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Preface

You may be wondering why we chose a photo of NASA’s Mars Rover
for the cover. We actually chose it for several reasons. Obviously, it is
very exciting; in fact, space represents the most exciting frontier for
the entire world! In addition, much of the Rover itself consists of all
kinds of circuits. Circuits that must work without needing maintenance!
Once you are on Mars, it is hard to find a technician!

The Rover must have a power system that can supply all the power
necessary to move it, help it collect samples and analyze them, broadcast
the results back to Earth, and receive instructions from Earth. One of the
important issues that make the problem of working with the rover is that
it takes about 20 minutes for communications to go from the Earth to
Mars. So the Rover does not make changes required by NASA quickly.

What we find most amazing is that such a sophisticated and com-
plicated electro-mechanical device can operate so accurately and reli-
ably after flying millions of miles and being bounced onto the ground!
Here is a link to an absolutely incredible video of what the Rover is
all about and how it got to Mars: http://www.youtube.com/
watch?v=5SUmRx4dEdRI. Enjoy!

Features
New to This Edition

A model for magnetic coupling is presented in Chapter 13 that will make
analysis easier as well as enhance your ability to find errors. We have suc-
cessfully used this model for years and felt it was now time to add it to
the book. In addition, there are over 600 new end-of-chapter problems,
changed end-of-chapter problems, and changed practice problems.

We have also added National Instruments Multisim™™ solutions for
almost all of the problems solved using PSpice®. There is a Multisim
tutorial available on our website. We have added National Instruments
Multisim since it is very user-friendly with many more options for
analysis than PSpice. In addition, it allows the ability to modify circuits
easily in order to see how changing circuit parameters impacts voltages,
currents, and power. We have also moved the tutorials for PSpice, MAT-
LAB®, and KCIDE to our website to allow us to keep up with changes
in the software.

We have also added 43 new problems to Chapter 16. We did this
to enhance using the powerful s-domain analysis techniques to finding
voltages and currents in circuits.

Retained from Previous Editions

A course in circuit analysis is perhaps the first exposure students have
to electrical engineering. This is also a place where we can enhance
some of the skills that they will later need as they learn how to design.

xi
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Preface

An important part of this book is our 121 design a problem problems.
These problems were developed to enhance skills that are an important
part of the design process. We know it is not possible to fully develop
a student’s design skills in a fundamental course like circuits. To fully
develop design skills a student needs a design experience normally
reserved for their senior year. This does not mean that some of those
skills cannot be developed and exercised in a circuits course. The text
already included open-ended questions that help students use creativ-
ity, which is an important part of learning how to design. We already
have some questions that are open-ended but we desired to add much
more into our text in this important area and have developed an
approach to do just that. When we develop problems for the student to
solve our goal is that in solving the problem the student learns more
about the theory and the problem solving process. Why not have the
students design problems like we do? That is exactly what we do in
each chapter. Within the normal problem set, we have a set of prob-
lems where we ask the student to design a problem to help other stu-
dents better understand an important concept. This has two very
important results. The first will be a better understanding of the basic
theory and the second will be the enhancement of some of the student’s
basic design skills. We are making effective use of the principle of
learning by teaching. Essentially we all learn better when we teach a
subject. Designing effective problems is a key part of the teaching
process. Students should also be encouraged to develop problems,
when appropriate, which have nice numbers and do not necessarily
overemphasize complicated mathematical manipulations.

A very important advantage to our textbook, we have a total of
2,447 Examples, Practice Problems, Review Questions, and End-of-
Chapter Problems! Answers are provided for all practice problems and
the odd numbered end-of-chapter problems.

The main objective of the fifth edition of this book remains the
same as the previous editions—to present circuit analysis in a manner
that is clearer, more interesting, and easier to understand than other cir-
cuit textbooks, and to assist the student in beginning to see the “fun”
in engineering. This objective is achieved in the following ways:

¢ Chapter Openers and Summaries
Each chapter opens with a discussion about how to enhance skills
which contribute to successful problem solving as well as success-
ful careers or a career-oriented talk on a sub-discipline of electri-
cal engineering. This is followed by an introduction that links the
chapter with the previous chapters and states the chapter objectives.
The chapter ends with a summary of key points and formulas.

¢ Problem-Solving Methodology
Chapter 1 introduces a six-step method for solving circuit prob-
lems which is used consistently throughout the book and media
supplements to promote best-practice problem-solving procedures.

¢ Student-Friendly Writing Style
All principles are presented in a lucid, logical, step-by-step man-
ner. As much as possible, we avoid wordiness and giving too much
detail that could hide concepts and impede overall understanding
of the material.
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* Boxed Formulas and Key Terms

Important formulas are boxed as a means of helping students sort
out what is essential from what is not. Also, to ensure that students
clearly understand the key elements of the subject matter, key
terms are defined and highlighted.

Margin Notes

Marginal notes are used as a pedagogical aid. They serve multiple
uses such as hints, cross-references, more exposition, warnings,
reminders not to make some particular common mistakes, and
problem-solving insights.

Worked Examples

Thoroughly worked examples are liberally given at the end of
every section. The examples are regarded as a part of the text and
are clearly explained without asking the reader to fill in missing
steps. Thoroughly worked examples give students a good under-
standing of the solution process and the confidence to solve prob-
lems themselves. Some of the problems are solved in two or three
different ways to facilitate a substantial comprehension of the sub-
ject material as well as a comparison of different approaches.

Practice Problems

To give students practice opportunity, each illustrative example is
immediately followed by a practice problem with the answer. The
student can follow the example step-by-step to aid in the solution
of the practice problem without flipping pages or looking at the
end of the book for answers. The practice problem is also intended
to test a student’s understanding of the preceding example. It will
reinforce their grasp of the material before the student can move
on to the next section. Complete solutions to the practice problems
are available to students on the website.

Application Sections

The last section in each chapter is devoted to practical application
aspects of the concepts covered in the chapter. The material cov-
ered in the chapter is applied to at least one or two practical prob-
lems or devices. This helps students see how the concepts are
applied to real-life situations.

Review Questions

Ten review questions in the form of multiple-choice objective
items are provided at the end of each chapter with answers. The
review questions are intended to cover the little “tricks” that the
examples and end-of-chapter problems may not cover. They serve
as a self test device and help students determine how well they
have mastered the chapter.

Computer Tools

In recognition of the requirements by ABET® on integrating
computer tools, the use of PSpice, Multisim, MATLAB, KCIDE for
Circuits, and developing design skills are encouraged in a student-
friendly manner. PSpice is covered early on in the text so that stu-
dents can become familiar and use it throughout the text. Tutorials
on all of these are available on our website. MATLAB is also intro-
duced early in the book.

xiii
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Design a Problem Problems
Finally, design a problem problems are meant to help the student
develop skills that will be needed in the design process.

Historical Tidbits

Historical sketches throughout the text provide profiles of impor-
tant pioneers and events relevant to the study of electrical
engineering.

Early Op Amp Discussion

The operational amplifier (op amp) as a basic element is introduced
early in the text.

Fourier and Laplace Transforms Coverage

To ease the transition between the circuit course and signals and
systems courses, Fourier and Laplace transforms are covered
lucidly and thoroughly. The chapters are developed in a manner
that the interested instructor can go from solutions of first-order
circuits to Chapter 15. This then allows a very natural progression
from Laplace to Fourier to AC.

Four Color Art Program
An interior design and four color art program bring circuit drawings
to life and enhance key pedagogical elements throughout the text.

Extended Examples
Examples worked in detail according to the six-step problem solv-
ing method provide a roadmap for students to solve problems in a
consistent fashion. At least one example in each chapter is devel-
oped in this manner.

EC 2000 Chapter Openers

Based on ABET’s skill-based CRITERION 3, these chapter open-
ers are devoted to discussions as to how students can acquire the
skills that will lead to a significantly enhanced career as an engi-
neer. Because these skills are so very important to the student
while still in college as well after graduation, we use the heading,
“Enhancing your Skills and your Career.”

Homework Problems

There are 468 new or changed end-of-chapter problems which will
provide students with plenty of practice as well as reinforce key
concepts.

Homework Problem Icons
Icons are used to highlight problems that relate to engineering
design as well as problems that can be solved using PSpice, Mul-
tisim, KCIDE, or MATLAB.

Organization

This book was written for a two-semester or three-quarter course in
linear circuit analysis. The book may also be used for a one-semester
course by a proper selection of chapters and sections by the instructor.
It is broadly divided into three parts.

e Part 1, consisting of Chapters 1 to 8, is devoted to dc circuits. It

covers the fundamental laws and theorems, circuits techniques, and
passive and active elements.
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e Part 2, which contains Chapter 9 to 14, deals with ac circuits. It
introduces phasors, sinusoidal steady-state analysis, ac power, rms
values, three-phase systems, and frequency response.

e Part 3, consisting of Chapters 15 to 19, are devoted to advanced
techniques for network analysis. It provides students with a solid
introduction to the Laplace transform, Fourier series, Fourier trans-
form, and two-port network analysis.

