3:

∂u
∂x

+
∂υ
∂y

=
∂2ψ
∂x∂y

−
∂2ψ
∂y∂x

=0

Using Eq. 2.8, we can obtain an equation valid only along a streamline

udy−υdx=0

or, using the definition of our stream function,

∂ψ
∂x

dx+
∂ψ
∂y

dy=0 ð5:5Þ

On the other hand, from a strictly mathematical point of view, at any instant in time t the variation in a
function ψðx,y, tÞ in space ðx,yÞ is given by

dψ =
∂ψ
∂x

dx+
∂ψ
∂y

dy ð5:6Þ

Comparing Eqs. 5.5 and 5.6, we see that along an instantaneous streamline, dψ =0; in other words, ψ is a
constant along a streamline. Hence we can specify individual streamlines by their stream function
values: ψ =0,1,2, etc. What is the significance of the ψ values? The answer is that they can be used
to obtain the volume flow rate between any two streamlines. Consider the streamlines shown in
Fig. 5.3. We can compute the volume flow rate between streamlines ψ1 and ψ2 by using line
AB,BC,DE, or EF (recall that there is no flow across a streamline).

Let us compute the flow rate by using line AB, and also by using line BC—they should be the same!
For a unit depth (dimension perpendicular to the xy plane), the flow rate across AB is

Q=
Z y2

y1
u dy=

Z y2

y1

∂ψ
∂y

dy

y

x
A (x1, y1)

C (x2, y2)B (x1, y2)

D

E
F

V

u

3

2

1

υ
Fig. 5.3 Instantaneous streamlines in a two-
dimensional flow.

Video: An
Example of
Streamlines/
Streaklines
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But along AB, x= constant, and (from Eq. 5.6) dψ = ∂ψ=∂y dy. Therefore,

Q=
Z y2

y1

∂ψ
∂y

dy=
Z ψ2

ψ1

dψ =ψ2−ψ1

For a unit depth, the flow rate across BC, is

Q=
Z x2

x1
υdx= −

Z x2

x1

∂ψ
∂x

dx

Along BC, y= constant, and (from Eq. 5.6) dψ = ∂ψ=∂y dx. Therefore,

Q= −
Z x2

x1

∂ψ
∂x

dx= −
Z ψ1

ψ2

dψ =ψ2−ψ1

Hence, whether we use line AB or line BC (or for that matter lines DE or DF), we find that the volume
flow rate (per unit depth) between two streamlines is given by the difference between the two stream
function values.2 (The derivations for lines AB and BC are the justification for using the stream function
definition of Eq. 5.4.) If the streamline through the origin is designated ψ =0, then the ψ value for any
other streamline represents the flow between the origin and that streamline. [We are free to select any
streamline as the zero streamline because the stream function is defined as a differential (Eq. 5.3); also,
the flow rate will always be given by a difference of ψ values.] Note that because the volume flow
between any two streamlines is constant, the velocity will be relatively high wherever the streamlines
are close together, and relatively low wherever the streamlines are far apart—a very useful concept
for “eyeballing” velocity fields to see where we have regions of high or low velocity.

For a two-dimensional, incompressible flow in the rθ plane, conservation of mass, Eq. 5.2b, can be
written as

∂ðrVrÞ
∂r

+
∂Vθ

∂θ
=0 ð5:7Þ

Using a logic similar to that used for Eq. 5.4, the stream function, ψðr,θ, tÞ, then is defined such that

Vr ≡
1
r
∂ψ
∂θ

and Vθ ≡ −
∂ψ
∂r

ð5:8Þ

With ψ defined according to Eq. 5.8, the continuity equation, Eq. 5.7, is satisfied exactly.

5.3 Motion of a Fluid Particle (Kinematics)
Figure 5.4 shows a typical finite fluid element, within which we have selected an infinitesimal particle of
mass dm and initial volume dx dy dz, at time t, and as it (and the infinitesimal particle) may appear after a
time interval dt. The finite element has moved and changed its shape and orientation. Note that while the
finite element has quite severe distortion, the infinitesimal particle has changes in shape limited to
stretching/shrinking and rotation of the element’s sides—this is because we are considering both an
infinitesimal time step and particle, so that the sides remain straight. We will examine the infinitesimal
particle so that we will eventually obtain results applicable to a point. We can decompose this particle’s
motion into four components: translation, in which the particle moves from one point to another; rota-
tion of the particle, which can occur about any or all of the x, y or z axes; linear deformation, in which the
particle’s sides stretch or contract; and angular deformation, in which the angles (which were initially
90� for our particle) between the sides change.

2 For two-dimensional steady compressible flow in the xy plane, the stream function, ψ , can be defined such that

ρu≡
∂ψ
∂y

and ρυ≡ −
∂ψ
∂x

The difference between the constant values of ψ defining two streamlines is then the mass flow rate per unit depth between the two
streamlines.
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It may seem difficult by looking at Fig. 5.4 to distinguish between rotation and angular deformation
of the infinitesimal fluid particle. It is important to do so, because pure rotation involves no deformation
but angular deformation does and, as we learned in Chapter 5, fluid deformation generates shear stresses.
Figure 5.5 shows a typical xy plane motion decomposed into the four components described above, and
as we examine each of these four components in turn we will see that we can distinguish between rota-
tion and angular deformation.

Fluid Translation: Acceleration of a Fluid Particle in a Velocity Field

The translation of a fluid particle is obviously connected with the velocity field V
!
=V
!ðx,y,z, tÞ that we

previously discussed in Section 2.2. We will need the acceleration of a fluid particle for use in Newton’s
second law. It might seem that we could simply compute this as a!= ∂V

!
=∂t. This is incorrect, because V

!
is

a field, i.e., it describes the whole flow and not just the motion of an individual particle. (We can see that
this way of computing is incorrect by examining Example 5.4, in which particles are clearly accelerating
and decelerating so a!6¼ 0, but ∂V

!
=∂t=0.)

Finite element & infinitesimal
particle at time t

Finite element &
infinitesimal particle

at time t + dt

dz

dx

z

x

y

dy

Fig. 5.4 Finite fluid element and infinitesimal particle at times t and t+dt.

y

x

y

x

Translation

y

x
Angular deformation

y

x
Rotation

y

x
Linear deformation

Fig. 5.5 Pictorial representation of the components of fluid motion.

Video: Particle
Motion in a
Channel
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Example 5.4 STREAM FUNCTION FOR FLOW IN A CORNER

Given the velocity field for steady, incompressible flow in a corner (Example 2.1), V
!
=Axî−Ayĵ, with A=0:3 s−1, determine the

stream function that will yield this velocity field. Plot and interpret the streamline pattern in the first and second quadrants of the
xy plane.

Given: Velocity field, V
!
=Axî−Ayĵ, with A=0:3 s−1.

Find: Stream function ψ and plot in first and second quadrants; interpret the results.

Solution: The flow is incompressible, so the stream function satisfies Eq. 5.4.

From Eq. 5.4, u=
∂ψ
∂y

and υ= −
∂ψ
∂y

. From the given velocity field,

u=Ax=
∂ψ
∂y

Integrating with respect to y gives

ψ =
Z

∂ψ
∂y

dy+ f ðxÞ=Axy+ f ðxÞ ð1Þ

where f ðxÞ is arbitrary. The function f ðxÞ may be evaluated using the equation for υ. Thus, from Eq. 1,

υ= −
∂ψ
∂x

= −Ay−
df
dx

ð2Þ

From the given velocity field, υ= −Ay. Comparing this with Eq. 2 shows that
df
dx

=0, or f ðxÞ= constant. Therefore, Eq. 1
becomes

ψ =Axy+ c ψ �������������������������
Lines of constant ψ represent streamlines in the flow field. The constant c may be chosen as any convenient value for plotting
purposes. The constant is chosen as zero in order that the streamline through the origin be designated as ψ =ψ1 = 0. Then the
value for any other streamline represents the flow between the origin and that streamline. With c=0 and A=0:3 s−1, then

ψ =0:3xy ðm3=s=mÞ
{This equation of a streamline is identical to the result ðxy= constant,Þ obtained in Example 2.1.}

Separate plots of the streamlines in the first and second quadrants are presented below. Note that in quadrant 1, u>0, so ψ
values are positive. In quadrant 2, u<0, so ψ values are negative.
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The problem, then, is to retain the field description for fluid properties and obtain an expression for
the acceleration of a fluid particle as it moves in a flow field. Stated simply, the problem is:

Given the velocity field, V
!
=V
!ðx,y,z, tÞ, find the acceleration

of a fluid particle, a!p:

Consider a particle moving in a velocity field. At time t, the particle is at the position x, y, z and has a
velocity corresponding to the velocity at that point in space at time t,

V
!
p

i
t
=V
!ðx,y,z, tÞ

At t+ dt, the particle has moved to a new position, with coordinates x+ dx,y+ dy,z+ dz, and has a veloc-
ity given by

V
!
p

i
t+ dt

=V
!ðx+ dx,y+ dy,z+ dz, t+ dtÞ

This is shown pictorially in Fig. 5.6.
The particle velocity at time t (position r!) is given by V

!
p =V

!ðx,y,z, tÞ. Then dV!p, the change in the
velocity of the particle, in moving from location r! to r!+ dr!, in time dt, is given by the chain rule,

dV
!
p =

∂V
!

∂x
dxp +

∂V
!

∂y
dyp +

∂V
!

∂z
dzp +

∂V
!

∂t
dt

The total acceleration of the particle is given by

a!p =
dV
!
p

dt
=
∂V
!

∂x
dxp
dt

+
∂V
!

∂y
dyp
dt

+
∂V
!

∂z
dzp
dt

+
∂V
!

∂t
Since

dxp
dt

= u,
dyp
dt

= υ, and
dzp
dt

=w,

we have

a!p =
dV
!
p

dt
= u

∂V
!

∂x
+ υ

∂V
!

∂y
+w

∂V
!

∂z
+
∂V
!

∂t

In the first quadrant, since u>0 and υ<0, the flow is from left to right and
down. The volume flow rate between the streamline ψ =ψ1 through the origin
and the streamline ψ =ψ2 is

Q12 =ψ2−ψ1 = 0:3 m3=s=m

In the second quadrant, since u<0 and υ<0, the flow is from right to left and
down. The volume flow rate between streamlines ψ7 and ψ9 is

Q79 =ψ9−ψ7 = ½−1:2−ð−0:6Þ�m3=s=m= −0:6 m3=s=m

The negative sign is consistent with flow having u<0.

As both the streamline spacing in the
graphs and the equation for V

!
indicate,

the velocity is smallest near the origin
(a “corner”).

There is an Excel workbook for
this problem that can be used to

generate streamlines for this and many
other stream functions.

Particle at
time, t

Particle at
time, t + dt

Particle path

r + dr
r

y

x

z

Fig. 5.6 Motion of a particle in a flow field.
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To remind us that calculation of the acceleration of a fluid particle in a velocity field requires a special
derivative, it is given the symbol DV

!
=Dt. Thus

DV
!

Dt
≡ a!p = u

∂V
!

∂x
+ υ

∂V
!

∂y
+w

∂V
!

∂z
+
∂V
!

∂t
ð5:9Þ

The derivative, D=Dt, defined by Eq. 5.9, is commonly called the substantial derivative to remind us
that it is computed for a particle of “substance.” It often is called the material derivative or particle
derivative.

The physical significance of the terms in Eq. 5.9 is

a!p =
DV
!

Dt

total
acceleration
of a particle

= u
∂V
!

∂x
+ υ

∂V
!

∂y
+w

∂V
!

∂z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
convective
acceleration

+
∂V
!

∂ t

local
acceleration

From Eq. 5.9 we recognize that a fluid particle moving in a flow field may undergo acceleration for
either of two reasons. As an illustration, refer to Example 5.4. This is a steady flow in which particles are
convected toward the low-velocity region (near the “corner”), and then away to a high-velocity region. If
a flow field is unsteady a fluid particle will undergo an additional local acceleration, because the velocity
field is a function of time.

The convective acceleration may be written as a single vector expression using the gradient operator
∇. Thus

u
∂V
!

∂x
+ υ

∂V
!

∂y
+w

∂V
!

∂z
= ðV! �∇ÞV!

(We suggest that you check this equality by expanding the right side of the equation using the familiar
dot product operation.) Thus Eq. 5.9 may be written as

DV
!

Dt
≡ a!p = ðV

! �∇ÞV!+ ∂V
!

∂t
ð5:10Þ

For a two-dimensional flow, say V
!
=V
!ðx,y, tÞ, Eq. 5.9 reduces to

DV
!

Dt
= u

∂V
!

∂x
+ υ

∂V
!

∂y
+
∂V
!

∂t

For a one-dimensional flow, say V
!
=V
!ðx, tÞ, Eq. 5.9 becomes

DV
!

Dt
= u

∂V
!

∂x
+
∂V
!

∂t
Finally, for a steady flow in three dimensions, Eq. 5.9 becomes

DV
!

Dt
= u

∂V
!

∂x
+ υ

∂V
!

∂y
+w

∂V
!

∂z

which, as we have seen, is not necessarily zero even though the flow is steady. Thus a fluid particle may
undergo a convective acceleration due to its motion, even in a steady velocity field.

Equation 5.9 is a vector equation. As with all vector equations, it may be written in scalar component
equations. Relative to an xyz coordinate system, the scalar components of Eq. 5.9 are written

axp =
Du
Dt

= u
∂u
∂x

+ υ
∂u
∂y

+w
∂u
∂z

+
∂u
∂t

ð5:11aÞ

ayp =
Dυ
Dt

= u
∂υ
∂x

+ υ
∂υ
∂y

+w
∂υ
∂z

+
∂υ
∂t

ð5:11bÞ

azp =
Dw
Dt

= u
∂w
∂x

+ υ
∂w
∂y

+w
∂w
∂z

+
∂w
∂t

ð5:11cÞ
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The components of acceleration in cylindrical coordinates may be obtained from Eq. 5.10
by expressing the velocity, V

!
, in cylindrical coordinates (Section 5.1) and utilizing the appropriate

expression (Eq. 3.19, on the web) for the vector operator ∇. Thus,3

arp =Vr
∂Vr

∂r
+
Vθ

r
∂Vr

∂θ
−
V2
θ

r
+Vz

∂Vr

∂z
+
∂Vr

∂t
ð5:12aÞ

aθp =Vr
∂Vθ

∂r
+
Vθ

r
∂Vθ

∂θ
+
VrVθ

r
+Vz

∂Vθ

∂z
+
∂Vθ

∂t
ð5:12bÞ

azp =Vr
∂Vz

∂r
+
Vθ

r
∂Vz

∂θ
+Vz

∂Vz

∂z
+
∂Vz

∂t
ð5:12cÞ

Equations 5.9, 5.11, and 5.12 are useful for computing the acceleration of a fluid particle anywhere
in a flow from the velocity field (a function of x, y, z, and t); this is the Eulerianmethod of description, the
most-used approach in fluid mechanics.

As an alternative (e.g., if we wish to track an individual particle’s motion in, for example, pollution
studies) we sometimes use the Lagrangian description of particle motion, in which the acceleration,
position, and velocity of a particle are specified as a function of time only. Both descriptions are illus-
trated in Example 5.5.

Example 5.5 PARTICLE ACCELERATION IN EULERIAN AND LAGRANGIAN DESCRIPTIONS

Consider two-dimensional, steady, incompressible flow through the plane converging channel shown. The velocity on the hor-
izontal centerline (x axis) is given by V

!
=V1½1+ ðx=LÞ�î. Find an expression for the acceleration of a particle moving along the

centerline using (a) the Eulerian approach and (b) the Lagrangian approach. Evaluate the acceleration when the particle is at the
beginning and at the end of the channel.

Given: Steady, two-dimensional, incompressible flow through the converging channel shown.

V
!
=V1 1 +

x
L

� �
î on x axis

Find: (a) The acceleration of a particle moving along the centerline using the Eulerian approach.
(b) The acceleration of a particle moving along the centerline using the Lagrangian approach.
(c) Evaluate the acceleration when the particle is at the beginning and at the end of the

channel.

Solution:

(a) The Eulerian approach
The governing equation for acceleration of a fluid particle is Eq. 5.9:

a!pðx,y,z, tÞ= DV
!

Dt
= u

∂V
!

∂x
+ υ

∂V
!

∂y
+w

∂V
!

∂z
+
∂V
!

∂t
In this case we are interested in the x component of acceleration (Eq. 5.11a):

axpðx,y,z, tÞ=
Du
Dt

= u
∂u
∂x

+ υ
∂u
∂y

+w
∂u
∂z

+
∂u
∂t

ð5:11aÞ

y

x
V

x1 = 0
x2 = L

3 In evaluating ðV! �∇ÞV!, recall that êr and êθ are functions of θ (see footnote 1 on p. 150).
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On the x axis, υ=w=0 and u=V1 1 +
x
L

� �
, so for steady flow we obtain

axpðxÞ=
Du
Dt

= u
∂u
∂x

=V1 1 +
x
L

� �V1

L

or

axpðxÞ=
V2
1

L
1+

x
L

� � axpðxÞ �������������������������
This expression gives the acceleration of any particle that is at point x at an instant.

(b) The Lagrangian approach
In this approach we need to obtain the motion of a fluid particle as we would in particle mechanics; that is, we need the
position x!pðtÞ, and then we can obtain the velocity V

!
pðtÞ= dx!p=dt and acceleration a!pðtÞ= dV

!
p=dt. Actually, we are

considering motion along the x axis, so we want xpðtÞ, upðtÞ= dxp=dt, and axpðtÞ= dup=dt. We are not given xpðtÞ, but
we do have

up =
dxp
dt

=V1 1 +
xp
L

� �
Separating variables, and using limits xpðt=0Þ=0 and xpðt= tÞ= xp,Z xp

0

dxp

1+
xp
L

� � =
Z 1

0
V1dt and L ln 1 +

xp
L

� �
=V1t ð1Þ

We can then solve for xpðtÞ :
xpðtÞ= LðeV1t=L−1Þ

The velocity and acceleration are then

upðtÞ= dxp
dt

=V1eV1t=L

and

axpðtÞ=
dup
dt

=
V2
1

L
eV1t=L ð2ÞaxpðtÞ �������������������������

This expression gives the acceleration at any time t of the particle that was initially at x=0.
(c) We wish to evaluate the acceleration when the particle is at x=0 and x= L. For the Eulerian approach this is straightforward:

azpðx=0Þ= V2
1

L
, axpðx= LÞ=2

V2
1

L

axp �����������������
For the Lagrangian approach, we need to find the times at which x=0 and x= L. Using Eq. 1, these are

tðxp =0Þ= L
V1

tðxp = LÞ= L
V1

lnð2Þ

Then, from Eq. (5.1),

azpðt=0Þ= V2
1

L
, and

axp t=
L
V1

lnð2Þ
� �

=
V2
1

L
elnð2Þ =2

V2
1

L

axp ������������������������
Note that both approaches yield the same results for particle acceleration, as
they should.

This problem illustrates use of the
Eulerian and Lagrangian descriptions of
the motion of a fluid particle.
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Fluid Rotation

A fluid particle moving in a general three-dimensional flow field may rotate about all three coordinate
axes. Thus particle rotation is a vector quantity and, in general,

ω
!= îωx + ĵωy + k̂ωz

whereωx is the rotation about the x axis,ωy is the rotation about the y axis, andωz is the rotation about the
z axis. The positive sense of rotation is given by the right-hand rule.

We now see howwe can extract the rotation component of the particle motion. Consider the xy plane
view of the particle at time t. The left and lower sides of the particle are given by the two perpendicular
line segments oa and ob of lengths Δx and Δy, respectively, shown in Fig. 5.7a. In general, after an inter-
val Δt the particle will have translated to some new position, and also have rotated and deformed.
A possible instantaneous orientation of the lines at time t+Δt is shown in Fig. 5.7b.

We need to be careful here with our signs for angles. Following the right-hand rule, counter-
clockwise rotation is positive, and we have shown side oa rotating counterclockwise through angle
Δα, but be aware that we have shown edge ob rotating at a clockwise angle Δβ. Both angles are obviously
arbitrary, but it will help visualize the discussion if we assign values to these angles, e.g., let Δα=6�

and Δβ=4�.
How do we extract from Δα and Δβ a measure of the particle’s rotation? The answer is that we take

an average of the rotations Δα and Δβ, so that the particle’s rigid body counterclockwise rotation is
1
2ðΔα−ΔβÞ, as shown in Fig. 5.7c. The minus sign is needed because the counterclockwise rotation
of ob is −Δβ. Using the assigned values, the rotation of the particle is then 1

2ð6�−4�Þ=1�. (Given
the two rotations, taking the average is the only way we can measure the particle’s rotation, because
any other approach would favor one side’s rotation over the other, which doesn’t make sense.)

Now we can determine from Δα and Δβ a measure of the particle’s angular deformation, as shown
in Fig. 5.7d. To obtain the deformation of side oa in Fig. 5.7d, we use Fig. 5.7b and 5.7c: If we subtract
the particle rotation 1

2ðΔα−ΔβÞ, in Fig. 5.7c, from the actual rotation of oa, Δα, in Fig. 5.7b, what
remains must be pure deformation [Δα− 1

2ðΔα−ΔβÞ= 1
2ðΔα+ΔβÞ, in Fig. 5.7d]. Using the assigned

values, the deformation of side oa is 6�− 1
2ð6�−4�Þ=5�. By a similar process, for side ob we end with

Δβ− 1
2 ðΔα−ΔβÞ= 1

2ðΔα+ΔβÞ, or a clockwise deformation 1
2ðΔα+ΔβÞ, as shown in Fig. 5.7d. The

total deformation of the particle is the sum of the deformations of the sides, or ðΔα+ΔβÞ (with our
example values, 10�). We verify that this leaves us with the correct value for the particle’s deformation:
Recall that in Section 2.4 we saw that deformation is measured by the change in a 90� angle. In
Fig. 5.7a we see this is angle aob, and in Fig. 5.7d we see the total change of this angle is
indeed 1

2ðΔα+ΔβÞ+ 1
2ðΔα+ΔβÞ= ðΔα+ΔβÞ.

We need to convert these angular measures to quantities obtainable from the flow field. To do this,
we recognize that (for small angles)Δα=Δη=Δx, andΔβ=Δξ=Δy. ButΔξ arises because, if in interval
Δt point o moves horizontally distance uΔt, then point b will have moved distance ðu+ ½∂u=∂y�ΔyÞΔt
(using a Taylor series expansion). Likewise, Δη arises because, if in interval Δt point omoves vertically
distance υΔt, then point a will have moved distance ðυ+ ½∂υ=∂x�ΔxÞΔt. Hence,

Δξ= u+
∂u
∂y

Δy
� �

Δt−uΔt=
∂u
∂y

ΔyΔt

b

o a

Δy

Δx

Δα Δη

Δβ

Δξ
1/2(Δα – Δβ)

1/2(Δα – Δβ)

1/2(Δα + Δβ)

1/2(Δα + Δβ)

(a) Original particle (b) Particle after time Δt (c) Rotational component (d) Angular deformation component

Fig. 5.7 Rotation and angular deformation of perpendicular line segments in a two-dimensional flow.
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and

Δη= υ+
∂υ
∂x

Δx
� �

Δt−υΔt=
∂υ
∂x

ΔxΔt

We can now compute the angular velocity of the particle about the z axis, ωz, by combining all these
results:

ωz = lim
Δt!0

1
2
ðΔα−ΔβÞ

Δt
= lim

Δt!0

1
2

Δη
Δx

−
Δξ
Δy

� �
Δt

= lim
Δt!0

1
2

∂υ
∂x

Δx
Δx

Δt−
∂u
∂y

Δy
Δy

Δt
� �

Δt

ωz =
1
2

∂υ
∂x

−
∂u
∂y

� �
By considering the rotation of pairs of perpendicular line segments in the yz and xy planes, one can

show similarly that

ωx =
1
2

∂w
∂y

−
∂υ
∂z

� �
and ωy =

1
2

∂u
∂z

−
∂w
∂x

� �
Then ω

!= îωx + ĵωy + k̂ωz becomes

ω
!=

1
2

î
∂w
∂y

−
∂υ
∂z

� �
+ ĵ

∂u
∂z

−
∂w
∂x

� �
+ k̂

∂υ
∂x

−
∂u
∂y

� �	 

ð5:13Þ

We recognize the term in the square brackets as

curl V
!
=∇×V

!

Then, in vector notation, we can write

ω
!=

1
2
∇×V

! ð5:14Þ

It is worth noting here that we should not confuse rotation of a fluid particle with flow consisting of
circular streamlines, or vortex flow. As we will see in Example 5.6, in such a flow the particles could
rotate as they move in a circular motion, but they do not have to!

Example 5.6 FREE AND FORCED VORTEX FLOWS

Consider flow fields with purely tangential motion (circular streamlines): Vr =0 and Vθ = f ðrÞ. Evaluate the rotation, vorticity,
and circulation for rigid-body rotation, a forced vortex. Show that it is possible to choose f ðrÞ so that flow is irrotational, i.e., to
produce a free vortex.

Given: Flow fields with tangential motion, Vr =0 and Vθ = f ðrÞ.
Find: (a) Rotation, vorticity, and circulation for rigid-body motion (a forced vortex).

(b) Vθ = f ðrÞ for irrotational motion (a free vortex).

Solution:

Governing equation: ζ
!
=2ω! =∇× V

! ð5:15Þ
For motion in the rθ plane, the only components of rotation and vorticity are in the z direction,

ζz =2ωz =
1
r
∂rVθ

∂r
−
1
r
∂Vr

∂θ

Because Vr =0 everywhere in these fields, this reduces to ζz =2ωz =
1
r
∂rVθ

∂r
.
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When might we expect to have a flow in which the particles rotate as they move ðω! 6¼ 0Þ? One pos-
sibility is that we start out with a flow in which (for whatever reason) the particles already have rotation.
On the other hand, if we assumed the particles are not initially rotating, particles will only begin to rotate
if they experience a torque caused by surface shear stresses; the particle body forces and normal (pres-
sure) forces may accelerate and deform the particle, but cannot generate a torque. We can conclude that
rotation of fluid particles will always occur for flows in which we have shear stresses. We have already
learned in Chapter 2 that shear stresses are present whenever we have a viscous fluid that is experiencing
angular deformation (shearing). Hence we conclude that rotation of fluid particles only occurs in viscous
flows4 (unless the particles are initially rotating, as in Example 3.10).

Flows for which no particle rotation occurs are called irrotational flows. Although no real flow is
truly irrotational (all fluids have viscosity), it turns out that many flows can be successfully studied by
assuming they are inviscid and irrotational, because viscous effects are often negligible. As we discussed
in Chapter 1, and will again in Chapter 6, much of aerodynamics theory assumes inviscid flow. We just
need to be aware that in any flow there will always be regions (e.g., the boundary layer for flow over a
wing) in which viscous effects cannot be ignored.

The factor of 12 can be eliminated from Eq. 5.14 by defining the vorticity, ζ
!
, to be twice the rotation,

ζ
!
≡ 2ω!=∇×V

! ð5:15Þ

(a) For rigid-body rotation, Vθ =ωr

Then ωz =
1
2
1
r
∂rVθ

∂r
=
1
2
1
r

∂
∂r
ωr2 =

1
2r
ð2ωrÞ=ω and ζz =2ω:

The circulation is

Γ=
I
c
V
! �ds!=

Z
A
2ωzdA: ð18Þ

Since ωz =ω= constant, the circulation about any closed contour is given by Γ=2ωA, where A is the area enclosed by the
contour. Thus for rigid-body motion (a forced vortex), the rotation and vorticity are constants; the circulation depends on the
area enclosed by the contour.

(b) For irrotational flow, ωz =
1
r

∂
∂r
rVθ =0. Integrating, we find

rVθ = constant or Vθ = f ðrÞ= C
r

For this flow, the origin is a singular point where Vθ!∞ . The circulation for any contour enclosing the origin is

Γ=
I
c
V
! �ds!=

Z 2π

0

C
r
r dθ=2πC

It turns out that the circulation around any contour not enclosing the singular point at the origin is zero. Streamlines for the two
vortex flows are shown below, along with the location and orientation at different instants of a cross marked in the fluid that was
initially at the 12 o’clock position. For the rigid-body motion (which
occurs, for example, at the eye of a tornado, creating the “dead” region
at the very center), the cross rotates as it moves in a circular motion;
also, the streamlines are closer together as we move away from the ori-
gin. For the irrotational motion (which occurs, for example, outside the
eye of a tornado—in such a large region viscous effects are negligible),
the cross does not rotate as it moves in a circular motion; also, the
streamlines are farther apart as we move away from the origin.

Rigid-body motion Irrotational motion

4 A rigorous proof using the complete equations of motion for a fluid particle is given in Li and Lam, pp. 123–126.
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The vorticity is a measure of the rotation of a fluid element as it moves in the flow field. In cylindrical
coordinates the vorticity is

∇×V
!
= êr

1
r
∂Vz

∂θ
−
∂Vθ

∂z

� �
+ êθ

∂Vr

∂z
−
∂Vz

∂r

� �
+ k̂

1
r
∂rVθ

∂r
−
1
r
∂Vr

∂θ

� �
ð5:16Þ

The circulation, Γ (which we will revisit in Example 6.12), is defined as the line integral of the
tangential velocity component about any closed curve fixed in the flow,

Γ=
I
c
V
! �ds! ð5:17Þ

where ds!is an elemental vector tangent to the curve and having length ds of the element of arc; a positive
sense corresponds to a counterclockwise path of integration around the curve. We can develop a rela-
tionship between circulation and vorticity by considering the rectangular circuit shown in Fig. 5.8, where
the velocity components at o are assumed to be ðu,υÞ, and the velocities along segments bc and ac can be
derived using Taylor series approximations.

For the closed curve oacb,

ΔΓ= uΔx+ υ+
∂υ
∂x

Δx
� �

Δy− u+
∂u
∂y

Δy
� �

Δx−υΔy

ΔΓ=
∂υ
∂x

−
∂u
∂y

� �
ΔxΔy

ΔΓ=2ωzΔxΔy

Then,

Γ=
I
c
V
! �ds!=

Z
A
2ωz dA=

Z
A
ð∇×V

!Þz dA ð5:18Þ

Equation 5.18 is a statement of the Stokes Theorem in two dimensions. Thus the circulation around a
closed contour is equal to the total vorticity enclosed within it.

Fluid Deformation

a. Angular Deformation
As we discussed earlier (and as shown in Fig. 5.7d), the angular deformation of a particle is given by the
sum of the two angular deformations, or in other words by ðΔα+ΔβÞ.

We also recall that Δα=Δη=Δx,Δβ=Δξ=Δy, and Δξ and Δη are given by

Δξ= u+
∂u
∂y

Δy
� �

Δt−uΔt=
∂u
∂y

ΔyΔt

u + Δyu___
y

υ + Δxυ___
x

b c

a x

y

Δx

u
o

Δy

υ

Fig. 5.8 Velocity components on the boundaries of a fluid element.
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and

Δη= υ+
∂υ
∂x

Δx
� �

Δt−υΔt=
∂υ
∂x

ΔxΔt

We can now compute the rate of angular deformation of the particle in the xy plane by combining these
results,

Rate of angular
deformation
in xy plane

= lim
Δt!0

ðΔα+ΔβÞ
Δt

= lim
Δt!0

Δη
Δx

+
Δξ
Δy

� �
Δt

Rate of angular
deformation
in xy plane

= lim
Δt!0

∂υ
∂x

Δx
Δx

Δt+
∂u
∂y

Δy
Δy

Δt
� �

Δt
=

∂υ
∂x

+
∂u
∂y

� �
ð5:19aÞ

Similar expressions can be written for the rate of angular deformation of the particle in the yz and zx
planes,

Rate of angular deformation in yz plane =
∂w
∂y

+
∂υ
∂z

� �
ð5:19bÞ

Rate of angular deformation in zx plane =
∂w
∂x

+
∂u
∂z

� �
ð5:19cÞ

We saw in Chapter 2 that for one-dimensional laminar Newtonian flow the shear stress is given by the
rate of deformation ðdu=dyÞ of the fluid particle,

τyx = μ
du
dy

ð2:15Þ

We will see shortly that we can generalize Eq. 2.15 to the case of three-dimensional laminar flow; this
will lead to expressions for three-dimensional shear stresses involving the three rates of angular defor-
mation given above. (Eq. 2.15 is a special case of Eq. 5.19a.)

Calculation of angular deformation is illustrated for a simple flow field in Example 5.7.

Example 5.7 ROTATION IN VISCOMETRIC FLOW

A viscometric flow in the narrow gap between large parallel plates is
shown. The velocity field in the narrow gap is given by V

!
=Uðy=hÞî,

where U =4mm=s and h=4mm. At t=0 line segments ac and bd are
marked in the fluid to form a cross as shown. Evaluate the positions of
the marked points at t=1:5 s and sketch for comparison. Calculate the
rate of angular deformation and the rate of rotation of a fluid particle
in this velocity field. Comment on your results.

Given: Velocity field, V
!
=Uðy=hÞî;U =4mm=s, and h=4mm. Fluid particles marked at t=0 to form cross as shown.

Find: (a) Positions of points a0, b0, c0, and d0 at t=1:5 s; plot.
(b) Rate of angular deformation.
(c) Rate of rotation of a fluid particle.
(d) Significance of these results.

Solution: For the given flow field υ=0, so there is no vertical motion. The velocity of each point stays constant, so Δx= uΔt
for each point. At point b, u=3mm=s, so

Δxb =3
mm
s

× 1:5 s= 4:5 mm

h

u = U   i^y_
h

3

2

1

0

0 1 2 3 4

a (1,2)

d (2,1)

b (2,3)

c (3,2)
Lines marked

in fluid
at t = 0

U

x

y
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b. Linear Deformation
During linear deformation, the shape of the fluid element, described by the angles at its vertices, remains
unchanged, since all right angles continue to be right angles (see Fig. 5.5). The element will change
length in the x direction only if ∂u=∂x is other than zero. Similarly, a change in the y dimension requires
a nonzero value of ∂υ=∂y and a change in the z dimension requires a nonzero value of ∂w=∂z. These
quantities represent the components of longitudinal rates of strain in the x, y, and z directions,
respectively.

Changes in length of the sides may produce changes in volume of the element. The rate of local
instantaneous volume dilation is given by

Volume dilation rate =
∂u
∂x

+
∂υ
∂y

+
∂w
∂z

=∇ �V! ð5:20Þ

For incompressible flow, the rate of volume dilation is zero (Eq. 5.1c).
We have shown in this section that the velocity field can be used to find the acceleration, rotation,

angular deformation, and linear deformation of a fluid particle in a flow field. Evaluation of the rate of
deformation for flow near a corner is illustrated in Example 5.8.

Similarly, points a and c each move 3 mm, and point d moves 1.5 mm. Hence the plot at t=1:5 s is

The rate of angular deformation is

∂u
∂y

+
∂υ
∂x

=U
1
h
+0=

U
h
=4

mm
s

×
1

4 mm
=1 s−1 ���������������������

The rate of rotation is

ωz =
1
2

∂υ
∂x

−
∂u
∂y

� �
=
1
2

0−
U
h

� �
= −

1
2
× 4

mm
s

×
1

4 mm
= −0:5 s−1 ωz �������� In this problem we have a viscous flow,

and hence should have expected both
angular deformation and particle
rotation.

U

3

2

1

0

0 1 2 3 4 5 6 7

a a'

d'

b'
c'

b
c

d

x

y

Lines at t = 1.5 s

Video: Linear
Deformation

Example 5.8 DEFORMATION RATES FOR FLOW IN A CORNER

The velocity fieldV
!
=Axî−Ayĵ represents flow in a “corner,” as shown in Example 5.4, where A=0:3 s−1 and the coordinates are

measured in meters. A square is marked in the fluid as shown at t=0. Evaluate the new positions of the four corner points when
point a has moved to x= 3

2 m after τ seconds. Evaluate the rates of linear deformation in the x and y directions. Compare area
a0b0c0d0 at t= τ with area abcd at t=0. Comment on the significance of this result.

Given: V
!
=Axî−Ayĵ; A=0:3 s−1, x and y in meters.

Find: (a) Position of square at t= τ when a is at a0 at x= 3
2 m.

(b) Rates of linear deformation.
(c) Area a0b0c0d0 compared with area abcd.
(d) Significance of the results.
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Solution: First we must find τ, so we must follow a fluid particle using a Lagrangian
description. Thus

u=
dxp
dt

=Axp,
dx
x
=A dt, so

Z x

x0

dx
x
=
Z τ

0
A dt and ln

x
x0

=Aτ

τ=
ln x=x0

A
=

ln
3
2

� �
0:3 s−1 = 1:35 s

In the y direction

υ=
dyp
dt

= −Ayp
dy
y
= −A dt

y
y0

= e−Aτ

The point coordinates at τ are:

Point t= 0 t= τ

a ð1,1Þ 3
2
,
2
3

� �
b ð1,2Þ 3

2
,
4
3

� �
c ð2,2Þ 3,

4
3

� �
d ð2,1Þ 3,

2
3

� �

The plot is:

The rates of linear deformation are:

∂u
∂x

=
∂
∂x

Ax=A=0:3 s−1 in the x direction

∂υ
∂y

=
∂
∂y
ð−AyÞ= −A= −0:3 s−1 in the y direction

The rate of volume dilation is

∇�V! =
∂u
∂x

+
∂υ
∂y

=A− A=0

Area abcd=1m2 and area a0b0c0d0 = 3−
3
2

� �
4
3
−
2
3

� �
=1m2.

Notes:
• Parallel planes remain parallel; there is
linear deformation but no angular
deformation.

• The flow is irrotational ð∂υ=∂x−∂u=∂y=0Þ.
• Volume is conserved because the two
rates of linear deformation are equal and
opposite.

• The NCFMF video Flow Visualization (see
http://web.mit.edu/fluids/www/Shapiro/
ncfmf.html for free online viewing of this
film) uses hydrogen bubble time-streak
markers to demonstrate experimentally
that the area of a marked fluid square is
conserved in two-dimensional incom-
pressible flow.

The Excelworkbook for this problem
shows an animation of this motion.

0
0

1

2

1 2

y

b (1,2) c (2,2)

a (1,1) d (2,1)

x

Square marked
at t = 0

0
0

1

2

1 2 3

y

x

b c

c'

a' d'

b'
a d

t = 0

t = τ
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5.4 Momentum Equation
A dynamic equation describing fluid motion may be obtained by applying Newton’s second law to a
particle. To derive the differential form of the momentum equation, we shall apply Newton’s second
law to an infinitesimal fluid particle of mass dm.

Recall that Newton’s second law for a finite system is given by

F
!
=
dP
!

dt

!
system

ð4:2aÞ

where the linear momentum, P
!
, of the system is given by

P
!
system =

Z
mass ðsystemÞ

V
!
dm ð4:2bÞ

Then, for an infinitesimal system of mass dm, Newton’s second law can be written

dF
!
= dm

dV
!

dt

!
system

ð5:21Þ

Having obtained an expression for the acceleration of a fluid element of mass dm, moving in a velocity
field (Eq. 5.9), we can write Newton’s second law as the vector equation

dF
!
= dm

DV
!

Dt
= dm u

∂V
!

∂x
+ υ

∂V
!

∂y
+w

∂V
!

∂z
+
∂V
!

∂t

" #
ð5:22Þ

We now need to obtain a suitable formulation for the force, dF
!
, or its components, dFx, dFy, and dFz,

acting on the element.

Forces Acting on a Fluid Particle

Recall that the forces acting on a fluid element may be classified as body forces and surface forces; sur-
face forces include both normal forces and tangential (shear) forces.

We shall consider the x component of the force acting on a differential element of mass dm and
volume dV--- = dx dy dz. Only those stresses that act in the x direction will give rise to surface forces
in the x direction. If the stresses at the center of the differential element are taken to be σxx,τyx, and
τzx, then the stresses acting in the x direction on all faces of the element (obtained by a Taylor series
expansion about the center of the element) are as shown in Fig. 5.9.

y

x

z

zx +τ
дτ

д
     zx____
   z 

dz__
2

yx –
дτ

д
     yx____
   y 

dy__
2

τ

yx +
дτ

д
     yx____
   y 

dy__
2

τ

zx –
дτ

д
     zx____
   z 

dz__
2

τ

xx +
д
д

  σ xx____
   x 

dx__
2

σ
xx –

дσ
д

     xx____
   x 

dx__
2

σ

Fig. 5.9 Stresses in the x direction on an element of fluid.
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To obtain the net surface force in the x direction, dFSx , we must sum the forces in the x direc-
tion. Thus,

dFSx = σxx +
∂σxx
∂x

dx
2

� �
dy dz− σxx−

∂σxx
∂x

dx
2

� �
dy dz

+ τyx +
∂τyx
∂y

dy
2

� �
dx dz− τyx−

∂τyx
∂y

dy
2

� �
dx dz

+ τzx +
∂τzx
∂z

dz
2

� �
dx dy− τzx−

∂τzx
∂z

dz
2

� �
dx dy

On simplifying, we obtain

dFSx =
∂σxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

� �
dx dy dz

When the force of gravity is the only body force acting, then the body force per unit mass is g!. The net
force in the x direction, dFx, is given by

dFx = dFBx + dFSx = ρgx +
∂σxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

� �
dx dy dz ð5:23aÞ

We can derive similar expressions for the force components in the y and z directions:

dFy = dFBy + dFSy = ρgy +
∂τxy
∂x

+
∂σyy
∂y

+
∂τzy
∂z

� �
dx dy dz ð5:23bÞ

dFz = dFBz + dFSz = ρgz +
∂τxz
∂x

+
∂τyz
∂y

+
∂σzz
∂z

� �
dx dy dz ð5:23cÞ

Differential Momentum Equation

We have now formulated expressions for the components, dFx, dFy, and dFz, of the force, dF
!
, acting on

the element of mass dm. If we substitute these expressions (Eqs. 5.23) for the force components into the
x, y, and z components of Eq. 5.22, we obtain the differential equations of motion,

ρgx +
∂σxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

= ρ
∂u
∂t

+ u
∂u
∂x

+ υ
∂u
∂y

+w
∂u
∂z

� �
ð5:24aÞ

ρgy +
∂τxy
∂x

+
∂σyy
∂y

+
∂τzy
∂z

= ρ
∂υ
∂t

+ u
∂υ
∂x

+ υ
∂υ
∂y

+w
∂υ
∂z

� �
ð5:24bÞ

ρgz +
∂τxz
∂x

+
∂τyz
∂y

+
∂σzz
∂z

= ρ
∂w
∂t

+ u
∂w
∂x

+ υ
∂w
∂y

+w
∂w
∂z

� �
ð5:24cÞ

Equations 5.24 are the differential equations of motion for any fluid satisfying the continuum
assumption. Before the equations can be used to solve for u,υ, andw, suitable expressions for the stresses
must be obtained in terms of the velocity and pressure fields.

Newtonian Fluid: Navier–Stokes Equations

For a Newtonian fluid the viscous stress is directly proportional to the rate of shearing strain (angular
deformation rate). We saw in Chapter 2 that for one-dimensional laminar Newtonian flow the shear
stress is proportional to the rate of angular deformation: τyx = du=dy (Eq. 2.15). For a three-dimensional
flow the situation is a bit more complicated (among other things we need to use the more complicated
expressions for rate of angular deformation, Eq. 5.19). The stresses may be expressed in terms of velocity
gradients and fluid properties in rectangular coordinates as follows:5

τxy = τyx = μ
∂υ
∂x

+
∂u
∂y

� �
ð5:25aÞ

5 The derivation of these results is beyond the scope of this book. Detailed derivations may be found in Daily and Harleman [2],
Schlichting [3], and White [4].
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τyz = τzy = μ
∂w
∂y

+
∂υ
∂z

� �
ð5:25bÞ

τzx = τxz = μ
∂u
∂z

+
∂w
∂x

� �
ð5:25cÞ

σxx = −p−
2
3
μ∇ �V!+2μ

∂u
∂x

ð5:25dÞ

σyy = −p−
2
3
μ∇ �V!+2μ

∂υ
∂y

ð5:25eÞ

σzz = −p−
2
3
μ∇ �V!+2μ

∂w
∂z

ð5:25fÞ

where p is the local thermodynamic pressure.6 Thermodynamic pressure is related to the density and
temperature by the thermodynamic relation usually called the equation of state.

If these expressions for the stresses are introduced into the differential equations of motion
(Eqs. 5.24), we obtain

ρ
Du
Dt

= ρgx−
∂p
∂x

+
∂
∂x

μ 2
∂u
∂x

−
2
3
∇�V!

� �	 

+

∂
∂y

μ
∂u
∂y

+
∂υ
∂x

� �	 


+
∂
∂z

μ
∂w
∂x

+
∂u
∂z

� �	 
 ð5:26aÞ

ρ
Dυ
Dt

= ρgy−
∂p
∂y

+
∂
∂x

μ
∂u
∂y

+
∂υ
∂x

� �	 

+

∂
∂y

μ 2
∂υ
∂y

−
2
3
∇ �V!

� �	 

+

∂
∂z

μ
∂υ
∂z

+
∂w
∂y

� �	 
 ð5:26bÞ

ρ
Dw
Dt

= ρgz−
∂p
∂z

+
∂
∂x

μ
∂w
∂x

+
∂u
∂z

� �	 

+

∂
∂y

μ
∂w
∂z

+
∂w
∂y

� �	 

+

∂
∂z

μ 2
∂w
∂z

−
2
3
∇ �V!

� �	 
 ð5:26cÞ

These equations of motion are called the Navier–Stokes equations. The equations are greatly simplified
when applied to incompressible flow with constant viscosity. Under these conditions the equations
reduce to

ρ
∂u
∂t

+ u
∂u
∂x

+ υ
∂u
∂y

+w
∂u
∂z

� �
= ρgx−

∂p
∂x

+ μ
∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

� �
ð5:27aÞ

ρ
∂υ
∂t

+ u
∂υ
∂x

+ υ
∂υ
∂y

+w
∂υ
∂z

� �
= ρgy−

∂p
∂y

+ μ
∂2υ
∂x2

+
∂2υ
∂y2

+
∂2υ
∂z2

� �
ð5:27bÞ

ρ
∂w
∂t

+ u
∂w
∂x

+ υ
∂w
∂y

+w
∂w
∂z

� �
= ρgz−

∂p
∂z

+ μ
∂2w
∂x2

+
∂2w
∂y2

+
∂2w
∂z2

� �
ð5:27cÞ

This form of the Navier–Stokes equations is probably (next to the Bernoulli equation) the most famous
set of equations in fluid mechanics, and has been widely studied. These equations, with the continuity
equation (Eq. 5.1c), form a set of four coupled nonlinear partial differential equations for u,υ,w, and p. In
principle, these four equations describe many common flows; the only restrictions are that the fluid be
Newtonian (with a constant viscosity) and incompressible. For example, lubrication theory (describing
the behavior of machine bearings), pipe flows, and even the motion of your coffee as you stir it are
explained by these equations. Unfortunately, they are impossible to solve analytically, except for the
most basic cases [3], in which we have simple boundaries and initial or boundary conditions! We will
solve the equations for such a simple problem in Example 5.9.

6 Sabersky et al. [5] discuss the relation between the thermodynamic pressure and the average pressure defined as
p= −ðσxx + σyy + σzzÞ=3.
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Example 5.9 ANALYSIS OF FULLY DEVELOPED LAMINAR FLOW DOWN AN INCLINED PLANE SURFACE

A liquid flows down an inclined plane surface in a steady, fully developed laminar film of thickness h. Simplify the continuity and
Navier–Stokes equations to model this flow field. Obtain expressions for the liquid velocity profile, the shear stress distribution,
the volume flow rate, and the average velocity. Relate the liquid film thickness to the volume flow rate per unit depth of surface
normal to the flow. Calculate the volume flow rate in a film of water h=1mm thick, flowing on a surface b=1m wide, inclined
at θ=15� to the horizontal.

Given: Liquid flow down an inclined plane surface in a steady, fully developed laminar film of thickness h.

Find: (a) Continuity and Navier–Stokes equations simplified to model this flow field.
(b) Velocity profile.
(c) Shear stress distribution.
(d) Volume flow rate per unit depth of surface normal

to diagram.
(e) Average flow velocity.
(f) Film thickness in terms of volume flow rate per

unit depth of surface normal to diagram.
(g) Volume flow rate in a film of water 1mm thick on a

surface 1 m wide, inclined at 15� to the horizontal.

Solution: The geometry and coordinate system used to
model the flow field are shown. (It is convenient to align
one coordinate with the flow down the plane surface.)

The governing equations written for incompressible flow with constant viscosity are

∂u
∂x��

�!

4

þ∂υ
∂y
þ ∂w

∂z��
�!

3

¼ 0 ð5:1cÞ

ρ
∂u
∂t��

�!

1

þu
∂u
∂x��

�!

4

þυ
∂u
∂y��

�!

5

þw
∂u
∂z��

�!

3
0
@

1
A¼ ρgx−

∂p
∂x��

�!

4

þμ
∂2u
∂x2��
�!

4

þ∂2u
∂y2
þ ∂2u
∂z2��

�!
3

0
B@

1
CA ð5:27aÞ

ρ
∂υ
∂t��

�!

1

þu
∂υ
∂x��

�!

4

þυ
∂υ
∂y��

�!

5

þw
∂υ
∂z��

�!

3
0
@

1
A¼ ρgy−

∂p
∂y
þμ

∂2υ
∂x2��

�!

4

þ ∂2υ
∂y2��

�!

5

þ ∂2υ
∂z2��

�!

3
0
B@

1
CA ð5:27bÞ

ρ
∂w
∂t��

�!

1

þu
∂w
∂x��

�!

3

þυ
∂w
∂y��

�!

3

þw
∂w
∂z��

�!

3
0
@

1
A¼ ρgz

��
�!

3

−
∂p
∂z
þμ

∂2w
∂x2��

�!

3

þ∂
2w
∂y2��

�!

3

þ∂
2w
∂z2��

�!

3
0
B@

1
CA ð5:27cÞ

The terms canceled to simplify the basic equations are keyed by number to the assumptions listed below. The assumptions are
discussed in the order in which they are applied to simplify the equations.

Assumptions:

1 Steady flow (given).

2 Incompressible flow; ρ= constant.

3 No flow or variation of properties in the z direction; w=0 and ∂=∂z=0.

4 Fully developed flow, so no properties vary in the x direction; ∂=∂x=0.

Assumption 1 eliminates time variations in any fluid property.
Assumption 2 eliminates space variations in density.
Assumption 3 states that there is no z component of velocity and no property variations in the z direction. All terms in the z

component of the Navier–Stokes equation cancel.
After assumption 4 is applied, the continuity equation reduces to ∂υ=∂y=0. Assumptions 3 and 4 also indicate that ∂υ=∂z=0

and ∂υ=∂x=0. Therefore υ must be constant. Since υ is zero at the solid surface, then υ must be zero everywhere.

y

x u

g

Width b = 1 m

h = 1 mm

= 15°θ
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The fact that υ=0 reduces the Navier–Stokes equations further, as indicated by (5) in Eqs. 5.27a and 5.27b. The final
simplified equations are

0= ρgx + μ
∂2u
∂y2

ð1Þ

0= ρgy−
∂p
∂y

ð2Þ

Since ∂u=∂z=0 (assumption 3) and ∂u=∂x=0 (assumption 4), then u is at most a function of y, and ∂2u=∂y2 = d2u=dy2, and from
Eq. 1, then

d2u
dy2

= −
ρgx
μ

= −ρg
sin θ
μ

Integrating,
du
dy

= −ρg
sin θ
μ

y+ c1 ð3Þ

and integrating again,

u= −ρg
sin θ
μ

y2

2
+ c1y+ c2 ð4Þ

The boundary conditions needed to evaluate the constants are the no-slip condition at the solid surface (u=0 at y=0) and the
zero-shear-stress condition at the liquid free surface (du=dy=0 at y= h).

Evaluating Eq. 4 at y=0 gives c2 = 0. From Eq. 3 at y= h,

0 = −ρg
sin θ
μ

h+ c1

or

c1 = ρg
sin θ
μ

h

Substituting into Eq. 4 we obtain the velocity profile

u= −ρg
sin θ
μ

y2

2
+ ρg

sin θ
μ

hy

or

u= ρg
sin θ
μ

hy−
y2

2

� �
uðyÞ

 ���������������������������������������������
The shear stress distribution is (from Eq. 5.25a after setting ∂υ=∂x to zero, or alternatively, for one-dimensional flow,
from Eq. 2.15)

τyx = μ
du
dy

= ρg sin θ ðh−yÞ τyxðyÞ �����������������������������������������
The shear stress in the fluid reaches its maximum value at the wall ðy=0Þ; as we expect, it is zero at the free surface ðy= hÞ. At the
wall the shear stress τyx is positive but the surface normal for the fluid is in the negative y direction; hence the shear force acts in
the negative x direction, and just balances the x component of the body force acting on the fluid. The volume flow rate is

Q=
Z
A
u dA=

Z h

0
u bdy

where b is the surface width in the z direction. Substituting,

Q=
Z h

0

ρg sin θ
μ

hy−
y2

2

� �
b dy= ρg

sin θ b
μ

hy2

2
−
y3

6

	 
h
0
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The Navier–Stokes equations for constant density and viscosity are given in cylindrical coordinates
in Example 5.10. They have also been derived for spherical coordinates [3]. Wewill apply the cylindrical
coordinate form in solving Example 5.10.

In recent years computational fluid dynamics (CFD) computer applications (such as Fluent [6] and
STAR-CD [7]) have been developed for analyzing the Navier–Stokes equations for more complicated,
real-world problems. Although a detailed treatment of the topic is beyond the scope of this text, we shall
have a brief introduction to CFD in the next section.

For the case of frictionless flow ðμ=0Þ the equations of motion (Eqs. 5.26 or Eqs. 5.27) reduce to
Euler’s equation,

ρ
DV
!

Dt
= ρg!−∇p

We shall consider the case of frictionless flow in Chapter 6.

Q=
ρg sin θ b

μ

h3

3

Q ����������������������������������������� ð5Þ

The average flow velocity is V =Q=A=Q=bh. Thus

V =
Q
bh

=
ρg sin θ

μ

h2

3
V ��������������������������������������

Solving for film thickness gives

h=
3μQ

ρg sin θ b

	 
1=3
h ����������������������������������������
ð6Þ

A film of water h=1mm thick on a plane b=1m wide, inclined at θ=15�,
would carry

Q =999
kg
m3 × 9:81

m
s2

× sin ð15�Þ× 1m×
m � s

1:00× 10−3 kg

×
ð0:001Þ3 m3

3
× 1000

L
m3

Q =0:846 L=s Q �����������������������������������������

Notes:
• This problem illustrates how the full
Navier–Stokes equations (Eqs. 5.27a-
5.27c) can sometimes be reduced to a set
of solvable equations (Eqs. 1 and 2 in this
problem).

• After integration of the simplified equa-
tions, boundary (or initial) conditions are
used to complete the solution.

• Once the velocity field is obtained, other
useful quantities (e.g., shear stress, vol-
ume flow rate) can be found.

• Equations 5 and 6 show that even for
fairly simple problems the results can be
quite complicated: The depth of the flow
depends in a nonlinear way on flow
rate ðh/Q1=3Þ.

Example 5.10 ANALYSIS OF LAMINAR VISCOMETRIC FLOW BETWEEN COAXIAL CYLINDERS

A viscous liquid fills the annular gap between vertical concentric cylinders. The inner cylinder is stationary, and the outer cylinder
rotates at constant speed. The flow is laminar. Simplify the continuity, Navier–Stokes, and tangential shear stress equations to
model this flow field. Obtain expressions for the liquid velocity profile and the shear stress distribution. Compare the shear stress
at the surface of the inner cylinder with that computed from a planar approximation obtained by “unwrapping” the annulus into a
plane and assuming a linear velocity profile across the gap. Determine the ratio of cylinder radii for which the planar approx-
imation predicts the correct shear stress at the surface of the inner cylinder within 1 percent.

Given: Laminar viscometric flow of liquid in annular gap between vertical concentric cylinders. The inner cylinder is station-
ary, and the outer cylinder rotates at constant speed.
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Find: (a) Continuity and Navier–Stokes equations simplified to model this flow field.
(b) Velocity profile in the annular gap.
(c) Shear stress distribution in the annular gap.
(d) Shear stress at the surface of the inner cylinder.
(e) Comparison with “planar” approximation for constant shear stress in the narrow

gap between cylinders.
(f) Ratio of cylinder radii for which the planar approximation predicts shear stress

within 1 percent of the correct value.

Solution: The geometry and coordinate system used to model the flow field are shown.
(The z coordinate is directed vertically upward; as a consequence, gr = gθ =0 and gz = −g.)

The continuity, Navier–Stokes, and tangential shear stress equations written in cylindrical
coordinates for incompressible flow with constant viscosity are

1
r
∂
∂r

rυrð Þþ1
r

∂
∂θ��

�!

4

υθð Þþ ∂
∂z

υzð Þ

��
�!

3

¼ 0 ð1Þ

r component:

ρ
∂υr
∂t��

�!

1

þυr ∂υr∂r��
�!

5

þυθ
r
∂υr
∂θ��

�!
4

−
υ2θ
r
þυz

∂υr
∂z��

�!

3
0
@

1
A

¼ ρgr

��
�!

0

−
∂p
∂r
þμ

∂
∂r

1
r

∂
∂r

r υr

��
�!

52
4

3
5

0
@

1
Aþ 1

r2
∂2υr
∂θ2��

�!

4

−
2
r2
∂υθ
∂θ��

�!

4

þ∂
2υr
∂z2��

�!

3
8><
>:

9>=
>;

θ component:

ρ
∂υθ
∂t��

�!

1

þ υr

��
�!

5
∂υθ
∂r
þυθ

r
∂υθ
∂θ��

�!

4

þυrυθ
r��

�!

5

þυz ∂υθ∂z��
�!

3
0
@

1
A

¼ ρgθ

��
�!

0

−
1
r
∂p
∂θ��

�!

4

þμ ∂
∂r

1
r
∂
∂r

rυθ½ �
� �

þ 1
r2
∂2υθ
∂θ2��

�!

4

þ 2
r2
∂υθ
∂θ��

�!
4

þ ∂2υθ
∂z2��

�!

3
8><
>:

9>=
>;

z component:

ρ
∂υz
∂t��

�!

1

þ υr

��
�!

5
∂υz
∂r
þυθ

r
∂υz
∂θ��

�!

4

þ υz
∂υz
∂z��

�!

3
0
@

1
A¼ ρgz−

∂p
∂z
þμ

1
r
∂
∂r

r
∂υz
∂r��

�!

3
0
@

1
Aþ 1

r2
∂2υz
∂θ2��

�!
3

þ ∂2υz
∂z2��

�!
3

8><
>:

9>=
>;

τrθ ¼ μ r
∂
∂r

υθ
r

� �
þ1
r
∂υr
∂θ��

�!

4
2
4

3
5

The terms canceled to simplify the basic equations are keyed by number to the assumptions listed below. The assumptions are
discussed in the order in which they are applied to simplify the equations.

Assumptions:

1 Steady flow; angular speed of outer cylinder is constant.

2 Incompressible flow; ρ= constant.

3 No flow or variation of properties in the z direction; υz =0 and ∂=∂z=0.

4 Circumferentially symmetric flow, so properties do not vary with θ, so ∂=∂θ=0.

Assumption 1 eliminates time variations in fluid properties.
Assumption 2 eliminates space variations in density.
Assumption 3 causes all terms in the z component of the Navier–Stokes equation to cancel, except for the hydrostatic pressure

distribution.

r

z

R1

R2ω

θ
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After assumptions 3 and 4 are applied, the continuity equation reduces to

1
r

∂
∂r
ðrυrÞ=0

Because ∂=∂θ=0 and ∂=∂z=0 by assumptions 3 and 4, then
∂
∂r
! d

dr
, so integrating gives

rυr = constant

Since υr is zero at the solid surface of each cylinder, then υr must be zero everywhere.
The fact that υr =0 reduces the Navier–Stokes equations further. The r- and θ-component equations reduce to

−ρ
υ2θ
r
= −

∂p
∂r

0= μ
∂
∂r

1
r

∂
∂r
½rυθ�

� �� �
But since ∂=∂θ=0 and ∂=∂z=0 by assumptions 3 and 4, then υθ is a function of radius only, and

d
dr

1
r

d
dr
½rυθ�

� �
=0

Integrating once,

1
r

d
dr
½rυθ�= c1

or
d
dr
½rυθ�= c1r

Integrating again,

rυθ = c1
r2

2
+ c2 or υθ = c1

r
2
+ c2

1
r

Two boundary conditions are needed to evaluate constants c1 and c2. The boundary conditions are

υθ =ωR2 at r=R2 and
υθ =0 at r=R1

Substituting

ωR2 = c1
R2

2
+ c2

1
R2

0= c1
R1

2
+ c2

1
R1

After considerable algebra

c1 =
2ω

1−
R1

R2

� �2 and c2 =
−ωR2

1

1−
R1

R2

� �2

Substituting into the expression for υθ,

υθ =
ωr

1−
R1

R2

� �2 −
ωR2

1=r

1−
R1

R2

� �2 =
ωR1

1−
R1

R2

� �2

r
R1

−
R1

r

	 

υθðrÞ ���������������������������������������
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The shear stress distribution, using assumption 4, is:

τrθ = μr
d
dr

υθ
r

� �
= μr

d
dr

ωR1

1−
R1

R2

� �2

1
R1

−
R1

r2

	 
8>>><
>>>:

9>>>=
>>>;= μr

ωR1

1−
R1

R2

� �2 ð−2Þ −
R1

r3

� �

τrθ = μ
2ωR2

1

1−
R1

R2

� �2

1
r2

τrθ ���������������������������������������������������������������
At the surface of the inner cylinder, r=R1, so

τsurface = μ
2ω

1−
R1

R2

� �2

τsurface ��������������������������������������������������������������
For a “planar” gap

τplanar = μ
Δυ

Δy
= μ

ω R2

R2−R1

or

τplanar = μ
ω

1−
R1

R2

τplanar �������������������������������������
Factoring the denominator of the exact expression for shear stress at the surface gives

τsurface = μ
2ω

1−
R1

R2

� �
1+

R1

R2

� � = μ
ω

1−
R1

R2

� 2

1+
R1

R2

Thus

τsurface
τplanar

=
2

1+
R1

R2

For 1 percent accuracy,

1:01=
2

1+
R1

R2

or

R1

R2
=

1
1:01
ð2−1:01Þ=0:980

R1

R2 ������������������������������
The accuracy criterion is met when the gap width is less than 2 percent of the
cylinder radius.

x

y

R1R2

R2ω

Notes:
• This problem illustrates how the full
Navier–Stokes equations in cylindrical
coordinates (Eqs. 1 to 5) can sometimes
be reduced to a set of solvable equations.

• As in Example 5.9, after integration of
the simplified equations, boundary (or
initial) conditions are used to complete
the solution.

• Once the velocity field is obtained, other
useful quantities (in this problem, shear
stress) can be found.

The Excelworkbook for this problem
compares the viscometer and linear

velocity profiles. It also allows one to derive
the appropriate value of the viscometer
outer radius to meet a prescribed accuracy
of the planar approximation. We will dis-
cuss the concentric cylinder–infinite par-
allel plates approximation again in
Chapter 8.

1755.4 Momentum Equation



*5.5 Introduction to Computational Fluid Dynamics
In this section we will discuss in a very basic manner the ideas behind computational fluid dynamics
(CFD). We will first review some very basic ideas in numerically solving an ordinary and a partial dif-
ferential equation using a spreadsheet such as Excel, with a couple of examples. After studying these, the
reader will be able to numerically solve a range of simple CFD problems. Then, for those with further
interest in CFD, we will review in more detail some concepts behind numerical methods, particularly
CFD; this review will highlight some of the advantages and pitfalls of CFD.We will apply some of these
concepts to a simple 1D model, but these concepts are so fundamental that they are applicable to almost
any CFD calculation. As we apply the CFD solution procedure to the model, we’ll comment on the
extension to the general case. The goal is to enable the reader to apply the CFD solution procedure
to simple nonlinear equations.

The Need for CFD

As discussed in Section 5.4, the equations describing fluid flow can be a bit intimidating. For example,
even though we may limit ourselves to incompressible flows for which the viscosity is constant, we still
end up with the following equations:

∂u
∂x

+
∂υ
∂y

+
∂w
∂z

=0 ð5:1cÞ

ρ
∂u
∂t

+ u
∂u
∂x

+ υ
∂u
∂y

+w
∂u
∂z

� �
= ρgx−

∂p
∂x

+ μ
∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

� �
ð5:27aÞ

ρ
∂υ
∂t

+ u
∂υ
∂x

+ υ
∂υ
∂y

+w
∂υ
∂z

� �
= ρgy−

∂p
∂y

+ μ
∂2υ
∂x2

+
∂2υ
∂y2

+
∂2υ
∂z2

� �
ð5:27bÞ

ρ
∂w
∂t

+ u
∂w
∂x

+ υ
∂w
∂y

+w
∂w
∂z

� �
= ρgz−

∂p
∂z

+ μ
∂2w
∂x2

+
∂2w
∂y2

+
∂2w
∂z2

� �
ð5:27cÞ

Equation 5.1c is the continuity equation (mass conservation) and Eqs. 5.27 are the Navier–Stokes equa-
tions (momentum), expressed in Cartesian coordinates. In principle, we can solve these equations for the
velocity field V

!
= îu+ ĵυ+ k̂w and pressure field p, given sufficient initial and boundary conditions. Note

that in general, u,υ,w, and p all depend on x, y, z, and t. In practice, there is no general analytic solution to
these equations, for the combined effect of a number of reasons (none of which is insurmountable by
itself ):

1 They are coupled. The unknowns, u,υ,w, and p, appear in all the equations (p is not in Eq. 5.1c) and
we cannot manipulate the equations to end up with a single equation for any one of the unknowns.
Hence we must solve for all unknowns simultaneously.

2 They are nonlinear. For example, in Eq. 5.27a, the convective acceleration term,
u ∂u=∂x+ υ ∂u=∂y+w ∂u=∂z, has products of u with itself as well as with υ and w. The consequence
of this is that we cannot take one solution to the equations and combine it with a second solution to
obtain a third solution. We will see in Chapter 6 that if we can limit ourselves to frictionless flow, we
can derive linear equations, which will allow us to do this combining procedure (you may wish to look
at Table 6.3 for some beautiful examples of this).

3 They are second-order partial differential equations. For example, in Eq. 5.27a, the viscous term,
μð∂2u=∂x2 + ∂2u=∂y2 + ∂2u=∂z2Þ, is second-order in u. These are obviously of a different order of
complexity (no pun intended) than, say, a first-order ordinary differential equation.

These difficulties have led engineers, scientists, and mathematicians to adopt several approaches to the
solution of fluid mechanics problems.

∗This section may be omitted without loss of continuity in the text material.
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For relatively simple physical geometries and boundary or initial conditions, the equations can often
be reduced to a solvable form. We saw two examples of this in Examples 5.9 and 5.10 for cylindrical
forms of the equations.

If we can neglect the viscous terms, the resulting incompressible, inviscid flow can often be suc-
cessfully analyzed. This is the entire topic of Chapter 6.

Of course, most incompressible flows of interest do not have simple geometries and are not inviscid;
for these, we are stuck with Eqs. 5.1c and 5.27. The only option remaining is to use numerical methods to
analyze problems. It is possible to obtain approximate computer-based solutions to the equations for a
variety of engineering problems. This is the main subject matter of CFD.

Applications of CFD

CFD is employed in a variety of applications and is now widely used in various industries. To illustrate
the industrial applications of CFD, we present below some examples developed using FLUENT, a CFD
software package from ANSYS, Inc. CFD is used to study the flow field around vehicles including cars,
trucks, airplanes, helicopters, and ships. Figure 5.10 shows the paths taken by selected fluid particles
around a Formula 1 car. By studying such pathlines and other flow attributes, engineers gain insights
into how to design the car so as to reduce drag and enhance performance. The flow through a catalytic
converter, a device used to clean automotive exhaust gases so that we can all breathe easier, is shown in
Figure 5.11. This image shows path lines colored by velocity magnitude. CFD helps engineers develop
more effective catalytic converters by allowing them to study how different chemical species mix and
react in the device. Figure 5.12 presents contours of static pressure in a backward-inclined centrifugal fan
used in ventilation applications. Fan performance characteristics obtained from the CFD simulations
compared well with results from physical tests.

CFD is attractive to industry since it is more cost-effective than physical testing. However, we must
note that complex flow simulations are challenging and error-prone, and it takes a lot of engineering
expertise to obtain realistic solutions.
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Fig. 5.10 Pathlines around a Formula 1 car.
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Fig. 5.11 Flow through a catalytic converter.
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Fig. 5.12 Static pressure contours for
flow through a centrifugal fan.

Video: Flow
Past a Cylinder
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Some Basic CFD/Numerical Methods Using a Spreadsheet

Before discussing CFD in a little more detail, we can gain insight into numerical methods to solve some
simple problems in fluid mechanics by using the spreadsheet. These methods will show how the student
may perform elementary CFD using the PC. First, we consider solving the simplest form of a differential
equation: a first-order ordinary differential equation:

dy
dx

= f ðx,yÞ yðx0Þ= y0 ð5:28Þ

where f ðx,yÞ is a given function. We realize that graphically the derivative dy=dx is the slope of the (as
yet unknown) solution curve yðxÞ. If we are at some point ðxn,ynÞ on the curve, we can follow the tangent
at that point, as an approximation to actually moving along the curve itself, to find a new value for
y,yn+1, corresponding to a new x, xn+1, as shown in Fig. 5.13. We have

dy
dx

=
yn+1−yn
xn+1−xn

If we choose a step size h= xn+1−xn, then the above equation can be combined with the differential
equation, Eq. 5.28, to give

dy
dx

=
yn+1−yn

h
= f ðxn,ynÞ

or
yn+1 = yn + hf ðxn,ynÞ ð5:29aÞ

with

xn+1 = xn + h ð5:29bÞ

Equations 5.29 are the basic concept behind the famous Euler method for solving a first-order ODE:
A differential is replaced with a finite difference. (As we’ll see in the next subsection, equations similar
to Eqs. 5.29 could also have been derived more formally as the result of a truncated Taylor series.) In
these equations, yn+1 now represents our best effort to find the next point on the solution curve. From
Fig. 5.13, we see that yn+1 is not on the solution curve but close to it; if we make the triangle much
smaller, by making the step size h smaller, then yn+1 will be even closer to the desired solution. We
can repeatedly use the two Euler iteration equations to start at ðx0,y0Þ and obtain ðx1,y1Þ, then
ðx2,y2Þ, ðx3,y3Þ, and so on. We don’t end up with an equation for the solution, but with a set of numbers;
hence it is a numerical rather than an analytic method. This is the Euler method approach.

This method is very easy to set up, making it an attractive approach, but it is not very accurate:
Following the tangent to a curve at each point, in an attempt to follow the curve, is pretty crude! If
we make the step size h smaller, the accuracy of the method will generally increase, but obviously
we then need more steps to achieve the solution. It turns out that, if we use too many steps (if h is
extremely small), the accuracy of the results can actually decrease because, although each small step
is very accurate, we will now need so many of them that round-off errors can build up. As with any
numerical method, we are not guaranteed to get a solution or one that is very accurate! The Euler method
is the simplest but least accurate numerical method for solving a first-order ODE; there are a number

xxn xn+1

y (x)

ynh

yn+1

Fig. 5.13 The Euler method.
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of more sophisticated ones available, as discussed in any good numerical methods text [8, 9]. We’ll
illustrate the use of the Euler method in Example 5.11.

Another basic application of a numerical method to a fluid mechanics problem is when we have two-
dimensional, steady, incompressible, inviscid flow. These seem like a severe set of restrictions on the
flow, but analysis of flows with these assumptions leads to very good predictions for real flows, for
example, for the lift on a wing section. This is the topic of Chapter 6, but for now we simply state that
under many circumstances such flows can be modeled with the Laplace equation,

∂2ψ
∂x2

+
∂2ψ
∂y2

= 0

where ψ is the stream function. We leave out the steps here (they consist of approximating each differ-
ential with a Taylor series), but a numerical approximation of this equation is

ψ i+1, j +ψ i−1, j

h2
+
ψ i, j+1 +ψ i, j−1

h2
−4

ψ i, j

h2
= 0

Here h is the step size in the x or y direction, and ψ i, j is the value of ψ at the ith value of x and jth value of y
(see Fig. 5.14). Rearranging and simplifying,

ψ i, j =
1
4

ψ i+1, j +ψ i−1, j +ψ i, j+1 +ψ i, j−1

� � ð5:30Þ
This equation indicates that the value of the stream function ψ is simply the average of its four neighbors!
To use this equation, we need to specify the values of the stream function at all boundaries; Eq. 5.30 then
allows computation of interior values.

Equation 5.30 is ideal for solving using a spreadsheet such asExcel. Examples 5.11 and 5.12 provide
guidance in using the PC to solve some simple CFD problems.

Example 5.11 THE EULER METHOD SOLUTION FOR DRAINING A TANK

A tank contains water at an initial depth y0 = 1 m. The tank diameter is D=250 mm. A hole of diameter d=2mm appears at the
bottom of the tank. A reasonable model for the water level over time is

dy
dt

= −
d
D

� �2 ffiffiffiffiffiffiffi
2gy

p
yð0Þ= y0

Using 11-point and 21-point Euler methods, estimate the water depth after t=100 min, and compute
the errors compared to the exact solution

yexactðtÞ= ffiffiffiffiffi
y0
p

−
d
D

� �2 ffiffiffi
g
2

r
t

" #2
Plot the Euler and exact results.

y(t)

x

y

hh

h

h

i+1,ji–1,j

i,j+1

i,j–1

Fig. 5.14 Scheme for discretizing the Laplace equation.
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Given: Water draining from a tank.

Find: Water depth after 100 min; plot of depth versus time; accuracy of results.

Solution: Use the Euler equations, Eq. 5.29.

Governing equations: yn+1 = yn + hf ðtn,ynÞ tn+1 = tn + h

with

f ðtn,ynÞ= −
d
D

� �2 ffiffiffiffiffiffiffiffiffi
2gyn
p

y0 = 1

(Note that in using Eqs. 5.29 we use t instead of x.)
This is convenient for solving using a spreadsheet such as Excel, as shown below. We obtain the following results:

Depth after 100 min= −0:0021 m ðEuler 11 pointÞ
=0:0102 m ðEuler 21 pointÞ
=0:0224 m ðExactÞ yð100 minÞ

 ���������������������������������������
Error after 100 min= 110% ðEuler 11 pointÞ

=54% ðEuler 21 pointÞ Error �������������������������������������������

This problem shows a simple application
of the Euler method. Note that although
the errors after 100 min are large for
both Euler solutions, their plots are
reasonably close to the exact solution.

The Excel workbook for this
problem can be modified for

solving a variety of fluids problems
that involve first order ODEs.
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Example 5.12 NUMERICAL MODELING OF FLOW OVER A CORNER

Consider a two-dimensional steady, incompressible, inviscid flow in a channel in which the area is reduced by half. Plot the
streamlines.

Given: Flow in a channel in which the area is reduced by half.

Find: Streamline plot.

Solution: Use the numerical approximation of the Laplace equation.

Governing equation: ψ i, j =
1
4 ψ i+1, j +ψ i−1, j +ψ i, j+1 +ψ i, j−1

� �
This is again convenient for solving using a spreadsheet such as Excel. Each cell in the spreadsheet represents a location in phys-
ical space, and the value in the cell represents the value of the stream function ψ at that location. Referring to the figure, we assign
values of zero to a range of cells that represent the bottom of the channel. We then assign a value of 10 to a second range of cells to
represent the top of the channel. (The choice of 10 is arbitrary for plotting purposes; all it determines is the speed values, not the
streamline shapes.) Next, we assign a uniform distribution of values at the left and right ends, to generate uniform flow at those
locations. All inserted values are shown in bold in the figure.
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The Strategy of CFD

We now turn to a more detailed description of some of the concepts behind CFD. Broadly, the strategy
of CFD is to replace the continuous problem domain with a discrete domain using a “grid” or “mesh.”
In the continuous domain, each flow variable is defined at every point in the domain. For instance, the
pressure p in the continuous 1D domain shown in Fig. 5.15 would be given as

p= pðxÞ, 0≤ x≤ 1

In the discrete domain, each flow variable is defined only at the grid points. So, in the discrete domain in
Fig. 5.15, the pressure would be defined only at the N grid points,

pi = pðxiÞ, i=1,2,…,N

We can extend this continuous-to-discrete conversion to two or three dimensions. Figure 5.16 shows a
2D grid used for solving the flow over an airfoil. The grid points are the locations where the grid lines
cross. In a CFD solution, we would directly solve for the relevant flow variables only at the grid points.
The values at other locations are determined by interpolating the values at the grid points. The governing
partial differential equations and boundary conditions are defined in terms of the continuous variables p,
V
!
, and so on. We can approximate these in the discrete domain in terms of the discrete variables pi, V

!
i,

and so on. Using this procedure, we end up with a discrete system that consists of a large set of coupled,
algebraic equations in the discrete variables. Setting up the discrete system and solving it (which is a
matrix inversion problem) involves a very large number of repetitive calculations, a task made possible
only with the advent of modern computers.

We can now enter formulas in the “interior” cells to compute the stream function. Instead of the above governing equation, it is
more intuitive to rephrase it as

ψ =
1
4
ðψA +ψR +ψB +ψLÞ

where ψA,ψR,ψB, and ψL represent the values stored in the cells Above, to the Right, Below, and to the Left of the current cell.
This formula is easy to enter— it is shown in cell C5 in the figure. Then it is copied into all interior cells, with one caveat: The
spreadsheet will indicate an error of circular calculation. This is a warning that you appear to be making an error; for example, cell
C5 needs cell C6 to compute, but cell C6 needs cell C5! Recall that each interior cell value is the average of its neighbors. Circular
math is usually not what we want, but in this case we do wish it to occur. We need to switch on iteration in the spreadsheet. In the
case of Excel, it's under menu item Tools/Options/Calculation. Finally, we need to repeatedly iterate (in Excel, press the F9 key
several times) until we have convergence; the values in the interior cells will
repeatedly update until the variations in values is zero or trivial. After all this,
the results can be plotted (using a surface plot), as shown.

We can see that the streamlines look much as we would anticipate, although in
reality therewouldprobablybe flowseparationat thecorner.Notealsoamathemat-
ical artifact in that there is slight oscillations of streamlines as they flow up the ver-
tical surface; using a finer grid (by using many more cells) would reduce this.

This problem shows a simple numerical
modeling of the Laplace equation.

The Excel workbook for this
problem can be modified for

solving a variety of fluids problems that
involve the Laplace equation.

Continuous Domain
0 ≤ x ≤ 1

Discrete Domain
x = x1, x2, ... xN

x1 xi xNx = 0 x = 1

Grid
points

Fig. 5.15 Continuous and discrete domains for a one-dimensional problem.

182 Chapter 5 Introduction to Differential Analysis of Fluid Motion



Discretization Using the Finite-Difference Method

To keep the details simple, we will illustrate the process of going from the continuous domain to the
discrete domain by applying it to the following simple 1D equation:

du
dx

+ um =0; 0≤ x≤ 1; uð0Þ=1 ð5:31Þ

We’ll first consider the case where m=1, which is the case when the equation is linear. We’ll later con-
sider the nonlinear casem=2. Keep in mind that the above problem is an initial-value problem, while the
numerical solution procedure below is more suitable for boundary-value problems. Most CFD problems
are boundary-value problems.

We’ll derive a discrete representation of Eq. 5.31 with m=1 on the rudimentary grid shown in
Fig. 5.17. This grid has four equally spaced grid points, with Δx= 1

3 being the spacing between succes-
sive points. Since the governing equation is valid at any grid point, we have

du
dx

� �
i
+ ui =0 ð5:32Þ

where the subscript i represents the value at grid point xi. In order to get an expression for ðdu=dxÞi in
terms of u values at the grid points, we expand ui−1 in a Taylor series:

ui−1 = ui−
du
dx

� �
i
Δx+

d2u
dx2

� �
i

Δx2

2
−

d3u
dx3

� �
i

Δx3

6
+ � � �

Rearranging this gives

du
dx

� �
i
=
ui−ui−1

Δx
+

d2u
dx2

� �
i

Δx
2

−
d3u
dx3

� �
i

Δx2

6
+ � � � ð5:33Þ

x1 = 0 x4 = 1

Δx =

x2 =
1___
3

1___
3

x3 =
2___
3

Fig. 5.17 A simple 1D grid with four grid points.

Fig. 5.16 Example of a grid used to solve for the flow around an airfoil.
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We’ll neglect the second-, third-, and higher-order terms on the right. Thus, the first term on the right is
the finite-difference representation for ðdu=dxÞi we are seeking. The error in ðdu=dxÞi due to the
neglected terms in the Taylor series is called the truncation error. In general, the truncation error is
the difference between the differential equation and its finite-difference representation. The leading-
order term in the truncation error in Eq. 5.33 is proportional to Δx. Equation 5.33 is rewritten as

du
dx

� �
i
=
ui−ui−1

Δx
+OðΔxÞ ð5:34Þ

where the last term is pronounced “order of delta x.” The notation OðΔxÞ has a precise mathematical
meaning, which we will not go into here. Instead, in the interest of brevity, we’ll return to it briefly later
when we discuss the topic of grid convergence. Since the truncation error is proportional to the first
power of Δx, this discrete representation is termed first-order accurate.

Using Eq. 5.34 in Eq. 5.32, we get the following discrete representation for our model equation:

ui−ui−1

Δx
+ ui =0 ð5:35Þ

Note that we have gone from a differential equation to an algebraic equation! Though we have not writ-
ten it out explicitly, don’t forget that the error in this representation is OðΔxÞ.

This method of deriving the discrete equation using Taylor’s series expansions is called the finite-
difference method. Keep in mind that most industrial CFD software packages use the finite-volume or
finite-element discretization methods since they are better suited to modeling flow past complex geome-
tries. We will stick with the finite-difference method in this text since it is the easiest to understand; the
concepts discussed also apply to the other discretization methods.

Assembly of Discrete System and Application of Boundary Conditions

Rearranging the discrete equation, Eq. 5.35, we get

−ui−1 + ð1+ΔxÞui =0

Applying this equation at grid points i=2,3,4 for the 1D grid in Fig. 5.17 gives

−u1 + ð1+ΔxÞu2 = 0 ð5:36aÞ
−u2 + ð1+ΔxÞu3 = 0 ð5:36bÞ
−u3 + ð1+ΔxÞu4 = 0 ð5:36cÞ

The discrete equation cannot be applied at the left boundary ði=1Þ since ui−1 = u0 is not defined.
Instead, we use the boundary condition to get

u1 = 1 ð5:36dÞ
Equations 5.36 form a system of four simultaneous algebraic equations in the four unknowns u1,u2,u3,
and u4. It’s convenient to write this system in matrix form:

1 0 0 0
−1 1+Δx 0 0
0 −1 1+Δx 0
0 0 −1 1+Δx

2
664

3
775

u1
u2
u3
u4

2
664

3
775=

1
0
0
0

2
664
3
775 ð5:37Þ

In a general situation (e.g., 2D or 3D domains), we would apply the discrete equations to the grid points
in the interior of the domain. For grid points at or near the boundary, we would apply a combination of
the discrete equations and boundary conditions. In the end, one would obtain a system of simultaneous
algebraic equations similar to Eqs. 5.36 and a matrix equation similar to Eq. 5.37, with the number of
equations being equal to the number of independent discrete variables. The process is essentially the
same as for the model equation above, with the details obviously being much more complex.
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Solution of Discrete System

The discrete system (Eq. 5.37) for our own simple 1D example can be easily inverted, using any number
of techniques of linear algebra, to obtain the unknowns at the grid points. For Δx= 1

3, the solution is

u1 = 1 u2 =
3
4

u3 =
9
16

u4 =
27
64

The exact solution for Eq. 5.31 with m=1 is easily shown to be

uexact = e−x

Figure 5.18 shows the comparison of the discrete solution obtained on the four-point grid with the exact
solution, using Excel. The error is largest at the right boundary, where it is equal to 14.7 percent. [It also
shows the results using eight points N =8,Δx= 1

7

� �
and sixteen points N =16,Δx= 1

15

� �
, which we dis-

cuss below.]
In a practical CFD application, we would have thousands, even millions, of unknowns in the dis-

crete system; if one were to use, say, a Gaussian elimination procedure to invert the calculations, it would
be extremely time-consuming even with a fast computer. Hence a lot of work has gone into optimizing
the matrix inversion in order to minimize the CPU time and memory required. The matrix to be inverted
is sparse; that is, most of the entries in it are zeros. The nonzero entries are clustered around the diagonal
since the discrete equation at a grid point contains only quantities at the neighboring grid points, as
shown in Eq. 5.37. A CFD code would store only the nonzero values to minimize memory usage. It
would also generally use an iterative procedure to invert the matrix; the longer one iterates, the closer
one gets to the true solution for the matrix inversion. We’ll return to this idea a little later.

Grid Convergence

While developing the finite-difference approximation for the 1D model problem (Eq. 5.37), we saw that
the truncation error in our discrete system is OðΔxÞ. Hence we expect that as the number of grid points is
increased and Δx is reduced, the error in the numerical solution would decrease and the agreement
between the numerical and exact solutions would get better.

Let’s consider the effect of increasing the number of grid points N on the numerical solution of the
1D problem. We’ll consider N =8 and N =16 in addition to the N =4 case solved previously. We repeat
the above assembly and solution steps on each of these additional grids; instead of the 4 × 4 problem of
Eq. 5.37, we end up with an 8 × 8 and a 16× 16 problem, respectively. Figure 5.18 compares the results
obtained (using Excel) on the three grids with the exact solution. As expected, the numerical error
decreases as the number of grid points is increased (but this only goes so far—if we make Δx too
small, we start to get round-off errors accumulating to make the results get worse!). When the numerical
solutions obtained on different grids agree to within a level of tolerance specified by the user, they
are referred to as “grid-converged” solutions. It is very important to investigate the effect of grid

0.9

0.8

1

0.7

0.6

0.5

0.4

0.3
0.2 0.4 0.6 0.8 10

N = 4
N = 8
N = 16
Exact solution

x

u

Fig. 5.18 Comparison of the numerical solution obtained on three different grids with the exact solution.
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resolution on the solution in all CFD problems. We should never trust a CFD solution unless we
are convinced that the solution is grid-converged to an acceptance level of tolerance (which will
be problem dependent).

Let ε be some aggregate measure of the error in the numerical solution obtained on a specific grid.
For the numerical solutions in Fig. 5.19, ε is, for instance, estimated as the RMS of the difference
between the numerical and exact solutions:

ε=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i=1
ðui−uiexactÞ2

N

vuuut
It’s reasonable to expect that

ε/Δxn

Since the truncation error is OðΔxÞ for our discretization scheme, we expect n=1 (or more precisely,
n! 1 as Δx! 0). The ε values for the three grids are plotted on a logarithmic scale in Fig. 5.19. The
slope of the least squares fit gives the value of n. For Fig. 5.19, we get n=0:92, which is quite close to 1.
We expect that as the grid is refined further and Δx becomes progressively smaller, the value of n will
approach 1. For a second-order scheme, we would expect n	 2; this means the discretization error will
decrease twice as fast on refining the grid.

Dealing with Nonlinearity

The Navier–Stokes equations (Eqs. 5.27) contain nonlinear convection terms; for example, in Eq. 5.27a,
the convective acceleration term, u∂u=∂x+ υ∂u=∂y+w∂u=∂z, has products of uwith itself as well as with
υ and w. Phenomena such as turbulence and chemical reaction introduce additional nonlinearities. The
highly nonlinear nature of the governing equations for a fluid makes it challenging to obtain accurate
numerical solutions for complex flows of practical interest.

We will demonstrate the effect of nonlinearity by settingm=2 in our simple 1D example, Eq. 5.31:

du
dx

+ u2 = 0; 0≤ x≤ 1; uð0Þ=1

A first-order finite-difference approximation to this equation, analogous to that in Eq. 5.35 for m=1, is

ui−ui−1

Δx
+ u2i =0 ð5:38Þ

This is a nonlinear algebraic equation with the u2i term being the source of the nonlinearity.

0.1

0.01

0.001
0.1 10.01

Actual error
Least squares fit

Δx

Fig. 5.19 The variation of the aggregate error ε with Δx.
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The strategy that is adopted to deal with nonlinearity is to linearize the equations around a guess
value of the solution and to iterate until the guess agrees with the solution to a specified tolerance
level. We’ll illustrate this on the above example. Let ugi be the guess for ui. Define

Δui = ui−ugi
Rearranging and squaring this equation gives

u2i = u2gi +2ugiΔui + ðΔuiÞ2

Assuming that Δui� ugi , we can neglect the ðΔuiÞ2 term to get

u2i ≈u2gi +2ugiΔui = u2gi +2ugiðui−ugiÞ
Thus

u2i ≈2ugiui−u2gi ð5:39Þ
The finite-difference approximation, Eq. 5.38, after linearization in ui, becomes

ui−ui−1

Δx
+2ugiui−u2gi =0 ð5:40Þ

Since the error due to linearization is OðΔu2Þ, it tends to zero as ug! u.
In order to calculate the finite-difference approximation, Eq. 5.40, we need guess values ug at the

grid points. We start with an initial guess value in the first iteration. For each subsequent iteration, the u
value obtained in the previous iteration is used as the guess value. We continue the iterations until they
converge. We’ll defer the discussion on how to evaluate convergence until a little later.

This is essentially the process used in CFD codes to linearize the nonlinear terms in the conservation
equations, with the details varying depending on the code. The important points to remember are that the
linearization is performed about a guess and that it is necessary to iterate through successive approxima-
tions until the iterations converge.

Direct and Iterative Solvers

We saw that we need to perform iterations to deal with the nonlinear terms in the governing equations.
We next discuss another factor that makes it necessary to carry out iterations in practical CFD problems.

As an exercise, you can verify that the discrete equation system resulting from the finite-difference
approximation of Eq. 5.40, on our four-point grid, is

1 0 0 0
−1 1+ 2Δxug2 0 0
0 −1 1+ 2Δxug3 0
0 0 −1 1+ 2Δxug4

2
664

3
775

u1
u2
u3
u4

2
664

3
775=

1
Δxu2g2
Δxu2g3
Δxu2g4

2
6664

3
7775 ð5:41Þ

In a practical problem, one would usually have thousands to millions of grid points or cells so that each
dimension of the above matrix would be of the order of a million (with most of the elements being zeros).
Inverting such a matrix directly would take a prohibitively large amount of memory, so instead the
matrix is inverted using an iterative scheme as discussed below.

Rearrange the finite-difference approximation, Eq. 5.40, at grid point i so that ui is expressed in
terms of the values at the neighboring grid points and the guess values:

ui =
ui−1 +Δx u2gi
1+ 2Δx ugi

If a neighboring value at the current iteration level is not available, we use the guess value for it. Let’s say
that we sweep from right to left on our grid; that is, we update u4, then u3, and finally u2 in each iteration.
In any iteration, ui−1 is not available while updating ui and so we use the guess value ugi−1 for it instead:

ui =
ugi−1 +Δx u2gi
1+ 2Δx ugi

ð5:42Þ
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Since we are using the guess values at neighboring points, we are effectively obtaining only an approx-
imate solution for the matrix inversion in Eq. 5.41 during each iteration, but in the process we have
greatly reduced the memory required for the inversion. This trade-off is a good strategy since it doesn’t
make sense to expend a great deal of resources to do an exact matrix inversion when the matrix elements
depend on guess values that are continuously being refined. We have in effect combined the iteration
to handle nonlinear terms with the iteration for matrix inversion into a single iteration process. Most
importantly, as the iterations converge and ug! u, the approximate solution for the matrix inversion
tends towards the exact solution for the inversion, since the error introduced by using ug instead of u
in Eq. 5.42 also tends to zero. We arrive at the solution without explicitly forming the matrix system
(Eq. 5.41), which greatly simplifies the computer implementation.

Thus, iteration serves two purposes:

1 It allows for efficient matrix inversion with greatly reduced memory requirements.

2 It enables us to solve nonlinear equations.

In steady problems, a common and effective strategy used in CFD codes is to solve the unsteady form of
the governing equations and “march” the solution in time until the solution converges to a steady value.
In this case, each time step is effectively an iteration, with the guess value at any time level being given
by the solution at the previous time level.

Iterative Convergence

Recall that as ug! u, the linearization and matrix inversion errors tend to zero. Hence we continue the
iteration process until some selected measure of the difference between ug and u, referred to as the resid-
ual, is “small enough.”We could, for instance, define the residual R as the RMS value of the difference
between u and ug on the grid:

R≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i=1
ðui−ugiÞ2

N

vuuut
It’s useful to scale this residual with the average value of u in the domain. Scaling ensures that the resid-
ual is a relative rather than an absolute measure. Scaling the above residual by dividing by the average
value of u gives

R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i=1
ðui−ugiÞ2

N

vuuut
0
BBBB@

1
CCCCA NPN

i=1
ui

0
BBB@

1
CCCA=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
PN
i=1
ðui−ugiÞ2

s
PN
i=1

ui

ð5:43Þ

In our nonlinear 1D example, we’ll take the initial guess at all grid points to be equal to the value at the
left boundary, that is, uð1Þg =1 (where (1) signifies the first iteration). In each iteration, we update ug,
sweep from right to left on the grid updating, in turn, u4, u3, and u2 using Eq. 5.42, and calculate
the residual using Eq. 5.43. We’ll terminate the iterations when the residual falls below 10−9 (this is
referred to as the convergence criterion). The variation of the residual with iterations is shown in
Fig. 5.20. Note that a logarithmic scale is used for the ordinate. The iterative process converges to a
level smaller than 10−9 in only six iterations. In more complex problems, many more iterations would
be necessary for achieving convergence.

The solution after two, four, and six iterations and the exact solution are shown in Fig. 5.21. It can
easily be verified that the exact solution is given by

uexact =
1

x+1

The solutions for four and six iterations are indistinguishable on the graph. This is another indication that
the solution has converged. The converged solution doesn’t agree well with the exact solution because
we are using a coarse grid for which the truncation error is relatively large (we will repeat this problem
with finer grids as problems at the end of the chapter). The iterative convergence error, which is of order
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10−9, is swamped by the truncation error, which is of order 10−1. So driving the residual down to 10−9

when the truncation error is of order 10−1 is obviously a waste of computing resources. In an efficient
calculation, both errors would be set at comparable levels, and less than a tolerance level that was chosen
by the user. The agreement between the numerical and exact solutions should get much better on refining
the grid, as was the linear case (for m=1). Different CFD codes use slightly different definitions for the
residual. You should always read the documentation from the application to understand how the residual
is calculated.

Concluding Remarks

In this section we have introduced some simple ways of using a spreadsheet for the numerical solution of
two types of fluid mechanics problems. Examples 5.11 and 5.12 show how certain 1D and 2D flows may
be computed. We then studied some concepts in more detail, such as convergence criteria, involved with
numerical methods and CFD, by considering a first-order ODE. In our simple 1D example, the iterations
converged very rapidly. In practice, one encounters many instances when the iterative process doesn’t
converge or converges lethargically. Hence, it’s useful to know a priori the conditions under which a
given numerical scheme converges. This is determined by performing a stability analysis of the numer-
ical scheme. Stability analysis of numerical schemes and the various stabilization strategies used to over-
come nonconvergence are very important topics and necessary for you to explore if you decide to delve
further into the topic of CFD.

Many engineering flows are turbulent, characterized by large, nearly random fluctuations in veloc-
ity and pressure in both space and time. Turbulent flows often occur in the limit of high Reynolds
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Fig. 5.21 Progression of the iterative solution.
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Fig. 5.20 Convergence history for the model nonlinear problem.
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numbers. For most turbulent flows, it is not possible to resolve the vast range of time and length scales,
even with powerful computers. Instead, one solves for a statistical average of the flow properties.
In order to do this, it is necessary to augment the governing equations with a turbulence model. Unfor-
tunately, there is no single turbulence model that is uniformly valid for all flows, so most CFD packages
allow you to choose from among several models. Before you use a turbulence model, you need to under-
stand its possibilities and limitations for the type of flow being considered.

In this brief introduction we have tried to explain some of the concepts behind CFD. Because it is so
difficult and time consuming to develop CFD code, most engineers use commercial packages such as
Fluent [6] and STAR-CD [7]. This introduction will have hopefully indicated for you the complexity
behind those applications, so that they are not completely a “black box” of magic tricks.

5.6 Summary and Useful Equations
In this chapter we have:

✓ Derived the differential form of the conservation of mass (continuity) equation in vector form
as well as in rectangular and cylindrical coordinates.

✓ *Defined the stream function ψ for a two-dimensional incompressible flow and learned how to
derive the velocity components from it, as well as to find ψ from the velocity field.

✓ Learned how to obtain the total, local, and convective accelerations of a fluid particle from the
velocity field.

✓ Presented examples of fluid particle translation and rotation, and both linear and angular
deformation.

✓ Defined vorticity and circulation of a flow.
✓ Derived, and solved for simple cases, the Navier–Stokes equations, and discussed the physical

meaning of each term.
✓ *Been introduced to some basis ideas behind computational fluid dynamics.

We have also explored such ideas as how to determine whether a flow is incompressible by
using the velocity field and, given one velocity component of a two-dimensional incompressible
flow field, how to derive the other velocity component.

In this chapter we studied the effects of viscous stresses on fluid particle deformation and
rotation; in the next chapter we examine flows for which viscous effects are negligible.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to
refer to their page numbers for details!

Useful Equations
Continuity equation
(general, rectangular
coordinates):

∂ρu
∂x

+
∂ρυ
∂y

+
∂ρw
∂z

+
∂ρ
∂t

=0

∇ �ρV!+ ∂ρ
∂t

=0

(5.1a)

(5.1b)

Page 147

Continuity equation
(incompressible,
rectangular coordinates):

∂u
∂x

+
∂υ
∂y

+
∂w
∂z

=∇ �V!=0 (5.1c)
Page 147

Continuity equation
(steady, rectangular
coordinates):

∂ρu
∂x

+
∂ρυ
∂y

+
∂ρw
∂z

=∇ �ρV!=0 (5.1d)
Page 147

Continuity equation
(general, cylindrical
coordinates):

1
r
∂ðrρVrÞ

∂r
+
1
r
∂ðρVθÞ
∂θ

+
∂ðρVzÞ
∂z

+
∂ρ
∂t

=0

∇ �ρV!+ ∂ρ
∂t

=0

(5.2a)

(5.1b)

Page 150

∗This section may be omitted without loss of continuity in the text material.
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Table (Continued)

Continuity equation
(incompressible,
cylindrical coordinates):

1
r
∂ðrVrÞ
∂r

+
1
r
∂Vθ

∂θ
+
∂Vz

∂z
=∇ �V!=0 (5.2b)

Page 151

Continuity equation
(steady, cylindrical
coordinates):

1
r
∂ðrρVrÞ

∂r
+
1
r
∂ðρVθÞ
∂θ

+
∂ðρVzÞ
∂z

=∇ �ρV!=0 (5.2c)
Page 151

Continuity equation
(2D, incompressible,
rectangular coordinates):

∂u
∂x

+
∂υ
∂y

=0 (5.3)
Page 152

Stream function
(2D, incompressible,
rectangular coordinates):

u≡
∂ψ
∂y

and υ≡ −
∂ψ
∂x

(5.4)
Page 152

Continuity equation
(2D, incompressible,
cylindrical coordinates):

∂ðrVrÞ
∂r

+
∂Vθ

∂θ
=0 (5.7)

Page 153

Stream function
(2D, incompressible,
cylindrical coordinates):

Vr ≡
1
r
∂ψ
∂θ

and Vθ ≡ −
∂ψ
∂r

(5.8)
Page 153

Particle acceleration
(rectangular
coordinates):

DV
!

Dt
≡ a!p = u

∂V
!

∂x
+ υ

∂V
!

∂y
+w

∂V
!

∂z
+
∂V
!

∂t
(5.9)

Page 157

Particle acceleration
components in
rectangular coordinates:

axp =
Du
Dt

= u
∂u
∂x

+ υ
∂u
∂y

+w
∂u
∂z

+
∂u
∂t

ayp =
Dυ
Dt

= u
∂υ
∂x

+ υ
∂υ
∂y

+w
∂υ
∂z

+
∂υ
∂t

azp =
Dw
Dt

= u
∂w
∂x

+ υ
∂w
∂y

+w
∂w
∂z

+
∂w
∂t

(5.11a)

(5.11b)

(5.11c)
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Particle acceleration
components in
cylindrical coordinates:

arp =Vr
∂Vr

∂r
+
Vθ

r
∂Vr

∂θ
−
V2
θ

r
+Vz

∂Vr

∂z
+
∂Vr

∂t

aθp =Vr
∂Vθ

∂r
+
Vθ

r
∂Vθ

∂θ
+
VrVθ

r
+Vz

∂Vθ

∂z
+
∂Vθ

∂t

azp =Vr
∂Vz

∂r
+
Vθ

r
∂Vz

∂θ
+Vz

∂Vz

∂z
+
∂Vz

∂t

(5.12a)

(5.12b)

(5.12c)
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Navier–Stokes equations
(incompressible,
constant viscosity):

ρ
∂u
∂t

+ u
∂u
∂x

+ υ
∂u
∂y

+w
∂u
∂z

� �
= ρgx−

∂p
∂x

+ μ
∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

� �

ρ
∂υ
∂t

+ u
∂υ
∂x

+ υ
∂υ
∂y

+w
∂υ
∂z

� �
= ρgy−

∂p
∂y

+ μ
∂2υ
∂x2

+
∂2υ
∂y2

+
∂2υ
∂z2

� �

ρ
∂w
∂t

+ u
∂w
∂x

+ υ
∂w
∂y

+w
∂w
∂z

� �
= ρgz−

∂p
∂z

+ μ
∂2w
∂x2

+
∂2w
∂y2

+
∂2w
∂z2

� �

(5.27a)

(5.27b)

(5.27c)
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P R O B L E M S

Conservation of Mass
5.1Which of the following sets of equations represent possible three-
dimensional incompressible flow cases?

(a) u=2y2 + 2xz; υ= −2xy+6x2yz; w=3x2z2 + x3y4

(b) u= xyzt; υ= −xyzt2;w= z2ðxt2−ytÞ
(c) u= x2 + 2y+ z2; υ= x−2y+ z; w= −2xz+ y2 + 2z

5.2Which of the following sets of equations represent possible two-
dimensional incompressible flow cases?

(a) u=2xy; υ= −x2y

(b) u= y−x+ x2; υ= x+ y−2xy

(c) u= x2t+2y; υ=2x−yt2

(d) u= −x2−y2−xyt; υ= x2 + y2 + xyt

5.3 In an incompressible three-dimensional flow field, the velocity
components are given by u= ax+ byz; υ= cy+ dxz. Determine the
form of the z component of velocity. If the z component were not
a function of x or y what would be the form be?

5.4 In a two-dimensional incompressible flow field, the x compo-
nent of velocity is given by u=2x. Determine the equation for the
y component of velocity if υ=0 along the x axis.

5.5 The three components of velocity in a velocity field are given
by u=Ax+By+Cz,υ=Dx+Ey+Fz, and w=Gx+Hy+ Jz. Deter-
mine the relationship among the coefficients A through J that is nec-
essary if this is to be a possible incompressible flow field.

5.6 The x component of velocity in a steady, incompressible flow
field in the xy plane is u=A=x, where A=2m2=s, and x is measured
in meters. Find the simplest y component of velocity for this
flow field.

5.7 The y component of velocity in a steady incompressible flow
field in the xy plane is

υ=
2xy

ðx2 + y2Þ2
Show that the simplest expression for the x component of velocity is

u=
1

ðx2 + y2Þ−
2y2

ðx2 + y2Þ2

5.8 The velocity components for an incompressible steady flow field
are u= aðx2 + z2Þ and υ= bðxy+ yzÞ. Determine the general expres-
sion for the z component of velocity. If the flow were unsteady, what
would be the expression for the z component?

5.9 The radial component of velocity in an incompressible
two-dimensional flow is given by Vr =3r−2r2 cosðθÞ. Determine
the general expression for the θ component of velocity. If the flow
were unsteady, what would be the expression for the θ component?

5.10 A crude approximation for the x component of velocity in an
incompressible laminar boundary layer is a linear variation from
u=0 at the surface ðy=0Þ to the freestream velocity,U, at the bound-
ary-layer edge ðy= δÞ. The equation for the profile is u=Uy=δ,
where δ= cx1=2 and c is a constant. Show that the simplest expression
for the y component of velocity is υ= uy=4x. Evaluate the maximum
value of the ratio υ=U, at a location where x=0:5 m and δ=5mm.

5.11 A useful approximation for the x component of velocity in an
incompressible laminar boundary layer is a parabolic variation from
u=0 at the surface ðy=0Þ to the freestream velocity,U, at the edge of
the boundary layer ðy= δÞ. The equation for the profile is u=U =
2ðy=δÞ−ðy=δÞ2, where δ= cx1=2 and c is a constant. Show that the
simplest expression for the y component of velocity is

υ

U
=
δ

x
1
2

y
δ

� �2
−
1
3

y
δ

� �3	 

Plot υ=U versus y=δ to find the location of the maximum value of the
ratio υ=U. Evaluate the ratio where δ=5mm and x=0:5 m.

5.12 A useful approximation for the x component of velocity in an
incompressible laminar boundary layer is a cubic variation from u=0
at the surface ðy=0Þ to the freestream velocity, U, at the edge of the
boundary layer ðy= δÞ. The equation for the profile is u=U =
3
2 ðy=δÞ− 1

2ðy=δÞ3, where δ= cx1=2 and c is a constant. Derive the
simplest expression for υ=U, the y component of velocity ratio.
Plot u=U and υ=U versus y=δ, and find the location of the maximum
value of the ratio υ=U. Evaluate the ratio where δ=5mm
and x=0:5 m.

5.13 For a flow in the xy plane, the x component of velocity is given
by u=Ax2y2, where A=0:3 m−3 � s−1, and x and y are measured in
meters. Find a possible y component for steady, incompressible flow.
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Is it also valid for unsteady, incompressible flow? Why? How many
possible y components are there? Determine the equation of the
streamline for the simplest y component of velocity. Plot the stream-
lines through points (1, 4) and (2, 4).

5.14 Consider a water stream from a jet of an oscillating lawn sprin-
kler. Describe the corresponding pathline and streakline.

5.15 Which of the following sets of equations represent possible
incompressible flow cases?

(a) Vr =U cos θ; Vθ = −U sin θ

(b) Vr = −q=2πr; Vθ =K=2πr

(c) Vr =U cos θ½1−ða=rÞ2�; Vθ = −U sin θ½1+ ða=rÞ2�
5.16 For an incompressible flow in the rθ plane, the r component of
velocity is given as Vr =U cos θ.

(a) Determine a possible θ component of velocity.

(b) How many possible θ components are there?

5.17A viscous liquid is sheared between two parallel disks of radius
R, one of which rotates while the other is fixed. The velocity field is
purely tangential, and the velocity varies linearly with z from Vθ =0
at z=0 (the fixed disk) to the velocity of the rotating disk at its sur-
face ðz= hÞ. Derive an expression for the velocity field between
the disks.

Stream Function for Two-Dimensional
Incompressible Flow
5.18 A velocity field in cylindrical coordinates is given as
V
!
= êrA=r+ êθB=r, where A and B are constants with dimensions

of m2=s. Does this represent a possible incompressible flow?
Sketch the streamline that passes through the point r0 = 1 m,
θ=90� if A=B=1m=s2, if A=1m2=s and B=0, and if
B=1m2=s and A=0.

5.19 Determine the family of stream functions ψ that will yield the
velocity field V

!
=2yð2x+1Þî+ ½xðx+1Þ−2y2�ĵ.

5.20 The stream function for a certain incompressible flow field
is given by the expression ψ = −Ur sin θ+ qθ=2π. Obtain an expres-
sion for the velocity field. Find the stagnation point(s) where jV!j=0,
and show that ψ =0 there.

5.21 Determine the stream functions for the following flow fields.
For the value of ψ =2, plot the streamline in the region between
x= −1 and x=1.

(a) u=4; υ=3

(b) u=4y; υ=0

(c) u=4y; υ=4x

(d) u=4y; υ= −4x

5.22 Determine the stream function for the steady incompressible
flow between parallel plates. The velocity profile is parabolic and
given by u= uc + ay2, where uc is the centerline velocity and y is
the distance measured from the centerline. The plate spacing is 2b
and the velocity is zero at each plate. Explain why the stream function
is not a function of x.

5.23 An incompressible frictionless flow field is specified by the
stream function ψ = −5Ax−2Ay, where A=2m=s, and x and y are
coordinates in meters.

(a) Sketch the streamlines ψ =0 and ψ =5, and indicate the direc-
tion of the velocity vector at the point (0, 0) on the sketch.

(b) Determine the magnitude of the flow rate between the stream-
lines passing through (2, 2) and (4, 1).

5.24 A parabolic velocity profile was used to model flow in a lam-
inar incompressible boundary layer in Problem 5.11. Derive the
stream function for this flow field. Locate streamlines at one-quarter
and one-half the total volume flow rate in the boundary layer.

5.25 A flow field is characterized by the stream function
ψ =3x2y−y3. Demonstrate that the flow field represents a two-
dimensional incompressible flow. Show that the magnitude of the
velocity depends only on the distance from the origin of the coordi-
nates. Plot the stream line ψ =2.

5.26 A flow field is characterized by the stream function ψ = xy.
Plot sufficient streamlines to represent the flow field. Determine
the location of any stagnation points. Give at least two possible phys-
ical interpretations of this flow.

5.27 A cubic velocity profile was used to model flow in a laminar
incompressible boundary layer in Problem 5.12. Derive the stream
function for this flow field. Locate streamlines at one-quarter and
one-half the total volume flow rate in the boundary layer.

5.28 A flow field is characterized by the stream function

ψ =
1
2π

tan−1 y−a
x

− tan−1 y+ a
x

� �
−

1
2π

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
Locate the stagnation points and sketch the flow field. Derive an
expression for the velocity at ða,0Þ.
5.29 In a parallel one-dimensional flow in the positive x direction,
the velocity varies linearly from zero at y=0 to 30 m=s at y=1:5 m.
Determine an expression for the stream function, ψ . Also determine
the y coordinate above which the volume flow rate is half the total
between y=0 and y=1:5 m.

Motion of a Fluid Particle (Kinematics)
5.30 Consider the flow field given by V

!
= xy2 î− 1

3y
3 ĵ+ xyk̂. Deter-

mine (a) the number of dimensions of the flow, (b) if it is a possible
incompressible flow, and (c) the acceleration of a fluid particle at
point ðx,y,zÞ= ð1,2,3Þ.
5.31 Consider the flow field given by V

!
= ax2yî−byĵ+ cz2k̂, where

a=2m−2 � s−1, b=2 s−1, and c=1m−1 � s−1. Determine (a) the
number of dimensions of the flow, (b) if it is a possible incompress-
ible flow, and (c) the acceleration of a fluid particle at point
ðx,y,zÞ= ð2,1,3Þ.
5.32 The velocity field within a laminar boundary layer is approxi-
mated by the expression

V
!
=
AUy
x1=2

î+
AUy2

4x3=2
ĵ

In this expression, A=141 m−1=2, and U =0:240 m=s is the free-
stream velocity. Show that this velocity field represents a possible
incompressible flow. Calculate the acceleration of a fluid particle
at point ðx,yÞ= ð0:5 m, 5 mmÞ. Determine the slope of the streamline
through the point.

5.33 A velocity field is given by V
!
=10tî−

10
t3
ĵ. Show that the flow

field is a two-dimensional flow and determine the acceleration as a
function of time.

5.34 The y component of velocity in a two-dimensional, incom-
pressible flow field is given by υ= −Axy, where υ is in m/s, x and
y are in meters, and A is a dimensional constant. There is no velocity
component or variation in the z direction. Determine the dimensions
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of the constant, A. Find the simplest x component of velocity in
this flow field. Calculate the acceleration of a fluid particle at point
ðx,yÞ= ð1,2Þ.
5.35 A 4 m diameter tank is filled with water and then rotated at a
rate ofω=2πð1−e− tÞrad=s. At the tank walls, viscosity prevents rel-
ative motion between the fluid and the wall. Determine the speed and
acceleration of the fluid particles next to the tank walls as a function
of time.

5.36 An incompressible liquid with negligible viscosity flows
steadily through a horizontal pipe of constant diameter. In a
porous section of length L=0:3 m, liquid is removed at a constant
rate per unit length, so the uniform axial velocity in the pipe is
uðxÞ= Uð1−x=2LÞ, where U =5m=s. Develop an expression for
the acceleration of a fluid particle along the centerline of the porous
section.

5.37 Sketch the following flow fields and derive general expressions
for the acceleration:

(a) u=2xy; υ= −x2y

(b) u= y−x+ x2; υ= x+ y−2xy

(c) u= x2t+2y; υ=2x−yt2

(d) u= −x2−y2−xyt; υ= x2 + y2 + xyt

5.38 Consider the low-speed flow of air between parallel disks as
shown. Assume that the flow is incompressible and inviscid, and that
the velocity is purely radial and uniform at any section. The flow
speed is V =15m=s at R=75 mm. Simplify the continuity equation
to a form applicable to this flow field. Show that a general expression
for the velocity field is V

!
=VðR=rÞêr for ri ≤ r≤R. Calculate the

acceleration of a fluid particle at the locations r= ri and r=R.

R

ri

V = 15 m/s

P5.38
5.39 As part of a pollution study, a model concentration c as a func-
tion of position x has been developed,

cðxÞ=Aðe−x=2a−e−x=aÞ
where A=3×10−5 ppm (parts per million) and a=3 ft. Plot this con-
centration from x=0 to x=30 ft. If a vehicle with a pollution sensor
travels through the area at u=U =70 ft=s, develop an expression for
the measured concentration rate of change of c with time, and plot
using the given data.

(a) At what location will the sensor indicate the most rapid rate of
change?

(b) What is the value of this rate of change?

5.40As an aircraft flies through a cold front, an onboard instrument
indicates that ambient temperature drops at the rate of 0:7�F=min.

Other instruments show an air speed of 400 knots and a
2500 ft=min rate of climb. The front is stationary and vertically
uniform. Compute the rate of change of temperature with respect
to horizontal distance through the cold front.

5.41 Wave flow of an incompressible fluid into a solid surface fol-
lows a sinusoidal pattern. Flow is axisymmetric about the z axis,
which is normal to the surface. The z component of the flow follows
the pattern

Vz =Az sin
2πt
T

� �
Determine (a) the radial component of flow ðVrÞ and (b) the convec-
tive and local components of the acceleration vector.

5.42 A steady, two-dimensional velocity field is given by
V
!
=Axî−Ayĵ, where A=1 s−1. Show that the streamlines for this

flow are rectangular hyperbolas, xy=C. Obtain a general expression
for the acceleration of a fluid particle in this velocity field. Calculate
the acceleration of fluid particles at the points ðx,yÞ= ð12 ,2Þ,ð1,1Þ,
and ð2, 12Þ, where x and y are measured in meters. Plot streamlines that
correspond toC=0,1, and 2 m2 and show the acceleration vectors on
the streamline plot.

5.43 A velocity field is represented by the expression V
!
= ðAx−BÞ

i
!
+Cyĵ+Dtk̂ where A=0:2 s−1, B=0:6 m�s−1, D=5m�s−2 and the
coordinates are measured in meters. Determine the proper value forC
if the flow field is to be incompressible. Calculate the acceleration of
a fluid particle located at point ðx,yÞ= ð3,2Þ. Plot a few flow stream-
lines in the xy plane.

5.44 A parabolic approximate velocity profile was used in Problem
5.11 to model flow in a laminar incompressible boundary layer on a
flat plate. For this profile, find the x component of acceleration, ax,
of a fluid particle within the boundary layer. Plot ax at location
x=0:8 m, where δ=1:2 mm, for a flow with U =6m=s. Find the
maximum value of ax at this x location.

5.45A cubic approximate velocity profile was used in Problem 5.12
to model flow in a laminar incompressible boundary layer on a flat
plate. For this profile, obtain an expression for the x and y compo-
nents of acceleration of a fluid particle in the boundary layer. Plot
ax and ay at location x=3 ft, where δ=0:04 in:, for a flow with
U =20 ft=s. Find the maxima of ax at this x location.

5.46 The velocity field for steady inviscid flow from left to right
over a circular cylinder, of radius R is given by

V
!
=U cos θ 1−

R
r

� �2
" #

êr−U sin θ 1+
R
r

� �2
" #

êθ

Obtain expressions for the acceleration of a fluid particle moving
along the stagnation streamline ðθ= πÞ and for the acceleration along
the cylinder surface ðr=RÞ. Plot ar as a function of r=R for θ= π, and
as a function of θ for r=R; plot aθ as a function of θ for r=R. Com-
ment on the plots. Determine the locations at which these accelera-
tions reach maximum and minimum values.

5.47 Consider the incompressible flow of a fluid through a nozzle
as shown. The area of the nozzle is given by A=A0ð1−bxÞ and the
inlet velocity varies according to U =U0ð0:5+ 0:5cosωtÞ where
A0 = 5 ft2, L=20 ft, b=0:02 ft−1, ω=0:16 rad=s and U0 = 20 ft=s.
Find and plot the acceleration on the centerline, with time as a
parameter.
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L

U

A0

P5.47

5.48 Consider the one-dimensional, incompressible flow through
the circular channel shown. The velocity at section �1 is given
by U =U0 +U1sinωt, where U0 = 20 m=s, U1 = 2 m=s, and
ω=0:3 rad=s. The channel dimensions are L=1m,R1 = 0:2 m, and
R2 = 0:1 m. Determine the particle acceleration at the channel exit.
Plot the results as a function of time over a complete cycle. On the
same plot, show the acceleration at the channel exit if the channel
is constant area, rather than convergent, and explain the difference
between the curves.

L
x2

R2

x1

R1

P5.48

5.49 Expand ðV!�∇ÞV! in cylindrical coordinates by direct substitu-
tion of the velocity vector to obtain the convective acceleration of a
fluid particle. (Recall the hint in footnote 1 on page 150.) Verify the
results given in Eq. 5.12a.

5.50 Determine the velocity potential for

(a) a flow field characterized by the stream function ψ =3x2y−y3.

(b) a flow field characterized by the stream function ψ = xy.
5.51 Determine whether the following flow fields are irrotational.

(a) u=2xy; υ= −x2y

(b) u= y−x+ x2; υ= x+ y−2xy

(c) u= x2t +2y; υ=2x−yt2

(d) u= −x2−y2−xyt; υ= x2 + y2 + xyt
5.52 The velocity profile for steady flow between parallel is para-
bolic and given by u= uc + ay2, where uc is the centerline velocity
and y is the distance measured from the centerline. The plate spacing
is 2b and the velocity is zero at each plate. Demonstrate that the flow
is rotational. Explain why your answer is correct even though the
fluid doesn’t rotate but moves in straight parallel paths.

5.53 Consider the velocity field for flow in a rectangular “corner,”
V
!
=Axî−Ayî, with A=0:3 s−1, as in Example 5.8. Evaluate the cir-

culation about the unit square of Example 5.8.

5.54 Consider the two-dimensional flow field in which u=Ax2 and
υ=Bxy, where A=1=2 ft−1 � s−1, B= −1 ft−1 � s−1, and the coordi-
nates are measured in feet. Show that the velocity field represents a
possible incompressible flow. Determine the rotation at point
ðx,yÞ= ð1,1Þ. Evaluate the circulation about the “curve” bounded
by y=0, x=1, y=1, and x=0.

5.55 Consider a flow field represented by the stream function
ψ =3x5y−10x3y3 + 3xy5. Is this a possible two-dimensional incom-
pressible flow? Is the flow irrotational?

5.56 Fluid passes through the set of thin, closely space blades at a
velocity of 3 m=s. Determine the circulation for the flow.

V
30°

D = 0.6 m

P5.56

5.57 A two-dimensional flow field is characterized as u=Ax2 and
v=Bxy where A= 1

2 m
−1s−1 and B= −1 m−1s−1, and x and y are

in meters. Demonstrate that the velocity field represents a possible
incompressible flow field. Determine the rotation at the location
(1,1). Evaluate the circulation about the “curve” bounded by y=0,
x=1, y=1, and x=0.

5.58 A flow field is represented by the stream function
ψ = x4−2x3y+2xy3−y4. Is this a possible two-dimensional flow?
Is the flow irrotational?

5.59 Consider a velocity field for motion parallel to the x axis with
constant shear. The shear rate is du=dy=A, where A=0:1 s−1.
Obtain an expression for the velocity field, V

!
. Calculate the rate of

rotation. Evaluate the stream function for this flow field.

5.60 Consider the flow field represented by the stream function
ψ =Axy+Ay2, where A=1 s−1. Show that this represents a possible
incompressible flow field. Evaluate the rotation of the flow. Plot a
few streamlines in the upper half plane.

5.61 Consider the velocity field given by V
!
=Ax2 î+Bxyĵ, where

A=1 ft−1 � s−1, B= −2 ft−1 � s−1, and the coordinates are measured
in feet.

(a) Determine the fluid rotation.

(b) Evaluate the circulation about the “curve” bounded by y=0,
x=1, y=1 and x=0.

(c) Obtain an expression for the stream function.

(d) Plot several streamlines in the first quadrant.

5.62 Consider again the viscometric flow of Example 5.7. Evaluate
the average rate of rotation of a pair of perpendicular line segments
oriented at �45� from the x axis. Show that this is the same as in the
example.

5.63 The velocity field near the core of a tornado can be approxi-
mated as

V
!
= −

q
2πr

êr +
K
2πr

êθ

Is this an irrotational flow field? Obtain the stream function for
this flow.

5.64 A velocity field is given by V
!
=2î−4x ĵ m=s. Determine an

equation for the streamline. Calculate the vorticity of the flow.
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5.65 Consider the pressure-driven flow between stationary parallel
plates separated by distance 2b. Coordinate y is measured from
the channel centerline. The velocity field is given by u=
umax½1−ðy=bÞ2�. Evaluate the rates of linear and angular deforma-
tion. Obtain an expression for the vorticity vector, ζ

!
. Find the location

where the vorticity is a maximum.

Momentum Equation
5.66 Consider a steady, laminar, fully developed, incompressible
flow between two infinite plates, as shown. The flow is due to the
motion of the left plate as well a pressure gradient that is applied
in the y direction. Given the conditions that V

! 6¼V
!ðzÞ, w=0, and that

gravity points in the negative y direction, prove that u=0 and that the
pressure gradient in the y direction must be constant.

V0

x

z

y

P5.66

5.67 Assume the liquid film in Example 5.9 is not isothermal, but
instead has the following distribution:

TðyÞ= T0 + ðTw−T0Þ 1−
y
h

� �
where T0 and Tw are, respectively, the ambient temperature and the
wall temperature. The fluid viscosity decreases with increasing tem-
perature and is assumed to be described by

μ=
μ0

1 + aðT−T0Þ
with a>0. In a manner similar to Example 5.9, derive an expression
for the velocity profile.

5.68 Consider a steady, laminar, fully developed incompressible
flow between two infinite parallel plates as shown. The flow is
due to a pressure gradient applied in the x direction. Given that
V
!
1V
!
(z), w= 0 and that gravity points in the negative y direction,

prove that υ=0 and that the pressure gradients in the x and y direc-
tions are constant.

x

U

z

y

P5.68

5.69 Consider a steady, laminar, fully developed incompressible
flow between two infinite parallel plates separated by a distance 2h
as shown. The top plate moves with a velocity V0. Derive an
expression for the velocity profile. Determine the pressure
gradient for which the flow rate is zero. Plot the profile for that
condition.

x

V0

2h

y

P5.69

5.70 A linear velocity profile was used to model flow in a laminar
incompressible boundary layer in Problem 5.10. Express the rotation
of a fluid particle. Locate the maximum rate of rotation. Express the
rate of angular deformation for a fluid particle. Locate the maximum
rate of angular deformation. Express the rates of linear deformation
for a fluid particle. Locate the maximum rates of linear deformation.
Express the shear force per unit volume in the x direction. Locate the
maximum shear force per unit volume; interpret this result.

5.71 A cylinder of radius ri rotates at a speed ω coaxially inside a
fixed cylinder of radius ro. A viscous fluid fills the space between
the two cylinders. Determine the velocity profile in the space
between the cylinders and the shear stress on the surface of each cyl-
inder. Explain why the shear stresses are not equal.

ri

ro

ω

P5.71

5.72 The velocity profile for fully developed laminar flow in a cir-
cular tube is u= umax½1−ðr=RÞ2�. Obtain an expression for the shear
force per unit volume in the x direction for this flow. Evaluate its
maximum value for a pipe radius of 75 mm and a maximum velocity
of 3 m=s.

5.73 Assume the liquid film in Example 5.9 is horizontal (i.e.,
θ=0�) and that the flow is driven by a constant shear stress on the
top surface ðy= hÞ,τyx =C. Assume that the liquid film is thin enough
and flat and that the flow is fully developed with zero net flow rate
(flow rate Q=0). Determine the velocity profile uðyÞ and the pres-
sure gradient dp=dx.

5.74 The common thermal polymerase chain reaction (PCR)
process requires the cycling of reagents through three distinct tem-
peratures for denaturation ð90−94�CÞ, annealing ð50−55�CÞ, and
extension ð72�CÞ. In continuous-flow PCR reactors, the tempera-
tures of the three thermal zones are maintained as fixed while
the reagents are cycled continuously through these zones. These
temperature variations induce significant variations in the fluid
density, which under appropriate conditions can be used to gener-
ate fluid motion. The figure depicts a thermosiphon-based PCR
device. The closed loop is filled with PCR reagents. The plan of
the loop is inclined at an angle α with respect to the vertical. The
loop is surrounded by three heaters and coolers that maintain differ-
ent temperatures.
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50–55°C

90–94°C

72°C

z

x

Heating

Cooling

Heating

Tilt angle α

Flow

P5.74

(a) Explain why the fluid automatically circulates in the closed loop

in the counterclockwise direction.

(b) What is the effect of the angle α on the fluid velocity?

Introduction to Computational Fluid Dynamics
5.75 A tank contains water ð20�CÞ at an initial depth y0 = 1 m. The

tank diameter is D = 250 mm and a tube of diameter d = 3 mm and

length L = 4 m is attached to the bottom of the tank. For laminar flow

a reasonable model for the water level over time is

dy
dt

= −
d4ρg

32D2μL
y yð0Þ= y0

Using Euler methods with time steps of 12 min and 6 min:

(a) Estimate the water depth after 120 min, and compute the errors

compared to the exact solution

yexactðtÞ= y0e− d4ρg
32D2μL

t

(b) Plot the Euler and exact results.

d

L

D

P5.75

5.76 Use Excel to generate the solution of Eq. 5.31 for m = 1 shown

in Fig. 5.18 To do so, you need to learn how to perform linear algebra

in Excel. For example, for N = 4 you will end up with the matrix

equation of Eq. 5.37. To solve this equation for the u values, you will

have to compute the inverse of the 4× 4matrix, and then multiply this

inverse into the 4× 1 matrix on the right of the equation. In Excel, to

do array operations, you must use the following rules: Pre-select the

cells that will contain the result; use the appropriate Excel array func-
tion (look at Excel’s Help for details); press Ctrl + Shift + Enter, not

just Enter. For example, to invert the 4× 4 matrix you would: pre-

select a blank 4× 4 array that will contain the inverse matrix;

type = minverse([array containing matrix to be inverted]); press

Ctrl + Shift + Enter. To multiply a 4× 4 matrix into a 4× 1 matrix

you would do the following: pre-select a blank 4× 1 array that will

contain the result; type = mmult([array containing 4× 4 matrix],

[array containing 4× 1 matrix]); press Ctrl + Shift + Enter.

5.77 For a small spherical particle of styrofoam

ðdensity = 16 kg=m3Þ with a diameter of 5 mm falling in air, the drag

is given by FD = 3πμVd, where μ is the air viscosity and V is the

sphere velocity. Derive the differential equation that describes the

motion. Using the Euler method, find the maximum speed starting

from rest and the time it takes to reach 95% of this speed. Plot the

speed as a function of time.

5.78 Following the steps to convert the differential equation

Eq. 5.31 (for m = 1) into a difference equation (for example,

Eq. 5.37 for N = 4), solve

du
dx

+ u = 2x2 + x 0≤ x≤ 1 uð0Þ= 3

for N = 4, 8, and 16 and compare to the exact solution

uexact = 2x2−3x + 3

Hint: Follow the rules for Excel array operations as described in Prob-

lem 5.76. Only the right side of the difference equations will change,

compared to the solution method of Eq. 5.31 (for example, only the

right side of Eq. 5.37 needs modifying).

5.79 Use Excel to generate the progression to an iterative solution

Eq. 5.31 for m = 2, as illustrated in Fig. 5.21

5.80 Use Excel to generate the solutions of Eq. 5.31 for m = −1,

with uð0Þ= 3, using 4 and 16 points over the interval from x = 0 to

x = 3, with sufficient iterations, and compare to the exact solution

uexact =
ffiffiffiffiffiffiffiffiffiffiffiffi
9−2x
p

To do so, follow the steps described in the “Dealing with Nonlinear-

ity” section.
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C H A P T E R 6

Incompressible Inviscid Flow
6.1 Momentum Equation for Frictionless Flow: Euler’s

Equation

6.2 Bernoulli Equation: Integration of Euler’s Equation
Along a Streamline for Steady Flow

6.3 The Bernoulli Equation Interpreted as an Energy
Equation

6.4 Energy Grade Line and Hydraulic Grade Line

6.5 Unsteady Bernoulli Equation: Integration of Euler’s
Equation Along a Streamline (on the Web)

6.6 Irrotational Flow

6.7 Summary and Useful Equations

In Chapter 5 we devoted a great deal of effort to deriving the differential equations (Eqs. 5.24) that
describe the behavior of any fluid satisfying the continuum assumption. We also saw how these equa-
tions reduced to various particular forms—the most well known being the Navier–Stokes equations for
an incompressible, constant viscosity fluid (Eqs. 5.27). Although Eqs. 5.27 describe the behavior of
common fluids (e.g., water, air, lubricating oil) for a wide range of problems, as we discussed in
Chapter 5, they are unsolvable analytically except for the simplest of geometries and flows. For example,
even using the equations to predict the motion of your coffee as you slowly stir it would require the use of
an advanced computational fluid dynamics computer application, and the prediction would take a lot

Case Study

The Fountains at the Bellagio in Las Vegas
Any visitor to Las Vegas will be familiar with the water fountains
at the Bellagio hotel. These are a set of highpowered water jets
designed and built by the WET Design Company that are choreo-
graphed to vary in their strength and direction to selected pieces
of music.

WETdevelopedmany innovations tomake the fountains. Tra-
ditional fountains use pumps and pipes, which must be matched

for optimum flow. Many of WET’s designs use compressed air
instead of water pumps, which allows energy to be continuously
generated and accumulated, ready for instant output. This inno-
vative use of compressed air allowed the fountains to become a
reality—with the traditional systems of pipes or pumps, a foun-
tain such as the Bellagio’s would be impractical and expensive.
For example, it would be difficult to obtain the 240-foot heights
the fountains achieve without expensive, large, and noisy water
pumps. The “Shooter” thatWET developedworks on the principle
of introducing a large bubble of compressed air into the piping,
which forces trapped water through a nozzle at high pressure.
The ones installed at the Bellagio are able to shoot about 75 gal-
lons per second of water over 240 feet in the air. In addition to
providing a spectacular effect, they require only about 1/10th
the energy of traditional water pumps to produce the same effect.
Other airpowered devices produce pulsing water jets, achieving a
maximum height of 125 feet. In addition to their power, these
innovations lead to a saving of 80 percent ormore in energy costs
and have project construction costs that are about 50 percent less
than traditional pipe-pump fountains.

Fountains such as the one at the Bellagio are designed using
the relations for the flow of water with friction in pipes. The
tradeoffs among pumping power, the cost of equipment, and
the desired fountain effects bring in the techniques presented
in this chapter.
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The fountains at the Bellagio in Las Vegas.
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longer to compute than the actual stirring! In this chapter, instead of the Navier–Stokes equations, we
will study Euler’s equation, which applies to an inviscid fluid. Although truly inviscid fluids do not exist,
many flow problems (especially in aerodynamics) can be successfully analyzed with the approximation
that μ=0.

6.1 Momentum Equation for Frictionless Flow: Euler’s Equation
Euler’s equation (obtained from Eqs. 5.27 after neglecting the viscous terms) is

ρ
DV
!

Dt
= ρg!−∇p ð6:1Þ

This equation states that for an inviscid fluid the change in momentum of a fluid particle is caused by the
body force (assumed to be gravity only) and the net pressure force. For convenience we recall that the
particle acceleration is

DV
!

Dt
=
∂V
!

∂t
+ ðV! � ∇ÞV! ð5:10Þ

In this chapter we will apply Eq. 6.1 to the solution of incompressible, inviscid flow problems. In addi-
tion to Eq. 6.1 we have the incompressible form of the mass conservation equation,

∇ � V!=0 ð5:1cÞ
Equation 6.1 expressed in rectangular coordinates is

ρ
∂u
∂t

+ u
∂u
∂x

+ υ
∂u
∂y

+w
∂u
∂z

� �
= ρgx−

∂p
∂x

ð6:2aÞ

ρ
∂υ
∂t

+ u
∂υ
∂x

+ υ
∂υ
∂y

+w
∂υ
∂z

� �
= ρgy−

∂p
∂y

ð6:2bÞ

ρ
∂w
∂t

+ u
∂w
∂x

+ υ
∂w
∂y

+w
∂w
∂z

� �
= ρgz−

∂p
∂z

ð6:2cÞ

If the z axis is assumed vertical, then gx =0, gy =0, and gz = −g, so g!= −gk̂.
In cylindrical coordinates, the equations in component form, with gravity the only body force, are

ρar = ρ
∂Vr

∂t
+Vr

∂Vr

∂r
+
Vθ

r
∂Vr

∂θ
+Vz

∂Vr

∂z
−
V2
θ

r

� �
= ρgr−

∂p
∂r

ð6:3aÞ

ρaθ = ρ
∂Vθ

∂t
+Vr

∂Vθ

∂r
+
Vθ

r
∂Vθ

∂θ
+Vz

∂Vθ

∂z
+
VrVθ

r

� �
= ρgθ−

1
r
∂p
∂θ

ð6:3bÞ

ρaz = ρ
∂Vz

∂t
+Vr

∂Vz

∂r
+
Vθ

r
∂Vz

∂θ
+Vz

∂Vz

∂z

� �
= ρgz−

∂p
∂z

ð6:3cÞ

If the z axis is directed vertically upward, then gr = gθ =0 and gz = −g.
Equations 6.1, 6.2, and 6.3 apply to problems in which there are no viscous stresses. Before

continuing with the main topic of this chapter (inviscid flow), let’s consider for a moment when we have
no viscous stresses, other than when μ=0. We recall from previous discussions that, in general, viscous
stresses are present when we have fluid deformation (in fact this is how we initially defined a fluid);
when we have no fluid deformation, i.e., when we have rigid-body motion, no viscous stresses will
be present, even if μ 6¼ 0. Hence Euler’s equations apply to rigid-body motions as well as to inviscid
flows. We discussed rigid-body motion in detail in the online Section 3.6 as a special case of fluid statics.
As an exercise, you can show that Euler’s equations can be used to solve Examples 3.9 and 3.10.

In Chapters 2 and 5 we pointed out that streamlines, drawn tangent to the velocity vectors at every
point in the flow field, provide a convenient graphical representation. In steady flow a fluid particle will

1996.1 Momentum Equation for Frictionless Flow: Euler’s Equation



move along a streamline because, for steady flow, pathlines and streamlines coincide. Thus, in describ-
ing the motion of a fluid particle in a steady flow, in addition to using orthogonal coordinates x, y, z, the
distance along a streamline is a logical coordinate to use in writing the equations of motion. “Streamline
coordinates” also may be used to describe unsteady flow. Streamlines in unsteady flow give a graphical
representation of the instantaneous velocity field.

For simplicity, consider the flow in the yz plane shown in Fig. 6.1. We wish to write the equations of
motion in terms of the coordinate s, distance along a streamline, and the coordinate n, distance normal to
the streamline. The pressure at the center of the fluid element is p. If we apply Newton’s second law in
the direction s of the streamline, to the fluid element of volume ds dn dx, then neglecting viscous forces
we obtain

p−
∂p
∂s

ds
2

� �
dn dx− p+

∂p
∂s

ds
2

� �
dn dx−ρg sin β ds dn dx= ρas ds dn dx

where β is the angle between the tangent to the streamline and the horizontal, and as is the acceleration of
the fluid particle along the streamline. Simplifying the equation, we obtain

−
∂p
∂s

−ρg sin β= ρas

Since sin β= ∂z=∂s, we can write

−
1
ρ

∂p
∂s

−g
∂z
∂s

= as

Along any streamline V =Vðs, tÞ, and the material or total acceleration of a fluid particle in the
streamwise direction is given by

as =
DV
Dt

=
∂V
∂t

+V
∂V
∂s

Euler’s equation in the streamwise direction with the z axis directed vertically upward is then

−
1
ρ

∂p
∂s

−g
∂z
∂s

=
∂V
∂t

+V
∂V
∂s

ð6:4aÞ

For steady flow, and neglecting body forces, Euler’s equation in the streamwise direction reduces to

1
ρ

∂p
∂s

= −V
∂V
∂s

ð6:4bÞ

which indicates that (for an incompressible, inviscid flow) a decrease in velocity is accompanied by an
increase in pressure and conversely. This makes sense: The only force experienced by the particle is the
net pressure force, so the particle accelerates toward low-pressure regions and decelerates when
approaching high-pressure regions.
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Fig. 6.1 Fluid particle moving along a streamline.
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To obtain Euler’s equation in a direction normal to the streamlines, we apply Newton’s second law
in the n direction to the fluid element. Again, neglecting viscous forces, we obtain

p−
∂p
∂n

dn
2

� �
ds dx− p+

∂p
∂n

dn
2

� �
ds dx−ρg cos β dn dx ds= ρandn dx ds

where β is the angle between the n direction and the vertical, and an is the acceleration of the fluid particle
in the n direction. Simplifying the equation, we obtain

−
∂p
∂n

−ρg cos β= ρan

Since cos β= ∂z=∂n, we write

−
1
ρ

∂p
∂n

−g
∂z
∂n

= an

The normal acceleration of the fluid element is toward the center of curvature of the streamline, in the
minus n direction; thus in the coordinate system of Fig. 6.1, the familiar centripetal acceleration is written

an = −
V2

R
for steady flow, where R is the radius of curvature of the streamline at the point chosen. Then, Euler’s
equation normal to the streamline is written for steady flow as

1
ρ

∂p
∂n

+ g
∂z
∂n

=
V2

R
ð6:5aÞ

For steady flow in a horizontal plane, Euler’s equation normal to a streamline becomes

1
ρ

∂p
∂n

=
V2

R
ð6:5bÞ

Equation 6.5 indicates that pressure increases in the direction outward from the center of curvature of
the streamlines. This also makes sense: Because the only force experienced by the particle is the net
pressure force, the pressure field creates the centripetal acceleration. In regions where the streamlines
are straight, the radius of curvature, R, is infinite so there is no pressure variation normal to straight
streamlines. Example 6.1 shows how equation 6.5b can be used to compute the velocity from the
pressure gradient in the normal direction.

Example 6.1 FLOW IN A BEND

The flow rate of air at standard conditions in a flat duct is to be determined by installing pressure taps across a bend. The duct is
0.3 m deep and 0.1 m wide. The inner radius of the bend is 0.25 m. If the measured pressure difference between the taps is 40 mm
of water, compute the approximate flow rate.

Given: Flow through duct bend as shown.

p2−p1 = ρH2OgΔh
where Δh=40 mm H2O. Air is at STP.

Find: Volume flow rate, Q.

Solution: Apply Euler’s n component equation across flow streamlines.

Governing equation:
∂p
∂r

=
ρV2

r
Assumptions:

1 Frictionless flow.

2 Incompressible flow.

3 Uniform flow at measurement section.

2016.1 Momentum Equation for Frictionless Flow: Euler’s Equation



6.2 Bernoulli Equation: Integration of Euler’s Equation
Along a Streamline for Steady Flow
Compared to the viscous-flow equivalents, the momentum or Euler’s equation for incompressible, invis-
cid flow, Eq. 6.1, is simpler mathematically, but its solution in conjunction with the mass conservation
equation, Eq. 5.1c, still presents formidable difficulties in all but the most basic flow problems. One
convenient approach for a steady flow is to integrate Euler’s equation along a streamline. We will do
this below using two different mathematical approaches, and each will result in the Bernoulli equation.
Recall that in Section 4.4 we derived the Bernoulli equation by starting with a differential control
volume; these two additional derivations will give us more insight into the restrictions inherent in
use of the Bernoulli equation.

Derivation Using Streamline Coordinates

Euler’s equation for steady flow along a streamline from Eq. 6.4a is

−
1
ρ

∂p
∂s

−g
∂z
∂s

=V
∂V
∂s

ð6:6Þ

If a fluid particle moves a distance, ds, along a streamline, then

For this flow, p= pðrÞ, so

∂p
∂r

=
dp
dr

=
ρV2

r
or

dp= ρV2dr
r

Integrating gives

p2−p1 = ρV2 ln r�r2r1 = ρV2 ln
r2
r1

and hence

V =
p2−p1

ρ lnðr2=r1Þ
	 
1=2

But Δp= p2−p1 = ρH2OgΔh, so V =
ρH2OgΔh
ρ lnðr2=r1Þ
	 
1=2

Substituting numerical values,

V = 999
kg
m3 × 9:81

m
s2

× 0:04 m×
m3

1:23 kg
×

1
lnð0:35 m=0:25 mÞ

	 
1=2
= 30:8 m=s

For uniform flow

Q=VA=30:8
m
s
× 0:1 m×0:3 m

Q=0:924 m3=s
Q �����������������������������

r2

r1
V

r
Plan view of bend

0.1 m

0.3 mR = 0.25 m

1

2

Bend

Duct

Flow

In this problem we assumed that the
velocity is uniform across the section.
In fact, the velocity in the bend approxi-
mates a free vortex (irrotational) profile
in which V / 1=r (where r is the radius)
instead of V =const. Hence, this flow-
measurement device could only be
used to obtain approximate values of
the flow rate (see Problem 6.25).
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∂p
∂s

ds= dp ðthe change in pressure along sÞ
∂z
∂s
ds= dz ðthe change in elevation along sÞ

∂V
∂s

ds= dV ðthe change in speed along sÞ

Thus, after multiplying Eq. 6.6 by ds, we can write

−
dp
ρ
−g dz=V dV or

dp
ρ

+V dV + g dz=0 ðalong sÞ

Integration of this equation givesZ
dp
ρ

+
V2

2
+ gz= constant ðalong sÞ ð6:7Þ

Before Eq. 6.7 can be applied, we must specify the relation between pressure and density. For the special
case of incompressible flow, ρ= constant, and Eq. 6.7 becomes the Bernoulli equation,

p
ρ
+
V2

2
+ gz= constant ð6:8Þ

Restrictions:

1 Steady flow.

2 Incompressible flow.

3 Frictionless flow.

4 Flow along a streamline.

The Bernoulli equation is probably the most famous, and abused, equation in all of fluid mechanics.
It is always tempting to use because it is a simple algebraic equation for relating the pressure, velocity,
and elevation in a fluid. For example, it is used to explain the lift of a wing: In aerodynamics the gravity
term is usually negligible, so Eq. 6.8 indicates that wherever the velocity is relatively high (e.g., on the
upper surface of a wing), the pressure must be relatively low, and wherever the velocity is relatively low
(e.g., on the lower surface of a wing), the pressure must be relatively high, generating substantial lift.
Equation 6.8 indicates that, in general (if the flow is not constrained in some way), if a particle increases
its elevation ðz "Þ or moves into a higher pressure region ðp "Þ, it will tend to decelerate ðV #Þ; this makes
sense from a momentum point of view (recall that the equation was derived from momentum considera-
tions). These comments only apply if the four restrictions listed are reasonable. For example, Eq. 6.8
cannot be used to explain the pressure drop in a horizontal constant diameter pipe flow: according to
it, for z= constant and V = constant, p=constant! We cannot stress enough that you should keep the
restrictions firmly in mind whenever you consider using the Bernoulli equation! (In general, the
Bernoulli constant in Eq. 6.8 has different values along different streamlines.1)

Derivation Using Rectangular Coordinates

The vector form of Euler’s equation, Eq. 6.1, also can be integrated along a streamline. We shall restrict
the derivation to steady flow; thus, the end result of our effort should be Eq. 6.7.

For steady flow, Euler’s equation in rectangular coordinates can be expressed as

DV
!

Dt
= u

∂V
!

∂x
+ υ

∂V
!

∂y
+w

∂V
!

∂z
= ðV! � ∇ÞV!= −

1
ρ
∇p−gk̂ ð6:9Þ

1 For the case of irrotational flow, the constant has a single value throughout the entire flow field (Section 6.6).
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For steady flow the velocity field is given by V
!
=V
!ðx,y,zÞ. The streamlines are lines drawn in the

flow field tangent to the velocity vector at every point. Recall again that for steady flow, streamlines,
pathlines, and streaklines coincide. The motion of a particle along a streamline is governed by Eq. 6.9.
During time interval dt the particle has vector displacement ds! along the streamline.

If we take the dot product of the terms in Eq. 6.9 with displacement ds! along the streamline,
we obtain a scalar equation relating pressure, speed, and elevation along the streamline. Taking the
dot product of ds!with Eq. 6.9 gives

ðV! � ∇ÞV! � ds!= −
1
ρ
∇p � ds!−gk̂ � ds! ð6:10Þ

where

ds!= dxî+ dyĵ+ dzk̂ ðalong sÞ
Now we evaluate each of the three terms in Eq. 6.10, starting on the right,

−
1
ρ
∇p � ds!= −

1
ρ

î
∂p
∂x

+ ĵ
∂p
∂y

+ k̂
∂p
∂z

	 

� ½dxî+ dyĵ+ dzk̂�

= −
1
ρ

∂p
∂x

dx+
∂p
∂y

dy+
∂p
∂z

dz
	 


ðalong sÞ

−
1
ρ
∇p � ds!= −

1
ρ
dp ðalong sÞ

and

−gk̂ � ds!= −gk̂ � ½dxî+ dyĵ+ dzk̂�
= −g dz ðalong sÞ

Using a vector identity,2 we can write the third term as

ðV! � ∇ÞV! � ds!= 1
2
∇ðV! � V!Þ−V

!
× ð∇×V

!Þ
	 


� ds!

=
1
2
∇ðV! � V!Þ

� �
� ds!− V

!
× ð∇×V

!Þ
n o

� ds!

The last term on the right side of this equation is zero, since V
!
is parallel to ds! [recall from vector math

that V
!
× ð∇×V

!Þ � ds!= −ð∇×V
!Þ×V

! � ds!= −ð∇×V
!Þ � V!× ds!]. Consequently,

ðV! � ∇ÞV! � ds!= 1
2
∇ðV! � V!Þ � ds!= 1

2
∇ðV2Þ � ds! ðalong sÞ

=
1
2

î
∂V2

∂x
+ ĵ

∂V2

∂y
+ k̂

∂V2

∂z

	 

� ½dxî+ dyĵ+ dzk̂�

=
1
2

∂V2

∂x
dx+

∂V2

∂y
dy+

∂V2

∂z
dz

	 

ðV! � ∇ÞV! � ds!= 1

2
dðV2Þ ðalong sÞ

Substituting these three terms into Eq. 6.10 yields

dp
ρ

+
1
2
dðV2Þ+ g dz=0 ðalong sÞ

2 The vector identity

ðV! � ∇ÞV!= 1
2
∇ðV! � V!Þ−V

!
× ð∇×V

!Þ
may be verified by expanding each side into components.
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Integrating this equation, we obtainZ
dp
ρ

+
V2

2
+ gz= constant ðalong sÞ

If the density is constant, we obtain the Bernoulli equation

p
ρ
+
V2

2
+ gz= constant

As expected, we see that the last two equations are identical to Eqs. 6.7 and 6.8 derived previously
using streamline coordinates. The Bernoulli equation, derived using rectangular coordinates, is still
subject to the restrictions: (1) steady flow, (2) incompressible flow, (3) frictionless flow, and (4) flowalong
a streamline.

Static, Stagnation, and Dynamic Pressures

The pressure, p, which we have used in deriving the Bernoulli equation, Eq. 6.8, is the thermodynamic
pressure; it is commonly called the static pressure. The static pressure is the pressure experienced by
the fluid particle as it moves (so it is something of a misnomer!)—we also have the stagnation
and dynamic pressures, which we will define shortly. How do we measure the pressure in a fluid in
motion?

In Section 6.1 we showed that there is no pressure variation normal to straight streamlines. This fact
makes it possible to measure the static pressure in a flowing fluid using a wall pressure “tap,” placed in a
region where the flow streamlines are straight, as shown in Fig. 6.2a. The pressure tap is a small hole,
drilled carefully in the wall, with its axis perpendicular to the surface. If the hole is perpendicular to the
duct wall and free from burrs, accurate measurements of static pressure can be made by connecting the
tap to a suitable pressure-measuring instrument [1].

In a fluid stream far from a wall, or where streamlines are curved, accurate static pressure measure-
ments can be made by careful use of a static pressure probe, shown in Fig. 6.2b. Such probes must be
designed so that the measuring holes are placed correctly with respect to the probe tip and stem to avoid
erroneous results [2]. In use, the measuring section must be aligned with the local flow direction.
(In these figures, it may appear that the pressure tap and small holes would allow flow to enter or leave
or otherwise be entrained by themain flow, but each of these is ultimately attached to a pressure sensor or
manometer and is therefore a dead-end, leading to no flow being possible—see Example 6.2.)

Static pressure probes, such as that shown in Fig 6.2b, and in a variety of other forms, are available
commercially in sizes as small as 1.5 mm ( 116 in.) in diameter [3].

The stagnation pressure is obtained when a flowing fluid is decelerated to zero speed by a friction-
less process. For incompressible flow, the Bernoulli equation can be used to relate changes in speed and
pressure along a streamline for such a process. Neglecting elevation differences, Eq. 6.8 becomes

p
ρ
+
V2

2
= constant

If the static pressure is p at a point in the flow where the speed is V , then the stagnation pressure, p0,
where the stagnation speed, V0, is zero, may be computed from

=0
P0

ρ
+
V2
0

2��
�!= P

ρ
+
V2

2

or

p0 = p+
1
2
ρV2 ð6:11Þ

Equation 6.11 is a mathematical statement of the definition of stagnation pressure, valid for incom-
pressible flow. The term 1

2ρV
2 generally is called the dynamic pressure. Equation 6.11 states that the

stagnation (or total) pressure equals the static pressure plus the dynamic pressure. One way to picture
the three pressures is to imagine you are standing in a steady wind holding up your hand: The static
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pressure will be atmospheric pressure; the larger pressure you feel at the center of your hand will be the
stagnation pressure; and the buildup of pressure (the difference between the stagnation and static pres-
sures) will be the dynamic pressure. Solving Eq. 6.11 for the speed,

V =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp0−pÞ

ρ

s
ð6:12Þ

Thus, if the stagnation pressure and the static pressure could be measured at a point, Eq. 6.12 would give
the local flow speed.

Stagnation pressure is measured in the laboratory using a probe with a hole that faces directly
upstream as shown in Fig. 6.3. Such a probe is called a stagnation pressure probe, or pitot (pronounced
pea-toe) tube. Again, the measuring section must be aligned with the local flow direction.

We have seen that static pressure at a point can be measured with a static pressure tap or probe
(Fig. 6.2). If we knew the stagnation pressure at the same point, then the flow speed could be computed
from Eq. 6.12. Two possible experimental setups are shown in Fig. 6.4.

In Fig. 6.4a, the static pressure corresponding to point A is read from the wall static pressure tap. The
stagnation pressure is measured directly at A by the total head tube, as shown. (The stem of the total head
tube is placed downstream from the measurement location to minimize disturbance of the local flow.)
The use of a total head tube and a wall static pressure tap to determine the flow velocity is shown in
Example 6.2.

Pressure
tap

Flow
streamlines

(a) Wall pressure tap (b) Static pressure probe

Flow

Small holes

Stem

To manometer or
pressure gauge

Fig. 6.2 Measurement of static pressure.

Flow

To manometer or
pressure gauge

Small hole

Fig. 6.3 Measurement of stagnation pressure.

Flow Flow
Total
head
tube

A

p p0

B

C

Static
pressure

holes

p0

p

(b) Pitot-static tube(a) Total head tube used
  with wall static tap

Fig. 6.4 Simultaneous measurement of stagnation and static pressures.

206 Chapter 6 Incompressible Inviscid Flow



Two probes often are combined, as in the pitot-static tube shown in Fig. 6.4b. The inner tube is used
to measure the stagnation pressure at point B, while the static pressure atC is sensed using the small holes
in the outer tube. In flow fields where the static pressure variation in the streamwise direction is small, the
pitot-static tube may be used to infer the speed at point B in the flow by assuming pB = pC and using
Eq. 6.12. (Note that when pB 6¼ pC, this procedure will give erroneous results.)

Remember that the Bernoulli equation applies only for incompressible flow (Mach number
M ≤ 0:3). The definition and calculation of the stagnation pressure for compressible flow will be dis-
cussed in Section 12.3.

Applications

The Bernoulli equation can be applied between any two points on a streamline provided that the other
three restrictions are satisfied. The result is

p1
ρ
+
V2
1

2
+ gz1 =

p2
ρ
+
V2
2

2
+ gz2 ð6:13Þ

Example 6.2 PITOT TUBE

A pitot tube is inserted in an air flow (at STP) to measure the flow speed. The tube is inserted so that it points upstream into the
flow and the pressure sensed by the tube is the stagnation pressure. The static pressure is measured at the same location in the
flow, using a wall pressure tap. If the pressure difference is 30 mm of mercury, determine the flow speed.

Given: A pitot tube inserted in a flow as shown. The flowing fluid is air and the manometer liquid is mercury.

Find: The flow speed.

Solution:

Governing equation:
p
ρ
+
V2

2
+ gz= constant

Assumptions:

1 Steady flow.

2 Incompressible flow.

3 Flow along a streamline.

4 Frictionless deceleration along stagnation streamline.

Writing Bernoulli’s equation along the stagnation streamline (with Δz=0) yields Eq. 6.11

p0
ρ
=
p
ρ
+
V2

2
p0 is the stagnation pressure at the tube opening where the speed has been reduced, without friction, to zero. Solving for V gives

V =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp0−pÞ

ρair

s
From the diagram,

p0−p= ρHggh= ρH2OghSGHg

and

V =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρH2OghSGHg

ρair

s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2× 1000

kg
m3 × 9:81

m
s2

× 30 mm×13:6×
m3

1:23 kg
×

1 m
1000 mm

s
V =80:8 m=s V ��������������������������������������

At T =20�C, the speed of sound in air is 343 m=s. Hence, M =0:236 and the
assumption of incompressible flow is valid.

Air flow

Mercury

30 mm

This problem illustrates use of a pitot tube
to determine flow speed. Pitot (or pitot-
static) tubes are often placed on the exte-
rior of aircraft to indicate air speed relative
to the aircraft, and hence aircraft speed
relative to the air.
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where subscripts 1 and 2 represent any two points on a streamline. Applications of Eqs. 6.8 and 6.13 to
typical flow problems are illustrated in Examples 6.3 through 6.5.

In some situations, the flow appears unsteady from one reference frame, but steady from another,
which translates with the flow. Since the Bernoulli equation was derived by integrating Newton’s second
law for a fluid particle, it can be applied in any inertial reference frame (see the discussion of translating
frames in Section 4.4). The procedure is illustrated in Example 6.6.

Example 6.3 NOZZLE FLOW

Air flows steadily at low speed through a horizontal nozzle (by definition a device for accelerating a flow), discharging to atmos-
phere. The area at the nozzle inlet is 0:1 m2. At the nozzle exit, the area is 0:02 m2. Determine the gage pressure required at the
nozzle inlet to produce an outlet speed of 50 m=s.

Given: Flow through a nozzle, as shown.

Find: p1−patm.

Solution:

Governing equations:

p1
ρ
+
V2
1

2
+ gz1 =

p2
ρ
+
V2
2

2
+ gz2 ð6:13Þ

Continuity for incompressible and uniform flow: X
CS
V
! � A!=0 ð4:13bÞ

Assumptions:

1 Steady flow.

2 Incompressible flow.

3 Frictionless flow.

4 Flow along a streamline.

5 z1 = z2.

6 Uniform flow at sections and .

The maximum speed of 50 m=s is well below 100 m=s, which corresponds to Mach number M≈0:3 in standard air. Hence, the
flow may be treated as incompressible.

Apply the Bernoulli equation along a streamline between points and to evaluate p1. Then

p1−patm = p1−p2 =
ρ

2
ðV2

2 −V2
1 Þ

Apply the continuity equation to determine V1,

ð−ρV1A1Þ+ ðρV2A2Þ=0 or V1A1 =V2A2

so that

V1 =V2
A2

A1
= 50

m
s
×
0:02 m2

0:1 m2 = 10 m=s

For air at standard conditions, ρ=1:23 kg=m3. Then

p1−patm =
ρ

2
ðV2

2 −V2
1 Þ

=
1
2
× 1:23

kg
m3 ð50Þ

2 m2

s2
−ð10Þ2 m

2

s2

	 

N � s2
kg � m

p1−patm = 1:48 kPa
p1−patm ��������������������������������������

1

2

CV

Streamline

p2 = patm

V2 = 50 m/s

A2 = 0.02 m2

A1 = 0.1 m2

Notes:
• This problem illustrates a typical

application of the Bernoulli equation.
• The streamlines must be straight at

the inlet and exit in order to have
uniform pressures at those locations.
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Example 6.4 FLOW THROUGH A SIPHON

A U-tube acts as a water siphon. The bend in the tube is 1 m above the water surface; the tube outlet is 7 m below the water
surface. The water issues from the bottom of the siphon as a free jet at atmospheric pressure. Determine (after listing the necessary
assumptions) the speed of the free jet and the minimum absolute pressure of the water in the bend.

Given: Water flowing through a siphon as shown.

Find: (a) Speed of water leaving as a free jet.
(b) Pressure at point (the minimum pressure point) in the flow.

Solution:

Governing equation:
p
ρ
+
V2

2
+ gz= constant

Assumptions:

1 Neglect friction.

2 Steady flow.

3 Incompressible flow.

4 Flow along a streamline.

5 Reservoir is large compared with pipe.

Apply the Bernoulli equation between points and .

p1
ρ
+
V2
1

2
+ gz1 =

p2
ρ
+
V2
2

2
+ gz2

Since areareservoir
 areapipe, then V1≈0. Also p1 = p2 = patm, so

gz1 =
V2
2

2
+ gz2 and V2

2 = 2gðz1−z2Þ

V2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðz1−z2Þ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2× 9:81

m
s2

× 7 m
r

=11:7 m=s
V2 ���������������������

To determine the pressure at location , we write the Bernoulli equation
between and .

p1
ρ
+
V2
1

2
+ gz1 =

pA
ρ

+
V2
A

2
+ gzA

Again V1≈0 and from conservation of mass VA =V2. Hence

pA
ρ

=
p1
ρ
+ gz1−

V2
2

2
−gzA =

p1
ρ
+ gðz1−zAÞ− V2

2

2

pA = p1 + ρgðz1−zAÞ−ρ
V2
2

2

= 1:01× 105
N
m2 + 999

kg
m3 × 9:81

m
s2

× ð−1 mÞ N � s
2

kg � m

−
1
2
× 999

kg
m3 × ð11:7Þ

2m2

s2
×

N � s2
kg � m

pA =22:8 kPa ðabsÞ or −78:5 kPa ðgageÞ pA ���������������������

1

2

A

8 m

z = 0

1 m
z

Notes:
• This problem illustrates an application of

the Bernoulli equation that includes
elevation changes.

• It is interesting to note that when the
Bernoulli equation applies between a
reservoir and a free jet that it feeds at a
location h below the reservoir surface,
the jet speed will be V =

ffiffiffiffiffiffiffiffiffiffi
2 gh

p
; this is the

same velocity a droplet (or stone) falling
without friction from the reservoir level
would attain if it fell a distance h. Can you
explain why?

• Always take care when neglecting friction
in any internal flow. In this problem,
neglecting friction is reasonable if the
pipe is smooth-surfaced and is relatively
short. In Chapter 8 we will study fric-
tional effects in internal flows.
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Example 6.5 FLOW UNDER A SLUICE GATE

Water flows under a sluice gate on a horizontal bed at the inlet to a flume. Upstream from the gate, the water depth is 1.5 ft and the
speed is negligible. At the vena contracta downstream from the gate, the flow streamlines are straight and the depth is 2 in. Deter-
mine the flow speed downstream from the gate and the discharge in cubic feet per second per foot of width.

Given: Flow of water under a sluice gate.

Find: (a) V2.
(b) Q in ft3=s=ft of width.

Solution: Under the assumptions listed below, the flow satisfies all
conditions necessary to apply the Bernoulli equation. The question is,
what streamline do we use?

Governing equation:
p1
ρ
+
V2
1

2
+ gz1 =

p2
ρ
+
V2
2

2
+ gz2

Assumption:

1 Steady flow.

2 Incompressible flow.

3 Frictionless flow.

4 Flow along a streamline.

5 Uniform flow at each section.

6 Hydrostatic pressure distribution (at each location, pressure increases linearly with depth).

If we consider the streamline that runs along the bottom of the channel ðz=0Þ, because of assumption 6 the pressures at and
are

p1 = patm + ρgD1 and p2 = patm + ρgD2

so that the Bernoulli equation for this streamline is

ðpatm + ρgD1Þ
ρ

+
V2
1

2
=
ðpatm + ρgD2Þ

ρ
+
V2
2

2

or
V2
1

2
+ gD1 =

V2
2

2
+ gD2 ð1Þ

On the other hand, consider the streamline that runs along the free surface on both sides and down the inner surface of the gate.
For this streamline

patm
ρ

+
V2
1

2
+ gD1 =

patm
ρ

+
V2
2

2
+ gD2

or
V2
1

2
+ gD1 =

V2
2

2
+ gD2 ð1Þ

We have arrived at the same equation (Eq. 1) for the streamline at the bottom and the streamline at the free surface, implying the
Bernoulli constant is the same for both streamlines. We will see in Section 6.5 that this flow is one of a family of flows for which
this is the case. Solving for V2 yields

V2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðD1−D2Þ+V2

1

q
But V2

1 ≈0, so

V2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðD1−D2Þ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2× 32:2

ft
s2

× 1:5 ft−2 in:×
ft

12 in:

� �s

V2 = 9:27 ft=s
V2 ����������������������������������������������������

21

z D1 = 1.5 ft

Sluice gate

Vena contracta

V2
D2 = 2 in.

g

V1 – 0~
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For uniform flow, Q=VA=VDw, or

Q
w
=VD=V2D2 = 9:27

ft
s
+ 2 in:×

ft
12 in:

=1:55 ft2=s

Q
w
=1:55 ft3=s=foot of width

Q
w ��������������������������������

Example 6.6 BERNOULLI EQUATION IN TRANSLATING REFERENCE FRAME

A light plane flies at 150 km=hr in standard air at an altitude of 1000 m. Determine the stagnation pressure at the leading edge of
the wing. At a certain point close to the wing, the air speed relative to the wing is 60 m=s. Compute the pressure at this point.

Given: Aircraft in flight at 150 km=hr at 1000 m altitude in standard air.

Find: Stagnation pressure, p0A , at point A and static pressure, pB,
at point B.

Solution: Flow is unsteady when observed from a fixed frame,
that is, by an observer on the ground. However, an observer on the
wing sees the following steady flow:

At z=1000 m in standard air, the temperature is 281 K and the speed of sound is 336 m=s. Hence at point B,MB =VB=C =0:178.
This is less than 0.3, so the flow may be treated as incompressible. Thus the Bernoulli equation can be applied along a streamline
in the moving observer’s inertial reference frame.

Governing equation:
pair
ρ

+
V2
air

2
+ gzair =

pA
ρ

+
V2
A

2
+ gzA =

pB
ρ

+
V2
B

2
+ gzB

Assumptions:

1 Steady flow.

2 Incompressible flow ðV <100 m=sÞ.
3 Frictionless flow.

4 Flow along a streamline.

5 Neglect Δz.

Values for pressure and density may be found from Table A.3. Thus, at 1000 m, p=pSL =0:8870 and ρ=ρSL =0:9075.
Consequently,

p=0:8870pSL =0:8870 × 1:01× 105
N
m2 = 8:96× 104 N=m2

and

ρ=0:9075ρSL =0:9075 × 1:23
kg
m3 =1:12 kg=m3

Vair = Vw = 150 km/hr

pair @ 1000 m
A

B VB = 60 m/s

Observer

Vair = 0
pair @ 1000 m

Vw = 150 km/hr
A B

VB = 60 m/s
(relative to wing)

Observer
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Cautions on Use of the Bernoulli Equation

In Examples 6.3 through 6.7, we have seen several situations where the Bernoulli equation may be
applied because the restrictions on its use led to a reasonable flow model. However, in some situations
you might be tempted to apply the Bernoulli equation where the restrictions are not satisfied. Some
subtle cases that violate the restrictions are discussed briefly in this section.

Example 6.3 examined flow in a nozzle. In a subsonic nozzle (a converging section) the pressure
drops, accelerating a flow. Because the pressure drops and the walls of the nozzle converge, there is
no flow separation from the walls and the boundary layer remains thin. In addition, a nozzle is usually
relatively short so frictional effects are not significant. All of this leads to the conclusion that the
Bernoulli equation is suitable for use for subsonic nozzles.

Sometimes we need to decelerate a flow. This can be accomplished using a subsonic diffuser
(a diverging section), or by using a sudden expansion (e.g., from a pipe into a reservoir). In these devices
the flow decelerates because of an adverse pressure gradient. As we discussed in Section 2.6, an adverse
pressure gradient tends to lead to rapid growth of the boundary layer and its separation. Hence, we should
be careful in applying the Bernoulli equation in such devices—at best, it will be an approximation.
Because of area blockage caused by boundary-layer growth, pressure rise in actual diffusers always
is less than that predicted for inviscid one-dimensional flow.

The Bernoulli equation was a reasonable model for the siphon of Example 6.4 because the entrance
was well rounded, the bends were gentle, and the overall length was short. Flow separation, which can
occur at inlets with sharp corners and in abrupt bends, causes the flow to depart from that predicted by a
one-dimensional model and the Bernoulli equation. Frictional effects would not be negligible if the tube
were long.

Example 6.5 presented an open-channel flow analogous to that in a nozzle, for which the Bernoulli
equation is a good flow model. The hydraulic jump is an example of an open-channel flow with adverse
pressure gradient. Flow through a hydraulic jump is mixed violently, making it impossible to identify
streamlines. Thus the Bernoulli equation cannot be used to model flow through a hydraulic jump. We
will see a more detailed presentation of open channel flows in Chapter 11.

The Bernoulli equation cannot be applied through a machine such as a propeller, pump, turbine, or
windmill. The equation was derived by integrating along a stream tube (Section 4.4) or a streamline
(Section 6.2) in the absence of moving surfaces such as blades or vanes. It is impossible to have locally
steady flow or to identify streamlines during flow through a machine. Hence, while the Bernoulli equa-
tion may be applied between points before a machine, or between points after a machine (assuming its

Since the speed is VA =0 at the stagnation point,

p0A= pair +
1
2
ρV2

air

= 8:96× 104
N
m2 +

1
2
× 1:12

kg
m3 150

km
hr

× 1000
m
km

×
hr

3600 s

� �2

×
N � s2
kg � m

p0A=90:6 kPaðabsÞ p0A ��������������������������������������
Solving for the static pressure at B, we obtain

pB= pair +
1
2
ρðV2

air−V2
BÞ

pB=8:96× 104
N
m2 +

1
2
× 1:12

kg
m3 150

km
hr

× 1000
m
km

×
hr

3600 s

� �2

−ð60Þ2m
2

s2

" #
×

N �s2
kg �m

pB=88:6 kPaðabsÞ pB ���������������������������������������

This problem gives a hint as to how a wing
generates lift. The incoming air has a
velocity Vair = 150 km=hr=41:7m=s and
accelerates to 60m=s on the upper surface.
This leads, through the Bernoulli equation,
to a pressure dropof 1 kPa (from89.6 kPa to
88.6 kPa). It turns out that the flow
decelerates on the lower surface, leading to
a pressure rise of about 1 kPa. Hence, the
wing experiences a net upward pressure
difference of about 2 kPa, a significant
effect.
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restrictions are satisfied), it cannot be applied through the machine. (In effect, a machine will change the
value of the Bernoulli constant.)

Finally, compressibility must be considered for flow of gases. Density changes caused by dynamic
compression due to motion may be neglected for engineering purposes if the local Mach number remains
below about M≈0:3, as noted in Examples 6.4 and 6.7. Temperature changes can cause significant
changes in density of a gas, even for low-speed flow. Thus the Bernoulli equation could not be applied
to air flow through a heating element (e.g., of a hand-held hair dryer) where temperature changes are
significant.

6.3 The Bernoulli Equation Interpreted as an Energy Equation
The Bernoulli equation, Eq. 6.8, was obtained by integrating Euler’s equation along a streamline for
steady, incompressible, frictionless flow. Thus Eq. 6.8 was derived from the momentum equation for
a fluid particle.

An equation identical in form to Eq. 6.8 (although requiring very different restrictions) may be
obtained from the first law of thermodynamics. Our objective in this section is to reduce the energy equa-
tion to the form of the Bernoulli equation given by Eq. 6.8. Having arrived at this form, we then compare
the restrictions on the two equations to help us understand more clearly the restrictions on the use
of Eq. 6.8.

Consider steady flow in the absence of shear forces. We choose a control volume bounded by
streamlines along its periphery. Such a boundary, shown in Fig. 6.5, often is called a stream tube.

Basic equation:

= 0 1ð Þ=0 2ð Þ=0 3ð Þ=0 4ð Þ
_Q− _W

��
�!s− _W

��
�!shear− _W

��
�!other = ∂

∂t��
�!

Z
CV

e ρ dV--- +
Z
CS

e+ pυð Þ ρV! � dA! ð4:56Þ

e= u+
V2

2
+ gz

Restrictions

1 _Ws =0.

2 _Wshear = 0.

3 _Wother = 0.