The material in the three parts is more than sufficient for a two-semester
course, so the instructor must select which chapters or sections to cover.
Sections marked with the dagger sign () may be skipped, explained
briefly, or assigned as homework. They can be omitted without loss of
continuity. Each chapter has plenty of problems grouped according to
the sections of the related material and diverse enough that the instruc-
tor can choose some as examples and assign some as homework. As
stated earlier, we are using three icons with this edition. We are using
g to denote problems that either require PSpice in the solution
process, where the circuit complexity is such that PSpice or Multisim
would make the solution process easier, and where PSpice or Multisim
makes a good check to see if the problem has been solved correctly.
We are using ﬁl_ to denote problems where MATLAB is required in the
solution process, where MATLAB makes sense because of the problem
makeup and its complexity, and where MATLAB makes a good check
to see if the problem has been solved correctly. Finally, we use ead
to identify problems that help the student develop skills that are needed
for engineering design. More difficult problems are marked with an
asterisk (*).

Comprehensive problems follow the end-of-chapter problems. They
are mostly applications problems that require skills learned from that
particular chapter.

Prerequisites

As with most introductory circuit courses, the main prerequisites, for
a course using this textbook, are physics and calculus. Although famil-
iarity with complex numbers is helpful in the later part of the book, it
is not required. A very important asset of this text is that ALL the math-
ematical equations and fundamentals of physics needed by the student,
are included in the text.

Supplements
McGraw-Hill Connect® Engineering

McGraw-Hill Connect Engineering is a web-based assignment and
assessment platform that gives students the means to better connect
with their coursework, with their instructors, and with the important
concepts that they will need to know for success now and in the
future. With Connect Engineering, instructors can deliver assign-
ments, quizzes, and tests easily online. Students can practice impor-
tant skills at their own pace and on their own schedule. Ask your
McGraw-Hill representative for more details and check it out at
www.mcgrawhillconnect.com/engineering.
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Instructor and Student Website

Available at www.mhhe.com/alexander are a number of additional
instructor and student resources to accompany the text. These include
complete solutions for all practice and end-of-chapter problems, solu-
tions in PSpice and Multisim problems, lecture PowerPoints®, text
image files, transition guides to instructors, Network Analysis Tutori-
als, FE Exam questions, flashcards, and primers for PSpice, Multisim,
MATLAB, and KCIDE. The site also features COSMOS, a complete
online solutions manual organization system that allows instructors to
create custom homework, quizzes, and tests using end-of-chapter prob-
lems from the text.

Knowledge Capturing Integrated Design
Environment for Circuits (KC/IDE for Circuits)

This software, developed at Cleveland State University and funded by
NASA, is designed to help the student work through a circuits problem
in an organized manner using the six-step problem-solving methodol-
ogy in the text. KCIDE for Circuits allows students to work a circuit
problem in PSpice and MATLAB, track the evolution of their solution,
and save a record of their process for future reference. In addition, the
software automatically generates a Word document and/or a PowerPoint
presentation. The software package can be downloaded for free.

It is hoped that the book and supplemental materials supply the
instructor with all the pedagogical tools necessary to effectively pres-
ent the material.

McGraw-Hill Create™

Craft your teaching resources to match the way you teach! With
McGraw-Hill Create, www.mcgrawhillcreate.com, you can easily
rearrange chapters, combine material from other content sources, and
quickly upload content you have written like your course syllabus or
teaching notes. Find the content you need in Create by searching
through thousands of leading McGraw-Hill textbooks. Arrange your
book to fit your teaching style. Create even allows you to personalize
your book’s appearance by selecting the cover and adding your name,
school, and course information. Order a Create book and you’ll receive
a complimentary print review copy in three to five business days or a
complimentary electronic review copy (eComp) via e-mail in minutes.
Go to www.mcgrawhillcreate.com today and register to experience how
McGraw-Hill Create empowers you to teach your students your way.
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A Note to the Student

This may be your first course in electrical engineering. Although elec-
trical engineering is an exciting and challenging discipline, the course
may intimidate you. This book was written to prevent that. A good text-
book and a good professor are an advantage—but you are the one who
does the learning. If you keep the following ideas in mind, you will do
very well in this course.

This course is the foundation on which most other courses in the
electrical engineering curriculum rest. For this reason, put in as
much effort as you can. Study the course regularly.

Problem solving is an essential part of the learning process. Solve as
many problems as you can. Begin by solving the practice problem
following each example, and then proceed to the end-of-chapter prob-
lems. The best way to learn is to solve a lot of problems. An aster-
isk in front of a problem indicates a challenging problem.

Spice and Multisim, computer circuit analysis programs, are used
throughout the textbook. PSpice, the personal computer version of
Spice, is the popular standard circuit analysis program at most uni-
versities. PSpice for Windows and Multisim are described on our
website. Make an effort to learn PSpice and/or Multisim, because
you can check any circuit problem with them and be sure you are
handing in a correct problem solution.

MATLAB is another software that is very useful in circuit analysis
and other courses you will be taking. A brief tutorial on MATLAB
can be found on our website. The best way to learn MATLAB is
to start working with it once you know a few commands.

Each chapter ends with a section on how the material covered in
the chapter can be applied to real-life situations. The concepts in
this section may be new and advanced to you. No doubt, you will
learn more of the details in other courses. We are mainly interested
in gaining a general familiarity with these ideas.

Attempt the review questions at the end of each chapter. They
will help you discover some “tricks” not revealed in class or in the
textbook.

Clearly a lot of effort has gone into making the technical details in
this book easy to understand. It also contains all the mathematics
and physics necessary to understand the theory and will be very
useful in your other engineering courses. However, we have also
focused on creating a reference for you to use both in school as
well as when working in industry or seeking a graduate degree.

It is very tempting to sell your book after you have completed your
classroom experience; however, our advice to you is DO NOT SELL
YOUR ENGINEERING BOOKS! Books have always been expen-
sive; however, the cost of this book is virtually the same as I paid
for my circuits text back in the early 60s in terms of real dollars. In
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fact, it is actually cheaper. In addition, engineering books of the
past are nowhere near as complete as what is available now.

When I was a student, I did not sell any of my engineering text-
books and was very glad I did not! I found that I needed most of them
throughout my career.

A short review on finding determinants is covered in Appendix A,
complex numbers in Appendix B, and mathematical formulas in Appen-
dix C. Answers to odd-numbered problems are given in Appendix D.

Have fun!

C.K.A.and M. N. O. S.
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Basic Concepts

Some books are to be tasted, others to be swallowed, and some few to
be chewed and digested.

—Francis Bacon

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.a), “an ability to apply knowledge
of mathematics, science, and engineering.”

As students, you are required to study mathematics, science, and engi-
neering with the purpose of being able to apply that knowledge to the
solution of engineering problems. The skill here is the ability to apply
the fundamentals of these areas in the solution of a problem. So how
do you develop and enhance this skill?

The best approach is to work as many problems as possible in all
of your courses. However, if you are really going to be successful with
this, you must spend time analyzing where and when and why you have
difficulty in easily arriving at successful solutions. You may be sur-
prised to learn that most of your problem-solving problems are with
mathematics rather than your understanding of theory. You may also
learn that you start working the problem too soon. Taking time to think
about the problem and how you should solve it will always save you
time and frustration in the end.

What I have found that works best for me is to apply our six-
step problem-solving technique. Then I carefully identify the areas
where I have difficulty solving the problem. Many times, my actual
deficiencies are in my understanding and ability to use correctly cer-
tain mathematical principles. I then return to my fundamental math
texts and carefully review the appropriate sections, and in some cases,
work some example problems in that text. This brings me to another
important thing you should always do: Keep nearby all your basic
mathematics, science, and engineering textbooks.

This process of continually looking up material you thought you
had acquired in earlier courses may seem very tedious at first; how-
ever, as your skills develop and your knowledge increases, this process
will become easier and easier. On a personal note, it is this very process
that led me from being a much less than average student to someone
who could earn a Ph.D. and become a successful researcher.

Photo by Charles Alexander
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Figure 1.1

A simple electric circuit.

Electret
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Figure 1.2

Chapter 1 Basic Concepts

1.1 Introduction

Electric circuit theory and electromagnetic theory are the two funda-
mental theories upon which all branches of electrical engineering are
built. Many branches of electrical engineering, such as power, electric
machines, control, electronics, communications, and instrumentation,
are based on electric circuit theory. Therefore, the basic electric circuit
theory course is the most important course for an electrical engineer-
ing student, and always an excellent starting point for a beginning stu-
dent in electrical engineering education. Circuit theory is also valuable
to students specializing in other branches of the physical sciences
because circuits are a good model for the study of energy systems in
general, and because of the applied mathematics, physics, and topol-
ogy involved.

In electrical engineering, we are often interested in communicating
or transferring energy from one point to another. To do this requires an
interconnection of electrical devices. Such interconnection is referred
to as an electric circuit, and each component of the circuit is known as
an element.

An electric circuit is an interconnection of electrical elements.

A simple electric circuit is shown in Fig. 1.1. It consists of three
basic elements: a battery, a lamp, and connecting wires. Such a simple
circuit can exist by itself; it has several applications, such as a flash-
light, a search light, and so forth.

A complicated real circuit is displayed in Fig. 1.2, representing the
schematic diagram for a radio receiver. Although it seems complicated,
this circuit can be analyzed using the techniques we cover in this book.
Our goal in this text is to learn various analytical techniques and
computer software applications for describing the behavior of a circuit
like this.

+9V(DC) Antenna

Electric circuit of a radio transmitter.
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1.3 Charge and Current 5

Electric circuits are used in numerous electrical systems to accom-
plish different tasks. Our objective in this book is not the study of
various uses and applications of circuits. Rather, our major concern is
the analysis of the circuits. By the analysis of a circuit, we mean a
study of the behavior of the circuit: How does it respond to a given
input? How do the interconnected elements and devices in the circuit
interact?

We commence our study by defining some basic concepts. These
concepts include charge, current, voltage, circuit elements, power, and
energy. Before defining these concepts, we must first establish a sys-
tem of units that we will use throughout the text.

1.2 Systems of Units

As electrical engineers, we deal with measurable quantities. Our mea-
surement, however, must be communicated in a standard language that
virtually all professionals can understand, irrespective of the country
where the measurement is conducted. Such an international measurement
language is the International System of Units (SI), adopted by the
General Conference on Weights and Measures in 1960. In this system,
there are seven principal units from which the units of all other phys-
ical quantities can be derived. Table 1.1 shows the six units and one
derived unit that are relevant to this text. The SI units are used through-
out this text.

One great advantage of the SI unit is that it uses prefixes based on
the power of 10 to relate larger and smaller units to the basic unit.
Table 1.2 shows the SI prefixes and their symbols. For example, the
following are expressions of the same distance in meters (m):

600,000,000 mm 600,000 m 600 km

TABLE 1.2

1.3 Charge and Current The I prefixes.

The concept of electric charge is the underlying principle for explain-

ing all electrical phenomena. Also, the most basic quantity in an elec- Multiplier Prefix Symbol

tric circuit is the electric charge. We all experience the effect of electric ~ 10'® exa E
10" peta P

102 tera T

10° giga G

10° kilo k

Six basic Sl units and one derived unit relevant to this text. 102 hecto h
. . . 10 deka da
Quantity Basic unit Symbol 10-! deci d

Length meter m 102 centi c
Mass kilogram kg 1073 milli m
Time second S 107 micro "
Electric current ampere A 10°° nano n
Thermodynamic temperature kelvin K 10712 pico p

Luminous intensity candela cd 107" femto f
Charge coulomb C 1078 atto a
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Figure 1.3
Electric current due to flow of electronic
charge in a conductor.

describing something so that others in
the profession can understand what
we mean. We will be using IEEE con-
ventions throughout this book.

I A convention is a standard way of

Chapter 1 Basic Concepts

charge when we try to remove our wool sweater and have it stick to
our body or walk across a carpet and receive a shock.

Charge is an electrical property of the atomic particles of which mat-
ter consists, measured in coulombs (C).

We know from elementary physics that all matter is made of funda-
mental building blocks known as atoms and that each atom consists of
electrons, protons, and neutrons. We also know that the charge ¢ on an
electron is negative and equal in magnitude to 1.602 X 10~ '° C, while
a proton carries a positive charge of the same magnitude as the elec-
tron. The presence of equal numbers of protons and electrons leaves an
atom neutrally charged.
The following points should be noted about electric charge:

1. The coulomb is a large unit for charges. In 1 C of charge, there
are 1/(1.602 X 10_19) = 6.24 X 10'® electrons. Thus realistic or
laboratory values of charges are on the order of pC, nC, or uC."

2. According to experimental observations, the only charges that
occur in nature are integral multiples of the electronic charge
e=—1602 x 107"C.

3. The law of conservation of charge states that charge can neither
be created nor destroyed, only transferred. Thus the algebraic sum
of the electric charges in a system does not change.

We now consider the flow of electric charges. A unique feature of
electric charge or electricity is the fact that it is mobile; that is, it can
be transferred from one place to another, where it can be converted to
another form of energy.

When a conducting wire (consisting of several atoms) is con-
nected to a battery (a source of electromotive force), the charges are
compelled to move; positive charges move in one direction while neg-
ative charges move in the opposite direction. This motion of charges
creates electric current. It is conventional to take the current flow as
the movement of positive charges. That is, opposite to the flow of neg-
ative charges, as Fig. 1.3 illustrates. This convention was introduced
by Benjamin Franklin (1706-1790), the American scientist and inven-
tor. Although we now know that current in metallic conductors is due
to negatively charged electrons, we will follow the universally
accepted convention that current is the net flow of positive charges.
Thus,

Electric current is the time rate of change of charge, measured in
amperes (A).

Mathematically, the relationship between current i, charge ¢, and time ¢ is

(1.1)

ol
dt

! However, a large power supply capacitor can store up to 0.5 C of charge.
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1.3 Charge and Current

Historical

Andre-Marie Ampere (1775-1836), a French mathematician and
physicist, laid the foundation of electrodynamics. He defined the elec-
tric current and developed a way to measure it in the 1820s.

Born in Lyons, France, Ampere at age 12 mastered Latin in a few
weeks, as he was intensely interested in mathematics and many of the
best mathematical works were in Latin. He was a brilliant scientist and
a prolific writer. He formulated the laws of electromagnetics. He in-
vented the electromagnet and the ammeter. The unit of electric current,
the ampere, was named after him.

The Burndy Library Collection
at The Huntington Library,
San Marino, California.

where current is measured in amperes (A), and
1 ampere = 1 coulomb/second

The charge transferred between time 7, and 7 is obtained by integrat-
ing both sides of Eq. (1.1). We obtain

[l

0 J idt (1.2)

1o

The way we define current as i in Eq. (1.1) suggests that current need
not be a constant-valued function. As many of the examples and prob-
lems in this chapter and subsequent chapters suggest, there can be sev-
eral types of current; that is, charge can vary with time in several ways.

If the current does not change with time, but remains constant, we
call it a direct current (dc).

A direct current (dc) is a current that remains constant with time.

By convention the symbol / is used to represent such a constant current.

A time-varying current is represented by the symbol i. A common
form of time-varying current is the sinusoidal current or alternating
current (ac).

An alternating current (ac) is a current that varies sinusoidally with time.

Such current is used in your household to run the air conditioner,
refrigerator, washing machine, and other electric appliances. Figure 1.4

(a)

/N,
0 \/ t

(b)

Figure 1.4
Two common types of current: (a) direct
current (dc), (b) alternating current (ac).
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(a) (b)
Figure 1.5

Conventional current flow: (a) positive
current flow, (b) negative current flow.

Chapter 1 Basic Concepts

shows direct current and alternating current; these are the two most
common types of current. We will consider other types later in the
book.

Once we define current as the movement of charge, we expect cur-
rent to have an associated direction of flow. As mentioned earlier, the
direction of current flow is conventionally taken as the direction of pos-
itive charge movement. Based on this convention, a current of 5 A may
be represented positively or negatively as shown in Fig. 1.5. In other
words, a negative current of —5 A flowing in one direction as shown
in Fig. 1.5(b) is the same as a current of +5 A flowing in the opposite
direction.

Example 1.1

How much charge is represented by 4,600 electrons?

Solution:
Each electron has —1.602 X 10~ ' C. Hence 4,600 electrons will have

—1.602 X 10~ Clelectron X 4,600 electrons = —7.369 X 10716 C

Practice Problem 1.1

Calculate the amount of charge represented by six million protons.

Answer: +9.612 X 1073 C.

Example 1.2

The total charge entering a terminal is given by ¢ = 5¢ sin 47t mC.
Calculate the current at = 0.5 s.
Solution:

dg d
i= f = (Stsin 4w mCls = (Ssindmt + 207t cos d7r) mA

Attr= 0.5,
i=5sin2m7 + 107w cos 27 = 0 + 107 = 31.42 mA

Practice Problem 1.2

If in Example 1.2, ¢ = (10 — 106721) mC, find the current at t = 1.0 s.

Answer: 2.707 mA.
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Determine the total charge entering a terminal between r = 1s and Example 15
t = 2 s if the current passing the terminal is i = (3t> — 7) A.

Solution:

2 2
QZJ idt=J (3t? — ndt
1

2\ |2
t
2

1
]—(8—2)—(1—2>—5.5C

The current flowing through an element is Practice Problem 1.3
o {4 A, 0<r<l1
T lA, >

Calculate the charge entering the element from t = 0 to t = 2 s.

Answer: 13.333 C.

1.4 Voltage

As explained briefly in the previous section, to move the electron in a
conductor in a particular direction requires some work or energy trans-
fer. This work is performed by an external electromotive force (emf),
typically represented by the battery in Fig. 1.3. This emf is also known
as voltage or potential difference. The voltage v,, between two points
a and b in an electric circuit is the energy (or work) needed to move
a unit charge from a to b; mathematically,

A dw

= ch (1.3)

Uab
where w is energy in joules (J) and g is charge in coulombs (C). The
voltage v,;, or simply v is measured in volts (V), named in honor of
the Italian physicist Alessandro Antonio Volta (1745-1827), who
invented the first voltaic battery. From Eq. (1.3), it is evident that

1 volt = 1 joule/coulomb = 1 newton-meter/coulomb

Thus,

Voltage (or potential difference) is the energy required to move a unit I
charge through an element, measured in volts (V).

Figure 1.6 shows the voltage across an element (represented by a
rectangular block) connected to points a and b. The plus (+) and minus L o»p
(—) signs are used to define reference direction or voltage polarity. The  Figure 1.6
v, can be interpreted in two ways: (1) Point a is at a potential of v,;,  Polarity of voltage v,,.
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The Burndy Library Collection
at The Huntington Library,
San Marino, California.

Historical

Alessandro Antonio Volta (1745-1827), an Italian physicist,
invented the electric battery—which provided the first continuous flow
of electricity—and the capacitor.