4 Steady flow.

5 Uniform flow and properties at each section.

(Remember that here υ represents the specific volume, and u represents the specific internal energy, not
velocity!) Under these restrictions, Eq. 4.56 becomes

u1 + p1υ1 +
V2
1

2
+ gz1

� �
ð−ρ1V1A1Þ+ u2 + p2υ2 +

V2
2

2
+ gz2

� �
ðρ2V2A2Þ− _Q=0

From continuity, with restrictions (4) and (5):X
CS

ρV
! � A!=0 ð4:15bÞ

1

2

CV

Streamlines

Flow

Fig. 6.5 Flow through a stream tube.
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or

ð−ρ1V1A1Þ+ ðρ2V2A2Þ=0

That is,

_m= ρ1V1A1 = ρ2V2A2

Also

_Q=
δQ
dt

=
δQ
dm

dm
dt

=
δQ
dm

_m

Thus, from the energy equation, after rearranging

p2υ2 +
V2
2

2
+ gz2

� �
− p1υ1 +

V2
1

2
+ gz1

� �	 

_m+ u2−u1−

δQ
dm

� �
_m=0

or

p1υ1 +
V2
1

2
+ gz1 = p2υ2 +

V2
2

2
+ gz2 + u2−u1−

δQ
dm

� �
Under the additional assumption (6) of incompressible flow, υ1 = υ2 = 1=ρ and hence

p1
ρ
+
V2
1

2
+ gz1 =

p2
ρ
+
V2
2

2
+ gz2 + u2−u1−

δQ
dm

� �
ð6:14Þ

Equation 6.14 would reduce to the Bernoulli equation if the term in parentheses were zero. Thus, under
the further restriction,

ð7Þ u2−u1−
δQ
dm

� �
=0

the energy equation reduces to

p1
ρ
+
V2
1

2
+ gz1 =

p2
ρ
+
V2
2

2
+ gz2

or

p
ρ
+
V2

2
+ gz= constant ð6:15Þ

Equation 6.15 is identical in form to the Bernoulli equation, Eq. 6.8. The Bernoulli equation was
derived from momentum considerations (Newton’s second law), and is valid for steady, incompressible,
frictionless flow along a streamline. Equation 6.15 was obtained by applying the first law of thermody-
namics to a stream tube control volume, subject to restrictions 1 through 7 above. Thus theBernoulli equa-
tion (Eq. 6.8) and the identical form of the energy equation (Eq. 6.15) were developed from entirely
different models, coming from entirely different basic concepts, and involving different restrictions.

It looks like we needed restriction (7) to finally transform the energy equation into the Bernoulli
equation. In fact, we didn’t! It turns out that for an incompressible and frictionless flow [restriction
(6), and the fact we are looking only at flows with no shear forces], restriction (7) is automatically sat-
isfied, as we will demonstrate in Example 6.7.

For the steady, frictionless, and incompressible flow considered in this section, it is true that the first
law of thermodynamics reduces to the Bernoulli equation. Each term in Eq. 6.15 has dimensions of
energy per unit mass (we sometimes refer to the three terms in the equation as the “pressure” energy,
kinetic energy, and potential energy per unit mass of the fluid). It is not surprising that Eq. 6.15 contains
energy terms—after all, we used the first law of thermodynamics in deriving it. How did we end up with
the same energy-like terms in the Bernoulli equation, which we derived from the momentum equation?
The answer is because we integrated the momentum equation (which involves force terms) along a
streamline (which involves distance), and by doing so ended up with work or energy terms (work being
defined as force times distance): The work of gravity and pressure forces leads to a kinetic energy change
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(which came from integrating momentum over distance). In this context, we can think of the Bernoulli
equation as a mechanical energy balance—the mechanical energy (“pressure” plus potential plus
kinetic) will be constant. We must always bear in mind that for the Bernoulli equation to be valid along
a streamline requires an incompressible inviscid flow, in addition to steady flow. It’s interesting that
these two properties of the flow—its compressibility and friction—are what “link” thermodynamic
and mechanical energies. If a fluid is compressible, any flow-induced pressure changes will compress
or expand the fluid, thereby doing work and changing the particle thermal energy; and friction, as we
know from everyday experience, always converts mechanical to thermal energy. Their absence, there-
fore, breaks the link between the mechanical and thermal energies, and they are independent—it’s as if
they’re in parallel universes!

In summary, when the conditions are satisfied for the Bernoulli equation to be valid, we can consider
separately the mechanical energy and the internal thermal energy of a fluid particle (this is illustrated in
Example 6.8); when they are not satisfied, there will be an interaction between these energies, the Ber-
noulli equation becomes invalid, and we must use the full first law of thermodynamics.

Example 6.7 INTERNAL ENERGY AND HEAT TRANSFER IN FRICTIONLESS INCOMPRESSIBLE FLOW

Consider frictionless, incompressible flow with heat transfer. Show that

u2−u1 =
δQ
dm

Given: Frictionless, incompressible flow with heat transfer.

Show: u2−u1 =
δQ
dm

.

Solution: In general, internal energy can be expressed as u= uðT ,υÞ. For incompressible flow, υ= constant, and u= uðTÞ.
Thus the thermodynamic state of the fluid is determined by the single thermodynamic property, T . For any process, the internal
energy change, u2−u1, depends only on the temperatures at the end states.

From the Gibbs equation, Tds= du+ ρ dυ, valid for a pure substance undergoing any process, we obtain

Tds= du

for incompressible flow, since dυ=0. Since the internal energy change, du, between specified end states, is independent of the
process, we take a reversible process, for which Tds= dðδQ=dmÞ= du. Therefore,

u2−u1 =
δQ
dm
 ���������������������������������������

Example 6.8 FRICTIONLESS FLOW WITH HEAT TRANSFER

Water flows steadily from a large open reservoir through a short length of pipe and a nozzle with cross-sectional area
A=0:864 in:2 A well-insulated 10 kW heater surrounds the pipe. Find the temperature rise of the water.

Given: Water flows from a large reservoir through the system shown and discharges to atmospheric pressure. The heater is
10 kW; A4 = 0:864 in:2

Find: The temperature rise of the water between points and .

Solution:

Governing equations: p
ρ
+
V2

2
+ gz= constant ð6:8Þ

1

3

2

4
10 ft

Heater
CV
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X
CS

V
! � A! =0 ð4:13bÞ

=0 4ð Þ=0 4ð Þ=0 1ð Þ
_Q− _W

��
�!s− _W

��
�!shear = ∂

∂t��
�!

Z
CV

e ρ dV--- +
Z
CS

u+ pυ+
V2

2
+ gz

� �
ρV
! � dA! ð4:56Þ

Assumptions:

1 Steady flow.

2 Frictionless flow.

3 Incompressible flow.

4 No shaft work, no shear work.

5 Flow along a streamline.

6 Uniform flow at each section [a consequence of assumption (2)].

Under the assumptions listed, the first law of thermodynamics for the CV shown becomes

_Q=
Z
CS

u+ pυ+
V2

2
+ gz

� �
ρV
! � dA!

=
Z
A1

u+ pυ+
V2

2
+ gz

� �
ρV
! � dA!+

Z
A2

u+ pυ+
V2

2
+ gz

� �
ρV
! � dA!

For uniform properties at and

_Q= −ðρV1A1Þ u1 + p1υ+
V2
1

2
+ gz1

� �
+ ðρV2A2Þ u2 + p2υ+

V2
2

2
+ gz2

� �
From conservation of mass, ρV1A1 = ρV2A2 = _m, so

_Q= _m u2−u1 +
p2
ρ
+
V2
2

2
+ gz2

� �
−

p1
ρ
+
V2
1

2
+ gz1

� �	 

For frictionless, incompressible, steady flow, along a streamline,

p
ρ
+
V2

2
+ gz= constant

Therefore,

_Q= _mðu2−u1Þ
Since, for an incompressible fluid, u2−u1 = cðT2−T1Þ, then

T2−T1 =
_Q
_mc

From continuity,

_m= ρV4A4

To find V4, write the Bernoulli equation between the free surface at and point .

p3
ρ
+
V2
3

2
+ gz3 =

p4
ρ
+
V2
4

2
+ gz4

Since p3 = p4 and V3≈0, then

V4 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðz3−z4Þ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2× 32:2

ft
s2

× 10 ft

r
=25:4 ft=s
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6.4 Energy Grade Line and Hydraulic Grade Line
We have learned that for a steady, incompressible, frictionless flow, we may use the Bernoulli equation,
Eq. 6.8, derived from the momentum equation, and also Eq. 6.15, derived from the energy equation:

p
ρ
+
V2

2
+ gz= constant ð6:15Þ

We also interpreted the three terms comprised of “pressure,” kinetic, and potential energies to make up
the total mechanical energy, per unit mass, of the fluid. If we divide Eq. 6.15 by g, we obtain
another form,

p
ρg

+
V2

2g
+ z=H ð6:16aÞ

HereH is the total head of the flow; it measures the total mechanical energy in units of meters or feet. We
will learn in Chapter 8 that in a real fluid (one with friction) this head will not be constant but will con-
tinuously decrease in value as mechanical energy is converted to thermal; in this chapter H is constant.
We can go one step further here and get a very useful graphical approach if we also define this to be the
energy grade line (EGL),

EGL=
p
ρg

+
V2

2g
+ z ð6:16bÞ

This can be measured using the pitot (total head) tube (shown in Fig. 6.3). Placing such a tube in a
flow measures the total pressure, p0 = p+ 1

2ρV
2, so this will cause the height of a column of the same

fluid to rise to a height h= p0=ρg= p=ρg+V2=2g. If the vertical location of the pitot tube is z, measured
from some datum (e.g., the ground), the height of column of fluid measured from the datum will then be
h+ z= p=ρg+V2=2g+ z=EGL=H. In summary, the height of the column, measured from the datum,
attached to a pitot tube directly indicates the EGL.

We can also define the hydraulic grade line (HGL),

HGL=
p
ρg

+ z ð6:16cÞ

This can be measured using the static pressure tap (shown in Fig. 6.2a). Placing such a tube in a flow
measures the static pressure, p, so this will cause the height of a column of the same fluid to rise to a
height h= p=ρg. If the vertical location of the tap is also at z, measured from some datum, the height

and

_m= ρV4A4 = 1:94
slug
ft3

× 25:4
ft
s
× 0:864 in:2 ×

ft2

144 in:2
= 0:296 slug=s

Assuming no heat loss to the surroundings, we obtain

T2−T1 =
_Q
_mc

=10 kW×3413
Btu

kW � hr ×
hr

3600 s

×
s

0:296 slug
×

slug
32:2 lbm

×
lbm � �R
1 Btu

T2−T1 = 0:995�R T2−T1 ���������������������������������������

This problem illustrates that:
• In general, the first law of thermo-

dynamics and the Bernoulli equation
are independent equations.

• For an incompressible, inviscid flow the
internal thermal energy is only changed
by a heat transfer process, and is inde-
pendent of the fluid mechanics.
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of column of fluid measured from the datum will then be h+ z= p=ρg+ z=HGL. The height of the col-
umn attached to a static pressure tap thus directly indicates the HGL.

From Eqs. 6.16b and 6.16c we obtain

EGL−HGL=
V2

2g
ð6:16dÞ

which shows that the difference between the EGL and HGL is always the dynamic pressure term.
To see a graphical interpretation of the EGL and HGL, refer to the example shown in Fig. 6.6, which

shows frictionless flow from a reservoir, through a pipe reducer.
At all locations the EGL is the same because there is no loss of mechanical energy. Station�1 is at the

reservoir, and here the EGL and HGL coincide with the free surface: in Eqs. 6.16b and 6.16c
p=0 ðgageÞ, V =0, and z= z1, so EGL1 =HGL1 =H = z1; all of the mechanical energy is potential.
(If we were to place a pitot tube in the fluid at station�1 , the fluid would of course just rise to the free
surface level.)

At station�2 we have a pitot (total head) tube and a static head tap. The pitot tube’s column indicates
the correct value of the EGL ðEGL1 =EGL2 =HÞ, but something changed between the two stations: The
fluid now has significant kinetic energy and has lost some potential energy (can you determine from the
figure what happened to the pressure?). From Eq. 6.16d, we can see that the HGL is lower than the EGL
by V2

2=2g; the HGL at station�2 shows this.
From station�2 to station�3 there is a reduction in diameter, so continuity requires that V3 >V2;

hence the gap between the EGL and HGL increases further, as shown.
Station�4 is at the exit (to the atmosphere). Here the pressure is zero (gage), so the EGL consists

entirely of kinetic and potential energy terms, and HGL4 =HGL3. We can summarize two important
ideas when sketching EGL and HGL curves:

1 The EGL is constant for incompressible, inviscid flow (in the absence of work devices). We will see in
Chapter 8 that work devices may increase or decrease the EGL, and friction will always lead to a fall in
the EGL.

3

4

2

1

z1

z2

z3

z4

Hydraulic
grade

line (HGL)

Energy grade line (EGL)Free surface

V2
___
2g

2

V2
___
2g

4

Datum (z = 0)

V2

V4

Fig. 6.6 Energy and hydraulic grade lines for frictionless flow.
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2 The HGL is always lower than the EGL by distance V2=2g. Note that the value of velocity V depends
on the overall system (e.g., reservoir height, pipe diameter, etc.), but changes in velocity only occur
when the diameter changes.

6.5 Unsteady Bernoulli Equation: Integration of Euler’s
Equation Along a Streamline (on the Web)

*6.6 Irrotational Flow
We have already discussed irrotational flows in Section 5.3. These are flows in which the fluid particles
do not rotate ðω!! =0Þ. We recall that the only stresses that can generate particle rotation are shear stresses;
hence, inviscid flows (i.e., those with zero shear stresses) will be irrotational, unless the particles were
initially rotating. Using Eq. 5.14, we obtain the irrotationality condition

∇×V
!
=0 ð6:22Þ

leading to

∂w
∂y

−
∂υ
∂z

=
∂u
∂z

−
∂w
∂x

=
∂υ
∂x

−
∂u
∂y

=0 ð6:23Þ

In cylindrical coordinates, from Eq. 5.16, the irrotationality condition requires that

1
r
∂Vz

∂θ
−
∂Vθ

∂z
=
∂Vr

∂z
−
∂Vz

∂r
=
1
r
∂rVθ

∂r
−
1
r
∂Vr

∂θ
=0 ð6:24Þ

Bernoulli Equation Applied to Irrotational Flow

In Section 6.2, we integrated Euler’s equation along a streamline for steady, incompressible, inviscid
flow to obtain the Bernoulli equation

p
ρ
+
V2

2
+ gz= constant ð6:8Þ

Equation 6.8 can be applied between any two points on the same streamline. In general, the value of
the constant will vary from streamline to streamline.

If, in addition to being inviscid, steady, and incompressible, the flow field is also irrotational (i.e.,
the particles had no initial rotation), so that ∇×V

!
=0 (Eq. 6.22), we can show that Bernoulli’s equation

can be applied between any and all points in the flow. Then the value of the constant in Eq. 6.8 is the
same for all streamlines. To illustrate this, we start with Euler’s equation in vector form,

ðV! � ∇ÞV!= −
1
ρ
∇p−gk̂ ð6:9Þ

Using the vector identity

ðV! � ∇ÞV!= 1
2
∇ðV! � V!Þ−V

!
× ð∇×V

!Þ

we see for irrotational flow, where ∇×V
!
=0, that

ðV! � ∇ÞV!= 1
2
∇ðV! � V!Þ

and Euler’s equation for irrotational flow can be written as

1
2
∇ðV! � V!Þ= 1

2
∇ðV2Þ= −

1
ρ
∇p−gk̂ ð6:25Þ

∗This section may be omitted without loss of continuity in the text material.

Video: An
Example of
Irrotational
Flow
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Consider a displacement in the flow field from position r! to position r!+ dr!; the displacement dr! is an
arbitrary infinitesimal displacement in any direction, not necessarily along a streamline. Taking the dot
product of dr!= dxî+ dyĵ+ dzk̂ with each of the terms in Eq. 6.25, we have

1
2
∇ðV2Þ � dr!= −

1
ρ
∇p � dr!−gk̂ � dr!

and hence

1
2
dðV2Þ= −

dp
ρ
−gdz

or

dp
ρ

+
1
2
dðV2Þ+ gdz=0

Integrating this equation for incompressible flow gives

p
ρ
+
V2

2
+ gz= constant ð6:26Þ

Since dr!was an arbitrary displacement, Eq. 6.26 is valid between any two points (i.e., not just along a
streamline) in a steady, incompressible, inviscid flow that is also irrotational (see Example 6.5).

Velocity Potential

Section 5.2 provides the necessary background for the development of the stream function ψ for a two-
dimensional incompressible flow.

For irrotational flow we can introduce a companion function, the potential function ϕ, defined by

V
!
= −∇ϕ ð6:27Þ

Why this definition? Because it guarantees that any continuous scalar function ϕðx,y,z, tÞ automatically
satisfies the irrotationality condition (Eq. 6.22) because of a fundamental identity:3

∇×V
!
= −∇×∇ϕ= −curlðgrad ϕÞ≡ 0 ð6:28Þ

The minus sign (used in most textbooks) is inserted simply so that ϕ decreases in the flow direction
(analogous to the temperature decreasing in the direction of heat flow in heat conduction). Thus,

u= −
∂ϕ
∂x

, υ= −
∂ϕ
∂y

, and w= −
∂ϕ
∂z

ð6:29Þ

(You can check that the irrotationality condition, Eq. 6.22, is satisfied identically.)
In cylindrical coordinates,

∇= êr
∂
∂r

+ êθ
1
r

∂
∂θ

+ k̂
∂
∂z

ð3:19Þ

From Eq. 6.27, then, in cylindrical coordinates

Vr = −
∂ϕ
∂r

Vθ = −
1
r
∂ϕ
∂θ

Vz = −
∂ϕ
∂z

ð6:30Þ

Because ∇×∇ϕ≡ 0 for all ϕ, the velocity potential exists only for irrotational flow.
Irrotationality may be a valid assumption for those regions of a flow in which viscous forces are

negligible. (For example, such a region exists outside the boundary layer in the flow over a wing surface,
and can be analyzed to find the lift produced by the wing.) The theory for irrotational flow is developed
in terms of an imaginary ideal fluid whose viscosity is identically zero. Since, in an irrotational flow, the

3 That ∇×∇ð Þ≡ 0 can easily be demonstrated by expanding into components.
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velocity field may be defined by the potential function ϕ, the theory is often referred to as potential flow
theory.

All real fluids possess viscosity, but there are many situations in which the assumption of inviscid
flow considerably simplifies the analysis and, at the same time, gives meaningful results. Because of its
relative simplicity and mathematical beauty, potential flow has been studied extensively.4

Stream Function and Velocity Potential for Two-Dimensional,
Irrotational, Incompressible Flow: Laplace’s Equation

For a two-dimensional, incompressible, irrotational flow we have expressions for the velocity compo-
nents, u and υ, in terms of both the stream function ψ , and the velocity potential ϕ,

u=
∂ψ
∂y

υ= −
∂ψ
∂x

ð5:4Þ

u= −
∂ϕ
∂x

υ= −
∂ϕ
∂y

ð6:29Þ

Substituting for u and υ from Eq. 5.4 into the irrotationality condition,

∂υ
∂x

−
∂u
∂y

=0 ð6:23Þ

we obtain

∂2ψ
∂x2

+
∂2ψ
∂y2

=∇2ψ =0 ð6:31Þ

Substituting for u and υ from Eq. 6.29 into the continuity equation,

∂u
∂x

+
∂υ
∂y

=0 ð5:3Þ

we obtain

∂2ϕ
∂x2

+
∂2ϕ
∂y2

=∇2ϕ=0 ð6:32Þ

Equations 6.31 and 6.32 are forms of Laplace’s equation—an equation that arises in many areas of
the physical sciences and engineering. Any function ψ or ϕ that satisfies Laplace’s equation represents
a possible two-dimensional, incompressible, irrotational flow field.

Table 6.1 summarizes the results of our discussion of the stream function and velocity potential for
two dimensional flows.

The same rules (of when incompressibility and irrotationality apply, and with the appropriate form
of Laplace’s equation) are valid for the stream function and velocity potential when expressed in cylin-
drical coordinates,

Vr =
1
r
∂ψ
∂θ

and Vθ = −
∂ψ
∂r

ð5:8Þ

and

Vr = −
∂ϕ
∂r

and Vθ = −
1
r
∂ϕ
∂θ

ð6:33Þ

4Anyone interested in a detailed study of potential flow theory may find [4–6] of interest.
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In Section 5.2 we showed that the stream function ψ is constant along any streamline. For
ψ = constant, dψ =0 and

dψ =
∂ψ
∂x

dx+
∂ψ
∂y

dy=0

The slope of a streamline—a line of constant ψ—is given by

dy
dx

�
ψ

= −
∂ψ=dx
∂x=∂y

= −
−υ

u
=
υ

u
ð6:34Þ

Along a line of constant ϕ, dϕ=0 and

dϕ=
∂ϕ
∂x

dx+
∂ϕ
∂y

dy=0

Consequently, the slope of a potential line — a line of constant ϕ — is given by

dy
dx

�
ϕ

= −
∂ϕ=∂x
∂ϕ=∂y

= −
u
υ

ð6:35Þ

(The last equality of Eq. 6.35 follows from use of Eq. 6.29.)
Comparing Eqs. 6.34 and 6.35, we see that the slope of a constant ψ line at any point is the negative

reciprocal of the slope of the constant ϕ line at that point; this means that lines of constant ψ and constant
ϕ are orthogonal. This property of potential lines and streamlines is useful in graphical analyses of flow
fields. Example 6.10 shows how the velocity potential is computed from the stream function.

Table 6.1
Definitions of ψ and ϕ, and Conditions Necessary for Satisfying Laplace’s Equation

Definition Always satisfies … Satisfies Laplace equation …
∂2ðÞ
∂x2

+
∂2ðÞ
∂y2

=∇2ðÞ=0

Stream function ψ

u=
∂ψ
∂y

υ= −
∂ψ
∂x

… incompressibility:

∂u
∂x

+
∂υ
∂y

=
∂2ψ
∂x∂y

−
∂2ψ
∂y∂x

≡ 0

… only if irrotational:

∂υ
∂x

−
∂u
∂y

= −
∂2ψ
∂x∂x

−
∂2ψ
∂y∂y

=0

Velocity potential ϕ

u= −
∂ϕ
∂x

υ= −
∂ϕ
∂y

… irrotationality:

∂υ
∂x

−
∂u
∂y

= −
∂2ϕ
∂x∂y

−
∂2ϕ
∂y∂x

≡ 0

… only if incompressible:

∂u
∂x

+
∂υ
∂y

= −
∂2ϕ
∂x∂x

−
∂2ϕ
∂y∂y

=0

Example 6.10 VELOCITY POTENTIAL

Consider the flow field given by ψ = ax2−ay2, where a=3 s−1. Show that the flow is irrotational. Determine the velocity poten-
tial for this flow.

Given: Incompressible flow field with ψ = ax2−ay2, where a=3 s−1.

Find: (a) Whether or not the flow is irrotational.
(b) The velocity potential for this flow.

Solution: If the flow is irrotational, ∇2ψ =0. Checking for the given flow,

∇2ψ =
∂2

∂x2
ðax2−ay2Þ+ ∂2

∂y2
ðax2−ay2Þ=2a−2a=0
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Elementary Plane Flows

The ψ and ϕ functions for five elementary two-dimensional flows—a uniform flow, a source, a sink, a
vortex, and a doublet—are summarized in Table 6.2. The ψ and ϕ functions can be obtained from
the velocity field for each elementary flow. (We saw in Example 6.10 that we can obtain ϕ from u
and υ.)

A uniform flow of constant velocity parallel to the x axis satisfies the continuity equation and the
irrotationality condition identically. In Table 6.2 we have shown the ψ and ϕ functions for a uniform
flow in the positive x direction.

For a uniform flow of constant magnitude V , inclined at angle α to the x axis,

ψ = ðV cos αÞy−ðV sin αÞx
ϕ= −ðV sin αÞy−ðV cos αÞx

A simple source is a flow pattern in the xy plane in which flow is radially outward from the z axis and
symmetrical in all directions. The strength, q, of the source is the volume flow rate per unit depth. At any
radius, r, from a source, the tangential velocity, Vθ, is zero; the radial velocity, Vr, is the volume flow rate
per unit depth, q, divided by the flow area per unit depth, 2πr. Thus Vr = q=2πr for a source. Knowing Vr

and Vθ, obtaining ψ and ϕ from Eqs. 5.8 and 6.33, respectively, is straightforward.

so that the flow is irrotational. As an alternative proof, we can compute the fluid particle rotation (in the xy plane, the only com-
ponent of rotation is ωz):

2ωz =
∂υ
∂x

−
∂u
∂y

and u=
∂ψ
∂y

υ= −
∂ψ
∂x

then

u=
∂
∂y
ðax2−ay2Þ= −2ay and υ= −

∂
∂x
ðax2−ay2Þ= −2ax

so

2ωz =
∂υ
∂x

−
∂u
∂y

=
∂
∂x
ð−2axÞ− ∂

∂y
ð−2ayÞ= −2a+2a=0 2ωz ������������������

Once again, we conclude that the flow is irrotational. Because it is irrotational, ϕ must exist, and

u= −
∂ϕ
∂x

and υ= −
∂ϕ
∂y

Consequently, u= −
∂ϕ
∂x

= −2ay and
∂ϕ
∂x

=2ay. Integrating with respect to x gives ϕ=2axy+ f ðyÞ, where f ðyÞ is an arbitrary
function of y. Then

υ= −2ax= −
∂ϕ
∂y

= −
∂
∂x
½2axy+ f ðyÞ�

Therefore, −2ax= −2ax−
∂f ðyÞ
∂y

= −2ax−
df
dy

, so
df
dy

=0 and f = constant. Thus

ϕ=2axy+ constant
ϕ �������������������������������

We also can show that lines of constant ψ and constant ϕ are orthogonal.

ψ = ax2−ay2 and ϕ=2axy

For ψ = constant, dψ =0=2axdx−2aydy; hence
dy
dx

�
ψ = c

=
x
y

For ϕ= constant, dϕ=0=2aydx+2axdy; hence
dy
dx

�
ϕ= c

= −
y
x

The slopes of lines of constant ϕ and constant ψ are negative reciprocals.
Therefore lines of constant ϕ are orthogonal to lines of constant ψ .

This problem illustrates the relations
among the stream function, velocity
potential, and velocity field.

The stream function ψ and velocity
potential ϕ are shown in the Excel

workbook. By entering the equations for ψ
and ϕ, other fields can be plotted.
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Table 6.2
Elementary Plane Flows

U U
x

y

Uniform Flow (positive x
direction)

u=U ψ =Uy

υ=0 ϕ= −Ux

Γ=0 around any closed curve
y

x

ϕ

= c3

= –c3

= c2

= –c2

= c1

= –c1

= 0

=
k 2

ϕ
=
 –

k 2

ϕ
=

k 1

ϕ
=
 –

k 1

ϕ
=

0

x

y r
θ

Source Flow (from origin)

Vr =
q
2πr

ψ =
q
2π

θ

Vθ =0 ϕ= −
q
2π

ln r

Origin is singular point
q is volume flow rate per
unit depth
Γ=0 around any closed curve

y
x

= –k1

ϕ

ϕ

= –k2

= c1

= c2

= c3

= c4

= c5

= c6

= c7

= 0

y
x

r θ

Sink Flow (toward origin)

Vr = −
q
2πr

ψ = −
q
2π

θ

Vθ =0 ϕ=
q
2π

ln r

Origin is singular point
q is volume flow rate per
unit depth
Γ=0 around any closed curve

y

x
= k1

ϕ

ϕ

= k2

= –c1

= –c2

= –c3

= –c4

= –c5

= –c6

= –c7

= 0

y

x

r
θ

Irrotational Vortex
(counterclockwise, center at
origin)

Vr =0 ψ = −
K
2π

ln r

Vθ =
K
2πr

ϕ= −
K
2π

θ

Origin is singular point
K is strength of the vortex
Γ=K around any closed curve
enclosing origin
Γ=0 around any closed curve not
enclosing origin

y
x

= –c1

= –c3

= –c4

ϕ = –k3

ϕ = –k4
ϕ = 0

ϕ = –k5

ϕ = –k6

ϕ = –k7

ϕ = –k1

ϕ = –k2

= –c2
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In a simple sink, flow is radially inward; a sink is a negative source. The ψ and ϕ functions for a sink
shown in Table 6.2 are the negatives of the corresponding functions for a source flow.

The origin of either a sink or a source is a singular point, since the radial velocity approaches infinity
as the radius approaches zero. Thus, while an actual flow may resemble a source or a sink for some
values of r, sources and sinks have no exact physical counterparts. The primary value of the concept
of sources and sinks is that, when combined with other elementary flows, they produce flow patterns
that adequately represent realistic flows.

A flow pattern in which the streamlines are concentric circles is a vortex; in a free (irrotational)
vortex, fluid particles do not rotate as they translate in circular paths around the vortex center. There
are a number of ways of obtaining the velocity field, for example, by combining the equation of motion
(Euler’s equation) and the Bernoulli equation to eliminate the pressure. Here, though, for circular stream-
lines, we have Vr =0 and Vθ = f ðθÞ only. We also have previously introduced the condition of irrota-
tionality in cylindrical coordinates,

1
r
∂rVθ

∂r
−
1
r
∂Vr

∂θ
=0 ð6:24Þ

Hence, using the known forms of Vr and Vθ, we obtain

1
r
dðrVθÞ
dr

=0

Integrating this equation gives
Vθr= constant

The strength, K, of the vortex is defined as K =2πrVθ; the dimensions of K are L2=t (volume flow rate
per unit depth). Once again, knowing Vr and Vθ, obtaining ψ and ϕ from Eqs. 5.8 and 6.33, respectively,
is straightforward. The irrotational vortex is a reasonable approximation to the flow field in a tornado
except in the region of the origin; the origin is a singular point.

The final “elementary” flow listed in Table 6.2 is the doublet of strength Λ. This flow is produced
mathematically by allowing a source and a sink of numerically equal strengths to merge. In the limit, as
the distance, δs, between them approaches zero, their strengths increase so the product qδs=2π tends to a
finite value, Λ, which is termed the strength of the doublet.

Superposition of Elementary Plane Flows

We saw earlier that both ϕ and ψ satisfy Laplace’s equation for flow that is both incompressible and
irrotational. Since Laplace’s equation is a linear, homogeneous partial differential equation, solutions
may be superposed (added together) to develop more complex and interesting patterns of flow. Thus
if ψ1 and ψ2 satisfy Laplace’s equation, then so does ψ3 =ψ1 +ψ2. The elementary plane flows are
the building blocks in this superposition process. There is one note of caution: While Laplace’s equation
for the stream function, and the stream function-velocity field equations (Eq. 5.3) are linear, theBernoulli

y

x

r
θ

Doublet (center at origin)

Vr = −
Λ
r2
cos θ ψ = −

Λ sin θ
r

Vθ = −
Λ

r2
sin θ ϕ= −

Λ cos θ
r

Origin is singular point
Λ is strength of the doublet
Γ=around any closed curve

= –c2

= –c3

= 0

= c3

= c2

= –c1

= c1

ϕ = –k1ϕ = k1

ϕ = k2 ϕ = –k2

x

y
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equation is not; hence, in the superposition process we will have ψ3 =ψ1 +ψ2, u3 = u1 + u2, and
υ3 = υ1 + υ2, but p3 6¼ p1 + p2! We must use the Bernoulli equation, which is nonlinear in V , to find p3.

We can add together elementary flows to try and generate recognizable flow patterns. The simplest
superposition approach is called the directmethod, in which we try different combinations of elementary
flows and see what kinds of flow patterns are produced. This sounds like a random process, but with a
little experience it becomes a quite logical process. For example, look at some of the classic examples
listed in Table 6.3. The source and uniform flow combination makes sense—wewould intuitively expect
a source to partially push its way upstream, and to divert the flow around it. The source, sink, and uni-
form flow (generating what is called a Rankine body) is also not surprising—the entire flow out of the
source makes its way into the sink, leading to a closed streamline. Any streamline can be interpreted as a
solid surface because there is no flow across it;we can therefore pretend that this closed streamline repre-
sents a solid. We could easily generalize this source-sink approach to any number of sources and sinks
distributed along the x axis, and as long as the sum of the source and sink strengths added up to zero, we
would generate a closed streamline body shape. The doublet-uniform flow (with or without a vortex)
generates a very interesting result: flow over a cylinder (with or without circulation)! We first saw
the flow without circulation in Fig. 2.12a. The flow with a clockwise vortex produces a top-to-bottom
asymmetry. This is because in the region above the cylinder the velocities due to the uniform flow and
vortex are in the same overall direction and lead to a high velocity; below the cylinder they are in oppo-
site directions and therefore lead to a low velocity. As we have learned, whenever velocities are high,
streamlines will be close together, and vice versa—explaining the pattern shown. More importantly,
from the Bernoulli equation we know that whenever the velocity is high the pressure will be low,
and vice versa—hence, we can anticipate that the cylinder with circulation will experience a net upward
force (lift) due to pressure. This approach, of looking at streamline patterns to see where we have regions
of high or low velocity and hence low or high pressure, is very useful. We will examine these last two
flows in Examples 6.11 and 6.12. The last example in Table 6.3, the vortex pair, hints at a way to create
flows that simulate the presence of a wall or walls: for the y axis to be a streamline (and thus a wall),
simply make sure that any objects (e.g., a source, a vortex) in the positive x quadrants have mirror-image
objects in the negative x quadrants; the y axis will thus be a line of symmetry. For a flow pattern in a 90�

corner, we need to place objects so that we have symmetry with respect to both the x and y axes. For flow

Table 6.3
Superposition of Elementary Plane Flows

Source and Uniform Flow (flow past a half-body)

y

x

r
P
V1

V2

V

θ

ψ =ψ so +ψuf =ψ1 +ψ2 =
q
2π

θ+Uy

ψ =
q
2π

θ+Ur sin θ

ϕ=ϕso +ϕuf =ϕ1 +ϕ2 = −
q
2π

ln r−Ux

ϕ= −
q
2π

ln r−Ur cos θ

P

Source and Sink (equal strength, separation distance on x axis= 2a)

y

x

V2

V1

r2

r1

r V

P

θ1
θ2

(a,0)(–a,0)

ψ =ψ so +ψ si =ψ1 +ψ2 =
q
2π

θ1−
q
2π

θ2

ψ =
q
2π
ðθ1−θ2Þ

ϕ=ϕso +ϕsi =ϕ1 +ϕ2 = −
q
2π

ln r1 +
q
2π

ln r2

ϕ=
q
2π

ln
r2
r1

P
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Source, Sink, and Uniform Flow (flow past a Rankine body)

y

x

V2

V3

V1

r2

r1

r

V
P

θ θ1
θ2

ψ =ψ so +ψ si +ψuf =ψ1 +ψ2 +ψ3

=
q

2π
θ1−

q
2π

θ2 + Uy

ψ =
q

2π
ðθ1−θ2Þ+ Ur sin θ

ϕ=ϕso +ϕsi +ϕuf =ϕ1 +ϕ2 +ϕ3

= −
q

2π
ln r1 +

q
2π

ln r2−Ux

ϕ=
q

2π
ln

r2

r1

−Ur cos θ

P

Vortex (clockwise) and Uniform Flow

y

x

V1

V2P
r V
θ

ψ =ψυ +ψuf =ψ1 +ψ2 =
K
2π

ln r + Uy

ψ =
K
2π

ln r + Ur sin θ

ϕ =ϕυ +ϕuf =ϕ1 +ϕ2 =
K
2π

θ−Ux

ϕ =
K
2π

θ−Ur cos θ

P

Doublet and Uniform Flow (flow past a cylinder)

y

x

V1

V2P

r V

θ

ψ =ψd +ψuf =ψ1 +ψ2 = −
Λ sin θ

r
+ Uy

= −
Λ sin θ

r
+ Ur sin θ

ψ = U r−
Λ
Ur

� �
sin θ

ψ = Urð1− a2

r2
Þsin θ a =

ffiffiffiffi
Λ
U

r

ϕ=ϕd +ϕuf =ϕ1 +ϕ2 = −
Λ cos θ

r
−Ux

= −
Λ cos θ

r
−Ur cos θ

ϕ= −U r +
Λ
Ur

� �
cos θ= −Ur 1 +

a2

r2

� �
cos θ

P

Doublet, Vortex (clockwise), and Uniform Flow (flow past a cylinder with circulation)

y

x

V1 V2

V3P

r V
θ

ψ =ψd +ψυ +ψuf =ψ1 +ψ2 +ψ3

= −
Λ sin θ

r
+

K
2π

ln r + Uy

ψ = −
Λ sin θ

r
+

K
2π

ln r + Ur sin θ

ψ = Ur 1−
a2

r2

� �
sin θ+

K
2π

ln r

ϕ=ϕd +ϕυ +ϕuf =ϕ1 +ϕ2 +ϕ3

= −
Λ cos θ

r
+

K
2π

θ−Ux

P

a =

ffiffiffiffi
Λ
U

r
; K < 4πaU ϕ= −

Λ cos θ

r
+

K
2π

θ−Ur cos θ

ϕ= −Ur 1 +
a2

r2

� �
cos θ +

K
2π

θ

(Continued)
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Example 6.11 FLOW OVER A CYLINDER: SUPERPOSITION OF DOUBLET AND UNIFORM FLOW

For two-dimensional, incompressible, irrotational flow, the superposition of a doublet and a uniform flow represents flow around
a circular cylinder. Obtain the stream function and velocity potential for this flow pattern. Find the velocity field, locate the stag-
nation points and the cylinder surface, and obtain the surface pressure distribution. Integrate the pressure distribution to obtain the
drag and lift forces on the circular cylinder.

Given: Two-dimensional, incompressible, irrotational flow formed from superposition of a doublet and a uniform flow.

Find: (a) Stream function and velocity potential.
(b) Velocity field.
(c) Stagnation points.
(d) Cylinder surface.
(e) Surface pressure distribution.
(f) Drag force on the circular cylinder.
(g) Lift force on the circular cylinder.

Table 6.3
Superposition of Elementary Plane Flows (Continued)

Source and Vortex (spiral vortex)

y

x

r

V

P

V1V2

θ

ψ =ψ so +ψυ =ψ1 +ψ2 =
q
2π

θ−
K
2π

ln r

ϕ=ϕso +ϕυ =ϕ1 +ϕ2 = −
q
2π

ln r−
K
2π

θ
P

Sink and Vortex

y

x

r

V P
V1

V2

θ

ψ =ψ si +ψυ =ψ1 +ψ2 = −
q
2π

θ−
K
2π

ln r

ϕ=ϕsi +ϕυ =ϕ1 +ϕ2 =
q
2π

ln r−
K
2π

θ

P

Vortex Pair (equal strength, opposite rotation, separation distance on x axis = 2a)

y

x

r2

r1

1

V1

V2

PV

2

(a,0)(–a,0)

θ
θ

ψ =ψυ1 +ψυ2 =ψ1 +ψ2 = −
K
2π

ln r1 +
K
2π

ln r2

ψ =
K
2π

ln
r2
r1

ϕ=ϕυ1 +ϕυ2 =ϕ1 +ϕ2 = −
K
2π

θ1 +
K
2π

θ2

ϕ=
K
2π
ðθ2−θ1Þ

P
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Solution: Stream functions may be added because the flow field is incompressible and irrotational. Thus from Table 6.2,
the stream function for the combination is

ψ =ψd +ψuf = −
Λ sin θ

r
+Ur sin θ

ψ ���������������������
The velocity potential is

ϕ=ϕd +ϕuf = −
Λ cos θ

r
−Ur cos θ

ϕ ���������������������
The corresponding velocity components are obtained using Eqs. 6.30 as

Vr = −
∂ϕ
∂r

= −
Λ cos θ

r2
+U cos θ

Vθ = −
1
r
∂ϕ
∂θ

= −
Λ sin θ
r2

−U sin θ

The velocity field is

V
!
=Vrêr +Vθ êθ = −

Λ cos θ
r2

+U cos θ
� �

êr + −
Λ sin θ
r2

−U sin θ
� �

êθ V
!

 ����������������
Stagnation points are where V

!
=Vrêr +Vθêθ =0

Vr = −
Λ cos θ

r2
+U cos θ= cos θ U−

Λ
r2

� �
Thus Vr =0 when r=

ffiffiffiffi
Λ
U

r
= a. Also,

Vθ = −
Λ sin θ
r2

−U sin θ= −sin θ U +
Λ
r2

� �
Thus Vθ =0 when θ=0,π.

Stagnation points are ðr,θÞ= ða,0Þ,ða,πÞ: Stagnation points �����������������������������������������������
Note that Vr =0 along r= a, so this represents flow around a circular cylinder, as shown in Table 6.3. Flow is irrotational, so the
Bernoulli equation may be applied between any two points. Applying the equation between a point far upstream and a point on
the surface of the cylinder (neglecting elevation differences), we obtain

p∞

ρ
+
U2

2
=
p
ρ
+
V2

2

Thus,

p−p∞ =
1
2
ρðU2−V2Þ

Along the surface, r= a, and

V2 =V2
θ = −

Λ
a2

−U
� �2

sin2θ=4U2 sin2θ

since Λ=Ua2. Substituting yields

p−p∞ =
1
2
ρðU2−4U2 sin2θÞ= 1

2
ρU2ð1−4 sin2θÞ

or

p−p∞
1
2
ρU2

= 1−4 sin2 θ

Pressure
distribution

 �������������������������������������������
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Drag is the force component parallel to the freestream flow direction. The drag force
is given by

FD =
Z
A
−p dA cos θ=

Z 2π

0
−pa dθ b cos θ

since dA= a dθ b, where b is the length of the cylinder normal to the diagram.

Substituting p= p∞ + 1
2ρU

2ð1−4 sin2 θÞ,

FD =
Z 2π

0
−p∞ab cos θ dθ+

Z 2π

0
−
1
2
ρU2ð1−4 sin2 θÞab cos θ dθ

= −p∞ ab sin θ
i2π
0
−
1
2
ρU2ab sin θ

i2π
0
+
1
2
pU2ab

4
3
sin3 θ

i2π
0

FD =0
FD �����������������������������������������������

Lift is the force component normal to the freestream flow direction. (By convention, positive lift is an upward force.)
The lift force is given by

FL =
Z
A
p dAð−sin θÞ= −

Z 2π

0
pa dθ b sin θ

Substituting for p gives

FL = −
Z 2π

0
p∞ab sin θ dθ−

Z 2π

0

1
2
ρU2ð1−4 sin2 θÞab sin θ dθ

= p∞a b cos θ
i2π
0
+
1
2
ρU2ab cos θ

i2π
0
+
1
2
ρU2ab

4 cos3 θ
3

−4 cos θ
	 
2π

0

FL =0 FL �����������������������������������

This problem illustrates:
• How elementary plane flows can be

combined to generate interesting and
useful flow patterns.

• d’Alembert’s paradox, that potential
flows over a body do not generate drag.

The stream function and pressure
distribution are plotted in the Excel

workbook.

a

p dA

U

p

θ

Example 6.12 FLOW OVER A CYLINDER WITH CIRCULATION: SUPERPOSITION OF DOUBLET,
UNIFORM FLOW, AND CLOCKWISE FREE VORTEX

For two-dimensional, incompressible, irrotational flow, the superposition of a doublet, a uniform flow, and a free vortex repre-
sents the flow around a circular cylinder with circulation. Obtain the stream function and velocity potential for this flow pattern,
using a clockwise free vortex. Find the velocity field, locate the stagnation points and the cylinder surface, and obtain the surface
pressure distribution. Integrate the pressure distribution to obtain the drag and lift forces on the circular cylinder. Relate the lift
force on the cylinder to the circulation of the free vortex.

Given: Two-dimensional, incompressible, irrotational flow formed from superposition of a doublet, a uniform flow, and a
clockwise free vortex.

Find: (a) Stream function and velocity potential.
(b) Velocity field.
(c) Stagnation points.
(d) Cylinder surface.
(e) Surface pressure distribution.
(f) Drag force on the circular cylinder.
(g) Lift force on the circular cylinder.
(h) Lift force in terms of circulation of the free vortex.
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Solution: Stream functions may be added because the flow field is incompressible and irrotational. From Table 6.2, the stream
function and velocity potential for a clockwise free vortex are

ψ f υ =
K
2π

lnr ϕf υ =
K
2π

θ

Using the results of Example 6.11, the stream function for the combination is

ψ =ψd +ψuf +ψ f υ

ψ = −
Λ sin θ

r
+Ur sin θ+

K
2π

ln r
ψ �����������������������������������������������

The velocity potential for the combination is

ϕ=ϕd +ϕuf +ϕf υ

ϕ= −
Λ cos θ

r
−Ur cos θ+

K
2π

θ
ϕ �������������������������������������������������

The corresponding velocity components are obtained using Eqs. 6.30 as

Vr = −
∂ϕ
∂r

= −
Λ cos θ

r2
+U cos θ ð1Þ

Vθ = −
1
r
∂ϕ
∂θ

= −
Λ sin θ
r2

−U sin θ−
K
2πr

ð2Þ

The velocity field is

V
!
=Vr êr +Vθ êθ

V
!
= −

Λ cos θ
r2

+U cos θ
� �

êr + −
Λ sin θ

r
−U sin θ−

K
2πr

� �
êθ

V
!

 ���������������������������
Stagnation points are located where V

!
=Vr êr +Vθ êθ =0. From Eq. 1,

Vr = −
Λ cos θ

r2
+U cos θ= cos θ U−

Λ

r2

� �
Thus Vr =0 when r=

ffiffiffiffiffiffiffiffiffiffi
Λ=U

p
= a

Cylinder surface ���������������������������������������������������������
The stagnation points are located on r= a. Substituting into Eq. 2 with r= a,

Vθ = −
Λ sin θ
a2

−U sin θ−
K
2πa

= −
Λ sin θ
Λ=U

−U sin θ−
K
2πa

Vθ = −2U sin θ−
K
2πa

Thus Vθ =0 along r= a when

sin θ= −
K

4πUa
or θ= sin−1 −K

4πUa

	 


Stagnation points: r= a θ= sin−1 −K
4πUa

	 

Stagnation points ���������������������������������������������������

As in Example 6.11, Vr =0 along r= a, so this flow field once again represents flow around a circular cylinder, as shown in
Table 6.3. For K =0 the solution is identical to that of Example 6.11.

The presence of the free vortex ðK >0Þmoves the stagnation points below the center of the cylinder. Thus the free vortex alters
the vertical symmetry of the flow field. The flow field has two stagnation points for a range of vortex strengths between K =0
and K =4πUa.

A single stagnation point is located at θ= −π=2 when K =4πUa.
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Even with the free vortex present, the flow field is irrotational, so the Bernoulli equation may be
applied between any two points. Applying the equation between a point far upstream and a point on the
surface of the cylinder we obtain

p∞

ρ
+
U2

2
+ g z=

p
ρ
+
V2

2
+ gz

Thus, neglecting elevation differences,

p−p∞ =
1
2
ρðU2−V2Þ= 1

2
ρU2 1−

U
V

� �2
" #

Along the surface r= a and Vr =0, so

V2 =V2
θ = −2U sin θ−

K
2πa

� �2

and

V
U

� �2

= 4 sin2 θ+
2K
πUa

sin θ+
K2

4π2U2a2

Thus

p= p∞ +
1
2
ρU2 1−4 sin2θ−

2K
πUa

sinθ−
K2

4π2U2a2

� �
pðθÞ

 �����������������������������������
Drag is the force component parallel to the freestream flow direction. As in Example 6.11, the drag force is given by

FD =
Z
A
−p dA cos θ=

Z 2π

0
−pa dθb cos θ

since dA= a dθ b, where b is the length of the cylinder normal to the diagram.
Comparing pressure distributions, the free vortex contributes only to the terms containing the factor K. The contribution of

these terms to the drag force is
FDf υ

1
2ρU

2
=
Z 2π

0

2K
πUa

sin θ+
K2

4π2U2a2

� �
ab cos θ dθ ð3Þ

FDf υ

1
2
ρU2

=
2K
πUa

ab
sin2 θ
2


2π
0
+

K2

4π2U2a2
ab sin θ


2π
0
= 0 FD �������������������������������������������������

Lift is the force component normal to the freestream flow direction. (Upward force is defined as positive lift.) The lift force is
given by

FL =
Z
A
−p dA sin θ=

Z 2π

0
−pa dθ b sin θ

Comparing pressure distributions, the free vortex contributes only to the terms containing the factor K. The contribution of these
terms to the lift force is

FLf υ

1
2
ρU2

=
Z 2π

0

2K
πUa

sin θ+
K2

4π2U2a2

� �
ab sin θ dθ

=
2K
πUa

Z 2π

0
ab sin2θdθ+

K2

4π2U2a2

Z 2π

0
ab sin θ dθ

=
2Kb
πU

θ

2
−
sin2 θ
4

	 
2π
0
−

K2b
4π2U2a

cos θ

2π
0

FLf υ

1
2
ρU2

=
2Kb
πU

2π
2

	 

=
2Kb
U

p

V

a

p

U
θ
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in a corner whose angle is a fraction of 90� (e.g., 30�), we need to place objects in a radially symmetric
fashion.

Because Laplace’s equation appears in many engineering and physics applications, it has been
extensively studied. We saw in Example 5.12 that Laplace’s equation is sometimes amenable to a fairly
simple numerical solution using a spreadsheet. For analytic solutions, one approach is to use conformal
mapping with complex notation. It turns out that any continuous complex function f ðzÞ (where z= x+ iy,
and i=

ffiffiffiffiffiffiffi
−1
p

) is a solution of Laplace’s equation, and can therefore represent both ϕ and ψ . With this
approach many elegant mathematical results have been derived [7–10]. We mention only two: the circle
theorem, which enables any given flow [e.g., from a source at some point ða,bÞ] to be easily transformed
to allow for the presence of a cylinder at the origin; and the Schwarz-Christoffel theorem, which enables
a given flow to be transformed to allow for the presence of virtually unlimited stepwise linear boundaries
(e.g., the presence on the x axis of the silhouette of a building).

Much of this analytical work was done centuries ago, when it was called “hydrodynamics” instead
of potential theory. A list of famous contributors includes Bernoulli, Lagrange, d’Alembert, Cauchy,
Rankine, and Euler [11]. As we discussed in Section 2.6, the theory immediately ran into difficulties:
In an ideal fluid flow no body experiences drag—the d’Alembert paradox of 1752—a result completely
counter to experience. Prandtl, in 1904, resolved this discrepancy by describing how real flows may be
essentially inviscid almost everywhere, but there is always a “boundary layer” adjacent to the body. In
this layer significant viscous effects occur, and the no-slip condition is satisfied (in potential flow theory
the no-slip condition is not satisfied). Development of this concept, and theWright brothers’ historic first
human flight, led to rapid developments in aeronautics starting in the 1900s. We will study boundary
layers in detail in Chapter 9, where we will see that their existence leads to drag on bodies, and also
affects the lift of bodies.

An alternative superposition approach is the inverse method in which distributions of objects such
as sources, sinks, and vortices are used to model a body [12]. It is called inverse because the body shape
is deduced based on a desired pressure distribution. Both the direct and inverse methods, including three-
dimensional space, are today mostly analyzed using computer applications such as Fluent [13] and
STAR-CD [14].

Then FLfυ = ρUKb
FL ���������������������������������������������������������������������������

The circulation is defined by Eq. 5.18 as

Γ≡
I

V
! �d s!

On the cylinder surface, r= a, and V
!
=Vθ êθ, so

Γ=
Z 2π

0
−2U sin θ−

K
2πa

� �
êθ � a dθ êθ

= −
Z 2π

0
2Ua sin θ dθ−

Z 2π

0

K
2π

dθ

Γ= −K Circulation �����������������������������������������������
Substituting into the expression for lift,

FL = ρUKb= ρUð−ΓÞb= −ρU Γb

or the lift force per unit length of cylinder is

FL

b
= −ρUΓ

FL

b ��������������������������������������������

This problem illustrates:
• Once again d’Alembert’s paradox, that

potential flows do not generate drag on
a body.

• That the lift per unit length is −ρUΓ. It
turns out that this expression for lift is
the same for all bodies in an ideal fluid
flow, regardless of shape!

The stream function and pressure
distribution are plotted in the Excel

workbook.
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6.7 Summary and Useful Equations
In this chapter we have:

✓ Derived Euler’s equations in vector form and in rectangular, cylindrical, and streamline
coordinates.

✓ Obtained Bernoulli’s equation by integrating Euler’s equation along a steady-flow streamline,
and discussed its restrictions. We have also seen how for a steady, incompressible flow through
a stream tube the first law of thermodynamics reduces to the Bernoulli equation if certain
restrictions apply.

✓ Defined the static, dynamic, and stagnation (or total) pressures.
✓ Defined the energy and hydraulic grade lines.
✓ *Derived an unsteady flow Bernoulli equation, and discussed its restrictions.
✓ *Observed that for an irrotational flow that is steady and incompressible, the Bernoulli equa-

tion applies between any two points in the flow.
✓ *Defined the velocity potential ϕ and discussed its restrictions.

We have also explored in detail two-dimensional, incompressible, and irrotational flows, and
learned that for these flows: the stream function ψ and the velocity potential ϕ satisfy Laplace’s
equation; ψ and ϕ can be derived from the velocity components, and vice versa, and the iso-lines
of the stream function ψ and the velocity potential ϕ are orthogonal. We explored for such flows
how to combine potential flows to generate various flow patterns, and how to determine the
pressure distribution and lift and drag on, for example, a cylindrical shape.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to
refer to their page numbers for details!

Useful Equations
The Euler equation for
incompressible, inviscid flow: ρ

DV
!

Dt
= ρg!−∇p

(6.1) Page 199

The Euler equation (rectangular
coordinates): ρ

∂u
∂t

+ u
∂u
∂x

+ υ
∂u
∂y

+w
∂u
∂z

� �
= ρgx−

∂p
∂x

ρ
∂υ
∂t

+ u
∂υ
∂x

+ υ
∂υ
∂y

+w
∂υ
∂z

� �
= ρgy−

∂p
∂y

ρ
∂w
∂t

+ u
∂w
∂x

+ υ
∂w
∂y

+w
∂w
∂z

� �
= ρgz−

∂p
∂z

(6.2a)

(6.2b)

(6.2c)

Page 199

The Euler equation (cylindrical
coordinates): ρar = ρ

∂Vr

∂t
+Vr

∂Vr

∂r
+
Vθ

r
∂Vr

∂θ
+Vz

∂Vr

∂z
−
V2
θ

r

� �
= ρgr−

∂p
∂r

ρaθ = ρ
∂Vθ

∂t
+Vr

∂Vθ

∂r
+
Vθ

r
∂Vθ

∂θ
+Vz

∂Vθ

∂z
+
VrVθ

r

� �
= ρgθ−

1
r
∂p
∂θ

ρaz = ρ
∂Vz

∂t
+Vr

∂Vz

∂r
+
Vθ

r
∂Vz

∂θ
+Vz

∂Vz

∂z

� �
= ρgz−

∂p
∂z

(6.3a)

(6.3b)

(6.3c)

Page 199

∗These topics apply to sections that may be omitted without loss of continuity in the text material.
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Table (Continued)

The Bernoulli equation (steady,
incompressible, inviscid, along
a streamline):

p
ρ
+
V2

2
+ gz= constant

(6.8) Page 203

Definition of total head of a flow: p
ρg

+
V2

2g
+ z=H

(6.16a) Page 217

Definition of energy grade
line (EGL): EGL=

p
ρg

+
V2

2g
+ z

(6.16b) Page 217

Definition of hydraulic grade line
(HGL):

HGL=
p
ρg

+ z (6.16c) Page 217

Relation between EGL,
HGL, and dynamic
pressure:

EGL−HGL=
V2

2g
(6.16d) Page 218

Definition of stream
function (2D,
incompressible flow):

u=
∂ψ
∂y

υ= −
∂ψ
∂x

(5.4) Page 221

Definition of velocity potential
(2D irrotational flow):

u= −
∂ϕ
∂x

υ= −
∂ϕ
∂y

(6.29) Page 221

Definition of stream function
(2D, incompressible flow,
cylindrical coordinates):

Vr =
1
r
∂ψ
∂θ

and Vθ = −
∂ψ
∂r

(5.8) Page 221

Definition of velocity potential
(2D irrotational flow, cylindrical
coordinates):

Vr = −
∂ϕ
∂r

and Vθ = −
1
r
∂ϕ
∂θ

(6.33) Page 221
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P R O B L E M S

Euler’s Equation
6.1 An incompressible frictionless flow field is given by
V
!
= ðAx+ByÞî+ ðBx−AyÞĵ, where A=2 s−1 and B=2 s−1, and the

coordinates are measured in meters. Find the magnitude and direction
of the acceleration of a fluid particle at point ðx,yÞ= ð2,2Þ. Find the
pressure gradient at the same point, if g!= −gĵ and the fluid is water.

6.2 A velocity field in a fluid with density of 1000 kg=m3 is given
by V

!
= ð−Ax+ByÞtî+ ðAy+BxÞtĵ, where A=2 s−2 and B=1 s−2,

x and y are in meters, and t is in seconds. Body forces are negligible.
Evaluate ∇p at point ðx,yÞ= ð1,1Þ at t=1 s.

6.3 The x component of velocity in an incompressible flow field
is given by u=Ax, where A=2 s−1 and the coordinates are measured
in meters. The pressure at point ðx,yÞ= ð0,0Þ is p0 = 190 kPa gage.
The density is ρ=1:50 kg=m3 and the z axis is vertical. Evaluate the
simplest possible y component of velocity. Calculate the fluid accel-
eration and determine the pressure gradient at point ðx,yÞ= ð2,1Þ.
Find the pressure distribution along the positive x axis.

6.4Consider the flow field with the velocity given by V
!
=3î+5tĵ+

8t2k̂, where the velocity is in m/s and t is in seconds. The fluid density
is 800 kg=m3 and gravity acts in the negative z direction. Determine
the velocity, acceleration, and pressure gradient of the fluid at one
second time increments from time= 0, 1 to time= 5 seconds.

6.5 Consider the flow field with the velocity given by V
!
=4yî+3xĵ,

where the velocity is in ft/s and the coordinates are in feet. The fluid
density is 1:5 slug=ft3 and gravity acts in the negative y direction.
Determine general expressions for the acceleration and pressure gra-
dient. Plot the acceleration and pressure gradient in the y direction for
x=0 and x=2 ft.

6.6 The velocity field for a plane source located distance h=1m
above an infinite wall aligned along the x axis is given by

V
!
=

q

2π½x2 + ðy−hÞ2� ½xî+ ðy−hÞĵ �

+
q

2π½x2 + ðy+ hÞ2� ½xî+ ðy+ hÞĵ �

where q=2m3=s=m. The fluid density is 1000 kg=m3 and body
forces are negligible. Derive expressions for the velocity and accel-
eration of a fluid particle that moves along the wall, and plot from
x=0 to x= +10h. Verify that the velocity and acceleration normal
to the wall are zero. Plot the pressure gradient ∂p=∂x along the wall.
Is the pressure gradient along the wall adverse (does it oppose fluid
motion) or not?

y

x

h

P6.6

6.7 In a two-dimensional frictionless, incompressible
ðρ=1500 kg=m3Þ flow, the velocity field in meters per second is
given by V

!
= ðAx+ByÞî+ ðBx−AyÞĵ; the coordinates are measured

in meters, and A=4 s−1 and B=2 s−1. The pressure is pð0Þ=
200 kPa at point ðx,yÞ= ð0,0Þ. Obtain an expression for the pressure
field, pðx,yÞ in terms of p0, A, and B, and evaluate at point
ðx,yÞ= ð2,2Þ.
6.8 Consider a two-dimensional incompressible flow flowing
downward against a plate. The velocity is given by V

!
=Axî−Ayĵ,

where A=2 s−1 and x and y are in meters. Determine general expres-
sions for the acceleration and pressure gradients in the x and y
directions. Plot the pressure gradient along the plate from y=0 to
y= 3m and the pressure gradient along the centerline from x=0
to x=3m.

6.9 An incompressible liquid with a density of 900 kg=m3 and neg-
ligible viscosity flows steadily through a horizontal pipe of constant
diameter. In a porous section of length L=2m, liquid is removed at a
variable rate along the length so that the uniform axial velocity in the
pipe is uðxÞ=Ue−x=L, where U =20m=s. Develop expressions for
and plot the acceleration of a fluid particle along the centerline of
the porous section and the pressure gradient along the centerline.
Evaluate the outlet pressure if the pressure at the inlet to the porous
section is 50 kPa gage.

6.10 Consider a flow of water in pipe. What is the pressure gradient
required to accelerate the water at 20 ft=s2 if the pipe is (a) horizontal,
(b) vertical with the water flowing upward, and (c) vertical with the
water flowing downward. Explain why the pressure gradient depends
on orientation and why the pressure gradient differs in sign between
case (b) and case (c).

6.11 The velocity field for a plane vortex sink is given by
V
!
= ð−q=2πrÞêr + ðK=2πrÞêθ, where q=2 m3=s=m and K =1

m3=s=m. The fluid density is 1000 kg=m3. Find the acceler-
ation at ð1,0Þ, ð1,π=2Þ, and ð2,0Þ. Evaluate ∇p under the same
conditions.

6.12 An incompressible liquid with negligible viscosity and density
ρ=1:75 slug=ft3 flows steadily through a horizontal pipe. The pipe
cross-section area linearly varies from 15 in:2 to 2:5 in:2 over a length
of 10 feet. Develop an expression for and plot the pressure gradient
and pressure versus position along the pipe, if the inlet centerline
velocity is 5 ft=s and inlet pressure is 35 psi. What is the exit pres-
sure? Hint: Use relation

u
∂u
∂x

=
1
2
∂
∂x
ðu2Þ

6.13 Consider water flowing in a circular section of a two-
dimensional channel. Assume the velocity is uniform across the
channel at 12 m=s. The pressure is 120 kPa at centerline (point 1).
Determine the pressures at point 2 and 3 for the case of (a) flow in
the horizontal plane and (b) flow in the vertical plane with gravity
acting in the direction of 2 to 3.
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6.14 Consider a tornado as air moving in a circular pattern in the
horizontal plane. If the wind speed is 200 mph and the diameter of
the tornado is 200 ft, determine the radial pressure gradient. If it is
desired to model the tornado using water in a 6 in. diameter tube,
what speed is needed to give the same radial pressure gradient?

6.15 A nozzle for an incompressible, inviscid fluid of density
ρ=1000 kg=m3 consists of a horizontal converging section of pipe.
At the inlet the diameter is Di =100 mm, and at the outlet the diam-
eter is Do =20 mm. The nozzle length is L=500 mm, and the diam-
eter decreases linearly with distance x along the nozzle. Derive and
plot the acceleration of a fluid particle, assuming uniform flow at
each section, if the speed at the inlet is Vi =1m=s. Plot the pressure
gradient through the nozzle, and find its maximum absolute value. If
the pressure gradient must be no greater than 5MPa=m in absolute
value, how long would the nozzle have to be?

6.16 A diffuser for an incompressible, inviscid fluid of density
ρ=1000 kg=m3 consists of a horizontal diverging section of pipe. At
the inlet the diameter is Di =0:25 m, and at the outlet the diameter is
Do =0:75 m.Thediffuser length isL=1m,and thediameter increases
linearly with distance x along the diffuser. Derive and plot the accel-
eration of a fluid particle, assuming uniform flow at each section, if
the speed at the inlet is Vi =5m=s. Plot the pressure gradient through
the diffuser, and find itsmaximumvalue. If the pressure gradientmust
be no greater than 25 kPa=m, how long would the diffuser have to be?

6.17 A liquid layer separates two plane surfaces as shown. The
lower surface is stationary; the upper surface moves downward at
constant speed V . The moving surface has width w, perpendicular
to the plane of the diagram, and w
L. The incompressible liquid
layer, of density ρ, is squeezed from between the surfaces. Assume
the flow is uniform at any cross section and neglect viscosity as a first
approximation. Use a suitably chosen control volume to show that
u=Vx=b within the gap, where b= b0−Vt. Obtain an algebraic
expression for the acceleration of a fluid particle located at x. Deter-
mine the pressure gradient, ∂p=∂x, in the liquid layer. Find the pres-
sure distribution, pðxÞ. Obtain an expression for the net pressure force
that acts on the upper (moving) flat surface.

x

L

b

u

yV
Liquid

P6.17

6.18 Consider Problem 6.15 with the nozzle directed upward.
Assuming that the flow is uniform at each section, derive and plot
the acceleration of a fluid particle for an inlet speed of Vi =2m=s.

Plot the pressure gradient through the nozzle and find its maximum
absolute value. If the pressure gradient must be no greater than
7MPa=m in absolute value, how long would the nozzle have to be?

6.19 Consider Problem 6.16 with the diffuser directed upward.
Assuming that the flow is uniform at each section, derive and
plot the acceleration of a fluid particle for an inlet speed of
Vi =12m=s. Plot the pressure gradient through the diffuser, and find
its maximum value. If the pressure gradient must be no greater than
20 kPa=m, how long would the diffuser have to be?

6.20 A rectangular computer chip floats on a thin layer of air,
h=0:5 mm thick, above a porous surface. The chip width is
b=40 mm, as shown. Its length, L, is very long in the direction per-
pendicular to the diagram. There is no flow in the z direction. Assume
flow in the x direction in the gap under the chip is uniform. Flow is
incompressible, and frictional effects may be neglected. Use a suit-
ably chosen control volume to show thatUðxÞ= qx=h in the gap. Find
a general expression for the (2D) acceleration of a fluid particle in the
gap in terms of q, h, x, and y. Obtain an expression for the pressure
gradient ∂p=∂x. Assuming atmospheric pressure on the chip upper
surface, find an expression for the net pressure force on the chip;
is it directed upward or downward? Explain. Find the required flow
rate qðm3=s=m2Þ and the maximum velocity, if the mass per unit
length of the chip is 0:005 kg=m. Plot the pressure distribution as part
of your explanation of the direction of the net force.

b

Porous surface

U (x)

x

y

Uniform flow of air, q

h "Chip"
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6.21Heavy weights can be moved with relative ease on air cushions
by using a load pallet as shown. Air is supplied from the plenum
through porous surface AB. It enters the gap vertically at uniform
speed, q. Once in the gap, all air flows in the positive x direction
(there is no flow across the plane at x=0). Assume air flow in the
gap is incompressible and uniform at each cross section, with speed
uðxÞ, as shown in the enlarged view. Although the gap is narrow
ðh�LÞ, neglect frictional effects as a first approximation. Use a suit-
ably chosen control volume to show that uðxÞ= qx=h in the gap. Cal-
culate the acceleration of a fluid particle in the gap. Evaluate the
pressure gradient, ∂p=∂x, and sketch the pressure distribution within
the gap. Be sure to indicate the pressure at x= L.

Air Load

Plenum

Air supply

q

BA
u (x)

x
L

h

P6.21

6.22 The y component of velocity in a two-dimensional incom-
pressible flow field is given by υ= −Axy, where υ is in m/s, the
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coordinates are measured in meters, and A=1m−1 �s−1. There is no
velocity component or variation in the z direction. Calculate the accel-
eration of a fluid particle at point ðx,yÞ= ð1,2Þ. Estimate the radius of
curvature of the streamline passing through this point. Plot the
streamline and show both the velocity vector and the acceleration
vector on the plot. (Assume the simplest form of the x component
of velocity.)

6.23 The velocity field for a plane doublet is given in Table 6.2. Find
an expression for the pressure gradient at any point ðr,θÞ.
6.24 Tomodel thevelocitydistribution in the curved inlet sectionof a
water channel, the radius of curvature of the streamlines is expressed
as R=LR0=2y. As an approximation, assume the water speed along
each streamline is V =10m=s. Find an expression for and plot the
pressure distribution from y=0 to the tunnel wall at y= L=2, if the
centerline gage pressure is 50 kPa, L=75 mm, and R0 = 0:2 m. Find
the value of V for which the wall static pressure becomes 35 kPa.

R

R0

y
x

L___
2

P6.24

6.25 Repeat Example 6.1, but with the somewhat more realistic
assumption that the flow is similar to a free vortex (irrotational) pro-
file, Vθ = c=r (where c is a constant), as shown in Fig. P6.25. In doing
so, prove that the flow rate is given by Q= k

ffiffiffiffiffiffi
Δp
p

, where k is

k=w ln
r2
r1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r22r

2
1

ρðr22−r21Þ

s

and w is the depth of the bend.

r1

V

r2

θ

θ
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6.26 Using the analyses of Example 6.1 and Problem 6.25, plot the
discrepancy (percent) between the flow rates obtained from assuming
uniform flow and the free vortex (irrotational) profile as a function
of r2/r1.

6.27 The x component of velocity in a two-dimensional incompress-
ible flow field is given by u= −Λðx2−y2Þ=ðx2 + y2Þ2, where u is in
m/s, the coordinates are measured in meters, and Λ=2m3 �s−1.
Show that the simplest form of the y component of velocity is given
by υ= −2Λxy=ðx2 + y2Þ2. There is no velocity component or varia-
tion in the z direction. Calculate the acceleration of fluid particles at

points ðx,yÞ= ð0,1Þ,ð0,2Þ, and ð0,3Þ. Estimate the radius of curva-
ture of the streamlines passing through these points. What does the
relation among the three points and their radii of curvature suggest
to you about the flow field? Verify this by plotting these streamlines.
[Hint: You will need to use an integrating factor.]

The Bernoulli Equation
6.28Water flows at a speed of 25 ft=s. Calculate the dynamic pres-
sure of this flow. Express your answer in inches of mercury.

6.29 Plot the speed of air versus the dynamic pressure (in milli-
meters of mercury), up to a dynamic pressure of 250 mm Hg.

6.30Water flows in a pipeline. At a point in the line where the diam-
eter is 7 in., the velocity is 12 fps and the pressure is 50 psi. At a point
40 ft away the diameter reduces to 3 in. Calculate the pressure here
when the pipe is (a) horizontal, (b) vertical with flow downward, and
(c) vertical with the flow upward. Explain why there is a difference in
the pressure for the different situations.

6.31 In a pipe 0.3 m in diameter, 0:3 m3=s of water are pumped up a
hill. On the hilltop (elevation 48), the line reduces to 0.2 m diameter.
If the pumpmaintains a pressure of 690 kPa at elevation 21, calculate
the pressure in the pipe on the hilltop.

6.32A jet of air from a nozzle is blown at right angles against a wall
in which two pressure taps are located. Amanometer connected to the
tap directly in front of the jet shows a head of 25 mm of mercury
above atmospheric. Determine the approximate speed of the air leav-
ing the nozzle if it is at −10�C and 200 kPa. At the second tap a
manometer indicates a head of 5 mm of mercury above atmospheric;
what is the approximate speed of the air there?

6.33 The inlet contraction and test section of a laboratory wind tun-
nel are shown. The air speed in the test section isU =50m=s. A total-
head tube pointed upstream indicates that the stagnation pressure on
the test section centerline is 10 mm of water below atmospheric. The
laboratory is maintained at atmospheric pressure and a temperature of
−5�C. Evaluate the dynamic pressure on the centerline of the wind
tunnel test section. Compute the static pressure at the same point.
Qualitatively compare the static pressure at the tunnel wall with that
at the centerline. Explain why the two may not be identical.

Contraction

Test section

U = 50 m/sFlow

P6.33

6.34 Maintenance work on high-pressure hydraulic systems
requires special precautions. A small leak can result in a high-speed
jet of hydraulic fluid that can penetrate the skin and cause serious
injury (therefore troubleshooters are cautioned to use a piece of paper
or cardboard, not a finger, to search for leaks). Calculate and plot the
jet speed of a leak versus system pressure, for pressures up to
40 MPa gage. Explain how a high-speed jet of hydraulic fluid can
cause injury.

6.35 An open-circuit wind tunnel draws in air from the atmosphere
through a well-contoured nozzle. In the test section, where the flow is
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straight and nearly uniform, a static pressure tap is drilled into the
tunnel wall. A manometer connected to the tap shows that static pres-
sure within the tunnel is 45 mm of water below atmospheric. Assume
that the air is incompressible, and at 25�C, 100 kPa absolute. Calcu-
late the air speed in the wind-tunnel test section.

6.36 Water is flowing. Calculate HðmÞ and pðkPaÞ.

125 mm d

75 mm d

100 mm d
175 mm

Hg (13.57)

p
H

P6.36

6.37 If each gauge shows the same reading for a flow rate of
1.00 cfs, what is the diameter of the constriction?

El. 90

El. 108
3-in.-dia.

3-in.-dia.El. 100

P6.37

6.38 Derive a relation between A1 and A2 so that for a flow rate of
0:28 m3=s the static pressure will be the same at sections�1 and�2 .
Also calculate the manometer reading for this condition and state
which leg has the higher mercury column.’

Gasoline

(0.85)

Hg (13.57)

A
1

A
2

1. 5 m

1

2

P6.38

6.39Water flows steadily up the vertical 1-in.-diameter pipe and out
the nozzle, which is 0.5 in. in diameter, discharging to atmospheric
pressure. The stream velocity at the nozzle exit must be 30 ft=s. Cal-
culate the minimum gage pressure required at section�1 . If the device
were inverted, what would be the required minimum pressure at
section�1 to maintain the nozzle exit velocity at 30 ft=s?

2

1

F
lo

w

10 ft

V2

P6.39

6.40 Your car runs out of gas unexpectedly and you siphon gas
from another car. The height difference for the siphon is 1 ft. The
hose diameter is 0.5 in. What is your gasoline flow rate?

6.41 A tank at a pressure of 50 kPa gage gets a pinhole rupture and
benzene shoots into the air. Ignoring losses, to what height will the
benzene rise?

6.42 The water flow rate through the siphon is 5 L=s, its tempera-
ture is 20�C, and the pipe diameter is 25 mm. Compute the maximum
allowable height, h, so that the pressure at point A is above the vapor
pressure of the water. Assume the flow is frictionless.

A

h

D = 25 mm

Flow

P6.42

6.43 Water flows from a very large tank through a 5 cm diameter
tube. The dark liquid in the manometer is mercury. Estimate the
velocity in the pipe and the rate of discharge from the tank.
Assume the flow is frictionless.

75 cm
4 m

15 cm

5 cm

Flow

Mercury

P6.43

6.44 Consider frictionless, incompressible flow of air over the wing
of an airplane flying at 200 km=hr. The air approaching the wing is at
65 kPa and −10�C. At a certain point in the flow, the pressure is
60 kPa. Calculate the speed of the air relative to the wing at this point
and the absolute air speed.

6.45A closed tank contains water with air above it. The air is main-
tained at a gage pressure of 150 kPa and 3 m below the water surface
a nozzle discharges into the atmosphere. At what velocity will water
emerge from the nozzle?
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6.46 Water jets upward through a 3-in.-diameter nozzle under a
head of 10 ft. At what height h will the liquid stand in the pitot tube?
What is the cross-sectional area of the jet at section B?

Water

Nozzle is 3 in. in diameter

(A = 0.049 1 ft2)

B
10 ft

5 ft

h

P6.46

6.47 Calculate the rate of flow through this pipeline and the pres-
sures at A, B, C, and D. Sketch the EL and HGL showing vertical
distances.

Water

20 ft 6 in. d

2 in. d

5 ft

B

D

A

C

8 ft

12 ft

P6.47

6.48 A mercury barometer is carried in a car on a day when there is
no wind. The temperature is 20�C and the corrected barometer height
is 761 mm of mercury. One window is open slightly as the car travels
at 105 km=hr. The barometer reading in the moving car is 5 mm
lower than when the car is stationary. Explain what is happening.
Calculate the local speed of the air flowing past the window, relative
to the automobile.

6.49A racing car travels at 235mph along a straightaway. The team
engineer wishes to locate an air inlet on the body of the car to obtain
cooling air for the driver’s suit. The plan is to place the inlet at a loca-
tion where the air speed is 60 mph along the surface of the car. Cal-
culate the static pressure at the proposed inlet location. Express the
pressure rise above ambient as a fraction of the freestream dynamic
pressure.

6.50 The velocity field for a plane source at a distance h above an
infinite wall aligned along the x axis was given in Problem 6.6. Using
the data from that problem, plot the pressure distribution along the
wall from x= −10h to x= +10h (assume the pressure at infinity
is atmospheric). Find the net force on the wall if the pressure on
the lower surface is atmospheric. Does the force tend to pull the wall
towards the source, or push it away?

6.51A smoothly contoured nozzle, with outlet diameter d=20 mm,
is coupled to a straight pipe by means of flanges. Water flows in
the pipe, of diameter D=50 mm, and the nozzle discharges to the
atmosphere. For steady flow and neglecting the effects of viscos-
ity, find the volume flow rate in the pipe corresponding to a cal-
culated axial force of 45.5 N needed to keep the nozzle attached
to the pipe.

6.52Water flows steadily through a 3.25-in.-diameter pipe and dis-
charges through a 1.25-in.-diameter nozzle to atmospheric pressure.
The flow rate is 24.5 gpm. Calculate the minimum static pressure
required in the pipe to produce this flow rate. Evaluate the axial force
of the nozzle assembly on the pipe flange.

6.53 A flow nozzle is a device for measuring the flow rate in a pipe.
This particular nozzle is to be used to measure low-speed air flow for
which compressibility may be neglected. During operation, the pres-
sures p1 and p2 are recorded, as well as upstream temperature, T1.
Find the mass flow rate in terms of Δp= p2−p1 and T1, the gas con-
stant for air, and device diameters D1 and D2. Assume the flow is
frictionless. Will the actual flow be more or less than this predicted
flow? Why?

FlowD1 D2

P6.53

6.54 The head of water on a 50 mm diameter smooth nozzle is 3 m.
If the nozzle is directed upward at angles of (a) 30�, (b) 45�, (c) 60�,
and (d) 90�, how high above the nozzle will the jet rise, and how far
from the nozzle will the jet pass through the horizontal plane in
which the nozzle lies? What is the diameter of the jet at the top of
the trajectory?

6.55Water flows from one reservoir in a 200-mm pipe, while water
flows from a second reservoir in a 150-mm pipe. The two pipes meet
in a “tee” junction with a 300-mm pipe that discharges to the atmos-
phere at an elevation of 20 m. If the water surface in the reservoirs is
at 30 m elevation. what is the total flow rate?

6.56 Barometric pressure is 14.0 psia. What is the maximum flow
rate that can be obtained by opening the valve? (a) if cavitation is not
a consideration and (b) if cavitation needs to be prevented?

CCl4 (68°F)

25 ft

20 ft

6 in. d
6 in. d 4 in. d

P6.56

6.57 A spray system is shown in the diagram. Water is supplied at
p=10 kPa gage, through the flanged opening of area A=1900 mm2.
The water leaves in a steady free jet at atmospheric pressure. The
jet area and speed are A= 650 mm2 and V= 4.6 m/s. The mass of the
spray system is 0.09 kg and it contains V = 196 cm3 of water.

240 Chapter 6 Incompressible Inviscid Flow



M = 0.09 kg
    = 196 cm3V

Supply A = 1900 mm2

p = 10 kPa gage

V = 4.6 m/s
A = 650 mm2

P6.57

An object, with a flat horizontal lower surface, moves downward into
the jet of the spray system with speed U =5 ft=s. Determine the min-
imum supply pressure needed to produce the jet leaving the spray
system at V =15 ft=s. Calculate the maximum pressure exerted by
the liquid jet on the flat object at the instant when the object is
h=1:5 ft above the jet exit. Estimate the force of the water jet on
the flat object.

6.58Water flows out of a kitchen faucet of 1.25-in.-diameter at the
rate of 0:1 L=s. The bottom of the sink is 45 cm below the faucet out-
let. Will the cross-sectional area of the fluid stream increase,
decrease, or remain constant between the faucet outlet and the bottom
of the sink? Explain briefly. Obtain an expression for the stream cross
section as a function of distance y above the sink bottom. If a plate is
held directly under the faucet, how will the force required to hold the
plate in a horizontal position vary with height above the sink?
Explain briefly.

6.59 A horizontal axisymmetric jet of air with 0.4-in.-diameter
strikes a stationary vertical disk of 7.5 in. diameter. The jet speed
is 225 ft=s at the nozzle exit. A manometer is connected to the center
of the disk. Calculate (a) the deflection, if the manometer liquid has
SG=1:75, (b) the force exerted by the jet on the disk, and (c) the
force exerted on the disk if it is assumed that the stagnation pressure
acts on the entire forward surface of the disk. Sketch the streamline
pattern and plot the distribution of pressure on the face of the disk.

6.60 The water level in a large tank is maintained at height H above
the surrounding level terrain. A rounded nozzle placed in the side
of the tank discharges a horizontal jet. Neglecting friction, determine
the height h at which the orifice should be placed so the water
strikes the ground at the maximum horizontal distance X from the
tank. Plot jet speed V and distance X as functions of h ð0< h<HÞ.
6.61 Many recreation facilities use inflatable “bubble” structures.
A tennis bubble to enclose four courts is shaped roughly as a circular
semicylinder with a diameter of 50 ft and a length of 50 ft. The
blowers used to inflate the structure can maintain the air pressure
inside the bubble at 0.75 in. of water above ambient pressure. The
bubble is subjected to a wind that blows at 35 mph in a direction per-
pendicular to the axis of the semicylindrical shape. Using polar coor-
dinates, with angle θmeasured from the ground on the upwind side of
the structure, the resulting pressure distribution may be expressed as

p−p∞
1
2ρV

2
∞

=1−4 sin2 θ

where p is the pressure at the surface, p∞ the atmospheric pressure,
and Vw the wind speed. Determine the net vertical force exerted on
the structure.

6.62 Water flows at low speed through a circular tube with inside
diameter of 2 in. A smoothly contoured body of 1.5 in. diameter is
held in the end of the tube where the water discharges to atmosphere.

Neglect frictional effects and assume uniform velocity profiles at
each section. Determine the pressure measured by the gauge and
the force required to hold the body.

F

V2

V2

V1 = 20 ft/s

P6.62

6.63 Describe the pressure distribution on the exterior of a multi-
story building in a steady wind. Identify the locations of the maxi-
mum and minimum pressures on the outside of the building.
Discuss the effect of these pressures on infiltration of outside air into
the building.

6.64An aspirator provides suction by using a stream of water flow-
ing through a venturi. Analyze the shape and dimensions of such a
device. Comment on any limitations on its use.

Energy Grade Line And Hydraulic Grade Line
6.65 Carefully sketch the energy grade lines (EGL) and hydraulic
grade lines (HGL) for the system shown in Fig. 6.6 if the pipe is hor-
izontal (i.e., the outlet is at the base of the reservoir), and a water tur-
bine (extracting energy) is located at point �2 , or at point �3 . In
Chapter 8 we will investigate the effects of friction on internal flows.
Can you anticipate and sketch the effect of friction on the EGL and
HGL for the two cases?

6.66 Carefully sketch the energy grade lines (EGL) and hydraulic
grade lines (HGL) for the system shown in Fig. 6.6 if a pump adding
energy to the fluid is located at point�2 , such that flow is into the
reservoir. In Chapter 8 we will investigate the effects of friction on
internal flows. Can you anticipate and sketch the effect of friction
on the EGL and HGL for the two cases?

6.67Water is being pumped from the lower reservoir through a noz-
zle into the upper reservoir. If the vacuum gauge at A reads 2.4 psi
vacuum,

(a) find the flow velocity through the nozzle,

(b) find the horsepower the pump must add to the water,

(c) draw the energy line and the hydraulic grade line.

d = 4 in.

A

8 in.

45°

–El.25 ft

El.125 ft

El.20 ft

12 in.
P

P6.67
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6.68 The turbine extracts power from the water flowing from
the reservoir. Find the horsepower extracted if the flow through
the system is 1000 cfs. Draw the energy line and the hydraulic
grade line.

El.1000 ft

–El.500 ft

El.475 ft

d = 1
2 ft

T

P6.68

Irrotational Flow
6.69 Consider a two-dimensional fluid flow: u= ax+ by and υ=
cx+ dy, where a, b, c, and d are constant. If the flow is incompress-
ible and irrotational, find the relationships among a, b, c, and d. Find
the stream function and velocity potential function of this flow.

6.70 The velocity field for a two-dimensional flow is V
!
=

ðAx−ByÞtî−ðBx+AyÞtĵ, where A=1 s−2 B=2 s−2, t is in seconds,
and the coordinates are measured in meters. Is this a possible incom-
pressible flow? Is the flow steady or unsteady? Show that the flow is
irrotational and derive an expression for the velocity potential.

6.71 A flow field is characterized by the stream function ψ =Axy,
where A=2 s−1 and the coordinates are measured in feet. Verify that
the flow is irrotational and determine the velocity potentialϕ. Plot the
streamlines and potential lines and visually verify that they are
orthogonal.

6.72 The flow field for a plane source at a distance h above an infi-
nite wall aligned along the x axis is given by

V
!
=

q
2π½x2 + ðy−hÞ2� ½xî+ ðy−hÞĵ�

+
q

2π½x2 + ðy+ hÞ2� ½xî+ ðy+ hÞĵ�

where q is the strength of the source. The flow is irrotational and
incompressible. Derive the stream function and velocity potential.
By choosing suitable values for q and h, plot the streamlines and lines
of constant velocity potential. (Hint: Use the Excel workbook of
Example 6.10.)

6.73 The stream function of a flow field is ψ =Ax2y−By3, where

A=1m−1 �s−1, B=
1
3
m−1 �s−1, and the coordinates are measured

in meters. Find an expression for the velocity potential.

6.74 A flow field is characterized by the stream function

ψ =2y+
1
2π

tan−1 y−a
x

− tan−1 y+ a
x

� �
Derive an expression for the location of the stagnation points. Sketch
the flow field.

6.75 A flow field is characterized by the stream function

ψ = xy2 +Bx3

What does the value of B need to be for the flow to be irrotational?
For that value of B, determine the velocity potential ϕ. Sketch the
streamlines and potential lines.

6.76 The stream function of a flow field is ψ =Ax3−Bxy2, where
A=1m−1 � s−1 and B=3m−1 � s−1, and coordinates are measured
in meters. Find an expression for the velocity potential.

6.77 A flow field is represented by the stream function ψ = x5−
15x4y2 + 15x2y4−y6. Find the corresponding velocity field. Show
that this flow field is irrotational and obtain the potential function.

6.78 Consider the flow field represented by the potential function
ϕ= x5−10x3y2 + 5xy4−x2 + y2. Verify that this is an incompressible
flow, and obtain the corresponding stream function.

6.79 Show by expanding and collecting real and imaginary terms
that f = z6 (where z is the complex number z= x+ iy) leads to a valid
velocity potential (the real part of f ) and a corresponding stream func-
tion (the negative of the imaginary part of f ) of an irrotational and
incompressible flow. Then show that the real and imaginary parts
of df =dz yield −u and υ, respectively.

6.80 Consider the flow field represented by the velocity potential
ϕ=Ax+Bx2−By2, where A=1m �s−1, B=1m−1 �s−1, and the
coordinates are measured in meters. Obtain expressions for the veloc-
ity field and the stream function. Calculate the pressure difference
between the origin and point ðx,yÞ= ð1,2Þ.
6.81 An incompressible flow field is characterized by the stream
function ψ =3Ax2y−Ay3, where A=1m−1 � s−1. Show that this flow
field is irrotational. Derive the velocity potential for the flow. Plot the
streamlines and potential lines, and visually verify that they are
orthogonal. (Hint: Use the Excel workbook of Example 6.10.)

6.82 Consider an air flow over a flat wall with an upstream velocity
of 6 m=s. There is a narrow slit through which air is drawn in at a flow
rate of 0:2 m3=s per meter of width. Represent the flow as a combi-
nation of a uniform flow and a sink. Determine the location of the
stagnation point. Sketch the dividing line between the air that enters
the slit and the air that continues downstream.

Stagnation point

6 m/s

0.2 m3/s

P6.82

6.83 A source with a strength of q=3π m2=s and a sink with a
strength of q= π m2=s are located on the x axis at x =−1 m and
x = 1m, respectively. Determine the stream function and velocity
potential for the combined flow and sketch the streamlines.

6.84 The velocity distribution in a two-dimensional, steady, invis-
cid flow field in the xy plane is V

!
= ðAx+BÞî+ ðC−AyÞĵ, where

A=3 s−1, B=6m=s, C =4m=s, and the coordinates are measured
in meters. The body force distribution is B

!
= −gk̂ and the density

is 825 kg=m3. Does this represent a possible incompressible flow
field? Plot a few streamlines in the upper half plane. Find the stag-
nation point(s) of the flow field. Is the flow irrotational? If so, obtain
the potential function. Evaluate the pressure difference between the
origin and point ðx,y,zÞ= ð2,2,2Þ.
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6.85 Consider the flow past a circular cylinder, of radius a, used in
Example 6.11. Show that Vr =0 along the lines ðr,θÞ= ðr, �π=2Þ.
Plot Vθ=U versus radius for r≥ a, along the line ðr,θÞ= ðr,π=2Þ.
Find the distance beyond which the influence of the cylinder is less
than 1 percent of U.

6.86 The flow in a corner with an angle α can be described in radial

coordinates by the stream function as ψ =Ar
π
αsin

πθ

α
. Determine the

velocity potential for the flow and plot streamlines for flow
for α=60∘.

6.87 Consider the two-dimensional flow against a flat plate that is
characterized by the stream function ψ =Axy. Superimpose a plane
source of strength B placed at the origin. Determine the relation
between the height of the stagnation point h, the constant A, and
the strength B. Sketch streamlines for the flow and identify the
streamline that divides the two flows.

Source

h

P6.87

6.88 A source and a sink with strengths of equal magnitude,
q=3π m2=s, are placed on the x axis at x= −a and a, respectively.
A uniform flow, with speedU =20m=s, in the positive x direction, is
added to obtain the flow past a Rankine body. Obtain the stream func-
tion, velocity potential, and velocity field for the combined flow.
Find the value of ψ = constant on the stagnation streamline. Locate
the stagnation points if a=0:3 m.

6.89 A flow field is formed by combining a uniform flow in the
positive x direction, with U =10 m=s, and a counterclockwise vor-
tex, with strength K =16π m2=s, located at the origin. Obtain the
stream function, velocity potential, and velocity field for the com-
bined flow. Locate the stagnation point(s) for the flow. Plot the
streamlines and potential lines. (Hint: Use the Excel workbook of
Example 6.10.)

6.90 Consider the flow field formed by combining a uniform flow
in the positive x direction and a source located at the origin. Obtain
expressions for the stream function, velocity potential, and velocity
field for the combined flow. If U =25 m=s, determine the source
strength if the stagnation point is located at x= −1 m. Plot the
streamlines and potential lines. (Hint: Use the Excel workbook of
Example 6.10.)
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C H A P T E R 7

Dimensional Analysis
and Similitude
7.1 Nondimensionalizing the Basic Differential Equations

7.2 Nature of Dimensional Analysis

7.3 Buckingham Pi Theorem

7.4 Significant Dimensionless Groups in Fluid Mechanics

7.5 Flow Similarity and Model Studies

7.6 Summary and Useful Equations

In previous chapters we have mentioned several instances in which we claim a simplified flow exists. For
example, we have stated that a flow with typical speed V will be essentially incompressible if the Mach
number,M =V=c (where c is the speed of sound), is less than about 0.3 and that we can neglect viscous
effects in most of a flow if the Reynolds number, Re= ρVL=μ (L is a typical or “characteristic” size scale
of the flow), is “large.”Wewill also make extensive use of the Reynolds number based on pipe diameter,
DðRe= ρVD=μÞ, to predict with a high degree of accuracy whether the pipe flow is laminar or turbulent.
It turns out that there are many such interesting dimensionless groupings in engineering science—for
example, in heat transfer, the value of the Biot number, Bi= hL=k, of a hot body, size L and conductivity
k, indicates whether that body will tend to cool on the outside surface first or will basically cool uni-
formly when it’s plunged into a cool fluid with convection coefficient h. (Can you figure out what a
high Bi number predicts?) How do we obtain these groupings, and why do their values have such pow-
erful predictive power?

The answers to these questions will be provided in this chapter when we introduce the method of
dimensional analysis. This is a technique for gaining insight into fluid flows (in fact, into many
engineering and scientific phenomena) before we do either extensive theoretical analysis or experimen-
tation; it also enables us to extract trends from data that would otherwise remain disorganized and
incoherent.

Case Study

T. Rex
Dimensional analysis, the main topic of this chapter, is used in
many scientific pursuits. It has even been used by Professor

Alexander McNeil, now at Heriot-Watt University in Scotland, to
try to determine the speed at which dinosaurs such as Tyranno-
saurus rex may have been able to run. The only data available on
these creatures are in the fossil record—the most pertinent data
being the dinosaurs’ average leg length l and stride s. Could these
data be used to extract the dinosaurs’ speed? Comparing data on l
and s and the speed V of quadrupeds (e.g., horses, dogs) and
bipeds (e.g., humans) does not indicate a pattern, unless dimen-
sional analysis is used to learn that all of the data should be plotted
in the followingway: Plot the dimensionless quantity V2=gl (where
V is the measured speed of the animal and g is the acceleration of
gravity) against the dimensionless ratio s=l. When this is done,
“magically” the data for most animals fall approximately on one
curve! Hence, the running behavior of most animals can be
obtained from the graph: In this case, the dinosaurs’ value of s=l
allows a corresponding value of V2=gl to be interpolated from
the curve, leading to an estimate for V of dinosaurs (because l
and g are known). Based on this, in contrast to the Jurassic Park
movies, it seems likely that humans could easily outrun T. rex!
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Tyrannosaurus rex.
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We will also discuss modeling. For example, how do we correctly perform tests on the drag on a
3/8-scale model of an automobile in a wind tunnel to predict what the drag would be on the full-size
automobile at the same speed? Must we use the same speed for model and full-size automobile?
How do we scale up the measured model drag to find the automobile drag?

7.1 Nondimensionalizing the Basic Differential Equations
Before describing dimensional analysis let us see what we can learn from our previous analytical
descriptions of fluid flow. Consider, for example, a steady incompressible two-dimensional flow of a
Newtonian fluid with constant viscosity (already quite a list of assumptions!). The mass conservation
equation (Eq. 5.1c) becomes

∂u
∂x

+
∂υ
∂y

=0 ð7:1Þ

and the Navier–Stokes equations (Eqs. 5.27) reduce to

ρ u
∂u
∂x

+ υ
∂u
∂y

� �
= −

∂p
∂x

+ μ
∂2u
∂x2

+
∂2u
∂y2

� �
ð7:2Þ

and

ρ u
∂υ
∂x

+ υ
∂υ
∂y

� �
= −ρg−

∂p
∂y

+ μ
∂2υ
∂x2

+
∂2υ
∂y2

� �
ð7:3Þ

As we discussed in Section 5.4, these equations form a set of coupled nonlinear partial differential
equations for u,υ, and p, and are difficult to solve for most flows. Equation 7.1 has dimensions of 1/time,
and Eqs. 7.2 and 7.3 have dimensions of force/volume. Let us see what happens when we convert them
into dimensionless equations. (Even if you did not study Section 5.4 you will be able to understand the
following material.)

To nondimensionalize these equations, divide all lengths by a reference length, L, and all velocities
by a reference speed, V∞ , which usually is taken as the freestream velocity. Make the pressure nondi-
mensional by dividing by ρV2

∞ (twice the freestream dynamic pressure). Denoting nondimensional
quantities with asterisks, we obtain

x� =
x
L
, y� =

y
L
, u� =

u
V∞

, υ� =
υ

V∞
, and p� =

p
ρV2

∞
ð7:4Þ

so that x= x�L, y= y�L, u= u�V∞ , and so on.We can then substitute into Eqs. 7.1 through 7.3; below we
show two representative substitutions:

u
∂u
∂x

= u�V∞
∂ðu�V∞ Þ
∂ðx�LÞ =

V2
∞
L

u�
∂u�

∂x�

and
∂2u
∂x2

=
∂ðu�V∞ Þ
∂ðx�LÞ2 =

V∞

L2
∂2u�

∂x�2

Using this procedure, the equations become

V∞

L
∂u�

∂x�
+
V∞

L
∂υ�

∂y�
=0 ð7:5Þ

ρV2
∞
L

u�
∂u�

∂x�
+ υ�

∂u�

∂y�

� �
= −

ρV2
∞
L

∂p�

∂x�
+
μV∞

L2
∂2u�

∂x�2
+
∂2u�

∂y�2

� �
ð7:6Þ

ρV2
∞
L

u�
∂υ�

∂x�
+ υ�

∂υ�

∂y�

� �
= −ρg−

ρV2
∞
L

∂p�

∂y�
+
μV∞

L2
∂2υ�

∂x�2
+
∂2υ�

∂y�2

� �
ð7:7Þ

Dividing Eq. 7.5 by V∞=L and Eqs. 7.6 and 7.7 by ρV2
∞=L gives

∂u�

∂x�
+
∂υ�

∂y�
=0 ð7:8Þ
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u�
∂u�

∂x�
+ υ�

∂u�

∂y�
= −

∂p�

∂x�
+

μ

ρV∞L
∂2u�

∂x�2
+
∂2u�

∂y�2

� �
ð7:9Þ

u�
∂υ�

∂x�
+ υ�

∂υ�

∂y�
= −

gL
V2
∞
−
∂p�

∂y�
+

μ

ρV∞L
∂2υ�

∂x�2
+
∂2υ�

∂y�2

� �
ð7:10Þ

Equations 7.8, 7.9, and 7.10 are the nondimensional forms of our original equations (Eqs. 7.1, 7.2,
7.3). As such, we can think about their solution (with appropriate boundary conditions) as an exercise in
applied mathematics. Equation 7.9 contains a dimensionless coefficient μ=ρV∞L (which we recognize
as the inverse of the Reynolds number) in front of the second-order (viscous) terms; Eq. 7.10 contains
this and another dimensionless coefficient, gL=V2

∞ (which we will discuss shortly) for the gravity force
term. We recall from the theory of differential equations that the mathematical form of the solution of
such equations is very sensitive to the values of the coefficients in the equations (e.g., certain second-
order partial differential equations can be elliptical, parabolic, or hyperbolic depending on coefficient
values).

These equations tell us that the solution, and hence the actual flow pattern they describe, depends on
the values of the two coefficients. For example, if μ=ρV∞L is very small (i.e., we have a high Reynolds
number), the second-order differentials, representing viscous forces, can be neglected, at least in most of
the flow, and we end up with a form of Euler’s equations (Eqs. 6.2). We say “in most of the flow”
because we have already learned that in reality for this case we will have a boundary layer in which
there is significant effect of viscosity; in addition, from a mathematical point of view, it is always dan-
gerous to neglect higher-order derivatives, even if their coefficients are small, because reduction to a
lower-order equation means we lose a boundary condition (specifically the no-slip condition). We
can predict that if μ=ρV∞L is large or small, then viscous forces will be significant or not, respectively;
if gLV2

∞ is large or small, we can predict that gravity forces will be significant or not, respectively. We
can thus gain insight even before attempting a solution to the differential equations. Note that for com-
pleteness, we would have to apply the same nondimensionalizing approach to the boundary conditions
of the problem, which often introduce further dimensionless coefficients.

Writing nondimensional forms of the governing equations, then, can yield insight into the under-
lying physical phenomena, and indicate which forces are dominant. If we had two geometrically similar
but different scale flows satisfying Eqs. 7.8, 7.9, and 7.10 (for example, a model and a prototype), the
equations would only yield the same mathematical results if the two flows had the same values for the
two coefficients (i.e., had the same relative importance of gravity, viscous, and inertia forces). This non-
dimensional form of the equations is also the starting point in numerical methods, which is very often the
only way of obtaining their solution. Additional derivations and examples of establishing similitude
from the governing equations of a problem are presented in Kline [1] and Hansen [2].

We will now see how the method of dimensional analysis can be used instead of the above proce-
dure to find appropriate dimensionless groupings of physical parameters. As we have mentioned, using
dimensionless groupings is very useful for experimental measurements, and we will see in the next two
sections that we can obtain them even when we do not have the governing equations such as Eqs. 7.1,
7.2, and 7.3 to work from.

7.2 Nature of Dimensional Analysis
Most phenomena in fluid mechanics depend in a complex way on geometric and flow parameters. For
example, consider the drag force on a stationary smooth sphere immersed in a uniform stream. What
experiments must be conducted to determine the drag force on the sphere? To answer this question,
we must specify what we believe are the parameters that are important in determining the drag force.
Clearly, we would expect the drag force to depend on the size of the sphere (characterized by the diam-
eter,D), the fluid speed, V , and the fluid viscosity, μ. In addition, the density of the fluid, ρ, also might be
important. Representing the drag force by F, we can write the symbolic equation

F = f ðD,V ,ρ,μÞ
Althoughwemay have neglected parameters on which the drag force depends, such as surface roughness
(or may have included parameters on which it does not depend), we have set up the problem of
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determining the drag force for a stationary sphere in terms of quantities that are both controllable and
measurable in the laboratory.

We could set up an experimental procedure for finding the dependence of F on V ,D, ρ, and μ. To see
how the drag, F, is affected by fluid speed, V , we could place a sphere in a wind tunnel andmeasure F for
a range of V values. We could then runmore tests in which we explore the effect on F of sphere diameter,
D, by using different diameter spheres. We are already generating a lot of data: If we ran the wind tunnel
at, say, 10 different speeds, for 10 different sphere sizes, we’d have 100 data points. We could present
these results on one graph (e.g., we could plot 10 curves of F vs. V , one for each sphere size), but acquir-
ing the data would already be time consuming: If we assume each run takes 1

2 hour, we have already
accumulated 50 hours of work! We still wouldn’t be finished—we would have to book time using,
say, a water tank, where we could repeat all these runs for a different value of ρ and of μ. In principle,
we would next have to search out a way to use other fluids to be able to do experiments for a range of
ρ and μ values (say, 10 of each). At the end of the day (actually, at the end of about 21

2 years of 40-hour
weeks!) we would have performed about 104 tests. Then we would have to try and make sense of the
data: How do we plot, say, curves of F vs. V , with D, ρ, and μ all being parameters? This is a daunting
task, even for such a seemingly simple phenomenon as the drag on a sphere!

Fortunately we do not have to do all this work. As we will see in Example 7.1, using dimensional
analysis, all the data for drag on a smooth sphere can be plotted as a single relationship between two
nondimensional parameters in the form

F
ρV2D2 = f

ρVD
μ

� �
The form of the function f still must be determined experimentally, but the point is that all spheres, in all
fluids, for most velocities will fall on the same curve. Rather than needing to conduct 104 experiments,
we could establish the nature of the function as accurately with only about 10 tests. The time saved in
performing only 10 rather than 104 tests is obvious. Even more important is the greater experimental
convenience. No longer must we find fluids with 10 different values of density and viscosity. Nor must
we make 10 spheres of different diameters. Instead, only the parameter ρVD=μmust be varied. This can
be accomplished simply by using one sphere (e.g., 1 in. diameter), in one fluid (e.g., air), and only chan-
ging the speed, for example.

Figure 7.1 shows some classic data for flow over a sphere (the factors 1
2 and π=4 have been added to

the denominator of the parameter on the left to make it take the form of a commonly used nondimen-
sional group, the drag coefficient, CD, that we will discuss in detail in Chapter 9). If we performed the
experiments as outlined above, our results would fall on the same curve, within experimental error.
The data points represent results obtained by various workers for several different fluids and spheres.
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Fig. 7.1 Experimentally derived relation between the nondimensional parameters [20], [21], [3].
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Note that we end up with a curve that can be used to obtain the drag force on a very wide range of
sphere/fluid combinations. For example, it could be used to obtain the drag on a hot-air balloon due
to a crosswind, or on a red blood cell (assuming it could be modeled as a sphere) as it moves through
the aorta—in either case, given the fluid (ρ and μ), the flow speed V , and the sphere diameterD, we could
compute a value for ρVD=μ, then read the corresponding value for CD, and finally compute the drag
force F.

In Section 7.3 we introduce the Buckingham Pi theorem, a formalized procedure for deducing the
dimensionless groups appropriate for a given fluid mechanics or other engineering problem. This
section may seem a bit difficult to follow; we suggest you read it once, then study Examples 7.1,
7.2, and 7.3 to see how practical and useful the method in fact is, before returning to reread the section.

The Buckingham Pi theorem is a statement of the relation between a function expressed in terms of
dimensional parameters and a related function expressed in terms of nondimensional parameters. The
Buckingham Pi theorem allows us to develop the important nondimensional parameters quickly and
easily.

7.3 Buckingham Pi Theorem
In the previous section we discussed how the drag F on a sphere depends on the sphere diameterD, fluid
density ρ and viscosity μ, and fluid speed V , or

F =FðD,ρ,μ,VÞ
with theory or experiment being needed to determine the nature of function f . More formally, we write

gðF,D,ρ,μ,VÞ=0

where g is an unspecified function, different from f . The Buckingham Pi theorem [4] states that we can
transform a relationship between n parameters of the form

gðq1,q2,…,qnÞ=0

into a corresponding relationship between n−m independent dimensionless Π parameters in the form

GðΠ1,Π2,…,Πn−mÞ=0

or

Π1 =G1ðΠ2,…,Πn−mÞ
where m is usually the minimum number, r, of independent dimensions (e.g., mass, length, time)
required to define the dimensions of all the parameters q1,q2,…,qn. (Sometimes m 6¼ r; we will see this
in Example 7.3.) For example, for the sphere problem, we will see (in Example 7.1) that

gðF,D,ρ,μ,VÞ=0 or F =FðD,ρ,μ,VÞ
leads to

G
F

ρV2D2 ,
μ

ρVD

� �
=0 or

F
ρV2D2 =G1

μ

ρVD

� �

The theorem does not predict the functional form of G or G1. The functional relation among the
independent dimensionless Π parameters must be determined experimentally.

The n−m dimensionlessΠ parameters obtained from the procedure are independent. AΠ parameter
is not independent if it can be formed from any combination of one or more of the other Π parameters.
For example, if

Π5 =
2Π1

Π2Π3
or Π6 =

Π3=4
1

Π2
3

then neither Π5 nor Π6 is independent of the other dimensionless parameters.
Several methods for determining the dimensionless parameters are available. A detailed procedure

is presented in the rest of this section.
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Regardless of the method to be used to determine the dimensionless parameters, one begins by list-
ing all dimensional parameters that are known (or believed) to affect the given flow phenomenon. Some
experience admittedly is helpful in compiling the list. Students, who do not have this experience, often
are troubled by the need to apply engineering judgment in an apparent massive dose. However, it is
difficult to go wrong if a generous selection of parameters is made.

If you suspect that a phenomenon depends on a given parameter, include it. If your suspicion
is correct, experiments will show that the parameter must be included to get consistent results. If
the parameter is extraneous, an extra Π parameter may result, but experiments will later show that it
may be eliminated. Therefore, do not be afraid to include all the parameters that you feel are important.

The six steps listed below (which may seem a bit abstract but are actually easy to do) outline a
recommended procedure for determining the Π parameters:

Step 1. List all the dimensional parameters involved. (Let n be the number of parameters.) If all of the pertinent
parameters are not included, a relation may be obtained, but it will not give the complete story. If parameters
that actually have no effect on the physical phenomenon are included, either the process of dimensional
analysis will show that these do not enter the relation sought, or one or more dimensionless groups will
be obtained that experiments will show to be extraneous.

Step 2. Select a set of fundamental (primary) dimensions, e.g., MLt or FLt. (Note that for heat transfer problems you
may also need T for temperature, and in electrical systems, q for charge.)

Step 3. List the dimensions of all parameters in terms of primary dimensions. (Let r be the number of primary
dimensions.) Either force or mass may be selected as a primary dimension.

Step 4. Select a set of r dimensional parameters that includes all the primary dimensions. These parameters will
all be combined with each of the remaining parameters, one of those at a time, and so will be called repeat-
ing parameters. No repeating parameter should have dimensions that are a power of the dimensions
of another repeating parameter; for example, do not include both an area ðL2Þ and a second moment
of area ðL4Þ as repeating parameters. The repeating parameters chosen may appear in all the dimension-
less groups obtained; consequently, do not include the dependent parameter among those selected in
this step.

Step 5. Set up dimensional equations, combining the parameters selected in Step 4 with each of the other para-
meters in turn, to form dimensionless groups. (There will be n –m equations.) Solve the dimensional equa-
tions to obtain the n−m dimensionless groups.

Step 6. Check to see that each group obtained is dimensionless. If mass was initially selected as a primary dimen-
sion, it is wise to check the groups using force as a primary dimension, or vice versa.

The functional relationship among the Π parameters must be determined experimentally.
The detailed procedure for determining the dimensionless Π parameters is illustrated in Examples
7.1 and 7.2.

Example 7.1 DRAG FORCE ON A SMOOTH SPHERE

As noted in Section 7.2, the drag force, F, on a smooth sphere depends on the relative speed, V , the sphere diameter, D, the fluid
density, ρ, and the fluid viscosity, μ. Obtain a set of dimensionless groups that can be used to correlate experimental data.

Given: F = f ðρ,V ,D,μÞ for a smooth sphere.

Find: An appropriate set of dimensionless groups.

Solution: (Circled numbers refer to steps in the procedure for determining dimensionless Π parameters.)

F V D ρ μ n=5 dimensional parameters

Select primary dimensions M,L, and t.

F V D ρ μ

ML
t2

L
t

L
M
L3

M
Lt

r=3 primary dimensions
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Select repeating parameters ρ,V ,D: m= r=3 repeating parameters

Then n−m=2 dimensionless groups will result. Setting up dimensional equations, we obtain

Π1 = ρaV bDcF and
M
L3

� �a L
t

� �b

ðLÞc ML
t2

� �
=M0L0t0

Equating the exponents of M,L, and t results in

M :
L :
t :

a+1=0
−3a+ b+ c+1=0

−b−2= 0

a= −1
c= −2
b= −2

9=
; Therefore, Π1 =

F
ρV2D2

Similarly,

Π2 = ρdV eDf μ and
M
L3

� �d L
t

� �e

ðLÞf M
Lt

� �
=M0L0t0

M :
L :
t :

d+1=0
−3d+ e+ f −1=0

−e−1= 0

d= −1
f = −1
e= −1

9=
; Therefore, Π2 =

μ

ρVD

Check using F, L, t dimensions

Π1½ �= F
ρV2D2

	 

and F

L4

Ft2
t
L

� �2 1
L2

= 1

where [ ] means “has dimensions of,” and

Π2½ �= μ

ρVD

	 

and

Ft
L2

L4

Ft2
t
L
1
L
=1

The functional relationship is Π1 = f ðΠ2Þ, or
F

ρV2D2 = f
μ

ρVD

� �
as noted before. The form of the function, f , must be determined experi-
mentally (see Fig. 7.1).

The Excelworkbook for this problem
is convenient for computing the

values of a, b, and c for this and other
problems.

Example 7.2 PRESSURE DROP IN PIPE FLOW

The pressure drop, Δρ, for steady, incompressible viscous flow through a straight horizontal pipe depends on the pipe length, l,
the average velocity, V , the fluid viscosity, μ, the pipe diameter, D, the fluid density, ρ, and the average “roughness” height, e.
Determine a set of dimensionless groups that can be used to correlate data.

Given: Δp= f ðρ,V ,D, l,μ,eÞ for flow in a circular pipe.

Find: A suitable set of dimensionless groups.
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The procedure outlined above, where m is taken equal to r (the fewest independent dimensions
required to specify the dimensions of all parameters involved), almost always produces the correct num-
ber of dimensionless Π parameters. In a few cases, trouble arises because the number of primary dimen-
sions differs when variables are expressed in terms of different systems of dimensions (e.g.,MLt or FLt).
The value of m can be established with certainty by determining the rank of the dimensional matrix; that
rank is m. Although not needed in most applications, for completeness, this procedure is illustrated in
Example 7.3.

Solution: (Circled numbers refer to steps in the procedure for determining dimensionless Π parameters.)

Δp ρ μ V l D e n=7 dimensional parameters

Choose primary dimensions M,L, and t.

Δp ρ μ V l D e

M
Lt2

M
L3

M
Lt

L
t

L L L r=3 primary dimensions

Select repeating parameters ρ,V ,D. m= r=3 repeating parameters

Then n−m=4 dimensionless groups will result. Setting up dimensional equations we have:

Π1 = ρaV
b
DcΔp and

M
L3

� �a L
t

� �b

ðLÞc M
Lt2

� �
=M0L0t0

M :
L :
t :

0= a+1
0= −3a+ b+ c−1
0= −b−2

9=
;

a= −1
b= −2
c=0

Therefore, Π1 = ρ−1V −2D0Δp=
Δp
ρV

2

Π3 = ρgV
h
Dil and

M
L3

� �g L
t

� �h

ðLÞiL=M0L0t0

M :
L :
t :

0= g
0= −3g+ h+ i+1
0= −h

9=
;

g=0
h=0
i= −1

Therefore, Π3 = l
D

Π2 = ρdV eDf μ and
M
L3

� �d L
t

� �e

ðLÞf M
Lt

=M0L0t0

M :
L :
t :

0= d+1
0= −3d+ e+ f −1
0= −e−1

9=
;

d= −1
e= −1
f = −1

Therefore,Π2 =
μ

ρVD

Π4 = ρj V kDle and
M
L3

� �j L
t

� �k

ðLÞlL=M0L0t0

M :
L :
t :

0= j
0= −3j+ k+ l+1
0= −k

9=
;

j=0
k=0
l= −1

Therefore, Π4 =
e
D

Check, using F, L, t dimensions

½Π1�= Δp
ρV2

" #
and

F
L2

L4

Ft2
t2

L2
= 1 ½Π3�= l

D

	 

and

L
L
=1

½Π2�= μ

ρVD

	 

and

Ft
L2

L4

Ft2
t
L
1
L
=1 ½Π4�= e

D

h i
and

L
L
=1

Finally, the functional relationship is

Π1 = f ðΠ2, Π3, Π4Þ
or

Δp
ρV 2 = f

μ

ρVD
,
l
D
,
e
D

� �

Notes:
• As we shall see when we study pipe flow
in detail in Chapter 8, this relationship
correlates the data well.

• Each Π group is unique (e.g., there is only
one possible dimensionless grouping of
μ,ρ,V , and D).

• We can often deduce Π groups by
inspection, e.g., l=D is the obvious unique
grouping of l with, ρ,V , and D.

The Excelworkbook for Example 7.1
is convenient for computing the

values of a,b, and c for this problem.
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Example 7.3 CAPILLARY EFFECT: USE OF DIMENSIONAL MATRIX

When a small tube is dipped into a pool of liquid, surface tension causes a meniscus to form at the free surface, which is elevated
or depressed depending on the contact angle at the liquid-solid-gas interface. Experiments indicate that the magnitude of this
capillary effect, Δh, is a function of the tube diameter, D, liquid specific weight, γ, and surface tension, σ. Determine the number
of independent Π parameters that can be formed and obtain a set.

Given: Δh= f ðD,γ,σÞ
Find: (a) Number of independent Π parameters.

(b) One set of Π parameters.

Solution: (Circled numbers refer to steps in the procedure for determining dimensionless
Π parameters.)

Δh D γ σ n=4 dimensional parameters

Choose primary dimensions (use both M,L, t and F,L, t dimensions to illustrate the
problem in determining m).

(a) M, L, t

Δh D γ σ

L L
M
L2t2

M
t2

r=3 primary dimensions

(b) F, L, t

Δh D γ σ

L L
F
L3

F
L

r=2 primary dimensions

Thus for each set of primary dimensions we ask, “Is m equal to r?” Let us check each dimensional matrix to find out. The
dimensional matrices are

Δh D γ σ

M 0 0 1 1
L 1 1 −2 0
t 0 0 −2 −2

Δh D γ σ

F 0 0 1 1
L 1 1 −3 −1

The rank of a matrix is equal to the order of its largest nonzero determinant.

0 1 1
1 −2 0
0 −2 −2

������
������=0−ð1Þð−2Þ+ ð1Þð−2Þ=0

1 1
−3 −1

����
����= −1+ 3= 2 6¼ 0

−2 0
−2 −2

����
����=4 6¼ 0

∴m=2
m 6¼ r

∴ m=2
m= r

m=2. Choose D,γ as repeating parameters. m=2. Choose D, γ as repeating parameters.
n−m=2 dimensionless groups will result. n−m=2 dimensionless groups will result.

Π1 =DaγbΔh and Π1 =Deγ fΔh and

ðLÞa M
L2t2

� �b

ðLÞ=M0L0t0 ðLÞe F
L3

� �f

L=F0L0t0

Δh

D

Tube

Liquid
(Specific weight =   
Surface tension =   )σ
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The n−m dimensionless groups obtained from the procedure are independent but not unique. If a
different set of repeating parameters is chosen, different groups result. The repeating parameters are so
named because they may appear in all the dimensionless groups obtained. Based on experience, viscos-
ity should appear in only one dimensionless parameter. Therefore μ should not be chosen as a repeating
parameter.

When we have a choice, it usually works out best to choose density ρ (dimensionsM=L3 in theMLt
system), speed V (dimensions L=t), and characteristic length L (dimension L) as repeating parameters
because experience shows this generally leads to a set of dimensionless parameters that are suitable for
correlating a wide range of experimental data; in addition, ρ,V , and L are usually fairly easy to measure
or otherwise obtain. The values of the dimensionless parameters obtained using these repeating para-
meters almost always have a very tangible meaning, telling you the relative strength of various fluid
forces (e.g., viscous) to inertia forces—we will discuss several “classic” ones shortly.

It’s also worth stressing that, given the parameters you’re combining, we can often determine the
unique dimensional parameters by inspection. For example, if we had repeating parameters ρ,V , and L

M :
L :
t :

b+0=0
a−2b+1=0
−2b+0=0

9=
; b=0

a= −1

F : f =0
L : e−3f +1=0

�
e= −1

Therefore, Π1 =
Δh
D

Therefore, Π1 =
Δh
D

Π2 =Dcγdσ and Π2 =Dgγhσ and

ðLÞc M
L2t2

� �dM
t2

=M0L0t0 ðLÞg F
L3

� �h F
L
=F0L0t0

M : d+1=0
L : c−2d=0
t : −2d−2= 0

9=
; d= −1

c= −2
F : h+1=0
L : g−3h−1= 0

�
h= −1
g= −2

Therefore, Π2 =
σ

D2γ
Therefore, Π2 =

σ

D2λ

Check, using F, L, t dimensions

½Π1�= Δh
D

	 

and

L
L
=1

½Π2�= σ

D2γ

	 

and

F
L

1
L2

L3

F
=1

Check, using M,L, t dimensions

½Π1�= Δh
D

	 

and

L
L
=1

½Π2�= σ

D2γ

	 

and

M
t2

1
L2

L2t2

M
=1

Therefore, both systems of dimensions yield the same dimensionless Π para-
meters. The predicted functional relationship is

Π1 = f ðΠ2Þ or
Δh
D

= f
σ

D2γ

� �
Notes:
• This result is reasonable on physical
grounds. The fluid is static; we would not
expect time to be an important
dimension.

• We analyzed this problem in Example 2.3,
wherewe found thatΔh=4σcosðθÞ=ρgD (θ
is the contact angle). Hence Δh=D is
directly proportional to σ=D2γ.

• The purpose of this problem is to illus-
trate use of the dimensional matrix to
determine the required number of
repeating parameters.
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and were combining them with a parameter Af , representing the frontal area of an object, it’s fairly obvi-
ous that only the combination Af =L2 is dimensionless; experienced fluid mechanicians also know that
ρV2 produces dimensions of stress, so any time a stress or force parameter arises, dividing by ρV2 or
ρV2L2 will produce a dimensionless quantity.

We will find useful a measure of the magnitude of fluid inertia forces, obtained from Newton’s sec-
ond law, F =ma; the dimensions of inertia force are thus MLt−2. Using ρ,V , and L to build the dimen-
sions of ma leads to the unique combination ρV2L2 (only ρ has dimensionM, and only V2 will produce
dimension t−2; L2 is then required to leave us with MLt−2).

If n−m=1, then a single dimensionless Π parameter is obtained. In this case, the Buckingham Pi
theorem indicates that the single Π parameter must be a constant.

7.4 Significant Dimensionless Groups in Fluid Mechanics
Over the years, several hundred different dimensionless groups that are important in engineering have
been identified. Following tradition, each such group has been given the name of a prominent scientist or
engineer, usually the one who pioneered its use. Several are so fundamental and occur so frequently in
fluid mechanics that we should take time to learn their definitions. Understanding their physical signif-
icance also gives insight into the phenomena we study.

Forces encountered in flowing fluids include those due to inertia, viscosity, pressure, gravity, sur-
face tension, and compressibility. The ratio of any two forces will be dimensionless. We have previously
shown that the inertia force is proportional to ρV2L2.

We can now compare the relative magnitudes of various fluid forces to the inertia force, using the
following scheme:

Viscous force 	 τA= μ
du
dy

A/ μ
V
L
L2 = μVL so viscous

inertia
	 μVL

ρV2L2
=

μ

ρVL

Pressure force 	 ΔpA/ΔpL2 so
pressure
inertia

	 ΔpL2

ρV2L2
=

Δp
ρV2

Gravity force 	 mg/ gρL3 so gravity
inertia

	 gρL3

ρV2L2
=
gL
V2

Surface tension 	 σL so surface tension
inertia

	 σL
ρV2L2

=
σ

ρV2L

Compressibility force 	 EυA/EυL2 so compressibility force
inertia

	 EυL2

ρV2L2
=

Eυ

ρV2

All of the dimensionless parameters listed above occur so frequently, and are so powerful in predicting
the relative strengths of various fluid forces, that they (slightly modified—usually by taking the inverse)
have been given identifying names.

The first parameter, μ=ρVL, is by tradition inverted to the form ρVL=μ, and was actually explored
independently of dimensional analysis in the 1880s by Osborne Reynolds, the British engineer, who
studied the transition between laminar and turbulent flow regimes in a tube. He discovered that the
parameter (later named after him)

Re=
ρVD
μ

=
VD
ν

is a criterion by which the flow regime may be determined. Later experiments have shown that the
Reynolds number is a key parameter for other flow cases as well. Thus, in general,

Re=
ρVL
μ

=
VL
ν

ð7:11Þ

where L is a characteristic length descriptive of the flow field geometry. The Reynolds number is the
ratio of inertia forces to viscous forces. Flows with “large” Reynolds number generally are turbulent.
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Flows in which the inertia forces are “small” compared with the viscous forces are characteristically
laminar flows.

In aerodynamic and other model testing, it is convenient to modify the second parameter, Δp=ρV2,
by inserting a factor 1

2 to make the denominator represent the dynamic pressure (the factor, of course,
does not affect the dimensions). The ratio

Eu=
Δp
1
2
ρV2

ð7:12Þ

is formed, whereΔp is the local pressure minus the freestream pressure, and ρ and V are properties of the
freestream flow. This ratio has been named after Leonhard Euler, the Swiss mathematician who did
much early analytical work in fluid mechanics. Euler is credited with being the first to recognize the
role of pressure in fluid motion; the Euler equations of Chapter 6 demonstrate this role. The Euler num-
ber is the ratio of pressure forces to inertia forces. The Euler number is often called the pressure coef-
ficient, Cp.

In the study of cavitation phenomena, the pressure difference,Δp, is taken asΔp= p−pυ, where p is
the pressure in the liquid stream, and pυ is the liquid vapor pressure at the test temperature. Combining
these with ρ and V in the stream yields the dimensionless parameter called the cavitation number,

Ca=
p−pυ
1
2
ρV2

ð7:13Þ

The smaller the cavitation number, the more likely cavitation is to occur. This is usually an unwanted
phenomenon.

William Froude was a British naval architect. Together with his son, Robert Edmund Froude, he
discovered that the parameter

Fr=
Vffiffiffiffiffiffi
gL
p ð7:14Þ

was significant for flows with free surface effects. Squaring the Froude number gives

Fr2 =
V2

gL

which may be interpreted as the ratio of inertia forces to gravity forces (it is the inverse of the third force
ratio, V2=gL, that we discussed above). The length, L, is a characteristic length descriptive of the flow
field. In the case of open-channel flow, the characteristic length is the water depth; Froude numbers less
than unity indicate subcritical flow and values greater than unity indicate supercritical flow. We will
have much more to say on this in Chapter 11.

By convention, the inverse of the fourth force ratio, σ=ρV2L, discussed above, is called the Weber
number; it indicates the ratio of inertia to surface tension forces

We=
ρV2L
σ

ð7:15Þ

The value of the Weber number is indicative of the existence of, and frequency of, capillary waves at a
free surface.

In the 1870s, the Austrian physicist Ernst Mach introduced the parameter

M =
V
c

ð7:16Þ
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where V is the flow speed and c is the local sonic speed. Analysis and experiments have shown that the
Mach number is a key parameter that characterizes compressibility effects in a flow. The Mach number
may be written

M =
V
c
=

Vffiffiffiffiffi
dp
dρ

r =
Vffiffiffiffiffi
Eυ

ρ

r or M2 =
ρV2L2

EυL2
=
ρV2

Eυ

which is the inverse of the final force ratio, Eυ=ρV2, discussed above, and can be interpreted as a ratio of
inertia forces to forces due to compressibility. For truly incompressible flow (and note that under some
conditions even liquids are quite compressible), c= ∞ so that M =0.

Equations 7.11 through 7.16 are some of the most commonly used dimensionless groupings in fluid
mechanics because for any flow pattern they immediately (even before performing any experiments or
analysis) indicate the relative importance of inertia, viscosity, pressure, gravity, surface tension, and
compressibility.

7.5 Flow Similarity and Model Studies
To be useful, a model test must yield data that can be scaled to obtain the forces, moments, and dynamic
loads that would exist on the full-scale prototype.What conditions must be met to ensure the similarity of
model and prototype flows?

Perhaps the most obvious requirement is that the model and prototype must be geometrically sim-
ilar. Geometric similarity requires that the model and prototype be the same shape, and that all linear
dimensions of the model be related to corresponding dimensions of the prototype by a constant scale
factor.

A second requirement is that the model and prototype flows must be kinematically similar. Two
flows are kinematically similar when the velocities at corresponding points are in the same direction
and differ only by a constant scale factor. Thus two flows that are kinematically similar also have stream-
line patterns related by a constant scale factor. Since the boundaries form the bounding streamlines,
flows that are kinematically similar must be geometrically similar.

In principle, in order to model the performance in an infinite flow field correctly, kinematic sim-
ilarity would require that a wind tunnel of infinite cross section be used to obtain data for drag on an
object. In practice, this restriction may be relaxed considerably, permitting use of equipment of reason-
able size.

Kinematic similarity requires that the regimes of flow be the same for model and prototype. If com-
pressibility or cavitation effects, which may change even the qualitative patterns of flow, are not present
in the prototype flow, they must be avoided in the model flow.

When two flows have force distributions such that identical types of forces are parallel and are
related in magnitude by a constant scale factor at all corresponding points, the flows are dynamically
similar.

The requirements for dynamic similarity are the most restrictive. Kinematic similarity requires
geometric similarity; kinematic similarity is a necessary, but not sufficient, requirement for dynamic
similarity.

To establish the conditions required for complete dynamic similarity, all forces that are important
in the flow situation must be considered. Thus the effects of viscous forces, of pressure forces, of sur-
face tension forces, and so on, must be considered. Test conditions must be established such that all
important forces are related by the same scale factor between model and prototype flows. When
dynamic similarity exists, data measured in a model flow may be related quantitatively to conditions
in the prototype flow. What, then, are the conditions that ensure dynamic similarity between model
and prototype flows?

The Buckingham Pi theorem may be used to obtain the governing dimensionless groups for a flow
phenomenon; to achieve dynamic similarity between geometrically similar flows, we must make sure
that each independent dimensionless group has the same value in the model and in the prototype. Then
not only will the forces have the same relative importance, but also the dependent dimensionless group
will have the same value in the model and prototype.

Video:
Geometric, Not
Dynamic,
Similarity: Flow
Past a Block 2

Video:
Geometric, Not
Dynamic,
Similarity: Flow
Past a Block 1
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For example, in considering the drag force on a sphere in Example 7.1, we began with

F = f ðD,V ,ρ,μÞ
The Buckingham Pi theorem predicted the functional relation

F
ρV2D2 = f1

ρVD
μ

� �

In Section 7.4 we showed that the dimensionless parameters can be viewed as ratios of forces. Thus, in
considering a model flow and a prototype flow about a sphere (the flows are geometrically similar), the
flows also will be dynamically similar if the value of the independent parameter, ρVD=μ, is duplicated
between model and prototype, i.e., if

ρVD
μ

� �
model

=
ρVD
μ

� �
prototype

Furthermore, if

Remodel =Reprototype

then the value of the dependent parameter, F=ρV2D2, in the functional relationship, will be duplicated
between model and prototype, i.e.,

F
ρV2D2

� �
model

=
F

ρV2D2

� �
prototype

and the results determined from themodel study can be used to predict the drag on the full-scale prototype.
The actual force on the object caused by the fluid is not the same for the model and prototype, but the

value of its dimensionless group is. The two tests can be run using different fluids, if desired, as long as
the Reynolds numbers are matched. For experimental convenience, test data can be measured in a wind
tunnel in air and the results used to predict drag in water, as illustrated in Example 7.4.

Example 7.4 SIMILARITY: DRAG OF A SONAR TRANSDUCER

The drag of a sonar transducer is to be predicted, based on wind tunnel test data. The prototype, a 1-ft diameter sphere, is to be
towed at 5 knots (nautical miles per hour) in seawater at 40�F. The model is 6 in. in diameter. Determine the required test speed in
air. If the drag of the model at these test conditions is 0.60 lbf, estimate the drag of the prototype.

Given: Sonar transducer to be tested in a wind tunnel.

Find: (a) Vm.
(b) Fp.

Solution: Since the prototype operates in water
and the model test is to be performed in air, useful
results can be expected only if cavitation effects
are absent in the prototype flow and compressibility
effects are absent from the model test. Under these
conditions,

F
ρV2D2 = f

ρVD
μ

� �
and the test should be run at

Remodel =Reprototype

Vp = 5 knots

Dp = 1 ft

Fp

Water at 40°F

Vm

Dm = 6 in.

Fm = 0.60 lbf

Air
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Incomplete Similarity

We have shown that to achieve complete dynamic similarity between geometrically similar flows, it is
necessary to duplicate the values of the independent dimensionless groups; by so doing the value of the
dependent parameter is then duplicated.

In the simplified situation of Example 7.4, duplicating the Reynolds number value between model
and prototype ensured dynamically similar flows. Testing in air allowed the Reynolds number to be
duplicated exactly (this also could have been accomplished in a water tunnel for this situation). The drag
force on a sphere actually depends on the nature of the boundary-layer flow. Therefore, geometric sim-
ilarity requires that the relative surface roughness of the model and prototype be the same. This means
that relative roughness also is a parameter that must be duplicated between model and prototype situa-
tions. If we assume that the model was constructed carefully, measured values of drag from model tests
could be scaled to predict drag for the operating conditions of the prototype.

In many model studies, to achieve dynamic similarity requires duplication of several dimensionless
groups. In some cases, complete dynamic similarity between model and prototype may not be attainable.
Determining the drag force (resistance) of a surface ship is an example of such a situation. Resistance on
a surface ship arises from skin friction on the hull (viscous forces) and surface wave resistance (gravity
forces). Complete dynamic similarity requires that both Reynolds and Froude numbers be duplicated
between model and prototype.

to ensure dynamic similarity. For seawater at 40�F, ρ=1:99 slug=ft3 and ν≈1:69× 10−5 ft2=s. At prototype conditions,

Vp =5
nmi
hr

× 6080
ft
nmi

×
hr

3600 s
= 8:44 ft=s

Rep =
VpDp

νp
=8:44

ft
s
× 1 ft ×

s
1:69× 10−5 ft2

= 4:99× 105

The model test conditions must duplicate this Reynolds number. Thus

Rem =
VmDm

νm
=4:99× 105

For air at STP, ρ=0:00238 slug=ft3 and ν=1:57× 10−4 ft2=s. The wind tunnel must be operated at

Vm =Rem
νm
Dm

=4:99× 105 × 1:57× 10−4 ft
2

s
×

1
0:5 ft

Vm =157 ft=s
Vm ������������������������������������

This speed is low enough to neglect compressibility effects.
At these test conditions, the model and prototype flows are dynamically similar. Hence

F
ρV2D2

�
m
=

F
ρV2D2

�
p

and

Fp =Fm
ρp
ρm

V2
p

V2
m

D2
p

D2
m
=0:60 lbf ×

1:99
0:00238

×
ð8:44Þ2
ð157Þ2 ×

1

ð0:5Þ2

Fp =5:8 lbf
Fp ������������������������������������

If cavitation were expected—if the sonar probe were operated at high speed
near the free surface of the seawater—then useful results could not be obtained
from a model test in air.

This problem:
• Demonstrates the calculation of proto-
type values from model test data.

• “Reinvented the wheel”: the results for
drag on a smooth sphere are very well
known, so we did not need to do a model
experiment but instead could have sim-
ply read from the graph of Fig. 7.1 the
value of CD= Fp=ð12ρV2

p
π
4D

2
pÞ≈0:1, corre-

sponding to a Reynolds number of
4:99×105. Then Fp≈5:6 lbf can easily be
computed. We will have more to say on
drag coefficients in Chapter 9.
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In general it is not possible to predict wave resistance analytically, so it must be modeled. This
requires that

Frm =
Vm

ðgLmÞ1=2
=Frp =

Vp

ðgLpÞ1=2

To match Froude numbers between model and prototype therefore requires a velocity ratio of

Vm

Vp
=

Lm
Lp

� �1=2

to ensure dynamically similar surface wave patterns.
Hence for any model length scale, matching the Froude numbers determines the velocity ratio. Only

the kinematic viscosity can then be varied to match Reynolds numbers. Thus

Rem =
VmLm
νm

=Rep =
VpLp
νp

leads to the condition that
νm
νp

=
Vm

Vp

Lm
LP

If we use the velocity ratio obtained from matching the Froude numbers, equality of Reynolds numbers
leads to a kinematic viscosity ratio requirement of

νm
νp

=
Lm
Lp

� �1=2Lm
Lp

=
Lm
Lp

� �3=2

If Lm=Lp = 1
100 (a typical length scale for ship model tests), then νm=νp must be 1

1000. Figure A.3
shows that mercury is the only liquid with kinematic viscosity less than that of water. However, it is
only about an order of magnitude less, so the kinematic viscosity ratio required to duplicate Reynolds
numbers cannot be attained.

We conclude that we have a problem: it is impossible in practice for this model/prototype scale of
1

100 to satisfy both the Reynolds number and Froude number criteria; at best we will be able to satisfy only
one of them. In addition, water is the only practical fluid for most model tests of free-surface flows. To
obtain complete dynamic similarity then would require a full-scale test. However, all is not lost: Model
studies do provide useful information even though complete similarity cannot be obtained. As an exam-
ple, Fig. 7.2 shows data from a test of a 1:80 scale model of a ship conducted at the U.S. Naval Academy
Hydromechanics Laboratory. The plot displays “resistance coefficient” data versus Froude number. The
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Fig. 7.2 Data from test of 1:80 scale model of U.S. Navy guided missile frigate Oliver Hazard Perry (FFG-7). (Data from U.S.
Navel Academy Hydromechanics Laboratory, courtesy of Professor Bruce Johnson.)
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square points are calculated from values of total resistance measured in the test. We would like to obtain
the corresponding total resistance curve for the full-scale ship.

If you think about it, we can onlymeasure the total drag (the square data points). The total drag is due
to both wave resistance (dependent on the Froude number) and friction resistance (dependent on the Rey-
nolds number), and it’s not possible to determine experimentally howmuch each contributes. We cannot
use the total drag curve of Fig. 7.2 for the full-scale ship because, as we have discussed above, we can
never set up the model conditions so that its Reynolds number and Froude number match those of the
full-scale ship. Nevertheless, wewould like to extract from Fig. 7.2 the corresponding total drag curve for
the full-scale ship. In many experimental situations we need to use a creative “trick” to come up with a
solution. In this case, the experimenters used boundary-layer theory (which we discuss in Chapter 9) to
predict the viscous resistance component of the model (shown as diamonds in Fig. 7.2); then they esti-
mated the wave resistance (not obtainable from theory) by simply subtracting this theoretical viscous
resistance from the experimental total resistance, point by point (shown as circles in Fig. 7.2).

Using this clever idea (typical of the kind of experimental and analytical approaches experimental-
ists need to employ), Fig. 7.2 therefore gives the wave resistance of the model as a function of Froude
number. It is also valid for the full-scale ship, because wave resistance depends only on the Froude num-
ber! We can now build a graph similar to Fig. 7.2 valid for the full-scale ship: Simply compute from
boundary-layer theory the viscous resistance of the full-scale ship and add this to the wave resistance
values, point by point. The result is shown in Fig. 7.3. The wave resistance points are identical to those
in Fig. 7.2; the viscous resistance points are computed from theory (and are different from those of
Fig. 7.2); and the predicted total resistance curve for the full-scale ship is finally obtained.

In this example, incomplete modeling was overcome by using analytical computations; the model
experiments modeled the Froude number, but not the Reynolds number.

Because the Reynolds number cannot be matched for model tests of surface ships, the boundary-
layer behavior is not the same for model and prototype. The model Reynolds number is only ðLm=LpÞ3=2
as large as the prototype value, so the extent of laminar flow in the boundary layer on the model is too
large by a corresponding factor. The method just described assumes that boundary-layer behavior can be
scaled. To make this possible, the model boundary layer is “tripped” or “stimulated” to become turbulent
at a location that corresponds to the behavior on the full-scale vessel. “Studs” were used to stimulate the
boundary layer for the model test results shown in Fig. 7.2.

A correction sometimes is added to the full-scale coefficients calculated from model test data. This
correction accounts for roughness, waviness, and unevenness that inevitably are more pronounced on the
full-scale ship than on the model. Comparisons between predictions from model tests and measurements
made in full-scale trials suggest an overall accuracy within �5 percent [5].
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Fig. 7.3 Resistance of full-scale ship predicted from model test results. (Data from U.S. Navel Academy Hydromechanics
Laboratory, courtesy of Professor Bruce Johnson.)
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As we will see in Chapter 11, the Froude number is an important parameter in the modeling of rivers
and harbors. In these situations it is not practical to obtain complete similarity. Use of a reasonable model
scale would lead to extremely small water depths, so that viscous forces and surface tension forces would
have much larger relative effects in the model flow than in the prototype. Consequently, different length
scales are used for the vertical and horizontal directions. Viscous forces in the deeper model flow are
increased using artificial roughness elements.

Emphasis on fuel economy has made reduction of aerodynamic drag important for automobiles,
trucks, and buses. Most work on development of low-drag configurations is done using model tests.
Traditionally, automobile models have been built to 3

8 scale, at which a model of a full-size automobile
has a frontal area of about 0:3 m2. Thus testing can be done in a wind tunnel with test section area of 6 m2

or larger. At 38 scale, a wind speed of about 150 mph is needed to model a prototype automobile traveling
at the legal speed limit. Thus there is no problem with compressibility effects, but the scale models are
expensive and time-consuming to build.

A large wind tunnel (test section dimensions are 5.4 m high, 10.4 m wide, and 21.3 m long; max-
imum air speed is 250 km=hr with the tunnel empty) is used by General Motors to test full-scale auto-
mobiles at highway speeds. The large test section allows use of production autos or of full-scale clay
mockups of proposed auto body styles. Many other vehicle manufacturers are using comparable facil-
ities; Fig. 7.4 shows a full-size sedan under test in the Volvo wind tunnel. The relatively low speed per-
mits flow visualization using tufts or “smoke” streams.1 Using full-size “models,” stylists and engineers
can work together to achieve optimum results.

It is harder to achieve dynamic similarity in tests of trucks and buses; models must be made to smal-
ler scale than those for automobiles.2 A large scale for truck and bus testing is 1:8. To achieve complete
dynamic similarity by matching Reynolds numbers at this scale would require a test speed of 440 mph.
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Fig. 7.4 Full-scale automobile under test in Volvo wind tunnel, using smoke streaklines for flow visualization.

1A mixture of liquid nitrogen and steam may be used to produce “smoke” streaklines that evaporate and do not clog the fine mesh
screens used to reduce the turbulence level in a wind tunnel. Streaklines may be made to appear “colored” in photos by placing a
filter over the camera lens. This and other techniques for flow visualization are detailed in References [6] and [7].
2 The vehicle length is particularly important in tests at large yaw angles to simulate crosswind behavior. Tunnel blockage con-
siderations limit the acceptable model size. See Reference [8] for recommended practices.
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This would introduce unwanted compressibility effects, and model and prototype flows would not be
kinematically similar. Fortunately, trucks and buses are “bluff” objects. Experiments show that above a
certain Reynolds number, their nondimensional drag becomes independent of Reynolds number [8].
(Figure 7.1 actually shows an example of this—for a sphere, the dimensionless drag is approximately
constant for 2000<Re<2×105.) Although similarity is not complete, measured test data can be scaled
to predict prototype drag forces. The procedure is illustrated in Example 7.5.

Example 7.5 INCOMPLETE SIMILARITY: AERODYNAMIC DRAG ON A BUS

The following wind tunnel test data from a 1:16 scale model of a bus are available:

Air Speed (m/s) 18.0 21.8 26.0 30.1 35.0 38.5 40.9 44.1 46.7
Drag Force (N) 3.10 4.41 6.09 7.97 10.7 12.9 14.7 16.9 18.9

Using the properties of standard air, calculate and plot the dimensionless aerodynamic drag coefficient,

CD =
FD

1
2
ρV2A

versus Reynolds number Re= ρVw=μ, where w is model width. Find the minimum test speed above which CD remains constant.
Estimate the aerodynamic drag force and power requirement for the prototype vehicle at 100 km=hr. (The width and frontal area
of the prototype are 8 ft and 84 ft2, respectively.)

Given: Data from a wind tunnel test of a model bus. Prototype dimensions are width of 8 ft and frontal area of 84 ft2. Model
scale is 1:16. Standard air is the test fluid.

Find: (a) Aerodynamic drag coefficient, CD =FD=
1
2ρV

2A, versus Reynolds number, Re= ρVw=μ; plot.
(b) Speed above which CD is constant.
(c) Estimated aerodynamic drag force and power required for the full-scale vehicle at 100 km=hr.

Solution: The model width is

wm =
1
16

wp =
1
16

× 8 ft × 0:3048
m
ft
= 0:152 m

The model area is

Am =
1
16

� �2

Ap =
1
16

� �2

× 84 ft2 × ð0:305Þ2m
2

ft2
= 0:0305 m2

The aerodynamic drag coefficient may be calculated as

CD =
FD

1
2
ρV2A

=2×FDðNÞ× m3

1:23 kg
×

s2

ðVÞ2 m2
×

1
0:0305 m2 ×

kg �m
N � s2

CD =
53:3 FDðNÞ
½Vðm=sÞ�2

The Reynolds number may be calculated as

Re=
ρVw
μ

=
Vw
ν

=V
m
s
× 0:152 m×

s
1:46× 10−5 m2

Re=1:04× 104 Vðm=sÞ
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For additional details on techniques and applications of dimensional analysis consult [9–12].

Scaling with Multiple Dependent Parameters

In some situations of practical importance there may be more than one dependent parameter. In such
cases, dimensionless groups must be formed separately for each dependent parameter.

As an example, consider a typical centrifugal pump. The detailed flow pattern within a pump
changes with volume flow rate and speed; these changes affect the pump’s performance. Performance
parameters of interest include the pressure rise (or head) developed, the power input required, and the
machine efficiency measured under specific operating conditions.3 Performance curves are generated
by varying an independent parameter such as the volume flow rate. Thus the independent variables
are volume flow rate, angular speed, impeller diameter, and fluid properties. Dependent variables are
the several performance quantities of interest.

The calculated values are plotted in the following figure:

CDm versus Rem ���������������������������������
The plot shows that the model drag coefficient becomes constant atCDm ≈ 0:46 above Rem =4× 105, which corresponds to an air
speed of approximately 40 m=s. Since the drag coefficient is independent of Reynolds number above Re ≈ 4× 105, then for the
prototype vehicle ðRe ≈ 4:5× 106Þ, CD ≈ 0:46. The drag force on the full-scale vehicle is

FDp =CD
1
2
ρV2

p Ap

=
0:46
2

× 1:23
kg
m3 100

km
hr

× 1000
m
km

×
hr

3600 s

� �2

× 84 ft2 × ð0:305Þ2m
2

ft2
×

N � s2
kg �m

FDp =1:71 kN
FDp �������������������������������������������

The corresponding power required to overcome aerodynamic drag is

�p =FDpVp

=1:71× 103 N× 100
km
hr

× 1000
m
km

×
hr

3600 s
×
W � s
N �m

�p =47:5 kW
�p �����������������������������������������
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This problem illustrates a common
phenomenon in aerodynamics: Above a
certain minimum Reynolds number the
drag coefficient of an object usually
approaches a constant—that is, becomes
independent of the Reynolds number.
Hence, in these situationswe do not have to
match the Reynolds numbers of the model
and prototype in order for them to have
the same drag coefficient—a considerable
advantage. However, the SAERecommended
Practices [8] suggests Re≥2× 106 for truck
and bus testing.

3 Efficiency is defined as the ratio of power delivered to the fluid divided by input power, η=�=�in. For incompressible flow, we
will see in Chapter 8 that the energy equation reduces to �= ρQh (when “head” h is expressed as energy per unit mass) or to
�= ρgQH (when head H is expressed as energy per unit weight).
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Finding dimensionless parameters begins from the symbolic equations for the dependence of head,
h (energy per unit mass, L2=t2), and power, �, on the independent parameters, given by

h= g1ðQ, ρ, ω, D, μÞ
and

�= g2ðQ, ρ, ω, D, μÞ

Straightforward use of the Pi theorem gives the dimensionless head coefficient and power coefficient as

h
ω2D2 = f1

Q
ωD3 ,

ρωD2

μ

� �
ð7:17Þ

and

�

ρω3D5 = f2
Q

ωD3 ,
ρωD2

μ

� �
ð7:18Þ

The dimensionless parameterQ=ωD3 in these equations is called the flow coefficient. The dimensionless
parameter ρωD2=μ ð/ ρVD=μÞ is a form of Reynolds number.

Head and power in a pump are developed by inertia forces. Both the flow pattern within a pump and
the pump performance change with volume flow rate and speed of rotation. Performance is difficult to
predict analytically except at the design point of the pump, so it is measured experimentally. Typical
characteristic curves plotted from experimental data for a centrifugal pump tested at constant speed
are shown in Fig. 7.5 as functions of volume flow rate. The head, power, and efficiency curves in
Fig. 7.5 are smoothed through points calculated from measured data. Maximum efficiency usually
occurs at the design point.

Complete similarity in pump performance tests would require identical flow coefficients and Rey-
nolds numbers. In practice, it has been found that viscous effects are relatively unimportant when two
geometrically similar machines operate under “similar” flow conditions. Thus, from Eqs. 7.17 and
7.18, when

Q1

ω1D3
1
=

Q2

ω2D3
2

ð7:19Þ

it follows that
h1

ω2
1D

2
1
=

h2
ω2
2D

2
2

ð7:20Þ

and

�1

ρ1ω
3
1D

5
1
=

�2

ρ2ω
3
2D

5
2

ð7:21Þ
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Fig. 7.5 Typical characteristic curves for centrifugal pump tested at constant speed.
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The empirical observation that viscous effects are unimportant under similar flow conditions allows
use of Eqs. 7.19 through 7.21 to scale the performance characteristics of machines to different operating
conditions, as either the speed or diameter is changed. These useful scaling relationships are known as
pump or fan “laws.” If operating conditions for one machine are known, operating conditions for any
geometrically similar machine can be found by changing D and ω according to Eqs. 7.19 through 7.21.
(More details on dimensional analysis, design, and performance curves for fluid machinery are presented
in Chapter 10.)

Another useful pump parameter can be obtained by eliminating the machine diameter from
Eqs. 7.19 and 7.20. If we designate Π1 =Q=ωD3 and Π2 = h=ω2D2, then the ratio Π1=2

1 =Π3=4
2 is another

dimensionless parameter; this parameter is the specific speed, Ns,

Ns =
ωQ1=2

h3=4
ð7:22aÞ

The specific speed, as defined in Eq. 7.22a, is a dimensionless parameter (provided that the head, h, is
expressed as energy per unit mass). You may think of specific speed as the speed required for a machine
to produce unit head at unit volume flow rate. A constant specific speed describes all operating condi-
tions of geometrically similar machines with similar flow conditions.

Although specific speed is a dimensionless parameter, it is common practice to use a convenient but
inconsistent set of units in specifying the variables ω and Q, and to use the energy per unit weight H in
place of energy per unit mass h in Eq. 7.22a. When this is done the specific speed,

Nscu =
ωQ1=2

H3=4
ð7:22bÞ

is not a unitless parameter and its magnitude depends on the units used to calculate it. Customary units
used in U.S. engineering practice for pumps are rpm for ω, gpm for Q, and feet (energy per unit weight)
for H. In these customary U.S. units, “low” specific speed means 500<Nscu <4000 and “high” means
10,000<Nscu <15,000. Example 7.6 illustrates use of the pump scaling laws and specific speed param-
eter. More details of specific speed calculations and additional examples of applications to fluid machin-
ery are presented in Chapter 10.

Example 7.6 PUMP “LAWS”

A centrifugal pump has an efficiency of 80 percent at its design-point specific speed of 2000 (units of rpm, gpm, and feet). The
impeller diameter is 8 in. At design-point flow conditions, the volume flow rate is 300 gpm of water at 1170 rpm. To obtain a
higher flow rate, the pump is to be fitted with a 1750 rpm motor. Use the pump “laws” to find the design-point performance
characteristics of the pump at the higher speed. Show that the specific speed remains constant for the higher operating speed.
Determine the motor size required.

Given: Centrifugal pump with design specific speed of 2000 (in rpm, gpm, and feet units). Impeller diameter isD=8 in. At the
pump’s design-point flow conditions, ω=1170 rpm and Q=300 gpm, with water.

Find: (a) Performance characteristics,
(b) specific speed, and
(c) motor size required, for similar flow conditions at 1750 rpm.

Solution: From pump “laws,” Q=ωD3 = constant, so

Q2 =Q1
ω2

ω1

D2

D1

� �3

= 300 gpm
1750
1170

� �
ð1Þ3 = 449 gpm

Q2 �������������������������
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Comments on Model Testing

While outlining the procedures involved in model testing, we have tried not to imply that testing is a
simple task that automatically gives results that are easily interpreted, accurate, and complete. As in
all experimental work, careful planning and execution are needed to obtain valid results. Models must
be constructed carefully and accurately, and they must include sufficient detail in areas critical to the
phenomenon being measured. Aerodynamic balances or other force measuring systems must be aligned
carefully and calibrated correctly. Mounting methods must be devised that offer adequate rigidity and
model motion, yet do not interfere with the phenomenon being measured. References [13–15] are con-
sidered the standard sources for details of wind tunnel test techniques. More specialized techniques for
water impact testing are described in Waugh and Stubstad [16].

Experimental facilities must be designed and constructed carefully. The quality of flow in a wind
tunnel must be documented. Flow in the test section should be as nearly uniform as possible (unless the
desire is to simulate a special profile such as an atmospheric boundary layer), free from angularity, and
with little swirl. If they interfere with measurements, boundary layers on tunnel walls must be removed
by suction or energized by blowing. Pressure gradients in a wind tunnel test section may cause erroneous
drag-force readings due to pressure variations in the flow direction.

The pump head is not specified at ω1 = 1170 rpm, but it can be calculated from the specific speed, Nscu =2000. Using the given
units and the definition of Nscu ,

Nscu =
ωQ1=2

H3=4
so H1 =

ω1Q
1=2
1

Nscu

 !4=3

= 21:9 ft

Then H=ω2D2 = constant, so

H2 =H1
ω2

ω1

� �2 D2

D1

� �2

= 21:9 ft
1750
1170

� �2

ð1Þ2 = 49:0 ft
H2 �������������������������

The pump output power is �1 = ρgQ1H1, so at ω1 = 1170 rpm,

�1 = 1:94
slug
ft3

× 32:2
ft
s2

× 300
gal
min

× 21:9 ft ×
ft3

7:48 gal
×
min
60 s

×
lbf � s2
slug � ft ×

hp � s
550 ft � lbf

�1 = 1:66 hp

But �=ρω3D5 = constant, so

�2 =�1
ρ2
ρ1

� �
ω2

ω1

� �⁣3 D2

D1

� � ⁣5
= 1:66 hpð1Þ 1750

1170

� �3
ð1Þ5 = 5:55 hp

�2 �����������������
The required input power may be calculated as

�in =
�2

η
=
5:55 hp
0:80

=6:94 hp
�in ����������������������

Thus a 7.5-hp motor (the next larger standard size) probably would be specified.
The specific speed at ω2 = 1750 rpm is

Nscu =
ωQ1=2

H3=4
=
1750ð449Þ1=2
ð49:0Þ3=4

= 2000
Nscu �����������������

This problem illustrates application of
the pump “laws” and specific speed to
scaling of performance data. Pump and
fan “laws” are used widely in industry to
scale performance curves for families of
machines from a single performance curve,
and to specify drive speed and power in
machine applications.
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Special facilities are needed for unusual conditions or for special test requirements, especially to
achieve large Reynolds numbers. Many facilities are so large or specialized that they cannot be sup-
ported by university laboratories or private industry. A few examples include [17–19]:

• National Full-Scale Aerodynamics Complex, NASA, Ames Research Center, Moffett Field, Califor-
nia.
Two wind tunnel test sections, powered by a 125,000 hp electric drive system:

– 40 ft high and 80 ft wide ð12× 24 mÞ test section, maximum wind speed of 300 knots.

– 80 ft high and 120 ft wide ð24× 36 mÞ test section, maximum wind speed of 137 knots.

• U.S. Navy, David Taylor Research Center, Carderock, Maryland.

– High-Speed Towing Basin 2968 ft long, 21 ft wide, and 16 ft deep. Towing carriage can travel at up
to 100 knots while measuring drag loads to 8000 lbf and side loads to 2000 lbf.

– 36 in. variable-pressure water tunnel with 50 knot maximum test speed at pressures between 2 and
60 psia.

– Anechoic Flow Facility with quiet, low-turbulence air flow in 8 ft square by 21 ft-long open-jet test
section. Flow noise at maximum speed of 200 ft=s is less than that of conversational speech.

• U.S. Army Corps of Engineers, Sausalito, California.

– San Francisco Bay and Delta Model with slightly more than 1 acre in area, 1:1000 horizontal scale
and 1:100 vertical scale, 13,500 gpm of pumping capacity, use of fresh and salt water, and tide
simulation.

• NASA, Langley Research Center, Hampton, Virginia.

– National Transonic Facility (NTF) with cryogenic technology (temperatures as low as −300∘F) to
reduce gas viscosity, raising Reynolds number by a factor of 6, while halving drive power.

7.6 Summary and Useful Equations
In this chapter we have:

✓ Obtained dimensionless coefficients by nondimensionalizing the governing differential equa-
tions of a problem.

✓ Stated the Buckingham Pi theorem and used it to determine the independent and dependent
dimensionless parameters from the physical parameters of a problem.

✓ Defined a number of important dimensionless groups: the Reynolds number, Euler number,
cavitation number, Froude number, Weber number, and Mach number, and discussed their
physical significance.

We have also explored some ideas behind modeling: geometric, kinematic, and dynamic similar-
ity, incomplete modeling, and predicting prototype results from model tests.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to
refer to their page numbers for details!

Useful Equations
Reynolds number (inertia to viscous): Re=

ρVL
μ

=
VL
ν

(7.11) Page 254

Euler number (pressure to inertia):
Eu=

Δp
1
2ρV

2

(7.12) Page 255

Cavitation number: Ca=
p−pυ
1
2ρV

2
(7.13) Page 255

Froude number (inertia to gravity):
Fr=

Vffiffiffiffiffiffi
gL
p (7.14) Page 255

(Continued)
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Table (Continued)

Weber number (inertia to surface tension):
We=

ρV2L
σ

(7.15) Page 255

Mach number (inertia to compressibility): M =
V
c

(7.16) Page 255

Centrifugal pump specific speed (in terms of head h):
Ns =

ωQ1=2

h3=4
(7.22a) Page 265

Centrifugal pump specific speed (in terms of head H):
Nscu =

ωQ1=2

H3=4

(7.22b) Page 265
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P R O B L E M S

Nondimensionalizing the Basic Differential
Equations
Many of the problems in this chapter involve obtaining the Π
groups that characterize a problem. The Excel workbook used in
Example 7.1 is useful for performing the computations involved.
To avoid needless duplication, the computer symbol will only be
used next to problems when they have an additional benefit (e.g.,
for graphing).

7.1 The slope of the free surface of a steady wave in one-dimensional
flow in a shallow liquid layer is described by the equation

∂h
∂x

= −
u
g
∂u
∂x

Use a length scale, L, and a velocity scale, V0, to nondimensionalize
this equation. Obtain the dimensionless groups that characterize
this flow.
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7.2 One-dimensional unsteady flow in a thin liquid layer is
described by the equation

∂u
∂t

+ u
∂u
∂x

= −g
∂h
∂x

Use a length scale, L, and a velocity scale, V0, to nondimensionalize
this equation. Obtain the dimensionless groups that characterize
this flow.

7.3 In atmospheric studies the motion of the earth’s atmosphere can
sometimes be modeled with the equation

DV
!

Dt
+2Ω

!
×V
!
= −

1
ρ
∇p

where V
!
is the large-scale velocity of the atmosphere across the

Earth’s surface, ∇p is the climatic pressure gradient, and Ω
!
is the

Earth’s angular velocity. What is the meaning of the term Ω
!
× V

!
?

Use the pressure difference, Δp, and typical length scale, L (which
could, for example, be the magnitude of, and distance between,
an atmospheric high and low, respectively), to nondimensionalize
this equation. Obtain the dimensionless groups that characterize
this flow.

7.4 Fluid fills the space between two parallel plates. The differential
equation that describes the instantaneous fluid velocity for unsteady
flow with the fluid moving parallel to the walls is

ρ
∂u
∂t

= μ
∂2u
∂y2

The lower plate is stationary and the upper plate oscillates in the
x-direction with a frequency ω and an amplitude in the plate velocity
of U. Use the characteristic dimensions to normalize the differential
equation and obtain the dimensionless groups that characterize
the flow.

U cos ωt

H

x

y

P7.4

7.5 By using order of magnitude analysis, the continuity and
Navier–Stokes equations can be simplified to the Prandtl boundary-
layer equations. For steady, incompressible, and two-dimensional
flow, neglecting gravity, the result is

∂u
∂x

+
∂υ
∂y

=0

u
∂u
∂x

+ υ
∂u
∂y

= −
1
ρ

∂p
∂x

+ υ
∂2u
∂y2

Use L and V0 as characteristic length and velocity, respectively. Non-
dimensionalize these equations and identify the similarity parameters
that result.

7.6 Consider a disk of radius R rotating in an incompressible fluid at
a speed ω. The equations that describe the boundary layer on the
disk are:

1
r

∂ðrvrÞ
∂r

� �
+
∂vz
∂z

=0

ρ vr
∂vr
∂r

−
v2θ
r
+ vz

∂vr
∂z

� �
= μ

∂2vr
∂z2

Use the characteristic dimensions to normalize the differential
equation and obtain the dimensionless groups that characterize
the flow.

ω

R

z

r

P7.6

7.7 An unsteady, two-dimensional, compressible, inviscid flow can
be described by the equation

∂2ψ
∂t2

+
∂
∂t
ðu2 + υ2Þ+ ðu2−c2Þ∂

2ψ

∂x2

+ ðυ2−c2Þ∂
2ψ

∂y2
+ 2uυ

∂2ψ
∂x∂y

=0

where ψ is the stream function, u and υ are the x and y components of
velocity, respectively, c is the local speed of sound, and t is the time.
Using L as a characteristic length and c0 (the speed of sound at the
stagnation point) to nondimensionalize this equation, obtain the
dimensionless groups that characterize the equation.

Buckingham Pi Theorem
7.8 Experiments show that the pressure drop for flow through an ori-
fice plate of diameter d mounted in a length of pipe of diameter D
may be expressed as Δp= p1−p2 = f ðρ, μ, V , d, DÞ. You are asked
to organize some experimental data. Obtain the resulting dimension-
less parameters.

7.9 At very low speeds, the drag on an object is independent of
fluid density. Thus the drag force, F, on a small sphere is a function
only of speed, V , fluid viscosity, μ, and sphere diameter, D. Use
dimensional analysis to determine how the drag force F depends
on the speed V .

7.10We saw in Chapter 3 that the buoyant force, FB, on a body sub-
merged in a fluid is directly proportional to the specific weight of the
fluid, γ. Demonstrate this using dimensional analysis, by starting
with the buoyant force as a function of the volume of the body
and the specific weight of the fluid.

7.11 Assume that the velocity acquired by a body falling from rest
(without resistance) depends on weight of body, acceleration due to
gravity, and distance of fall. Prove by dimensional analysis that
V =C

ffiffiffiffiffiffiffi
gnh
p

and is thus independent of the weight of the body.
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7.12 Derive by dimensional analysis an expression for the local
velocity in established pipe flow through a smooth pipe if this veloc-
ity depends only on mean velocity, pipe diameter, distance from pipe
wall, and density and viscosity of the fluid.

7.13 The speed of shallow water waves in the ocean (e.g., seismic
sea waves or tsunamis) depends only on the still water depth and
the acceleration due to gravity. Derive an expression for wave speed.

7.14 The speed, V , of a free-surface wave in shallow liquid is a func-
tion of depth, D, density, ρ, gravity, g, and surface tension, σ. Use
dimensional analysis to find the functional dependence of V on
the other variables. Express V in the simplest form possible.

7.15 The boundary-layer thickness, δ, on a smooth flat plate in an
incompressible flow without pressure gradients depends on the free-
stream speed, U, the fluid density, ρ, the fluid viscosity, μ, and the
distance from the leading edge of the plate, x. Express these variables
in dimensionless form.

7.16 The speed, V , of a free-surface gravity wave in deep water is
a function of wavelength, λ, depth, D, density, ρ, and acceleration of
gravity, g. Use dimensional analysis to find the functional depend-
ence of V on the other variables. Express V in the simplest form
possible.

7.17 Derive an expression for the velocity of very small ripples on
the surface of a liquid if this velocity depends only on ripple length
and density and surface tension of the liquid.

7.18 Derive an expression for the axial thrust exerted by a propeller
if the thrust depends only on forward speed, angular speed, size, and
viscosity and density ofthe fluid. How would the expression change
if gravity were a relevant variable in the case of a ship propeller?

7.19 Derive an expression for drag force on a smooth submerged
object moving through incompressible fluid if this force depends
only on speed and size of object and viscosity and density of the fluid.

7.20 The energy released during an explosion, E, is a function of
the time after detonation t, the blast radius R at time t, and the ambient
air pressure p, and density ρ. Determine, by dimensional analysis,
the general form of the expression for E in terms of the other
variables.

7.21 Measurements of the liquid height upstream from an obstruc-
tion placed in an open-channel flow can be used to determine volume
flow rate. (Such obstructions, designed and calibrated to measure rate
of open-channel flow, are called weirs.) Assume the volume flow
rate, Q, over a weir is a function of upstream height, h, gravity, g,
and channel width, b. Use dimensional analysis to find the functional
dependence of Q on the other variables.

7.22 The load-carrying capacity,W , of a journal bearing is known to
depend on its diameter,D, length, l, and clearance, c, in addition to its
angular speed, ω, and lubricant viscosity, μ. Determine the dimen-
sionless parameters that characterize this problem.

7.23 Derive an expression for the drag force on a smooth object
moving through compressible fluid if this force depends only on
speed and size of object, and viscosity, density, and modulus of elas-
ticity of the fluid.

7.24 A circular disk of diameter d and of negligible thickness is
rotated at a constant angular speed, ω, in a cylindrical casing filled
with a liquid of viscosity μ and density ρ. The casing has an internal
diameter D, and there is a clearance y between the surfaces of disk

and casing. Derive an expression for the torque required to maintain
this speed if it depends only on the foregoing variables.

7.25 Two cylinders are concentric, the outer one fixed and the
inner one movable. A viscous incompressible fluid fills the gap
between them. Derive an expression for the torque required to main-
tain constant-speed rotation of the inner cylinder if this torque
depends only on the diameters and lengths of the cylinders, the vis-
cosity and density of the fluid, and the angular speed of the inner
cylinder.

7.26 The time, t, for oil to drain out of a viscosity calibration con-
tainer depends on the fluid viscosity, μ, and density, ρ, the orifice
diameter, d, and gravity, g. Use dimensional analysis to find the func-
tional dependence of t on the other variables. Express t in the simplest
possible form.

7.27 You are asked to find a set of dimensionless parameters to
organize data from a laboratory experiment, in which a tank is
drained through an orifice from initial liquid level h0. The time, τ,
to drain the tank depends on tank diameter, D, orifice diameter, d,
acceleration of gravity, g, liquid density, ρ, and liquid viscosity,
μ. How many dimensionless parameters will result? How many
repeating variables must be selected to determine the dimensionless
parameters? Obtain the Π parameter that contains the viscosity.

7.28 A continuous belt moving vertically through a bath of viscous
liquid drags a layer of liquid, of thickness h, along with it. The vol-
ume flow rate of liquid, Q, is assumed to depend on μ, ρ, g, h, and V ,
where V is the belt speed. Apply dimensional analysis to predict the
form of dependence of Q on the other variables.

7.29 Derive an expression for the frictional torque exerted on the
journal of a bearing if this torque depends only on the diameters of
journal and bearing, their axial lengths (these are the same), viscosity
of the lubricant, angular speed of the journal, and the transverse load
(force) on the bearing.

7.30 Tests on the established flow of six different liquids in smooth
pipes of various sizes yield the following data:

Diameter
mm

Velocity
m/s

Viscosity
mPa�s

Density
kg/m3

Wall
Shear Pa

300 2.26 862.0 1247 51.2
250 2.47 431.0 1031 33.5
150 1.22 84.3 907 5.41
100 1.39 44.0 938 9.67
50 0.20 1.5 861 0.162
25 0.36 1.0 1000 0.517

Make a dimensional analysis of this problem and a plot of the result-
ing dimensionless numbers as ordinate and abscissa. What conclu-
sions may be drawn from the plot?

7.31 The power, �, required to drive a fan is believed to depend on
fluid density, ρ, volume flow rate,Q, impeller diameter,D, and angu-
lar velocity, ω. Use dimensional analysis to determine the depend-
ence of � on the other variables.

7.32 The sketch shows an air jet discharging vertically. Experiments
show that a ball placed in the jet is suspended in a stable position. The
equilibrium height of the ball in the jet is found to depend onD, d, V ,
ρ, μ, andW , whereW is the weight of the ball. Dimensional analysis
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is suggested to correlate experimental data. Find the Π parameters
that characterize this phenomenon.

Ball D

d

Vh

P7.32

7.33 The diameter, d, of bubbles produced by a bubble-making
toy depends on the soapy water viscosity, μ, density, ρ, and surface
tension, σ, the ring diameter, D, and the pressure differential, Δp,
generating the bubbles. Use dimensional analysis to find the Π para-
meters that characterize this phenomenon.

7.34 Choked-flow nozzles are often used to meter the flow of gases
through piping systems. The mass flow rate of gas is thought to
depend on nozzle area A, pressure p, and temperature T upstream
of the meter, and the gas constant R. Determine how many independ-
entΠ parameters can be formed for this problem. State the functional
relationship for the mass flow rate in terms of the dimensionless
parameters.

7.35 A large tank of liquid under pressure is drained through a
smoothly contoured nozzle of area A. The mass flow rate is thought
to depend on nozzle area, A, liquid density, ρ, difference in height
between the liquid surface and nozzle, h, tank gage pressure, Δp,
and gravitational acceleration, g. Determine how many independent
Π parameters can be formed for this problem. Find the dimensionless
parameters. State the functional relationship for the mass flow rate in
terms of the dimensionless parameters.

7.36 Spin plays an important role in the flight trajectory of golf,
ping-pong, and tennis balls. Therefore, it is important to know the
rate at which spin decreases for a ball in flight. The aerodynamic tor-
que, T , acting on a ball in flight, is thought to depend on flight speed,
V , air density, ρ, air viscosity, μ, ball diameter, D, spin rate (angular
speed), ω, and diameter of the dimples on the ball, d. Determine the
dimensionless parameters that result.

7.37 The power loss, �, in a journal bearing depends on length, l,
diameter,D, and clearance, c, of the bearing, in addition to its angular
speed,ω.The lubricantviscosityandmeanpressureare also important.
Obtain the dimensionless parameters that characterize this problem.
Determine the functional form of the dependence of � on these
parameters.

7.38 The thrust of a marine propeller is to be measured during
“open-water” tests at a variety of angular speeds and forward speeds
(“speeds of advance”). The thrust, FT , is thought to depend on water
density, ρ, propeller diameter,D, speed of advance,V , acceleration of
gravity, g, angular speed, ω, pressure in the liquid, p, and liquid vis-
cosity, μ. Develop a set of dimensionless parameters to characterize
the performance of the propeller. (One of the resulting parameters,
gD=V2, is known as the Froude speed of advance.)

7.39 The rate dT=dt at which the temperature T at the center of a rice
kernel falls during a food technology process is critical—too high a
value leads to cracking of the kernel, and too low a value makes the

process slow and costly. The rate depends on the rice specific heat, c,
thermal conductivity, k, and size, L, as well as the cooling air specific
heat, cp, density, ρ, viscosity, μ, and speed, V . How many basic
dimensions are included in these variables? Determine the Π para-
meters for this problem.

7.40When a valve is closed suddenly in a pipe with flowing water,
a water hammer pressure wave is set up. The very high pressures gen-
erated by such waves can damage the pipe. The maximum pressure,
pmax, generated by water hammer is a function of liquid density, ρ,
initial flow speed, U0, and liquid bulk modulus, Eυ. How many
dimensionless groups are needed to characterize water hammer?
Determine the functional relationship among the variables in terms
of the necessary Π groups.

Flow Similarity and Model Studies
7.41 An airship is to operate at 20 m=s in air at standard conditions.
A model is constructed to 1:20 scale and tested in a wind tunnel at the
same air temperature to determine drag. What criterion should be
considered to obtain dynamic similarity? If the model is tested at
75 m=s, what pressure should be used in the wind tunnel? If the
model drag force is 250 N, what will be the drag of the prototype?

7.42An airplane wing of 3 m chord length moves through still air at
15�C and 101.3 kPa at a speed of 320 km=h. A 1:20 scale model of
this wing is placed in a wind tunnel, and dynamic similarity between
model and prototype is desired. (a) What velocity is necessary in a
tunnel where the air has the same pressure and temperature as that
in flight? (b) What velocity is necessary in a variable-density wind
tunnel where absolute pressure is 1400 kPa and temperature is
15�C? (c) At what speed must the model move through water
ð15�CÞ for dynamic similarity?

7.43 A flat plate 1.5 m long and 0.3 m wide is towed at 3 m=s in a
towing basin containing water at 20�C, and the drag force is observed
to be 14 N. Calculate the dimensions of a similar plate that will yield
dynamically similar conditions in an airstream (101.4 kPa and 15�C)
having a velocity of 18 m=s. What drag force may be expected on
this plate?

7.44 This 1:12 pump model using water at 15�C simulates a
prototype for pumping oil of specific gravity 0.90. The input to
the model is 0.522 kW. Calculate the viscosity of the oil and the
prototype power for complete dynamic similarity between model
and prototype.