Born into a noble family in Como, Italy, Volta was performing
electrical experiments at age 18. His invention of the battery in 1796
revolutionized the use of electricity. The publication of his work in
1800 marked the beginning of electric circuit theory. Volta received
many honors during his lifetime. The unit of voltage or potential dif-
ference, the volt, was named in his honor.

———O0a ——O0a
+ —_
ooy ]
— +
——Ob ——Ob

(a) (b)
Figure 1.7

Two equivalent representations of the
same voltage v,;,: (a) Point a is 9 V above

point b; (b) point b is —9 V above point a.

Keep in mind that electric current is
always through an element and that
electric voltage is always across the
element or between two points.

volts higher than point b, or (2) the potential at point a with respect to
point b is v,,. It follows logically that in general

Uab = “Ubq (1.4)

For example, in Fig. 1.7, we have two representations of the same volt-
age. In Fig. 1.7(a), point a is +9 V above point b; in Fig. 1.7(b), point b
is —9 V above point a. We may say that in Fig. 1.7(a), there is a 9-V
voltage drop from a to b or equivalently a 9-V voltage rise from b to
a. In other words, a voltage drop from a to b is equivalent to a volt-
age rise from b to a.

Current and voltage are the two basic variables in electric circuits.
The common term signal is used for an electric quantity such as a cur-
rent or a voltage (or even electromagnetic wave) when it is used for
conveying information. Engineers prefer to call such variables signals
rather than mathematical functions of time because of their importance
in communications and other disciplines. Like electric current, a con-
stant voltage is called a dc voltage and is represented by V, whereas a
sinusoidally time-varying voltage is called an ac voltage and is repre-
sented by v. A dc voltage is commonly produced by a battery; ac volt-
age is produced by an electric generator.

1.3 Power and Energy

Although current and voltage are the two basic variables in an electric
circuit, they are not sufficient by themselves. For practical purposes,
we need to know how much power an electric device can handle. We
all know from experience that a 100-watt bulb gives more light than a
60-watt bulb. We also know that when we pay our bills to the electric
utility companies, we are paying for the electric energy consumed over
a certain period of time. Thus, power and energy calculations are
important in circuit analysis.
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1.5  Power and Energy

To relate power and energy to voltage and current, we recall from
physics that:

Power is the time rate of expending or absorbing energy, measured in
watts (W).

We write this relationship as

dw
dt

=

p (1.5)

where p is power in watts (W), w is energy in joules (J), and ¢ is time
in seconds (s). From Eqgs. (1.1), (1.3), and (1.5), it follows that

d dw d
pziwziw.iq:w- (1.6)
dt dg dt
or
p =i 1.7)

The power p in Eq. (1.7) is a time-varying quantity and is called the
instantaneous power. Thus, the power absorbed or supplied by an ele-
ment is the product of the voltage across the element and the current
through it. If the power has a + sign, power is being delivered to or
absorbed by the element. If, on the other hand, the power has a — sign,
power is being supplied by the element. But how do we know when
the power has a negative or a positive sign?

Current direction and voltage polarity play a major role in deter-
mining the sign of power. It is therefore important that we pay atten-
tion to the relationship between current i and voltage v in Fig. 1.8(a).
The voltage polarity and current direction must conform with those
shown in Fig. 1.8(a) in order for the power to have a positive sign.
This is known as the passive sign convention. By the passive sign con-
vention, current enters through the positive polarity of the voltage. In
this case, p = +vi or vi > 0 implies that the element is absorbing
power. However, if p = —vi or vi < 0, as in Fig. 1.8(b), the element
is releasing or supplying power.

Passive sign convention is satisfied when the current enters through
the positive terminal of an element and p = +v/. If the current enters
through the negative terminal, o = —v/.

Unless otherwise stated, we will follow the passive sign conven-
tion throughout this text. For example, the element in both circuits of
Fig. 1.9 has an absorbing power of +12 W because a positive current
enters the positive terminal in both cases. In Fig. 1.10, however, the
element is supplying power of +12 W because a positive current enters
the negative terminal. Of course, an absorbing power of —12 W is
equivalent to a supplying power of +12 W. In general,

+Power absorbed = —Power supplied

11

e ——oO
+ +
I
L— o L— o
p=+ui p=-u
(@ (b)

Figure 1.8

Reference polarities for power using the
passive sign convention: (a) absorbing
power, (b) supplying power.

When the voltage and current directions
conform to Fig. 1.8(0b), we have the ac-
tive sign convention and p = +vi.

3A 3A
. -—
o— o—
¥ h
— +
o—— o——
(a) (b)
Figure 1.9

Two cases of an element with an absorbing
powerof 12W:(a) p =4 X3 =12W,
b)yp=4XxX3=12W.

3A 3A
- —
o— o—
T z
wo ] e |
- +
o—— o——

() (b)
Figure 1.10
Two cases of an element with a supplying
powerof 12W:(a) p = —4 X 3 =
—12W,(b)p = =4 X3 = —12W.
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In fact, the law of conservation of energy must be obeyed in any
electric circuit. For this reason, the algebraic sum of power in a cir-
cuit, at any instant of time, must be zero:
>Sp=0 (1.8)
This again confirms the fact that the total power supplied to the circuit
must balance the total power absorbed.
From Eq. (1.6), the energy absorbed or supplied by an element
from time 7, to time ¢ is
t t
w=det=Jvidt (1.9)
) )
Energy is the capacity to do work, measured in joules (J).
The electric power utility companies measure energy in watt-hours
(Wh), where
1 Wh = 3,600]
Example 1.4 An energy source forces a constant current of 2 A for 10 s to flow

through a light bulb. If 2.3 kJ is given off in the form of light and heat
energy, calculate the voltage drop across the bulb.

Solution:
The total charge is

Ag=iAr=2X10

20C
The voltage drop is

_Aw 23 x10°

=—= =115V
v Ag 20

Practice Problem 1.4

To move charge g from point a to point b requires —30 J. Find the
voltage drop v, if: (a) ¢ = 6 C, (b) ¢ = =3 C.

Answer: (a) =5 V, (b) 10 V.

Example 1.5

Find the power delivered to an element at # = 3 ms if the current enter-
ing its positive terminal is

i =5cos60mtA
and the voltage is: (a) v = 3i, (b) v = 3 di/dk.
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Solution:
(a) The voltage is v = 3i = 15 cos 607 ¢; hence, the power is

p =vi =75cos* 60wt W
Att = 3 ms,

p =75cos” (607 X 3 X 107°) = 75 cos?0.187 = 53.48 W
(b) We find the voltage and the power as

i
;; = 3(=60)5 sin 6077 = —9007 sin 6071 V

p = vi = —45007 sin 607t cos 607t W

v=23

At t = 3 ms,

p = —45007 sin 0.18 7 cos 0.187 W
—14137.167 sin 32.4° cos 32.4° = —6.396 kW

13

Find the power delivered to the element in Example 1.5 at t = 5 ms
if the current remains the same but the voltage is: (a) v = 2i V,

(b)v = <1o + SJidt>V.
0

Answer: (a) 17.27 W, (b) 29.7 W.

Practice Problem 1.5

How much energy does a 100-W electric bulb consume in two hours?

Solution:
w = pt = 100 (W) X 2 (h) X 60 (min/h) X 60 (s/min)
= 720,000J = 720 kJ
This is the same as

w = pt =100 W X 2h = 200 Wh

Example 1.6

A stove element draws 15 A when connected to a 240-V line. How
long does it take to consume 180 kJ?

Answer: 50 s.

Practice Problem 1.6



www.konkur.in

14

Chapter 1 Basic Concepts

Smithsonian Institution.

Historical

1884 Exhibition In the United States, nothing promoted the future
of electricity like the 1884 International Electrical Exhibition. Just
imagine a world without electricity, a world illuminated by candles and
gaslights, a world where the most common transportation was by walk-
ing and riding on horseback or by horse-drawn carriage. Into this world
an exhibition was created that highlighted Thomas Edison and reflected
his highly developed ability to promote his inventions and products.
His exhibit featured spectacular lighting displays powered by an impres-
sive 100-kW “Jumbo” generator.

Edward Weston’s dynamos and lamps were featured in the United
States Electric Lighting Company’s display. Weston’s well known col-
lection of scientific instruments was also shown.

Other prominent exhibitors included Frank Sprague, Elihu Thompson,
and the Brush Electric Company of Cleveland. The American Institute
of Electrical Engineers (AIEE) held its first technical meeting on Octo-
ber 7-8 at the Franklin Institute during the exhibit. AIEE merged with
the Institute of Radio Engineers (IRE) in 1964 to form the Institute of
Electrical and Electronics Engineers (IEEE).

NTERNATIDNAL
EXHIBITION

€
m" < s
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1.6 Circuit Elements

1.6 Circuit Elements

As we discussed in Section 1.1, an element is the basic building block
of a circuit. An electric circuit is simply an interconnection of the ele-
ments. Circuit analysis is the process of determining voltages across
(or the currents through) the elements of the circuit.

There are two types of elements found in electric circuits: pas-
sive elements and active elements. An active element is capable of
generating energy while a passive element is not. Examples of pas-
sive elements are resistors, capacitors, and inductors. Typical active
elements include generators, batteries, and operational amplifiers. Our
aim in this section is to gain familiarity with some important active
elements.

The most important active elements are voltage or current
sources that generally deliver power to the circuit connected to
them. There are two kinds of sources: independent and dependent
sources.

An ideal independent source is an active element that provides a
specified voltage or current that is completely independent of other
circuit elements.

In other words, an ideal independent voltage source delivers to the
circuit whatever current is necessary to maintain its terminal volt-
age. Physical sources such as batteries and generators may be
regarded as approximations to ideal voltage sources. Figure 1.11
shows the symbols for independent voltage sources. Notice that both
symbols in Fig. 1.11(a) and (b) can be used to represent a dc volt-
age source, but only the symbol in Fig. 1.11(a) can be used for a
time-varying voltage source. Similarly, an ideal independent current
source is an active element that provides a specified current com-
pletely independent of the voltage across the source. That is, the cur-
rent source delivers to the circuit whatever voltage is necessary to
maintain the designated current. The symbol for an independent cur-
rent source is displayed in Fig. 1.12, where the arrow indicates the
direction of current i.

An ideal dependent (or controlled) source is an active element in
which the source quantity is controlled by another voltage or current.

Dependent sources are usually designated by diamond-shaped symbols,
as shown in Fig. 1.13. Since the control of the dependent source is
achieved by a voltage or current of some other element in the circuit,
and the source can be voltage or current, it follows that there are four
possible types of dependent sources, namely:

1. A voltage-controlled voltage source (VCVS).
2. A current-controlled voltage source (CCVS).
3. A voltage-controlled current source (VCCS).
4. A current-controlled current source (CCCS).

15

——O ——O
+
v @) V —
L—o L—o
(a) (®)

Figure 1.11

Symbols for independent voltage sources:
(a) used for constant or time-varying volt-
age, (b) used for constant voltage (dc).

‘®

Figure 1.12

Symbol for independent current source.

———O ———oO
v t i *
L——o L——o0
(a) (b)
Figure 1.13

Symbols for: (a) dependent voltage
source, (b) dependent current source.
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Figure 1.14
The source on the right-hand side is a
current-controlled voltage source.

Chapter 1 Basic Concepts

Dependent sources are useful in modeling elements such as transis-
tors, operational amplifiers, and integrated circuits. An example of a
current-controlled voltage source is shown on the right-hand side of
Fig. 1.14, where the voltage 10i of the voltage source depends on
the current i through element C. Students might be surprised that
the value of the dependent voltage source is 10i V (and not 10i A)
because it is a voltage source. The key idea to keep in mind is
that a voltage source comes with polarities (+ —) in its symbol,
while a current source comes with an arrow, irrespective of what it
depends on.

It should be noted that an ideal voltage source (dependent or inde-
pendent) will produce any current required to ensure that the terminal
voltage is as stated, whereas an ideal current source will produce the
necessary voltage to ensure the stated current flow. Thus, an ideal
source could in theory supply an infinite amount of energy. It should
also be noted that not only do sources supply power to a circuit, they
can absorb power from a circuit too. For a voltage source, we know
the voltage but not the current supplied or drawn by it. By the same
token, we know the current supplied by a current source but not the
voltage across it.

Example 1.7

I=5A P2
—>,—|
L

Y6A

J;v Py <4

+ -
12V

Scra

021

Figure 1.15
For Example 1.7.

Calculate the power supplied or absorbed by each element in Fig. 1.15.

Solution:

We apply the sign convention for power shown in Figs. 1.8 and 1.9.
For p;, the 5-A current is out of the positive terminal (or into the
negative terminal); hence,

p1 = 20(=5) = —100 W  Supplied power

For p, and ps, the current flows into the positive terminal of the ele-
ment in each case.

Py = 12(5) = 60 W
Py = 8(6) = 48 W

Absorbed power

Absorbed power

For p,4, we should note that the voltage is 8 V (positive at the top), the
same as the voltage for p;, since both the passive element and the
dependent source are connected to the same terminals. (Remember that
voltage is always measured across an element in a circuit.) Since the
current flows out of the positive terminal,

ps = 8(—0.21) = 8(—0.2 X 5) = =8 W  Supplied power

We should observe that the 20-V independent voltage source and
0.2] dependent current source are supplying power to the rest of
the network, while the two passive elements are absorbing power.
Also,

pr+tp,tps+ps=-—100+ 60+ 48 —8 =0

In agreement with Eq. (1.8), the total power supplied equals the total
power absorbed.
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Compute the power absorbed or supplied by each component of the Practice Problem 1.7
circuit in Fig. 1.16. 9A 2V [=5A
Answer: p; = —45 W, p, = 18 W, p; = 12 W, p, = I5 W. — -
1) ¢4A
+ A +
.. ) p: 061 P

1.7 T Applications SV_D RS ) Uf v
In this section, we will consider two practical applications of the concepts

developed in this chapter. The first one deals with the TV picture tube

and the other with how electric utilities determine your electric bill. Figure 1 16
For Practice Prob. 1.7.

1.7.1 TV Picture Tube

One important application of the motion of electrons is found in both
the transmission and reception of TV signals. At the transmission end,
a TV camera reduces a scene from an optical image to an electrical
signal. Scanning is accomplished with a thin beam of electrons in an
iconoscope camera tube.

At the receiving end, the image is reconstructed by using a cathode-
ray tube (CRT) located in the TV receiver.® The CRT is depicted in Fig.
1.17. Unlike the iconoscope tube, which produces an electron beam of
constant intensity, the CRT beam varies in intensity according to the
incoming signal. The electron gun, maintained at a high potential, fires
the electron beam. The beam passes through two sets of plates for ver-
tical and horizontal deflections so that the spot on the screen where the
beam strikes can move right and left and up and down. When the elec-
tron beam strikes the fluorescent screen, it gives off light at that spot.
Thus, the beam can be made to “paint” a picture on the TV screen.

(A)
Plates for (B)

| horizontal deflection Plates for
_ vertical deflection

Electron gun

Heated filament
(source of electrons)
Cathode  Anode +
=) +)
Electron
beam

Conductive coating
Fluorescent
screen

Figure 1.17
Cathode-ray tube.

2 The dagger sign preceding a section heading indicates the section that may be skipped,
explained briefly, or assigned as homework.

3 Modern TV tubes use a different technology.
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Historical
Karl Ferdinand Braun and Vladimir K. Zworykin

Karl Ferdinand Braun (1850-1918), of the University of Strasbourg,
invented the Braun cathode-ray tube in 1879. This then became the
basis for the picture tube used for so many years for televisions. It is
still the most economical device today, although the price of flat-screen
systems is rapidly becoming competitive. Before the Braun tube could
be used in television, it took the inventiveness of Vladimir K.
Zworykin (1889-1982) to develop the iconoscope so that the modern
television would become a reality. The iconoscope developed into the
orthicon and the image orthicon, which allowed images to be captured
and converted into signals that could be sent to the television receiver.
Thus, the television camera was born.

Example 1.8

Vv

Figure 1.18
A simplified diagram of the cathode-ray
tube; for Example 1.8.

/N

The electron beam in a TV picture tube carries 10'° electrons per sec-
ond. As a design engineer, determine the voltage V, needed to accel-
erate the electron beam to achieve 4 W.

Solution:
The charge on an electron is

e=—-16x10""C
If the number of electrons is n, then ¢ = ne and

dq dn

=" =e——=(-16X10")(107) = —1.6 X 10 * A

i= e, = )(10°7)
The negative sign indicates that the current flows in a direction
opposite to electron flow as shown in Fig. 1.18, which is a simplified
diagram of the CRT for the case when the vertical deflection plates
carry no charge. The beam power is

P 4

p=Vi or Vo="="—""—""=—"=25000V
i 1.6 X 10

Thus, the required voltage is 25 kV.

Practice Problem 1.8

If an electron beam in a TV picture tube carries 10 electrons/second
and is passing through plates maintained at a potential difference of
30 kV, calculate the power in the beam.

Answer: 48 mW.
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TABLE 1.3

Typical average monthly consumption of household
appliances.

Appliance  kWh consumed  Appliance kWh consumed
Water heater 500 Washing machine 120
Freezer 100 Stove 100
Lighting 100 Dryer 80
Dishwasher 35 Microwave oven 25
Electric iron 15 Personal computer 12
TV 10 Radio 8
Toaster 4 Clock 2

1.7.2 Electricity Bills

The second application deals with how an electric utility company charges
their customers. The cost of electricity depends upon the amount of
energy consumed in kilowatt-hours (kWh). (Other factors that affect the
cost include demand and power factors; we will ignore these for now.)
However, even if a consumer uses no energy at all, there is a minimum
service charge the customer must pay because it costs money to stay con-
nected to the power line. As energy consumption increases, the cost per
kWh drops. It is interesting to note the average monthly consumption of
household appliances for a family of five, shown in Table 1.3.

19

A homeowner consumes 700 kWh in January. Determine the electric-
ity bill for the month using the following residential rate schedule:
Base monthly charge of $12.00.
First 100 kWh per month at 16 cents/kWh.
Next 200 kWh per month at 10 cents/kWh.
Over 300 kWh per month at 6 cents/kWh.

Solution:
We calculate the electricity bill as follows.
Base monthly charge = $12.00
First 100 kWh @ $0.16/kWh = $16.00
Next 200 kWh @ $0.10/kWh = $20.00
Remaining 400 kWh @ $0.06/kWh = $24.00
$72.00

Total charge

72
Average cost = 5 = 10.2 cents/kWh
100 + 200 + 400

Example 1.9

Referring to the residential rate schedule in Example 1.9, calculate the
average cost per kWh if only 350 kWh are consumed in July when the
family is on vacation most of the time.