100 mm d

75 mm d

Q = 0.014 m3/s

3 m

P7.44
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7.45 An ocean-going vessel is to be powered by a rotating circular
cylinder. Model tests are planned to estimate the power required to
rotate the prototype cylinder. A dimensional analysis is needed to
scale the power requirements frommodel test results to the prototype.
List the parameters that should be included in the dimensional anal-
ysis. Perform a dimensional analysis to identify the important dimen-
sionless groups.

7.46On a cruise ship, passengers complain about the noise emanat-
ing from the ship’s propellers (probably due to turbulent flow effects
between the propeller and the ship). You have been hired to find out
the source of this noise. You will study the flow pattern around the
propellers and have decided to use a 1:9-scale water tank. If the ship’s
propellers rotate at 100 rpm, estimate the model propeller rotation
speed if (a) the Froude number or (b) the Reynolds number is the gov-
erning dimensionless group. Which is most likely to lead to the best
modeling?

7.47 A 1:3 scale model of a torpedo is tested in a wind tunnel to
determine the drag force. The prototype operates in water, has
533 mm diameter, and is 6.7 m long. The desired operating speed
of the prototype is 28 m=s. To avoid compressibility effects in the
wind tunnel, the maximum speed is limited to 110 m=s. However,
the pressure in the wind tunnel can be varied while holding the tem-
perature constant at 20�C. At what minimum pressure should the
wind tunnel be operated to achieve a dynamically similar test? At
dynamically similar test conditions, the drag force on the model is
measured as 618 N. Evaluate the drag force expected on the full-scale
torpedo.

7.48 A flow rate of 0:18 m3=s of water at 20�C discharges from a
0.3 m pipe through a 0.15 m nozzle into the atmosphere. The axial
force component exerted by water on the nozzle is 3 kN. If frictional
effects may be ignored, what corresponding force will be exerted
on a 4:1 prototype of nozzle and pipe discharging 1:13 m3=s of air
at 101.4 kPa and 15�C to the atmosphere? If frictional effects are
included, the axial force component is 3.56 kN. What flow rate of
air is then required for dynamic similarity?What is the corresponding
force on the nozzle discharging air?

7.49 A force of 9 N is required to tow a 1:50 ship model at
4:8 km=h. Assuming the same water in towing basin and sea, calcu-
late the corresponding speed and force in the prototype if the flow is
dominated by: (a) density and gravity, (b) density and surface ten-
sion, and (c) density and viscosity.

7.50 An airplane wing, with chord length of 1.5 m and span of 9 m,
is designed to move through standard air at a speed of 7:5 m=s.
A 1:10 scale model of this wing is to be tested in a water tunnel. What
speed is necessary in the water tunnel to achieve dynamic similarity?
What will be the ratio of forces measured in the model flow to those
on the prototype wing?

7.51Awater pump with impeller diameter of 24 in. is to be designed
to move 15 ft3=s when running at 750 rpm. Testing is performed on a
1:4 scale model running at 2400 rpm using air (68�F) as the fluid. For
similar conditions (neglecting Reynolds number effects), what will
be the model flow rate? If the model draws 0.1 hp, what will be
the power requirement of the prototype?

7.52Amodel hydrofoil is to be tested at 1:20 scale. The test speed is
chosen to duplicate the Froude number corresponding to the 60-knot
prototype speed. To model cavitation correctly, the cavitation num-
ber also must be duplicated. At what ambient pressure must the

test be run? Water in the model test basin can be heated to 130�F,
compared to 45�F for the prototype.

7.53 A ship 120 m long moves through freshwater at 15�C at
32 km=h. A 1:100 model of this ship is to be tested in a towing
basin containing a liquid of specilic gravity 0.92. What viscosity
must this liquid have for both Reynolds’ and Froude’s laws to be
satisfied? At what velocity must the model be towed? What propul-
sive force on the ship corresponds to a towing force of 9 N in
the model?

7.54 A 1:30 scale model of a cavitating overflow structure is to be
tested in a vacuum tank wherein the pressure is maintained at 2.0
psia. The prototype liquid is water at 70�F. The barometric pressure
on the prototype is 14.5 psia. If the liquid to be used in the model has
a vapor pressure of 1.50 psia, what values of density, viscosity, and
surface tension must it have for complete dynamic similarity between
model and prototype?

7.55 In some speed ranges, vortices are shed from the rear of bluff
cylinders placed across a flow. The vortices alternately leave the top
and bottom of the cylinder, as shown, causing an alternating force
normal to the freestream velocity. The vortex shedding frequency,
f , is thought to depend on ρ, d, V , and μ. Use dimensional analysis
to develop a functional relationship for f . Vortex shedding occurs in
standard air on two cylinders with a diameter ratio of 2. Determine
the velocity ratio for dynamic similarity, and the ratio of vortex shed-
ding frequencies.

VorticesV

d
P7.55

7.56 A 1:8 scale model of a tractor-trailer rig is tested in a pressur-
ized wind tunnel. The rig width, height, and length areW =0:305 m,
H =0:476 m, and L=2:48 m, respectively. At wind speed
V =75:0 m=s, the model drag force is FD =128 N. Air density in
the tunnel is ρ=3:23 kg=m3. Calculate the aerodynamic drag coef-
ficient for the model. Compare the Reynolds numbers for the model
test and for the prototype vehicle at 55 mph. Calculate the aerody-
namic drag force on the prototype vehicle at a road speed of
55 mph into a headwind of 10 mph.

7.57 On a cruise ship, passengers complain about the amount of
smoke that becomes entrained behind the cylindrical smoke stack.
You have been hired to study the flow pattern around the stack,
and have decided to use a 1:15 scale model of the 15-ft smoke
stack. What range of wind tunnel speeds could you use if the ship
speed for which the problem occurs is 12 to 24 knots?

7.58 When a sphere of 0.25 mm diameter and specific gravity 5.54
is dropped in water at 25�C it will attain a constant velocity of
0:07 m=s. What specific gravity must a 2.5 mm sphere have so that
when it is dropped in crude oil at 25�C the two flows will be dynam-
ically similar when the terminal velocity is attained?

7.59 The flow about a 150 mm artillery projectile which travels at
600 m=s through still air at 30�C and absolute pressure 101.4 kPa is
to be modeled in a high-speed wind tunnel with a 1:6 model. If the
wind tunnel air has a temperature of −18�C and absolute pressure of
68.9 kPa, what velocity is required? If the drag force on the model is
35 N, what is the drag force on the prototype if skin friction may be
neglected?
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7.60 Your favorite professor likes mountain climbing, so there is
always a possibility that the professor may fall into a crevasse in
some glacier. If that happened today, and the professor was trapped
in a slowly moving glacier, you are curious to know whether the pro-
fessor would reappear at the downstream drop-off of the glacier dur-
ing this academic year. Assuming ice is a Newtonian fluid with the
density of glycerine but a million times as viscous, you decide to
build a glycerin model and use dimensional analysis and similarity
to estimate when the professor would reappear. Assume the real gla-
cier is 15 m deep and is on a slope that falls 1.5 m in a horizontal
distance of 1850 m. Develop the dimensionless parameters and con-
ditions expected to govern dynamic similarity in this problem. If the
model professor reappears in the laboratory after 9.6 hours, when
should you return to the end of the real glacier to provide help to your
favorite professor?

7.61 A 1:50-scale model of a submarine is to be tested in a towing
tank under two conditions: motion at the free surface and motion far
below the surface. The tests are performed in freshwater. On the sur-
face, the submarine cruises at 24 knots. At what speed should the
model be towed to ensure dynamic similarity? Far below the surface,
the sub cruises at 0.35 knot. At what speed should the model be
towed to ensure dynamic similarity?What must the drag of the model
be multiplied by under each condition to give the drag of the full-
scale submarine?

7.62 Consider water flow around a circular cylinder, of diameter D
and length l. In addition to geometry, the drag force is known to
depend on liquid speed, V , density, ρ, and viscosity, μ. Express drag
force, FD, in dimensionless form as a function of all relevant
variables. The static pressure distribution on a circular cylinder,
measured in the laboratory, can be expressed in terms of the dimen-
sionless pressure coefficient; the lowest pressure coefficient is
Cp = −2:4 at the location of the minimum static pressure on the cyl-
inder surface. Estimate the maximum speed at which a cylinder could
be towed in water at atmospheric pressure, without causing cavita-
tion, if the onset of cavitation occurs at a cavitation number of 0.5.

7.63 A 1:10 scale model of a tractor-trailer rig is tested in a
wind tunnel. The model frontal area is Am =0:1 m2. When tested
at Vm =75m=s in standard air, the measured drag force is
FD =350 N. Evaluate the drag coefficient for the model conditions
given. Assuming that the drag coefficient is the same for model
and prototype, calculate the drag force on a prototype rig at a high-
way speed of 90 km=hr. Determine the air speed at which a model
should be tested to ensure dynamically similar results if the prototype
speed is 90 km=hr. Is this air speed practical? Why or why not?

7.64 The power,�, required to drive a fan is assumed to depend on
fluid density ρ, volume flow rateQ, impeller diameterD, and angular
speed ω. If a fan with D1 = 8 in. delivers Q1 = 15 ft3=s of air at
ω1 = 2500 rpm, what size diameter fan could be expected to deliver
Q2 = 88 ft3=s of air at ω2 = 1800 rpm, provided they were geometri-
cally and dynamically similar?

7.65Over a certain range of air speeds, V , the lift, FL, produced by a
model of a complete aircraft in a wind tunnel depends on the air
speed, air density, ρ, and a characteristic length (the wing base chord
length, c=150 mm). The following experimental data is obtained for
air at standard atmospheric conditions:

V ðm=sÞ 10 15 20 25 30 35 40 45 50
FL ðNÞ 2.2 4.8 8.7 13.3 19.6 26.5 34.5 43.8 54

Plot the lift versus speed curve. Generate and plot data for the lift
produced by the prototype, which has a wing base chord length of
5 m, over a speed range of 75 m=s to 250 m=s.

7.66 The pressure rise, Δp, of a liquid flowing steadily through
a centrifugal pump depends on pump diameter D, angular speed of
the rotor ω, volume flow rate Q, and density ρ. The table gives
data for the prototype and for a geometrically similar model
pump. For conditions corresponding to dynamic similarity between
the model and prototype pumps, calculate the missing values in
the table.

Variable Prototype Model

Δp 52:5 kPa
Q 0:0928 m3=min
ρ 800 kg=m3 999 kg=m3

ω 183 rad=s 367 rad=s
D 150 mm 50 mm

7.67An axial-flow pump is required to deliver 0:75 m3=s of water at
a head of 15 J=kg. The diameter of the rotor is 0.25 m, and it is to be
driven at 500 rpm. The prototype is to be modeled on a small test
apparatus having a 2.25 kW, 1000 rpm power supply. For similar per-
formance between the prototype and the model, calculate the head,
volume flow rate, and diameter of the model.

7.68 A model propeller 1 m in diameter is tested in a wind tunnel.
Air approaches the propeller at 50 m=s when it rotates at 1800 rpm.
The thrust and torque measured under these conditions are 100 N and
10 N �m, respectively. A prototype eight times as large as the model is
to be built. At a dynamically similar operating point, the approach air
speed is to be 130 m=s. Calculate the speed, thrust, and torque of the
prototype propeller under these conditions, neglecting the effect of
viscosity but including density.

7.69 Consider Problem 7.38. Experience shows that for ship-size
propellers, viscous effects on scaling are small. Also, when
cavitation is not present, the nondimensional parameter containing
pressure can be ignored. Assume that torque, T , and power, �,
depend on the same parameters as thrust. For conditions under
which effects of μ and p can be neglected, derive scaling “laws”
for propellers, similar to the pump “laws” of Section 7.5, that relate
thrust, torque, and power to the angular speed and diameter of the
propeller.

7.70 Closed-circuit wind tunnels can produce higher speeds than
open-circuit tunnels with the same power input because energy is
recovered in the diffuser downstream from the test section. The
kinetic energy ratio is a figure of merit defined as the ratio of the
kinetic energy flux in the test section to the drive power. Estimate
the kinetic energy ratio for the 40 ft × 80 ft wind tunnel at NASA-
Ames described on page 267.

7.71 A 1:16 model of a bus is tested in a wind tunnel in standard air.
The model is 152 mm wide, 200 mm high, and 762 mm long.
The measured drag force at 26:5 m=s wind speed is 6.09 N. The lon-
gitudinal pressure gradient in the wind tunnel test section is
−11:8 N=m2=m. Estimate the correction that should be made to
the measured drag force to correct for horizontal buoyancy caused
by the pressure gradient in the test section. Calculate the drag coef-
ficient for themodel. Evaluate the aerodynamic drag force on the pro-
totype at 100 km=hr on a calm day.
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7.72 The propagation speed of small-amplitude surface waves in a
region of uniform depth is given by

c2 =
2πσ
λρ

+
gλ
2π

� �
tanh

2πh
λ

where h is depth of the undisturbed liquid and λ is wavelength.
Explore the variation in wave propagation speed for a free-surface

flow of water. Find the operating depth to minimize the speed of
capillary waves (waves with small wavelength, also called ripples).
First assume wavelength is much smaller than water depth. Then
explore the effect of depth. What depth do you recommend
for a water table used to visualize compressible flow wave
phenomena?What is the effect of reducing surface tension by adding
a surfactant?
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Internal Incompressible
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Part C Flow Measurement

8.9 Restriction Flow Meters for Internal Flows

8.10 Summary and Useful Equations

Case Study

“Lab-on-a-Chip”
An exciting new area in fluid mechanics is microflui-
dics, applied to microelectromechanical systems
(MEMS—the technology of very small devices, gen-
erally ranging in size from a micrometer to a milli-
meter). In particular, a lot of research is being done
in “lab-on-a-chip” technology, which has many
applications. An example of this is in medicine, with
devices for use in the immediate point-of-care diag-
nosis of diseases, such as real-time detection of bac-
teria, viruses, and cancers in the human body. In the
area of security, there are devices that continuously
sample and test air or water samples for biochemical
toxins and other dangerous pathogens such as those
in always-on early warning systems.

Because of the extremely small geometry, flows in
such devices will be very low Reynolds numbers and
therefore laminar; surface tension effects will also
be significant. As discussed in this chapter, in many
common applications (for example, typical water
pipes and air conditioning ducts), laminar flow would

be desirable, but the flow is turbulent—it costs more
to pump a turbulent as opposed to a laminar flow. In
certain applications, turbulence is desirable instead
because it acts as amixingmechanism. If you couldn’t
generate turbulence in your coffee cup, it would take a
lot of stirring before the cream and coffee were suffi-
cientlyblended;ifyourbloodflowneverbecameturbu-
lent,youwouldnotgetsufficientoxygentoyourorgans
and muscles! In the lab-on-a-chip, turbulent flow is
usually desirable because the goal in these devices is
often to mix minute amounts of two or more fluids.

How do we mix fluids in such devices that are
inherently laminar? We could use complex geome-
tries, or relatively long channels (relying onmolecular
diffusion), or some kind of MEM device with paddles.
Research by professors Goullet, Glasgow, and Aubry at
the New Jersey Institute of Technology instead sug-
gests pulsing the two fluids. Part a of the figure shows
a schematic of two fluids flowing at a constant rate
(about 25 nL=s, average velocity less than 2mm=s,
in ducts about 200 μm wide) and meeting in a
T junction. The two fluids do not mix because of
the strongly laminar nature of the flow. Part b of
the figure shows a schematic of an instant of a pulsed
flow, and part c shows an instant computed using a
computational fluid dynamics (CFD) model of the
same flow. In this case, the interface between the
two fluid samples is shown to stretch and fold, lead-
ing to good nonturbulentmixingwithin 2mmdown-
stream of the confluence (after about 1 s of contact).
Such a compact mixing device would be ideal for
many of the applications mentioned above.

(a) (b) (c)

Mixing two fluids in a “lab-on-a-chip.”
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Flows completely bounded by solid surfaces are called internal flows. Thus internal flows include many
important and practical flows such as those through pipes, ducts, nozzles, diffusers, sudden contractions
and expansions, valves, and fittings.

Internal flows may be laminar or turbulent. Some laminar flow cases may be solved analytically. In
the case of turbulent flow, analytical solutions are not possible, and we must rely heavily on semi-
empirical theories and on experimental data. The nature of laminar and turbulent flows was discussed
in Section 2.6. For internal flows, the flow regime (laminar or turbulent) is primarily a function of the
Reynolds number.

In this chapter we will only consider incompressible flows; hence we will study the flow of liquids
as well as gases that have negligible heat transfer and for which the Mach number M <0:3; a value of
M =0:3 in air corresponds to a speed of approximately 100 m=s. Following a brief introduction, this
chapter is divided into the following parts:

Part A Part A discusses fully developed laminar flow of a Newtonian fluid between parallel plates and in a pipe.
These two cases can be studied analytically.

Part B Part B is about laminar and turbulent flows in pipes and ducts. The laminar flow analysis follows from
Part A; the turbulent flow (which is the most common) is too complex to be analyzed, so experimental data
will be used to develop solution techniques.

Part C Part C is a discussion of methods of flow measurement.

8.1 Internal Flow Characteristics
Laminar versus Turbulent Flow

As discussed previously in Section 2.6, the pipe flow regime (laminar or turbulent) is determined by the
Reynolds number, Re= ρVD=μ. One can demonstrate by the classic Reynolds experiment the quali-
tative difference between laminar and turbulent flows. In this experiment water flows from a large res-
ervoir through a clear tube. A thin filament of dye injected at the entrance to the tube allows visual
observation of the flow. At low flow rates (low Reynolds numbers) the dye injected into the flow remains
in a single filament along the tube; there is little dispersion of dye because the flow is laminar. A laminar
flow is one in which the fluid flows in laminae, or layers; there is no macroscopic mixing of adjacent
fluid layers.

As the flow rate through the tube is increased, the dye filament eventually becomes unstable and
breaks up into a random motion throughout the tube; the line of dye is stretched and twisted into myriad
entangled threads, and it quickly disperses throughout the entire flow field. This behavior of turbulent
flow is caused by small, high-frequency velocity fluctuations superimposed on the mean motion of a
turbulent flow, as illustrated earlier in Fig. 2.17; the mixing of fluid particles from adjacent layers of
fluid results in rapid dispersion of the dye. We mentioned in Chapter 2 an everyday example of the dif-
ference between laminar and turbulent flow—when you gently turn on the kitchen faucet. For very low
flow rates, the water exits smoothly indicating laminar flow in the pipe; for higher flow rates, the flow is
churned up indicating turbulent flow.

Under normal conditions, transition to turbulence occurs at Re≈2300 for flow in pipes: For water
flow in a 1-in. diameter pipe, this corresponds to an average speed of 0:3 ft=s.With great care to maintain
the flow free from disturbances, and with smooth surfaces, experiments have been able to maintain lam-
inar flow in a pipe to a Reynolds number of about 100,000! However, most engineering flow situations
are not so carefully controlled, so we will take Re≈2300 as our benchmark for transition to turbulence.
Transition Reynolds numbers for some other flow situations are given in the Examples. Turbulence
occurs when the viscous forces in the fluid are unable to damp out random fluctuations in the fluid
motion (generated, for example, by roughness of a pipe wall), and the flow becomes chaotic. For exam-
ple, a high-viscosity fluid such as motor oil is able to damp out fluctuations more effectively than a low
viscosity fluid such as water and therefore remains laminar even at relatively high flow rates. On the
other hand, a high-density fluid will generate significant inertia forces due to the random fluctuations
in the motion, and this fluid will transition to turbulence at a relatively low flow rate.

Video: The Rey-
nolds Transition
Experiment

Video: Pipe
Flow: Laminar

Video: Pipe
Flow:
Transitional
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The Entrance Region

Figure 8.1 illustrates laminar flow in the entrance region of a circular pipe. The flow has uniform velocity
U0 at the pipe entrance. Because of the no-slip condition at the wall, we know that the velocity at the wall
must be zero along the entire length of the pipe. A boundary layer (Section 2.6) develops along the walls
of the channel. The solid surface exerts a retarding shear force on the flow; thus the speed of the fluid in
the neighborhood of the surface is reduced. At successive sections along the pipe in this entry region, the
effect of the solid surface is felt farther out into the flow.

For incompressible flow, mass conservation requires that, as the speed close to the wall is reduced,
the speed in the central frictionless region of the pipe must increase slightly to compensate; for this invis-
cid central region, then, the pressure, as indicated by the Bernoulli equation, must also drop somewhat.

Sufficiently far from the pipe entrance, the boundary layer developing on the pipe wall reaches the
pipe centerline and the flow becomes entirely viscous. The velocity profile shape then changes slightly
after the inviscid core disappears. When the profile shape no longer changes with increasing distance x,
the flow is called fully developed. The distance downstream from the entrance to the location at which
fully developed flow begins is called the entrance length. The actual shape of the fully developed veloc-
ity profile depends on whether the flow is laminar or turbulent. In Fig. 8.1 the profile is shown quali-
tatively for a laminar flow. Although the velocity profiles for some fully developed laminar flows can be
obtained by simplifying the complete equations of motion from Chapter 5, turbulent flows cannot be so
treated.

For laminar flow, it turns out that entrance length, L, is a function of Reynolds number,

L
D
’ 0:06

ρVD
μ

ð8:1Þ

where V ≡Q=A is the average velocity (because flow rate Q=AV =AU0, we have V =U0). Laminar
flow in a pipe may be expected only for Reynolds numbers less than 2300. Thus the entrance length
for laminar pipe flow may be as long as

L’ 0:06 ReD≤ ð0:06Þð2300ÞD=138D

or nearly 140 pipe diameters. If the flow is turbulent, enhanced mixing among fluid layers causes more
rapid growth of the boundary layer. Experiments show that the mean velocity profile becomes fully
developed within 25 to 40 pipe diameters from the entrance. However, the details of the turbulent motion
may not be fully developed for 80 or more pipe diameters. We are now ready to study laminar internal
flows (Part A), as well as laminar and turbulent flows in pipes and ducts (Part B). For these we will be
focusing on what happens after the entrance region, i.e., fully developed flows.

Part A FULLY DEVELOPED LAMINAR FLOW

In this section we consider a few classic examples of fully developed laminar flows. Our intent is to
obtain detailed information about the velocity field because knowledge of the velocity field permits cal-
culation of shear stress, pressure drop, and flow rate.

8.2 Fully Developed Laminar Flow Between Infinite Parallel Plates
The flow between parallel plates is appealing because the geometry is the simplest possible, but why
would there be a flow at all? The answer is that flow could be generated by applying a pressure gradient
parallel to the plates, or by moving one plate parallel with respect to the other, or by having a body force

Entrance length Fully developed
velocity profile

D
u

x

r
U0

Fig. 8.1 Flow in the entrance region of a pipe.
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(e.g., gravity) parallel to the plates, or by a combination of these driving mechanisms. We will consider
all of these possibilities.

Both Plates Stationary

Fluid in high-pressure hydraulic systems, such as the brake system of an automobile, often leaks through
the annular gap between a piston and cylinder. For very small gaps (typically 0.005mm or less), this flow
field may be modeled as flow between infinite parallel plates, as indicated in the sketch of Fig. 8.2. To
calculate the leakage flow rate, we must first determine the velocity field.

Let us consider the fully developed laminar flow between horizontal infinite parallel plates. The
plates are separated by distance a, as shown in Fig. 8.3. The plates are considered infinite in the z direc-
tion, with no variation of any fluid property in this direction. The flow is also assumed to be steady and
incompressible. Before starting our analysis, what do we know about the flow field? For one thing we
know that the x component of velocity must be zero at both the upper and lower plates as a result of the
no-slip condition at the wall. The boundary conditions are then

at y=0 u=0
at y= a u=0

Since the flow is fully developed, the velocity cannot vary with x and, hence, depends on y only, so that
u= uðyÞ. Furthermore, there is no component of velocity in either the y or z direction ðυ=w=0Þ. In fact,
for fully developed flow only the pressure can and will change in the x direction.

This is an obvious case for using the Navier–Stokes equations in rectangular coordinates
(Eqs. 5.27). Using the above assumptions, these equations can be greatly simplified and then solved

Cylinder

Piston

Fluid in gap

Fig. 8.2 Piston-cylinder approximated as parallel plates.
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Fig. 8.3 Control volume for analysis of laminar flow between stationary infinite parallel plates.
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using the boundary conditions. In this section we will instead take a longer route—using a differential
control volume—to bring out some important features of the fluid mechanics.

For our analysis we select a differential control volume of size dV--- = dx dy dz, and apply the x com-
ponent of the momentum equation.

Basic equation:

= 0ð3Þ =0ð1Þ

FSx + ����!FBx = ����!

∂
∂t

Z
CV

u ρ dV +
Z
CS
u ρV

! � d A! ð4:18aÞ

Assumptions:

1 Steady flow (given)

2 Fully developed flow (given)

3 FBx =0 (given)

The very nature of fully developed flow is that the velocity profile is the same at all locations along the
flow; hence there is no change in momentum. Equation then reduces to the simple result that the sum of
the surface forces on the control volume is zero,

Fsx =0 ð8:2Þ
The next step is to sum the forces acting on the control volume in the x direction. We recognize that
normal forces (pressure forces) act on the left and right faces and tangential forces (shear forces) act
on the top and bottom faces.

If the pressure at the center of the element is p, then the pressure force on the left face is

dFL = p−
∂p
∂x

dx
2

� �
dy dz

and the pressure force on the right face is

dFR = − p+
∂p
∂x

dx
2

� �
dy dz

If the shear stress at the center of the element is τyx, then the shear force on the bottom face is

dFB = − τyx−
dτyx
dy

dy
2

� �
dx dz

and the shear force on the top face is

dFT = τyx +
dτyx
dy

dy
2

� �
dx dz

Note that in expanding the shear stress, τyx, in a Taylor series about the center of the element, we have
used the total derivative rather than a partial derivative. We did this because we recognized that τyx is
only a function of y, since u= uðyÞ.

Using the four surface forces dFL, dFR, dFB, and dFT in Eq. 8.2, this equation simplifies to

∂p
∂x

=
dτyx
dy

ð8:3Þ

This equation states that because there is no change in momentum, the net pressure force (which is actu-
ally −∂p=∂x) balances the net friction force (which is actually −dτyx=dy). Equation 8.3 has an interest-
ing feature: The left side is at most a function of x only. This follows immediately from writing the
y component of the momentum equation; the right side is at most a function of y only. The flow is fully
developed, so it does not change with x. Hence, the only way the equation can be valid for all x and y is
for each side to in fact be constant:

dτyx
dy

=
∂p
∂x

= constant
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Integrating this equation, we obtain

τyx =
∂p
∂x

� �
y+ c1

which indicates that the shear stress varies linearly with y. We wish to find the velocity distribution. To
do so, we need to relate the shear stress to the velocity field. For a Newtonian fluid we can use Eq. 2.15
because we have a one-dimensional flow

τyx = μ
du
dy

ð2:15Þ

so we get

μ
du
dy

=
∂p
∂x

� �
y+ c1

Integrating again

u=
1
2μ

∂p
∂x

� �
y2 +

c1
μ
y+ c2 ð8:4Þ

It is interesting to note that if we had started with the Navier–Stokes equations (Eqs. 5.27) instead of
using a differential control volume, after only a few steps (i.e., simplifying and integrating twice) we
would have obtained Eq. 8.4. To evaluate the constants, c1 and c2, we must apply the boundary condi-
tions. At y=0, u=0. Consequently, c2 = 0. At y= a, u=0. Hence

0=
1
2μ

∂p
∂x

� �
a2 +

c1
μ
a

This gives

c1 = −
1
2

∂p
∂x

� �
a

and hence,

u=
1
2μ

∂p
∂x

� �
y2−

1
2μ

∂p
∂x

� �
ay=

a2

2μ
∂p
∂x

� �
y
a

� �2
−

y
a

� �	 

ð8:5Þ

At this point we have the velocity profile. This is key to finding other flow properties, as we next discuss.

Shear Stress Distribution
The shear stress distribution is given by

τyx =
∂p
∂x

� �
y+ c1 =

∂p
∂x

� �
y−

1
2

∂p
∂x

� �
a= a

∂p
∂x

� �
y
a
−
1
2

	 

ð8:6aÞ

Volume Flow Rate
The volume flow rate is given by

Q=
Z
A
V
! � dA!

For a depth l in the z direction,

Q=
Z a

0
ul dy or

Q
l
=
Z a

0

1
2μ

∂p
∂x

� �
ðy2−ayÞdy
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Thus the volume flow rate per unit depth is given by

Q
l
= −

1
12μ

∂p
∂x

� �
a3 ð8:6bÞ

Flow Rate as a Function of Pressure Drop
Since ∂p=∂x is constant, the pressure varies linearly with x and

∂p
∂x

=
p2−p1

L
=

−Δp
L

Substituting into the expression for volume flow rate gives

Q
l
= −

1
12μ

−Δp
L

	 

a3 =

a3Δp
12μL

ð8:6cÞ

Average Velocity
The average velocity magnitude, V , is given by

V =
Q
A
= −

1
12μ

∂p
∂x

� �
a3l
la

= −
1

12μ
∂p
∂x

� �
a2 ð8:6dÞ

Point of Maximum Velocity
To find the point of maximum velocity, we set du=dy equal to zero and solve for the corresponding y.
From Eq. 8.5

du
dy

=
a2

2μ
∂p
∂x

� �
2y
a2

−
1
a

	 

Thus,

du
dy

=0 at y=
a
2

At

y=
a
2
, u= umax = −

1
8μ

∂p
∂x

� �
a2 =

3
2
V ð8:6cÞ

Transformation of Coordinates
In deriving the above relations, the origin of coordinates, y=0, was taken at the bottom plate. We could
just as easily have taken the origin at the centerline of the channel. If we denote the coordinates with
origin at the channel centerline as x, y0, the boundary conditions are u=0 at y0 = �a=2.

To obtain the velocity profile in terms of x, y0, we substitute y= y0 + a=2 into Eq. 8.5. The result is

u=
a2

2μ
∂p
∂x

� �
y0

a

� � 2

−
1
4

" #
ð8:7Þ

Equation 8.7 shows that the velocity profile for laminar flow between stationary parallel plates is par-
abolic, as shown in Fig. 8.4.

Since all stresses were related to velocity gradients through Newton’s law of viscosity, and the addi-
tional stresses that arise as a result of turbulent fluctuations have not been accounted for, all of the results
in this section are valid for laminar flow only. Experiments show that laminar flow between stationary
parallel plates becomes turbulent for Reynolds numbers (defined as Re= ρV

!
a=μ) greater than approx-

imately 1400. Consequently, the Reynolds number should be checked after using Eqs. 8.6 to ensure a
valid solution. The calculation of the leakage past a cylinder in an hydraulic system using Eq. 8.6c is
shown in Example 8.1.
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Fig. 8.4 Dimensionless velocity profile for fully developed laminar flow between infinite parallel plates.

Example 8.1 LEAKAGE FLOW PAST A PISTON

A hydraulic system operates at a gage pressure of 20MPa and 55�C. The hydraulic fluid is SAE 10W oil. A control valve consists
of a piston 25 mm in diameter, fitted to a cylinder with a mean radial clearance of 0.005 mm. Determine the leakage flow rate if
the gage pressure on the low-pressure side of the piston is 1.0 MPa. The piston is 15 mm long.

Given: Flow of hydraulic oil between piston and cylinder, as shown. Fluid is SAE 10W oil at 55�C.

Find: Leakage flow rate, Q.

Solution: The gap width is very small, so the flowmay be modeled as flow between parallel
plates. Equation 8.6c may be applied.

Governing equations:
Q
l
=

a3Δp
12μ L

ð8:6cÞ

Assumptions:

1 Laminar flow.

2 Steady flow.

3 Incompressible flow.

4 Fully developed flow. (Note L=a=15=0:005= 3000!)

The plate width, l, is approximated as l= πD. Thus

Q=
πDa3Δp
12μL

For SAE 10W oil at 55�C, μ=0:018 kg=ðm � sÞ, from Fig. A.2, Appendix A. Thus

Q=
π

12
× 25 mm× ð0:005Þ3 mm3 × ð20−1Þ106 N

m2 ×
m � s

0:018 kg
×

1
15 mm

×
kg � m
N � s2

Q=57:6 mm3=s
Q ����������������������������������������������������

To ensure that flow is laminar, we also should check the Reynolds number.

V =
Q
A
=

Q
πDa

=57:6
mm3

s
×
1
π
×

1
25 mm

×
1

0:005 mm
×

m
103 mm

=0:147 m=s

and

Re=
ρVa
μ

=
SGρH2OVa

μ

a = 0.005 mm

D = 25 mm

p1 = 20 MPa (gage)

p2 = 1.0 MPa (gage)

L = 15 mm
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Upper Plate Moving with Constant Speed, U

The second basic way to generate flow between infinite parallel plates is to have one plate move parallel
to the other, either with or without an applied pressure gradient. Wewill next analyze this problem for the
case of laminar flow.

Such a flow commonly occurs, for example, in a journal bearing (e.g., the main crankshaft bearings
in the engine of an automobile). In such a bearing, an inner cylinder, the journal, rotates inside a sta-
tionary member. At light loads, the centers of the two members essentially coincide, and the small clear-
ance gap is symmetric. Since the gap is small, it is reasonable to “unfold” the bearing and to model the
flow field as flow between infinite parallel plates, as indicated in the sketch of Fig. 8.5.

Let us now consider a case where the upper plate is moving to the right with constant speed, U. All
we have done in going from a stationary upper plate to a moving upper plate is to change one of the
boundary conditions. The boundary conditions for the moving plate case are

u=0 at y=0
u=U at y= a

Since only the boundary conditions have changed, there is no need to repeat the entire analysis of the
previous section. The analysis leading to Eq. 8.4 is equally valid for the moving plate case. Thus the
velocity distribution is given by

u=
1
2μ

∂p
∂x

� �
y2 +

c1
μ
y+ c2 ð8:4Þ

and our only task is to evaluate constants c1 and c2 by using the appropriate boundary conditions.

At y=0, u=0: Consequently, c2 = 0:
At y= a, u=U: Consequently,

U =
1
2μ

∂p
∂x

� �
a2 +

c1
μ
a and thus c1 =

Uμ

a
−
1
2

∂p
∂x

� �
a

Hence,

u=
1
2μ

∂p
∂x

� �
y2 +

Uy
a

−
1
2μ

∂p
∂x

� �
ay=

Uy
a

+
1
2μ

∂p
∂x

� �
ðy2−ayÞ

For SAE 10W oil, SG=0:92, from Table A.2, Appendix A. Thus

Re=0:92× 1000
kg
m3 × 0:147

m
s
× 0:005 mm×

m � s
0:018 kg

×
m

103 mm
=0:0375

Thus flow is surely laminar, since Re≪1400.

Fluid
in gap

Bearing

Bearing

Journal

Fig. 8.5 Journal bearing approximated as parallel plates.
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u=
Uy
a

+
a2

2μ
∂p
∂x

� �
y
a

� �2
−

y
a

� �	 

ð8:8Þ

It is reassuring to note that Eq. 8.8 reduces to Eq. 8.5 for a stationary upper plate (set U =0). From
Eq. 8.8, for zero pressure gradient (for ∂p=∂x=0) the velocity varies linearly with y. This was the case
treated earlier in Chapter 2; this linear profile is called a Couette flow, after a 19th-century physicist.

We can obtain additional information about the flow from the velocity distribution of Eq. 8.8.

Shear Stress Distribution
The shear stress distribution is given by τyx = μðdu=dyÞ,

τyx = μ
U
a
+
a2

2
∂p
∂x

� �
2y
a2

−
1
a

	 

= μ

U
a
+ a

∂p
∂x

� �
y
a
−
1
2

	 

ð8:9aÞ

Volume Flow Rate
The volume flow rate is given by Q=

R
AV
! � dA!. For depth l in the z direction

Q=
Z a

0
ul dy or

Q
l
=
Z a

0

Uy
a

+
1
2μ

∂p
∂x

� �
ðy2−ayÞ

	 

dy

Thus the volume flow rate per unit depth is given by

Q
l
=
Ua
2

−
1

12μ
∂p
∂x

� �
a3 ð8:9bÞ

Average Velocity
The average velocity magnitude, V , is given by

V =
Q
A
= l

Ua
2

−
1

12μ
∂p
∂x

� �
a3

	 
�
la=

U
2
−

1
12μ

∂p
∂x

� �
a2 ð8:9cÞ

Point of Maximum Velocity
To find the point of maximum velocity, we set du=dy equal to zero and solve for the corresponding y.
From Eq. 8.8

du
dy

=
U
a
+

a2

2μ
∂p
∂x

� �
2y
a2

−
1
a

	 

=
U
a
+

a
2μ

∂p
∂x

� �
2

y
a

� �
−1

h i
Thus,

du
dy

=0 at y=
a
2
−

U=a
ð1=μÞð∂p=∂xÞ

There is no simple relation between the maximum velocity, umax, and the mean velocity, V , for this
flow case.

Equation 8.8 suggests that the velocity profile may be treated as a combination of a linear and a
parabolic velocity profile; the last term in Eq. 8.8 is identical to that in Eq. 8.5. The result is a family
of velocity profiles, depending onU and ð1=μÞð∂p=∂xÞ; three profiles are sketched in Fig. 8.6. (As shown
in Fig. 8.6, some reverse flow—flow in the negative x direction—can occur when ∂p=∂x>0.)

Again, all of the results developed in this section are valid for laminar flow only. Experiments show
that this flow becomes turbulent (for ∂p=∂x=0) at a Reynolds number of approximately 1500, where
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Re= ρUa=μ for this flow case. Not much information is available for the case where the pressure
gradient is not zero. In Example 8.2, the torque and power characteristics of a a journal bearing are
determined using the parallel plate model.

p___
xд

д
> 0

p___
xд

д
= 0

p___
xд

д
< 0

1.0

0

y_
a

u__
U

3.02.01.00

u a

U

x

y

Fig. 8.6 Dimensionless velocity profile for fully developed laminar flow between infinite parallel plates: upper platemoving
with constant speed, U.

Example 8.2 TORQUE AND POWER IN A JOURNAL BEARING

A crankshaft journal bearing in an automobile engine is lubricated by SAE 30 oil at 210�F. The bearing diameter is 3 in., the
diametral clearance is 0.0025 in., and the shaft rotates at 3600 rpm; it is 1.25 in. long. The bearing is under no load, so the clear-
ance is symmetric. Determine the torque required to turn the journal and the power dissipated.

Given: Journal bearing, as shown. Note that the gap width, a, is half the diametral clearance. Lubricant is SAE 30 oil at 210�F.
Speed is 3600 rpm.

Find: (a) Torque, T .
(b) Power dissipated.

Solution: Torque on the journal is caused by viscous shear in the oil film. The gap
width is small, so the flow may be modeled as flow between infinite parallel plates:

Governing equations:
=0ð6Þ

τyx = μ
U
a
+ a
�

����
!∂p

∂x

�
y
a
−
1
2

	 
 ð8:9aÞ

Assumptions:

1 Laminar flow.

2 Steady flow.
3 Incompressible flow.

4 Fully developed flow.

5 Infinite width (L=a=1:25=0:00125= 1000, so this is a reasonable assumption).

6 ∂p=∂x=0 (flow is symmetric in the actual bearing at no load).

a u

U

y

x

D = 3 in.L = 1.25 in. a =          in.0.0025______
2

ω
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We have seen how steady, one-dimensional laminar flows between two plates can be generated by
applying a pressure gradient, by moving one plate with respect to the other, or by having both driving
mechanisms present. To finish our discussion of this type of flow, Example 8.3 examines a gravity-
driven steady, one-dimensional laminar flow down a vertical wall. Once again, the direct approach
would be to start with the two-dimensional rectangular coordinate form of the Navier–Stokes equations
(Eqs. 5.27); instead we will use a differential control volume.

Then

τyx = μ
U
a
= μ

ωR
a

= μ
ωD
2a

For SAE 30 oil at 210�F ð99�CÞ, μ=9:6× 10−3N � s=m2ð2:01× 10−4 lbf � s=ft2Þ, from Fig. A.2, Appendix A. Thus,

τyx =2:01× 10−4 lbf � s
ft2

× 3600
rev
min

× 2π
rad
rev

×
min
60 s

× 3 in:×
1
2
×

1
0:00125 in:

τyx =90:9 lbf=ft2

The total shear force is given by the shear stress times the area. It is applied to the journal surface. Therefore, for the torque

T =FR= τyxπDLR=
π

2
τyxD2L

=
π

2
× 90:9

lbf
ft2

× ð3Þ2 in:2 × ft2

144 in:2
× 1:25 in:

T =11:2 in: � lbf T ����������������������������������������������������
The power dissipated in the bearing is

_W =FU =FRω= Tω

=11:2 in: � lbf × 3600
rev
min

×
min
60 s

× 2π
rad
rev

×
ft

12 in:
×

hp � s
550 ft � lbf

_W =0:640 hp _W ������������������������������������������������������
To ensure laminar flow, check the Reynolds number.

Re=
ρUa
μ

=
SGρH2OUa

μ
=
SGρH2OωRa

μ

Assume, as an approximation, the specific gravity of SAE 30 oil is the same as
that of SAE 10W oil. From Table A.2, Appendix A, SG=0:92. Thus

Re=0:92× 1:94
slug
ft3

×
ð3600Þ2π

60
rad
s

× 1:5 in:×0:00125 in:

×
ft2

2:01× 10−4 lbf � s ×
ft2

144 in:2
×

lbf � s2
slug � ft

Re=43:6

Therefore, the flow is laminar, since Re≪1500.

In this problem we approximated the
circular-streamline flow in a small annular
gap as a linear flow between infinite par-
allel plates. As we saw in Example 5.10,
for the small value of the gap width a to
radius R ratio a=R (in this problem <1%),
the error in shear stress is about 1

2 of this
ratio. Hence, the error introduced is
insignificant—much less than the uncer-
tainty associated with obtaining a viscosity
for the oil.

Example 8.3 LAMINAR FILM ON A VERTICAL WALL

Aviscous, incompressible,Newtonian liquid flows in steady, laminar flowdown a verticalwall. The thickness, δ, of the liquid film
is constant. Since the liquid free surface is exposed to atmospheric pressure, there is no pressure gradient. For this gravity-driven
flow, apply the momentum equation to differential control volume dx dy dz to derive the velocity distribution in the liquid film.
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Given: Fully developed laminar flow of incompressible, Newtonian liquid down a vertical wall; thickness, δ, of the liquid film
is constant and ∂p=∂x=0.

Find: Expression for the velocity distribution in the film.

Solution: The x component of the momentum equation for a control
volume is

FSx +FBx =
∂
∂t

Z
CV

u ρ dV--- +
Z
CS
u ρV

! � dA! ð4:18aÞ

Under the conditions given we are dealing with a steady, incompress-
ible, fully developed laminar flow.

For steady flow,
∂
∂t

Z
CV

u ρ dV--- = 0

For fully developed flow,
Z
CS
u ρV

! � dA!=0

Thus the momentum equation for the present case reduces to

FSx +FBx =0

The body force, FBx , is given by FBx = ρg dV--- = ρg dx dy dz. The only surface forces acting on the differential control volume are
shear forces on the vertical surfaces. (Since we have a free-surface flow, with straight streamlines, the pressure is atmospheric
throughout; no net pressure forces act on the control volume.)

If the shear stress at the center of the differential control volume is τyx, then,

shear stress on left face is τyxL = τyx−
dτyx
dy

dy
2

� �
and

shear stress on right face is τyxR = τyx +
dτyx
dy

dy
2

� �
The direction of the shear stress vectors is taken consistent with the sign convention of Section 2.3. Thus on the left face, a minus y
surface, τyxL acts upward, and on the right face, a plus y surface, τyxR acts downward.

The surface forces are obtained by multiplying each shear stress by the area over which it acts. Substituting into FSx +FBx =0,
we obtain

−τyxL dx dz+ τyxR dx dz+ ρg dx dy dz=0

or

− τyx−
dτyx
dy

dy
2

� �
dx dz+ τyx +

dτyx
dy

dy
2

� �
dx dz+ ρg dx dy dz=0

Simplifying gives

dτyx
dy

+ ρg=0 or
dτyx
dy

= −ρg

Since

τyx = μ
du
dy

then μ
d2u
dy2

= −ρg and
d2u
dy2

= −
ρg
μ

Integrating with respect to y gives

du
dy

= −
ρg
μ
y+ c1

Differential
control
volume

y

x

dx

dy

δ

g

τyxL
dx dz τyxR

τyx
dx dz

  g dx dy dzρ
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8.3 Fully Developed Laminar Flow in a Pipe
As a final example of fully developed laminar flow, let us consider fully developed laminar flow in a
pipe. Here the flow is axisymmetric. Consequently it is most convenient to work in cylindrical coordi-
nates. This is yet another case where we could use the Navier–Stokes equations, this time in cylindrical
coordinates (see Example 5.10). Instead we will again take the longer route—using a differential control
volume—to bring out some important features of the fluid mechanics. The development will be very
similar to that for parallel plates in the previous section; cylindrical coordinates just make the analysis
a little trickier mathematically. Since the flow is axisymmetric, the control volume will be a differential
annulus, as shown in Fig. 8.7. The control volume length is dx and its thickness is dr.

For a fully developed steady flow, the x component of the momentum equation (Eq. 4.18a), when
applied to the differential control volume, once again reduces to

FSx =0

Integrating again, we obtain

u= −
ρg
μ

y2

2
+ c1y+ c2

To evaluate constants c1 and c2, we apply appropriate boundary conditions:

(i) y=0, u=0 ðno-slipÞ
(ii) y= δ,

du
dy

=0 (neglect air resistance, i.e., assume zero shear stress at free surface)

From boundary condition (i), c2 = 0
From boundary condition (ii), 0 = −

ρg
μ
δ+ c1 or c1 =

ρg
μ
δ

Hence,

u= −
ρg
μ

y2

2
+
ρg
μ
δy or u=

ρg
μ
δ2

y
δ

� �
−
1
2

y
δ

� �2	 
 uðyÞ
 �������������������������������

Using the velocity profile it can be shown that:

the volume flow rate isQ=l=
ρg
3μ

δ3

the maximum velocity isUmax =
ρg
2μ

δ2

the average velocity is V =
ρg
3μ

δ2

Flow in the liquid film is laminar for Re=V δ=ν≤ 1000 ½1�.

dr

R

r

Annular differential
control
volume

Annular differential
control
volume

(a) End view of CV (b) Side view of CV (c) Forces on CV

dx

dr

x

r

τrx +

τrx 2 rdx

2   (r + dr) dx
dτrx____
dr dr π

π

dxπ πp 2 rdr 2 rdr

CV

p +
p___
x( ) д

д

Fig. 8.7 Differential control volume for analysis of fully developed laminar flow in a pipe.

Notes:
• This problem is a special case ðθ=90�Þ of
the inclined plate flow analyzed in
Example 5.9 that we solved using the
Navier–Stokes equations.

• This problem and Example 5.9 demon-
strate that use of the differential control
volume approach or the Navier–Stokes
equations leads to the same result.
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The next step is to sum the forces acting on the control volume in the x direction. We know that normal
forces (pressure forces) act on the left and right ends of the control volume, and that tangential forces
(shear forces) act on the inner and outer cylindrical surfaces.

If the pressure at the left face of the control volume is p, then the pressure force on the left end is

dFL = p2πr dr

The pressure force on the right end is

dFR = − p+
∂p
∂x

dx
� �

2πr dr

If the shear stress at the inner surface of the annular control volume is τrx, then the shear force on the
inner cylindrical surface is

dFI = −τrx2πr dx

The shear force on the outer cylindrical surface is

dFO = τrx +
dτrx
dr

dr
� �

2πðr+ drÞdx

The sum of the x components of force, dFL, dFR, dFI , and dFO, acting on the control volumemust be
zero. This leads to the condition that

−
∂p
∂x

2πr dr dx+ τrx2π dr dx+
dτrx
dr

2πr dr dx=0

Dividing this equation by 2πr dr dx and solving for ∂p=∂x gives

∂p
∂x

=
τrx
r
+
dτrx
dr

=
1
r
dðrτrxÞ
dr

Comparing this to the corresponding equation for parallel plates (Eq. 8.3) shows the mathematical com-
plexity introduced because we have cylindrical coordinates. The left side of the equation is at most a
function of x only because the pressure is uniform at each section; the right side is at most a function
of r only because the flow is fully developed. Hence, the only way the equation can be valid for all x and r
is for both sides to in fact be constant:

1
r
dðrτrxÞ
dr

=
∂p
∂x

= constant or
dðrτrxÞ
dr

= r
∂p
∂x

We are not quite finished, but already we have an important result: In a constant diameter pipe, the
pressure drops uniformly along the pipe length (except for the entrance region).

Integrating this equation, we obtain

rτrx =
r2

2
∂p
∂x

� �
+ c1

or

τrx =
r
2

∂p
∂x

� �
+
c1
r

ð8:10Þ

Since τrx = μdu=dr, we have

μ
du
dr

=
r
2

∂p
∂x

� �
+
c1
r

and

u=
r2

4μ
∂p
∂x

� �
+
c1
μ
ln r+ c2 ð8:11Þ
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We need to evaluate constants c1 and c2. However, we have only the one boundary condition that u=0 at
r=R. What do we do? Before throwing in the towel, let us look at the solution for the velocity profile
given by Eq. 8.11. Although we do not know the velocity at the pipe centerline, we do know from phys-
ical considerations that the velocity must be finite at r=0. The only way that this can be true is for c1 to
be zero. (We could have also concluded that c1 = 0 from Eq. 8.10—which would otherwise yield an
infinite stress at r=0.) Thus, from physical considerations, we conclude that c1 = 0, and hence

u=
r2

4μ
∂p
∂x

� �
+ c2

The constant, c2, is evaluated by using the available boundary condition at the pipe wall: at r=R, u=0.
Consequently,

0 =
R2

4μ
∂p
∂x

� �
+ c2

This gives

c2 = −
R2

4μ
∂p
∂x

� �
and hence

u=
r2

4μ
∂p
∂x

� �
−
R2

4μ
∂p
∂x

� �
=

1
4μ

∂p
∂x

� �
ðr2−R2Þ

or

u= −
R2

4μ
∂p
∂x

� �
1−

r
R

� �2	 

ð8:12Þ

Since we have the velocity profile, we can obtain a number of additional features of the flow.

Shear Stress Distribution
The shear stress is

τrx = μ
du
dr

=
r
2

∂p
∂x

� �
ð8:13aÞ

Volume Flow Rate
The volume flow rate is

Q=
Z
A
V
! � dA!=

Z R

0
u2πr dr=

Z R

0

1
4μ

∂p
∂x

� �
ðr2−R2Þ2πr dr

Q= −
π R4

8μ
∂p
∂x

� � ð8:13bÞ

Flow Rate as a Function of Pressure Drop
We proved that in fully developed flow the pressure gradient, ∂p=∂x, is constant. Therefore,
∂p=∂x= ðp2−p1Þ=L= −Δp=L. Substituting into Eq. 8.13b for the volume flow rate gives

Q= −
π R4

8μ
−Δp
L

	 

=
πΔpR4

8μL
=
πΔpD4

128μL
ð8:13cÞ
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for laminar flow in a horizontal pipe. Note that Q is a sensitive function of D; Q	D4, so, for example,
doubling the diameter D increases the flow rate Q by a factor of 16.

Average Velocity
The average velocity magnitude, V , is given by

V =
Q
A
=

Q
πR2 = −

R2

8μ
∂p
∂x

� �
ð8:13dÞ

Point of Maximum Velocity
To find the point of maximum velocity, we set du=dr equal to zero and solve for the corresponding r.
From Eq. 8.12

du
dr

=
1
2μ

∂p
∂x

� �
r

Thus,

du
dr

=0 at r=0

At r=0,

u= umax =U = −
R2

4μ
∂p
∂x

� �
=2V ð8:13eÞ

The velocity profile (Eq. 8.12) may be written in terms of the maximum (centerline) velocity as

u
U

=1−
r
R

� �2
ð8:14Þ

The parabolic velocity profile, given by Eq. 8.14 for fully developed laminar pipe flow, was
sketched in Fig. 8.1. These laminar flow results are applied to the design of a viscometer in Example 8.4.

Example 8.4 CAPILLARY VISCOMETER

A simple and accurate viscometer can be made from a length of capillary tubing. If the flow rate and pressure drop are measured,
and the tube geometry is known, the viscosity of a Newtonian liquid can be computed from Eq. 8.13c. A test of a certain liquid in a
capillary viscometer gave the following data:

Flow rate: 880 mm3=s Tube length: 1 m
Tube diameter: 0:50 mm Pressure drop: 1:0MPa

Determine the viscosity of the liquid.

Given: Flow in a capillary viscometer.
The flow rate is Q=880 mm3=s.

Find: The fluid viscosity.

Solution: Equation 8.13c may be applied.

Governing equation:

Q=
πΔpD4

128μL
ð8:13cÞ

Flow
CV

L = 1 m

D = 0.5 mm

1 2

Δp = p1 – p2 = 1.0 MPa
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Part B FLOW IN PIPES AND DUCTS

In this section we will be interested in determining the factors that affect the pressure in an incompress-
ible fluid as it flows in a pipe or duct (we will refer to “pipe” but imply “duct,” too). If we ignore friction
for a moment and assume steady flow and consider a streamline in the flow, the Bernoulli equation from
Chapter 6 applies,

p
ρ
+
V2

2
+ gz= constant ð6:8Þ

From this equation we can see what tends to lead to a pressure decrease along the streamline in this
frictionless flow: a reduction of area at some point in the pipe causing an increase in the velocity V ,
or the pipe having a positive incline so z increases. Conversely, the pressure will tend to increase if
the flow area is increased or the pipe slopes downward. We say “tends to” because one factor may coun-
teract another; for example, we may have a downward sloping pipe tending to increase pressure with a
reduction in diameter tending to decrease pressure.

In reality, flows in pipes and ducts experience significant friction and are often turbulent, so the
Bernoulli equation does not apply. It doesn’t even make sense to use V ; instead we will use V , to rep-
resent the average velocity at a section along the pipe. We will learn that, in effect, friction effects lead to
a continual reduction in the value of the Bernoulli constant of Eq. 6.8, representing a “loss” of mechan-
ical energy. We have already seen that, in contrast to the Bernoulli equation, for laminar flow there is a
pressure drop even for a horizontal, constant diameter pipe; in this section we will see that turbulent
flows experience an even larger pressure drop. We will need to replace the Bernoulli equation with
an energy equation that incorporates the effects of friction.

Assumptions:

1 Laminar flow.

2 Steady flow.

3 Incompressible flow.

4 Fully developed flow.

5 Horizontal tube.

Then

μ=
πΔpD4

128 LQ
=

π

128
× 1:0× 106

N
m2 × ð0:50Þ

4 mm4 ×
s

880 mm3 ×
1
1 m

×
m

103 mm

μ=1:74× 10−3 N � s=m2 μ �������������������������������������
Check the Reynolds number. Assume the fluid density is similar to that of water, 999 kg=m3. Then

V =
Q
A
=

4Q
πD2 =

4
π
×880

mm3

s
×

1

ð0:50Þ2 mm2
×

m
103 mm

=4:48 m=s

and

Re=
ρVD
μ

=999
kg
m3 × 4:48

m
s
× 0:50 mm

×
m2

1:74× 10−3 N � s ×
m

103 mm
×

N � s2
kg � m

Re=1290

Consequently, since Re<2300, the flow is laminar.

This problem is a little oversimplified. To
design a capillary viscometer the entrance
length, liquid temperature, and kinetic
energy of the flowing liquid would all need
to be considered.
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In summary, we can state that three factors tend to reduce the pressure in a pipe flow: a decrease in
pipe area, an upward slope, and friction. For nowwewill focus on pressure loss due to friction and so will
analyze pipes that are of constant area and that are horizontal.

We have already seen in the previous section that for laminar flow we can theoretically deduce the
pressure drop. Rearranging Eq. 8.13c to solve for the pressure drop Δp,

Δp=
128μLQ
πD4

We would like to develop a similar expression that applies for turbulent flows, but we will see that this is
not possible analytically; instead, we will develop expressions based on a combination of theoretical and
experimental approaches. Before proceeding, we note that it is conventional to break losses due to fric-
tion into two categories:major losses, which are losses due to friction in the constant-area sections of the
pipe; and minor losses (sometimes larger than “major” losses), which are losses due to valves, elbows,
and so on.

Since circular pipes are most common in engineering applications, the basic analysis will be
performed for circular geometries. The results can be extended to other geometries by introducing
the hydraulic diameter, which is treated in Section 8.7. (Open channel flows will be treated in
Chapter 11, and compressible flow in ducts will be treated in Chapter 13.)

8.4 Shear Stress Distribution in Fully Developed Pipe Flow
We consider again fully developed flow in a horizontal circular pipe, except nowwemay have laminar or
turbulent flow. In Section 8.3 we showed that a force balance between friction and pressure forces leads
to Eq. 8.10:

τrx =
r
2

∂p
∂x

� �
+
c1
r

ð8:10Þ

Because we cannot have infinite stress at the centerline, the constant of integration c1 must be zero, so

τrx =
r
2
∂p
∂x

ð8:15Þ

Equation 8.15 indicates that for both laminar and turbulent fully developed flows the shear stress varies
linearly across the pipe, from zero at the centerline to a maximum at the pipe wall. The stress on the wall,
τw, equal and opposite to the stress in the fluid at the wall, is given by

τw = − τrx½ �r=R = −
R
2
∂p
∂x

ð8:16Þ

For laminar flow we used our familiar stress equation τrw = μ du=dr in Eq. 8.15 to eventually obtain the
laminar velocity distribution. This led to a set of usable equations, Eqs. 8.13a, for obtaining various flow
characteristics; e.g., Eq. 8.13c gave a relationship for the flow rate Q, a result first obtained experimen-
tally by Jean Louis Poiseuille, a French physician, and independently by Gotthilf H. L. Hagen, a German
engineer, in the 1850s [2].

Unfortunately there is no equivalent stress equation for turbulent flow, so we cannot replicate the
laminar flow analysis to derive turbulent equivalents of Eqs. 8.13. All we can do in this section is indicate
some classic semi-empirical results [3].

As we discussed in Section 2.6, and illustrated in Fig. 2.17, turbulent flow is represented at each
point by the time-mean velocity �u plus randomly fluctuating velocity components u0 and υ0 in the x
and y directions. These components continuously transfer momentum between adjacent fluid layers,
tending to reduce any velocity gradient present. This effect shows up as an apparent stress, first intro-
duced by Osborne Reynolds, and called the Reynolds stress.1 This stress is given by −ρu0υ0 , where the
overbar indicates a time average. Hence, we find

τ= τlam + τturb = μ
d�u
dy

−ρu0υ0 ð8:17Þ

1 The Reynolds stress terms arise from consideration of the complete equations of motion for turbulent flow [4].
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Do not misunderstand the minus sign in Eq. 8.17—it turns out that u0 and υ0 are negatively correlated, so
that τturb = −ρu0υ0 is positive. In Fig. 8.8, experimental measurements of the Reynolds stress for fully
developed turbulent pipe flow at two Reynolds numbers are presented; ReU =UD=ν, where U is the
centerline velocity. The turbulent shear stress has been nondimensionalized with the wall shear stress.
Recall that Eq. 8.15 showed that the shear stress in the fluid varies linearly from τw at the pipe wall
ðy=R! 0Þ to zero at the centerline ðy=R=1Þ; from Fig. 8.8 we see that the Reynolds stress has almost
the same trend, so that the friction is almost all due to Reynolds stress. What Fig. 8.8 doesn’t show is that
close to the wall ðy=R! 0Þ the Reynolds stress drops to zero. This is because the no-slip condition holds,
so not only does the mean velocity �u! 0, but also the fluctuating velocity components u0 and υ0 ! 0 (the
wall tends to suppress the fluctuations). Hence, the turbulent stress, τturb = −ρu0υ0 ! 0, as we approach
the wall, and is zero at the wall. Since the Reynolds stress is zero at the wall, Eq. 8.17 shows that the wall
shear is given by τw = μðd�u=dyÞy=0. In the region very close to the wall, called the wall layer, viscous
shear is dominant. In the region between the wall layer and the central portion of the pipe both viscous
and turbulent shear are important.

8.5 Turbulent Velocity Profiles in Fully Developed Pipe Flow
Except for flows of very viscous fluids in small diameter ducts, internal flows generally are turbulent. As
noted in the discussion of shear stress distribution in fully developed pipe flow (Section 8.4), in turbulent
flow there is no universal relationship between the stress field and the mean velocity field. Thus, for
turbulent flows we are forced to rely on experimental data.

Dividing Eq. 8.17 by ρ gives

τ

ρ
= ν

d�u
dy

−u0υ0 ð8:18Þ

The term τ=ρ arises frequently in the consideration of turbulent flows; it has dimensions of velocity
squared. In particular, the quantity ðτw=ρÞ1=2 is called the friction velocity and is denoted by the symbol
u�. It is a constant for a given flow.

The velocity profile for fully developed turbulent flow through a smooth pipe is shown in Fig. 8.9.
The plot is semilogarithmic; �u=u� is plotted against logðyu�=νÞ. The nondimensional parameters �u=u� and
yu�=ν arise from dimensional analysis if one reasons that the velocity in the neighborhood of the wall is
determined by the conditions at the wall, the fluid properties, and the distance from the wall. It is simply
fortuitous that the dimensionless plot of Fig. 8.9 gives a fairly accurate representation of the velocity
profile in a pipe away from the wall; note the small deviations in the region of the pipe centerline.

In the region very close to the wall where viscous shear is dominant, the mean velocity profile fol-
lows the linear viscous relation

u+ =
�u
u�

=
yu�
ν

= y+ ð8:19Þ

where y is distance measured from the wall (y=R−r; R is the pipe radius), and �u is mean velocity.
Equation 8.19 is valid for 0≤ y+ ≤ 5 – 7; this region is called the viscous sublayer.

ReU
500,000

50,000

1.00.80.60.4

Dimensionless distance from wall,    

0.20
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τ w  
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Fig. 8.8 Turbulent shear stress (Reynolds stress) for fully developed turbulent flow in a pipe. (Data from Laufer [5].)

Video: The Glen
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For values of yu�=ν>30, the data are quite well represented by the semilogarithmic curve-fit equation

�u
u�

=2:5 ln
yu�
ν

+5:0 ð8:20Þ

In this region both viscous and turbulent shear are important, although turbulent shear is expected to be
significantly larger. There is considerable scatter in the numerical constants of Eq. 8.20; the values given
represent averages over many experiments [6]. The region between y+ = 5−7 and y+ = 30 is referred to
as the transition region, or buffer layer.

If Eq. 8.20 is evaluated at the centerline (y=R and u=U) and the general expression of Eq. 8.20 is
subtracted from the equation evaluated at the centerline, we obtain

U−�u
u�

=2:5 ln
R
y

ð8:21Þ

where U is the centerline velocity. Equation 8.21, referred to as the defect law, shows that the velocity
defect is a function of the distance ratio only and does not depend on the viscosity of the fluid.

The velocity profile for turbulent flow through a smooth pipe may also be approximated by the
empirical power-law equation

�u
U

=
y
R

� � 1=n
= 1−

r
R

� � 1=n
ð8:22Þ

where the exponent, n, varies with the Reynolds number. In Fig. 8.10 the data of Laufer [5] are shown on
a plot of ln y=R versus ln �u=U. If the power-law profile were an accurate representation of the data, all
data points would fall on a straight line of slope n. Clearly the data for ReU =5× 104 deviate from the
best-fit straight line in the neighborhood of the wall.

Hence the power-law profile is not applicable close to the wall ðy=R<0:04Þ. Since the velocity is
low in this region, the error in calculating integral quantities such as mass, momentum, and energy fluxes
at a section is relatively small. The power-law profile gives an infinite velocity gradient at the wall and
hence cannot be used in calculations of wall shear stress. Although the profile fits the data close to the
centerline, it fails to give zero slope there. Despite these shortcomings, the power-law profile is found to
give adequate results in many calculations.

Data fromHinze [7] suggest that the variation of power-law exponent nwith Reynolds number (based
on pipe diameter, D, and centerline velocity, U) for fully developed flow in smooth pipes is given by

n= −1:7+ 1:8 log ReU ð8:23Þ
for ReU >2× 104.
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Fig. 8.9 Turbulent velocity profile for fully developed flow in a smooth pipe. (Data from Laufer [5].)
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Since the average velocity is V =Q=A, and

Q=
Z
A
V
! � dA!

the ratio of the average velocity to the centerline velocity may be calculated for the power-law profiles of
Eq. 8.22 assuming the profiles to be valid from wall to centerline. The result is

V
U

=
2n2

ðn+1Þð2n+1Þ ð8:24Þ

From Eq. 8.24, we see that as n increases (with increasing Reynolds number) the ratio of the average
velocity to the centerline velocity increases; with increasing Reynolds number the velocity profile
becomes more blunt or “fuller” (for n=6,V=U =0:79 and for n=10,V=U =0:87). As a representative
value, 7 often is used for the exponent; this gives rise to the term “a one-seventh power profile” for fully
developed turbulent flow:

�u
U

=
y
R

� � 1=7
= 1−

r
R

� � 1=7

Velocity profiles for n=6 and n=10 are shown in Fig. 8.11. The parabolic profile for fully developed
laminar flow is included for comparison. It is clear that the turbulent profile has a much steeper slope near
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Fig. 8.10 Power-law velocity profiles for fully developed turbulent flow in a smooth pipe. (Data from Laufer [5].)
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Fig. 8.11 Velocity profiles for fully developed pipe flow.
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the wall. This is consistent with our discussion leading to Eq. 8.17—the fluctuating velocity components
u0 and υ0 continuously transfer momentum between adjacent fluid layers, tending to reduce the velocity
gradient.

8.6 Energy Considerations in Pipe Flow
We have so far used the momentum and conservation of mass equations, in control volume form, to
discuss viscous flow. It is obvious that viscous effects will have an important effect on energy consid-
erations. In Section 6.4 we discussed the Energy Grade Line (EGL),

EGL=
p
ρg

+
V2

2g
+ z ð6:16bÞ

and saw that this is a measure of the total mechanical energy (“pressure,” kinetic and potential, per unit
mass) in a flow. We can expect that instead of being constant, which it was for inviscid flow, the EGL
will continuously decrease in the direction of flow as friction “eats” the mechanical energy (Examples
8.9 and 8.10 have sketches of such EGL—and HGL—curves; you may wish to preview them). We can
now consider the energy equation to obtain information on the effects of friction.

Consider, for example, steady flow through the piping system, including a reducing elbow, shown
in Fig. 8.12. The control volume boundaries are shown as dashed lines. They are normal to the flow at
sections and and coincide with the inside surface of the pipe wall elsewhere.

Basic equation:

= 0ð1Þ=0ð2Þ = 0ð1Þ = 0ð3Þ
_Q − ����!_Ws − ����!_Wshear− ����!_Wother = ����!

∂
∂t

Z
CV

e ρ dV--- +
Z
CS

e+ pυð Þρ V
! � d A! ð4:56Þ

e= u+
V2

2
+ gz

Assumptions:

1 _Ws = 0, _Wother = 0.

2 _Wshear = 0 (although shear stresses are present at the walls of the elbow, the velocities are zero there, so
there is no possibility of work).

3 Steady flow.

4 Incompressible flow.

5 Internal energy and pressure uniform across sections and .

Under these assumptions the energy equation reduces to

_Q= _mðu2−u1Þ+ _m
p2
ρ
−
p1
ρ

� �
+ _mgðz2−z1Þ

+
Z
A2

V2
2

2
ρV2 dA2−

Z
A1

V2
1

2
ρV1 dA1

ð8:25Þ

CV
g

z

y
x

2

1

Flow

Fig. 8.12 Control volume and coordinates for energy
analysis of flow through a 90� reducing elbow.
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Note that we have not assumed the velocity to be uniform at sections and , since we know that for
viscous flows the velocity at a cross-section cannot be uniform. However, it is convenient to introduce
the average velocity into Eq. 8.25 so that we can eliminate the integrals. To do this, we define a kinetic
energy coefficient.

Kinetic Energy Coefficient

The kinetic energy coefficient, α, is defined such thatZ
A

V2

2
ρV dA= α

Z
A

V
2

2
ρVdA= α _m

V
2

2
ð8:26aÞ

or

α=

Z
A
ρV3dA

_mV 2 ð8:26bÞ

We can think of α as a correction factor that allows us to use the average velocity V in the energy equa-
tion to compute the kinetic energy at a cross section.

For laminar flow in a pipe (velocity profile given by Eq. 8.12), α=2:0.
In turbulent pipe flow, the velocity profile is quite flat, as shown in Fig. 8.11. We can use Eq. 8.26b

together with Eqs. 8.22 and 8.24 to determine α. Substituting the power-law velocity profile of Eq. 8.22
into Eq. 8.26b, we obtain

α=
U
V

� �3 2n2

ð3+ nÞð3+ 2nÞ ð8:27Þ

Equation 8.24 gives V=U as a function of the power-law exponent n; combining this with Eq. 8.27 leads
to a fairly complicated expression in n. The overall result is that in the realistic range of n, from n=6 to
n=10 for high Reynolds numbers, α varies from 1.08 to 1.03; for the one-seventh power profile ðn=7Þ,
α=1:06. Because α is reasonably close to unity for high Reynolds numbers, and because the change in
kinetic energy is usually small compared with the dominant terms in the energy equation,we shall almost
always use the approximation α=1 in our pipe flow calculations.

Head Loss

Using the definition of α, the energy equation (Eq. 8.25) can be written

_Q = _mðu2−u1Þ+ _m
p2
ρ
−
p1
ρ

� �
+ _mgðz2−z1Þ+ _m

α2V
2
2

2
−
α1V

2
1

2

 !

Dividing by the mass flow rate gives

δQ
dm

= u2−u1 +
p2
ρ
−
p1
ρ
+ gz2−gz1 +

α2V
2
2

2
−
α1V

2
1

2

Rearranging this equation, we write

p1
ρ
+ α1

V
2
1

2
+ gz1

 !
−

p2
ρ
+ α2

V
2
2

2
+ gz2

 !
= ðu2−u1Þ− δQ

dm
ð8:28Þ

In Eq. 8.28, the term

p
ρ
+ α

V 2

2
+ gz

 !
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represents the mechanical energy per unit mass at a cross section. Compare it to the EGL expression,
Eq. 6.16b, for computing “mechanical” energy, which we discussed at the beginning of this section. The
differences are that in the EGL we divide by g to obtain the EGL in units of feet or meters, and here αV 2

allows for the fact that in a pipe flow we have a velocity profile, not a uniform flow.
The term u2−u1−δQ=dm is equal to the difference in mechanical energy per unit mass between

sections and . It represents the (irreversible) conversion of mechanical energy at section to
unwanted thermal energy ðu2−u1Þ and loss of energy via heat transfer ð−δQ=dmÞ. We identify this
group of terms as the total energy loss per unit mass and designate it by the symbol hlT . Then

p1
ρ
+ α1

V 2
1

2
+ gz1

 !
−

p2
ρ
+ α2

V 2
2

2
+ gz2

 !
= hlT ð8:29Þ

The dimensions of energy per unit mass FL=M are equivalent to dimensions of L2=t2. Equation 8.29 is
one of the most important and useful equations in fluid mechanics. It enables us to compute the loss of
mechanical energy caused by friction between two sections of a pipe. We recall our discussion at the
beginning of Part B, where we discussed what would cause the pressure to change. We hypothesized
a frictionless flow (i.e., described by the Bernoulli equation, or Eq. 8.29 with α=1 and hlT =0) so that
the pressure could only change if the velocity changed (if the pipe had a change in diameter), or if the
potential changed (if the pipe was not horizontal). Now, with friction, Eq. 8.29 indicates that the pressure
will change even for a constant-area horizontal pipe—mechanical energy will be continuously changed
into thermal energy.

As the empirical science of hydraulics developed during the 19th century, it was common practice
to express the energy balance in terms of energy per unit weight of flowing liquid (e.g., water) rather
than energy per unit mass, as in Eq. 8.29. When Eq. 8.29 is divided by the acceleration of gravity,
g, we obtain

p1
ρg

+ α1
V 2

1

2g
+ z1

 !
−

p2
ρg

+ α2
V 2

2

2g
+ z2

 !
=
hlT
g

=HlT ð8:30Þ

Each term in Eq. 8.30 has dimensions of energy per unit weight of flowing fluid. Then the net dimensions
ofHlT = hlT=g are ðL2=t2Þðt2=LÞ= L, or feet of flowing liquid. Since the term head loss is in common use,
we shall use it when referring to either HlT (with dimensions of energy per unit weight or length) or
hlT = gHlT (with dimensions of energy per unit mass).

Equation 8.29 (or Eq. 8.30) can be used to calculate the pressure difference between any two points
in a piping system, provided the head loss, hlT (orHlT ), can be determined. We shall consider calculation
of head loss in the next section.

8.7 Calculation of Head Loss
Total head loss, hlT , is regarded as the sum of major losses, hl, due to frictional effects in fully developed
flow in constant-area tubes, and minor losses, hlm , resulting from entrances, fittings, area changes, and
so on. Consequently, we consider the major and minor losses separately.

Major Losses: Friction Factor

The energy balance, expressed by Eq. 8.29, can be used to evaluate the major head loss. For fully devel-
oped flow through a constant-area pipe, hlm =0, and α1ðV 2

1=2Þ= α2ðV 2
2=2Þ; Eq. 8.29 reduces to

p1−p2
ρ

= gðz2−z1Þ+ hl ð8:31Þ
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If the pipe is horizontal, then z2 = z1 and
p1−p2

ρ
=
Δp
ρ

= hl ð8:32Þ

Thus the major head loss can be expressed as the pressure loss for fully developed flow through a hor-
izontal pipe of constant area.

Since head loss represents the energy converted by frictional effects from mechanical to thermal
energy, head loss for fully developed flow in a constant-area duct depends only on the details of the
flow through the duct. Head loss is independent of pipe orientation.

a. Laminar Flow
In laminar flow, we saw in Section 8.3 that the pressure drop may be computed analytically for fully
developed flow in a horizontal pipe. Thus, from Eq. 8.13c,

Δp=
128μLQ
πD4 =

128μLV ðπD2=4Þ
πD4 = 32

L
D

μV
D

Substituting in Eq. 8.32 gives

hl =32
L
D

μV
ρD

=
L
D

V 2

2
64

μ

ρVD

� �
=

64
Re

� �
L
D

V 2

2
ð8:33Þ

We shall see the reason for writing hl in this form shortly.

b. Turbulent Flow
In turbulent flow we cannot evaluate the pressure drop analytically; we must resort to experimental
results and use dimensional analysis to correlate the experimental data. In fully developed turbulent flow,
the pressure drop, Δp, caused by friction in a horizontal constant-area pipe is known to depend on pipe
diameter, D, pipe length, L, pipe roughness, e, average flow velocity, V , fluid density, ρ, and fluid vis-
cosity, μ. In functional form

Δp=ΔpðD, L, e, V , ρ, μÞ
Weapplied dimensional analysis to this problem inExample 7.2. The resultswere a correlation of the form

Δp
ρV

2 = f
μ

ρVD
,
L
D
,
e
D

� �
We recognize that μ=ρVD=1=Re, so we could just as well write

Δp

ρV
2 =ϕ Re,

L
D
,
e
D

� �
Substituting from Eq. 8.32, we see that

hl

V
2 =ϕ Re,

L
D
,
e
D

� �
Although dimensional analysis predicts the functional relationship, we must obtain actual values
experimentally.

Experiments show that the nondimensional head loss is directly proportional to L=D. Hence we
can write

hl

V 2 =
L
D

ϕ1 Re,
e
D

� �
Since the function, ϕ1, is still undetermined, it is permissible to introduce a constant into the left side of
the above equation. By convention the number 12 is introduced into the denominator so that the left side of
the equation is the ratio of the head loss to the kinetic energy per unit mass of flow. Then

hl
1
2V

2 =
L
D
ϕ2 Re,

e
D

� �
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The unknown function, ϕ2ðRe, e=DÞ, is defined as the friction factor, f ,

f ≡ϕ2 Re,
e
D

� �
and

hl = f
L
D

V 2

2
ð8:34Þ

or

Hl = f
L
D

V 2

2g
ð8:35Þ

The friction factor2 is determined experimentally. The results, published by L. F. Moody [8], are shown
in Fig. 8.13.

To determine head loss for fully developed flow with known conditions, the Reynolds number is
evaluated first. Roughness, e, is obtained from data such as in Table 8.1. Then the friction factor, f , can
be read from the appropriate curve in Fig. 8.13, at the known values of Re and e=D. Finally, head loss can
be found using Eq. 8.34 or Eq. 8.35.

2 The friction factor defined by Eq. 8.34 is theDarcy friction factor. The Fanning friction factor, less frequently used, is defined in
terms of the wall shear stress. The Darcy friction factor is four times the Fanning friction factor.
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Fig. 8.13 Friction factor for fully developed flow in circular pipes. (Data from Moody [8].)
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Several features of Fig. 8.13 require some discussion. The friction factor for laminar flow may be
obtained by comparing Eqs. 8.33 and 8.34:

hl =
64
Re

� �
L
D

V 2

2
= f

L
D

V 2

2

Consequently, for laminar flow

flaminar =
64
Re

ð8:36Þ

Thus, in laminar flow, the friction factor is a function of Reynolds number only; it is independent of
roughness. Although we took no notice of roughness in deriving Eq. 8.33, experimental results verify
that the friction factor is a function only of Reynolds number in laminar flow.

The Reynolds number in a pipe may be changed most easily by varying the average flow velocity. If
the flow in a pipe is originally laminar, increasing the velocity until the critical Reynolds number is
reached causes transition to occur; the laminar flow gives way to turbulent flow. The effect of transition
on the velocity profile was discussed in Section 8.5. Figure 8.11 shows that the velocity gradient at the
tube wall is much larger for turbulent flow than for laminar flow. This change in velocity profile causes
the wall shear stress to increase sharply, with the same effect on the friction factor.

As the Reynolds number is increased above the transition value, the velocity profile continues to
become fuller, as noted in Section 8.5. For values of relative roughness e=D≤ 0:001, the friction factor at
first tends to follow the smooth pipe curve, along which friction factor is a function of Reynolds number
only. However, as the Reynolds number increases, the velocity profile becomes still fuller. The size of
the thin viscous sublayer near the tube wall decreases. As roughness elements begin to poke through this
layer, the effect of roughness becomes important, and the friction factor becomes a function of both the
Reynolds number and the relative roughness.

At very large Reynolds number, most of the roughness elements on the tube wall protrude through
the viscous sublayer; the drag and, hence, the pressure loss, depend only on the size of the roughness
elements. This is termed the “fully rough” flow regime; the friction factor depends only on e=D in this
regime.

For values of relative roughness e=D≥ 0:001, as the Reynolds number is increased above the tran-
sition value, the friction factor is greater than the smooth pipe value. As was the case for lower values of
e=D, the value of Reynolds number at which the flow regime becomes fully rough decreases with
increasing relative roughness.

To summarize the preceding discussion, we see that as Reynolds number is increased, the friction
factor decreases as long as the flow remains laminar. At transition, f increases sharply. In the turbulent
flow regime, the friction factor decreases gradually and finally levels out at a constant value for large
Reynolds number.

Table 8.1
Roughness for Pipes of Common Engineering Materials

Pipe
Roughness, e

Feet Millimeters

Riveted steel 0.003–0.03 0.9–9
Concrete 0.001–0.01 0.3–3
Wood stave 0.0006–0.003 0.2–0.9
Cast iron 0.00085 0.26
Galvanized iron 0.0005 0.15
Asphalted cast iron 0.0004 0.12
Commercial steel or wrought iron 0.00015 0.046
Drawn tubing 0.000005 0.0015

Source: Data from Moody [8].
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Bear in mind that the actual loss of energy is hl (Eq. 8.34), which is proportional to f and V
2. Hence,

for laminar flow hl/V (because f =64=Re, and Re/ V ); for the transition region there is a sudden
increase in hl; for the fully rough zone hl / V 2 because f ≈constant, and for the rest of the turbulent
region hl increases at a rate somewhere between V and V 2. We conclude that the head loss always
increases with flow rate, and more rapidly when the flow is turbulent.

To avoid having to use a graphical method for obtaining f for turbulent flows, various mathematical
expressions have been fitted to the data. The most widely used formula for friction factor is from
Colebrook [9],

1ffiffiffi
f
p = −2:0 log

e=D
3:7

+
2:51
Re

ffiffiffi
f
p

� �
ð8:37Þ

Equation 8.37 is implicit in f , and an equation solver can be used to find f for a given roughness ratio e=D
and Reynolds number Re. Eq. 8.37 is not difficult to solve for f—all we need to do is iterate.
Equation 8.37 is quite stable—almost any initial guess value for f in the right side will, after very
few iterations, lead to a converged value for f to three significant figures. From Fig. 8.13, we can
see that for turbulent flows f <0:1; hence f =0:1 would make a good initial value. Another strategy
is to use Fig. 8.13 to obtain a good first estimate; then usually one iteration using Eq. 8.37 yields a good
value for f . As an alternative, Haaland [10] developed the following equation,

1ffiffiffi
f
p = −1:8 log

e=D
3:7

� �1:11
+
6:9
Re

" #

as an approximation to the Colebrook equation; for Re>3000, it gives results within about 2 percent of
the Colebrook equation, without the need to iterate.

For turbulent flow in smooth pipes, the Blasius correlation, valid for Re≤ 105, is

f =
0:316
Re0:25

ð8:38Þ

When this relation is combined with the expression for wall shear stress (Eq. 8.16), the expression for
head loss (Eq. 8.32), and the definition of friction factor (Eq. 8.34), a useful expression for the wall shear
stress is obtained as

τw =0:0332ρV 2 υ

RV

� �0:25
ð8:39Þ

This equation will be used later in our study of turbulent boundary-layer flow over a flat plate
(Chapter 9).

All of the e values given in Table 8.1 are for new pipes, in relatively good condition. Over
long periods of service, corrosion takes place and, particularly in hard water areas, lime deposits and
rust scale form on pipe walls. Corrosion can weaken pipes, eventually leading to failure. Deposit
formation increases wall roughness appreciably, and also decreases the effective diameter. These
factors combine to cause e=D to increase by factors of 5 to 10 for old pipes. An example is shown
in Fig. 8.14.

Curves presented in Fig. 8.13 represent average values for data obtained from numerous experi-
ments. The curves should be considered accurate within approximately�10 percent, which is sufficient
for many engineering analyses. If more accuracy is needed, actual test data should be used.

Minor Losses

The flow in a piping system may be required to pass through a variety of fittings, bends, or abrupt
changes in area. Additional head losses are encountered, primarily as a result of flow separation.
Energy eventually is dissipated by violent mixing in the separated zones. These losses will be minor
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(hence the term minor losses) if the piping system includes long lengths of constant-area pipe. Minor
losses are computed as

hlm =K
V 2

2
ð8:40Þ

where the loss coefficient, K, must be determined experimentally for each situation. For flow through
pipe bends and fittings, the loss coefficient, K, is found to vary with pipe size (diameter) in much the
same manner as the friction factor, f , for flow through a straight pipe. The ASHRAE Handbook—Funda-
mentals [12] and websites such as The Engineering Toolbox [35] provide a wealth of data on fitting loss
coefficients. The data presented here should be considered as representative for some commonly
encountered situations.

a. Inlets and Exits
A poorly designed inlet to a pipe can cause appreciable head loss. If the inlet has sharp corners, flow
separation occurs at the corners, and a vena contracta is formed. The fluid must accelerate locally to
pass through the reduced flow area at the vena contracta. Losses in mechanical energy result from
the unconfined mixing as the flow stream decelerates again to fill the pipe. Three basic inlet geometries
are shown in Table 8.2. From the table it is clear that the loss coefficient is reduced significantly when the
inlet is rounded even slightly. For a well-rounded inlet ðr=D≥ 0:15Þ the entrance loss coefficient is
almost negligible. Example 8.9 illustrates a procedure for experimentally determining the loss coeffi-
cient for a pipe inlet.

The kinetic energy per unit mass, αV 2
=2, is completely dissipated by mixing when flow discharges

from a duct into a large reservoir or plenum chamber. The situation corresponds to flow through an
abrupt expansion with AR=0 (Fig. 8.15). The minor loss coefficient thus equals α, which as we saw
in the previous section we usually set to 1 for turbulent flow. No improvement in minor loss coefficient
for an exit is possible; however, addition of a diffuser can reduce V 2

=2 and therefore hlm considerably
(see Example 8.10).

b. Enlargements and Contractions
Minor loss coefficients for sudden expansions and contractions in circular ducts are given in Fig. 8.15.
Note that both loss coefficients are based on the larger V 2

=2. Thus losses for a sudden expansion are
based on V

2
1=2, and those for a contraction are based on V

2
2=2.

P
ho

to
 c

o
ur

te
sy

 o
f 

A
la

n 
T.

 M
cD

o
na

ld

Fig. 8.14 Pipe section removed after 40 years of service as a water line, showing formation of scale.
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Losses caused by area change can be reduced somewhat by installing a nozzle or diffuser between
the two sections of straight pipe. Data for nozzles are given in Table 8.3. Note that the final column (data
for the included angle θ=180∘) agrees with the data of Fig. 8.15.

Losses in diffusers depend on a number of geometric and flow variables. Diffuser data most com-
monly are presented in terms of a pressure recovery coefficient, Cp, defined as the ratio of static pressure
rise to inlet dynamic pressure,

Cp≡
p2−p1
1
2ρV

2
1

ð8:41Þ

This shows what fraction of the inlet kinetic energy shows up as a pressure rise. It is not difficult to
show (using the Bernoulli and continuity equations) that the ideal (frictionless) pressure recovery coef-
ficient is given by

Table 8.2
Minor Loss Coefficients for Pipe Entrances

Entrance Type Minor Loss Coefficient, Ka

r D

Reentrant

Square-edged

Rounded

0:5 – 1:0
(depending on length of pipe entrance)

0:5

r=D 0:02 0:06 ≥ 0:15
K 0:3 0:2 0:04

aBased on hlm =KðV 2
=2Þ, where V is the mean velocity in the pipe.

Source: Data from Reference [12].
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Fig. 8.15 Loss coefficients for flow through sudden area changes. (Data from Streeter [1].)

Table 8.3
Loss Coefficients ðKÞ for Gradual Contractions: Round and Rectangular Ducts

Included Angle, θ, Degrees

A2=A1 10 15 – 40 50 – 60 90 120 150 180

θ

Flow

A
1

A
2

0:50 0:05 0:05 0:06 0:12 0:18 0:24 0:26
0:25 0:05 0:04 0:07 0:17 0:27 0:35 0:41
0:10 0:05 0:05 0:08 0:19 0:29 0:37 0:43

Note: Coefficients are based on hlm =KðV!22=2Þ.
Source: Data from ASHRAE [12].
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Cpi =1−
1

AR2 ð8:42Þ

where AR is the area ratio. Hence, the ideal pressure recovery coefficient is a function only of the area
ratio. In reality a diffuser typically has turbulent flow, and the static pressure rise in the direction of flow
may cause flow separation from the walls if the diffuser is poorly designed; flow pulsations can even
occur. For these reasons the actual Cp will be somewhat less than indicated by Eq. 8.42. For example,
data for conical diffusers with fully developed turbulent pipe flow at the inlet are presented in Fig. 8.16 as
a function of geometry. Note that more tapered diffusers (small divergence angle ϕ or large dimension-
less length N=R1) are more likely to approach the ideal constant value for Cp. As we make the cone
shorter, for a given fixed area ratio we start to see a drop in Cp—we can consider the cone length at
which this starts to happen the optimum length, which is the shortest length for which we obtain the
maximum coefficient for a given area ratio—closest to that predicted by Eq. 8.42. We can relate Cp

to the head loss. If gravity is neglected, and α1 = α2 = 1:0, the head loss equation, Eq. 8.29, reduces to

p1
ρ
+
V

2
1

2

" #
−

p2
ρ
+
V

2
2

2

" #
= hlT = hlm

Thus,

hlm =
V 2

1

2
−
V 2

2

2
−
p2−p1

ρ

hlm =
V 2

1

2
1−

V 2
2

V 2
1

 !
−
p2−p1
1
2
ρV

2
1

2
64

3
75=

V 2
1

2
1−

V 2
2

V 2
1

 !
−Cp

" #

From continuity, A1V 1 =A2V 2, so

hlm =
V 2

1

2
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� � 2

−Cp
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Fig. 8.16 Pressure recovery for conical diffusers with fully developed turbulent pipe flow at inlet. (Data from Cockrell and
Bradley [13].)
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or

hlm =
V

2
1

2
1−

1

ðARÞ2
 !

−Cp

" #
ð8:43Þ

The frictionless result (Eq. 8.42) is obtained from Eq. 8.43 if hlm =0.We can combine Eqs. 8.42 and 8.43
to obtain an expression for the head loss in terms of the actual and ideal Cp values:

hlm = ðCpi −CpÞV
2
1

2
ð8:44Þ

Performance maps for plane wall and annular diffusers [14] and for radial diffusers [15] are avail-
able in the literature.

Diffuser pressure recovery is essentially independent of Reynolds number for inlet Reynolds num-
bers greater than 7:5× 104 [16]. Diffuser pressure recovery with uniform inlet flow is somewhat better
than that for fully developed inlet flow. Performance maps for plane wall, conical, and annular diffusers
for a variety of inlet flow conditions are presented in [17].

Since static pressure rises in the direction of flow in a diffuser, flowmay separate from the walls. For
some geometries, the outlet flow is distorted. For wide angle diffusers, vanes or splitters can be used to
suppress stall and improve pressure recovery [18].

c. Pipe Bends
The head loss of a bend is larger than for fully developed flow through a straight section of equal length.
The additional loss is primarily the result of secondary flow. The loss coefficients for bends of different
construction, geometry, and angle are given in Table 8.4. Because they are simple and inexpensive to
construct in the field, miter bends often are used in large pipe systems. Miter bends often have turning
vanes installed inside them, and, as shown in Table 8.4, the loss is reduced significantly. Bends and
fittings in a piping system may have threaded, flanged, or welded connections. For small diameters,
threaded joints are most common; large pipe systems frequently have flanged or welded joints.

d. Valves and Fittings
Losses for flow through valves and fittings are also expressed in terms of a loss coefficient. Some rep-
resentative values are given in Table 8.4.

The resistance for fully open valves is low, but losses increase markedly when valves are partially
open. Valve design varies significantly among manufacturers. Whenever possible, loss coefficients
furnished by the valve supplier should be used if accurate results are needed.

Table 8.4
Representative Loss Coefficients for Fittings and Valves

Fitting Geometry K Fitting Geometry K

90� elbow Flanged regular 0.3 Globe valve Open 10
Flanged long radius 0.2 Angle valve Open 5
Threaded regular 1.5 Gate valve Open 0.20
Threaded long radius 0.7 75% open 1.10
Miter 1.30 50% open 3.6
Miter with vanes 0.20 25% open 28.8

45� Elbow Threaded regular 0.4 Ball valve Open 0.5
Flanged long radius 0.2 1/3 closed 5.5

Tee, dividing Threaded 0.9 2/3 closed 200
line flow Flanged 0.2 Water meter 7

Tee, branching Threaded 2.0 Coupling 0.08
flow Flanged 1.0

Source: Data from References [12] and [34].
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In an installation, losses for fittings and valves may be considerably different from the tabulated
values, depending on the care used in fabricating the pipe system. If burrs from cutting pipe sections
are allowed to remain, they cause local flow obstructions, which increase losses appreciably.

Although the losses discussed in this section were termed “minor losses,” they can be a large frac-
tion of the overall system loss. Thus a system for which calculations are to be made must be checked
carefully to make sure all losses have been identified and their magnitudes estimated. If calculations are
made carefully, the results will be of satisfactory engineering accuracy. You may expect to predict actual
losses within �10 percent.

We include here one more device that changes the energy of the fluid—except this time the energy
of the fluid will be increased, so it creates a “negative energy loss.”

Pumps, Fans, and Blowers in Fluid Systems

In many practical flow situations (e.g., the cooling system of an automobile engine, the HVAC system of
a building), the driving force for maintaining the flow against friction is a pump for liquids or a fan or
blower for gases. Here we will consider pumps, although all the results apply equally to fans and
blowers. We generally neglect heat transfer and internal energy changes of the fluid and incorporate
them later into the definition of the pump efficiency, so the first law of thermodynamics applied across
the pump is

_Wpump = _m
p
ρ
+
V 2

2
+ gz

 !
discharge

−
p
ρ
+
V 2

2
+ gz

 !
suction

2
4

3
5

We can also compute the head Δhpump (energy/mass) produced by the pump,

Δhpump =
_Wpump

_m
=

p
ρ
+
V 2

2
+ gz

 !
discharge

−
p
ρ
+
V 2

2
+ gz

 !
suction

ð8:45Þ

In many cases the inlet and outlet diameters (and therefore velocities) and elevations are the same or
negligibly different, so Eq. 8.45 simplifies to

Δhpump =
Δppump

ρ
ð8:46Þ

It is interesting to note that a pump adds energy to the fluid in the form of a gain in pressure—the every-
day, invalid perception is that pumps add kinetic energy to the fluid. It is true that when a pump-pipe
system is first started up, the pump does work to accelerate the fluid to its steady speed; this is when a
pump driven by an electric motor is most in danger of burning out the motor.

The idea is that in a pump-pipe system the head produced by the pump (Eq. 8.45 or 8.46) is needed
to overcome the head loss for the pipe system. Hence, the flow rate in such a system depends on the pump
characteristics and the major and minor losses of the pipe system. We will learn in Chapter 10 that the
head produced by a given pump is not constant, but varies with flow rate through the pump, leading to
the notion of “matching” a pump to a given system to achieve the desired flow rate.

A useful relation is obtained from Eq. 8.46 if we multiply by _m= ρQ (Q is the flow rate) and recall
that _mΔhpump is the power supplied to the fluid,

_Wpump =QΔppump ð8:47Þ

We can also define the pump efficiency:

η=
_Wpump

_W in
ð8:48Þ

where _Wpump is the power reaching the fluid, and _W in is the power input (usually electrical) to the pump.
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We note that, when applying the energy equation (Eq. 8.29) to a pipe system, we may sometimes
choose points 1 and 2 so that a pump is included in the system. For these cases we can simply include the
head of the pump as a “negative loss”:

p1
ρ
+α1

V 2
1

2
+ gz1

 !
−

p2
ρ
+ α2

V 2
2

2
+ gz2

 !
= hlT −Δhpump ð8:49Þ

Noncircular Ducts

The empirical correlations for pipe flow also may be used for computations involving noncircular ducts,
provided their cross sections are not too exaggerated. Thus ducts of square or rectangular cross
section may be treated if the ratio of height to width is less than about 3 or 4.

The correlations for turbulent pipe flow are extended for use with noncircular geometries by intro-
ducing the hydraulic diameter, defined as

Dh≡
4A
P

ð8:50Þ

in place of the diameter,D. In Eq. 8.50, A is cross-sectional area, and P is wetted perimeter, the length of
wall in contact with the flowing fluid at any cross-section. The factor 4 is introduced so that the hydraulic
diameter will equal the duct diameter for a circular cross section. For a circular duct, A= πD2=4 and
P= πD, so that

Dh =
4A
P

=
4

π

4

� �
D2

πD
=D

For a rectangular duct of width b and height h, A= bh and P=2ðb+ hÞ, so

Dh =
4bh

2ðb+ hÞ
If the aspect ratio, ar, is defined as ar= h=b, then

Dh =
2h

1+ ar

for rectangular ducts. For a square duct, ar=1 and Dh = h.
As noted, the hydraulic diameter concept can be applied in the approximate range 1

4 < ar<4. Under
these conditions, the correlations for pipe flow give acceptably accurate results for rectangular ducts.
Since such ducts are easy and cheap to fabricate from sheet metal, they are commonly used in air con-
ditioning, heating, and ventilating applications. Extensive data on losses for air flow are available (e.g.,
see [12, 19]).

Losses caused by secondary flows increase rapidly for more extreme geometries, so the correlations
are not applicable to wide, flat ducts, or to ducts of triangular or other irregular shapes. Experimental data
must be used when precise design information is required for specific situations.

8.8 Solution of Pipe Flow Problems
Section 8.7 provides us with a complete scheme for solving many different pipe flow problems. For
convenience we collect together the relevant computing equations.

The energy equation, relating the conditions at any two points 1 and 2 for a single-path pipe
system, is

p1
ρ
+ α1

V
2
1

2
+ gz1

 !
−

p2
ρ
+α2

V
2
2

2
+ gz2

 !
= hlT =

X
hl +

X
hlm ð8:29Þ
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This equation expresses the fact that there will be a loss of mechanical energy (“pressure,” kinetic and/or
potential) in the pipe. Recall that for turbulent flows α≈1. Note that by judicious choice of points 1 and 2
we can analyze not only the entire pipe system, but also just a certain section of it that we may be inter-
ested in. The total head loss is given by the sum of the major and minor losses. (Remember that we can
also include “negative losses” for any pumps present between points 1 and 2. The relevant form of the
energy equation is then Eq. 8.49.)

Each major loss is given by

hl = f
L
D

V
2

2
ð8:34Þ

where the friction factor is obtained from

f =
64
Re

for laminar flow ðRe<2300Þ ð8:36Þ

or

1ffiffiffi
f
p = −2:0 log

e=D
3:7

+
2:51
Re

ffiffiffi
f
p

� �
for turbulent flowðRe≥ 2300Þ ð8:37Þ

and Eqs. 8.36 and 8.37 are presented graphically in the Moody chart (Fig. 8.13).
Each minor loss is given by

hlm =K
V 2

2
ð8:40Þ

We also note that the flow rate Q is related to the average velocity V at each pipe cross section by

Q= π
D2

4
V

We will apply these equations first to single-path systems.

Single-Path Systems

In single-path pipe problems we generally know the system configuration (type of pipe material and
hence pipe roughness, the number and type of elbows, valves, and other fittings, etc., and changes
of elevation), as well as the fluid (ρ and μ) we will be working with. Although not the only possibilities,
usually the goal is to determine one of the following values:

(a) The pressure drop Δp, for a given pipe (L and D), and flow rate Q.

(b) The pipe length L, for a given pressure drop Δp, pipe diameter D, and flow rate Q.

(c) The flow rate Q, for a given pipe (L and D), and pressure drop Δp.
(d) The pipe diameter D, for a given pipe length L, pressure drop Δp, and flow rate Q.

Each of these cases often arises in real-world situations. For example, case (a) is a necessary step in select-
ing the correct size pump tomaintain the desired flow rate in a system—the pumpmust be able to produce
the system Δp at the specified flow rate Q. (We will discuss this in more detail in Chapter 10.) Cases
(a) and (b) are computationally straightforward; we will see that cases (c) and (d) can be a little tricky to
evaluate. We will discuss each case, and present an example for each. The Examples present solutions as
you might do them using a calculator, but there is also an Excel workbook for each. (Remember that
the course website has an Excel add-in that once installed will automatically compute f from Re and
e=D!) The advantage of using a computer application such as a spreadsheet is that we do not have to
use either the Moody chart (Fig. 8.13) or solve the implicit Colebrook equation (Eq. 8.37) to obtain
turbulent friction factors—the application can find them for us! In addition, as we’ll see, cases (c)
and (d) involve significant iterative calculations that can be avoided by use of a computer application.
Finally, once we have a solution using a computer application, engineering “what-ifs” become easy, e.g.,
if we double the head produced by a pump, how much will the flow rate in a given system increase?
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a. Find Δp for a Given L, D, and Q
These types of problems are quite straightforward—the energy equation (Eq. 8.29) can be solved directly
forΔp= ðp1−p2Þ in terms of known or computable quantities. The flow rate leads to the Reynolds num-
ber and hence the friction factor for the flow; tabulated data can be used for minor loss coefficients. The
energy equation can then be used to directly obtain the pressure drop. Example 8.5 illustrates this type of
problem.

b. Find L for a Given Δp, D, and Q
These types of problems are also straightforward—the energy equation (Eq. 8.29) can be solved directly
for L in terms of known or computable quantities. The flow rate again leads to the Reynolds number and
hence the friction factor for the flow. Tabulated data can be used for minor loss coefficients. The energy
equation can then be rearranged and solved directly for the pipe length. Example 8.6 illustrates this type
of problem.

c. Find Q for a Given Δp, L, and D
These types of problems require either manual iteration or use of a computer application such as Excel.
The unknown flow rate or velocity is needed before the Reynolds number and hence the friction factor
can be found. To manually iterate we first solve the energy equation directly for V in terms of known
quantities and the unknown friction factor f . To start the iterative process we make a guess for f . A good
choice is to take a value from the fully turbulent region of the Moody chart because many practical flows
are in this region and obtain a value for V . Then we can compute a Reynolds number and hence obtain a
new value for f . We repeat the iteration process f !V !Re! f until convergence (usually only two or
three iterations are necessary). A much quicker procedure is to use a computer application. For example,
spreadsheets (such as Excel) have built-in solving features for solving one or more algebraic equations
for one or more unknowns. Example 8.7 illustrates this type of problem.

d. Find D for a Given Δp, L, and Q
These types of problems arise, for example, when we have designed a pump-pipe system and wish to
choose the best pipe diameter—the best being the minimum diameter (for minimum pipe cost) that will
deliver the design flow rate. We need to manually iterate, or use a computer application such as Excel.
The unknown diameter is needed before the Reynolds number and relative roughness, and hence the
friction factor, can be found. To manually iterate we could first solve the energy equation directly
for D in terms of known quantities and the unknown friction factor f , and then iterate from a starting
guess for f in a way similar to case (c) above: f !D!Re and e=D! f . In practice this is a little
unwieldy, so instead to manually find a solution we make successive guesses forD until the correspond-
ing pressure drop Δp (for the given flow rate Q) computed from the energy equation matches the design
Δp. As in case (c) a much quicker procedure is to use a computer application. For example, spreadsheets
(such as Excel) have built-in solving features for solving one or more algebraic equations for one or more
unknowns. Example 8.8 illustrates this type of problem.

In choosing a pipe size, it is logical to work with diameters that are available commercially. Pipe is
manufactured in a limited number of standard sizes. Some data for standard pipe sizes are given in
Table 8.5. For data on extra strong or double extra strong pipes, consult a handbook, e.g., [11] and
[35]. Pipe larger than 12 in. nominal diameter is produced in multiples of 2 in. up to a nominal diameter
of 36 in. and in multiples of 6 in. for still larger sizes.

We have solved Examples 8.7 and 8.8 by iteration. Several specialized forms of friction factor
versus Reynolds number diagrams have been introduced to solve problems of this type without the
need for iteration. For examples of these specialized diagrams, see Daily and Harleman [20] and
White [21].

Examples 8.9 and 8.10 illustrate the evaluation of minor loss coefficients and the application of a
diffuser to reduce exit kinetic energy from a flow system.
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Table 8.5
Standard Sizes for Carbon Steel, Alloy Steel, and Stainless Steel Pipe

Nominal Pipe Size (in.) Inside Diameter (in.) Nominal Pipe Size (in.) Inside Diameter (in.)
1
8 0:269 21

2 2:469
1
4 0:364 3 3:068
3
8 0:493 4 4:026
1
2 0:622 5 5:047
3
4 0:824 6 6:065

1 1:049 8 7:981
11
2 1:610 10 10:020

2 2:067 12 12:000
a Source: Data from References [11] and [35].

Example 8.5 PIPE FLOW INTO A RESERVOIR: PRESSURE DROP UNKNOWN

A 100-m length of smooth horizontal pipe is attached to a large reservoir. A pump is attached to the end of the pipe to pump water
into the reservoir at a volume flow rate of 0:01 m3=s. What pressure must the pump produce at the pipe to generate this flow rate?
The inside diameter of the smooth pipe is 75 mm.

Given: Water is pumped at 0:01 m3=s through a 75-mm-diameter smooth pipe, with L=100 m, into a constant-level reservoir
of depth d=10 m.

Find: Pump pressure, p1, required to maintain the flow.

Solution:

Governing equations:

p1
ρ
+ α1

V 2
1

2
+ gz1

 !
−

p2
ρ
+ α2

V 2
2

2
+ gz2

 !
= hlT = hl + hlm

ð8:29Þ
where

hl = f
L
D

V
2

2
ð8:34Þ and hlm =K

V
2

2
ð8:40aÞ

For the given problem, p1 = ppump and p2 = 0 ðgageÞ, so Δp= p1−p2 = ppump, V 1 =V , V 2≈0, K ðexit lossÞ=1:0, and α1≈1:0.
If we set z1 = 0, then z2 = d. Simplifying Eq. 8.29 gives

Δp
ρ

+
V

2

2
−gd= f

L
D

V
2

2
+
V

2

2
ð1Þ

The left side of the equation is the loss of mechanical energy between points and ; the right side is the major and minor losses
that contributed to the loss. Solving for the pressure drop, Δp= ppump,

ppump =Δp= ρ gd+ f
L
D

V 2

2

 !

Everything on the right side of the equation is known or can be readily computed. The flow rate Q leads to V ,

V =
Q
A
=

4Q
πD2 =

4
π
×0:01

m3

s
×

1

ð0:075Þ2 m2
= 2:26 m=s

d = 10 m

z

L = 100 m

Pump

D = 75 mm

CV

2

1
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This in turn [assuming water at 20�C, ρ=999 kg=m3, and μ=1:0× 10−3 kg=ðm �sÞ] leads to the Reynolds number

Re=
ρVD
μ

=999
kg
m3 × 2:26

m
s
× 0:075 m×

m � s
1:0× 10−3kg

= 1:70× 105

For turbulent flow in a smooth pipe ðe=0Þ, from Eq. 8.37, f =0:0162. Then

ppump =Δp= ρ gd+ f
L
D

V 2

2

 !

=999
kg
m3 9:81

m
s2

× 10 m+ ð0:0162Þ× 100 m
0:075 m

×
ð2:26Þ2m2

2 s2

 !
×

N � s2
kg � m

ppump = 1:53× 105 N=m2ðgageÞ
Hence,

ppump = 153 kPa gage
ppump �������������������������������������

This problem illustrates the method for
manually calculating pressure drop.

The Excelworkbook for this problem
automatically computes Re and f

from the given data. It then solves Eq. 1
directly for pressure ppump without having
to explicitly solve for it first. The workbook
can be easily used to see, for example, how
the pump pressure ppump required to
maintain flow Q is affected by changing the
diameter D; it is easily editable for other
case (a) type problems.

Example 8.6 FLOW IN A PIPELINE: LENGTH UNKNOWN

Crude oil flows through a level section of the Alaskan pipeline at a rate of 1.6 million barrels per day ð1 barrel = 42 galÞ. The pipe
inside diameter is 48 in.; its roughness is equivalent to galvanized iron. The maximum allowable pressure is 1200 psi; the min-
imum pressure required to keep dissolved gases in solution in the crude oil is 50 psi. The crude oil has SG=0:93; its viscosity
at the pumping temperature of 140�F is μ=3:5× 10−4 lbf �s=ft2. For these conditions, determine the maximum possible
spacing between pumping stations. If the pump efficiency is 85 percent, determine the power that must be supplied at each
pumping station.

Given: Flow of crude oil through horizontal section of Alaskan pipeline.
D=48 in: (roughness of galvanized iron),

SG=0:93, μ=3:5× 10−4 lbf � s=ft2

Find: (a) Maximum spacing, L.
(b) Power needed at each pump station.

Solution: As shown in the figure, we assume
that the Alaskan pipeline is made up of repeating
pump-pipe sections. We can draw two control
volumes: CV1, for the pipe flow (state to state ); CV2, for the pump (state to state ).

First we apply the energy equation for steady, incompressible pipe flow to CV1.

Governing equations:

p2
ρ
+ α2

V 2
2

2
+ gz2

!
−

p1
ρ
+ α1

V 2
1

2
+ gz1

!
= hlT = hl + hlm

  
ð8:29Þ

where

hl = f
L
D

V 2

2
ð8:34Þ and hlm =K

V 2

2
ð8:40aÞ

1
2 1

CV1

L

p1 50 psigp2 1200 psig

Q = 1.6 Mbpd
CV2

p = 0.85η
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Assumptions:

1 α1V
2
1 = α2V

2
2.

2 Horizontal pipe, z1 = z2.

3 Neglect minor losses.

4 Constant viscosity.

Then, using CV1

Δp= p2−p1 = f
L
D
ρ
V 2

2
ð1Þ

or

L=
2D
f

Δp
ρV 2 where f = f ðRe,e=DÞ

Q=1:6× 106
bbl
day

× 42
gal
bbl

×
ft3

7:48 gal
×

day
24 hr

×
hr

3600 s
= 104 ft3=s

so

V =
Q
A
=104

ft3

s
×

4

πð4Þ2ft2 = 8:27 ft=s

Re=
ρVD
μ

= ð0:93Þ1:94slug
ft3

× 8:27
ft
s
× 4 ft ×

ft2

3:5× 10−4 lbf � s ×
lbf � s2
slug � ft

Re=1:71× 105

From Table 8.1, e=0:0005 ft and hence e=D=0:00012. Then from Eq. 8.37, f =0:017 and thus

L=
2

0:017
× 4 ft × ð1200−50Þ lbf

in:2
×

ft3

ð0:93Þ1:94 slug ×
s2

ð8:27Þ2 ft2

× 144
in:2

ft2
×
slug � ft
lbf � s2 = 6:32× 105ft

L=632;000 ftð120 miÞ L �����������������������������������������
To find the pumping power we can apply the first law of thermodynamics to CV2. This control volume consists only of the

pump, and we saw in Section 8.7 that this law simplifies to

_Wpump =QΔppump ð8:47Þ
and the pump efficiency is

η=
_Wpump

_W in
ð8:48Þ

We recall that _Wpump is the power reaching the fluid, and _W in is the power input. Because we have a repeating system the pressure
rise through the pump (i.e., from state to state ) equals the pressure drop in the pipe (i.e., from state to state ),

Δppump =Δp
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so that

_Wpump =QΔppump = 104
ft3

s
×
ð1200−50Þlbf

in:2
×
144 in:2

ft2

×
hp � s

550 ft � lbf ≈31;300 hp

and the required power input is

_W in: =
_Wpump

η
=
31300 hp
0:85

= 36;800 hp
_Wneeded ����������������

This problem illustrates the method for
manually calculating pipe length L.

The Excelworkbook for this problem
automatically computes Re and f

from the given data. It then solves Eq. 1
directly for L without having to explicitly
solve for it first. Theworkbook can be easily
used to see, for example, how the flow rate
Q depends on L; it may be edited for other
case (b) type problems.

Example 8.7 FLOW FROM A WATER TOWER: FLOW RATE UNKNOWN

A fire protection system is supplied from a water tower and standpipe 80 ft tall. The longest pipe in the system is 600 ft and is
made of cast iron about 20 years old. The pipe contains one gate valve; other minor losses may be neglected. The pipe diameter is
4 in. Determine the maximum rate of flow (gpm) through this pipe.

Given: Fire protection system, as shown.

Find: Q, gpm.

Solution:

Governing equations:

≈0ð2Þ 
p1
ρ
+ α1 ����

�!V 2
1

2
+ gz1

!
−

p2
ρ
+ α2

V 2
2

2
+ gz2

 !
= hlT = hl + hlm ð8:29Þ

where

hl = f
L
D

V 2

2
ð8:34Þ and hlm = f

Le
D

V 2

2
ð8:40bÞ

Assumptions:

1 p1 =p2 =patm

2 V 1 = 0, and α2’ 1:0.

Then Eq. 8.29 can be written as

gðz1−z2Þ− V
2
2

2
= hlT = f

L
D
+
Le
D

� �
V

2
2

2
ð1Þ

For a fully open gate valve, from Table 8.4, Le=D=8. Thus

gðz1−z2Þ= V 2
2

2
f

L
D
+8

� �
+1

	 


1

2

CV Gate valve

Q

z
D = 4 in.

h = 80 ft

Lpipe = 600 ft
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To manually iterate, we solve for V 2 and obtain

V 2 =
2gðz1−z2Þ

f ðL=D+8Þ+1

	 
1=2
ð2Þ

To be conservative, assume the standpipe is the same diameter as the horizontal pipe. Then

L
D
=
600 ft + 80 ft

4 in:
×
12 in:

ft
= 2040

Also

z1−z2 = h=80 ft

To solve Eq. 2 manually we need to iterate. To start, we make an estimate for f by assuming the flow is fully turbulent (where f is
constant). This value can be obtained from solving Eq. 8.37 using a calculator or from Fig. 8.13. For a large value ofRe (e.g., 108),
and a roughness ratio e=D≈0:005 (e=0:00085 ft for cast iron is obtained from Table 8.1, and doubled to allow for the fact that
the pipe is old), we find that f ≈0:03. Thus a first iteration for V 2 from Eq. 2 is

V 2 = 2× 32:2
ft
s2

× 80 ft ×
1

0:03ð2040+ 8Þ+1

	 
1=2
= 9:08 ft=s

Now obtain a new value for f :

Re=
ρVD
μ

=
VD
ν

=9:08
ft
s
×
ft
3
×

s
1:21× 10−5 ft2

= 2:50× 105

For e=D=0:005, f =0:0308 from Eq. 8.37. Thus we obtain

V 2 = 2× 32:2
ft
s2

× 80 ft ×
1

0:0308ð2040+ 8Þ+1

	 
1=2
= 8:97 ft=s

The values we have obtained for V 2 (9:08 ft=s and 8:97 ft=s) differ by less than
2%—an acceptable level of accuracy. If this accuracy had not been achieved we
would continue iterating until this, or any other accuracy we desired, was
achieved (usually only one or two more iterations at most are necessary for rea-
sonable accuracy). Note that instead of starting with a fully rough value for f , we
could have started with a guess value for V 2 of, say, 1 ft=s or 10 ft=s. The volume
flow rate is

Q=V 2A=V 2
πD2

4
= 8:97

ft
s
×
π

4
1
3

� �2

ft2 × 7:48
gal
ft3

× 60
s

min

Q=351 gpm
Q �������������������������������������

This problem illustrates the method for
manually iterating to calculate flow rate.

The Excelworkbook for this problem
automatically iterates to solve for

the flow rate Q. It solves Eq. 1 without
having to obtain the explicit equation
(Eq. 2) for V 2 (or Q) first. The workbook can
be easily used to performnumerous “what-
ifs” that would be extremely time-
consuming to do manually, e.g., to see how
Q is affected by changing the roughness
e=D. For example, it shows that replacing
the old cast-iron pipe with a new pipe
ðe=D≈0:0025Þ would increase the flow rate
from 351 gpm to about 386 gpm, a 10%
increase! The workbook can be modified to
solve other case (c) type problems.

Example 8.8 FLOW IN AN IRRIGATION SYSTEM: DIAMETER UNKNOWN

Spray heads in an agricultural spraying system are to be supplied with water through 500 ft of drawn aluminum tubing from an
engine-driven pump. In its most efficient operating range, the pump output is 1500 gpm at a discharge pressure not exceeding
65 psig. For satisfactory operation, the sprinklers must operate at 30 psig or higher pressure. Minor losses and elevation changes
may be neglected. Determine the smallest standard pipe size that can be used.

Given: Water supply system, as shown.

Find: Smallest standard D.
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Solution: Δp, L, and Q are known. D is unknown, so itera-
tion is needed to determine the minimum standard diameter
that satisfies the pressure drop constraint at the given flow rate.
The maximum allowable pressure drop over the length, L, is

Δpmax = p1max −p2min = ð65−30Þpsi = 35 psi

Governing equations:

p1
ρ
+ α1

V 2
1

2
+ gz1

 !
−

p2
ρ
+ α2

V 2
2

2
+ gz2

 !
= hlT

=0 3ð Þ

hlT = hl + h ���!lm = f
L
D

V
2
2

2

ð8:29Þ

Assumptions:

1 Steady flow.

2 Incompressible flow.

3 hlT = hl, i:e:, hlm =0.

4 z1 = z2.

5 V 1 =V 2 =V ; α1’ α2.

Then

Δp= p1−p2 = f
L
D

ρV 2

2
ð1Þ

Equation 1 is difficult to solve for D because both V and f depend on D! The best approach is to use a computer application such
as Excel to automatically solve for D. For completeness here we show the manual iteration procedure. The first step is to express
Eq. 1 and the Reynolds number in terms of Q instead of V (Q is constant but V varies with D). We have V =Q=A=4Q=πD2

so that

Δp= f
L
D

ρ

2
4Q
πD2

� �2
=
8 fLρQ2

π2D5 ð2Þ

The Reynolds number in terms of Q is

Re=
ρVD
μ

=
VD
ν

=
4Q
πD2

D
ν
=

4Q
πνD

Finally, Q must be converted to cubic feet per second.

Q=1500
gal
min

×
min
60 s

×
ft3

7:48 gal
= 3:34 ft3=s

For an initial guess, take nominal 4 in. (4.026 in. i.d.) pipe:

Re=
4Q
πνD

=
4
π
×3:34

ft3

s
×

s
1:21× 10−5 ft2

×
1

4:026 in:
×12

in:
ft

= 1:06× 106

For drawn tubing, e=5× 10−6 ft (Table 8.1) and hence e=D=1:5× 10−5, so f ’ 0:012 (Eq. 8.37), and

Δp=
8fLρQ2

π2D5 =
8
π2

× 0:012× 500 ft × 1:94
slug
ft3

× ð3:34Þ2 ft
6

s2
×

1

ð4:026Þ5 in:5 × 1728
in:3

ft3
×

lbf � s2
slug � ft

Δp=172 lbf=in:2 >Δpmax

Since this pressure drop is too large, try D=6 in. (actually 6.065 in. i.d.):

Re=
4
π
×3:34

ft3

s
×

s
1:21× 10−5 ft2

×
1

6:065 in:
×12

in:
ft

= 6:95× 105

1 2

D

Q = 1500 gpm

p2 30 psigp1 65 psig

CV

L = 500 ft
Pump
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For drawn tubing with D=6 in:, e=D=1:0× 10−5, so f ’ 0:013 (Eq. 8.37), and

Δp=
8
π2

× 0:013× 500 ft × 1:94
slug
ft3

× ð3:34Þ2 ft
6

s2

×
1

ð6:065Þ5 in:5 × ð12Þ
3 in:

3

ft3
×

lbf � s2
slug � ft

Δp=24:0 lbf=in:2 <Δpmax

Since this is less than the allowable pressure drop, we should check a 5 in. nom-
inal pipe with an actual i.d. of 5.047 in.,

Re=
4
π
×3:34

ft3

s
×

s
1:21× 10−5 ft2

×
1

5:047 in:
×12

in:
ft

= 8:36× 105

For drawn tubing withD=5 in:, e=D=1:2× 10−5, so f ’ 0:0122 (Eq. 8.37), and

Δp=
8
π2

× 0:0122× 500 ft × 1:94
slug
ft3

× ð3:34Þ2 ft
6

s2

×
1

ð5:047Þ5 in:5 × ð12Þ
3 in:

3

ft3
×

lbf � s2
slug � ft

Δp=56:4 lbf=in:2 >Δpmax

Thus the criterion for pressure drop is satisfied for a minimum nominal diameter
of 6 in. pipe.  ����������������D

This problem illustrates the method for
manually iterating to calculate pipe
diameter.

The Excelworkbook for this problem
automatically iterates to solve for

the exact pipe diameter D that satisfies
Eq. 1, without having to obtain the explicit
equation (Eq. 2) for D first. Then all that
needs to be done is to select the smallest
standard pipe size that is equal to or greater
than this value. For the given data,
D=5 :58 in:, so the appropriate pipe size is
6 in. The workbook can be used to perform
numerous “what-ifs” that would be
extremely time-consuming to do manu-
ally, e.g., to see how the required D is
affected by changing the pipe length L. For
example, it shows that reducing L to 250 ft
would allow 5 in. (nominal) pipe to be used.
The workbook can be modified for solving
other case (d) type problems.

Example 8.9 CALCULATION OF ENTRANCE LOSS COEFFICIENT

Hamilton [22] reports results of measurements made to determine entrance losses for flow from a reservoir to a pipe with various
degrees of entrance rounding. A copper pipe 10 ft long, with 1.5 in. i.d., was used for the tests. The pipe discharged to atmosphere.
For a square-edged entrance, a discharge of 0:566 ft3=s was measured when the reservoir level was 85.1 ft above the pipe cen-
terline. From these data, evaluate the loss coefficient for a square-edged entrance.

Given: Pipe with square-edged entrance discharging from reservoir as shown.

Find: Kentrance.

Solution: Apply the energy equation for steady, incompressible pipe flow.

Governing equations:

≈0ð2Þ =0

p1
ρ
+ α1 ����

�!V
2
1

2
+ gz1 =

p2
ρ
+ α2

V
2
2

2
+ g ����

�!

z2 + hlT

hlT = f
L
D

V 2
2

2
+Kentrance

V 2
2

2
Assumptions:

1 p1 = p2 = patm.

2 V 1≈0.

Substituting for hlT and dividing by g gives z1 = h= α2
V 2

2

2g
+ f

L
D

V 2
2

2g
+Kentrance

V 2
2

2g

or
Kentrance =

2gh

V
2
2

− f
L
D
−α2 ð1Þ

Entrance

D = 1.5 in.

Q = 0.566 ft3/s

L = 10 ft

1

2

CV

h = 85.1 ft

z
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The average velocity is

V 2 =
Q
A
=

4Q
πD2

V 2 =
4
π
×0:566

ft3

s
×

1

ð1:5Þ2 in:2 × 1:44
in:2

ft2
= 46:1 ft=s

Assume T =70�F, so ν=1:05× 10−5 ft2=s (Table A.7). Then

Re=
VD
ν

=46:1
ft
s
× 1:5 in:×

s
1:05× 10−5 ft2

×
ft

12 in:
=5:49× 105

For drawn tubing, e=5× 10−6 ft (Table 8.1), so e=D=0:000,04 and f =0:0135 (Eq. 8.37).
In this problem we need to be careful in evaluating the kinetic energy correction factor α2, as it is a significant factor in com-

puting Kentrance from Eq. 1. We recall from Section 8.6 and previous Examples that we have usually assumed α≈1, but here we
will compute a value from Eq. 8.27:

α=
U
V

� �3 2n2

ð3+ nÞð3+ 2nÞ ð8:27Þ

To use this equation we need values for the turbulent power-law coefficient n and the ratio of centerline to mean velocity U=V .
For n, from Section 8.5

n= −1:7+ 1:8 logðReUÞ≈8:63 ð8:23Þ
where we have used the approximation ReU≈ReV . For V=U, we have

V
U

=
2n2

ðn+1Þð2n+1Þ =0:847 ð8:24Þ

Using these results in Eq. 8.27 we find α=1:04. Substituting into Eq. 1, we obtain

Kentrance = 2× 32:2
ft
s2

× 85:1ft ×
s2

ð46:1Þ2 ft2 −ð0:0135Þ
10 ft
1:5 in:

×12
in:
ft

−1:04

Kentrance = 0:459
Kentrance ������������������������������������������������

This coefficient compares favorably with that shown in Table 8.2. The hydraulic and energy grade lines are shown below. The
large head loss in a square-edged entrance is due primarily to separation at the sharp inlet corner and formation of a vena contracta
immediately downstream from the corner. The effective flow area reaches a minimum at the vena contracta, so the flow velocity
is a maximum there. The flow expands again following the vena contracta to fill the pipe. The uncontrolled expansion following
the vena contracta is responsible for most of the head loss. (See Example 8.12.)

Rounding the inlet corner reduces the extent of separation significantly. This
reduces the velocity increase through the vena contracta and consequently
reduces the head loss caused by the entrance. A “well-rounded” inlet almost elim-
inates flow separation; the flow pattern approaches that shown in Fig. 8.1. The
added head loss in a well-rounded inlet compared with fully developed flow is
the result of higher wall shear stresses in the entrance length.

This problem:
• Illustrates a method for obtaining the
value of a minor loss coefficient from
experimental data.

• Shows how the EGL and HGL lines first
introduced in Section 6.4 for inviscid flow
aremodified by the presence ofmajor and
minor losses. The EGL line continuously
drops as mechanical energy is
consumed—quite sharply when, for
example, we have a square-edged
entrance loss; the HGL at each location is
lower than the EGL by an amount equal to
the local dynamic head V

2
=2g—at the

vena contracta, for example, the HGL
experiences a large drop, then recovers.

Entrance
Local velocity reaches a maximum

at the vena contracta.

z1

Hydraulic grade line

Exit

Energy grade line

0.459

V 2___
2g

2
_

V 2___
2g

2
_

V 2___
2g

2
_

f L__
D
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50
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Example 8.10 USE OF DIFFUSER TO INCREASE FLOW RATE

Water rights granted to each citizen by the Emperor of Rome gave permission to attach to the public water main a calibrated,
circular, tubular bronze nozzle [23]. Some citizens were clever enough to take unfair advantage of a law that regulated flow rate
by such an indirect method. They installed diffusers on the outlets of the nozzles to increase their discharge. Assume the static
head available from the main is z0 = 1:5 m and the nozzle exit diameter isD=25mm. (The discharge is to atmospheric pressure.)
Determine the increase in flow rate when a diffuser with N=R1 = 3:0 and AR=2:0 is attached to the end of the nozzle.

Given: Nozzle attached to water main as shown.

Find: Increase in discharge when diffuser with N=R1 = 3:0 and AR=2:0 is installed.

Solution: Apply the energy equation for steady, incompressible pipe flow.

Governing equation:

p0
ρ
+ α0

V
2
0

2
+ gz0 =

p1
ρ
+ α1

V
2
1

2
+ gz1 + hlT ð8:29Þ

Assumptions:

1 V 0≈0.

2 α1≈1.

For the nozzle alone,

≈0ð1Þ ≈1ð2Þ =0

p0
ρ
+ α0 ����

�!V 2
0

2
+ gz0 =

p1
ρ
+ ����

�!

α1
V 2

1

2
+ g����

�!

z1 + hlT

hlT =Kentrance
V 2

1

2
Thus

gz0 =
V

2
1

2
+Kentrance

V
2
1

2
= ð1+KentranceÞV

2
1

2
ð1Þ

Solving for the velocity and substituting the value of Kentrance≈0:04 (from Table 8.2),

V 1 =

ffiffiffiffiffiffiffiffiffi
2gz0
1:04

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1:04
× 9:81

m
s2

× 1:5 m

r
=5:32 m=s

Q=V 1A1 =V 1
πD2

1

4
= 5:32

m
s
×
π

4
× ð0:025Þ2 m2 = 0:00261 m3=s

Q ���������������������������
For the nozzle with diffuser attached,

≈0ð1Þ ≈1ð2Þ =0

p0
ρ
+ α0 ����

�!V
2
0

2
+ gz0 =

p2
ρ
+ ����
�!

α2
V

2
2

2
+ g����

�!

z2 + hlT

hlT =Kentrance
V 2

1

2
+Kdiffuser

V 2
1

2
or

gz0 =
V 2

2

2
+ ðKentrance +KdiffuserÞV

2
1

2
ð2Þ

0

1 2

V2

z0 = 1.5 m

CV

z
_

1.5 m
25 mm

0

1

V1

z0 = 1.5 m z

CV

_
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From continuity V 1A1 =V 2A2, so

V 2 =V 1
A1

A2
=V 1

1
AR

and Eq. 2 becomes

gz0 =
1

ðARÞ2 +Kentrance +Kdiffuser

" #
V 2

1

2
ð3Þ

Figure 8.16 gives data for Cp =
p2−p1
1
2ρV

2
1

for diffusers.

To obtain Kdiffuser, apply the energy equation from to .

p1
ρ
+ α1

V
2
1

2
+ gz1 =

p2
ρ
+ α2

V
2
2

2
+ gz2 +Kdiffuser

V
2
1

2

Solving, with α2≈1, we obtain

Kdiffuser = 1−−
V

2
2

V
2
1

−
p2−p1
1
2ρV

2
1

= 1−
A1

A2

� �2

−Cp =1−
1

ðARÞ2 −Cp

From Fig. 8.16, Cp =0:45, so

Kdiffuser = 1−
1

ð2:0Þ2 −0:45= 0:75−0:45= 0:3

Solving Eq. 3 for the velocity and substituting the values of Kentrance and Kdiffuser, we obtain

V 2
1 =

2gz0
0:25+ 0:04+ 0:3

so

V 1 =

ffiffiffiffiffiffiffiffiffi
2gz0
0:59

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

0:59
× 9:81

m
s2

× 1:5 m

r
=7:06 m=s

and

Qd =V 1A1 =V 1
πD2

1

4
= 7:06

m
s
×
π

4
× ð0:025Þ2 m2 = 0:00347 m3=s

Qd ���������������������������
The flow rate increase that results from adding the diffuser is

ΔQ
Q

=
Qd−Q

Q
=
Qd

Q
−1=

0:00347
0:00261

−1= 0:330 or 33 percent

ΔQ
Q ���������������������������

Addition of the diffuser significantly increases the flow rate! There are two ways to explain this.
First, we can sketch the EGL and HGL curves—approximately to scale—as shown below. We can see that, as required, the

HGL at the exit is zero for both flows (recall that the HGL is the sum of static pressure and potential heads). However, the pressure
rises through the diffuser, so the pressure at the diffuser inlet will be, as shown, quite low (below atmospheric). Hence, with the
diffuser, the Δp driving force for the nozzle is much larger than that for the bare nozzle, leading to a much greater velocity, and
flow rate, at the nozzle exit plane—it is as if the diffuser acted as a suction device on the nozzle.

Second, we can examine the energy equations for the two flows (for the bare nozzle Eq. 1, and for the nozzle with diffuser
Eq. 3). These equations can be rearranged to yield equations for the velocity at the nozzle exit,

V 1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gz0
1 +Kentrance

r
ðbare nozzleÞ V 1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gz0

1

ðARÞ2 +Kdiffuser +Kentrance

vuuut ðnozzle + diffuserÞ
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Multiple-Path Systems

Many real-world pipe systems (e.g., the pipe network that supplies water to the apartments in a large
building) consist of a network of pipes of various diameters assembled in a complicated configuration
that may contain parallel and series connections. As an example, consider part of a system as shown in
Fig. 8.17. Water is supplied at some pressure from a manifold at point 1, and flows through the com-
ponents shown to the drain at point 5. Some water flows through pipes A, B, C, and D, constituting a
series of pipes; some flows through A, E, F orG,H,C, andD and the two main branches F andG, which
are in parallel. We analyze this type of problem in a similar way to how we analyze DC resistor circuits
in electrical theory: by applying a few basic rules to the system. The electrical potential at each point in
the circuit is analogous to the HGL (or static pressure head if we neglect gravity) at corresponding points
in the system. The current in each resistor is analogous to the flow rate in each pipe section. We have the
additional difficulty in pipe systems that the resistance to flow in each pipe is a function of the flow rate.

The simple rules for analyzing networks can be expressed in various ways. We will express them as
follows:

1 The net flow out of any node (junction) is zero.

2 Each node has a unique pressure head (HGL).

For example, in Fig. 8.17 rule 1 means that the flow into node 2 from pipe Amust equal the sum of
outflows to pipes B and E. Rule 2 means that the pressure head at node 7 must be equal to the head at

Comparing these two expressions, we see that the diffuser introduces an extra term (its loss coefficient Kdiffuser = 0:3) to the
denominator, tending to reduce the nozzle velocity, but on the other hand we replace the term 1, representing loss of the bare
nozzle exit plane kinetic energy, with 1=ðARÞ2 = 0:25, representing a smaller loss, of the diffuser exit plane kinetic energy.
The net effect is that we replace 1 in the denominator with 0:25+ 0:3= 0:55, leading to a net increase in the nozzle velocity.
The resistance to flow introduced by adding the diffuser is more than made up by the fact that we “throw away”much less kinetic
energy at the exit of the device (the exit velocity for the bare nozzle is 5:32 m=s, whereas for the diffuser it is 1:77 m=s).

Water Commissioner Frontinus standardized conditions for all Romans in 97 A.D. He required that the tube attached to the nozzle
of each customer’s pipe be the same diameter for at least 50 lineal feet from the public water main (see Example 8.10).
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node 6 less the losses through pipe F or pipe G, as well as equal to the head at node 3 plus the loss in
pipe H.

These rules apply in addition to all the pipe-flow constraints we have discussed (e.g., for Re≥ 2300
the flow will be turbulent, and the fact that we may have significant minor losses from features such as
sudden expansions). We can anticipate that the flow in pipe F (diameter 1 in.) will be a good deal less
than the flow in pipe G (diameter 1.5 in), and the flow through branch E will be larger than that through
branch B.

The problems that arise with pipe networks can be as varied as those we discussed when studying
single-path systems, but the most common involve finding the flow delivered to each pipe, given an
applied pressure difference. We examine this case in Example 8.11. Obviously, pipe networks are much
more difficult and time-consuming to analyze than single-path problems, almost always requiring iter-
ative solution methods, and in practice are usually only solved using the computer. A number of com-
puter schemes for analyzing networks have been developed [24], and many engineering consulting
companies use proprietary software applications for such analysis. A spreadsheet such as Excel is also
very useful for setting up and solving such problems.

1

2

3

5

4

7

6

A

C

D

E
A:
B:
C:
D:
E:
F:
G:
H:

GFB

H

L = 10 ft, D = 1.5 in.
L = 20 ft, D = 1.5 in.
L = 10 ft, D = 2 in.
L = 10 ft, D = 1.5 in.
L = 5 ft, D = 1.5 in.
L = 10 ft, D = 1 in.
L = 10 ft, D = 1.5 in.
L = 5 ft, D = 2 in.

Fig. 8.17 Schematic of part of a pipe network.

Example 8.11 FLOW RATES IN A PIPE NETWORK

In the section of a cast-iron water pipe network shown in Fig. 8.17, the static pressure head (gage) available at point 1 is 100 ft of
water, and point 5 is a drain (atmospheric pressure). Find the flow rates (gpm) in each pipe.

Given: Pressure head h1−5 of 100 ft across pipe network.

Find: The flow rate in each pipe.

Solution:

Governing equations:
For each pipe section,

= 0ð1Þ =0ð1Þ =0ð2Þ�
p1
ρ
+ α1

V 2
1

2
+ ����!gz1

�
−
�
p2
ρ
+ α2

V 2
2

2
+ g����!z2

�
= hlT = hl +Σ ����!hlm

ð8:29Þ
where

hl = f
L
D
V

2

2
ð8:34Þ
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GFB

H

L = 10 ft, D = 1.5 in.
L = 20 ft, D = 1.5 in.
L = 10 ft, D = 2 in.
L = 10 ft, D = 1.5 in.
L = 5 ft, D = 1.5 in.
L = 10 ft, D = 1 in.
L = 10 ft, D = 1.5 in.
L = 5 ft, D = 2 in.
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and f is obtained from either Eq. 8.36 (laminar) or Eq. 8.37 (turbulent). For the cast-iron pipe, Table 8.1 gives a roughness for cast
iron of e=0:00085 ft.

Assumptions:

1 Ignore gravity effects.

2 Ignore minor losses.

Assumption 2 is applied to make the analysis clearer—minor losses can be incorporated easily later.
In addition we have mathematical expressions for the basic rules

1 The net flow out of any node (junction) is zero.

2 Each node has a unique pressure head (HGL).

We can apply basic rule 1 to nodes 2 and 6:

Node 2 : QA =QB +QE ð1Þ
Node 6 : QE =QF +QG ð2Þ

and we also have the obvious constraints
QA =QC ð3Þ
QA =QD ð4Þ
QE =QH ð5Þ

We can apply basic rule 2 to obtain the following pressure drop constraints:

h1−5 : h= hA + hB + hC + hD ð6Þ
h2−3 : hB = hE + hF + hH ð7Þ
h6−7 : hF = hG ð8Þ

This set of eight equations (as well as Eqs. 8.29 and 8.34 for each pipe section!) must be solved iteratively. If we were to manually
iterate, we would use Eqs. 3, 4, and 5 to immediately reduce the number of unknowns and equations to five ðQA,QB,QE,QF,QGÞ.
There are several approaches to the iteration, one of which is:

1 Make a guess for QA, QB, and QF.

2 Eqs. 1 and 2 then lead to values for QE and QG.

3 Eqs. 6, 7, and 8 are finally used as a check to see if rule 2 (for unique pressure heads at the nodes) is satisfied.

4 If any of Eqs. 6, 7, or 8 are not satisfied, use knowledge of pipe flow to adjust the values of QA, QB, or QF.

5 Repeat steps 2 through 5 until convergence occurs.

An example of applying step 4 would be if Eq. 8 were not satisfied. Suppose hF > hG; then we would have selected too large a
value for QF, and would reduce this slightly, and recompute all flow rates and heads.

This iterative process is obviously quite unrealistic for manual calculation as obtaining each head loss h from each Q involves
a good amount of calculation. We can use a spreadsheet such as Excel to automate all these calculations—it will simultaneously
solve for all eight unknowns automatically! The first step is to set up one worksheet for each pipe section for computing the pipe
head h given the flow rate Q. A typical such worksheet is shown below:

324 Chapter 8 Internal Incompressible Viscous Flow



In these worksheets, knowing L, D, and e, a given flow rate Q is used to compute V , Re, f , and finally h from L, D, and e.
The next step is to set up a calculation page that collects together the flow rates and corresponding head losses for all of the pipe

sections, and then use these to check whether Eqs. 1 through 8 are satisfied. Shown below is this page with initial guess values of
0:1 ft3=s for each of the flow rates. The logic of the workbook is that the eight values entered forQA throughQH determine all the
other values—that is, hA through hH, and the values of the constraint equations. The absolute errors for each of the constraint
equations are shown, as well as their sum. We can then use Excel’s Solver feature (repeatedly as necessary) to minimize the total
error (currently 735%) by varying QA through QH.

The final results obtained by Excel are:
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Part C FLOW MEASUREMENT

Throughout this text we have referred to the flow rate Q or average velocity V in a pipe. The question
arises: How does one measure these quantities? We will address this question by discussing the various
types of flow meters available.

The choice of a flow meter is influenced by the accuracy required, range, cost, complication, ease of
reading or data reduction, and service life. The simplest and cheapest device that gives the desired accu-
racy should be chosen.

The most obvious way to measure flow rate in a pipe is the direct method—simply measure the
amount of fluid that accumulates in a container over a fixed time period! Tanks can be used to determine
flow rate for steady liquid flows by measuring the volume or mass of liquid collected during a known
time interval. If the time interval is long enough to be measured accurately, flow rates may be determined
precisely in this way.

Compressibility must be considered in volume measurements for gas flows. The densities of gases
generally are too small to permit accurate direct measurement of mass flow rate. However, a volume
sample often can be collected by displacing a “bell,” or inverted jar over water (if the pressure is held
constant by counterweights). If volume or mass measurements are set up carefully, no calibration is
required; this is a great advantage of direct methods.

In specialized applications, particularly for remote or recording uses, positive displacement flow
meters may be specified, in which the fluid moves a component such as a reciprocating piston or oscillat-
ing disk as it passes through the device. Common examples include household water and natural gas
meters, which are calibrated to read directly in units of product, or gasolinemetering pumps, whichmeas-
ure total flow and automatically compute the cost.Many positive-displacement meters are available com-
mercially. Consult manufacturers’ literature or References (e.g., [25]) for design and installation details.

8.9 Restriction Flow Meters for Internal Flows
Most restriction flow meters for internal flow are based on acceleration of a fluid stream through some
form of nozzle, as shown schematically in Fig. 8.18. The idea is that the change in velocity leads to a
change in pressure. This Δp can be measured using a pressure gage (electronic or mechanical) or a
manometer, and the flow rate inferred using either a theoretical analysis or an experimental correlation
for the device. Flow separation at the sharp edge of the nozzle throat causes a recirculation zone to form,
as shown by the dashed lines downstream from the nozzle. The mainstream flow continues to accelerate
from the nozzle throat to form a vena contracta at section and then decelerates again to fill the duct.

The flow rates are:

QA =QC =QD = 167 gpm
QBðgpmÞ=72 gpm
QEðgpmÞ=QHðgpmÞ=95 gpm
QFðgpmÞ=24 gpm
QGðgpmÞ=71 gpm

This problem illustrates use of Excel to solve
a set of coupled, nonlinear equations for
unknown flow rates.

The Excelworkbook for this problem
can be modified for solving a

variety of other multiple-path systems.

D2D1 Dt V2V1

21

CV

Flow

Fig. 8.18 Internal flow through a generalized nozzle, showing control volume used for analysis.
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At the vena contracta, the flow area is a minimum, the flow streamlines are essentially straight, and the
pressure is uniform across the channel section.

The theoretical flow rate may be related to the pressure differential between sections and by
applying the continuity and Bernoulli equations. Then empirical correction factors may be applied to
obtain the actual flow rate.

Basic equations:

We will need mass-conservation, X
CS
V
! � A!=0 ð4:13bÞ

[we can use this instead of Eq. 4.12, because of assumption (5) below] and the Bernoulli equation,

p1
ρ
+ α1

V2
1

2
+ gz1 =

p2
ρ
+ α2

V2
2

2
+ gz2 ð6:8Þ

which we can use if assumption (4) is valid. For the short section of pipe considered, this is reasonable.

Assumptions:

1 Steady flow.

2 Incompressible flow.

3 Flow along a streamline.

4 No friction.

5 Uniform velocity at sections and .

6 No streamline curvature at sections or , so pressure is uniform across those sections.

7 z1 = z2.

Then, from the Bernoulli equation,

p1−p2 =
ρ

2
ðV2

2 −V2
1 Þ=

ρV2
2

2
1−

V1

V2

� �2
" #

and from continuity

ð−ρV1A1Þ+ ðρV2A2Þ=0

or

V1A1 =V2A2 so
V1

V2

� �2

=
A2

A1

� �2

Substituting gives

p1−p2 =
ρV2

2

2
1−

A2

A1

� �2
" #

Solving for the theoretical velocity, V2,

V2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp1−p2Þ

ρ½1−ðA2=A1Þ2�

s
ð8:51Þ

The theoretical mass flow rate is then given by

_mtheoretical = ρV2A2

= ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp1−p2Þ

ρ½1−ðA2=A1Þ2�

s
A2
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or

_mtheoretical =
A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ðA2=A1Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρðp1−p2Þ
p

ð8:52Þ

Equation 8.52 shows that, under our set of assumptions, for a given fluid ðρÞ and flow meter geometry (A1

and A2), the flow rate is directly proportional to the square root of the pressure drop across the meter taps,

_mtheoretical/
ffiffiffiffiffiffi
Δp

p
which is the basic idea of these devices. This relationship limits the flow rates that can be measured
accurately to approximately a 4:1 range.

Several factors limit the utility of Eq. 8.52 for calculating the actual mass flow rate through a meter.
The actual flow area at section is unknown when the vena contracta is pronounced (e.g., for orifice
plates whenDt is a small fraction ofD1). The velocity profiles approach uniform flow only at large Rey-
nolds numbers. Frictional effects can become important (especially downstream from the meter) when
the meter contours are abrupt. Finally, the location of pressure taps influences the differential pressure
reading.

The theoretical equation is adjusted for Reynolds number and diameter ratio Dt=D1 by defining an
empirical discharge coefficient C such that, replacing Eq. 8.52, we have

_mactual =
CAtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−ðAt=A1Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ρðp1−p2Þ
p

ð8:53Þ

Letting β=Dt=D1, then ðAt=A1Þ2 = ðDt=D1Þ4 = β4, so

_mactual =
CAtffiffiffiffiffiffiffiffiffiffiffiffi
1−β4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1−p2Þ

p
ð8:54Þ

In Eq. 8.54, 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1−β4

p
is the velocity-of-approach factor. The discharge coefficient and velocity-of-

approach factor frequently are combined into a single flow coefficient,

K≡
Cffiffiffiffiffiffiffiffiffiffiffiffi
1−β4

p ð8:55Þ

In terms of this flow coefficient, the actual mass flow rate is expressed as

_mactual =KAt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1−p2Þ

p
ð8:56Þ

For standardized metering elements, test data [25, 26] have been used to develop empirical equa-
tions that predict discharge and flow coefficients from meter bore, pipe diameter, and Reynolds number.
The accuracy of the equations (within specified ranges) usually is adequate so that the meter can be used
without calibration. If the Reynolds number, pipe size, or bore diameter fall outside the specified range of
the equation, the coefficients must be measured experimentally.

For the turbulent flow regime (pipe Reynolds number greater than 4000) the discharge coefficient
may be expressed by an equation of the form [25]

C=C∞ +
b

RenD1

ð8:57Þ

The corresponding form for the flow-coefficient equation is

K =K∞ +
1ffiffiffiffiffiffiffiffiffiffiffiffi
1−β4

p b
RenD1

ð8:58Þ
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In Eqs. 8.57 and 8.58, subscript∞ denotes the coefficient at infinite Reynolds number; constants b and n
allow for scaling to finite Reynolds numbers. Correlating equations and curves of coefficients versus
Reynolds number are given in the next three subsections, following a general comparison of the char-
acteristics of specific metering elements.

As we have noted, selection of a flow meter depends on factors such as cost, accuracy, need for
calibration, and ease of installation and maintenance. Some of these factors are compared for orifice
plate, flow nozzle, and venturi meters in Table 8.6. Note that a high head loss means that the running
cost of the device is high—it will consume a lot of the fluid energy. A high initial cost must be amortized
over the life of the device. This is an example of a common cost calculation for a company (and an
individual!)—between a high initial but low running cost, or low initial but high running cost.

Flowmeter coefficients reported in the literature have been measured with fully developed turbulent
velocity distributions at the meter inlet (Section ). If a flow meter is to be installed downstream from a
valve, elbow, or other disturbance, a straight section of pipe must be placed in front of the meter. Approx-
imately 10 diameters of straight pipe are required for venturi meters, and up to 40 diameters for orifice
plate or flow nozzle meters. When a meter has been properly installed, the flow rate may be computed
from Eq. 8.54 or 8.56, after choosing an appropriate value for the empirical discharge coefficient, C, or
flow coefficient, K, defined in Eqs. 8.53 and 8.55, respectively. Some design data for incompressible
flow are given in the next few sections. The same basic methods can be extended to compressible flows,
but these will not be treated here. For complete details, see ASME [25] or Bean [26].

The Orifice Plate

The orifice plate (Fig. 8.19) is a thin plate that may be clamped between pipe flanges. Since its geometry
is simple, it is low in cost and easy to install or replace. The sharp edge of the orifice will not foul with
scale or suspended matter. However, suspended matter can build up at the inlet side of a concentric ori-
fice in a horizontal pipe; an eccentric orifice may be placed flush with the bottom of the pipe to avoid this

Table 8.6
Characteristics of Orifice, Flow Nozzle, and Venturi Flow Meters

Flow Meter Type Diagram Head Loss Initial Cost

Orifice
D

1
Dt

D
2

D
2

Flow

D
1

D
1

Flow

Flow

High Low

Flow Nozzle Intermediate Intermediate

Venturi Low High

Corner taps

D D__
2

D and     taps

Flow

1 in. 1 in.

Flange taps

D
2

Fig. 8.19 Orifice geometry and pressure tap locations
(based on [25]).
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difficulty. The primary disadvantages of the orifice are its limited capacity and the high permanent head
loss caused by the uncontrolled expansion downstream from the metering element.

Pressure taps for orifices may be placed in several locations, as shown in Fig. 8.19 (see [25] or [26]
for additional details). Since the location of the pressure taps influences the empirically determined flow
coefficient, one must select handbook values of C or K consistent with the location of pressure taps.

The correlating equation recommended for a concentric orifice with corner taps [25] is

C=0:5959+ 0:0312β2:1−0:184β8 +
91:71β2:5

Re0:75D1

ð8:59Þ

Equation 8.59 is the form of Eq. 8.57 for the discharge coefficient C for the orifice plate; it predicts
orifice discharge coefficients within �0:6 percent for 0:2< β<0:75 and for 104 <ReD1 < 107. Some
flow coefficients calculated from Eq. 8.59 and 8.55 are presented in Fig. 8.20.

A similar correlating equation is available for orifice plates withD andD/2 taps. Flange taps require
a different correlation for every line size. Pipe taps, located at 21

2 and 8D, no longer are recommended for
accurate work.

Example 8.12, which appears later in this section, illustrates the application of flow coefficient data
to orifice sizing.

The Flow Nozzle

Flow nozzles may be used as metering elements in either plenums or ducts, as shown in Fig. 8.21; the
nozzle section is approximately a quarter ellipse. Design details and recommended locations for pressure
taps are given in [26].

The correlating equation recommended for an ASME long-radius flow nozzle [25] is

C=0:9975−
6:53β0:5

Re0:5D1

ð8:60Þ

Equation 8.60 is the form of Eq. 8.57 for the discharge coefficient C for the flow nozzle; it predicts dis-
charge coefficients for flow nozzles within�2:0 percent for 0:25< β<0:75 for 104 <ReD1 < 107. Some
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Fig. 8.20 Flow coefficients for concentric orifices with corner taps.
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flow coefficients calculated from Eq. 8.60 and Eq. 8.55 are presented in Fig. 8.22. (K can be greater than
one when the velocity-of-approach factor exceeds one.)

a. Pipe Installation
For pipe installation,K is a function of β and ReD1 . Figure 8.22 shows thatK is essentially independent of
Reynolds number for ReD1 > 106. Thus at high flow rates, the flow rate may be computed directly using
Eq. 8.56. At lower flow rates, whereK is a weak function of Reynolds number, iteration may be required.

b. Plenum Installation
For plenum installation, nozzles may be fabricated from spun aluminum, molded fiberglass, or other
inexpensive materials. Thus they are simple and cheap to make and install. Since the plenum pressure
is equal to p2, the location of the downstream pressure tap is not critical. Meters suitable for a wide range
of flow rates may be made by installing several nozzles in a plenum. At low flow rates, most of themmay
be plugged. For higher flow rates, more nozzles may be used.

p1

p2

V1 – 0

Nozzle

FlowD2

Plenum chamber

(b) In plenum

~

FlowD2D1

p1 p2

V1

(a) In duct

Flow nozzle

_

Fig. 8.21 Typical installations of nozzle flow meters.
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Fig. 8.22 Flow coefficients for ASME long-radius flow nozzles.

3318.9 Restriction Flow Meters for Internal Flows



For plenum nozzles β=0, which is outside the range of applicability of Eq. 8.58. Typical flow coef-
ficients are in the range, 0:95<K <0:99; the larger values apply at high Reynolds numbers. Thus the
mass rate of flow can be computed within approximately �2 percent using Eq. 8.56 with K =0:97.

The Venturi

Venturi meters, as sketched in Table 8.6, are generally made from castings and machined to close tol-
erances to duplicate the performance of the standard design. As a result, venturi meters are heavy, bulky,
and expensive. The conical diffuser section downstream from the throat gives excellent pressure recov-
ery; therefore, overall head loss is low. Venturi meters are also self-cleaning because of their smooth
internal contours.

Experimental data show that discharge coefficients for venturi meters range from 0.980 to 0.995 at
high Reynolds numbers ðReD1 > 2 × 105Þ. Thus C=0:99 can be used to measure mass flow rate within
about�1 percent at high Reynolds number [25]. Consult manufacturers’ literature for specific informa-
tion at Reynolds numbers below 105.

The orifice plate, flow nozzle, and venturi all produce pressure differentials proportional to the
square of the flow rate, according to Eq. 8.56. In practice, a meter size must be chosen to accommodate
the highest flow rate expected. Because the relationship of pressure drop to flow rate is nonlinear, the
range of flow rate that can be measured accurately is limited. Flow meters with single throats usually are
considered only for flow rates over a 4:1 range [25].

The unrecoverable loss in head across a metering element may be expressed as a fraction of the
differential pressure, Δp, across the element. Pressure losses are displayed as functions of diameter ratio
in Fig. 8.23. Note that the venturi meter has a much lower permanent head loss than the orifice (which
has the highest loss) or nozzle, confirming the trends we summarized in Table 8.6.

The Laminar Flow Element

The laminar flow element3 is designed to produce a pressure differential directly proportional to flow
rate. The idea is that the laminar flow element contains a metering section in which the flow passes
through a large number of tubes or passages (these often look like a bunch of straws) that are each narrow
enough that the flow through them is laminar, regardless of the flow conditions in the main pipe (recall
that Retube = ρVtubeDtube=μ, so if Dtube is made small enough we can ensure that Retube <Recrit≈2300).
For each laminar flow tube we can apply the results of Section 8.3, specifically

Qtube =
πD4

tube

128μLtube
Δp/Δp ð8:13cÞ
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Fig. 8.23 Permanent head loss produced by various flow metering elements, based on References [25] and [33].

3 Patented and manufactured by Meriam Instrument Co., 10920 Madison Ave., Cleveland, Ohio 44102.
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Example 8.12 FLOW THROUGH AN ORIFICE METER

An air flow rate of 1 m3=s at standard conditions is expected in a 0.25-m diameter duct. An orifice meter is used to measure the
rate of flow. Themanometer available to make the measurement has a maximum range of 300mm of water.What diameter orifice
plate should be used with corner taps? Analyze the head loss if the flow area at the vena contracta is A2 = 0:65 At. Compare with
data from Fig. 8.23.

Given: Flow through duct and orifice as shown.

Find: (a) Dt.
(b) Head loss between sections and .
(c) Degree of agreement with data from Fig. 8.23.

Solution: The orifice plate may be designed using Eq. 8.56 and data
from Fig. 8.20.

Governing equation:

_mactual =KAt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1−p2Þ

p
ð8:56Þ

Assumptions:

1 Steady flow.

2 Incompressible flow.

Since At=A1 = ðDt=D1Þ2 = β2,

_mactual =Kβ2 A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1−p2Þ

p
or

Kβ2 =
_mactual

A1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1−p2Þ

p =
ρQ

A1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1−p2Þ

p =
Q
A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

2ðp1−p2Þ
r

=
Q
A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

2gρH2OΔh

r

=1
m3

s
×
4
π

1

ð0:25Þ2 m2

1
2
× 1:23

kg
m3 ×

s2

9:81 m
×

m3

999 kg
×

1
0:30 m

	 
1=2
Kβ2 = 0:295 or K =

0:295
β2

ð1Þ

Since K is a function of both β (Eq. 1) and ReD1 (Fig. 8.20), we must iterate to find β. The duct Reynolds number is

ReD1 =
ρV 1D1

μ
=
ρðQ=A1ÞD1

μ
=

4Q
πνD1

ReD1 =
4
π
×1

m3

s
×

s
1:46× 10−5m2

×
1

0:25 m
=3:49× 105

Guess β=0:75. From Fig. 8.20, K should be 0.72. From Eq. 1,

K =
0:295

ð0:75Þ2 = 0:524

Thus our guess for β is too large. Guess β=0:70. From Fig. 8.20, K should be 0.69. From Eq. 1,

K =
0:295

ð0:70Þ2 = 0:602

DtD1 = 0.25 m

321

AirQ = 1 m3/s

(p1 – p2)max = 300 mm H2O
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Thus our guess for β is still too large. Guess β=0:65. From Fig. 8.20, K should be 0.67. From Eq. 1,

K =
0:295

ð0:65Þ2 = 0:698

There is satisfactory agreement with β’ 0:66 and

Dt = βD1 = 0:66ð0:25 mÞ=0:165 m
Dt �������������������������������������

To find the permanent head loss for this device, we could simply use the diameter ratio β≈0:66 in Fig. 8.23; but instead we will
find it from the given data. To evaluate the permanent head loss, apply Eq. 8.29 between sections and .

Governing equation:

p1
ρ
+ α1

V 2
1

2
+ gz1

 !
−

p3
ρ
+ α3

V 2
3

2
+ gz3

 !
= hlT ð8:29Þ

Assumptions:

3 α1V
2
1 = α3V

2
3.

4 Neglect Δz.

Then

hlT =
p1−p3

ρ
=
p1−p2−ðp3−p2Þ

ρ
ð2Þ

Equation 2 indicates our approach: We will find p1−p3 by using p1−p2 = 300 mmH2O, and obtain a value for p3−p2 by apply-
ing the x component of the momentum equation to a control volume between sections and .

Governing equation:

=0ð5Þ =0ð1Þ
FSx + ����!FBx = ����!

∂
∂t

Z
CV

uρdV +
Z
CV

uρV
! �d A! ð4:18aÞ

Assumptions:

5 FBx =0

6 Uniform flow at sections and .

7 Pressure uniform across duct at sections and .

8 Neglect friction force on CV.

Then, simplifying and rearranging,

ðp2−p3ÞA1 = u2ð−ρV 2A2Þ+ u3ðρV 3A3Þ= ðu3−u2ÞρQ= ðV 3−V 2ÞρQ
or

p3−p2 = ðV 2−V 3ÞρQA1

2 3

A2 = Avena contracta

FlowA1x

y

CV
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so the flow rate in each tube is a linear function of the pressure drop across the device. The flow rate in the
whole pipe will be the sum of each of these tube flows, and so will also be a linear function of pressure
drop. Usually this linear relation is provided in a calibration from the manufacturer, and the meter can be
used over a 10:1 range of flow rates. The relationship between pressure drop and flow rate for laminar
flow also depends on viscosity, which is a strong function of temperature. Therefore, the fluid temper-
ature must be known to obtain accurate metering with a laminar flow meter.

A laminar flow element costs approximately as much as a venturi, but it is much lighter and
smaller. Thus it is becoming widely used in applications where compactness and extended range are
important.

Linear Flow Meters

The disadvantage of restriction flow meters (except the laminar flow meter) is that the measured output
ðΔpÞ is not linear with the flow rate Q. Several flow meter types produce outputs that are directly
proportional to flow rate. These meters produce signals without the need to measure differential pressure.
The most common linear flow meters are discussed briefly in the following paragraphs.

Float metersmay be used to indicate flow rate directly for liquids or gases. An example is shown in
Fig. 8.24. In operation, the ball or float is carried upward in the tapered clear tube by the flowing fluid
until the drag force and float weight are in equilibrium. Such meters (often called rotameters) are avail-
able with factory calibration for a number of common fluids and flow rate ranges.

A free-running vaned impeller may be mounted in a cylindrical section of tube (Fig. 8.25) to make
a turbine flow meter. With proper design, the rate of rotation of the impeller may be made closely
proportional to volume flow rate over a wide range.

Now V 3 =Q=A1, and

V 2 =
Q
A2

=
Q

0:65 At
=

Q
0:65β2 A1

Thus,

p3−p2 =
ρQ2

A2
1

1
0:65 β2

−1
	 


p3−p2 = 1:23
kg
m3 × ð1Þ

2m6

s2
×
42

π2
1

ð0:25Þ4 m4

1

0:65ð0:66Þ2 −1

" #
N � s2
kg � m

p3−p2 = 1290 N=m2

The diameter ratio, β was selected to give maximum manometer deflection at maximum flow rate. Thus

p1−p2 = ρH2OgΔh=999
kg
m3 × 9:81

m
s2

× 0:30 m×
N � s2
kg � m =2940 N=m2

Substituting into Eq. 2 gives

hlT =
p1−p3

ρ
=
p1−p2−ðp3−p2Þ

ρ

hlT = ð2940−1290Þ N
m2 ×

m3

1:23 kg
=1340 N � m=kg

hlT ���������������������������
To compare with Fig. 8.23, express the permanent pressure loss as a fraction of the meter differential

p1−p3
p1−p2

=
ð2940−1290ÞN=m2

2940 N=m2 =0:561

The fraction from Fig. 8.23 is about 0.57. This is satisfactory agreement!

This problem illustrates flow meter calcu-
lations and shows use of the momentum
equation to compute the pressure rise in a
sudden expansion.
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Fig. 8.24 Float-type
variable-area flowmeter.
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Rotational speed of the turbine element can be sensed using a magnetic or modulated carrier pickup
external to the meter. This sensing method therefore requires no penetrations or seals in the duct. Thus
turbine flow meters can be used safely to measure flow rates in corrosive or toxic fluids. The electrical
signal can be displayed, recorded, or integrated to provide total flow information.

An interesting device is the vortex flow meter. This device takes advantage of the fact that a uniform
flow will generate a vortex street when it encounters a bluff body such as a cylinder perpendicular to the
flow. A vortex street is a series of alternating vortices shed from the rear of the body; the alternation
generates an oscillating sideways force on, and therefore oscillation of, the cylinder (the classic example
of this being the “singing” of telephone wires in a high wind). It turns out that the dimensionless group
characterizing this phenomenon is the Strouhal number, St= fL=V ( f is the vortex shedding frequency, L
is the cylinder diameter, and V is the freestream velocity), and it is approximately constant ðSt≈0:21Þ.
Hence we have a device for which V / f . Measurement of f thus directly indicates the velocity V

!
(how-

ever, the velocity profile does affect the shedding frequency so calibration is required). The cylinder used
in a flow meter is usually quite short in length—10 mm or less—and placed perpendicular to the flow
(and for some devices is not a cylinder at all but some other small bluff object). The oscillation can be
measured using a strain gage or other sensor. Vortex flow meters can be used over a 20:1 range of
flow rates.

The electromagnetic flow meter uses the principle of magnetic induction. Amagnetic field is created
across a pipe. When a conductive fluid passes through the field, a voltage is generated at right angles to
the field and velocity vectors. Electrodes placed on a pipe diameter are used to detect the resulting signal
voltage. The signal voltage is proportional to the average axial velocity when the profile is axisymmetric.

Magnetic flow metersmay be used with liquids that have electrical conductivities above 100 micro-
siemens per meter ð1 siemen=1 ampere per voltÞ. The minimum flow speed should be above about
0:3 m=s, but there are no restrictions on Reynolds number. The flow rate range normally quoted is 10:1.

Ultrasonic flow meters also respond to average velocity at a pipe cross section. Two principal types
of ultrasonic meters are common: Propagation time is measured for clean liquids, and reflection fre-
quency shift (Doppler effect) is measured for flows carrying particulates. The speed of an acoustic wave
increases in the flow direction and decreases when transmitted against the flow. For clean liquids, an
acoustic path inclined to the pipe axis is used to infer flow velocity. Multiple paths are used to estimate
the volume flow rate accurately.

Doppler effect ultrasonic flow meters depend on reflection of sonic waves (in the MHz range) from
scattering particles in the fluid. When the particles move at flow speed, the frequency shift is propor-
tional to flow speed; for a suitably chosen path, output is proportional to volume flow rate. One or
two transducers may be used; the meter may be clamped to the outside of the pipe. Ultrasonic meters
may require calibration in place. Flow rate range is 10:1.

Traversing Methods

In situations such as in air handling or refrigeration equipment, it may be impractical or impossible to
install fixed flow meters. In such cases it may be possible to obtain flow rate data using traversing
techniques.

To make a flow rate measurement by traverse, the duct cross section is conceptually subdivided into
segments of equal area. The velocity is measured at the center of each area segment using a pitot tube, a
total head tube, or a suitable anemometer. The volume flow rate for each segment is approximated by the
product of the measured velocity and the segment area. The flow rate through the entire duct is the sum of
these segmental flow rates. Details of recommended procedures for flow rate measurements by the trav-
erse method are given in [27].

Fig. 8.25 Turbine flow meter.
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Use of pitot or pitot-static tubes for traverse measurements requires direct access to the flow field.
Pitot tubes give uncertain results when pressure gradients or streamline curvature are present, and their
response times are slow. Two types of anemometers—thermal anemometers and laser Doppler anem-
ometers (LDAs)—overcome these difficulties partially, although they introduce new complications.

Thermal anemometers use tiny elements (either hot-wire or hot-film elements) that are heated elec-
trically. Sophisticated electronic feedback circuits are used to maintain the temperature of the element
constant and to sense the input heating rate needed to do this. The heating rate is related to the local flow
velocity by calibration (a higher velocity leads to more heat transfer). The primary advantage of thermal
anemometers is the small size of the sensing element. Sensors as small as 0.002 mm in diameter and
0.1 mm long are available commercially. Because the thermal mass of such tiny elements is extremely
small, their response to fluctuations in flow velocity is rapid. Frequency responses to the 50 kHz range
have been quoted [28]. Thus thermal anemometers are ideal for measuring turbulence quantities. Insu-
lating coatings may be applied to permit their use in conductive or corrosive gases or liquids.

Because of their fast response and small size, thermal anemometers are used extensively for
research. Numerous schemes have been published for treating the resulting data [29]. Digital processing
techniques, including fast Fourier transforms, can be applied to the signals to obtain mean values and
moments, and to analyze frequency content and correlations.

Laser Doppler anemometers are becoming widely used for specialized applications where direct
physical access to the flow field is difficult or impossible. One or more laser beams are focused to a
small volume in the flow at the location of interest (as shown in Fig 8.26). Laser light is scattered from
particles that are present in the flow (dust or particulates) or introduced for this purpose. A frequency
shift is caused by the local flow speed (Doppler effect). Scattered light and a reference beam are collected
by receiving optics. The frequency shift is proportional to the flow speed; this relationship may be cal-
culated, so there is no need for calibration. Since velocity is measured directly, the signal is unaffected by
changes in temperature, density, or composition in the flow field. The primary disadvantages of LDAs
are that the optical equipment is expensive and fragile, and that extremely careful alignment is needed (as
the authors can attest).

8.10 Summary and Useful Equations
In this chapter we have:

✓ Defined many terms used in the study of internal incompressible viscous flow, such as: the
entrance length, fully developed flow, the friction velocity, Reynolds stress, the kinetic energy
coefficient, the friction factor, major and minor head losses, and hydraulic diameter.
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Fig. 8.26 A 2-component Laser Doppler Anemometer Probe Volume.
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✓ Analyzed laminar flow between parallel plates and in pipes and observed that we can obtain
the velocity distribution analytically, and from this derive: the average velocity, the maximum
velocity and its location, the flow rate, the wall shear stress, and the shear stress distribution.

✓ Studied turbulent flow in pipes and ducts and learned that semi-empirical approaches are
needed, e.g., the power-law velocity profile.

✓ Written the energy equation in a form useful for analyzing pipe flows.
✓ Discussed how to incorporate pumps, fans, and blowers into a pipe flow analysis.
✓ Described various flow measurement devices: direct measurement, restriction devices (orifice

plate, nozzle, and venturi), linear flowmeters (rotameters, various electromagnetic or acoustic
devices, and the vortex flow meter), and traversing devices (pitot tubes and laser-Doppler
anemometers).

We have learned that pipe and duct flow problems often need iterative solution—the flow rateQ is
not a linear function of the driving force (usually Δp), except for laminar flows (which are not
common in practice). We have also seen that pipe networks can be analyzed using the same tech-
niques as a single-pipe system, with the addition of a few basic rules, and that in practice a com-
puter application such as Excel is needed to solve all but the simplest networks.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to
refer to their page numbers for details!

Useful Equations
Velocity profile for pressure-
driven laminar flow between
stationary parallel plates:

u=
a2

2μ
∂p
∂x

� �
y
a

� �2
−

y
a

� �	 
 (8.5) Page 280

Flow rate for pressure-driven
laminar flow between
stationary parallel plates:

Q
l
= −

1
12μ

−Δp
L

	 

a3 =

a3 Δp
12μ L

(8.6c) Page 281

Velocity profile for pressure-
driven laminar flow between
stationary parallel plates
(centered coordinates):

u=
a2

2μ
∂p
∂x

� �
y0

a

� �2

−
1
4

" # (8.7) Page 281

Velocity profile for pressure-
driven laminar flow between
parallel plates (upper plate
moving):

u=
Uy
a

+
a2

2μ
∂p
∂x

� �
y
a

� �2
−

y
a

� �	 
 (8.8) Page 284

Flow rate for pressure-driven
laminar flow between parallel
plates (upper plate moving):

Q
l
=
Ua
2

−
1

12μ
∂p
∂x

� �
a3

(8.9b) Page 284

Velocity profile for laminar
flow in a pipe: u= −

R2

4μ
∂p
∂x

� �
1−

r
R

� �2	 
 (8.12) Page 290

Flow rate for laminar flow in
a pipe: Q= −

πR4

8μ
−Δp
L

	 

=
πΔpR4

8μL
=
πΔpD4

128μL

(8.13c) Page 290

Velocity profile for laminar
flow in a pipe (normalized
form):

u
U

=1−
r
R

� �2 (8.14) Page 291

Velocity profile for turbulent
flow in a smooth pipe (power-
law equation):

�u
U

=
y
R

� �1=n
= 1−

r
R

� �1=n (8.22) Page 295
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Table (Continued)

Head loss equation:
p1
ρ
+ α1

V 2
1

2
+ gz1

 !
−

p2
ρ
+ α2

V 2
2

2
+ gz2

 !
= hlT

(8.29) Page 299

Major head loss equation:

hl = f
L
D
V

2

2

(8.34) Page 301

Friction factor (laminar flow):
flaminar =

64
Re

(8.36) Page 302

Friction factor (turbulent
flow—Colebrook equation):

1ffiffiffi
f
p = −2:0 log

e=D
3:7

+
2:51
Re

ffiffiffi
f
p

� � (8.37) Page 303

Minor loss

hlm =K
V 2

2

(8.40) Page 304

Diffuser pressure recovery
coefficient: Cp≡

p2−p1
1
2ρV

2
1

(8.41) Page 305

Ideal diffuser pressure
recovery coefficient: Cpi =1−

1
AR2

(8.42) Page 306

Head loss in diffuser in terms
of pressure recovery
coefficients:

hlm = ðCpi −CpÞV
2
1

2

(8.44) Page 307

Pump work:
_Wpump =QΔppump

(8.47) Page 308

Pump efficiency:
η=

_Wpump

_W in

(8.48) Page 308

Hydraulic diameter:
Dh≡

4A
P

(8.50) Page 309

Mass flow rate equation for a
flow meter (in terms of
discharge coefficient C):

_mactual =
CAtffiffiffiffiffiffiffiffiffiffiffiffi
1−β4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1−p2Þ

p (8.54) Page 328

Mass flow rate equation for a
flow meter (in terms of flow
coefficient K):

_mactual =KAt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðp1−p2Þ

p (8.56) Page 328

Discharge coefficient (as a
function of Re): C=C∞ +

b
RenD1

(8.57) Page 328

Flow coefficient (as a
function of Re): K =K∞ +

1ffiffiffiffiffiffiffiffiffiffiffiffi
1−β4

p b
RenD1

(8.58) Page 328
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P R O B L E M S
Lamina versus Turbulent Flow
8.1 Consider incompressible flow in a circular channel. Derive gen-
eral expressions for Reynolds number in terms of (a) volume flow
rate and tube diameter and (b) mass flow rate and tube diameter.
The Reynolds number is 1800 in a section where the tube diameter
is 10 mm. Find the Reynolds number for the same flow rate in a
section where the tube diameter is 6 mm.

8.2What is the maximum flow rate of air that may occur at laminar
condition in a 4-in.-diameter pipe at an absolute pressure of 30 psia
and 100�F? If the pressure is raised to 60 psia, what is the maximum
flow rate? If the temperature is raised to 200�F, what is the maximum
flow rate? Explain the differences in answers in terms of the physical
mechanisms involved.