Answer: 14.571 cents/kWh.

Practice Problem 1.9
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1.8 TProblem Solving

Although the problems to be solved during one’s career will vary in
complexity and magnitude, the basic principles to be followed remain
the same. The process outlined here is the one developed by the
authors over many years of problem solving with students, for the
solution of engineering problems in industry, and for problem solving
in research.

We will list the steps simply and then elaborate on them.

—_

. Carefully define the problem.

2. Present everything you know about the problem.

3. Establish a set of alternative solutions and determine the one that
promises the greatest likelihood of success.

4. Attempt a problem solution.

5. Evaluate the solution and check for accuracy.

6. Has the problem been solved satisfactorily? If so, present the solu-

tion; if not, then return to step 3 and continue through the process

again.

1. Carefully define the problem. This may be the most important part
of the process, because it becomes the foundation for all the rest of the
steps. In general, the presentation of engineering problems is somewhat
incomplete. You must do all you can to make sure you understand the
problem as thoroughly as the presenter of the problem understands it.
Time spent at this point clearly identifying the problem will save you
considerable time and frustration later. As a student, you can clarify a
problem statement in a textbook by asking your professor. A problem
presented to you in industry may require that you consult several indi-
viduals. At this step, it is important to develop questions that need to
be addressed before continuing the solution process. If you have such
questions, you need to consult with the appropriate individuals or
resources to obtain the answers to those questions. With those answers,
you can now refine the problem, and use that refinement as the prob-
lem statement for the rest of the solution process.

2. Present everything you know about the problem. You are now ready
to write down everything you know about the problem and its possible
solutions. This important step will save you time and frustration later.

3. Establish a set of alternative solutions and determine the one that
promises the greatest likelihood of success. Almost every problem will
have a number of possible paths that can lead to a solution. It is highly
desirable to identify as many of those paths as possible. At this point,
you also need to determine what tools are available to you, such as
PSpice and MATLAB and other software packages that can greatly
reduce effort and increase accuracy. Again, we want to stress that time
spent carefully defining the problem and investigating alternative
approaches to its solution will pay big dividends later. Evaluating the
alternatives and determining which promises the greatest likelihood of
success may be difficult but will be well worth the effort. Document
this process well since you will want to come back to it if the first
approach does not work.

4. Attempt a problem solution. Now 1is the time to actually begin
solving the problem. The process you follow must be well documented
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in order to present a detailed solution if successful, and to evaluate the
process if you are not successful. This detailed evaluation may lead to
corrections that can then lead to a successful solution. It can also lead
to new alternatives to try. Many times, it is wise to fully set up a solu-
tion before putting numbers into equations. This will help in checking
your results.

5. Evaluate the solution and check for accuracy. You now thoroughly
evaluate what you have accomplished. Decide if you have an acceptable
solution, one that you want to present to your team, boss, or professor.

6. Has the problem been solved satisfactorily? If so, present the solu-
tion; if not, then return to step 3 and continue through the process
again. Now you need to present your solution or try another alterna-
tive. At this point, presenting your solution may bring closure to the
process. Often, however, presentation of a solution leads to further
refinement of the problem definition, and the process continues. Fol-
lowing this process will eventually lead to a satisfactory conclusion.

Now let us look at this process for a student taking an electrical
and computer engineering foundations course. (The basic process also
applies to almost every engineering course.) Keep in mind that
although the steps have been simplified to apply to academic types of
problems, the process as stated always needs to be followed. We con-
sider a simple example.

21

Solve for the current flowing through the 8-() resistor in Fig. 1.19.

Solution:

1. Carefully define the problem. This is only a simple example, but
we can already see that we do not know the polarity on the 3-V source.
We have the following options. We can ask the professor what the
polarity should be. If we cannot ask, then we need to make a decision
on what to do next. If we have time to work the problem both ways,
we can solve for the current when the 3-V source is plus on top and
then plus on the bottom. If we do not have the time to work it both
ways, assume a polarity and then carefully document your decision.
Let us assume that the professor tells us that the source is plus on the
bottom as shown in Fig. 1.20.

2. Present everything you know about the problem. Presenting all that
we know about the problem involves labeling the circuit clearly so that
we define what we seek.

Given the circuit shown in Fig. 1.20, solve for igq.
We now check with the professor, if reasonable, to see if the prob-
lem is properly defined.

3. Establish a set of alternative solutions and determine the one that
promises the greatest likelihood of success. There are essentially three
techniques that can be used to solve this problem. Later in the text you
will see that you can use circuit analysis (using Kirchhoff’s laws and
Ohm’s law), nodal analysis, and mesh analysis.

To solve for ig using circuit analysis will eventually lead to a
solution, but it will likely take more work than either nodal or mesh

Example 1.10

2Q

5V

4Q

8Q

Figure 1.19

Ilustrative example.

Figure 1.20

Problem definition.
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analysis. To solve for iz using mesh analysis will require writing
two simultaneous equations to find the two loop currents indicated in
Fig. 1.21. Using nodal analysis requires solving for only one unknown.
This is the easiest approach.

i i
2Q <L 2] = 4Q

AA%%% MWV

* g
"0 () i () @

Figure 1.21

Using nodal analysis.

Therefore, we will solve for ign using nodal analysis.
4. Attempt a problem solution. We first write down all of the equa-
tions we will need in order to find igq).

.. . _ U .o_Uu
130 1, %) 8’ 130 8
Ul - 5 U] - 0 U] + 3
+ + =0
2 8 4
Now we can solve for v;.
8 Uy — 5 I Uy — 0 I (%1 +3 -0
2 8 4
leads to (4v, — 20) + (v)) + Qv; + 6) =0
. U1 2
701 = +14, [ +2V, 189=§=§=0.25A

5. Evaluate the solution and check for accuracy. We can now use
Kirchhoff’s voltage law (KVL) to check the results.

v -5 2-5_ 3
=S5 == -1s5A

T 2

iy = gy = 025 A
v, +3 2+3 5
= = =2 = 125A
= 4 4 4

ii+iy+i3=—15+025+125=0  (Checks.)

Applying KVL to loop 1,
_5+029+080:_5+(_l1><2)+(l2><8)
= =5+ [—(—1.5)2] + (0.25 X 8)
=-5+3+2=0 (Checks.)
Applying KVL to loop 2,
—Ug0 + Va0 — 3= —(iz X 8) + (13 X 4) -3
= —(025X8) +(1.25x4) -3
=-2+5-3=0 (Checks.)
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So we now have a very high degree of confidence in the accuracy
of our answer.
6. Has the problem been solved satisfactorily? If so, present the solu-
tion; if not, then return to step 3 and continue through the process
again. This problem has been solved satisfactorily.

The current through the 8-€) resistor is 0.25 A flowing down through
the 8-} resistor.

23

Try applying this process to some of the more difficult problems at the
end of the chapter.

1.9 Summary

1. An electric circuit consists of electrical elements connected
together.

2. The International System of Units (SI) is the international mea-
surement language, which enables engineers to communicate their
results. From the seven principal units, the units of other physical
quantities can be derived.

3. Current is the rate of charge flow past a given point in a given

direction.
_
T
4. Voltage is the energy required to move 1 C of charge through an
element.
I
dq

5. Power is the energy supplied or absorbed per unit time. It is also
the product of voltage and current.

dw

g U

6. According to the passive sign convention, power assumes a posi-
tive sign when the current enters the positive polarity of the voltage
across an element.

7. An ideal voltage source produces a specific potential difference
across its terminals regardless of what is connected to it. An ideal
current source produces a specific current through its terminals
regardless of what is connected to it.

8. Voltage and current sources can be dependent or independent. A
dependent source is one whose value depends on some other cir-
cuit variable.

9. Two areas of application of the concepts covered in this chapter
are the TV picture tube and electricity billing procedure.

p:

Practice Problem 1.10
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1

Review Questions

1.1  One millivolt is one millionth of a volt. 1.8 The voltage across a 1.1-kW toaster that produces a

() True (b) False current of 10 A is:

1.2 The prefix micro stands for: (@) 1T kV (b) 1100 v © 110V @1y

. . . .
(a) 10° (b) 10° (© 107 () 10 1.9  Which of these is not an electrical quantity?

1.3 The voltage 2,000,000 V can be expressed in powers (a) charge (b) time (c) voltage
of 10 as: (d) current (e) power
(@) 2 mV (b)2kV (c) 2 MV (d)2 GV 1.10 The dependent source in Fig. 1.22 is:
1.4 Acharge of 2 C flowing past a given point each (a) voltage-controlled current source
second is a current of 2 A. (b) voltage-controlled voltage source
(a) True (b) False (c) current-controlled voltage source
1.5  The unit of current is: (d) current-controlled current source
(a) coulomb (b) ampere .
(©) volt (d) joule i
1.6  Voltage is measured in: % @) i,
(a) watts (b) amperes
(c) volts (d) joules per second Figure 1.22

1.7 A 4-A current charging a dielectric material will For Review Question 1.10.

accumulate a charge of 24 C after 6 s.

Answers: 1.1b, 1.2d, 1.3c, 1.4a, 1.5b, 1.6¢, 1.7a, 1.8c,
(a) True (b) False ].gb, 1.10d.

1

Section 1.3 Charge and Current 1.4 A current of 7.4 A flows through a conductor.
Calculate how much charge passes through any
cross-section of the conductor in 20 s.

Problems

1.1 How many coulombs are represented by these
amounts of electrons?

(a) 6.482 X 107 (b) 1.24 x 10"®
(c) 2.46 X 10" (d) 1.628 x 10%°

1.5 Determine the total charge transferred over the time
interval of 0 = ¢ = 10 s when i(¢) = %t A.

1.6 The charge entering a certain element is shown in
1.2 Determine the current flowing through an element if Fig. 1.23. Find the current at:
the charge flow is given by @)1= 1ms (b)1 = 6 ms © 1= 10ms
(a) g(r) = 3t + 8 mC
(b) g(r) = (87 + 41 — 2) C q(1) (mC)
(© q(t) = B¢~ = 5¢*)nC 30
(d) g(r) = 10 sin 1207t pC
(e) g(t) = 20e™* cos 50t uC

1.3 Find the charge g(¢) flowing through a device if the

current is:

(a)i(t)y =3A,q0)=1C

(b)i() = (2 + 5) mA, g(0) = 0 0 2 4 6 8 10 12 sy
(¢) i(r) = 20 cos(10r + 7/6)uA, g(0) = 2 uC Figure 1.23

(d) i(H) = 10e " sin 401 A, g(0) = 0 For Prob. 1.6.
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1.7  The charge flowing in a wire is plotted in Fig. 1.24.
Sketch the corresponding current.

q(O)A
50
0 1 1 |
2 4\\6/8 1)
-50

Figure 1.24
For Prob. 1.7.

1.8 The current flowing past a point in a device is shown in
Fig. 1.25. Calculate the total charge through the point.

i (mA)
10

0

—

2  t(ms)

Figure 1.25
For Prob. 1.8.

1.9 The current through an element is shown in Fig. 1.26.
Determine the total charge that passed through the

element at:
(@t=1s (byt=3s (c)t=15s
i (A)A
10
5 —
1 1 1 1
0 1 2 3 45 1)
Figure 1.26
For Prob. 1.9.

Sections 1.4 and 1.5 Voltage, Power, and Energy

1.10 A lightning bolt with 10 kA strikes an object for 15 us.
How much charge is deposited on the object?

1.11 A rechargeable flashlight battery is capable of
delivering 90 mA for about 12 h. How much charge
can it release at that rate? If its terminal voltage is

1.5 V, how much energy can the battery deliver?

1.12 If the current flowing through an element is given by

3tA, 0 =r<6s
0 = 18A, 6 =1r<10s
—12A, 10 =r<15s
0, t=15s

Plot the charge stored in the element over
0<7r<20s.

Problems 25

1.13 The charge entering the positive terminal of an
element is

g = 5sin4mt mC
while the voltage across the element (plus to minus) is
v=73cosd4mtV

(a) Find the power delivered to the element at
t=0.3s.

(b) Calculate the energy delivered to the element
between 0 and 0.6 s.

1.14 The voltage v across a device and the current i
through it are
v(r) = 10 cos 2t V, i(t) = 20(1 — e %) mA
Calculate:

(a) the total charge in the device atz = 1's
(b) the power consumed by the device atr = 1 s.
1.15 The current entering the positive terminal of a device

is i(f) = 6e¢~* mA and the voltage across the device
isv(r) = 10di/dt V.

(a) Find the charge delivered to the device between
t=0andr = 2s.
(b) Calculate the power absorbed.

(c) Determine the energy absorbed in 3 s.

Section 1.6  Circuit Elements
1.16 Figure 1.27 shows the current through and the
voltage across an element.

(a) Sketch the power delivered to the element
fort > 0.

(b) Fnd the total energy absorbed by the element for
the period of 0 < 1 < 4s.

i (mA) 4
60
1
0 2 4 £(s)
v (V)
5
0 —>
0 2 4 1(s)

Figure 1.27
For Prob. 1.16.
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1.17 Figure 1.28 shows a circuit with five elements. If
p1=—205W, p, =60W, py, =45W, ps =30 W,
calculate the power p; received or delivered by
element 3.

Figure 1.28
For Prob. 1.17.

1.18 Find the power absorbed by each of the elements in

Fig. 1.29.
I=10a 40V SVo 4a
— | | -~
| |
P2 P4
V14A
+ +
30V@>p1 20VHP3 12v O,

Figure 1.29
For Prob. 1.18.

1.19 Find / and the power absorbed by each element in
the network of Fig. 1.30.

le l’

+ +
9V CAY

8A

6V

Figure 1.30
For Prob. 1.19.

1.20 Find V, and the power absorbed by each element in
the circuit of Fig. 1.31.

I,=2A

1

| |

——

28V

6A 12V_ 1A

1 1

| I | I

3A{ P

28V

+

0v () v, H s,
6at 13a

Figure 1.31
For Prob. 1.20.

Basic Concepts

Section 1.7 Applications

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

A 60-W incandescent bulb operates at 120 V. How
many electrons and coulombs flow through the bulb
in one day?

A lightning bolt strikes an airplane with 40 kA for
1.7 ms. How many coulombs of charge are deposited
on the plane?

A 1.8-kW electric heater takes 15 min to boil a
quantity of water. If this is done once a day and
power costs 10 cents/kWh, what is the cost of its
operation for 30 days?

A utility company charges 8.2 cents/kWh. If a
consumer operates a 60-W light bulb continuously
for one day, how much is the consumer charged?

A 1.5-kW toaster takes roughly 3.5 minutes to heat
four slices of bread. Find the cost of operating the
toaster once per day for 1 month (30 days). Assume
energy costs 8.2 cents/kWh.

A flashlight battery has a rating of 0.8 ampere-hours
(Ah) and a lifetime of 10 hours.

(a) How much current can it deliver?

(b) How much power can it give if its terminal
voltage is 6 V?
(c) How much energy is stored in the battery in Wh?

A constant current of 3 A for 4 hours is required
to charge an automotive battery. If the terminal
voltage is 10 + #/2 V, where 1 is in hours,

(a) how much charge is transported as a result of the
charging?
(b) how much energy is expended?

(c) how much does the charging cost? Assume
electricity costs 9 cents/kWh.

A 60-W incandescent lamp is connected to a 120-V
source and is left burning continuously in an
otherwise dark staircase. Determine:

(a) the current through the lamp.

(b) the cost of operating the light for one non-leap
year if electricity costs 9.5 cents per KWh.

An electric stove with four burners and an oven is
used in preparing a meal as follows.

Burner 1: 20 minutes Burner 2: 40 minutes

Burner 3: 15 minutes Burner 4: 45 minutes

Oven: 30 minutes

If each burner is rated at 1.2 kW and the oven at
1.8 kW, and electricity costs 12 cents per kWh,
calculate the cost of electricity used in preparing
the meal.
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1.30 Reliant Energy (the electric company in Houston,
Texas) charges customers as follows:
Monthly charge $6
First 250 kWh @ $0.02/kWh

27

1.31 In a household, a 120-W personal computer (PC) is
run for 4 h/day, while a 60-W bulb runs for 8 h/day.
If the utility company charges $0.12/kWh, calculate
how much the household pays per year on the PC

1

and the bulb.
All additional kWh @ $0.07/kWh
If a customer uses 2,436 kWh in one month, how
much will Reliant Energy charge?
Comprehensive Problems
1.32 A telephone wire has a current of 20 uA flowing p (MW)
through it. How long does it take for a charge of 3

15 C to pass through the wire?

1.33 Alightning bolt carried a current of 2 kA and lasted
for 3 ms. How many coulombs of charge were
contained in the lightning bolt?

1.34 Figure 1.32 shows the power consumption of a
certain household in 1 day. Calculate:

(a) the total energy consumed in kWh,

(b) the average power per hour over the total 24 hour
period.

1200 W

800 W

200 W

L L L L L L Il Il Il Il Il Il f(h)
12 2 4 6 8 1012 2 4 6 8 10 12
noon
Figure 1.32
For Prob. 1.34.

1.35 The graph in Fig. 1.33 represents the power drawn by
an industrial plant between 8:00 and 8:30 A.M. Cal-
culate the total energy in MWh consumed by the plant.

WH W
IIII|III

| | | 1 5

800 805 810 815 820 825 830r

Figure 1.33
For Prob. 1.35.

1.36 A battery may be rated in ampere-hours (Ah). A
lead-acid battery is rated at 160 Ah.

(a) What is the maximum current it can supply for
40 h?

(b) How many days will it last if it is discharged at
1 mA?

1.37 A 12-V battery requires a total charge of 40 ampere-
hours during recharging. How many joules are
supplied to the battery?

1.38 How much energy does a 10-hp motor deliver in
30 minutes? Assume that 1 horsepower = 746 W.

1.39 A 600-W TV receiver is turned on for 4 h with
nobody watching it. If electricity costs 10 cents/kWh,
how much money is wasted?
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There are too many people praying for mountains of difficulty to be
removed, when what they really need is the courage to climb them!
—Unknown

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.b), “an ability to design and con-
duct experiments, as well as to analyze and interpret data.”
Engineers must be able to design and conduct experiments, as well as
analyze and interpret data. Most students have spent many hours per-
forming experiments in high school and in college. During this time,
you have been asked to analyze the data and to interpret the data.
Therefore, you should already be skilled in these two activities. My
recommendation is that, in the process of performing experiments in
the future, you spend more time in analyzing and interpreting the data
in the context of the experiment. What does this mean?