8.3 For flow in circular tubes, transition to turbulence usually occurs
around Re≈2300. Investigate the circumstances under which the
flows of (a) standard air and (b) water at 15�C become turbulent.
On log-log graphs, plot: the average velocity, the volume flow rate,
and the mass flow rate at which turbulence first occurs as functions of
tube diameter.

Laminar Flow between Parallel Plates
8.4 Air flows at 100�F in a pipe system in which the diameter
increases in two stages from 2 in. to 3 in. to 4 in. Each section is
6 ft long. The initial flow rate is high enough so that the flow is tur-
bulent in all sections. As the flow rate is decreased, which section will
become laminar first? Determine the flow rates at which one, two,
and then three sections first become laminar. At each of these flow
rates, determine which, if any, of the sections attain fully developed
flow.

D = 2 in.
D = 3 in.

D = 4 in.

P8.4

8.5 An incompressible fluid flows between two infinite stationary
parallel plates. The velocity profile is given by u= umaxðAy2 +
By+CÞ, where A, B, and C are constants and y is measured upward
from the lower plate. The total gap width is h units. Use appropriate
boundary conditions to express the magnitude and units of the con-
stants in terms of h. Develop an expression for volume flow rate per
unit depth and evaluate the ratio V=umax.

8.6 Oil is confined in a 4-in.-diameter cylinder by a piston having a
radial clearance of 0.001 in. and a length of 2 in. A steady force of
4500 lbf is applied to the piston. Assume the properties of SAE 30 oil
at 120�F. Estimate the rate at which oil leaks past the piston.

8.7 Viscous oil flows steadily between parallel plates. The flow is
fully developed and laminar. The pressure gradient is 1:25 kPa=m
and the channel half-width is h=1:5 mm. Calculate the magnitude
and direction of the wall shear stress at the upper plate surface. Find
the volume flow rate through the channel ðμ=0:50 N � s=m2Þ.

8.8 Calculate α for the flow in this two-dimensional passage if q
is 1:5 m3=s �m.

Paraboals
3 m/s

0.6 m

P8.8

8.9 The velocity profile in a two-dimensional open channel may be
approximated by the parabola shown. Calculate the flow rate and the
kinetic energy coefficient α.

4 ft/s

2 ft/s

8 ft
10 ft

P8.9

8.10A large mass is supported by a piston of diameter D=4 in: and
length L=4 in. The piston sits in a cylinder closed at the bottom,
and the gap a=0:001 in. between the cylinder wall and piston is
filled with SAE 10 oil at 68�F. The piston slowly sinks due to the
mass, and oil is forced out at a rate of 0.1 gpm. What is the
mass (slugs)?

L
a

D

M

P8.10, P8.12

8.11A hydraulic jack supports a load of 9000 kg. The following data
are given:

Diameter of piston 100 mm
Radial clearance between piston and cylinder 0.05 mm
Length of piston 120 mm

Estimate the rate of leakage of hydraulic fluid past the piston, assum-
ing the fluid is SAE 30 oil at 30�C.

8.12 The basic component of a pressure gage tester consists of a
piston-cylinder apparatus as shown. The piston, 6 mm in diameter,
is loaded to develop a pressure of known magnitude. The piston
length is 25 mm. Calculate the mass, M, required to produce 1.5
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MPa gage in the cylinder. Determine the leakage flow rate as a func-
tion of radial clearance, a, for this load if the liquid is SAE 30 oil at
20�C. Specify the maximum allowable radial clearance so the verti-
cal movement of the piston due to leakage will be less
than 1 mm=min.

8.13 When a horizontal laminar flow occurs between two parallel
plates of infinite extent 0.3 m apart, the velocity at the midpoint
between the plates is 2:7 m=s. Calculate (a) the flow rate through a
cross section 0.9 m wide, (b) the velocity gradient at the surface of
the plate, (c) the wall shearing stress if the fluid has viscosity
1:44 P �s, and (d) the pressure drop in each 30 m along the flow.

8.14 In a laminar flow of water of 0:007 m3=s between parallel
plates spaced 75 mm apart, the measured shearing stress at the pipe
wall is 47.9 Pa.What is the viscosity of the fluid? Is the flow laminar?

8.15 Consider the simple power-law model for a non-Newtonian
fluid given by Eq. 2.16. Extend the analysis of Section 8.2 to show
that the velocity profile for fully developed laminar flow of a power-
law fluid between stationary parallel plates separated by distance 2h
may be written

u=
h
k
Δp
L

� �1=n nh
n+1

1−
y
h

� �ðn+1Þ=n	 

where y is the coordinate measured from the channel centerline. Plot
the profiles u=Umax versus y=h for n=0:7, 1.0, and 1.3.

8.16 A sealed journal bearing is formed from concentric cylinders.
The inner and outer radii are 25 and 26 mm, the journal length is
100 mm, and it turns at 2800 rpm. The gap is filled with oil in laminar
motion. The velocity profile is linear across the gap. The torque
needed to turn the journal is 0.2 N �m. Calculate the viscosity of
the oil. Will the torque increase or decrease with time? Why?

8.17 Using the profile of Problem 8.15, show that the flow rate for
fully developed laminar flow of a power-law fluid between stationary
parallel plates may be written as

Q=
h
k
Δp
L

� �1=n 2nwh2

2n+1

Herew is the plate width. In such an experimental setup the following
data on applied pressure difference Δp and flow rate Q were
obtained:

Δp (kPa) 10 20 30 40 50 60 70 80 90 100
Q (L/min) 0.451 0.759 1.01 1.15 1.41 1.57 1.66 1.85 2.05 2.25

Determine if the fluid is pseudoplastic or dilatant and obtain an
experimental value for n.

8.18 In a laminar flow between parallel plates spaced 12 in. apart,
the shear stress at the wall is 1.0 psf and the fluid viscosity
0:002 lb s=ft2. What is the centerline velocity and the velocity gradi-
ent 1 in. from the centerline?

8.19 A fluid of specific gravity 0.90 flows at a Reynolds number of
1500 between parallel plates spaced 0.3 m apart. The velocity 50 mm
from the wall is 3 m=s. Calculate the flow rate and the velocity gra-
dient at the wall.

8.20 Two immiscible fluids are contained between infinite parallel
plates. The plates are separated by distance 2h, and the two fluid
layers are of equal thickness h; the dynamic viscosity of the upper
fluid is three times that of the lower fluid. If the lower plate is

stationary and the upper plate moves at constant speed U =20 ft=s,
what is the velocity at the interface? Assume laminar flows, and that
the pressure gradient in the direction of flow is zero.

8.21 The record-read head for a computer disk-drive memory
storage system rides above the spinning disk on a very thin film
of air (the film thickness is 0:25 μm). The head location is
25 mm from the disk centerline; the disk spins at 8500 rpm. The rec-
ord-read head is 5 mm square. For standard air in the gap between the
head and disk, determine (a) the Reynolds number of the flow, (b) the
viscous shear stress, and (c) the power required to overcome vis-
cous shear.

8.22 Consider steady, incompressible, and fully developed laminar
flow of a viscous liquid down an incline with no pressure gradient.
The velocity profile was derived in Example 5.9. Plot the velocity
profile. Calculate the kinematic viscosity of the liquid if the film
thickness on a 30� slope is 0.8 mm and the maximum velocity
is 15:7 mm=s.

8.23 In a flow of air between parallel plates spaced 0.03 m apart, the
centerline velocity is 1:2 m=s and that 5 mm from the pipe wall is
0:8 m=s. Assuming laminar flow, determine the wall shear stress
using each of the measurements. Explain whether the flow is laminar
or turbulent.

8.24 Two immiscible fluids of equal density are flowing down a
surface inclined at a 60� angle. The two fluid layers are of equal
thickness h=10mm; the kinematic viscosity of the upper fluid is
1/5th that of the lower fluid, which is νlower = 0:01m2=s. Find the
velocity at the interface and the velocity at the free surface. Plot
the velocity distribution.

8.25 Consider fully developed flow between parallel plates
with the upper plate moving at U =5 ft=s. The spacing between
the plates is a=0:1 in. Determine the flow rate per unit depth
for the case of zero pressure gradient. If the fluid is air, evaluate
the shear stress on the lower plate and plot the shear stress distribu-
tion across the channel for the zero pressure gradient case. Will the
flow rate increase or decrease if the pressure gradient is adverse?
Determine the pressure gradient that will give zero shear stress at
y=0:25a. Plot the shear stress distribution across the channel for
the latter case.

8.26 The velocity profile for fully developed flow of castor oil at
20�C between parallel plates with the upper plate moving is given
by Eq. 8.8. Assume U =1:5 m=s and a=5mm. Find the pressure
gradient for which there is no net flow in the x direction. Plot the
expected velocity distribution and the expected shear stress distribu-
tion across the channel for this flow. For the case where u=U at
y=a=0:5, plot the expected velocity distribution and shear stress
distribution across the channel. Comment on features of the plots.

8.27 Free-surface waves begin to form on a laminar liquid film
flowing down an inclined surface whenever the Reynolds number,
based on mass flow per unit width of film, is larger than about 33.
Estimate the maximum thickness of a laminar film of water that
remains free from waves while flowing down a vertical surface.

8.28 A viscous-shear pump is made from a stationary housing with
a close-fitting rotating drum inside. The clearance is small compared
with the diameter of the drum, so flow in the annular space may be
treated as flow between parallel plates. Fluid is dragged around the
annulus by viscous forces. Evaluate the performance characteristics
of the shear pump (pressure differential, input power, and efficiency)
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as functions of volume flow rate. Assume that the depth normal to the
diagram is b.

R

a

ω

P8.28, P8.29

8.29 The efficiency of the viscous-shear pump of Fig. P8.29 is
given by

η=6q
ð1−2qÞ
ð4−6qÞ

where q=Q=abRω is a dimensionless flow rate, Q is the flow rate at
pressure differential Δp, and b is the depth normal to the diagram.
Plot the efficiency versus dimensionless flow rate, and find the flow
rate for maximum efficiency. Explain why the efficiency peaks and
why it is zero at certain values of q.

8.30 An inventor proposes to make a “viscous timer” by placing a
weighted cylinder inside a slightly larger cylinder containing viscous
liquid, creating a narrow annular gap close to the wall. Analyze the
flow field created when the apparatus is inverted and the mass begins
to fall under gravity. Would this system make a satisfactory timer?
If so, for what range of time intervals? What would be the effect
of a temperature change on measured time?

8.31 A continuous belt, passing upward through a chemical bath
at speed U0, picks up a liquid film of thickness h, density ρ, and
viscosity μ. Gravity tends to make the liquid drain down, but the
movement of the belt keeps the liquid from running off completely.
Assume that the flow is fully developedand laminarwith zeropressure
gradient, and that the atmosphere produces no shear stress at the
outer surface of the film. State clearly the boundary conditions to be
satisfied by the velocity at y=0 and y= h. Obtain an expression
for the velocity profile.

g

p = patm

h

dx

dy

U0

x

y
Bath

Belt

P8.31
8.32 Awet paint film of uniform thickness, δ, is painted on a vertical
wall. The wet paint can be approximated as a Bingham fluid with a
yield stress, τy, and density, ρ. Derive an expression for the maximum

value of δ that can be sustainedwithout having the paint flowdown the
wall. Calculate the maximum thickness for lithographic ink whose
yield stress τy =40 Pa and density is approximately 1000 kg=m3.

8.33 When dealing with the lubrication of bearings, the governing
equation describing pressure is the Reynolds equation, generally
written in one dimension as

d
dx

h3

μ

dp
dx

� �
+6U

dh
dx

=0

where h is the step height and U is the velocity of the lower surface.
Step bearings have a relatively simple design and are used with low-
viscosity fluids such as water, gasoline, and solvents. The minimum
film thickness in these applications is quite small. The step height
must be small enough for good load capacity, yet large enough for
the bearing to accommodate some wear without losing its load capac-
ity by becoming smooth and flat. Beginning with the 1D equation for
fluid motion in the x direction, show that the pressure distribution in
the step bearing is as shown, where

ps =
6μðh2−h1Þ
h31
L1

+
h32
L2

L1

L1

L2

h1

h2

pS

U

p

x

P8.33

Laminar Flow in a Pipe
8.34 Consider first water and then SAE 10W lubricating oil flowing
at 40�C in a 6-mm-diameter tube. Determine the maximum flow rate
and the corresponding pressure gradient, ∂p=∂x for each fluid at
which laminar flow would be expected.

8.35 Using Eq. A.3 in Appendix A for the viscosity of water, find
the viscosity at −20�C and 120�C. Plot the viscosity over this range.
Find the maximum laminar flow rate (L/hr) in a 7.5-mm-diameter
tube at these temperatures. Plot the maximum laminar flow rate over
this temperature range.

8.36 Consider fully developed laminar flow in the annulus between
two concentric pipes. The outer pipe is stationary, and the inner pipe
moves in the x direction with speed V . Assume the axial pressure gra-
dient is zero ð∂p=∂x=0Þ. Obtain a general expression for the shear
stress, τ, as a function of the radius, r, in terms of a constant, C1.
Obtain a general expression for the velocity profile, uðrÞ, in terms
of two constants, C1 and C2. Obtain expressions for C1 and C2.

r

x

ri

ro

V
P8.36

8.37Carbon dioxide flows in a 50-mm-diameter pipe at a velocity of
1:5 m=s, temperature 66�C, and absolute pressure 50 kPa. Is the flow
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laminar or turbulent? If the temperature is lowered to 30�C, what is
the flow regime? If the pressure is reduced to 20 kPa, what is the flow
regime? Explain the differences in answers in terms of the physical
mechanisms involved.

8.38 Consider fully developed laminar flow in a circular pipe. Use a
cylindrical control volume as shown. Indicate the forces acting on the
control volume. Using the momentum equation, develop an expres-
sion for the velocity distribution.

CV

r

dx

Rx

r

P8.38

8.39 What is the largest diameter of pipeline that may be used
to carry 100 gpm of jet fuel (JP-4) at 59�F if the flow is to be
laminar?

8.40 Consider fully developed laminar flow in the annular space
formed by the two concentric cylinders shown in the diagram for
Problem 8.36, but with pressure gradient, ∂p=∂x, and the inner cyl-
inder stationary. Let r0 =R and ri = kR. Show that the velocity profile
is given by

u= −
R2

4μ
∂p
∂x

1−
r
R

� � 2
+

1−k2

lnð1=kÞ
� �

ln
r
R

	 


Show that the volume flow rate is given by

Q= −
πR4

8μ
∂p
∂x
ð1−k4Þ− ð1−k2Þ2

ln ð1=kÞ

" #

Compare the volume flow rate for the limiting case, k! 0, with the
corresponding expression for flow in a circular pipe.

8.41 Consider fully developed pressure-driven flow in a cylindrical
tube of radius, R, and length, L=10 mm, with flow generated by an
applied pressure gradient, Δp. Tests are performed with room tem-
perature water for various values of R, with a fixed flow rate of
Q=10 μL=min. The hydraulic resistance is defined as Rhyd =
Δp=Q (by analogy with the electrical resistance Relec =ΔV=I, where
ΔV is the electrical potential drop and I is the electric current). Cal-
culate the required pressure gradient and hydraulic resistance for the
range of tube radii listed in the table. Based on the results, is it appro-
priate to use a pressure gradient to pump fluids in microchannels, or
should some other driving mechanism be used?

R ðmmÞ Δp ðPaÞ Rhyd ðPa � s=m3Þ
1

10−1

10−2

10−3

10−4

8.42 In the laminar flow of an oil of viscosity 1 Pa �s, the velocity at
the center of a 0.3 m pipe is 4:5 m=s and the velocity distribution is
parabolic. Calculate the shear stress at the pipe wall and within the
fluid 75 mm from the pipe wall.

8.43 In a laminar flow of 0:007 m3=s in a 75-mm-diameter pipeline
the shearing stress at the pipe wall is known to be 47.9 Pa. Calculate
the viscosity of the fluid.

8.44Consider blood flow in an artery. Blood is non-Newtonian; the
shear stress versus shear rate is described by the Casson relationship:

ffiffiffi
τ
p

=
ffiffiffiffi
τc
p

+

ffiffiffiffiffiffiffiffi
μ
du
dr

r
, for τ≥ τc

τ=0 for τ< τc

8<
:

where τc is the critical shear stress, and μ is a constant having the
same dimensions as dynamic viscosity. The Casson relationship
shows a linear relationship between

ffiffiffi
τ
p

and
ffiffiffiffiffiffiffiffiffiffiffiffi
du=dr

p
, with interceptffiffiffiffi

τc
p

and slope
ffiffiffi
μ
p

. The Casson relationship approaches Newtonian
behavior at high values of deformation rate. Derive the velocity
profile of steady fully developed blood flow in an artery of radius
R. Determine the flow rate in the blood vessel. Calculate the
flow rate due to a pressure gradient dp=dx= −100 Pa=m, in an
artery of radius R=1mm, using the following blood data:
μ=3:5 cP,τc = 0:05 dynes=cm2.

8.45 The classic Poiseuille flow (Eq. 8.12), is for no-slip conditions
at the walls. If the fluid is a gas, and when the mean free path, l (the
average distance a molecule travels before collision with another
molecule), is comparable to the length-scale L of the flow, slip will
occur at the walls, and the flow rate and velocity will be increased for
a given pressure gradient. In Eq. 8.11, c1 will still be zero, but c2 must
satisfy the slip condition u= l ∂u=∂r at r=R. Derive the velocity
profile and flow rate of gas flow in a micro- or nanotube which
has such a slip velocity on the wall. Calculate the flow rate when
R=10 μm, μ=1:84× 10−5 N � s=m2, the mean free path l=68 nm,
and −∂p=∂x=1:0× 106 Pa=m.

8.46 For pressure-driven, steady, fully developed laminar flow of
an incompressible fluid through a straight channel of length L, we
can define the hydraulic resistance as Rhyd =Δp=Q, where Δp is
the pressure drop and Q is the flow rate (analogous to the electrical
resistance Relec =ΔV=I, whereΔV is the electrical potential drop and
I is the electric current). The following table summarizes the hydrau-
lic resistance of channels with different cross sectional shapes [30]:

Shape Formula for Rhyd
Computed

Rhyd

Circle
a 8μL

πa4

Ellipse ab 4μL½1+ ðb=aÞ2�
πab3

Triangle aa

a

320μLffiffiffi
3
p

a4

Two plates h w 12μL
h3w

Rectangle h w
12μL

h3w½1−0:63ðh=wÞ�

Square h
h

12μL
0:37h4
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Calculate the hydraulic resistance of a straight channel with the
listed cross-sectional shapes using the following parameters for
water flow: μ=1mPa �s, L=10 mm,a=100 μm, b=33 μm, h=
100μm, and w=300 μm. Based on the calculated hydraulic
resistance, which shape is the most energy efficient to pump water?

8.47 In a laminar flow in a 12-in.-diameter pipe the shear stress at
the wall is 1.0 psf and the fluid viscosity 0:002 lb �s=ft2. Calculate the
velocity gradient 1 in. from the centerline.

8.48 A fluid of specific gravity 0.90 flows at a Reynolds number of
1500 in a 0.3-m-diameter pipeline. The velocity 50 mm from the wall
is 3 m=s. Calculate the flow rate and the velocity gradient at the wall.

8.49 In a food industry plant, two immiscible fluids are pumped
through a tube such that fluid 1ðμ1 = 0:5 N �s=m2Þ forms an inner
core r =D=4 and fluid 2ðμ2 = 5 N �s=m2Þ forms an outer annulus.
The tube has D=5mm diameter and length L=5m. Derive and
plot the velocity distribution if the applied pressure difference, Δp,
is 5 MPa.

8.50 A horizontal pipe carries fluid in fully developed turbulent
flow. The static pressure difference measured between two sections
is 750 psi. The distance between the sections is 15 ft, and the pipe
diameter is 3 in. Calculate the shear stress, τw, that acts on the walls.

8.51Kerosene is pumped through a smooth tube with inside diam-
eter D=30 mm at close to the critical Reynolds number. The flow is
unstable and fluctuates between laminar and turbulent states, causing
the pressure gradient to intermittently change from approximately
−4:5 kPa=m to −11 kPa=m. Which pressure gradient corresponds
to laminar, and which to turbulent, flow? For each flow, compute
the shear stress at the tube wall, and sketch the shear stress
distributions.

8.52 In a flow of water in a 0.3-m-diameter pipe, the centerline
velocity is 6 m=s and that 50 mm from the pipe wall is 5:2 m=s.
Assuming laminar flow, determine the wall shear stress using each
of the measurements. Explain whether the flow is laminar or turbulent.

8.53 A liquid drug, with the viscosity and density of water, is to be
administered through a hypodermic needle. The inside diameter of
the needle is 0.25 mm and its length is 50 mm. Determine (a) the
maximum volume flow rate for which the flow will be laminar,
(b) the pressure drop required to deliver the maximum flow rate,
and (c) the corresponding wall shear stress.

Turbulent Velocity Profiles in Fully Developed
Pipe Flow
8.54 Laufer [5] measured the following data for mean velocity in
fully developed turbulent pipe flow at ReU =50,000:

�u=U 0:996 0:981 0:963 0:937 0:907 0:866 0:831
y=r 0:898 0:794 0:691 0:588 0:486 0:383 0:280

�u=U 0:792 0:742 0:700 0:650 0:619 0:551
y=R 0:216 0:154 0:093 0:062 0:041 0:024

In addition, Laufer measured the following data for mean velocity in
fully developed turbulent pipe flow at ReU =500;000:

�u=U 0:997 0:988 0:975 0:959 0:934 0:908
y=R 0:898 0:794 0:691 0:588 0:486 0:383

�u=U 0:874 0:847 0:818 0:771 0:736 0:690
y=R 0:280 0:216 0:154 0:093 0:062 0:037

Fit each set of data to the “power-law” profile for turbulent flow,
Eq. 8.22, and obtain a value of n for each set. Do the data tend to
confirm the validity of Eq. 8.22? Plot the data and their
corresponding trendlines on the same graph.

8.55 Equation 8.23 gives the power-law velocity profile exponent,
n, as a function of centerline Reynolds number, ReU , for fully devel-
oped turbulent flow in smooth pipes. Equation 8.24 relates mean
velocity, V , to centerline velocity,U, for various values of n. Prepare
a plot of V=U as a function of Reynolds number, ReV .

Energy Considerations in Pipe Flow
8.56 Consider fully developed laminar flow of water between sta-
tionary parallel plates. The maximum flow speed, plate spacing, and
width are 20 ft=s, 0.075 in. and 1.25 in., respectively. Find the kinetic
energy coefficient, α.

8.57 Consider fully developed laminar flow in a circular tube. Eval-
uate the kinetic energy coefficient for this flow.

8.58 Show that the kinetic energy coefficient, α, for the “power law”
turbulent velocity profile of Eq. 8.22 is given by Eq. 8.27. Plot α as a
function of ReV , for ReV =1× 104 to 1 × 107. When analyzing pipe
flow problems it is common practice to assume α≈1. Plot the error
associated with this assumption as a function of ReV , for
ReV =1×104 to 1× 107.

8.59 If the turbulent velocity profile in a pipe 0.6 m in diameter may
be approximated by υ=3:56y1=7, where v is in m/s and y is in m, and
the shearing stress in the fluid 0.15 m from the pipe wall is 23.0 Pa,
estimate the wall shear stress and volume flow rate.

8.60Water flows in a horizontal constant-area pipe; the pipe diam-
eter is 75 mm and the average flow speed is 5 m=s. At the pipe inlet,
the gage pressure is 275 kPa, and the outlet is at atmospheric pres-
sure. Determine the head loss in the pipe. If the pipe is now aligned
so that the outlet is 15 m above the inlet, what will the inlet pressure
need to be to maintain the same flow rate? If the pipe is now aligned
so that the outlet is 15 m below the inlet, what will the inlet pressure
need to be to maintain the same flow rate? Finally, how much lower
than the inlet must the outlet be so that the same flow rate is main-
tained if both ends of the pipe are at atmospheric pressure (i.e., grav-
ity feed)?

Calculation of Head Loss
8.61 For a given volume flow rate and piping system, will the pres-
sure loss be greater for hot water or cold water? Explain.

8.62 Consider the pipe flow from the water tower of Example 8.7.
To increase delivery, the pipe length is reduced from 600 ft to 450 ft
(the flow is still fully turbulent and f =0:035). What is the flow rate?

8.63 At the inlet to a constant-diameter section of the Alaskan pipe-
line, the pressure is 8.5 MPa and the elevation is 45 m; at the outlet
the elevation is 115 m. The head loss in this section of pipeline is
6:9 kJ=kg. Calculate the outlet pressure.

8.64When oil (kinematic viscosity 1 × 10−4 m2=s, specific gravity
0.92) flows at a mean velocity of 1:5 m=s through a 50-mm-diameter
pipeline, the head lost in 30 m of pipe is 5.4 m. What will be the head
loss when the velocity is increased to 3 m=s?

8.65 When fluid of specific weight 50 lb=ft3 flows in a 6-in.-
diameter pipeline, the frictional stress between fluid and pipe is
0.5 psf. Calculate the head lost per foot of pipe. If the flow rate is
2.0 cfs, how much power is lost per foot of pipe?
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8.66 If the head lost in 30-m-diameter of 75-mm-diameter pipe is
7.6 m for a given flow rate of water, what is the total drag force
exerted by the water on this length of pipe?

8.67 Water flows at 10 L=min through a horizontal 15-mm-
diameter tube. The pressure drop along a 20-m length of tube is
85 kPa. Calculate the head loss.

8.68 Laufer [5] measured the following data for mean velocity
near the wall in fully developed turbulent pipe flow at
ReU =50,000ðU =9:8 ft=s and R=4:86 in:Þ in air:

�u=U 0:343 0:318 0:300 0:264 0:228 0:221 0:179 0:152 0:140

y=R 0:0082 0:0075 0:0071 0:0061 0:0055 0:0051 0:0041 0:0034 0:0030

Plot the data and obtain the best-fit slope, d�u=dy. Use this to estimate
the wall shear stress from τw = μ d�u=dy. Compare this value to that
obtained using the friction factor f computed using (a) the Colebrook
formula (Eq. 8.37), and (b) the Blasius correlation (Eq. 8.38).

8.69 Water is pumped at the rate of 0:075 m3=s from a reservoir
20 m above a pump to a free discharge 35 m above the pump. The
pressure on the intake side of the pump is 150 kPa and the pressure
on the discharge side is 450 kPa. All pipes are commercial steel of
15 cm diameter. Determine (a) the head supplied by the pump and
(b) the total head loss between the pump and point of free discharge.

1 3

4

2

z1 = 20 m

p3 = 450 kPa

p2 = 150 kPa

D = 15 cm
(Elbows are flanged) Free discharge

z4 = 35 m

P8.69

8.70 Just downstream from the nozzle tip the velocity distribution
is as shown. Calculate the flow rate past section 1, the kinetic energy
coefficient α, and the momentum flux. Assume water is flowing.

7.5 m/s

75 mm

15 m/s

1
5

0
 m

m
 d

d

1

P8.70

8.71 A horizontal nozzle having a cylindrical tip of 75 mm diameter
attached to a 150-mm-diameter water pipe discharges 0:05 m3=s. In
the pipe just upstream from the nozzle the pressure is 62.6 kPa and α
is 1.05. In the issuing jet α is 1.01. Calculate the head losses in the
nozzle. Which losses contribute the most to the total head loss?
Which could be neglected?

8.72 When 0:3 m3=s of water flows through a 150-mm-diameter
constriction in a 300-mm-diameter horizontal pipeline, the pressure

at a point in the pipe is 345 kPa, and the head lost between this
point and the constriction is 3 m. Calculate the pressure in the
constriction.

8.73 The Colebrook equation (Eq. 8.37) for computing the turbulent
friction factor is implicit in f . An explicit expression [31] that gives
reasonable accuracy is

f0 = 0:25 log
e=D
3:7

+
5:74
Re0:9

� �	 
−2

Compare the accuracy of this expression for f with Eq. 8.37 by com-
puting the percentage discrepancy as a function of Re and e=D, for
Re=104 to 108, and e=D=0,0:0001,0:001,0:01,and 0:05. What is
the maximum discrepancy for these Re and e=D values? Plot f
against Re with e=D as a parameter.

8.74 We saw in Section 8.7 that instead of the implicit Colebrook
equation (Eq. 8.37) for computing the turbulent friction factor f , an
explicit expression that gives reasonable accuracy is

1ffiffiffi
f
p = −1:8 log

e=D
3:7

� �1:11

+
6:9
Re

" #

Compare the accuracy of this expression for f with Eq. 8.37 by com-
puting the percentage discrepancy as a function of Re and e=D, for
Re=104 to 108, and e=D=0,0:0001,0:001,0:01,and 0:05. What is
the maximum discrepancy for these Re and e=D values? Plot f
against Re with e=D as a parameter.

8.75 Water flows through a 2-in.-diameter tube that suddenly con-
tracts to 1 in. diameter. The pressure drop across the contraction is 0.5
psi. Determine the volume flow rate.

8.76 A 50-mm-diameter nozzle terminates a vertical 150-mm-
diameter pipeline in which water flows downward. At a point on
the pipeline a pressure gage reads 276 kPa. If this point is 3.6 m
above the nozzle tip and the head lost between point and tip is
1.5 m, calculate the flow rate.

8.77 A 12-in.-diameter pipe leaves a reservoir of surface elevation
300 at elevation 250 and drops to elevation 150, where it terminates
in a 3-in.-diameter nozzle. If the head lost through line and nozzle is
30 ft, calculate the flow rate.

8.78 A water pipe gradually changes from 6-in.-diameter to 8-in.-
diameter accompanied by an increase of elevation of l0 ft. If the pres-
sures at the 6 in. and 8 in. sections are 9 psi and 6 psi, respectively,
what is the direction of flow: (a) for 3 cfs and (b) for 4 cfs?

8.79Air at standard conditions flows through a sudden expansion in
a circular duct. The upstream and downstream duct diameters are
75 mm and 225 mm, respectively. The pressure downstream is
5 mm of water higher than that upstream. Determine the average
speed of the air approaching the expansion and the volume flow rate.

8.80Water flows from a larger pipe, diameter D1 = 100 mm, into a
smaller one, diameter D2 = 50 mm, by way of a reentrant device.
Find the head loss between points and .

D1 D2

Q = 0.01 m3/s

1

2

P8.80
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8.81 Flow through a sudden contraction is shown. The minimum
flow area at the vena contracta is given in terms of the area ratio
by the contraction coefficient [32],

Cc =
Ac

A2
= 0:62+ 0:38

A2

A1

� �3

The loss in a sudden contraction is mostly a result of the vena con-
tracta: The fluid accelerates into the contraction, there is flow sepa-
ration (as shown by the dashed lines), and the vena contracta acts as a
miniature sudden expansion with significant secondary flow losses.
Use these assumptions to obtain and plot estimates of the minor
loss coefficient for a sudden contraction, and compare with the data
presented in Fig. 8.15.

A1 A2

Ac

Flow

P8.81

8.82A flow rate of 1:0 l=min of oil of specific gravity 0.92 exists in
this pipeline. Is this flow laminar?What is the viscosity of the oil? For
the same flow in the opposite direction, what manometer reading is to
be expected?

250 mm
25 mm

1.2 m

Mercury

P8.82

8.83Water flows in a smooth pipeline at a Reynolds number of 106.
After many years of use, it is observed that half the original flow rate
produces the same head loss as for the original flow. Estimate the size
of the relative roughness of the deteriorated pipe.

8.84Air flows out of a clean room test chamber through a 150-mm-
diameter duct of length L. The original duct had a square-edged
entrance, but this has been replaced with a well-rounded one. The
pressure in the chamber is 2.5 mm of water above ambient. Losses
from friction are negligible compared with the entrance and exit
losses. Estimate the increase in volume flow rate that results from
the change in entrance contour.

8.85 A conical diffuser is used to expand a pipe flow from a diam-
eter of 100 mm to a diameter of 150 mm. Find the minimum length of
the diffuser if we want a loss coefficient (a) Kdiffuser ≤ 0:2 or
(b) Kdiffuser ≤ 0:35.

8.86 By applying the basic equations to a control volume starting at
the expansion and ending downstream, analyze flow through a sud-
den expansion assuming that the inlet pressure p1 acts on the area A2

at the expansion. Develop an expression for and plot the minor head

loss across the expansion as a function of area ratio, and compare
with the data of Fig. 8.15.

8.87 Water at 45�C enters a shower head through a circular tube
with 15.8 mm inside diameter. The water leaves in 24 streams, each
of 1.05 mm diameter. The volume flow rate is 5:67 L=min. Estimate
the minimum water pressure needed at the inlet to the shower head.
Evaluate the force needed to hold the shower head onto the end of
the circular tube. Indicate whether this is a compression or a tension
force.

8.88Water discharges to atmosphere from a large reservoir through
a moderately rounded horizontal nozzle of 35-mm-diameter. The free
surface is 2.5 m above the nozzle exit plane. Calculate the change in
flow rate when a short section of 50-mm-diameter pipe is attached to
the end of the nozzle to form a sudden expansion. Determine the
location and estimate the magnitude of the minimum pressure with
the sudden expansion in place. If the flow were frictionless with
the sudden expansion in place, would the minimum pressure be
higher, lower, or the same? Would the flow rate be higher, lower,
or the same?

8.89You are asked to compare the behavior of fully developed lam-
inar flow and fully developed turbulent flow in a horizontal pipe
under different conditions. For the same flow rate, which will have
the larger centerline velocity? Why? If the pipe discharges to atmos-
phere, what would you expect the trajectory of the discharge stream
to look like for the same flow rate? Sketch your expectations for each
case. For the same flow rate, which flow would give the larger wall
shear stress?Why? Sketch the shear stress distribution τ=τw as a func-
tion of radius for each flow. For the same Reynolds number, which
flow would have the larger pressure drop per unit length?Why? For a
given imposed pressure differential, which flow would have the lar-
ger flow rate? Why?

NOTE: Most of the remaining problems in this chapter involve
determination of the turbulent friction factor f from the Reynolds
number Re and dimensionless roughness e=D. For approximate
calculations, f can be read from Fig. 8.13; a more accurate approach
is to use this value (or some other value, even f =1) as the first
value for iterating in Eq. 8.37. The most convenient approach is to
use a numerical solution of Eq. 8.37 using an equation solver. To
avoid needless duplication, the computer symbol will only be used
next to remaining problems in this chapter when there is
an additional benefit (e.g., for iterating to a solution, or for
graphing).

8.90 A laboratory experiment is set up to measure pressure drop for
flow of water through a smooth tube. The tube diameter is 15.9 mm,
and its length is 3.56 m. Flow enters the tube from a reservoir through
a square-edged entrance. Calculate the volume flow rate needed to
obtain turbulent flow in the tube. Evaluate the reservoir height differ-
ential required to obtain turbulent flow in the tube.

8.91 The applied pressure difference, Δp, and corresponding vol-
ume flow rate, Q, for laminar flow in a tube can be compared to
the applied DC voltage V across, and current I through, an electrical
resistor, respectively. Investigate whether or not this analogy is valid
for turbulent flow by plotting the “resistance” Δp=Q as a function of
Q for turbulent flow of kerosene (at 40�C) in a tube 250 mm long
with inside diameter 7.5 mm.

8.92 Plot the required reservoir depth of water to create flow in a
smooth tube of diameter 10 mm and length 100 m, for a flow rate
range of 1 L=min through 10 L=min.
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8.93 Oil with kinematic viscosity ν=7:5× 10−4 ft2=s flows at
45 gpm in a 100-ft-long horizontal drawn-tubing pipe of 1 in. diam-
eter. By what percentage ratio will the energy loss increase if the
same flow rate is maintained while the pipe diameter is reduced to
0.75 in.?

8.94Water from a pump flows through a 9-in.-diameter commercial
steel pipe for a distance of 4 miles from the pump discharge to a res-
ervoir open to the atmosphere. The level of the water in the reservoir
is 50 ft above the pump discharge, and the average speed of the water
in the pipe is 10 ft=s. Calculate the pressure at the pump discharge.

Pump

1

50 ft

P8.94

8.95 A 5-cm-diameter potable water line is to be run through a
maintenance room in a commercial building. Three possible layouts
for the water line are proposed, as shown. Which is the best option,
based on minimizing losses? Assume galvanized iron, and a flow rate
of 350 L=min.

5.25 m

2.5 m

(a) Two miter bends (b) A standard elbow (c) Three standard elbows

P8.95

8.96 A system for testing variable-output pumps consists of the
pump, four standard elbows, and an open gate valve forming a closed
circuit as shown. The circuit is to absorb the energy added by the
pump. The tubing is 75-mm-diameter cast iron, and the total length
of the circuit is 20 m. Plot the pressure difference required from the
pump for water flow rates Q ranging from 0:01 m3=s to 0:06 m3=s.

Gate Valve

Pump

P8.96

8.97 Two reservoirs are connected by three clean cast-iron
pipes in series, L1 = 600 m, D1 = 0:3 m, L2 = 900 m, D2 = 0:4 m,
L3 = 1500 m, and D3 = 0:45 m. When the discharge is 0:11 m3=s
of water at 15�C, determine the difference in elevation between
the reservoirs.

8.98Water, at volume flow rateQ=0:75 ft3=s, is delivered by a fire
hose and nozzle assembly. The hose of L=250 ft, D=3 in., and
e=D=0:004 is made up of four 60-ft sections joined by couplings.
The entrance is square-edged; the minor loss coefficient for each
coupling is Kc =0:5, based on mean velocity through the hose.
The nozzle loss coefficient is Kn =0:02, based on velocity in the exit

jet, of D2 = 1 in. diameter. Estimate the supply pressure required at
this flow rate.

8.99 Flow in a tube may alternate between laminar and turbulent
states for Reynolds numbers in the transition zone. Design a
bench-top experiment consisting of a constant-head cylindrical trans-
parent plastic tank with depth graduations, and a length of smooth
plastic tubing attached at the base of the tank through which the water
flows to a measuring container. Select tank and tubing dimensions so
that the system is compact, but will operate in the transition zone
range. Design the experiment so that you can easily increase the tank
head from a low range (laminar flow) through transition to turbulent
flow, and vice versa. Write instructions for students on recognizing
when the flow is laminar or turbulent. Generate plots on the same
graph of tank depth against Reynolds number, assuming laminar
or turbulent flow.

8.100When you drink a beverage with a straw, you need to over-
come both gravity and friction in the straw. Estimate the fraction
of the total effort you put into quenching your thirst of each
factor, making suitable assumptions about the liquid and straw
properties, and your drinking rate. For example, how long it would
take you to drink a 12-oz drink if you drank it all in one go (quite a
feat with a straw)? Is the flow laminar or turbulent? (Ignore minor
losses.)

Solution of Pipe Flow Problems
8.101 What flow rate (gpm) will be produced in a 75-mm-diameter
water pipe for which there is a pressure drop of 425 kPa over a 200-m
length? The pipe roughness is 2.5 mm. The water is at 0�C.

8.102 You recently bought a house and want to improve the
flow rate of water on your top floor. The low flow rate is due to three
reasons: The city water pressure at the water meter is low
ðp=200 kPa gageÞ; the piping has a small diameter ðD=1:27 cmÞ
and has been crudded up, increasing its roughness ðe=D=0:05Þ;
and the top floor of the house is 15 m higher than the water meter.
You are considering two options to improve the flow rate: Option
1 is replacing all the piping after the water meter with new smooth
piping with a diameter of 1.9 cm; and option 2 is installing a booster
pump while keeping the original pipes. The booster pump has an
outlet pressure of 300 kPa. Which option would be more effective?
Neglect minor losses.

p = 200 kPa p = 200 kPa
p = 300 kPa

7 m 7 m

15 m

1 mD = 1.9 cm

e/D = 0
D = 1.27 cm

e/D = 0.05

Booster

pump

Option 1 Option 2

Water

meter

Water

meter

15 m

1 m

P8.102

8.103 Gasoline flows in a long, underground pipeline at a constant
temperature of 15�C. Two pumping stations at the same elevation are
located 13 km apart. The pressure drop between the stations is 1.4
MPa. The pipeline is made from 0.6-m-diameter pipe. Although
the pipe is made from commercial steel, age and corrosion have
raised the pipe roughness to approximately that for galvanized iron.
Compute the volume flow rate.
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8.104 An 18-in.-diameter new riveted steel pipeline 1000 ft long
runs from an elevation of 150 ft to an elevation of 200 ft. If the
pressure at 150 ft is 100 psi and at 200 ft is 72 psi, what flow rate
can be expected though the line?

8.105 What diameter of smooth masonry pipe is needed to carry
50 cfs between two reservoirs of surface elevations 250 and 100 if
the pipeline is to be 2 miles long?

8.106 Laboratory tests on cylindrical pipe yield the empirical
forrnula hL =0:002 583 lV2:14 d−0:86 with head loss, length, and
diameter in m, and velocity in m/s. Water of kinematic viscosity
9:3× 10−7 m2=s was used in the tests and ranges of d and V were:
0:03< d<0:06 and 0:6<V <1:5. Analyze the formula and com-
ment on its possible validity.

8.107 Water flows steadily in a 125-mm-diameter cast-iron pipe
150 m long. The pressure drop between sections and is
150 kPa, and section is located 15 m above section . Find
the volume flow rate.

8.108 Two galvanized iron pipes of diameter D are connected to a
large water reservoir, as shown. Pipe A has length L and pipe B has
length 2L. Both pipes discharge to atmosphere. Which pipe will pass
the larger flow rate? Justify without calculating the flow rate in each
pipe. Compute the flow rates if H =10m,D=50mm,and L=10m.

H

DD

2LL

Pipe A Pipe B

P8.108

8.109 A mining engineer plans to do hydraulic mining with a high-
speed jet of water. A lake is located H =300 m above the mine site.
Water will be delivered through L=900 m of fire hose; the hose has
inside diameter D=75 mm and relative roughness e=D=0:01.
Couplings are located every 10 m along the hose. The nozzle outlet
diameter is d=25mm. Its minor loss coefficient isK =0:02 based on
outlet velocity. Estimate the maximum outlet velocity that this
system could deliver. Determine the maximum force exerted on a
rock face by this water jet.

8.110 The flow of water through a 150-mm-diameter horizontal
pipe that enlarges abruptly to 300 mm diameter, is 0.14 m3/s. The
pressure in the smaller pipe is 138 kPa. Calculate the pressure in
the 300-mm-diameter pipe, neglecting pipe friction.

8.111 The fluid flowing has specific gravity 0.90; V75 = 6 m=s;
R=105. Calculate the gage reading.

EI. 30 m

45 m

150 mm d

75 mm d
EI. 27 m

2.4 m

140 kpa

Smooth

P8.111

8.112Water is flowing. Calculate the direction and magnitude of the
manometer reading.

V = 10 ft/s

Mercury

60 in.

3 in. 6 in. d

12 in. d

P8.112

8.113 Investigate the effect of tube roughness on flow rate by com-
puting the flow generated by a pressure difference Δp=100 kPa
applied to a length L=100m of tubing, with diameter D=25 mm.
Plot the flow rate against tube relative roughness e=D for e=D
ranging from 0 to 0.05 (this could be replicated experimentally by
progressively roughening the tube surface). Is it possible that this
tubing could be roughened so much that the flow could be slowed
to a laminar flow rate?

8.114 Investigate the effect of tube length on water flow rate
by computing the flow generated by a pressure difference
Δp=100 kPa applied to a length L of smooth tubing, of diameter
D=25mm. Plot the flow rate against tube length for flow ranging
from low speed laminar to fully turbulent.

8.115 For the pipe flow into a reservoir of Example 8.5 consider the
effect of pipe roughness on flow rate, assuming the pressure of the
pump is maintained at 153 kPa. Plot the flow rate against pipe rough-
ness ranging from smooth ðe=0Þ to very rough ðe=3:75 mmÞ. Also
consider the effect of pipe length assuming the pump always pro-
duces 153 kPa for smooth pipe. Plot the flow rate against pipe length
for L=100 m through L=1000 m.

8.116 Calculate the magnitude and direction of the manometer read-
ing. Water is flowing.

V = 4.5 m/s

Mercury

0.9 m

2.4 m3 m

75 mm d
f  = 0.020

P8.116

8.117 Experimental determination of local losses and loss coeffi-
cients are made from measurements of the hydraulic grade lines in
zones of established flow. Calculate the head loss and loss coeffe-
cients for this gradual expansion from the data given.
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6.90 m

HGL

HGL

3 m3 m
0.6 m

0
.3

 m

1.5 m

4.12 m
1.19 m

75 mm d
V150 = 3 m/s

6.71 m

150 mm d

P8.117

8.118 Water is flowing. Calculate the gage reading when the veloc-

ity in the 12-in.-diameter pipe is 8 ft=s.

Elevation = 200 ft

Elevation = 170 ft

8 ft, 6-in.-diameter,

f = 0.020

150 ft, 1
2-in.-diameter,

f = 0.020

P8.118

8.119 The siphon shown is fabricated from 50-mm-ID drawn alumi-

num tubing. The liquid is water at 15�C. Compute the volume flow

rate through the siphon. Estimate the minimum pressure inside

the tube.

0.6 m

2.5 m

R = 0.45 m

P8.119

8.120A large open water tank has a horizontal cast iron drainpipe of

diameter D=1 in: and length L= 2 ft attached at its base. If the depth

of water is h=3 ft, find the flow rate (gpm) if the pipe entrance is
(a) reentrant, (b) square-edged, and (c) rounded ðr =0:2 in:Þ.
8.121 A tank containing 30 m3 of kerosene is to be emptied by

a gravity feed using a drain hose of diameter 15 mm, roughness
0.2mm, and length 1m. The top of the tank is open to the atmosphere

and the hose exits to an open chamber. If the kerosene level is initially

10 m above the drain exit, estimate, assuming steady flow, the initial

drainage rate. Estimate the flow rate when the kerosene level is down

to 5 m, and then down to 1 m. Based on these three estimates, make a

rough estimate of the time it took to drain to the 1-m level.

8.122 A 90� screwed elbow is installed in a 2-in.-diameter pipeline

having a friction factor of 0.03. The head lost at the elbow is equiv-

alent to that lost in how many feet of the pipe? What would be the

equivalent length for a 1-in.-diameter pipe?

8.123 Calculate the total tension in the bolts. Neglect entrance loss.
The pipe is 30 m long, the diameter is 150 mm, and f = 0.020.

Bolts

Water

6 m

P8.123

8.124 A horizontal 50-mm-diameter PVC pipeline leaves (square-

edged entrance) a water tank 3 m below its free surface. At 15 m from
the tank, it enlarges abruptly to a 100-mm-diameter pipe which

runs 30 m horizontally to another tank, entering it 0.6 m below its
surface. Calculate the flow rate through the line for a water temper-

ature of 20�C, including all head losses.

8.125 You are watering your lawn with an old hose. Because lime

deposits have built up over the years, the 0.75-in.-ID. hose now has
an average roughness height of 0.022 in. One 50-ft length of the hose,

attached to your spigot, delivers 15 gpm of water ð60�FÞ. Compute

the pressure at the spigot, in psi. Estimate the delivery if two 50-ft

lengths of the hose are connected. Assume that the pressure at the

spigot varies with flow rate and the water main pressure remains con-

stant at 50 psig.

8.126 Your boss claims that for pipe flow the flow rate, Q/ ffiffiffiffiffiffi
Δp
p

,

where Δp is the pressure difference driving the flow. You dispute

this, so perform some calculations. You take a 1-in.-diameter com-

mercial steel pipe and assume an initial flow rate of 1:25 gal=min

of water. You then increase the applied pressure in equal increments
and compute the new flow rates so you can plot Q versusΔp, as com-

puted by you and your boss. Plot the two curves on the same graph.

Was your boss right?

8.127 A hydraulic press is powered by a remote high-pressure

pump. The gage pressure at the pump outlet is 3000 psi, whereas
the pressure required for the press is 2750 psi gage, at a flow rate

of 0:02 ft3=s. The press and pump are connected by 165 ft of smooth,

drawn steel tubing. The fluid is SAE 10W oil at 100�F. Determine the

minimum tubing diameter that may be used.

8.128One-quarter of a cubicmeter per second of liquid at 20�C is to

be carried between two tanks having a difference of surface elevation

of 9 m. If the pipeline is smooth and 90 m long, what pipe size is
required if the liquid is (a) crude oil, (b) water?

8.129 Calculate the flow rate from this water tank if the 6 in. pipe-

line has a friction factor of 0.020 and is 50 ft long. Is cavitation to be

expected in the pipe entrance? The water in the tank is 5 ft deep.

EI.200

EI.150

6 in.

P8.129
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8.130 A 6-ft-diameter pipeline 4 miles long between two reser-
voirs of surface elevations 500 and 300 ft carries a flow rate of
250 cfs of water ð68�FÞ. It is proposed to increase the flow rate
through the line by installing a glass-smooth liner. Above what liner
diameter may an increase of flow rate be expected? What is the
maximum increase to be expected? Assume the 6-ft diameter to be
measured to the midpoint of the roughness projections. Neglect all
local head losses.

8.131 Determine the minimum size smooth rectangular duct with an
aspect ratio of 3 that will pass 1 m3=s of 10�C air with a head loss of
25 mm of water per 100 m of duct.

8.132 A new industrial plant requires a water flow rate of
5:7 m3=min. The gage pressure in the water main, located in the street
50 m from the plant, is 800 kPa. The supply line will require instal-
lation of 4 elbows in a total length of 65 m. The gage pressure
required in the plant is 500 kPa.What size galvanized iron line should
be installed?

8.133 What diameter water pipe is required to handle 0:075 m3=s
and a 500 kPa pressure drop? The pipe length is 175 m, and rough-
ness is 2.5 mm.

8.134 A pipe friction experiment for air consists of a smooth brass
tube with 63.5 mm inside diameter; the distance between pressure
taps is 1.52 m. The pressure drop is indicated by a manometer filled
with Meriam red oil. The centerline velocity U is measured with a
pitot cylinder. At one flow condition, U =23:1 m=s and the pressure
drop is 12.3 mm of oil. For this condition, evaluate the Reynolds
number based on average flow velocity. Calculate the friction factor
and compare with the value obtained from Eq. 8.37 (use n=7 in the
power-law velocity profile).

8.135 Oil has been flowing from a large tank on a hill to a tanker at
the wharf. The compartment in the tanker is nearly full and an oper-
ator is in the process of stopping the flow. A valve on the wharf is
closed at a rate such that 1 MPa is maintained in the line immediately
upstream of the valve. Assume:

Length of line from tank to valve 3 km
Inside diameter of line 200 mm
Elevation of oil surface in tank 60 m
Elevation of valve on wharf 6 m
Instantaneous flow rate 2:5 m3=min
Head loss in line (exclusive of valve being
closed) at this rate of flow

23 m of oil

Specific gravity of oil 0:88

Calculate the initial instantaneous rate of change of volume flow rate.

8.136 The pressure rise across a water pump is 35 psi when the vol-
ume flow rate is 500 gpm. If the pump efficiency is 80 percent, deter-
mine the power input to the pump.

8.137 Cooling water is pumped from a reservoir to rock drills on
a construction job using the pipe system shown. The flow rate
must be 600 gpm and water must leave the spray nozzle at
120 ft=s. Calculate the minimum pressure needed at the pump
outlet. Estimate the required power input if the pump efficiency is
70 percent.

Gate valve, open

Pump

Pipe, D = 4 in.
(aluminum)

Total length: L = 700 ft
Joints: 15, each with

Kjoint = 1

Vj = 120 ft/s

400 ft

P8.137

8.138 You are asked to size a pump for installation in the water
supply system of the Willis Tower (formerly the Sears Tower) in
Chicago. The system requires 100 gpm of water pumped to a reser-
voir at the top of the tower 340m above the street. City water pressure
at the street-level pump inlet is 400 kPa gage. Piping is to be com-
mercial steel. Determine the minimum diameter required to keep
the average water velocity below 3:5 m=s in the pipe. Calculate
the pressure rise required across the pump. Estimate the minimum
power needed to drive the pump.

8.139 Heavy crude oil (SG=0:925 and ν=1:0× 10−4 m2=s) is
pumped through a pipeline laid on flat ground. The line is made from
steel pipe with 600 mm ID and has a wall thickness of 12 mm. The
allowable tensile stress in the pipe wall is limited to 275 MPa by cor-
rosion considerations. It is important to keep the oil under pressure to
ensure that gases remain in solution. The minimum recommended
pressure is 500 kPa. The pipeline carries a flow of 400,000 barrels
(in the petroleum industry, a “barrel” is 42 gal) per day. Determine
the maximum spacing between pumping stations. Compute the
power added to the oil at each pumping station.

8.140 Petroleum products are transported over long distances by
pipelines such as the Alaskan pipeline (see Example 8.6). Estimate
the energy needed to pump a typical petroleum product, expressed
as a fraction of the throughput energy carried by the pipeline. State
and critique your assumptions clearly.

8.141 A water pump can generate a pressure difference Δp (psi)
given byΔp=145−0:1Q2, where the flow rate isQ ft3=s. It supplies
a pipe of diameter 20 in., roughness 0.5 in., and length 2500 ft. Find
the flow rate, pressure difference, and the power supplied to the pump
if it is 70 percent efficient. If the pipe were replaced with one of
roughness 0.25 in., how much would the flow increase, and what
would the required power be?

8.142 The head versus capacity curve for a certain fan may be
approximated by the equation H =30−10−7Q2, where H is the out-
put static head in inches of water andQ is the air flow rate in ft3=min.
The fan outlet dimensions are 8 × 16 in. Determine the air flow rate
delivered by the fan into a 200 ft straight length of 8× 16 in: rectan-
gular duct.

8.143 A swimming pool has a partial-flow filtration system. Water at
75�F is pumped from the pool through the system shown. The pump
delivers 30 gpm. The pipe is nominal 3/4-in. PVC ðID= 0:824 in:Þ.
The pressure loss through the filter is approximately Δp=0:6Q2,
where Δp is in psi and Q is in gpm. Determine the pump pressure
and the flow rate through each branch of the system.
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Filter
patm

Total length:
40 ft

Total length:
20 ft

10 ft
From

pool

P8.143

8.144 Water at 65�C flows through a 75-mm-diameter orifice
installed in a 150-mm-ID pipe. The flow rate is 20 L=s. Determine
the pressure difference between the corner taps.

8.145 A smooth 200-m pipe, 100 mm diameter connects two
reservoirs. The entrance and exit of the pipe are sharp-edged. At the
midpoint of the pipe is an orifice plate with diameter 40 mm. If the
water levels in the reservoirs differ by 30 m, estimate the pressure
differential indicated by the orifice plate and the flow rate.

8.146 A 12 in. × 6 in. Venturi meter is installed in a horizontal
waterline. The pressure gages read 30 and 20 psi. Calculate the flow
rate for a water temperature of 68�F and the head loss between the
base and throat of the meter. Calculate the flow rate if the pipe is ver-
tical with the throat of the meter 2 ft below the base and the pressure
gages read the same values.

8.147 A 1-in.-diameter nozzle is attached to a 3-in.-diameter hose.
What flow rate of water will occur through the nozzle when the pres-
sure in the hose is 60 psi? Assume that the Reynolds number is 105.
What is the velocity of the jet at the nozzle tip? Howmuch head is lost
through the nozzle? To what maximum height will the jet rise,
neglecting air friction?

8.148 A sharp-edged orifice with conventional pressure connec-
tions and an orifice coefficient of K =0:6 is to be installed in a
300-mm-diameter waterline. For a flow rate of 0:28 m3=s, the max-
imum allowable head loss is 7.6 m. What is the smallest orifice that
may be used?

8.149 A venturi meter with a 3-in.-diameter throat is placed in a
6-in.-diameter line carrying water at 75�F. The pressure drop
between the upstream tap and the venturi throat is 12 in. of mercury.
Compute the rate of flow.

8.150 Air flows through a venturi meter with a 3-in.-diameter
throat placed in a 6-in.-diameter line. Assume that the upstream
pressure is 60 psi and the temperature is 68�F. Determine the
maximum possible mass flow rate of air for which the assumption
of incompressible flow is a valid engineering approximation. Com-
pute the corresponding differential pressure reading on a mercury
manometer.

8.151 Water at 10�C flows steadily through a venturi. The pressure
upstream from the throat is 200 kPa gage. The throat diameter is
50 mm; and the upstream diameter is 100 mm. Estimate the maxi-
mum flow rate this device can handle without cavitation.

8.152 Drinking straws are to be used to improve the air flow
in a pipe-flow experiment. Packing a section of the air pipe with
drinking straws to form a “laminar flow element” might allow the
air flow rate to be measured directly, and simultaneously would
act as a flow straightener. To evaluate this idea, determine (a) the
Reynolds number for flow in each drinking straw, (b) the friction
factor for flow in each straw, and (c) the gage pressure at the exit
from the drinking straws. For laminar flow in a tube, the entrance loss
coefficient is Kent = 1:4 and α=2:0. Comment on the utility of
this idea.

Straws (d = 3 mm)

L = 230 mm D = 63.5 mm

Q = 100 m3/hr

P8.152

8.153 In some western states, water for mining and irrigation was
sold by the “miner’s inch,” the rate at which water flows through
an opening in a vertical plank of 1 in:2 area, up to 4 in: tall, under
a head of 6 to 9 in. Develop an equation to predict the flow rate
through such an orifice. Specify clearly the aspect ratio of the open-
ing, thickness of the plank, and datum level for measurement of head
(top, bottom, or middle of the opening). Show that the unit of meas-
ure varies from 38.4 (in Colorado) to 50 (in Arizona, Idaho, Nevada,
and Utah) in units of miner’s inches per ft3=s.
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C H A P T E R 9

External Incompressible
Viscous Flow
Part A Boundary Layers

9.1 The Boundary-Layer Concept

9.2 Laminar Flat-Plate Boundary Layer: Exact Solution
(on the Web)

9.3 Momentum Integral Equation

9.4 Use of the Momentum Integral Equation for Flow
with Zero Pressure Gradient

9.5 Pressure Gradients in Boundary-Layer Flow

Part B Fluid Flow About Immersed Bodies

9.6 Drag

9.7 Lift

9.8 Summary and Useful Equations

Case Study

The Blended Wing-Body Aircraft

Boeing PhantomWorks has partnered with NASA and the U.S. Air
Force Research Laboratory to study an advanced-concept, fuel-
efficient, blended wing-body. It is called a blended wing-body
(BWB) because it looks more like a modified triangular-shaped
wing than traditional aircraft, which essentially consist of a tube
and wing with a tail. The concept of a BWB actually goes back to
the 1940s, but developments in compositematerials and fly-by-
wire controls are making it more feasible. Researchers have
tested a 6.3-m wingspan (8.5 percent scale) prototype of the
X-48B, a BWB aircraft that could have military and commercial
applications. The next step is for NASA to flight-test a scale-
model variant called X-48C. The X-48C will be used to examine

how engines mounted to the rear and above the body help to
shield the ground from engine noise on takeoff and approach.
It also features tail fins for additional noise shielding and for
flight control.

The big difference between BWB aircraft and the traditional
tube-and-wing aircraft, apart from the fact that the tube is
absorbed into the wing shape, is that it does not have a tail. Tra-
ditional aircraft need a tail for stability and control; the BWB uses
a number of different multiple-control surfaces and possibly tail
fins to control the vehicle. There will be a number of advantages
to the BWB if it proves feasible. Because the entire structure gen-
erates lift, less power is needed for takeoff. Studies have also
shown that BWBdesigns can fit into the 80-m (260-ft) envelope
that is the current standard for airplane maneuver at airports.
A BWB could carry up to 1000 people, making such a future
U.S. product a challenge to Airbus’s A380 and future stretched
versions.

Apart from possible fuel savings of up to 30 percent due to
improved streamlining, the interior of a commercial BWB air-
plane would be radically different from that of current airplanes.
Passengers would enter a room like a movie theater rather than a
cramped half-cylinder, therewould be nowindows (video screens
would be connected to external cameras instead), and passengers
would be seated in the large movie theater–like room (because
seating is not only in the central core but also well out into the
blended wings).

In this chapter we will study how lift for the BWB is created by
the flow of air over the surfaces. We will also learn how aero-
dynamic drag on the BWB occurs. Lift and the drag both depend
on the nature of the flow pattern and the shape of the airfoil.
The material in this chapter will give you insight into the
mechanisms of flow over surfaces.
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The X-48B prototype in the full-scale NASA tunnel.
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External flows are flows over bodies immersed in an unbounded fluid. The flow over a sphere
(Fig. 2.14b) and the flow over a streamlined body (Fig. 2.16) are examples of external flows, which were
discussed qualitatively in Chapter 2.More interesting examples are the flow fields around such objects as
airfoils (Fig. 9.1), automobiles, and airplanes. Our objective in this chapter is to quantify the behavior of
viscous, incompressible fluids in external flow.

A number of phenomena that occur in external flow over a body are illustrated in the sketch of
viscous flow at high Reynolds number over an airfoil (Fig. 9.1). The freestream flow divides at the
stagnation point and flows around the body. Fluid at the surface takes on the velocity of the body as a
result of the no-slip condition. Boundary layers form on both the upper and lower surfaces of the
body. (The boundary-layer thickness on both surfaces in Fig. 9.1 is exaggerated greatly for clarity.)
The flow in the boundary layers initially is laminar. Transition to turbulent flow occurs at some dis-
tance from the stagnation point, depending on freestream conditions, surface roughness, and pressure
gradient. The transition points are indicated by “T” in the figure. The turbulent boundary layer fol-
lowing transition grows more rapidly than the laminar layer. A slight displacement of the streamlines
of the external flow is caused by the thickening boundary layers on the surface. In a region of
increasing pressure (an adverse pressure gradient—so called because it opposes the fluid motion,
tending to decelerate the fluid particles) flow separation may occur. Separation points are indicated
by “S” in the figure. Fluid that was in the boundary layers on the body surface forms the viscous
wake behind the separation points.

This chapter has two parts. Part A is a review of boundary-layer flows. Here we discuss in a little
more detail the ideas introduced in Chapter 2, and then apply the fluid mechanics concepts we have
learned to analyze the boundary layer for flow along a flat plate—the simplest possible boundary layer,
because the pressure field is constant. We will be interested in seeing how the boundary-layer thickness
grows, what the surface friction will be, and so on. We will explore a classic analytical solution for a
laminar boundary layer, and see that we need to resort to approximate methods when the boundary layer
is turbulent (and we will also be able to use these approximate methods for laminar boundary layers, to
avoid using the somewhat difficult analytical method). This will conclude our introduction to boundary
layers, except we will briefly discuss the effect of pressure gradients (present for all body shapes except
flat plates) on boundary-layer behavior.

In Part B we will discuss the force on a submerged body, such as the airfoil of Fig. 9.1. We will
see that this force results from both shear and pressure forces acting on the body surface, and that both
of these are profoundly affected by the fact that we have a boundary layer, especially when this causes
flow separation and a wake. Traditionally the force a body experiences is decomposed into the compo-
nent parallel to the flow, the drag, and the component perpendicular to the flow, the lift. Because
most bodies do have a point of separation and a wake, it is difficult to use analysis to determine the force
components, so we will present approximate analyses and experimental data for various interesting body
shapes.

LBL

LBL
TBL

TBL
T

T

S

S
Viscous wake

Streamlines

Stagnation point

U–Uniform velocity field upstream

LBL– Laminar boundary layer
TBL– Turbulent boundary layer

T– Transition
S– Separation point

Airfoil

Fig. 9.1 Details of viscous flow around an airfoil.

Video: Flow
around an
Airfoil

Video: Flow
Separation on
an Airfoil
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Part A BOUNDARY LAYERS

9.1 The Boundary-Layer Concept
The concept of a boundary layer was first introduced by Ludwig Prandtl [1], a German aerodynamicist,
in 1904.

Prior to Prandtl’s historic breakthrough, the science of fluid mechanics had been developing in two
rather different directions. Theoretical hydrodynamics evolved from Euler’s equation of motion for a
nonviscous fluid (Eq. 6.1, published by Leonhard Euler in 1755). Since the results of hydrodynamics
contradicted many experimental observations (especially, as we saw in Chapter 6, that under the assump-
tion of inviscid flow no bodies experience drag!), practicing engineers developed their own empirical art
of hydraulics. This was based on experimental data and differed significantly from the purely mathe-
matical approach of theoretical hydrodynamics.

Although the complete equations describing the motion of a viscous fluid (the Navier–Stokes equa-
tions, Eqs. 5.26, developed by Navier, 1827, and independently by Stokes, 1845) were known prior to
Prandtl, the mathematical difficulties in solving these equations (except for a few simple cases) prohib-
ited a theoretical treatment of viscous flows. Prandtl showed [1] that many viscous flows can be analyzed
by dividing the flow into two regions, one close to solid boundaries, the other covering the rest of the
flow. Only in the thin region adjacent to a solid boundary (the boundary layer) is the effect of viscosity
important. In the region outside of the boundary layer, the effect of viscosity is negligible and the fluid
may be treated as inviscid.

The boundary-layer concept provided the link that had been missing between theory and practice
(for one thing, it introduced the theoretical possibility of drag!). Furthermore, the boundary-layer con-
cept permitted the solution of viscous flow problems that would have been impossible through appli-
cation of the Navier–Stokes equations to the complete flow field.1 Thus the introduction of the
boundary-layer concept marked the beginning of the modern era of fluid mechanics.

The development of a boundary layer on a solid surface was discussed in Section 2.6. In the bound-
ary layer both viscous and inertia forces are important. Consequently, it is not surprising that the Rey-
nolds number (which represents the ratio of inertia to viscous forces) is significant in characterizing
boundary-layer flows. The characteristic length used in the Reynolds number is either the length in
the flow direction over which the boundary layer has developed or some measure of the boundary-layer
thickness.

As is true for flow in a duct, flow in a boundary layer may be laminar or turbulent. There is no unique
value of Reynolds number at which transition from laminar to turbulent flow occurs in a boundary layer.
Among the factors that affect boundary-layer transition are pressure gradient, surface roughness, heat
transfer, body forces, and freestream disturbances. Detailed consideration of these effects is beyond
the scope of this book.

In many real flow situations, a boundary layer develops over a long, essentially flat surface. Exam-
ples include flow over ship and submarine hulls, aircraft wings, and atmospheric motions over flat ter-
rain. Since the basic features of all these flows are illustrated in the simpler case of flow over a flat plate,
we consider this first. The simplicity of the flow over an infinite flat plate is that the velocity U outside
the boundary layer is constant, and therefore, because this region is steady, inviscid, and incompressible,
the pressure will also be constant. This constant pressure is the pressure felt by the boundary layer—
obviously the simplest pressure field possible. This is a zero pressure gradient flow.

A qualitative picture of the boundary-layer growth over a flat plate is shown in Fig. 9.2. The bound-
ary layer is laminar for a short distance downstream from the leading edge; transition occurs over a
region of the plate rather than at a single line across the plate. The transition region extends downstream
to the location where the boundary-layer flow becomes completely turbulent.

For incompressible flow over a smooth flat plate (zero pressure gradient), in the absence of heat
transfer, transition from laminar to turbulent flow in the boundary layer can be delayed to a Reynolds
number, Rex = ρUx=μ, greater than one million if external disturbances are minimized. (The length x is

1 Today, Computational Fluid Dynamics (CFD) programs are commonly used to solve the Navier–Stokes equations.

Video: Effect of
Viscosity on
Boundary Layer
Growth
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measured from the leading edge.) For calculation purposes, under typical flow conditions, transition usu-
ally is considered to occur at a length Reynolds number of 500,000. For air at standard conditions, with
freestream velocityU =30 m=s, this corresponds to x ≈ 0:24 m. In the qualitative picture of Fig. 9.2, we
have shown the turbulent boundary layer growing faster than the laminar layer. In later sections of this
chapter we shall show that this is indeed true.

The boundary layer is the region adjacent to a solid surface in which viscous stresses are present, as
opposed to the free stream where viscous stresses are negligible. These stresses are present because we
have shearing of the fluid layers, i.e., a velocity gradient, in the boundary layer. As indicated in Fig. 9.2,
both laminar and turbulent layers have such gradients, but the difficulty is that the gradients only asymp-
totically approach zero as we reach the edge of the boundary layer. Hence, the location of the edge, i.e.,
of the boundary-layer thickness, is not very obvious—we cannot simply define it as where the boundary-
layer velocity u equals the freestream velocity U. Because of this, several boundary-layer definitions
have been developed: the disturbance thickness δ, the displacement thickness δ�, and the momentum
thickness θ. (Each of these increases as we move down the plate, in a manner we have yet to determine.)

The most straightforward definition is the disturbance thickness, δ. This is usually defined as the
distance from the surface at which the velocity is within 1 percent of the free stream, u≈ 0:99U (as
shown in Fig. 9.3b). The other two definitions are based on the notion that the boundary layer retards
the fluid, so that the mass flux and momentum flux are both less than they would be in the absence of the
boundary layer. We imagine that the flow remains at uniform velocity U, but the surface of the plate is
moved upwards to reduce either the mass or momentum flux by the same amount that the boundary layer
actually does. The displacement thickness, δ�, is the distance the plate would be moved so that the loss of
mass flux (due to reduction in uniform flow area) is equivalent to the loss the boundary layer causes. The
mass flux if we had no boundary layer would be

R ∞
0 ρUdy w, where w is the width of the plate perpen-

dicular to the flow. The actual flow mass flux is
R ∞
0 ρu dy w. Hence, the loss due to the boundary layer isR ∞

0 ρðU−uÞdy w. If we imagine keeping the velocity at a constant U, and instead move the plate up a
distance δ� (as shown in Fig. 9.3a), the loss of mass flux would be ρUδ�w. Setting these losses equal to
one another gives

ρUδ�w=
Z ∞

0
ρðU−uÞdy w

For incompressible flow, ρ= constant, and

δ� =
Z ∞

0
1−

u
U

� �
dy≈

Z δ

0
1−

u
U

� �
dy ð9:1Þ

Since u≈U at y= δ, the integrand is essentially zero for y≥ δ. Application of the displacement-thickness
concept is illustrated in Example 9.1.

The momentum thickness, θ, is the distance the plate would be moved so that the loss of momentum
flux is equivalent to the loss the boundary layer actually causes. Themomentum flux if we had no bound-
ary layer would be

R ∞
0 ρu U dy w (the actual mass flux is

R ∞
0 ρu dy w, and the momentum per unit mass

flux of the uniform flow is U itself ). The actual momentum flux of the boundary layer is
R ∞
0 ρu2 dy w.

Hence, the loss of momentum in the boundary layer is
R ∞
0 ρuðU−uÞdy w. If we imagine keeping

U

U

U

Laminar
Transition

Turbulent

Fig. 9.2 Boundary layer on a flat plate (vertical thickness exaggerated greatly).
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the velocity at a constant U, and instead move the plate up a distance θ (as shown in Fig. 9.3c), the loss
of momentum flux would be

R θ
0 ρUU dy w= ρU2θw. Setting these losses equal to one another gives

ρU2θ=
Z ∞

0
ρuðU−uÞdy

and

θ=
Z ∞

0

u
U

1−
u
U

� �
dy≈

Z δ

0

u
U

1−
u
U

� �
dy ð9:2Þ

Again, the integrand is essentially zero for y≥ δ.
The displacement and momentum thicknesses, δ� and θ, are integral thicknesses, because their defi-

nitions, Eqs. 9.1 and 9.2, are in terms of integrals across the boundary layer. Because they are defined in
terms of integrals for which the integrand vanishes in the freestream, they are appreciably easier to eval-
uate accurately from experimental data than the boundary-layer disturbance thickness, δ. This fact,
coupled with their physical significance, accounts for their common use in specifying boundary-layer
thickness.

We have seen that the velocity profile in the boundary layer merges into the local freestream velocity
asymptotically. Little error is introduced if the slight difference between velocities at the edge of the
boundary layer is ignored for an approximate analysis. Simplifying assumptions usually made for engi-
neering analyses of boundary-layer development are:

1 u!U at y= δ

2 ∂u=∂y! 0 at y= δ

3 υ≪U within the boundary layer

Results of the analyses developed in the next two sections show that the boundary layer is very thin
compared with its development length along the surface. Therefore it is also reasonable to assume:

4 Pressure variation across the thin boundary layer is negligible. The freestream pressure distribution is
impressed on the boundary layer.

(in mass flux)

U

U

U U

U

U

u

0.99 U

δ*

δ

δ

θ

θ

(in
momentum

flux)

(a) Displacement thickness, δ* (b) Disturbance thickness, (c) Momentum thickness, 

Fig. 9.3 Boundary-layer thickness definitions.

Example 9.1 BOUNDARY LAYER IN CHANNEL FLOW

A laboratory wind tunnel has a test section that is 305 mm square. Boundary-layer velocity profiles are measured at two cross-
sections and displacement thicknesses are evaluated from the measured profiles. At section , where the freestream speed is
U1 = 26m=s, the displacement thickness is δ∗1 = 1:5 mm. At section , located downstream from section , δ∗2 = 2:1 mm. Cal-
culate the change in static pressure between sections and . Express the result as a fraction of the freestream dynamic pressure
at section . Assume standard atmosphere conditions.
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Given: Flow of standard air in laboratory
wind tunnel. Test section is L=305 mm
square. Displacement thicknesses are δ∗1 =
1:5 mm and δ∗2 = 2:1 mm. Freestream speed
is U1 = 26 m=s.

Find: Change in static pressure between
sections and . (Express as a fraction of
freestream dynamic pressure at section .)

Solution: The idea here is that at each
location the boundary-layer displacement
thickness effectively reduces the area of uniform flow, as indicated in the following figures: Location has a smaller effective
flow area than location (because δ∗2 > δ∗1). Hence, from mass conservation the uniform velocity at location will be higher.
Finally, from the Bernoulli equation the pressure at location will be lower than that at location .

Apply the continuity and Bernoulli equations to freestream flow outside the boundary-layer displacement thickness, where
viscous effects are negligible.

Governing equations:

=0 1ð Þ
∂
∂t��

�!

Z
CV

ρ dV +
Z
CS
ρ V
! �dA!=0

ð4:12Þ

p1
ρ
+
V2
1

2
+ g �z1��

�= p2
ρ
+
V2
2

2
+ g �z2��

� ð4:24Þ
Assumptions:

1 Steady flow.

2 Incompressible flow.

3 Flow uniform at each section outside δ∗

4 Flow along a streamline between sections and .

5 No frictional effects in freestream.

6 Negligible elevation changes.

From the Bernoulli equation we obtain

p1−p2 =
1
2
ρ V2

2 −V2
1

� �
=
1
2
ρ U2

2 −U2
1

� �
=
1
2
ρU2

1
U2

U1

� �2

−1

" #

or
p1−p2
1
2 ρU

2
1
=

U2

U1

� �2

−1

From continuity, V1A1 =U1A1 =V2A2 =U2A2, so U2=U1 =A1A2, where
A= ðL−2δ∗Þ2 is the effective flow area. Substituting gives

p1−p2
1
2 ρU

2
1
=

A1

A2

� �2

−1=
ðL−2δ∗1Þ2
ðL−2δ∗2Þ2
" #2

−1

p1−p2
1
2 ρU

2
1
=

305−2ð1:5Þ
305−2ð2:1Þ
	 
4

−1=0:0161 or

p1−p2
1
2 ρU

2
1
= 1:61 percent

p1−p2
1
2 ρU

2
1 �������������������������������

U U

δ *

δ *

(a) Actual velocity profile (b) Hypothetical velocity profile (c) Cross section of
wind tunnel

L – 2

δ*L – 2

Notes:
• This problem illustrates a basic applica-
tion of the displacement-thickness con-
cept. It is somewhat unusual in that,
because the flow is confined, the reduc-
tion in flow area caused by the boundary
layer leads to the result that the pressure
in the inviscid flow region drops (if only
slightly). In most applications the pres-
sure distribution is determined from the
inviscid flow and then applied to the
boundary layer.

• We saw a similar phenomenon in
Section 8.1, where we discovered that the
centerline velocity at the entrance of a
pipe increases due to the boundary layer
“squeezing” the effective flow area.
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9.2 Laminar Flat-Plate Boundary Layer: Exact Solution
(on the Web)

9.3 Momentum Integral Equation
Blasius’ exact solution, discussed in Section 9.2 (on the web), analyzed a laminar boundary layer on a
flat plate. Even this simplest case (i.e., constant freestream velocity U and pressure p, laminar flow)
involved a rather subtle mathematical transformation of two differential equations. The solution was
based on the insight that the laminar boundary-layer velocity profile is self-similar—only its scale
changes as wemove along the plate. Numerical integration was necessary to obtain results for the bound-
ary-layer thickness δðxÞ, velocity profile u=U versus y=δ, and wall shear stress τwðxÞ.

We would like to obtain a method for analyzing the general case—that is, for laminar and turbulent
boundary layers, for which the freestream velocity UðxÞ and pressure pðxÞ are known functions of posi-
tion along the surface x, such as on the curved surface of an airfoil or on the flat but divergent surfaces of
a flow diffuser. The approach is one in which we will again apply the basic equations to a control vol-
ume. The derivation, from the mass conservation (or continuity) equation and the momentum equation,
will take several pages.

Consider incompressible, steady, two-dimensional flow over a solid surface. The boundary-layer
thickness, δ, grows in some manner with increasing distance, x. For our analysis we choose a differential
control volume, of length dx, width w, and height δðxÞ, as shown in Fig. 9.4. The freestream velocity
is UðxÞ.

We wish to determine the boundary-layer thickness, δ, as a function of x. There will be mass
flow across surfaces ab and cd of differential control volume abcd. What about surface bc? Surface
bc is not a streamline (see Example W9.1, on the web); it is the imaginary boundary that separates
the viscous boundary layer and the inviscid freestream flow. Thus there will be mass flow across
surface bc. Since control surface ad is adjacent to a solid boundary, there will not be flow across ad.
Before considering the forces acting on the control volume and the momentum fluxes through the control
surface, let us apply the continuity equation to determine the mass flux through each portion of the
control surface.

a. Continuity Equation
Basic equation:

= 0 1ð Þ
∂
∂t��

�!

Z
CV

ρ dV +
Z
CS
ρ V
! �dA!=0

ð4:12Þ

Assumptions:

1 Steady flow.

2 Two-dimensional flow.

Then Z
CS
ρV
! �dA!=0

y

x

CV

a

b
c

d

(x)δ

U(x)

dx
Fig. 9.4 Differential control volume in a
boundary layer.
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Hence

_mab + _mbc + _mcd =0

or

_mbc = − _mab− _mcd

Now let us evaluate these terms for the differential control volume of width w:

Surface Mass Flux

ab Surface ab is located at x. Since the flow is two-dimensional (no variation with z), the mass flux through
ab is

_mab = −
Z δ

0
ρu dy

� �
w

cd Surface cd is located at x+ dx. Expanding the _m in a Taylor series about location x, we obtain

_mx+ dx = _mx +
∂ _m
∂x



x
dx

and hence

_mcd =
Z δ

0
ρu dy+

∂
∂x

Z δ

0
ρu dy

	 

dx

� �
w

bc Thus for surface bc we obtain, from the continuity equation and the above results,

_mbc = −
∂
∂x

Z δ

0
ρu dy

	 

dx

� �
w

(Note that the velocity u and boundary-layer thickness δ, both depend on x.)
Now let us consider the momentum fluxes and forces associated with control volume abcd. These

are related by the momentum equation.

b. Momentum Equation
Apply the x component of the momentum equation to control volume abcd:
Basic equation:

= 0 3ð Þ =0 1ð Þ
FSx +FBx��

�!= ∂
∂t��

�!

Z
CV

u ρ dV +
Z
CS
u ρ V

! �dA! ð4:18aÞ

Assumptions:

3 FBx =0

Then

FSx =mfab +mfbc +mfcd

where mf represents the x component of momentum flux.
To apply this equation to differential control volume abcd, we must obtain expressions for the

x momentum flux through the control surface and also the surface forces acting on the control volume
in the x direction. Let us consider the momentum flux first and again consider each segment of the
control surface.

360 Chapter 9 External Incompressible Viscous Flow



Surface Momentum Flux (mf )

ab Surface ab is located at x. Since the flow is two-dimensional, the x momentum flux through ab is

mfab = −
Z δ

0
u ρu dy

� �
w

cd Surface cd is located at x+ dx. Expanding the xmomentum flux (mf ) in a Taylor series about location
x, we obtain

mfx+ dx =mfx +
∂mf
∂x



x
dx

or

mfcd =
Z δ

0
u ρu dy+

∂
∂x

Z δ

0
u ρu dy

	 

dx

� �
w

bc Since the mass crossing surface bc has velocity component U in the x direction, the x momentum flux
across bc is given by

mfbc =U _mbc

mfbc = −U
∂
∂x

Z δ

0
ρu dy

	 

dx

� �
w

From the above we can evaluate the net x momentum flux through the control surface asZ
CS
u ρV

!� dA!= −
Z δ

0
u ρu dy

� �
w+

Z δ

0
u ρu dy

� �
w

+
∂
∂x

Z δ

0
u ρu dy

	 

dx

� �
w−U

∂
∂x

Z δ

0
ρu dy

	 

dx

� �
w

Collecting terms, we find thatZ
CS
u ρV

!� dA!= ∂
∂x

Z δ

0
u ρu dy

	 

dx−U

∂
∂x

Z δ

0
ρu dy

	 

dx

� �
w

Now that we have a suitable expression for the x momentum flux through the control surface, let us
consider the surface forces acting on the control volume in the x direction. (For convenience the differ-
ential control volume has been redrawn in Fig. 9.5.) Note that surfaces ab, bc, and cd all experience
normal forces (i.e., pressure) that generate force in the x direction. In addition, a shear force acts on sur-
face ad. Since, by definition of the boundary layer, the velocity gradient goes to zero at the edge of the
boundary layer, the shear force acting along surface bc is negligible.

Surface Force

ab If the pressure at x is p, then the force acting on surface ab is given by

Fab = pwδ

[The boundary layer is very thin; its thickness has been greatly exaggerated in all the sketches we have
made. Because it is thin, pressure variations in the y direction may be neglected, and we assume that
within the boundary layer, p= pðxÞ only.

cd Expanding in a Taylor series, the pressure at x+ dx is given by

px+ dx = p+
dp
dx



x
dx

(Continued)

dδ

δ

c

b

da
dx

Fig. 9.5 Differential
control volume.
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(Continued)

Surface Force

The force on surface cd is then given by

Fcd = − p+
dp
dx



x
dx

� �
wðδ+ dδÞ

bc The average pressure acting over surface bc is

p+
1
2
dp
dx



x
dx

Then the x component of the normal force acting over bc is given by

Fbc = p+
1
2
dp
dx



x
dx

� �
w dδ

ad The average shear force acting on ad is given by

Fad = − τw +
1
2
dτw

� �
w dx

Summing these x components, we obtain the total force acting in the x direction on the control
volume,

’ 0 ’ 0

FSx = −
dp
dx

δ dx−
1
2
dp
dx

dx dδ
��
�! −τwdx−

1
2
dτw

��
�!dx

� �
w

where we note that dx dδ≪ δdx and dτw ≪ τw, and so neglect the second and fourth terms.
Substituting the expressions, for

R
CSu ρV

!� dA! and FSx into the xmomentum equation (Eq. 4.18a), we
obtain

−
dp
dx

δ dx−τwdx
� �

w=
∂
∂x

Z δ

0
u ρu dy

	 

dx−U

∂
∂x

Z δ

0
ρu dy

	 

dx

� �
w

Dividing this equation by w dx gives

−δ
dp
dx

−τw =
∂
∂x

Z δ

0
u ρu dy−U

∂
∂x

Z δ

0
ρu dy ð9:16Þ

Equation 9.16 is a “momentum integral” equation that gives a relation between the x components of the
forces acting in a boundary layer and the x momentum flux.

The pressure gradient, dp=dx , can be determined by applying the Bernoulli equation to the inviscid
flow outside the boundary layer: dp=dx = −ρU dU=dx. If we recognize that δ=

R δ
0 dy, then Eq. 9.16 can

be written as

τw = −
∂
∂x

Z δ

0
u ρu dy+U

∂
∂x

Z δ

0
ρu dy+

dU
dx

Z δ

0
ρU dy

Since

U
∂
∂x

Z δ

0
ρu dy=

∂
∂x

Z δ

0
ρu U dy−

dU
dx

Z δ

0
ρu dy

we have

τw =
∂
∂x

Z δ

0
ρuðU−uÞdy+ dU

dx

Z δ

0
ρðU−uÞdy
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and

τw =
∂
∂x

U2
Z δ

0
ρ
u
U

1−
u
U

� �
dy+U

dU
dx

Z δ

0
ρ 1−

u
U

� �
dy

Using the definitions of displacement thickness, δ� (Eq. 9.1), and momentum thickness, θ (Eq. 9.2), we
obtain

τw
ρ
=

d
dx
ðU2θÞ+ δ�U

dU
dx

ð9:17Þ

Equation 9.17 is the momentum integral equation. This equation will yield an ordinary differential
equation for boundary-layer thickness δ as a function of x. Where does δ appear in Eq. 9.17? It appears
in the upper limits of the integrals that define δ� and θ! All we need to do is provide a suitable expression
for the velocity profile u=U and somehow relate the wall stress τw to other variables—not necessarily
easy tasks! Once the boundary-layer thickness is determined, expressions for the momentum thickness,
displacement thickness, and wall shear stress can then be obtained.

Equation 9.17 was obtained by applying the basic equations (continuity and x momentum) to a dif-
ferential control volume. Reviewing the assumptions we made in the derivation, we see that the equation
is restricted to steady, incompressible, two-dimensional flow with no body forces parallel to the surface.

We have not made any specific assumption relating the wall shear stress, τw, to the velocity field.
Thus Eq. 9.17 is valid for either a laminar or turbulent boundary-layer flow. In order to use this equation
to estimate the boundary-layer thickness as a function of x, we must first:

1 Obtain a first approximation to the freestream velocity distribution, UðxÞ. This is determined from
inviscid flow theory (the velocity that would exist in the absence of a boundary layer) and depends
on body shape.

2 Assume a reasonable velocity-profile shape inside the boundary layer.

3 Derive an expression for τw using the results obtained from item 2.

To illustrate the application of Eq. 9.17 to boundary-layer flows, we consider first the case of flow
with zero pressure gradient over a flat plate (Section 9.4). The results we obtain for a laminar boundary
layer can then be compared to the exact Blasius results. The effects of pressure gradients in boundary-
layer flow are then discussed in Section 9.5.

9.4 Use of the Momentum Integral Equation for Flow
with Zero Pressure Gradient
For the special case of a flat plate (zero pressure gradient) the freestream pressure p and velocity U are
both constant, so for item 1 we have UðxÞ=U = constant.

The momentum integral equation then reduces to

τw = ρU2 dθ
dx

= ρU2 d
dx

Z δ

0

u
U

1−
u
U

� �
dy ð9:18Þ

The velocity distribution, u=U, in the boundary layer is assumed to be similar for all values of x and
normally is specified as a function of y=δ. (Note that u=U is dimensionless and δ is a function of x only.)
Consequently, it is convenient to change the variable of integration from y to y=δ. Defining

η=
y
δ

we get

dy= δ dη
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and the momentum integral equation for zero pressure gradient is written

τw = ρU2 dθ
dx

= ρU2 dδ
dx

Z 1

0

u
U

1−
u
U

� �
dη ð9:19Þ

We wish to solve this equation for the boundary-layer thickness as a function of x. To do this, we
must satisfy the remaining items:

2 Assume a velocity distribution in the boundary layer—a functional relationship of the form

u
U

= f
y
δ

� �

(a) The assumed velocity distribution should satisfy the following approximate physical boundary
conditions:

at y=0, u=0
at y= δ, u=U

at y= δ,
∂u
∂y

=0

(b) Note that once we have assumed a velocity distribution, from the definition of the momentum
thickness (Eq. 9.2), the numerical value of the integral in Eq. 9.19 is simplyZ 1

0

u
U

1−
u
U

� �
dη=

θ

δ
= constant = β

and the momentum integral equation becomes

τw = ρU2 dδ
dx

β

3 Obtain an expression for τw in terms of δ. This will then permit us to solve for δðxÞ, as illus-
trated below.

Laminar Flow

For laminar flow over a flat plate, a reasonable assumption for the velocity profile is a polynomial in y:

u= a+ by+ cy2

The physical boundary conditions are:

at y=0, u=0
at y= δ, u=U

at y= δ,
∂u
∂y

=0

Evaluating constants a, b, and c gives

u
U

=2
y
δ

� �
−

y
δ

� �2
= 2η−η2 ð9:20Þ

Equation 9.20 satisfies item 2. For item 3, we recall that the wall shear stress is given by

τw = μ
∂u
∂y

�
y=0

Substituting the assumed velocity profile, Eq. 9.20, into this expression for τw gives

τw = μ
∂u
∂y



y=0

= μ
U∂ðu=UÞ
δ∂ðy=δÞ



y=δ=0

=
μU
δ

dðu=UÞ
dη



η=0
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or
τw =

μU
δ

d
dη
ð2η−η2Þ



η=0

=
μU
δ
ð2−2ηÞ



η=0

=
2μU
δ

Note that this shows that the wall stress τw is a function of x, since the boundary-layer thickness δ= δðxÞ.
Now that we have completed items 1, 2, and 3, we can return to the momentum integral equation

τw = ρU2dδ
dx

Z 1

0

u
U

1−
u
U

� �
dη ð9:19Þ

Substituting for τw and u=U, we obtain

2μU
δ

= ρU2 dδ
dx

Z 1

0
ð2η−η2Þð1−2η+ η2Þdη

or
2μU
δρU2 =

dδ
dx

Z 1

0
ð2η−5η2 + 4η3−η4Þdη

Integrating and substituting limits yields

2μ
δρU

=
2
15

dδ
dx

or δ dδ=
15μ
ρU

dx

which is a differential equation for δ. Integrating again gives

δ2

2
=
15μ
ρU

x+ c

If we assume that δ=0 at x=0, then c=0, and thus

δ=

ffiffiffiffiffiffiffiffiffiffi
30μx
ρU

s

Note that this shows that the laminar boundary-layer thickness δ grows as
ffiffiffi
x
p

; it has a parabolic shape.
Traditionally this is expressed in dimensionless form:

δ

x
=

ffiffiffiffiffiffiffiffi
30μ
ρUx

s
=

5:48ffiffiffiffiffiffiffi
Rex
p ð9:21Þ

Equation 9.21 shows that the ratio of laminar boundary-layer thickness to distance along a flat plate
varies inversely with the square root of length Reynolds number. It has the same form as the exact solu-
tion derived from the complete differential equations of motion by H. Blasius in 1908. Remarkably,
Eq. 9.21 is only in error (the constant is too large) by about 10 percent compared with the exact solution
(Section 9.2 on the web). Table 9.2 summarizes corresponding results calculated using other approxi-
mate velocity profiles and lists results obtained from the exact solution. The only thing that changes in
the analysis when we choose a different velocity profile is the value of β in τw = ρU2ðdδ=dxÞβ. The
shapes of the approximate profiles may be compared readily by plotting u=U versus y=δ.

Once we know the boundary-layer thickness, all details of the flow may be determined. The wall
shear stress, or “skin friction,” coefficient is defined as

Cf ≡
τw

1
2ρU

2
ð9:22Þ

Substituting from the velocity profile and Eq. 9.21 gives

Cf =
τw

1
2 ρU

2
=
2μðU=δÞ
1
2 ρU

2
=

4μ
ρUδ

=4
μ

ρUx
x
δ
=4

1
Rex

ffiffiffiffiffiffiffi
Rex
p
5:48

Video: Examples
of Boundary
Layer Growth
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Finally,

Cf =
0:730ffiffiffiffiffiffiffi
Rex
p ð9:23Þ

Once the variation of τw is known, the viscous drag on the surface can be evaluated by integrating over
the area of the flat plate, as illustrated in Example 9.2.

Equation 9.21 can be used to calculate the thickness of the laminar boundary layer at transition. At
Rex =5× 105, with U =30 m=s, for example, x=0:24 m for air at standard conditions. Thus

δ

x
=

5:48ffiffiffiffiffiffiffi
Rex
p =

5:48ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5× 105
p =0:00775

and the boundary-layer thickness is

δ=0:00775x=0:00775ð0:24 mÞ=1:86 mm

The boundary-layer thickness at transition is less than 1 percent of the development length, x. These
calculations confirm that viscous effects are confined to a very thin layer near the surface of a body.

The results in Table 9.2 indicate that reasonable results may be obtained with a variety of approx-
imate velocity profiles.

Table 9.2
Results of the Calculation of Laminar Boundary-Layer Flow over a Flat Plate at Zero Incidence Based on Approximate
Velocity Profiles

Velocity Distribution
u
U

= f
y
δ

� �
= f ðηÞ

β ≡
θ

δ
δ�

δ
H ≡

δ�

θ

Constant a in
δ

x
=

affiffiffiffiffiffiffi
Rex
p Constant b in Cf =

bffiffiffiffiffiffiffi
Rex
p

f ðηÞ= η 1
6

1
2

3:00 3:46 0:577

f ðηÞ=2η−η2 2
15

1
3

2:50 5:48 0:730

f ðηÞ= 3
2
η−

1
2
η3

39
280

3
8

2:69 4:64 0:647

f ðηÞ=2η−2η3 + η4 37
315

3
10

2:55 5:84 0:685

f ðηÞ= sin
π
2
η

� �
4−π
2π

π−2
π

2:66 4:80 0:654

Exact 0:133 0:344 2:59 5:00 0:664

Example 9.2 LAMINAR BOUNDARY LAYER ON A FLAT PLATE: APPROXIMATE SOLUTION USING
SINUSOIDAL VELOCITY PROFILE

Consider two-dimensional laminar boundary-layer flow along a flat plate. Assume the velocity profile in the boundary layer is
sinusoidal,

u
U

= sin
π
2
y
δ

� �
Find expressions for:

(a) The rate of growth of δ as a function of x.
(b) The displacement thickness, δ�, as a function of x.
(c) The total friction force on a plate of length L and width b.
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Given: Two-dimensional, laminar boundary-layer flow along a flat plate. The boundary-layer
velocity profile is

u
U

= sin
π

2
y
δ

� �
for 0≤ y≤ δ

and
u
U

=1 for y> δ

Find: (a) δðxÞ.
(b) δ�.
(c) Total friction force on a plate of length L and width b.

Solution: For flat plate flow, U = constant, dp=dx=0, and

τw = ρU2dθ
dx

= ρU2 dδ
dx

Z 1

0

u
U

1−
u
U

� �
dη ð9:19Þ

Assumptions:

1 Steady flow.

2 Incompressible flow.

Substituting
u
U

= sin
π
2
η into Eq. 9.19, we obtain

τw = ρU2 dδ
dx

Z 1

0
sin

π
2
η

 
1−sin

π
2
η

!
dη= ρU2 dδ

dx

Z 1

0

 
sin

π
2
η−sin2

π
2
η

!
dη

= ρU2 dδ
dx

2
π

"
−cos

π
2
η−

1
2
π
2
η+

1
4
sinπη

#1
0

= ρU2 dδ
dx

2
π

"
0+ 1−

π
4
+ 0+ 0−0

#

τw = 0:137ρU2 dδ
dx

= βρU2 dδ
dx

; β=0:137

Now

τw = μ
∂u
∂y



y=0

= μ
U
δ

∂ðu=UÞ
∂ðy=δÞ



y=0

= μ
U
δ

π
2
cos

π
2
η
i
η=0

=
πμU
2δ

Therefore,

τw =
πμU
2δ

=0:137ρU2 dδ
dx

Separating variables gives

δdδ=11:5
μ

ρU
dx

Integrating, we obtain

δ2

2
= 11:5

μ

ρU
x+ c

But c=0, since δ=0 at x=0, so

δ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23:0

xμ
ρU

r
or

δ

x
=4:80

ffiffiffiffiffiffiffiffi
μ

ρUx

r
=

4:80ffiffiffiffiffiffiffi
Rex
p δðxÞ

 ����������������������������������������������������

y

x
(x)δ
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Turbulent Flow

For the flat plate, we still have for item 1 thatU = constant. As for the laminar boundary layer, we need to
satisfy item 2 (an approximation for the turbulent velocity profile) and item 3 (an expression for τw) in
order to solve Eq. 9.19 for δðxÞ:

τw = ρU2dδ
dx

Z 1

0

u
U

1−
u
U

� �
dη ð9:19Þ

Details of the turbulent velocity profile for boundary layers at zero pressure gradient are very similar to
those for turbulent flow in pipes and channels. Data for turbulent boundary layers plot on the universal
velocity profile using coordinates of �u=u� versus yu�=ν, as shown in Fig. 8.9. However, this profile is
rather complex mathematically for easy use with the momentum integral equation. The momentum inte-
gral equation is approximate; hence, an acceptable velocity profile for turbulent boundary layers on
smooth flat plates is the empirical power-law profile. An exponent of 1

7 is typically used to model the
turbulent velocity profile. Thus

u
U

=
y
δ

� �1=7
= η1=7 ð9:24Þ

The displacement thickness, δ�, is given by

δ� = δ

Z 1

0
1−

u
U

� �
dη

= δ

Z 1

0
1−sin

π
2
η

� �
dη= δ η+

2
π
cos

π
2
η

" #1
0

δ� = δ 1−0+ 0−
2
π

" #
= δ 1−

2
π

" #

Since, from part (a),

δ

x
=

4:80ffiffiffiffiffiffiffi
Rex
p

then

δ�

x
= 1−

2
π

� �
4:80ffiffiffiffiffiffiffi
Rex
p =

1:74ffiffiffiffiffiffiffi
Rex
p δ�ðxÞ

 ����������������������������������������������������
The total friction force on one side of the plate is given by

F =
Z
AP

τwdA

Since dA= b dx and 0≤ x≤ L, then

F =
Z L

0
τwbdx=

Z L

0
ρU2dθ

dx
bdx= ρU2b

Z θL

0
dθ= ρU2bθL

θL =
Z δL

0

u
U

1−
u
U

� �
dy= δL

Z 1

0

u
U

1−
u
U

� �
dη= βδL

From part (a), β=0:137 and δL =
4:80Lffiffiffiffiffiffiffiffi
ReL
p , so

F =
0:658ρU2bLffiffiffiffiffiffiffiffi

ReL
p F �������������������������������

This problem illustrates application of
the momentum integral equation to the
laminar boundary layer on a flat plate.

The Excel workbook for this
problem plots the growth of δ and

δ∗ in the boundary layer, and the exact
solution (Eq. 9.13 on theweb). It also shows
wall shear stress distributions for the
sinusoidal velocity profile and the exact
solution.
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However, this profile does not hold in the immediate vicinity of the wall, since at the wall it predicts
du=dy= ∞ . Consequently, we cannot use this profile in the definition of τw to obtain an expression
for τw in terms of δ as we did for laminar boundary-layer flow. For turbulent boundary-layer flow
we adapt the expression developed for pipe flow,

τw =0:0332ρV 2 ν

RV

	 
0:25
ð8:39Þ

For a 1
7-power profile in a pipe, Eq. 8.24 gives V=U =0:817. Substituting V =0:817U and R= δ into

Eq. 8.39, we obtain

τw =0:0233ρU2 ν

Uδ

� �1=4
ð9:25Þ

Substituting for τw and u=U into Eq. 9.19 and integrating, we obtain

0:0233
ν

Uδ

� �1=4
=
dδ
dx

Z 1

0
η1=7ð1−η1=7Þdη= 7

72
dδ
dx

Thus we obtain a differential equation for δ:

δ1=4dδ=0:240
ν

U

� �1=4
dx

Integrating gives

4
5
δ5=4 = 0:240

ν

U

� �1=4
x+ c

If we assume that δ’ 0 at x=0 (this is equivalent to assuming turbulent flow from the leading edge),
then c=0 and

δ=0:382
ν

U

� �1=5
x4=5

Note that this shows that the turbulent boundary-layer thickness δ grows as x4=5; it grows almost linearly
(recall that δ grows more slowly, as

ffiffiffi
x
p

, for the laminar boundary layer). Traditionally this is expressed
in dimensionless form:

δ

x
=0:382

ν

Ux

� �1=5
=
0:382

Re1=5x

ð9:26Þ

Using Eq. 9.25, we obtain the skin friction coefficient in terms of δ:

Cf =
τw

1
2ρU

2
= 0:0466

ν

Uδ

� �1=4
Substituting for δ, we obtain

Cf =
τw

1
2ρU

2
=
0:0594

Re1=5x

ð9:27Þ

Experiments show that Eq. 9.27 predicts turbulent skin friction on a flat plate very well for
5 × 105 <Rex <107. This agreement is remarkable in view of the approximate nature of our analysis.

Application of the momentum integral equation for turbulent boundary-layer flow is illustrated in
Example 9.3.
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Example 9.3 TURBULENT BOUNDARY LAYER ON A FLAT PLATE: APPROXIMATE SOLUTION USING
1
7-POWER VELOCITY PROFILE

Water flows atU =1m=s past a flat plate with L=1m in the flow direction. The boundary layer is tripped so it becomes turbulent
at the leading edge. Evaluate the disturbance thickness, δ, displacement thickness, δ�, and wall shear stress, τw, at x= L. Compare
with laminar flow maintained to the same position. Assume a 1

7-power turbulent velocity profile.

Given: Flat-plate boundary-layer flow; turbulent flow from the leading edge. Assume
1
7-power velocity profile.

Find: (a) Disturbance thickness, δL.
(b) Displacement thickness, δ�L.
(c) Wall shear stress, τwðLÞ.
(d) Comparison with results for laminar flow from the leading edge.

Solution: Apply results from the momentum integral equation.

Governing equations:

δ

x
=
0:382

Re1=5x

ð9:26Þ

δ� =
Z ∞

0
1−

u
U

� �
dy ð9:1Þ

Cf =
τw

1
2ρU

2
=
0:0594

Re1=5x

ð9:27Þ

At x= L, with ν=1:00× 10−6m2=s for water ðT =20∘CÞ,

ReL =
UL
ν

=1
m
s
× 1 m×

s
10−6m2

= 106

From Eq. 9.26,

δL =
0:382

Re1=5L

L=
0:382

ð106Þ1=5
× 1 m=0:0241 m or δL =24:1 mm

δL �������������������������������
Using Eq. 9.1, with u=U = ðy=δÞ1=7 = η1=7, we obtain

δ�L =
Z ∞

0
1−

u
U

� �
dy= δL

Z 1

0

u
U

� �
d

y
δ

� �
= δL

Z 1

0
ð1−η1=7Þdη= δL η−

7
8
η8=7

	 
1
0

δ�L =
δL
8
=
24:1mm

8
=3:01 mm

δ�L ������������������������������������
From Eq. 9.27,

Cf =
0:0594

ð106Þ1=5
= 0:00375

τw =Cf
1
2
ρU2 = 0:00375×

1
2
× 999

kg
m3 × ð1Þ

2m2

s2
×

N � s2
kg �m

τw =1:87 N=m2
τwðLÞ �����������������������������������������������

For laminar flow, use Blasius solution values. From Eq. 9.13 (on the web),

δL =
5:0ffiffiffiffiffiffiffiffi
ReL
p L=

5:0

ð106Þ1=2
× 1 m=0:005 m or 5:00 mm

From Example W9.1, δ�=δ=0:344, so

δ� =0:344 δ=0:344× 5:0 mm=1:72 mm

U = 1 m/s

L = 1 m

x

δ
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Summary of Results for Boundary-Layer Flow with Zero Pressure Gradient

Use of the momentum integral equation is an approximate technique to predict boundary-layer devel-
opment; the equation predicts trends correctly. Parameters of the laminar boundary layer vary as Re−1=2

x ;
those for the turbulent boundary layer vary as Re−1=5

x . Thus the turbulent boundary layer develops more
rapidly than the laminar boundary layer.

Laminar and turbulent boundary layers were compared in Example 9.3. Wall shear stress is much
higher in the turbulent boundary layer than in the laminar layer. This is the primary reason for the more
rapid development of turbulent boundary layers.

The agreement we have obtained with experimental results shows that use of the momentum inte-
gral equation is an effective approximate method that gives us considerable insight into the general
behavior of boundary layers.

9.5 Pressure Gradients in Boundary-Layer Flow
The boundary layer (laminar or turbulent) with a uniform flow along an infinite flat plate is the easiest
one to study because the pressure gradient is zero—the fluid particles in the boundary layer are slowed
only by shear stresses, leading to boundary-layer growth. We now consider the effects caused by a pres-
sure gradient, which will be present for all bodies except, as we have seen, a flat plate.

A favorable pressure gradient is one in which the pressure decreases in the flow direction
(i.e., ∂p=∂x<0); it is called favorable because it tends to overcome the slowing of fluid particles caused
by friction in the boundary layer. This pressure gradient arises when the freestream velocityU is increas-
ing with x, for example, in the converging flow field in a nozzle. On the other hand, an adverse pressure
gradient is one in which pressure increases in the flow direction (i.e., ∂p=∂x>0); it is called adverse
because it will cause fluid particles in the boundary-layer to slow down at a greater rate than that due to
boundary-layer friction alone. If the adverse pressure gradient is severe enough, the fluid particles in
the boundary layer will actually be brought to rest.When this occurs, the particles will be forced away from
the body surface (a phenomenon called flow separation) as they make room for following particles, ulti-
mately leading to awake inwhich flow is turbulent. Examples of this arewhen thewalls of a diffuser diverge
too rapidly andwhen an airfoil has too large an angle of attack; both of these are generally very undesirable!

This description, of the adverse pressure gradient and friction in the boundary layer together forcing
flow separation, certainly makes intuitive sense; the question arises whether we can more formally see
when this occurs. For example, can we have flow separation and a wake for uniform flow over a flat
plate, for which ∂p=∂x=0? We can gain insight into this question by considering when the velocity
in the boundary layer will become zero. Consider the velocity u in the boundary layer at an infinitesimal
distance Δy above the plate. This will be

uy=Δy = u0 +
∂u
∂y

�
y=0

Δy=
∂u
∂y

�
y=0

Δy

From Eq. 9.15, Cf =
0:664ffiffiffiffiffiffiffi
Rex
p , so

τw =Cf
1
2
ρU2 =

0:664ffiffiffiffiffiffiffi
106
p ×

1
2
× 999

kg
m3 × ð1Þ

2m2

s2
×

N � s2
kg �m =0:332 N=m2

Comparing values at x= L, we obtain

Disturbance thickness ,
δturbulent
δlaminar

=
24:1 mm
5:00 mm

=4:82

Displacement thickness ,
δ�turbulent
δ�laminar

=
3:01 mm
1:72 mm

=1:75

Wall shear stress ,
τw, turbulent
τw, laminar

=
1:87 N=m2

0:332 N=m2 =5:63

This problem illustrates application of
the momentum integral equation to the
turbulent boundary layer on a flat plate.
Compared to a laminar boundary layer, it is
clear that the turbulent boundary layer
grows much more rapidly—because the
turbulent wall stress is significantly greater
than the laminar wall stress.

The Excel workbook for this
example plots the 1

7-power-law
turbulent boundary layer (Eq. 9.26) and
the laminar boundary layer (Eq. 9.13 on
the web). It also shows the wall stress
distributions for both cases.

Video: Flow
Separation:
Airfoil
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where u0 = 0 is the velocity at the surface of the plate. It is clear that uy=Δy will be zero (i.e., separation
will occur) only when ∂u=∂yÞy=0 = 0. Hence, we can use this as our litmus test for flow separation. We
recall that the velocity gradient near the surface in a laminar boundary layer, and in the viscous sublayer
of a turbulent boundary layer, was related to the wall shear stress by

τw = μ
∂u
∂y

�
y=0

Further, we learned in the previous section that the wall shear stress for the flat plate is given by

τwðxÞ
ρU2 =

constantffiffiffiffiffiffiffi
Rex
p

for a laminar boundary layer and

τwðxÞ
ρU2 =

constant

Re1=5x

for a turbulent boundary layer. We see that for the flow over a flat plate, the wall stress is always τw >0.
Hence, ∂u=∂yÞy=0 > 0 always; and therefore, finally, uy=Δy >0 always. We conclude that for uniform
flow over a flat plate the flow never separates, and we never develop a wake region, whether the bound-
ary layer is laminar or turbulent, regardless of plate length.

We conclude that flow will not separate for flow over a flat plate, when ∂p=∂x=0. Clearly, for flows
in which ∂p=∂x<0 (whenever the freestream velocity is increasing), we can be sure that there will be no
flow separation; for flows in which ∂p=∂x>0 (i.e., adverse pressure gradients) we could have flow sep-
aration. We should not conclude that an adverse pressure gradient always leads to flow separation and a
wake; we have only concluded that it is a necessary condition for flow separation to occur.

To illustrate these results consider the variable cross-sectional flow shown in Fig. 9.6. Outside the
boundary layer the velocity field is one in which the flow accelerates (Region 1), has a constant velocity
region (Region 2), and then a deceleration region (Region 3). Corresponding to these, the pressure gra-
dient is favorable, zero, and adverse, respectively, as shown. Note that the straight wall is not a simple
flat plate—it has these various pressure gradients because the flow above the wall is not a uniform flow.
From our discussions above, we conclude that separation cannot occur in Region 1 or 2, but can occur in
Region 3. Could we avoid flow separation in a device like this? Intuitively, we can see that if we make
the divergent section less severe, we may be able to eliminate flow separation. In other words, we may
eliminate flow separation if we make the adverse pressure gradient ∂p=∂x small enough. The final
question remaining is how small the adverse pressure gradient needs to be to accomplish this. This,
and a more rigorous proof that we must have ∂p=∂x>0 for a chance of flow separation, is beyond
the scope of this text [3]. We conclude that flow separation is possible, but not guaranteed, when we
have an adverse pressure gradient.

Region 3Region 2Region 1

 p___
x

д
д

 u__
y

д
д

< 0  p___
x

д
д = 0

 p___
x

д
д > 0

y

x

(x)δ Backflow

Separation point:
y=0

= 0

Fig. 9.6 Boundary-layer flow with pressure gradient (boundary-layer thickness exaggerated for clarity).
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The nondimensional velocity profiles for laminar and turbulent boundary-layer flow over a flat plate
are shown in Fig. 9.7a. The turbulent profile is much fuller (more blunt) than the laminar profile. At the
same freestream speed, the momentum flux within the turbulent boundary layer is greater than within
the laminar layer (Fig. 9.7b). Separation occurs when the momentum of fluid layers near the surface is
reduced to zero by the combined action of pressure and viscous forces. As shown in Fig. 9.7b, the
momentum of the fluid near the surface is significantly greater for the turbulent profile. Consequently,
the turbulent layer is better able to resist separation in an adverse pressure gradient. We shall discuss
some consequences of this behavior in Section 9.6.

Adverse pressure gradients cause significant changes in velocity profiles for both laminar and
turbulent boundary-layer flows. Approximate solutions for nonzero pressure gradient flow may be
obtained from the momentum integral equation

τw
ρ
=

d
dx
ðU2θÞ+ δ�U

dU
dx

ð9:17Þ

Expanding the first term, we can write

τw
ρ
=U2dθ

dx
+ ðδ� +2θÞUdU

dx

or

τw
ρU2 =

Cf

2
=
dθ
dx

+ ðH +2Þ θ
U
dU
dx

ð9:28Þ

where H = δ�=θ is a velocity-profile “shape factor.” The shape factor increases in an adverse pressure
gradient. For turbulent boundary-layer flow,H increases from 1.3 for a zero pressure gradient to approx-
imately 2.5 at separation. For laminar flow with zero pressure gradient, H =2:6; at separation H =3:5.

The freestream velocity distribution, UðxÞ, must be known before Eq. 9.28 can be applied. Since
dp=dx= −ρUdU=dx, specifying UðxÞ is equivalent to specifying the pressure gradient. We can obtain
a first approximation for UðxÞ from ideal flow theory for an inviscid flow under the same conditions.
As pointed out in Chapter 6, for frictionless irrotational flow (potential flow), the stream function, ψ ,
and the velocity potential, ϕ, satisfy Laplace’s equation. These can be used to determine UðxÞ over
the body surface.

Much effort has been devoted to calculation of velocity distributions over bodies of known
shape (the “direct” problem) and to the determination of body shapes to produce a desired pressure dis-
tribution (the “inverse” problem). Smith and co-workers [6] have developed calculation methods that
use singularities distributed over the body surface to solve the direct problem for two-dimensional or
axisymmetric body shapes. A type of finite-element method that uses singularities defined on discrete
surface panels (the “panel” method [7]) recently has gained increased popularity for application to

1.0

0

1.0

Laminar
Laminar

Turbulent Turbulent

u__
U

y__

(a) Velocity profiles

δ
y__
δ

1.0

0

1.0

(b) Momentum-flux profiles

(  )
2u__

U

Fig. 9.7 Nondimensional profiles for flat plate boundary-layer flow.
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three-dimensional flows. Recall also that in Section 5.5 we briefly reviewed some basic ideas of CFD
(Computational Fluid Dynamics).

Once the velocity distribution, UðxÞ, is known, Eq. 9.28 can be integrated to determine θðxÞ, if H
and Cf can be correlated with θ. A detailed discussion of various calculation methods for flows with
nonzero pressure gradient is beyond the scope of this book. Numerous solutions for laminar flows
are given in Kraus [8]. Calculation methods for turbulent boundary-layer flow based on the momentum
integral equation are reviewed in Rotta [9].

Because of the importance of turbulent boundary layers in engineering flow situations, the state of
the art of calculation schemes is advancing rapidly. Numerous calculation schemes have been proposed
[10, 11]; most such schemes for turbulent flow use models to predict turbulent shear stress and then solve
the boundary-layer equations numerically [12, 13]. Continuing improvement in size and speed of com-
puters is beginning to make possible the solution of the full Navier–Stokes equations using numerical
methods [14, 15].

Part B FLUID FLOW ABOUT IMMERSED BODIES

Whenever there is relative motion between a solid body and the viscous fluid surrounding it, the body
will experience a net force F

!
. The magnitude of this force depends on many factors—certainly the rel-

ative velocity V
!
, but also the body shape and size, and the fluid properties (ρ, μ, etc.). As the fluid flows

around the body, it will generate surface stresses on each element of the surface, and it is these that lead to
the net force. The surface stresses are composed of tangential stresses due to viscous action and normal
stresses due to the local pressure. We might be tempted to think that we can analytically derive the net
force by integrating these over the body surface. The first step might be: Given the shape of the body (and
assuming that the Reynolds number is high enough that we can use inviscid flow theory), compute the
pressure distribution. Then integrate the pressure over the body surface to obtain the contribution of
pressure forces to the net force F

!
. As we discussed in Chapter 6, this step was developed very early

in the history of fluid mechanics; it led to the result that no bodies experience drag! The second step
might be: Use this pressure distribution to find the surface viscous stress τw (at least in principle, using,
for example, Eq. 9.17). Then integrate the viscous stress over the body surface to obtain its contribution
to the net force F

!
. This procedure sounds conceptually straightforward, but in practice is quite difficult

except for the simplest body shapes. In addition, even if possible, it leads to erroneous results in most
cases because it takes no account of a very important consequence of the existence of boundary layers—
flow separation. This causes a wake, which not only creates a low-pressure region usually leading to
large drag on the body, but also radically changes the overall flow field and hence the inviscid flow
region and pressure distribution on the body.

For these reasons we must usually resort to experimental or CFDmethods to determine the net force
for most body shapes. Traditionally the net force F

!
is resolved into the drag force, FD, defined as the

component of the force parallel to the direction of motion, and the lift force, FL (if it exists for a body),
defined as the component of the force perpendicular to the direction of motion. In Sections 9.6 and 9.7
we will examine these forces for a number of different body shapes.

9.6 Drag
Drag is the component of force on a body acting parallel to the direction of relative motion. In discussing
the need for experimental results in fluid mechanics (Chapter 7), we considered the problem of deter-
mining the drag force, FD, on a smooth sphere of diameter d, moving through a viscous, incompressible
fluid with speed V ; the fluid density and viscosity were ρ and μ, respectively. The drag force, FD, was
written in the functional form

FD = f1ðd,V, μ, ρÞ
Application of the Buckingham Pi theorem resulted in two dimensionlessΠ parameters that were written
in functional form as

FD

ρV2d2
= f2

ρVd
μ

� �

Video: Flow
about a Sports
Car
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Note that d2 is proportional to the cross-sectional area ðA= πd2=4Þ and therefore we could write

FD

ρV2A
= f3

ρVd
μ

� �
= f3ðReÞ ð9:29Þ

Although Eq. 9.29 was obtained for a sphere, the form of the equation is valid for incompressible
flow over any body; the characteristic length used in the Reynolds number depends on the body shape.

The drag coefficient, CD, is defined as

CD ≡
FD

1
2ρV

2A
ð9:30Þ

The number 12 has been inserted (as was done in the defining equation for the friction factor) to form the
familiar dynamic pressure. Then Eq. 9.29 can be written as

CD = f ðReÞ ð9:31Þ
We have not considered compressibility or free-surface effects in this discussion of the drag force.

Had these been included, we would have obtained the functional form

CD = f ðRe,Fr,MÞ
At this point we shall consider the drag force on several bodies for which Eq. 9.31 is valid. The total

drag force is the sum of friction drag and pressure drag. However, the drag coefficient is a function only
of the Reynolds number.

We now consider the drag force and drag coefficient for a number of bodies, starting with the sim-
plest: a flat plate parallel to the flow (which has only friction drag); a flat plate normal to the flow (which
has only pressure drag); and cylinders and spheres (the simplest 2D and 3D bodies, which have both
friction and pressure drag). We will also briefly discuss streamlining.

Pure Friction Drag: Flow over a Flat Plate Parallel to the Flow

This flow situation was considered in detail in Section 9.4. Since the pressure gradient is zero (and in any
event the pressure forces are perpendicular to the plate and therefore do not contribute to drag), the total
drag is equal to the friction drag. Thus

FD =
Z
plate surface

τwdA

and

CD =
FD

1
2ρV

2A
=

Z
PS
τwdA

1
2
ρV2A

ð9:32Þ

where A is the total surface area in contact with the fluid (i.e., the wetted area). The drag coefficient for a
flat plate parallel to the flow depends on the shear stress distribution along the plate.

For laminar flow over a flat plate, the shear stress coefficient was given by

Cf =
τw

1
2ρU

2
=
0:664ffiffiffiffiffiffiffi
Rex
p ð9:15Þ

The drag coefficient for flow with freestream velocity V , over a flat plate of length L and width b, is
obtained by substituting for τw from Eq. 9.15 into Eq. 9.32. Thus

CD =
1
A

Z
A
0:664 Re−0:5

x dA=
1
bL

Z L

0
0:664

V
ν

� �−0:5

x−0:5bdx

=
0:664
L

ν

V

� �0:5 x0:5

0:5

	 
L
0
= 1:33

ν

VL

� �0:5
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CD =
1:33ffiffiffiffiffiffiffiffi
ReL
p ð9:33Þ

Assuming the boundary layer is turbulent from the leading edge, the shear stress coefficient, based
on the approximate analysis of Section 9.4, is given by

Cf =
τw

1
2ρU

2
=
0:0594

Re1=5x

ð9:27Þ

Substituting for τw from Eq. 9.27 into Eq. 9.32, we obtain

CD =
1
A

Z
A
0:0594 Re−0:2

x dA=
1
bL

Z L

0
0:0594

V
ν

� �−0:2

x−0:2b dx

=
0:0594

L
ν

V

� �0:2 x0:8

0:8

	 
L
0
= 0:0742

ν

VL

� �0:2

CD =
0:0742

Re1=5L

ð9:34Þ

Equation 9.34 is valid for 5 × 105 <ReL <107.
For ReL <109 the empirical equation given by Schlichting [3]

CD =
0:455

ðlog ReLÞ2:58
ð9:35Þ

fits experimental data very well.
For a boundary layer that is initially laminar and undergoes transition at some location on the plate,

the turbulent drag coefficient must be adjusted to account for the laminar flow over the initial length. The
adjustment is made by subtracting the quantity B=ReL from the CD determined for completely turbulent
flow. The value of B depends on the Reynolds number at transition; B is given by

B=RetrðCDturbulent −CDlaminarÞ ð9:36Þ
For a transition Reynolds number of 5 × 105, the drag coefficient may be calculated by making the
adjustment to Eq. 9.34, in which case

CD =
0:0742

Re1=5L

−
1740
ReL

ð5× 105 <ReL <107Þ ð9:37aÞ

or to Eq. 9.35, in which case

CD =
0:455

ðlog ReLÞ2:58
−
1610
ReL

ð5× 105 <ReL <109Þ ð9:37bÞ

The variation in drag coefficient for a flat plate parallel to the flow is shown in Fig. 9.8.
In the plot of Fig. 9.8, transition was assumed to occur at Rex =5× 105 for flows in which the bound-

ary layer was initially laminar. The actual Reynolds number at which transition occurs depends on a
combination of factors, such as surface roughness and freestream disturbances. Transition tends to
occur earlier (at lower Reynolds number) as surface roughness or freestream turbulence is increased.
For transition at other than Rex =5×105, the constant in the second term of Eqs. 9.37 is modified using
Eq. 9.36. Figure 9.8 shows that the drag coefficient is less, for a given length of plate, when laminar flow
is maintained over the longest possible distance. However, at large ReL ð>107Þ the contribution of the
laminar drag is negligible. Example 9.4 illustrates how the skin friction force due to a turbulent boundary
layer is calculated.
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Transition at
Rex = 5 105

(Eq. 9.37b)

Turbulent
boundary layer

(Eq. 9.34)

Turbulent
boundary layer

(Eq. 9.35)

Laminar
boundary layer

(Eq. 9.33)
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Fig. 9.8 Variation of drag coefficient with Reynolds number for a smooth flat plate parallel to the flow.

Example 9.4 SKIN FRICTION DRAG ON A SUPERTANKER

A supertanker is 360 m long and has a beam width of 70 m and a draft of 25 m. Estimate the force and power required to
overcome skin friction drag at a cruising speed of 13 kt in seawater at 10�C.

Given: Supertanker cruising at U =13 kt.

Find: (a) Force.
(b) Power required to overcome skin friction drag.

Solution: Model the tanker hull as a flat plate, of length L and width
b=B+2D, in contact with water. Estimate skin friction drag from the
drag coefficient.

Governing equations:

CD =
FD

1
2ρU

2A
ð9:32Þ

CD =
0:455

ðlog ReLÞ2:58
−
1610
ReL

ð9:37bÞ

The ship speed is 13 kt (nautical miles per hour), so

U =13
nm
hr

× 6076
ft
nm

× 0:305
m
ft
×

hr
3600 s

=6:69 m=s

From Appendix A, at 10�C, ν=1:37× 10−6 m2=s for seawater. Then

ReL =
UL
ν

=6:69
m
s
× 360 m×

s
1:37× 10−6m2

= 1:76× 109

Assuming Eq. 9.37b is valid,

CD =
0:455

ðlog1:76× 109Þ2:58 −
1610

1:76× 109
= 0:00147

B = 70 m Water line

L = 360 m

D = 25 m

U
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Pure Pressure Drag: Flow over a Flat Plate Normal to the Flow

In flow over a flat plate normal to the flow (Fig. 9.9), the wall shear stress is perpendicular to the flow
direction and therefore does not contribute to the drag force. The drag is given by

FD =
Z
surface

pdA

For this geometry the flow separates from the edges of the plate; there is back-flow in the low energy
wake of the plate. Although the pressure over the rear surface of the plate is essentially constant, its
magnitude cannot be determined analytically. Consequently, we must resort to experiments to determine
the drag force.

The drag coefficient for flow over an immersed object usually is based on the frontal area (or pro-
jected area) of the object. (For airfoils and wings, the planform area is used; see Section 9.7.)

The drag coefficient for a finite plate normal to the flow depends on the ratio of plate width to height
and on the Reynolds number. For Re (based on height) greater than about 1000, the drag coefficient is
essentially independent of Reynolds number. The variation of CD with the ratio of plate width to height
ðb=hÞ is shown in Fig. 9.10. (The ratio b=h is defined as the aspect ratio of the plate.) For b=h=1:0, the
drag coefficient is a minimum at CD =1:18 this is just slightly higher than for a circular disk ðCD =1:17Þ
at large Reynolds number.

The drag coefficient for all objects with sharp edges is essentially independent of Reynolds number
(for Re≳1000) because the separation points and therefore the size of the wake are fixed by the geometry
of the object. Drag coefficients for selected objects are given in Table 9.3.

Friction and Pressure Drag: Flow over a Sphere and Cylinder

We have looked at two special flow cases in which either friction or pressure drag was the sole form of
drag present. In the former case, the drag coefficient was a strong function of Reynolds number, while in
the latter case, CD was essentially independent of Reynolds number for Re≳1000.

and from Eq. 9.32,

FD =CDA
1
2
ρU2

= 0:00147 × ð360 mÞð70+ 50Þm×
1
2
× 1020

kg
m3 × ð6:69Þ

2m2

s2
×

N � s2
kg �m

FD =1:45MN
FD ����������������������������������������

The corresponding power is

�=FDU =1:45× 106N×6:69
m
s
×
W � s
N �m

�=9:70MW � ����������������������������������������

This problem illustrates application of drag
coefficient equations for a flat plate parallel
to the flow.
• The power required (about 13,000 hp) is
very large because although the friction
stress is small, it acts over a substan-
tial area.

• The boundary layer is turbulent for
almost the entire length of the ship
(transition occurs at x≈0:1m).

Wake

Fig. 9.9 Flow over a flat plate normal to the flow.

Video: Plate
Normal to the
Flow
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In the case of flow over a sphere, both friction drag and pressure drag contribute to total drag. The
drag coefficient for flow over a smooth sphere is shown in Fig. 9.11 as a function of Reynolds number.

At very low Reynolds number,2 Re≤ 1, there is no flow separation from a sphere; the wake is lam-
inar and the drag is predominantly friction drag. Stokes has shown analytically, for very low Reynolds
number flows where inertia forces may be neglected, that the drag force on a sphere of diameter d,
moving at speed V , through a fluid of viscosity μ, is given by

FD =3πμVd

The drag coefficient, CD, defined by Eq. 9.30, is then

CD =
24
Re

2.0

1.5

1.0

CD

0.5
0 2 4 6 8 10

Aspect ratio, b/h
12 14 16 18 20

b

h

Fig. 9.10 Variation of drag coefficientwith aspect ratio for a flat plate of finitewidthnormal to the flowwithReh > 1000 [16].

Table 9.3
Drag Coefficient Data for Selected Objects ðRe≳103Þ4

aData from Hoerner [16].
bBased on ring area.

2 See Shapiro [17] for a good discussion of drag on spheres and other shapes. See also Fage [18].

Video: An
Object with a
High Drag
Coefficient
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As shown in Fig. 9.11, this expression agrees with experimental values at low Reynolds number but
begins to deviate significantly from the experimental data for Re>1:0.

As the Reynolds number is further increased, the drag coefficient drops continuously up to a
Reynolds number of about 1000, but not as rapidly as predicted by Stokes’ theory. A turbulent wake
(not incorporated in Stokes’ theory) develops and grows at the rear of the sphere as the separation point
moves from the rear of the sphere toward the front; this wake is at a relatively low pressure, leading to a
large pressure drag. By the time Re ≈ 1000, about 95% of total drag is due to pressure. For
103 <Re<3×105 the drag coefficient is approximately constant. In this range the entire rear of the
sphere has a low-pressure turbulent wake, as indicated in Fig. 9.12, and most of the drag is caused
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to Stokes
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Fig. 9.11 Drag coefficient of a smooth sphere as a function of Reynolds number (data from References [38], [39], and [3]).
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Fig. 9.12 Pressure distribution around a smooth sphere for laminar and turbulent boundary-layer flow, compared with
inviscid flow [18].
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by the front-rear pressure asymmetry. Note that CD/ 1=Re corresponds to FD/V , and that CD	 const.
corresponds to FD/V2, indicating a quite rapid increase in drag.

For Reynolds numbers larger than about 3 × 105, transition occurs and the boundary layer on the
forward portion of the sphere becomes turbulent. The point of separation then moves downstream from
the sphere midsection, and the size of the wake decreases. The net pressure force on the sphere is reduced
(Fig. 9.12), and the drag coefficient decreases abruptly.

A turbulent boundary layer, since it has more momentum flux than a laminar boundary layer, can
better resist an adverse pressure gradient, as discussed in Section 9.5. Consequently, turbulent boundary-
layer flow is desirable on a blunt body because it delays separation and thus reduces the pressure drag.

Transition in theboundary layer isaffectedbyroughnessof the sphere surfaceand turbulence in the flow
stream.Therefore, the reduction indragassociatedwitha turbulentboundary layer doesnot occurat aunique
value of Reynolds number. Experiments with smooth spheres in a flowwith low turbulence level show that
transitionmay be delayed to a critical Reynolds number,ReD, of about 4 × 105. For rough surfaces and/or
highly turbulent freestream flow, transition can occur at a critical Reynolds number as low as 50,000.

The drag coefficient of a sphere with turbulent boundary-layer flow is about one-fifth that for lam-
inar flow near the critical Reynolds number. The corresponding reduction in drag force can affect the
range of a sphere (e.g., a golf ball) appreciably. The “dimples” on a golf ball are designed to “trip” the
boundary layer and, thus, to guarantee turbulent boundary-layer flow and minimum drag. To illustrate
this effect graphically, we obtained samples of golf balls without dimples some years ago. One of our
students volunteered to hit drives with the smooth balls. In 50 tries with each type of ball, the average
distance with the standard balls was 215 yards; the average with the smooth balls was only 125 yards!

Adding roughness elements to a sphere also can suppress local oscillations in location of the tran-
sition between laminar and turbulent flow in the boundary layer. These oscillations can lead to variations
in drag and to random fluctuations in lift (see Section 9.7). In baseball, the “knuckle ball” pitch is
intended to behave erratically to confuse the batter. By throwing the ball with almost no spin, the pitcher
relies on the seams to cause transition in an unpredictable fashion as the ball moves on its way to the
batter. This causes the desired variation in the flight path of the ball.

Figure 9.13 shows the drag coefficient for flow over a smooth cylinder. The variation of CD with
Reynolds number shows the same characteristics as observed in the flow over a smooth sphere, but the
values of CD are about twice as high. The use of Fig. 9.13 to determine the drag force on a chimney is
shown in Example 9.5, and the use of the drag coefficient data in Table 9.3 to find the drag of a parachute
is given in Example 9.6.

Flow about a smooth circular cylinder may develop a regular pattern of alternating vortices down-
stream. The vortex trail3 causes an oscillatory lift force on the cylinder perpendicular to the stream

3The regular pattern of vortices in the wake of a cylinder sometimes is called a Karman vortex street in honor of the prominent fluid
mechanician, Theodore von Kármán, who was first to predict the stable spacing of the vortex trail on theoretical grounds in 1911;
see Goldstein [19].

10–1 2 4 68100 2 4 68101 2 4 68102 2 4 68103 2 4 68104 2 4 68105 1062 4 68
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0.1
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10

100

Fig. 9.13 Drag coefficient for a smooth circular cylinder as a function of Reynolds number (data from References [38], [39],
and [3]).
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motion. Vortex shedding excites oscillations that cause telegraph wires to “sing” and ropes on flag poles
to “slap” annoyingly. Sometimes structural oscillations can reach dangerous magnitudes and cause high
stresses; they can be reduced or eliminated by applying roughness elements or fins—either axial or hel-
ical (sometimes seen on chimneys or automobile antennas)—that destroy the symmetry of the cylinder
and stabilize the flow.

Experimental data show that regular vortex shedding occurs most strongly in the range of Reynolds
number from about 60 to 5000. For Re>1000 the dimensionless frequency of vortex shedding,
expressed as a Strouhal number, St= f D=V , is approximately equal to 0.21 [3].

Roughness affects drag of cylinders and spheres similarly: the critical Reynolds number is reduced
by the rough surface, and transition from laminar to turbulent flow in the boundary layers occurs earlier.
The drag coefficient is reduced by a factor of about 4 when the boundary layer on the cylinder becomes
turbulent.

Example 9.5 AERODYNAMIC DRAG AND MOMENT ON A CHIMNEY

A cylindrical chimney 1 m in diameter and 25 m tall is exposed to a uniform 50 km=hr wind at standard atmospheric conditions.
End effects and gusts may be neglected. Estimate the bending moment at the base of the chimney due to wind forces.

Given: Cylindrical chimney, D=1m, L=25m, in uniform flow with

V =50 km=hr p=101 kPa ðabsÞ T =15�C
Neglect end effects.

Find: Bending moment at bottom of chimney.

Solution: The drag coefficient is given by CD =FD=
1
2ρV

2 A, and thus FD =CDA1
2 ρV

2. Since the
force per unit length is uniform over the entire length, the resultant force, FD, will act at the midpoint
of the chimney. Hence the moment about the chimney base is

M0 =FD
L
2
=CDA

1
2
ρV2L

2
=CDA

L
4
ρV2

V =50
km
hr

× 103
m
km

×
hr

3600s
=13:9 m=s

For air at standard conditions, ρ=1:23 kg=m3, and μ=1:79× 10−5kg=ðm � sÞ. Thus

Re=
ρVD
μ

=1:23
kg
m3 × 13:9

m
s
× 1 m×

m � s
1:79× 10−5kg

= 9:55× 105

From Fig. 9.13, CD ≈ 0:35. For a cylinder, A=DL, so

M0 =CDA
L
4
ρV2 =CDDL

L
4
ρV2 =CDD

L2

4
ρV2

=
1
4
× 0:35× 1 m× ð25Þ2m2 × 1:23

kg
m3 × ð13:9Þ

2m2

s2
×

N � s2
kg �m

M0 = 13:0 kN �m M0 ��������������������������������

FD

L/2

L = 25 m

d = 1 m

0

This problem illustrates application of
drag-coefficient data to calculate the force
and moment on a structure. We modeled
the wind as a uniform flow; more realisti-
cally, the lower atmosphere is often
modeled as a huge turbulent boundary
layer, with a power-law velocity profile,
u	 y1=n y is the elevation).

Video: Vortex
Trail behind a
Cylinder
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Example 9.6 DECELERATION OF AN AUTOMOBILE BY A DRAG PARACHUTE

A dragster weighing 1600 lbf attains a speed of 270 mph in the quarter mile. Immediately after passing through the timing lights,
the driver opens the drag chute, of area A=25ft2. Air and rolling resistance of the car may be neglected. Find the time required for
the machine to decelerate to 100 mph in standard air.

Given: Dragster weighing 1600 lbf, moving with initial speed V0 = 270mph, is slowed by the drag force on a chute of area
A=25 ft2. Neglect air and rolling resistance of the car. Assume standard air.

Find: Time required for the machine to decelerate to 100 mph.

Solution: Taking the car as a system and writing Newton’s second law in the direction of motion gives

V0 = 270 mph

Vf =100 mph

ρ=0:00238 slug=ft3

Since CD =
FD

1
2 ρV

2A
, then FD = 1

2 CD ρV2A.

Substituting into Newton’s second law gives

−
1
2
CD ρV2A=m

dV
dt

Separating variables and integrating, we obtain

−
1
2
CD ρ

A
m

Z t

0
dt=

Z Vf

V0

dV
V2

−
1
2
CD ρ

A
m
t= −

1
V


Vf

V0

= −
1
Vf

+
1
V0

= −
ðV0−Vf Þ
Vf V0

Finally,

t=
ðV0−Vf Þ
Vf V0

2 m
CD ρA

=
ðV0−Vf Þ
Vf V0

2W
CD ρAg

Model the drag chute as a hemisphere (with open end facing flow). From Table 9.3, CD =1:42 (assuming Re>103). Then, sub-
stituting numerical values,

t= ð270−100Þmph× 2× 1600 lbf ×
1

100 mph
×

hr
270 mi

×
1
1:2

×
ft3

0:00238 slug

×
1

25 ft2
×

s2

32:2 ft
×
slug � ft
lbf � s2 ×

mi
5280 ft

× 3600
s
hr

t=5:05 s t ����������������������������������������������
Check the assumption on Re:

Re=
DV
ν

=
4A
π

	 
1=2V
ν

=
4
π
×25ft2

	 
1=2
× 100

mi
hr

×
hr

3600s
× 5280

ft
mi

×
s

1:57× 10−4ft2

Re=5:27× 106

Hence the assumption is valid.

FD V

x

– FD = ma = m dV____
dt

This problem illustrates application of
drag-coefficient data to calculate the drag
on a vehicle parachute.

The Excel workbook for this
problem plots the dragster velocity

(and distance traveled) as a function of
time; it also allows “what-ifs,” e.g., we can
find the parachute area A required to slow
the dragster to 60 mph in 5 sec.
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All experimental data presented in this section are for single objects immersed in an unbounded
fluid stream. The objective of wind tunnel tests is to simulate the conditions of an unbounded flow. Lim-
itations on equipment size make this goal unreachable in practice. Frequently it is necessary to apply
corrections to measured data to obtain results applicable to unbounded flow conditions.

In numerous realistic flow situations, interactions occur with nearby objects or surfaces. Drag can be
reduced significantly when two or more objects, moving in tandem, interact. This phenomenon is well
known to bicycle riders and those interested in automobile racing, where “drafting” is a common prac-
tice. Drag reductions of 80 percent may be achieved with optimum spacing [20]. Drag also can be
increased significantly when spacing is not optimum.

Drag can be affected by neighbors alongside as well. Small particles falling under gravity travel
more slowly when they have neighbors than when they are isolated. This phenomenon has important
applications to mixing and sedimentation processes.

Experimental data for drag coefficients on objects must be selected and applied carefully. Due
regard must be given to the differences between the actual conditions and the more controlled conditions
under which measurements were made.

Streamlining

The extent of the separated flow region behind many of the objects discussed in the previous section can
be reduced or eliminated by streamlining, or fairing, the body shape. We have seen that due to the con-
vergent body shape at the rear of any object (after all, every object is of finite length!), the streamlines
will diverge, so that the velocity will decrease, and therefore, more importantly (as shown by the Ber-
noulli equation, applicable in the freestream region) the pressure will increase. Hence, we initially have
an adverse pressure gradient at the rear of the body, leading to boundary-layer separation and ultimately
to a low-pressure wake leading to large pressure drag. Streamlining is the attempt to reduce the drag on a
body.We can reduce the drag on a body bymaking the rear of the bodymore tapered (e.g., we can reduce
the drag on a sphere by making it “teardrop” shaped), which will reduce the adverse pressure gradient
and hence make the turbulent wake smaller. However, as we do so, we are in danger of increasing the
skin friction drag simply because we have increased the surface area. In practice, there is an optimum
amount of fairing or tapering at which the total drag (the sum of pressure and skin friction drag) is
minimized.

The pressure gradient around a “teardrop” shape (a “streamlined” cylinder) is less severe than that
around a cylinder of circular section. The trade-off between pressure and friction drag for this case is
shown schematically in Fig. 9.14. The pressure drag increases as the thickness is increased, while
the friction drag due to the boundary layer flow decreases. The total drag is the sum of the two contribu-
tions and is a minimum at some value of thickness. This minimum drag is considerably less than that of a

Total drag

Skin friction

drag

Pressure
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Thickness
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Fig. 9.14 Drag coefficient on a streamlined airfoil as a function of thickness showing contributions of skin friction and
pressure to total drag (adapted from [19]).
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cylinder with a diameter equal to this value of thickness. As a result, streamlining of the structural mem-
bers on aircraft and automobiles leads to significant savings.

The effect of the airfoil shape on the pressure distribution and drag coefficient4 is shown in
Figure 9.15 for two symmetric airfoils of infinite span and 15 percent thickness at zero angle of attack.
These results were generated by the National Advisory Committee for Aeronautics (NACA), which was
founded in 1915 and undertook aeronautical research and development until it was replaced by the
National Aeronautics and Space Administration (NASA) in 1958. Transition on the conventional
(NACA 0015) airfoil takes place where the pressure gradient becomes adverse, at x=c=0:13, near
the point of maximum thickness. Thus most of the airfoil surface is covered with a turbulent boundary
layer; the drag coefficient is CD ≈ 0:0061. The point of maximum thickness has been moved aft on the
airfoil (NACA 662−015) designed for laminar flow. The boundary layer is maintained in the laminar
regime by the favorable pressure gradient to x=c=0:63. Thus the bulk of the flow is laminar;
CD ≈ 0:0035 for this section, based on planform area. The drag coefficient based on frontal area is
CDf =CD=0:15= 0:0233, or about 40 percent of the optimum for the shapes shown in Fig. 9.14.

Tests in special wind tunnels have shown that laminar flow can be maintained up to length Reynolds
numbers as high as 30 million by appropriate profile shaping. Because they have favorable drag char-
acteristics, laminar-flow airfoils are used in the design of most modern subsonic aircraft.

Recent advances have made possible development of low-drag shapes even better than the NACA
60-series shapes. Experiments [21, 22] led to the development of a pressure distribution that prevented
separation while maintaining the turbulent boundary layer in a condition that produces negligible skin
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Fig. 9.15 Theoretical pressure distributions at zero angle of attack for two symmetric airfoil sections of 15 percent thickness
ratio. (Data from Abbott and von Doenhoff [21].)

4Note that drag coefficients for airfoils are based on the planform area, i.e.,CD =FD=
1
2 ρV

2Ap, where Ap is the maximum projected
wing area.
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friction. Improved methods for calculating body shapes that produced a desired pressure distribution
[23, 24] led to development of nearly optimum shapes for thick struts with low drag. Figure 9.16 shows
an example of the results.

Reduction of aerodynamic drag also is important for road vehicle applications. Interest in fuel econ-
omy has provided significant incentive to balance efficient aerodynamic performance with attractive
design for automobiles. Drag reduction also has become important for buses and trucks.

Practical considerations limit the overall length of road vehicles. Fully streamlined tails are imprac-
tical for all but land-speed-record cars. Consequently, it is not possible to achieve results comparable to
those for optimum airfoil shapes. However, it is possible to optimize both front and rear contours within
given constraints on overall length [25–27].

Much attention has been focused on front contours. Studies on buses have shown that drag reduc-
tions up to 25 percent are possible with careful attention to front contour [27]. Thus it is possible to
reduce the drag coefficient of a bus from about 0.65 to less than 0.5 with practical designs. Highway
tractor-trailer rigs have higher drag coefficients—CD values from 0.90 to 1.1 have been reported. Com-
mercially available add-on devices offer improvements in drag of up to 15 percent, particularly for windy
conditions where yaw angles are nonzero. The typical fuel saving is half the percentage by which aer-
odynamic drag is reduced.

Front contours and details are important for automobiles. A low nose and smoothly rounded con-
tours are the primary features that promote low drag. Radii of “A-pillar” and windshield header, and
blending of accessories to reduce parasite and interference drag have received increased attention. As
a result, drag coefficients have been reduced from about 0.55 to 0.30 or less for recent production vehi-
cles. Recent advances in computational methods have led to development of computer-generated opti-
mum shapes. A number of designs have been proposed, with claims of CD values below 0.2 for vehicles
complete with running gear.

9.7 Lift
For most objects in relative motion in a fluid, the most significant fluid force is the drag. However, there
are some objects, such as airfoils, for which the lift is significant. Lift is defined as the component of fluid
force perpendicular to the fluid motion. For an airfoil, the lift coefficient, CL, is defined as

CL ≡
FL

1
2
ρV2Ap

ð9:38Þ

It is worth noting that the lift coefficient defined above and the drag coefficient (Eq. 9.30) are each
defined as the ratio of an actual force (lift or drag) divided by the product of dynamic pressure and
area. This denominator can be viewed as the force that would be generated if we imagined bringing
to rest the fluid directly approaching the area (recall that the dynamic pressure is the difference between
total and static pressures). This gives us a “feel” for the meaning of the coefficients: They indicate
the ratio of the actual force to this force. We note also that the coefficient definitions include V2 in
the denominator, so that FL (or FD) being proportional to V2 corresponds to a constant CL (or CD),
and that FL (or FD) increasing with V at a lower rate than quadratic corresponds to a decrease in CL

(or CD) with V .

Fig. 9.16 Nearly optimum shape for low-drag strut [24].
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The lift and drag coefficients for an airfoil are functions of both Reynolds number and angle of
attack; the angle of attack, α, is the angle between the airfoil chord and the freestream velocity vector.
The chord of an airfoil is the straight line joining the leading edge and the trailing edge. The wing
section shape is obtained by combining a mean line and a thickness distribution (see Reference [21]
for details). When the airfoil has a symmetric section, the mean line and the chord line both are straight
lines, and they coincide. An airfoil with a curved mean line is said to be cambered.

The area at right angles to the flow changes with angle of attack. Consequently, the planform
area, Ap (the maximum projected area of the wing), is used to define lift and drag coefficients for an
airfoil.

The phenomenon of aerodynamic lift is commonly explained by the velocity increase causing pres-
sure to decrease (the Bernoulli effect) over the top surface of the airfoil and the velocity decrease (caus-
ing pressure to increase) along the bottom surface of the airfoil. Because of the pressure differences
relative to atmosphere, the upper surface of the airfoil may be called the suction surface and the lower
surface the pressure surface.

As was shown in Example 6.12, lift on a body can also be related to the circulation around the pro-
file: In order for lift to be generated, there must be a net circulation around the profile. One may imagine
the circulation to be caused by a vortex “bound” within the profile.

Advances continue in computational methods and computer hardware. However, most airfoil data
available in the literature were obtained from wind tunnel tests. Reference [21] contains results from a
large number of tests conducted by NACA. Data for some representative NACA profile shapes are
described in the next few paragraphs.

Lift and drag coefficient data for typical conventional and laminar-flow profiles are plotted in
Fig. 9.17 for a Reynolds number of 9 × 106 based on chord length. The section shapes in Fig. 9.17
are designated as follows:

Conventional—23015

2 30 15

design lift coefficient (  0.2  0.3)
3

2

maximum camber location (  30  15 percent chord)
1

2

section thickness (15 percent chord)

Laminar Flow 662  215

6 6 2 152

location of minimum pressure (x/c  0.6)

series designation (laminar flow)

design lift coefficient (0.2)

maximum lift coefficient for favorable

           pressure gradient (0.2)

section thickness (15 percent)

Both sections are cambered to give lift at zero angle of attack. As the angle of attack is increased, the Δp
between the upper and lower surfaces increases, causing the lift coefficient to increase smoothly until a
maximum is reached. Further increases in angle of attack produce a sudden decrease in CL. The airfoil is
said to have stalled when CL drops in this fashion.

Video: Flow
Past an
Airfoil ðα=0∘Þ

Video: Flow
Past an
Airfoil ðα=10∘Þ

Video: Flow
Past an
Airfoil ðα=20∘Þ
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Airfoil stall results when flow separation occurs over a major portion of the upper surface of the
airfoil. As the angle of attack is increased, the stagnation point moves back along the lower surface of
the airfoil, as shown schematically for the symmetric laminar-flow section in Fig. 9.18a. Flow on the
upper surface then must accelerate sharply to round the nose of the airfoil. The effect of angle of attack
on the theoretical upper-surface pressure distribution is shown in Fig. 9.18b. The minimum pressure
becomes lower, and its location moves forward on the upper surface. A severe adverse pressure gra-
dient appears following the point of minimum pressure; finally, the adverse pressure gradient causes
the flow to separate completely from the upper surface and the airfoil stalls (the uniform pressure in the
turbulent wake will be approximately equal to the pressure just before separation, i.e., low).

Movement of the minimum pressure point and accentuation of the adverse pressure gradient
are responsible for the sudden increase in CD for the laminar-flow section, which is apparent in
Fig. 9.17. The sudden rise in CD is caused by early transition from laminar to turbulent boundary-layer
flow on the upper surface. Aircraft with laminar-flow sections are designed to cruise in the low-drag
region.
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Fig. 9.17 Lift and drag coefficients versus angle of attack for two airfoil sections of 15 percent thickness ratio at
Rec =9× 106. (Data from Abbott and von Doenhoff [21].)
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Because laminar-flow sections have very sharp leading edges, all of the effects we have described
are exaggerated, and they stall at lower angles of attack than conventional sections, as shown in
Fig. 9.17. The maximum possible lift coefficient, CLmax , also is less for laminar-flow sections.

Plots of CL versus CD (called lift-drag polars) often are used to present airfoil data in compact form.
A polar plot is given in Fig. 9.19 for the two sections we have discussed. The lift/drag ratio, CL=CD, is
shown at the design lift coefficient for both sections. This ratio is very important in the design of aircraft:
The lift coefficient determines the lift of the wing and hence the load that can be carried, and the drag
coefficient indicates a large part (in addition to that caused by the fuselage, etc.) of the drag the airplane
engines have to work against in order to generate the needed lift; hence, in general, a high CL=CD is the
goal, at which the laminar airfoil clearly excels.

Recent improvements in modeling and computational capabilities have made it possible to design
airfoil sections that develop high lift while maintaining very low drag [23, 24]. Boundary-layer calcu-
lation codes are used with inverse methods for calculating potential flow to develop pressure
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Fig. 9.18 Effect of angle of attack on flowpattern and theoretical pressure distribution for a symmetric laminar-flow airfoil
of 15 percent thickness ratio. (Data from Abbott and von Doenhoff [21].)
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distributions and the resulting body shapes that postpone transition to the most rearward location pos-
sible. The turbulent boundary layer following transition is maintained in a state of incipient separation
with nearly zero skin friction by appropriate shaping of the pressure distribution.

Such computer-designed airfoils have been used on racing cars to develop very high negative lift
(downforce) to improve high-speed stability and cornering performance [23]. Airfoil sections especially
designed for operation at low Reynolds number were used for the wings and propeller on the Kremer
prize-winning man-powered “Gossamer Condor” [28], which now hangs in the National Air and Space
Museum in Washington, D.C.

All real airfoils—wings—are of finite span and have less lift and more drag than their airfoil
section data would indicate. There are several ways to explain this. If we consider the pressure distri-
bution near the end of the wing, the low pressure on the upper and high pressure on the lower surface
cause flow to occur around the wing tip, leading to trailing vortices (as shown in Fig. 9.20), and
the pressure difference is reduced, leading to less lift. These trailing vortices can also be explained more
abstractly, in terms of circulation: We learned in Section 6.5 that circulation around a wing section is
present whenever we have lift, and that the circulation is solenoidal—that is, it cannot end in the fluid;
hence, the circulation extends beyond the wing in the form of trailing vortices. Trailing vortices can be
very strong and persistent, possibly being a hazard to other aircraft for 5 to 10 miles behind a large
airplane—air speeds of greater than 200 mph have been measured.5
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Laminar-flow section
(NACA 662–215)
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(NACA 23015)
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1.6

1.8
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Fig. 9.19 Lift-drag polars for two airfoil sections of 15 percent thickness ratio. (Data from Abbott and von Doenhoff [21].)
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Fig. 9.20 Schematic representation of the trailing
vortex system of a finite wing.

5 Sforza, P. M., “Aircraft Vortices: Benign or Baleful?” Space/Aeronautics, 53, 4, April 1970, pp. 42–49.
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Trailing vortices reduce lift because of the loss of pressure difference, as we just mentioned. This
reduction and an increase in drag (called induced drag) can also be explained in the following way: The
“downwash” velocities induced by the vortices mean that the effective angle of attack is reduced—the
wing “sees” a flow at approximately the mean of the upstream and downstream directions—explaining
why the wing has less lift than its section data would suggest. This also causes the lift force (which is
perpendicular to the effective angle of attack) to “lean backwards” a little, resulting in some of the lift
appearing as drag.

Loss of lift and increase in drag caused by finite-span effects are concentrated near the tip of the
wing; hence, it is clear that a short, stubby wing will experience these effects more severely than a very
long wing. We should therefore expect the effects to correlate with the wing aspect ratio, defined as

AR ≡
b2

Ap
ð9:39Þ

where Ap is planform area and b is wingspan. For a rectangular planform of wingspan b and chord
length c,

AR=
b2

Ap
=
b2

bc
=
b
c

The maximum lift/drag ratio ðL=D=CL=CDÞ for a modern low-drag section may be as high as 400 for
infinite aspect ratio. A high-performance sailplane (glider) with AR=40 might have L=D=40, and a
typical light plane ðAR ≈ 12Þmight have L=D ≈ 20 or so. Two examples of rather poor shapes are lifting
bodies used for reentry from the upper atmosphere, and water skis, which are hydrofoils of low aspect
ratio. For both of these shapes, L=D typically is less than unity.

Variations in aspect ratio are seen in nature. Soaring birds, such as the albatross or California
condor, have thin wings of long span. Birds that must maneuver quickly to catch their prey, such as
hawks, have wings of relatively short span, but large area, which gives low wing loading (ratio of weight
to planform area) and thus high maneuverability.

It makes sense that as we try to generate more lift from a finite wing (by, for example, increasing the
angle of attack), the trailing vortices and therefore the downwash increase; we also learned that the
downwash causes the effective angle of attack to be less than that of the corresponding airfoil
section (i.e., when AR= ∞ ), ultimately leading to loss of lift and to induced drag. Hence, we conclude
that the effects of the finite aspect ratio can be characterized as a reduction Δα in the effective angle of
attack, and that this (which is usually undesirable) becomes worse as we generate more lift (i.e., as the lift
coefficient CL increases) and as the aspect ratio AR is made smaller. Theory and experiment indicate that

Δα ≈
CL

πAR
ð9:40Þ

Compared with an airfoil section ðAR= ∞Þ, the geometric angle of attack of a wing (finite AR) must be
increased by this amount to get the same lift, as shown in Fig. 9.21. It also means that instead of being
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Fig. 9.21 Effect of finite aspect ratio on lift and drag coefficients for a wing.
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perpendicular to the motion, the lift force leans angleΔα backwards from the perpendicular—we have an
induced drag component of the drag coefficient. From simple geometry

ΔCD ≈ CLΔα ≈
C2
L

πAR
ð9:41Þ

This also is shown in Fig. 9.21.
When written in terms of aspect ratio, the drag of a wing of finite span becomes [21]

CD =CD,∞ +CD, i =CD,∞ +
C2
L

πAR
ð9:42Þ

where CD,∞ is the section drag coefficient at CL, CD, i is the induced drag coefficient at CL, and AR is the
aspect ratio of the finite-span wing.

Drag on airfoils arises from viscous and pressure forces. Viscous drag changes with Reynolds num-
ber but only slightly with angle of attack. These relationships and some commonly used terminology are
illustrated in Fig. 9.22.

A useful approximation to the drag polar for a complete aircraft may be obtained by adding the
induced drag to the drag at zero lift. The drag at any lift coefficient is obtained from

CD =CD,0 +CD, i =CD,0 +
C2
L

πAR
ð9:43Þ

whereCD,0 is the drag coefficient at zero lift and AR is the aspect ratio. The optimum cruising speed of an
aircraft brings in these lift and drag relations, as shown in Example 9.7.

Total (profile) drag

Profile (form) drag Induced drag

Total drag

Pressure

drag

Skin-friction

drag

Pressure

drag

Skin-friction

drag

Nonlifting bodies

Lifting
bodies

Fig. 9.22 Drag breakdown on nonlifting and lifting bodies.

Example 9.7 OPTIMUM CRUISE PERFORMANCE OF A JET TRANSPORT

Jet engines burn fuel at a rate proportional to thrust delivered. The optimum cruise condition for a jet aircraft is at maximum speed
for a given thrust. In steady level flight, thrust and drag are equal. Hence, optimum cruise occurs at the speed when the ratio of
drag force to air speed is minimized.

A Boeing 727-200 jet transport has wing planform area Ap =1600 ft2, and aspect ratio AR=6:5. Stall speed at sea level for
this aircraft with flaps up and a gross weight of 150,000 lbf is 175 mph. Below M =0:6, drag due to compressibility effects
is negligible, so Eq. 9.43 may be used to estimate total drag on the aircraft. CD,0 for the aircraft is constant at 0.0182. Assume
sonic speed at sea level is c=759 mph.

Evaluate the performance envelope for this aircraft at sea level by plotting drag force versus speed, between stall andM =0:6.
Use this graph to estimate optimum cruise speed for the aircraft at sea-level conditions. Comment on stall speed and optimum
cruise speed for the aircraft at 30,000 ft altitude on a standard day.

Given: Boeing 727-200 jet transport at sea-level conditions.

W =150,000 lbf, A=1600 ft2, AR=6:5, and CD,0 = 0:182

Stall speed is Vstall = 175mph, and compressibility effects on drag are negligible for M ≤ 0:6 (sonic speed at sea level
is c=759 mph).

Find: (a) Drag force as a function of speed from Vstall to M =0:6; plot results.
(b) Estimate of optimum cruise speed at sea level.
(c) Stall speed and optimum cruise speed at 30,000 ft altitude.
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Solution: For steady, level flight, weight equals lift and thrust equals drag.

Governing equations:

FL =CLA
1
2
ρV2 =W CD =CD,0 +

C2
L

πAR

FD =CDA
1
2
ρV2 = T M =

V
c

At sea level, ρ=0:00238 slug=ft3, and c=759 mph.
Since FL =W for level flight at any speed, then

CL =
W

1
2 ρV

2A
=

2W
ρV2A

At stall speed, V =175 mph, so

CL =2× 150,000 lbf ×
ft3

0:00238 slug
hr

V mi
×

mi
5280 ft

× 3600
s
hr

	 
2 1
1600 ft2

×
slug � ft
lbf � s2

CL =
3:65× 104

½VðmphÞ�2 =
3:65× 104

ð175Þ2 = 1:196, and

CD =CD,0 +
C2
L

πAR
=0:0182+

ð1:196Þ2
πð6:5Þ =0:0882

Then

FD =W
CD

CL
=150,000 lbf

0:0882
1:19

� �
=11,100 lbf

At M =0:6,V =Mc= ð0:6Þ759 mph= 455 mph, so CL =0:177 and

CD =0:0182+
ð0:177Þ2
πð6:5Þ =0:0197

so

FD =150,000 lbf
0:0197
0:177

� �
=16,700 lbf

Similar calculations lead to the following table (computed using Excel):

VðmphÞ 175 200 300 400 455
CL 1:196 0:916 0:407 0:229 0:177
CD 0:0882 0:0593 0:0263 0:0208 0:0197

FD ðlbfÞ 11;100 9;710 9;700 13;600 16;700

These data may be plotted as:
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It is possible to increase the effective aspect ratio for a wing of given geometric ratio by adding an
endplate orwinglet to the wing tip. An endplate may be a simple plate attached at the tip, perpendicular to
the wing span, as on the rear-mounted wing of a racing car (see Fig. 9.26). An endplate functions by
blocking the flow that tends to migrate from the high-pressure region below the wing tip to the low-
pressure region above the tip when the wing is producing lift. When the endplate is added, the strength
of the trailing vortex and the induced drag are reduced.

Winglets are short, aerodynamically contoured wings set perpendicular to the wing at the tip. Like
the endplate, the winglet reduces the strength of the trailing vortex system and the induced drag. The
winglet also produces a small component of force in the flight direction, which has the effect of further
reducing the overall drag of the aircraft. The contour and angle of attack of the winglet are adjusted based
on wind tunnel tests to provide optimum results.

As we have seen, aircraft can be fitted with low-drag airfoils to give excellent performance at cruise
conditions. However, since the maximum lift coefficient is low for thin airfoils, additional effort must be
expended to obtain acceptably low landing speeds. In steady-state flight conditions, lift must equal air-
craft weight. Thus,

W =FL =CL
1
2
ρV2A

Minimum flight speed is therefore obtained when CL =CLmax . Solving for Vmin,

Vmin =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W

ρCLmaxA

s
ð9:44Þ

According to Eq. 9.44, the minimum landing speed can be reduced by increasing either CLmax or wing
area. Two basic techniques are available to control these variables: variable-geometry wing sections
(e.g., obtained through the use of flaps) or boundary-layer control techniques.

Flaps are movable portions of a wing trailing edge that may be extended during landing and takeoff
to increase effective wing area. The effects on lift and drag of two typical flap configurations are shown
in Fig. 9.23, as applied to the NACA 23012 airfoil section. The maximum lift coefficient for this
section is increased from 1.52 in the “clean” condition to 3.48 with double-slotted flaps. From
Eq. 9.44, the corresponding reduction in landing speed would be 34 percent.

Figure 9.23 shows that section drag is increased substantially by high-lift devices. From Fig. 9.23b,
section drag at CLmaxðCD≈0:28Þ with double-slotted flaps is about 5 times as high as section drag at
CLmaxðCD≈0:055Þ for the clean airfoil. Induced drag due to lift must be added to section drag to obtain
total drag. Because induced drag is proportional to C2

L (Eq. 9.41), total drag rises sharply at low aircraft
speeds. At speeds near stall, drag may increase enough to exceed the thrust available from the engines.
To avoid this dangerous region of unstable operation, the Federal Aviation Administration (FAA) limits
operation of commercial aircraft to speeds above 1.2 times stall speed.

Although details are beyond the scope of this book, the basic purpose of all boundary-layer control
techniques is to delay separation or reduce drag, by adding momentum to the boundary layer through

From the plot, the optimum cruise speed at sea level is estimated as 320 mph
(and using Excel we obtain 323 mph).

At 30,000 ft (9140 m) altitude, the density is only about 0.375 times sea level
density, from Table A.3. The speeds for corresponding forces are calculated from

FL =CLA
1
2
ρV2 or V =

ffiffiffiffiffiffiffiffiffiffiffi
2FL

CLρA

s
or

V30

VSL
=

ffiffiffiffiffiffiffi
ρSL
ρ30

r
=

ffiffiffiffiffiffiffiffiffiffiffi
1

0:375

r
=1:63

Thus, speeds increase 63 percent at 30,000 ft altitude:

Vstall≈285 mph
Vcruise≈522 mph

This problem illustrates that high-altitude
flight increases the optimum cruising
speed—in general this speed depends
on aircraft configuration, gross weight,
segment length, and winds aloft.

The Excel workbook for this
problem plots the drag or thrust

and power as functions of speed. It also
allows “what-ifs,” e.g., what happens to
the optimum speed if altitude is increased,
or if the aspect ratio is increased, and so on.
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blowing, or by removing low-momentum boundary-layer fluid by suction. Many examples of practical
boundary-layer control systems may be seen on commercial transport aircraft at your local airport. Two
typical systems are shown in Fig. 9.24.

Aerodynamic lift is an important consideration in the design of high-speed land vehicles such as
racing cars and land-speed-record machines. A road vehicle generates lift by virtue of its shape [29].
A representative centerline pressure distribution measured in the wind tunnel for an automobile is shown
in Fig. 9.25. The regions of positive and negative pressure coefficient are labeled with + and −, respec-
tively, and indicate the levels of pressure on the automobile surfaces.

The pressure is low around the nose because of streamline curvature as the flow rounds the
nose. The pressure reaches a maximum at the base of the windshield, again as a result of streamline
curvature. Low-pressure regions also occur at the windshield header and over the top of the auto-
mobile. The air speed across the top is approximately 30 percent higher than the freestream air speed.
The same effect occurs around the “A-pillars” at the windshield edges. The drag increase caused
by an added object, such as an antenna, spotlight, or mirror at that location, thus would be
ð1:3Þ2≈1:7 times the drag the object would experience in an undisturbed flow field. Thus the parasite
drag of an added component can be much higher than would be predicted from its drag calculated for
free flow.

At high speeds, aerodynamic lift forces can unload tires, causing serious reductions in steering con-
trol and reducing stability to a dangerous extent. Lift forces on early racing cars were counteracted some-
what by “spoilers,” at considerable penalty in drag. In 1965 Jim Hall introduced the use of movable
inverted airfoils on his Chaparral sports cars to develop aerodynamic downforce and provide aerody-
namic braking [31]. Since then the developments in application of aerodynamic devices have been rapid.
Aerodynamic design is used to reduce lift on all modern racing cars, as exemplified in Fig. 9.26. Liebeck
airfoils [23] are used frequently for high-speed automobiles. Their high lift coefficients and relatively
low drag allow downforce equal to or greater than the car weight to be developed at racing speeds.
“Ground effect” cars use venturi-shaped ducts under the car and side skirts to seal leakage flows.
The net result of these aerodynamic effects is that the downward force (which increases with speed)
generates excellent traction without adding significant weight to the vehicle, allowing faster speeds
through curves and leading to lower lap times.

Another method of boundary-layer control is use of moving surfaces to reduce skin friction effects
on the boundary layer [32]. This method is hard to apply to practical devices, because of geometric and
weight complications, but it is very important in recreation. Most golfers, tennis players, soccer players,
and baseball pitchers can attest to this! Tennis and soccer players use spin to control the trajectory and
bounce of a shot. In golf, a drive can leave the tee at 275 ft=s or more, with backspin of 9000 rpm! Spin
provides significant aerodynamic lift that substantially increases the carry of a drive. Spin is also largely
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Fig. 9.23 Effect of flaps on aerodynamic characteristics of NACA 23012 airfoil section. (Data from Abbott and von
Doenhoff [21].)
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Fig. 9.24 (a) Application of high-lift boundary-layer control devices to reduce landing speed of a jet transport aircraft. The
wing of the Boeing 777 is highly mechanized. In the landing configuration, large slotted trailing-edge flaps roll out from
under the wing and deflect downward to increase wing area and camber, thus increasing the lift coefficient. Slats at the
leading edge of the wing move forward and down, to increase the effective radius of the leading edge and prevent flow
separation, and to open a slot that helps keep air flow attached to the wing’s upper surface. After touchdown, spoilers
(not shown in use) are raised in front of each flap to decrease lift and ensure that the plane remains on the ground, despite use
of the lift-augmenting devices. (This photograph was taken during a flight test. Flow cones are attached to the flaps and
ailerons to identify regions of separated flow on these surfaces.)
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Fig.9.24 (b) Application of high-lift boundary-layer control devices to reduce takeoff speed of a jet transport aircraft.
This is another view of the Boeing 777 wing. In the takeoff configuration, large slotted trailing-edge flaps deflect to increase
the lift coefficient. The low-speed aileron near the wingtip also deflects to improve span loading during takeoff. This view
also shows the single-slotted outboard flap, the high-speed aileron, and nearest the fuselage, the double-slotted
inboard flap.
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responsible for hooking and slicing when shots are not hit squarely. The baseball pitcher uses spin to
throw a curve ball.

Flow about a spinning sphere is shown in Fig. 9.27a. Spin alters the pressure distribution and also
affects the location of boundary-layer separation. Separation is delayed on the upper surface of the
sphere in Fig. 9.27a, and it occurs earlier on the lower surface. Thus pressure (because of the Bernoulli
effect) is reduced on the upper surface and increased on the lower surface; the wake is deflected down-
ward as shown. Pressure forces cause a lift in the direction shown; spin in the opposite direction would
produce negative lift—a downward force. The force is directed perpendicular to both V and the spin axis.

Lift and drag data for spinning smooth spheres are presented in Fig. 9.27b. The most important
parameter is the spin ratio, ωD=2V , the ratio of surface speed to freestream flow speed; Reynolds num-
ber plays a secondary role. At low spin ratio, lift is negative in terms of the directions shown in
Fig. 9.27a. Only above ωD=2V≈0:5 does lift become positive and continue to increase as spin ratio

G
er

o
 B

re
lo

er
/p

ic
tu

re
-a

lli
an

ce
/d

p
a/

A
P

 Im
ag

es

Fig. 9.26 Contemporary racing car showing aerodynamic features. The car’s front and rear wings are designed to
provide significant downforce at speed to improve traction. Also visible are fairings to direct hot air from the radiators around
the rear tires, and at the front of the car, cool air toward the brakes. Not shown are other aerodynamic features such as
the fuselage bottom, which is designed to route the airflow carefully, using diffusers, to develop the most negative
pressure, and to cause this negative pressure to act over the largest possible area under the car, to develop additional
downforce.
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Fig. 9.25 Pressure distribution along the centerline of an automobile (based on data from Reference [30]).
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increases. Lift coefficient levels out at about 0.35. Spin has little effect on sphere drag coefficient, which
varies from about 0.5 to about 0.65 over the range of spin ratio shown.

Earlier we mentioned the effect of dimples on the drag of a golf ball. Experimental data for lift and
drag coefficients for spinning golf balls are presented in Fig. 9.28 for subcritical Reynolds numbers
between 126,000 and 238,000. Again the independent variable is spin ratio; a much smaller range of
spin ratio, typical of golf balls, is presented in Fig. 9.28.

A clear trend is evident: The lift coefficient increases consistently with spin ratio for both hexagonal
and “conventional” (round) dimples. The lift coefficient on a golf ball with hexagonal dimples is
significantly—as much as 15 percent—higher than on a ball with round dimples. The advantage for
hexagonal dimples continues to the largest spin ratios that were measured. The drag coefficient for a
ball with hexagonal dimples is consistently 5 to 7 percent lower than the drag coefficient for a ball with
round dimples at low spin ratios, but the difference becomes less pronounced as spin ratio increases.

The combination of higher lift and lower drag increases the carry of a golf shot. A recent design—
the Callaway HX—has improved performance further by using a “tubular lattice network” using ridges
of hexagons and pentagons (at a precise height of 0.0083 in.) instead of dimples, so that there are no flat
spots at all on the surface [34]. Callaway claims the HX flies farther than any ball they ever tested.
Example 9.8 illustrates the effect of spin on the lift of a spinning ball.
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Fig. 9.27 Flow pattern, lift, and drag coefficients for a smooth spinning sphere in uniform flow. (Data from
Reference [19].)
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Fig. 9.28 Comparison of conventional and hex-dimpled
golf balls (based on data from Reference [30]).
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It has long been known that a spinning projectile in flight is affected by a force perpendicular to the
direction of motion and to the spin axis. This effect, known as the Magnus effect, is responsible for the
systematic drift of artillery shells.

Cross flow about a rotating circular cylinder is qualitatively similar to flow about the spinning
sphere shown schematically in Fig. 9.27a. If the velocity of the upper surface of a cylinder is in the same
direction as the freestream velocity, separation is delayed on the upper surface; it occurs earlier on the
lower surface. Thus the wake is deflected and the pressure distribution on the cylinder surface is altered

Example 9.8 LIFT OF A SPINNING BALL

A smooth tennis ball, with 57 g mass and 64 mm diameter, is hit at 25 m=s with topspin of 7500 rpm. Calculate the aerodynamic
lift acting on the ball. Evaluate the radius of curvature of its path at maximum elevation in a vertical plane. Compare with the
radius for no spin.

Given: Tennis ball in flight, with m=57 g and D=64mm, hit with V =25m=s and topspin of 7500 rpm.

Find: (a) Aerodynamic lift acting on ball.
(b) Radius of curvature of path in vertical plane.
(c) Comparison with radius for no spin.

Solution: Assume ball is smooth.
Use data from Fig. 9.27 to find lift:

CL = f
ωD
2V

, ReD

� �
:

From given data (for standard air, ν=1:46× 10−5m2=s),

ωD
2V

=
1
2
× 7500

rev
min

× 0:064 m×
s

25m
×2π

rad
rev

×
min
60s

= 1:01

ReD =
VD
ν

=25
m
s
× 0:064 m×

s
1:46× 10−5m2

= 1:10× 105

From Fig. 9.27, CL≈0:3, so

FL =CLA
1
2
ρV2

=CL
πD2

4
1
2
ρV2 =

π
8
CLD2ρV2

FL =
π
8
× 0:3× ð0:064Þ2m2 × 1:23

kg
m3 × ð25Þ

2m2

s2
×

N � s2
kg �m =0:371 N

FL �������������������������������
Because the ball is hit with topspin, this force acts downward.

Use Newton’s second law to evaluate the curvature of the path. In the vertical plane,

P
Fz = −FL−mg=maz = −m

V2

R
or R=

V2

g+FL=m

R= ð25Þ2m
2

s2
1

9:81
m
s2

+ 0:371 N×
1

0:057 kg
×
kg �m
N � s2

2
664

3
775

R=38:3 m ðwith spinÞ R ������������������������������������������������
R= ð25Þ2m

2

s2
×

s2

9:81 m
=63:7 m ðwithout spinÞ R �������������������������������

Thus topspin has a significant effect on trajectory of the shot!
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when rotation is present. Pressure is reduced on the upper surface and increased on the lower surface,
causing a net lift force acting upward. Spin in the opposite direction reverses these effects and causes a
downward lift force.

Lift and drag coefficients for the rotating cylinder are based on projected area, LD. Experimentally
measured lift and drag coefficients for subcritical Reynolds numbers between 40,000 and 660,000 are
shown as functions of spin ratio in Fig. 9.29. When surface speed exceeds flow speed, the lift coefficient
increases to surprisingly high values, while in two-dimensional flow, drag is affected only moderately.
Induced drag, which must be considered for finite cylinders, can be reduced by using end disks larger in
diameter than the body of the cylinder.

The power required to rotate a cylinder may be estimated from the skin friction drag of the cylinder
surface. Hoerner [35] suggests basing the skin friction drag estimate on the tangential surface speed and
surface area. Goldstein [19] suggests that the power required to spin the cylinder, when expressed as an
equivalent drag coefficient, may represent 20 percent or more of the aerodynamic CD of a stationary
cylinder.

9.8 Summary and Useful Equations
In this chapter we have:

✓ Defined and discussed various terms commonly used in aerodynamics, such as: boundary-
layer disturbance, displacement and momentum thicknesses; flow separation; streamlining;
skin friction and pressure drag and drag coefficient; lift and lift coefficient; wing chord, span
and aspect ratio; and induced drag.

✓ Derived expressions for the boundary-layer thickness on a flat plate (zero pressure gradient)
using exact and approximate methods (using the momentum integral equation).

✓ Learned how to estimate the lift and drag from published data for a variety of objects.

While investigating the above phenomena, we developed insight into some of the basic con-
cepts of aerodynamic design, such as how to minimize drag, how to determine the optimum
cruising speed of an airplane, and how to determine the lift required for flight.

Note:Most of the equations in the table below have a number of constraints or limitations— be sure to
refer to their page numbers for details!
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Fig. 9.29 Lift and drag of a rotating cylinder as a function
of relative rotational speed; Magnus force. (Data from
Reference [35].)
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Useful Equations
Definition of displacement
thickness: δ� =

Z ∞

0
1−

u
U

� �
dy≈

Z δ

0
1−

u
U

� �
dy

(9.1) Page 356

Definition of momentum
thickness: θ=

Z ∞

0

u
U

1−
u
U

� �
dy≈

Z δ

0

u
U

1−
u
U

� �
dy

(9.2) Page 357

Boundary-layer thickness
(laminar, exact—Blasius): δ≈

5:0ffiffiffiffiffiffiffiffiffiffiffi
U=νx

p =
5:0xffiffiffiffiffiffiffi
Rex
p (9.13) Table 9-2,

Page W9-2

Wall stress (laminar, exact—
Blasius): τw =0:332U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρμU=x

p
=
0:332ρU2ffiffiffiffiffiffiffi

Rex
p (9.14) Page W9-3

Skin friction coefficient (laminar,
exact—Blasius):

Cf =
τw

1
2ρU

2
=
0:664ffiffiffiffiffiffiffi
Rex
p (9.15) Table 9-2,

Page W9-3

Momentum integral equation: τw
ρ
=

d
dx
ðU2θÞ+ δ�U

dU
dx

(9.17) Page 363

Boundary-layer thickness for flat
plate (laminar, approximate—
polynomial velocity profile):

δ

x
=

ffiffiffiffiffiffiffiffi
30μ
ρUx

s
=

5:48ffiffiffiffiffiffiffi
Rex
p

(9.21) Page 365

Definition of skin friction
coefficient:

Cf≡
τw

1
2ρU

2
(9.22) Page 365

Skin friction coefficient for flat
plate (laminar, approximate—
polynomial velocity profile):

Cf =
0:730ffiffiffiffiffiffiffi
Rex
p (9.23) Page 366

Boundary-layer thickness for flat
plate (turbulent, approximate—
1
7-power-law velocity profile):

δ

x
=0:382

ν

Ux

� �1=5
=
0:382

Re1=5x

(9.26) Page 369

Skin friction coefficient for flat
plate (turbulent, approximate—
1
7-power-law velocity profile):

Cf =
τw

1
2 ρU

2
=
0:0594

Re1=5x

(9.27) Page 369

Definition of drag coefficient:
CD ≡

FD
1
2 ρV2 A

(9.30) Page 375

Drag coefficient for flat plate
(entirely laminar, based on
Blasius solution):

CD =
1:33ffiffiffiffiffiffiffiffi
ReL
p (9.33) Page 376

Drag coefficient for flat plate
(entirely turbulent, based on
1
7-power-law velocity profile):

CD =
0:0742

Re1=5L

(9.34) Page 376

Drag coefficient for flat plate
(empirical, ReL <109):

CD =
0:455

ðlogReLÞ2:58
(9.35) Page 376

Drag coefficient for flat plate
(based on 1

7th power-law velocity
profile, 5 × 105 ≤ReL ≤ 107):

CD =
0:0742

Re1=5L

−
1740
ReL

(9.37a) Page 376

Drag coefficient for flat plate
(empirical, 5 × 105 ≤ReL ≤ 109):

CD =
0:455

ðlog ReLÞ2:58
−
1610
ReL

(9.37b) Page 376

Definition of lift coefficient: CL ≡
FL

1
2 ρV2 Ap

(9.38) Page 386

(Continued)
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Table (Continued)

Definition of aspect ratio:
AR≡

b2

Ap

(9.39) Page 391

Drag coefficient of a wing (finite
span airfoil, using CD,∞ ): CD =CD,∞ +CD, i =CD,∞ +

C2
L

πAR
(9.42) Page 392

Drag coefficient of a wing (finite
span airfoil, using CD,0):

CD =CD,0 +CD, i =CD,0 +
C2
L

πAR
(9.43) Page 392
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P R O B L E M S

The Boundary-Layer Concept
9.1 The roof of a minivan is approximated as a horizontal flat
plate. Plot the length of the laminar boundary layer as a function
of minivan speed, V , as the minivan accelerates from 10 mph
to 90 mph.

9.2 Amodel of a river towboat is to be tested at 1:18 scale. The boat
is designed to travel at 3:5 m=s in fresh water at 10�C. Estimate the
distance from the bow where transition occurs. Where should transi-
tion be stimulated on the model towboat?

9.3 For flow over a smooth plate, what approximately is the maxi-
mum length of the laminar boundary layer if Vo =9:0 m=s in the irro-
tational uniform flow and the fluid is air? Water?

9.4 A model of a thin streamlined body is placed in a flow for test-
ing. The body is 0.9 m long and the flow velocity is 0:6 m=s. What ν
is needed to ensure that the boundary layer on the body is laminar?

9.5 A student is to design an experiment involving dragging a
sphere through a tank of fluid to illustrate (a) “creeping flow”
ðReD <1Þ and (b) flow for which the boundary layer becomes turbu-
lent ðReD≈2:5× 105Þ. The student proposes to use a smooth sphere
of diameter 1 cm in SAE 10 oil at room temperature. Is this realistic
for both cases? If either case is unrealistic, select an alternative
reasonable sphere diameter and common fluid for that case.

9.6 A 1m×2m sheet of plywood is attached to the roof of your
vehicle after being purchased at the hardware store. At what speed
(in kilometers per hour) in 20�C air will the boundary layer first
start becoming turbulent? At what speed is about 90 percent of the
boundary layer turbulent?

9.7 The extent of the laminar boundary layer on the surface of
an aircraft or missile varies with altitude. For a given speed, will
the laminar boundary-layer length increase or decrease with altitude?
Why? Plot the ratio of laminar boundary-layer length at altitude z, to
boundary-layer length at sea level, as a function of z, up to altitude
z=30 km, for a standard atmosphere.

Boundary-Layer Thickness
9.8 Velocity profiles in laminar boundary layers often are approxi-
mated by the equations

Linear :
u
U

=
y
δ

Sinusoidal :
u
U

= sin
π
2
y
δ

� �
Parabolic :

u
U

=2
y
δ

� �
−

y
δ

� �2
Compare the shapes of these velocity profiles by plotting y=δ (on the
ordinate) versus u=U (on the abscissa).

9.9 An approximation for the velocity profile in a laminar boundary
layer is

u
U

=2
y
δ
−2

y
δ

� �3
+

y
δ

� �4
Does this expression satisfy boundary conditions applicable to the
laminar boundary-layer velocity profile? Evaluate δ�=δ and θ=δ.

9.10 Evaluate θ=δ for each of the laminar boundary-layer velocity
profiles given in Problem 9.8.

9.11 Evaluate the displacement thickness δ� and the momentum

thickness θ for a velocity profile given by
u
U

=
y
δ
. Plot the nondimen-

sional velocity profile and show the thicknesses
δ�

y
and

θ

y
on the plot.

Does this expression satisfy the boundary conditions applicable
to a laminar boundary layer?

9.12 Evaluate the displacement thickness δ� and the momentum

thickness θ for a power law velocity profile given by
u
U

=
y
δ

� �1=7
.

Plot the nondimensional velocity profile and show the thicknesses
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δ�

y
and

θ

y
on the plot. Does this expression satisfy the boundary con-

ditions applicable to a laminar boundary layer?

9.13 A fluid, with density ρ=1:5 slug=ft3, flows at U =10 ft=s over
a flat plate 10 ft long and 3 ft wide. At the trailing edge, the boundary-
layer thickness is δ=1 in. Assume the velocity profile is linear, as
shown, and that the flow is two-dimensional (flow conditions are
independent of z). Using control volume abcd, shown by the dashed
lines, compute the mass flow rate across surface ab. Determine
the drag force on the upper surface of the plate. Explain how this
viscous drag can be computed from the given data even though
we do not know the fluid viscosity.

U U

u

a b

d c

= 1 in.δ
CV

x

y

P9.13

9.14 Solve Problem 9.13 with the velocity profile at section bc given
by the parabolic expression from Problem 9.8.

9.15 Air flows in a horizontal cylindrical duct of diameter
D=100 mm. At a section a few meters from the entrance, the turbu-
lent boundary layer is of thickness δ1 = 5:25 mm, and the velocity in
the inviscid central core is U1 = 12:5 m=s. Farther downstream the
boundary layer is of thickness δ2 = 24 mm. The velocity profile in
the boundary layer is approximated well by the 1

7-power expression.
Find the velocity, U2, in the inviscid central core at the second sec-
tion, and the pressure drop between the two sections.

9.16 Evaluate the displacement thickness δ� and the momentum

thickness θ for the profile given by
u
U

=2
y
δ

� �
−

y
δ

� �2
. Plot the non-

dimensional velocity profile and show the thicknesses
δ�

y
and

θ

y
on the

plot. Does this expression satisfy the boundary conditions applicable
to a laminar boundary layer?

9.17 Evaluate the displacement thickness δ� and the momentum

thickness θ for a velocity profile given by
u
U

= sin
πy
2δ

� �
. Plot the non-

dimensional velocity profile and show the thicknesses
δ�

y
and

θ

y
on the

plot. Does this expression satisfy the boundary conditions applicable
to a laminar boundary layer?

9.18 A laboratory wind tunnel has a test section 25 cm square
and 50 cm long. With nominal air speed U1 = 25 m=s at the test
section inlet, turbulent boundary layers form on the top, bottom,
and side walls of the tunnel. The boundary-layer thickness is
δ1 = 10 mm at the inlet and δ2 = 30 mm at the outlet from the test sec-
tion. The boundary-layer velocity profiles are of power-law form,
with u=U = ðy=δÞ1=7. Evaluate the freestream velocity,U2, at the exit
from the wind-tunnel test section. Determine the change in static
pressure along the test section.

9.19 Air flows in the entrance region of a square duct, as shown.
The velocity is uniform, U0 = 100 ft=s, and the duct is 3 in. square.
At a section 1 ft downstream from the entrance, the displacement
thickness, δ�, on each wall measures 0.035 in. Determine the pressure
change between sections and .

3 in.

3 in.
2 = 0.035 in.δ*

21

U0
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9.20 A flow of 68�F air develops in a flat horizontal duct following
a well-rounded entrance section. The duct height is H =1 ft. Turbu-
lent boundary layers grow on the duct walls, but the flow is not yet
fully developed. Assume that the velocity profile in each boundary
layer is u=U = ðy=δÞ1=7. The inlet flow is uniform at V =40 ft=s at
section . At section , the boundary-layer thickness on each wall
of the channel is δ2 = 4 in. Show that, for this flow, δ� = δ=8. Eval-
uate the static gage pressure at section . Find the average wall shear
stress between the entrance and section , located at L=20 ft.

9.21A flow of air develops in a horizontal cylindrical duct, of diam-
eter D=15 in:, following a well-rounded entrance. A turbulent
boundary grows on the duct wall, but the flow is not yet fully devel-
oped. Assume that the velocity profile in the boundary layer is
u=U = ðy=δÞ1=7. The inlet flow is U =50 ft=s at section . At
section , the boundary-layer thickness is δ2 = 4 in. Evaluate the
static gage pressure at section , located at L=20 ft. Find the aver-
age wall shear stress.

Laminar Flat-Plate Boundary Layer:
Exact Solution
9.22 Using numerical results for the Blasius exact solution for lam-
inar boundary-layer flow on a flat plate, (Section 9.2 on the web) plot
the dimensionless velocity profile, u=U (on the abscissa), versus
dimensionless distance from the surface, y=δ (on the ordinate). Com-
pare with the approximate parabolic velocity profile of Problem 9.8.

9.23 Using numerical results obtained by Blasius (Table 9.1, on the
web), evaluate the distribution of shear stress in a laminar boundary
layeronaflatplate.Plotτ=τw versus y=δ. Compare with results derived
from the approximate parabolic velocity profile given in Problem 9.8.

9.24 Using numerical results obtained by Blasius (Table 9.1, on the
web), evaluate the vertical component of velocity in a laminar bound-
ary layer on a flat plate. Plot υ=U versus y=δ for Rex =105.

9.25 A smooth flat plate 2.4 m long and 0.6 m wide is placed in an
airstream at 101.3 kPa, 15�C, and velocity 9 m=s. Calculate the total
drag force on this plate (2 sides) if the boundary layer at the trailing
edge is (a) Iaminar, (D) transition, and (c) turbulent.

9.26 Consider flow of air over a flat plate. On one graph, plot the
laminar boundary-layer thickness as a function of distance along
the plate (up to transition) for freestream speeds U =1m=s,2 m=s,
3 m=s, 4 m=s, 5 m=s, and 10 m=s.

Laminar Flat-Plate Boundary Layer
9.27 A thin flat plate, L=9 in. long and b=3 ft wide, is installed in
a water tunnel as a splitter. The freestream speed isU =5 ft=s, and the
velocity profile in the boundary layer is approximated as parabolic.
Plot δ,δ�, and τw versus x/L for the plate.

9.28 For a laminar boundary layer on a flat plate, evaluate the
kinetic energy lost between the free stream and any point in the
boundary layer. Assume that the boundary layer is linear (see
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Problem 9.8) and use a control volume so that the flow rate for the
oncoming flow and boundary layer are equal. How may this loss
of kinetic energy be accounted for?

9.29 Air at atmospheric pressure and 20�C flows over both sides of
a flat plate that is 0.8 m long and 0.3 m wide at a velocity of 5 m=s.
Determine the total drag force on the plate. If the single plate is
replaced by two plates each 0.4 m long and 0.3 m wide, what is
the total drag force? Explain why there is a difference in the total drag
even though the total surface area is the same.

9.30 A thin flat plate is installed in a water tunnel as a splitter. The
plate is 0.3 m long and 1 m wide. The freestream speed is 1:6 m=s.
Laminar boundary layers form on both sides of the plate. The bound-
ary-layer velocity profile is approximated as parabolic. Determine
the total viscous drag force on the plate assuming that pressure drag
is negligible.

9.31 Assume laminar boundary-layer flow to estimate the drag on
the flat plate shown when it is placed parallel to a 15 ft=s air flow.
The air is at 70�F and 1 atm.

2 ft

2 ft

2 ft

P9.31

9.32 Assume laminar boundary-layer flow to estimate the drag on
the flat plate shown when it is placed parallel to a 15 ft=s air flow.
The air is at 70�F and 1 atm. (Note that the shape is given by
x= y2, where x and y are in feet.)

x

y

1 ft

x = y2

P9.32

9.33 Assume laminar boundary-layer flow to estimate the drag on
four square plates (each 3 in:× 3 in:) placed parallel to a 3 ft=s water
flow, for the two configurations shown. Before calculating, which
configuration do you expect to experience the lower drag? Assume
that the plates attached with string are far enough apart for wake
effects to be negligible and that the water is at 70�F.

P9.33

Momentum Integral Equation
9.34 A horizontal surface, with length L=1:8 m and width
b=0:9 m, is immersed in a stream of standard air flowing at
U =3:2 m=s. Assume a laminar boundary layer forms and approxi-
mate the velocity profile as sinusoidal. Plot δ, δ�, and τw versus x=L
for the plate.

9.35 Water at 10�C flows over a flat plate at a speed of 0:8 m=s.
The plate is 0.35 m long and 1 m wide. The boundary layer on
each surface of the plate is laminar. Assume that the velocity
profilemaybe approximated as linear.Determine the drag force on the
plate.

9.36 Use the momentum integral equation to derive expressions for
the displacement thickness δ�, the momentum thickness θ, and the
friction coefficient Cf for a linear velocity profile. Compare your
results to those in Table 9.2. What is the percent error in the total drag
on a plate if the linear approximation is used?

9.37A smooth flat plate 1.6 ft long is immersed in 68�F water flow-
ing at 1:2 ft=s. In the center of the plate is a small 1-in.-square sensor.
What is the friction force on this sensor?

9.38Ahorizontal surface,with lengthL=0:8 m andwidth b=1:9 m,
is immersed in a stream of standard air flowing at U =5:3 m=s.
Assume a laminar boundary layer forms and approximate the veloc-
ity profile as linear. Plot δ, δ�, and τw versus x=L for the plate.

9.39 A developing boundary layer of standard air on a flat plate is
shown in Fig. P9.13. The freestream flow outside the boundary layer
is undisturbed with U =50m=s. The plate is 3 m wide perpendicular
to the diagram. Assume flow in the boundary layer is turbulent, with
a 1

7-power velocity profile, and that δ=19 mm at surface bc. Calcu-
late the mass flow rate across surface ad and the mass flux across
surface ab. Evaluate the x momentum flux across surface ab. Deter-
mine the drag force exerted on the flat plate between d and c. Esti-
mate the distance from the leading edge at which transition from
laminar to turbulent flow may be expected.

9.40 Assume the flow conditions given in Example 9.3. Plot δ, δ�,
and τw versus x=L for the plate.

9.41 A flat-bottomed barge having a 150 ft × 20 ft bottom is towed
through still water ð60�FÞ at 10 mph. What is the frictional drag force
exerted by the water on the bottom of the barge? How long could the
laminar portion of the boundary layer be, using a critical Reynolds
number of 537,000? What is the thickness of the laminar layer at
its downstream end?What is the approximate thickness of the bound-
ary layer at the rear end of the bottom of the barge?

9.42 European InterCity Express trains operate at speeds of up to
280 km=hr. Suppose that a train is 120 m long. Treat the sides and
top of the train as a smooth flat plate 9 m wide. When the train moves
through still air at sea level, calculate the possible length of the lam-
inar boundary layer and the thickness of this layer at its downstream
end. What is the thickness of the boundary layer at the rear end of the
train? What is the viscous drag force on the train and what power
must be expended to overcome this resistance at maximum speed?
At 50 percent of maximum?

9.43 Grumman Corp. has proposed to build a magnetic levitation
train to operate at a top speed of 300 mph. The vehicle is 114 ft long.
Assuming that the sides and top can be treated approximately as a
smooth flat plate of 30 ft width with a turbulent boundary layer.
Calculate the drag force and the power expended to overcome the
drag at the maximum speed.
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9.44 Repeat Problem 9.32, for an air flow at 80 ft/s, assuming a
turbulent boundary layer.

9.45 The velocity profile in a turbulent boundary-layer flow at zero
pressure gradient is approximated by the 1

6-power profile expression,

u
U

= η1=6, where η=
y
δ

Use the momentum integral equation with this profile to obtain
expressions for δ=x and Cf . Compare with results obtained in
Section 9.4 for the 1

7-power profile.

9.46 The U.S. Navy has built the Sea Shadow, which is a small
waterplane twin-hull (SWATH) ship whose object is to achieve
the same reduced radar profile as the STEALTH aircraft. This
catamaran is 160 ft long and its twin hulls have a draft of 14 ft.
Assume that the ocean turbulence triggers a fully turbulent boundary
layer on the sides of each hull. Treat these as flat plate boundary
layers and calculate the drag on the ship and the power required to
overcome it as a function of speed. Plot the results for speeds from
5 to 13 knots.

9.47 The two rectangular smooth flat plates are to have the same
drag in the same fluid stream. Calculate the required value of x. If
the two plates are combined into the T-shape indicated, what ratio
exists between the drag of the combination and that of either one?
Assume laminar boundary layers in all calculations.

3 36

4

6

4

x x
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9.48 Standard air flows over a horizontal smooth flat plate at free-
stream speed U =20m=s. The plate length is L=1:5 m and its width
is b=0:8 m. The pressure gradient is zero. The boundary layer is
tripped so that it is turbulent from the leading edge; the velocity pro-
file is well represented by the 1

7-power expression. Evaluate the
boundary-layer thickness, δ, at the trailing edge of the plate. Calcu-
late the wall shear stress at the trailing edge of the plate. Estimate the
skin friction drag on the portion of the plate between x=0:5 m and
the trailing edge.

9.49 Air at standard conditions flows over a flat plate. The free-
stream speed is 30 ft=s. Find δ and τw at x=3 ft from the leading edge
assuming (a) completely laminar flow (assume a parabolic velocity
profile) and (b) completely turbulent flow (assume a 1

7-power velocity
profile).

Use of the Momentum Integral Equation
for Flow with Zero Pressure Gradient
9.50 A uniform flow of standard air at 60 m=s enters a plane-wall
diffuser with negligible boundary-layer thickness. The inlet width is
75 mm. The diffuser walls diverge slightly to accommodate the
boundary-layer growth so that the pressure gradient is negligible.
Assume flat-plate boundary-layer behavior. Explain why the Ber-
noulli equation is applicable to this flow. Estimate the diffuser width
1.2 m downstream from the entrance.

9.51 A laboratory wind tunnel has a flexible upper wall that can be
adjusted to compensate for boundary-layer growth, giving zero pres-
sure gradient along the test section. The wall boundary layers are well

represented by the 1
7-power-velocity profile. At the inlet the tunnel

cross section is square, with height H1 and width W1, each equal
to 1 ft. With freestream speed U1 = 90 ft=s, measurements show that
δ1 = 0:5 in: and downstream δ6 = 0:65 in: Calculate the height of the
tunnel walls at . Determine the equivalent length of a flat plate
that would produce the inlet boundary layer thickness. Estimate
the streamwise distance between sections and in the tunnel.
Assume standard air.

Pressure Gradients in Boundary-Layer Flow
9.52 Air flows in a cylindrical duct of diameter D=6 in. At
section , the turbulent boundary layer is of thickness δ1 = 0:4 in:
and the velocity in the inviscid central core is U1 = 80 ft=s. Further
downstream, at section , the boundary layer is of thickness
δ2 = 1:2 in: The velocity profile in the boundary layer is approxi-
mated well by the 1

7-power expression. Find the velocity, U2, in
the inviscid central core at the second section, and the pressure drop
between the two sections. Does the magnitude of the pressure drop
indicate that we are justified in approximating the flow between sec-
tions and as one with zero pressure gradient? Estimate the
length of duct between sections and . Estimate the distance
downstream from section at which the boundary layer thickness
is δ=0:6 in. Assume standard air.

9.53 Perform a cost-effectiveness analysis on a typical large
tanker used for transporting petroleum. Determine, as a percentage
of the petroleum cargo, the amount of petroleum that is consumed
in traveling a distance of 2000 miles. Use data from Example 9.4,
and the following: Assume the petroleum cargo constitutes 75% of
the total weight, the propeller efficiency is 70%, the wave drag
and power to run auxiliary equipment constitute losses equivalent
to an additional 20%, the engines have a thermal efficiency of
40%, and the petroleum energy is 20;000Btu=lbm. Also compare
the performance of this tanker to that of the Alaskan Pipeline, which
requires about 120 Btu of energy for each ton-mile of petroleum
delivery.

9.54 Table 9.1 (on the web) shows the numerical results obtained
from Blasius exact solution of the laminar boundary-layer equations.
Plot the velocity distribution. On the same graph, plot the turbulent
velocity distribution given by the 1

7-power expression of Eq. 9.24.
Which is most likely to separate first when encountering an adverse
pressure gradient? To justify your answer, compare the momentum
fluxes of these profiles (the laminar data can be integrated using a
numerical method such as Simpson’s rule).
9.55 A fluid flow enters the plane-wall diffuser that has an entrance
area of Ao at a velocity of Uo. (a) Assuming the fluid is inviscid,

determine the velocity gradient
dU
dx

in terms of Uo and Ao for a value

of ϕ=0� and ϕ=20�. (b) Assuming a real viscous fluid, what is the
effect of the boundary layers on the pressure gradient? In which
assumption (inviscid or viscous) will the computed exit pressure
be highest? Explain your answer.

Flow

U
o

A
o

ϕ

2

1

x

y
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9.56 Boundary-layer separation occurs when the shear stress at the
surface becomes zero. Assume a polynomial representation for the
laminar boundary layer of the form, u=U = a+ bλ+ cλ2 + dλ3, where
λ= y=δ. Specify boundary conditions on the velocity profile at sep-
aration. Find appropriate constants, a, b, c, and d, for the separation
profile. Calculate the shape factorH at separation. Plot the profile and
compare with the parabolic approximate profile.

9.57 For flow over a flat plate with zero pressure gradient, will the
shear stress increase, decrease, or remain constant along the plate?
Justify your answer. Does the momentum flux increase, decrease,
or remain constant as the flow proceeds along the plate? Justify your
answer. Compare the behavior of laminar flow and turbulent flow
from the leading edge for over a flat plate. At a given distance from
the leading edge, which flow will have the larger boundary-layer
thickness? Does your answer depend on the distance along the plate?
How would you justify your answer?

9.58 A laboratory wind tunnel has a test section that is square in
cross section, with inlet width W1 and height H1, each equal to
1 ft. At freestream speed U1 = 80 ft=s, measurements show the
boundary-layer thickness is δ1 = 0:4 in: with a 1

7-power turbulent
velocity profile. The pressure gradient in this region is given approx-
imately by dp=dx= −0:035 in. H2O=in. Evaluate the reduction in
effective flow area caused by the boundary layers on the tunnel bot-
tom, top, and walls at section . Calculate the rate of change of
boundary-layer momentum thickness, dθ=dx, at section . Estimate
the momentum thickness at the end of the test section, located at
L=10 in downstream.

Drag
9.59A flat-bottomed barge, 80 ft long and 35 ft wide, submerged to
a depth of 5 ft, is to be pushed up a river at 60�F. Estimate and plot
the power required to overcome skin friction for speeds ranging
up to 15 mph.

9.60 A towboat for river barges is tested in a towing tank. The tow-
boat model is built at a scale ratio of 1:13.5. Dimensions of the model
are overall length 3.5 m, beam 1 m, and draft 0.2 m. The model dis-
placement in fresh water is 5500 N. Estimate the average length of
wetted surface on the hull. Calculate the skin friction drag force of
the prototype at a speed of 7 knots relative to the water.

9.61 Plot the local friction coefficient cf , the boundary layer thick-
ness ratio δ=x, and the drag coefficient Cf , for both laminar and tur-
bulent boundary layers on a flat plate for Rx, from 0 to 500,000,
assuming in the turbulent case that the layer is tripped at the leading
edge and is fully turbulent along the length of the plate. Discuss the
ratio of drag forces as a function of Rx.

9.62 A smooth plate 3 m long and 0.9 m wide moves through still
sea level air at 4:5 m=s. Assuming the boundary layer to be wholly
laminar, calculate (a) the thickness of the layer at 0.5, 1.0, 1.5, 2.0,
2.5, and 3.0 m from the leading edge of the plate; (b) the shear stress,
τo, at those points; and (c) the total drag force on one side of the plate.
(d) Calculate the thickness at the above points if the layer is turbulent.
(e) Calculate the total drag for the turbulent boundary layer. (f ) What
percentage saving in drag is effected by a laminar boundary layer?

9.63 Resistance of a barge is to be determined from model test data.
The model is constructed to a scale ratio of 1:13.5 and has length,
beam, and draft of 7.00 m, 1.4 m, and 0.2 m, respectively. The test
is to simulate performance of the prototype at 10 knots. What must
the model speed be for the model and prototype to exhibit similar

wave drag behavior? Is the boundary layer on the prototype predom-
inantly laminar or turbulent? Does the model boundary layer become
turbulent at the comparable point? If not, the model boundary layer
could be artificially triggered to turbulent by placing a tripwire across
the hull. Where could this be placed? Estimate the skin-friction drag
on model and prototype.

9.64 A nuclear submarine cruises fully submerged at 27 knots. The
hull is approximately a circular cylinder with diameter D=11:0 m
and length L=107 m. Estimate the percentage of the hull length
for which the boundary layer is laminar. Calculate the skin friction
drag on the hull and the power consumed.

9.65 You are asked by your college crew to estimate the skin fric-
tion drag on their eight-seat racing shell. The hull of the shell may be
approximated as half a circular cylinder with 457 mm diameter and
7.32 m length. The speed of the shell through the water is 6:71 m=s.
Estimate the location of transition from laminar to turbulent flow in
the boundary layer on the hull of the shell. Calculate the thickness of
the turbulent boundary layer at the rear of the hull. Determine the
total skin friction drag on the hull under the given conditions.

9.66 The drag coefficient of a circular disk when placed normal to
the flow is 1.12. Calculate the force and power necessary to drive a
12 in. (0.3 m) disk at 48 km=h through (a) standard air at sea level,
and (b) water.

9.67 A steel sphere of 0.25 in. diameter has a velocity of 200 ft=s at
an altitude of 30,000 ft in the U.S. Standard Atmosphere. Calculate
the drag force on this sphere.

9.68A steel sphere ðSG=7:8Þ of 13 mm diameter falls at a constant
velocity of 0:06 m=s through an oil ðSG=0:90Þ. Calculate the vis-
cosity of the oil, assuming that the fall occurs in a large tank.

9.69 A sheet of plastic material 0.5 in. thick, with specific gravity
SG=1:7, is dropped into a large tank containing water. The sheet is
2 ft × 4 ft. Estimate the terminal speed of the sheet as it falls with
(a) the short side vertical and (b) the long side vertical. Assume that
the drag is due only to skin friction, and that the boundary layers are
turbulent from the leading edge.

9.70 In Section 7.5 the wave resistance and viscous resistance on a
model and prototype ship were discussed. For the prototype,
L=130 m and A=1800 m2. From the data of Figs 7.2 and 7.3, plot
on one graph the wave, viscous, and total resistance (N) experienced
by the prototype, as a function of speed. Plot a similar graph for the
model. Discuss your results. Finally, plot the power (kW) required
for the prototype ship to overcome the total resistance.

9.71 As part of the 1976 bicentennial celebration, an enterprising
group hung a giant American flag 194 ft high and 367 ft wide from
the suspension cables of the Verrazano Narrows Bridge. They appar-
ently were reluctant to make holes in the flag to alleviate the wind
force, and hence they effectively had a flat plate normal to the flow.
The flag tore loose from its mountings when the wind speed reached
10 mph. Estimate the wind force acting on the flag at this wind speed.
Should they have been surprised that the flag blew down?

9.72 What constant speed will be attained by a lead ðSG=1:4Þ
sphere of 0.5 in. diameter falling freely through an oil of kinematic
viscosity 0:12 ft2=s and SG 0.95, if the fall occurs in a large tank?

9.73 Assuming a critical Reynolds number of 0.1, calculate the
approximate diameter of the largest air bubble that will obey Stokes’
law while rising through a large tank of oil of viscosity 0:19 Pa � s and
SG 0.90.
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9.74 Glass spheres of 0.1 in. diameter fall at constant velocities
of 0.1 and 0:05 ft=s through two different oils of the same specific
gravity in very large tanks. If the viscosity of the first oil is
0:002 lbf � s=ft2, what is the viscosity of the second?

9.75A rotary mixer is constructed from two circular disks as shown.
The mixer is rotated at 60 rpm in a large vessel containing a brine
solution ðSG=1:1Þ. Neglect the drag on the rods and the motion
induced in the liquid. Estimate the minimum torque and power
required to drive the mixer.

+ +

0.6 m 0.6 m

100 mm dia.

= 60 rpmω

P9.75

9.76 As a design engineer you are asked to design an emergency
braking parachute system for use with a military aircraft of mass
9500 kg. The plane lands at 350 km=hr, and the parachute system
alone must slow the airplane to 100 km=hr in less than 1200 m. Find
the minimum diameter required for a single parachute, and for three
noninterfering parachutes. Plot the airplane speed versus distance
and versus time. What is the maximum “g-force” experienced?
9.77 An emergency braking parachute system on a military aircraft
consists of a large parachute of diameter 6 m. If the airplane mass is
8500 kg, and it lands at 400 km=hr, find the time and distance at
which the airplane is slowed to 100 km=hr by the parachute alone.
Plot the aircraft speed versus distance and versus time. What is the
maximum “g-force” experienced? An engineer proposes that less
space would be taken up by replacing the large parachute with three
noninterfering parachutes each of diameter 3.75 m. What effect
would this have on the time and distance to slow to 100 km=hr?

9.78 Calculate the drag of a smooth sphere of 0.3 m diameter in a
stream of standard sea level air at Reynolds numbers of 1,10,100,
and 1000.

9.79 Calculate the drag of a smooth sphere of 0.5 m diameter when
placed in an airstream (15�C and 101.3 kPa) if the velocity is
(a) 6 m=s, and (b) 8:4 m=s. For the same drag coefficient as at
8.4 m/s, at what velocity will the sphere attain the same drag that
it had at a velocity of 6 m=s?

9.80 A cylindrical chimney 0.9 m in diameter and 22.5 m high is
exposed to a 56 km=h wind (15�C and 101.3 kPa). Estimate the bend-
ing moment at the bottom of the chimney. Neglect end effects.

9.81 The resistance to motion of a good bicycle on smooth pave-
ment is nearly all due to aerodynamic drag. Assume that the total
weight of rider and bike is 210 lbf. The frontal area measured from
a photograph is A=5 ft2. Experiments on a hill, where the road grade
is 9 percent, show that terminal speed is Vt =50 ft=s. From these data,
the drag coefficient is estimated as CD =1:25. Verify this calculation
of drag coefficient. Estimate the distance needed for the bike and
rider to decelerate from 50 ft=s to 30 ft=s while coasting after reach-
ing level road.

9.82 Ballistic data obtained on a firing range show that aerodynamic
drag reduces the speed of a .44 magnum revolver bullet from 250 m=s
to 210 m=s as it travels over a horizontal distance of 150 m. The
diameter and mass of the bullet are 11.2 mm and 15.6 g, respectively.
Evaluate the average drag coefficient for the bullet.

9.83 A cyclist is able to attain a maximum speed of 30 km=hr on a
calm day. The total mass of rider and bike is 65 kg. The rolling resist-
ance of the tires is FR =7:5 N, and the drag coefficient and frontal
area are CD =1:2 and A=0:25 m2. Determine the maximum speeds
the bicyclist is actually able to attain with the 10 km=hr wind
(a) cycling into the wind, and (b) cycling with the wind. If the cyclist
were to replace the tires with high-tech ones that had a rolling resist-
ance of only 3.5 N, determine the maximum speed on a calm day,
cycling into the wind, and cycling with the wind. If the cyclist in
addition attaches an aerodynamic fairing that reduces the drag coef-
ficient to CD =0:9, what will be the new maximum speeds?

9.84 A standard marine torpedo is 0.533 m in diameter and about
7.2 m long. Make an engineering estimate of the power required to
drive this torpedo at 80 km=h through freshwater at 20�C. Assume
hemispherical nose, cylindrical body, and flat tail. CD for a solid
hemisphere (flat side downstream) is about 0.42.

9.85 A large truck has an essentially boxlike body that causes flow
separation at the front edges of the cab at any speed. The drag is
mostly profile drag and CD =0:75. If the projected frontal area of
the truck is 9 m2, determine and plot as a function of speed between
zero and the legal limit the power that must be delivered to the road to
propel the truck.

9.86 At a surprise party for a friend you’ve tied a series of 20-cm-
diameter helium balloons to a flagpole, each tied with a short
string. The first one is tied 1 m above the ground, and the other eight
are tied at 1 m spacings, so that the last is tied at a height of 9 m.
You notice that in the steady wind, each balloon is blown by the wind
so it looks like the angles that the strings make with the vertical
are about 10�, 20�, 30�, 35�, 40�, 45�, 50�, 60�, and 65�. Estimate
and plot the wind velocity profile for the 9-m range. Assume the
helium is at 20�C and 10 kPa gage and that each balloon is made
of 3 g of latex.

9.87 A 0.5-m-diameter hollow plastic sphere containing pollution
test equipment is being dragged through the Hudson River in New
York by a diver riding an underwater jet device. The sphere with
an effective specific gravity of SG=0:30 is fully submerged, and
it is tethered to the diver by a thin 1.5-m-long wire. What is the angle
the wire makes with the horizontal if the velocity of the diver and
sphere relative to the water is 5 m=s? The water is at 10�C.

9.88A simple but effective anemometer to measure wind speed can
be made from a thin plate hinged to deflect in the wind. Consider a
thin plate made from brass that is 20 mm high and 10 mm wide.
Derive a relationship for wind speed as a function of deflection angle,
θ. What thickness of brass should be used to give θ=30� at 10 m=s?

9.89 The Willis Tower (formerly the Sears Tower) in Chicago is
1454 ft tall. Assuming that it is a tall rectangle with a square base
of 120 ft sides, calculate the maximum drag force on the building
and the force when the wind is along the diagonal of the structure
as a function of wind speed from Beaufort Wind Scales of strong
breeze (28 mph) to hurricane (75 mph). Assuming that the wind
field is uniform, calculate the moment about the base of the
Tower also.

9.90 It is proposed to build a pyramidal building with a square base
with sides of 160 ft, which has the same volume as the Willis Tower.
Calculate the maximum drag force on this building. Do you expect
the drag force to be greater, the same, or less than that for the Willis
Tower? Why? and compare it to that for the Willis Tower under hur-
ricane force conditions (75 mph).
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9.91 Calculate the drag forces on a 1/200 scale model of the Willis
Tower that is tested in a large water flume under conditions corre-
sponding to those in problem 9.89. Ignore any free surface effects
and assume dynamic similarity and that the drag coefficient is
unchanged.

9.92 A circular disk is hung in an air stream from a pivoted strut as
shown. In a wind-tunnel experiment, performed in air at 15 m=s with
a 25-mm diameter disk, α was measured at 10�. For these conditions
determine the mass of the disk. Assume the drag coefficient for the
disk applies when the component of wind speed normal to the disk is
used. Assume drag on the strut and friction in the pivot are negligible.
Plot a theoretical curve of α as a function of air speed.
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9.93 A vehicle is built to try for the land-speed record at the Bonne-
ville Salt Flats, elevation 4400 ft. The engine delivers 500 hp to the
rear wheels, and careful streamlining has resulted in a drag coeffi-
cient of 0.15, based on a 15 ft2 frontal area. Compute the theoretical
maximum ground speed of the car (a) in still air and (b) with a 20mph
headwind.

9.94 An F-4 aircraft is slowed after landing by dual parachutes
deployed from the rear. Each parachute is 12 ft in diameter. The
F-4 weighs 32,000 lbf and lands at 160 knots. Estimate the time
and distance required to decelerate the aircraft to 100 knots, assuming
that the brakes are not used and the drag of the aircraft is negligible.

9.95 A tractor-trailer rig has frontal area A=102 ft2 and drag coef-
ficient CD =0:9. Rolling resistance is 6 lbf per 1000 lbf of vehicle
weight. The specific fuel consumption of the diesel engine is 0.34
lbm of fuel per horsepower hour, and drivetrain efficiency is 92 per-
cent. The density of diesel fuel is 6:9 lbm=gal. Estimate the fuel econ-
omy of the rig at 55 mph if its gross weight is 72,000 lbf. An air
fairing system reduces aerodynamic drag 15 percent. The truck tra-
vels 120,000 miles per year. Calculate the fuel saved per year by the
roof fairing.

9.96 A 180–hp sports car of frontal area 1:72 m2, with a drag coef-
ficient of 0.31, requires 17 hp to cruise at 100 km=h. At what speed
does aerodynamic drag first exceed rolling resistance? The rolling
resistance is 1.2 percent of the car weight, and the car mass is
1250 kg. Find the drivetrain efficiency. What is the maximum accel-
eration at 100 km=h? What is the maximum speed? Which redesign
will lead to a higher maximum speed: improving the drive train effi-
ciency by 6 percent from its current value, reducing the drag coeffi-
cient to 0.29, or reducing the rolling resistance to 0.91 percent of the
car weight?

9.97 An anemometer to measure wind speed is made from four
hemispherical cups of 2-in. diameter, as shown. The center of each
cup is placed at R=3 in. from the pivot. Find the theoretical calibra-
tion constant, k, in the calibration equation V = kω, where V ðmphÞ is
the wind speed and ω ðrpmÞ is the rotation speed. In your analysis,

base the torque calculations on the drag generated at the instant when
two of the cups are orthogonal and the other two cups are parallel, and
ignore friction in the bearings. Explain why, in the absence of fric-
tion, at any given wind speed, the anemometer runs at constant speed
rather than accelerating without limit. If the actual anemometer bear-
ing has constant friction such that the anemometer needs a minimum
wind speed of 0.5 mph to begin rotating, compare the rotation speeds
with and without friction for V =20mph.
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9.98 An object falls in air down a long vertical chute. The speed of
the object is constant at 3 m=s. The flow pattern around the object is
shown. The static pressure is uniform across sections and ; pres-
sure is atmospheric at section . The effective flow area at section
is 20 percent of the chute area. Frictional effects between sections
and are negligible. Evaluate the flow speed relative to the object at
section . Calculate the static pressure at section . Determine the
mass of the object.
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9.99 An object of mass m, with cross-sectional area equal to half
the size of the chute, falls down a mail chute. The motion is steady.
The wake area is 3

4 the size of the chute at its maximum area. Use the
assumption of constant pressure in the wake. Apply the continuity,
Bernoulli, and momentum equations to develop an expression for ter-
minal speed of the object in terms of its mass and other quantities.

9.100 A light plane tows an advertising banner over a football sta-
dium on a Saturday afternoon. The banner is 4 ft tall and 45 ft long.
According to Hoerner [16], the drag coefficient based on area ðLhÞ
for such a banner is approximated by CD =0:05 L=h, where L is
the banner length and h is the banner height. Estimate the power
required to tow the banner at V =55 mph. Compare with the drag
of a rigid flat plate. Why is the drag larger for the banner?

9.101 The antenna on a car is 10 mm in diameter and 1.8 m long.
Estimate the bending moment that tends to snap it off if the car is
driven at 120 km=hr on a standard day.

9.102 Consider small oil droplets ðSG=0:85Þ rising in water.
Develop a relation for calculating terminal speed of a droplet (in
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m/s) as a function of droplet diameter (in mm) assuming Stokes flow.
For what range of droplet diameter is Stokes flow a reasonable
assumption?

9.103 Standard air is drawn into a low-speed wind tunnel. A 30-mm
diameter sphere is mounted on a force balance to measure lift and
drag. An oil-filled manometer is used to measure static pressure
inside the tunnel; the reading is −40 mm of oil ðSG=0:85Þ. Calcu-
late the freestream air speed in the tunnel, the Reynolds number of
flow over the sphere, and the drag force on the sphere. Are the bound-
ary layers on the sphere laminar or turbulent? Explain.

9.104 Compute the terminal speed of a 3–mm-diameter spherical
raindrop in standard air.

9.105A small sphere withD=6mm is observed to fall through cas-
tor oil at a terminal speed of 60 mm=s. The temperature is 20�C.
Compute the drag coefficient for the sphere. Determine the density
of the sphere. If dropped in water, would the sphere fall slower or
faster? Why?

9.106 A tennis ball with a mass of 57 g and diameter of 64 mm is
dropped in standard sea level air. Calculate the terminal velocity of
the ball. Assuming as an approximation that the drag coefficient
remains constant at its terminal-velocity value, estimate the time
and distance required for the ball to reach 95% of its terminal speed.

9.107 A water tower consists of a 12-m-diameter sphere on top of
a vertical tower 30 m tall and 2 m in diameter. Estimate the
bending moment exerted on the base of the tower due to the aerody-
namic force imposed by a 100 km=hr wind on a standard day.
Neglect interference at the joint between the sphere and tower.

9.108 A cast-iron “12-pounder” cannonball rolls off the deck of a
ship and falls into the ocean at a location where the depth is 1000 m.
Estimate the time that elapses before the cannonball hits the sea
bottom.

9.109 The plot shows pressure difference versus angle measured
for air flow around a circular cylinder at Re=80,000. Use these data
to estimate CD for this flow. Compare with data from Fig. 9.13. How
can you explain the difference?
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9.110 A rectangular airfoil of 40 ft span and 6 ft chord has lift and
drag coefficients of 0.5 and 0.04, respectively, at an angle of attack of
6�. Calculate the drag and horsepower necessary to drive this airfoil
at 50, 100, and 150 mph horizontally through still air (40�F and 13.5
psia). What lift forces are obtained at these speeds?

9.111 A rectangular airfoil of 9 m span and 1.8 m chord moves hor-
izontally at an angle of attack through still air at 240 km=h. Calculate
the lift and drag, and the power necessary to drive the airfoil at this
speed through air of (a) 101.3 kPa and 15�C, and (b) 79.3 kPa and
−18�C. CD =0:035; CL =0:46. Calculate the speed and power
required for condition (b) to obtain the lift of condition (a).

9.112 An air bubble, 0.3 in. in diameter, is released from the regu-
lator of a scuba diver swimming 100 ft below the sea surface where
the water temperature is 86�F. The air bubble expands as it rises in
water. Find the time it takes for the bubble to reach the surface.
Repeat for bubbles of diameter 5 mm and 15 mm. Compute and plot
the depth of the bubbles as a function of time.

9.113 Why is it possible to kick a football farther in a spiral motion
than in an end-over-end tumbling motion?

9.114 If CL =1:0 and CD =0:05 for an airfoil, then find the span
needed for a rectangular wing of 10 m chord to lift 3560 kN at a
take-off speed of 282 km=h. What is the wing drag at take-off?

9.115 A wing model of 5 in. chord and 2.5 ft span is tested at a cer-
tain angle of attack in a wind tunnel at 60 mph using air at 14.5 psia
and 70�F. The lift and drag are found to be 6.0 lbf and 0.4 lbf respec-
tively. Calculate the lift and drag coefficient for the model at this
angle of attack.

9.116 A barge weighing 8820 kN that is 10 m wide, 30 m long, and
7 m tall has come free from its tug boat in the Mississippi River. It is
in a section of river which has a current of 1 m=s, and there is a wind
blowing straight upriver at 10 m=s. Assume that the drag coefficient
is 1.3 for both the part of the barge in the wind as well as the part
below water. Determine the speed at which the barge will be steadily
moving. Is it moving upriver or downriver?

9.117 A spherical sonar transducer with 15 in. diameter is to be
towed in seawater. The transducer must be fully submerged at
55 ft=s. To avoid cavitation, the minimum pressure on the surface
of the transducer must be greater than 5 psia. Calculate the hydrody-
namic drag force acting on the transducer at the required towing
speed. Estimate the minimum depth to which the transducer must
be submerged to avoid cavitation.

9.118While walking across campus one windy day, an engineering
student speculates about using an umbrella as a “sail” to propel a
bicycle along the sidewalk. Develop an algebraic expression for
the speed a bike could reach on level ground with the umbrella “pro-
pulsion system.” The frontal area of bike and rider is estimated as
0:3 m2, and the drag coefficient is about 1.2. Assume the rolling
resistance is 0.75 percent of the bike and rider weight; the combined
mass is 75 kg. Evaluate the bike speed that could be achieved with an
umbrella 1.22 m in diameter in a wind that blows at 24 km=hr. Dis-
cuss the practicality of this propulsion system.

9.119 If the mean velocity adjacent to the top of a wing of 1.8 m
chord is 40 m=s and that adjacent to the bottom of the wing is
31 m=s when the wing moves through still air at 33:5 m=s, estimate
the lift per meter of span.

9.120 The NACA 23015 airfoil is to move at 180 mph through
standard sea level air. Determine the minimum drag, drag at optimum
L=D and drag at point of maximum lift. Calculate the lift at these
points and the power that must be expended to obtain these lifts.

9.121 A human-powered aircraft has a gross weight of 240 lbf
including the pilot. Its wing has a lift coefficient of 1.5 and a lift-
to-drag ratio of 70. Estimate the wing area needed and the pilot
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power that must be provided for this craft to cruise at 15 mph.
Assume that the wing profile drag is about 40 percent of the total drag
and the propeller efficiency is 80 percent.

9.122 WiffleTM balls made from light plastic with numerous holes
are used to practice baseball and golf. Explain the purpose of the
holes and why they work. Explain how you could test your hypoth-
esis experimentally.

9.123 The “shot tower,” used to produce spherical lead shot, has
been recognized as a mechanical engineering landmark. In a shot
tower, molten lead is dropped from a high tower; as the lead solidi-
fies, surface tension pulls each shot into a spherical shape. Discuss
the possibility of increasing the “hang time,” or of using a shorter
tower, by dropping molten lead into an air stream that is moving
upward. Support your discussion with appropriate calculations.

9.124 A model airfoil of chord 6 in. and span 30 in. is placed in a
wind tunnel with an air flow of 100 ft=s at 70�F. It is mounted on a
cylindrical support rod 1 in. in diameter and 10 in. tall. Instruments
at the base of the rod indicate a vertical force of 10 lbf and a horizon-
tal force of 1.5 lbf. Calculate the lift and drag coefficients of the
airfoil.

9.125 An antique airplane carries 50 m of external guy wires
stretched normal to the direction of motion. The wire diameter is
5 mm. Estimate the maximum power saving that results from an opti-
mum streamlining of the wires at a plane speed of 175 km=hr in
standard air at sea level.

9.126 How do cab-mounted wind deflectors for tractor-trailer
trucks work? Explain using diagrams of the flow pattern around
the truck and pressure distribution on the surface of the truck.

9.127 An airplane with an effective lift area of 25 m2 is fitted with
airfoils of NACA 23012 section (Fig. 9.23). The maximum flap set-
ting that can be used at takeoff corresponds to configuration in
Fig. 9.23. Determine the maximum gross mass possible for the air-
plane if its takeoff speed is 150 km=hr at sea level. Find the minimum
takeoff speed required for this gross mass if the airplane is instead
taking off from Denver (elevation approximately 1.6 km).

9.128 The U.S. Air Force F-16 fighter aircraft has wing planform
area A=300 ft2; it can achieve a maximum lift coefficient of
CL =1:6. When fully loaded, its weight is 26,000 lbf. The airframe
is capable of maneuvers that produce 9 g vertical accelerations. How-
ever, student pilots are restricted to 5 g maneuvers during training.
Consider a turn flown in level flight with the aircraft banked. Find
the minimum speed in standard air at which the pilot can produce
a 5 g total acceleration. Calculate the corresponding flight radius.
Discuss the effect of altitude on these results.

9.129 A light airplane, with massM =1000 kg, has a conventional-
section (NACA 23015) wing of planform area A=10 m2. Find the
angle of attack of the wing for a cruising speed of V =63 m=s. What
is the required power? Find the maximum instantaneous vertical
“g force” experienced at cruising speed if the angle of attack is sud-
denly increased.

9.130A light airplane has 35-ft effective wingspan and 5.5-ft chord.
It was originally designed to use a conventional (NACA 23015)

airfoil section. With this airfoil, its cruising speed on a standard
day near sea level is 150 mph. A redesign is proposed in which
the current conventional airfoil section is replaced with another con-
ventional airfoil section of the same area, but with aspect ratio
AR=8. Determine the cruising speed that could be achieved with this
new airfoil for the same power.

9.131 Assume the Boeing 727 aircraft has wings with NACA
23012 section, planform area of 1600 ft2, double-slotted flaps, and
effective aspect ratio of 6.5. If the aircraft flies at 150 knots in stand-
ard air at 175,000 lbf gross weight, estimate the thrust required to
maintain level flight.

9.132 Jim Hall’s Chaparral 2F sports-racing cars in the 1960s
pioneered use of airfoils mounted above the rear suspension to
enhance stability and improve braking performance. The airfoil
was effectively 6 ft wide (span) and had a 1-ft chord. Its angle of
attack was variable between 0� and −12�. Assume lift and drag coef-
ficient data are given by curves in Fig. 9.17. Consider a car speed of
120 mph on a calm day. For an airfoil deflection of 12� down, cal-
culate (a) the maximum downward force and (b) the maximum
increase in deceleration force produced by the airfoil.

9.133 Some cars come with a “spoiler,” a wing section mounted on
the rear of the vehicle that salespeople sometimes claim significantly
increases traction of the tires at highway speeds. Investigate the valid-
ity of this claim. Are these devices really just cosmetic?

9.134 Roadside signs tend to oscillate in a twisting motion when a
strong wind blows. Discuss the phenomena that must occur to cause
this behavior.

9.135Air moving over an automobile is accelerated to speeds higher
than the travel speed, as shown in Fig. 9.25. This causes changes in
interior pressure when windows are opened or closed. Use the data of
Fig. 9.25 to estimate the pressure reduction when a window is opened
slightly at a speed of 100 km=hr. What is the air speed in the free-
stream near the window opening?

9.136 A class demonstration showed that lift is present when a cyl-
inder rotates in an air stream. A string wrapped around a paper cyl-
inder and pulled causes the cylinder to spin and move forward
simultaneously. Assume a cylinder of 5 cm diameter and 30 cm
length is given a rotational speed of 240 rpm and a forward speed
of 1:5 m=s. Estimate the approximate lift force that acts on the
cylinder.

9.137 Rotating cylinders were proposed as a means of ship propul-
sion in 1924 by the German engineer, Flettner. The original Flettner
rotor ship had two rotors, each about 10 ft in diameter and 50 ft high,
rotating at up to 800 rpm. Calculate the maximum lift and drag forces
that act on each rotor in a 30-mph wind. Compare the total force to
that produced at the optimum L=D at the same wind speed. Estimate
the power needed to spin the rotor at 800 rpm.

9.138A baseball pitcher throws a ball at 80 mph. Home plate is 60 ft
away from the pitcher’s mound. What spin should be placed on the
ball for maximum horizontal deviation from a straight path?
A baseball has a mass of 5 oz and a circumference of 9 in. How
far will the ball deviate from a straight line?

411Problems



C H A P T E R 1 0

Fluid Machinery
10.1 Introduction and Classification of Fluid Machines

10.2 Turbomachinery Analysis

10.3 Pumps, Fans, and Blowers

10.4 Positive Displacement Pumps

10.5 Hydraulic Turbines

10.6 Propellers and Wind-Power Machines

10.7 Compressible Flow Turbomachines

10.8 Summary and Useful Equations

Humans have sought to control nature since antiquity. Early humans carried water by the bucket; as
larger groups formed, this process was mechanized. The first fluid machines developed as bucket wheels
and screw pumps to lift water. The Romans introduced paddle wheels around 70 B.C.E. to obtain energy
from streams [1]. Later, windmills were developed to harness wind power, but the low power density of
the wind limited output to a few hundred horsepower. Development of waterwheels made it possible to
extract thousands of horsepower at a single site.

Today we take many fluid machines for granted. On a typical day we draw pressurized water from
the tap, use a blower to dry our hair, drive a car (in which fluid machines operate the lubrication, cooling,

Case Study

The Little Engine That Could!

Alan Epstein, a professor of aeronautics and astronautics at the
Massachusetts Institute of Technology, and his team have done
a lot of research on tiny gas-turbine engines made of silicon. They
are about the size of a quarter (as shown in the figure) and can be
easily mass produced. Unlike conventional large turbines that are
assembled frommany components, these turbines are built basi-
cally from a solid piece of silicon. Professor Epstein discovered that
the basic concepts of turbine theory (discussed in this chapter)
apply even to his microturbines; the fluid mechanics turns out to
be the same as that for larger engines, as long as the passages
made for gas flow are larger than about 1 μm in diameter (smaller
than this and noncontinuum molecular kinetics is needed).

The rotor and its airfoils are carved out of a single wafer, as
shown in the figure. Additional “plumbing” and bearings are
etched onto thewafers that are to sandwich the rotor. Combustion
occurs just outside the rotor, at the samewafer level, spinning it by
pushing on its airfoils fromthe outside.Atmore than amillion rpm,
these turbines make no audible noise (it’s there, but not even your
dog canhear it)! Electricitywill thenbegenerated using, for exam-
ple, a tiny generator. The fuel source could be packaged with the
engine or come as a replaceable cartridge like a cigarette lighter.
In termsofpowerdensity, the littleenginewill easilybeatbatteries,
with an output of somewhere between 50 and 100 watts!

In this chapter we will discuss how to analyze and design
turbomachinery, such as this little gas turbine. Most of the
devices you will encounter are much larger than this turbine,
but the same principles apply. We will study pumps, blowers,
fans, and compressors that cause a fluid to flow; turbines and
windmills that extract energy from a flowing fluid; and propellers
that provide the propulsive force for airplanes.
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Silicon gas-turbine engines suitable for powering laptops
or cell phones; a 6-mm-diameter turbine assembly.
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and power steering systems), and work in a comfortable environment provided by air circulation. The list
could be extended indefinitely.

A fluid machine is a device that either performs work on or extracts work (or power) from a fluid. As
you can imagine, this is a very large field of study, so we will limit ourselves mostly to incompressible
flows. First the terminology of the field is introduced and machines are classified by operating principle
and physical characteristics. Rather than attempt a treatment of the entire field, we focus on machines in
which energy transfer to or from the fluid is through a rotating element. Basic equations are reviewed and
then simplified to forms useful for analysis of fluid machines. Performance characteristics of typical
machines are considered. Examples are given of pump and turbine applications in typical systems. Next,
we will discuss propellers and wind turbines, which are unique in that they achieve energy transfer with a
fluid without the benefit of an external housing. A discussion of compressible flow machines concludes
the chapter.

10.1 Introduction and Classification of Fluid Machines
Fluid machines may be broadly classified as either positive displacement or dynamic. In positive-
displacement machines, energy transfer is accomplished by volume changes that occur due to move-
ment of the boundary in which the fluid is confined. This includes piston-cylinder arrangements, gear
pumps (for example, the oil pump for a car engine), and lobe pumps (for example, those used in med-
icine for circulating blood through a machine). We will not analyze these devices in this chapter; we will
review them briefly in Section 10.4. Dynamic fluid-handling devices that direct the flow with blades or
vanes attached to a rotating member are termed turbomachines. In contrast to positive displacement
machinery, there is no closed volume in a turbomachine. These devices are very widely used in industry
for power generation (for example, water and steam turbines) and in numerous other applications
(for example, the turbocharger of a high-performance car). The emphasis in this chapter is on dynamic
machines.

A further distinction among types of turbomachines is based on the geometry of the flow path. In
radial-flow machines, the flow path is essentially radial, with significant changes in radius from inlet to
outlet. (Such machines sometimes are called centrifugal machines.) In axial-flow machines, the flow
path is nearly parallel to the machine centerline, and the radius of the flow path does not vary signifi-
cantly. In mixed-flow machines the flow-path radius changes only moderately.

All work interactions in a turbomachine result from dynamic effects of the rotor on the fluid stream;
that is, the transfer of work between the fluid and the rotating machine either increases or decreases the
speed of the flow. However, in conjunction with this kinetic energy transfer, machines that include exter-
nal housings (e.g., compressors, pumps, and turbines) also involve either the conversion of pressure
energy to kinetic energy, or vice versa. This acceleration or deceleration of the flow allows for maximum
pressure rise in pumps and compressors and for maximum power output from turbines.

Machines for Doing Work on a Fluid

Machines that add energy to a fluid by performing work on it are called pumpswhen the flow is liquid or
slurry, and fans, blowers, or compressors for gas- or vapor-handling units, depending on pressure rise.
Fans usually have small pressure rise (less than 1 inch of water) and blowers have moderate pressure rise
(perhaps 1 inch of mercury); pumps and compressors may have very high pressure rises. Current indus-
trial systems operate at pressures up to 150,000 psi (104 atmospheres).

Pumps and compressors consist of a rotating wheel (called an impeller or rotor, depending on the
type of machine) driven by an external power source (e.g., a motor or another fluid machine) to increase
the flow kinetic energy, followed by an element to decelerate the flow, thereby increasing its pressure.
This combination is known as a stage. These elements are contained within a housing or casing. A single
pump or compressor might consist of several stages within a single housing, depending on the amount of
pressure rise required of the machine. The shaft must penetrate the housing in order to receive mechan-
ical work from the external power source. Bearings and seals are needed to minimize frictional (mechan-
ical) losses and prevent leakage of the working fluid.
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Three typical centrifugal machines are shown schematically in Fig. 10.1. The rotating element of a
centrifugal pump or compressor is frequently called the impeller. Flow enters each machine nearly axi-
ally at small radius through the eye of the impeller, diagram ðaÞ, at radius r1. Flow is turned and leaves
through the impeller discharge at radius r2, where the width is b2. Diffusion of the flow is achieved in a
centrifugal machine as it leaves the impeller and is collected in the scroll or volute, which gradually
increases in area as it nears the outlet of the machine, diagram ðbÞ. The impeller usually has vanes;
it may be shrouded (enclosed) as shown in diagram ðaÞ, or open as shown in diagram ðcÞ. The impeller
vanes may be relatively straight, or they may curve to become nonradial at the outlet. Diagram ðcÞ shows
that the diffuser may have vanes to direct the flow between the impeller discharge and the volute; vanes
allow for more efficient diffusion, but at increased fabrication cost. Centrifugal machines are capable of
higher pressure ratios than axial machines, but they have a higher frontal area per unit mass flow.

Typical axial-flow and mixed-flow turbomachines are shown schematically in Fig. 10.2.
Figure 10.2a shows a typical axial-flow compressor stage. In these machines the rotating element is
referred to as the rotor, and flow diffusion is achieved in the stator. Flow enters nearly parallel to the
rotor axis and maintains nearly the same radius through the stage. The mixed-flow pump in diagram
ðbÞ shows the flow being turned outward and moving to larger radius as it passes through the stage.
Axial flow machines have higher efficiencies and less frontal area than centrifugal machines, but they
cannot achieve as high pressure ratios. As a result, axial flow machines are more likely to consist of
multiple stages, making them more complex than centrifugal machines. Figure 10.3 shows a multi-
ple-stage axial flow compressor. In this photograph, the outer housing (to which the stator vanes are
attached) has been removed, clearly showing the rows of rotor vanes.

The pressure rise that can be achieved efficiently in a single stage is limited, depending on the type
of machine. The reason for this limitation can be understood based on the pressure gradients in these
machines (see Section 9.5). In a pump or compressor, the boundary layer subjected to an adverse pres-
sure gradient is not stable; so flow is more likely to encounter boundary-layer separation in a compressor

Video: Flow in
an Axial Flow
Compressor
(Animation)
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Stator blades

Rotor axisHub

Flow
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Fig. 10.2 Schematic diagrams of typical axial-flow and mixed-flow turbomachines, based on reference [2].

Casing

Rotor
Outlet

(b) Centrifugal blower (c) Centrifugal compressor(a) Centrifugal pump

b2 r2

r1

Eye

Impeller
vane

Volute

Diffuser
vane

Fig. 10.1 Schematic diagrams of typical centrifugal-flow turbomachines, adapted from based on Reference [2].
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or pump. Boundary-layer separation increases the drag on the impeller, resulting in a decrease in effi-
ciency; therefore additional work is needed to compress the flow.

Fans, blowers, compressors, and pumps are found in many sizes and types, ranging from simple
household units to complex industrial units of large capacity. Torque and power requirements for idea-
lized pumps and turboblowers can be analyzed by applying the angular-momentum principle using a
suitable control volume.

Propellers are essentially axial-flow devices that operate without an outer housing. Propellers may
be designed to operate in gases or liquids. As you might expect, propellers designed for these very dif-
ferent applications are quite distinct. Marine propellers tend to have wide blades compared with their
radii, giving high solidity. Aircraft propellers tend to have long, thin blades with relatively low solidity.
These machines will be discussed in detail in Section 10.6.

Machines for Extracting Work (Power) from a Fluid

Machines that extract energy from a fluid in the form of work (or power) are called turbines. In hydraulic
turbines, the working fluid is water, so the flow is incompressible. In gas turbines and steam turbines, the
density of the working fluid may change significantly. In a turbine, a stage normally consists of an ele-
ment to accelerate the flow, converting some of its pressure energy to kinetic energy, followed by a rotor,
wheel, or runner extracts the kinetic energy from the flow via a set of vanes, blades, or bucketsmounted
on the wheel.

The two most general classifications of turbines are impulse and reaction turbines. Impulse turbines
are driven by one or more high-speed free jets. The classic example of an impulse turbine is the water-
wheel. In a waterwheel, the jets of water are driven by gravity; the kinetic energy of the water is trans-
ferred to the wheel, resulting in work. In more modern forms of impulse turbines, the jet is accelerated in
a nozzle external to the turbine wheel. If friction and gravity are neglected, neither the fluid pressure nor
speed relative to the runner changes as the fluid passes over the turbine buckets. Thus for an impulse
turbine, the fluid acceleration and accompanying pressure drop take place in nozzles external to the
blades, and the runner does not flow full of fluid; work is extracted as a result of the large momentum
change of the fluid.

In reaction turbines, part of the pressure change takes place externally and part takes place within
the moving blades. External acceleration occurs and the flow is turned to enter the runner in the proper
direction as it passes through nozzles or stationary blades, called guide vanes or wicket gates. Additional
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Fig. 10.3 Photograph of a multiple-stage axial-flow compressor rotor for a gas turbine.
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fluid acceleration relative to the rotor occurs within the moving blades, so both the relative velocity and
the pressure of the stream change across the runner. Because reaction turbines flow full of fluid, they
generally can produce more power for a given overall size than impulse turbines.

Figure 10.4 shows turbines used for different applications. Figure 10.4a shows a Pelton wheel, a
type of impulse turbine wheel used in hydroelectric power plants. Figure 10.4b is a photograph of an
axial steam turbine rotor, an example of a reaction turbine. Figure 10.4c is a wind turbine farm.
A wind turbine is another example of a reaction turbine, but, like a propeller, also operates without
an outer housing. Modern wind turbines typically collect wind energy and convert it into electricity.

Several typical hydraulic turbines are shown schematically in Fig. 10.5. Figure 10.5a shows an
impulse turbine driven by a single jet, which lies in the plane of the turbine runner. Water from the
jet strikes each bucket in succession, is turned, and leaves the bucket with relative velocity nearly oppo-
site to that with which it entered the bucket. Spent water falls into the tailrace (not shown).

A reaction turbine of the Francis type is shown in Fig. 10.5b. Incoming water flows circumferen-
tially through the turbine casing. It enters the periphery of the stationary guide vanes and flows toward
the runner. Water enters the runner nearly radially and is turned downward to leave nearly axially; the
flow pattern may be thought of as a centrifugal pump in reverse. Water leaving the runner flows through
a diffuser known as a draft tube before entering the tailrace. Figure 10.5c shows a propeller turbine of the
Kaplan type. The water entry is similar to that in the Francis turbine, but it is turned to flow nearly axially
before encountering the turbine runner. Flow leaving the runner may pass through a draft tube.

Thus turbines range from simple windmills to complex gas and steam turbines with many stages of
carefully designed blading. These devices also can be analyzed in idealized form by applying the angu-
lar-momentum principle.

The allowable amount of pressure drop in a turbine stage is usually greater than the amount of pres-
sure rise allowable in a compressor stage. The difference is due to the favorable pressure gradient (see
Section 9.5), whichmakes boundary-layer separation much less likely than in the case of the compressor.

Dimensionless parameters, such as specific speed, flow coefficient, torque coefficient, power coef-
ficient, and pressure ratio, frequently are used to characterize the performance of turbomachines. These

Water nozzle

Vane

(a) Impulse turbine
(Pelton wheel)

(b) Reaction turbine
(Francis type)

(c) Propeller turbine
(Kaplan type)

Tail race

Draft tube

Casing
Rotor vanes

Stationary
guide vanes

Guide vanes

Casing

Rotor vanes

Fig. 10.5 Schematic diagrams of typical hydraulic turbines, based on Reference [2].

(a) Pelton wheel (b) Steam turbine rotor (c) Wind turbine farm
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Fig. 10.4 Photograph of turbines used in different applications.
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parameters were introduced in Chapter 7; their development and use will be considered in more detail
later in this chapter.

Scope of Coverage

According to Japikse [3], “Turbomachinery represents a $400 billion market (possibly much more)
with enormous worldwide growth at this time. It is estimated that industrial centrifugal pumps alone
consume 5 percent of all the energy produced in the USA.” In addition, the demands for widely avail-
able, economical, green power will continue to drive research and development in the turbomachinery
industry [4]. Therefore, proper design, construction, selection, and application of pumps and compres-
sors are economically significant.

Design of actual machines involves diverse technical knowledge, including fluid mechanics, mate-
rials, bearings, seals, and vibrations. These topics are covered in numerous specialized texts. Our objec-
tive here is to present only enough detail to illustrate the analytical basis of fluid flow design and to
discuss briefly the limitations on results obtained from simple analytical models. For more detailed
design information, consult the references.

Applications or “system” engineering requires a wealth of experience.Much of this experiencemust
be gained by working with other engineers in the field. Our coverage is not intended to be comprehen-
sive; instead we discuss only the most important considerations for successful system application of
pumps, compressors, and turbines.

The material in this chapter is of a different nature from that in the previous chapters. Chapters 1
through 9 covered much of the fundamental material of fluid mechanics, with detailed analytical results
in most cases. This chapter will also involve significant amounts of analysis, but the inherent complexity
of the topic means that, on many occasions, we need to resort to empirical results and correlations. To the
student, this may appear as so much “hand-waving,” but combining theory and experiment to deduce
results is a very common approach in engineering science.

10.2 Turbomachinery Analysis
As in other analyses, the method of analysis used for turbomachinery is chosen according to the infor-
mation sought. If overall information on flow rate, pressure change, torque, and power is desired, then a
finite-control-volume analysis may be used. If detailed information is desired about blade angles or
velocity profiles, then individual blade elements must be analyzed using an infinitesimal-control-volume
or other detailed procedure. We consider only idealized flow processes in this book, so we concentrate
on the approach using the finite control volume, applying the angular-momentum principle. The analysis
that follows applies to machines both for doing work on, and extracting work from, a fluid flow.

The Angular-Momentum Principle: The Euler Turbomachine Equation

The angular-momentum principle was applied to finite control volumes in Chapter 4. The result
was Eq. 4.46.

r!×F
!
s +

Z
CV

r!× g!ρdV--- + T
!
shaft =

∂
∂t

Z
CV

r!×V
!
ρdV--- +

Z
CV

r! × V
!
ρV
! � dA! ð4:46Þ

Equation 4.46 states that the moment of surface forces and body forces, plus the applied torque, lead to a
change in the angular momentum of the flow. The surface forces are due to friction and pressure, the
body force is due to gravity, the applied torque could be positive or negative (depending on whether
we are doing work on or extracting work from the fluid, respectively), and the angular-momentum
change can arise as a change in angular momentum within the control volume or a flux of angular
momentum across the control surface.

We will now simplify Eq. 4.46 for analysis of turbomachinery. First, it is convenient to choose a
fixed control volume enclosing the rotor to evaluate shaft torque. Because we are looking at control
volumes for which we expect large shaft torques, as a first approximation torques due to surface forces
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may be ignored. This means we are neglecting friction and torque generated by pressure changes. The
body force may be neglected by symmetry. Then, for steady flow, Eq. 4.46 becomes

T
!
shaft =

Z
CV

r!×V
!
ρV
! � dA! ð10:1aÞ

Equation 10.1a states: For a turbomachine with work input, the torque required causes a change in the
fluid angular momentum; for a turbomachine with work output, the torque produced is due to the change
in fluid angular momentum. Let us write this equation in scalar form and illustrate its application to axial-
and radial-flow machines.

As shown in Fig. 10.6, we select a fixed control volume enclosing a generalized turbomachine rotor.
The fixed coordinate system is chosen with the z-axis aligned with the axis of rotation of the machine.
The idealized velocity components are shown in the figure. The fluid enters the rotor at radial location,
r1, with uniform absolute velocity, V

!
1; the fluid leaves the rotor at radial location, r2, with uniform abso-

lute velocity V
!
2.

The integrand on the right side of Eq. 10.1a is the product of with the mass flow rate at each section.
For uniform flow into the rotor at section 10.1, and out of the rotor at section 10.2, Eq. 10.1a becomes

Tshaftk̂= ðr2Vt2 −r1Vt1Þ _mk̂ ð10:1bÞ

(Note that in r!×V
!
the position vector r! is purely radial; so only the tangential velocity component Vt

counts.) In scalar form,

Tshaft = ðr2Vt2 −r1Vt1Þ _m ð10:1cÞ

The assumptions wemade in deriving this equation are steady, frictionless flow; uniform flow at inlet and
exit; and negligible pressure effects. Equation 10.1c is the basic relationship between torque and angular
momentum for all turbomachines. It often is called the Euler turbomachine equation.

Each velocity that appears in Eq. 10.1c is the tangential component of the absolute velocity of the
fluid crossing the control surface. The tangential velocities are chosen positive when in the same direc-
tion as the blade speed, U. This sign convention gives Tshaft > 0 for pumps, fans, blowers, and compres-
sors and Tshaft < 0 for turbines.

The rate of work done on a turbomachine rotor (the mechanical power, _Wm) is given by the dot
product of rotor angular velocity, ω!, and applied torque, T

!
shaft. Using Eq. 10.1b, we obtain

_Wm =ω
! � T!shaft =ωk̂ � Tshaftk̂=ωk̂ � ðr2Vt2 −r1Vt1Þ _mk̂

or

_Wm =ωTshaft =ωðr2Vt2 −r1Vt1Þ _m ð10:2aÞ

X

Y

1

2
Vn1

Vn2

Vt1

Vt2

V2

ω
ω

ωU1 = r1

ωU2 = r2 r2

r1

V1

Fig. 10.6 Finite control volume and absolute velocity
components for analysis of angular momentum.
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According to Eq. 10.2a, the angular momentum of the fluid is increased by the addition of shaft work.
For a pump, _Wm >0 and the angular momentum of the fluid must increase. For a turbine, _Wm <0 and the
angular momentum of the fluid must decrease.

Equation 10.2a may be written in two other useful forms. Introducing U = rω, where U is the tan-
gential speed of the rotor at radius r, we have

_Wm = ðU2Vt2 −U1Vt1Þ _m ð10:2bÞ

Dividing Eq. 10.2b by _mg, we obtain a quantity with the dimensions of length, which may be viewed as
the theoretical head added to the flow.1

H =
_Wm

_mg
=
1
g
ðU2Vt2 −U1Vt1Þ ð10:2cÞ

Equations 10.1 and 10.2 are simplified forms of the angular-momentum equation for a control vol-
ume. They all are written for a fixed control volume under the assumptions of steady, uniform flow at
each section. The equations show that only the difference in the product rVt or UVt, between the outlet
and inlet sections, is important in determining the torque applied to the rotor or the mechanical power.
Although r2 > r1 in Fig. 10.6, no restriction has been made on geometry; the fluid may enter and leave at
the same or different radii. Therefore, these equations may be used for axial, radial, or mixed-flow
machines.

Velocity Diagrams

The equations that we have derived also suggest the importance of clearly defining the velocity com-
ponents of the fluid and rotor at the inlet and outlet sections. For this purpose, it is useful to develop
velocity diagrams (frequently called velocity polygons) for the inlet and outlet flows. Figure 10.7 shows
the velocity diagrams and introduces the notation for blade and flow angles. The important notation to
remember is that the variable V is typically used to indicate absolute velocity, that is, the velocity of the
flow relative to a stationary observer, while the variableW is used to indicate flow velocity relative to the
rotating blade.

Machines are designed such that at design condition the fluid moves smoothly (without distur-
bances) through the blades. In the idealized situation at the design speed, flow relative to the rotor is
assumed to enter and leave tangent to the blade profile at each section. (This idealized inlet condition

r2

r1

1β

2β
2β

2α

V2

U2 = r2ω

U1 = r1ω

U2

W
2

Vn2
Vt2

(a) Absolute velocity as sum
of velocity relative to blade

and rotor velocity

(c) Velocity components
at outlet

(b) Velocity components
at inlet

1β 1α

V1

U1

Vn1

Vt1

V2

V1

W
1

W
1

W
2

Fig. 10.7 Geometry and notation used to develop velocity diagrams for typical radial-flow machines.

1 Since _Wm has dimensions of energy per unit time and _mg is weight flow per unit time, head,H, is actually energy per unit weight
of flowing fluid.
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is sometimes called shockless entry flow.) At speeds other than design speed the fluid may impact
the blades at inlet, exit at an angle relative to the blade, or may have significant flow separation,
leading to machine inefficiency. Figure 10.7 is representative of a typical radial flow machine. We
assume the fluid is moving without major flow disturbances through the machine, as shown in
Fig. 10.7a, with blade inlet and exit angles β1 and β2, respectively, relative to the circumferential
direction. Note that although angles β1 and β2 are both less than 90� in Fig. 10.7, in general they
can be less than, equal to, or greater than 90

�
, and the analysis that follows applies to all of these

possibilities.
The runner speed at inlet is U1 = r1ω, and therefore it is specified by the impeller geometry and the

machine operating speed. The absolute fluid velocity is the vector sum of the impeller velocity and the
flow velocity relative to the blade. The absolute inlet velocity may be determined graphically, as shown
in Fig. 10.7b. The angle of the absolute fluid velocity, α1, is measured from the direction normal to the
flow area, as shown.2 Note that for a given machine, angles α1 and α2 will vary with flow rate, Q,
(through V

!
1 and V

!
2) and rotor speed, ω (through U1 and U2). The tangential component of the absolute

velocity, Vt1 , and the component normal to the flow area, Vn1 , are also shown in Fig. 10.7b. Note from the
geometry of the figure that at each section the normal component of the absolute velocity, Vn, and the
normal component of the velocity relative to the blade, Wn, are equal (because the blade has no normal
velocity).

To help determine the absolute velocity at the machine entrance, it is necessary to determine
whether swirl exists at the entrance. Swirl, which may be present in the inlet flow or introduced by
inlet guide vanes, is the presence of a circumferential velocity component. When the inlet flow is
swirl free, the absolute inlet velocity will be purely radial. The inlet blade angle may be specified
for the design flow rate and pump speed to provide a smooth entry flow relative to the orientation of
the blades.

The velocity diagram is constructed similarly at the outlet section. The runner speed at the
outlet is U2 = r2ω, which again is known from the geometry and operating speed of the turbomachine.
The relative flow is assumed to leave the impeller tangent to the blades, as shown in Fig. 10.7c. This
idealizing assumption of perfect guidance fixes the direction of the relative outlet flow at design
conditions.

For a centrifugal pump or reaction turbine, the velocity relative to the blade generally changes in
magnitude from inlet to outlet. The continuity equation must be applied, using the impeller geometry, to
determine the normal component of velocity at each section. The normal component, together with the
outlet blade angle, is sufficient to establish the velocity relative to the blade at the impeller outlet for a
radial-flow machine. The velocity diagram is completed by the vector addition of the velocity relative to
the blade and the wheel velocity, as shown in Fig. 10.7c.

The inlet and outlet velocity diagrams provide all the information needed to calculate the ideal tor-
que or power, absorbed or delivered by the impeller, using Eqs. 10.1 or 10.2. The results represent the
performance of a turbomachine under idealized conditions at the design operating point, since we have
assumed:

• Negligible torque due to surface forces (viscous and pressure).

• Inlet and exit flow tangent to blades.

• Uniform flow at inlet and exit.

An actual turbomachine is not likely to conform to all of these assumptions, so the results of our analysis
represent the upper limit of the performance of actual machines. In Example 10.1 we will use the Euler
Turbomachine Equation to analyze an idealized centrifugal pump.

Performance of an actual machine may be estimated using the same basic approach, but accounting
for variations in flow properties across the blade span at the inlet and outlet sections, as well as for devia-
tions between the blade angles and the flow directions. Such detailed calculations are beyond the scope
of this book. The alternative is to measure the overall performance of a machine on a suitable test stand.
Manufacturers’ data are examples of measured performance information.

2 The notation varies from book to book, so be careful when comparing references.
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Example 10.1 IDEALIZED CENTRIFUGAL PUMP

A centrifugal pump is used to pump 150 gpm of water. The water enters the impeller axially through a 1.25-in.-diameter inlet. The
inlet velocity is axial and uniform. The impeller outlet diameter is 4 in. Flow leaves the impeller at 10 ft=s relative to the blades,
which are radial at the exit. The impeller speed is 3450 rpm. Determine the impeller exit width, b2, the torque input, and the power
predicted by the Euler turbine equation.

Given: Flow as shown in the figure:
Vr2 = 10 ft=s, Q=150 gpm.

Find: (a) b2.
(b) Tshaft.
(c) _Wm.

Solution: Apply the Euler turbomachine equation to a
fixed control volume.

Governing equations:

Tshaft = ðr2Vt2 −r1Vt1Þ _m ð10:1cÞ
=0ð2Þ
∂
∂t��

�!

Z
CV

ρdVþ
Z
CS
ρV
! � dA!¼ 0 ð4:12Þ

Assumptions:

1 Neglect torques due to body and surface forces.

2 Steady flow.

3 Uniform flow at inlet and outlet sections.

4 Incompressible flow.

Then, from continuity,

ð−ρV1πR2
1Þ+ ðρVr22πR2b2Þ=0

or

_m= ρQ= ρVr22πR2b2

so that

b2 =
Q

2πR2Vr2
=

1
2π

×150
gal
min

×
1

2 in:
×

s
10 ft

×
ft3

7:48 gal
×
min
60 s

× 12
in:
ft

b2 = 0:0319 ft or 0:383 in:
b2 ����������������������������������������������������

For an axial inlet the tangential velocity Vt1 = 0, and for radial exit blades Vt2 =R2ω, so Eq. 10.1c reduces to

Tshaft =R2
2ω _m=ωR2

2ρQ

where we have used continuity ð _m= ρQÞ.
Thus,

Tshaft =ωR2
2ρQ=3450

rev
min

× ð2Þ2in:2 × 1:94
slug
ft3

× 150
gal
min

× 2π
rad
rev

×
min2

3600 s2
×

ft3

7:48 gal
×

ft2

144 in:2
×

lbf � s2
slug � ft

Tshaft = 6:51 ft � lbf Tshaft ����������������������������������������������������

V2

R2ω

Vr2

R1 = 0.625 in.

ω = 3450 rpm

r

z

Fixed CV

R2 = 2 in.

b2
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Performance—Hydraulic Power

The torque and power predicted by applying the angular-momentum equation to a turbomachine
rotor (Eqs. 10.1c and 10.2a) are idealized values. In practice, rotor power and the rate of change of fluid
energy are not equal. Energy transfer between rotor and fluid causes losses because of viscous effects,
departures from uniform flow, and departures of flow direction from the blade angles. Kinetic energy
transformation to pressure rise by diffusion in the fixed casing introduces more losses. Energy dissipa-
tion occurs in seals and bearings and in fluid friction between the rotor and housing of the machine
(“windage” losses). Applying the first law of thermodynamics to a control volume surrounding the rotor
shows that these “losses” in mechanical energy are irreversible conversions from mechanical energy to
thermal energy. As was the case for the pipe flows discussed in Chapter 8, the thermal energy appears
either as internal energy in the fluid stream or as heat transfer to the surroundings.

Because of these losses, in a pump the actual power delivered to the fluid is less than predicted by the
angular-momentum equation. In the case of a turbine, the actual power delivered to the shaft is less than
the power given up by the fluid stream.

We can define the power, head, and efficiency of a turbomachine based on whether the machine
does work on the fluid or extracts work (or power) from the fluid.

For a pump, the hydraulic power is given by the rate of mechanical energy input to the fluid,

_Wh = ρQgHp ð10:3aÞ

where

Hp =
p
ρg

+
V 2

2g
+ z

 !
discharge

−
p
ρg

+
V 2

2g
+ z

 !
suction

ð10:3bÞ

For a pump the head rise measured on a test stand is less than that produced by the impeller. The rate of
mechanical energy input is greater than the rate of head rise produced by the impeller. The mechanical
input power needed to drive the pump is related to the hydraulic power by defining pump efficiency as

ηp =
_Wh

_Wm
=
ρQgHp

ωT
ð10:3cÞ

To evaluate the actual change in head across a machine from Eq. 10.3b, we must know the pressure, fluid
velocity, and elevation at two measurement sections. Fluid velocity can be calculated from the measured
volume flow rate and passage diameters.

Static pressure usually is measured in straight sections of pipe upstream from the pump inlet and
downstream from the pump outlet, after diffusion has occurred within the pump casing. The elevation
of each pressure gage may be recorded, or the static pressure readings may be corrected to the same
elevation. The pump centerline provides a convenient reference level.

For a hydraulic turbine, the hydraulic power is defined as the rate of mechanical energy removal
from the flowing fluid stream,

_Wh = ρQgHt ð10:4aÞ

and

_Wm =ωTshaft = 3450
rev
min

× 6:51 ft � lbf × 2π
rad
rev

×
min
60 s

×
hp � s

550 ft � lbf
_Wm =4:28 hp

_Wm ������������������������������������
This problem illustrates the application
of the Euler turbomachine equation for a
fixed control volume to a centrifugal flow
machine.
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where

Ht =
p
ρg

+
V 2

2g
+ z

 !
inlet

−
p
ρg

+
V 2

2g
+ z

 !
outlet

ð10:4bÞ

For a hydraulic turbine, the power output obtained from the rotor (the mechanical power) is less than
the rate of energy transfer from the fluid to the rotor, because the rotor must overcome friction and wind-
age losses.

The mechanical power output obtained from the turbine is related to the hydraulic power by
defining turbine efficiency as

ηt =
_Wm

_Wh
=

ωT
ρQgHt

ð10:4cÞ

Equations 10.4a and 10.4b show that to obtain maximum power output from a hydraulic turbine, it is
important to minimize the mechanical energy in the flow leaving the turbine. This is accomplished by
making the outlet pressure, flow speed, and elevation as small as practical. The turbine must be set as
close to the tailwater level as possible, allowing for the level increase when the river floods. Tests to
measure turbine efficiency may be performed at various output power levels and at different constant
head conditions (see the discussion of Figs. 10.35 and 10.36).

Dimensional Analysis and Specific Speed

Dimensional analysis for turbomachines was introduced in Chapter 7, where dimensionless flow, head,
and power coefficients were derived in generalized form. The independent parameters were the flow
coefficient and a form of Reynolds number. The dependent parameters were the head and power
coefficients.

Our objective here is to develop the forms of dimensionless coefficients in common use and to give
examples illustrating their use in selecting a machine type, designing model tests, and scaling results.
Since we developed an idealized theory for turbomachines, we can gain additional physical insight by
developing dimensionless coefficients directly from the resulting computing equations. We will then
apply these expressions to scaling of turbomachines through similarity rules in Section 10.3.

The dimensionless flow coefficient,Φ, is defined by normalizing the volume flow rate using the exit
area and the wheel speed at the outlet. Thus

Φ=
Q

A2U2
=
Vn2

U2
ð10:5Þ

where Vn2 is the velocity component perpendicular to the exit area. This component is also referred to as
the meridional velocity at the wheel exit plane. It appears in true projection in the meridional plane,
which is any radial cross-section through the centerline of a machine.

A dimensionless head coefficient,Ψ, may be obtained by normalizing the head,H (Eq. 10.2c), with
U2

2=g. Thus

Ψ=
gH
U2

2
ð10:6Þ

A dimensionless torque coefficient, τ, may be obtained by normalizing the torque, T (Eq. 10.1c),
with ρA2U2

2R2. Thus

τ=
T

ρA2U2
2R2

ð10:7Þ
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Finally, the dimensionless power coefficient, Π, is obtained by normalizing the power, _W
(Eq. 10.2b), with _mU2

2 = ρQU2
2 . Thus

Π=
_W

ρQU2
2
=

_W
ρω2QR2

2
ð10:8Þ

For pumps, mechanical input power exceeds hydraulic power, and the efficiency is defined as
ηp = _Wh= _Wm (Eq. 10.3c). Hence

_Wm = Tω=
1
ηp

_Wh =
ρQgHp

ηp
ð10:9Þ

Introducing dimensionless coefficientsΦ (Eq. 10.5),Ψ (Eq. 10.6), and τ (Eq. 10.7) into Eq. 10.9, we
obtain an analogous relation among the dimensionless coefficients as

τ=
ΨΦ
ηp

ð10:10Þ

For turbines, mechanical output power is less than hydraulic power, and the efficiency is defined as
ηt = _Wm= _Wh (Eq. 10.4c). Hence

_Wm = Tω= ηt _Wh = ηtρQgHp ð10:11Þ
Introducing dimensionless coefficients Φ, Ψ, and τ into Eq. 10.11, we obtain an analogous relation

among the dimensionless coefficients as

τ=ΨΦηt ð10:12Þ
The dimensionless coefficients form the basis for designing model tests and scaling the results. As

shown in Chapter 7, the flow coefficient, Φ, is treated as the independent parameter. Then, if viscous
effects are neglected, the head, torque, and power coefficients are treated as multiple dependent para-
meters. Under these assumptions, dynamic similarity is achieved when the flow coefficient is matched
between model and prototype machines.

As discussed in Chapter 7, a useful parameter called specific speed can be obtained by combining
the flow and head coefficients and eliminating the machine size. The result was

NS =
ωQ1=2

h3=4
ð7:22aÞ

When head is expressed as energy per unit mass (i.e., with dimensions equivalent to L2=t2, or g times
head in height of liquid), and ω is expressed in radians per second, the specific speed defined by
Eq. 7.22a is dimensionless.

Although specific speed is a dimensionless parameter, it is common practice to use an “engineering”
equation form of Eq. 7.22a in which ω and Q are specified in units that are convenient but inconsistent,
and energy per unit mass, h, is replaced with energy per unit weight of fluid, H. When this is done, the
specific speed is not a unitless parameter and the magnitude of the specific speed depends on the units
used to calculate it. Customary units used in U.S. engineering practice for pumps are rpm for ω, gpm
for Q, and feet (energy per unit weight) for H. In practice, the symbol N is used to represent rate of
rotation ðωÞ in rpm. Thus, the dimensional specific speed for pumps, expressed in U.S. customary units,
as an “engineering” equation, becomes

NScu =
NðrpmÞ½QðgpmÞ�1=2

½HðftÞ�3=4
ð7:22bÞ

Values of the dimensionless specific speed, NS (Eq. 7.22a), must be multiplied by 2733 to obtain
the values of specific speed corresponding to this commonly used but inconsistent set of units (see
Example 10.2).
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For hydraulic turbines, we use the fact that power output is proportional to flow rate and head,
�/ ρQh in consistent units. Substituting �=ρh for Q in Eq. 7.22a gives

NS =
ω

h3=4
�

ρh

� �1=2

=
ωP1=2

ρ1=2h5=4
ð10:13aÞ

as the nondimensional form of the specific speed.
In U.S. engineering practice it is customary to drop the factor ρ1=2 because water is invariably the

working fluid in the turbines to which the specific speed is applied and to use head H in place of energy
per unit mass h. Customary units used in U.S. engineering practice for hydraulic turbines are rpm for ω,
horsepower for �, and feet for H. In practice, the symbol N is used to represent rate of rotation ðωÞ in
rpm. Thus the dimensional specific speed for a hydraulic turbine, expressed in U.S. customary units, as
an “engineering” equation, becomes

NScu =
NðrpmÞ½�ðhpÞ�1=2
½HðftÞ�5=4

ð10:13bÞ

Values of the dimensionless specific speed for a hydraulic turbine, NS (Eq. 10.13a), must be multiplied
by 43.46 to obtain the values of specific speed corresponding to this commonly used but inconsistent set
of units.

Specific speed may be thought of as the operating speed at which a pump produces unit head at unit
volume flow rate (or, for a hydraulic turbine, unit power at unit head). To see this, solve for N in
Eqs. 7.22b and 10.13b, respectively. For pumps

NðrpmÞ=NScu
½HðftÞ�3=4
½QðgpmÞ�1=2

and for hydraulic turbines

NðrpmÞ=NScu
½HðftÞ�5=4
½�ðhpÞ�1=2

Holding specific speed constant describes all operating conditions of geometrically similar machines
with similar flow conditions.

It is customary to characterize a machine by its specific speed at the design point. This specific speed
has been found to characterize the hydraulic design features of a machine. Low specific speeds corre-
spond to efficient operation of radial-flow machines. High specific speeds correspond to efficient oper-
ation of axial-flow machines. For a specified head and flow rate, one can choose either a low specific
speed machine (which operates at low speed) or a high specific speed machine (which operates at
higher speed).

Typical proportions for commercial pump designs and their variation with dimensionless specific
speed are shown in Fig. 10.8. In this figure, the size of each machine has been adjusted to give the same
head and flow rate for rotation at a speed corresponding to the specific speed. Thus it can be seen that if
the machine’s size and weight are critical, one should choose a higher specific speed. Figure 10.8 shows
the trend from radial (purely centrifugal pumps), through mixed-flow, to axial-flow geometries as spe-
cific speed increases.

The corresponding efficiency trends for typical pumps are shown in Fig. 10.9, which shows that
pump capacity generally increases as specific speed increases. The figure also shows that at any given
specific speed, efficiency is higher for large pumps than for small ones. Physically this scale effect means
that viscous losses become less important as the pump size is increased.

Characteristic proportions of hydraulic turbines also are correlated by specific speed, as shown in
Fig. 10.10. As in Fig. 10.8, the machine size has been scaled in this illustration to deliver approximately
the same power at unit head when rotating at a speed equal to the specific speed. The corresponding
efficiency trends for typical turbine types are shown in Fig. 10.11.
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Fig. 10.10 Typical geometric proportions of commercial hydraulic turbines as they vary with dimensionless specific speed,
adapted from Reference [5].
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Fig. 10.8 Typical geometric proportions of commercial pumps as a function of dimensionless specific speed, adapted from
Reference [5].
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Several variations of specific speed, calculated directly from engineering units, are widely used in
practice. The most commonly used forms of specific speed for pumps are defined and compared in
Example 10.2.

Example 10.2 COMPARISON OF SPECIFIC SPEED DEFINITIONS

At the best efficiency point, a centrifugal pump, with impeller diameter D=8 in., produces H =21:9 ft at Q=300 gpm with
N =1170 rpm. Compute the corresponding specific speeds using: (a) U.S. customary units, (b) SI units ðrad=s,m3=s,m2=s2Þ,
and (c) European units ðrev=s,m3=s,m2=s2Þ. Develop conversion factors to relate the specific speeds.

Given: Centrifugal pump at best efficiency point (BEP). Assume the pump characteristics are H =21:9 ft,Q=300 gpm,
and N =1170 rpm.

Find: (a) The specific speed in U.S. customary units.
(b) The specific speed in SI units.
(c) The specific speed in European units.
(d) Appropriate conversion factors to relate the specific speeds.

Solution:

Governing equations: Ns =
ωQ1=2

h3=4
and NScu =

NQ1=2

H3=4

From the given information, the specific speed in U.S. customary units is

NScu =1170 rpm× ð300Þ1=2gpm1=2 ×
1

ð21:9Þ3=4 ft3=4
= 2000

NScu �������������������������������
Convert information to SI units:

ω=1170
rev
min

× 2π
rad
rev

×
min
60 s

= 123 rad=s

Q=300
gal
min

×
ft3

7:48 gal
×
min
60 s

× ð0:305Þ3m
3

ft3
= 0:0190 m3=s

H =21:9 ft × 0:305
m
ft
= 6:68 m

The energy per unit mass is
h= gH =9:81

m
s2

× 6:68 m=65:5 m2=s2

The dimensionless specific speed is

Ns =123
rad
s

× ð0:0190Þ1=2m
3=2

s1=2
×

ðs2Þ3=4
ð65:5Þ3=4ðm2Þ3=4

= 0:736
NsðSIÞ �������������������������������

Convert the operating speed to hertz:

ω=1170
rev
min

×
min
60 s

×
Hz � s
rev

= 19:5 Hz

Finally, the specific speed in European units is

NsðEurÞ=19:5 Hz× ð0:0190Þ1=2m
3=2

s1=2
×

ðs2Þ3=4
ð65:5Þ3=4ðm2Þ3=4

= 0:117
NsðEurÞ ����������������������������������

To relate the specific speeds, form ratios:

Nscu

NsðEurÞ =
2000
0:117

= 17,100

Nscu

NsðSIÞ =
2000
0:736

= 2720

This problem demonstrates the use of
“engineering” equations to calculate
specific speed for pumps from each of three
commonly used sets of units and to com-
pare the results.
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10.3 Pumps, Fans, and Blowers
We will now look at the various types of fluid machines in greater detail. We will begin our discussion
with rotating machines that perform work on an incompressible fluid, namely pumps, fans and blowers.

Application of Euler Turbomachine Equation to Centrifugal Pumps

As demonstrated in Example 10.1, the treatment from Section 10.2 may be applied directly to the anal-
ysis of centrifugal machines. Figure 10.7 in Section 10.2 represents the flow through a simple centrifugal
pump impeller. If the fluid enters the impeller with a purely radial absolute velocity, then the fluid enter-
ing the impeller has no angular momentum and Vt1 is identically zero.

With Vt1 = 0, the increase in head (from Eq. 10.2c) is given by

H =
U2Vt2

g
ð10:14Þ

From the exit velocity diagram of Fig. 10.7c,

Vt2 =U2−W2 cos β2 =U2−
Vn2

sinβ2
cos β2 =U2−Vn2 cot β2 ð10:15Þ

Then

H =
U2

2−U2Vn2 cot β2
g

ð10:16Þ

For an impeller of width w, the volume flow rate is

Q= πD2wVn2 ð10:17Þ
To express the increase in head in terms of volume flow rate, we substitute for Vn2 in terms of Q from
Eq. 10.17. Thus

H =
U2

2

g
−
U2 cot β2
πD2wg

Q ð10:18aÞ

Equation 10.18a is of the form

H =C1−C2Q ð10:18bÞ
where constants C1 and C2 are functions of machine geometry and speed,

C1 =
U2

2

g
and C2 =

U2 cot β2
πD2wg

Thus Eq. 10.18a predicts a linear variation of head, H, with volume flow rate, Q. Note that this linear
relation is an idealized model; actual devices may have only an approximate linear variation and may be
better modeled with a curve-fitting method based on measured data. (We will see an example of this in
Example 10.5.)

Constant C1 =U2
2=g represents the ideal head developed by the pump for zero flow rate; this is

called the shutoff head. The slope of the curve of head versus flow rate (the H−Q curve) depends
on the sign and magnitude of C2.

For radial outlet vanes, β2 = 90� andC2 = 0. The tangential component of the absolute velocity at the
outlet is equal to the wheel speed and is independent of flow rate. From Eq. 10.18a, the ideal head is
independent of flow rate. This characteristic H−Q curve is plotted in Fig. 10.12.

If the vanes are backward curved (as shown in Fig. 10.7a), β2 < 90� and C2 > 0. Then the tangential
component of the absolute outlet velocity is less than the wheel speed and it decreases in proportion to
the flow rate. From Eq. 10.18a, the ideal head decreases linearly with increasing flow rate. The corre-
sponding H−Q curve is plotted in Fig. 10.12.
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If the vanes are forward curved, then β2 > 90� and C2 < 0. The tangential component of the absolute
fluid velocity at the outlet is greater than the wheel speed, and it increases as the flow rate increases. From
Eq. 10.7a, the ideal head increases linearly with increasing flow rate. The corresponding H−Q curve is
plotted in Fig. 10.12.

The characteristics of a radial-flow machine can be altered by changing the outlet vane angle; the
idealized model developed above predicts the trends as the outlet vane angle is changed.

The predictions of the idealized angular-momentum theory for a centrifugal pump are summarized
in Fig. 10.12. Forward-curved vanes are almost never used in practice because they tend to have an
unstable operating point.

Application of the Euler Equation to Axial Flow Pumps and Fans

The Euler Turbomachine Equation developed in Section 10.2 can be used for axial-flow machines as
well. However, in order to use this model, some assumptions need to be made. The most important
assumption is that the flow properties at the mean radius (the midpoint of the rotor blades) fully represent
the flow at all radii. This is a good assumption, provided the ratio of blade height to mean radius is
approximately 0.2 or less [7]. At larger ratios a three-dimensional analysis will be necessary. Such
an analysis is beyond the scope of this work, but other sources can provide information on this phenom-
enon, such as Dixon [7]. A second assumption is that there is no radial component to the flow velocity.
This is a reasonable assumption, since many axial machines incorporate stators or sets of vanes which
guide the flow into the machine, removing unwanted radial velocity components. The third assumption
is that the flow only varies in the axial direction. This is not the same as saying that there is only an axial
component of velocity! In fact, there will be a significant component of the velocity in the tangential
direction as the flow passes through an axial-flow machine, i.e., the flow will have “swirl.” The meaning
of this assumption is that at a given axial location, the amount of swirl in the flow is constant, rather than
varying between the blades of the machine [7].

The primary consequence of this model applied to axial-flow machines is that the radius used in
Equations (10.1) is constant, i.e.,

r1 = r2 =Rm ð10:19aÞ

Since the angular velocity ω of the rotor is also constant, it follows that

U1 =U2 =U ð10:19bÞ

Cross section
Meridional

section

Volume flow rate, Q

H
e
a
d
,

H
R2

2
β

ω

ω

ω

U2 =R2

W
2
 (rel) V

2
 (abs)

H = –––––
R2

22

g

Backward-curved,
β2 < 90°

Forward-curved,
β2 > 90°

Radial, β2 = 90°

Fig. 10.12 Idealized relationship between head and volume flow rate for centrifugal pumpwith forward-curved, radial, and
backward-curved impeller blades.
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Therefore, Equations (10.1) and (10.2) reduce to:

Tshaft =RmðVt2 −Vt1Þ _m ð10:20Þ
_Wm =UðVt2 −Vt1Þ _m ð10:21Þ

H =
_Wm

_mg
=
U
g
ðVt2 −Vt1Þ ð10:22Þ

In Example 10.3 these special versions of the Euler turbomachine equation and velocity diagrams
are utilized in the analysis of flow through an axial-flow fan.

Example 10.3 IDEALIZED AXIAL-FLOW FAN

An axial-flow fan operates at 1200 rpm. The blade tip diameter is 1.1 m and the hub diameter is 0.8 m. The inlet and exit angles at
the mean blade radius are 30

�
and 60

�
, respectively. Inlet guide vanes give the absolute flow entering the first stage an angle of

30
�
. The fluid is air at standard conditions and the flowmay be considered incompressible. There is no change in axial component

of velocity across the rotor. Assume the relative flow enters and leaves the rotor at the geometric blade angles and use properties at
the mean blade radius for calculations. For these idealized conditions, draw the inlet velocity diagram, determine the volume flow
rate of the fan, and sketch the rotor blade shapes. Using the data so obtained, draw the outlet velocity diagram and calculate the
minimum torque and power needed to drive the fan.

Given: Flow through rotor of axial-flow fan.

Tip diameter: 1.1 m
Hub diameter: 0.8 m
Operating speed: 1200 rpm
Absolute inlet angle: 30

�

Blade inlet angle: 30
�

Blade outlet angle: 60
�

Fluid is air at standard conditions. Use properties at mean diameter of blades.

Find: (a) Inlet velocity diagram.
(b) Volume flow rate.
(c) Rotor blade shape.
(d) Outlet velocity diagram.
(e) Rotor torque.
(f) Power required.

Solution: Apply the Euler turbomachine equation to a fixed control volume.

Governing equations:

Tshaft =RmðVt2 −Vt1Þ _m=RmðVt2 −Vt1ÞρQ ð10:20Þ

Assumptions:

1 Neglect torques due to body or surface forces.

2 Steady flow.

3 Uniform flow at inlet and outlet sections.

4 Incompressible flow.

5 No change in axial flow area.

6 Use mean radius of rotor blades, Rm.

1

2

Stationary CV
is flow channel

z

ω
Flow

Rm
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The blade shapes are

(Note that for an axial-flow machine the normal velocity components are parallel to the axis, not normal to the circumferential
surface!)

The inlet velocity diagram is

From continuity

ð−ρVn1A1Þ+ ðρVn2A2Þ=0

or

Q=Vn1A1 =Vn2A2

Since A1 =A2, then Vn1 =Vn2 , and the outlet velocity diagram is as shown in the following figure:

At the mean blade radius,

U =Rmω=
Dm

2
ω

U =

1
2
ð1:1+ 0:8Þm

2
× 1200

rev
min

× 2π
rad
rev

×
min
60 s

= 59:7 m=s

From the geometry of the inlet velocity diagram,

U =Vn1ðtan α1 + cot β1Þ
so that

Vn1 =
U

tan α1 + cot β1
= 59:7

m
s
×

1
tan 30� + cot 30�

=25:9 m=s

Vn2

W2

Vt2

2 = 60°β

2α

U = Rmω

V2

Blade
motion

β1 = 30°

β2 = 60°

W1

W2

z

Vn1

W1

Vt1

1 = 30°β

1 = 30°α

U = Rmω

V1
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Performance Characteristics

To specify fluid machines for flow systems, the designer must know the pressure rise (or head), torque,
power requirement, and efficiency of a machine. For a given machine, each of these characteristics is a
function of flow rate; the characteristics for similar machines depend on size and operating speed. Here
we define performance characteristics for pumps and turbines and review experimentally measured
trends for typical machines.

Consequently,
V1 =

Vn1

cos α1
= 25:9

m
s
×

1
cos 30�

=29:9 m=s

Vt1 =V1sin α1 = 29:9
m
s
× sin 30� =15:0 m=s

and

W1 =
Vn1

sin β1
= 25:9

m
s
×

1
sin 30�

=51:8 m=s

The volume flow rate is

Q=Vn1A1 =
π

4
Vn1ðD2

t −D2
hÞ=

π

4
× 25:9

m
s
½ð1:1Þ2−ð0:8Þ2�m2

Q=11:6 m3=s
Q �����������������������������������������������

From the geometry of the outlet velocity diagram,

tan α2 =
Vt2

Vn2
=
U−Vn2cot β2

Vn2
=
U−Vn1cot β2

Vn1

or

α2 = tan−1
59:7

m
s
−25:9

m
s
× cot 60�

25:9
m
s

2
64

3
75=59:9�

and
V2 =

Vn2

cos α2
=

Vn1

cos α2
= 25:9

m
s
×

1
cos 59:9�

=51:6 m=s

Finally,

Vt2 =V2sin α2 = 51:6
m
s
× sin 59:9� =44:6 m=s

Applying Eq. 10.20

Tshaft = ρQRmðVt2 −Vt1Þ

=1:23
kg
m3 × 11:6

m3

s
×
0:95
2

m× ð44:6−15:0Þm
s
×

N � s2
kg � m

Tshaft = 201 N � m Tshaft �����������������������������������������������
Thus the torque on the CV is in the same sense as ω!. The power required is

_Wm =ω
! � T!=ωTshaft = 1200

rev
min

× 2π
rad
rev

×
min
60 s

× 201 N � m×
W � s
N � m

_Wm =25:3 kW
_Wm ������������������������������������

This problem illustrates construction of
velocity diagrams and application of the
Euler turbomachine equation for a fixed
control volume to an axial-flow machine
under idealized conditions.
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The idealized analyses presented in Section 10.2 are useful to predict trends and to approximate the
design-point performance of an energy-absorbing or an energy-producing machine. However, the com-
plete performance of a real machine, including operation at off-design conditions, must be determined
experimentally.

To determine performance, a pump, fan, blower, or compressor must be set up on an instrumented
test stand with the capability of measuring flow rate, speed, input torque, and pressure rise. The test must
be performed according to a standardized procedure corresponding to the machine being tested [8, 9].
Measurements are made as flow rate is varied from shutoff (zero flow) to maximum delivery by varying
the load from maximum to minimum (by starting with a valve that is closed and opening it to fully open
in stages). Power input to the machine is determined from a calibrated motor or calculated from meas-
ured speed and torque, and then efficiency is computed as illustrated in Example 10.4. Finally, the cal-
culated characteristics are plotted in the desired engineering units or nondimensionally. If appropriate,
smooth curves may be faired through the plotted points or curve-fits may be made to the results, as illus-
trated in Example 10.5.

Example 10.4 CALCULATION OF PUMP CHARACTERISTICS FROM TEST DATA

The flow system used to test a centrifugal pump at a nominal speed of 1750 rpm is shown. The liquid is water at 80�F, and the
suction and discharge pipe diameters are 6 in. Data measured during the test are given in the table. The electric motor is supplied
at 460 V, 3-phase, and has a power factor of 0.875 and a constant efficiency of 90 percent.

Rate of
Flow (gpm)

Suction
Pressure (psig)

Discharge
Pressure (psig)

Motor
Current (amp)

0 0.65 53.3 18.0
500 0.25 48.3 26.2
800 −0.35 42.3 31.0
1000 −0.92 36.9 33.9
1100 −1.24 33.0 35.2
1200 −1.62 27.8 36.3
1400 −2.42 15.3 38.0
1500 −2.89 7.3 39.0

Calculate the net head delivered and the pump efficiency at a volume flow rate of 1000 gpm. Plot the pump head, power input,
and efficiency as functions of volume flow rate.

Given: Pump test flow system and data shown.

Find: (a) Pump head and efficiency at Q=1000 gpm.
(b) Pump head, power input, and efficiency as a function of volume flow rate. Plot the results.

Solution:

Governing equations:
_Wh = ρQgHp ηp =

_Wh

_Wm
=
ρQgHp

ωT

Hp =
p
ρg

+
V 2

2g
+ z

 !
d

−
p
ρg

+
V 2

2g
+ z

 !
s

Assumptions:

1 Steady flow.

2 Uniform flow at each section.

3 V 2 =V 1.

4 Correct all heads to the same elevation.

zs = 1 ft

zd = 3 ft

pd

ps
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Since V 1 =V 2, the pump head is

Hp =
1
g

p
ρ
+ gz

� �
d
−

p
ρ
+ gz

� �
s

	 

=
p2−p1
ρg

where the discharge and suction pressures, corrected to the same elevation, are designated p2 and p1, respectively.
Correct measured static pressures to the pump centerline:

p1 = ps + ρgzs

p1 = −0:92
lbf
in:2

+ 1:94
slug
ft3

× 32:2
ft
s2

× 1:0 ft ×
lbf � s2
slug � ft ×

ft2

144 in:2
= −0:49 psig

and
p2 = pd + ρgzd

p2 = 36:9
lbf
in:2

+ 1:94
slug
ft3

× 32:2
ft
s2

× 3:0 ft ×
lbf � s2
slug � ft ×

ft2

144 in:2
= 38:2 psig

Calculate the pump head:

Hp = ðp2−p1Þ=ρg
Hp = ½38:2−ð−0:49Þ� lbf

in:2
×

ft3

1:94 slug
×

s2

32:2 ft
× 144

in:2

ft2
×
slug � ft
lbf � s2 = 89:2 ft

Hp ��������������������
Compute the hydraulic power delivered to the fluid:

_Wh = ρQgHp =Qðp2−p1Þ
=1000

gal
min

× ½38:2−ð−0:49Þ� lbf
in:2

×
ft3

7:48 gal
×
min
60 s

× 144
in:2

ft2
×

hp � s
550 ft � lbf

_Wh =22:6 hp

Calculate the motor power output (the mechanical power input to the pump)
from electrical information:

�in = η
ffiffiffi
3
p ðPFÞEI

�in = 0:90×
ffiffiffi
3
p

×0:875× 460 V× 33:9A×
W
VA

×
hp

746W
=28:5 hp

The corresponding pump efficiency is

ηp =
_Wh

_Wm
=
22:6 hp
28:5 hp

= 0:792 or 79:2 percent
ηp ��������������������

Results from similar calculations at the other volume flow rates are plot-
ted below:

This problem illustrates the data reduction
procedure used to obtain the performance
curves for a pump from experimental data.
The results calculated and plotted in this
problem are typical for a centrifugal pump
driven at constant speed:
• The pressure rise is highest at shutoff (zero
flow rate).

• Pressure rise decreases steadily as flow rate
is increased; compare this typical experi-
mental curve to the linear behavior pre-
dicted by Eq. 10.18b, and shown in
Fig. 10.12, for idealized backward-curved
impeller blades used in most centrifu-
gal pumps.

• Required power input increases with flow
rate; the increase is generally nonlinear.

• Efficiency is zero at shutoff, rises to a peak
as flow rate is increased, then drops off at
larger flow rates; it stays near its maximum
over a range of flow rates from about
800 to 1100 gpm.

This problem is a little oversimplified
because it is assumed that the electric motor
efficiency is constant. In practice, motor
efficiency varies with load, so must be either
computed at each load frommotor speed and
torque measurements, or obtained from a
calibration curve.

The Excel workbook for this problem
was used for the calculations for each

flow rate, and for generating the graph. It can
be modified for use with other pump data.
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Example 10.5 CURVE-FIT TO PUMP PERFORMANCE DATA

Pump test data were given and performance was calculated in Example 10.4. Fit a parabolic curve, H =H0−AQ2, to these
calculated pump performance results and compare the fitted curve with the measured data.

Given: Pump test data and performance calculated in Example 10.4.

Find: (a) Parabolic curve, H =H0−AQ2, fitted to the pump performance data.
(b) Comparison of the curve-fit with the calculated performance.

Solution: The curve-fit may be obtained by fitting a linear curve to H versus Q2. Tabulating,

From calculated performance: From the curve fit:

Q (gpm) Q2 (gpm2) H (ft) H (ft) Error (%)

0 0 123 127 2.8
500 25 × 104 113 116 3.1
800 64 × 104 100 99.8 −0.5
1000 100 × 104 89.2 84.6 −5.2
1100 121 × 104 80.9 75.7 −6.5
1200 144 × 104 69.8 65.9 −5.6
1400 196 × 104 42.8 43.9 2.5
1500 225 × 104 25.5 31.7 24.2

Intercept = 127
Slope = −4.23 × 10−5

r2 = 0.984

Using the method of least squares, the equation for the fitted curve is obtained as

HðftÞ=127−4:23× 10−5½Q ðgpmÞ�2

with coefficient of determination r2 = 0:984. (The closer r2 is to unity, its maximum possible value, the better the fit.)
Always compare the results of a curve-fit with the data used to develop the fit. The figure shows the curve-fit (the solid line)

and the experimental values (the points).
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This problem illustrates that the pump test
data for Example 10.4 can be fitted quite
well to a parabolic curve. As with fitting a
curve to any experimental data, our justifi-
cations for choosing a parabolic function
in this case are:
• Experimental observation—the experi-
mental data looks parabolic.

• Theory or concept—we will see later in this
section that similarity rules suggest such a
relation between head and flow rate.

The Excel workbook for this problem
was used for the least-squares cal-

culations, and for generating the graph. It can
be modified for use with other pump data.
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The basic procedure used to calculate machine performance was illustrated for a centrifugal pump in
Example 10.4. The difference in static pressures between the pump suction and discharge was used to
calculate the head rise produced by the pump. For pumps, dynamic pressure rise (or fluid kinetic energy
change) typically is a small fraction of the head rise developed by the pump, so it may be neglected
compared with the head rise.

Typical characteristic curves for a centrifugal pump tested at constant speed were shown qualita-
tively in Fig. 7.5;3 the head versus capacity curve is reproduced in Fig. 10.13 to compare with charac-
teristics predicted by the idealized analysis. Figure 10.13 shows that the head at any flow rate in the real
machine may be significantly lower than is predicted by the idealized analysis. Some of the causes are:

1 At very low flow rate, some fluid recirculates in the impeller.

2 Friction loss and leakage loss both increase with flow rate.

3 “Shock loss” results from a mismatch between the direction of the relative velocity and the tangent to
the impeller blade at the inlet.4

Curves such as those in Figs. 7.5 and 10.13 are measured at constant (design) speed with a single
impeller diameter. It is common practice to vary pump capacity by changing the impeller size in a given
casing. To present information compactly, data from tests of several impeller diameters may be plotted
on a single graph, as shown in Fig. 10.14. As before, for each diameter, head is plotted versus flow rate;
each curve is labeled with the corresponding diameter. Efficiency contours are plotted by joining points
having the same constant efficiency. Power-requirement contours are also plotted. Finally, the NPSH
requirements (which we have not yet defined; we will discuss its meaning later in this section) are shown
for the extreme diameters; in Fig. 10.14, the curve for the 8-in. impeller lies between the curves for the
6-in. and 10-in. impellers.

The data of Fig. 10.14 are often tabulated for quick access by design software and therefore data
are not always presented in the manner shown in this figure. The data of Fig. 10.14 are simplified by
reporting an average efficiency as a function of the flow rate only, as shown in Fig. 10.15, rather than
as a function of flow rate and head. The figures in Appendix C display pump performance in this
format.

For this typical machine, head is a maximum at shutoff and decreases continuously as flow rate
increases. Input power is minimum at shutoff and increases as delivery is increased. Consequently,
to minimize the starting load, it may be advisable to start the pump with the outlet valve closed.
(However, the valve should not be left closed for long, lest the pump overheat as energy dissipated

Loss due to recirculation

Ideal head-flow curve (Fig. 10.12)

Loss due to
flow friction

Actual
head-flow

curve

Approximate
best efficiency point

"Shock" loss

Volume flow rate, Q

H
e
a
d
,

H

Fig. 10.13 Comparison of ideal and actual head-flow curves for a centrifugal pump with backward-curved impeller
blades [10].

3 The only important pump characteristic not shown in Fig. 7.5 is the net positive suction head (NPSH) required to prevent cav-
itation. Cavitation and NPSH will be treated later in this section.
4 This loss is largest at high and low flow rates; it decreases essentially to zero as optimum operating conditions are
approached [11].
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by friction is transferred to the water in the housing.) Pump efficiency increases with capacity until the
best efficiency point (BEP) is reached, then decreases as flow rate is increased further. For minimum
energy consumption, it is desirable to operate as close to BEP as possible.

Centrifugal pumps may be combined in parallel to deliver greater flow or in series to deliver greater
head. A number of manufacturers build multistage pumps, which are essentially several pumps arranged
in series within a single casing. Pumps and blowers are usually tested at several constant speeds. Com-
mon practice is to drive machines with electric motors at nearly constant speed, but in some system appli-
cations impressive energy savings can result from variable-speed operation. These pump application
topics are discussed later in this section.

Similarity Rules

Pump manufacturers offer a limited number of casing sizes and designs. Frequently, casings of different
sizes are developed from a common design by increasing or decreasing all dimensions by the same scale
ratio. Additional variation in characteristic curves may be obtained by varying the operating speed or by
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Fig. 10.15 Typical pump performance curves from tests with three impeller diameters at constant speed, showing
efficiency as a function of flow rate only [12].
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Fig. 10.14 Typical pump performance curves from tests with three impeller diameters at constant speed [10].
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changing the impeller size within a given pump housing. The dimensionless parameters developed in
Chapter 7 form the basis for predicting changes in performance that result from changes in pump size,
operating speed, or impeller diameter.

To achieve dynamic similarity requires geometric and kinematic similarity. Assuming similar
pumps and flow fields and neglecting viscous effects, as shown in Chapter 7, we obtain dynamic sim-
ilarity when the dimensionless flow coefficient is held constant. Dynamically similar operation is
assured when two flow conditions satisfy the relation

Q1

ω1D3
1
=

Q2

ω2D3
2

ð10:23aÞ

The dimensionless head and power coefficients depend only on the flow coefficient, i.e.,

h
ω2D2 = f1

Q
ωD3

� �
and

�

ρω3D5 = f2
Q

ωD3

� �
Hence, when we have dynamic similarity, as shown in Example 7.6, pump characteristics at a new con-
dition (subscript 2) may be related to those at an old condition (subscript 1) by

h1
ω2
1D

2
1
=

h2
ω2
2D

2
2

ð10:23bÞ

and

�1

ρω3
1D

5
1
=

�2

ρω3
2D

5
2

ð10:23cÞ

These scaling relationships may be used to predict the effects of changes in pump operating speed, pump
size, or impeller diameter within a given housing.

The simplest situation is when we keep the same pump and only the pump speed is changed. Then
geometric similarity is assured. Kinematic similarity holds if there is no cavitation; flows are then
dynamically similar when the flow coefficients are matched. For this case of speed change with fixed
diameter, Eqs. 10.23 become

Q2

Q1
=
ω2

ω1
ð10:24aÞ

h2
h1

=
H2

H1
=

ω2

ω1

� �2

ð10:24bÞ

�2

�1
=

ω2

ω1

� �3

ð10:24cÞ

In Example 10.5, we showed that a pump performance curve may be modeled within engineering
accuracy by the parabolic relationship,

H =H0−AQ2 ð10:25aÞ
Since this representation contains two parameters, the pump curve for the new operating condition could
be derived by scaling any two points from the performance curve measured at the original operating
condition. Usually, the shutoff condition and the best efficiency point are chosen for scaling. These points
are represented by points B and C in Fig. 10.16.

As shown by Eq. 10.24a, the flow rate increases by the ratio of operating speeds, so

QB0 =
ω2

ω1
QB =0 and QC0 =

ω2

ω1
QC

Thus, point B0 is located directly above point B, and point C0 moves to the right of point C (in this exam-
ple ω2 >ω1).

The head increases by the square of the speed ratio, so

HB0 =HB
ω1

ω2

� �2

and HC0 =HC
ω2

ω1

� �2
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Points C and C0, where dynamically similar flow conditions are present, are termed homologous points
for the pump.

We can relate the old operating condition (e.g., running at speed N1 = 1170 rpm, as shown in
Fig. 10.16) to the new, primed one (e.g., running at speed N2 = 1750 rpm in Fig. 10.16) using the par-
abolic relation and Eqs. 10.24a and 10.24b,

H =H0
ω1

ω2

� �2

=H0−AQ2 =H00
ω1

ω2

� �2

−AQ02
ω1

ω2

� �2

or

H0 =H00−AQ02 ð10:25bÞ
so that for a given pump the factor A remains unchanged as we change pump speed, as we will verify in
Example 10.6.
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Fig. 10.16 Schematic of a pump performance curve,
illustrating the effect of a change in pump
operating speed.

Example 10.6 SCALING PUMP PERFORMANCE CURVES

When operated at N =1170 rpm, a centrifugal pump, with impeller diameter D=8 in:, has shutoff headH0 = 25:0 ft of water. At
the same operating speed, best efficiency occurs at Q=300 gpm, where the head is H =21:9 ft of water. Fit these data at
1170 rpm with a parabola. Scale the results to a new operating speed of 1750 rpm. Plot and compare the results.

Given: Centrifugal pump (with D=8 in: impeller) operated at N =1170 rpm.

Q (gpm) 0 300
H (ft of water) 25.0 21.9

Find: (a) The equation of a parabola through the pump characteristics at 1170 rpm.
(b) The corresponding equation for a new operating speed of 1750 rpm.
(c) Comparison (plot) of the results.

Solution: Assume a parabolic variation in pump head of the form, H =H0−AQ2. Solving for A gives

A1 =
H0−H
Q2 = ð25:0−21:9Þft × 1

ð300Þ2ðgpmÞ2 = 3:44× 10−5ft=ðgpmÞ2

The desired equation is

HðftÞ=25:0−3:44× 10−5½QðgpmÞ�2

The pump remains the same, so the two flow conditions are geometrically similar. Assuming no cavitation occurs, the two flows
also will be kinematically similar. Then dynamic similarity will be obtained when the two flow coefficients are matched. Denot-
ing the 1170 rpm condition by subscript 1 and the 1750 rpm condition by subscript 2, we have

Q2

ω2D3
2
=

Q1

ω1D3
1

or
Q2

Q1
=
ω2

ω1
=
N2

N1
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Efficiency remains relatively constant between dynamically similar operating points when only the
pump operating speed is changed. Application of these ideas is illustrated in Example 10.6.

In principle, geometric similarity would be maintained when pumps of the same geometry, differing
in size only by a scale ratio, were tested at the same operating speed. The flow, head, and power would be
predicted to vary with pump size as

Q2 =Q1
D2

D1

� �3

, H2 =H1
D2

D1

� �2

, and �2 =�1
D2

D1

� �5

ð10:26Þ

since D2 =D1. For the shutoff condition,

Q2 =
N2

N1
Q1 =

1750 rpm
1170 rpm

×0 gpm=0 gpm

From the best efficiency point, the new flow rate is

Q2 =
N2

N1
Q1 =

1750 rpm
1170 rpm

× 300 gpm=449 gpm

The pump heads are related by

h2
h1

=
H2

H1
=
N2
2D

2
2

N2
1D

2
1

or
H2

H1
=
N2
2

N2
1
=

N2

N1

� �2

since D2 =D1. For the shutoff condition,

H2 =
N2

N1

� �2

H1 =
1750 rpm
1170 rpm

� �2

25:0 ft = 55:9 ft

At the best efficiency point,

H2 =
N2

N1

� �2

H1 =
1750 rpm
1170 rpm

� �2

21:9 ft = 49:0 ft

The curve parameter at 1750 rpm may now be found. Solving for A, we find

A2 =
H02−H2

Q2
2

= ð55:9−49:0Þft × 1

ð449Þ2ðgpmÞ2 = 3:44× 10−5ft=ðgpmÞ2

Note that A2 at 1750 rpm is the same as A1 at 1170 rpm. Thus we have demonstrated that the coefficient A in the parabolic
equation does not change when the pump speed is changed. The “engineering” equations for the two curves are

H1 = 25:0−3:44× 10−5½Q ðgpmÞ�2ðat 1170 rpmÞ
and

H2 = 55:9−3:44× 10−5½Q ðgpmÞ�2ðat 1750 rpmÞ
The pump curves are compared in the following plot:

This problem illustrates the procedures for:
• Obtaining the parabolic “engineering”
equation from shutoff head H0 and best
efficiency data on Q and H.

• Scaling pump curves from one speed to
another.

The Excel workbook for this problem
can be used to generate pump per-

formance curves for a range of speeds.
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It is impractical to manufacture and test a series of pump models that differ in size by only a scale ratio.
Instead it is common practice to test a given pump casing at a fixed speed with several impellers of dif-
ferent diameter [13]. Because pump casing width is the same for each test, impeller width also must be
the same; only impeller diameter D is changed. As a result, volume flow rate scales in proportion to D2,
not to D3. Pump input power at fixed speed scales as the product of flow rate and head, so it becomes
proportional to D4. Using this modified scaling method frequently gives results of acceptable accuracy,
as demonstrated in several end-of-chapter problems where the method is checked against measured per-
formance data from Appendix C.

It is not possible to compare the efficiencies at the two operating conditions directly. However, vis-
cous effects should become relatively less important as the pump size increases. Thus efficiency should
improve slightly as diameter is increased. Moody [14] suggested an empirical equation that may be used
to estimate the maximum efficiency of a prototype pump based on test data from a geometrically similar
model of the prototype pump. His equation is written

1−ηp
1−ηm

=
Dm

Dp

� �1=5

ð10:27Þ

To develop Eq. 10.27, Moody assumed that only the surface resistance changes with model scale so that
losses in passages of the same roughness vary as 1=D5. Unfortunately, it is difficult to maintain the same
relative roughness between model and prototype pumps. Further, the Moody model does not account for
any difference in mechanical losses between model and prototype, nor does it allow determination of off-
peak efficiencies. Nevertheless, scaling of the maximum-efficiency point is useful to obtain a general
estimate of the efficiency curve for the prototype pump.

Cavitation and Net Positive Suction Head

Cavitation can occur in any machine handling liquid whenever the local static pressure falls below the
vapor pressure of the liquid. When this occurs, the liquid can locally flash to vapor, forming a vapor
cavity and significantly changing the flow pattern from the noncavitating condition. The vapor cavity
changes the effective shape of the flow passage, thus altering the local pressure field. Since the size and
shape of the vapor cavity are influenced by the local pressure field, the flow may become unsteady. The
unsteadiness may cause the entire flow to oscillate and the machine to vibrate.

As cavitation commences, it reduces the performance of a pump or turbine rapidly. Thus cavitation
must be avoided to maintain stable and efficient operation. In addition, local surface pressures may
become high when the vapor cavity implodes or collapses, causing erosion damage or surface pitting.
The damage may be severe enough to destroy a machine made from a brittle, low-strength material.
Obviously cavitation also must be avoided to assure long machine life.

In a pump, cavitation tends to begin at the section where the flow is accelerated into the impeller.
Cavitation in a turbine begins where pressure is lowest. The tendency to cavitate increases as local flow
speeds increase; this occurs whenever flow rate or machine operating speed is increased.

Cavitation can be avoided if the pressure everywhere in the machine is kept above the vapor pres-
sure of the operating liquid. At constant speed, this requires that a pressure somewhat greater than the
vapor pressure of the liquid be maintained at a pump inlet (the suction). Because of pressure losses in the
inlet piping, the suction pressure may be subatmospheric. Therefore it is important to carefully limit
the pressure drop in the inlet piping system.

Net positive suction head (NPSH) is defined as the difference between the absolute stagnation
pressure in the flow at the pump suction and the liquid vapor pressure, expressed as head of flowing
liquid [15].5 Hence the NPSH is a measure of the difference between the maximum possible pressure
in the given flow and the pressure at which the liquid will start flashing over to a vapor; the larger the
NPSH, the less likely cavitation is to occur. The net positive suction head required (NPSHR) by a spe-
cific pump to suppress cavitation varies with the liquid pumped, and with the liquid temperature and

5NPSH may be expressed in any convenient units of measure, such as height of the flowing liquid, e.g., feet of water (hence the
term suction head), psia, or kPa (abs). When expressed as head, NPSH is measured relative to the pump impeller centerline.
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pump condition (e.g., as critical geometric features of the pump are affected by wear). NPSHR may be
measured in a pump test facility by controlling the input pressure. The results are plotted on the pump
performance curve. Typical pump characteristic curves for three impellers tested in the same housing
were shown in Fig. 10.14. Experimentally determined NPSHR curves for the largest and smallest impel-
ler diameters are plotted near the bottom of the figure.

The net positive suction head available (NPSHA) at the pump inlet must be greater than the NPSHR
to suppress cavitation. Pressure drop in the inlet piping and pump entrance increases as volume flow rate
increases. Thus for any system, the NPSHA decreases as flow rate is raised. The NPSHR of the pump
increases as the flow rate is raised. Therefore, as the system flow rate is increased, the curves for NPSHA
and NPSHR versus flow rate ultimately cross. Hence, for any inlet system, there is a flow rate that cannot
be exceeded if flow through the pump is to remain free from cavitation. Inlet pressure losses may be
reduced by increasing the diameter of the inlet piping; for this reason, many centrifugal pumps have
larger flanges or couplings at the inlet than at the outlet. Example 10.7 shows the relationships between
the NPSH, the NPSHA, and the NPSHR.

Example 10.7 CALCULATION OF NET POSITIVE SUCTION HEAD (NPSH)

A Peerless Type 4AE11 centrifugal pump (Fig. C.3, Appendix C) is tested at 1750 rpm using a flow system with the layout of
Example 10.4. The water level in the inlet reservoir is 3.5 ft above the pump centerline; the inlet line consists of 6 ft of 5 in.
diameter straight cast-iron pipe, a standard elbow, and a fully open gate valve. Calculate the net positive suction head available
(NPSHA) at the pump inlet at a volume flow rate of 1000 gpm of water at 80�F. Compare with the net positive suction head
required (NPSHR) by the pump at this flow rate. Plot NPSHA and NPSHR for water at 80�F and 180�F versus volume flow rate.

Given: A Peerless Type 4AE11 centrifugal pump (Fig. C.3, Appendix C) is
tested at 1750 rpm using a flow system with the layout of Example 10.4. The
water level in the inlet reservoir is 3.5 ft above the pump centerline; the inlet
line has 6 ft of 5 in. diameter straight cast-iron pipe, a standard elbow, and a
fully open gate valve.

Find: (a) NPSHA at Q=1000 gpm of water at 80�F.
(b) Comparison with NPSHR for this pump at Q=1000 gpm.
(c) Plot of NPSHA and NPSHR for water at 80�F and 180�F versus

volume flow rate.

Solution: Net positive suction head (NPSH) is defined as the difference
between the absolute stagnation pressure in the flow at the pump suction
and the liquid vapor pressure, expressed as head of flowing liquid. Therefore
it is necessary to calculate the head at the pump suction.

Apply the energy equation for steady, incompressible pipe flow to compute the pressure at the pump inlet and thus theNPSHA.
Denote the reservoir level as and the pump suction as , as shown above.

Governing equation:

≈0

p1þ1
2
ρV 2

1��
�!þρgz1¼ psþ1

2
ρV 2

s þρgsþρhℓT

Assumption: V 1 is negligible. Thus

ps = p1 + ρgðz1−zsÞ− 1
2
ρV

2
s −ρhℓT ð1Þ

The total head loss is

hℓT =
X

K +
X

f
Le
D

+ f
L
D

� �
1
2
ρV

2
s ð2Þ

s

1

D = 5 in.

zs = 1 ft

zd = 3 ft

pd

ps
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Substituting Eq. 2 into Eq. 1 and dividing by ρg,

Hs =H1 + z1−zs−
X

K +
X

f
Le
D

+ f
L
D
+1

� �
V

2
s

2g
ð3Þ

Evaluating the friction factor and head loss,

f = f ðRe,e=DÞ; Re=
ρVD
μ

=
VD
ν

; V =
Q
A
; A=

πD2

4

For 5 in. (nominal) pipe, D=5:047 in.

D=5:047 in:×
ft

12 in:
=0:421 ft, A=

πD2

4
= 0:139 ft2

V =1000
gal
min

×
ft3

7:48 gal
×

1
0:139 ft2

×
min
60 s

= 16:0 ft=s

From Table A.7, for water at T =80�F, ν=0:927× 10−5 ft2=s.
The Reynolds number is

Re=
VD
ν

=16:0
ft
s
× 0:421 ft ×

s
0:927× 10−5ft2

= 7:27× 105

From Table 8.1, e=0:00085 ft, so e=D=0:00202. From Eq. 8.37, f =0:0237. The minor loss coefficients are

Entrance K =0:5

Standard elbow
Le
D

=30

Open gate value
Le
D

=8

Substituting,

X
K +

X
f
Le
D

+ f
L
D
+1

� �
=0:5+ 0:0237ð30+8Þ+0:0237

6
0:421

� �
+1=2:74

The heads are

H1 =
patm
ρg

=14:7
lbf
in:2

× 144
in:2

ft2
×

ft3

1:93 slug
×

s2

32:2 ft
×
slug � ft
lbf � s2

= 34:1 ftðabsÞ
V s

2g
=
1
2
× ð16:0Þ2 ft

2

s2
×

s2

32:2 ft
= 3:98 ft

Thus,
Hs =34:1 ft + 3:5 ft−ð2:74Þ3:98 ft = 26:7 ftðabsÞ

To obtain NPHSA, add velocity head and subtract vapor head. Thus

NPHSA=Hs +
V 2

s

2g
−Hυ

The vapor pressure for water at 80�F is pυ =0:507 psia. The corresponding
head is Hυ =1:17 ft of water. Thus,

NPSHA=26:7+ 3:98−1:17= 29:5 ft NPSHA ���������������������������

This problem illustrates the procedures used
for checking whether a given pump is in
danger of experiencing cavitation:
• Equation 3 and the plots show that the
NPSHA decreases as flow rate Q ðor V sÞ
increases; on the other hand, the NPSHR
increases with Q, so if the flow rate is high
enough, a pump will likely experience
cavitation (when NPSHA<NPSHR).

• The NPSHR for any pump increases with
flow rate Q because local fluid velocities
within the pump increase, causing locally
reduced pressures and tending to promote
cavitation.

• For this pump, at 80�F, the pump appears
to have NPSHA>NPSHR at all flow rates, so
it would never experience cavitation; at
180�F, cavitation would occur around
1100 gpm, but from Fig. C.3, the pump best
efficiency is around 900 gpm, so it would
probably not be run at 1100 gpm—the
pump would probably not cavitate even
with the hotter water.

The Excel workbook for this problem
can be used to generate the NPSHA

and NPSHR curves for a variety of pumps and
water temperatures.
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Pump Selection: Applications to Fluid Systems

We define a fluid system as the combination of a fluid machine and a network of pipes or channels that
convey fluid. The engineering application of fluid machines in an actual system requires matching the
machine and system characteristics, while satisfying constraints of energy efficiency, capital economy,
and durability. We have alluded to the vast assortment of hardware offered by competing suppliers; this
variety verifies the commercial importance of fluid machinery in modern engineering systems.

Usually it is more economical to specify a production machine rather than a custom unit, because
products of established vendors have known, published performance characteristics, and they must be
durable to survive in the marketplace. Application engineering consists of making the best selection from
catalogs of available products. In addition to machine characteristic curves, all manufacturers provide a
wealth of dimensional data, alternative configuration and mounting schemes, and technical information
bulletins to guide intelligent application of their products.

This section consists of a brief review of relevant theory, followed by example applications using
data taken from manufacturer literature. Selected performance curves for centrifugal pumps and fans are
presented in Appendix C. These may be studied as typical examples of performance data supplied by
manufacturers. The curves may also be used to help solve the equipment selection and system design
problems at the end of the chapter.

We will consider various machines for doing work on a fluid, but we first make a few general points.
As we saw in Example 10.4, a typical pump, for example, produces a smaller head as the flow rate is
increased. On the other hand, the head (which includes major and minor losses) required to maintain
flow in a pipe system increases with the flow rate. Hence, as shown graphically6 in Fig. 10.17, a
pump-system will run at the operating point, the flow rate at which the pump head rise and required
system head match. Figure 10.17 also shows a pump efficiency curve, indicating that, for optimum pump
selection, a pump should be chosen that has maximum efficiency at the operating point flow rate.

The pump curve (Fig. C.3, Appendix C) shows that at 1000 gpm the pump requires

NPSHR=12:0 ft NPSHR ������������������������������������������
Results of similar computations for water at 80�F are plotted in the figure on the left below. (NPSHR values are obtained from the
pump curves in Fig. C.3, Appendix C.)

Results of computation for water at 180�F are plotted in the figure on the right above. The vapor pressure for water at 180�F is
pυ =7:51 psia. The corresponding head is Hυ =17:3 ft of water. This high vapor pressure reduces the NPSHA, as shown in
the plot.
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6While a graphical representation is useful for visualizing the pump-system matching, we typically use analytical or numerical
methods to determine the operating point.
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The pump-system shown in Fig. 10.17 is stable. If for some reason the flow rate falls below the operating
flow rate, the pump pressure head rises above the required system head, and so the flow rate increases
back to the operating point. Conversely, if the flow rate momentarily increases, the required head
exceeds the head provided by the pump, and the flow rate decreases back to the operating point. This
notion of an operating point applies to each machine we will consider (although, as we will see, the
operating points are not always stable).

The system pressure requirement at a given flow rate is composed of frictional pressure drop (major
loss due to friction in straight sections of constant area and minor loss due to entrances, fittings, valves,
and exits) and pressure changes due to gravity (static lift may be positive or negative). It is useful to
discuss the two limiting cases of pure friction and pure lift before considering their combination.

The all-friction system head versus flow curve, with no static lift, starts at zero flow and head, as
shown in Fig. 10.18a. For this system the total head required is the sum of major and minor losses,

hlT =
X

hl +
X

hlm =
X

f
L
D
V 2

2
+
X

f
Le
D

V 2

2
+K

V 2

2

 !

For turbulent flow (the usual flow regime in engineering systems), as we learned in Chapter 8 (see
Fig. 8.13), the friction factors approach constant and the minor loss coefficients K and equivalent
lengths Le are also constant. Hence hlT 	V 2	Q2 so that the system curve is approximately parabolic.
(In reality, because the friction factors f only approach constants as the regime becomes fully turbulent, it
turns out that Q1:75 < hlT <Q2.) This means the system curve with pure friction becomes steeper as flow
rate increases. To develop the friction curve, losses are computed at various flow rates and then plotted.
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Fig. 10.17 Superimposed system head-flow and pump
head-capacity curves.
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Fig. 10.18 Schematic diagrams illustrating basic types of system head-flow curves (based on Reference [10]).
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Pressure change due to elevation difference is independent of flow rate. Thus the pure lift system
head-flow curve is a horizontal straight line. The gravity head is evaluated from the change in elevation
in the system.

All actual flow systems have some frictional pressure drop and some elevation change. Thus all
system head-flow curves may be treated as the sum of a frictional component and a static-lift component.
The head for the complete system at any flow rate is the sum of the frictional and lift heads. The system
head-flow curve is plotted in Fig. 10.18b.

Whether the resulting system curve is steep or flat depends on the relative importance of friction
and gravity. Friction drop may be relatively unimportant in the water supply to a high-rise building
(e.g., the Willis Tower, formerly the Sears Tower, in Chicago, which is nearly 400 m tall), and gravity
lift may be negligible in an air-handling system for a one-story building.

In Section 8.7 we obtained a form of the energy equation for a control volume consisting of a pump-
pipe system,

p1
ρ
+ α1

V
2
1

2
+ gz1

 !
−

p2
ρ
+ α2

V
2
2

2
+ gz2

 !
= hlT −Δhpump ð8:49Þ

ReplacingΔhpump with ha, representing the head added by anymachine (not only a pump) that does work
on the fluid, and rearranging Eq. 8.4, we obtain a more general expression

p1
ρ
+ α1

V
2
1

2
+ gz1 + ha =
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ρ
+ α2

V
2
2

2
+ gz2 + hlT ð10:28aÞ

Dividing by g gives

p1
ρg
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2
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2g
+ z1 +Ha =

p2
ρg

+α2
V

2
2

2g
+ z2 +

hlT
g

ð10:28bÞ

where Ha is the energy per unit weight (i.e, the head, with dimensions of L) added by the machine. Note
that these equations may also be used to analyze a fluid machine with internal losses as well.

The pump operating point is defined by superimposing the system curve and the pump performance
curve, as shown in Fig. 10.17. The point of intersection is the only condition where the pump and system
flow rates are equal and the pump and system heads are equal simultaneously. The procedure used to
determine the match point for a pumping system is illustrated in Example 10.8.

Example 10.8 FINDING THE OPERATING POINT FOR A PUMPING SYSTEM

The pump of Example 10.6, operating at 1750 rpm, is used to pump water through the pipe system of Fig. 10.18a. Develop an
algebraic expression for the general shape of the system resistance curve. Calculate and plot the system resistance curve. Solve
graphically for the system operating point. Obtain an approximate analytical expression for the system resistance curve. Solve
analytically for the system operating point.

Given: Pump of Example 10.6, operating at 1750 rpm, with H =H0−AQ2, where H0 = 55:9 ft and A=3:44× 10−5ft=ðgpmÞ2.
System of Fig. 10.18a, where L1 = 2 ft ofD1 = 10 in. pipe and L2 = 3000 ft ofD2 = 8 in. pipe, conveying water between two large
reservoirs whose surfaces are at the same level.

Find: (a) A general algebraic expression for the system head curve.
(b) The system head curve by direct calculation.
(c) The system operating point using a graphical solution.
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(d) An approximate analytical expression for the system head curve.
(e) The system operating point using the analytical expression of part (d).

Solution: Apply the energy equation to the flow system of Fig. 10.18a.

Governing equation:

p0
ρg

+ α0
V 2

0

2g
+ z0 +Ha =

p3
ρg

+ α3
V 2

3

2g
+ z3 +

hlT
g

ð10:24bÞ

where z0 and z3 are the surface elevations of the supply and discharge reservoirs, respectively.

Assumptions:

1 p0 = p3 = patm.

2 V 0 =V 3 = 0.

3 z0 = z3ðgivenÞ.
Simplifying, we obtain

Ha =
hlT
g

=
hlT01
g

+
hlT23
g

=HlT ð1Þ

where sections and are located just upstream and downstream from the pump, respectively.
The total head losses are the sum of the major and minor losses, so
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or, upon simplifying,
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This is the head loss equation for the system. At the operating point, as indicated in Eq. 1, the head loss is equal to the head
produced by the pump, given by

Ha =H0−AQ2 ð2Þ

where H0 = 55:9 ft and A=3:44× 10−5 ft=ðgpmÞ2.

44710.3 Pumps, Fans, and Blowers



The head loss in the system and head produced by the pump can be computed for a range of flow rates:

Q ðgpmÞ V 1 ðft=sÞ Re1 ð1000Þ f1 ð−Þ V 2 ðft=sÞ Re2 ð1000Þ f2 ð−Þ HlT ðftÞ Ha ðftÞ
0 0:00 0 – 0:00 0 – 0:0 55:9

100 0:41 32 0:026 0:64 40 0:025 0:7 55:6
200 0:82 63 0:023 1:28 79 0:023 2:7 54:5
300 1:23 95 0:022 1:91 119 0:023 5:9 52:8
400 1:63 127 0:022 2:55 158 0:022 10:3 50:4
500 2:04 158 0:021 3:19 198 0:022 15:8 47:3
600 2:45 190 0:021 3:83 237 0:022 22:6 43:5
700 2:86 222 0:021 4:47 277 0:022 30:6 39:0
800 3:27 253 0:021 5:11 317 0:022 39:7 33:9
900 3:68 285 0:021 5:74 356 0:021 50:1 28:0
1000 4:09 317 0:021 6:38 396 0:021 61:7 21:5
1100 4:49 348 0:020 7:02 435 0:021 74:4
1200 4:90 380 0:020 7:66 475 0:021 88:4
1300 5:31 412 0:020 8:30 515 0:021 103
1400 5:72 443 0:020 8:94 554 0:021 120
1500 6:13 475 0:020 9:57 594 0:021 137

The pump curve and the system resistance curve are plotted below:

The graphical solution is shown on the plot. At the operating point, H≈36 ft and Q≈750 gpm.
We can obtain more accuracy from the graphical solution using the following approach: Because the Reynolds number cor-

responds to the fully turbulent regime, f ≈const:, we can simplify the equation for the head loss and write it in the form

HlT ≈CQ2 ð3Þ
whereC=8=π2D4

2g times the term in square brackets in the expression forHlT . We can obtain a value forC directly from Eq. 3 by
using values for HlT and Q from the table at a point close to the anticipated operating point. For example, from the Q=700 gpm
data point,

C=
HlT

Q2 =
30:6 ft

7002ðgpmÞ2 = 6:24× 10−5 ft=ðgpmÞ2

Hence, the approximate analytical expression for the system head curve is

HlT =6:24× 10−5ft=ðgpmÞ2½QðgpmÞ�2 HlT �������������������������������
Using Eqs. 2 and 3 in Eq. 1, we obtain

H0−AQ2 =CQ2
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The shapes of both the pump curve and the system curve can be important to system stability in
certain applications. The pump curve shown in Fig. 10.17 is typical of the curve for a new centrifugal
pump of intermediate specific speed, for which the head decreases smoothly and monotonically as the
flow rate increases from shutoff. Two effects take place gradually as the system ages: (1) The pump
wears, and its performance decreases (it produces less pressure head; so the pump curve gradually moves
downward toward lower head at each flow rate). (2) The system head increases (the system curve
gradually moves toward higher head at each flow rate because of pipe aging7). The effect of these
changes is to move the operating point toward lower flow rates over time. The magnitude of the change
in flow rate depends on the shapes of the pump and system curves.

The capacity losses, as pump wear occurs, are compared for steep (friction dominated) and flat
(gravity dominated) system curves in Fig. 10.19. The loss in capacity is greater for the flat system curve
than for the steep system curve.

The pump efficiency curve is also plotted in Fig. 10.17. The original system operating point usually
is chosen to coincide with the maximum efficiency by careful choice of pump size and operating speed.

Steep system curve Flat system curve

New pump head-capacity curve

Worn pump head-capacity curve

Capacity loss-steep system curve

Capacity loss-flat system curve

Volume flow rate

H
e
a
d

Fig. 10.19 Effect of pump wear on flow delivery to system.

Solving for Q, the volume flow rate at the operating point, gives

Q=
H0

A+C

	 
1=2
For this case,

Q= 55:9 ft ×
ðgpmÞ2

ð3:44× 10−5 + 6:24× 10−5Þft

" #1=2
= 760 gpm

Q ���������
The volume flow rate may be substituted into either expression for head to
calculate the head at the operating point as

H =CQ2 = 6:24× 10−5 ft

ðgpmÞ2 × ð760Þ
2ðgpmÞ2 = 36:0 ft H ������������

We can see that in this problem our reading of the operating point from
the graph was pretty good: The reading of head was in agreement with the
calculated head; the reading of flow rate was less than 2 percent different
from the calculated result.

Note that both sets of results are approximate. We can get a more accu-
rate, and easier, result by using Excel’s Solver or Goal Seek to find the
operating point, allowing for the fact that the friction factors vary, however
slightly, with Reynolds number. Doing so yields an operating point flow rate
of 761 gpm and head of 36.0 ft.

This problem illustrates the procedures used
to find the operating point of a pump and
flow system.
• The approximatemethods—graphical, and
assuming friction losses are proportional to
Q2—yielded results close to the detailed
computation using Excel. We conclude that
since most pipe flow friction coefficients
are accurate to only about �10 percent
anyway, the approximate methods are
accurate enough.

• Equation 3, for the head loss in the system,
must be replaced with an equation of the
form H=Zo + CQ2 when the head H required
by the system has a component Zo due to
gravity as well as a component due to head
losses.

The Excel workbook for this problem
was used to generate the tabulated

results as well as the most accurate solution.
It can be adapted for use with other pump-
pipe systems.

7As the pipe ages, mineral deposits form on the wall (see Fig. 8.14), raising the relative roughness and reducing the pipe diameter
compared with the as-new condition.
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Pump wear increases internal leakage, thus reducing delivery and lowering peak efficiency. In addition,
as shown in Fig. 10.19, the operating point moves toward lower flow rate, away from the best efficiency
point. Thus the reduced system performance may not be accompanied by reduced energy usage.

Sometimes it is necessary to satisfy a high-head, low-flow requirement; this forces selection of a
pump with low specific speed. Such a pump may have a performance curve with a slightly rising head
near shutoff, as shown in Fig. 10.20. When the system curve is steep, the operating point is well-defined
and no problems with system operation should result. However, use of the pump with a flat system curve
could easily cause problems, especially if the actual system curve were slightly above the computed
curve or the pump delivery were below the charted head capacity performance.

If there are two points of intersection of the pump and system curves, the system may operate at
either point, depending on conditions at start-up; a disturbance could cause the system operating point
to shift to the second point of intersection. Under certain conditions, the system operating point can alter-
nate between the two points of intersection, causing unsteady flow and unsatisfactory performance.

Instead of a single pump of low specific speed, a multistage pump may be used in this situation.
Since the flow rate through all stages is the same, but the head per stage is less than in the single-stage
unit, the specific speed of the multistage pump is higher (see Eq. 7.22a).

The head-flow characteristic curve of some high specific speed pumps shows a dip at capacities
below the peak efficiency point, as shown in Fig. 10.21. Caution is needed in applying such pumps
if it is ever necessary to operate the pump at or near the dip in the head-flow curve. No trouble should
occur if the system characteristic is steep, for there will be only one point of intersection with the pump
curve. Unless this intersection is near point B, the system should return to stable, steady-state operation
following any transient disturbance.

Operation with a flat system curve is more problematic. It is possible to have one, two, or three
points of intersection of the pump and system curves, as suggested in the figure. Points A and C are
stable operating points, but point B is unstable: If the flow rate momentarily falls belowQB, for whatever
reason, the flow rate will continue to fall (toQA) because the head provided by the pump is now less than
that required by the system; conversely, if the flow surges above QB, the flow rate will continue to
increase (toQC) because the pump head exceeds the required head. With the flat system curve, the pump
may “hunt” or oscillate periodically or aperiodically.

Several other factors can adversely influence pump performance: pumping hot liquid, pumping liq-
uid with entrained vapor, and pumping liquid with high viscosity. According to [9], the presence of small
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Fig. 10.20 Operation of low specific speed pump
near shutoff.
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Fig. 10.21 Operation of high specific speed pump
near the dip.
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amounts of entrained gas can drastically reduce performance. As little as 4 percent vapor can reduce
pump capacity by more than 40 percent. Air can enter the suction side of the pumping circuit where
pressure is below atmospheric if any leaks are present.

Adequate submergence of the suction pipe is necessary to prevent air entrainment. Insufficient sub-
mergence can cause a vortex to form at the pipe inlet. If the vortex is strong, air can enter the suction pipe.
Dickinson [16] and Hicks and Edwards [17] give guidelines for adequate suction-basin design to elim-
inate the likelihood of vortex formation.

Increased fluid viscosity may dramatically reduce the performance of a centrifugal pump [17].
Typical experimental test results are plotted in Fig. 10.22. In the figure, pump performance with water
ðμ=1 cPÞ is compared with performance in pumping a more viscous liquid ðμ=220 cPÞ. The increased
viscosity reduces the head produced by the pump. At the same time the input power requirement is
increased. The result is a dramatic drop in pump efficiency at all flow rates.

Heating a liquid raises its vapor pressure. Thus to pump a hot liquid requires additional pressure at
the pump inlet to prevent cavitation, as we saw in Example 10.7.

In some systems, such as city water supply or chilled-water circulation, there may be a wide range
in demand with a relatively constant system resistance. In these cases, it may be possible to operate
constant-speed pumps in series or parallel to supply the system requirements without excessive energy
dissipation due to outlet throttling. Two or more pumps may be operated in parallel or series to supply
flow at high demand conditions, and fewer units can be used when demand is low.

For pumps in series, the combined performance curve is derived by adding the head rises at each
flow rate, as shown in Fig. 10.23. The increase in flow rate gained by operating pumps in series depends

Increasing viscosity

Increasing viscosity

Increasing viscosity

Volume flow rate

Efficiency

Head

Power

Fig. 10.22 Effect of liquid viscosity on performance of a centrifugal pump based on Reference [9].
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(a) Single-pump operation
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(b) Two pumps in series

Fig. 10.23 Operation of two centrifugal pumps in series.
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on the resistance of the system being supplied. For two pumps in series, delivery will increase at any
system head. The characteristic curves for one pump and for two identical pumps in series are

H1 =H0−AQ2

and

H2s =2ðH0−AQ2Þ=2H0−2AQ2

Figure 10.23 is a schematic illustrating the application of two identical pumps in series.
A reasonable match to the system requirement is possible—while keeping efficiency high—if the system
curve is relatively steep.

In an actual system, it is not appropriate simply to connect two pumps in series. If only one pump
were powered, flow through the second, unpowered pump would cause additional losses, raising the
system resistance. It also is desirable to arrange the pumps and piping so that each pump can be taken
out of the pumping circuit for maintenance, repair, or replacement when needed. Thus a system of
bypasses, valves, and check valves may be necessary in an actual installation [13, 17].

Pumps also may be combined in parallel. The resulting performance curve, shown in Fig. 10.24, is
obtained by adding the pump capacities at each head. The characteristic curves for one pump and for two
identical pumps in parallel are

H1 =H0−AQ2

and

H2p =H0−A
Q
2

� �2

=H0−
1
4
AQ2

The schematic in Fig. 10.24 shows that the parallel combination may be used most effectively to increase
system capacity when the system curve is relatively flat.

An actual system installation with parallel pumps also requires more thought to allow satisfactory
operation with only one pump powered. It is necessary to prevent backflow through the pump that is not
powered. To prevent backflow and to permit pump removal, a more complex and expensive piping setup
is needed.

Many other piping arrangements and pump combinations are possible. Pumps of different sizes,
heads, and capacities may be combined in series, parallel, or series-parallel arrangements. Obviously
the complexity of the piping and control system increases rapidly. In many applications the complexity
is due to a requirement that the system handle a variety of flow rates—a range of flow rates can be gen-
erated by using pumps in parallel and in series and by using throttling valves. Throttling valves are usu-
ally necessary because constant-speed motors drive most pumps, so simply using a network of pumps
(with some on and others off ) without throttling valves allows the flow rate to be varied only in discrete
steps. The disadvantage of throttling valves is that they can be a major loss of energy so that a given flow
rate will require a larger power supply than would otherwise be the case. Some typical data for a throt-
tling valve, given in Table 10.1 [18], show a decreasing valve efficiency (the percentage of pump pres-
sure available that is not consumed by the valve) as the valve is used to reduce the flow rate.
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System curve

Volume flow rate
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Fig. 10.24 Operation of two centrifugal pumps in parallel.
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Use of variable-speed operation allows infinitely variable control of system flow rate with high
energy efficiency and without extra plumbing complexity. A further advantage is that a variable-speed
drive system offers much simplified control of system flow rate. The cost of efficient variable-speed
drive systems continues to decrease because of advances in power electronic components and circuits.
The system flow rate can be controlled by varying pump operating speed with impressive savings in
pumping power and energy usage. The input power reduction afforded by use of a variable-speed drive
is illustrated in Table 10.1. At 1100 gpm, the power input is cut almost 54 percent for the variable-speed
system; the reduction at 600 gpm is more than 75 percent.

The reduction in input power requirement at reduced flowwith the variable speed drive is impressive.
The energy savings, and therefore the cost savings, dependon the specific duty cycle onwhich themachine
operates. Armintor andConners [18] present information onmean duty cycles for centrifugal pumps used
in the chemical process industry; Fig. 10.25 is a plot showing the histogram of these data. The plot shows
that although the systemmust bedesigned and installed to deliver full rated capacity, this condition seldom
occurs. Instead, more than half the time, the system operates at 70 percent capacity or below. The energy
savings that result from use of a variable speed drive for this duty cycle are estimated in Example 10.9.

Table 10.1
Power Requirements for Constant- and Variable-Speed Drive Pumps

Throttle Valve Control with Constant-Speed (1750 rpm) Motor

Flow
Rate (gpm)

System
Head (ft)

Valvea

Efficiency (%)
Pump

Head (ft)
Pump

Efficiency (%)
Pump

Power (bhp)
Motor

Efficiency (%)
Motor

Input (hp)
Power

Inputb (hp)

1700 180 100.0 180 80.0 96.7 90.8 106.5 106.7
1500 150 78.1 192 78.4 92.9 90.7 102.4 102.6
1360 131 66.2 198 76.8 88.6 90.7 97.7 97.9
1100 102 49.5 206 72.4 79.1 90.6 87.3 87.5
900 83 39.5 210 67.0 71.3 90.3 79.0 79.1
600 62 29.0 214 54.0 60.1 90.0 66.8 66.9

Variable-Speed Drive with Energy-Efficient Motor

Flow
Rate (gpm)

Pump/System
Head (ft)

Pump
Efficiency (%)

Pump
Power (bhp)

Motor
speed (rpm)

Motor
Efficiency (%)

Motor
Input (hp)

Control
Efficiency (%)

Power
Input (hp)

1700 180 80.0 96.7 1750 93.7 103.2 97.0 106.4
1500 150 79.6 71.5 1580 94.0 76.0 96.1 79.1
1360 131 78.8 57.2 1470 93.9 60.9 95.0 64.1
1100 102 78.4 36.2 1275 93.8 38.6 94.8 40.7
900 83 77.1 24.5 1140 92.3 26.5 92.8 28.6
600 62 72.0 13.1 960 90.0 14.5 89.1 16.3

Source: Based on Armintor and Conners [18].
aValve efficiency is the ratio of system pressure to pump pressure.
b Power input is motor input divided by 0.998 starter efficiency.
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Fig. 10.25 Mean duty cycle for centrifugal pumps in the chemical and petroleum industries, based on Reference [18].
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Example 10.9 ENERGY SAVINGS WITH VARIABLE-SPEED CENTRIFUGAL PUMP DRIVE

Combine the information onmean duty cycle for centrifugal pumps given in Fig. 10.25 with the drive data in Table 10.1. Estimate
the annual savings in pumping energy and cost that could be achieved by implementing a variable-speed drive system.

Given: Consider the variable-flow, variable-pressure pumping system of Table 10.1. Assume the system operates on the typical
duty cycle shown in Fig. 10.25, 24 hours per day, year round.

Find: (a) An estimate of the reduction in annual energy usage obtained with the variable-speed drive.
(b) The energy costs and the cost saving due to variable-speed operation.

Solution: Full-time operation involves 365 days × 24 hours per day, or 8760 hours per year. Thus the percentages in Fig. 10.27
may be multiplied by 8760 to give annual hours of operation.

First plot the pump input power versus flow rate using data from Table 10.1 to allow interpolation, as shown below.

Illustrate the procedure using operation at 70 percent flow rate as a sample calculation. At 70 percent flow rate, the pump
delivery is 0:7× 1700 gpm=1190 gpm. From the plot, the pump input power requirement at this flow rate is 90 hp for the con-
stant-speed drive. At this flow rate, the pump operates 23 percent of the time, or 0:23× 8760= 2015 hours per year. The total
energy consumed at this duty point is 90 hp× 2015hr = 1:81× 105hp � hr. The electrical energy consumed is

E=1:81× 105 hp � hr × 0:746
kW � hr
hp � hr = 1:35× 105 kW � hr

The corresponding cost of electricity ½at $0:12=ðkW � hrÞ� is

C=1:35× 105kW � hr × $0:12
kW � hr = $16;250

The following tables were prepared using similar calculations:

Constant-Speed Drive, 8760 hr=yr

Flow (%) Flow (gpm) Time (%) Time (hr) Power (hp) Energy (hp � hr)
100 1700 2 175 109 1.91 × 104

90 1530 8 701 103 7.20 × 104

80 1360 21 1840 96 17.7 × 104

70 1190 23 2015 90 18.1 × 104

60 1020 21 1840 84 15.4 × 104

50 850 15 1314 77 10.2 × 104

40 680 10 876 71 6.21 × 104

Total: 76.7 × 104
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Blowers and Fans

Fans are designed to handle air or vapor. Fan sizes range from that of the cooling fan in a notebook
computer, which moves a cubic meter of air per hour and requires a few watts of power, to that of
the ventilation fans for the Channel Tunnel, which move thousands of cubic meters of air per minute
and require many hundreds of kilowatts of power. Fans are produced in varieties similar to those of
pumps: They range from radial-flow (centrifugal) to axial-flow devices. As with pumps, the character-
istic curve shapes for fans depend on the fan type. Some typical performance curves for centrifugal fans
are presented in Appendix C. The curves may be used to choose fans to solve some of the equipment-
selection and system design problems at the end of the chapter.

A schematic of a centrifugal fan is shown in Fig. 10.26. Some commonly used terminology is shown
on the figure. The pressure rise produced by fans is several orders of magnitude less than that for pumps.
Another difference between fans and pumps is that measurement of flow rate is more difficult in gases
and vapors than in liquids. There is no convenient analog to the catch-the-flow-in-a-bucket method of

Summing the last column of the table shows that for the constant-speed drive system the annual energy consumption is
7:67× 105 hp � hr. The electrical energy consumption is

E=7:67× 105 hp � hr × 0:746
kW � hr
hp � hr = 572;000 kW � hr ECSD �������������������������������

At $0:12 per kilowatt hour, the energy cost for the constant-speed drive system is

C=572;000 kW � hr × $0:12
kW � hr = $68;700

CCSD �������������������������������
Variable-Speed Drive, 8760 hr=yr

Flow (%) Flow (gpm) Time (%) Time (hr) Power (hp) Energy (hp � hr)
100 1700 2 175 109 1.90 × 104

90 1530 8 701 81 5.71 × 104

80 1360 21 1840 61 11.2 × 104

70 1190 23 2015 46 9.20 × 104

60 1020 21 1840 34 6.29 × 104

50 850 15 1314 26 3.37 × 104

40 680 10 876 19 1.68 × 104

Total: 39.4 × 104

Summing the last column of the table shows that for the variable-speed drive system, the annual energy consumption is
3:94× 105hp � hr. The electrical energy consumption is

E=3:94× 105hp � hr × 0:746
kW � hr
hp � hr = 294;000 kW � hr EVSD ���������

At $0:12 per kilowatt hour, the energy cost for the variable-speed drive
system is only

C=294;000 kW � hr × $0:12
kW � hr = $35;250

CVSD ������������������
Thus, in this application, the variable-speed drive reduces energy con-

sumption by 278,000 kW � hr (47 percent). The cost saving is an impressive
$33;450 annually. One could afford to install a variable-speed drive even at
considerable cost penalty. The savings in energy cost are appreciable each
year and continue throughout the life of the system.

This problem illustrates the energy and cost
savings that can be gained by the use of
variable-speed pump drives. We see that the
specific benefits depend on the system and
its operating duty cycle.

The Excel workbook for this problem
was used for plotting the graph, for

obtaining the interpolated data, and for
performing all calculations. It can be easily
modified for other such analyses.
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measuring liquid flow rates! Consequently, fan testing requires special facilities and procedures [20, 21].
Because the pressure rise produced by a fan is small, usually it is impractical to measure flow rate with a
restriction flow meter such as an orifice, flow nozzle, or venturi. It may be necessary to use an auxiliary
fan to develop enough pressure rise to permit measurement of flow rate with acceptable accuracy using a
restriction flow meter. An alternative is to use an instrumented duct in which the flow rate is calculated
from a pitot traverse. Appropriate standards may be consulted to obtain complete information on specific
fan-test methods and data-reduction procedures for each application [20, 21].

The test and data reduction procedures for fans, blowers, and compressors are basically the same as
for centrifugal pumps. However, blowers, and especially fans, add relatively small amounts of static
head to gas or vapor flows. For these machines, the dynamic head may increase from inlet to discharge,
and it may be appreciable compared with the static head rise. For these reasons, it is important to state
clearly the basis on which performance calculations are made. Standard definitions are available for
machine efficiency based on either the static-to-static pressure rise or the static-to-total pressure rise
[20]. Data for both static and total pressure rise and for efficiency, based on both pressure rises, are fre-
quently plotted on the same characteristic graph, as shown in Fig. 10.27.

The coordinates may be plotted in physical units (e.g., inches of water, cubic feet per minute, and
horsepower) or as dimensionless flow and pressure coefficients. The difference between the total and
static pressures is the dynamic pressure, so the vertical distance between these two curves is proportional
to Q2.

Centrifugal fans are used frequently; we will use them as examples. The centrifugal fan developed
from simple paddle-wheel designs, in which the wheel was a disk carrying radial flat plates. (This prim-
itive form still is used in nonclogging fans such as in commercial clothes dryers.) Refinements have led
to the three general types shown in Fig. 10.28a–c, with backward-curved, radial-tipped, and forward
curved blades. All the fans illustrated have blades that are curved at their inlet edges to approximate
shockless flow between the blade and the inlet flow direction. These three designs are typical of fans
with sheet-metal blades, which are relatively simple to manufacture and thus relatively inexpensive.
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Fig. 10.27 Typical characteristic curves for fan with
backward-curved blades.
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Fig. 10.26 Schematic of a typical centrifugal fan.
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The forward-curved design illustrated in the figure has very closely spaced blades; it is frequently called
a squirrel-cage fan because of its resemblance to the exercise wheels found in animal cages.

As fans become larger in size and power demand, efficiency becomes more important. The stream-
lined airfoil blades shown in Fig. 10.28d are much less sensitive to inlet flow direction and improve
efficiency markedly compared with the thin blades shown in diagrams a through c. The added expense
of airfoil blades for large metal fans may be life-cycle cost effective. Airfoil blades are being used more
frequently on small fans as impellers molded from plastic become common.

As is true for pumps, the total pressure rise across a fan is approximately proportional to the absolute
velocity of the fluid at the exit from the wheel. Therefore the characteristic curves produced by the basic
blade shapes tend to differ from each other. The typical curve shapes are shown in Fig. 10.29, where both
pressure rise and power requirements are sketched. Fans with backward-curved blade tips typically have
a power curve that reaches a maximum and then decreases as flow rate increases. If the fan drive is sized
properly to handle the peak power, it is impossible to overload the drive with this type of fan.

The power curves for fans with radial and forward-curved blades rise as flow rate increases. If the
fan operating point is higher than the design flow rate, the motor may be overloaded. Such fans cannot be
run for long periods at low back pressures. An example of this would be when a fan is run without a load
to resist the flow—in other words, the fan is almost “free-wheeling.”Because the power drawn by the fan
monotonically increases with flow rate, the fan motor could eventually burn out under this free-wheeling
condition.

Fans with backward-curved blades are best for installations with large power demand and contin-
uous operation. The forward-curved blade fan is preferred where low first cost and small size are impor-
tant and where service is intermittent. Forward curved blades require lower tip speed to produce a
specified head; lower blade tip speed means reduced noise. Thus forward-curved blades may be speci-
fied for heating and air conditioning applications to minimize noise.

Characteristic curves for axial-flow (propeller) fans differ markedly from those for centrifugal fans.
The power curve, Fig. 10.30, is especially different, as it tends to decrease continuously as flow rate
increases. Thus it is impossible to overload a properly sized drive for an axial-flow fan. The simple pro-
peller fan is often used for ventilation; it may be free-standing or mounted in an opening, as a window
fan, with no inlet or outlet duct work. Ducted axial-flow fans have been studied extensively and

(a) Backward-curved (b) Radial-tipped

(d) Airfoil blades

(c) Forward-curved

Fig. 10.28 Typical types of blading used for centrifugal fan wheels.

Head
Head Head

Power
Power Power

Q

(a) Backward-curved blades

Q

(b) Radial-tipped blades

Q

(c) Forward-curved blades

Fig. 10.29 General features of performance curves for centrifugal fans with backward-, radial-, and forward-curved
blades.
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developed to high efficiency [23]. Modern designs, with airfoil blades, mounted in ducts and often fitted
with guide vanes, can deliver large volumes against high resistances with high efficiency. The primary
deficiency of the axial-flow fan is the non-monotonic slope of the pressure characteristic: In certain
ranges of flow rate the fan may pulsate. Because axial-flow fans tend to have high rotational speeds,
they can be noisy.

Selection and installation of a fan always requires compromise. To minimize energy consumption, it
is desirable to operate a fan at its highest efficiency point. To reduce the fan size for a given capacity, it is
tempting to operate at higher flow rate than that at maximum efficiency. In an actual installation, this
tradeoff must be made considering such factors as available space, initial cost, and annual hours of oper-
ation. It is not wise to operate a fan at a flow rate below maximum efficiency. Such a fan would be larger
than necessary and some designs, particularly those with forward-curved blades, can be unstable and
noisy when operated in this region.

It is necessary to consider the duct system at both the inlet and the outlet of the fan to develop a
satisfactory installation. Anything that disrupts the uniform flow at the fan inlet is likely to impair per-
formance. Nonuniform flow at the inlet causes the wheel to operate unsymmetrically and may decrease
capacity dramatically. Swirling flow also adversely affects fan performance. Swirl in the direction of
rotation reduces the pressure developed; swirl in the opposite direction can increase the power required
to drive the fan.

The fan specialist may not be allowed total freedom in designing the best flow system for the fan.
Sometimes a poor flow system can be improved without too much effort by adding splitters or straigh-
tening vanes to the inlet. Some fan manufacturers offer guide vanes that can be installed for this purpose.

Flow conditions at the fan discharge also affect installed performance. Every fan produces nonu-
niform outlet flow. When the fan is connected to a length of straight duct, the flow becomes more uni-
form and some excess kinetic energy is transformed to static pressure. If the fan discharges directly into a
large space with no duct, the excess kinetic energy of the nonuniform flow is dissipated. A fan in a flow
system with no discharge ducting may fall considerably short of the performance measured in a labo-
ratory test setup.

The flow pattern at the fan outlet may be affected by the amount of resistance present downstream.
The effect of the system on fan performance may be different at different points along the fan pressure-
flow curve. Thus, it may not be possible to accurately predict the performance of a fan, as installed, on
the basis of curves measured in the laboratory.

Fans may be scaled up or down in size or speed using the basic laws developed for fluid machines in
Chapter 7. It is possible for two fans to operate with fluids of significantly different density,8 so pressure
is used instead of head (which uses density) as a dependent parameter and density must be retained in the
dimensionless groups. The dimensionless groups appropriate for fan scaling are

Π1 =
Q

ωD3 , Π2 =
p

ρω2D2 , and Π3 =
�

ρω3D5
ð10:29Þ
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Fig. 10.30 Characteristic curves for a typical axial-flow fan [22].

8 Density of the flue gas handled by an induced-draft fan on a steam powerplant may be 40 percent less than the density of the air
handled by the forced-draft fan in the same plant.
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Once again, dynamic similarity is assured when the flow coefficients are matched. Thus when

Q0 =Q
ω0

ω

� �
D0

D

� �3

ð10:30aÞ

then

p0 = p
ρ0

ρ

� �
ω0

ω

� �2 D0

D

� �2

ð10:30bÞ

and

�0 =�
ρ0

ρ

� �
ω0

ω

� �3 D0

D

� �5

ð10:30cÞ

As a first approximation, the efficiency of the scaled fan is assumed to remain constant, so

η0 = η ð10:30dÞ
When head is replaced by pressure, and density is included, the expression defining the specific speed

of a fan becomes

NS =
ωQ1=2ρ3=4

p3=4
ð10:31Þ

A fan scale-up with density variation is the subject of Example 10.10.

Example 10.10 SCALING OF FAN PERFORMANCE

Performance curves [20] are given below for a centrifugal fan withD=36 in: and N =600 rpm, as measured on a test stand using
cool air ðρ=0:075 lbm=ft3Þ. Scale the data to predict the performance of a similar fan with D0 =42 in:, N 0 =1150 rpm,
and ρ0 =0:045 lbm=ft3. Estimate the delivery and power of the larger fan when it operates at a system pressure equivalent to
7.4 in. of H2O. Check the specific speed of the fan at the new operating point.
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Given: Performance data as shown for centrifugal fan with D=36 in:, N =600 rpm and ρ=0:075 lbm=ft3.

Find: (a) The predicted performance of a geometrically similar fan withD0 =42 in:, at N 0 =1150 rpm, with ρ0 =0:045 lbm=ft3.
(b) An estimate of the delivery and input power requirement if the larger fan operates against a system resistance of

7.4 in. H2O.
(c) The specific speed of the larger fan at this operating point.
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Solution: Develop the performance curves at the new operating condition by scaling the test data point-by-point. Using
Eqs. 10.30 and the data from the curves at Q=30;000 cfm, the new volume flow rate is

Q0 =Q
N 0

N

� �
D0

D

� �3

= 30;000 cfm
1150
600

� �
42
36

� �3

= 91;300 cfm

The fan pressure rise is

p0 = p
ρ0

ρ

N 0

N

� �2 D0

D

� �2

= 2:96 in:H2O
0:045
0:075

� �
1150
600

� �2 42
36

� �2

= 8:88 in:H2O

and the new power input is

�0 =�
ρ0

ρ

� �
N 0

N

� �3 D0

D

� �5

= 21:4 hp
0:045
0:075

� �
1150
600

� �3 42
36

� �5

= 195 hp

We assume the efficiency remains constant between the two scaled points, so

η0 = η=0:64

Similar calculations at other operating points give the results tabulated below:

Q (cfm) p (in. H2O) � (hp) η (%) Q0 (cfm) p0 (in. H2O) �0 (hp)

0 3.68 11.1 0 0 11.0 101
10,000 3.75 15.1 37 30,400 11.3 138
20,000 3.50 18.6 59 60,900 10.5 170
30,000 2.96 21.4 65 91,300 8.88 195
40,000 2.12 23.1 57 122,000 6.36 211
50,000 1.02 23.1 34 152,000 3.06 211
60,000 0 21.0 0 183,000 0 192

To allow interpolation among the calculated points, it is convenient to plot the results:
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From the head-capacity curve, the larger fan should deliver 110,000 cfm at 7.5 in. H2O system head, with an efficiency of
about 58 percent.

This operating point is only slightly to the right of peak efficiency for this fan, so it is a reasonable point at which to operate the
fan. The specific speed of the fan at this operating point (in U.S. customary units) is given by direct substitution into Eq. 10.31:

Nscu =
ωQ1=2 ρ3=4

p3=4
=
ð1150 rpmÞð110;000 cfmÞ1=2ð0:045 lbm=ft3Þ3=4

ð7:5 in:H2OÞ3=4
= 8223

Nscu ����������������������������������������������������
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Three methods are available to control fan delivery: motor speed control, inlet dampers, and outlet
throttling. Speed control was treated thoroughly in the section on pumps. The same benefits of reduced
energy usage and noise are obtained with fans, and the cost of variable-speed drive systems continues
to drop.

Inlet dampers may be used effectively on some large centrifugal fans. However, they decrease effi-
ciency and cannot be used to reduce the fan flow rate below about 40 percent of rated capacity. Outlet
throttling is cheap but wasteful of energy. For further details, consult either Jorgensen [19] or Berry [22];
both are particularly comprehensive. Osborne [24] also treats noise, vibration, and the mechanical design
of fans.

Fans also may be combined in series, parallel, or more complex arrangements to match varying
system resistance and flow needs. These combinations may be analyzed using the methods described
for pumps. ASHRAE [25] and Idelchik [26] are excellent sources for loss data on air flow systems.

Blowers have performance characteristics similar to fans, but they operate (typically) at higher
speeds and increase the fluid pressure more than do fans. Jorgensen [19] divides the territory between
fans and compressors at an arbitrary pressure level that changes the air density by 5 percent; he does not
demarcate between fans and blowers.

10.4 Positive Displacement Pumps
Pressure is developed in positive-displacement pumps through volume reductions caused by movement
of the boundary in which the fluid is confined. In contrast to turbomachines, positive displacement
pumps can develop high pressures at relatively low speeds because the pumping effect depends on vol-
ume change instead of dynamic action.

Positive-displacement pumps frequently are used in hydraulic systems at pressures ranging up to
40 MPa (6000 psi). A principal advantage of hydraulic power is the high power density (power per unit
weight or unit size) that can be achieved: For a given power output, a hydraulic system can be lighter and
smaller than a typical electric-drive system.

Numerous types of positive-displacement pumps have been developed. A few examples include
piston pumps, vane pumps, and gear pumps. Within each type, pumps may be fixed- or variable-
displacement. A comprehensive classification of pump types is given in [16].

The performance characteristics of most positive-displacement pumps are similar; in this section we
shall focus on gear pumps. This pump type typically is used, for example, to supply pressurized lubri-
cating oil in internal combustion engines. Figure 10.31 is a schematic diagram of a typical gear pump. Oil
enters the space between the gears at the bottom of the pump cavity. Oil is carried outward and upward
by the teeth of the rotating gears and exits through the outlet port at the top of the cavity. Pressure is
generated as the oil is forced toward the pump outlet; leakage and backflow are prevented by the closely
fitting gear teeth at the center of the pump, and by the small clearances maintained between the side faces
of the gears and the pump housing. The close clearances require the hydraulic fluid to be kept extremely
clean by full-flow filtration.

Figure 10.32 is a photo showing the parts of an actual gear pump; it gives a good idea of the robust
housing and bearings needed to withstand the large pressure forces developed within the pump. It also
shows pressure-loaded side plates designed to “float”—to allow thermal expansion—while maintaining
the smallest possible side clearance between gears and housing. Many ingenious designs have been
developed for pumps; details are beyond the scope of our treatment here, which will focus on perfor-
mance characteristics. For more details consult Lambeck [27] or Warring [28].

In nondimensional (SI) units,

Ns =
ð120 rad=sÞð3110 m3=sÞ1=2ð0:721 kg=m3Þ3=4

ð1:86× 103 N=m2Þ3=4
= 18:5

NsðSIÞ ���������

This problem illustrates the procedure for
scaling performance of fans operating on
gases with two different densities.

The Excel workbook for this problem
was used for plotting the graphs, for

obtaining the interpolated data, and for
performing all calculations. It can be easily
modified for other such analyses.
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Schematic performance curves of pressure versus delivery for a medium-duty gear pump are shown
in Fig. 10.33. The pump size is specified by its displacement per revolution and the working fluid is
characterized by its viscosity and temperature. Curves for three constant speeds are presented in the dia-
gram. At each speed, delivery decreases slightly as pressure is raised. The pump displaces the same vol-
ume, but as pressure is raised, both leakage and backflow increase; so delivery decreases slightly.
Leakage fluid ends up in the pump housing; so a case drain must be provided to return this fluid to
the system reservoir.

Overall efficiency is defined as power delivered to the fluid divided by power input to the pump.
Overall efficiency tends to rise (and reaches a maximum at intermediate pressure) as pump speed
increases. Volumetric efficiency is defined as actual volumetric delivery divided by pump displacement.
Volumetric efficiency decreases as pressure is raised or pump speed is reduced.

Thus far we have shown pumps of fixed displacement only. The extra cost and complication of
variable-displacement pumps are motivated by the energy saving they permit during partial-flow oper-
ation. In a variable-displacement pump, delivery can be varied to accommodate the load. Load sensing
can be used to reduce the delivery pressure and thus the energy expenditure still further during part-load
operation. Some pump designs allow pressure relief to further reduce power loss during standby
operation.

There are system losses with a fixed-displacement pump compared with losses for variable-
displacement and variable-pressure pumps. A fixed-displacement pump will deliver fluid at a fixed flow
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rate. If the load requires a lower flow the remaining flow must be bypassed back to the reservoir. Its
pressure is dissipated by throttling. A variable-displacement pump operating at constant pressure will
deliver just enough flow to supply the load, but at a lower pressure. Thus the system power loss will
be significantly reduced. The best system choice depends on the operating duty cycle. Complete details
of these and other hydraulic power systems are presented in Lambeck [27]. The performance of constant
and variable displacement pumps are compared in Example 10.11.

Example 10.11 PERFORMANCE OF A POSITIVE-DISPLACEMENT PUMP

A hydraulic pumpwith performance characteristics represented in Fig. 10.33 delivers a flow rate of 48.5 gpm at zero pressure and
46.5 gpm at 1500 psig at a rotating speed of 2000 rpm. The displacement volume is 5:9 in3=revolution. It requires Q=20 gpm at
p=1500 psig at one operating condition. Determine the volumetric efficiency at zero pressure. Compute the required pump
power input, the power delivered to the load, and the power dissipated by throttling at this condition. Compare with the power
dissipated by using (i) a variable-displacement pump at 3000 psig and (ii) a pump with load sensing that operates at 100 psi above
the load requirement.

Given: Hydraulic pump, with performance characteristics of Fig. 10.33, operating at 2000 rpm. System requires Q=20 gpm
at p=1500 psig.

Find: (a) The volumetric efficiency at zero pressure.
(b) The required pump power input.
(c) The power delivered to the load.
(d) The power dissipated by throttling at this condition.
(e) The power dissipated using:

(i) a variable-displacement pump at 3000 psig, and
(ii) a pump with load sensing that operates at 100 psi above the load pressure requirement.

Solution: The volumetric efficiency at zero pressure is determined using the flow rate of 48.5 gpm. The volume of fluid
pumped per revolution is

V--- =
Q
N
=48:5

gal
min

×
min

2000 rev
× 231

in:3

gal
= 5:60 in:3=rev

V--- �������������������������������
The volumetric efficiency of the pump at maximum flow is

ηV =
V---calc
V---pump

=
5:60
5:9

= 0:949

At 1500 psig, the pump delivers 46.5 gpm. The power delivered to the fluid is

�fluid = ρQgHp =QΔpp

=46:5
gal
min

× 1500
lbf
in:2

×
ft3

7:48 gal
×
min
60 s

×144
in:2

ft2
×

hp � s
550 ft � lbf

�fluid = 40:7 hp

The pump efficiency at this operating condition is given as η=0:84. Therefore the required input power is

�input =
�fluid

η
=
40:7 hp
0:84

= 48 hp
�input �������������������������������

The power delivered to the load is

�load =QloadΔpload

= 20:0
gal
min

× 1500
lbf
in:2

×
ft3

7:48 gal
×
min
60 s

×144
in:2

ft2
×

hp � s
550 ft � lbf

�load = 17:5 hp
�load ����������������������������������������
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10.5 Hydraulic Turbines
Hydraulic Turbine Theory

The theory for machines doing work on a fluid, e.g., pumps, may be used for the analysis of machines
extracting work from a fluid, namely turbines. The main difference is that the terms denoting torque,
work, and power will be negative instead of positive. Example 10.12 illustrates the application of
the Euler turbomachine equation to a reaction turbine.

The power dissipated by throttling is

�dissipated =�fluid−�load = 40:7−17:5= 23:2 hp
�dissipated ����������������������������

The dissipation with the variable-displacement pump is

�var-disp =Qloadðpoper−ploadÞ
=20:0

gal
min

× ð3000−1500Þ lbf
in:2

×
ft3

7:48 gal
×
min
60 s

×144
in:2

ft2
×

hp � s
550 ft � lbf

�var-disp = 17:5 hp
�var-disp ���������������������������������������

The dissipation with the variable-displacement pump is therefore less than the 23.2 hp dissipated with the constant-displacement
pump and throttle. The saving is approximately 6 hp.

The final computation is for the load-sensing pump. If the pump pressure is 100 psi above that required by the load, the excess
energy dissipation is

�var-disp =Qloadðpoper−ploadÞ

=20:0
gal
min

× 100
lbf
in:2

×
ft3

7:48 gal
×
min
60 s

× 144
in:2

ft2
×

hp � s
550 ft � lbf

�var-disp = 1:17 hp
�load-sense �����������������������

This problem contrasts the performance of
a system with a pump of constant displace-
ment to that of a system with variable-
displacement and load-sensing pumps.
The specific savings depend on the system
operating point and on the duty cycle of the
system.

Example 10.12 IDEAL ANALYSIS OF A REACTION TURBINE

In a vertical-shaft Francis turbine the available head at the inlet flange of
the turbine is 500 ft and the vertical distance between the runner and the
tailrace is 6.5 ft. The runner tip speed is 115 ft=s, the velocity of the
water entering the runner is 130 ft=s, and the velocity of the water exit-
ing the runner is constant and equal to 35 ft=s. The flow velocity at the
exit of the draft tube is 11:5 ft=s. The hydraulic energy losses estimated
from the turbine are equal to 20 ft at the volute, 3.5 ft at the draft tube,
and 33.0 ft at the runner. Determine the pressure head (with respect to
the tailrace) at the inlet and exit of the runner, the flow angle at the run-
ner inlet, and the efficiency of the turbine.

Given: Flow through a vertical shaft Francis turbine
Head at entrance: 500 ft
Distance between runner and tailrace: 6.5 ft
Runner tip speed: 115 ft=s
Velocity at runner entrance: 130 ft=s
Velocity at runner exit: 35 ft=s
Flow velocity at draft tube exit: 11:5 ft=s
Losses: 20 ft at volute, 3.5 ft at draft tube, 33 ft at runner

HE

B
Turbine

2

1

3

4
Draft tube
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Find: (a) Pressure head at inlet and exit of runner.
(b) Flow angle at runner inlet.
(c) Turbine efficiency.

Solution: Apply the energy and Euler turbomachine equations to the control volume.

Governing equations:

H =
_Wm

_mg
=
1
g
ðU2Vt2 −U1Vt1Þ ð10:2cÞ

ηt =
_Wm

_Wh
=

ωT
ρQgHt

ð10:4cÞ

p1
ρg

+ α1
V 2

1

2g
+ z1 +Ha =

p2
ρg

+ α2
V 2

2

2g
+ z2 +

hlT
g

ð10:28bÞ
Assumptions:

1 Steady flow

2 Uniform flow at each station

3 Turbulent flow; α=1

4 Reservoir and tailrace are at atmospheric pressure

5 Reservoir is at stagnation condition; V 1 = 0

(a) If we apply the energy equation between the runner exit and the tailrace:

H3 =
p3−patm

ρg
=
V 2

4−V 2
3

2g
+ΔHDT + z4

H3 =
1
2
× 11:5

ft
s

� �2

− 35
ft
s

� �2
" #

×
1

32:2
s2

ft
+ 3:5 ft−6:5 ft = −19:97 ft

H3 ��������������������
(negative sign indicates suction)

Next we apply the energy equation between the runner entrance and the tailrace:

H2 =
p2−patm

ρg
=HE−ΔHR−

V 2
2

2g

H2 = 500 ft−33:0 ft−
1
2
× 130

ft
s

� �2

×
1

32:2
s2

ft
= 205 ft

H2 ��������������������
(b) Applying the energy equation across the entire system provides the work extraction through the turbine:

p1
ρg

+ α1
V

2
1

2g
+ z1 +Ha =

p4
ρg

+ α4
V

2
4

2g
+ z4 +

hlT
g

If we simplify the expression based on assumptions and solve for the head extracted at the turbine:

Ha =
V 2

4

2g
−z1 + z4 +

X
ΔH =

V 2
4

2g
−ðHE + zÞ+ ðΔHV +ΔHR +ΔHDTÞ

Since station 1 is higher than station 4, we will take the negative of Ha and call that HT , the head extracted at the turbine:

HT = −
V 2

4

2g
+ ðHe + zÞ−ðΔHV +ΔHR +ΔHDTÞ

= −
1
2
× 11:5

ft
s

� �2

×
1

32:2
s2

ft
+ ð500 ft + 6:5 ftÞ−ð20 ft + 33 ft + 3:5 ftÞ=448 ft

Applying the Euler turbomachine equation to this system:

−HT =
U3Vt3 −U2Vt2

g
Solving for the tangential velocity at 2:

Vt2 =
gHT

U2
= 32:2

ft
s2

× 448 ft ×
1

115
s
ft
= 125:4

ft
s
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The trends predicted by the idealized angular-momentum theory, especially Eq. 10.18b and
Fig. 10.12, are compared with experimental results in the next section.

Performance Characteristics for Hydraulic Turbines

The test procedure for turbines is similar to that for pumps, except that a dynamometer is used to absorb
the turbine power output while speed and torque are measured. Turbines usually are intended to operate
at a constant speed that is a fraction or multiple of the electric power frequency to be produced. Therefore
turbine tests are run at constant speed under varying load, whereas water usage is measured and effi-
ciency is calculated.

The impulse turbine is a relatively simple turbomachine, so we use it to illustrate typical test results.
Impulse turbines are chosen when the head available exceeds about 300 m. Most impulse turbines used
today are improved versions of the Pelton wheel developed in the 1880s by American mining engineer
Lester Pelton [29]. An impulse turbine is supplied with water under high head through a long conduit
called a penstock. The water is accelerated through a nozzle and discharges as a high-speed free jet at
atmospheric pressure. The jet strikes deflecting buckets attached to the rim of a rotating wheel
(Fig. 10.5a). Its kinetic energy is given up as it is turned by the buckets. Turbine output is controlled
at essentially constant jet speed by changing the flow rate of water striking the buckets. A variable-area
nozzle may be used to make small and gradual changes in turbine output. Larger or more rapid changes
must be accomplished by means of jet deflectors, or auxiliary nozzles, to avoid sudden changes in flow
speed and the resulting high pressures in the long water column in the penstock. Water discharged from
the wheel at relatively low speed falls into the tailrace. The tailrace level is set to avoid submerging the
wheel during flooded conditions. When large amounts of water are available, additional power can be
obtained by connecting two wheels to a single shaft or by arranging two or more jets to strike a sin-
gle wheel.

Figure 10.34 illustrates an impulse-turbine installation and the definitions of gross and net head
[11]. The gross head available is the difference between the levels in the supply reservoir and the tailrace.
The effective or net head, H, used to calculate efficiency, is the total head at the entrance to the nozzle,
measured at the nozzle centerline [11]. Hence not all of the net head is converted into work at the turbine:
Some is lost to turbine inefficiency, some is lost in the nozzle itself, and some is lost as residual kinetic

Setting up the velocity triangle:

β2 = tan−1Vt2 −U2

Vn2
= tan−1 125:4−115

35
= 16:58� β2 ��������������������

α2 = tan−1 Vt2

Vn2
= tan−1 125:4

10:5
= 85:2� α2 ��������������������

(c) To calculate the efficiency:

ηt =
_Wm

_Wh
=
gHT

gHE
=
448
500

= 89:6%
η ����������������������

This problem demonstrates the analysis of
a hydraulic turbine with head losses and
quantifies those effects in terms of a turbine
efficiency. In addition, since the head at the
turbine exit is below atmospheric, care must
be taken to ensure that cavitation does
not occur.

Reservoir level
Energy grade line

Hydraulic grade line

Net
head
on

wheel

VB/2g2

hL

Gross
head

at plant

z
B

Fig. 10.34 Schematic of impulse-turbine installation, showing definitions of gross and net heads.
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energy in the exit flow. In practice, the penstock usually is sized so that at rated power the net head is
85–95 percent of the gross head.

In addition to nozzle loss, windage, bearing friction, and surface friction between the jet and bucket
reduce performance compared with the ideal, frictionless case. Figure 10.35 shows typical results from
tests performed at constant head.

The peak efficiency of the impulse turbine corresponds to the peak power, since the tests are per-
formed at constant head and flow rate. For the ideal turbine, as we will see in Example 10.13, this occurs
when the wheel speed is half the jet speed. As we will see, at this wheel speed the fluid exits the turbine at
the lowest absolute velocity possible, hence minimizing the loss of kinetic energy at the exit. As indi-
cated in Eq. 10.2a, if we minimize the exit velocity V

!
2 we will maximize the turbine work _Wm, and hence

the efficiency. In actual installations, peak efficiency occurs at a wheel speed only slightly less than half
the jet speed. This condition fixes the wheel speed once the jet speed is determined for a given instal-
lation. For large units, overall efficiency may be as high as 88 percent [30].
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Fig. 10.35 Ideal and actual variable-speed performance for an impulse turbine [6].

Example 10.13 OPTIMUM SPEED FOR IMPULSE TURBINE

A Pelton wheel is a form of impulse turbine well adapted to situations of high head and low flow rate. Consider the Pelton wheel
and single-jet arrangement shown, in which the jet stream strikes the bucket tangentially and is turned through angle θ. Obtain an
expression for the torque exerted by the water stream on the wheel and the corresponding power output. Show that the power is a
maximum when the bucket speed, U =Rω, is half the jet speed, V .

Given: Pelton wheel and single jet shown.

Find: (a) Expression for torque exerted on the wheel.
(b) Expression for power output.
(c) Ratio of wheel speed U to jet speed V for maximum power.

Solution: As an illustration of its use, we start with the angular-momentum equation,
Eq. 4.52 (on the Web site), for a rotating CV as shown, rather than the inertial CV form,
Eq. 4.46, that we used in deriving the Euler turbomachine equation in Section 10.2.

Governing equation:

¼ 0 1ð Þ ¼ 0 2ð Þ ≈0 3ð Þ
r!× F

!
S

��
�!þ

Z
CV

r!× g!ρdV

��
�!þT

!
shaft−

Z
CV

r!× 2ω!×V
!
xyzþω

!× ω
!× r!
� �þ _ω

! × r!
h i

ρdV

��
�!

¼ 0 4ð Þ
¼ ∂

∂t��
�!

Z
CV

r!×V
!
xyz ρdVþ

Z
CS
r!×V

!
xyz ρV

!
xyz � dA

!

ð4:52Þ

VJet

R = mean radius

ω

θ
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Assumptions:

1 Neglect torque due to surface forces.

2 Neglect torque due to body forces.

3 Neglect mass of water on wheel.

4 Steady flow with respect to wheel.

5 All water that issues from the nozzle acts upon the buckets.

6 Bucket height is small compared with R, hence r1≈r2≈R.

7 Uniform flow at each section.

8 No change in jet speed relative to bucket.

Then, since all water from the jet crosses the buckets,

T
!
shaft = r!1 ×V

!
1ð−ρVAÞ+ r!2 ×V

!
2ð+ ρVAÞ

r!1 =Rêr r!2 =Rêr

V
!
1 = ðV−UÞêθ V

!
2 = ðV−UÞcos θ êθ + ðV−UÞ sin θ êr

Tshaft k̂=RðV−UÞk̂ð−ρVAÞ+RðV−UÞ cos θ k̂ðρVAÞ
so that finally

Tshaftk̂= −Rð1−cos θÞρVAðV−UÞk̂
This is the external torque of the shaft on the control volume, i.e., on the wheel. The torque exerted by the water on the wheel is
equal and opposite,

T
!
out = −T

!
shaft =Rð1−cos θÞρVAðV−UÞk̂

T
!
out = ρQRðV−UÞ× ð1−cos θÞk̂ T

!
out ����������������������������

The corresponding power output is

_Wout =ω
! � T!out =Rωð1−cosθÞρVAðV−UÞ

_Wout = ρQUðV−UÞ× ð1−cosθÞ _Wout ��������������������
To find the condition for maximum power, differentiate the expression for power with respect to wheel speedU and set the result
equal to zero. Thus

d _W
dU

= ρQðV−UÞð1−cosθÞ+ ρQUð−1Þð1−cosθÞ=0

∴ðV−UÞ−U=V−2U=0

Thus for maximum power, U=V =
1
2
U =V=2:

U=V �������
Note: Turning the flow through θ=180� would give maximum power with

U =V=2. Under these conditions, theoretically the absolute velocity
of the fluid at the exit (computed in the direction of U) would be
U−ðV−UÞ=V=2−ðV−V=2Þ=0, so that the fluid would exit with
zero kinetic energy, maximizing the power output. In practice, it is
possible to deflect the jet stream through angles up to 165�. With
θ=165�,1−cos θ≈1:97, or about 1.5 percent below the value for
maximum power.

2

1

V – U

V – U
U = R

V

A

ρ

θ

ω

ω

Rr

CV rotates
with wheel

This problem illustrates the use of the
angular-momentum equation for a rotating
control volume, Eq. 4.52 (on the web), to
analyze flow through an ideal impulse
turbine.
• The peak power occurs when the wheel
speed is half the jet speed, which is a useful
design criterion when selecting a turbine
for a given available head.

• This problem also could be analyzed
starting with an inertial control volume,
i.e., using the Euler turbomachine
equation.
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In practice, hydraulic turbines usually are run at a constant speed, and output is varied by changing
the opening area of the needle valve jet nozzle. Nozzle loss increases slightly and mechanical losses
become a larger fraction of output as the valve is closed, so efficiency drops sharply at low load, as
shown in Fig. 10.36. For this Pelton wheel, efficiency remains above 85 percent from 40 to 113 percent
of full load.

At lower heads, reaction turbines provide better efficiency than impulse turbines. In contrast to flow
in a centrifugal pump, used for doing work on a fluid, flow in a work-producing reaction turbine enters
the rotor at the largest (outer) radial section and discharges at the smallest (inner) radial section after
transferring most of its energy to the rotor. Reaction turbines tend to be high-flow, low-head machines.
A typical reaction turbine installation is shown schematically in Fig. 10.37, where the terminology used
to define the heads is indicated.

Reaction turbines flow full of water. Consequently, it is possible to use a diffuser or draft tube to
regain a fraction of the kinetic energy that remains in water leaving the rotor. The draft tube forms an
integral part of the installation design. As shown in Fig. 10.37, the gross head available is the difference
between the supply reservoir head and the tailrace head. The effective head or net head, H, used to cal-
culate efficiency, is the difference between the elevation of the energy grade line just upstream of the
turbine and that of the draft tube discharge (section C). The benefit of the draft tube is clear: The net head
available for the turbine is equal to the gross head minus losses in the supply pipework and the kinetic
energy loss at the turbine exit. Without the draft tube the exit velocity and kinetic energy would be rel-
atively large, but with the draft tube they are small, leading to increased turbine efficiency. Put another
way, the draft tube diffuser, through a Bernoulli effect, reduces the turbine exit pressure, leading to a
larger pressure drop across the turbine, and increased power output. (We saw a similar Bernoulli effect
used by ancient Romans in Example 8.10.)

An efficient mixed-flow turbine runner was developed by James B. Francis using a careful series of
experiments at Lowell, Massachusetts, during the 1840s [29]. An efficient axial-flow propeller turbine,
with adjustable blades, was developed by German Professor Victor Kaplan between 1910 and 1924.
The Francis turbine (Fig. 10.5b) is usually chosen when 15 m≤H ≤ 300 m, and the Kaplan turbine
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Fig. 10.36 Relation between efficiency and output for a typical Pelton water turbine, based on Reference [30].

Hydraulic grade line

Energy grade line
hL

H
Gen.

pB___
  gρ

zB

Gross head

VC___
2g

2

VB___
2g

2

B
Turbine

Draft tube C
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(Fig. 10.5c) is usually chosen for heads of 15 m or less. Performance of reaction turbines may be meas-
ured in the same manner as performance of the impulse turbine. However, because the gross heads are
less, any change in water level during operation is more significant. Consequently, measurements are
made at a series of heads to completely define the performance of a reaction turbine.

An example of the data presentation for a reaction turbine is given in Fig. 10.38, where efficiency is
shown at various output powers for a series of constant heads [6]. The reaction turbine has higher max-
imum efficiency than the impulse turbine, but efficiency varies more sharply with load.

Sizing Hydraulic Turbines for Fluid Systems

Falling water has long been considered a source of “free,” renewable energy. In reality, power produced
by hydraulic turbines is not free; operating costs are low, but considerable capital investment is required
to prepare the site and install the equipment. At a minimum, the water inlet works, supply penstock,
turbine(s), powerhouse, and controls must be provided. An economic analysis is necessary to determine
the feasibility of developing any candidate site. In addition to economic factors, hydroelectric power
plants must also be evaluated for their environmental impact; in recent years it has been found that such
plants are not entirely benign and can be damaging, for example, to salmon runs.

Early in the industrial revolution, waterwheels were used to power grain mills and textile machinery.
These plants had to be located at the site of the falling water, which limited use of water power to rel-
atively small and local enterprises. The introduction of alternating current in the 1880s made it possible
to transmit electrical energy efficiently over long distances. Since then nearly 40 percent of the available
hydroelectric power resources in the United States have been developed and connected to the utility grid
[31]. Hydroelectric power accounts for about 16 percent of the electrical energy produced in this country.

The United States has abundant and relatively cheap supplies of fossil fuels, mostly coal. Therefore
at present the remaining hydropower resources in the United States are not considered economical com-
pared to fossil-fired plants.

Worldwide, only about one-third of available hydropower resources have been developed commer-
cially [32]. Considerably more hydropower will likely be developed in coming decades as countries
become more industrialized. Many developing countries do not have their own supplies of fossil fuel.
Hydropower may offer many such countries their only practical path to increased utility development.
Consequently the design and installation of hydroelectric plants are likely to be important future engi-
neering activities in developing countries.

To evaluate a candidate site for hydropower potential, one must know the average stream flow rate
and the gross head available to make preliminary estimates of turbine type, number of turbines, and
potential power production. Economic analyses are beyond the scope of this book, but we consider
the fluids engineering fundamentals of impulse turbine performance to optimize the efficiency.

Hydraulic turbines convert the potential energy of stored water to mechanical work. To maximize
turbine efficiency, it is always a design goal to discharge water from a turbine at ambient pressure, as
close to the tailwater elevation as possible and with the minimum possible residual kinetic energy.

Conveying water flow into the turbine with minimum energy loss also is important. Numerous
design details must be considered, such as inlet geometry, trash racks, etc. [31]. References 1, 6, 10,
31 and 33–38 contain a wealth of information about turbine siting, selection, hydraulic design, and
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Fig. 10.38 Performance of typical reaction turbine as predicted by model tests (expected efficiencies) and confirmed by
field test [6].
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optimization of hydropower plants. The number of large manufacturers has dwindled to just a few, but
small-scale units are becoming plentiful [35]. The enormous cost of a commercial-scale hydro plant jus-
tifies the use of comprehensive scale-model testing to finalize design details. See [31] for a more detailed
coverage of hydraulic power generation.

Hydraulic losses in long supply pipes (known as penstocks) must be considered when designing the
installation for high-head machines such as impulse turbines; an optimum diameter for the inlet pipe that
maximizes turbine output power can be determined for these units, as shown in Example 10.14.

Turbine power output is proportional to volume flow rate times the pressure difference across the
nozzle. At zero flow, the full hydrostatic head is available but power is zero. As flow rate increases, the
net head at the nozzle inlet decreases. Power first increases, reaches a maximum, then decreases again as
flow rate increases. As we will see in Example 10.14, for a given penstock diameter, the theoretical max-
imum power is obtained when the system is designed so that one-third of the gross head is dissipated by
friction losses in the penstock. In practice, penstock diameter is chosen larger than the theoretical min-
imum, and only 10–15 percent of the gross head is dissipated by friction [11].

A certain minimum penstock diameter is required to produce a given power output. The minimum
diameter depends on the desired power output, the available head, and the penstock material and length.
Some representative values are shown in Fig. 10.39.
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Fig. 10.39 Maximum hydraulic impulse turbine power output versus penstock diameter.

Example 10.14 PERFORMANCE AND OPTIMIZATION OF AN IMPULSE TURBINE

Consider the hypothetical impulse turbine installation shown. Analyze flow in the penstock to develop an expression for the
optimum turbine output power as a function of jet diameter, Dj. Obtain an expression for the ratio of jet diameter, Dj, to penstock
diameter, D, at which output power is maximized. Under conditions of maximum power output, show that the head loss in the
penstock is one-third of the available head. Develop a parametric equation for the minimum penstock diameter needed to produce
a specified power output, using gross head and penstock length as parameters.

Reservoir surface

Penstock

H
D

L
Turbine wheel

Vj
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Given: Impulse turbine installation shown.

Find: (a) Expression for optimum turbine output power as a function of jet diameter.
(b) Expression for the ratio of jet diameter, Dj, to penstock diameter, D, at which output power is maximized.
(c) Ratio of head loss in penstock to available head for condition of maximum power.
(d) Parametric equation for the minimum penstock diameter needed to produce a specified output power, using gross

head and penstock length as parameters.

Solution: According to the results of Example 10.13, the output power of an idealized impulse turbine is given by
�out = ρQUðV−UÞð1−cosθÞ. For optimum power output, U =V=2=Vj=2, and

�out = ρQ
V
2

V−
V
2

� �
ð1−cos θÞ= ρAjVj

Vj

2
Vj

2
ð1−cos θÞ

�out = ρAj
V3
j

1
ð1−cosθÞ

Thus output power is proportional to AjV3
j .

Apply the energy equation for steady incompressible pipe flow through the penstock to analyze V2
j at the nozzle outlet.

Designate the free surface of the reservoir as section there V 1≈0.

Governing equation:

p1
ρ��

��
�

þα
V 2

1

2��
�!þgz1

 !≈0

−
pj
ρ��

��
�

þαj
V

2
j

2
þgzj

 !
¼ hlT ¼ Kentþ f

L
D

� �
V

2
p

2
þKnozzle

V
2
j

2

Assumptions:

1 Steady flow.

2 Incompressible flow.

3 Fully developed flow.

4 Atmospheric pressure at jet exit.

5 αj =1, so V j =Vj.

6 Uniform flow in penstock, so Vp =V .

7 Kent ≪ f
L
D
.

8 Knozle = 1.

Then

gðz1−zjÞ= gH = f
L
D
V2

2
+
V2
j

2
or V2

j =2gH− f
L
D
V2 ð1Þ

Hence the available head is partly consumed in friction in the supply penstock, and the rest is available as kinetic energy at the
jet exit—in other words, the jet kinetic energy is reduced by the loss in the penstock. However, this loss itself is a function of
jet speed, as we see from continuity:

VA=Vj Aj, so V =Vj
Aj

A
=Vj

Dj

D

� �2

and V2
j =2gH− f

L
D
V2
j

Dj

D

� �4

Solving for Vj, we obtain

Vj =
2gH

1+ f
L
D

Dj

D

� �4
( )
2
66664

3
77775
1=2

ð2Þ
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The turbine power can be written as

�= ρAj
V3
j

4
ð1−cos θÞ= ρ

π

16
D2

j
2gH

1+ f
Lj
D

Dj

D

� �4
( )
2
66664

3
77775
3=2

ð1−cosθÞ

�=C1D2
j 1+ f

L
D

Dj

D

� �4
" #−3=2

� �������������������������������
where C1 = ρπð2gHÞ3=2ð1−cosθÞ=16= constant.

To find the condition for maximum power output, at fixed penstock diameter, D, differentiate with respect to Dj and set equal
to zero,

d�
dDj

=2C1 Dj 1+ f
L
D

Dj

D

� �4
" #−3=2

−
3
2
C1D2

j 1+ f
L
D

Dj

D

� �4
" #−5=2

4 f
L
D

D3
j

D4 = 0

Thus,

1+ f
L
D

Dj

D

� �4

= 3f
L
D

Dj

D

� �4

Solving for Dj=D, we obtain

Dj

D
=

1

2f
L
D

2
64

3
75
1=4

Dj

D ��������������������������������������������
At this optimum value of Dj=D, the jet speed is given by Eq. 2 as

Vj =
2gH

1+ f
L
D

Dj

D

� �4
( )
2
66664

3
77775
1=2

=

ffiffiffiffiffiffiffiffiffi
4
3
gH

r

The head loss at maximum power is then obtained from Eq. 1 after rearranging

hl = f
L
D
V2

2
= gH−

V2
j

2
= gH−

2
3
gH =

1
3
gH

and

hl
gH

=
1
3

hl
gH �������������������������������

Under the conditions of maximum power

�max = ρV3
j
Aj

4
ð1−cosθÞ= ρ

4
3
gH

� �3=2 π

16
D5

2fL

	 
1=2
ð1−cosθÞ

Finally, to solve for minimum penstock diameter for fixed output power, the
equation may be written in the form

D/ L
H

� �1=5 �

H

� �2=5

D �������������������������������

This problem illustrates the optimization of
an idealized impulse turbine. The analysis
determines the minimum penstock diameter
needed to obtain a specified power output. In
practice, larger diameters than this are used,
reducing the frictional head loss below that
computed here.
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10.6 Propellers and Wind-Power Machines
Asmentioned in Section 10.1, propellers and wind-power machines such as windmills and wind turbines
may be considered axial-flowmachines without housings [6]. Despite their long history (propellers were
used on marine craft as early as 1776, and wind-power machines discovered in Persia date back to some
time between the 6th and 10th centuries C.E. [39]), they have been proven to be efficient methods of
propulsion and energy generation.

Propellers

In common with other propulsion devices, a propeller produces thrust by imparting linear momentum to
a fluid. Thrust production always leaves the stream with some kinetic energy and angular momentum
that are not recoverable, so the process is never 100 percent efficient.

The one-dimensional flow model shown schematically in Fig. 10.40 is drawn in absolute
coordinates on the left and as seen by an observer moving with the propeller, at speed V , on the right.
The wake is modeled as a uniform flow as shown, and in the new coordinates the flow is steady. The
actual propeller is replaced conceptually by a thin actuator disk, across which flow speed is continuous
but pressure rises abruptly. Relative to the propeller, the upstream flow is at speed V and ambient pres-
sure. The axial speed at the actuator disk is V +ΔV=2, with a corresponding reduction in pressure.
Downstream, the speed is V +ΔV and the pressure returns to ambient. (Example 10.15 will show that
half the speed increase occurs before and half after the actuator disk.) The contraction of the slipstream
area to satisfy continuity and the pressure rise across the propeller disk are shown in the figure.

Not shown in the figure are the swirl velocities that result from the torque required to turn the pro-
peller. The kinetic energy of the swirl in the slipstream also is lost unless it is removed by a counter-
rotating propeller or partially recovered in stationary guide vanes.

As for all turbomachinery, propellers may be analyzed in two ways. Application of linear momen-
tum in the axial direction, using a finite control volume, provides overall relations among slipstream
speed, thrust, useful power output, and minimum residual kinetic energy in the slipstream. A more
detailed blade element theory is needed to calculate the interaction between a propeller blade and the
stream. A general relation for ideal propulsive efficiency can be derived using the control volume
approach, as shown following Example 10.15.

Example 10.15 CONTROL VOLUME ANALYSIS OF IDEALIZED FLOW THROUGH A PROPELLER

Consider the one-dimensional model for the idealized flow through a propeller shown in Fig. 10.40. The propeller advances into
still air at steady speed V1. Obtain expressions for the pressure immediately upstream and the pressure immediately downstream
from the actuator disk. Write the thrust on the propeller as the product of this pressure difference times the disk area. Equate this
expression for thrust to one obtained by applying the linear momentum equation to the control volume. Show that half the veloc-
ity increase occurs ahead of and half behind the propeller disk.

Ambient
air (at rest)

Propeller
motion,
speed V

Propeller
wake

After change in
coordinates, and
idealizing wake

Δp

Pressure
distribution

V +
V + ΔV

V

ΔV____

2

D

Control
volume

Slipstream
boundary

V

Fig. 10.40 One-dimensional flow model and control volume used to analyze an idealized propeller, based on Reference [6].
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Given: Propeller advancing into still air at speed V1, as shown in Fig. 10.40.

Find: (a) Expressions for the pressures immediately upstream and immediately
downstream from the actuator disk.

(b) Expression for the air speed at the actuator disk. Then show that half
the velocity increase occurs ahead of the actuator disk and half occurs
behind the actuator disk.

Solution: Apply the Bernoulli equation and the x component of linear momen-
tum using the CV shown.

Governing equations:

p
ρ
þV2

2
þgz

��
�!¼ constant

≈ 0 5ð Þ

¼ 0 5ð Þ ¼ 0 1ð Þ
FSx þFBx��

�!¼ ∂
∂t��

�!

Z
CV

uxyz ρdVþ
Z
CS
uxyz ρV

!
� d A!

Assumptions:

1 Steady flow relative to the CV.

2 Incompressible flow.

3 Flow along a streamline.

4 Frictionless flow.

5 Horizontal flow: neglect changes in z;FBx =0.

6 Uniform flow at each section.

7 patm surrounds the CV.

Applying the Bernoulli equation from section to section gives

patm
ρ

+
V2
1

2
=
p2
ρ
+
V2
2

2
; p2ðgageÞ =

1
2
ρðV2

1 −V2
2 Þ

Applying Bernoulli from section to section gives

p3
ρ
+
V2
3

2
=
patm
ρ

+
V2
4

2
; p3ðgageÞ =

1
2
ρðV2

4 −V2
3 Þ

The thrust on the propeller is given by

FT = ðp3−p2ÞA=
1
2
ρAðV2

4 −V2
1 Þ ðV3 =V2 =VÞ

From the momentum equation, using relative velocities,

Rx =FT = u1ð− _mÞ+ u4ð+ _mÞ= ρVAðV4−V1Þ fu1 =V1, u4 =V4g
FT = ρVAðV4−V1Þ

Equating these two expressions for FT ,

FT =
1
2
ρAðV2

4 −V2
1 Þ= ρVAðV4−V1Þ

or
1
2
ðV4 +V1ÞðV4−V1Þ=VðV4−V1Þ

Thus, V =
1
2
ðV1 +V4Þ, so

ΔV12 =V−V1 =
1
2
ðV1 +V4Þ−V1 =

1
2
ðV4−V1Þ= ΔV

2

ΔV34 =V4−V =V4−
1
2
ðV1 +V4Þ= 1

2
ðV4−V1Þ= ΔV

2
Velocity Increase ������������������

2 3

y

x

D

Rx

V1 V2 V3 V4

Streamline

CV
Propeller disk

=

The purpose of this problem is to apply the
continuity, momentum, and Bernoulli
equations to an idealized flow model of a
propeller, and to verify the Rankine theory of
1885 that half the velocity change occurs on
either side of the propeller disk.
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The continuity and momentum equations in control volume form were applied in Example 10.15 to
the propeller flow shown in Fig. 10.40. The results obtained are discussed further below. The thrust
produced is

FT = _mΔV ð10:32Þ

For incompressible flow, in the absence of friction and heat transfer, the energy equation indicates that
the minimum required input to the propeller is the power required to increase the kinetic energy of the
flow, which may be expressed as

�input = _m
ðV +ΔVÞ2

2
−
V2

2

" #
= _m

2VΔV + ðΔVÞ2
2

" #
= _mVΔV 1+

ΔV
2V

	 

ð10:33Þ

The useful power produced is the product of thrust and speed of advance, V , of the propeller. Using
Eq. 10.32, this may be written as

�useful =FTV = _mVΔV ð10:34Þ
Combining Eqs. 10.34 and 10.35, and simplifying, gives the propulsive efficiency as

η=
�useful

�input
=

1

1+
ΔV
2V

ð10:35Þ

Equations 10.32–10.35 are applicable to any device that creates thrust by increasing the speed of a
fluid stream. Thus they apply equally well to propeller-driven or jet-propelled aircraft, boats, or ships.

Equation 10.35 for propulsive efficiency is of fundamental importance. It indicates that propulsive
efficiency can be increased by reducing ΔV or by increasing V . At constant thrust, as shown by
Eq. 10.32, ΔV can be reduced if _m is increased, i.e., if more fluid is accelerated over a smaller speed
increase. More mass flow can be handled if propeller diameter is increased, but overall size and tip speed
ultimately limit this approach. The same principle is used to increase the propulsive efficiency of a tur-
bofan engine by using a large fan to move additional air flow outside the engine core.

Propulsive efficiency also can be increased by increasing the speed of motion relative to the fluid.
Speed of advance may be limited by cavitation in marine applications. Flight speed is limited for pro-
peller-driven aircraft by compressibility effects at the propeller tips, but progress is being made in the
design of propellers to maintain high efficiency with low noise levels while operating with transonic
flow at the blade tips. Jet-propelled aircraft can fly much faster than propeller-driven craft, giving them
superior propulsive efficiency.

The analysis provided does not reveal the length scale over which the axial velocity varies. Such an
analysis is provided in [40]; the axial variation in velocity may be expressed as

VclðxÞ=V +ΔV 1−
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 +R2
p

� �
ð10:36Þ

In Eq. 10.36 VclðxÞ is the centerline velocity at location x upstream of the disk, while V is the
upstream velocity. This relationship is plotted in Fig. 10.41. The plot shows that the effects of the
propeller are only felt at distances within two radii of the actuator disk.

A more detailed blade element theory may be used to calculate the interaction between a propeller
blade and the stream and therefore to determine the effects of blade aerodynamic drag on the propeller
efficiency. If the blade spacing is large and the disk loading9 is light, blades can be considered independ-
ent, and relations can be derived for the torque required and the thrust produced by a propeller. These
approximate relations are most accurate for low-solidity propellers.10 Aircraft propellers typically are of
fairly low solidity, having long, thin blades.

9Disk loading is the propeller thrust divided by the swept area of the actuator disk.
10 Solidity is defined as the ratio of projected blade area to the swept area of the actuator disk.
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A schematic diagram of an element of a rotating propeller blade is shown in Fig. 10.42. The blade is
set at angle θ to the plane of the propeller disk and has a thickness (into the plane of the page) of dr. Flow
is shown as it would be seen by an observer on the propeller blade. Lift and drag forces are exerted on the
blade perpendicular and parallel to the relative velocity vector Vr , respectively. We call the angle that Vr

makes with the plane of the propeller disk the effective pitch angle, ϕ, and therefore the lift and drag
forces are inclined at an angle to the propeller rotation axis and the plane of the propeller disk,
respectively.

The relative speed of flow, Vr, passing over the blade element depends on both the blade peripheral
speed, rω, and the speed of advance, V . Consequently, for a given blade setting, the angle of attack, α,
depends on both V and rω. Thus, the performance of a propeller is influenced by both ω and V .

If we take a free-body diagram of the airfoil element of width dr in Fig. 10.42, we find that the
magnitude of the resultant force dFr parallel to the velocity vector V

!
:

dFT = dL cos ϕ−dD sin ϕ= qrcdrðCL cos ϕ−CD sin ϕÞ ð10:37aÞ
In this equation qr is the dynamic pressure based on the relative velocity Vr ,

qr =
1
2
ρV2

r

c is the local chord length, and CL and CD are lift and drag coefficients, respectively, for the airfoil. In
general, due to twist and taper in the propeller blades, and the radial variation of the blade peripheral
speed, CL,CD,Vr,c,ϕ, and qr will all be functions of the radial coordinate r. We can also generate an
expression for the torque that must be applied to the propeller:

dT = rðdL sin ϕ+ dD cos ϕÞ= qrrcdrðCL sin ϕ+CD cos ϕÞ ð10:37bÞ
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Fig. 10.41 Plot of velocity versus distance for flow of air near a propeller.
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Fig. 10.42 Diagram of blade element and relative
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These two expressions may be integrated to find the total propulsive thrust and torque, assuming N inde-
pendent blades mounted on the rotor:

FT =N
Z r=R

r=Rhub

dFT = qN
Z R

Rhub

ðCL cos ϕ−CD sin ϕÞ
sin2 ϕ

cdr ð10:38aÞ

T =N
Z r=R

r=Rhub

dT = qN
Z R

Rhub

ðCL sin ϕ−CD cos ϕÞ
sin2 ϕ

cdr ð10:38bÞ

In these equations, qr is replaced by q=sin2ϕ based on the relationship between V and Vr. We will use the
equations above to analyze the startup characteristics of a propeller in Example 10.16.

Example 10.16 PROPELLER STARTUP THRUST AND TORQUE

Use blade element theory to estimate the start-up thrust and torque for a propeller consisting of N independent blades with con-
stant chord length, c, and at a constant angle, θ, with respect to the actuator disk plane.

Given:

Propeller with N independent blades
Chord length c is constant
Angle with respect to actuator disk θ is constant

Find: Expressions for startup thrust and torque

Solution: Apply the equations presented above to the propeller:

Governing equations:

dFT = dL cos ϕ−dD sin ϕ= qrcdrðCL cos ϕ−CD sin ϕÞ ð10:37aÞ
dT = rðdL sin ϕ+ dD cos ϕÞ= qrrcdrðCL sin ϕ+CD cos ϕÞ ð10:37bÞ

FT = qN
Z R

Rhub

ðCL cos ϕ−CD sin ϕÞ
sin2ϕ

cdr ð10:38aÞ

T = qN
Z R

Rhub

ðCL sin ϕ+CD cos ϕÞ
sin2 ϕ

rcdr ð10:38bÞ

Assumptions:

Local wind velocity V is negligible.

Angular velocity ω is constant.

If at start-up we neglect the local wind velocity V , we find that the integrals in Eqs. 10.38 will be indeterminate since q=0 and
ϕ=0. Therefore, we will use the differential thrust and torque expressions given in Eqs. 10.37 and integrate them. At start-up,
the relative velocity Vr is simply equal to the local blade element velocity rω. Therefore, the relative dynamic pressure qr is
equal to:

qr =
1
2
ρr2ω2

When ϕ=0, the differential thrust and torque expressions become

dFT =
1
2
ρr2ω2cdrðCL cos 0−CD sin 0Þ= 1

2
ρω2cCLr2dr

dT =
1
2
ρr2ω2rcdrðCL sin 0+CD cos 0Þ= 1

2
ρω2cCDr3dr
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While these expressions may be relatively simple to derive, they are difficult to evaluate. Even if the
geometry of the propeller is adjusted to give constant geometric pitch,11 the flow field in which it oper-
ates may not be uniform. Thus, the angle of attack across the blade elements may vary from the ideal, and
it can be calculated only with the aid of a comprehensive computer code that can predict local flow direc-
tions and speeds. As a result, Eqs. 10.38 are not normally used, and propeller performance characteristics
usually are measured experimentally.

Figure 10.43 shows typical characteristics for a marine propeller [6] and for an aircraft propeller
[41]. The variables used to plot the characteristics are almost dimensionless: by convention, rotational
speed, n, is expressed in revolutions per second (rather than as ω, in radians per second). The independ-
ent variable is the speed of advance coefficient, J,

J ≡
V
nD

ð10:39Þ

Dependent variables are the thrust coefficient, CF , the torque coefficient, CT , the power coefficient,
CP, and the propeller efficiency, η, defined as

CF =
FT

ρn2D4 , CT =
T

ρn2D5 , CP =
�

ρn3D5 , and η=
FTV
�input

ð10:40Þ

The performance curves for both propellers show similar trends. Both thrust and torque coefficients
are highest, and efficiency is zero, at zero speed of advance. This corresponds to the largest angle of
attack for each blade element ðα= αmax = θÞ. Efficiency is zero because no useful work is being done
by the stationary propeller. As advance speed increases, thrust and torque decrease smoothly. Efficiency
increases to a maximum at an optimum advance speed and then decreases to zero as thrust tends to zero.
(For example, if the blade element section is symmetric, this would theoretically occur when α=0, or
when tan θ=V=ωr.) Example 10.17 shows the application of these relations to the design of a marine
propeller.

We can then integrate the thrust and torque over the entire actuator disk:

FT =N

Z
dFT =

1
2
ρω2cCL

ZR
Rhub

r2dr=
1
2
ρω2cCL ×

1
3
ðR3−R3

hubÞ

T =N

Z
dT =

1
2
ρω2cCD

ZR
Rhub

r3dr=
1
2
ρω2cCD ×

1
4
ðR4−R4

hubÞ

When we collect terms and simplify we get the following expressions:

FTstartup =
ρω2cCL

6
ðR3−R3

hubÞ
FTstartup �������������������������������

Tstartup =
ρω2cCD

8
ðR4−R4

hubÞ
Tstartup �������������������������������

This problem demonstrates the analysis of a
propeller using blade element theory. While
the expressions here seem relatively simple,
it is important to note that the lift and drag
coefficients, CL and CD, are functions of the
airfoil section being used, as well as the local
angle of attack, α, which for V =o is equal to
the blade inclination angle θ. In addition, it
should also be noted that when airfoil lift and
drag coefficients are presented, such as in
Figs. 9.17 or 9.19, they are typically given at
high Reynolds numbers, where the flow is
fully turbulent and the lift and drag are
insensitive to changes in speed. Care needs to
be taken to make sure that the lift and drag
coefficients used are appropriate for the
Reynolds number at startup.

11Pitch is defined as the distance a propeller would travel in still fluid per revolution if it advanced along the blade setting angle θ.
The pitch, H, of this blade element is equal to 2πr tan θ. To obtain constant pitch along the blade, θ must follow the relation,
tan θ=H=2πr, from hub to tip. Thus the geometric blade angle is smallest at the tip and increases steadily toward the root.
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In order to improve performance, some propellers are designed with variable pitch. The perfor-
mance of a variable-pitch propeller is shown in Fig. 10.44. This figure shows efficiency curves (solid
curves) for a propeller set to different pitch angles. As we saw in Fig. 10.43, the propeller exhibits a
maximum η at a certain value of J. However, the value of J needed for maximum η varies with θ. If
we trace out all of the maxima, the result is the dashed curve in Fig. 10.44. Therefore, if we allow
for the variation of θ, we may achieve improved efficiency over a wider range of J than with a
fixed-pitch propeller. Such a design, however, comes at the cost of the additional complexity in actuators

Example 10.17 SIZING A MARINE PROPELLER

Consider the supertanker of Example 9.5. Assume the total power required to overcome viscous resistance and wave drag is
11.4 MW. Use the performance characteristics of the marine propeller shown in Fig. 10.43a to estimate the diameter and
operating speed required to propel the supertanker using a single propeller.

Given: Supertanker of Example 9.5, with total propulsion power requirement of 11.4 MW to overcome viscous and wave drag,
and performance data for the marine propeller shown in Fig. 10.43a.

Find: (a) An estimate of the diameter of a single propeller required to power the ship.
(b) The operating speed of this propeller.

Solution: From the curves in Fig. 10.43a, at optimum propeller efficiency, the coefficients are

J =0:85, CF =0:10, CT =0:020, and η=0:66

The ship steams at V =6:69 m=s and requires �useful = 11:4MW. Therefore, the propeller thrust must be

FT =
�useful

V
=11:4× 106W ×

s
6:69m

×
N � m
W � s = 1:70MN

The required power input to the propeller is

�input =
�useful

η
=
11:4MW

0:66
= 17:3MW

From J =
V
nD

=0:85, then

nD=
V
J
=6:69

m
s
×

1
0:85

=7:87 m=s

Since

CF =
FT

ρn2D4 = 0:10=
FT

ρðn2D2ÞD2 =
FT

ρðnDÞ2D2

solving for D gives

D=
FT

ρðnDÞ2CF

" #1=2
= 1:70× 106 N×

m3

1025 kg
×

s2

ð7:87Þ2 m2
×

1
0:10

×
kg � m
N � s2

" #1=2

D=16:4 m
D ����������������������������������������������������

From nD=
V
J
=7:87 m=s, n=

nD
D

=7:87
m
s
×

1
16:4m

=0:480 rev=s
so that

n=
0:480 rev

s
× 60

s
min

= 28:8 rev=min n ��������������������
The required propeller is quite large, but still smaller than the 25 m draft of
the supertanker. The ship would need to take on seawater for ballast to keep
the propeller submerged when not carrying a full cargo of petroleum.

This problem illustrates the use of normal-
ized coefficient data for the preliminary
sizing of a marine propeller. This preliminary
design process would be repeated, using data
for other propeller types, to find the
optimum combination of propeller size,
speed, and efficiency.
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and control systems needed to implement the variable pitch, so the selection of this design depends on
the relative costs and benefits for the intended application.

Marine propellers tend to have high solidity. This packs a lot of lifting surface within the swept area
of the disk to keep the pressure difference small across the propeller and to avoid cavitation. Cavitation
tends to unload the blades of a marine propeller, reducing both the torque required and the thrust pro-
duced [6]. Cavitation becomes more prevalent along the blades as the cavitation number,

Ca=
p−pυ
1
2ρV

2
ð10:41Þ
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is reduced. Inspection of Eq. 10.41 shows that Ca decreases when p is reduced by operating near the free
surface or by increasing V . Those who have operated motor boats also are aware that local cavitation can
be caused by distorted flow approaching the propeller, e.g., from turning sharply.

Compressibility affects aircraft propellers when tip speeds approach the critical Mach number, at
which the local Mach number approaches M =1 at some point on the blade. Under these conditions,
torque increases because of increased drag, thrust drops because of reduced section lift, and efficiency
drops drastically.

If a propeller operates within the boundary layer of a propelled body, where the relative flow is
slowed, its apparent thrust and torque may increase compared with those in a uniform freestream at
the same rate of advance. The residual kinetic energy in the slipstream also may be reduced. The com-
bination of these effects may increase the overall propulsive efficiency of the combined body and pro-
peller. Advanced computer codes are used in the design of modern ships (and submarines, where noise
may be an overriding consideration) to optimize performance of each propeller/hull combination.

For certain special applications, a propeller may be placed within a shroud or duct. Such config-
urations may be integrated into a hull (e.g., as a bow thruster to increase maneuverability), built into
the wing of an aircraft, or placed on the deck of a hovercraft. Thrust may be improved by the favorable
pressure forces on the duct lip, but efficiency may be reduced by the added skin-friction losses encoun-
tered in the duct.

Wind-Power Machines

Windmills (or more properly, wind turbines) have been used for centuries to harness the power of natural
winds. Two well-known classical examples are shown in Fig. 10.45.

Dutch windmills (Fig. 10.45a) turned slowly so that the power could be used to turn stone wheels
for milling grain; hence the name “windmill.” They evolved into large structures; the practical maximum
size was limited by the materials of the day. Calvert [43] reports that, based on his laboratory-scale tests,
a traditional Dutch windmill of 26 m diameter produced 41 kW in a wind of 36 km=hr at an angular
speed of 20 rpm. American multi-blade windmills (Fig. 10.45b) were found on many American farms
between about 1850 and 1950. They performed valuable service in powering water pumps before rural
electrification.

The recent emphasis on renewable resources has revived interest in windmill design and
optimization. In 2008, the United States had over 25,000 MW of wind-based electric generation
capacity, which generated 52 million MWh of electricity, representing 1.26 percent of the total elec-
tric energy consumption for that year [44]. In addition, in 2008 the United States overtook Germany
to become the largest generator of wind-based electrical power in the world. Wind power accounts
for 42 percent of all new generating capacity, up from only 2 percent in 2004. America’s wind
belt, which stretches across the Great Plains from Texas to the Dakotas, has been dubbed the “Saudi
Arabia of wind” [45].

(a) Traditional Dutch Mill (b) American farm windmill

sl
av

ci
c/

Sh
ut

te
rs

to
ck

©
 p

ho
to

q
ue

st
7/

iS
to

ck
p

ho
to

Fig. 10.45 Examples of well-known windmills [42].
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Schematics of wind turbine configurations are shown in Fig. 10.46. In general, wind turbines are
classified in two ways. The first classification is the orientation of the turbine axis. Horizontal-axis wind
turbine (HAWT) and vertical-axis wind turbine (VAWT) configurations have been studied extensively.
Most HAWT designs feature two- or three-bladed propellers turning at high speed, mounted on a tower
along with its electric generator. The large modern HAWT, shown in Fig. 10.47a, is capable of produ-
cing power in any wind above a light breeze. The wind turbine shown in Fig. 10.47b is a VAWT. This
device uses a modern symmetric airfoil section for the rotor. Earlier designs of the VAWT, such as the
Darrieus troposkien shape,12 suffered from high bending stresses and pulsatory torques. More recent
designs, such as the one shown in this figure, feature helical airfoils, which distribute the torques more
evenly about the central axis. VAWTs feature a ground-mounted electric generator.

The second classification is how the wind energy is harnessed. The first group of turbines collects
wind energy through drag forces; these wind turbines are typically of the vertical axis configuration only.

Savonius Split Savonius Cup anemometer

Darrieus

Propeller

Horizontal axis
lift type

(wind into page)

Vertical axis
lift type

(wind left-right)

Vertical axis
drag type

(wind left-right)

Giromill Helical

U.S. farm multibladed

Fig. 10.46 Wind turbine configurations differentiated by axis orientation (horizontal versus vertical) and by nature of force
exerted on the active element (lift versus drag).

(a) Horizontal-axis wind turbine (b) Vertical-axis wind turbine
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Fig. 10.47 Examples of modern wind turbine designs.

12 This shape (which would be assumed by a flexible cord whirled about a vertical axis) minimizes bending stresses in the Darrieus
turbine rotor.
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The second group collects energy through lift forces. Lift-based wind turbines employ horizontal- or
vertical-axis configurations. It is important to note that most of these designs are self-starting. The
lift-type VAWT is not capable of starting from rest; it can produce usable power only above a certain
minimum angular speed. It is typically combined with a self-starting turbine, such as a Savonius rotor, to
provide starting torque [40, 46].

A horizontal-axis wind turbine may be analyzed as a propeller operated in reverse. The Rankine
model of one-dimensional flow incorporating an idealized actuator disk is shown in Fig. 10.48. The
simplified notation of the figure is frequently used for analysis of wind turbines.

The wind speed far upstream is V . The stream is decelerated to Vð1−aÞ at the turbine disk and to
Vð1−2aÞ in the wake of the turbine (a is called the interference factor). Thus the stream tube of air
captured by the wind turbine is small upstream and its diameter increases as it moves downstream.

Straightforward application of linear momentum to a CV, as shown in Example 10.18, predicts the
axial thrust on a turbine of radius R to be

FT =2πR2ρV2að1−aÞ ð10:42Þ
Application of the energy equation, assuming no losses (no change in internal energy or heat transfer),
gives the power taken from the fluid stream as

�=2πR2ρV3að1−aÞ2 ð10:43Þ
The efficiency of a wind turbine is most conveniently defined with reference to the kinetic energy

flux contained within a stream tube the size of the actuator disk. This kinetic energy flux is

KEF =
1
2
ρV3πR2 ð10:44Þ

Combining Eqs. 10.43 and 10.44 gives the efficiency (or alternatively, the power coefficient [47]) as

η=
�

KEF
=4að1−aÞ2 ð10:45Þ

Betz [see 47] was the first to derive this result and to show that the theoretical efficiency is maximized
when a=1=3. The maximum theoretical efficiency is η=0:593.

If the wind turbine is lightly loaded (a is small), it will affect a large mass of air per unit time, but the
energy extracted per unit mass will be small and the efficiency low. Most of the kinetic energy in the
initial air streamwill be left in the wake and wasted. If the wind turbine is heavily loaded ða≈1=2Þ, it will
affect a much smaller mass of air per unit time. The energy removed per unit mass will be large, but the
power produced will be small compared with the kinetic energy flux through the undisturbed area of the
actuator disk. Thus a peak efficiency occurs at intermediate disk loadings.

The Rankine model includes some important assumptions that limit its applicability [47]. First, the
wind turbine is assumed to affect only the air contained within the stream tube defined in Fig. 10.48.
Second, the kinetic energy produced as swirl behind the turbine is not accounted for. Third, any radial
pressure gradient is ignored. Glauert [see 41] partially accounted for the wake swirl to predict the
dependence of ideal efficiency on tip-speed ratio, X,

X =
Rω
V

ð10:46Þ

as shown in Fig. 10.49 (ω is the angular velocity of the turbine).

Turbine disk

Control volume

V V (1 – 2a)
V (1 – a)

Fig. 10.48 Control volume and simplified notation used to analyze wind turbine performance.
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As the tip-speed ratio increases, ideal efficiency increases, approaching the peak value ðη=0:593Þ
asymptotically. (Physically, the swirl left in the wake is reduced as the tip-speed ratio increases.) Aval-
lone et al. [46] presents a summary of the detailed blade-element theory used to develop the limiting
efficiency curve shown in Fig. 10.49.

Each type of wind turbine has its most favorable range of application. The traditional American
multibladed windmill has a large number of blades and operates at relatively slow speed. Its solidity,
σ (the ratio of blade area to the swept area of the turbine disk, πR2), is high. Because of its relatively
slow operating speed, its tip-speed ratio and theoretical performance limit are low. Its relatively poor
performance, compared with its theoretical limit, is largely caused by use of crude blades, which are
simply bent sheet metal surfaces rather than airfoil shapes.

It is necessary to increase the tip-speed ratio considerably to reach a more favorable operating range.
Modern high-speed wind-turbine designs use carefully shaped airfoils and operate at tip-speed ratios up
to 7 [48].

Savonius
rotor

American
farm

windmill

Modern
multiblade

turbine

Darrieus
rotor

Ideal efficiency
of propeller-type
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Fig. 10.49 Efficiency trends of wind turbine types
versus tip-speed ratio, based on Reference [43].

Example 10.18 PERFORMANCE OF AN IDEALIZED WINDMILL

Develop general expressions for thrust, power output, and efficiency of an idealized windmill, as shown in Fig. 10.48. Calculate
the thrust, ideal efficiency, and actual efficiency for the Dutch windmill tested by Calvert (D=26m, N =20 rpm, V =36 km=hr,
and �output = 41 kW).

Given: Idealized windmill, as shown in Fig. 10.48, and Dutch windmill tested by Calvert:

D=26 m N =20 rpm V =36 km=hr �output = 41 kW

Find: (a) General expressions for the ideal thrust, power output, and efficiency.
(b) The thrust, power output, and ideal and actual efficiencies for the Dutch windmill tested by Calvert.

Solution: Apply the continuity, momentum (x component), and energy equations, using the CV and coordinates shown.

Streamline

Rx

V2 V3V1 D
D3

y

x

Windmill disk

CV
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Governing equations:

∂
∂t��

�!

Z
CV

ρdVþ
Z
CS
ρV
! � dA!¼ 0

¼0 3ð Þ

FSx þFBx��
�!¼ ∂

∂t��
�!

Z
CS
uρdVþ

Z
CS
uρV

! � dA!
¼0 2ð Þ ¼0 3ð Þ

_Q
��
�!− _Ws¼ ∂

∂t��
�!

Z
CV

eρdVþ
Z
CS

eþp
ρ

� �
ρV
! � dA!

¼0 7ð Þ ¼0 3ð Þ

Assumptions:

1 Atmospheric pressure acts on CV; FSx =Rx.

2 FBx =0.

3 Steady flow.

4 Uniform flow at each section.

5 Incompressible flow of standard air.

6 V1−V2 =V2−V3 = 1
2ðV1−V3Þ, as shown by Rankine.

7 Q=0.

8 No change in internal energy for frictionless incompressible flow.

In terms of the interference factor, a,V1 =V ,V2 = ð1−aÞV , and V3 = ð1−2aÞV .
From continuity, for uniform flow at each cross section, V1A1 =V2A2 =V3A3.
From momentum,

Rx = u1ð−ρV1A1Þ+ u3ð+ ρV3A3Þ= ðV3−V1ÞρV2A2 fu1 =V1,u3 =V3g
Rx is the external force acting on the control volume. The thrust force exerted by the CV on the surroundings is

Kx = −Rx = ðV1−V3ÞρV2A2

In terms of the interference factor, the equation for thrust may be written in the general form,

Kx = ρV2πR22að1−aÞ Kx ���������������������������������
(Set dKx=da equal to zero to show that maximum thrust occurs when a= 1

2.)
The energy equation becomes

− _Ws =
V2
1

2
ð−ρV1A1Þ+ V2

3

2
ð+ ρV3A3Þ= ρV2πR2 1

2
ðV2

3 −V2
1 Þ

The ideal output power, �, is equal to _Ws. In terms of the interference factor,

�= _Ws = ρVð1−aÞπR2 V2

2
−
V2

2
ð1−2aÞ2

	 

= ρV3ð1−aÞπR

2

2
½1−ð1−2aÞ2�

After simplifying algebraically,

�ideal = 2ρV3πR2að1−aÞ2 �ideal ������������������������������
The kinetic energy flux through a stream tube of undisturbed flow, equal in area to the actuator disk, is

KEF = ρVπR2V2

2
=
1
2
ρV3πR2

Thus the ideal efficiency may be written

η=
�ideal

KEF
=
2ρV3πR2að1−aÞ2

1
2ρV

3πR2
= 4að1−aÞ2 η ���������������������
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Theanalysis of aVAWTis slightly different from that of aHAWT.Themain reason for this difference
can be seen in Fig. 10.50. In this figure, a cross section of one airfoil in aDarrieus turbine is shown rotating
about the turbine axis. Assuming that the wind emanates from a constant direction, the airfoil angle of
attack α will be a function of the azimuthal angle θ. The angle of attack is due to the relation between
the effective velocity vector and the rotational direction. As θ varies, αwill vary as well until it reaches a
maximum value when θ is equal to 90�. In that configuration, the angle of attack is expressed by:

αm = tan−1 V
Rω

ð10:47aÞ

Equation 10.47a states that the maximum angle of attack is related to the wind velocity, the angular
velocity of the rotor, and the local rotor radius. In terms of the tip speed ratio X from Eq. 10.46,
Eq. 10.47a may then be rewritten as:

αm = tan−1 1
X

ð10:47bÞ

Since the maximum angle of attack must be less than that for stall (10�−15� for most typical airfoils), it
follows that X should be a large number (at least on the order of 6). The lift and drag forces (L and D,

To find the condition for maximum possible efficiency, set dη=da equal to zero. The maximum efficiency is η=0:593, which
occurs when a=1=3.

The Dutch windmill tested by Calvert had a tip-speed ratio of

X =
NR
V

=20
rev
min

× 2π
rad
rev

×
min
60 s

×13 m×
s

10 m
=2:72

X ����������������������������
The maximum theoretically attainable efficiency at this tip-speed ratio, accounting for swirl (Fig. 10.44), would be about 0.53.

The actual efficiency of the Dutch windmill is

ηactual =
�actual

KEF

Based on Calvert’s test data, the kinetic energy flux is

KEF =
1
2
ρV3πR2

=
1
2
× 1:23

kg
m3 × ð10Þ

3m3

s3
× π × ð13Þ2 m2 ×

N � s2
kg � m ×

W � s
N � m

KEF = 3:27× 105 W or 327 kW

Substituting into the definition of actual efficiency,

ηactual =
41 kW
327 kW

=0:125
ηactual ������������������������

Thus the actual efficiency of the Dutch windmill is about 24 percent of the maximum efficiency theoretically attainable at this tip-
speed ratio.

The actual thrust on the Dutch windmill can only be estimated, because the interference factor, a, is not known. The maximum
possible thrust would occur at a=1=2, in which case,

Kx = ρV2πR2 2að1−aÞ
=1:23

kg
m3 × ð10Þ

2m2

s2
× π × ð13Þ2m2 × 2

1
2

� �
1−

1
2

� �
×

N � s2
kg �m

Kx = 3:27× 104 N or 32:7 kN
Kx ����������������������

This does not sound like a large thrust force, considering the size ðD=26 mÞ
of the windmill. However, V =36 km=hr is only a moderate wind. The
actual machine would have to withstand much more severe wind conditions
during storms.

This problem illustrates application of the
concepts of ideal thrust, power, and effi-
ciency for a windmill, and calculation of these
quantities for an actual machine.
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respectively) acting on the airfoil can be seen in Fig. 10.50. These aerodynamic forces generate a torque
on the rotor. The torque on the rotor at a given value of α is:

T =ωRðL sin α−D cos αÞ ð10:48Þ
Now if the airfoil section being employed is symmetric (zero camber), then the lift coefficient is linearly
proportional to the angle of attack [49]:

CL =mα ð10:49Þ
In Eq. 10.49, m is the slope of the lift curve, and is specific to the airfoil being used. In addition, the drag
coefficient may be approximated by:

CD =CD,0 +
C2
L

πAR
ð9:43Þ

In this expression, CD,0 is the drag coefficient at zero angle of attack, and AR is the aspect ratio of the
airfoil. Now since the air velocity relative to the rotor is a function of α, which depends on θ, it follows
that the lift and drag forces are functions of θ as well. Therefore, any quantification of rotor performance
needs to be averaged over the entire range of θ. Decher [40] derived an expression for the efficiency
of the rotor based on lift and drag effects, ηL=D. This expression is defined as the useful work out
(the torque in Eq. 10.48) divided by the available power in the wind. In terms of the lift and drag, this
expression is:

ηL=D =
RωðL sin α−D cos αÞ
VðL cos α+D sin αÞ

The overbars in this equation indicate average values of those quantities. Since the lift and drag forces on
the rotor change with θ, a time average of the forces needs to be calculated by integrating. Now once we
substitute Eqs. 10.49 and 9.43 into this expression and average over a full revolution of the rotor
ð0≤ θ≤ 2πÞ, the efficiency becomes:

ηL=D =
1−CD,0

2
CD,0AR

+
4X3

1+X2

� �
1+CD,0

1
2π

+
3

2CD,0ARX2

� � ð10:50Þ

DL

V

V

V
rel

V
rel

θα

α
θ

αm

Rω  XV

Rω

θ α

θ π/2

Fig. 10.50 Velocities around a Darrieus rotor blade element at a general azimuthal angle θ, as well as at θ= π=2, where the
airfoil angle of attack is maximized.
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This efficiency modifies the efficiency based on actuator disk theory (Eq. 10.45) for an estimate of the
overall efficiency of the rotor:

η≈ηact diskηL=D ð10:51Þ

One must keep in mind, however, that in order to determine the efficiency of a complete rotor, one must
add the contributions to the torque over the entire rotor. Since different parts of the rotor have different
radii (different values of R), they will have different values of X. Based on Eq. 10.50, one might realize
that the portions of the rotor with small radii will contribute very little to the torque compared to central
portions of the rotor. In Example 10.19, performance characteristics of a VAWT are determined.

Example 10.19 ANALYSIS OF A GIROMILL

A Giromill wind turbine (see Fig. 10.46) has a height of 140 ft and a diameter of 110 ft. The airfoil section being used is a con-
stant-width symmetric section with a stall angle of 12� and an aspect ratio of 50. Over the normal range of operation the airfoil lift
coefficient can be described by the equation CL =0:1097α, where α is the angle of attack in degrees. The drag coefficient at zero
angle of attack is 0.006, and at other angles of attack the drag coefficient can be approximated by Eq. 9.43. If the Giromill rotates
at 24 rpm, calculate the maximum allowable wind speed to avoid stall on the airfoil section. If the power generated at this min-
imum speed condition is 160 hp, what is the efficiency of the turbine?

Given: Giromill wind turbine
Height: 140 ft
Diameter: 100 ft
Minimum rotation speed: 24 rpm
Power: 160 hp
Airfoil is symmetric
Stall angle: 12�

Aspect ratio: 50
Lift coefficient is linear; CL=0:1097α (α is in degrees)
Drag coefficient is parabolic, CD,0 = 0:006

Find: (a) Maximum allowable wind speed to prevent stall.
(b) Turbine efficiency.

Solution: Apply the equations presented above to the turbine:

Governing equations:

αm = tan−1 V
ωR

= tan−1 1
X

ð10:47a;bÞ

KEF =
1
2
ρV3πR2 ð10:44Þ

η=
�

KEF
ð10:45Þ

CD =CD,0 +
C2
L

πAR
ð9:43Þ

ηL=D =
1−CD,0

2
CD,0AR

+
4X3

1 +X2

� �
1+CD,0

1
2π

+
3

2CD,0ARX2

� � ð10:50Þ

η≈ηact diskηL=D ð10:51Þ
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10.7 Compressible Flow Turbomachines
While the interaction of incompressible fluids with turbomachines is an important topic, both from a
phenomenological and a practical point of view, there are many instances in which the flow through
a turbomachine will experience significant changes in density. This is especially important in gas turbine
(Brayton cycle) power generation (for both stationary and mobile power plants) and in steam turbine
(Rankine cycle) power generation. We will investigate the modifications to the governing equations
and dimensional analyses necessary in compressible flow applications. Where necessary, the reader
is directed to the appropriate sections in Chapter 12 for further clarification.

Application of the Energy Equation to a Compressible Flow Machine

In Chapter 4 we looked at the first law of thermodynamics for an arbitrary control volume. The result was
the energy equation, Eq. 4.56,

_Q − _Ws− _Wshear− _Wother =
∂
∂t

Z
CV

eρdV--- +
Z
CS

u+ pυ+
V2

2
+ gz

� �
ρV
! � dA! ð4:56Þ

Assumption:
Standard atmosphere: ρ=0:002377 slug=ft3

(a) To find the maximum speed, we solve Eq. 47a for the velocity:

V =Rω tan αm =55 ft × 24
rev
min

×
2π rad
rev

×
min
60 s

× tan 12� =29:4
ft
s
×

mi
5280 ft

×
3600 s
hr

= 20:0 mph

V =20:0 mph V ��������������������������������������������������������
(b) To determine the efficiency, we find the actuator disk efficiency and the lift/drag efficiency, per Eq. 10.51. To calculate the

actuator disk efficiency, first we find the kinetic energy flux:

KEF =
1
2
ρV3πR2 =

π

2
× 0:002377

slug
ft3

× 29:4
ft
s

� �3

× ð55 ftÞ2 × lbf � s2
slug � ft ×

hp � s
550 ft � lbf = 521 hp

Therefore, the actuator disk efficiency is:

η=
�

KEF
=
160
521

= 0:307

To find the lift/drag efficiency of the rotor, we need to find the tip speed ratio:

X =
1

tan αm
=

1
tan 12�

=4:705

Taking this value for X and the given data, we can calculate the lift/drag efficiency:

ηL=D =
1−CD,0

2
CD,0AR

+
4X3

1+X2

� �
1+CD,0

1
2π

+
3

2CD,0ARX2

� �

=
1−0:006 ×

2
0:006× 50

+
4× 4:7053

1+ 4:7052

� �
1+ 0:006×

1
2π

+
3

2× 0:006× 50× 4:7052

� � =0:850

So the overall efficiency is:

η≈ηact diskηL=D =0:307× 0:850= 0:261
η ��������������������

This problem demonstrates the analysis of a
VAWT, provided that the airfoil section used
is below the stall angle. A more detailed
analysis would be needed if a different type
of section, such as the Darrieus turbine, were
used, since the rotor radius is not constant.
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Equation 4.56 states that the heat added to the system, minus the work done by the system results in an
increase in energy for the system. In this equation, the work done by the system is assumed to consist of
three parts. The first, known as “shaft work,” is the useful work input/output we consider in the analysis
of turbomachines. The second is the work done by fluid shear stresses at the control volume surface. The
third, referred to as “other work,” includes sources such as electromagnetic energy transfer.

We will now simplify Eq. 4.56 for compressible flow turbomachinery. First, turbomachines typi-
cally run at conditions such that heat transfer with the surroundings are minimized, and so the heat trans-
fer term may be ignored. Second, work terms other than shaft work should be negligibly small, and so
they can be ignored as well. Third, changes in gravitational potential energy should be small, and so that
term can be dropped from the surface integral. Since enthalpy is defined as h≡ u+ pυ, for steady flow,
Eq. 4.56 becomes

_Ws = −
Z
CS

h+
V2

2

� �
ρV
! � dA!

At this point, we introduce the stagnation enthalpy13 as the sum of the fluid enthalpy and kinetic energy:

h0 = h+
V2

2
Therefore, we may rewrite the energy equation as:

_Ws = −
Z
CS
h0ρV

! � dA! ð10:52aÞ

Equation 10.52a states that, for a turbomachine with work input, the power required causes an increase
in the stagnation enthalpy in the fluid; for a turbomachine with work output, the power produced is due to
a decrease in the stagnation enthalpy of the fluid. In this equation, _Ws is positive when work is being
done by the fluid (as in a turbine), while _Ws is negative when work is being done on the fluid (as in a
compressor).

It is important to note that the sign convention used in this equation appears to be contrary to that
used in the Euler turbomachine equation, developed in Section 10.2. If you recall, in Eq. 10.2a a positive
value of _Wp indicated work done on the fluid, while a negative value indicated work done by the fluid.
The difference to remember is that _WS is the mechanical power exerted by the working fluid on its sur-
roundings, i.e., the rotor, whereas _Wp is the mechanical power exerted on the working fluid by the rotor.
Keeping this distinction in mind, it makes perfect sense that these two quantities would have equal mag-
nitudes and opposite signs.

The integrand on the right side of Eq. 10.52a is the product of the stagnation enthalpy with the mass
flow rate at each section. If we make the additional assumption of uniform flow into the machine at
section 1, and out of the machine at section 2, Eq. 10.52a becomes

_Ws = −ðh02 −h01Þ _m ð10:52bÞ

Compressors

Compressorsmay be centrifugal or axial, depending on specific speed. Automotive turbochargers, small
gas-turbine engines, and natural-gas pipeline boosters usually are centrifugal. Large gas and steam tur-
bines and jet aircraft engines (as seen in Figs. 10.3 and 10.4b) frequently are axial-flow machines.

Since the flow through a compressor will see a change in density, the dimensional analysis pre-
sented for incompressible flow is no longer appropriate. Rather, we quantify the performance of a
compressor through Δh0s , the ideal rise in stagnation enthalpy of the flow,14 the efficiency η, and the
power �. The functional relationship is:

Δh0s , η,�= f ðμ, N, D, _m, ρ01 , c01 , kÞ ð10:53Þ

13 See Section 12.3 for a discussion of the stagnation state.
14 In Section 12.1, it is demonstrated that an adiabatic and reversible process is isentropic. It can be proven that an isentropic com-
pression results in the minimum power input between two fixed pressures, and an isentropic expansion results in the maximum
power output between two fixed pressures. Therefore, the isentropic compression/expansion process is considered the ideal for
compressors and turbines, respectively [50].
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In this relation, the independent variables are, in order, viscosity, rotational speed, rotor diameter, mass
flow rate, inlet stagnation density, inlet stagnation speed of sound, and ratio of specific heats.

If we apply the Buckingham Pi theorem to this system, the resulting dimensionless groups are:

Π1 =
Δh0s
ðNDÞ2 Π2 =

�

ρ01N
3D5

Π3 =
_m

ρ01ND
3 Π4 =

ρ01ND
2

μ

Π5 =
ND
c01

Since the efficiency η and ratio of specific heats k are dimensionless quantities, they can be thought
of as Π-terms. The resulting functional relationships are:

Δh0s
ðNDÞ2 ,η,

�

ρ01N
3D5 = f1

_m
ρ01ND

3 ,
ρ01ND

2

μ
,
ND
c01

,k
� �

ð10:54aÞ

This equation is actually an expression of three separate functions; that is, the terms Π1 = Δh0s=ðNDÞ2,η
and Π2 =�=ρ01N

3D5 are all functions of the other dimensionless quantities. Δh0s=ðNDÞ2 is a measure
of the energy change in the flow and is the compressible analog to the head coefficient Ψ (Eq. 10.6).
�=ρ01N

3D5 is a power coefficient, similar to that in Eq. 10.8. _m=ρ01ND
3 is a mass flow coefficient,

analogous to the incompressible flow coefficient Φ (Eq. 10.5). ρ01ND
2=μ is a Reynolds number based

on rotor tip speed, and ND=c01 is a Mach number based on rotor tip speed. Using the relationships for
isentropic processes and for the compressible flow of a perfect gas, we can make some simplifications.
As a result, Eq. 10.54a may be rewritten as:

p02
p01

,η,
ΔT0
T01

= f2
_m
ffiffiffiffiffiffiffiffiffi
RT01
p
p01D2 ,Re,

NDffiffiffiffiffiffiffiffiffi
RT01
p ,k

� �
ð10:54bÞ

The functional relationships presented here can be used in the manner seen both in Chapter 7 and
earlier in this chapter to investigate scaling the performance of similar flowmachines. An example of this
is presented in Example 10.20.

Example 10.20 SCALING OF A COMPRESSOR

A 1/5 scale model of a prototype air compressor consuming 300 hp and running at a speed of 1000 rpm delivers a flow rate of
20 lbm=s through a pressure ratio of 5. At dynamically and kinematically similar conditions, what would the operating speed,
mass flow rate, and power consumption be for the full-scale prototype?

Given: 1/5 scale compressor model
Power: 300 hp
Speed: 1000 rpm
Pressure ratio: 5
Mass flow rate: 50 lbm=s

Find: Prototype speed, mass flow rate, and power consumption at similar conditions.

Solution: Apply the equations presented above and the concepts presented in Chapter 7 on similitude to the compressor:

Governing equations:

ND
c01

� �
p
=

ND
c01

� �
m
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Since most operability studies are performed on a single compressor design without scaling, and,
using the same working fluid, all variables related to the scale and the fluid (specifically, D, R, and k)
may be eliminated from the functional relationship. In addition, empirical studies have shown that, as in
the case study of the centrifugal pump in Chapter 7, for sufficiently high values of Reynolds number the
performance of the compressor is not dependent upon Reynolds number either; i.e., the flow is fully
turbulent in the compressor. Once these variables are eliminated, Eq. 10.54b becomes

p02
p01

,η,
ΔT0
T01

= f3
_m
ffiffiffiffiffiffiffi
T01
p
p01

,
Nffiffiffiffiffiffiffi
T01
p

� �
ð10:54cÞ

Note that this equation is no longer dimensionless. However, it is still useful in characterizing the
performance of a compressor, provided the performance is assessed for a single machine using a single
working fluid. The relationship portrayed in Eq. 10.54c is normally expressed in the form of a compres-
sor operability map, as shown in Fig. 10.51. On this map we can see the compression ratio versus mass
flow ratio ð _m ffiffiffiffiffiffiffi

T01
p

=p01Þ, with curves of constant normalized speed ðN= ffiffiffiffiffiffiffi
T01
p Þ and efficiency. Often, the

abscissa is a “corrected mass flow”:

_mcorr =
_m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T01=Tref

p
p01=pref

and the lines of constant compressor speed are a “corrected speed”:

Ncorr =
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T01=Tref
p

_m
ρ01ND

3

� �
p

=
_m

ρ01ND
3

� �
m

�

ρ01N
3D5

� �
p

=
�

ρ01N
3D5

� �
m

Assumption:
Similar entrance conditions for both model and prototype.
Similar entrance conditions would stipulate that the stagnation sound speed and density would be equal for both the model and

the prototype. Solving the first equation for the prototype speed:

Np =Nm
Dm

Dp

c01p
c01m

=1000 rpm×
1
5
× 1= 200 rpm

Np =200 rpm
Np �������������������������������

Solving the second equation for the prototype mass flow rate:

_mp = _mm

ρ01p
ρ01m

Np

Nm

Dp

Dm

� �3

= 20
lbm
s

×
200
1000

×
5
1

� �3

= 500
lbm
s

_m p =500 lbm=s
_mp �������������������������������

To calculate the power requirement for the prototype:

�p =�m

ρ01p
ρ01m

Np

Nm

� �3 Dp

Dm

� �5

= 300 hp×
200
1000

� �3

×
5
1

� �5

= 7500 hp

�p =7500 hp
Pp ��������������������������������������

This problem demonstrates the scaling of
compressible flow machines. Note that if the
working fluid for the two different scale
machines were different, e.g., air versus
helium, the effects of different gas constants
and specific heat ratios would have to be
taken into account.
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In these expressions, Tref and pref are reference pressure and temperature (usually standard condi-
tions one would expect at the entrance of such a machine). This allows the user to read the chart quickly
in terms of “real” physical quantities and to be able to make adjustments for varying entrance conditions
with a minimum of calculation. The operating line is the locus of points of maximum efficiency for a
given mass flow. It is important to note that the compressor operability map of Fig. 10.51 bears a striking
resemblance to the pump operability map of Fig. 10.14. Not only do both figures show the performance
of a turbomachine performing work on a fluid, but the data are plotted in a similar fashion; level curves of
constant efficiency are plotted on a plane of work output (head for the pump, pressure ratio for the com-
pressor) versus flow input (volumetric flow rate for the pump, mass flow rate for the compressor).

This figure shows two of the phenomena that must be avoided in the operation of a compressor. The
first is choking, which is experiencedwhen the localMach number at some point in the compressor reaches
unity.15 To explain choking in a physical sense, imagine that we run the compressor at constant speed and
constant inlet pressure and that we can directly control the compressor exit pressure. On the compressor
map,wewould be traveling along a line of constant normalized speed. If wewere to lower the exit pressure,
the pressure ratio would decrease. If the compressor speed remains constant, themass flow increases. How-
ever, we see that the lines of constant normalized speed turn downward if the mass flow rate is increased
beyond a certain value, indicating a maximum possible flow rate for a given rotor speed, and the compres-
sor is choked. When choking occurs, it is impossible to increase mass flow without increasing rotor speed.

The second phenomenon is surge, which is a cyclic pulsation phenomenon that causes the mass
flow rate through the machine to vary, and can even reverse it! Surge occurs when the pressure ratio
in the compressor is raised beyond a certain level for a given mass flow rate. As pressure ratio increases,
the adverse pressure gradient across the compressor increases as well. This increase in pressure gradient
can cause boundary-layer separation on the rotor surfaces and constrict flow through the space between
two adjacent blades.16 Therefore, the extra flow gets diverted to the next channel between blades. The
separation is relieved in the previous channel and moves to the next channel, causing the cyclic pulsation
mentioned above. Surge is accompanied by loud noises and can damage the compressor or related com-
ponents; it too must be avoided. Fig. 10.51 shows the surge line, the locus of operating conditions
beyond which surge will occur.

In general, as shown in Fig. 10.51, the higher the performance, the more narrow the range in which
the compressor may be operated successfully. Thus a compressor must be carefully matched to its flow
system to assure satisfactory operation. Compressor matching in natural gas pipeline applications is dis-
cussed by Vincent-Genod [51]. Perhaps the most common application of high-speed fluid machinery
today is in automotive turbochargers (worldwide many millions of cars are sold each year with turbo-
chargers). Automotive turbocharger matching is described in manufacturers’ literature [52].
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Fig. 10.51 Typical performance map for a compressor.

15 Choking is also described from the standpoint of nozzle flow in Section 12.6.
16 Boundary layer separation due to adverse pressure gradients is discussed in Section 9.5.
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Compressible-Flow Turbines

The flow through a gas turbine is governed by the same general relationship as the compressor, but the
actual functional relationships are different. Figure 10.52 shows the performance map for a compressible
flow turbine. As in the case for the compressor the turbine map shows lines of constant normalized speed
on a graph of pressure ratio versus normalized mass flow rate. The most striking difference between this
map and that for the compressor is that the performance is a very weak function of N=

ffiffiffiffiffiffiffi
T01
p

; the curves
are set very close together. The choking of the turbine flow is well-defined on this map: There is a nor-
malized mass flow that cannot be exceeded in the turbine, regardless of the pressure ratio.

10.8 Summary and Useful Equations
In this chapter, we:

✓ Defined the two major types of fluid machines: positive displacement machines and
turbomachines.

✓ Defined, within the turbomachine category, radial, axial, and mixed-flow types, pumps, fans,
blowers, compressors, and impulse and reaction turbines.

✓ Discussed various features of turbomachines, such as impellers, rotors, runners, scrolls
(volutes), compressor stages, and draft tubes.

✓ Used the angular-momentum equation for a control volume to derive the Euler turbomachine
equation.

✓ Drew velocity diagrams and applied the Euler turbomachine equation to the analysis of
various idealized machines to derive ideal torque, head, and power.

✓ Evaluated the performance—head, power, and efficiency—of various actual machines from
measured data.

✓ Defined and used dimensionless parameters to scale the performance of a fluid machine from
one size, operating speed, and set of operating conditions to another.

✓ Discussed various defining parameters, such as pump efficiency, solidity, hydraulic power,
mechanical power, turbine efficiency, shutoff head, shock loss, specific speed, cavitation,
NPSHR, and NPSHA.

✓ Examined pumps for their compliance with the constraint that the net positive suction head
available exceeds that required to avoid cavitation.

✓ Matched fluidmachines for doing work on a fluid to pipe systems to obtain the operating point
(flow rate and head).

✓ Predicted the effects of installing fluidmachines in series and parallel on the operating point of
a system.

✓ Discussed and analyzed turbomachines without housings, namely propellers and wind
turbines.

✓ Discussed the use and performance of compressible flow turbomachines.
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Fig. 10.52 Typical performance map for a compressible flow turbine.
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With these concepts and techniques, we learned how to use manufacturers’ literature and other
data to perform preliminary analyses and make appropriate selections of pumps, fans, hydraulic
and wind turbines, and other fluid machines.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to
refer to their page numbers for details!

Useful Equations
Euler turbomachine
equation:

Tshaft = ðr2Vt2 −r1Vt1Þ _m (10.1c) Page 418

Turbomachine theoretical
power:

_Wm = ðU2Vt2 −U1Vt1Þ _m (10.2b) Page 419

Turbomachine theoretical
head: H =

_Wm

_mg
=

1
g
ðU2Vt2 −U1Vt1Þ

(10.2c) Page 419

Pump power, head, and
efficiency:

_Wh = ρQgHp

Hp =
p
ρg

+
V 2

2g
+ z

 !
discharge

−
p
ρg

+
V 2

2g
+ z

 !
sution

ηp =
_Wh

_Wm
=
ρQgHp

ωT

(10.3a)

(10.3b)

(10.3c)

Page 422

Turbine power, head, and
efficiency:

_Wh = ρQgHt

Ht =
p
ρg

+
V 2

2g
+ z

 !
inlet

−
p
ρg

+
V 2

2g
+ z

 !
outlet

ηt =
_Wm

_Wh

ωT
ρQgHt

(10.4a)

(10.4b)

(10.4c)

Page 422

Page 423

Dimensionless flow
coefficient:

Φ=
Q

A2U2
=
Vn2

U2

(10.5) Page 423

Dimensionless head
coefficient:

Ψ=
gH
U2

2

(10.6) Page 423

Dimensionless torque
coefficient:

τ=
T

ρA2U2
2R2

(10.7) Page 423

Dimensionless power
coefficient: Π=

_W
ρQU2

2
=

_W
ρω2QR2

2

(10.8) Page 424

Centrifugal pump specific
speed (in terms of head h): NS =

ωQ1=2

h3=4
(7.22a) Page 424

Centrifugal pump specific
speed (in terms of
head H):

NScu =
NðrpmÞ½QðgpmÞ�1=2

½HðftÞ�3=4
(7.22b) Page 424

Centrifugal turbine
specific speed (in terms of
head h):

NS =
ω

h3=4
�

ρh

� �1=2

=
ω�1=2

ρ1=2h5=4
(10.13a) Page 425

Centrifugal turbine
specific speed (in terms of
head H):

NScu =
NðrpmÞ½�ðhpÞ�1=2
½HðftÞ�5=4

(10.13b) Page 425
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Table (Continued)

Axial-flow turbomachine
ideal performance:

Tshaft =RmðVt2 −Vt1Þ _m
_Wm =UðVt2 −Vt1Þ _m

H =
_Wm

_mg
=
U
g
ðVt2 −Vt1Þ

(10.20)

(10.21)

(10.22)

Page 430

Propeller thrust:
FT = qN

Z R

Rhub

ðCLcosϕ−CDsinϕÞ
sin 2ϕ

cdr
(10.38a) Page 478

Propeller torque:
T = qN

Z R

Rhub

ðCLsinϕ+CDcosϕÞ
sin 2ϕ

rcdr
(10.38b) Page 478

Propeller speed of
advance coefficient:

J ≡ V
nD (10.39) Page 479

Propeller thrust, torque,
power, and efficiency
coefficients:

CF =
FT

ρn2D4 , CT =
T

ρn2D5 ,

CP =
�

ρn3D5 , η=
FTV
�input

(10.40) Page 479

Cavitation number: Ca=
p−pv
1
2ρV

2
(10.41) Page 481

Actuator disk efficiency:
η=

�

KEF
=4að1−aÞ2 (10.45) Page 484

Tip-speed ratio
X =

Rω
V

(10.46) Page 484

VAWT efficiency:

ηL=D =
1−CD,0

2
CD,0AR

+
4X3

1 +X2

� �
1+CD,0

1
2π

+
3

2CD,0ARX2

� �
η≈ηact diskηL=D

(10.50)

(10.51)

Page 488

Page 489

Energy equation for
compressible flow
turbomachine:

_Ws = −ðh02 −h01Þ _m (10.52b) Page 591

Performance parameters
for compressible flow
turbomachine:

p02
p01

,η,
ΔT0
T01

= f3
_m
ffiffiffiffiffiffiffi
T01
p
p01

,
Nffiffiffiffiffiffiffi
T01
p

� �
(10.54c) Page 493
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P R O B L E M S

Introduction and Classification of Fluid
Machines; Turbomachinery Analysis
10.1 The geometry of a centrifugal water pump is r1 = 10 cm,
r2 = 20 cm, b1 = b2 = 4 cm, β1 = 30�, β2 = 15�, and it runs at speed
1600 rpm. Estimate the discharge required for axial entry, the power
generated in the water in watts, and the head produced.

10.2 Find the resulting Π-groups when (a) D, ρ, and Q or (b) H, ρ,
and Q are the repeating variables in the analysis of a turbomachine
where the relevant variables are P, D, N, Q, H, μ, ρ, and E (see
Chapter 7). Discuss how to interpret each lI obtained.

10.3 Consider the centrifugal pump impeller dimensions given in
Example 10.1. Estimate the ideal head rise and mechanical power
input if the outlet blade angle is changed to 60�,70�,80�,or 85�.

10.4 Dimensions of a centrifugal pump impeller are

Parameter Inlet, Section Outlet, Section
Radius, r (in.) 15 45
Blade width, b (in.) 4.75 3.25
Blade angle, β (deg) 40 60

The pump is driven at 575 rpm and the fluid is water. Calculate the
theoretical head andmechanical power if the flow rate is 80,000 gpm.

10.5 Dimensions of a centrifugal pump impeller are

Parameter Inlet, Section Outlet, Section
Radius, r (in.) 3 9.75
Blade width, b (in.) 1.5 1.125
Blade angle, β (deg) 60 70

The pump is driven at 1250 rpm while pumping water. Calculate the
theoretical head and mechanical power input if the flow rate is
1500 gpm.

10.6 The blade is one of a series. Calculate the force exerted by the
jet on the blade system.

30 m/s

50 mm d water jet

45 m/s

P10.6

10.7 This blade is one of a series. What force is required to move the
series horizontally against the direction of the jet of water at a veloc-
ity of 15 m=s? What power is required to accomplish this motion?

V = 30 m/s 50 mm 60°

P10.7

10.8 A centrifugal water pump, with 15-cm-diameter impeller and
axial inlet flow, is driven at 1750 rpm. The impeller vanes are back-
ward curved ðβ2 = 65�Þ and have axial width b2 = 2 cm. For a volume
flow rate of 225 m3=hr determine the theoretical head rise and power
input to the pump.

10.9 Consider the centrifugal pump impeller dimensions given in
Example 10.1. Construct the velocity diagram for shockless flow
at the impeller inlet, if b=constant. Calculate the effective flow angle
with respect to the radial impeller blades for the case of no inlet swirl.
Investigate the effects on flow angle of (a) variations in impeller
width and (b) inlet swirl velocities.

10.10A centrifugal water pump designed to operate at 1300 rpm has
dimensions

Parameter Inlet Outlet
Radius, r (mm) 100 175
Blade width, b (mm) 10 7.5
Blade angle, β (deg) 40

Draw the inlet velocity diagram for a volume flow rate of 35 L=s.
Determine the inlet blade angle for which the entering velocity has
no tangential component. Draw the outlet velocity diagram. Deter-
mine the outlet absolute flow angle (measured relative to the normal
direction). Evaluate the hydraulic power delivered by the pump if
its efficiency is 75 percent. Determine the head developed by
the pump.

10.11 A series of blades, such as in Example 10.13, moving in the
same direction as a water jet of 25 mm diameter and of velocity
46 m=s, deflects the jet 75� from its original direction. What relation
between blade velocity and blade angle must exist to satisfy this con-
dition? What is the force on the blade system?

10.12 In passing through this blade system, the absolute jet velocity
decreases from 41.5 to 22:5 m=s. If the flow rate is 57 L=s of water,
calculate the power transferred to the blade system and the vertical
force component exerted on the blade system.

10.13 A centrifugal pump runs at 1750 rpm while pumping water at
a rate of 50 L=s. The water enters axially, and leaves tangential to the
impeller blades. The impeller exit diameter and width are 300 mm
and 10mm, respectively. If the pump requires 45 kW and is 75 percent
efficient, estimate the exit angle of the impeller blades.

10.14A centrifugal water pump designed to operate at 1200 rpm has
dimensions

Parameter Inlet Outlet
Radius, r (mm) 90 150
Blade width, b (mm) 10 7.5
Blade angle, β (deg) 25 45

Determine the flow rate at which the entering velocity has no tangen-
tial component. Draw the outlet velocity diagram, and determine the
outlet absolute flow angle measured relative to the normal direction
at this flow rate. Evaluate the hydraulic power delivered by the pump
if its efficiency is 70 percent. Determine the head developed by
the pump.

499Problems



10.15 Kerosene is pumped by a centrifugal pump. When the flow
rate is 350 gpm, the pump requires 18 hp input and its efficiency
is 82 percent. Calculate the pressure rise produced by the pump.
Express this result as (a) feet of water and (b) feet of kerosene.

Pumps, Fans, and Blowers
10.16 In the water pump of Problem 10.8, the pump casing acts as a
diffuser, which converts 60 percent of the absolute velocity head at
the impeller outlet to static pressure rise. The head loss through
the pump suction and discharge channels is 0.75 times the radial
component of velocity head leaving the impeller. Estimate the vol-
ume flow rate, head rise, power input, and pump efficiency at
the maximum efficiency point. Assume the torque to overcome
bearing, seal, and spin losses is 10 percent of the ideal torque
at Q=0:065 m3=s.

10.17 Use data from Appendix C to choose points from the perfor-
mance curves for a Peerless horizontal split case Type 16A18B
pump at 705 and 880 nominal rpm. Obtain and plot curve-fits of total
head versus delivery for this pump, with an 18.0-in.-diameter
impeller.

10.18Data from tests of a water suction pump operated at 2000 rpm
with a 12-in.-diameter impeller are

Flow rate, Q (cfm) 36 50 74 88 125
Total head, H (ft) 190 195 176 162 120
Power input,� (hp) 25 30 35 40 46

Plot the performance curves for this pump; include a curve of effi-
ciency versus volume flow rate. Locate the best efficiency point
and specify the pump rating at this point.

10.19 A centrifugal pump impeller having r1 = 50 mm,
r2 = 150 mm, and width b=3:75 mm is to pump 225 L=s of water
and supply 12.2 J of energy to each newton of fluid. The impeller
rotates at 1000 rpm. What blade angles are required? What power
is required to drive this pump? Assume radial flow at the inlet of
the impeller.

10.20A centrifugal pump impeller having dimensions and angles as
shown rotates at 500 rpm. Assuming a radial direction of velocity at
the blade entrance, calculate the flow rate, the pressure difference
between inlet and outlet of blades, and the torque and power required
to meet these conditions.

60°

45°

75 mm

300 mm

50 mm

ω

P10.20

10.21 An axial-flow fan operates in sea-level air at 1350 rpm and
has a blade tip diameter of 3 ft and a root diameter of 2.5 ft. The

inlet angles are α1 = 55�,β1 = 30�, and at the exit β2 = 60�. Estimate
the volumetric flow rate, horsepower, and the outlet angle, α2.

10.22 Data measured during tests of a centrifugal pump driven at
3000 rpm are

Parameter Inlet,
Section

Outlet,
Section

Gage pressure, p ðpsiÞ 12:5
Elevation above datum, z ðftÞ 6:5 32:5
Average speed of flow, V ðft=sÞ 6:5 15

The flow rate is 65 gpm and the torque applied to the pump shaft is
4.75 lbf � ft. The pump efficiency is 75 percent, and the electric motor
efficiency is 85 percent. Find (a) the electric power required and (b)
the gage pressure at section .

10.23 A small centrifugal pump, when tested at N =2875 rpm with
water, delivered Q=0:016 m3=s and H =40m at its best efficiency
point ðη=0:70Þ. Determine the specific speed of the pump at this test
condition. Sketch the impeller shape you expect. Compute the
required power input to the pump.

10.24 If the impeller of Problem 10.20 rotates between horizontal
planes of infinite extent and the flow rate is 25 L=s, what rise of
pressure may be expected between one point having r=150 mm
and another having r=225 mm?

10.25 At the outlet of a pump impeller of diameter 0.6 m and
width 150 mm, the absolute velocity is observed to be 30 m=s at
an angle of 60� with a radial line. Calculate the torque exerted on
the impelier.

10.26 Typical performance curves for a centrifugal pump, tested
with three different impeller diameters in a single casing, are shown.
Specify the flow rate and head produced by the pump at its best
efficiency point with a 12-in.-diameter impeller. Scale these data
to predict the performance of this pump when tested with 11-in.
and 13-in.-diameter impellers. Comment on the accuracy of the scal-
ing procedure.
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10.27 A pump withD=500 mm delivers Q=0:725 m3=s of water
at H =10m at its best efficiency point. If the specific speed of the
pump is 1.74, and the required input power is 90 kW, determine
the shutoff head, H0, and best efficiency, η. What type of pump is
this? If the pump is now run at 900 rpm, by scaling the perfor-
mance curve, estimate the new flow rate, head, shutoff head, and
required power.
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10.28 At its best efficiency point ðη=0:87Þ, a mixed-flow pump,
with D=16 in:, delivers Q=2500 cfm of water at H =140 ft when
operating at N =1350 rpm. Calculate the specific speed of this pump.
Estimate the required power input. Determine the curve-fit para-
meters of the pump performance curve based on the shutoff point
and the best efficiency point. Scale the performance curve to estimate
the flow, head, efficiency, and power input required to run the same
pump at 820 rpm.

10.29 Using the performance curves in Appendix C, select the
smallest diameter Peerless 8AE20G pump operating at 1770 rpm that
will deliver a flow of at least 2000 gpm for the pipeline shown. Deter-
mine the actual flow rate and the pump electrical power requirement.

El. 500 ft

20,000 ft

D = 2 ft

f = 0.020

El. 200 ft

P10.29

10.30 A pump (Peerless 8AE20G, Appendix C) operates at 1775
rpm and has the 20-in. inch impeller. It supplies the pipe-line below
while operating at maximum efficiency. Find the pipeline loss coef-
ficient K in the equation hL =KQ2, withQ in gpm, for this condition.
Neglect local losses.

If two of these pumps operate in parallel, what is the flow rate
between the two reservoirs? Assume the pipeline K value remains
unchanged.

El. 400 ft

El. 100 ft

P10.30

10.31A pumping system must be specified for a lift station at a was-
tewater treatment facility. The average flow rate is 110 million liters
per day and the required lift is 10 m. Non-clogging impellers must be
used; about 65 percent efficiency is expected. For convenient instal-
lation, electric motors of 37.5 kW or less are desired. Determine the
number of motor/pump units needed and recommend an appropriate
operating speed.

10.32 A centrifugal water pump operates at 1750 rpm; the impeller
has backward-curved vanes with β2 = 60� and b2 = 1:25 cm. At a
flow rate of 0:025 m3=s, the radial outlet velocity is Vn2 = 3:5 m=s.
Estimate the head this pump could deliver at 1150 rpm.

10.33 A set of eight 30-kW motor-pump units is used to deliver
water through an elevation of 30 m. The efficiency of the pumps

is specified to be 65 percent. Estimate the delivery in liters per day
and select an appropriate operating speed.

10.34 A blower has a rotor with 12-in. outside diameter and 10-in.
inside diameter with 1.5-in high rotor blades. The flow rate through
the blower is 500 ft3=min at a rotor speed of 1800 rpm. The air at
blade inlet is in the radial direction and the discharge angle is 30�

from the tangential direction. Determine the power required by the
blower motor.

30º

12 in

10 in

1.5 in

10.35 A centrifugal water pump has an impeller with an outer
diameter of 14 in. and a blade height of 1 in. It rotates at 1200
rpm. The flow enters parallel to the axis of rotation and leaves at
an angle of 35� with an absolute exit velocity of 75 ft=s. Determine
the water flow rate, the torque, the horsepower required, and the
pressure rise.

10.36 Appendix C contains area bound curves for pump model
selection and performance curves for individual pump models. Use
these data to verify the similarity rules for a Peerless Type 4AE12
pump, with impeller diameter D=11:0 in:, operated at 1750 and
3550 nominal rpm.

10.37 Consider the Peerless Type 16A18B horizontal split case
centrifugal pump (Appendix C). Use these performance data to
verify the similarity rules for (a) impeller diameter change and
(b) operating speeds of 705 and 880 rpm (note the scale change
between speeds).

10.38Use data fromAppendix C to verify the similarity rules for the
effect of changing the impeller diameter of a Peerless Type 4AE12
pump operated at 1750 and 3550 nominal rpm.

10.39 A centrifugal water pump has an impeller with backward-
curved vanes and an inner diameter of 0.1 m, an outer diameter of
0.25 m, and a blade height of 4 cm. It operates at 1200 rpm. Water
enters the impeller at the blade angle of 50� and leaves at the blade
angle of 30�. The volume flow rate is 0:18m3=s. Determine the shaft
torque and power. Determine the pressure rise when the fluid velocity
leaving the pump diffuser is the same as that entering.

10.40 Catalog data for a centrifugal water pump at design condi-
tions are Q=250 gpm and Δp=18:6 psi at 1750 rpm. A laboratory
flume requires 200 gpm at 32 ft of head. The only motor available
develops 3 hp at 1750 rpm. Is this motor suitable for the laboratory
flume? How might the pump/motor match be improved?

10.41 A 1/3 scale model of a centrifugal water pump running at
Nm =5100 rpm produces a flow rate of Qm =1m3=s with a head
of Hm =5:4 m. Assuming the model and prototype efficiencies are
comparable, estimate the flow rate, head, and power requirement if
the design speed is 125 rpm.
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10.42 Sometimes the variation of water viscosity with temperature
can be used to achieve dynamic similarity. A model pump delivers
0:10 m3=s of water at 15�C against a head of 27 m, when operating
at 3600 rpm. Determine the water temperature that must be used
to obtain dynamically similar operation at 1800 rpm. Estimate
the volume flow rate and head produced by the pump at the
lower-speed test condition. Comment on the NPSH requirements
for the two tests.

10.43A large deep fryer at a snack-food plant contains hot oil that is
circulated through a heat exchanger by pumps. Solid particles and
water droplets coming from the food product are observed in the
flowing oil. What special factors must be considered in specifying
the operating conditions for the pumps?

10.44 Data from tests of a pump, with a 12.3-in.-diameter impeller
operated at 1450 rpm are

Flow rate,
Q (cfm)

20 40 60 80 100 120 140

Net positive
suction head
required,
NPSHR (ft)

7.1 8.0 8.9 10.3 11.8 12.3 16.9

Develop and plot a curve-fit equation forNPSHR versus volume flow
rate in the formNPSHR= a+ bQ2, where a and b are constants. If the
NPSHA=20 ft, estimate the maximum allowable flow rate of
this pump.

10.45A four-stage boiler feed pump has suction and discharge lines
of 10 cm and 7.5 cm inside diameter. At 3500 rpm, the pump is rated
at 0:025 m3=s against a head of 125mwhile handling water at 115�C.
The inlet pressure gage, located 50 cm below the impeller centerline,
reads 150 kPa. The pump is to be factory certified by tests at the same
flow rate, head rise, and speed, but using water at 27�C. Calculate the
NPSHA at the pump inlet in the field installation. Evaluate the suction
head that must be used in the factory test to duplicate field suction
conditions.

10.46 A centrifugal pump operating at N =2265 rpm lifts water
between two reservoirs connected by 300 ft of 6-in.-diameter and
100 ft of 3-in.-diameter cast-iron pipe in series. The gravity lift is
25 ft. Estimate the head requirement, power needed, and hourly cost
of electrical energy to pump water at 200 gpm to the higher reservoir.
Assume that electricity costs 12¢=kW � hr and that the electric motor
efficiency is 85 percent.

10.47 A centrifugal pump is installed in a piping system with
L=300 m of D=40 cm cast-iron pipe. The downstream reservoir
surface is 15m lower than the upstream reservoir. Determine and plot
the system head curve. Find the volume flow rate (magnitude and
direction) through the system when the pump is not operating. Esti-
mate the friction loss, power requirement, and hourly energy cost to
pump water at 1 m3=s through this system.

10.48 Part of the water supply for the South Rim of Grand Canyon
National Park is taken from the Colorado River [54]. A flow rate of
600 gpm taken from the river at elevation 3734 ft is pumped to a stor-
age tank atop the South Rim at 7022 ft elevation. Part of the pipeline
is above ground and part is in a hole directionally drilled at angles up
to 70� from thevertical; the total pipe length is approximately 13,200 ft.

Under steady-flow operating conditions, the frictional head loss is
290 ft of water in addition to the static lift. Estimate the diameter of
the commercial steel pipe in the system. Compute the pumping power
requirement if the pump efficiency is 61 percent.

10.49A pump transfers water from one reservoir to another through
two cast-iron pipes in series. The first is 3000 ft of 9-in.-diameter pipe
and the second is 1000 ft of 6-in.-diameter pipe. A constant flow rate
of 75 gpm is tapped off at the junction between the two pipes. Obtain
and plot the system head versus flow rate curve. Find the delivery if
the system is supplied by the pump of Example 10.6 operating at
1750 rpm.

10.50 Performance data for a pump are

H (ft) 179 176 165 145 119 84 43
Q (gpm) 0 500 1000 1500 2000 2500 3000

Estimate the delivery when the pump is used to move water between
two open reservoirs through 1200 ft of 12-in.-diameter commercial
steel pipe containing two 90� elbows and an open gate valve if the
elevation increase is 50 ft. Determine the gate valve loss coefficient
needed to reduce the volume flow rate by half.

10.51 Consider the pump and piping system of Problem 10.50.
Determine the volume flow rate and gate valve loss coefficient for
the case of two identical pumps installed in parallel.

10.52Consider the pump and piping system of Problem 10.51. Esti-
mate the percentage reductions in volume flow rate that occur after
(a) 20 years and (b) 40 years of use, if the pump characteristics remain
constant. Repeat the calculation if the pump head is reduced 10 per-
cent after 20 years of use and 25 percent after 40 years. Use the data in
the table below for the effect of age on the multiplier of the friction
factor.

Pipe
Age (years)

Small Pipes,
4–10 in.

Large Pipes,
12–60 in.

New 1.00 1.00
10 2.20 1.60
20 5.00 2.00
30 7.25 2.20
40 8.75 2.40
50 9.60 2.86
60 10.0 3.70
70 10.1 4.70

10.53Consider the flow system shown in Problem 8.94. Assume the
minimum NPSHR at the pump inlet is 15 ft of water. Select a pump
appropriate for this application. Use the data for increase in friction
factor with pipe age given in Problem 10.52 to determine and com-
pare the system flow rate after 10 years of operation.

10.54Afire nozzle is supplied through300 ft of 3-in.-diameter canvas
hosewithe=0:001 ft.Water from a hydrant is supplied at 50 psig to a
booster pump on board the pumper truck. At design operating con-
ditions, the pressure at the nozzle inlet is 100 psig and the pressure
drop along the hose is 33 psi per 100 ft of length. Calculate the design
flow rate and the maximum nozzle exit speed. Select a pump

502 Chapter 10 Fluid Machinery



appropriate for this application, determine its efficiency at this oper-
ating condition, and calculate the power required to drive the pump.

10.55 Manufacturer’s data for a submersible utility pump are

Discharge
height (ft)

0.3 0.7 1.5 3.0 4.5 6.0 8.0

Water flow
rate (L/min)

77.2 75 71 61 51 26 0

The owner’s manual also states, “Note: These ratings are based on
discharge into 25-mm-diameter pipe with friction loss neglected.
Using 20-mm-diameter garden hose adaptor, performance will be
reduced approximately 15 percent.” Plot a performance curve for
the pump. Develop a curve-fit equation for the performance curve;
show the curve-fit on the plot. Calculate and plot the pump delivery
versus discharge height through a 15-m length of smooth 20-mm-
diameter garden hose. Compare with the curve for delivery into
25-mm-diameter pipe.

10.56 Water is pumped from a lake at z=0 to a large storage tank
located on a bluff above the lake. The pipe is 3-in.-diameter galva-
nized iron. The inlet section between the lake and the pump includes
one rounded inlet, one standard 90� elbow, and 50 ft of pipe. The
discharge section between the pump outlet and the discharge to
the open tank includes two standard 90� elbows, one gate valve,
and 150 ft of pipe. The pipe discharge into the side of the tank is
at z=70 ft. Calculate the system flow curve. Estimate the system
operating point. Determine the power input to the pump if its effi-
ciency at the operating point is 80 percent. Sketch the system curve
when the water level in the upper tank reaches z=90 ft. If the water
level in the upper tank is at z=75 ft and the valve is partially closed
to reduce the flow rate to 0:1 ft3=s, sketch the system curve for this
operating condition. Would you expect the pump efficiency to be
higher for the first or second operating condition? Why?

10.57 Performance data for a centrifugal fan of 3-ft diameter tested
at 750 rpm are

Volume flow
rate, Q (ft3/s)

106 141 176 211 246 282

Static pressure
rise, Δp (psi)

0.075 0.073 0.064 0.050 0.033 0.016

Power output,
� (hp)

2.75 3.18 3.50 3.51 3.50 3.22

Plot the performance data versus volume flow rate. Calculate static
efficiency, and show the curve on the plot. Find the best efficiency
point, and specify the fan rating at this point.

10.58 The performance data of Problem 10.57 are for a 36-in.-
diameter fan wheel. The fan also is manufactured with 42-, 48-,
54-, and 60-in.-diameter wheels. Pick a standard fan to deliver
600 ft3=s against a 1-in. water static pressure rise. Determine the
required fan speed and input power required.

10.59 Performance characteristics of a Howden Buffalo axial flow
fan are presented below. The fan is used to power a wind tunnel with
1-ft-square test section. The tunnel consists of a smooth inlet contrac-
tion, two screens each with loss coefficient K =0:12, the test section,
and a diffuser where the cross section is expanded to 24-in.-diameter
at the fan inlet. Flow from the fan is discharged back to the room.

Calculate and plot the system characteristic curve of pressure loss
versus volume flow rate. Estimate the maximum air flow speed avail-
able in this wind tunnel test section.
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10.60 Experimental test data for an aircraft engine fuel pump are
presented below. This gear pump is required to supply jet fuel at
450 pounds per hour and 150 psig to the engine fuel controller. Tests
were conducted at 10, 96, and 100 percent of the rated pump speed of
4536 rpm. At each constant speed, the back pressure on the pumpwas
set, and the flow rate was measured. On one graph, plot curves of
pressure versus delivery at the three constant speeds. Estimate the
pump displacement volume per revolution. Calculate the volumetric
efficiency at each test point and sketch contours of constant ηυ. Eval-
uate the energy loss caused by valve throttling at 100 percent speed
and full delivery to the engine.

Pump
Speed
(rpm)

Back
Pressure
(psig)

Fuel
Flow
(pph*)

Pump
Speed
(rpm)

Back
Pressure
(psig)

Fuel
Flow
(pph)

Pump
Speed
(rpm)

Back
Pressure
(psig)

Fuel
Flow
(pph)

200 1810 200 1730 200 89
4536 300 1810 4355 300 1750 453 250 73
(100%) 400 1810 (96%) 400 1735 (10%) 300 58.5

500 1790 500 1720 350 45
900 1720 900 1635 400 30

* Fuel flow rate measured in pounds per hour (pph).

Hydraulic Turbines
10.61 Preliminary calculations for a hydroelectric power generation
site show a net head of 2350 ft is available at a water flow rate of
75 ft3=s. Compare the geometry and efficiency of Pelton wheels
designed to run at (a) 450 rpm and (b) 600 rpm.

10.62 Conditions at the inlet to the nozzle of a Pelton wheel are
p=700 psig and V =15 mph. The jet diameter is d=7:5 in: and
the nozzle loss coefficient is Knozle = 0:04. The wheel diameter is
D=8 ft. At this operating condition, η=0:86. Calculate (a) the
power output, (b) the normal operating speed, (c) the approximate
runaway speed, (d) the torque at normal operating speed, and
(e) the approximate torque at zero speed.

10.63 A Francis turbine is to operate under a head of 46 m and
deliver 18.6 MW while running at 150 rpm. The runner diameter
is 4 m. A 1-m-diameter model is operated in a laboratory under
the same head. Find the model speed, power, and flow rate.

10.64AKaplan (propeller with variable-pitch blades) turbine with
a rated capacity of 83 MW at a head of 24 m and 86 rpm was one
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of 14 units installed at the McNary project on the Columbia River.
The characteristic runner diameter is 7 m. If a 6-m head is available
in the laboratory, what should be the model scale, flow rate,
and rpm?

10.65 Francis turbine Units 19, 20, and 21, installed at the Grand
Coulee Dam on the Columbia River, are very large [55]. Each runner
is 32.6 ft in diameter and contains 550 tons of cast steel. At rated con-
ditions, each turbine develops 820,000 hp at 72 rpm under 285 ft of
head. Efficiency is nearly 95 percent at rated conditions. The turbines
operate at heads from 220 to 355 ft. Calculate the specific speed at
rated operating conditions. Estimate the maximum water flow rate
through each turbine.

10.66 Measured data for performance of the reaction turbines at
Shasta Dam near Redding, California, are shown in Fig. 10.38. Each
turbine is rated at 103,000 hp when operating at 138.6 rpm under a
net head of 380 ft. Evaluate the specific speed and compute the shaft
torque developed by each turbine at rated operating conditions.
Calculate and plot the water flow rate per turbine required to produce
rated output power as a function of head.

10.67 For a flow rate of 12 L=s and turbine speed of 65 rpm, esti-
mate the power transferred from jet to turbine wheel.

50 mm Pipe

Water

1.2 m d
3 m

P10.67
10.68 The velocity of the water jet driving this impulse turbine is
45 m=s. The jet has a 75-mm diameter. After leaving the buckets
the absolute velocity of the water is observed to be 15 m=s in a direc-
tion 60� to that of the original jet. Calculate the mean tangential force
exerted by the jet on the turbine wheel and the speed (rpm) of
the wheel.

75 mm d

0.9 m d

P10.68

10.69An impulse turbine is to develop 15 MW from a single wheel
at a location where the net head is 350 m. Determine the appropriate
speed, wheel diameter, and jet diameter for single- and multiple-jet
operation. Compare with a double-overhung wheel installation. Esti-
mate the required water consumption.

10.70 An impulse turbine under a net head of 33 ft was tested at a
variety of speeds. The flow rate and the brake force needed to set the
impeller speed were recorded:

Wheel Speed
(rpm)

Flow Rate
(cfm)

Brake Force (lbf )
(R = 0.5 ft)

0 7.74 2.63
1000 7.74 2.40
1500 7.74 2.22
1900 7.44 1.91
2200 7.02 1.45
2350 5.64 0.87
2600 4.62 0.34
2700 4.08 0.09

Calculate and plot the machine power output and efficiency as a func-
tion of water turbine speed.

10.71 The absolute velocities and directions of the jets entering
and leaving the blade system are as shown. Calculate the power
transferred from the jet to the blade system and the blade angles
required.

25 mm d water jet

30°

45°

21 m
/s

30 m
/s

u
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10.72 A small hydraulic impulse turbine is supplied with water
through a penstock with diameter D and length L; the jet diameter
is d. The elevation difference between the reservoir surface and noz-
zle centerline is Z. The nozzle head loss coefficient is Knozzle and the
loss coefficient from the reservoir to the penstock entrance isKentrance.
Determine the water jet speed, the volume flow rate, and the hydrau-
lic power of the jet, for the case where Z =300 ft, L=1000 ft
D=6 in:, Kentrance = 0:5, Knozzle = 0:04 and d=2 in:, if the pipe is
made from commercial steel. Plot the jet power as a function of jet
diameter to determine the optimum jet diameter and the resulting
hydraulic power of the jet. Comment on the effects of varying the loss
coefficients and pipe roughness.

Propellers and Wind-Power Machines
10.73A fanboat in the Florida Everglades is powered by a propeller
with D=1:5 m driven at maximum speed, N =1800 rpm, by a
125 kW engine. Estimate the maximum thrust produced by the pro-
peller at (a) standstill and (b) V =12:5 m=s.
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10.74 A jet-propelled aircraft traveling at 225 m=s takes in 50 kg=s
of air. If the propulsive efficiency (defined as the ratio of the useful
work output to themechanical energy input to the fluid) of the aircraft
is 45 percent, determine the speed at which the exhaust is discharged
relative to the aircraft.

10.75When an air jet of 1-in.-diameter strikes a series of blades on a
turbine rotor, the absolute velocities are as shown. If the air is
assumed to have a constant specific weight of 0:08 lb=ft3, what is
the force on the turbine rotor? How much horsepower is transferred
to the rotor? What must be the velocity of the blade system?

400 ft/s

90°

50
0 

ft/
s

u

45°
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10.76 The volume flow rate through the propeller of an airboat
(a boat driven by a propeller moving air) is 50m3/s. When the boat
is docked, the speed of the slipstreambehind the propeller at a location
where the flow has returned atmospheric pressure is 40 m/s. Deter-
mine (a) the propeller diameter, (b) the thrust produced when the boat
is docked, (c) the thrust producedat the same flowratewhen the airboat
is moving ahead at 15 m/s, and (d) the maximum speed of the boat.

10.77 The propeller for the Gossamer Condor human-powered air-
craft has D=12 ft and rotates at N =107 rpm. The wing loading is
0:4 lbf=ft2 of wing area, the drag is approximately 6 lbf at
12 mph, the total weight is 200 lbf, and the effective aspect ratio
is 17. Estimate the dimensionless performance characteristics and
efficiency of this propeller at cruise conditions. Assume the pilot
expends 70 percent of maximum power at cruise. (See Reference
[56] for more information on human-powered flight.)

10.78 A typical American multiblade farm windmill has D=7 ft
and is designed to produce maximum power in winds with
V =15mph. Estimate the rate of water delivery as a function of
the height to which the water is pumped.

10.79 An airplane flies at 200 km=h through still air of specific
weight 12 N=m3. The propeller is 2.4 m in diameter and its slipstream
has a velocity of 290 km=h relative to the fuselage. Calculate (a) the
propeller efficiency, (b) the velocity through the plane of the propel-
ler, (c) the power input, (d) the power output, (e) the thrust of the
propeller, and (f ) the pressure difference across the propeller disk.

10.80 This ducted propeller unit drives a ship through still water at a
speed of 4:5 m=s. Within the duct the mean velocity of the water rel-
ative to the unit is 15 m=s. Calculate the propulsive force produced
by the unit. Calculate the force exerted on the fluid by the propeller.
Account for the difference between these forces.

1 m d

P10.80

10.81 A model of an American multiblade farm windmill is to be
built for display. The model, with D=1m, is to develop full power
at V =10m=s wind speed. Calculate the angular speed of the model
for optimum power generation. Estimate the power output.

10.82 A large Darrieus vertical axis wind turbine was built by the
U.S. Department of Energy near Sandia, New Mexico [48]. This
machine is 18 m tall and has a 5-m radius; the area swept by the rotor
is over 110 m2. If the rotor is constrained to rotate at 70 rpm, plot the
power this wind turbine can produce in kilowatts for wind speeds
between 5 and 50 knots.

10.83 Show that this ducted propeller system when moving forward
at velocity V1 will have an efficiency given by 2V1=ðV4 +V1Þ. If for a
specific design and point of operation,V2=V1 = 9=4 and V4=V2 = 5=4,
what fraction of the propulsive force will be contributed (a) by the
propeller, and, (b) by the duct?

2

V
1

V
4

3

P10.83

10.84 This ducted propeller unit (now operating as a turbine) is towed
through still water at a speed of 7:5 m=s. Calculate the maximum
power that the propeller can develop. Neglect all friction effects.

0.9 m d
Tow rope

P10.84

10.85 Aluminum extrusions, patterned after NACA symmetric air-
foil sections, frequently are used to form Darrieus wind turbine
“blades.” Below are section lift and drag coefficient data [57] for a
NACA 0012 section tested at Re=6×106 with standard roughness.
The section stalled for α>12�:

Angle of
attack, α
(deg)

0 2 4 6 8 10 12

Lift
coefficient,
CL (—)

0 0.23 0.45 0.68 0.82 0.94 1.02

Drag
coefficient.
CD (—)

0.0098 0.0100 0.0119 0.0147 0.0194 — —

Analyze the air flow relative to a blade element of a Darrieus wind
turbine rotating about its troposkien axis. Develop a numerical model
for the blade element. Calculate the power coefficient developed by
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the blade element as a function of tip-speed ratio. Compare your
result with the general trend of power output for Darrieus rotors
shown in Fig. 10.49.

10.86 What is the maximum power that can be expected from a
windmill 30 m in diameter in a wind of 50 km=h? Assume air density
1:225 kg=m3.

10.87 If an ideal windmill is operating at best efficiency in a wind of
48 km=h, what is the velocity through the disk and at some distance
behind the windmill? What is the thrust on this windmill, assuming a
diameter of 60 m and an air density of 1:23 kg=m3? What are the
mean pressures just ahead of and directly behind the windmill disk?

Compressible-Flow Turbomachines
10.88 A prototype air compressor with a compression ratio of 7 is
designed to take 8:9 kg=s air at 1 atmosphere and 20�C. The design
point speed, power requirement, and efficiency are 600 rpm,
5.6 MW, and 80 percent, respectively. A 1:5-scale model of the

prototype is built to help determine operability for the prototype.
If the model takes in air at identical conditions to the prototype design
point, what will the mass flow and power requirement be for opera-
tion at 80 percent efficiency?

10.89 A compressor has been designed for entrance conditions of
14.7 psia and 70�F. To economize on the power required, it is being
tested with a throttle in the entry duct to reduce the entry pressure.
The characteristic curve for its normal design speed of 3200 rpm
is to be obtained on a day when the ambient temperature is 58�F.
At what speed should the compressor be run? At the point on the
characteristic curve at which the mass flow would normally be
125 lbm=s, the entry pressure is 8.0 psia. Calculate the actual mass
flow rate during the test.

10.90Wehave seenmany examples in Chapter 7 of replacingwork-
ing fluids in order to more easily achieve similitude between models
and prototypes. Describe the effects of testing an air compressor using
helium as the working fluid on the dimensionless and dimensional
parameters we have discussed for compressible flow machines.
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C H A P T E R 1 1

Flow in Open Channels
11.1 Basic Concepts and Definitions

11.2 Energy Equation for Open-Channel Flows

11.3 Localized Effect of Area Change (Frictionless Flow)

11.4 The Hydraulic Jump

11.5 Steady Uniform Flow

11.6 Flow with Gradually Varying Depth

11.7 Discharge Measurement Using Weirs

11.8 Summary and Useful Equations

Case Study

Many flows of liquids in engineering and in nature occur with a
free surface. An example of a human-made channel that
carries water is shown in the photograph. This is a view of the
190-mile-long Hayden-Rhodes Aqueduct, which is part of the
Central Arizona Project (CAP). The CAP is a 336-mile (541 km)
diversion canal used to redirect water from the Colorado River
into central and southern Arizona. The CAP originates in Lake
Havasu on the western border of Arizona, travels through the
Phoenix area, and terminates in the SanXavier IndianReservation
southwest of Tucson. It is designed to carry about 1.5 million
acre-feet of Colorado River water per year, making it the largest

single resource of renewable water supplies in the state of
Arizona.

The design of the CAP involvedmany of the engineering prin-
ciples we will study in this chapter. Because of the large flow rate
of water, the aqueduct was designed as an open channel with a
trapezoidal cross section that provided the smallest channel for
the desired flow rate. Gravity is the driving force for the flow,
and the land was graded to give the correct slope to the channel
for the flow. As Lake Havasu is nearly 3000 feet below the termi-
nus, the final aqueduct design included 15 pumping stations,
eight inverted siphons, and three tunnels.

A
q

ue
d

uc
t,

 C
en

tr
al

 A
ri

zo
na

 P
ro

je
ct

 (©
 R

o
b

er
t 

Sh
an

tz
/A

la
m

y.
) 

Aqueduct, Central Arizona Project.
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Free surface flows differ in several important respects from the flows in closed conduits that we studied
in Chapter 8. Familiar examples where the free surface of a water flow is at atmospheric pressure include
flows in rivers, aqueducts, irrigation canals, rooftop or street gutters, and drainage ditches. Human-made
channels, termed aqueducts, encompass many different types, such as canals, flumes, and culverts.
A canal usually is below ground level and may be unlined or lined. Canals generally are long and
of very mild slope; they are used to carry irrigation or storm water or for navigation. A flume usually
is built above ground level to carry water across a depression. A culvert, which usually is designed
to flow only part-full, is a short covered channel used to drain water under a highway or railroad
embankment.

Figure 11.1 illustrates a typical example of water flowing in an open channel. The channel, often
called an aqueduct, carries water from a source, such as a lake, across the Earth’s surface to where the

D
an

it
a 

D
el

im
o

nt
/G

al
lo

 Im
ag

es
/G

et
ty

Im
ag

es

Fig. 11.1 A typical example of an open-channel flow of water; located in California’s Central Valley with supply pipes visible
in background.
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water is needed, often for crop irrigation or as a water supply for a city. As you can see in this
photograph, the channel is relatively wide with sloped sides and has a gradual slope that allows the
water to proceed downhill. Water enters this aqueduct through large corrugated pipes from a higher
elevation; the pipes are used because the slope of the hillside is too steep for an open channel. The struc-
ture at the entrance to the aqueduct could be a low head turbine that extracts power from the flow-
ing water.

In this chapter we will introduce some of the basic concepts in open-channel flows. These flows are
covered in much more detail in a number of specialized texts [1 – 8]. We will use the control volume
concepts from Chapter 4 to develop the basic theory that describes the behavior and classification of
flows in natural and human-made channels. We shall consider:

• Flows for which the local effects of area change predominate and frictional forces may be
neglected. An example is flow over a bump or depression, over the short length of which friction
is negligible.

• Flow with an abrupt change in depth. This occurs during a hydraulic jump in which the water flow
goes from fast and shallow to slow and deep in a very short distance (see Fig 11.12).

• Flow at what is called normal depth. For this, the flow cross section does not vary in the flow direc-
tion; the liquid surface is parallel to the channel bed. This is analogous to fully developed flow in
a pipe.

• Gradually varied flow. An example is flow in a channel in which the bed slope varies. The major
objective in the analysis of gradually varied flow is to predict the shape of the free surface.

It is quite common to observe surface waves in flows with a free surface, the simplest example being
when an object such as a pebble is thrown into the water. The propagation speed of a surface wave is
analogous in many respects to the propagation of a sound wave in a compressible fluid medium (which
we discuss in Chapter 12). We shall determine the factors that affect the speed of such surface waves. We
will see that this is an important determinant in whether an open-channel flow is able to gradually adjust
to changing conditions downstream or a hydraulic jump occurs.

This chapter also includes a brief discussion of flow measurement techniques for use in open
channels.

11.1 Basic Concepts and Definitions
Before analyzing the different types of flows that may occur in an open channel, we will discuss some
common concepts and state some simplifying assumptions. We are doing so explicitly, because there
are some important differences between our previous studies of pipes and ducts in Chapter 8 and the
study of open-channel flows.

One significant difference between flows in pipes and ducts is

• The driving force for open-channel flows is gravity.

(Note that some flows in pipes and ducts are also gravity driven (for example, flow down a full drain-
pipe), but typically flow is driven by a pressure difference generated by a device such as a pump.)
The gravity force in open-channel flow is opposed by friction force on the solid boundaries of the
channel.

Simplifying Assumptions

The flow in an open channel, especially in a natural one such as a river, is often very complex, three-
dimensional, and unsteady. However, in most cases, we can obtain useful results by approximating such
flows as being:

• One-dimensional.

• Steady.
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A third simplifying assumption is:

• The flow at each section in an open-channel flow is approximated as a uniform velocity.

Although the actual velocity in a channel is really not uniform, we will justify this assumption.
Figure 11.2 indicates the regions of the maximum velocity in some open-channel flow geometries.
The minimum velocity is zero along the walls because of viscosity. Measurements show that the region
of maximum velocity occurs below the free surface. There is a negligible shear stress due to air drag
on the free surface, so one would expect the maximum velocity to occur at the free surface.
However, secondary flows occur and produce a nonuniform velocity profile with the maximum usually
occurring below the surface. Secondary flows also occur when a channel has a bend or curve or has an
obstruction, such as a bridge pier. These obstructions can produce vortices that erode the bottom of a
natural channel.

Most open-channel flows of water are large in physical scale, so the Reynolds number is generally
quite high. Consequently, open-channel flow is seldom laminar, and so we will assume that the flow in
open channels is always turbulent. As we saw in earlier chapters, turbulence tends to smooth out the
velocity profile (see Fig. 8.11 for turbulent pipe flow and Fig. 9.7 for turbulent boundary layers). Hence,
although there is a velocity profile in an open channel flow, as indicated in Fig. 11.2, we will assume a
uniform velocity at each section, as illustrated in Fig. 11.3a.

The next simplifying assumption we make is:

• The pressure distribution is approximated as hydrostatic.

This is illustrated in Fig. 11.3b and is a significant difference from the analysis of flows in pipes and
ducts of Chapter 8; for these we found that the pressure was uniform at each axial location and varied
in the streamwise direction. In open-channel flows, the free surface will be at atmospheric pressure (zero
gage), so the pressure at the surface does not vary in the direction of flow. The major pressure variation
occurs across each section; this will be exactly true if streamline curvature effects are negligible, which is
often the case.

As in the case of turbulent flow in pipes, we must rely on empirical correlations to relate frictional
effects to the average velocity of flow. The empirical correlation is included through a head loss term in
the energy equation (Section 11.2). Additional complications in many practical cases include the

Triangular

channel

Shallow channel

Trapezoidal

channel

Narrow rectangular channel

Region of

maximum velocity

Fig. 11.2 Region of maximum velocity in some typical open-channel geometries. (Based on Chow [1].)
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presence of sediment or other particulate matter in the flow, as well as the erosion of earthen channels or
structures by water action.

Channel Geometry

Channels may be constructed in a variety of cross-sectional shapes; in many cases regular geometric
shapes are used. A channel with a constant slope and cross section is termed prismatic. Lined canals
often are built with rectangular or trapezoidal sections; smaller troughs or ditches sometimes are trian-
gular. Culverts and tunnels generally are circular or elliptical in section. Natural channels are highly
irregular and nonprismatic, but often they are approximated using trapezoid or paraboloid sections. Geo-
metric properties of common open-channel shapes are summarized in Table 11.1.

The depth of flow, y, is the perpendicular distance measured from the channel bed to the free surface.
The flow area, A, is the cross section of the flow perpendicular to the flow direction. The wetted perim-
eter, P, is the length of the solid channel cross-section surface in contact with the liquid. The hydraulic
radius, Rh, is defined as

Rh =
A
P

ð11:1Þ

For flow in noncircular closed conduits (Section 8.7), the hydraulic diameter was defined as

Dh =
4A
P

ð8:50Þ

Thus, for a circular pipe, the hydraulic diameter, from Eq. 8.50, is equal to the pipe diameter. From
Eq. 11.1, the hydraulic radius for a circular pipe would then be half the actual pipe radius, which is
a bit confusing! The hydraulic radius, as defined by Eq. 11.1, is commonly used in the analysis of
open-channel flows, so it will be used throughout this chapter. One reason for this usage is that the
hydraulic radius of a wide channel, as seen in Table 11.1, is equal to the actual depth.

For nonrectangular channels, the hydraulic depth is defined as

yh =
A
bs

ð11:2Þ

where bs is the width at the surface. Hence the hydraulic depth represents the average depth of the chan-
nel at any cross section. It gives the depth of an equivalent rectangular channel.

V

(a) Approximate velocity profile (b) Approximate pressure

distribution (gage)

Fig. 11.3 Approximations for velocity profile and pressure distribution.
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Speed of Surface Waves and the Froude Number

Wewill learn later in this chapter that the behavior of an open-channel flow as it encounters downstream
changes (for example, a bump of the bed surface, a narrowing of the channel, or a change in slope) is
strongly dependent on whether the flow is “slow” or “fast.” A slow flow will have time to gradually
adjust to changes downstream, whereas a fast flow will also sometimes gradually adjust but in some
situations will do so “violently” (i.e., there will be a hydraulic jump; see Fig. 11.12 for an example).
The question is what constitutes a slow or fast flow? These vague descriptions will be made more precise
now. It turns out that the speed at which surface waves travel along the surface is key to defining more
precisely the notions of slow and fast.

To determine the speed (or celerity) of surface waves, consider an open channel with movable end
wall, containing a liquid initially at rest. If the end wall is given a sudden motion, as in Fig. 11.4a, a wave
forms and travels down the channel at some speed, c (we assume a rectangular channel of width, b, for
simplicity).

If we shift coordinates so that we are traveling with the wave speed, c, we obtain a steady control
volume, as shown in Fig. 11.4b (where for now we assume c>ΔV). To obtain an expression for c, we

Table 11.1
Geometric Properties of Common Open-Channel Shapes

Shape

Trapezoidal

Triangular

Rectangular

Wide Flat

Circular

Section

Flow

Area, A
Wetted

Perimeter, P
Hydraulic

Radius, Rh

8

y2 cot α

D2

by

by b

y cos α

y (b y cot α) b
2y

sin α

2y
sin α 2

byb 2y
b 2y

y (b y cot α)

b
2y

sin α

y

2

αD
4

(α sin α) 1
D sin α

α

bs

bs

bs

α

α

b

b

y

y

y

y

yα

D

b>>y
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will use the continuity and momentum equations for this control volume. We also have the following
assumptions:

1 Steady flow.

2 Incompressible flow.

3 Uniform velocity at each section.

4 Hydrostatic pressure distribution at each section.

5 Frictionless flow.

Assumption 1 is valid for the control volume in shifted coordinates. Assumption 2 is obviously valid for
our liquid flow. Assumptions 3 and 4 are used for the entire chapter. Assumption 5 is valid in this case
because we assume the area on which it acts, bΔx, is relatively small (the sketch is not to scale), so the
total friction force is negligible.

For an incompressible flowwith uniform velocity at each section, we can use the appropriate form of
continuity from Chapter 4, X

CS
V
! � A!=0 ð4:13bÞ

Applying Eq. 4.13b to the control volume, we obtain

ðc−ΔVÞfðy+ΔyÞbg−cyb=0 ð11:3Þ
or

cy−ΔVy+ cΔy−ΔVΔy−cy=0

Solving for ΔV ,

ΔV = c
Δy

y+Δy
ð11:4Þ

For the momentum equation, again with the assumption of uniform velocity at each section, we can use
the following form of the x component of momentum

Fx =FSx +FBx =
∂
∂t

Z
CV

uρ dV--- +
X

CS
uρV

! � dA! ð4:18dÞ

The unsteady term ∂=∂t disappears as the flow is steady, and the body force FBx is zero for horizontal
flow. So we obtain

FSx =
X

CS
uρV

! � A! ð11:5Þ

ΔV

(a) Absolute coordinates

Fluid

moving at

speed ΔV
Fluid at

rest

Fluid moving

at speed

(c –ΔV)

Wave at rest

Wave moving

at speed c

(b) Coordinates at rest relative to wave

Fluid moving

at speed

c

Control

volume

x
y

Δy

y y + Δy y

Δx

Fig. 11.4 Motion of a surface wave.
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The surface force consists of pressure forces on the two ends, and friction force on the bottom surface
(the air at the free surface contributes negligible friction in open-channel flows). By assumption 5 we
neglect friction. The gage pressure at the two ends is hydrostatic, as illustrated in Fig. 11.4b. We recall
from our study of hydrostatics that the hydrostatic force FR on a submerged vertical surface of area A is
given by the simple result

FR = pcA ð3:10bÞ
where pc is the pressure at the centroid of the vertical surface. For the two vertical surfaces of the control
volume, then, we have

FSx =FRleft −FRright = ðpcAÞleft−ðpcAÞright

= ρg
y+Δy

2

� �
y+Δyð Þb

� �
− ρg

y
2

� �
yb

n o
=
ρgb
2
ðy+ΔyÞ2− ρgb

2
y2

Using this result in Eq. 11.5 and evaluating the terms on the right,

FSx =
ρgb
2
ðy+ΔyÞ2− ρgb

2
y2 =

X
CS
uρV

! � A!

= −ðc−ΔVÞρfðc−ΔVÞðy+ΔyÞbg−cρf−cybg
The two terms in braces are equal, from continuity as shown in Eq. 11.3, so the momentum equation
simplifies to

gyΔy+
gðΔyÞ2

2
= ycΔV

or

g 1+
Δy
2y

� �
Δy= cΔV

Combining this with Eq. 11.4, we obtain

g 1+
Δy
2y

� �
Δy= c2

Δy
y+Δy

and solving for c,

c2 = gy 1+
Δy
2y

� �
1+

Δy
y

� �
For waves of relatively small amplitude ðΔy≪ yÞ, we can simplify this expression to

c=
ffiffiffiffiffi
gy
p ð11:6Þ

Hence the speed of a surface disturbance depends on the local fluid depth. For example, it explains why
waves “crash” as they approach the beach. Out to sea, the water depths belowwave crests and troughs are
approximately the same, and hence so are their speeds. As the water depth decreases on the approach to
the beach, the depth of crests start to become significantly larger than trough depths, causing crests to
speed up and overtake the troughs.

Note that fluid properties do not enter into the speed: Viscosity is usually a minor factor, and it turns
out that the disturbance or wave we have described is due to the interaction of gravitational and inertia
forces, both of which are linear with density. Equation 11.6 was derived on the basis of one-dimensional
motion (x direction); a more realistic model allowing two-dimensional fluid motion (x and y directions)
shows that Eq. 11.6 applies for the limiting case of large wavelength waves (Problem 11.3 explores this).
Also, there are other types of surface waves, such as capillary waves driven by surface tension, for which
Eq. 11.6 does not apply (Problem 11.6 explores surface tension effects). Example 11.1 illustrates the
calculation for the speed of a surface wave that depends only on the depth.
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The speed of surface disturbances given in Eq. 11.6 provides us with a more useful “litmus test” for
categorizing the speed of a flow than the terms “slow” and “fast.” To illustrate this, consider a flow mov-
ing at speed V , which experiences a disturbance at some point downstream. (The disturbance could be
caused by a bump in the channel floor or by a barrier, for example.) The disturbance will travel upstream
at speed c relative to the fluid. If the fluid speed is slow, V < c, and the disturbance will travel upstream at
absolute speed ðc−VÞ. However, if the fluid speed is fast, V > c, and the disturbance cannot travel
upstream and instead is washed downstream at absolute speed ðV−cÞ. This leads to radically different
responses of slow and fast flows to a downstream disturbance. Hence, recalling Eq. 11.6 for the speed c,
open-channel flows may be classified on the basis of Froude number first introduced in Chapter 7:

Fr=
Vffiffiffiffiffi
gy
p ð11:7Þ

Instead of the rather loose terms “slow” and “fast,” we now have the following criteria:

Fr< 1 Flow is subcritical, tranquil, or streaming. Disturbances can travel upstream; downstream conditions can
affect the flow upstream. The flow can gradually adjust to the disturbance.

Fr= 1 Flow is critical.

Fr> 1 Flow is supercritical, rapid, or shooting. No disturbance can travel upstream; downstream conditions cannot
be felt upstream. The flow may “violently” respond to the disturbance because the flow has no chance to
adjust to the disturbance before encountering it.

Note that for nonrectangular channels we use the hydraulic depth yh,

Fr=
Vffiffiffiffiffiffiffi
gyh
p ð11:8Þ

Example 11.1 SPEED OF FREE SURFACE WAVES

You are enjoying a summer’s afternoon relaxing in a rowboat on a pond. You decide to find out how deep the water is by splash-
ing your oar and timing how long it takes the wave you produce to reach the edge of the pond. (The pond is artificial; so it has
approximately the same depth even to the shore.) From floats installed in the pond, you know you’re 20 ft from shore, and you
measure the time for the wave to reach the edge to be 1.5 s. Estimate the pond depth. Does it matter if it’s a freshwater pond or if
it’s filled with seawater?

Given: Time for a wave to reach the edge of a pond.

Find: Depth of the pond.

Solution: Use the wave speed equation, Eq. 11.6.

Governing equation: c=
ffiffiffiffiffi
gy
p

The time for a wave, speed c, to travel a distance L, is Δt=
L
c
, so c=

L
△t

. Using this and Eq. 11.6,

ffiffiffiffiffi
gy
p

=
L
△t

where y is the depth, or

y=
L2

gΔt2

Using the given data

y=202ft2 ×
1

32:2
s2

ft
×

1
1:52

1
s2

= 5:52 ft y ��������������������
The pond depth is about 512 ft.

The result obtained is independent of
whether the water is fresh or saline,
because the speed of these surface waves
is independent of fluid properties.
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These regimes of flow behavior are qualitatively analogous to the subsonic, sonic, and supersonic
regimes of gas flow that we will discuss in Chapter 12. (In that case we are also comparing a flow speed,
V , to the speed of a wave, c, except that the wave is a sound wave rather than a surface wave.)

We will discuss the ramifications of these various Froude number regimes later in this chapter.

11.2 Energy Equation for Open-Channel Flows
In analyzing open-channel flows, we will use the continuity, momentum, and energy equations. Here we
derive the appropriate form of the energy equation, and continuity and momentum when needed. As in
the case of pipe flow, friction in open-channel flows results in a loss of mechanical energy; this can be
characterized by a head loss. The temptation is to just use one of the forms of the energy equation for pipe
flow we derived in Section 8.6, such as

p1
ρg

+ α1
V 2

2

2g
+ z1

 !
−

p2
ρg

+ α2
V 2

2

2g
+ z2

 !
=
hlT
g

=HlT ð8:30Þ

The problem with this is that it was derived on the assumption of uniform pressure at each section, which
is not the case in open-channel flow (we have a hydrostatic pressure variation at each location); we do not
have a uniform p1 at section and uniform p2 at section !

Instead we need to derive an energy equation for open-channel flows from first principles. We will
closely follow the steps outlined in Section 8.6 for pipe flows but use different assumptions. You are
urged to review Section 8.6 in order to be aware of the similarities and differences between pipe flows
and open-channel flows.

We will use the generic control volume shown in Fig. 11.5, with the following assumptions:

1 Steady flow.

2 Incompressible flow.

3 Uniform velocity at a section.

4 Gradually varying depth so that pressure distribution is hydrostatic.

5 Small bed slope.

6 _Ws = _W shear = _Wother = 0:

We make a few comments here. We have seen assumptions 1–4 already; they will always apply in this
chapter. Assumption 5 simplifies the analysis so that depth, y, is taken to be vertical and speed, V , is
taken to be horizontal, rather than normal and parallel to the bed, respectively. Assumption 6 states that
there is no shaft work, no work due to fluid shearing at the boundaries, and no other work. There is no
shear work at the boundaries because on each part of the control surface the tangential velocity is zero (on
the channel walls) or the shear stress is zero (the open surface), so no work can be done. Note that there
can still be mechanical energy dissipation within the fluid due to friction.

Control

volume

z1

y1

y

z2

y2

z

Fig. 11.5 Control volume and coordinates for energy analysis of open-channel flow.
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We have chosen a generic control volume so that we can derive a generic energy equation for open-
channel flows, that is, an equation that can be applied to a variety of flows such as ones with a variation in
elevation, or a hydraulic jump, or a sluice gate, and so on, between sections and . Coordinate z
indicates distances measured in the vertical direction; distances measured vertically from the channel
bed are denoted by y. Note that y1 and y2 are the flow depths at sections and , respectively, and
z1 and z2 are the corresponding channel elevations.

The energy equation for a control volume is

= 0 6ð Þ =0 6ð Þ =0 6ð Þ =0 1ð Þ
_Q− _Ws

��
�!− _W shear

��
�! − _Wother

��
�! =

∂
∂t��

�!

Z
CV

eρdV +
Z
CS

e+ pυð ÞρV!� dA!

e= u+
V2

2
+ gz

ð4:56Þ

Recall that u is the thermal specific energy and v=1=ρ is the specific volume. After using assumptions 1
and 6, and rearranging, with _m=

R
ρV
! � dA!, and dA= bdy where bðyÞ is the channel width, we obtain

_Q = −
Z
1

p
ρ
+
V2

2
+ gz

� �
ρVbdy−

Z
1
uρVbdy+

Z
2

p
ρ
+
V2

2
+ gz

� �
ρVbdy+

Z
2
uρVbdy

=
Z
1

p
ρ
+
V2

2
+ gz

� �
ρVbdy+

Z
2

p
ρ
+
V2

2
+ gz

� �
ρVbdy+ _mðu2−u1Þ

or Z
1

p
ρ
+
V2

2
+ gz

� �
ρVbdy−

Z
2

p
ρ
+
V2

2
+ gz

� �
ρVbdy= _mðu2−u1Þ− _Q= _mhlT ð11:9Þ

This states that the loss in mechanical energies (“pressure,” kinetic and potential) through the control
volume leads to a gain in the thermal energy and/or a loss of heat from the control volume. As in
Section 8.6, these thermal effects are collected into the head loss term hlT .

ThesurfaceintegralsinEq.11.9canbesimplified.Thespeed,V , is constant at each section by assump-
tion 3. The pressure, p, does vary across sections and , as does the potential, z. However, by assump-
tion 4, the pressure variation is hydrostatic. Hence, for section , using the notation of Fig. 11.5

p= ρgðy1−yÞ
[so p= ρgy1 at the bed and p=0 (gage) at the free surface] and

z= ðz1 + yÞ
Conveniently, we see that the pressure decreases linearly with y while z increases linearly with y, so the
two terms together are constant,

p
ρ
+ gz

� �
1
= gðy1−yÞ+ gðz1 + yÞ= gðy1 + z1Þ

Using these results in the first integral in Eq. 11.9,Z
1

p
ρ
+
V2

2
+ gz

� �
ρVbdy=

Z
1

V2

2
+ gðy1 + z1Þ

� �
ρVbdy=

V2
1

2
+ gy1 + gz1

� �
_m

We find a similar result for section , so Eq. 11.9 becomes

V2
2

2
+ gy2 + gz2

� �
−

V2
1

2
+ gy1 + gz1

� �
= hlT

Finally, dividing by g (with Hl = hlT=g) leads to an energy equation for open-channel flow

V2
1

2g
+ y1 + z1 =

V2
2

2g
+ y2 + z2 +Hl ð11:10Þ
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This can be compared to the corresponding equation for pipe flow, Eq. 8.30, presented at the beginning
of this section. Note that we Hl use rather than HlT ; in pipe flow we can have major and minor losses,
justifying T for total, but in open-channel flow we do not make this distinction. Equation 11.10 will
prove useful to us for the remainder of the chapter and indicates that energy computations can be done
simply from geometry (y and z) and velocity, V .

The total head or energy head, H, at any location in an open-channel flow can be defined from
Eq. 11.10 as

H =
V2

2g
+ y+ z ð11:11Þ

where y and z are the local flow depth and channel bed elevation, respectively (they no longer represent
the coordinates shown in Fig. 11.5). This is a measure of the mechanical energy (kinetic and pressure/
potential) of the flow. Using this in the energy equation, we obtain an alternative form

H1−H2 =Hl ð11:12Þ

From this we see that the loss of total head depends on head loss due to friction.

Specific Energy

We can also define the specific energy (or specific head), denoted by the symbol E,

E=
V2

2g
+ y ð11:13Þ

This is a measure of the mechanical energy (kinetic and pressure/potential) of the flow above and beyond
that due to channel bed elevation; it essentially indicates the energy due to the flow’s speed and depth.
Using Eq. 11.13 in Eq. 11.10, we obtain another form of the energy equation,

E1−E2 + z1−z2 =Hl ð11:14Þ
From this we see that the change in specific energy depends on friction and on channel elevation change.
While the total head must decrease in the direction of flow (Eq. 11.12), the specific head may decrease,
increase, or remain constant, depending on the bed elevation, z.

From continuity, V =Q=A, so the specific energy can be written

E=
Q2

2gA2 + y ð11:15Þ

For all channels A is a monotonically increasing function of flow depth (as Table 11.1 indicates);
increasing the depth must lead to a larger flow area. Hence, Eq. 11.15 indicates that the specific
energy is a combination of a hyperbolic-type decrease with depth and a linear increase with depth.
This is illustrated in Fig. 11.6 We see that for a given flow rate, Q, there is a range of possible flow
depths and energies, but one depth at which the specific energy is at a minimum. Instead of E versus y
we typically plot y versus E so that the plot corresponds to the example flow section, as shown in
Fig. 11.7.

Recalling that the specific energy, E, indicates actual energy (kinetic plus potential/pressure per unit
mass flow rate) being carried by the flow, we see that a given flow, Q, can have a range of energies, E,
and corresponding flow depths, y. Figure 11.7 also reveals some interesting flow phenomena. For a
given flow, Q, and specific energy, E, there are two possible flow depths, y; these are called alternate
depths. For example, we can have a flow at depth y1 or depth y2. The first flow has large depth and is
moving slowly, and the second flow is shallow but fast moving. The plot graphically indicates this: For
the first flow, E1 is made up of a large y1 and small V2

1=2g; for the second flow, E2 is made up of a small
y2 and large V2

2=2g. We will see later that we can switch from one flow to another. We can also see (as we
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will demonstrate in Example 11.2 for a rectangular channel) that for a givenQ, there is always one flow
for which the specific energy is minimum, E=Emin; we will investigate this further after Example 11.2
and show that Emin =Ecrit, where Ecrit is the specific energy at critical conditions.

E

y

2gA2

Q2

y

Fig. 11.6 Dependence of specific energy on flow depth for a given flow rate.

Critical flow

Constant Q

E1 = E2 Q2

2gA2
E = y+

y

yc

y2

y2

y1

y1

2V2

2g

2V1

2g

Fig. 11.7 Specific energy curve for a given flow rate.

Example 11.2 SPECIFIC ENERGY CURVES FOR A RECTANGULAR CHANNEL

For a rectangular channel of width b=10 m, construct a family of specific energy curves for Q=0,2,5, and 10 m3=s. What are
the minimum specific energies for these curves?

Given: Rectangular channel and range of flow rates.

Find: Curves of specific energy. For each flow rate, find the minimum specific energy.

Solution: Use the flow rate form of the specific energy equation (Eq. 11.15) for generating the curves.

Governing equations:

E=
Q2

2gA2 + y ð11:15Þ
For the specific energy curves, express E as a function of depth, y.

E=
Q2

2gA2 + y=
Q2

2gðbyÞ2 + y=
Q2

2gb2

� �
1
y2

+ y ð1Þ
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The table and corresponding graph were generated from
this equation using Excel.

Specific Energy, E (m)

y (m) Q = 0 Q = 2 Q = 5 Q = 10

0.100 0.10 0.92 5.20 20.49
0.125 0.13 0.65 3.39 13.17
0.150 0.15 0.51 2.42 9.21
0.175 0.18 0.44 1.84 6.83
0.200 0.20 0.40 1.47 5.30
0.225 0.23 0.39 1.23 4.25
0.250 0.25 0.38 1.07 3.51
0.275 0.28 0.38 0.95 2.97
0.30 0.30 0.39 0.87 2.57
0.35 0.35 0.42 0.77 2.01
0.40 0.40 0.45 0.72 1.67
0.45 0.45 0.49 0.70 1.46
0.50 0.50 0.53 0.70 1.32
0.55 0.55 0.58 0.72 1.22
0.60 0.60 0.62 0.74 1.17
0.70 0.70 0.72 0.80 1.12
0.80 0.80 0.81 0.88 1.12
0.90 0.90 0.91 0.96 1.15
1.00 1.00 1.01 1.05 1.20
1.25 1.25 1.26 1.28 1.38
1.50 1.50 1.50 1.52 1.59
2.00 2.00 2.00 2.01 2.05
2.50 2.50 2.50 2.51 2.53

To find the minimum energy for a given Q, we differentiate Eq. 1,

dE
dy

=
Q2

2gb2

� �
−

2
y3

� �
+1=0

Hence, the depth yEmin for minimum specific energy is

yEmin =
Q2

gb2

� �1
3

Using this in Eq. 11.15:

Emin =
Q2

2gA2 + yEmin =
Q2

2gb2y2Emin

+
Q2

gb2

	 
1
3

=
1
2

Q2

gb2

	 

gb2

Q2

	 
2
3

+
Q2

gb2

	 
1
3

=
3
2

Q2

gb2

	 
1
3

Emin =
3
2

Q2

gb2

	 
1
3

=
3
2
yEmin ð2Þ

Hence for a rectangular channel, we obtain a simple result for the minimum
energy. Using Eq. 2 with the given data:

Q ðm3=sÞ 2 5 10
Emin ðmÞ 0:302 0:755 1:51

The depths corresponding to these flows are 0.201 m, 0.503 m, and 1.01 m, respectively.

0

1

2

3

0 1 2 3

E (m)
y

(m
)

Q = 0

Q = 2 m3/s

Q = 5 m3/s

Q = 10 m3/s

Emin

We will see in the next topic that the depth
at which we have minimum energy is the
critical depth, yc, and Emin = Ecrit.

The Excelworkbook for this problem
can be used for plotting specific

energy curves for other rectangular
channels. The depth for minimum
energy is also obtained using Solver.
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Critical Depth: Minimum Specific Energy

Example 11.2 treated the case of a rectangular channel. We now consider channels of general cross
section. For flow in such a channel we have the specific energy in terms of flow rate Q,

E=
Q2

2gA2 + y ð11:15Þ

For a given flow rate Q, to find the depth for minimum specific energy, we differentiate:

dE
dy

=0= −
Q2

gA3

dA
dy

+1 ð11:16Þ

To proceed further, it would seem we need AðyÞ; some examples of AðyÞ are shown in Table 11.1.
However, it turns out that for any given cross section we can write

dA= bsdy ð11:17Þ
where, as we saw earlier, bs is the width at the surface. This is indicated in Fig. 11.8; the
incremental increase in area dA due to incremental depth change dy occurs at the free surface,
where b= bs.

Using Eq. 11.17 in Eq. 11.16 we find

−
Q2

gA3

dA
dy

+1= −
Q2

gA3bs +1=0

so

Q2 =
gA3

bs
ð11:18Þ

for minimum specific energy. From continuity V =Q=A, so Eq. 11.18 leads to

V =
Q
A
=
1
A

gA3

bs

	 
1=2
=

ffiffiffiffiffiffi
gA
bs

r
ð11:19Þ

We have previously defined the hydraulic depth,

yh =
A
bs

ð11:2Þ

Hence, using Eq. 11.2 in Eq. 11.19, we obtain

V =
ffiffiffiffiffiffiffi
gyh
p ð11:20Þ

But the Froude number is given by

Fr=
Vffiffiffiffiffiffiffi
gyh
p ð11:8Þ

Hence we see that, for minimum specific energy, Fr=1, which corresponds to critical flow. We obtain
the important result that, for flow in any open channel, the specific energy is at its minimum at critical
conditions.

bs

dy
dA  bsdy

Fig. 11.8 Dependence of flow area change dA on depth change dy.

52111.2 Energy Equation for Open-Channel Flows



We collect Eqs. 11.18 and 11.20; for critical flow

Q2 =
gA3

c

bsc
ð11:21Þ

Vc =
ffiffiffiffiffiffiffiffi
gyhc
p ð11:22Þ

for E=Emin. In these equations, Ac, Vc, bsc and yhc are the critical flow area, velocity, channel surface
width, and hydraulic depth, respectively. Equation 11.21 can be used to find the critical depth, yc, for a
given channel cross-section shape, at a given flow rate. The equation is deceptively difficult: Ac and bsc
each depend on flow depth y, often in a nonlinear fashion; so it must usually be iteratively solved for y.
Once yc is obtained, area, Ac, and surface width, bsc , can be computed, leading to yhc (using Eq. 11.2).
This in turn is used in Eq. 11.22 to find the flow speed Vc (or Vc =Q=Ac can be used). Finally, the min-
imum energy can be computed from Eq. 11.15. Example 11.3 shows how the critical depth is determined
for a triangular section channel.

For the particular case of a rectangular channel, we have bs = b= constant and A= by, so Eq. 11.21
becomes

Q2 =
gA3

c

bsc
=
gb3y3c
b

= gb2y3c

so

yc =
Q2

gb2

	 
1=3
ð11:23Þ

with

Vc =
ffiffiffiffiffiffiffi
gyc
p

=
gQ
b

	 
1=3
ð11:24Þ

For the rectangular channel, a particularly simple result for the minimum energy is obtained when
Eq. 11.24 is used in Eq. 11.15,

E=Emin =
V2
c

2g
+ yc =

gyc
2g

+ yc

or

Emin =
3
2
yc ð11:25Þ

This is the same result we found in Example 11.2. The critical state is an important benchmark. It will be
used in the next section to help determine what happens when a flow encounters an obstacle such as a
bump. Also, near the minimum E, as Fig. 11.7 shows, the rate of change of y with E is nearly infinite.
This means that for critical flow conditions, even small changes in E, due to channel irregularities or
disturbances, can cause pronounced changes in fluid depth. Thus, surface waves, usually in an unstable
manner, form when a flow is near critical conditions. Long runs of near-critical flow consequently are
avoided in practice.

Example 11.3 CRITICAL DEPTH FOR TRIANGULAR SECTION

A steep-sided triangular section channel ðα=60∘Þ has a flow rate of 300 m3=s. Find the critical depth for this flow rate. Verify
that the Froude number is unity.

Given: Flow in a triangular section channel.
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Find: Critical depth; verify that Fr=1.

Solution: Use the critical flow equation, Eq. 11.21

Governing equations:

Q2 =
gA3

c

bsc
Fr=

Vffiffiffiffiffiffiffi
gyh
p

The given data is:

Q=300 m3=s α=60�

From Table 11.1 we have the following:

A= y2 cot α

and from basic geometry

tan α=
y

bs=2
so bs =2y cot α

Using these in Eq. 11.21

Q2 =
gA3

c

bsc
=
g½y2c cot α�3
2yc cot α

=
1
2
gy5c cot

2 α

Hence

yc =
2Q2 tan2 α

g

	 
1=5
Using the given data

yc = 2×3002
m3

s

� �2

× tan2
60 × π

180

� �
×

s2

9:81 m

" #1=5
= ½5:51× 104 m5�1=5

Finally

yc =8:88 m
yc ���������������������������������������

To verify that Fr=1, we need V and yh.
From continuity

Vc =
Q
Ac

=
Q

y2c cot α
=300

m3

s
×

1
8:882 m2

×
1

cot
60 × π

180

� � =6:60 m=s

and from the definition of hydraulic depth

yhc =
Ac

bsc
=

y2c cot α
2yc cot α

=
yc
2
= 4:44 m

Hence

Frc =
Vcffiffiffiffiffiffiffiffi
gyhc
p =

6:60
m
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9:81
m
s2

× 4:44 m
r =1

Frc =1 �������������������������

We have verified that at critical depth the Froude number is unity.

bs

y

α

As with the rectangular channel, the
triangular section channel analysis leads
to an explicit equation for yc from Eq. 11.21.
Other more complicated channel cross
sections often lead to an implicit equation
that needs to be solved numerically.
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11.3 Localized Effect of Area Change (Frictionless Flow)
We will next consider a simple flow case in which the channel bed is horizontal and for which the
effects of channel cross section (area change) predominate: flow over a bump. Since this phenomenon
is localized (it takes place over a short distance), the effects of friction (on either momentum or energy)
may be neglected.

The energy equation, Eq. 11.10, with the assumption of no losses due to friction then becomes

V2
1

2g
+ y1 + z1 =

V2
2

2g
+ y2 + z2 =

V2

2g
+ y+ z= const ð11:26Þ

(Note that Eq. 11.26 could also have been obtained from by applying the Bernoulli equation between two
points and on the surface, because all of the requirements of the Bernoulli equation are satisfied
here.) Alternatively, using the definition of specific energy

E1 + z1 =E2 + z2 =E+ z= const

We see that the specific energy of a frictionless flow will change only if there is a change in the elevation
of the channel bed.

Flow over a Bump

Consider frictionless flow in a horizontal rectangular channel of constant width, b, with a bump in the
channel bed, as illustrated in Fig. 11.9. We choose a rectangular channel for simplicity, but the results we
obtain will apply generally. The bump height above the horizontal bed of the channel is z= hðxÞ; the
water depth, yðxÞ, is measured from the local channel bottom surface.

Note that we have indicated two possibilities for the free surface behavior: Perhaps the flow grad-
ually rises over the bump; perhaps it gradually dips over the bump. One thing we can be sure of, how-
ever, is that if it rises, it will not have the same contour as the bump. (Can you explain why?) Applying
the energy equation (Eq. 11.26) for frictionless flow between an upstream point and any point along
the region of the bump,

V2
1

2g
+ y1 =E1 =

V2

2g
+ y+ h=E+ hðxÞ= const ð11:27Þ

Equation 11.27 indicates that the specific energy must decrease through the bump, then increase back to
its original value (of E1 =E2),

EðxÞ=E1−hðxÞ ð11:28Þ

Free

surface

z  0

y1 y (x)

x

y2 y1

z h(x)

Fig. 11.9 Flow over a bump in a horizontal channel.
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From continuity

Q= bV1y1 = bVy

Using this in Eq 11.27

Q2

2gb2y21
+ y1 =

Q2

2gb2y2
+ y+ h= const ð11:29Þ

We can obtain an expression for the variation of the free surface depth by differentiating Eq. 11.29:

−
Q2

gb2y3
dy
dx

+
dy
dx

+
dh
dx

=0

Solving for the slope of the free surface, we obtain

dy
dx

=
dh=dx
Q2

gb2y3
−1

	 
 = dh=dx
V2

gy
−1

	 

Finally,

dy
dx

=
1

Fr2−1
dh
dx

ð11:30Þ

Equation 11.30 leads to the interesting conclusion that the response to a bump very much depends on the
local Froude number, Fr.

Fr< 1 Flow is subcritical, tranquil, or streaming. When Fr<1, ðFr2−1Þ<1 and the slope dy=dx of the free surface
has the opposite sign to the slope dh=dx of the bump:When the bump elevation increases, the flow dips; when
the bump elevation decreases, the flow depth increases. This is the solid free surface shown in Fig. 11.9.

Fr= 1 Flow is critical. When Fr=1,ðFr2−1Þ=0. Eq. 11.30 predicts an infinite water surface slope, unless dh=dx
equals zero at this instant. Since the free surface slope cannot be infinite, then dh=dx must be zero when
Fr=1; put another way, if we have Fr=1 it can only be at a location where dh=dx=0 (at the crest of
the bump, or where the channel is flat). If critical flow is attained, then downstream of the critical flow
location the flow may be subcritical or supercritical, depending on downstream conditions. If critical flow
does not occur where dh=dx=0, then flow downstream from this location will be the same type as the
flow upstream from the location.

Fr > 1 Flow is supercritical, rapid, or shooting. When Fr>1, ðFr2−1Þ>1 and the slope dy=dx of the free surface
has the same sign as the slope dh=dx of the bump: when the bump elevation increases, so does the flow depth;
when the bump elevation decreases, so does the flow depth. This is the dashed free surface shown in
Fig. 11.9.

The general trends for Fr<1 and Fr>1, for either an increasing or decreasing bed elevation, are illus-
trated in Fig. 11.10. The important point about critical flow ðFr=1Þ is that, if it does occur, it can do so
only where the bed elevation is constant.

An additional visual aid is provided by the specific energy graph of Fig. 11.11. This shows the spe-
cific energy curve for a given flow rate, Q. For a subcritical flow that is at state a before it encounters a
bump, as the flow moves up the bump toward the bump peak, the specific energy must decrease
(Eq. 11.28). Hence we move along the curve to point b. If point b corresponds to the bump peak, then
we move back along the curve to a (note that this frictionless flow is reversible!) as the flow descends the
bump. Alternatively, if the bump continues to increase beyond point b, we continue to move along the
curve to the minimum energy point, point ewhere E=Emin =Ecrit. As we have discussed, for frictionless
flow to exist, point e can only be where dh=dx=0 (the bump peak). For this case, something interesting
happens as the flow descends down the bump: We can return along the curve to point a, or we can move
along the curve to point d. This means that the surface of a subcritical flow that encounters a bump will
dip and then either return to its original depth or if the bump is high enough for the flow to reach critical
conditions may continue to accelerate and become shallower until it reaches the supercritical state
corresponding to the original specific energy (point d). Which trend occurs depends on downstream
conditions; for example, if there is some type of flow restriction, the flow downstream of the bump will
return to its original subcritical state. Note that as we mentioned earlier, when a flow is at the critical
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state the surface behavior tends to display dramatic variations in behavior. Finally, Fig. 11.11 indicates
that a supercritical flow (point d) that encounters a bumpwould increase in depth over the bump (to point
c at the bump peak), and then return to its supercritical flow at point d. We also see that if the bump is
high enough a supercritical flow could slow down to critical (point e) and then either return to super-
critical (point d) or become subcritical (point a). Which of these possibilities actually occurs obviously
depends on the bump shape, but also on upstream and downstream conditions (the last possibility is
somewhat unlikely to occur in practice). In Example 11.4, the flow in a rectangular channel with a
change in the bed or side wall surface is analyzed.

The alert reader may ask, “What happens if the bump is so big that the specific energy wants to
decrease below the minimum shown at point e?” The answer is that the flow will no longer conform
to Eq. 11.26; the flow will no longer be frictionless, because a hydraulic jump will occur, consuming
a significant amount of mechanical energy (see Section 11.4).

Flow regime
> 0

FlowSubcritical

Fr < 1

Supercritical

Fr > 1

dh
dx

Flow

< 0
dy
dx

> 0
dh
dx

> 0
dy

y

h

dx

< 0
dh
dx

> 0
dy
dx

< 0
dh
dx

< 0
dy
dx

FlowFlow

Fig. 11.10 Effects of bed elevation changes.

y

E

a

b

c
d

e
(E = Emin)

Fig. 11.11 Specific energy curve for flow over a bump.

Example 11.4 FLOW IN A RECTANGULAR CHANNEL WITH A BUMP OR A NARROWING

A rectangular channel 2 m wide has a flow of 2:4 m3=s at a depth of 1.0 m. Determine whether critical depth occurs at (a) a
section where a bump of height h=0:20 m is installed across the channel bed, (b) a side wall constriction (with no bumps) redu-
cing the channel width to 1.7 m, and (c) both the bump and side wall constrictions combined. Neglect head losses of the bump and
constriction caused by friction, expansion, and contraction.
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Given: Rectangular channel with a bump, a side wall constriction, or both.

Find: Whether critical flow occurs.

Solution: Compare the specific energy to the minimum specific energy for the given flow rate in each case to establish whether
critical depth occurs.

Governing equations:

E=
Q2

2gA2 + y ð11:15Þ yc =
Q
gb2

	 
1=3
ð11:23Þ ðÞ

Emin =
3
2
yc ð11:25Þ E=E1−h ð11:28Þ ðÞ

(a) Bump of height h=0:20 m:

The initial specific energy, E1, is

E1 = y1 +
Q2

2gA2 = y1 +
Q2

2gb2y21

= 1:0 m+2:42
m3

s

� �2

×
1
2
×

s2

9:81 m
×

1
22 m2

×
1

12 m2

E1 = 1:073 m

Then the specific energy at the peak of the bump, Ebump, is obtained from Eq. 11.28

Ebump =E1−h=1:073 m−0:20m

Ebump = 0:873 m
ð1Þ

We must compare this to the minimum specific energy for the flow rate Q. First, the critical depth is

yc =
Q2

gb2

	 
1=3
= 2:42

m3

s

� �2

×
s2

9:81 m
×

1
22 m2

" #1=3
yc =0:528 m

(Note that we have y1 > yc, so we have a subcritical flow.)
Then the minimum specific energy is

Emin =
3
2
yc =0:791 m ð2Þ

Comparing Eqs. 1 and 2 we see that with the bump we
do not attain critical conditions.  ����������������������������������������������������
(b) A side wall constriction (with no bump) reducing the channel width to 1.7 m:

In this case the specific energy remains constant throughout ðh=0Þ, even at the constriction; so

Econstriction =E1−h=E1 = 1:073 m ð3Þ

However, at the constriction, we have a new value for b, ðbconstriction = 1:7 mÞ, and so a new critical depth

ycconstriction =
Q2

gb2constriction

	 
1=3
= 2:42

m3

s

� �2

×
s2

9:81 m
×

1
1:72 m2

" #1=3

ycconstriction = 0:588 m
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11.4 The Hydraulic Jump
We have shown that open-channel flow may be subcritical ðFr<1Þ or supercritical ðFr>1Þ. For sub-
critical flow, disturbances caused by a change in bed slope or flow cross section may move upstream and
downstream; the result is a smooth adjustment of the flow, as we have seen in the previous section. When
flow at a section is supercritical, and downstream conditions will require a change to subcritical flow, the

Then the minimum specific energy at the constriction is

Eminconstriction =
3
2
ycconstriction = 0:882 m ð4Þ

Comparing Eqs. 3 and 4 we see that with the constriction
we do not attain critical conditions.  ����������������������������������������������������

We might enquire as to what constriction would cause critical flow. To find this, solve

E=1:073 m=Emin =
3
2
yc =

3
2

Q2

gb2c

	 
1=3
for the critical channel width bc.
Hence

Q2

gb2c
=

2
3
Emin

	 
3
bc =

Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
27

gE3
min

r

=
27
8

� �1=2

× 2:4
m3

s

� �
×

s

9:811=2 m1=2
×

1

1:0733=2 m3=2

bc =1:27 m

To make the given flow attain critical conditions, the constriction should be 1.27 m; anything wider, and critical conditions are
not reached.

(c) For a bump of h=0:20 m and the constriction to b=1:7 m:

We have already seen in case (a) that the bump ðh=0:20 mÞ was insufficient by itself to create critical conditions. From case
(b) we saw that at the constriction the minimum specific energy is Emin = 0:882 m rather than Emin = 0:791 m in the main flow.
When we have both factors present, we can compare the specific energy at the bump and constriction,

Ebump+ constriction =Ebump =E1−h=0:873 m ð5Þ

and the minimum specific energy for the flow at the bump and constriction,

Eminconstriction =
3
2
ycconstriction = 0:882 m ð6Þ

From Eqs. 5 and 6we see that with both factors the specific energy is actually less than the minimum. The fact that wemust have a
specific energy that is less than the minimum allowable means something has to give! What happens is that the flow assumptions
become invalid; the flow may no longer be uniform or one-dimensional, or there may be a significant energy loss, for example
due to a hydraulic jump occurring. (We will discuss hydraulic jumps in the next
section.)

Hence the bump and constriction together are sufficient to make the flow reach
critical state.  ����������������������������������������� This problem illustrates how to determine

whether a channel bump or constriction, or
both, lead to critical flow conditions.
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need for this change cannot be communicated upstream; the flow speed exceeds the speed of surface
waves, which are the mechanism for transmitting changes. Thus a gradual change with a smooth tran-
sition through the critical point is not possible. The transition from supercritical to subcritical flow occurs
abruptly through a hydraulic jump. Hydraulic jumps can occur in canals downstream of regulating
sluices, at the foot of spillways (see Fig. 11.12a), where a steep channel slope suddenly becomes
flat—and even in the home kitchen (see Fig. 11.12b)! The specific energy curve and general shape
of a jump are shown in Fig. 11.13. We will see in this section that the jump always goes from a super-
critical depth ðy1 < ycÞ to a subcritical depth ðy2 < ycÞ and that there will be a drop ΔE in the specific
energy. Unlike the changes due to phenomena such as a bump, the abrupt change in depth involves
a significant loss of mechanical energy through turbulent mixing.

We shall analyze the hydraulic jump phenomenon by applying the basic equations to the control
volume shown in Fig. 11.14. Experiments show that the jump occurs over a relatively short distance—

(a) The Burdekin dam in Australia (b) The Kitchen Sink

(James Kilfiger)
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Fig. 11.12 Examples of a hydraulic jump.
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Specific energy curve Hydraulic jump
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Fig. 11.13 Specific energy curve for flow through a hydraulic jump.
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volume

Flow
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x
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Fig. 11.14 Schematic of hydraulic jump, showing control
volume used for analysis.
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at most, approximately six times the larger depth ðy2Þ [9]. In view of this short length, it is reasonable to
assume that friction force Ff acting on the control volume is negligible compared to pressure forces.
Note that we are therefore ignoring viscous effects for momentum considerations, but not for energy
considerations (as we just mentioned, there is considerable turbulence in the jump). Although hydraulic
jumps can occur on inclined surfaces, for simplicity we assume a horizontal bed, and rectangular channel
of width b; the results we obtain will apply generally to hydraulic jumps.

Hence we have the following assumptions:

1 Steady flow.

2 Incompressible flow.

3 Uniform velocity at each section.

4 Hydrostatic pressure distribution at each section.

5 Frictionless flow (for the momentum equation).

These assumptions are familiar from previous discussions in this chapter. For an incompressible flow
with uniform velocity at each section, we can use the appropriate form of continuity from Chapter 4,X

CS
V
! � A!=0 ð4:13bÞ

Applying Eq. 4.13b to the control volume we obtain

−V1by1 +V2by2 = 0

or

V1y1 =V2y2 ð11:31Þ
This is the continuity equation for the hydraulic jump. For the momentum equation, again with the
assumption of uniform velocity at each section, we can use the following form for the x component
of momentum

Fx =FSx +FBx =
∂
∂t

Z
CV

uρ dV--- +
X
CS

uρV
! � A! ð4:18dÞ

The unsteady term ∂=∂t disappears as the flow is steady, and the body force FBx is zero for horizontal
flow. So we obtain

FSx =
X

CS
uρV

! � A! ð11:32Þ

The surface force consists of pressure forces on the two ends and friction force on the wetted surface. By
assumption 5 we neglect friction. The gage pressure at the two ends is hydrostatic, as illustrated in
Fig. 11.3b. We recall from our study of hydrostatics that the hydrostatic force, FR, on a submerged ver-
tical surface of area, A, is given by the simple result

FR = pcA ð3:10bÞ
where pc is the pressure at the centroid of the vertical surface. For the two vertical surfaces of the control
volume, then, we have

FSx =FR1 −FR2 = ðpcAÞ1−ðpcAÞ2 = fðρgy1Þy1bg−fðρgy2Þy2bg

=
ρgb
2
ðy21−y22Þ

Using this result in Eq. 11.32, and evaluating the terms on the right,

FSx =
ρgb
2
ðy21−y22Þ=

X
CS
uρV

! � A! =V1ρf−V1y1bg+V2ρfV2y2bg

Video: A Lami-
nar Hydraulic
Jump
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Rearranging and simplifying

V2
1 y1
g

+
y21
2
=
V2
2 y2
g

+
y22
2

ð11:33Þ

This is the momentum equation for the hydraulic jump. We have already derived the energy equation for
open-channel flows,

V2
1

2g
+ y1 + z1 =

V2
2

2g
+ y2 + z2 +Hl ð11:10Þ

For our horizontal hydraulic jump, z1 = z2, so

E1 =
V2
1

2g
+ y1 =

V2
2

2g
+ y2 +Hl =E2 +Hl ð11:34Þ

This is the energy equation for the hydraulic jump; the loss of mechanical energy is

ΔE=E1−E2 =Hl

The continuity, momentum, and energy equations (Eqs. 11.31, 11.33, and 11.34, respectively) constitute
a complete set for analyzing a hydraulic jump.

Depth Increase Across a Hydraulic Jump

To find the downstream or, as it is called, the sequent depth in terms of conditions upstream from the
hydraulic jump, we begin by eliminating V2 from the momentum equation. From continuity,
V2 =V1y1=y2 (Eq. 11.31), so Eq. 11.33 can be written

V2
1 y1
g

+
y21
2
=
V2
1 y1
g

y1
y2

� �
+
y22
2

Rearranging

y22−y21 =
2V2

1 y1
g

1−
y1
y2

� �
=
2V2

1 y1
g

y2−y1
y2

� �
Dividing both sides by the common factor ðy2−y1Þ, we obtain

y2 + y1 =
2V2

1 y1
gy2

Next, multiplying by y2 and dividing by y21 gives

y2
y1

� �2

+
y2
y1

� �
=
2V2

1

gy1
= 2Fr21 ð11:35Þ

Solving for y2=y1 using the quadratic formula (ignoring the physically meaningless negative root), we
obtain

y2
y1

=
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 8Fr21

q
−1

	 

ð11:36Þ

Hence, the ratio of downstream to upstream depths across a hydraulic jump is only a function of the
upstream Froude number. Equation 11.36 has been experimentally well verified, as can be seen in
Fig. 11.15a. Depths y1 and y2 are referred to as conjugate depths. From Eq. 11.35, we see that an increase
in depth ðy2 > y1Þ requires an upstream Froude number greater than one ðFr1 > 1Þ. We have not yet
established that we must have Fr1 > 1, just that it must be for an increase in depth (theoretically
we could have Fr1 < 1 and y2 < y1); we will now consider the head loss to demonstrate that we
must have Fr1 > 1.
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Head Loss Across a Hydraulic Jump

Hydraulic jumps often are used to dissipate energy below spillways as a means of preventing erosion of
artificial or natural channel bottom or sides. It is therefore of interest to be able to determine the head loss
due to a hydraulic jump.

From the energy equation for the jump, Eq. 11.34, we can solve for the head loss

Hl =E1−E2 =
V2
1

2g
+ y1−

V2
2

2g
+ y2

� �
From continuity, V2 =V1y1=y2, so

Hl =
V2
1

2g
1−

y1
y2

� �2
" #

+ ðy1−y2Þ

or
Hl

y1
=
Fr21
2

1−
y1
y2

� �2
" #

+ 1−
y2
y1

	 

ð11:37Þ

Solving Eq. 11.35 for Fr1 in terms of y2=y1 and substituting into Eq.11.37, we obtain (after quite a bit of
algebraic manipulation)

Hl

y1
=
1
4

y2
y1

−1
	 
3

y2
y1

ð11:38aÞ

Equation 11.38a is our proof that y2=y1 > 1; the left side is always positive (turbulence must lead to a loss
of mechanical energy); so the cubed term must lead to a positive result. Then, from either Eq. 11.35 or
Eq.11.36, we see that we must have Fr1 > 1. An alternative form of this result is obtained after some
minor rearranging,

Hl =
½y2−y1�3
4y1y2

ð11:38bÞ

which again shows that y2 > y1 for real flows ðHl >0Þ. Next, the specific energy, E1, can be written as

E1 =
V2
1

2g
+ y1 = y1

V2
1

2gy1
+ 1

	 

= y1
ðFr21 + 2Þ
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Fig. 11.15 Depth ratio and head loss for a hydraulic jump. (Data from Peterka [9].)
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Nondimensionalizing H1 using E1,

Hl

E1
=
1
2

y2
y1

−1
	 
3
y2
y1
½Fr21 + 2�

The depth ratio in terms of Fr1 is given by Eq. 11.36. HenceHl=El, can be written purely as a function of
the upstream Froude number. The result, after some manipulation, is

Hl

E1
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 8Fr21

p
−3

h i3
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 8Fr21

p
−1

h i
Fr21 + 2
� � ð11:39Þ

We see that the head loss, as a fraction of the original specific energy across a hydraulic jump, is only a
function of the upstream Froude number. Equation 11.39 is experimentally well verified, as can be seen
in Fig. 11.15b; the figure also shows that more than 70 percent of the mechanical energy of the entering
stream is dissipated in jumps with Fr1 > 9. Inspection of Eq. 11.39 also shows that if Fr1 = 1, thenHl =0,
and that negative values are predicted for Fr1 < 1. Since Hl must be positive in any real flow, this recon-
firms that a hydraulic jump can occur only in supercritical flow. Flow downstream from a jump always
is subcritical. The characteristics of a hydraulic jump are determined in Example 11.5.

Example 11.5 HYDRAULIC JUMP IN A RECTANGULAR CHANNEL FLOW

A hydraulic jump occurs in a rectangular channel 3 mwide. The water depth before the jump is 0.6 m, and after the jump is 1.6 m.
Compute (a) the flow rate in the channel (b) the critical depth (c) the head loss in the jump.

Given: Rectangular channel with hydraulic jump in which flow depth changes from 0.6 m to 1.6 m.

Find: Flow rate, critical depth, and head loss in the jump.

Solution: Use the equation that relates depths y1 and y2 in terms of the Froude number (Eq. 11.36); then use the Froude number
(Eq. 11.7) to obtain the flow rate; use Eq. 11.23 to obtain the critical depth; and finally compute the head loss from Eq. 11.38b.

Governing equations:

y2
y1

=
1
2

−1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+8Fr21

q	 

ð11:36Þ

Fr=
Vffiffiffiffiffi
gy
p ð11:7Þ

yc =
Q2

gb2

	 
1=3
ð11:23Þ

Hl =
½y2−y1�3
4y1y2

ð11:38bÞ

(a) From Eq. 11.36

Fr1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2

y2
y1

� �2

−1

8

vuuut

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2×

1:6 m
0:6 m

� �2

−1

8

vuuut
Fr1 = 2:21
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11.5 Steady Uniform Flow
After studying local effects such as bumps and hydraulic jumps, and defining some fundamental quan-
tities such as the specific energy and critical velocity, we are ready to analyze flows in long stretches.
Steady uniform flow is something that is to be expected to occur for channels of constant slope and cross
section; Figs. 11.1 and 11.2 show examples of this kind of flow. Such flows are very common and impor-
tant, and have been extensively studied.

The simplest such flow is fully developed flow; it is analogous to fully developed flow in pipes.
A fully developed flow is one for which the channel is prismatic, that is, a channel with constant slope
and cross section that flows at constant depth. This depth, yn, is termed the normal depth and the flow is

As expected, Fr1 > 1 (supercritical flow). We can now use the definition of Froude number for open-channel flow to find V1

Fr1 =
V1ffiffiffiffiffiffiffi
gy1
p

Hence

V1 =Fr1
ffiffiffiffiffiffiffi
gy1
p

=2:21×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81 m
s2

× 0:6 m

r
=5:36 m=s

From this we can obtain the flow rate, Q.

Q= by1V1 = 3:0 m×0:6 m×
5:36 m

s

Q=9:65 m3=s
Q ����������������������������������������������������

(b) The critical depth can be obtained from Eq. 11.23.

yc =
Q2

gb2

	 
1=3

= 9:652
m6

s2
×

s2

9:81 m
×

1
3:02 m2

� �1=3

yc =1:02 m
yc ������������������������������������������������������

Note that as illustrated in Fig. 11.13, y1 < yc < y2.

(c) The head loss can be found from Eq. 11.38b.

Hl =
½y2−y1�3
4y1y2

=
1
4
½1:6 m−0:6 m�3
1:6 m×0:6 m

=0:260 m
Hl ��������������������������������������

As a verification of this result, we use the energy equation directly,

Hl =E1−E2 = y1 +
V2
1

2g

� �
− y2 +

V2
2

2g

� �
with V2 =Q=ðby2Þ=2:01 m=s,

Hl = 0:6 m+5:362
m2

s2
×
1
2
×

s2

9:81 m

� �

− 1:6 m+2:012
m2

s2
×
1
2
×

s2

9:81 m

� �
Hl =0:258 m

This problem illustrates computation of
flow rate, critical depth, and head loss, for
a hydraulic jump.
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termed a uniform flow. Hence the expression uniform flow in this chapter has a different meaning than in
earlier chapters. In earlier chapters it meant that the velocity was uniform at a section of the flow; in this
chapter we use it to mean that, but in addition specifically that the flow is the same at all sections. Hence
for the flow shown in Fig. 11.16, we have A1 =A2 =A (cross-section areas), Q1 =Q2 =Q (flow rates),
V1 =V2 =V (average velocity, V =Q=A), and y1 = y2 = yn (flow depth).

As before (Section 11.2), we use the following assumptions:

1 Steady flow.

2 Incompressible flow.

3 Uniform velocity at a section.

4 Gradually varying depth so that pressure distribution is hydrostatic.

5 Bed slope is small.

6 _Ws = _W shear = _Wother = 0.

Note that assumption 5 means that we can approximate the flow depth y to be vertical and flow speed
horizontal. (Strictly speaking they should be normal and parallel to the channel bottom, respectively.)

The continuity equation is obvious for this case.

Q=V1A1 =V2A2 =VA

For the momentum equation, again with the assumption of uniform velocity at each section, we can use
the following form for the x component of momentum

Fx =FSx +FBx =
∂
∂t

Z
CV

uρ dV--- +
X

CS
uρ V

! � A! ð4:18dÞ

The unsteady term ∂=∂t disappears as the flow is steady, and the control surface summation is zero
because V1 =V2; hence the right hand side is zero as there is no change of momentum for the control
volume. The body force FBx =W sin θ whereW is the weight of fluid in the control volume; θ is the bed
slope, as shown in Fig. 11.16. The surface force consists of the hydrostatic force on the two end surfaces
at and and the friction force Ff on the wetted surface of the control volume; however, because we
have the same pressure distributions at and , the net x component of pressure force is zero. Using all
these results in Eq. 4.18d we obtain

−Ff +W sin θ=0

or

Ff =W sin θ ð11:40Þ
We see that for flow at normal depth, the component of the gravity force driving the flow is just balanced
by the friction force acting on the channel walls. This is in contrast to flow in a pipe or duct, for which
(with the exception of pure gravity driven flow) we usually have a balance between an applied pressure
gradient and the friction. The friction force may be expressed as the product of an average wall shear

Control

volume

z1

y1 = yn

z2Sb = tan θ θ

y2 = yn

Fig. 11.16 Control volume for uniform channel flow.
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stress, τw, and the channel wetted surface area, PL (where L is the channel length), on which the
stress acts

Ff = τwPL ð11:41Þ
The component of gravity force can be written as

W sin θ= ρgAL sin θ ≈ ρgALθ ≈ ρgALSb ð11:42Þ
where Sb is the channel bed slope. Using Eqs. 11.41 and 11.42 in Eq. 11.40,

τwPL= ρgALSb

or

τw =
ρgASb
P

= ρgRhSb ð11:43Þ

where we have used the hydraulic radius, Rh =A=P as defined in Eq. 11.1. In Chapter 9 we have pre-
viously introduced a skin friction coefficient,

Cf =
τw

1
2ρV

2
ð9:22Þ

Using this in Eq. 11.43
1
2
Cf ρV2 = ρgRhSb

so, solving for V

V =

ffiffiffiffiffi
2g
Cf

s ffiffiffiffiffiffiffiffiffiffi
RhSb

p
ð11:44Þ

The Manning Equation for Uniform Flow

Equation 11.44 gives the flow velocity V as a function of channel geometry, specifically the hydraulic
radius, Rh and slope, Sb, but also the skin friction coefficient, Cf . This latter term is difficult to obtain
experimentally or theoretically; it depends on a number of factors such as bed roughness and fluid prop-
erties, but also on the velocity itself (via the flow Reynolds number). Instead of this we define a new
quantity,

C=

ffiffiffiffiffi
2g
Cf

s

so that Eq. 11.44 becomes

V =C
ffiffiffiffiffiffiffiffiffiffi
RhSb

p
ð11:45Þ

Equation 11.45 is the well-known Chezy equation, and C is referred to as the Chezy coefficient. Exper-
imental values of C were obtained by Manning [10]. He suggested that

C=
1
n
R1=6
h ð11:46Þ

where n is a roughness coefficient having different values for different types of boundary roughness.
Some representative values of n are listed in Table 11.2. The range of values given in the table reflects
the importance of surface characteristics. For the same material, the value of n can vary 20 to 30 percent
depending on the finish of the channel surface. SubstitutingC from Eq. 11.46 into Eq. 11.45 results in the
Manning equation for the velocity for flow at normal depth

V =
1
n
R2=3
h S1=2b ð11:47aÞ
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which is valid for SI units. Manning’s equation in SI units can also be expressed as

Q=
1
n
AR2=3

h S1=2b ð11:48aÞ

For V in ft/s and Rh in feet (English Engineering units), Eq. 11.47a can be rewritten as

V =
1:49
n

R2=3
h S1=2b ð11:47bÞ

and Eq. 11.48a can be written as

Q=
1:49
n

AR2=3
h S1=2b ð11:48bÞ

where A is in square feet. Note that a number of these equations, as well as many that follow, are
“engineering” equations; that is, the user needs to be aware of the required units of each term in the
equation.

The relationship among variables in Eqs. 11.48a can be viewed in a number of ways. For example, it
shows that the volume flow rate through a prismatic channel of given slope and roughness is a function
of both channel size and channel shape. This is illustrated in Examples 11.6 and 11.7.

Table 11.2
Representative Manning’s Roughness Coefficients

Channel Type Condition Manning’s n

Constructed, unlined Smooth earth 0.016 – 0.020
Bare earth 0.018 – 0.022
Gravel 0.022 – 0.030
Rocky 0.025 – 0.035

Constructed, lined Plastic 0.009 – 0.011
Asphalt 0.013 – 0.016
Concrete 0.013 – 0.015
Brick 0.014 – 0.017
Wood 0.011 – 0.015
Masonry 0.025 – 0.030
Corrugated metal 0.022 – 0.024

Natural Stream, clean 0.025 – 0.035
Major river, clean 0.030 – 0.040
Major river, sluggish 0.040 – 0.080

Source: Data taken from References [1], [3], [7], [11], [12]

Example 11.6 FLOW RATE IN A RECTANGULAR CHANNEL

An 8-ft-wide rectangular channel with a bed slope of 0:0004 ft=ft has a depth of flow of 2 ft. Assuming steady uniform flow,
determine the discharge in the channel. The Manning roughness coefficient is n=0:015.

Given: Geometry of rectangular channel and flow depth.

Find: Flow rate Q.

Solution: Use the appropriate form of Manning’s equation. For a problem in English Engineering units, this is Eq. 11.48b.
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Governing equations:

Q=
1:49
n

AR2=3
h S1=2b Rh =

by
b+2y

ðTable 11:1Þ

Using this equation with the given data

Q=
1:49
n

AR2=3
h S1=2b

=
1:49
0:015

× ð8 ft × 2 ftÞ× 8 ft × 2 ft
8 ft + 2× 2 ft

� �2=3

× 0:004
ft
ft

� �1=2

Q=38:5 ft3=s
Q ������������������������������� This problem demonstrates use of Man-

ning’s equation to solve for flow rate, Q.
Note that because this is an “engineering”
equation, the units do not cancel.

Example 11.7 FLOW VERSUS AREA THROUGH TWO CHANNEL SHAPES

Open channels, of square and semicircular shapes, are being considered for carrying flow on a slope of Sb =0:001; the channel
walls are to be poured concrete with n=0:015. Evaluate the flow rate delivered by the channels for maximum dimensions
between 0.5 and 2.0 m. Compare the channels on the basis of volume flow rate for given cross-sectional area.

Given: Square and semicircular channels; Sb =0:001 and n=0:015. Sizes between 0.5 and 2.0 m across.

Find: Flow rate as a function of size. Compare channels on the basis of volume flow rate, Q,
versus cross-sectional area, A.

Solution: Use the appropriate form of Manning’s equation. For a problem in SI units, this is
Eq. 11.68a.

Governing equations:

Q=
1
n
AR2=3

h S1=2b ð11:48aÞ

Assumption: Flow at normal depth.
For the square channel,

P=3b and A= b2 so Rh =
b
3

Using this in Eq. 11.48a

Q=
1
n
AR2=3

h S1=2b =
1
n
b2

b
3

� �2=3

S1=2b =
1

32=3n
S1=2b b8=3

For b=1m,

Q=
1

32=3ð0:015Þð0:001Þ
1=2ð1Þ8=3 = 1:01 m3=s

Q ��������������������
Tabulating for a range of sizes yields

b ðmÞ 0:5 1:0 1:5 2:0
A ðm2Þ 0:25 1:00 2:25 4:00
Q ðm3=sÞ 0:160 1:01 2:99 6:44

b

y b

D
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We have demonstrated that Eqs. 11.48 mean that, for normal flow, the flow rate depends on the
channel size and shape. For a specified flow rate through a prismatic channel of given slope and rough-
ness, Eqs. 11.48 also show that the depth of uniform flow is a function of both channel size and shape, as
well as the slope. There is only one depth for uniform flow at a given flow rate; it may be greater than,
less than, or equal to the critical depth. This is illustrated in Examples 11.8 and 11.9.

For the semicircular channel,

P=
πD
2

and A=
πD2

8

so Rh =
πD2

8
2
πD

=
D
4

Using this in Eq. 11.48a

Q=
1
n
AR2=3

h S1=2b =
1
n
πD2

8
D
4

� �2=3

S1=2b

=
π

45=3ð2ÞnS
1=2
b D8=3

For D=1m,

Q=
π

45=3ð2Þð0:015Þð0:001Þ
1=2ð1Þ8=3 = 0:329 m3=s

Q ���
Tabulating for a range of sizes yields

D ðmÞ 0:5 1:0 1:5 2:0
A ðm2Þ 0:0982 0:393 0:884 1:57
Q ðm3=sÞ 0:0517 0:329 0:969 2:09

For both channels, volume flow rate varies as

Q	L8=3 or Q	A4=3

since A	L2. The plot of flow rate versus cross-sectional area shows that the sem-
icircular channel is more “efficient.”

Performance of the two channels may be compared at any specified area. At
A=1m2, Q=A=1:01 m=s for the square channel. For the semicircular channel
with A=1m2, then D=1:60 m, and Q=1:15 m3=s; so Q=A=1:15 m=s. Thus
the semicircular channel carries approximately 14 percent more flow per unit area
than the square channel.

The comparison on cross-sectional area is
important in determining the amount of
excavation required to build the channel.
The channel shapes also could be compared
on the basis of perimeter, which would
indicate the amount of concrete needed to
finish the channel.

The Excelworkbook for this problem
can be used for computing data and

plotting curves for other square and sem-
icircular channels.

0.1

1.0

10.0

0.1 1.0 10.0

Cross-sectional area, A (m2)
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lu
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flo

w
 ra

te
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(m
3 /s

) Semicircular

Square

Example 11.8 NORMAL DEPTH IN A RECTANGULAR CHANNEL

Determine the normal depth (for uniform flow) if the channel described in Example 11.6 has a flow rate of 100 cfs.

Given: Geometric data on rectangular channel of Example 11.6.

Find: Normal depth for a flow rate Q=100 ft3=s.
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Solution: Use the appropriate form of Manning’s equation. For a problem in English Engineering units, this is Eq. 11.48b.

Governing equations:

Q=
1:49
n

AR2=3
h S1=2b Rh =

byn
b+2yn

Tableð11:1Þ

Combining these equations

Q=
1:49
n

AR2=3
h S1=2b =

1:49
n
ðbynÞ byn

b+2yn

� �2=3

S1=2b

Hence, after rearranging

Qn

1:49b5=3S1=2b

 !3

ðb+2ynÞ2 = y5n

Substituting Q=100 ft3=s, n=0:015, b=8 ft, and Sb =0:0004 and simplifying (remembering this is an “engineering” equation,
in which we insert values without units),

3:89ð8+ 2ynÞ2 = y5n

This nonlinear equation can be solved for yn using a numerical method such as the
Newton-Raphson method (or better yet using your calculator’s solving feature or
Excel’s Goal Seek or Solver!). We find

yn =3:97 ft
yn �������������������������������

Note that there are five roots, but four of them are complex—mathematically
correct but physically meaningless.

• This problem demonstrates the use of
Manning’s equation for finding the
normal depth.

• This relatively simple physical problem
still involved solving a nonlinear
algebraic equation.

The Excelworkbook for this problem
can be used for solving similar

problems.

Example 11.9 DETERMINATION OF FLUME SIZE

An above-ground flume, built from timber, is to convey water from amountain lake to a small hydroelectric plant. The flume is to
deliver water at Q=2m3=s; the slope is Sb =0:002 and n=0:013. Evaluate the required flume size for (a) a rectangular
section with y=b=0:5 and (b) an equilateral triangular section.

Given: Flume to be built from timber, with Sb =0:002, n=0:013, and Q=2:00 m3=s.

Find: Required flume size for:
(a) Rectangular section with y=b=0:5.
(b) Equilateral triangular section.

Solution: Assume flume is long, so flow is uniform; it is at normal depth. Then Eq. 11.48a applies.

Governing equations:
Q=

1
n
AR2=3

h S1=2b ð11:48aÞ

The choice of channel shape fixes the relationship between Rh and A; so Eq. 11.48a may be solved for normal depth, yn, thus
determining the channel size required.

(a) Rectangular section

P=2yn + b; yn=b=0:5 so b=2yn
P=2yn +2yn =4yn A= ynb= ynð2ynÞ=2y2n

so Rh =
A
P
=
2y2n
4yn

=0:5yn
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Energy Equation for Uniform Flow

To complete our discussion of normal flows, we consider the energy equation. The energy equation was
already derived in Section 11.2.

V2
1

2g
+ y1 + z1 =

V2
2

2g
+ y2 + z2 +Hl ð11:10Þ

Using this in Eq. 11.48a,

Q=
1
n
AR2=3

h S1=2b =
1
n
ð2y2nÞð0:5ynÞ2=3S1=2b =

2ð0:5Þ2=3
n

y8=3n S1=2b

Solving for yn

yn =
nQ

2ð0:5Þ2=3S1=2b

" #3=8
=

0:013ð2:00Þ
2ð0:5Þ2=3ð0:002Þ1=2
" #3=8

= 0:748 m

The required dimensions for the rectangular channel are

yn =0:748 m A=1:12 m2

b=1:50 m p=3:00 m Flume size ����������������������������������������������������
(b) Equilateral triangle section

P=2s=
2yn

cos 30�
A=

yns
2

=
y2n

2 cos 30�

so Rh =
A
P
=
yn
4

Using this in Eq. 11.48a,

Q=
1
n
AR2=3

h S1=2b =
1
n

y2n
2 cos 30�

� �
yn
4

� �2=3
S1=2b =

1

2 cos 30�ð4Þ2=3n
y8=3n S1=2b

Solving for yn

yn =
2 cos 30�ð4Þ2=3nQ

S1=2b

" #3=8
=

2 cos 30�ð4Þ2=3ð0:013Þð2:00Þ
ð0:002Þ1=2

" #3=8
= 1:42 m

The required dimensions for the triangular channel are

yn =1:42 m A=1:16 m2

bs =1:64 m p=3:28 m Flume size ����������������������������������������������������
Note that for the triangular channel

V =
Q
A
=2:0

m3

s
×

1
1:16 m2 =1:72 m=s

and
Fr=

Vffiffiffiffiffiffiffi
gyh
p =

Vffiffiffiffiffiffiffiffiffiffiffiffi
gA=bs

p
Fr=1:72

m
s
×

1

9:81
m
s2

× 1:16 m2 ×
1

1:64 m

	 
1=2 = 0:653

Hence this normal flow is subcritical (as is the flow in the rectangular channel).
Comparing results, we see that the rectangular flume would be cheaper to

build; its perimeter is about 8.5 percent less than that of the triangular flume.

yn
s

b

yn

This problem shows the effect of channel
shape on the size required to deliver a
given flow at a specified bed slope and
roughness coefficient. At specified Sb and n,
flow may be subcritical, critical, or
supercritical, depending on Q.
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In this case we obtain, with V1 =V2 =V , and y1 = y2 = yn,

z1 = z2 +Hl

or
Hl = z1−z2 = LSb ð11:49Þ

where Sb is the slope of the bed and L is the distance between points and . Hence we see that for flow
at normal depth, the head loss due to friction is equal to the change in elevation of the bed. The specific
energy, E, is the same at all sections,

E=E1 =
V2
1

2g
+ y1 =E2 =

V2
2

2g
+ y= const

For completeness we also compute the energy grade line EGL and hydraulic grade line HGL. From
Section 6.4

EGL=
p
ρg

+
V2

2g
+ ztotal ð6:16bÞ

and
HGL=

p
ρg

+ ztotal ð6:16cÞ

Note that we have used ztotal = z+ y in Eqs. 6.16b and 6.16c (in Chapter 6, z is the total elevation of the
free surface). Hence at any point on the free surface (recall that we are using gage pressures),

EGL=
V2

2g
+ z+ y ð11:50Þ

and

HGL= z+ y ð11:51Þ

Hence, using Eqs. 11.50 and 11.51 in Eqs. 11.10, between points and we obtain

EGL1−EGL2 =Hl = z1−z2

and (because V1 =V2)

HGL1−HGL2 =Hl = z1−z2

For normal flow, the energy grade line, the hydraulic grade line, and the channel bed are all parallel.
The trends for the energy grade line, hydraulic grade line, and specific energy, are shown in Fig. 11.17.

EGL1

V
2g

2
1

HGL1

E1

V
2g

2
2

E2

EGL2

HGL2

EGL line

HGL line

Fig. 11.17 Energy grade line, hydraulic grade line, and specific energy for uniform flow.

542 Chapter 11 Flow in Open Channels



Optimum Channel Cross Section

For given slope and roughness, the optimum channel cross section is that for which we need the smallest
channel for a given flow rate; this is when Q=A is maximized. From Eq. 11.48a (using the SI version,
although the results we obtain will apply generally)

Q
A
=
1
n
R2=3
h S1=2b ð11:52Þ

Thus the optimum cross section has maximum hydraulic radius, Rh. Since Rh =A=P, Rh is maximum
when the wetted perimeter is minimum. Solving Eq. 11.52 for A (with Rh =A=P) then yields

A=
nQ

S1=2b

" #3=5
P2=5 ð11:53Þ

From Eq. 11.53, the flow area will be a minimum when the wetted perimeter is a minimum.
Wetted perimeter, P, is a function of channel shape. For any given prismatic channel shape

(rectangular, trapezoidal, triangular, circular, etc.), the channel cross section can be optimized. Optimum
cross sections for common channel shapes are given without proof in Table 11.3.

Once the optimum cross section for a given channel shape has been determined, expressions for
normal depth, yn, and area, A, as functions of flow rate can be obtained from Eq. 11.48a. These expres-
sions are included in Table 11.3.

Table 11.3
Properties of Optimum Open-Channel Sections (SI Units)

Shape Section

Optimum

Geometry

yn

Qn
Sb

Normal

Depth, yn

Cross-Sectional

 Area, A

2
0.968

1/2

3/8

3

Qn
Sb

1.622
1/2

3/4

Qn
Sb

0.917
1/2

3/8

Qn
Sb

1.682
1/2

3/4

Qn
Sb

1.00
1/2

3/8

Qn
Sb

1.583
1/2

3/4

Qn
Sb

yn

yn

yn

b

b

D

α

α

b >> y

yn

yn α = 60°

b =

b = 2yn

D = 2yn

α = 45° 1.297
1/2

3/8

Qn
Sb

1.682
1/2

3/4

(Q/b)n
None —1.00

Sb
1/2

3/8

Trapezoidal

Triangular

Rectangular

Wide Flat

Circular
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11.6 Flow with Gradually Varying Depth
Most human-made channels are designed to have uniform flow (for example, see Fig. 11.1). However,
this is not true in some situations. A channel can have nonuniform flow, that is, a flow for which the
depth and hence speed, and so on vary along the channel for a number of reasons. Examples include
when an open-channel flow encounters a change in bed slope, geometry, or roughness, or is adjusting
itself back to normal depth after experiencing an upstream change (such as a sluice gate). We have
already studied rapid, localized changes, such as that occurring in a hydraulic jump, but here we assume
flow depth changes gradually. Flow with gradually varying depth is analyzed by applying the energy
equation to a differential control volume; the result is a differential equation that relates changes in depth
to distance along the flow. The resulting equation may be solved analytically or, more typically numer-
ically, ifwe approximate the head loss at each section as being the same as that for flow at normal depth,
using the velocity and hydraulic radius of the section. Water depth and channel bed height are assumed
to change slowly. As in the case of flow at normal depth, velocity is assumed uniform, and the pressure
distribution is assumed hydrostatic at each section.

The energy equation (Eq. 11.10) for open-channel flow was applied to a finite control volume in
Section 11.2,

V2
1

2g
+ y1 + z1 =

V2
2

2g
+ y2 + z2 +Hl ð11:10Þ

We apply this equation to the differential control volume, of length dx, shown in Fig. 11.18. Note that the
energy grade line, hydraulic grade line, and channel bottom all have different slopes, unlike for the
uniform flow of the previous section!

The energy equation becomes

V2

2g
+ y+ z=

V2

2g
+ d

V2

2g

� �
+ y+ dy+ z+ dz+ dHl

or after simplifying and rearranging

−d
V2

2g

� �
−dy−dz= dHl ð11:54Þ

This is not surprising. The differential loss of mechanical energy equals the differential head loss. From
channel geometry

dz= −Sbdx ð11:55Þ

V2

2g

y

EGL line

HGL line
V2

dV2

2g2g

z

y + dy

z + dz
dx

Slope Sb

Slope S

Fig. 11.18 Control volume for energy analysis of gradually varying flow.
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We also have the approximation that the head loss in this differential nonuniform flow can be approxi-
mated by the head loss that uniform flow would have at the same flow rate, Q, at the section. Hence the
differential head loss is approximated by

dHl = Sdx ð11:56Þ
where S is the slope of the EGL (see Fig. 11.18). Using Eqs. 11.55 and 11.56 in Eq. 11.54, dividing by
dx, and rearranging, we obtain

d
dx

V2

2g

� �
+
dy
dx

= Sb−S ð11:57Þ

To eliminate the velocity derivative, we differentiate the continuity equation, Q=VA= const, to obtain

dQ
dx

=0=A
dV
dx

+V
dA
dx

or

dV
dx

= −
V
A

dA
dx

= −
Vbs
A

dy
dx

ð11:58Þ

where we have used dA= bsdy (Eq. 11.17), where bs is the channel width at the free surface. Using
Eq. 11.58 in Eq. 11.57, after rearranging

d
dx

V2

2g

� �
+
dy
dx

=
V
g
dV
dx

+
dy
dx

= −
V2bs
gA

dy
dx

+
dy
dx

= Sb−S ð11:59Þ

Next, we recognize that

V2bs
gA

=
V2

g
A
bs

=
V2

gyh
=Fr2

where yh is the hydraulic depth (Eq. 11.2). Using this in Eq. 11.59, we finally obtain our desired form of
the energy equation for gradually varying flow

dy
dx

=
Sb−S
1−Fr2

ð11:60Þ

This equation indicates how the depth y of the flow varies. Whether the flow becomes deeper dy=dx>0)
or shallower (dy=dx<0) depends on the sign of the right-hand side. For example, consider a channel that
has a horizontal section (Sb =0):

dy
dx

= −
S

1−Fr2

Because of friction the EGL always decreases, so S>0. If the incoming flow is subcritical (Fr<1), the
flow depth will gradually decrease (dy=dx<0); if the incoming flow is supercritical (Fr>1), the flow
depth will gradually increase (dy=dx>0). Note also that for critical flow (Fr=1), the equation leads to a
singularity, and gradually flow is no longer sustainable—something dramatic will happen (guess what).

Calculation of Surface Profiles

Equation 11.60 can be used to solve for the free surface shape yðxÞ; the equation looks simple enough,
but it is usually difficult to solve analytically and so is solved numerically. It is difficult to solve because
the bed slope, Sb, the local Froude number, Fr, and S, the EGL slope equivalent to uniform flow at rateQ,
will in general all vary with location, x. For S, we use the results obtained in Section 11.5, specifically

Q=
1
n
AR2=3

h S1=2 ð11:48aÞ
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or for English Engineering units

Q=
1:49
n

AR2=3
h S1=2 ð11:48bÞ

Note that we have used S rather than Sb in Eq. 11.48 as we are using the equation to obtain an equivalent
value of S for a uniform flow at rate Q! Solving for S,

S=
n2Q2

A2R4=3
h

ð11:61aÞ

or for English Engineering units

S=
n2Q2

1:492A2R4=3
h

ð11:61bÞ

We can also express the Froude number as a function of Q,

Fr=
Vffiffiffiffiffiffiffi
gyh
p =

Q
A
ffiffiffiffiffiffiffi
gyh
p ð11:62Þ

Using Eqs. 11.61a (or 11.61b) and 11.62 in Eq. 11.60

dy
dx

=
Sb−S
1−Fr2

=

Sb−
n2Q2

A2R4=3
h

1−
Q2

A2gyh

ð11:63aÞ

or for English Engineering units

dy
dx

=

Sb−
n2Q2

1:492A2R4=3
h

1−
Q2

A2gyh

ð11:63bÞ

For a given channel (slope, Sb, and roughness coefficient, n, both of whichmay vary with x) and flow rate
Q, the area A, hydraulic radius Rh, and hydraulic depth yh are all functions of depth y (see Section 11.1).
Hence Eqs. 11.63 are usually best solved using a suitable numerical integration scheme. Example 11.10
shows such a calculation for the simplest case, that of a rectangular channel.

Example 11.10 CALCULATION OF FREE SURFACE PROFILE

Water flows in a 5-m-wide rectangular channel made from unfinished concrete with n=0:015. The channel contains a long reach
on which Sb is constant at Sb =0:020. At one section, flow is at depth y1 = 1:5 m, with speed V1 = 4:0 m=s. Calculate and plot the
free surface profile for the first 100 m of the channel, and find the final depth.

Given: Water flow in a rectangular channel.

Find: Plot of free surface profile; depth at 100 m.

Solution: Use the appropriate form of the equation for flow depth, Eq. 11.63a.

Governing equations:

dy
dx

=
Sb−S
1−Fr2

=

Sb−
n2Q2

A2R4=3
h

1−
Q2

A2gyh

ð11:63aÞ
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We use Euler’s method (see Section 5.5) to convert the
differential equation to a difference equation. In this
approach, the differential is converted to a difference,

dy
dx

≈
Δy
Δx

ð1Þ

where Δx and Δy are small but finite changes in x
and y, respectively. Combining Eqs. 11.63a and 1,
and rearranging,

Δy=Δx
Sb−

n2Q2

A2R4=3
h

1−
Q2

A2gyh

0
BBB@

1
CCCA

Finally, we letΔy= yi+1−yi, where yi and yi+1 are the
depths at point i and a point (i+1) distance Δx further
downstream,

yi+1 = yi +Δx

Sbi −
n2i Q

2

A2
i R

4=3
hi

1−
Q2

A2
i gyhi

0
BBBB@

1
CCCCA ð2Þ

Equation 2 computes the depth, yi+1, given data at point i. In the current application, Sb and n are constant, but A, Rh, and yh will,
of course, vary with x because they are functions of y. For a rectangular channel we have the following:

Ai = byi

Rhi =
byi

b+2yi

yhi =
Ai

bs
=
Ai

b
=
byi
bs

= yi

The calculations are conveniently performed and results plotted using Excel. Note that partial results are shown in the table, and
that for the first meter, over which there is a rapid change in depth, the step size is Δx=0:05.

i x ðmÞ y ðmÞ A ðm2Þ Rh ðmÞ yh ðmÞ
1 0:00 1:500 7:500 0:938 1:500
2 0:05 1:491 7:454 0:934 1:491
3 0:10 1:483 7:417 0:931 1:483
4 0:15 1:477 7:385 0:928 1:477
5 0:20 1:471 7:356 0:926 1:471
..
. ..

. ..
. ..

. ..
. ..

.

118 98 0:916 4:580 0:670 0:916
119 99 0:915 4:576 0:670 0:915
120 100 0:914 4:571 0:669 0:914

The depth at location x=100 m is seen to be 0.914 m.

yð100 mÞ=0:914 m yð100 mÞ
 �������������������������

Note (following the solution procedure of Example 11.8) that the normal depth for this
flow is yn =0:858 m; the flow depth is asymptotically approaching this value. In general,
this is one of several possibilities, depending on the values of the initial depth and the
channel properties (slope and roughness). A flow may approach normal depth, become
deeper and deeper, or eventually become shallower and experience a hydraulic jump.
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The accuracy of the results obtained obvi-
ously depends on the numerical model
used; for example, amore accuratemodel is
the RK4method. Also, for the first meter or
so, there are rapid changes in depth,
bringing into question the validity of
several assumptions, for example, uniform
flow and hydrostatic pressure.

The Excelworkbook for this problem
can be modified for use in solving

similar problems.
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11.7 Discharge Measurement Using Weirs
A weir is a device (or overflow structure) that is placed normal to the direction of flow. The weir essen-
tially backs up water so that, in flowing over the weir, the water goes through critical depth. Weirs have
been used for the measurement of water flow in open channels for many years. Weirs can generally be
classified as sharp-crested weirs and broad-crested weirs. Weirs are discussed in detail in Bos [14],
Brater [15], and Replogle [16].

A sharp-crested weir is basically a thin plate mounted perpendicular to the flow with the top of the
plate having a beveled, sharp edge, which makes the nappe spring clear from the plate (see Fig. 11.19).

The rate of flow is determined by measuring the head, typically in a stilling well (see Fig. 11.20) at a
distance upstream from the crest. The head H is measured using a gage.

Suppressed Rectangular Weir

These sharp-crested weirs are as wide as the channel and the width of the nappe is the same length as the
crest. Referring to Fig. 11.20, consider an elemental area dA= bdh and assume the velocity is V =

ffiffiffiffiffiffiffiffi
2gh
p

;
then the elemental flow is

dQ= bdh
ffiffiffiffiffiffiffiffi
2gh

p
= b

ffiffiffiffiffi
2g

p
h1=2dh

The discharge is expressed by integrating this over the area above the top of the weir crest:

Q=
ZH
0

dQ=
ffiffiffiffiffi
2g

p
b
ZH
0

h1=2dh=
2
3

ffiffiffiffiffi
2g

p
bH3=2 ð11:64Þ

Friction effects have been neglected in the derivation of Eq. 11.64. The drawdown effect shown in
Fig. 11.19 and the crest contraction indicate that the streamlines are not parallel or normal to the area
in the plane. To account for these effects, a coefficient of discharge Cd is used, so that

Q=Cd
2
3

ffiffiffiffiffi
2g

p
bH3=2

where Cd is approximately 0.62. This is the basic equation for a suppressed rectangular weir, which can
be expressed more generally as

Q=CwbH3=2 ð11:65Þ

Crest V

Nappe
V
2g

Drawdown
V0

2

V0

2g

H

P

Fig. 11.19 Flow over sharp-crested weir.

Stilling

well

Crest

b

dh H
h

P

Fig. 11.20 Rectangular sharp-crested weir without end contraction.
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where the Cw is the weir coefficient, Cw = 2
3Cd

ffiffiffiffiffi
2g
p

. For English Engineering units,Cw≈3:33, and for SI
units, Cw≈1:84.

If the velocity of approach, Va, where H is measured is appreciable, then the integration limits are

Q=
ffiffiffiffiffi
2g

p
b

ZH +V2
a =2g

V2
a =2g

h1=2dh=Cwb H +
V2
a

2g

� �3=2

−
V2
a

2g

� �3=2
" #

ð11:66Þ

When ðV2
a=2gÞ3=2≈0 Eq. 11.66 can be simplified to

Q=Cwb H +
V2
a

2g

� �3=2

ð11:67Þ

Contracted Rectangular Weirs

A contracted horizontal weir is another sharp-crested weir with a crest that is shorter than the width of
the channel and one or two beveled end sections so that water contracts both horizontally and vertically.
This forces the nappe width to be less than b. The effective crest length is

b
0
= b−0:1 nH

where n=1 if the weir is placed against one side wall of the channel so that the contraction on one side is
suppressed and n=2 if the weir is positioned so that it is not placed against a side wall.

Triangular Weir

Triangular or V-notch weirs are sharp-crested weirs that are used for relatively small flows but that have
the advantage that they can also function for reasonably large flows as well. Referring to Fig. 11.21, the
rate of discharge through an elemental area, dA, is

dQ=Cd

ffiffiffiffiffiffiffiffi
2gh

p
dA

where dA=2xdh, and x= ðH−hÞtanðθ=2Þ; so dA=2ðH−hÞtanðθ=2Þdh. Then

dQ=Cd

ffiffiffiffiffiffiffiffi
2gh

p
2ðH−hÞtan θ

2

� �
dh

	 

and

Q=Cd2
ffiffiffiffiffi
2g
p

tan
θ

2

� �ZH
0

ðH−hÞh1=2dh

=Cd
8
15

� � ffiffiffiffiffi
2g
p

tan
θ

2

� �
H5=2

Q=CwH5=2

The value of Cw for a value of θ=90�; (the most common) is Cw =1:38 for SI units and Cw =2:50 for
English Engineering units.

H-h

h
x

d

θ

H

Fig. 11.21 Triangular sharp-crested weir.
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Broad-Crested Weir

Broad-crested weirs (Fig. 11.22) are essentially critical-depth weirs in that if the weirs are high enough,
critical depth occurs on the crest of the weir. For critical flow conditions yc = ðQ2=gb2Þ1=3 (Eq. 11.23)
and E=3yc=2 (Eq. 11.25) for rectangular channels:

Q= b
ffiffiffiffiffiffiffi
gy3c

q
= b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

2
3
E

� �3
s

= b
2
3

� �3=2 ffiffiffi
g
p

E3=2

or, assuming the approach velocity is negligible:

Q= b
2
3

� �3=2 ffiffiffi
g
p

H3=2

Q=CwbH3=2

Figure 11.23 illustrates a broad-crested weir installation in a trapezoidal canal.

Example 11.11 shows the process for calculating the flow over a sharp-crested weir. The procedure for
other weir geometries is basically the same as for this specific geometry.

Vc
2

2g
H

P

V1

2

2g

Ec yc

V1

Fig. 11.22 Broad-crested weir.

Flow 

Measuring station

Weirbroad-crested

Fig. 11.23 Broad-crested weir in trapezoidal canal.

Example 11.11 DISCHARGE FROM A RECTANGULAR SHARP-CRESTED SUPPRESSED WEIR

A rectangular, sharp-crested suppressed weir 3 m long is 1 m high. Determine the discharge when the head is 150 mm.

Given: Geometry and head of a rectangular sharp-crested suppressed weir.

Find: Discharge (flow rate), Q.

Solution: Use the appropriate weir discharge equation.

Governing equation:

Q=CwbH3=2 ð11:65Þ
In Eq. 11.65 we use Cw≈1:84, and the given data, b=3m and H =150 mm=0:15 m, so

Q=1:84× 3 m× ð0:15 mÞ3=2
Q=0:321 m3=s Q �������������������������������

Note that Eq. 11.65 is an “engineering” equation; so we do not expect the units to
cancel.

This problem illustrates use of one of a
number of weir discharge equations.
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11.8 Summary and Useful Equations
In this chapter, we:

✓ Derived an expression for the speed of surface waves and developed the notion of the specific
energy of a flow, and derived the Froude number for determining whether a flow is subcritical,
critical, or supercritical.

✓ Investigated rapidly varied flows, especially the hydraulic jump.
✓ Investigated steady uniform flow in a channel, and used energy and momentum concepts to

derive Chezy’s and Manning’s equations.
✓ Investigated some basic concepts of gradually varied flows.

We also learned how to usemany of the important conceptsmentioned above in analyzing a range
of real-world open-channel flow problems.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to
refer to their page numbers for details!

Useful Equations
Hydraulic radius:

Rh =
A
P

11.1 Page 511

Hydraulic depth:
yh =

A
bs

11.2 Page 511

Speed of surface wave: c=
ffiffiffiffiffi
gy
p

11.6 Page 514

Froude number: Fr=
Vffiffiffiffiffi
gy
p 11.7 Page 515

Energy equation for open-channel flow: V2
1

2g
+ y1 + z1 =

V2
2

2g
+ y2 + z2 +Hl

11.10 Page 517

Total head:
H =

V2

2g
+ y+ z

11.11 Page 518

Specific energy:
E=

V2

2g
+ y

11.13 Page 518

Critical flow:
Q2 =

gA3
c

bsc

11.21 Page 522

Critical velocity: Vc =
ffiffiffiffiffiffiffiffi
gyhc
p

11.22 Page 522

Critical depth (rectangular channel):
yc =

Q2

gb2

	 
1=3 11.23 Page 522

Critical velocity (rectangular channel):
Vc =

ffiffiffiffiffiffiffi
gyc
p

=
gQ
b

	 
1=3 11.24 Page 522

Minimum specific energy (rectangular
channel):

Emin =
3
2
yc

11.25 Page 522

Hydraulic jump conjugate depths: y2
y1

=
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 8Fr21

q
−1

	 

11.36 Page 531

(Continued)
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Table (Continued)

Hydraulic jump head loss:
Hl =

½y2−y1�3
4y1y2

11.38b Page 532

Hydraulic jump head loss
(in terms of Fr1): Hl

E1
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 8Fr21

p
−3

h i3
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 8Fr21

p
−1

h i
½Fr21 + 2�

11.39 Page 533

Chezy equation: V =C
ffiffiffiffiffiffiffiffiffiffi
RhSb
p

11.45 Page 536

Chezy coefficient:
C=

1
n
R1=6
h

11.46 Page 536

Manning equation for velocity (SI units)
V =

1
n
R2=3
h S1=2b

11.47a Page 536

Manning equation for flow (SI units)
Q=

1
n
AR2=3

h S1=2b
11.48a Page 537

Manning equation for velocity (English
Engineering units)

V =
1:49
n

R2=3
h S1=2b

11.47b Page 537

Manning equation for flow (English
Engineering units)

Q=
1:49
n

AR2=3
h S1=2b

11.48b Page 537

Energy Grade Line
EGL=

V2

2g
+ z+ y

11.50 Page 542

Hydraulic Grade Line HGL= z+ y 11.51 Page 542

Energy equation (gradually varying flow): dy
dx

=
Sb−S
1−Fr2

11.60 Page 545
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P R O B L E M S

Basic Concepts and Definitions
11.1 Verify the equation given in Table 11.1 for the hydraulic radius
of a circular channel. Evaluate and plot the ratio R=D, for liquid depths
between 0 and D.

11.2 A pebble is dropped into a stream of water that flows in a rec-
tangular channel at 2 m depth. In one second, a ripple caused by the
stone is carried 7 m downstream. What is the speed of the flow-
ing water?

11.3 Solution of the complete differential equations for wave motion
without surface tension shows that wave speed is given by

c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gλ
2π

tanh
2πy
λ

� �s

where λ is the wave wavelength and y is the liquid depth. Show
that when λ=y≪ 1, wave speed becomes proportional to

ffiffiffi
λ
p

. In
the limit as λ=y!∞ , c=

ffiffiffiffiffi
gy
p

. Determine the value of λ=y for which
c>0:99

ffiffiffiffiffi
gy
p

.

11.4 A water flow rate of 250 cfs flows at a depth of 5 ft in a rectan-
gular channel that is 9 ft wide. Determine whether the flow is sub- or
supercritical. For this flow rate, determine the depth for critical flow.

11.5 Determine and plot the relation between water velocity and
depth over the range of V =0:1 m=s to 10 m=s for Froude numbers
of 0.5 (subcritical), 1.0 (critical), and 2 (supercritical). Explain how
the flow can be subcritical, critical, or supercritical for (a) the same
velocity and (b) the same depth.

11.6 Capillary waves (ripples) are small amplitude and wavelength
waves, commonly seen, for example, when an insect or small particle
hits the water surface. They are waves generated due to the interaction
of the inertia force of the fluid ρ and the fluid surface tension σ. The
wavelength is

λ=2π
ffiffiffiffiffi
σ

ρg

r
Find the speed of capillary waves in water and mercury.

11.7 The Froude number characterizes flow with a free surface. Plot
on a log-log scale the speed versus depth for 0:1 m=s <V <3m=s and
0:001< y<1m; plot the line Fr=1, and indicate regions that corre-
spond to tranquil and rapid flow.

11.8 Consider waves on the surface of a tank of water that travel at
5 ft=s. How fast would the waves travel if the tank were (a) on the
moon, (b) on Jupiter, or (c) on an orbiting space station? Explain your
results.

11.9 A submerged body traveling horizontally beneath a liquid sur-
face at a Froude number (based on body length) about 0.5 produces a
strong surface wave pattern if submerged less than half its length. (The
wave pattern of a surface ship also is pronounced at this Froude num-
ber.) On a log-log plot of speed versus body (or ship) length for
1 m=s <V <30m=s and 1 m< x<300 m, plot the line Fr=0:5.

11.10 Water flows in a rectangular channel at a depth of 750 mm. If
the flow speed is (a) 1 m=s and (b) 4 m=s, compute the corresponding
Froude numbers.

Energy Equation for Open-Channel Flows
11.11 A partially open sluice gate in a 5-m-wide rectangular channel
carries water at 10 m3=s. The upstream depth is 2.5 m. Find the down-
stream depth and Froude number.

11.12 Find the critical depth for flow at 3 m3=s in a rectangular chan-
nel of width 2.5 m.

11.13 Flow occurs in a rectangular channel of 6 m width and has a
specific energy of 3 m. Plot accurately the relation between depth
and specific energy. Determine from the curve (a) the critical depth,
(b) the maximum flow rate, (c) the flow rate at a depth of 2.4 m, and
(d) the depths at which a flow rate of 28:3 m3=s may exist, and (e) the
flow condition at these depths.

11.14What is the maximum flow rate that may occur in a rectangular
channel 2.4 m wide for a specific energy of 1.5 m?

11.15A rectangular channel carries a discharge of 10 ft3=s per foot of
width. Determine the minimum specific energy possible for this flow.
Compute the corresponding flow depth and speed.

11.16 Flow in the channel of Problem 11.15 has a specific energy of
4.5 ft. Compute the alternate depths for this specific energy.

Localized Effects of Area Change
(Frictionless Flow)
11.17 Consider the Venturi flume shown. The bed is horizontal, and
flow may be considered frictionless. The upstream depth is 1 ft, and
the downstream depth is 0.75 ft. The upstream breadth is 2 ft, and the
breadth of the throat is 1 ft. Estimate the flow rate through the flume.

Elevation view

Plan view

b1 = 2 ft b2 = 1 ft

y1 = 1 ft y2 = 0.75 ft

P11.17

11.18 Eleven cubic meters per second of water are diverted through
ports in the bottom of the channel between sections and .
Neglecting head losses and assuming a horizontal channel, what depth
of water is to be expected at section ? What channel width at
section would be required to produce a depth of 2.5 m?

2.4 m (x 4.5 m)

33 m3/s 22 m3/s

1 2

y2 m (x 4.5 m)

P11.18
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11.19A rectangular channel 10 ft wide carries 100 cfs on a horizontal
bed at 1.0 ft depth. A smooth bump across the channel rises 4 in. above
the channel bottom. Find the elevation of the liquid free surface above
the bump.

y = 1 ft 4 in.

P11.19

11.20 At what depths can 800 cfs flow in a trapezoidal channel of
base width 12 ft and side slopes 1 (vert.) on 3 (horiz.) if the specific
energy is 7 ft?

11.21 At a section of a 10-ft-wide rectangular channel, the depth is
0.3 ft for a discharge of 20 ft3=s. A smooth bump 0.1 ft high is placed
on the floor of the channel. Determine the local change in flow depth
caused by the bump.

11.22 Water, at 3 ft=s and 2 ft depth, approaches a smooth rise in a
wide channel. Estimate the stream depth after the 0.5 ft rise.

y = 2 ft

0.5 ft

V = 3
s
ft

P11.22

11.23 A horizontal rectangular channel 3 ft wide contains a sluice
gate. Upstream of the gate the depth is 6 ft and the depth downstream
is 0.9 ft. Estimate the volume flow rate in the channel.

The Hydraulic Jump
11.24 A hydraulic jump occurs in a rectangular channel 4.0 m wide.
The water depth before the jump is 0.4 m and after the jump is 1.7 m.
Compute the flow rate in the channel, the critical depth, and the head
loss in the jump.

11.25A hydraulic jump occurs in a wide horizontal channel. The dis-
charge is 2 m3=s per meter of width. The upstream depth is 500 mm.
Determine the depth of the jump.

11.26 A hydraulic jump occurs in a rectangular channel. The
flow rate is 200 ft3=s, and the depth before the jump is 1.2 ft. Deter-
mine the depth behind the jump and the head loss. The channel is
10 ft wide.

11.27 The depths of water upstream and downstream from a hydrau-
lic jump on the horizontal “apron” downstream from a spillway struc-
ture are observed to be approximately 3 ft and 8 ft. If the structure is
200 ft long (perpendicular to the direction of flow), about how much
horsepower is being dissipated in this jump?

11.28 Calculate y2, h, and y3 for this two-dimensional flow picture.
State any assumptions clearly.

Hydraulic
jump

0.3 m

1.5 m y3

y2

h

P11.28

11.29 The hydraulic jump may be used as a crude flow meter. Sup-
pose that in a horizontal rectangular channel 5 ft wide the observed
depths before and after a hydraulic jump are 0.66 ft and 3.0 ft. Find
the rate of flow and the head loss.

11.30 A hydraulic jump occurs on a horizontal apron downstream
from a wide spillway at a location where depth is 0.9 m and speed
is 25 m=s. Estimate the depth and speed downstream from the jump.
Compare the specific energy downstream of the jump to that
upstream.

11.31 A hydraulic jump occurs in a rectangular channel. The
flow rate is 50 m3=s and the depth before the jump is 2 m.
Determine the depth after the jump and the head loss if the channel
is 1 m wide.

11.32 A positive surge wave, or moving hydraulic jump, can be pro-
duced in the laboratory by suddenly opening a sluice gate. Consider a
surge of depth y2 advancing into a quiescent channel of depth y1.
Obtain an expression for surge speed in terms of y1 and y2

y2

y1

Quiescent fluidVSurge

P11.32

Uniform Flow
11.33A 2-m-wide rectangular channel with a bed slope of 0.0005 has
a depth of flow of 1.5 m. Manning’s roughness coefficient is 0.015.
Determine the steady uniform discharge in the channel.

11.34 Determine the uniform flow depth in a rectangular channel
2.5 m wide with a discharge of 3 m3=s. The slope is 0.0004 and
Manning’s roughness factor is 0.015.
11.35Determine the uniform flow depth in a trapezoidal channel with
a bottom width of 8 ft and side slopes of 1 vertical to 2 horizontal. The
discharge is 100 ft3=s. Manning’s roughness factor is 0.015 and the
channel bottom slope is 0.0004.

11.36 Water flows uniformly at a depth of 1.2 m in a rectangular
canal 3 m wide laid on a slope of 1 m per 1000 m. What is the mean
shear stress on the sides and bottom of the canal?

11.37 This large uniform open channel flow is to be modeled without
geometric distortion in the hydraulic laboratory at a scale of 1:9.
What flow rate, bottom slope, and Manning n will be required in
the model?

10′

n = 0.030
So = 0.0009

6′

4

3

4

3

P11.37
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11.38A rectangular flume built of timber is 3 ft wide. The flume is to
handle a flow of 90 ft3=s at a normal depth of 6 ft. Determine the slope
required.

11.39A channel with square cross section is to carry 20 m3=s of water
at normal depth on a slope of 0.003. Compare the dimensions of the
channel required for (a) concrete and (b) masonry.

11.40A triangular channel with side angles of 45� is to carry 10 m3=s
at a slope of 0.001. The channel is concrete. Find the required
dimensions.

11.41 A flume of timber has as its cross section an isosceles triangle
(apex down) of 2.4 m base and 1.8 m altitude. At what depth will
5 m3=s flow uniformly in this flume if it is laid on a slope of 0.01?

11.42 At what depth will 4:25 m3=s flow uniformly in a rectangular
channel 3.6 m wide lined with rubble masonry and laid on a slope
of 1:4000?

11.43 A semicircular trough of corrugated steel, with diameter
D=1m, carries water at depth y=0:25 m. The slope is 0.01. Find
the discharge.

11.44A rectangular flume built of concrete with 1 ft per 1000 ft slope
is 6 ft wide. Water flows at a normal depth of 3 ft. The flume is fitted
with a new plastic film liner. Find the new depth of flow if the dis-
charge remains constant.

11.45Water flows in a trapezoidal channel at a flow rate of 10 m3=s.
The bottom width is 2.4 m, the sides slope at 1:1, and the bed slope is
0.00193. The channel is excavated from bare soil. Find the depth of
the flow.

11.46What slope is necessary to carry 11 m3=s uniformly at a depth
of 1.5 m in a rectangular channel 3.6 m wide having n=0:017?

11.47 Find the normal depth for the channel of Problem 11.45 after a
new plastic liner is installed.

11.48 For a trapezoidal shaped channel with n=0:014 and slope
Sb =0:0002 with a 20-ft bottom width and side slopes of 1 vertical to
1.5 horizontal, determine the normal depth for a discharge of 1000 cfs.

11.49 Compute the critical depth for the channel in Problem 11.33.

11.50 A trapezoidal canal lined with brick has side slopes of 2:1 and
bottom width of 10 ft. It carries 600 ft3=s at critical speed. Determine
the critical slope (the slope at which the depth is critical).

11.51 An optimum rectangular storm sewer channel made of unfin-
ished concrete is to be designed to carry a maximum flow rate of
100 ft3=s at the critical flow rate (the rate at which the depth is the
critical depth.) Determine the channel width and slope.

Discharge Measurement
11.52 For a sharp-crested suppressed weir of length B=8:0 ft,
P=2:0 ft, and H =1:0 ft, determine the discharge over the weir.
Neglect the velocity of approach head.

11.53A rectangular sharp-crested weir with end contractions is 1.5 m
long. How high should the weir crest be placed in a channel to main-
tain an upstream depth of 2.5 m for 0:5 m3=s flow rate?

11.54 What is the depth of water behind a rectangular sharp-crested
weir 1.5 m wide and 1.2 m high when a flow of 0:28 m3=s passes over
it? What is the velocity of approach?

11.55 A broad-crested weir 0.9 m high has a flat crest and a coeffi-
cient of 1.6. If this weir is 6 m long and the head on it is 0.46 m, what
is the flow rate?

11.56 Theheadona90�V-notchweir is1.5 ft.Determine thedischarge.
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C H A P T E R 1 2

Introduction to Compressible Flow
12.1 Review of Thermodynamics

12.2 Propagation of Sound Waves

12.3 Reference State: Local Isentropic Stagnation
Properties

12.4 Critical Conditions

12.5 Basic Equations for One-Dimensional
Compressible Flow

12.6 Isentropic Flow of an Ideal Gas: Area Variation

12.7 Normal Shocks

12.8 Supersonic Channel Flow with Shocks

12.8 Supersonic Channel Flow with Shocks (continued,
on the Web)

12.9 Flow in a Constant-Area Duct with Friction
(on the Web)

12.10 Frictionless Flow in a Constant-Area Duct with Heat
Exchange (on the Web)

12.11 Oblique Shocks and Expansion Waves (on the Web)

12.12 Summary and Useful Equations

Case Study

The X-43A/Hyper-X Airplane

Superman is faster than a speeding bullet. So how fast is that? It
turns out that the highest speed of a bullet is about 1500m=s, or
aboutMach4.5 at sea level. Can humans keepupwith Superman?
If we’re in orbit we can (What is the Mach number of the Space
Shuttle in orbit?—it’s a trick question!), because there’s no
drag—once we get up to speed, we can stay there—but flying at
hypersonic speeds (i.e., above about M=5) in the atmosphere
requires tremendous engine thrust and an engine that can func-
tion at all at such speeds. In 2004, an air-breathing X-43Aman-
aged to fly at almostMach 10, or about7000mph.Thehypersonic
scramjet engine in this airplane is actually integrated into the air-
frame, and the entire lower surface of the vehicle is shaped to
make the engine work. The bulge on the underside in the figure
is the engine.Unlike the turbojet enginesused inmany jet aircraft,
which have fans and compressors as major components, the
scramjet, amazingly, has no moving parts, so if you were to look
inside it there wouldn’t be much to see! Instead it uses geometry
to develop a shock train that reduces the speedof the airflow from
hypersonic to supersonic velocities. The scramjet, which is essen-
tially a ramjet with supersonic combustion, doesn’t need to slow
the flow down to subsonic speeds. The compression ram on the
undersurface of the aircraft slows the flow down from hypersonic
to supersonic speed before it reaches the engine. It does this by
causing a sequence of oblique shocks (which we discussed in this
chapter) that successively slow the flow down and also increase
the air density. As the supersonic, relatively high-density air
passes through the engine, hydrogen fuel is injected and com-
busts, creating tremendous thrust at the exhaust. Once at hyper-
sonic speed, the combustion process is self-sustaining.

One of the problems the engineers faced was how to start the
engine. First, the airplane has to be accelerated above Mach 4 by

conventional means (by a jet engine or rocket, or by piggy-
backing another aircraft), and then the scramjet fuel can be
started and ignited. This sounds simple enough, but the ignition
process has been compared to “lighting a match in a hurricane”!
The solution was to ignite using a mixture of pyrophoric silane
(which auto-ignites when exposed to air) and hydrogen, then
switch to pure hydrogen.

The X-43A/Hyper-X is experimental, but in the futurewemay
expect to see scramjets in military applications (aircraft and
missiles), then possibly in commercial aircraft. Conceivably,
you could live in New York, go to a meeting in Los Angeles, and
be back in New York for dinner!

In this chapter you will learn some of the basic ideas behind
sub- and supersonic flow and why the designs of aircraft differ
between the two regimes. You’ll also learn about how shock
waves form and why a supersonic nozzle looks so different from
a subsonic one.

N
A

SA
 P

ho
to

/N
A

SA

The X-43A/Hyper-X at M=7 (CFD image showing
pressure contours).
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In Chapter 2 we briefly discussed the two most important questions we must ask before analyzing a fluid
flow: whether or not the flow is viscous, and whether or not the flow is compressible. We subsequently
considered incompressible, inviscid flows (Chapter 6) and incompressible, viscous flows (Chapters 8
and 9). We are now ready to study flows that experience compressibility effects. Because this is an intro-
ductory text, our focus will be mainly on one-dimensional compressible, inviscid flows, although wewill
also review some important compressible, viscous flow phenomena.

We first need to establish what we mean by a “compressible” flow. This is a flow in which there are
significant or noticeable changes in fluid density. Just as inviscid fluids do not actually exist, so incom-
pressible fluids do not actually exist. For example, in this text we have treated water as an incompressible
fluid, although in fact the density of seawater increases by 1 percent for each mile or so of depth. Hence,
whether or not a given flow can be treated as incompressible is a judgment call: Liquid flows will almost
always be considered incompressible (exceptions include phenomena such as the “water hammer” effect
in pipes), but gas flows could easily be either incompressible or compressible. We will learn in
Example 12.5 that for Mach numbers M less than about 0.3, the change in gas density due to the flow
will be less than 3 percent; this change is small enough in most engineering applications for the following
rule: A gas flow can be considered incompressible when M <0:3.

The consequences of compressibility are not limited simply to density changes. Density changes
mean that we can have significant compression or expansion work on a gas, so the thermodynamic state
of the fluid will change, meaning that in general all properties—temperature, internal energy, entropy,
and so on—can change. In particular, density changes create a mechanism (just as viscosity did) for
exchange of energy between “mechanical” energies (kinetic, potential, and “pressure”) and the thermal
internal energy. For this reason, we begin with a review of the thermodynamics needed to study com-
pressible flow.

After we cover the basic concepts of compressible flow, we will discuss one-dimensional
compressible flow in more detail. We will look at what causes the fluid properties to vary in a one-
dimensional compressible flow. Changes in the fluid properties can be caused by various phenomena,
such as a varying flow area, a normal shock (which is a “violent” adiabatic process that causes the
entropy to increase), friction on the walls of the flow passage, and heating or cooling. A real flow is
likely to experience several of these phenomena simultaneously. Further, there may be two-dimensional
flow effects, such as oblique shock and expansion waves. Although we will only introduce these
subjects in this text, we hope it will provide you with a foundation for further study of this important
topic.

12.1 Review of Thermodynamics
The pressure, density, temperature and other properties of a substance may be related by an equation of
state. Although many substances are complex in behavior, experience shows that most gases of engi-
neering interest, at moderate pressure and temperature, are well represented by the ideal gas equation
of state, (see References [1] or [2] for a review of the property relations for an ideal gas)

p= ρRT ð12:1Þ
where R is a unique constant for each gas;1 R is given by

R=
Ru

Mm

where Ru is the universal gas constant, Ru =8314 N �m=ðkgmole �KÞ=1544 ft � lbf=ðlbmole ��RÞ and
Mm is the molecular mass of the gas. Although the ideal gas equation is derived using a model that
has the unrealistic assumptions that the gas molecules (a) take up zero volume (i.e., they are point
masses) and (b) do not interact with one another, many real gases conform to Eq. 12.1, especially if
the pressure is “low” enough and/or temperature “high” enough. For example, at room temperature,
as long as the pressure is less than about 30 atm, Eq. 12.1 models the air density to better than 1 percent
accuracy; similarly, Eq. 12.1 is accurate for air at 1 atm for temperatures that are greater than
about −130�Cð140 KÞ.

1 For air, R=287 N �m=ðkg �KÞ=53:3 ft � lbf=ðlbm ��RÞ.
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The ideal gas has other features that are useful. In general, the internal energy of a simple substance
may be expressed as a function of any two independent properties, e.g., u= uðυ, TÞ, where υ≡ 1=ρ is the
specific volume. Then

du=
∂u
∂T

� �
ν

dT +
∂u
∂ν

� �
T
dν

The specific heat at constant volume is defined as cυ ≡ ð∂u=∂TÞυ, so that

du= cυ dT +
∂u
∂ν

� �
T
dν

Inparticular, for an idealgas the internal energy,u, is a function of temperature only, so ð∂u=∂υÞT =0, and

du= cν dT ð12:2Þ
This means that internal energy and temperature changes may be related if cv is known. Furthermore,
since u= uðTÞ, then from Eq. 12.2, cυ = cυðTÞ.

The enthalpy of any substance is defined as h≡ u+ p=ρ. For an ideal gas, p= ρRT , and so
h= u+RT . Since u= uðTÞ for an ideal gas, h also must be a function of temperature alone.

We can obtain a relation between h and T by recalling once again that for a simple substance any
property can be expressed as a function of any two other independent properties, e.g., h= hðυ, TÞ as we
did for u, or h= hðp,TÞ. We choose the latter in order to develop a useful relation,

dh=
∂h
∂T

� �
p
dT +

∂h
∂p

� �
T
dp

Since the specific heat at constant pressure is defined as cp ≡ ð∂h=∂TÞp,

dh= cp dT +
∂h
∂p

� �
T
dp

We have shown that for an ideal gas h is a function of T only. Consequently, ð∂h=∂TÞT =0 and

dh= cp dT ð12:3Þ
Since h is a function of T alone, Eq. 12.3 requires that cp be a function of T only for an ideal gas.

Although specific heats for an ideal gas are functions of temperature, their difference is a constant
for each gas. To see this, from

h= u+RT

we can write
dh= du+RdT

Combining this with Eq. 12.2 and Eq. 12.3, we can write

dh= cp dT = du+R dT = cυ dT +R dT

Then
cp−cυ =R ð12:4Þ

It may seem a bit odd that we have functions of temperature on the left of Eq. 12.4 but a constant on the
right; it turns out that the specific heats of an ideal gas change with temperature at the same rate, so their
difference is constant.

The ratio of specific heats is defined as

k≡
cp
cυ

ð12:5Þ

Using the definition of k, we can solve Eq. 12.4 for either cp or cυ in terms of k and R. Thus,

cp =
kR
k−1

ð12:6aÞ
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and

cν =
R

k−1
ð12:6bÞ

Although the specific heats of an ideal gas may vary with temperature, for moderate temperature ranges
they vary only slightly, and can be treated as constant, so

u2−u1 =
Z u2

u1
du=

Z T2

T1
cυ dT = cυðT2−T1Þ ð12:7aÞ

h2−h1 =
Z h2

h1
dh=

Z T2

T1
cp dT = cpðT2−T1Þ ð12:7bÞ

Data for Mm, cp, cυ, R, and k for common gases are given in Table A.6 of Appendix A.
We will find the property entropy to be extremely useful in analyzing compressible flows. State

diagrams, particularly the temperature-entropy ðTsÞ diagram, are valuable aids in the physical interpre-
tation of analytical results. Since we shall make extensive use of Ts diagrams in solving compressible
flow problems, let us review briefly some useful relationships involving the property entropy.

Entropy is defined by the equation

ΔS≡
Z
rev

δQ
T

or dS=
δQ
T

� �
rev

ð12:8Þ

where the subscript signifies reversible.
The inequality of Clausius, deduced from the second law, states thatI

δQ
T

≤ 0

As a consequence of the second law, we can write

dS≥
δQ
T

or T dS≥ δQ ð12:9aÞ

For reversible processes, the equality holds, and

T ds=
δQ
m
ðreversible processÞ ð12:9bÞ

The inequality holds for irreversible processes, and

T ds>
δQ
m
ðirreversible processÞ ð12:9cÞ

For an adiabatic process, δQ=m=0. Thus

ds=0 ðreversible adiabatic processÞ ð12:9dÞ
and

ds>0 ðirreversible adiabatic processÞ ð12:9eÞ
Thus a process that is reversible and adiabatic is also isentropic; the entropy remains constant during the
process. Inequality 12.9e shows that entropy must increase for an adiabatic process that is irreversible.
Equations 12.9 show that any two of the restrictions—reversible, adiabatic, or isentropic—imply the
third. For example, a process that is isentropic and reversible must also be adiabatic.

A useful relationship among properties ðp,υ,T ,s,uÞ can be obtained by considering the first and
second laws together. The result is the Gibbs, or T ds, equation

T ds= du+ p dν ð12:10aÞ
This is a differential relationship among properties, valid for any process between any two equilibrium
states. Although it is derived from the first and second laws, it is, in itself, a statement of neither.

An alternative form of Eq. 12.10a can be obtained by substituting

du= dðh−pνÞ= dh−p dν−ν dp
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to obtain

T ds= dh−ν dp ð12:10bÞ
For an ideal gas, entropy change can be evaluated from the T ds equations as

ds=
du
T

+
p
T
dν= cν

dT
T

+R
dν
ν

ds=
dh
T

−
ν

T
dp= cp

dT
T

−R
dp
p

For constant specific heats, these equations can be integrated to yield

s2−s1 = cν ln
T2
T1

+R ln
ν2
ν1

ð12:11aÞ

s2−s1 = c p ln
T2
T1

−R ln
p2
p1

ð12:11bÞ

and also

s2−s1 = cν ln
p2
p1

+ cp ln
ν2
ν1

ð12:11cÞ

Equation 12.11c can be obtained from either Eq. 12.11a or 12.11b using Eq. 12.4 and the ideal gas equa-
tion, Eq. 12.1, written in the form pυ=RT , to eliminate T . Example 12.1 shows use of the above gov-
erning equations (the T ds equations) to evaluate property changes during a process.

For an ideal gas with constant specific heats, we can use Eqs. 12.11 to obtain relations valid for an
isentropic process. From Eq. 12.11a

s2−s1 = 0= cν ln
T2
T1

+R ln
ν2
ν1

Then, using Eqs. 12.4 and 12.5,

T2
T1

� �
ν2
ν1

� �R=cν

=0 or T2νk−1
2 = T1νk−1

1 =Tνk−1 = constant

where states 1 and 2 are arbitrary states of the isentropic process. Using υ=1=ρ,

Tνk−1 =
T

ρk−1 = constant ð12:12aÞ

We can apply a similar process to Eqs. 12.11b and 12.11c, respectively, and obtain the following useful
relations:

Tp1−k=k = constant ð12:12bÞ
pνk =

p
ρk

= constant ð12:12cÞ

Equations 12.12 are for an ideal gas undergoing an isentropic process.
Qualitative information that is useful in drawing state diagrams also can be obtained from the T ds

equations. To complete our review of the thermodynamic fundamentals, we evaluate the slopes of lines
of constant pressure and of constant volume on the Ts diagram in Example 12.2.

Example 12.1 PROPERTY CHANGES IN COMPRESSIBLE DUCT FLOW

Air flows through a long duct of constant area at 0:15 kg=s. A short section of the duct is cooled by liquid nitrogen that surrounds
the duct. The rate of heat loss in this section is 15:0 kJ=s from the air. The absolute pressure, temperature, and velocity entering the
cooled section are 188 kPa, 440 K, and 210 m=s, respectively. At the outlet, the absolute pressure and temperature are 213 kPa
and 351 K. Compute the duct cross-sectional area and the changes in enthalpy, internal energy, and entropy for this flow.
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Given: Air flows steadily through a short section of constant-area duct that is cooled by liquid nitrogen.

T1 = 440 K
p1 = 188 kPa ðabsÞ
V1 = 210 m=s

1 2

CV
Flow

·

T2 = 351 K
p2 = 213 kPa ðabsÞ

Find: (a) Duct area.
(b) Δh.
(c) Δu.
(d) Δs.

Solution: The duct area may be found from the continuity equation.

Governing equations:

=0 1ð Þ
∂
∂t��

�!

Z
CV

ρdV +
Z
CV

ρV
!�dA!=0 ð4:12Þ

Assumptions:

1 Steady flow.

2 Uniform flow at each section.

3 Ideal gas with constant specific heats.

Then

ð−ρ1V1A1Þ+ ðρ2V2A2Þ=0

or

_m= ρ1V1A= ρ2V2A

since A=A1 =A2 = constant. Using the ideal gas relation, p= ρRT , we find

ρ1 =
p1
RT1

= 1:88× 105
N
m2 ×

kg �K
287 N �m ×

1
440 K

=1:49 kg=m3

From continuity,

A=
_m

ρ1V1
= 0:15

kg
s
×

m3

1:49 kg
×

s
210 m

=4:79× 10−4 m2 A �������������������������������
For an ideal gas, the change in enthalpy is

Δh= h2−h1 =
Z T2

T1
cp dT = cpðT2−T1Þ ð12:7bÞ
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Δh=1:00
kJ

kg �K × ð351−440ÞK= −89:0 kJ=kg Δh ����������������������������������������
Also, the change in internal energy is

Δu= u2−u1 =
Z T2

T1
cν dT = cνðT2−T1Þ ð12:7aÞ

Δu=0:717
kJ

kg �K × ð351−440ÞK= −63:8 kJ=kg Δu ���������������������������������������
The entropy change may be obtained from Eq. 12.11b,

Δs= s2−s1 = cp ln
T2
T1

−R ln
p2
p1

= 1:00
kJ

kg �K × ln
351
440

� �
−0:287

kJ
kg �K × ln

2:13× 105

1:88× 105

� �

Δs= −0:262 kJ=ðkg �KÞ Δs �������������������������������
We see that entropy may decrease for a nonadiabatic process in which the gas
is cooled.

This problem illustrates the use of the
governing equations for computing prop-
erty changes of an ideal gas during a
process.

Example 12.2 CONSTANT-PROPERTY LINES ON A Ts DIAGRAM

For an ideal gas, find the equations for lines of (a) constant volume and (b) constant pressure in the Ts plane.

Find: Equations for lines of (a) constant volume and (b) constant pressure in the Ts plane for an ideal gas.

Solution:

(a) We are interested in the relation between T and s with the volume ν held constant. This suggests use of Eq. 12.11a,

= 0

s2−s1 = cυ ln
T2
T1

+R ln
υ2
υ1��

�! ð12:8Þ

We relabel this equation so that state 1 is now reference state 0, and state 2 is an arbitrary state,

s−s0 = cν ln
T
T0

or T = T0eðs−s0Þ=cν ð1Þ

Hence, we conclude that constant volume lines in the Ts plane are exponential.
(b) We are interested in the relation between T and swith the pressure p held constant. This suggests use of Eq. 12.11b, and using

a similar approach to case (a), we find

T = T0eðs−s0Þ=cp ð2Þ
Hence, we conclude that constant pressure lines in the Ts plane are also exponential.
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12.2 Propagation of Sound Waves
Speed of Sound

A beginner to compressible flow studies might wonder what on earth sound has to do with the speeds
present in a flow. We will see in this chapter and the next that the speed of sound, c, is an important
marker in fluid mechanics: Flows with speeds less than the speed of sound are called subsonic; flows
with speeds greater than the speed of sound are called supersonic; and we will learn that the behaviors of
subsonic and supersonic flows are completely different. We have previously (in Chapter 2, and in
Chapter 7) defined the Mach number M of a flow, and it is so important for our studies that we
redefine it here,

M ≡
V
c

ð12:13Þ

where V is the speed of the fluid, or in some cases of the aircraft, so thatM <1 andM >1 correspond to
subsonic and supersonic flow, respectively. In addition, we mentioned in Section 12.1 that we’ll dem-
onstrate in Example 12.5 that forM <0:3, we can generally assume incompressible flow. Hence, knowl-
edge of the Mach number value is important in fluid mechanics.

An answer to the question posed at the beginning of this section is that the speed of sound is impor-
tant in fluid mechanics because this is the speed at which “signals” can travel through the medium. Con-
sider, for example, an object such as an aircraft in motion—the air ultimately has to move out of its way.
In Newton’s day, it was thought that this happened when the (invisible) air particles literally bounced off
the front of the object, like so many balls bouncing off a wall; now we know that in most instances the air
starts moving out of the way well before encountering the object; this will not be true when we have
supersonic flow! How does the air “know” to move out of the way? It knows because as the object
moves, it generates disturbances (infinitesimal pressure waves, which are sound waves) that emanate
from the object in all directions. It is these waves that cumulatively “signal” the air and redirect it around
the body as it approaches. These waves travel out at the speed of sound.

Sound is a pressure wave of very low pressure magnitude, for human hearing typically in the range
of about 10−9 atm (the threshold of hearing) to about 10−3 atm (pain). Superimposed on the ambient
atmospheric pressure, sound waves consist of extremely small pressure fluctuations. Because the range
of human hearing covers about five or six orders of magnitude in pressure, typically we use a dimen-
sionless logarithmic scale, the decibel level, to indicate sound intensity; 0 dB corresponds to the

What about the slope of these curves? Because cp > cv for all gases, we can see that the exponential, and therefore the slope, of
the constant pressure curve, Eq. 2, is smaller than that for the constant volume curve, Eq. 1.

This is shown in the sketch below:

Constant pressure

Te
m

p
e
ra

tu
re

Entropy

Decreasing v

Increasing p

Constant volume

This problem illustrates use of governing
equations to explore relations among
properties.
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threshold of hearing, and if you listen to yourMP3 player at full blast the sound will be at about 100 dB—
about 1010 the intensity of the threshold of hearing!

Let us derive a method for computing the speed of sound in any medium (solid, liquid, or gas). As
we do so, bear in mind that we are obtaining the speed of a “signal”—a pressure wave—and that the
speed of the medium in which the wave travels is a completely different thing. For example, if you watch
a soccer player kick the ball, a fraction of a second later you will hear the thud of contact as the sound,
which is a pressure wave, travels from the field up to you in the stands, but no air particles traveled
between you and the player. All of the air particles simply vibrated a bit.

Consider propagation of a sound wave of infinitesimal strength into an undisturbed medium, as
shown in Fig. 12.1a. We are interested in relating the speed of wave propagation, c, to fluid property
changes across the wave. If pressure and density in the undisturbed medium ahead of the wave are
denoted by p and ρ, passage of the wave will cause them to undergo infinitesimal changes to become
p+ dp and ρ+ dρ. Since the wave propagates into a stationary fluid, the velocity ahead of the wave, Vx, is
zero. The magnitude of the velocity behind the wave, Vx + dVx, then will be simply dVx; in Fig. 12.1a, the
direction of the motion behind the wave has been assumed to the left.2

The flow of Fig. 12.1a appears unsteady to a stationary observer, viewing the wave motion from a
fixed point on the ground. However, the flow appears steady to an observer located on an inertial control
volume moving with a segment of the wave, as shown in Fig. 12.1b. The velocity approaching the con-
trol volume is then c, and the velocity leaving is c−dVx.

The basic equations may be applied to the differential control volume shown in Fig. 12.1b (we use
Vx for the x component of velocity to avoid confusion with internal energy, u).

a. Continuity Equation
Governing equations:

= 0 1ð Þ
∂
∂t��

�!

Z
CV

ρdV +
Z
CS
ρV
!�dA!=0 ð4:12Þ

Assumptions:

1 Steady flow.

2 Uniform flow at each section.

Then

ð−ρcAÞ+ fðρ+ dρÞðc−dVxÞAg=0 ð12:14aÞ

Stationary
observer

p
Vx  0

ρ  dρ
dVx
p  dp

 dρ
c  dVx
p  dp

ρ

ρ

p
c
ρ

c

Y

X
(a) Propagating wave

(b) Inertial control volume moving with wave, velocity c

y

x

Observer
on CV

Fig. 12.1 Propagating sound wave showing control volume chosen for analysis.

2 The same final result is obtained regardless of the direction initially assumed for motion behind the wave.
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or
≈0

−ρ �cA���+ ρ �cA���−ρ dVxA+ dρcA−dρ dVx��
!A=0

or

dVx =
c
ρ
dρ ð12:14bÞ

b. Momentum Equation
Governing equation:

= 0 3ð Þ=0 1ð Þ
FSx +FBx��

�!= ∂
∂t��

�!

Z
CV

VxρdV +
Z
CS
VxρV

!�dA! ð4:18aÞ

Assumption:

3 FBx =0

The only surface forces acting in the x direction on the control volume of Fig. 12.1b are due to pres-
sure. The upper and lower surfaces have zero friction because the areas are infinitesimal.

FSx = pA−ðp+ dpÞA= −Adp

Substituting into the governing equation gives

−Adp= cð−ρcAÞ+ ðc−dVxÞfðρ+ dρÞðc−dVxÞAg
Using the continuity equation, (Eq. 12.14a), this reduces to

−Adp= cð−ρcAÞ+ ðc−dVxÞðρcAÞ= ð−c+ c−dVxÞðρcAÞ
−Adp= −ρcAdVx

or

dVx =
1
ρc

dp ð12:14cÞ

Combining Eqs. 12.14b and 12.14c, we obtain

dVx =
c
ρ
dρ=

1
ρc

dp

from which
dp= c2 dρ

or

c2 =
dp
dρ

ð12:15Þ

We have derived an expression for the speed of sound in any medium in terms of thermodynamic
quantities! Equation 12.15 indicates that the speed of sound depends on how the pressure and density of
the medium are related. To obtain the speed of sound in a medium we could measure the time a sound
wave takes to travel a prescribed distance, or instead we could apply a small pressure change dp to a
sample, measure the corresponding density change dρ, and evaluate c from Eq. 12.15. For example,
an incompressible medium would have dρ=0 for any dp, so c!∞ . We can anticipate that solids
and liquids whose densities are difficult to change will have relatively high c values, and gases whose
densities are easy to change will have relatively low c values. There is only one problem with Eq. 12.15.
For a simple substance, each property depends on any two independent properties. For a sound wave, by
definition we have an infinitesimal pressure change (i.e., it is reversible), and it occurs very quickly, so
there is no time for any heat transfer to occur (i.e., it is adiabatic). Thus the sound wave propagates
isentropically. Hence, if we express p as a function of density and entropy, p= pðρ,sÞ, then

dp=
∂p
∂ρ

� �
s
dρ+

∂p
∂s

� �
ρ

ds=
∂p
∂ρ

� �
s
dρ

56512.2 Propagation of Sound Waves



so Eq. 12.15 becomes

c2 =
dp
dρ

=
∂p
∂ρ

�
s

and

c=

ffiffiffiffiffiffiffiffiffiffi
∂p
∂ρ

�
s

s
ð12:16Þ

We can now apply Eq. 12.16 to solids, liquids, and gases. For solids and liquids data are usually
available on the bulk modulus Eυ, which is a measure of how a pressure change affects a relative density
change,

Eν =
dp

dρ=ρ
= ρ

dp
dρ

For these media

c=
ffiffiffiffiffiffiffiffiffiffi
Eν=ρ

p
ð12:17Þ

For an ideal gas, the pressure and density in isentropic flow are related by

p
ρk

= constant ð12:12cÞ

Taking logarithms and differentiating, we obtain

dp
p
−k

dρ
ρ

=0

Therefore,

∂p
∂ρ

�
s
= k

p
ρ

But p=ρ=RT , so finally

c=
ffiffiffiffiffiffiffiffiffi
kRT
p

ð12:18Þ

for an ideal gas. The speed of sound in air has been measured precisely by numerous investigators [3].
The results agree closely with the theoretical prediction of Eq. 12.18.

The important feature of sound propagation in an ideal gas, as shown by Eq. 12.18, is that the speed
of sound is a function of temperature only. The variation in atmospheric temperature with altitude on a
standard day was discussed in Chapter 3; the properties are summarized in Table A.3. Example 12.3
shows the use of Eqs. 12.17 and 12.18 in determining the speed of sound in different media.

Example 12.3 SPEED OF SOUND IN STEEL, WATER, SEAWATER, AND AIR

Find the speed of sound in (a) steel ðEν≈200GN=m2Þ, (b) water (at 20�C), (c) seawater (at 20�C), and (d) air at sea level on a
standard day.

Find: Speed of sound in (a) steel ðEυ≈200 GN=m2Þ, (b) water (at 20�C), (c) seawater (at 20�C), and (d) air at sea level on a
standard day.
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Types of Flow—The Mach Cone

Flows for which M <1 are subsonic, while those with M >1 are supersonic. Flow fields that have both
subsonic and supersonic regions are termed transonic. The transonic regime occurs for Mach numbers
between about 0.9 and 1.2. Although most flows within our experience are subsonic, there are important
practical cases whereM ≥ 1 occurs in a flow field. Perhaps the most obvious are supersonic aircraft and
transonic flows in aircraft compressors and fans. Yet another flow regime, hypersonic flow ðM>	 5Þ, is of
interest in missile and reentry-vehicle design. Some important qualitative differences between subsonic
and supersonic flows can be deduced from the properties of a simple moving sound source.

Consider a point source of sound that emits a pulse everyΔt seconds. Each pulse expands outwards
from its origination point at the speed of sound c, so at any instant t the pulse will be a sphere of radius ct
centered at the pulse’s origination point. We want to investigate what happens if the point source itself is
moving. There are four possibilities, as shown in Fig. 12.2:

(a) V =0. The point source is stationary. Figure 12.2a shows conditions after 3Δt seconds. The first
pulse has expanded to a sphere of radius cð3ΔtÞ, the second to a sphere of radius cð2ΔtÞ, and
the third to a sphere of radius cðΔtÞ; a new pulse is about to be emitted. The pulses constitute a
set of ever-expanding concentric spheres.

(b) 0<V < c. The point source moves to the left at subsonic speed. Figure 12.2b shows conditions after
3Δt seconds. The source is shown at times t=0,Δt,2Δt, and 3Δt. The first pulse has expanded to a
sphere of radius cð3ΔtÞ centered where the source was originally, the second to a sphere of radius
cð2ΔtÞ centered where the source was at timeΔt, and the third to a sphere of radius cðΔtÞ centered
where the source was at time 2Δt; a new pulse is about to be emitted. The pulses again constitute a
set of ever-expanding spheres, except now they are not concentric. The pulses are all expanding at
constant speed c. We make two important notes: First, we can see that an observer who is ahead of
the source (or whom the source is approaching) will hear the pulses at a higher frequency rate than
will an observer who is behind the source (this is the Doppler effect that occurs when a vehicle

Solution:

(a) For steel, a solid, we use Eq. 12.17, with ρ obtained from Table A.1(b),

c=
ffiffiffiffiffiffiffiffiffiffi
Eυ=ρ

p
=

ffiffiffiffiffi
Eυ
p

=SGρH2O

c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
200× 109

N
m2 ×

1
7:83

×
1

1000
m3

kg
×
kg�m
N�s2

s
=5050 m=s

csteel �������������������������������
(b) For water we also use Eq. 12.17, with data obtained from Table A.2,

c=
ffiffiffiffiffiffiffiffiffiffi
Eν=ρ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eν=SGρH2O

p
c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:24× 109

N
m2 ×

1
0:998

×
1

1000
m3

kg
×
kg �m
N � s2

s
=1500 m=s

cwater �������������������������������
(c) For seawater we again use Eq. 12.17, with data obtained from Table A.2,

c=
ffiffiffiffiffiffiffiffiffiffi
Eν=ρ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eν=SGρH2O

p
c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:42× 109

N
m2 ×

1
1:025

×
1

1000
m3

kg
×
kg �m
N � s2

s
=1540 m=s

cseawater �������������
(d) For air we use Eq. 12.18, with the sea level temperature obtained from

Table A.3,

c=
ffiffiffiffiffiffiffiffiffi
kRT
p

c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4× 287

N �m
kg �K ×288 K×

kg �m
N � s2

r
=340 m=s

cairð288 KÞ ��������������������

This problem illustrates the relative mag-
nitudes of the speed of sound in typical
solids, liquids, and gases
ðcsolids > cliquids > cgasesÞ. Do not confuse the
speed of sound with the attenuation of
sound—the rate at which internal friction
of the medium reduces the sound level—
generally, solids and liquids attenuate
sound much more rapidly than do gases.
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approaches and passes); second, an observer ahead of the source hears the source before the source
itself reaches the observer.

(c) V = c. The point source moves to the left at sonic speed. Figure 12.2c shows conditions after 3Δt
seconds. The source is shown at times t=0 (point 1), Δt (point 2), 2Δt (point 3), and 3Δt (point 4).
The first pulse has expanded to sphere 1 of radius cð3ΔtÞ centered at point 1, the second to sphere 2
of radius cð2ΔtÞ centered at point 2, and the third to sphere 3 of radius cðΔtÞ centered around the
source at point 3. We can see once more that the pulses constitute a set of ever-expanding spheres,
except now they are tangent to one another on the left! The pulses are all expanding at constant speed
c, but the source is also moving at speed c, with the result that the source and all its pulses are trav-
eling together to the left. We again make two important notes: First, we can see that an observer who
is ahead of the source will not hear the pulses before the source reaches the observer second, in the-
ory, over time an unlimited number of pulses will accumulate at the front of the source, leading to a
sound wave of unlimited amplitude. This was a source of concern to engineers trying to break the
“sound barrier,”which many people thought could not be broken—Chuck Yeager in a Bell X–1 was
the first to do so in 1947.

(d) V > c. The point source moves to the left at supersonic speed. Figure 12.2d shows conditions after
3Δt seconds. By now it is clear how the spherical waves develop. We can see once more that the
pulses constitute a set of ever-expanding spheres, except now the source is moving so fast it moves
ahead of each sphere that it generates! For supersonic motion, the spheres generate what is called a
Mach cone tangent to each sphere. The region inside the cone is called the zone of action and that
outside the cone the zone of silence, for obvious reasons, as shown in Fig. 12.2e. From geometry, we
see from Fig. 12.2d that

sinα=
c
V
=

1
M

c Δt

c(2Δt)

c(3Δt)
c(3Δt)

c(3Δt)

V(3Δt)

(a) V = 0: stationary source

(c) V = c

V > c
(e) M > 1: the Mach cone

c(Δt)

V(Δt)

c(2Δt)

c(2Δt)

V(2Δt)

V(2Δt)

(b) V < c: Doppler shift

Locus of wave fronts

3
4

3

2 1

(d) V > c: supersonic motion

3 2 1

2 1

α

Outside cone:
unaware of sound Inside cone:

aware of sound

Fig. 12.2 Propagation of sound waves from a moving source: The Mach cone.
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or

α= sin−1 1
M

� �
ð12:19Þ

Figure 12.3 shows an image of an F/A–18 Hornet just as it accelerates to supersonic speed. The
visible vapor pattern is due to the sudden increase in pressure as a shock wave washes over the aircraft
(a shock wave leads to a sudden and large pressure increase). The (invisible) Mach cone emanates from
the nose of the aircraft and passes through the periphery of the vapor disk. In Example 12.4, the proper-
ties of the Mach cone are used in analyzing a bullet trajectory.

Example 12.4 MACH CONE OF A BULLET

In tests of a protective material, we wish to photograph a bullet as it
impacts a jacket made of the material. A camera is set up a perpendicular
distance h=5m from the bullet trajectory. We wish to determine the
perpendicular distance d from the target plane at which the camera must
be placed such that the sound of the bullet will trigger the camera at the
impact time. Note: The bullet speed is measured to be 550 m=s; the delay
time of the camera is 0.005 s.

Find: Location of camera for capturing impact image.

Solution: The correct value of d is that for which the bullet hits the target 0.005 s before theMach wave reaches the camera.We
must first find the Mach number of the bullet; then we can find the Mach angle; finally, we can use basic trigonometry to find d.

Assuming sea level conditions, from Table A.3 we have T = 288 K. Hence Eq. 12.18 yields

c=
ffiffiffiffiffiffiffiffiffi
kRT
p

c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4× 287

N �m
kg �K ×288 K×

kg �m
N � s2

r
=340 m=s

Then we can find the Mach number,

M =
V
c
=
550 m=s
340 m=s

= 1:62

From Eq. 12.19 we can next find the Mach angle,

α= sin−1 1
M

� �
= sin−1 1

1:62

� �
=38:2�

The distance x traveled by the bullet while the Mach wave reaches the camera is then

x=
h

tanðαÞ =
5m

tanð38:2�Þ =6:35 m

Finally, we must add to this the time traveled by the bullet while the camera is operating, which is 0:005 s × 550 m=s,

d=0:005 s ×
550 m

s
+ 6:35 m=2:75 m+6:35 m

d=9:10 m
d �������������������������������

h = 5 m

Bullet trajectory

d

Video: Shock
Waves due to a
Projectile
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12.3 Reference State: Local Isentropic Stagnation Properties
In our study of compressible flow, we will discover that, in general, all properties ðp, T , ρ, u, s, VÞmay
be changing as the flow proceeds. We need to obtain reference conditions that we can use to relate con-
ditions in a flow from point to point. For any flow, a reference condition is obtained when the fluid
is brought to rest either in reality or conceptually. We will call this the stagnation condition, and the
property values ðp0, T0, ρ0, u0, h0, s0Þ at this state the stagnation properties. This process—of bringing
the fluid to rest—is not as straightforward as it seems. For example, do we do so while there is friction, or
while the fluid is being heated or cooled, or “violently,” or in some other way? The simplest process to
use is an isentropic process, in which there is no friction, no heat transfer, and no “violent” events. Hence,
the properties we obtain will be the local isentropic stagnation properties. Why “local”? Because the
actual flow can be any kind of flow, e.g., with friction, so it may or may not itself be isentropic. Hence,
each point in the flow will have its own, or local, isentropic stagnation properties. This is illustrated in
Fig. 12.4, showing a flow from some state to some new state . The local isentropic stagnation prop-
erties for each state, obtained by isentropically bringing the fluid to rest, are also shown. Hence, s01 = s1
and s02 = s2. The actual flow may or may not be isentropic. If it is isentropic, s1 = s2 = s01 = s02 , so the
stagnation states are identical; if it is not isentropic, then s01 6¼ s02 . We will see that changes in local
isentropic stagnation properties will provide useful information about the flow.

We can obtain information on the reference isentropic stagnation state for incompressible flows by
recalling the Bernoulli equation from Chapter 6

p
ρ
+
V2

2
+ gz= constant ð6:8Þ

valid for a steady, incompressible, frictionless flow along a streamline. Equation 6.8 is valid for an
incompressible isentropic process because it is reversible (frictionless and steady) and adiabatic (we

©
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s/

A
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m
y

Fig. 12.3 An F/A–18 Hornet as it breaks the sound barrier.

p1, T1,   1, u1, h1, s1, V1ρ
p2, T2,   2, u2, h2, s2, V2ρ

p01
, T01

,   01
, u01

, h01
, s01

= s1, V = 0ρ
p02

, T02
,   02

, u02
, h02

, s02
= s2, V = 0ρ

Isentropic processes

Actual flow
(isentropic or not)

1
2

Fig. 12.4 Local isentropic stagnation properties.
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did not include heat transfer considerations in its derivation). As we saw in Section 6.2, the Bernoulli
equation leads to

p0 = p+
1
2
ρV2 ð6:11Þ

The gravity term drops out because we assume the reference state is at the same elevation as the actual
state, and in any event in external flows it is usually much smaller than the other terms. In Example 12.6
we compare isentropic stagnation conditions obtained assuming incompressibility (Eq. 6.11), and allow-
ing for compressibility.

Local Isentropic Stagnation Properties for the Flow of an Ideal Gas

For a compressible flow we can derive the isentropic stagnation relations by applying the mass conser-
vation and momentum equations to a differential control volume, and then integrating. For the process
shown schematically in Fig. 12.4, we can depict the process from state to the corresponding stagnation
state by imagining the control volume shown in Fig. 12.5. Consider first the continuity equation.

a. Continuity Equation
Governing equation:

= 0 1ð Þ
∂
∂t��

�!

Z
CV

ρdV +
Z
CS
ρV
!�dA!=0 ð4:12Þ

Assumptions:

1 Steady flow.

2 Uniform flow at each section.

Then

ð−ρVxAÞ+ fðρ+ dρÞðVx + dVxÞðA+ dAÞg=0

or

ρVxA= ðρ+ dρÞðVx + dVxÞðA+ dAÞ ð12:20aÞ

b. Momentum Equation
Governing equation:

= 0 3ð Þ=0 1ð Þ
FSx +FBx��

�!= ∂
∂t��

�!

Z
CV

VxρdV +
Z
CS
VxρV

!�dA! ð4:18aÞ

y
x

01

CV Stream tube

V = 0
  p = p0
  T = T0

dx

dRx

+ d
Vx + dVx
A + dA
p + dp
T + dT

ρρ ρ

Vx
A
p
T

Flow

Fig. 12.5 Compressible flow in an infinitesimal stream tube.
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Assumptions:

3 FBx =0

4 Frictionless flow.

The surface forces acting on the infinitesimal control volume are

FSx = dRx + pA−ðp+ dpÞðA+ dAÞ
The force dRx is applied along the stream tube boundary, as shown in Fig. 12.5, where the average pres-
sure is p+ dp=2, and the area component in the x direction is dA. There is no friction. Thus,

FSx = p+
dp
2

� �
dA+ pA−ðp+ dpÞðA+ dAÞ

or

≈0 ≈0

FSx = pdA��
��+dp dA

2��
��! + pA��
��
�

��
��
�

−pA��
��
�

��
��
�

−dpA−pdA��
��−dpdA

��
��! = −dpA

Substituting this result into the momentum equation gives

−dp A=Vxf−ρVxAg+ ðVx + dVxÞfðρ+ dρÞðVx + dVxÞðA+ dAÞg
which may be simplified using Eq. 12.20a to obtain

−dp A= ð−Vx +Vx + dVxÞðρVxAÞ
Finally,

dp= −ρVxdVx = −ρd
V2
x

2

� �
or

dp
ρ

+ d
V2
x

2

� �
=0 ð12:20bÞ

Equation 12.20b is a relation among properties during the deceleration process. (Note that for incom-
pressible flow, it immediately leads to Eq. 6.11.) In developing this relation, we have specified a fric-
tionless deceleration process. Before we can integrate between the initial state and final stagnation state,
we must specify the relation that exists between pressure, p, and density, ρ, along the process path.

Since the deceleration process is isentropic, then p and ρ for an ideal gas are related by the
expression

p
ρk

= constant ð12:12cÞ

Our task now is to integrate Eq. 12.20b subject to this relation. Along the stagnation streamline there is
only a single component of velocity; Vx is the magnitude of the velocity. Hence we can drop the subscript
in Eq. 12.20b.

From p=ρk = constant =C, we can write

p=Cρk and ρ= p1=kC−1=k

Then, from Eq. 12.20b,

−d
V2

2

� �
=
dp
ρ

= p−1=kC1=kdp

We can integrate this equation between the initial state and the corresponding stagnation state

−
Z 0

V
d

V2

2

� �
=C1=k

Z p0

p
p−1=kdp
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to obtain

V2

2
=C1=k k

k−1
pðk−1Þ=k
h ip0

p
=C1=k k

k−1
pðk−1Þ=k
0 −pðk−1Þ=k

h i
V2

2
=C1=k k

k−1
pðk−1Þ=k p0

p

� �ðk−1Þ=k
−1

" #

Since C1=k = p1=k=ρ,

V2

2
=

k
k−1

p1=k

ρ
pðk−1Þ=k p0

p

� �ðk−1Þ=k
−1

" #
V2

2
=

k
k−1

p
ρ

p0
p

� �ðk−1Þ=k
−1

" #

Since we seek an expression for stagnation pressure, we can rewrite this equation as

p0
p

� �ðk−1Þ=k
=1+

k−1
k

ρ

p
V2

2

and

p0
p
= 1+

k−1
k

ρV2

2p

	 
k=ðk−1Þ

For an ideal gas, p= ρRT , and hence

p0
p
= 1+

k−1
2

V2

kRT

	 
k=ðk−1Þ

Also, for an ideal gas the sonic speed is c=
ffiffiffiffiffiffiffiffiffi
kRT
p

, and thus

p0
p
= 1+

k−1
2

V2

c2

	 
k=ðk−1Þ

p0
p
= 1+

k−1
2

M2
	 
k=ðk−1Þ

ð12:21aÞ

Equation 12.21a enables us to calculate the local isentropic stagnation pressure at any point in a flow
field of an ideal gas, provided that we know the static pressure and Mach number at that point.

We can readily obtain expressions for other isentropic stagnation properties by applying the relation

p
ρk

=constant

between end states of the process. Thus

p0
p
=

ρ0
ρ

� �k

and
ρ0
ρ
=

p0
p

� �1=k
For an ideal gas, then,

T0
T

=
p0
p

ρ

ρ0
=
p0
p

p0
p

� �−1=k

=
p0
p

� �ðk−1Þ=k

Using Eq. 12.21a, we can summarize the equations for determining local isentropic stagnation properties
of an ideal gas as

p0
p
= 1+

k−1
2

M2
	 
k=ðk−1Þ

ð12:21aÞ
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T0
T

=1+
k−1
2

M2 ð12:21bÞ
ρ0
ρ
= 1+

k−1
2

M2
	 
1=ðk−1Þ

ð12:21cÞ

From Eqs. 12.21, the ratio of each local isentropic stagnation property to the corresponding static prop-
erty at any point in a flow field for an ideal gas can be found if the local Mach number is known. We will
usually use Eqs. 12.21 in lieu of the continuity and momentum equations for relating the properties at a
state to that state’s stagnation properties, but it is important to remember that we derived Eqs. 12.21 using
these equations and the isentropic relation for an ideal gas. Appendix D.1 lists flow functions for prop-
erty ratios T0=T ,p0=p, and ρ0=ρ, in terms of M for isentropic flow of an ideal gas. A table of values, as
well as a plot of these property ratios is presented for air ðk=1:4Þ for a limited range of Mach numbers.
The associated Excel workbook, Isentropic Relations, available on the website, can be used to print
a larger table of values for air and other ideal gases. The calculation procedure is illustrated in
Example 12.5. The Mach number range for validity of the assumption of incompressible flow is inves-
tigated in Example 12.6.

Example 12.5 LOCAL ISENTROPIC STAGNATION CONDITIONS IN CHANNEL FLOW

Air flows steadily through the duct shown from 350 kPa (abs), 60�C, and 183 m=s at the inlet
state to M =1:3 at the outlet, where local isentropic stagnation conditions are known to be
385 kPa (abs) and 350 K. Compute the local isentropic stagnation pressure and temperature
at the inlet and the static pressure and temperature at the duct outlet. Locate the inlet and outlet
static state points on a Ts diagram, and indicate the stagnation processes.

Given: Steady flow of air through a duct as shown in the sketch.

Flow

1 2

p02
= 385 kPa (abs)

T02
= 350 K

M2 = 1.3

p1 = 350 kPa (abs)

T1 = 60°C

V1 = 183 m/s

Find: (a) p01 .
(b) T01 .
(c) p2.
(d) T2.
(e) State points and on a Ts diagram; indicate the stagnation processes.

Solution: To evaluate local isentropic stagnation conditions at section , we must calculate the Mach number, M1 =V1=c1.
For an ideal gas, c=

ffiffiffiffiffiffiffiffiffi
kRT
p

. Then

c1 =
ffiffiffiffiffiffiffiffiffiffi
kRT1

p
= 1:4× 287

N �m
kg �K × ð273+ 60ÞK×

kg �m
N � s2

	 
1=2
= 366 m=s

and

M1 =
V1

c1
=
183
366

= 0:5

Flow

OutletInlet
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Local isentropic stagnation properties can be evaluated from Eqs. 12.21. Thus

p01 = p1 1 +
k−1
2

M2
1

	 
kðk−1Þ
=350 kPa½1+ 0:2ð0:5Þ2�3:5 = 415 kPa ðabsÞ p01 �������������������

T01 = T1 1+
k−1
2

M2
1

	 

=333 K½1+ 0:2ð0:5Þ2�=350 K

T01 �������������������������������
At section , Eqs. 12.21 can be applied again. Thus from Eq. 12.21a,

p2 =
p02

1 +
k−1
2

M2
2

	 
k=ðk−1Þ =
385 kPa

½1+ 0:2ð1:3Þ2�3:5 = 139 kPa ðabsÞ p2 �������������������������
From Eq. 12.21b,

T2 =
T02

1 +
k−1
2

M2
2

=
350 K

1+0:2ð1:3Þ2 = 262 K
T2 ���������������������������������������

To locate states and in relation to one another, and sketch the stagnation processes on the Ts diagram, we need to find the
change in entropy s2−s1. At each state we have p and T , so it is convenient to use Eq. 12.11b,

s2−s1 = cp ln
T2
T1

−R ln
p2
p1

= 1:00
kJ

kg �K × ln
262
333

� �
−0:287

kJ
kg �K × ln

139
350

� �
s2−s1 = 0:0252 kJ=ðkg �KÞ

Hence in this flow we have an increase in entropy. Perhaps there is irreversibility (e.g., friction), or heat is being added, or both.
(We will see in Chapter 13 that the fact that T01 = T02 for this particular flow means that actually we have an adiabatic flow.) We
also found that T2 < T1 and that p2 < p1. We can now sketch the Ts diagram (and recall we saw in Example 12.2 that isobars (lines
of constant pressure) in Ts space are exponential),

Isentropic processes

T

T1

T2

T01
 = T02

p = p1
p = p2

s

State 1

State 2

p01
p02

This problem illustrates use of the local
isentropic stagnation properties
(Eqs. 12.21) to relate different points
in a flow.

The Excel workbook Isentropic
Relations, available on the website,

can be used for computing property ratios
from the Mach number M, as well as for
computing M from property ratios.

Example 12.6 MACH-NUMBER LIMIT FOR INCOMPRESSIBLE FLOW

We have derived equations for p0=p for both compressible and “incompressible” flows. By writing both equations in terms of
Mach number, compare their behavior. Find theMach number belowwhich the two equations agree within engineering accuracy.

Given: The incompressible and compressible forms of the equations for stagnation pressure, p0.

Incompressible p0 = p+
1
2
ρV2 ð6:11Þ
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Compressible
p0
p
= 1+

k−1
2

M2
	 
k=ðk−1Þ

ð12:21aÞ

Find: (a) Behavior of both equations as a function of Mach number.
(b) Mach number below which calculated values of p0=p agree within engineering accuracy.

Solution: First, let us write Eq. 6.11 in terms of Mach number. Using the ideal gas equation of state and c2 = kRT ,

p0
p
=1+

ρV2

2p
=1+

V2

2RT
=1+

kV2

2kRT
=1+

kV2

2c2

Thus, p0
p
=1+

k
2
M2 ð1Þ

for “incompressible” flow.
Equation 12.21a may be expanded using the binomial theorem,

ð1+ xÞn =1+ nx+
nðn−1Þ

2!
x2 + � � �, jxj<1

ForEq. 12.21a, x= ½ðk−1Þ=2�M2, and n= k=ðk−1Þ. Thus the series converges for ½ðk−1Þ=2�=M2 < 1, and for compressible flow,

p0
p
=1+

k
k−1

� �
k−1
2

M2
	 


+
k

k−1

� �
k

k−1
−1

� �
1
2!

k−1
2

M2
	 
2

+
k

k−1

� �
k

k−1
−1

� �
k

k−1
−2

� �
1
3!

k−1
2

M2
	 
3

+ � � �

=1+
k
2
M2 +

k
8
M4 +

kð2−kÞ
48

M6 + � � �
p0
p
=1+

k
2
M2 1+

1
4
M2 +

ð2−kÞ
24

M4 + � � �
	 


ð2Þ

In the limit, as M! 0, the term in brackets in Eq. 2 approaches 1.0. Thus, for flow at low Mach number, the incompressible
and compressible equations give the same result. The variation of p0=p with Mach number is shown below. As Mach number is
increased, the compressible equation gives a larger ratio, p0=p.

Compressible
Eq. 12.21a

Incompressible
Eq. 6.11
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Equations 1 and 2 may be compared quantitatively most simply by writing
p0
p
−1=

k
2
M2ð“incompressible”Þ

p0
p
−1=

k
2
M2 1 +

1
4
M2 +

ð2−kÞ
24

M4 + � � �
	 


ðcompressibleÞ
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12.4 Critical Conditions
Stagnation conditions are extremely useful as reference conditions for thermodynamic properties; this is
not true for velocity, since by definition V =0 at stagnation. A useful reference value for velocity is the
critical speed—the speed V we attain when a flow is either accelerated or decelerated (actually or con-
ceptually) isentropically until we reach M =1. Even if there is no point in a given flow field where the
Mach number is equal to unity, such a hypothetical condition still is useful as a reference condition.

Using asterisks to denote conditions at M =1, then by definition

V� ≡ c�

At critical conditions, Eqs. 12.21 for isentropic stagnation properties become

p0
p� =

k+1
2

	 
k=ðk−1Þ
ð12:22aÞ

T0
T�

=
k+1
2

ð12:22bÞ
ρ0
ρ�

=
k+1
2

	 
1=ðk−1Þ
ð12:22cÞ

The critical speed may be written in terms of either critical temperature, T∗, or isentropic stagnation
temperature, T0.

For an ideal gas, c� =
ffiffiffiffiffiffiffiffiffiffi
kRT�
p

, and thus V� =
ffiffiffiffiffiffiffiffiffiffi
kRT�
p

. Since, from Eq. 12.22b,

T� =
2

k+1
T0

we have

V� = c� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k

k+1
RT0

r
ð12:23Þ

We shall use both stagnation conditions and critical conditions as reference conditions in the next
chapter when we consider a variety of compressible flows.

12.5 Basic Equations for One-Dimensional Compressible Flow
Our first task is to develop general equations for a one-dimensional flow that express the basic laws from
Chapter 4: mass conservation (continuity), momentum, the first law of thermodynamics, the second law
of thermodynamics, and an equation of state. To do so, we will use the fixed control volume shown in
Fig. 12.6. We initially assume that the flow is affected by all of the phenomena mentioned above (i.e.,
area change, friction, and heat transfer—even the normal shock will be described by this approach).
Then, for each individual phenomenon we will simplify the equations to obtain useful results.

As shown in Fig. 12.6, the properties at sections and are labeled with corresponding subscripts.
Rx is the x component of surface force from friction and pressure on the sides of the channel. There will
also be surface forces from pressures at surfaces and . Note that the x component of body force is
zero, so it is not shown. _Q is the heat transfer.

Continuity Equation

Basic equation:

= 0 1ð Þ
∂
∂t��

�!

Z
CV

ρ dV +
Z
CS
ρV
!�dA!=0 ð4:12Þ
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Assumptions:

1 Steady flow.

2 One-dimensional flow.

Then

ð−ρ1V1A1Þ+ ðρ2V2A2Þ=0

or

ρ1V1A1 = ρ2V2A2 = ρVA= _m=constant ð12:24aÞ

Momentum Equation

Basic equation:

= 0 3ð Þ =0 1ð Þ
FSx +FBx��

�!= ∂
∂t��

�!

Z
CV

VxρdV +
Z
CS
VxρV

!�dA! ð4:18aÞ

Assumption:

3 FBx =0

The surface force is caused by pressure forces at surfaces and , and by the friction and distributed
pressure force, Rx, along the channel walls. Substituting gives

Rx + p1A1−p2A2 =V1ð−ρ1V1A1Þ+V2ðρ2V2A2Þ
Using continuity, we obtain

Rx + p1A1−p2A2 = _mV2− _mV1 ð12:24bÞ

First Law of Thermodynamics

Basic equation:

_Q− _Ws

��
�!− _W

��
�!shear− _W

��
�!other = ∂

∂t��
�!

Z
CV

eρdV +
Z
CS

e+ pυð ÞρV!�dA! ð4:56Þ

where

’ 0 6ð Þ
e= u+

V2

2
+ gz

��
�!

Rx

Flow

CV

x

y

T2

p2

A2

V2

  2ρ

T1

p1

A1

V1

  1ρ
Q

•

Fig. 12.6 Control volume for analysis of a general one-dimensional flow.
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Assumptions:

4 _Ws =0.

5 _Wshear = _Wother = 0.

6 Effects of gravity are negligible.

Note that even if we have friction, there is no friction work at the walls because with friction the velocity
at the walls must be zero from the no-slip condition. Under these assumptions, the first law reduces to

_Q= u1 + p1ν1 +
V2
1

2

� �
ð−ρ1V1A1Þ+ u2 + p2ν2 +

V2
2

2

� �
ðρ2V2A2Þ

(Remember that υ here represents the specific volume.) This can be simplified by using h≡ u+ pν, and
continuity (Eq. 12.24a),

_Q= _m h2 +
V2
2

2

� �
− h1 +

V2
1

2

� �	 

We can write the heat transfer on a per unit mass rather than per unit time basis:

δQ
dm

=
1
m_

_Q

so

δQ
dm

+ h1 +
V2
1

2
= h2 +

V2
2

2
ð12:24cÞ

Equation 12.24c expresses the fact that heat transfer changes the total energy (the sum of thermal energy
h, and kinetic energy V2=2) of the flowing fluid. This combination, h+V2=2, occurs often in compress-
ible flow, and is called the stagnation enthalpy, h0. This is the enthalpy obtained if a flow is brought
adiabatically to rest.

Hence, Eq. 12.24c can also be written

δQ
dm

= h02 −h01

We see that heat transfer causes the stagnation enthalpy, and hence, stagnation temperature, T0, to
change.

Second Law of Thermodynamics

Basic equation:

= 0 1ð Þ
∂
∂t��

�!

Z
CV

s ρdV +
Z
CS
s ρV

!�dA!≥
Z
CS

1
T

_Q
A

� �
dA

ð4:58Þ

or

s1ð−ρ1V1A1Þ+ s2ðρ2V2A2Þ≥
Z
CS

1
T

_Q
A

� �
dA

and, again using continuity,

_mðs2−s1Þ≥
Z
CS

1
T

_Q
A

� �
dA ð12:24dÞ

Equation of State

Equations of state are relations among intensive thermodynamic properties. These relations may be
available as tabulated data or charts, or as algebraic equations. In general, regardless of the format of
the data, as we discussed in earlier in this chapter, for a simple substance any property can be expressed
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as a function of any two other independent properties. For example, we could write h= hðs,pÞ, or
ρ= ρðs,pÞ, and so on.

We will primarily be concerned with ideal gases with constant specific heats, and for these we can
write Eqs. 12.1 and 12.7b (renumbered for convenient use in this chapter),

p= ρRT ð12:24eÞ
and

Δh= h2−h1 = cpΔT = cpðT2−T1Þ ð12:24fÞ
For ideal gases with constant specific heats, the change in entropy, Δs= s2−s1, for any process can be
computed from any of Eqs. 12.11. For example, Eq. 12.11b (renumbered here for convenience) is

Δs= s2−s1 = cp ln
T2
T1

−R ln
p2
p1

ð12:24gÞ

We now have a basic set of equations for analyzing one-dimensional compressible flows of an ideal gas
with constant specific heats:

ρ1V1A1 = ρ2V2A2 = ρVA= _m=constant ð12:24aÞ
Rx + p1A1−p2A2 = _mV2− _mV1 ð12:24bÞ

δQ
dm

+ h1 +
V2
1

2
= h2 +

V2
2

2
ð12:24cÞ

_mðs2−s1Þ≥
Z
CS

1
T

_Q
A

� �
dA ð12:24dÞ

p= ρRT ð12:24eÞ
Δh= h2−h1 = cpΔT = cpðT2−T1Þ ð12:24fÞ
Δs= s2−s1 = cp ln

T2
T1

−R ln
p2
p1

ð12:24gÞ

Note that Eq. 12.24e applies only if we have an ideal gas; Equations 12.24f and 12.24g apply only if we
have an ideal gas with constant specific heats. Our task is now to simplify this set of equations for each of
the phenomena that can affect the flow:

• Flow with varying area.

• Normal shock.

• Flow in a channel with friction.

• Flow in a channel with heating or cooling.

12.6 Isentropic Flow of an Ideal Gas: Area Variation
The first phenomenon is one in which the flow is changed only by area variation—there is no heat
transfer, friction, or shocks. The absence of heat transfer, friction, and shocks means the flow will be
reversible and adiabatic, so Eq. 12.24d becomes

_mðs2−s1Þ=
Z
CS

1
T

_Q
A

� �
dA=0

or

Δs= s2−s1 = 0

so such a flow is isentropic. This means that Eq. 12.24g leads to the result we saw previously,

T1p
ð1−kÞ=k
1 = T2p

ð1−kÞ=k
2 = Tpð1−kÞ=k = constant ð12:12bÞ
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or its equivalent, which can be obtained by using the ideal gas equation of state in Eq. 12.12b to eliminate
temperature,

p1
ρk1

=
p2
ρk2

=
p
ρk

= constant ð12:12cÞ

Hence, the basic set of equations (Eqs. 12.24) becomes:

ρ1V1A1 = ρ2V2A2 = ρVA= _m= constant ð12:25aÞ
Rx + p1A1−p2A2 = _mV2− _mV1 ð12:25bÞ

h01 = h1 +
V2
1

2
= h2 +

V2
2

2
= h02 = h0 ð12:25cÞ

s2 = s1 = s ð12:25dÞ
p= ρRT ð12:25eÞ

Δh= h2−h1 = cpΔT = cpðT2−T1Þ ð12:25fÞ
p1
ρk1

=
p2
ρk2

=
p
ρk

= constant ð12:25gÞ

Note that Eqs. 12.25c, 12.25d, and 12.25f provide insight into how this process appears on an hs diagram
and on a Ts diagram. From Eq. 12.25c, the total energy, or stagnation enthalpy h0, of the fluid is constant;
the enthalpy and kinetic energy may vary along the flow, but their sum is constant. This means that if the
fluid accelerates, its temperature must decrease, and vice versa. Equation 12.25d indicates that the
entropy remains constant. These results are shown for a typical process in Fig. 12.7.

Equation 12.25f indicates that the temperature and enthalpy are linearly related; hence, processes
plotted on a Ts diagram will look very similar to that shown in Fig. 12.7 except for the vertical scale.

Equations 12.25 could be used to analyze isentropic flow in a channel of varying area. For example,
if we know conditions at section (i.e., p1, ρ1, T1, s1, h1, V1, and A1) we could use these equations to
find conditions at some new section where the area is A2: We would have seven equations and seven
unknowns (p2, ρ2, T2, s2, h2, V2, and Rx). We stress could, because in practice this procedure is
unwieldy—we have a set of seven nonlinear coupled algebraic equations to solve. Instead we can take
advantage of the results we obtained for isentropic flows and develop property relations in terms of the
local Mach number, the stagnation conditions, and critical conditions.

Before proceeding with this approach, we can gain insight into the isentropic process by reviewing
the results we obtained previously when we analyzed a differential control volume (Fig. 12.5). The
momentum equation for this was

dp
ρ

+ d
V2

2

� �
=0 ð12:20bÞ

Then

dp= −ρV dV

h

s

h0

h1

h2

Reference
state Kinetic

energy of
state

State

p = const

1
1

Thermal
energy of
state 1State 2

Kinetic
energy of
state 2

Thermal
energy of
state 2

Total
energy
h0 of all
states

Fig. 12.7 Isentropic flow in the hs plane.
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Dividing by ρV2, we obtain

dp
ρV2 = −

dV
V

ð12:26Þ

A convenient differential form of the continuity equation can be obtained from Eq. 12.25a, in the form

ρAV = constant

Differentiating and dividing by ρAV yields

dρ
ρ

+
dA
A

+
dV
V

=0 ð12:27Þ

Solving Eq. 12.27 for dA=A gives

dA
A

= −
dV
V

−
dρ
ρ

Substituting from Eq. 12.26 gives

dA
A

=
dp
ρV2 −

dρ
ρ

or

dA
A

=
dp
ρV2 1−

V2

dp=dρ

	 

Now recall that for an isentropic process, dp=dρ= ∂p=∂ρÞs = c2, so

dA
A

=
dp
ρV2 1−

V2

c2

	 

=

dp
ρV2 ½1−M2�

or

dp
ρV2 =

dA
A

1
½1−M2� ð12:28Þ

Substituting from Eq. 12.26 into Eq. 12.28, we obtain

dV
V

= −
dA
A

1
½1−M2� ð12:29Þ

Note that for an isentropic flow there can be no friction. Equations 12.28 and 12.29 confirm that for this
case, from amomentum point of view we expect an increase in pressure to cause a decrease in speed, and
vice versa. Although we cannot use them for computations because we have not so far determined
how M varies with A, Eqs. 12.28 and 12.29 give us very interesting insights into how the pressure
and velocity change as we change the area of the flow. Three possibilities are discussed below.

Subsonic Flow, M< 1

For M <1, the factor 1=½1−M2� in Eqs. 12.28 and 12.29 is positive, so that a positive dA leads to a
positive dp and a negative dV . These mathematical results mean that in a divergent section ðdA>0Þ
the flow must experience an increase in pressure ðdp>0Þ and the velocity must decreaseðdV <0Þ.
Hence a divergent channel is a subsonic diffuser that decelerates a flow.

On the other hand, a negative dA leads to a negative dp and a positive dV . These mathematical
results mean that in a convergent section ðdA<0Þ the flow must experience a decrease in pressure
ðdp<0Þ and the velocity must increaseðdV >0Þ. Hence a convergent channel is a subsonic nozzle that
accelerates a flow.

These results are consistent with our everyday experience and are not surprising—for example,
recall the venturi meter in Chapter 8, in which a reduction in area at the throat of the venturi led to a
local increase in velocity, and because of the Bernoulli principle, to a pressure drop, and the divergent
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section led to pressure recovery and flow deceleration. (The Bernoulli principle assumes incompressible
flow, which is the limiting case of subsonic flow.) The subsonic diffuser and nozzle are also shown
in Fig. 12.8.

Supersonic Flow, M> 1

For M >1, the factor 1=½1−M2� in Eqs. 12.28 and 12.29 is negative, so that a positive dA leads to a
negative dp and a positive dV . These mathematical results mean that in a divergent section ðdA>0Þ
the flow must experience a decrease in pressure ðdp<0Þ and the velocity must increaseðdV >0Þ. Hence
a divergent channel is a supersonic nozzle.

On the other hand, a negative dA leads to a positive dp and a negative dV . These mathematical
results mean that in a convergent section ðdA<0Þ the flow must experience an increase in pressure
ðdp>0Þ and the velocity must decreaseðdV <0Þ. Hence a convergent channel is a supersonic diffuser.

These results are inconsistent with our everyday experience and are at first a bit surprising—they are
the opposite of what we saw in the venturi meter! The results are consistent with the laws of physics; for
example, an increase in pressure must lead to a flow deceleration because pressure forces are the only
forces acting. The supersonic nozzle and diffuser are also shown in Fig. 12.8.

These somewhat counterintuitive results can be understood when we realize that we are used to
assuming that ρ=constant, but we are now in a flow regime where the fluid density is a function of
flow conditions. From Eq. 12.27,

dV
V

= −
dA
A

−
dρ
ρ

For example, in a supersonic diverging flow (dA positive) the flow actually accelerates (dV also positive)
because the density drops sharply (dρ is negative and large, with the net result that the right side of the
equation is positive). We can see examples of supersonic diverging nozzles in the space shuttle main
engines, each of which has a nozzle about 10 ft long with an 8 ft exit diameter. The maximum thrust
is obtained from the engines when the combustion gases exit at the highest possible speed, which
the nozzles achieve.

Sonic Flow, M= 1

Aswe approachM =1, from either a subsonic or supersonic state, the factor 1=½1−M2� in Eqs. 12.28 and
12.29 approaches infinity, implying that the pressure and velocity changes also approach infinity. This is
obviously unrealistic, so we must look for some other way for the equations to make physical sense. The
only way we can avoid these singularities in pressure and velocity is if we require that dA! 0 asM! 1.

Flow

Flow

Flow

Flow

Flow regime

Subsonic
M < 1

Supersonic
M > 1

Nozzle

dp < 0
dV > 0

dp > 0
dV < 0

Diffuser

Fig. 12.8 Nozzle and diffuser shapes as a function of initial Mach number.
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Hence, for an isentropic flow, sonic conditions can only occur where the area is constant!We can be even
more specific: We can imagine approaching M =1 from either a subsonic or a supersonic state.
A subsonic flow ðM <1Þ would need to be accelerated using a subsonic nozzle, which we have
learned is a converging section; a supersonic flow ðM >1Þ would need to be decelerated using a super-
sonic diffuser, which is also a converging section. Hence, sonic conditions are limited not just to a loca-
tion of constant area, but one that is a minimum area. The important result is that for isentropic flow the
sonic condition M =1 can only be attained at a throat, or section of minimum area. This does notmean
that a throat must have M =1. After all, we may have a low speed flow or even no flow at all in the
device!

We can see that to isentropically accelerate a fluid from rest to supersonic speed we would need to
have a subsonic nozzle (converging section) followed by a supersonic nozzle (diverging section), with
M =1 at the throat. This device is called a converging-diverging nozzle (C-D nozzle). Of course, to cre-
ate a supersonic flow we need more than just a C-D nozzle: We must also generate and maintain a pres-
sure difference between the inlet and exit. We will discuss shortly C-D nozzles in some detail, and the
pressures required to accomplish a change from subsonic to supersonic flow.

We must be careful in our discussion of isentropic flow, especially deceleration, because real
fluids can experience nonisentropic phenomena such as boundary-layer separation and shock waves.
In practice, supersonic flow cannot be decelerated to exactly M =1 at a throat because sonic flow near
a throat is unstable in a rising (adverse) pressure gradient. It turns out that disturbances that are always
present in a real subsonic flow propagate upstream, disturbing the sonic flow at the throat, causing shock
waves to form and travel upstream, where they may be disgorged from the inlet of the supersonic
diffuser.

The throat area of a real supersonic diffuser must be slightly larger than that required to reduce the
flow to M =1. Under the proper downstream conditions, a weak normal shock forms in the diverging
channel just downstream from the throat. Flow leaving the shock is subsonic and decelerates in the diver-
ging channel. Thus deceleration from supersonic to subsonic flow cannot occur isentropically in prac-
tice, since the weak normal shock causes an entropy increase. Normal shocks will be analyzed in
Section 12.7.

For accelerating flows (favorable pressure gradients), the idealization of isentropic flow is generally
a realistic model of the actual flow behavior. For decelerating flows, the idealization of isentropic flow
may not be realistic because of the adverse pressure gradients and the attendant possibility of flow sep-
aration, as discussed for incompressible boundary-layer flow in Chapter 9.

Reference Stagnation and Critical Conditions
for Isentropic Flow of an Ideal Gas

As we mentioned at the beginning of this section, in principle we could use Eqs. 12.25 to analyze one-
dimensional isentropic flow of an ideal gas, but the computations would be somewhat tedious. Instead,
because the flow is isentropic, we can use the results of Sections 12.3 (reference stagnation conditions)
and 12.4 (reference critical conditions). The idea is illustrated in Fig. 12.9: Instead of using Eqs. 12.25 to
compute, for example, properties at state from those at state , we can use state to determine two
reference states (the stagnation state and the critical state), and then use these to obtain properties at state
.We need two reference states because the reference stagnation state does not provide area information

(mathematically the stagnation area is infinite).
We will use Eqs. 12.21 (renumbered for convenience),

p0
p
= 1+

k−1
2

M2
	 
k=ðk−1Þ

ð12:30aÞ

T0
T

=1+
k−1
2

M2 ð12:30bÞ

ρ0
ρ
= 1+

k−1
2

M2
	 
1=ðk−1Þ

ð12:30cÞ
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We note that the stagnation conditions are constant throughout the isentropic flow. The critical condi-
tions (M =1) were related to stagnation conditions in Section 12.4,

p0
p� =

k+1
2

	 
k=ðk−1Þ
ð12:22aÞ

T0
T∗ =

k+1
2

ð12:22bÞ
ρ0
ρ∗

=
k+1
2

	 
1=ðk−1Þ
ð12:22cÞ

V� = c� =

ffiffiffiffiffiffiffiffiffiffi
2k

k+1

r
RT0 ð12:23Þ

Although a particular flow may never attain sonic conditions, as in the example in Fig. 12.9, we will
still find the critical conditions useful as reference conditions. Equations 12.30a, 12.30b, and 12.30c
relate local properties (p, ρ, T , and V) to stagnation properties (p0, ρ0, and T0) via the Mach number
M, and Eqs. 12.22 and 12.23 relate critical properties (p�, ρ�, T�, and V�) to stagnation properties
(p0, ρ0, and T0) respectively, but we have yet to obtain a relation between areas A and A�. To do this
we start with continuity (Eq. 12.25a) in the form

ρAV = constant = ρ�A�V∗

Then
A
A�

=
ρ�

ρ

V�

V
=
ρ�

ρ

c�

Mc
=

1
M
ρ�

ρ

ffiffiffiffiffi
T�

T

r
A
A�

=
1
M
ρ�

ρ0

ρ0
ρ

ffiffiffiffiffiffiffiffiffiffiffiffi
T�=T0
T=T0

s

A
A∗ =

1
M

1+
k−1
2

M2
	 
1=ðk�1Þ

k+1
2

	 
1=ðk−1Þ
1+

k−1
2

M2

k+1
2

2
64

3
75
1=2

A
A�

=
1
M

1+
k−1
2

M2

k+1
2

2
64

3
75
ðk+1Þ=2ðk−1Þ

ð12:30dÞ

Equations 12.30 form a set that is convenient for analyzing isentropic flow of an ideal gas with
constant specific heats, which we usually use instead of the basic equations, Eqs. 12.25. For convenience
we list Eqs. 12.30 together:

p0
p
= 1+

k−1
2

M2
	 
k=ðk−1Þ

ð12:30aÞ

Reference stagnation state

Reference critical state

State

T0

T1

T2

T*

T

s

1

State      to
stagnation state

to state

1

State 2

2

State      to
critical state
to state

1

2 Fig. 12.9 Example of stagnation and critical
reference states in the Ts plane.
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T0
T

=1+
k−1
2

M2 ð12:30bÞ

ρ0
ρ
= 1+

k−1
2

M2
	 
1=ðk−1Þ

ð12:30cÞ

A
A�

=
1
M

1+
k−1
2

M2

k+1
2

2
64

3
75
ðk+1Þ=2ðk−1Þ

ð12:30dÞ

Equations 12.30 provide property relations in terms of the local Mach number, the stagnation con-
ditions, and critical conditions. These equations are readily programmed and there are also interactive
websites that make them available (see, for example, [4]). These equations are also available in the
Excel spreadsheets on the website, with add-in functions available for computing pressure, temperature,
density and area ratios fromM, or computing M from the ratios. While they are somewhat complicated
algebraically, they have the advantage over the basic equations, Eq. 12.25, that they are not coupled.
Each property can be found directly from its stagnation value and the Mach number.

Equation 12.30d shows the relation betweenMach numberM and area A. The critical area A∗ is used
to normalize area A. For each Mach numberM we obtain a unique area ratio, but as shown in Fig 12.10
each A=A� ratio (except 1) has two possible Mach numbers—one subsonic, the other supersonic. The
shape shown in Fig. 12.10 looks like a converging-diverging section for accelerating from a subsonic to
a supersonic flow (with, as necessary, M =1 only at the throat), but in practice this is not the shape
to which such a passage would be built. For example, the diverging section usually will have a much
less severe angle of divergence to reduce the chance of flow separation.

Appendix D.1 lists flow functions for property ratios T0=T , p0=p, ρ0=ρ, and A=A
∗ in terms ofM for

isentropic flow of an ideal gas. A table of values, as well as a plot of these property ratios, is presented for
air ðk=1:4Þ for a limited range of Mach numbers. The associated Excelworkbook, Isentropic Relations,
can be used to print a larger table of values for air and other ideal gases.

Example 12.7 demonstrates use of some of the above equations. As shown in Fig. 12.9, we can use
the equations to relate a property at one state to the stagnation value and then from the stagnation value to
a second state, but note that we can accomplish this in one step—for example, p2 can be obtained from p1
by writing p2 = ðp2=p0Þðp0=p1Þp1, where the pressure ratios come from Eq. 12.30a evaluated at the two
Mach numbers.

3.02.52.01.5
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Fig. 12.10 Variation of A=A∗ with Mach number for isentropic flow of an ideal gas with k=1:4.
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Example 12.7 ISENTROPIC FLOW IN A CONVERGING CHANNEL

Air flows isentropically in a channel. At section , the Mach number is 0.3, the area is 0:001 m2, and the absolute pressure and
the temperature are 650 kPa and 62�C, respectively. At section , the Mach number is 0.8. Sketch the channel shape, plot a Ts
diagram for the process, and evaluate properties at section . Verify that the results agree with the basic equations, Eqs. 12.25.

Given: Isentropic flow of air in a channel. At sections and , the following data are given: M1 = 0:3, T1 = 62�C,
p1 = 650 kPa ðabsÞ, A1 = 0:001 m2, and M2 = 0:8.

Find: (a) The channel shape.
(b) A Ts diagram for the process.
(c) Properties at section .
(d) Show that the results satisfy the basic equations.

Solution: To accelerate a subsonic flow requires a converging nozzle. The channel shape must be
as shown.

On the Ts plane, the process follows an s= constant line. Stagnation conditions remain fixed for isentropic flow.
Consequently, the stagnation temperature at section can be calculated (for air, k=1:4) from

Eq. 12.30b.

T02 = T01 = T1 1 +
k−1
2

M2
1

	 

= ð62+ 273ÞK 1+0:2ð0:3Þ2

h i
T02 = T01 = 341 K

T01 ,T02 �������������������������������
For p02 , from Eq. 12.30a,

p02 = p01 = p1 1+
k−1
2

M2
1

	 
k=ðk−1Þ
= 650 kPa½1+ 0:2ð0:3Þ2�3:5

p02 = 692 kPa ðabsÞ p02 �������������������������������
For T2, from Eq. 12.30b,

T2 = T02

�
1+

k−1
2

M2
2

	 

= 341 K=½1+ 0:2ð0:8Þ2�

T2 = 302 K
T2 ����������������������������

For p2, from Eq. 12.30a,

p2 = p02

�
1+

k−1
2

M2
2

	 
k=k−1

= 692 kPa=½1+ 0:2ð0:8Þ2�3:5

p2 = 454 kPa
p2 ����������������������������

Note that we could have directly computed T2 from T1 because T0 = constant:

T2
T1

=
T2
T0

�
T0
T1

= 1+
k−1
2

M2
1

	 
�
1+

k−1
2

M2
2

	 

= 1+0:2ð0:3Þ2
h i�

1+ 0:2ð0:8Þ2
h i

T2
T1

=
0:8865
0:9823

= 0:9025

Hence,

T2 = 0:9025 T1 = 0:9025ð273+ 62ÞK=302 K

Similarly, for p2,

p2
p1

=
p2
p0

�
p0
p1

= 0:88653:5
.
0:98233:5 = 0:6982

1

2
T2

T1

T01
 = T02

p01
 = p02

p1

p2

T

s

1 2

Flow
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Hence,

p2 = 0:6982 p1 = 0:6982ð650 kPaÞ=454 kPa

The density ρ2 at section can be found from Eq. 12.30c using the same procedure we used for T2 and p2, or we can use the ideal
gas equation of state, Eq. 12.25e,

ρ2 =
p2
RT2

= 4:54× 105
N
m2 ×

kg �K
287 N �m ×

1
302 K

=5:24 kg=m3 ρ2 �������������������������������
and the velocity at section is

V2 =M2c2 =M2

ffiffiffiffiffiffiffiffiffiffi
kRT2

p
=0:8×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4× 287

N �m
kg �K ×302 K×

kg �m
s2 �N

s
=279 m=s

V2 �������������������������������
The area A2 can be computed from Eq. 12.30d, noting that A� is constant for this flow,

A2

A1
=
A2

A�
A�

A1
=

1
M2

1 +
k−1
2

M2
2

k+1
2

2
64

3
75
ðk+2Þ=2ðk−1Þ,

1
M1

1 +
k−1
2

M2
1

k+1
2

2
64

3
75
ðk+1Þ=2ðk−1Þ

=
1
0:8

1+ 0:2ð0:8Þ2
1:2

" #3,
1
0:3

1+ 0:2ð0:3Þ2
1:2

" #3
=
1:038
2:035

= 0:5101

Hence,

A2 = 0:5101A1 = 0:5101ð0:001 m2Þ=5:10× 10−4 m2 A2 �������������������������������
Note that A2 <A1 as expected.

Let us verify that these results satisfy the basic equations.
We first need to obtain ρ1 and V1:

ρ1 =
p1
RT1

= 6:5× 105
N
m2 ×

kg �K
287 N �m ×

1
335 K

=6:76 kg=m3

and

V1 =M1c1 =M1

ffiffiffiffiffiffiffiffiffiffi
kRT1

p
=0:3×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4× 287

N �m
kg �K ×335 K×

kg �m
s2 �N

s
=110 m=s

The mass conservation equation is

ρ1V1A1 = ρ2V2A2 = ρVA= _m= constant ð12:25aÞ

_m=6:76
kg
m3 × 110

m
s
× 0:001 m2 = 5:24

kg
m3 × 279

m
s
× 0:00051 m2 = 0:744 kg=s ðCheck!Þ

We cannot check the momentum equation (Eq. 12.25b) because we do not know the force Rx produced by the walls of the device
(we could use Eq. 12.25b to compute this if we wished). The energy equation is

h01 = h1 +
V2
1

2
= h2 +

V2
2

2
= h02 = h0 ð12:25cÞ

We will check this by replacing enthalpy with temperature using Eq. 13.2f,

Δh= h2−h1 = cpΔT = cpðT2−T1Þ ð12:25fÞ
so the energy equation becomes

cpT1 +
V2
1

2
= cpT2 +

V2
2

2
= cpT0
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Isentropic Flow in a Converging Nozzle

Now that we have our computing equations (Eqs. 12.30) for analyzing isentropic flows, we are ready to
see how we could obtain flow in a nozzle, starting from rest. We first look at the converging nozzle, and
then the C-D nozzle. In either case, to produce a flow we must provide a pressure difference. For exam-
ple, as illustrated in the converging nozzle shown in Fig. 12.11a, we can do this by providing the gas
from a reservoir (or “plenum chamber”) at p0 and T0, and using a vacuum pump/valve combination to
create a low pressure, the “back pressure,” pb. We are interested in what happens to the gas properties as
the gas flows through the nozzle, and also in knowing how the mass flow rate increases as we progres-
sively lower the back pressure.

Let us call the pressure at the exit plane pe. We will see that this will often be equal to the applied
back pressure, pb, but not always! The results we obtain as we progressively open the valve from a closed
position are shown in Figs. 12.11b and 12.11c. We consider each of the cases shown.

When the valve is closed, there is no flow through the nozzle. The pressure is p0 throughout, as
shown by condition ðiÞ in Fig. 12.11a.

Using cp for air from Table A.6,

cpT1 +
V2
1

2
= 1004

J
kg �K ×335 K+

ð110Þ2
2

m
s

� �2
×

N � s2
kg �m ×

J
N �m =342 kJ=kg

cpT2 +
V2
2

2
= 1004

J
kg �K ×302 K+

ð278Þ2
2

m
s

� �2
×

N � s2
kg �m ×

J
N �m =342 kJ=kg

cpT0 = 1004
J

kg �K ×341 K=342 kJ=kg ðCheck!Þ
The final equation we can check is the relation between pressure and density
for an isentropic process (Eq. 12.25g),

p1
ρk1

=
p2
ρk2

=
p
ρk

= constant ðCheck!Þ
p1
ρ1:41

=
650 kPa

6:76
kg
m3

� �
1:4 =

p2
ρ1:42

=
454 kPa

5:24
kg
m3

� �
1:4 = 44:7

kPa
kg
m3

� �
1:4 ðCheck!Þ

The basic equations are satisfied by our solution.

This problem illustrates:
• Use of the isentropic equations,
Eqs. 12.30

• That the isentropic equations are con-
sistent with the basic equations,
Eqs. 12.25

• That the computations can be quite
laborious without using preprogrammed
isentropic relations (available, for
example, in the Excel add-ins on the
website)!

The Excel workbook for this exam-
ple is convenient for performing the

calculations, using either the isentropic
equations or the basic equations.

p0
T0
V0     0

Flow

pb

pe

To vacuum

pump

(b)

Valve 0 1.0p*/p0

0

m•

pb__
p0

0 1.0p*/p0

p*/p0

0

1.0

0

p*/p0

p/p0

0

1.0

pb__
p0

pe__
p0

(c)(a)
Throat

x

pe]min = p*
(v)

(iv)
(iii)

(ii)
(i)

Regime I

Regime II

Fig. 12.11 Converging nozzle operating at various back pressures.
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If the back pressure, pb, is now reduced to slightly less than p0, there will be flow through the nozzle
with a decrease in pressure in the direction of flow, as shown by condition ðiiÞ. Flow at the exit plane will
be subsonic with the exit-plane pressure equal to the back pressure.

What happens as we continue to decrease the back pressure? As expected, the flow rate will con-
tinue to increase, and the exit-plane pressure will continue to decrease, as shown by condition ðiiiÞ in
Fig. 12.11a.

As we progressively lower the back pressure the flow rate increases, and hence, so do the velocity
andMach number at the exit plane. The question arises: “Is there a limit to the mass flow rate through the
nozzle?” or, to put it another way, “Is there an upper limit on the exit Mach number?”The answer to these
questions is “Yes!” To see this, recall that for isentropic flow Eq. 12.29 applies:

dV
V

= −
dA
A

1
1−M2½ � ð12:29Þ

From this we learned that the only place we can have sonic conditions ðM =1Þ is where the change in
area dA is zero. We cannot have sonic conditions anywhere in the converging section. Logically we can
see that the maximum exit Mach number is one. Because the flow started from rest ðM =0Þ, if we had
M >1 at the exit, we would have had to pass throughM =1 somewhere in the converging section, which
would be a violation of Eq. 12.29.

Hence, the maximum flow rate occurs when we have sonic conditions at the exit plane, when
Me =1, and pe = pb = p�, the critical pressure. This is shown as condition ðivÞ in Fig. 12.11a, and is called
a “choked flow,” beyond which the flow rate cannot be increased. From Eq. 12.30a withM =1 (or from
Eq. 12.21a),

pe
p0 choked

=
p�

p0
=

2
k+1

� �k=ðk−1Þ����� ð12:31Þ

For air, k=1:4, so pe=p0�choked = 0:528. For example, if we wish to have sonic flow at the exit of a nozzle
from a plenum chamber that is at atmospheric pressure, we would need to maintain a back pressure of
about 7.76 psia, or about 6.94 psig vacuum. This does not sound difficult for a vacuum pump to generate,
but actually takes a lot of power to maintain because we will have a large mass flow rate through the
pump. For the maximum, or choked, mass flow rate we have

_mchoked = ρ�V�A∗

Using the ideal gas equation of state, Eq. 12.25e, and the stagnation to critical pressure and temperature
ratios, Eqs. 12.30a and 12.30b respectively, with M =1 (or Eqs. 12.21a and 12.21b, respectively), with
A� =Ae, it can be shown that this becomes

_mchoked =Aep0

ffiffiffiffiffiffiffiffi
k

RT0

r
2

k+1

� �ðk+1Þ=2ðk−1Þ
ð12:32aÞ

Note that for a given gas (k and R), the maximum flow rate in the converging nozzle depends only on the
size of the exit area ðAeÞ and the conditions in the reservoir (p0, T0).

For air, for convenience we write an “engineering” form of Eq. 12.32a,

_mchoked = 0:04
Aep0ffiffiffiffiffi
T0
p ð12:32bÞ

with _mchoked in kg/s, Ae in m2, p0 in Pa, and T0 in K, and

_mchoked = 76:6
Aep0ffiffiffiffiffi
T0
p ð12:32cÞ

with _mchoked in lbm/s, Ae in ft2, p0 in psia, and T0 in �R.
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Suppose we now insist on lowering the back pressure below this “benchmark” level of p∗. Our next
question is “What will happen to the flow in the nozzle?” The answer is “Nothing!” The flow remains
choked: The mass flow rate does not increase, as shown in Fig. 12.11b, and the pressure distribution in
the nozzle remains unchanged, with pe = p∗ > pb, as shown in condition ðυÞ in Figs. 12.11a and 12.11c.
After exiting, the flow adjusts down to the applied back pressure, but does so in a nonisentropic, three-
dimensional manner in a series of expansion waves and shocks, and for this part of the flow our one-
dimensional, isentropic flow concepts no longer apply. We will return to this discussion in Section 12.8.

This idea of choked flow seems a bit strange, but can be explained in at least two ways. First, we
have already discussed that to increase the mass flow rate beyond choked would requireMe >1, which is
not possible. Second, once the flow reaches sonic conditions, it becomes “deaf” to downstream condi-
tions: Any change (i.e., a reduction) in the applied back pressure propagates in the fluid at the speed of
sound in all directions, so it gets “washed” downstream by the fluid which is moving at the speed of
sound at the nozzle exit.

Flow through a converging nozzle may be divided into two regimes:

1 In Regime I, 1≥ pb=p0 ≥ p�=p0. Flow to the throat is isentropic and pe = pb.

2 In Regime II, pb=p0 < p∗=p0. Flow to the throat is isentropic, andMe =1. A nonisentropic expansion
occurs in the flow leaving the nozzle and pe = p∗ > pb (entropy increases because this is adiabatic but
irreversible).

Although isentropic flow is an idealization, it often is a very good approximation for the actual
behavior of nozzles. Since a nozzle is a device that accelerates a flow, the internal pressure gradient
is favorable. This tends to keep the wall boundary layers thin and to minimize the effects of friction.
The flow processes corresponding to Regime II are shown on a Ts diagram in Fig. 12.12. Two problems
involving converging nozzles are solved in Examples 12.8 and 12.9.

T*

s  constant

Nozzle exit plane

p*

s = constant

pb < p*

T0

p0

s

T

Fig. 12.12 Schematic Ts diagram for choked flow through a converging nozzle.

Example 12.8 ISENTROPIC FLOW IN A CONVERGING NOZZLE

A converging nozzle, with a throat area of 0:001 m2, is operated with air at a back pressure of 591 kPa (abs). The nozzle is fed
from a large plenum chamber where the absolute stagnation pressure and temperature are 1.0 MPa and 60�C. The exit Mach
number and mass flow rate are to be determined.

Given: Air flow through a converging nozzle at the conditions shown:
Flow is isentropic.

Find: (a) Me.
(b) _m. pe

pb = 591 kPa (abs)p0 = 1.0 MPa (abs)

T0 = 333K
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Solution: The first step is to check for choking. The pressure ratio is

pb
p0

=
5:91× 105

1:0× 106
= 0:591> 0:528

so the flow is not choked. Thus pb = pe, and the flow is isentropic, as sketched on the Ts diagram.
Since p0 = constant, Me may be found from the pressure ratio,

p0
pe

= 1+
k−1
2

M2
e

	 
k=ðk−1Þ

Solving for Me, since pe = pb, we obtain

1+
k−1
2

M2
e =

p0
pb

� �ðk−1Þ=k

and

Me =
p0
pb

� �ðk−1Þ=k
−1

" #
2

k−1

( )1=2

=
1:0× 106

5:91× 105

� �0:286

−1

" #
2

1:4−1

( )1=2

= 0:90
Me ��������������������

The mass flow rate is

_m= ρeVeAe = ρeMeceAe

We need T to find ρe and ce. Since T0 = constant,

T0
Te

=1+
k−1
2

M2
e

or

Te =
T0

1+
k−1
2

M2
e

=
ð273+ 60ÞK
1+0:2ð0:9Þ2 = 287 K

ce =
ffiffiffiffiffiffiffiffiffiffi
kRTe
p

= 1:4× 287
N �m
kg �K ×287 K×

kg �m
N � s2

	 
1=2
= 340 m=s

and

ρe =
pe
RTe

=5:91× 105
N
m2 ×

kg �K
287 N �m ×

1
287 K

=7:18 kg=m3

Finally,

_m= ρeMeceAe =7:18
kg
m3 × 0:9× 340

m
s
× 0:0001 m2

= 2:20 kg=s _m �������������������������������

T0

Te
T*

pe

p0

s

T

This problem illustrates use of the isen-
tropic equations, Eqs. 12.30a for a flow that
is not choked.

The Excel workbook for this exam-
ple is convenient for performing the

calculations (using either the isentropic
equations or the basic equations). (The
Excel add-ins for isentropic flow, on the
website, also make calculations much
easier.)

Example 12.9 CHOKED FLOW IN A CONVERGING NOZZLE

Air flows isentropically through a converging nozzle. At a section where the nozzle area is 0:013 ft2, the local pressure, tem-
perature, and Mach number are 60 psia, 40�F, and 0.52, respectively. The back pressure is 30 psia. The Mach number at the
throat, the mass flow rate, and the throat area are to be determined.
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Isentropic Flow in a Converging-Diverging Nozzle

Having considered isentropic flow in a converging nozzle, we turn now to isentropic flow in a
converging-diverging (C-D) nozzle. As in the previous case, flow through the converging-diverging
passage of Fig. 12.13 is induced by a vacuum pump downstream, and is controlled by the valve shown;
upstream stagnation conditions are constant. Pressure in the exit plane of the nozzle is pe; the nozzle

Given: Air flow through a converging nozzle at the conditions shown:

M1 = 0:52
T1 = 40�F
p1 = 60 psia
A1 = 0:013 ft2

Find: (a) Mt. (b) _m. (c) At.

Solution:
First we check for choking, to determine if flow is isentropic down to pb. To check, we evaluate the stagnation conditions.

p0 = p1 1 +
k−1
2

M2
1

	 
k=ðk−1Þ
=60 psia ½1+ 0:2ð0:52Þ2�3:5 = 72:0 psia

The back pressure ratio is

pb
p0

=
30:0
72:0

=0:417< 0:528

so the flow is choked! For choked flow,

Mt =1:0
Mt �������������������������������

The Ts diagram is
The mass flow rate may be found from conditions at section , using ρ1V1A1.

V1 =M1c1 =M1
ffiffiffiffiffiffiffiffiffiffi
kRT1
p

=0:52 1:4× 53:3
ft � lbf
lbm ��R × ð460+ 40Þ�R×32:2

lbm
slug

×
slug � ft
lbf � s2

	 
1=2
V1 = 570 ft=s

ρ1 =
p1
RT1

= 60
lbf
in:2

×
lbm ��R

53:3 ft � lbf ×
1

500�R
×144

in:2

ft2
= 0:324 lbm=ft3

_m= ρ1V1A1 = 0:324
lbm
ft3

× 570
ft
s
× 0:013 ft2 = 2:40 lbm=s _m ��������������������

From Eq. 12.29,

A1

A�
=

1
M1

1 +
k−1
2

M2
1

k+1
2

2
64

3
75
ðk+1Þ=2ðk−1Þ

=
1

0:52
1+ 0:2ð0:52Þ2

1:2

" #3:00
= 1:303

For choked flow, At =A�. Thus,

At =A� =
A1

1:303
=
0:013 ft2

1:303

At =9:98× 10−3 ft2
At ��������������������

1 t

pb = 30 psia
T0

p0

pb

pt
Tt

T1

T0

p0

p1

T

s

This problem illustrates use of the isen-
tropic equations, Eqs. 12.30a for a flow that
is choked.
• Because the flow is choked, we could also
have used Eq. 12.32a for _m (after find-
ing T0).

The Excel workbook for this exam-
ple is convenient for performing the

calculations. (The Excel add-ins for isen-
tropic flow, on the website, also make
calculations much easier.)
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discharges to back pressure pb. As for the converging nozzle, we wish to see, among other things, how
the flow rate varies with the driving force, the applied pressure difference ðp0−pbÞ. Consider the effect
of gradually reducing the back pressure. The results are illustrated graphically in Fig. 12.13. Let us con-
sider each of the cases shown.

With the valve initially closed, there is no flow through the nozzle; the pressure is constant at p0.
Opening the valve slightly (pb slightly less than p0) produces pressure distribution curve ðiÞ. If the flow
rate is low enough, the flow will be subsonic and essentially incompressible at all points on this curve.
Under these conditions, the C-D nozzle will behave as a venturi, with flow accelerating in the converging
portion until a point of maximum velocity and minimum pressure is reached at the throat, then decel-
erating in the diverging portion to the nozzle exit. This behavior is described accurately by the Bernoulli
equation, Eq. 6.8.

As the valve is opened farther and the flow rate is increased, a more sharply defined pressure
minimum occurs, as shown by curve ðiiÞ. Although compressibility effects become important, the
flow is still subsonic everywhere, and flow decelerates in the diverging section. Finally, as the valve
is opened farther, curve ðiiiÞ results. At the section of minimum area the flow finally reaches M =1,
and the nozzle is choked—the flow rate is the maximum possible for the given nozzle and stagnation
conditions.

All flows with pressure distributions ðiÞ, ðiiÞ, and ðiiiÞ are isentropic; as we progress from ðiÞ to ðiiÞ
to ðiiiÞ we are generating increasing mass flow rates. Finally, when curve ðiiiÞ is reached, critical con-
ditions are present at the throat. For this flow rate, the flow is choked, and

_m= ρ�V�A�

where A� =At, just as it was for the converging nozzle, and for this maximum possible flow rate
Eq. 12.32a applies (with Ae replaced with the throat area At),

_mchoked =Atp0

ffiffiffiffiffiffiffiffi
k

RT0

r
2

k+1

� �ðk+1Þ=2ðk−1Þ
ð12:33aÞ

Note that for a given gas (k and R), the maximum flow rate in the C-D nozzle depends only on the size of
the throat area ðAtÞ and the conditions in the reservoir (p0, T0).

As with the converging nozzle, for air we write an “engineering” form of Eq. 12.33a,

_mchoked = 0:04
Atp0ffiffiffiffiffi
T0
p ð12:33bÞ

with _mchoked in kg/s, At in m2, p0 in Pa, and T0 in K, and

pb

pe

Valve

To vacuum
pumpt

T0

p0

V0 0

1.0

p/p0

p*___
p0

Throat Exit plane x

iii

iv
v

ii
i

Me < 1

Me > 1

M = 1

Flow

Fig. 12.13 Pressure distributions for isentropic flow in a converging-diverging nozzle.
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_mchoked = 76:6
Atp0ffiffiffiffiffi
T0
p ð12:33cÞ

with _mchoked in lbm/s, At in ft2, p0 in psia, and T0 in �R. We again have Eqs. 12.32b and 12.32c, with the
exit area Ae now replaced by the throat area At.

Any attempt to increase the flow rate by further lowering the back pressure will fail, for the two
reasons we discussed earlier: once we attain sonic conditions, downstream changes can no longer be
transmitted upstream; and we cannot exceed sonic conditions at the throat, because this would
require passing through the sonic state somewhere in the converging section, which is not possible
in isentropic flow.

With sonic conditions at the throat, we consider what can happen to the flow in the diverging sec-
tion. We have previously discussed (see Fig. 12.8) that a diverging section will decelerate a subsonic
flow ðM <1Þ but will accelerate a supersonic flow ðM >1Þ—very different behaviors! The question
arises: “Does a sonic flow behave as a subsonic or as a supersonic flow as it enters a diverging section?”
The answer to this question is that it can behave like either one, depending on the downstream
pressure! We have already seen subsonic flow behavior [curve ðiiiÞ]: the applied back pressure leads
to a gradual downstream pressure increase, decelerating the flow. We now consider accelerating the
choked flow.

To accelerate flow in the diverging section requires a pressure decrease. This condition is illustrated
by curve ðivÞ in Fig. 12.13. The flow will accelerate isentropically in the nozzle provided the exit pres-
sure is set at piv. Thus, we see that with a throat Mach number of unity, there are two possible isentropic
flow conditions in the converging-diverging nozzle. This is consistent with the results of Fig. 12.10,
where we found two Mach numbers for each A=A� in isentropic flow.

Lowering the back pressure below condition ðiυÞ, say to condition ðυÞ, has no effect on flow in the
nozzle. The flow is isentropic from the plenum chamber to the nozzle exit [as in condition ðiυÞ] and then
it undergoes a three-dimensional irreversible expansion to the lower back pressure. A nozzle operating
under these conditions is said to be underexpanded, since additional expansion takes place outside the
nozzle.

A converging-diverging nozzle generally is intended to produce supersonic flow at the exit plane.
If the back pressure is set at piv, flow will be isentropic through the nozzle, and supersonic at the
nozzle exit. Nozzles operating at pb = piv [corresponding to curve ðiυÞ in Fig. 12.13] are said to operate
at design conditions.

Flow leaving a C-D nozzle is supersonic when the back pressure is at or below nozzle design pres-
sure. The exit Mach number is fixed once the area ratio, Ae=A�, is specified. All other exit plane proper-
ties are uniquely related to stagnation properties by the fixed exit planeMach number. The assumption of
isentropic flow for a real nozzle at design conditions is a reasonable one. However, the one-dimensional
flow model is inadequate for the design of relatively short nozzles.

Rocket-propelled vehicles use C-D nozzles to accelerate the exhaust gases to the maximum possible
speed to produce high thrust. A propulsion nozzle is subject to varying ambient conditions during flight
through the atmosphere, so it is impossible to attain the maximum theoretical thrust over the complete
operating range. Because only a single supersonic Mach number can be obtained for each area ratio,
nozzles for developing supersonic flow in wind tunnels often are built with interchangeable test sections,
or with variable geometry.

You probably have noticed that nothing has been said about the operation of converging-
diverging nozzles with back pressure in the range piii > pb > piυ. For such cases the flow cannot expand
isentropically to pb. Under these conditions a shock (which may be treated as an irreversible disconti-
nuity involving entropy increase) occurs somewhere within the flow. Following a discussion of normal
shocks in Section 12.7, we shall complete the discussion of converging-diverging nozzle flows in
Section 12.8.

Nozzles operating with piii > pb > piv are said to be overexpanded because the pressure at some point
in the nozzle is less than the back pressure. Obviously, an overexpanded nozzle could be made to operate
at a new design condition by removing a portion of the diverging section. In Example 12.10, we consider
isentropic flow in a C-D nozzle and in Example 12.11, we consider choked flow in a C-D nozzle.

59512.6 Isentropic Flow of an Ideal Gas: Area Variation



Example 12.10 ISENTROPIC FLOW IN A CONVERGING-DIVERGING NOZZLE

Air flows isentropically in a converging-diverging nozzle, with exit area of 0:001 m2. The nozzle is fed from a large plenum
where the stagnation conditions are 350 K and 1.0 MPa (abs). The exit pressure is 954 kPa (abs) and the Mach number at
the throat is 0.68. Fluid properties and area at the nozzle throat and the exit Mach number are to be determined.

Given: Isentropic flow of air in C-D nozzle as shown:

T0 = 350 K
p0 = 1:0MPa ðabsÞ
pb =954 kPa ðabsÞ
Mt =0:68 Ae =0:001 m2

Find: (a) Properties and area at nozzle throat.
(b) Me.

Solution: Stagnation temperature is constant for isentropic flow. Thus, since

T0
T

=1+
k−1
2

M2

then

Tt =
T0

1 +
k−1
2

M2
t

=
350 K

1+ 0:2ð0:68Þ2 = 320 K
Tt �������������������������������

Also, since p0 is constant for isentropic flow, then

pt = p0
Tt
T0

� �k=ðk−1Þ
= p0

1

1+
k−1
2

M2
t

2
64

3
75

k=ðk−1Þ

pt =1:0× 106 Pa
1

1+ 0:2ð0:68Þ2
" #3:5

= 734 kPa ðabsÞ pt �������������������������������
so

ρt =
pt
RTt

=7:34× 105
N
m2 ×

kg �K
287 N �m ×

1
320 K

=7:99 kg=m3 ρt �������������������������������
and

Vt =Mtct =Mt
ffiffiffiffiffiffiffiffiffi
kRTt
p

Vt =0:68 14× 287
N �m
kg �K ×320 K×

kg �m
N � s2

	 
1=2
= 244 m=s

Vt �������������������������������
From Eq. 12.30d we can obtain a value of At=A∗

At

A∗ =
1
Mt

1+
k−1
2

M2
t

k+1
2

2
64

3
75
ðk+1Þ=2ðk−1Þ

=
1

0:68
1+0:2ð0:68Þ2

1:2

" #3:00
= 1:11

but at this point A� is not known.
Since Mt <1, flow at the exit must be subsonic. Therefore, pe = pb. Stagnation properties are constant, so

p0
pe

= 1+
k−1
2

M2
e

	 
k=ðk−1Þ

Flow

t e

pb
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Solving for Me gives

Me =
p0
pe

� �ðk−1Þ=k
−1

" #
2

k−1

( )1=2

=
1:0× 106

9:54× 105

� �0:286

−1

" #
ð5Þ

( )1=2

= 0:26
Me �������������������������������

The Ts diagram for this flow is

T

T0
Te

Tt

pt

pe

p0

s

Since Ae and Me are known, we can compute A∗. From Eq. 12.30d

Ae

A∗ =
1
Me

1+
k−1
2

M2
e

k+1
2

2
64

3
75
ðk+1Þ=2ðk−1Þ

=
1

0:26
1+ 0:2ð0:26Þ2

1:2

" #3:00
= 2:317

Thus,

A∗ =
Ae

2:317
=
0:001 m2

2:317
= 4:32× 10−4 m2

and

At =1:110A∗ = ð1:110Þð4:32× 10−4 m2Þ
=4:80× 10−4 m2 At �������������������������������

This problem illustrates use of the isentropic
equations, Eqs. 12.30a for flow in a C-D nozzle
that is not choked.
• Note that use of Eq. 12.30d allowed us to
obtain the throat area without needing to
first compute other properties.

The Excel workbook for this exam-
ple is convenient for performing the

calculations (using either the isentropic
equations or the basic equations). (The
Excel add-ins for isentropic flow, on the
website, also make calculations much
easier.)

Example 12.11 ISENTROPIC FLOW IN A CONVERGING-DIVERGING NOZZLE: CHOKED FLOW

The nozzle of Example 12.10 has a design back pressure of 87.5 kPa (abs) but is operated at a back pressure of 50.0 kPa (abs).
Assume flow within the nozzle is isentropic. Determine the exit Mach number and mass flow rate.

Given: Air flow through C-D nozzle as shown:

T0 = 350 K

p0 = 1:0MPa ðabsÞ
peðdesignÞ=87:5 kPa ðabsÞ
pb =50:0 kPa ðabsÞ
Ae =0:001m2

At =4:8× 10−4m2 (Example 12.10)

Find: (a) Me.
(b) _m.

t e

pb
Flow
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12.7 Normal Shocks
Wementioned normal shocks in the previous section in the context of flow through a nozzle. In practice,
these irreversible discontinuities can occur in any supersonic flow field, in either internal flow or external
flow. Knowledge of property changes across shocks and of shock behavior is important in understanding
the design of supersonic diffusers, e.g., for inlets on high performance aircraft, and supersonic wind
tunnels. Accordingly, the purpose of this section is to analyze the normal shock process.

Before applying the basic equations to normal shocks, it is important to form a clear physical picture
of the shock itself. Although it is physically impossible to have discontinuities in fluid properties, the
normal shock is nearly discontinuous. The thickness of a shock is about 0:2 μmð10−5 in:Þ, or roughly 4
times the mean free path of the gas molecules [5]. Large changes in pressure, temperature, and other
properties occur across this small distance. Fluid particle decelerations through the shock reach tens

Solution: The operating back pressure is below the design pressure. Consequently, the nozzle is underexpanded, and the Ts
diagram and pressure distribution will be as shown:

T0

Tt

Te

pe

pb

pt

T

s

p0

1.0

0

p/p0

x
b

t

e

Flow within the nozzle will be isentropic, but the irreversible expansion from pe to pb will cause an entropy
increase; pe = peðdesignÞ=87:5 kPa ðabsÞ.

Since stagnation properties are constant for isentropic flow, the exit Mach number can be computed from the pressure
ratio. Thus

p0
pe

= 1+
k−1
2

M2
e

	 
k=ðk−1Þ

or

Me =
p0
pe

� �ðk−1Þ=k
−1

" #
2

k−1

( )1=2

=
1:0× 106

8:75× 104

� �0:286

−1

" #
2
0:4

( )1=2

= 2:24
Me �����������������������������������

Because the flow is choked we can use Eq. 12.33b for the mass flow rate,

_mchoked = 0:04
Atp0ffiffiffiffiffi
T0
p ð12:33bÞ

(with _mchoked in kg/s, At in m2, p0 in Pa, and T0 in K), so

_mchoked = 0:04× 4:8× 10−4 × 1× 106=
ffiffiffiffiffiffiffiffi
350
p

_m= _mchoked = 1:04 kg=s
_m �������������������������������

This problem illustrates use of the isen-
tropic equations, Eqs. 12.30a for flow in a
C-D nozzle that is choked.
• Note that we used Eq. 12.33b, an “engi-
neering equation”—that is, an equation
containing a coefficient that has units.
While useful here, generally these equa-
tions are no longer used in engineering
because their correct use depends on
using input variable values in specific
units.

The Excel workbook for this exam-
ple is convenient for performing the

calculations (using either the isentropic
equations or the basic equations). (The
Excel add-ins for isentropic flow, on the
website, also make calculations much
easier.)
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of millions of gs! These considerations justify treating the normal shock as an abrupt discontinuity; we
are interested in changes occurring across the shock rather than in the details of its structure.

Consider the short control volume surrounding a normal shock standing in a passage of arbitrary
shape shown in Fig. 12.14. As for isentropic flow with area variation (Section 12.6), our starting point in
analyzing this normal shock is the set of basic equations (Eqs. 12.24), describing one-dimensional
motion that may be affected by several phenomena: area change, friction, and heat transfer. These are

ρ1V1A1 = ρ2V2A2 = ρVA= _m= constant ð12:24aÞ
Rx + p1A1−p2A2 = _mV2− _mV1 ð12:24bÞ

δQ
dm

+ h1 +
V2
1

2
= h2 +

V2
2

2
ð12:24cÞ

_mðs2−s1Þ≥
Z
CS

1
T

_Q
A

� �
dA ð12:24dÞ

p= ρRT ð12:24eÞ
Δh= h2−h1 = cpΔT = cpðT2−T1Þ ð12:24fÞ

Δs= s2−s1 = cp ln
T2
T1

−R ln
p2
p1

ð12:24gÞ

We recall that Equation 12.24a is continuity, Eq. 12.24b is a momentum equation, Eq. 12.24c is an
energy equation, Eq. 12.24d is the second law of thermodynamics, and Eqs. 12.24e, 12.24f, and
12.24g are useful property relations for an ideal gas with constant specific heats.

Basic Equations for a Normal Shock

We can now simplify Eqs. 12.24 for flow of an ideal gas with constant specific heats through a normal
shock. The most important simplifying feature is that the width of the control volume is infinitesimal (in
reality about 0:2 μm as we indicated), so A1≈A2≈A, the force due to the walls Rx≈0 because the control
volume wall surface area is infinitesimal, and the heat exchange with the walls δQ=dm≈0, for the same
reason. Hence, for this flow our equations become

ρ1V1 = ρ2V2 =
_m
A
= constant ð12:34aÞ

p1A−p2A= _mV2− _mV1

or, using Eq. 12.34a,

p1 + ρ1V
2
1 = p2 + ρ2V

2
2 ð12:34bÞ

h01 = h1 +
V2
1

2
= h2 +

V2
2

2
= h02 ð12:34cÞ

s2 > s1 ð12:34dÞ
p= ρRT ð12:34eÞ

Δh= h2−h1 = cpΔT = cpðT2−T1Þ ð12:34fÞ
Δs= s2−s1 = cp ln

T2
T1

−R ln
p2
p1

ð12:34gÞ

CV

y

x

1 2

Flow
T1
p1

V1

T2
p2

V2

Fig. 12.14 Control volume used for analysis of normal shock.
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Equations 12.34 can be used to analyze flow through a normal shock. For example, if we know condi-
tions before the shock, at section (i.e., p1, ρ1, T1, s1, h1, and V1), we can use these equations to find
conditions after the shock, at section . We have six equations (not including the constraint of
Eq. 12.34d) and six unknowns (p2, ρ2, T2, s2, h2, and V2). Hence, for given upstream conditions there
is a single unique downstream state. To analyze a shock, we need to solve this set of nonlinear coupled
algebraic equations.

We can certainly use these equations for analyzing normal shocks, but we will usually find it more
useful to develop normal shock functions based onM1, the upstreamMach number. Before doing this, let
us consider the set of equations. We have stated in this chapter that changes in a one-dimensional flow
can be caused by area variation, friction, or heat transfer, but in deriving Eqs. 12.34 we have eliminated
all three causes! In this case, then, what is causing the flow to change? Perhaps there are no changes
through a normal shock! Indeed, if we examine each of these equations we see that each one is
satisfied—has a possible “solution”—if all properties at location are equal to the corresponding prop-
erties at location (e.g., p2 = p1,T2 = T1) except for Eq. 12.34d, which expresses the second law of
thermodynamics. Nature is telling us that in the absence of area change, friction, and heat transfer, flow
properties will not change except in a very abrupt, irreversible manner, for which the entropy increases.
In fact, all properties except T0 change through the shock. We must find a solution in which all of
Eqs. 12.34 are satisfied.

Because they are a set of nonlinear coupled equations, it is difficult to use Eqs. 12.34 to see exactly
what happens through a normal shock. We will postpone formal proof of the results we are about
to present until a subsequent subsection, where we recast the equations in terms of the incoming
Mach number. This recasting is rather mathematical, so we present results of the analysis here for clarity.

It turns out that a normal shock can occur only when the incoming flow is supersonic. Fluid
flows will generally gradually adjust to downstream conditions (e.g., an obstacle in the flow) as the
pressure field redirects the flow (e.g., around the object). However, if the flow is moving at such a
speed that the pressure field cannot propagate upstream (when the flow speed, V , is greater than the
local speed of sound, c, or in other words M >1), then the fluid has to “violently” adjust to the
downstream conditions. The shock that a supersonic flow may encounter is like a hammer blow
that each fluid particle experiences; the pressure suddenly increases through the shock, so that, at the
instant a particle is passing through the shock, there is a very large negative pressure gradient. This pres-
sure gradient causes a dramatic reduction in speed, V , and hence a rapid rise in temperature, T , as kinetic
energy is converted to internal thermal energy.

Wemay wonder what happens to the density because both the temperature and pressure rise through
the shock, leading to opposing changes in density; it turns out that the density, ρ, increases through the
shock. Because the shock is adiabatic but highly irreversible, entropy, s, increases through the shock.
Finally, we see that as speed, V , decreases and the speed of sound, c, increases (because temperature, T ,

1

2

1

2

Flow

T1

T2

p2

p1

Shock

p01 p02

T01
 = T02

s2 – s1

T

s
Fig. 12.15 Schematic of normal-shock process on the Ts plane.
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increases) through the normal shock, the Mach number, M, decreases; in fact, we will see later that it
always becomes subsonic. These results are shown graphically in Fig. 12.15 and in tabular form in
Table 12.1.

Normal-Shock Flow Functions for One-Dimensional Flow
of an Ideal Gas

The basic equations, Eqs. 12.34, can be used to analyze flows that experience a normal shock. However,
it is often more convenient to use Mach number-based equations, in this case based on the incoming
Mach number, M1. This involves three steps: First, we obtain property ratios (e.g., T2=T1 and p2=p1)
in terms ofM1 andM2, then we develop a relation betweenM1 andM2, and finally, we use this relation
to obtain expressions for property ratios in terms of upstream Mach number, M1.

The temperature ratio can be expressed as

T2
T1

=
T2
T02

T02
T01

T01
T1

Since stagnation temperature is constant across the shock, we have

T2
T1

=
1+

k−1
2

M2
1

1 +
k−1
2

M2
2

ð12:35Þ

A velocity ratio may be obtained by using

V2

V1
=
M2c2
M1c1

=
M2

M1

ffiffiffiffiffiffiffiffiffiffi
kRT2
pffiffiffiffiffiffiffiffiffiffi
kRT1
p =

M2

M1

ffiffiffiffiffi
T2
T1

r

or

V2

V1
=
M2

M1

1 +
k−1
2

M2
1

1 +
k−1
2

M2
2

2
64

3
75
1=2

A ratio of densities may be obtained from the continuity equation

ρ1V1 = ρ2V2 ð12:34aÞ
so that

ρ2
ρ1

=
V1

V2
=
M1

M2

1+
k−1
2

M2
2

1+
k−1
2

M2
1

2
64

3
75
1=2

ð12:36Þ

Table 12.1
Summary of Property Changes Across a Normal Shock

Property Effect Obtained from:

Stagnation temperature T0 =Constant Energy equation
Entropy s* Second law
Stagnation pressure p0 + Ts diagram
Temperature T * Ts diagram
Velocity V + Energy equation, and effect on T
Density ρ* Continuity equation, and effect on V
Pressure p* Momentum equation, and effect on V
Mach number M + M =V=c, and effects on V and T
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Finally, we have the momentum equation,

p1 + ρ1V
2
1 = p2 + ρ2V

2
2 ð12:34bÞ

Substituting ρ= p=RT , and factoring out pressures, gives

p1 1+
V2
1

RT1

	 

= p2 1+

V2
2

RT2

	 

Since

V2

RT
= k

V2

kRT
= kM2

then

p1 1 + kM2
1

� �
= p2 1 + kM2

2

� �
Finally,

p2
p1

=
1+ kM2

1

1+ kM2
2

ð12:37Þ

To solve for M2 in terms of M1, we must obtain another expression for one of the property ratios
given by Eqs. 12.35 through 12.37.

From the ideal gas equation of state, the temperature ratio may be written as

T2
T1

=
p2=ρ2R
p1=ρ1R

=
p2
p1

ρ1
ρ2

Substituting from Eqs. 12.36 and 12.37 yields

T2
T1

=
1+ kM2

1

1+ kM2
2

	 

M2

M1

1 +
k−1
2

M2
1

1 +
k−1
2

M2
2

2
64

3
75
1=2

ð12:38Þ

Equations 12.35 and 12.38 are two equations for T2=T1. We can combine them and solve forM2 in terms
of M1. Combining and canceling gives

1+
k−1
2

M2
1

1 +
k−1
2

M2
2

2
64

3
75
1=2

=
M2

M1

1 + kM2
1

1 + kM2
2

	 


Squaring, we obtain

1+
k−1
2

M2
1

1 +
k−1
2

M2
2

=
M2

2

M2
1

1 + 2kM2
1 + k2M4

1

1 + 2kM2
2 + k2M4

2

	 


which may be solved explicitly for M2
2 . Two solutions are obtained:

M2
2 =M2

1 ð12:39aÞ
and

M2
2 =

M2
1 +

2
k−1

2k
k−1

M2
1−1

ð12:39bÞ

Obviously, the first of these is trivial. The second expresses the unique dependence of M2 on M1.
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Now, having a relationship between M2 and M1, we can solve for property ratios across a shock.
Knowing M1, we obtain M2 from Eq. 12.39b; the property ratios can be determined subsequently from
Eqs. 12.35 through 12.37.

Since the stagnation temperature remains constant, the stagnation temperature ratio across the shock
is unity. The ratio of stagnation pressures is evaluated as

p02
p01

=
p02
p2

p2
p1

p1
p01

=
p2
p1

1+
k−1
2

M2
2

1+
k−1
2

M2
1

2
64

3
75

k=ðk−1Þ

ð12:40Þ

Combining Eqs. 12.37 and 12.39b, we obtain (after considerable algebra)

p2
p1

=
1+ kM2

1

1 + kM2
2
=

2k
k+1

M2
1−

k−1
k+1

ð12:41Þ

Using Eqs. 12.39b and 12.41, we find that Eq. 12.40 becomes

p02
p01

=

k+1
2

M2
1

1 +
k−1
2

M2
1

2
64

3
75

k=ðk−1Þ

2k
k+1

M2
1−

k−1
k+1

	 
1=ðk−1Þ ð12:42Þ

After substituting for M2
2 from Eq.12.39b into Eqs. 12.35 and 12.36, we summarize the set of Mach

number-based equations (renumbered for convenience) for use with an ideal gas passing through a nor-
mal shock:

M2
2 =

M2
1 +

2
k−1

2k
k−1

M2
1−1

ð12:43aÞ

p02
p01

=

k+1
2

M2
1

1 +
k−1
2

M2
1

2
64

3
75

k=ðk−1Þ

2k
k+1

M2
1−

k−1
k+1

	 
1=ðk−1Þ ð12:43bÞ

T2
T1

=
1+

k−1
2

M2
1

� �
kM2

1−
k−1
2

� �
k+1
2

� �2

M2
1

ð12:43cÞ

p2
p1

=
2k

k+1
M2

1−
k−1
k+1

ð12:43dÞ

ρ2
ρ1

=
V1

V2
=

k+1
2

M2
1

1 +
k−1
2

M2
1

ð12:43eÞ

Equations 12.43 are useful for analyzing flow through a normal shock. Note that all changes through
a normal shock depend only on M1, the incoming Mach number and the fluid property, k, the ratio of
specific heats. The equations are usually preferable to the original equations, Eq. 12.34, because they
provide explicit, uncoupled expressions for property changes; Eqs. 12.34 are occasionally useful too.
Note that Eq. 12.43d requires M1 > 1 for p2 > p1, which agrees with our previous discussion. The ratio
p2=p1 is known as the strength of the shock; the higher the incoming Mach number, the stronger (more
violent) the shock.
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Equations 12.43, while quite complex algebraically, provide explicit property relations in terms
of the incoming Mach number,M1. They are easily programmed and there are also interactive websites
that make them available (see, e.g., [4]). The equations can also be programmed in Excel and spread-
sheets are available from the website; with the add-ins, functions are available for computingM2, and the
stagnation pressure, temperature, pressure, and density/velocity ratios, from M1, and M1 from these
ratios. Appendix D.2 lists flow functions for M2 and property ratios p02=p01 , T2=T1, p2=p1, and
ρ2=ρ 1ðV1=V2Þ in terms ofM1 for normal-shock flow of an ideal gas. A table of values, as well as a plot
of these property ratios, is presented for air ðk=1:4Þ for a limited range of Mach numbers. The asso-
ciated Excel workbook, Normal-Shock Relations, can be used to print a larger table of values for air and
other ideal gases. A problem involving a normal shock is solved in Example 12.12.

Example 12.12 NORMAL SHOCK IN A DUCT

A normal shock stands in a duct. The fluid is air, which may be considered an ideal gas. Properties upstream from the shock are
T1 = 5�C, p1 = 65:0 kPa ðabsÞ, and V1 = 668 m=s. Determine properties downstream and s2−s1. Sketch the process on a Ts
diagram.

Given: Normal shock in a duct as shown:

T1 = 5�C
P1 = 65:0 kPa ðabsÞ
V1 = 668 m=s

Find: (a) Properties at section .
(b) s2−s1.
(c) Ts diagram.

Solution: First compute the remaining properties at section . For an ideal gas,

ρ1 =
p1
RT1

= 6:5× 104
N
m2 ×

kg �K
287 N �m ×

1
278 K

=0:815 kg=m3

c1 =
ffiffiffiffiffiffiffiffiffiffi
kRT1
p

= 1:4× 287
N �m
kg �K ×278 K×

kg �m
N � s2

	 
1=2
= 334 m=s

Then
M1 =

V1

c1
=
668
334

= 2:00, and (using isentropic stagnation relations, Eqs. 12.21b and 12.21a)

T01 = T1 1 +
k−1
2

M2
1

� �
=278 K½1+ 0:2ð2:0Þ2�=500 K

p01 = p1 1+
k−1
2

M2
1

� �k=ðk−1Þ
=65:0 kPa½1+0:2ð2:0Þ2�3:5 = 509 kPa ðabsÞ

From the normal-shock flow functions, Eqs. 12.43, at M1 = 2:0,

M1 M2 p02=p01 T2=T1 p2=p1 V2=V1

2:00 0:5774 0:7209 1:687 4:500 0:3750

From these data

T2 = 1:687T1 = ð1:687Þ278 K=469 K
T2 �����������������������������������������

p2 = 4:500p1 = ð4:500Þ65:0 kPa= 293 kPa ðabsÞ p2 �����������������������������������
V2 = 0:3750V1 = ð0:3750Þ668 m=s = 251 m=s

V2 ������������������������������������

Flow Flow is airy

x

1 2

CV
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12.8 Supersonic Channel Flow with Shocks
Supersonic flow is a necessary condition for a normal shock to occur and the possibility of a normal
shock must be considered in any supersonic flow. Sometimes a shockmust occur to match a downstream
pressure condition; it is desirable to determine if a shock will occur and the shock location when it
does occur.

In this section isentropic flow in a converging-diverging nozzle (Section 12.6) is extended to include
shocks and complete our discussion of flow in a converging-diverging nozzle operating under varying
back pressures. The pressure distribution through a nozzle for different back pressures is shown in
Fig. 12.16.

Four flow regimes are possible. In Regime I the flow is subsonic throughout. The flow rate increases
with decreasing back pressure. At condition ðiiiÞ, which forms the dividing line between Regimes I and
II, flow at the throat is sonic, and Mt =1.

For an ideal gas,

ρ2 =
p2
RT2

= 2:93× 105
N
m2 ×

kg �K
287 N �m ×

1
469 K

=2:18 kg=m3 ρ2 �������������������������������
Stagnation temperature is constant in adiabatic flow. Thus

T02 = T01 = 500 K T02 ��������������������������������������������������������������
Using the property ratios for a normal shock, we obtain

p02 = p01
p02
p01

= 509 kPa ð0:7209Þ=367 kPa ðabsÞ p02 ����������������������������������������
For the change in entropy (Eq. 12.34g),

s2−s1 = cp ln
T2
T1

−R ln
p2
p1

But s02 −s01 = s2−s1, so

= 0

s02 −s01 = s2−s1 = cp ln
T02
T01��

�!−R ln
p02
p01

= −0:287
kJ

kg�K × ln 0:7209ð Þ
s2−s1 = 0:0939 kJ=ðkg �KÞ s2−s1 �������������������������������������������������������

The Ts diagram is

2

1
Shock

T1

T2

p2

p1 s2 – s1

s02
 – s01

p02
p01

T02
 = T01

T

s

This problem illustrates the use of the
normal shock relations, Eqs. 12.43, for
analyzing flow of an ideal gas through a
normal shock.

The Excel workbook for this prob-
lem is convenient for performing

the calculations. (Alternatively, the normal
shock relations Excel add-ins, available on
the website, are useful for these
calculations.)
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As the back pressure is lowered below condition ðiiiÞ, a normal shock appears downstream from the
throat, as shown by condition ðviÞ. There is a pressure rise across the shock. Since the flow is subsonic
ðM <1Þ after the shock, the flow decelerates, with an accompanying increase in pressure, through the
diverging channel. As the back pressure is lowered further, the shock moves downstream until it appears
at the exit plane (condition vii). In Regime II, as in Regime I, the exit flow is subsonic, and consequently
pe = pb. Since flow properties at the throat are constant for all conditions in Regime II, the flow rate in
Regime II does not vary with back pressure.

In Regime III, as exemplified by condition ðviiiÞ, the back pressure is higher than the exit pressure,
but not high enough to sustain a normal shock in the exit plane. The flow adjusts to the back pressure
through a series of oblique compression shocks outside the nozzle; these oblique shocks cannot be trea-
ted by one-dimensional theory.

As previously noted in Section 12.6, condition ðivÞ represents the design condition. In Regime IV
the flow adjusts to the lower back pressure through a series of oblique expansion waves outside the noz-
zle; these oblique expansion waves cannot be treated by one-dimensional theory.

The Ts diagram for converging-diverging nozzle flow with a normal shock is shown in Fig. 12.17;
state is located immediately upstream from the shock and state is immediately downstream. The
entropy increase across the shock moves the subsonic downstream flow to a new isentropic line. The
critical temperature is constant, so p�2 is lower than p∗1. Since ρ� = p�=RT�, the critical density down-
stream also is reduced. To carry the same mass flow rate, the downstream flowmust have a larger critical
area. From continuity (and the equation of state), the critical area ratio is the inverse of the critical pres-
sure ratio, i.e., across a shock, p�A� = constant.

bet

Valve

To vacuum
pump

Flow
T0
p0

V0 0

(v)
(iv)

(viii)
(vii)

(vi)
(iii)
(ii)
(i)

––Me < 1

––Me > 1

Regime I

Regime II

Regime III

Regime IV

Exit
plane

x

s = c

Throat

Mt = 1

p* ____
p0

p___
p0

1.0

Fig. 12.16 Pressure distributions for flow in a converging-diverging nozzle for different back pressures.

1 2
e

pb
Flow

p01

T01

V0 = 0

T p01
p02

pe
Te

T2

p2

p1*

p1

T1

p2*

Shock

T* = constant

T0 = constant

s
Fig. 12.17 Schematic Ts diagram for flow in a converging-diverging nozzle with a normal shock.
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If the Mach number (or position) of the normal shock in the nozzle is known, the exit-plane pressure
can be calculated directly. In the more realistic situation, the exit-plane pressure is specified, and the
position and strength of the shock are unknown. The subsonic flow downstream must leave the nozzle
at the back pressure, so pb = pe. Then

pb
p01

=
pe
p01

=
pe
p02

p02
p01

=
pe
p02

A∗
1

A∗
2
=

pe
p02

At

Ae

Ae

A∗
2

ð12:44Þ

Because we have isentropic flow from state (after the shock) to the exit plane, A∗
2 =A∗

e and p02 = p0e .
Then from Eq. 12.44 we can write

pe
p01

=
pe
p02

At

Ae

Ae

A∗
2
=

pe
p0e

At

Ae

Ae

A∗
e

Rearranging,

pe
p01

Ae

At
=

pe
p0e

Ae

A∗
e

ð12:45Þ

In Eq. 12.45 the left side contains known quantities, and the right side is a function of the exit Mach
number Me only. The pressure ratio is obtained from the stagnation pressure relation (Eq. 12.21a);
the area ratio is obtained from the isentropic area relation (Eq. 12.30d). Finding Me from Eq. 12.45
usually requires iteration. The magnitude and location of the normal shock can be found once Me is
known by rearranging Eq. 12.45 (remembering that p02 = p0e ),

p02
p01

=
At

Ae

Ae

A∗
e

ð12:46Þ

In Eq. 12.46 the right side is known (the first area ratio is given and the second is a function ofMe only),
and the left side is a function of the Mach number before the shock,M1, only. Hence, M1 can be found.
The area at which this shock occurs can then be found from the isentropic area relation (Eq. 12.30d, with
A� =At) for isentropic flow between the throat and state .

In this introductory chapter on compressible flow, we have covered some of the basic flow phenom-
ena and presented the equations that allow us to evaluate the flow properties in some of the simpler flow
situations. There are many more complex compressible flow situations, and we provide an introduction
to some of these advanced topics on the website. Shock formation in a CD nozzle, one-dimensional
flows with friction and/or heat transfer, and two-dimensional shock and expansion waves are covered
in these sections.

12.8 Supersonic Channel Flow with Shocks (continued, on the Web)

12.9 Flow in a Constant-Area Duct with Friction (on the Web)
12.10 Frictionless Flow in a Constant-Area Duct with Heat Exchange

(on the Web)
12.11 Oblique Shocks and Expansion Waves (on the Web)

12.12 Summary and Useful Equations
In this chapter, we:

✓ Reviewed the basic equations used in thermodynamics, including isentropic relations.
✓ Introduced some compressible flow terminology, such as definitions of the Mach number and

subsonic, supersonic, transonic, and hypersonic flows.
✓ Learned about several phenomena having to do with sound, including that the speed of sound

in an ideal gas is a function of temperature only ðc=
ffiffiffiffiffiffiffiffiffi
kRT
p

Þ, and that the Mach cone and Mach
angle determine when a supersonic vehicle is heard on the ground.
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✓ Learned that there are two useful reference states for a compressible flow: the isentropic stag-
nation condition, and the isentropic critical condition.

✓ Developed a set of governing equations (continuity, the momentum equation, the first and
second laws of thermodynamics, and equations of state) for one-dimensional flow of a com-
pressible fluid (in particular an ideal gas) as it may be affected by area change, friction, heat
exchange, and normal shocks.

✓ Simplified these equations for isentropic flow affected only by area change, and developed
isentropic relations for analyzing such flows.

✓ Simplified the equations for flow through a normal shock, and developed normal-shock rela-
tions for analyzing such flows.

While investigating the above flows we developed insight into some interesting compressible
flow phenomena, including:

✓ Use of Ts plots in visualizing flow behavior.
✓ Flow through, and necessary shape of, subsonic and supersonic nozzles and diffusers.
✓ The phenomenon of choked flow in converging nozzles and C-D nozzles, and the circum-

stances under which shock waves develop in C-D nozzles.

Note: Most of the equations in the table below have a number of constraints or limitations. Be sure to
refer to their page numbers for details! In particular, most of them assume an ideal gas, with constant
specific heats.

Useful Equations
Definition of Mach number M:

M ≡
V
c

(12.13) Page 563

Speed of sound c:
c=

ffiffiffiffiffiffiffiffiffiffi
∂p
∂ρ

�
s

s
(12.16) Page 566

Speedofsoundc (solids and liquids): c=
ffiffiffiffiffiffiffiffiffiffi
Eν=ρ

p
(12.17) Page 566

Speed of sound c (ideal gas): c=
ffiffiffiffiffiffiffiffiffi
kRT
p

(12.18) Page 566

Mach cone angle α:
α= sin−1 1

M

� �
(12.19) Page 569

Isentropic pressure ratio (ideal gas,
constant specific heats):

p0
p
= 1+

k−1
2

M2
	 
k=ðk−1Þ (12.21a) Page 573

Isentropic temperature ratio (ideal
gas, constant specific heats):

T0
T

=1+
k−1
2

M2 (12.21b) Page 574

Isentropic density ratio (ideal gas,
constant specific heats):

ρ0
ρ
= 1+

k−1
2

M2
	 
1=ðk−1Þ (12.21c) Page 574

Critical pressure ratio (ideal gas,
constant specific heats):

p0
p� =

k+1
2

	 
k=ðk−1Þ (12.22a) Page 577

Critical temperature ratio (ideal gas,
constant specific heats):

T0
T∗ =

k+1
2

(12.22b) Page 577

Critical density ratio (ideal gas,
constant specific heats):

ρ0
ρ∗

=
k+1
2

	 
1=ðk−1Þ (12.22c) Page 577

Critical velocity V∗ (ideal gas,
constant specific heats): V� = c∗=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k

k+1
RT0

r
(12.23) Page 577

One-dimensional flow equations: ρ1V1A1 = ρ2V2A2 = ρVA= _m= constant
Rx + p1A1−p2A2 = _mV2− _mV1

δQ
dm

+ h1 +
V2
1

2
= h2 +

V2
2

2

(12.24a)
(12.24b)

(12.24c)

Page 580
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Table (Continued)

_mðs2−s1Þ≥
Z
CS

1
T

_Q
A

� �
dA

p= ρRT
Δh= h2−h1 = cpΔT = cpðT2−T1Þ
Δs= s2−s1 = cp ln

T2
T1

−R ln
p2
p1

(12.24d)

(12.24e)
(12.24f)

(12.24g)

Isentropic relations:
[Note: These equations are a little
cumbersome for practical use by
hand. They are listed (and tabulated
and plotted for air) in Appendix D.
The Excel add-ins from the website
are useful for computing with these
equations.]

p0
p
= f ðMÞ

T0
T

= f ðMÞ
ρ0
ρ
= f ðMÞ

A
A∗ = f ðMÞ

(12.30a)

(12.30b)

(12.30c)

(12.30d)

Page 585

Page 586

Pressure ratio for choked
converging nozzle, pe=p0jchoked:

pe
p0
jchoked =

p∗
p0

=
2

k+1

� �k=ðk−1Þ (12.31) Page 590

Mass flow rate for choked
converging nozzle: _mchoked =Aep0

ffiffiffiffiffiffiffiffi
k

RT0

r
2

k+1

� �ðk+1Þ=2ðk−1Þ (12.32a) Page 590

Mass flow rate for choked
converging nozzle (SI units):

_mchoked = 0:04
Aep0ffiffiffiffiffi
T0
p (12.32b) Page 590

Mass flow rate for choked
converging nozzle (English
Engineering units):

_mchoked = 76:6
Aep0ffiffiffiffiffi
T0
p (12.32c) Page 590

Mass flow rate for choked
converging-diverging nozzle: _mchoked =Atp0

ffiffiffiffiffiffiffiffi
k

RT0

r
2

k+1

� �ðk+1Þ=2ðk−1Þ (12.33a) Page 594

Mass flow rate for choked
converging-diverging nozzle
(SI units):

_mchoked = 0:04
Atp0ffiffiffiffiffi
T0
p (12.33b) Page 594

Mass flow rate for choked
converging-diverging nozzle
(English Engineering units):

_mchoked = 76:6
Atp0ffiffiffiffiffi
T0
p (12.33c) Page 594

Normal shock relations: [Note:
These equations are too
cumbersome for practical use by
hand. They are listed (and tabulated
and plotted for air) in Appendix D.
The Excel add-ins from the website
are useful for computing with these
equations.]

M2 = f ðM1Þ
p02
p01

= f ðM1Þ
T2
T1

= f ðM1Þ
p2
p1

= f ðM1Þ
ρ2
ρ1

=
V1

V2
= f ðM1Þ

(12.43a)

(12.43b)

(12.43c)

(12.43d)

(12.43e)

Page 603

Useful relations for determining the
normal shock location in
converging-diverging nozzle:

pe
p01

Ae

At
=

pe
p0e

Ae

A�e
p02
p01

=
At

Ae

Ae

A�e

(12.45)

(12.46)

Page 606

Page 607
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P R O B L E M S

Review of Thermodynamics
12.1 Air is expanded in a steady flow process through a turbine. Ini-
tial conditions are 1300�C and 2.0MPa absolute. Final conditions are
500�C and atmospheric pressure. Show this process on a Ts diagram.
Evaluate the changes in internal energy, enthalpy, and specific
entropy for this process.

12.2 Five kilograms of air is cooled in a closed tank from 250 to
50�C. The initial absolute pressure is 3 MPa. Compute the changes
in entropy, internal energy, and enthalpy. Show the process state
points on a Ts diagram.

12.3Air is contained in a piston-cylinder device. The temperature of
the air is 100�C. Using the fact that for a reversible process the heat
transfer q=

R
Tds, compare the amount of heat (J/kg) required to

raise the temperature of the air to 1200�C at (a) constant pressure
and (b) constant volume. Verify your results using the first law of
thermodynamics. Plot the processes on a Ts diagram.

12.4 Calculate the power delivered by the turbine per unit mass of
airflow when the heat transfer in the heat exchanger is zero. Then,
how does the power depend on the heat transfer through the
exchanger if all other conditions remain the same? Assume air is a
perfect gas.

Large
reservoir

V = 100 m/s
THeat

exchanger T = 100°C

T = 200°C p = 101.3 kPa

p = 1013 kPa

P12.4

12.5 If hydrogen flows as a perfect gas without friction between sta-
tions and while qH =7:5× 105 J=kg, find V2.

T1 
= 50°C

qH

75 m/s

T2 
= 100°C

21

P12.5

12.6 A 1-m3 tank contains air at 0.1 MPa absolute and 20�C. The
tank is pressurized to 2 MPa. Assuming that the tank is filled adia-
batically and reversibly, calculate the final temperature of the

air in the tank. Now assuming that the tank is filled isothermally,
how much heat is lost by the air in the tank during filling? Which
process (adiabatic or isothermal) results in a greater mass of air in
the tank?

12.7 Air enters a turbine in steady flow at 0:5 kg=s with negligible
velocity. Inlet conditions are 1300�C and 2.0 MPa absolute. The
air is expanded through the turbine to atmospheric pressure. If the
actual temperature and velocity at the turbine exit are 500�C and
200 m=s, determine the power produced by the turbine. Label state
points on a Ts diagram for this process.

12.8 Natural gas, with the thermodynamic properties of methane,
flows in an underground pipeline of 0.6 m diameter. The gage pres-
sure at the inlet to a compressor station is 0.5 MPa; outlet pressure is
8.0 MPa gage. The gas temperature and speed at inlet are 13�C and
32 m=s, respectively. The compressor efficiency is η=0:85. Calcu-
late the mass flow rate of natural gas through the pipeline. Label state
points on a Ts diagram for compressor inlet and outlet. Evaluate the
gas temperature and speed at the compressor outlet and the power
required to drive the compressor.

12.9 Carbon dioxide flows at a speed of 10 m=s in a pipe and then
through a nozzle where the velocity is 50 m=s, What is the change in
gas temperature between pipe and nozzle? Assume this is an adia-
batic flow of a perfect gas.

12.10 In an isothermal process, 0.1 cubic feet of standard air per
minute (SCFM) is pumped into a balloon. Tension in the rubber skin
of the balloon is given by σ = kA, where k=200 lbf=ft3, and A is the
surface area of the balloon in ft2. Compute the time required to
increase the balloon radius from 5 to 7 in.

Propagation of Sound Waves
12.11 Calculate the speed of sound at 20�C for (a) hydrogen,
(b) helium, (c) methane, (d) nitrogen, and (e) carbon dioxide.

12.12 An airplane flies at 550 km=hr at 1500 m altitude on a stand-
ard day. The plane climbs to 15,000 m and flies at 1200 km=h. Cal-
culate the Mach number of flight in both cases.

12.13 Actual performance characteristics of the Lockheed SR–71
“Blackbird” reconnaissance aircraft never were released. However,
it was thought to cruise at M =3:3 at 85,000 ft altitude. Evaluate
the speed of sound and flight speed for these conditions. Compare
to the muzzle speed of a 30-06 rifle bullet ð700 m=sÞ.
12.14 For a speed of sound in steel of 4300 m=s, determine the bulk
modulus of elasticity. Compare the modulus of elasticity of steel to
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that of water. Determine the speed of sound in steel, water, and air at
atmospheric conditions. Comment on the differences.

12.15 Determine and plot the Mach number of an automobile as a
function of speed from 25 mph to 100 mph for winter ðT =0�FÞ
and summer ðT =100�FÞ conditions.
12.16 Investigate the effect of altitude on Mach number by plotting
the Mach number of a 500 mph airplane as it flies at altitudes ranging
from sea level to 10 km.

12.17 The grandstand at the Kennedy Space Center is located 3.5 mi
away from the Space Shuttle Launch Pad. On a day when the air tem-
perature is 80�F, how long does it take the sound from a blastoff to
reach the spectators? If the launch was early on a winter morning, the
temperature may be as low as 50�F. How long would the sound take
to reach the spectators under those conditions?

12.18Use data for specific volume to calculate and plot the speed of
sound in saturated liquid water over the temperature range from 0
to 200�C.

12.19 An object traveling in atmospheric air emits two pressure
waves at different times. At an instant in time, the waves appear
as in the figure. Determine the velocity and Mach number of the
object and its current location.

0.01 m

1.5 m

0.1 m

P12.19

12.20 An object traveling in atmospheric air emits two pressure
waves at different times. At an instant in time, the waves appear
as in the figure. Determine the velocity and Mach number of the
object and its current location.

1 m
0.2 m

0.5 m

P12.20

12.21While at the seashore, you observe an airplane that is flying at
10,000 ft. You hear the airplane 8 seconds after it passes directly
overhead. Estimate the airplane speed and Mach number. If the

airplane had been flying at 30,000 ft, how many seconds would have
passed before you heard it?

12.22 The temperature varies linearly from sea level to approxi-
mately 11 km altitude in the standard atmosphere. Evaluate the lapse
rate—the rate of decrease of temperature with altitude—in the stand-
ard atmosphere. Derive an expression for the rate of change of sonic
speed with altitude in an ideal gas under standard atmospheric con-
ditions. Evaluate and plot the sonic speed from sea level to 10 km
altitude.

12.23 A projectile is fired into a gas (ratio of specific heats
k=1:625) in which the pressure is 450 kPa absolute and the density
is 4:5 kg=m3. It is observed experimentally that a Mach cone ema-
nates from the projectile with 25� total angle. What is the speed of
the projectile with respect to the gas?

12.24 A photograph of a bullet shows a Mach angle of 32�. Deter-
mine the speed of the bullet for standard air.

12.25 An F-4 aircraft makes a high-speed pass over an airfield on a
day when T =35�C. The aircraft flies atM =1:4 and 200 m altitude.
Calculate the speed of the aircraft. How long after it passes directly
over point A on the ground does its Mach cone pass over point A?

12.26An aircraft passes overhead at 3 km altitude. The aircraft flies
at M =1:5. Assume the air temperature is constant at 20�C. Find the
air speed of the aircraft. A headwind blows at 30 m=s. How long after
the aircraft passes directly overhead does its sound reach a point on
the ground?

12.27 A supersonic aircraft flies at 3 km altitude at a speed of
1000 m=s on a standard day. How long after passing directly above
a ground observer is the sound of the aircraft heard by the ground
observer?

12.28 For the conditions of Problem 12.27, find the location at
which the sound wave that first reaches the ground observer was
emitted.

12.29 The Concorde supersonic transport cruised at M =2:2 at
17 km altitude on a standard day. How long after the aircraft passed
directly above a ground observer was the sound of the aircraft heard?

Reference State: Local Isentropic Stagnation
Properties
12.30 Plot the percentage discrepancy between the density at the
stagnation point and the density at a location where the Mach number
isM, of a compressible flow, for Mach numbers ranging from 0.05 to
0.95. Find the Mach numbers at which the discrepancy is 1 percent,
5 percent, and 10 percent.

12.31 Compute the air density in the undisturbed air and at the stag-
nation point of an aircraft flying at 250 m/s in air at 28 kPa and
250�C. What is the percentage increase in density? Can we approx-
imate this as an incompressible flow?

12.32 Carbon dioxide flows in a duct at a velocity of 90 m=s, abso-
lute pressure 140 kPa, and temperature 90�C. Calculate pressure and
temperature on the nose of a small object placed in this flow.

12.33 If nitrogen at 15�C is flowing and the stagnation temperature
on the nose of a small object in the flow is measured as 38�C, what is
the velocity in the pipe?

12.34An aircraft cruises atM =0:65 at 10 km altitude on a standard
day. The aircraft speed is deduced from measurement of the differ-
ence between the stagnation and static pressures. What is the value
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of this difference? Compute the air speed from this actual difference
assuming (a) compressibility and (b) incompressibility. Is the dis-
crepancy in air-speed computations significant in this case?

12.35 High-speed aircraft use “air data computers” to compute air
speed from measurement of the difference between the stagnation
and static pressures. Plot, as a function of actual Mach number M,
for M =0:1 to M =0:9, the percentage error in computing the Mach
number assuming incompressibility (i.e., using the Bernoulli equa-
tion), from this pressure difference. Plot the percentage error in
speed, as a function of speed, of an aircraft cruising at 12 km altitude,
for a range of speeds corresponding to the actual Mach number ran-
ging from M =0:1 to M =0:9.

12.36 A supersonic wind tunnel test section is designed to have
M =2:5 at 15�C and 35 kPa absolute. The fluid is air. Determine
the required inlet stagnation conditions, T0 and p0. Calculate the
required mass flow rate for a test section area of 0:175 m2.

12.37 Oxygen flows in a passage at a pressure of 25 psia. The pres-
sure and temperature on the nose of a small object in the flow are
28 psia and 150�F, respectively. What is the velocity in the passage?

12.38 What is the pressure on the nose of a bullet moving through
standard sea ievel air at 300 m=s assuming that (a) the flow is incom-
pressible and (b) the flow is compressible? Compare results.

12.39 Air flows steadily through an insulated constant area duct,
where denotes the inlet and the outlet. Properties change along
the duct as a result of friction.

(a) Beginning with the control volume form of the first law of ther-
modynamics, show that the equation can be reduced to

h1 +
V2
1

2
= h2 +

V2
2

2
= constant

(b) Denoting the constant by h0 (the stagnation enthalpy), show that
for adiabatic flow of an ideal gas with friction

T0
T

=1+
k−1
2

M2

(c) For this flow does T01 = T02 ? p01 = p02? Explain these results.

12.40 Air flows in an insulated duct. At point the conditions
are M1 = 0:1,T1 = −20�C and p1 = 1:0MPa absolute. Downstream,
at point , because of friction the conditions are M2 = 0:7,
T2 = −5:62�C, and p2 = 136:5 kPa absolute. (Four significant figures
are given to minimize roundoff errors.) Compare the stagnation tem-
peratures at points and , and explain the result. Compute the
stagnation pressures at points and . Can you explain how it
can be that the velocity increases for this frictional flow? Should this
process be isentropic or not? Justify your answer by computing the
change in entropy between points and . Plot static and stagna-
tion state points on a Ts diagram.

12.41 Consider steady, adiabatic flow of air through a long straight
pipe with A=0:05 m2. At the inlet section the air is at 200 kPa
absolute, 60�C, and 146 m=s. Downstream at section , the air is
at 95.6 kPa absolute and 280 m=s. Determine p01 , p02 , T01 , T02 ,
and the entropy change for the flow. Show static and stagnation state
points on a Ts diagram.

12.42 Air passes through a normal shock in a supersonic wind
tunnel. Upstream conditions are M1 = 1:8,T1 = 270K, and p1 =

10:0 kPa absolute. Downstream conditions are M2 = 0:6165,T2 =
413:6 K, and p2 = 36:13 kPa absolute. (Four significant figures are
given to minimize roundoff errors.) Evaluate local isentropic stagna-
tion conditions (a) upstream from, and (b) downstream from, the
normal shock. Calculate the change in specific entropy across the
shock. Plot static and stagnation state points on a Ts diagram.

12.43A Boeing 747 cruises atM =0:87 at an altitude of 13 km on a
standard day. A window in the cockpit is located where the external
flow Mach number is 0.2 relative to the plane surface. The cabin is
pressurized to an equivalent altitude of 2500 m in a standard atmos-
phere. Estimate the pressure difference across the window. Be sure to
specify the direction of the net pressure force.

Critical Conditions
12.44 Space debris impact is a real concern for spacecraft. If a piece
of space debris were to create a hole of 0:001 in:2 area in the hull of
the International Space Station (ISS), at what rate would air leak from
the ISS? Assume that the atmosphere in the International Space Sta-
tion (ISS) is air at a pressure of 14.7 psia and a temperature of 65�F.

12.45A CO2 cartridge is used to propel a toy rocket. Gas in the car-
tridge is pressurized to 45 MPa gage and is at 25�C. Calculate the
critical conditions (temperature, pressure, and flow speed) that cor-
respond to these stagnation conditions.

12.46 Nitrogen flows from a large tank, through a convergent noz-
zle of 2-in. tip diameter, into the atmosphere. The temperature in the
tank is 200�F. Calculate pressure, velocity, temperature, and sonic
velocity in the jet, and calculate the flow rate when the tank pressure
is (a) 30 psia and (b) 25 psia. Barometric pressure is 15.0 psia. What
is the lowest tank pressure that will produce sonic velocity in the jet?
What is this velocity, and what is the flowrate?

12.47Air flows from the atmosphere into an evacuated tank through
a convergent nozzle of 38-mm tip diameter. If atmospheric pressure
and temperature are 101.3 kPa and 15�C, respectively, what vacuum
must be maintained in the tank to produce sonic velocity in the jet?
What is the flow rate? What is the flow rate when the vacuum is
254 mm of mercury?

12.48 Oxygen discharges from a tank through a convergent nozzle.
The temperature and velocity in the jet are −20�C and 270 m=s,
respectively. What is the temperature in the tank? What is the tem-
perature on the nose of a small object in the jet?

12.49 The hot gas stream at the turbine inlet of a JT9-D jet engine is
at 1500�C, 140 kPa absolute, and M =0:32. Calculate the critical
conditions (temperature, pressure, and flow speed) that correspond
to these conditions. Assume the fluid properties of pure air.

12.50 Carbon dioxide discharges from a tank through a convergent
nozzle into the atmosphere. If the tank temperature and gage pressure
are 38�C and 140 kPa, respectively, what jet temperature, pressure,
and velocity can be expected? Barometric pressure is 101.3 kPa.

12.51 Air at 100�F and 100 psia in a large tank flows into a 6-in.-
diameter pipe, from which it discharges to the atmosphere at 15.0
psia through a convergent nozzle of 4-in. tip-diameter. Calculate
pressure, temperature, and velocity in the pipe.

12.52 Calculate the required diameter of a convergent nozzle to dis-
charge 5:0 lb=s of air from a iarge tank in which the temperatures is
100�F to the atmosphere at 14.7 psia if the pressure in the tank is
(a) 25.0 psia and (b) 30.0 psia.
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12.53 Steam flows steadily and isentropically through a nozzle. At
an upstream section where the speed is negligible, the temperature
and pressure are 450�C and 6 MPa absolute. At a section where
the nozzle diameter is 2 cm, the steam pressure is 2 MPa absolute.
Determine the speed and Mach number at this section and the mass
flow rate of steam. Sketch the passage shape.

12.54 Nitrogen flows through a diverging section of duct with
A1 = 0.15 m2 and A2 = 0.45 m2. If M1 = 0.7 and p1 = 450 kPa, find
M2 and p2.

12.55 At a section in a passage, the pressure is 30 psia, the temper-
ature is 100�F, and the speed is 1750 ft/s. At a section downstream
the Mach number is 2.5. Determine the pressure at this downstream
location for isentropic flow of air. Sketch the passage shape.

Isentropic Flow—Area Variation
12.56 In a given duct flow M=2:0; the velocity undergoes a
20 percent decrease. What percent change in area was needed to
accomplish this? What would be the answer if M=0:5?

12.57 Air flows isentropically through a converging nozzle into a
receiver in which the absolute pressure is 35 psia. The air enters
the nozzle with negligible speed at a pressure of 60 psia and a tem-
perature of 200�F. Determine the mass flow rate through the nozzle
for a throat diameter of 4 in.

12.58 Five pounds of air per second discharge from a tank through a
convergent-divergent nozzle into another tank where a vacuum of
10 in. of mercury is maintained. If the pressure and temperature in
the upstream tank are 100 in. of mercury absolute and 100�F, respec-
tively, what nozzle-exit diameter must be provided for full expan-
sion? What throat diameter is required? Calculate pressure,
temperature, velocity, and sonic velocity in throat and nozzle exits.
Barometric pressure is 30 in. of mercury.

12.59 Air flows isentropically through a converging-diverging
nozzle from a large tank containing air at 250�C. At two locations
where the area is 1 cm2, the static pressures are 200 kPa and
50 kPa. Find the mass flow rate, the throat area, and the Mach num-
bers at the two locations.

12.60 Air, at an absolute pressure of 60.0 kPa and 27�C, enters a
passage at 486 m/s, where A = 0.02 m2. At section downstream,
p = 78.8 kPa absolute. Assuming isentropic flow, calculate the
Mach number at section . Sketch the flow passage.

12.61 Carbon dioxide flows from a tank through a convergent-
divergent nozzle of 25-mm throat and 50-mm exit diameter. The
absolute pressure and temperature in the tank are 241.5 kPa and
37.8�C, respectively. Calculate the mass flow rate when the absolute
exit pressure is (a) 172.5 kPa and (b) 221 kPa.

12.62 A convergent-divergent nozzle of 50-mm tip diameter dis-
charges to the atmosphere (103.2 kPa) from a tank in which air is
maintained at an absolute pressure and temperature of 690 kPa
and 37.8�C, respectively. What is the maximum mass flow rate that
can occur through this nozzle? What throat diameter must be pro-
vided to produce this mass flow rate?

12.63 Air flows adiabatically through a duct. At the entrance, the
static temperature and pressure are 310 K and 200 kPa, respectively.
At the exit, the static and stagnation temperatures are 294 K and
316 K, respectively, and the static pressure is 125 kPa. Find
(a) the Mach numbers of the flow at the entrance and exit and
(b) the area ratio A2/A1.

12.64 Air flows isentropically through a converging nozzle into a
receiver where the pressure is 250 kPa absolute. If the pressure is
350 kPa absolute and the speed is 150 m/s at the nozzle location
where the Mach number is 0.5, determine the pressure, speed, and
Mach number at the nozzle throat.

12.65 Air flows isentropically through a converging nozzle into a
receiver in which the absolute pressure is 35 psia. The air enters
the nozzle with negligible speed at a pressure of 60 psia and a tem-
perature of 200�F. Determine the mass flow rate through the nozzle
for a throat diameter of 4 in.

12.66Atmospheric air at 98.5 kPa and 20�C is drawn into a vacuum
tank through a convergent-divergent nozzle of 50-mm throat diam-
eter and 75-mm exit diameter. Caiculate the largest mass flow rate
that can be drawn through this nozzle under these conditions.

12.67 The exit section of a convergent-divergent nozzle is to be
used for the test section of a supersonic wind tunnel. If the absolute
pressure in the test section is to be 140 kPa, what pressure is required
in the reservoir to produce aMach number of 5 in the test section? For
the air temperature to be −20�C in the test section, what temperature
is required in the reservoir? What ratio of throat area to test
section area is required to meet these conditions?

12.68 Air flowing isentropically through a converging nozzle dis-
charges to the atmosphere. At the section where the absolute pressure
is 250 kPa, the temperature is 20�C and the air speed is 200 m=s.
Determine the nozzle throat pressure.

12.69 Air flows from a large tank at p=650 kPa absolute,
T =550�C through a converging nozzle, with a throat area of
600 mm2, and discharges to the atmosphere. Determine the mass rate
of flow for isentropic flow through the nozzle.

12.70A converging nozzle is connected to a large tank that contains
compressed air at 15�C. The nozzle exit area is 0:001 m2. The
exhaust is discharged to the atmosphere. To obtain a satisfactory
shadow photograph of the flow pattern leaving the nozzle exit, the
pressure in the exit plane must be greater than 325 kPa gage. What
pressure is required in the tank? What mass flow rate of air must be
supplied if the system is to run continuously? Show static and stag-
nation state points on a Ts diagram.

12.71 Air at 0�C is contained in a large tank on the space shuttle.
A converging section with exit area 1× 10−3 m2 is attached to the
tank, through which the air exits to space at a rate of 2 kg=s. What
are the pressure in the tank, and the pressure, temperature, and speed
at the exit?

12.72 A large tank initially is evacuated to −10 kPa gage. Ambient
conditions are 101 kPa at 20�C. At t=0, an orifice of 5 mm
diameter is opened in the tank wall; the vena contracta area is 65 per-
cent of the geometric area. Calculate the mass flow rate at which air
initially enters the tank. Show the process on a Ts diagram. Make a
schematic plot of mass flow rate as a function of time. Explain why
the plot is nonlinear.

12.73Air flows isentropically through a converging nozzle attached
to a large tank, where the absolute pressure is 171 kPa and the tem-
perature is 27�C. At the inlet section the Mach number is 0.2. The
nozzle discharges to the atmosphere; the discharge area is
0:015 m2. Determine the magnitude and direction of the force that
must be applied to hold the nozzle in place.

12.74 Air enters a converging-diverging nozzle at 2 MPa absolute
and 313 K. At the exit of the nozzle, the pressure is 200 kPa absolute.
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Assume adiabatic, frictionless flow through the nozzle. The throat
area is 20 cm2. What is the area at the nozzle exit? What is the mass
flow rate of the air?

12.75 A converging nozzle is bolted to the side of a large tank. Air
inside the tank is maintained at a constant 50 psia and 100�F. The
inlet area of the nozzle is 10 in:2 and the exit area is 1 in:2 The nozzle
discharges to the atmosphere. For isentropic flow in the nozzle, deter-
mine the total force on the bolts, and indicate whether the bolts are in
tension or compression.

12.76 A jet transport aircraft, with pressurized cabin, cruises at
11 km altitude. The cabin temperature and pressure initially are at
25�C and equivalent to 2.5 km altitude. The interior volume of the
cabin is 25 m3. Air escapes through a small hole with effective flow
area of 0:002 m2. Calculate the time required for the cabin pressure to
decrease by 40 percent. Plot the cabin pressure as a function of time.

12.77 A converging-diverging nozzle, with a throat area of 2 in:2, is
connected to a large tank in which air is kept at a pressure of 80 psia
and a temperature of 60�F. If the nozzle is to operate at design con-
ditions and the ambient pressure outside the nozzle is 12.9 psia, cal-
culate the exit area of the nozzle and the mass flow rate. Assume the
flow is isentropic.

12.78 Air, at a stagnation pressure of 7.20 MPa absolute and a stag-
nation temperature of 1100 K, flows isentropically through a conver-
ging-diverging nozzle having a throat area of 0:01 m2. Determine the
speed and the mass flow rate at the downstream section where the
Mach number is 4.0.

12.79 A small rocket motor, fueled with hydrogen and oxygen, is
tested on a thrust stand at a simulated altitude of 10 km. The motor
is operated at chamber stagnation conditions of 1500 K and 8.0 MPa
gage. The combustion product is water vapor, which may be treated
as an ideal gas. Expansion occurs through a converging-diverging
nozzle with design Mach number of 3.5 and exit area of 700 mm2.
Evaluate the pressure at the nozzle exit plane. Calculate the mass
flow rate of exhaust gas. Determine the force exerted by the rocket
motor on the thrust stand.

Normal Shocks
12.80 Testing of a demolition explosion is to be evaluated. Sensors
indicate that the shock wave generated at the instant of explosion is
30 MPa absolute. If the explosion occurs in air at 20�C and 101 kPa,
find the speed of the shock wave, and the temperature and speed of
the air just after the shock passes. As an approximation assume
k=1:4. Why is this an approximation?

12.81 A total-pressure probe is placed in a supersonic wind tunnel
where T =530�R andM =2:0. A normal shock stands in front of the
probe. Behind the shock,M2 = 0:577 and p2 = 5:76 psia. Find (a) the
downstream stagnation pressure and stagnation temperature and
(b) all fluid properties upstream from the shock. Show static and stag-
nation state points and the process path on a Ts diagram.

12.82 Air flows steadily through a long, insulated constant-area
pipe. At section , M1 = 2:0, T1 = 140�F, and p1 = 35:9 psia. At
section , downstream from a normal shock, V2 = 1080 ft=s. Deter-
mine the density and Mach number at section . Make a qualitative
sketch of the pressure distribution along the pipe.

12.83 Air discharges through a convergent-divergent nozzle which
is attached to a large reservoir. At a point in the nozzle a normal shock
wave is detected across which the absolute pressure jumps from 69 to
207 kPa. Calculate the pressures in the throat of the nozzle and in the
reservoir.

12.84 A normal shock wave exists in an airflow. The absolute
pressure, velocity, and temperature just upstream from the wave
are 207 kPa, 610 m=s, and −17:8�C, respectively. Calculate the pres-
sure, velocity, temperature, and sonic velocity just downstream from
the shock wave.

12.85 Air approaches a normal shock at V1 = 900 m=s, p1 = 50 kPa
absolute, and T1 = 220 K.What are the velocity and pressure after the
shock? What would the velocity and pressure be if the flow were
decelerated isentropically to the same Mach number?

12.86 Air approaches a normal shock at M1 = 2:5, with
T01 = 1250�R and p1 = 20 psia. Determine the speed and temperature
of the air leaving the shock and the entropy change across the shock.

12.87 Air undergoes a normal shock. Upstream, T1 = 35�C,
p1 = 229 kPa absolute, and V1 = 704 m=s. Determine the temperature
and stagnation pressure of the air stream leaving the shock.

12.88 If, through a normal shock wave in air, the absolute pressure
rises from 275 to 410 kPa and the velocity diminishes from 460 to
346 m=s, what temperatures are to be expected upstream and down-
stream from the wave?

12.89 The stagnation temperature in an airflow is 149�C upstream
and downstream from a normal shock wave. The absolute stagnation
pressure downstream from the shock wave is 229.5 kPa. Through the
wave the absolute pressure rises from 103.4 to 138 kPa. Determine
the velocities upstream and downstream from the wave.

12.90 A supersonic aircraft cruises at M =2:2 at 12 km altitude.
A pitot tube is used to sense pressure for calculating air speed.
A normal shock stands in front of the tube. Evaluate the local isen-
tropic stagnation conditions in front of the shock. Estimate the stag-
nation pressure sensed by the pitot tube. Show static and stagnation
state points and the process path on a Ts diagram.

12.91 The Concorde supersonic transport flew at M =2:2 at 20 km
altitude. Air is decelerated isentropically by the engine inlet system to
a local Mach number of 1.3. The air passed through a normal shock
and was decelerated further toM =0:4 at the engine compressor sec-
tion. Assume, as a first approximation, that this subsonic diffusion
process was isentropic and use standard atmosphere data for free-
stream conditions. Determine the temperature, pressure, and stagna-
tion pressure of the air entering the engine compressor.
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A P P E N D I X A

Fluid Property Data

A.1 Specific Gravity
Specific gravity data for several common liquids and solids are presented in Figs. A.1a and A.1b and
in Tables A.1 and A.2. For liquids specific gravity is a function of temperature. (Density data for water
and air are given as functions of temperature in Tables A.7 through A.10.) For most liquids specific
gravity decreases as temperature increases. Water is unique: It displays a maximum density of
1000 kg=m3ð1:94 slug=ft3Þ at 4�C ð39�FÞ. The maximum density of water is used as a reference value
to calculate specific gravity. Thus

SG≡
ρ

ρH2O ðat 4�CÞ
Consequently the maximum SG of water is exactly unity.

Specific gravities for solids are relatively insensitive to temperature; values given in Table A.1 were
measured at 20�C.

The specific gravity of seawater depends on both its temperature and salinity. A representative value
for ocean water is SG=1:025, as given in Table A.2.
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Table A.1
Specific Gravities of Selected Engineering Materials

(a) Common Manometer Liquids at 20�C

Liquid Specific Gravity

E.V. Hill blue oil 0.797
Meriam red oil 0.827
Benzene 0.879
Dibutyl phthalate 1.04
Monochloronaphthalene 1.20
Carbon tetrachloride 1.595
Bromoethylbenzene (Meriam blue) 1.75
Tetrabromoethane 2.95
Mercury 13.55

Source: Data from References [1–3].
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Fig. A.1 Specific gravity of water and mercury as functions of temperature. (Data from Reference [1].) (The specific gravity
of mercury varies linearly with temperature. The variation is given by SG= 13:60−0:00240 T when T is measured in
degrees C.)
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Table A.1
Specific Gravities of Selected Engineering Materials (Continued)

(b) Common Materials

Material Specific Gravity (—)

Aluminum 2.64
Balsa wood 0.14
Brass 8.55
Cast Iron 7.08
Concrete (cured) 2.4a

Concrete (liquid) 2.5a

Copper 8.91
Ice (0�C) 0.917
Lead 11.4
Oak 0.77
Steel 7.83
Styrofoam (1 pcfb) 0.0160
Styrofoam (3 pcf ) 0.0481
Uranium (depleted) 18.7
White pine 0.43

Source: Data from Reference [4].
a depending on aggregate.
b pounds per cubic foot.

Table A.2
Physical Properties of Common Liquids at 20�C

Liquid Isentropic Bulk Modulusa (GN/m2) Specific Gravity (—)

Benzene 1.48 0.879
Carbon tetrachloride 1.36 1.595
Castor oil 2.11 0.969
Crude oil — 0.82–0.92
Ethanol — 0.789
Gasoline — 0.72
Glycerin 4.59 1.26
Heptane 0.886 0.684
Kerosene 1.43 0.82
Lubricating oil 1.44 0.88
Methanol — 0.796
Mercury 28.5 13.55
Octane 0.963 0.702
Seawaterb 2.42 1.025
SAE 10W oil — 0.92
Water 2.24 0.998

Source: Data from References [1, 5, 6].
aCalculated from speed of sound; 1 GN=m2 =109 N=m2 ð1 N=m2 =1:45×10−4 lbf=in:2 ).
bDynamic viscosity of seawater at 20�C is μ=1:08× 10−3 N � s=m2. (Thus, the kinematic viscosity of seawater is about 5 percent
higher than that of freshwater.)
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A.2 Surface Tension
The values of surface tension, σ, for most organic compounds are remarkably similar at room temper-
ature; the typical range is 25 to 40 mN=m. Water is higher, at about 73 mN=m at 20�C. Liquid metals
have values in the range between 300 and 600 mN=m; mercury has a value of about 480 mN=m at 20�C.
Surface tension decreases with temperature; the decrease is nearly linear with absolute temperature.
Surface tension at the critical temperature is zero.

Values of σ are usually reported for surfaces in contact with the pure vapor of the liquid being
studied or with air. At low pressures both values are about the same.

Table A.3
Properties of the U.S. Standard Atmosphere

Geometric Altitude (m) Temperature (K) p/pSL (—) ρ/ρSL (—)

−500 291.4 1.061 1.049
0 288.2 1.000a 1.000b

500 284.9 0.9421 0.9529
1,000 281.7 0.8870 0.9075
1,500 278.4 0.8345 0.8638
2,000 275.2 0.7846 0.8217
2,500 271.9 0.7372 0.7812
3,000 268.7 0.6920 0.7423
3,500 265.4 0.6492 0.7048
4,000 262.2 0.6085 0.6689
4,500 258.9 0.5700 0.6343
5,000 255.7 0.5334 0.6012
6,000 249.2 0.4660 0.5389
7,000 242.7 0.4057 0.4817
8,000 236.2 0.3519 0.4292
9,000 229.7 0.3040 0.3813
10,000 223.3 0.2615 0.3376
11,000 216.8 0.2240 0.2978
12,000 216.7 0.1915 0.2546
13,000 216.7 0.1636 0.2176
14,000 216.7 0.1399 0.1860
15,000 216.7 0.1195 0.1590
16,000 216.7 0.1022 0.1359
17,000 216.7 0.08734 0.1162
18,000 216.7 0.07466 0.09930
19,000 216.7 0.06383 0.08489
20,000 216.7 0.05457 0.07258
22,000 218.6 0.03995 0.05266
24,000 220.6 0.02933 0.03832
26,000 222.5 0.02160 0.02797
28,000 224.5 0.01595 0.02047
30,000 226.5 0.01181 0.01503
40,000 250.4 0.002834 0.003262
50,000 270.7 0.0007874 0.0008383
60,000 255.8 0.0002217 0.0002497
70,000 219.7 0.00005448 0.00007146
80,000 180.7 0.00001023 0.00001632
90,000 180.7 0.000001622 0.000002588

Source: Data from Reference [7].
a pSL = 1:01325× 105 N=m2 ðabsÞð=14:696 psiaÞ.
b ρSL = 1:2250 kg=m3ð=0:002377 slug=ft3Þ.
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A.3 The Physical Nature of Viscosity
Viscosity is a measure of internal fluid friction, i.e., resistance to deformation. The mechanism of gas
viscosity is reasonably well understood, but the theory is poorly developed for liquids. We can gain some
insight into the physical nature of viscous flow by discussing these mechanisms briefly.

The viscosity of a Newtonian fluid is fixed by the state of the material. Thus μ= μðT; pÞ. Temper-
ature is the more important variable, so let us consider it first. Excellent empirical equations for viscosity
as a function of temperature are available.

Effect of Temperature on Viscosity

a. Gases
All gas molecules are in continuous random motion. When there is bulk motion due to flow, the bulk
motion is superimposed on the random motions. It is then distributed throughout the fluid by molecular
collisions. Analyses based on kinetic theory predict

μ/
ffiffiffiffi
T
p

The kinetic theory prediction is in fair agreement with experimental trends, but the constant of propor-
tionality and one or more correction factors must be determined; this limits practical application of this
simple equation.

Table A.4
Surface Tension of Common Liquids at 20�C

Liquid Surface Tension, σ (mN/m)a Contact Angle, θ (degrees)

(a) In contact with air

θ

Air

Liquid

Benzene 28.9
Carbon tetrachloride 27.0
Ethanol 22.3
Glycerin 63.0
Hexane 18.4
Kerosene 26.8
Lube oil 25–35
Mercury 484 140
Methanol 22.6
Octane 21.8
Water 72.8 	0
Source: Data from References [1, 5, 8, 9].

(b) In contact with water
θ

Water

Liquid

Benzene 35.0
Carbon tetrachloride 45.0
Hexane 51.1
Mercury 375 140
Methanol 22.7
Octane 50.8

Source: Data from References [1, 5, 8, 9].
a 1 mN=m=10−3 N=m.
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If two or more experimental points are available, the data may be correlated using the empirical
Sutherland correlation [7]

μ=
bT1=2

1 + S=T
ðA:1Þ

Constants b and S may be determined most simply by writing

μ=
bT3=2

S+ T

or

T3=2

μ
=

1
b

� �
T +

S
b

(Compare this with y=mx+ c.) From a plot of T3=2=μ versus T , one obtains the slope, 1=b, and the
intercept, S=b. For air,

b=1:458× 10−6 kg

m � s �K1=2

S=110:4 K

These constants were used with Eq. A.1 to compute viscosities for the standard atmosphere in [7], the air
viscosity values at various temperatures shown in Table A.10, and using appropriate conversion factors,
the values shown in Table A.9.

b. Liquids
Viscosities for liquids cannot be estimated well theoretically. The phenomenon of momentum transfer
by molecular collisions is overshadowed in liquids by the effects of interacting force fields among the
closely packed liquid molecules.

Liquid viscosities are affected drastically by temperature. This dependence on absolute temperature
may be represented by the empirical equation

μ=AeB=ðT−CÞ ðA:2Þ
or the equivalent form

μ=A10B=ðT−CÞ ðA:3Þ

where T is absolute temperature.
Equation A.3 requires at least three points to fit constants A, B, and C. In theory it is possible to

determine the constants from measurements of viscosity at just three temperatures. It is better practice
to use more data and to obtain the constants from a statistical fit to the data.

However a curve-fit is developed, always compare the resulting line or curve with the available data.
The best way is to critically inspect a plot of the curve-fit compared with the data. In general, curve-fit
results will be satisfactory only when the quality of the available data and that of the empirical relation
are known to be excellent.

Data for the dynamic viscosity of water are fitted well using constant values A=2:414×10−5

N � s=m2, B=247:8 K, and C=140 K. Reference [10] states that using these constants in Eq. A.3 pre-
dicts water viscosity within �2:5 percent over the temperature range from 0�C to 370�C. Equation A.3
and Excel were used to compute the water viscosity values at various temperatures shown in Table A.8,
and using appropriate conversion factors, the values shown in Table A.7.

Note that the viscosity of a liquid decreases with temperature, while that of a gas increases with
temperature.
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The graphs for air and water were computed from the Excel workbook Absolute Viscosities, using
Eq. A.1 and Eq. A.3, respectively. The workbook can be used to compute viscosities of other fluids
if constants b and S (for a gas) or A, B, and C (for a liquid) are known.

Effect of Pressure on Viscosity

a. Gases
The viscosity of gases is essentially independent of pressure between a few hundredths of an atmosphere
and a few atmospheres. However, viscosity at high pressures increases with pressure (or density).

b. Liquids
The viscosities of most liquids are not affected by moderate pressures, but large increases have been
found at very high pressures. For example, the viscosity of water at 10,000 atm is twice that at
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Fig. A.2 Dynamic (absolute) viscosity of common fluids as a function of temperature. (Data from References [1, 6, and 10].)
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1 atm.More complex compounds show a viscosity increase of several orders of magnitude over the same
pressure range.

More information may be found in Reid and Sherwood [11].
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Fig. A.3 Kinematic viscosity of common fluids (at atmospheric pressure) as a function of temperature. (Data from References [1, 6, and 10].)
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A.4 Lubricating Oils
Engine and transmission lubricating oils are classified by viscosity according to standards established by
the Society of Automotive Engineers [12]. The allowable viscosity ranges for several grades are given in
Table A.5.

Viscosity numbers with W (e.g., 20W) are classified by viscosity at 0�F. Those without W are clas-
sified by viscosity at 210�F.

Multigrade oils (e.g., 10W-40) are formulated to minimize viscosity variation with temperature.
High polymer “viscosity index improvers” are used in blending these multigrade oils. Such additives
are highly non-Newtonian; they may suffer permanent viscosity loss caused by shearing.

Special charts are available to estimate the viscosity of petroleum products as a function of temper-
ature. The charts were used to develop the data for typical lubricating oils plotted in Figs. A.2 and A.3.
For details, see [15].

Table A.5
Allowable Viscosity Ranges for Lubricants

Engine Oil
SAE

Viscosity Grade
Max. Viscosity (cP)a

at Temp. (�C)

Viscosity (cSt)b at 100�C

Min Max

0W 3250 at −30 3.8 —
5W 3500 at −25 3.8 —
10W 3500 at −20 4.1 —
15W 3500 at −15 5.6 —
20W 4500 at −10 5.6 —
25W 6000 at −5 9.3 —
20 — 5.6 <9.3
30 — 9.3 <12.5
40 — 12.5 <16.3
50 — 16.3 <21.9

Axle and Manual
Transmission Lubricant

SAE
Viscosity Grade

Max. Temp. (�C) for
Viscosity of 150,000 cP

Viscosity (cSt) at 100�C

Min Max

70W −55 4.1 —
75W −40 4.1 —
80W −26 7.0 —
85W −12 11.0 —
90 — 13.5 <24.0
140 — 24.0 <41.0
250 — 41.0 —

Automatic Transmission
Fluid (Typical)

Maximum
Viscosity (cP) Temperature (�C)

Viscosity (cSt) at 100�C

Min Max

50000 −40 6.5 8.5
4000 −23.3 6.5 8.5
1700 −18 6.5 8.5

Source: Data from References [12–14].
a centipoise = 1 cP= 1 mPa � s = 10−3 Pa � s ð=2:09× 10−5 lbf � s=ft2Þ.
b centistoke= 10−6 m2=s ð=1:08× 10−5 ft2=sÞ.
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A.5 Properties of Common Gases, Air and Water

Table A.6
Thermodynamic Properties of Common Gases at STPa

Gas
Chemical
Symbol

Molecular
Mass, Mm

Rb

J
kg �K
� � cp

J
kg �K
� � cυ

J
kg �K
� � k=

cp
cυð – Þ

Rb

ft � lbf
lbm�R

� � cp
Btu

lbm�R

� � cυ
Btu

lbm�R

� �
Air — 28:98 286:9 1004 717:4 1:40 53:33 0:2399 0:1713
Carbon
dioxide

CO2 44:01 188:9 840:4 651:4 1:29 35:11 0:2007 0:1556

Carbon
monoxide

CO 28:01 296:8 1039 742:1 1:40 55:17 0:2481 0:1772

Helium He 4:003 2077 5225 3147 1:66 386:1 1:248 0:7517
Hydrogen H2 2:016 4124 14,180 10;060 1:41 766:5 3:388 2:402
Methane CH4 16:04 518:3 2190 1672 1:31 96:32 0:5231 0:3993
Nitrogen N2 28:01 296:8 1039 742:0 1:40 55:16 0:2481 0:1772
Oxygen O2 32:00 259:8 909:4 649:6 1:40 48:29 0:2172 0:1551
Steamc H2O 18:02 461:4 	 2000 	 1540 	 1:30 85:78 	 0:478 	 0:368

Source: Data from References [7, 16, 17].
a STP = standard temperature and pressure, T =15�C=59�F and p=101:325 kPa ðabsÞ=14:696 psia.
b R≡Ru=Mm;Ru =8314:3 J=ðkgmol �KÞ=1545:3 ft � lbf=ðlbmol ��RÞ; 1 Btu= 778:2 ft � lbf.
cWater vapor behaves as an ideal gas when superheated by 55�C (100�F) or more.

Table A.7
Properties of Water (U.S. Customary Units)

Temperature,
T (�F)

Density, ρ
(slug/ft3)

Dynamic Viscosity, μ
(lbf�s/ft2)

Kinematic
Viscosity, ν (ft2/s)

Surface Tension,
σ (lbf/ft)

Vapor Pressure,
pυ (psia)

Bulk Modulus,
Eυ (psi)

32 1.94 3.68E-05 1.90E-05 0.00519 0.0886 2.92E + 05

40 1.94 3.20E-05 1.65E-05 0.00514 0.122
50 1.94 2.73E-05 1.41E-05 0.00509 0.178

59 1.94 2.38E-05 1.23E-05 0.00504 0.247

60 1.94 2.35E-05 1.21E-05 0.00503 0.256

68 1.94 2.10E-05 1.08E-05 0.00499 0.339

70 1.93 2.05E-05 1.06E-05 0.00498 0.363 3.20E + 05
80 1.93 1.80E-05 9.32E-06 0.00492 0.507
90 1.93 1.59E-05 8.26E-06 0.00486 0.699

100 1.93 1.43E-05 7.38E-06 0.00480 0.950
110 1.92 1.28E-05 6.68E-06 0.00474 1.28
120 1.92 1.16E-05 6.05E-06 0.00467 1.70 3.32E + 05
130 1.91 1.06E-05 5.54E-06 0.00461 2.23
140 1.91 9.70E-06 5.08E-06 0.00454 2.89
150 1.90 8.93E-06 4.70E-06 0.00448 3.72
160 1.89 8.26E-06 4.37E-06 0.00441 4.75
170 1.89 7.67E-06 4.06E-06 0.00434 6.00
180 1.88 7.15E-06 3.80E-06 0.00427 7.52
190 1.87 6.69E-06 3.58E-06 0.00420 9.34
200 1.87 6.28E-06 3.36E-06 0.00413 11.5 3.08E + 05

212 1.86 5.84E-06 3.14E-06 0.00404 14.7
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Table A.8
Properties of Water (SI Units)

Temperature,
T (�C)

Density, ρ
(kg/m3)

Dynamic Viscosity, μ
(N�s/m2)

Kinematic
Viscosity, ν (m2/s)

Surface Tension,
σ (N/m)

Vapor Pressure,
pυ (kPa)

Bulk Modulus,
Eυ (GPa)

0 1000 1.76E-03 1.76E-06 0.0757 0.661 2.01
5 1000 1.51E-03 1.51E-06 0.0749 0.872
10 1000 1.30E-03 1.30E-06 0.0742 1.23
15 999 1.14E-03 1.14E-06 0.0735 1.71
20 998 1.01E-03 1.01E-06 0.0727 2.34 2.21
25 997 8.93E-04 8.96E-07 0.0720 3.17
30 996 8.00E-04 8.03E-07 0.0712 4.25
35 994 7.21E-04 7.25E-07 0.0704 5.63
40 992 6.53E-04 6.59E-07 0.0696 7.38
45 990 5.95E-04 6.02E-07 0.0688 9.59
50 988 5.46E-04 5.52E-07 0.0679 12.4 2.29
55 986 5.02E-04 5.09E-07 0.0671 15.8
60 983 4.64E-04 4.72E-07 0.0662 19.9
65 980 4.31E-04 4.40E-07 0.0654 25.0
70 978 4.01E-04 4.10E-07 0.0645 31.2
75 975 3.75E-04 3.85E-07 0.0636 38.6
80 972 3.52E-04 3.62E-07 0.0627 47.4
85 969 3.31E-04 3.41E-07 0.0618 57.8
90 965 3.12E-04 3.23E-07 0.0608 70.1 2.12
95 962 2.95E-04 3.06E-07 0.0599 84.6

100 958 2.79E-04 2.92E-07 0.0589 101

Table A.9
Properties of Air at Atmospheric Pressure (U.S. Customary Units)

Temperature, T (�F) Density, ρ (slug/ft3) Dynamic Viscosity, μ (lbf�s/ft2) Kinematic Viscosity, ν (ft2/s)

40 0.00247 3.63E-07 1.47E-04
50 0.00242 3.69E-07 1.52E-04

59 0.00238 3.74E-07 1.57E-04

60 0.00237 3.74E-07 1.58E-04

68 0.00234 3.79E-07 1.62E-04

70 0.00233 3.80E-07 1.63E-04
80 0.00229 3.85E-07 1.68E-04
90 0.00225 3.91E-07 1.74E-04
100 0.00221 3.96E-07 1.79E-04
110 0.00217 4.02E-07 1.86E-04
120 0.00213 4.07E-07 1.91E-04
130 0.00209 4.12E-07 1.97E-04
140 0.00206 4.18E-07 2.03E-04
150 0.00202 4.23E-07 2.09E-04
160 0.00199 4.28E-07 2.15E-04
170 0.00196 4.33E-07 2.21E-04
180 0.00193 4.38E-07 2.27E-04
190 0.00190 4.43E-07 2.33E-04
200 0.00187 4.48E-07 2.40E-04
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Table A.10
Properties of Air at Atmospheric Pressure (SI Units)

Temperature, T (�C) Density, ρ (kg/m3) Dynamic Viscosity, μ (N�s/m2) Kinematic Viscosity, ν (m2/s)

0 1.29 1.72E-05 1.33E-05
5 1.27 1.74E-05 1.37E-05
10 1.25 1.76E-05 1.41E-05
15 1.23 1.79E-05 1.45E-05
20 1.21 1.81E-05 1.50E-05
25 1.19 1.84E-05 1.54E-05
30 1.17 1.86E-05 1.59E-05
35 1.15 1.88E-05 1.64E-05
40 1.13 1.91E-05 1.69E-05
45 1.11 1.93E-05 1.74E-05
50 1.09 1.95E-05 1.79E-05
55 1.08 1.98E-05 1.83E-05
60 1.06 2.00E-05 1.89E-05
65 1.04 2.02E-05 1.94E-05
70 1.03 2.04E-05 1.98E-05
75 1.01 2.06E-05 2.04E-05
80 1.00 2.09E-05 2.09E-05
85 0.987 2.11E-05 2.14E-05
90 0.973 2.13E-05 2.19E-05
95 0.960 2.15E-05 2.24E-05

100 0.947 2.17E-05 2.29E-05
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A P P E N D I X B

Videos for Fluid Mechanics

Referenced in the text are the following videos available at www.wiley.com/college/fox.

Chapter 2
Streamlines
Streaklines
Capillary Rise
Boundary Layer Flow
Streamlined Flow over an Airfoil
Internal Laminar Flow in a Tube
Streamlines around a Car
Laminar and Turbulent Flow

Chapter 4
Mass Conservation: Filling a Tank
Momentum Effect: A Jet Impacting a
Surface

Chapter 5
An Example of Streamlines/Streaklines
Particle Motion in a Channel
Linear Deformation
Flow Past a Cylinder

Chapter 6
An Example of Irrotational Flow

Chapter 7
Geometric, Not Dynamic, Similarity:
Flow Past a Block 1
Geometric, Not Dynamic, Similarity:
Flow Past a Block 2

Chapter 8
The Reynolds Transition Experiment
Pipe Flow: Laminar

Pipe Flow: Transitional
The Glen Canyon Dam: A Turbulent
Pipe Flow

Chapter 9
Flow around an Airfoil
Flow Separation on an Airfoil
Effect of Viscosity on Boundary
Layer Growth
Examples of Boundary Layer Growth
Flow Separation: Airfoil
Flow about a Sports Car
Plate Normal to the Flow
An Object with a High Drag Coefficient
Examples of Flow around a Sphere
Vortex Trail behind a Cylinder
Flow Past an Airfoil (α = 0�)
Flow Past an Airfoil (α = 10�)
Flow Past an Airfoil (α = 20�)
Wing Tip Vortices
Leading Edge Slats

Chapter 10
Flow in an Axial Flow Compressor
(Animation)

Chapter 11
A Laminar Hydraulic Jump

Chapter 12
Shock Waves due to a Projectile
Shock Waves over a Supersonic Airplane
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The following videos were developed by the National Committee for Fluid Mechanics Films (NCFMF)
and may be viewed at http://web.mit.edu/hml/ncfmf.html. Each of these videos goes into the subject in
more depth than may be appropriate for an undergraduate class. However, selected segments of the
videos are useful in bringing out important fluids phenomena.

These videos are supplied by:

Encyclopaedia Britannica Educational Corporation
331 North La Salle Street
Chicago, IL 60654

Aerodynamic Generation of Sound (44 min, principals: M. J. Lighthill, J. E. Ffowcs-Williams)
Cavitation (31 min, principal: P. Eisenberg)
Channel Flow of a Compressible Fluid (29 min, principal: D. E. Coles)
Deformation of Continuous Media (38 min, principal: J. L. Lumley)
Eulerian and Lagrangian Descriptions in Fluid Mechanics (27 min, principal: J. L. Lumley)
Flow Instabilities (27 min, principal: E. L. Mollo-Christensen)
Flow Visualization (31 min, principal: S. J. Kline)
The Fluid Dynamics of Drag (4 parts, 120 min, principal: A. H. Shapiro)
Fundamentals of Boundary Layers (24 min, principal: F. H. Abernathy)
Low-Reynolds-Number Flows (33 min, principal: Sir G. I. Taylor)
Magnetohydrodynamics (27 min, principal: J. A. Shercliff )
Pressure Fields and Fluid Acceleration (30 min, principal: A. H. Shapiro)
Rarefied Gas Dynamics (33 min, principals: F. C. Hurlbut, F. S. Sherman)
Rheological Behavior of Fluids (22 min, principal: H. Markovitz)
Rotating Flows (29 min, principal: D. Fultz)
Secondary Flow (30 min, principal: E. S. Taylor)
Stratified Flow (26 min, principal: R. R. Long)
Surface Tension in Fluid Mechanics (29 min, principal: L. M. Trefethen)
Turbulence (29 min, principal: R. W. Stewart)
Vorticity (2 parts, 44 min, principal: A. H. Shapiro)
Waves in Fluids (33 min, principal: A. E. Bryson)

Another source of fluid mechanics videos is a CD entitled “Multimedia Fluid Mechanics” by Homsy
et al. it is available from Cambridge University Press, 32 Avenue of the Americas, New York, NY
10013-2473, ISBN 9780521721691. This CD contains a very large number of videos that illustrate
different phenomena in fluid flow.
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A P P E N D I X C

Selected Performance Curves
for Pumps and Fans

C.1 Introduction
Many firms, worldwide, manufacture fluid machines in numerous standard types and sizes. Each man-
ufacturer publishes complete performance data to allow application of its machines in systems. This
Appendix contains selected performance data for use in solving pump and fan system problems.
Two pump types and one fan type are included.

Choice of a manufacturer may be based on established practice, location, or cost. Once a manufac-
turer is chosen, machine selection is a three-step process:

1. Select a machine type, suited to the application, from a manufacturer’s full-line catalog, which gives
the ranges of pressure rise (head) and flow rate for each machine type.

2. Choose an appropriate machine model and driver speed from a master selector chart, which super-
poses the head and flow rate ranges of a series of machines on one graph.

3. Verify that the candidate machine is satisfactory for the intended application, using a detailed per-
formance curve for the specific machine.

It is wise to consult with experienced system engineers, either employed by the machine manufac-
turer or in your own organization, before making a final purchase decision.

Manymanufacturers currently use computerized procedures to select a machine that is most suitable
for each given application. Such procedures are simply automated versions of the traditional selection
method. Use of the master selector chart and the detailed performance curves is illustrated below for
pumps and fans, using data from one manufacturer of each type of machine. Literature of other man-
ufacturers differs in detail but contains the necessary information for machine selection.

C.2 Pump Selection
Representative data are shown in Figs. C.1 through C.10 for Peerless1 horizontal split case single-stage
(series AE) pumps and in Figs. C.11 and C.12 for Peerless multi-stage (series TU and TUT) pumps.

Figures C.1 and C.2 are master pump selector charts for series AE pumps at 3500 and 1750 nominal
rpm. On these charts, the model number (e.g., 6AE14) indicates the discharge line size (6 in: nominal
pipe), the pump series (AE), and the maximum impeller diameter (approximately 14 in:).

Figures C.3 through C.10 are detailed performance charts for individual pump models in the AE
series.

Figures C.11 and C.12 are master pump selector charts for series TU and TUT pumps at 1750 nom-
inal rpm. Data for two-stage pumps are presented in Fig. C.11, while Fig. C.12 contains data for pumps
with three, four, and five stages.

Each pump performance chart contains curves of total head versus volume flow rate; curves for
several impeller diameters—tested in the same casing—are presented on a single graph. Each perfor-
mance chart also contains curves showing pump efficiency and driver power; the net positive suction
head (NPSH) requirement, as it varies with flow rate, is shown by the curve at the bottom of each chart.
The best efficiency point (BEP) for each impeller may be found using the efficiency curves.

Use of the master pump selector chart and detailed performance curves is illustrated in Example C.1.

1 Peerless Pump Company, P.O. Box 7026, Indianapolis, IN 46207-7026.
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C.3 Fan Selection
Fan selection is similar to pump selection. A representative master fan selection chart is shown in
Fig. C.13 for a series of Howden Buffalo2 axial-flow fans. The chart shows the efficiency of the entire
series of fans as a function of total pressure rise and flow rate. The series of numbers for each fan indi-
cates the fan diameter in inches, the hub diameter in inches, and the fan speed in revolutions per minute.
For instance, a 54-26-870 fan has a fan diameter of 54 in:, a hub diameter of 26 in:, and should be oper-
ated at 870 rpm.

Normally, final evaluation of suitability of the fan model for the application would be done using
detailed performance charts for the specific model. Instead, we use the efficiencies from Fig C.13, which
are indicated by the shading of the different zones on the map. To calculate the power requirement for the
fan motor, we use the following equation:

�ðhpÞ= QðcfmÞ×Δpðin:H2OÞ
6350× η

A sample fan selection is presented in Example C.2.

Example C.1 PUMP SELECTION PROCEDURE

Select a pump to deliver 1750 gpm of water at 120 ft total head. Choose the appropriate pumpmodel and driver speed. Specify the
pump efficiency, driver power, and NPSH requirement.

Given: Select a pump to deliver 1750 gpm of water at 120 ft total head.

Find:

(a) Pump model and driver speed.
(b) Pump efficiency.
(c) Driver power.
(d) NPSH requirement.

Solution: Use the pump selection procedure described in Section C-1. (The numbers below correspond to the numbered steps
given in the procedure.)

1. Select a machine type suited to the application. (This step actually requires a manufacturer’s full-line catalog, which is not
reproduced here. The Peerless product line catalog specifies a maximum delivery and head of 2500 gpm and 660 ft for series
AE pumps. Therefore the required performance can be obtained; assume the selection is to be made from this series.)

2. Consult the master pump selector chart. The desired operating point is not within any pump contour on the 3500 rpm selector
chart (Fig. C.1). From the 1750 rpm chart (Fig. C.2), select a model 6AE14 pump. From the performance curve for the 6AE14
pump (Fig. C.6), choose a 13-in. impeller.

3. Verify the performance of the machine using the detailed performance chart. On the performance chart for the 6AE14 pump,
project up from the abscissa at Q=1750 gpm. Project across from H =120 ft on the ordinate. The intersection is the pump
performance at the desired operating point:

η≈85:8 percent �≈64 hp

From the operating point, project down to theNPSH requirement curve. At the
intersection, read NPSH≈17 ft.

This completes the selection process for
this pump. One should consult with
experienced systemengineers to verify that
the system operating condition has been
predicted accurately and the pump has
been selected correctly.

2 Howden Buffalo Inc., 2029 W. DeKalb St., Camden, SC 29020.
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Example C.2 FAN SELECTION PROCEDURE

Select an axial flow fan to deliver 30;000 cfm of standard air at 1:25 in:H2O total pressure. Choose the appropriate fan model and
driver speed. Specify the fan efficiency and driver power.

Given: Select an axial flow fan to deliver 30;000 cfm of standard air at 1:25 in:H2O total head.

Find:

(a) Fan size and driver speed.
(b) Fan efficiency.
(c) Driver power.

Solution: Use the fan selection procedure described in Section C-1. (The numbers below correspond to the numbered steps
given in the procedure.)

1. Select a machine type suited to the application. (This step actually requires a manufacturer’s full-line catalog, which is not
reproduced here. Assume the fan selection is to be made from the axial fan data presented in Fig. C.13.)

2. Consult the master fan selector chart. The desired operating point is within the contour for the 48-21-860 fan on the selector
chart (Fig. C.13). To achieve the desired performance requires driving the fan at 860 rpm.

3. Verify the performance of the machine using a detailed performance chart. To
determine the efficiency, we consult Fig C.13 again.We estimate an efficiency
of 85 percent. To determine the motor power requirement, we use the equation
given above:

�=
Q×Δp
6350 × η

=
30;000 cfm×1:25 in:H2O

6350× 0:85
= 6:95 hp

This completes the fan selection process.
Again, one should consult with experienced
system engineers to verify that the system
operating condition has been predicted
accurately and the fan has been selected
correctly.
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A P P E N D I X D

Flow Functions for Computation
of Compressible Flow

D.1 Isentropic Flow
Isentropic flow functions are computed using the following equations:

p0
p
= 1+

k−1
2

M2
	 
k=ðk−1Þ

ð12:21a=12:30aÞ

T0
T

=1+
k−1
2

M2 ð12:21b=12:30bÞ

ρ0
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M2
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ðk+1Þ=2ðk−1Þ

ð12:30dÞ

Representative values of the isentropic flow functions for k=1:4 are presented in Table D.1 and plotted
in Fig. D.1.

This table was computed from the Excel workbook Isentropic Relations. The workbook contains a
more detailed, printable version of the table and can be easily modified to generate data for a dif-
ferent Mach number range, or for a different gas.

Table D.1
Isentropic Flow Functions (one-dimensional flow, ideal gas, k=1:4)

M T/T0 p/p0 ρ/ρ0 A/A∗

0.00 1.0000 1.0000 1.0000 ∞
0.50 0.9524 0.8430 0.8852 1.340
1.00 0.8333 0.5283 0.6339 1.000
1.50 0.6897 0.2724 0.3950 1.176
2.00 0.5556 0.1278 0.2301 1.688
2.50 0.4444 0.05853 0.1317 2.637
3.00 0.3571 0.02722 0.07623 4.235
3.50 0.2899 0.01311 0.04523 6.790
4.00 0.2381 0.006586 0.02766 10.72
4.50 0.1980 0.003455 0.01745 16.56
5.00 0.1667 0.001890 0.01134 25.00
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This graph was generated from the Excel workbook. The workbook can be modified easily to
generate curves for a different gas.

D.2 Normal Shock
Normal-shock flow functions are computed using the following equations:
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Representative values of the normal-shock flow functions for k=1:4 are presented in Table D.2 and
plotted in Fig. D.2.

This table was computed from the Excel workbook Normal-Shock Relations. The workbook con-
tains a more detailed, printable version of the table and can be modified easily to generate data for a
different Mach number range, or for a different gas.

This graph was generated from the Excel workbook. The workbook can be modified easily to gen-
erate curves for a different gas.

Table D.2
Normal-Shock Flow Functions (one-dimensional flow, ideal gas, k=1:4)

M1 M2 p02/p01 T2/T1 p2/p1 ρ2/ρ1

1.00 1.000 1.000 1.000 1.000 1.000
1.50 0.7011 0.9298 1.320 2.458 1.862
2.00 0.5774 0.7209 1.687 4.500 2.667
2.50 0.5130 0.4990 2.137 7.125 3.333
3.00 0.4752 0.3283 2.679 10.33 3.857
3.50 0.4512 0.2130 3.315 14.13 4.261
4.00 0.4350 0.1388 4.047 18.50 4.571
4.50 0.4236 0.09170 4.875 23.46 4.812
5.00 0.4152 0.06172 5.800 29.00 5.000
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Fig. D.2 Normal-shock flow functions.
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A P P E N D I X E

Analysis of Experimental
Uncertainty

E.1 Introduction
Experimental data often are used to supplement engineering analysis as a basis for design. Not all data
are equally good; the validity of data should be documented before test results are used for design.
Uncertainty analysis is the procedure used to quantify data validity and accuracy.

Analysis of uncertainty also is useful during experiment design. Careful study may indicate poten-
tial sources of unacceptable error and suggest improved measurement methods.

E.2 Types of Error
Errors always are present when experimental measurements are made. Aside from gross blunders by the
experimenter, experimental error may be of two types. Fixed (or systematic) error causes repeated mea-
surements to be in error by the same amount for each trial. Fixed error is the same for each reading and
can be removed by proper calibration or correction. Random error (nonrepeatability) is different for
every reading and hence cannot be removed. The factors that introduce random error are uncertain
by their nature. The objective of uncertainty analysis is to estimate the probable random error in exper-
imental results.

We assume that equipment has been constructed correctly and calibrated properly to eliminate fixed
errors. We assume that instrumentation has adequate resolution and that fluctuations in readings are not
excessive. We assume also that care is used in making and recording observations so that only random
errors remain.

E.3 Estimation of Uncertainty
Our goal is to estimate the uncertainty of experimental measurements and calculated results due to ran-
dom errors. The procedure has three steps:

1. Estimate the uncertainty interval for each measured quantity.

2. State the confidence limit on each measurement.

3. Analyze the propagation of uncertainty into results calculated from experimental data.

Below we outline the procedure for each step and illustrate applications with examples.

Step 1 Estimate the measurement uncertainty interval. Designate the measured variables in an experiment as
x1, x2, : : : , xn. One possible way to find the uncertainty interval for each variable would be to repeat each
measurement many times. The result would be a distribution of data for each variable. Random errors in
measurement usually produce a normal (Gaussian) frequency distribution of measured values. The data
scatter for a normal distribution is characterized by the standard deviation, σ. The uncertainty interval
for each measured variable, xi, may be stated as �nσi, where n=1, 2, or 3.

However, the most typical situation in engineering work is a “single-sample” experiment, where only
one measurement is made for each point [1]. A reasonable estimate of the measurement uncertainty due
to random error in a single-sample experiment usually is plus or minus half the smallest scale division
(the least count) of the instrument. However, this approach also must be used with caution, as illustrated
in the following example.
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When repeated measurements of a variable are available, they are usually normally distributed data, for
which over 99 percent of measured values of xi lie within �3σi of the mean value, 95 percent lie within
�2σi, and 68 percent lie within �σi of the mean value of the data set [2]. Thus it would be possible to
quantify expected errors within any desired confidence limit if a statistically significant set of data were
available.

The method of repeated measurements usually is impractical. In most applications it is impossible to
obtain enough data for a statistically significant sample owing to the excessive time and cost involved.
However, the normal distribution suggests several important concepts:

1. Small errors are more likely than large ones.
2. Plus and minus errors are about equally likely.
3. No finite maximum error can be specified.

Step 2 State the confidence limit on each measurement. The uncertainty interval of a measurement should be
stated at specified odds. For example, one may write h=752:6�0:5 mm ð20 to 1Þ. This means that one
is willing to bet 20 to 1 that the height of the mercury column actually is within �0:5 mm of the stated
value. It should be obvious [3] that “. . . the specification of such odds can only be made by the experimenter
based on . . . total laboratory experience. There is no substitute for sound engineering judgment in estimat-
ing the uncertainty of a measured variable.”

The confidence interval statement is based on the concept of standard deviation for a normal distribu-
tion. Odds of about 370 to 1 correspond to �3σ; 99.7 percent of all future readings are expected to fall
within the interval. Odds of about 20 to 1 correspond to �2σ and odds of 3 to 1 correspond to �σ con-
fidence limits. Odds of 20 to 1 typically are used for engineering work.

Step 3 Analyze the propagation of uncertainty in calculations. Suppose that measurements of independent vari-
ables, x1, x2, : : : , xn, are made in the laboratory. The relative uncertainty of each independently measured
quantity is estimated as ui. The measurements are used to calculate some result, R, for the experiment. We
wish to analyze how errors in the xis propagate into the calculation of R from measured values.

In general, R may be expressed mathematically as R=Rðx1,x2, : : :,xnÞ. The effect on R of an error in
measuring an individual xi may be estimated by analogy to the derivative of a function [4]. A variation,
δxi, in xi would cause variation δRi in R,

δRi =
∂R
∂xi

δxi

The relative variation in R is

δRi

R
=
1
R
∂R
∂xi

δxi =
xi
R
∂R
∂xi

δxi
xi

ðE:1Þ

Example E.1 UNCERTAINTY IN BAROMETER READING

The observed height of the mercury barometer column is h=752:6 mm. The least
count on the vernier scale is 0:1 mm, so one might estimate the probable mea-
surement error as �0:05 mm.

A measurement probably could not be made this precisely. The barometer sli-
ders and meniscus must be aligned by eye. The slider has a least count of 1 mm.
As a conservative estimate, a measurement could be made to the nearest millime-
ter. The probable value of a single measurement then would be expressed as
752:6�0:5 mm. The relative uncertainty in barometric height would be stated as

uh = � 0:5 mm
752:6 mm

= �0:000664 or �0:0664 percent

Comments:
1. An uncertainty interval of �0:1 percent

corresponds to a result specified to three
significant figures; this precision is
sufficient for most engineering work.

2. The measurement of barometer height
was precise, as shown by the uncertainty
estimate. But was it accurate? At typical
room temperatures, the observed
barometer reading must be reduced by
a temperature correction of nearly 3mm!
This is an example of a fixed error that
requires a correction factor.
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Equation E.1 may be used to estimate the relative uncertainty in the result due to uncertainty in xi. Introducing the
notation for relative uncertainty, we obtain

uRi =
xi
R
∂R
∂xi

uxi ðE:2Þ

How do we estimate the relative uncertainty in R caused by the combined effects of the relative uncertainties in all
the xis? The random error in each variable has a range of values within the uncertainty interval. It is unlikely that all
errors will have adverse values at the same time. It can be shown [1] that the best representation for the relative
uncertainty of the result is

uR = � x1
R
∂R
∂x1

u1

� �2
+

x2
R
∂R
∂x2

u2

� �2
+ � � �+ xn

R
∂R
∂xn

un

� �2
" #1=2

ðE:3Þ

Example E.2 UNCERTAINTY IN VOLUME OF CYLINDER

Obtain an expression for the uncertainty in determining the volume of a cylinder from measurements of its radius and height.
The volume of a cylinder in terms of radius and height is

V--- =V---ðr,hÞ= πr2h

Differentiating, we obtain

dV--- =
∂V---

∂r
dr+

∂V---

∂h
dh=2πrh dr+ πr2 dh

since

∂V---

∂r
=2πrh and

∂V---

∂h
= πr2

From Eq. E.2, the relative uncertainty due to radius is

uV--,r =
δV---r
V---

=
r
V---

∂V---

∂r
ur =

r
πr2h
ð2πrhÞur =2ur

and the relative uncertainty due to height is

uV--,h =
δV---h
V---

=
h
V---

∂V---

∂h
uh =

h
πr2h
ðπr2Þuh = uh

The relative uncertainty in volume is then

uV-- = �½ð2urÞ2 + ðuhÞ2�1=2 ðE:4Þ

Comment:
The coefficient 2, in Eq. E.4, shows that the
uncertainty in measuring cylinder radius
has a larger effect than the uncertainty in
measuring height. This is true because the
radius is squared in the equation for
volume.
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E.4 Applications to Data
Applications to data obtained from laboratory measurements are illustrated in the following
examples.

Example E.3 UNCERTAINTY IN LIQUID MASS FLOW RATE

The mass flow rate of water through a tube is to be determined by collecting water in a beaker. The mass flow rate is calculated
from the net mass of water collected divided by the time interval,

_m=
Δm
Δt

ðE:5Þ

where Δm=mf −me. Error estimates for the measured quantities are

Mass of full beaker, mf = 400�2 gð20 to 1Þ
Mass of empty beaker, me = 200�2 gð20 to 1Þ

Collection time interval, Δt = 10�0:2 sð20 to 1Þ
The relative uncertainties in measured quantities are

umf = �
2 g
400 g

= �0:005

ume = �
2 g

200 g
= �0:01

uΔt = �0:2 s
10 s

= �0:02

The relative uncertainty in the measured value of net mass is calculated from Eq. E.3 as

uΔm = � mf

Δm
∂Δm
∂mf

umf

� �2

+
me

Δm
∂Δm
∂me

ume

� �2
" #1=2

= �f½ð2Þð1Þð�0:005Þ�2 + ½ð1Þð−1Þð�0:01Þ�2g1=2

uΔm = �0:0141

Because _m= _mðΔm,ΔtÞ, we may write Eq. E.3 as

u _m = � Δm
_m

∂ _m
∂Δm

uΔm

� �2
+

Δt
_m
∂ _m
∂Δt

uΔt

� �2" #1=2
ðE:6Þ

The required partial derivative terms are

Δm
_m

∂ _m
∂Δm

=1 and
Δt
_m
∂ _m
∂Δt

= −1

Substituting into Eq. E.6 gives

u _m = �f½ð1Þð�0:0141Þ�2 + ½ð−1Þð�0:02Þ�2g1=2

u _m = �0:0245 or �2:45 percent ð20 to 1Þ

Comment:
The 2 percent uncertainty interval in time
measurement makes the most important
contribution to the uncertainty interval
in the result.
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Example E.4 UNCERTAINTY IN THE REYNOLDS NUMBER FOR WATER FLOW

The Reynolds number is to be calculated for flow of water in a tube. The computing equation for the Reynolds number is

Re=
4 _m
πμD

=Reð _m, D, μÞ ðE:7Þ

We have considered the uncertainty interval in calculating the mass flow rate. What about uncertainties in μ and D? The
tube diameter is given as D=6:35 mm. Do we assume that it is exact? The diameter might be measured to the nearest
0:1 mm. If so, the relative uncertainty in diameter would be estimated as

uD = �0:05 mm
6:35 mm

= �0:00787 or �0:787 percent

The viscosity of water depends on temperature. The temperature is estimated as T =24�0:5�C. How will the uncertainty in
temperature affect the uncertainty in μ? One way to estimate this is to write

uμðTÞ = �δμ
μ

=
1
μ

dμ
dT
ð�δTÞ ðE:8Þ

The derivative can be estimated from tabulated viscosity data near the nominal temperature of 24�C. Thus

dμ
dT

≈
Δμ
ΔT

=
μð25�CÞ−μð23�CÞ
ð25−23Þ�C = ð0:000890−0:000933ÞN � s

m2 ×
1

2�C

dμ
dT

= −2:15× 10−5 N � s=ðm2 ��CÞ

It follows from Eq. E.8 that the relative uncertainty in viscosity due to temperature is

uμðTÞ =
1

0:000911
m2

N � s × −2:15× 10−5 N � s
m2 � �C × ð�0:5�CÞ

uμðTÞ = �0:0118 or �1:18 percent
Tabulated viscosity data themselves also have some uncertainty. If this is �1:0 percent, an estimate for the resulting relative
uncertainty in viscosity is

uμ = �½ð�0:01Þ2 + ð�0:0118Þ2�1=2 = �0:0155 or �1:55 percent
The uncertainties in mass flow rate, tube diameter, and viscosity needed to compute the uncertainty interval for the calculated
Reynolds number now are known. The required partial derivatives, determined from Eq. E.7, are

_m
Re

∂Re
∂ _m

=
_m
Re

4
πμD

=
Re
Re

=1

μ

Re
∂Re
∂μ

=
μ

Re
ð−1Þ 4 _m

πμ2D
= −

Re
Re

= −1

D
Re

∂Re
∂D

=
D
Re
ð−1Þ 4 _m

πμD2 = −
Re
Re

= −1

Substituting into Eq. E.3 gives

uRe = � _m
Re

∂Re
∂ _m

u _m

	 
2
+

μ

Re
∂Re
∂μ

uμ

	 
2
+

D
Re

∂Re
∂D

uD

	 
2( )1=2

uRe = � ½ð1Þð�0:0245Þ�2 + ½ð−1Þð�0:0155Þ�2 + ½ð−1Þð�0:00787Þ�2
n o1=2

uRe = �0:0300 or �3:00 percent

Comment:
Examples E.3 and E.4 illustrate two points
important for experiment design. First, the
mass of water collected, Δm, is calculated
from two measured quantities, mf and me.
For any stated uncertainty interval in the
measurements of mf and me, the relative
uncertainty in Δm can be decreased by
making Δm larger. This might be accom-
plished by using larger containers or a
longer measuring interval, Δt, which also
would reduce the relative uncertainty in the
measured Δt. Second, the uncertainty in
tabulated property datamay be significant.
The data uncertainty also is increased by
the uncertainty in measurement of fluid
temperature.
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E.5 Summary
A statement of the probable uncertainty of data is an important part of reporting experimental results
completely and clearly. The American Society of Mechanical Engineers requires that all manuscripts
submitted for journal publication include an adequate statement of uncertainty of experimental data
[5]. Estimating uncertainty in experimental results requires care, experience, and judgment, in common
with many endeavors in engineering. We have emphasized the need to quantify the uncertainty of mea-
surements, but space allows including only a few examples. Much more information is available in the
references that follow (e.g., [4, 6, 7]). We urge you to consult them when designing experiments or ana-
lyzing data.

R E F E R E N C E S
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New York: McGraw-Hill, 1989.

Example E.5 UNCERTAINTY IN AIR SPEED

Air speed is calculated from pitot tube measurements in a wind tunnel. From the Bernoulli equation,

V =
2ghρwater

ρair

� �1=2
ðE:9Þ

where h is the observed height of the manometer column.
The only new element in this example is the square root. The variation in V due to the uncertainty interval in h is

h
V
∂V
∂h

=
h
V
1
2

2ghρwater
ρair

� �−1=2 2gρwater
ρair

h
V
∂V
∂h

=
h
V
1
2
1
V
2gρwater
ρair

=
1
2
V2

V2 =
1
2

Using Eq. E.3, we calculate the relative uncertainty in V as

uV = � 1
2
uh

� �2

+
1
2
uρwater

� �2

+ −
1
2
uρair

� �2
" #1=2

If uh = �0:01 and the other uncertainties are negligible,

uV = � 1
2
ð�0:01Þ

	 
2( )1=2

uV = �0:00500 or �0:500 percent
Comment:
The square root reduces the relative
uncertainty in the calculated velocity to
half that of uh.
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Answers to Selected Problems

1.5 d = 4.30 10− 3 in

1.7 m = 907 kg = 62.1 slug, Wmoon = 1483 N = 333 lbf

1.9 v= 11:91
ft3

slug
, ρ=0:0084

slug
ft3

, γ=0:271
lbf
ft3

,

vs = 72:6
ft3

slug
, ρs = 0:0138

slug
ft3

, γ=0:444
lbf
ft3

1.11 Vt = 52.4 m/s, V(100�m) = 37.4 m/s

1.15 P = 50 hp = 37.3 kW = 127,200 Btu/hr

1.17 E=4:73× 1016J = 3:49× 1016 ft lbf

1.19 1 psi = 6:89 kPa, 1 liter = 0:264 gal,1
lbf s
ft2

= 47:9
N s
m2

1.21 100
ft3

min
= 0:0472

m3

s
, 5 gal = 0:0189 m3,

65 mph= 29:1
m
s
, 5:4 acres = 2:19× 104m2

1.23 D = 1 12 in. H = 8 in, mpropane = 17 lbm.
Vpropane=Vtank = 0.53

1.25 32 psi = 2:25
kgf
cm2

1.27 c=0:04
K1=2 s
m

1.29 W = 77.0 lbf, V = 1.24 ft3

1.31 uρ = ±2:66× 10−4 lbm
ft3

1.33 ρ=930± 27:2
kg
m3

1.37 μ=1:005× 10−3N s
m2 , uμ =1:11%

2.1 2D unsteady, 2D steady, 1D steady, 1D steady,
1D Unsteady, 2D Steady, 2D Unsteady, 3D steady

2.3 2D

2.5 y = x2 – c

2.7 At 0,θð Þ vt = ∞ and vr = 0

2.9 y = c x−3

2.11 Δt = 0.75 s

2.13 At (2,2) xy = 4

2.17 y = C/x

2.19 y = x at t = 0, y = x1.4 at t = 1, y = x1.6 at t = 1.5

2.21 At (1,1) x = c at t = 0, y = x−10 at t = 1, y = x−5 at t = 2

2.23 At (1,1) y = x at t = 0, y = x2/3 at t = 1, y = x1/2 at t = 2

2.29 Pathlines Streaklines Streamlines

2.35 At 10 C
μair
μwater

= 0:013,
νair
νwater

= 10:3

2.37 μ2 = 2 μ1 = 1.934 Pa s

2.39 U = 0.196 m/s for F = 0; U = 0.496 m/s for F upward

2.41 66.9 N

2.43 0.002 N m

2.45 μ=1:30
N s
m2

2.47 0.2 N s/m2

2.49 9.73 rpm

2.51 τ = 0 at r = 13.7 mm, Fo = −172 N, Fi = 63.4 N

2.53 1308 W

2.55 50.3 kW

2.57 77.4 ft-lbf

2.59 μ = 0.0208 N s/m2

2.61 T =
π μ ω R4

2 h
2.63 k = 0.0162, n = 0.793

2.65 T = 0.278 N for H = 200 mm, R = 75 mm,
a = 0.02 mm, ω = 100 rpm

2.67 Δp = 2.91 kPa

2.69 A = 0.403, b = 4.53

2.71 0.0149 mm

2.75 Turbulent at D = 29.4 mm

2.77 xtran = 0.327 m

2.79 xtran = 0.295 ft; xtran = 0.552 ft

3.1 At 1000 m T = 96.7 C, At 2000 m T = 93.3 C,
At 0 m T = 100 C

3.3 z = 9303 ft, Δz = 5338 ft

3.5 F = 271 N, T = 0.282 N

3.7 p = 20.1 kPa gage = 121.1 kPa abs;
p = 20.1 kPa gage = 150.1 kPa abs

3.9 Δp = 972 kPa, ρ = 991 kg/m3

3.11 γ=10:1
kN
m3 , p= 20:1MPa

3.13 h = 13, 600 ft

3.15 Strong, h = 20.7 ft

3.17 Δp = 51.9 kPa

3.19 4.41 kPa gage

3.21 Δp = 0.758 psi

3.23 Δp = 1.638 psi

3.25 l = 1.600 m

3.27 Reading = 15.2 in.

3.29 sensitivity =
5
SG

3.31 patm = 14.41 psi, length would decrease

3.33 Δh = 0.360 in
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3.37 9.62 kPa, 41.0 kPa, 35.7 kPa

3.39 FR = 35.7 N, y0 = 1.9 m, FR = 71.3 N, y0 = 1.8 m

3.41 FR = 7.96 × 104 lbf

3.43 F = 936 lbf

3.45 W = 68 kN

3.47 FR = 8.63 MN, Fn = 16.7 MN, Rx = 8.34 MN,
Ry = 14.4 MN, R = 16.7 MN

3.49 y0 = 2.78 m, F = 130 kN

3.51 FD = 32.9 N

3.53 FR = 33.3 kN, dh = 7.28 mm

3.55 FA = 111 kN

3.57 FT = −2.70 × 104 lbf

3.59 FV = −17.12 × 103 ft, x0 = 2.14 ft

3.61 R = 43,250 lbf, θ = 40.9 deg wrt horizontal,
R passes through 0

3.63 FH = 8.56 kN, FV = 7.76 kN

3.65 FR = 370 kN, α = 57.5 deg.

3.67 Canoe floats higher

3.69 h = 177 mm

3.71 W = 12,980 lbf

3.73 h = 0.292 m

3.75 Vdisp = 2.52 L, n = 5.33 (6 weights)

3.77 d = 3.1 ft

3.81 W = 0, FV = 1568 lbf

3.83 D = 82.7 m, M = 638 kg

3.87 ρmix = 1.52 slug/ft3

4.1 Δs = −0.0753 kL/kg-K, ΔU = −20.9 kJ

4.3 x = 747 m, t = 23.9 s

4.5 tf = 0.85 s, x = 2.12 m, tf = 0.80 s

4.7 work = 102 kJ/kg

4.9 ΔUair = 259 MJ, ΔU = 0 MJ,
ΔTa
Δt

= 6:1
K
hr

4.11 Q = −24 m3/s,

4.13 Vm = 8 m/s

4.15
V2

V1
= 4

4.17 V = 1.56 ft/s, Q = 3.82 gpm

4.19 p2V2 = 1:5× 106
Pa m
s

4.21
V
vc

=
2n

n+ 1
−

2n
2n+ 1

4.23 n = 4.52; 5 pipes

4.25 Q=54:4
ft3

s

4.27 VA = 40:7
ft
s
, VB = 30:5

ft
s
, Vc = 20:4

ft
s
,

VD = 10:2
ft
s

4.29 t = 2.39 s, Q = 2.0 m3

4.31 V = 10 m/s

4.33 Vm =
π
4
V1

4.35 Vmin = 5.0 m/s

4.37
dh
dt

= −0:289
mm
s

4.39
∂ρ
∂t

= 2:50× 10−3 slug
ft3 s

4.41 Q=3:61× 10−5m3

s ,
dy
dt

= −0:532
m
s

4.45 Momx = − 2406 lbf, Momy = 2113 lbf

4.47 Momx = 841 N, Momy = −2075 N

4.49 Ry = 10,600 N (downward)

4.51 Rx = −7050 N

4.53 For θ = 40, M = 238 kg

4.55 Fx = 888 lbf, Fy = −296 lbf, α = −18.74 deg from
horizontal

4.57 Fx = 2602 lbf, Fy = 0

4.59 V = 28.9 m/s for h = 1 m, V = 10.2 m/s for h = 0.5 m,
V = 3.61 m/s for h = 0.25 m

4.61 Fx = 1488 N, α = −82.4 deg

4.63 F = 441 lbf

4.65 Rx = −86.9 lbf

4.67 F = 25.5 N (to left)

4.69 Fx = 5350 lbf, Fy = 3080 lbf

4.71 Rx = −1970 lbf

4.73 Fx = 22,080 N/m

4.75 Fx = 1765 N

4.79 Rx = 138 N, Ry = 554 N

4.81 1124 N

4.83 Rx = −4.77 lbf (to the right)

4.85 Rx = −37.9 N (to the right)

4.87 Δp = 9.08 kPa

4.89 F = 0.163 N/m

4.91 h = H/2

4.93 h = 4.28 m

4.95 p = 103 kPa

4.101 Q = 0.0663 m3/s, α = 10 m/s, V = 16.7 m/s

4.103 t = 0.222 in, Rx = − 1780 lbf

4.105 ax = 13.5 m/s2

4.107 U = 15.8 m/s

4.111 V(0) = 12.9 m/s, V(2.5s) = 19.2 m/s,
V(5s) = 25.4 m/s

4.113 ax = 5:99 m=s2,
U
Ut

= 0:667

4.117 xmax = 1.93 m, t = 2.51 s
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4.119 U ∞ð Þ=227 m
s

4.121 m = 82.7 kg

4.123 V(20s) = 3860 ft/s, y = 33,500 ft

4.125 θ = 19.0 deg

4.127 Vmax = 138 m/s, ymax = 1085 m

4.129 Rx2 = −22.8 kN, T = −468 kN-m

4.131 T = 488 N m

4.133 T = 316 Q2 N-m

4.135 T = 2,28 N m, N = 387 rpm

4.137 T = −0.0161 N-m

4.141
dTa
dt

= −1:97
C
s

4.143 _W= −96:0 kW

4.145 _W= −96 kW

4.147 _W= −3:41 kW

5.1 (a)

5.3 w = −(a+c)x + const

5.5 A + E + J = 0

5.9 Vθ =6 r2sin θð Þ−6 r θ+ f rð Þ
5.11

v
U
=0:00167

5.15 (a), (b), and (c)

5.17 V
!
=ω r

z
h
êθ

5.23 Q = 16 m3/s per m of depth

5.27
y
δ
=0:465 and 0:671

5.29 hhalf = 1.06 m

5.31 3 D, not incompressible, a!p = 48 î + 4 ĵ + 54 k̂
m
s2

5.33 a!=10̂i +
30
t4
ĵ

5.35 V=4π 1−e− tð Þ m
s
, at = 4πe− t m

s2
,

an = −8π2 1−e− tð Þ2 m
s2

5.39 xmax = 8:32 ft, tmax = 0:119 s,
Dcmax

Dt
= – 4:38× 10−5 ppm

s

5.45 apx = −16:7
ft
s2

at
y
δ
=0:667, apx = −0:0178

ft
s2

at
y
δ
=0:839

5.51 not irrotational, not irrotational, irrotational, not
irrotational

5.53 Γ=0
m2

s
5.55 Incompressible, irrotational

5.57 ωz = −0:5
1
s , Γ= −1

m2

s
5.59 V

!
= Ay+ f xð Þð Þ̂i, ω! = −0:05k̂

rad
s
,

ψ=
1
2
Ay2 + c1y+ c2

5.61 ω! = −yk̂
rad
s
, Γ= −1:00

ft2

s
, ψ=Ax2y

5.63 Irrotational, ψ= −
K
2π

ln rð Þ− qθ
2π

5.73 u= −
h2

μ
dp
dx

y−
1
2
y2

� �
+
Ch
μ

y,
dp
dx

=
3
2
C
h

5.75 y = 0.489 m, uy = 1%

5.77 Vmax = 11.93 m/s, t = 3.8 s

6.1
∂p
∂x

= −20:0
kPa
m

,
∂p
∂y

= −29:8
kPa
m

6.3 ax = 8
m
s2
, ay = 4

m
s2
,
∂p
∂x

= −12
Pa
m
,
∂p
∂y

= −6
Pa
m
,

∂p
∂z

= −14:7
Pa
m

6.7 p(x,y) = 80 kPa

6.9 p(L) = 206 kPa

6.11
∂p
∂r

1,0ð Þ=127
Pa
m
,
∂p
∂r

1,
π
2

� �
=127

Pa
m
,

∂p
∂r

2,0ð Þ=15:8
Pa
m

6.15 Exit:
∂p
∂x

= −10:0
MPa
m

, L= 1:0 m

6.17 Fy =
4ρV2L3W

3 b2

6.21 apx =
q2x
h2

,
∂p
∂x

= −
ρq2x
h2

6.27 r = 0.5 m at y = 1 m, r = 1 m at y = 2 m, r = 1.5 m at
y = 3 m

6.33 pdyn = 1:64 kPa, ps = −1:738 kPa

6.35 V1 = 27.5 m/s

6.39 p1 = 10.0 psi, p2 = 1.35 psi

6.41 h = 5.81 m

6.43 V=7:29
m
s
, Q= 0:0143

m3

s
6.45 V = 16.3 m/s

6.49 p2 = 15:6 psi, Δp= 0:917 psi

6.51 Q=2:55× 10−3 m
3

s
6.57 p1 = 1:35 psig, p0 = 1:79 psig, F

!
=4:76k̂ lbf

6.59 Δh= 6:60 in, Rx = −0:105 lbf, F = 18:5 lbf

6.61 FV = 2:28× 104 lbf

6.69 ψ x,yð Þ= axy+
1
2
b y2−x2
� �

,

ϕ x,yð Þ= −bxy−
1
2
b x2−y2
� �

6.71 ϕ xð Þ= −x2 + y2 + c

6.73 ϕ x,yð Þ=Axy2−
Ax3

3
6.77 ϕ x,yð Þ=6x5y−20x2y3 + 6xy5
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6.81 ϕ x,yð Þ=3Axy2−Ax3

6.85
V
U
≤ 1% for r≥ 10 a

6.89 V
!

=0 at r =
k

2πU
, r =

π
2

7.1
V2

0

g L

7.3
Δp
ρV2 ,

Ω L
V

7.5
ν

V0 L
, which is reciprocal of Reynolds number

7.7 No dimensionless groups

7.9
F

μVD
=constant

7.13 VW =k
ffiffiffiffiffiffi
d g
p

7.15 Π1 =
δ
x
, Π2 =

μ
ρxU

, Π1 = f Π2ð Þ

7.17 VW =
ffiffiffiffiffiffiffiffiffiffi
2 π σ
ρ ℓ

r
7.19

D
ρV2ℓ2 = f

V ρ ℓ
μ

� �
7.21 Q=h2

ffiffiffiffiffi
gh
p

f
b
h

� �
7.23

D
ρV2d2

= f
V ρ d
μ

,
V2ρ
E

� �
7.25

T
ρ ω2d21

= f
d2
d1
,
ℓ1

d1
,
ℓ2

d1
,
ω d21 ρ
μ

� �
7.27 4 dimensionless groups, Π1 =

μ
ρ d3=2g1=2

7.29
T

F d1
= f

d2
d1
,
ℓ1

d1
,
μ ω d21
F

� �

7.31 P= ρD5ω3 f
Q

D3ω

� �
7.33

d
D
,

μ2

ρ Δp D2 ,
σ

DΔp

7.35 _m = ρA5=4g1=2 f
hffiffiffiffi
A
p ,

Δp
ρ g

ffiffiffiffi
A
p

� �
7.37 P=ω p D3 f

l
D
,
c
D
,
μ ω
p

� �
7.39

dT
dt

Lcp
V3 = f

c
cp
,

k
ρL3cp

,
μ

ρLV

� �
7.41 pm = 5:39× 105Pa, Fp = 1:333 kN

7.43 ℓ=3:64 m, Dp = 3:65 N

7.45 Π1 =
P

ρ ω3D5 , Π2 =
μ

ρωD2 , Π3 =
V
ωD

, Π4 =
H
D

7.47 pm = 1.934 MPa, Fp = 43.4 kN

7.49 (a) Fp = 1125 kN, (b) Fp = 450 N, (c) Fp = 9 N

7.51 Qm = 0:750
ft3

s
, _Wp =2590 hp

7.53 μm = 1:05× 10−6 N s
m2 , Vm = 3:2

km
hr

, Fp = 9× 106 N

7.55
f d
V

= f
ρVd
μ

� �
,
V1

V2
=
1
2
,
f1
f2

=
1
4

7.57 Vm =304
ft
s
for Vp = 12 knots to

Vm =608
ft
s
for Vp = 24 knots

7.59 Vm =550
m
s
, Dp = 1857 N

7.61 Vm =19:41 knots = 9:99 mph,
FDp
FDm

= 1:29× 105

on surfaceð Þ, FDp
FDm

= 0:835 submergedð Þ
7.63 Vm = 250 m/s

7.67 hm = 13:8
J
kg

, Dm = 0:120 m, Qm =0:166
m3

s
7.71 CDm = 0:443, FDp = 1:636 kN

8.1 Re=
4 _m
πDμ

, Re= 3000

8.3 _mair = 0:0322 D
kg

m−s
, _mwater = 2:06 D

kg
m−s

8.5
Q
b
=
2
3
umax h,

V
umax

=
2
3

8.7 τ= −1:88 kPa,
Q
b
= −5:63× 10−6m

2

s

8.9 Q=34:6
ft2

s
, α=1:08

8.11 Q=1:01× 10−6m
3

s

8.13 Q=0:49
m3

s
,
dV
dy

= 36 s−1, τ0 = 51:8 Pa,

Δp= 10:4 kPa
8.17 Dilatant fluid, n = 1.48

8.19 0:324
m2

s
, ± 21:6

1
s

8.21 Re = 0.384, τ = 1.60 kPa, P = 0.890W

8.23 τW =0:0281 Pa s or 0:0350 Pa s
The flow is probably transitional.

8.25 Q=0:0208
ft3

s ft
, τ=1:58× 10−6psi,

dp
dx

= 7:58× 10−4 psi
ft

8.27 δ = 0.216 mm

8.31 u=
ρ g y2

2 μ
−
ρ g h y

μ
+U0

8.35 Qmax T1ð Þ=5:07× 10−5m
3

s
,

Qmax T2ð Þ=3:12× 10−6m
3

s
8.37 Flow is turbulent

8.39 D = 3.4 m, D = 11 ft

8.41 R=1 mm :Δp= 0:00424 Pa, Rhyd = 2:55× 10−7 Pa s
m2
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8.43 μ=0:284
N s
m2

8.45 Q=2:19× 10−10 m
3

s
8.47 83.3 1/s

8.51 τW1 = 33:8 Pa, τW2 = 82:5 Pa

8.53 Q=4:52× 10−7 m
3

s
, τw =294 Pa, Δp= 235 kPa

8.57 α = 2

8.59 ε=8:90 Pa, ℓ=0:062 m, K=0:41

8.61 Cold water has greater pressure drop

8.63 p2 = 1.68 MPa

8.65 hloss = 0:08
ft
ft
, _W=0:015

hp
ft

8.67 hloss = 8.68 m

8.69 hpump = 30:6 m, hloss = 10:9 m

8.71 Conventional: hloss = 0:258 m; Exact: hloss = 0:213 m

8.75 Q=2:44
ft3

s
= 18:2 gpm

8.77 Q=4:32
ft3

s

8.79 V1 = 20:6
m
s
, Q= 0:0910

m3

s
8.83

e
D
=0:017

8.85 aÞ ℓ=275 mm, bÞ ℓ=150 mm

8.87 p1 = 15:1 kPa gage, Rx = 2:65 N tensionð Þ
8.89 turbulent flow has larger pressure drop

8.93 Increase in loss =
38,200−6326

6326
= 505%

8.95 Case (a) is best and Case (c) is worst

8.97 z1−z2 = 8.13 m

8.101 Q = 165 gpm

8.103 Q=1:01
m3

s
8.105 D = 2.5 ft

8.107 Q=0:0053
m3

s

8.109 V =27:3
m
s
, Rx = 365 N to rightð Þ

8.111 p = 104.0 kPa

8.117 hloss = 0:4 m, K=0:1

8.119 p3 = −20 kPa

8.121 Q=1:26
L
s
at 10m, 0:890

L
s
at 5m, 0:393

L
s
at 1m,

t = 9:64 hr
8.123 F = 832 N 0.0173 m2

8.125 p2 = 35.9 psi gage, Q = 11.5 gpm

8.127 Dmin = 0.488 in (0.5 ID tubing)

8.129 Q=5:97
ft3

s
8.131 Min dimensions = 198 mm by 395 mm

8.135 Kv(0) = 1370

8.137 p3 = 341 psi, _W=170 hp

8.139 L= 72:8 km, _W=7,730 kW

8.141 Rough pipe : Q=26:1
ft3

s
, Δp= 76:8 psi,

_W=750 hp; Smooth pipe : Q=27:8
ft3

s
,

Δp= 67:4 psi, _W=702 hp

8.143 ΔΔppump = 5:4+ 16:8ð Þpsi = 22:6 psi,
Q= 5:2 and 24:8 gpm

8.145 Δp= 265 kPa, _m=17:6
kg
s

8.149 Q = 1.49
ft3

s

8.151 Q=0:0492
m3

s

8.153 Qactual = 0:0297
ft3

s
9.3 xW =0:181 ft, xair = 2:62 ft

9.7 Length ratio increases with altitude

9.9 Satisfies boundary conditions

9.13 FD = 6.25 lbf

9.15 U2 = 13.8 m/s, Δp = 20.6 Pa

9.19 Δp = −1.16 psi

9.21 τ=6:77× 10−5psi

9.25 FD, lam = 0:157 N, FD, trans = 0:424 N,
FD, turb = 0:527 N

9.31 FD = 1:11× 10−3lbf per face
9.33 Lower drag on composite

9.35 FD = 0.557 N

9.37 2.15 × 10−6 lbf

9.39 _Mbc = 136:3
kg m
s2

, FD = 17:04 N, xtrans = 0:150 m

9.41 FD = 1313 lbf, xcrit = 0:45 ft, δcrit = 0:0033 ft,
δ=1:276 ft

9.43 FD = 1180 lbf, _W=944 hp

9.45
δ
x
=0:353 Re−0:2

x , Cf = 0:0605 Re−0:2
x

9.47 x= 16 m, Drag ratio = 1:62

9.49 Laminar: δ=0:261 in, τw = 7:17× 10−6psi:

Turbulent: δ=0:970 in, τw = 3:12× 10−5psi:
9.51 H6 = 1.006 ft, L1 = 1.725 ft, L = 0.669 ft

9.53 eship = 17:8
BTU

ton mile
, epipeline = 120

BTU
ton mile

9.57 Laminar boundary layer thinner
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9.63 FD, m = 36.7 N, FD, p = 54.5 N

9.65 xt = 0.0745 m, δ = 0.0810 m, FD = 278 N

9.67 FD = 0.00242 lbf

9.69 (a) V = 15.8 ft/s, (b) V = 17.1 ft/s

9.71 FD = 2:06× 104 lbf

9.73 D = 0.002 m

9.75 T= 86:2 Nm, _W= 0:726 hp

9.77 Max g = −3.66
9.79 aÞ FD = 1:82 N, bÞ FD = 1:61 N; V=8:94

m
s

9.81 Δs = 447 ft

9.83 Vinto = 24.7 km/hr, Vwith = 35.8 km/hr; Improved
tires: Vcalm = 32.6 km/hr, Vinto = 26.8 km/hr,
Vwith = 39.1 km/hr; Fairing: Vmax = 42.1 km/hr

9.87 α = 50.7 deg

9.89 FD = 525,400 lbf and T= 3:70× 1011 ft lbf
at 28 mph;

FD = 3,760,000 lbf and T= 2:65× 1012 ft lbf
at 75 mph

9.91 FD = 2:6× 106 lbf to 1:8× 107 lbf

9.93 Vstill = 333 mph, Vhead = 319 mph

9.95 mpg= 6:13
mile
gal

, Fuel savings = 1720
gal
yr

9.97 k= 0:0561
mph
rpm

9.101 T = 11.0 Nm

9.103 V = 23.3 m/s, Re = 48,200, FD = 0.111 N

9.105 CD = 61:9, ρsphere = 3720
kg
m3 , V= 0:731

m
s

9.107 T = 519 kN m

9.109 CD = 1:11

9.111 að Þ FL = 20,300 N, FD = 1545 N, _W=103 kW;
bð Þ FL = 17,950 N, FD = 1366 N, _W=91 kW

9.115 CL = 0:648, CD = 0:043

9.117 FD = 645 lbf, h = 33.9 ft

9.119 FL = 692
N
m

9.121 A=278 ft2, _W=0:34 hp

9.125 Δ _W=16:3 kW, Savings = 94%

9.127 7mmax = 260 kg, Vmin = 162
km
hr

9.129 α=3 deg, _W=10 kW,
acceleration

g
= 3:28

9.131 Thrust = 7300 lbf

9.135 Δp= −190 Pa gage; V=118
km
hr

9.137 FL = 1:08× 104lbf, FD = 3:96× 103lbf, _W=8:13 hp

10.1 Q= 0:243 m3=s, _W= 126 kW, H=52:8 m

10.3 For 60 deg: H=102 ft, _W=3:87 hp

10.5 H=320 ft, _W= 121 hp

10.7 F= −3983 N, _W=59:7 kW

10.9 θeff = 30.4 deg

10.13 β = 61.3 deg

10.15 H = 167 ft, Hk = 203 ft

10.19 _W=26:9 kW, β1 = 105 deg, β2 = 141:8 deg

10.21 Q=133 ft3=s, _W= 7:93 hp, α2 = 68:8 deg

10.23 NS = 0:432, _W= 8:97 kW

10.25 T = 33.1 kN m

10.27 H0 = 25:8 m,ηP = 78:9%; For N= 900 rpm :
Q=1:07 m3=s, H= 21:9 m,
H0 = 56:6 m, _W=292 kW

10.29 _W=1403 kW
10.31 6 pumps, N = 473 rpm

10.33 Q = 1051 gpm, N = 2410 rpm

10.41 Q=33:8 m3=s, H= 63:3 m, _W= 20:9MW

10.45 NPSHA = 82.2 kPa, p = −20.3 kPa gage

10.47 Q=0:58 m3=s; At 1 m3=s: _W= 706 kW,
Cost = $53 at $ 0:15=kWh

10.49 Q = 627 gpm

10.51 Q = 2280 gpm, K = 150

10.53 Q = 423 gpm

10.57 η = 86.6%, Q = 162 ft3/s, Δp = 0.0668 psi

10.59 V = 123 ft/s

10.61 N = 450 rpm: D = 7.77 ft, η = 88 %; N = 600 rpm:
D = 5.83 ft, η = 89 %

10.63 Nm =600 rpm, _Wm =1:16 kW, Qm =2:86
m3

s
,

ηp = 0:924

10.65 NS = 55.7, Qmax = 34,600 ft3/s

10.67 _W=280W

10.69 Single jet: N = 236 rpm, D = 3.16 m,
Djet = 0.275 m

10.71 _W=3374W, β1 = 36:4 deg, β2 = 144 deg

10.73 At V = 0 FT = 893 N; At V = 12.5 m/s
FT = 809 N

10.75 Fx = 0:315 lbf, Fy = 2:39 lbf, _W=0:554 hp,

u = 128
ft
s

10.77 J = 0.748, CF = 0.0415, 77 %, CT = 0.00642,
CP = 0.0036

10.79 A2 = 5:77 m2

10.81 N=153 rpm, _W=144W

10.83 FP =80:4 kN, FT = 123:7 kN

10.87 Vdown = 4:6
m
s
, Vdisk = 8:95

m
s
, Fthrust = 272 kN,

pup = 59:7 Pa, pdown = −36:5 Pa
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10.89 N=3160 rpm, _m= 68:8 lbm=s

11.3
λ
y
= 5:16

11.11 y= 0:302, Fr = 3:85

11.13 yc = 2:0 m, Qmax = 53:2
m3

s
, Q= 49:4

m3

s
at 2:4 m,

y= 2:87 m and 0:71 m at Q=28:3
m3

s

11.15 y= 1:46 ft, V= 6:85
ft
s
, Emiin = 2:19 ft

11.17 Q = 3.24 ft3/s

11.19 y2 = 2:71 m, width = 3:22 m

11.21 y2 = 0:334 ft,
y2−y1
y1

= 11:3%

11.23 Q = 49.5 ft3/s

11.25 y2 = 1.05 m

11.27 _Wloss = 1924 hp

11.29 Q = 54.0 ft3/s, Hl = 1.62 ft

11.31 y2 = 4.45 m, Hl = 9.31 m

11.33 Q = 3.18 m3/s

11.35 y = 2.61 ft

11.37 Qm =1:56
ft3

s
, So, m = 0:0009, nm = 0:208

11.39 concrete: b = 2.36 ft; cement: b = 2.77 ft

11.41 y0 = 1.32 m

11.43 Q = 0.194 m3/s

11.45 y = 1.37 m

11.47 y = 0.775 m

11.49 yc = 0.637 m

11.51 b = 4.78 ft, Sc = 0.00462

11.53 H = 0.331 m, P = 2.17 m

11.55 8.84 m3/s

12.1 Δu= −574
J
kg

, Δh= −803
J
kg

, Δs = 143
J

kg K
12.3 a) q = 1104 kJ/kg, b) q = 789 kJ/kg

12.5 V2 = 247
m
s

12.7 _W=392 kW

12.9 ΔT = −2.1 F

12.11 cH2 = 1305
m
s
,cHe = 1005

m
s
,cCH4 = 446

m
s
,

cN2 = 349
m
s
,cCO2 = 267

m
s

12.13 c = 299 m=s, V= 987 m=s,
V

Vbullet
= 1:41

12.17 Δt = 16.233 s, Δt = 16.7 s

12.23 V = 1862 m/s

12.25 V = 493 m/s, Δt = 0.398 s

12.27 Δt = 8.55 s

12.29 Δt = 48.5 s

12.31
Δρ
ρ

=48:5% , Not incompressible flow

12.33 V = 218 m/s

12.37 V = 460 ft/s

12.41 T01 = 344 K, p01 = 223 kPa, T02 = 344 K,

p02 = 145 kPa, s2−s1 = 0:124
kJ

kg K

12.43 pin – pout = 48.2 kPa

12.45 T∗ =260 K, p∗ =24:7MPa abs, V∗ =252
m
s

12.47 pvac = 359 mmHg , _m=0:27
kg
s
, _m=0:26

kg
s

12.49 T∗ =1478 K, p∗ =74:0 kPa abs, V∗ =770
m
s

12.51 p= 95:1 psia, T= 91:4 F; V=309
ft
s

12.53 V=781
m
s
, _m=2:00

kg
s
, M=1:35

12.55 p = 6.52 psi

12.57 Dth = 2:4 in:, De = 2:78 in.

12.59 M1 = 0:512, M2 = 1:68, A∗ =0:759 cm2,

_m=0:0321
kg
s

12.61 aÞ _m=0:325
kg
s
, bÞ _m=0:325

kg
s

12.63 M1 = 0:311, M2 = 0:612,
A2

A1
= 0:792

12.65 _m=17:0
lbm
s

12.67 p2 = 38,870 kPa abs, T1 = 1246 C,
A2

A3
= 0:040

12.69 _m=0:548
kg
s

12.71 p0 = 817 kPa, pe = 432 kPa, Te = 228 K, Ve = 302
m
s

12.73 F = 1560 N to the left

12.75 F = 304 lbf in tension

12.77 A=2:99 in2, m= 3:74
lbm
s

12.79 pe = 88:3 kPa, _m=0:499
kg
s
, F= 1026 N to the left

12.81 p1 = 1:28 psia, ρ1 = 0:00653
lbm
ft3

, V= 2260
ft
s
,

T01 = 954 R, p01 = 10:0 psia, p02 = 7:22 psia

12.83 p1 = 314 kPa abs, p2 = 166 kPa abs

12.85 V2 = 232
m
s
, p2 = 526 kPa, V2s = 232

m
s
,

p2s = 1642 kPa

12.87 T2 = 520 K, p0 2 = 1:29MPa abs

12.89 V1 = 416
m
s
, V2 = 399

m
s

12.91 p0 = 57:9 kPa abs, T= 414 K, p= 51:9 kPa abs
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Index

Absolute metric (system of units), 10
Absolute pressure, 50
Absolute viscosity, 29
Acceleration:
convective, 158
gravitational, 11
local, 158
of particle in velocity field, 156, 158
cylindrical coordinates, 159
rectangular coordinates, 158

Adiabatic flow, see Fanno-line flow
Adiabatic process, 559
Adverse pressure gradient, 35, 213, 355, 371,

380, 385, 388, 415, 494, 583
Aging of pipes, 303
Alternate depths, 518
Anemometer:
Laser Doppler, 332
thermal, 336

Angle of attack, 371, 385, 386, 477, 487
Angular deformation, 156, 160, 164
Angular-momentum principle, 85, 415, 417
fixed control volume, 117
rotating control volume, W4-6

Apparent viscosity, 31
Apparent shear stress, 294
Aqueduct, 510
Archimedes’ principle, 70
Area, centroid of, 60
second moment of, 61
product of inertia of, 62

Area ratio, 306
isentropic flow, 586

Aspect ratio:
airfoil, 391, 489
flat plate, 378
rectangular duct, 309

Atmosphere:
standard, 51, 58

Average velocity, 91, 277
parallel plates, 281, 285
pipe, 291, 326, 336
open channel, 511

Barometer, 32, 33, 57
Barotropic fluid, 37
Barrels, U.S. petroleum industry, 313
Basic equation of fluid statics, 47
Basic equations for control volume, 89
angular-momentum principle, for inertial

control volume, 117
for rotating control volume, W4-6
for Euler turbomachine, 417

conservation of mass, 89
first law of thermodynamics, 121
Newton’s second law (linear momentum), for

control volume moving with constant
velocity, 109

for control volume with arbitrary
acceleration, W4-1

for control volume with rectilinear
acceleration, 111

for differential control volume, 105
for nonaccelerating control volume, 94

second law of thermodynamics, 128
Basic laws for system, 84
angular-momentum principle, 84
conservation of mass, 84
first law of thermodynamics, 85
Newton’s second law (linear momentum), 84
differential form, 168

second law of thermodynamics, 85
Basic pressure-height relation, 51
Bearing, journal, 283
Bernoulli equation, 12, 107, 203
applications, 208
cautions on use of, 213
interpretation as an energy equation, 213
irrotational flow, 219
restrictions on use of, 107, 203, 213
unsteady flow, W6-1

Bingham plastic, 31
Blasius’ solution, W9-1
Blower, 308, 413, 428, 455
Body force, 25, 51
Boundary layer, 35, 229, 276
displacement thickness, 356
effect of pressure gradient on, 371
flat plate, 356
integral thicknesses, 357
laminar:
approximate solution, 362
exact solution, W9-1

momentum integral equation for, 359,
362, 363

momentum-flux profiles, 373
momentum thickness, 357
separation, 371
shape factor, 373
thickness, 356
transition, 356
turbulent, 369
velocity profiles, 373

Boundary-layer:
control, 387, 393, 396
thicknesses, 356

Buckingham Pi theorem, 248, 491
Bulk (compressibility) modulus, 37, 566
Bump, flow over, 524
Buoyancy force, 69

Camber, 387
Capillary effect, 31, 253
Capillary viscometer, 291
Cavitation, 37, 255, 441
Cavitation number, 255, 482
Center of pressure, 61, 62
Centrifugal pump, 414, 428
CFD, see Computational fluid dynamics
Chezy equation, 537

Choking, 590, 595, W12-3, W12-22
Chord, 385, 387, 391
Circulation, 162, 225, 387, 391
Compressible flow, 37, 490, 495, 575
basic equations for, 577
ideal gas, 580

Compressor, 413, 433, 491
Computational fluid dynamics, 170, 176
and Navier-Stokes equations, 170
applications of, 177
dealing with nonlinearity, 187
direct and iterative solutions, 187
finite difference method, 177
grid convergence, 187
iterative convergence, 188

Concentric-cylinder viscometer, 41, 43
Conical diffuser, 306, 331
Conjugate depth, 531
Conservation:
of energy, see First law of thermodynamics of

mass, 85, 121, 125
of mass, 89
cylindrical coordinates, 149
rectangular coordinates, 148

Consistency index, 31
Contact angle, 31
Continuity, see Conservation of mass
Continuity equation, differential form, 148
cylindrical coordinates, 149
rectangular coordinates, 148

Continuum, 18
Control surface, 6
Control volume, 6, 83
rate of work done by, 122

Convective acceleration, 158
Converging-diverging nozzle, see Nozzle
Converging nozzle, see Nozzle
Couette flow, 284
Critical conditions, compressible flow, 577
Critical depth, 521
Critical flow in open channel, 516, 519,

521, 522, 525
Critical pressure ratio, 577, 590
Critical Reynolds number, see Transition
Critical speed:
compressible flow, 577
open-channel flow, 522

Curl, 161
Cylinder:
drag coefficient, 381
inviscid flow around, 225, 230, 231

D’Alembert paradox, 33, 35, 229
Deformation:
angular, 156, 160, 164
linear, 156, 166
rate of, 4, 27, 165

Del operator:
cylindrical coordinates, 150, 220, W3-2
rectangular coordinates, 148

656



Density, 4, 18
Density field, 18
Derivative, substantial, 157
Design conditions, see Nozzle
Differential equation, nondimensionalizing, 245
Diffuser, 305, 320, 396, 416
optimum geometries, 306
pressure recovery in, 305, 307
supersonic, 582, W12-1

Dilatant, 31
Dilation, volume, 166
Dimension, 9
Dimensional homogeneity, 12
Dimensional matrix, 253
Dimensions of flow field, 22
Discharge coefficient, 328
flow nozzle, 329
orifice plate, 329
venturi meter, 331
weir, 549

Displacement thickness, 356
Disturbance thickness, see Boundary layer
Doppler effect, 336, 567
Doublet, 223
strength of, 225

Downwash, 391
Draft tube, 416, 464, 470
Drag, 33, 355, 374
form, 35, 393
friction, 375, 378
induced, 392
parasite, 396
pressure, 35, 375, 378
profile, 393

Drag coefficient, 247, 375
airfoil, 386, 388
complete aircraft, 392
cylinder, 381
rotating, 399

flat plate normal to flow, 378
flat plate parallel to flow, 376
golf balls, 397
induced, 391
selected objects, 379
sphere, 379
spinning, 397

streamlined strut, 385
supersonic airfoil, W12-43
supertanker, 378
vehicle, 362

Dynamic pressure, 205, 206
Dynamic similarity, 257
Dynamic viscosity, 29
Dyne, 10

Efficiency 263
hydraulic turbine, 423
propeller, 477
propulsive, 476
pump, 264, 265, 308, 421
wind turbine, 485, 490

Elementary plane flows, see Potential flow theory
End-plate, 393
Energy equation, for pipe flow, 299, 309. See

also First law of thermodynamics
Energy grade line, 265, 297, 543

English Engineering (system of units), 10
Enthalpy, 125, 490, 558
Entrance length, 276
Entropy, 559
Equation of state, 4, 579
ideal gas, 4, 557

Equations of motion, see Navier-Stokes equations
Euler equations, 170, 199
along streamline, 201
cylindrical coordinates, 199
normal to streamline, 201
rectangular coordinates, 199
streamline coordinates, 200

Eulerian method of description, 8, 159
Euler method, 178
Euler number, 255
Euler turbomachine equation, 417
Experimental uncertainty, 14
Extensive property, 85
External flow, 37

Fan, 308, 413, 428, 455
“laws,” 264, 459
specific speed, 459

Fanno-line flow, 600, W12-11
flow functions for computation of, W12-15
Ts diagram, W12-22

Field representation, 19
First law of thermodynamics, 84, 121, 125
Fittings, losses in, see Head loss, in valves

and fittings
Flap, 393
Flat plate, flow over, 355
Float-type flow meter, 336
Flow behavior index, 31
Flow coefficient, 264, 328
flow nozzle, 329
orifice plate, 329
turbomachine, 423

Flow field, dimensions of, 20
Flow measurement, 326
internal flow, 326
direct methods, 326
linear flow meters, 335
electromagnetic, 336
float-type, 335
rotameter, 335
turbine, 335
ultrasonic, 336
vortex shedding, 336

restriction flow meters, 326
flow nozzle, 329
laminar flow element, 332
orifice plate, 329
venturi, 331

traversing methods, 336
laser Doppler anemometer, 336
thermal anemometer, 336

open-channel flow, 548
Flow meter, see Flow measurement
Flow nozzle, 328, 329
Flow visualization, 21, 261
Fluid, 3
Fluid machinery
fan, 413
performance characteristics, 433

positive displacement, 413, 461
propeller, 458, 470, 474
pump, 413, 461
turbine, 413, 415

Fluid particle, 8, 20
Fluid statics:
basic equation of, 47, 50
pressure-height relation, 50

Fluid system, 308, 444
Force:
body, 25, 49
buoyancy, 69
compressibility, 255
drag, 374
gravity, 254
hydrostatic, 59
on curved submerged surface, 66
on plane submerged surface, 59

inertia, 253, 254
lift, 374, 386
pressure, 34, 48, 254, 374
shear, 374
surface, 25, 49
surface tension, 31, 255
viscous, 254

Forced vortex, 163
Francis turbine, 416, 427, 470
Free vortex, 163, 307
Friction drag, see Drag
Friction factor, 299, 300, 301
Darcy, 300
data correlation for, 300, 301
Fanning, 300
laminar flow, 302
smooth pipe correlation, 303

Frictionless flow:
compressible adiabatic, see

Isentropic flow
compressible with heat transfer, see

Rayleigh-line flow
incompressible, 199

Friction velocity, 294
Froude number, 256, 258, 512, 516
Fully developed flow, 276
laminar, 277
turbulent, 293

Fully rough flow regime, 302

gc, 9, 11
Gage pressure, 51
Gas constant:
ideal gas equation of state, 4, 557
universal, 557

Geometric similarity, 257
Gibbs equations, 215, 560
Grade line, 217
energy, 217, 298, 320, 322
hydraulic, 217, 320, 322

Gradient, 50
Gradually varied flow, 543
Gravity, acceleration of, 9
Guide vanes, 416

Head, 218, 300, 418
gross, 466, 470
pump, 308, 422, 445, 449
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Head (continued)
net, 466, 470
shutoff, 428

Head coefficient, 263, 424, 492
Head loss, 298
in diffusers, 305
in enlargements and contractions, 305
in exits, 304
in gradual contractions, 305
in inlets, 304
major, 294, 299
minor, 29, 299, 303
in miter bends, 307
in nozzles, 305
in open-channel flow, 512, 518
hydraulic jump, 532
permanent (in flow meters), 332
in pipe bends, 307
in pipe entrances, 304
in pipes, 307
in sudden area changes, 305
total, 299
in valves and fittings, 307

Head loss coefficient, 304
Heat transfer, sign convention for, 85, 122
Hydraulic depth, 512, 516
Hydraulic diameter, 294, 309, 512
Hydraulic grade line, 218, 298, 541
Hydraulic jump, 512, 528
basic equation for, 531, 532
depth increase across, 531
head loss across, 532

Hydraulic power, 422, 461
Hydraulic systems, 59
Hydraulic turbine, 415, 464
Hydrostatic force, 59
on curved submerged surfaces, 66
on plane submerged surfaces, 59

Hydrostatic pressure distribution, 60
Hypersonic flow, 567, 659

Ideal fluid, 220, 229
Ideal gas, 4, 19, 557
Impeller, 413, 456
Incomplete similarity, 258
Incompressible flow, 37, 90, 148, 151
Incompressible fluid, 33
Induced drag, 391
Inertial control volume, 94, 109
Inertial coordinate system, 95, 109
Intensive property, 85, 579
Internal energy, 442, 557
Internal flow, 38, 276
Inviscid flow, 33, 34, 162
Irreversible process, 442, 559
Irrotational flow, 162, 218
Irrotationality condition, 219
Irrotational vortex, 163, 224
Isentropic expansion waves, W12-38
basic equations for, W12-41
Prandtl-Meyer expansion function,

W12-41
Isentropic flow, 580
basic equations for, ideal gas, 572, 585
in converging-diverging nozzle, 594

in converging nozzle, 589
effect of area variation on, 580, 585
flow functions for computation of, 585
in hs plane, 581
reference conditions for, 570, 584

Isentropic process, 560
Isentropic stagnation properties, 560
Isothermal flow, W12-18

Journal bearing, 283

Kaplan turbine, 416, 470
Kinematic similarity, 256
Kinematics of fluid motion, 155
Kinematic viscosity, 29
Kinetic energy coefficient, 299

Lagrangian method of description, 158
Laminar boundary layer, 355, 364, W9-1
flat plate approximate solution, 364
flat plate, exact solution, W9-1

Laminar flow, 36, 276
between parallel plates, 277
in pipe, 288

Laminar flow element (LFE), 332
Laplace’s equation, 180, 221
Lift, 355, 374, 386
Lift coefficient, 386
airfoil, 387
Darrieus rotor blade, 489
rotating cylinder, 399
spinning golf ball, 397
spinning sphere, 397
supersonic airfoil, W12-43

Lift/drag ratio, 389
Linear deformation, 156, 166
Linear momentum, see Newton’s second law

of motion
Local acceleration, 391
Loss, major and minor, see Head loss
Loss coefficient, see Head loss

Mach angle, 536
Mach cone, 567
Mach number, 37, 245, 256, 563
Magnus effect, 399
Major loss, see Head loss
Manning:
equation, 536
roughness coefficient, 537

Manometer, 33, 52
capillary effect in, 31
multiple liquid, 56
reservoir, 54
sensitivity, 33, 53
U-tube, 53

Material derivative, 157
Mean line, 386
Measurement, flow, see Flow

measurement
Mechanical energy, 215, 293, 297, 309
Mechanical flow meter, see Flow

measurement
Mechanical power, 418
Meniscus, 31, 253

Meridional velocity, 423
Meridional plane, 424
Meter, flow, see Flow measurement
Methods of description:
Eulerian, 8, 159
Lagrangian, 7, 159

Minor loss, see Head loss
Minor loss coefficient, see Head loss

coefficient
Model studies, 256
Model test facilities, 266
Modulus of elasticity, 37
Molecular mass, 557
Momentum:
angular, see Angular-momentum principle
linear, see Newton’s second law

of motion
Momentum equation: 167
differential form, 168
for control volume moving with constant

velocity, 109
for control volume with arbitrary acceleration,

W4-1
for control volume with rectilinear

acceleration, 111
for differential control volume, 105
for inertial control volume, 94
for inviscid flow, 199

Momentum flux, 106
Momentum integral equation, 359, 362
for zero pressure gradient flow, 363

Momentum thickness, 357
Moody diagram, 301

Nappe, 458
Navier-Stokes equations, 168
numerical solution of, 170, 176

Net positive suction head, 437, 441
Network, pipe, 322
Newton, 10
Newtonian fluid, 28, 168
Newton’s second law of motion, 7, 84
Noncircular duct, 309
Noninertial reference frame, W4-1, W4-9
Non-Newtonian fluid, 28, 30
apparent viscosity, 31
consistency index, 31
flow behavior index, 31
power-law model, 31
pseudoplastic, 31
rheopectic, 31
thixotropic, 31
time-dependent, 31
viscoelastic, 31

Normal depth, 512, 534
Normal shock, 597
basic equations for, 598
flow functions for computation of, 601, 603
supersonic channel flow with, 605, W12-1
Ts diagram, 599

Normal stress, 25, 48, 122, 169
No-slip condition, 3, 21, 35, 229, 278
Nozzle, 208, 212, 582
choked flow in, 591, 595
converging, 582, 589
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converging-diverging, 584, 605
design conditions, 596, 606
incompressible flow through, 212, 446, 582
normal shock in, 605
overexpanded, 696
underexpanded, 695

Oblique shock, W12-30
flow functions for computation of, W12-33

Ocean power, 47, 96
One-dimensional flow, 20
Open-channel flow, 39, 512
critical flow, 516, 521, 525
energy equation for, 516
geometric properties, 512
gradually varied depth, 512, 544
hydraulic jump, 512, 528
measurements in, 548
normal depth, 512, 534
rapidly varied flow, 516, 525
steady uniform flow, 534
total head, 518

Orifice plate, 329

Particle derivative, 157
Pathline, 21, 23
Pelton wheel, 416, 466
Permanent head loss, see Head loss
Pipe:
aging, 304, 450
compressible flow in, see Fanno-line flow
head loss, see Head loss
laminar flow in, 255, 277, 288
noncircular, 309
roughness, 299, 301
standard sizes, 311
turbulent flow in, 276, 294

Pipe systems, 308, 322
networks, 322
pumps in, 308, 444

Pi theorem, 248
Pitch, 477, 479
Pitot-static tube, 207
Pitot tube, 207
Planform area, 378, 385
Poise, 29
Polar plot, lift-drag, 389
Potential, velocity, 220
Potential flow theory, 220
elementary plane flows, 223
doublet, 225
sink, 225
source, 225
uniform flow, 225
vortex, 225

superposition of elementary plane flows, 227
Potential function, 220
Power coefficient, 263, 416, 424, 437, 480
Power-law model, non-Newtonian fluid, 31
Power-law velocity profile, 295
Prandtl boundary layer equations, 276, W-19
Pressure, 49
absolute, 51
center of, 59, 61
dynamic, 295, 206

gage, 51
stagnation, 205, 206
static, 205
thermodynamic, 124, 169, 205

Pressure coefficient, 255, 385
Pressure distribution: 374
airfoil, 375, 388
automobile, 397
converging-diverging nozzle, 565, 606
converging nozzle, 590
cylinder, 399
cylinder, inviscid flow, 225, 229
diffuser, 305, 371
sphere, 35, 396
supersonic airfoil, W12-43
wing, 7

Pressure drag, see Drag
Pressure field, 48
Pressure force, 49
Pressure gradient, 50, 355
effect on boundary layer, 378

Pressure recovery coefficient, 305
ideal, 306

Pressure tap, 205, 218, 328
Primary dimension, 9, 250
Profile, velocity, see Velocity profile
Propeller, 415, 458, 474
actuator disk, 474
efficiency, 476, 480
pitch, 479
power coefficient, 480
propulsive efficiency, 476
solidity, 477
speed of advance coefficient, 479
thrust coefficient, 480
torque coefficient, 480

Propulsive efficiency, 476
Pseudoplastic, 31
Pump, 413
in fluid system, 308, 413
“laws,” 265
operating point, 420, 445
parallel operation, 438, 452
positive displacement, 461
series operation, 437, 452
specific speed, 417, 423
variable-speed operation, 438, 453

Rankine propeller theory, 475
Rate of deformation, 4, 28, 165
Rayleigh-line flow, W12-20 basic
equations for, W12-21
flow functions for W12-26
Ts diagram, W12-22

Reentrant entrance, 301
Reference frame, noninertial, 112, W4-1
Repeating parameter, 251
Reversible process, 491, 559
Reynolds experiment, 276
Reynolds number, 34, 245, 255
critical, see Transition

Reynolds stress, 294
Reynolds transport theorem, 88
Rheopectic, 31
Rigid-body, motion of fluid, W3-1

Rotation, 155, 160
Roughness coefficient, Manning, 537
Roughness, pipe, 299, 301

Secondary dimension, 9
Secondary flow, 307
Second law of thermodynamics, 85, 128
Separation, 35, 303, 355
Sequent depth, 531
Shaft work, 89
Shape factor, velocity profile, 373
Shear rate, 28
Shear stress, 3, 25
distribution in pipe, 290

Shear work, 123
Shock, normal, see Normal shock
Shock, oblique, see Oblique shock
Shockless entry flow, 419, 456
Shutoff head, 429
Significant figures, 2
Similarity:
dynamic, 257
geometric, 257
incomplete, 258
kinematic, 257
rules, 437

Similar velocity profiles, 363, W9-1
Similitude, 294
Sink, 223
Siphon, 209
Skin friction coefficient, 365, 536, W9-3
Slope, bed, 512
Slug, 10
Sluice gate, 102, 210, 517
Solidity, 415, 477, 482, 484
Source, 223
strength of, 224

Span, wing, 385, 390
Specific energy, 518
Specific energy diagram, 519
Specific gravity, 19
Specific heat:
constant pressure, 557
constant volume, 558

Specific heat ratio, 557
Specific speed, 265, 417, 423, 424
Specific volume, 124, 518, 557
Specific weight, 19
Speed of advance coefficient, 479
Speed of sound, 563
ideal gas, 565
solid and liquid, 564

Sphere:
drag coefficient, 380
flow around, 35
pressure distribution, 381

Spin ratio, 397
Stability, 69
Stage, 413
Stagnation enthalpy, 490, 579
Stagnation point, 35, 229, 231, 355
Stagnation pressure, 206
isentropic, see Isentropic stagnation

properties
Stagnation pressure probe, 205
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Stagnation properties, see Isentropic stagnation
properties

Stagnation state, 570
Stagnation temperature, 577
Stall, wing, 387
Standard atmosphere, 51
Standard pipe sizes, 310
Static fluid, pressure variation in, 52
Static pressure, 205
Static pressure probe, 205
Static pressure tap, 205
Steady flow, 20, 91, 148, 534
Stoke, 29
Stokes’ drag law, 379
Stokes’ theorem, 163
STP (standard temperature and pressure),

18, 246
Streakline, 21
Stream function, 151, 152
Streamline, 21
equation of, 22, 152

Streamline coordinates, 200, 202
Streamline curvature, 201, 397
Streamlining, 36, 384
Stream tube, 105, 213
Stress, 25
components, 26, 169
compressive, 49
normal, 25, 123, 169
notation, 26
shear, 25, 177
sign convention, 27
yield, 30, 31

Stress field, 25
Stresses, Newtonian fluid, 169
Strouhal number, 326, 381
Substantial derivative, 157
Suction surface, 387
Sudden expansion, 305
Superposition, of elementary plane

flows, 225
direct method of, 225
inverse method of, 229

Surface force, 25
Surface tension, 31
Surface waves, speed of, 512
System, 6, 101
System head curves, 445
System derivative, 85
relation to control volume, 88

Systems:
of dimensions, 9
of units, 9

Taylor series expansion, 49, 146, 149, 161, 168,
176, 182, 279, 360

Tds equations, 559
Terminal speed, 7

Thermodynamic pressure, see Pressure
Thermodynamics, review of, 557
Thixotropic, 31
Three-dimensional flow, 20
Throat, nozzle, 583, 597
Thrust coefficient, 480
Timeline, 21
Torque coefficient, 417, 424, 480
Total head tube, 206
Trailing vortex, 391
Transition, 255, 277, 295, 302, 355, 380
Transonic flow, 567
Ts diagram, 559, 581, 592
Turbine, 415
hydraulic, 415, 427, 464
impulse, 416, 466, 472
reaction, 416, 464, 469
specific speed, 417, 423, 451, 459
wind, 416, 474, 482

Turbine flow meter, 335
Turbomachine, 413
axial flow, 413, 429, 458
centrifugal, 413
fan, 413, 428
flow coefficient, 264, 417, 423,

427, 459
head coefficient, 265, 424
mixed flow, 413
pump, 413
power coefficient, 263, 417, 423, 437, 480,

485, 492
radial flow, 413, 419, 429
scaling laws for, 265
specific speed, 165, 417, 423
stage, 413
torque coefficient, 417, 423, 480

Turbulent boundary layer, flat plate, 369
Turbulent flow, 35, 276
Turbulent pipe flow, 293
fluctuating velocity, 294
mean velocity, 300
shear stress distribution, 293
velocity profile, 294

Two-dimensional flow, 22

Uncertainty, experimental, 14
Underexpanded nozzle, 595
Uniform flow at a section, 22, 91
Uniform flow field, 11
Uniform flow in open channel, 534
Units, 9
Universal gas constant, 557
Unsteady Bernoulli equation, W6-1
Unsteady flow, 23, 94

Vapor pressure, 37
Vector, differentiation of, 148, 150, 158
Velocity diagram, 419

Velocity field, 19
Velocity measurement, see Flow measurement
Velocity potential, 220
Velocity profile, 29, 290, 294
Vena contracta, 304, 320, 327
Venturi flowmeter, 329, 331
Viscoelastic, 4, 27, 31
Viscometer:
capillary, 291

Viscosity, 4, 31
absolute (or dynamic), 29
apparent, 31
kinematic, 29

Viscous flow, 4, 27, 33
Viscous sublayer, 295
Visualization, flow, 21, 261
Volume dilation, 166
Volume flow rate, 90
Vortex: 163, 231
irrotational, 162, 225
strength of, 224
trailing, 390, 393

Vortex shedding, 336, 381
Vorticity, 162

Wake, 35, 355, 371, 374
Wall shear stress, 294, 302, 363, 371,

W9-2, W12-11
Water hammer, 37
Waves, capillary, 31
Wave power, 47, 82, 144
Weber number, 256
Weight, 13
Weir, 548
broad crested, 548, 550
coefficient, 549
contracted rectangular, 549
suppressed rectangular, 548
triangular, 550

Wetted area, 376
Wetted perimeter, 309, 512, 543
Windmill, 412, 474, 482
Wind power, 1, 412, 416, 474, 482
Wind tunnel, 257, 261, 264
supersonic, W12-2

Wind turbine, 416, 474
Winglet, 393
Wing loading, 391
Wing span, 390
Work, rate of, 122
shaft, 122
shear, 123
sign convention for, 85, 122

Yield stress, 28

Zone of action, 568
of silence, 568
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