If you are looking at a plot of voltage versus resistance or current
versus resistance or power versus resistance, what do you actually see?
Does the curve make sense? Does it agree with what the theory tells
you? Does it differ from expectation, and, if so, why? Clearly, practice
with analyzing and interpreting data will enhance this skill.

Since most, if not all, the experiments you are required to do as a
student involve little or no practice in designing the experiment, how
can you develop and enhance this skill?

Actually, developing this skill under this constraint is not as diffi-
cult as it seems. What you need to do is to take the experiment and
analyze it. Just break it down into its simplest parts, reconstruct it try-
ing to understand why each element is there, and finally, determine
what the author of the experiment is trying to teach you. Even though
it may not always seem so, every experiment you do was designed by
someone who was sincerely motivated to teach you something.

29
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Material with
resistivity p

Cross-sectional

area A ©
(a) (b)
Figure 2.1
(a) Resistor, (b) Circuit symbol for
resistance.

Chapter 2 Basic Laws

2.1 Introduction

Chapter 1 introduced basic concepts such as current, voltage, and
power in an electric circuit. To actually determine the values of these
variables in a given circuit requires that we understand some funda-
mental laws that govern electric circuits. These laws, known as Ohm’s
law and Kirchhoff’s laws, form the foundation upon which electric cir-
cuit analysis is built.

In this chapter, in addition to these laws, we shall discuss some
techniques commonly applied in circuit design and analysis. These tech-
niques include combining resistors in series or parallel, voltage division,
current division, and delta-to-wye and wye-to-delta transformations. The
application of these laws and techniques will be restricted to resistive
circuits in this chapter. We will finally apply the laws and techniques to
real-life problems of electrical lighting and the design of dc meters.

2.2 Ohm’s Law

Materials in general have a characteristic behavior of resisting the flow
of electric charge. This physical property, or ability to resist current, is
known as resistance and is represented by the symbol R. The resist-
ance of any material with a uniform cross-sectional area A depends on
A and its length €, as shown in Fig. 2.1(a). We can represent resistance
(as measured in the laboratory), in mathematical form,

¢

R Py 2.1)
where p is known as the resistivity of the material in ohm-meters. Good
conductors, such as copper and aluminum, have low resistivities, while
insulators, such as mica and paper, have high resistivities. Table 2.1
presents the values of p for some common materials and shows which

materials are used for conductors, insulators, and semiconductors.
The circuit element used to model the current-resisting behavior of a
material is the resistor. For the purpose of constructing circuits, resistors
are usually made from metallic alloys and carbon compounds. The circuit

TABLE 2.1

Resistivities of common materials.

Material Resistivity ({2-m) Usage

Silver 1.64 X 1078 Conductor
Copper 1.72 x 1078 Conductor
Aluminum 28X 1078 Conductor
Gold 245 x 1078 Conductor
Carbon 4 %1073 Semiconductor
Germanium 47 X 1072 Semiconductor
Silicon 6.4 X 10% Semiconductor
Paper 10'° Insulator

Mica 5% 10" Insulator
Glass 10'? Insulator

Teflon 3 % 10" Insulator
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symbol for the resistor is shown in Fig. 2.1(b), where R stands for the
resistance of the resistor. The resistor is the simplest passive element.

Georg Simon Ohm (1787-1854), a German physicist, is credited
with finding the relationship between current and voltage for a resis-
tor. This relationship is known as Ohm’s law.

Ohm’s law states that the voltage v across a resistor is directly propor-
tional to the current / flowing throush the resistor.

That is,
U X i (2.2)

Ohm defined the constant of proportionality for a resistor to be the
resistance, R. (The resistance is a material property which can change
if the internal or external conditions of the element are altered, e.g., if
there are changes in the temperature.) Thus, Eq. (2.2) becomes

v=iR 2.3)

which is the mathematical form of Ohm’s law. R in Eq. (2.3) is mea-
sured in the unit of ohms, designated (). Thus,

The resistance R of an element denotes its ability to resist the flow of
electric current; it is measured in ohms ({)).

We may deduce from Eq. (2.3) that

R =~

% 2.4)

so that

1Q=1V/A

To apply Ohm’s law as stated in Eq. (2.3), we must pay careful
attention to the current direction and voltage polarity. The direction of
current i and the polarity of voltage v must conform with the passive

Historical

Georg Simon Ohm (1787-1854), a German physicist, in 1826
experimentally determined the most basic law relating voltage and cur-
rent for a resistor. Ohm’s work was initially denied by critics.

Born of humble beginnings in Erlangen, Bavaria, Ohm threw him-
self into electrical research. His efforts resulted in his famous law.
He was awarded the Copley Medal in 1841 by the Royal Society of
London. In 1849, he was given the Professor of Physics chair by the
University of Munich. To honor him, the unit of resistance was named
the ohm.

© SSPL via Getty Images
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(b)
Figure 2.2
(a) Short circuit (R = 0), (b) Open circuit
(R = o).

(b)

Figure 2.3

Fixed resistors: (a) wirewound type,
(b) carbon film type.

Courtesy of Tech America.

(a) (b)
Figure 2.4
Circuit symbol for: (a) a variable resistor
in general, (b) a potentiometer.

Chapter 2 Basic Laws

sign convention, as shown in Fig. 2.1(b). This implies that current flows
from a higher potential to a lower potential in order for v = i R. If cur-
rent flows from a lower potential to a higher potential, v = —i R.

Since the value of R can range from zero to infinity, it is impor-
tant that we consider the two extreme possible values of R. An element
with R = 0 is called a short circuit, as shown in Fig. 2.2(a). For a short
circuit,

v=IiR=0 (2.5)

showing that the voltage is zero but the current could be anything. In
practice, a short circuit is usually a connecting wire assumed to be a
perfect conductor. Thus,

A short circuit is a circuit element with resistance approaching zero.

Similarly, an element with R = % is known as an open circuit, as
shown in Fig. 2.2(b). For an open circuit,

A

i = I(lllg R 0 (2.6)
indicating that the current is zero though the voltage could be anything.
Thus,

An open circuit is a circuit element with resistance approaching infinity.

A resistor is either fixed or variable. Most resistors are of the fixed
type, meaning their resistance remains constant. The two common types
of fixed resistors (wirewound and composition) are shown in Fig. 2.3.
The composition resistors are used when large resistance is needed.
The circuit symbol in Fig. 2.1(b) is for a fixed resistor. Variable resis-
tors have adjustable resistance. The symbol for a variable resistor is
shown in Fig. 2.4(a). A common variable resistor is known as a poten-
tiometer or pot for short, with the symbol shown in Fig. 2.4(b). The
pot is a three-terminal element with a sliding contact or wiper. By slid-
ing the wiper, the resistances between the wiper terminal and the fixed
terminals vary. Like fixed resistors, variable resistors can be of either
wirewound or composition type, as shown in Fig. 2.5. Although resistors
like those in Figs. 2.3 and 2.5 are used in circuit designs, today most

(a) (b)

Figure 2.5
Variable resistors: (a) composition type, (b) slider pot.
Courtesy of Tech America.
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circuit components including resistors are either surface mounted or
integrated, as typically shown in Fig. 2.6.

It should be pointed out that not all resistors obey Ohm’s law. A
resistor that obeys Ohm’s law is known as a linear resistor. It has a
constant resistance and thus its current-voltage characteristic is as illus-
trated in Fig. 2.7(a): Its i-v graph is a straight line passing through the
origin. A nonlinear resistor does not obey Ohm’s law. Its resistance
varies with current and its i-v characteristic is typically shown in
Fig. 2.7(b). Examples of devices with nonlinear resistance are the light
bulb and the diode. Although all practical resistors may exhibit nonlin-
ear behavior under certain conditions, we will assume in this book that
all elements actually designated as resistors are linear.

A useful quantity in circuit analysis is the reciprocal of resistance
R, known as conductance and denoted by G:

=— 2.7)

The conductance is a measure of how well an element will con-
duct electric current. The unit of conductance is the mho (ohm spelled
backward) or reciprocal ohm, with symbol U, the inverted omega.
Although engineers often use the mho, in this book we prefer to use
the siemens (S), the SI unit of conductance:

1S=10=1A/V 2.8)
Thus,

Conductance is the ability of an element to conduct electric current;
it is measured in mhos (O') or siemens (S).

The same resistance can be expressed in ohms or siemens. For
example, 10 ) is the same as 0.1 S. From Eq. (2.7), we may write

i = Gu 2.9

The power dissipated by a resistor can be expressed in terms of R.
Using Eqgs. (1.7) and (2.3),

v2

P

=vi=iR=— 2.10

p i=1i R (2.10)

The power dissipated by a resistor may also be expressed in terms of
G as

i2

p=vi=10G= - (2.11)

We should note two things from Egs. (2.10) and (2.11):

1. The power dissipated in a resistor is a nonlinear function of either
current or voltage.

2. Since R and G are positive quantities, the power dissipated in a
resistor is always positive. Thus, a resistor always absorbs power
from the circuit. This confirms the idea that a resistor is a passive
element, incapable of generating energy.

© Eric Tomey/Alamy RF

Figure 2.6

Resistors in an integrated circuit board.

Slope =R

(a)

v A

Slope =R

(b)
Figure 2.7
The i-v characteristic of: (a) a linear
resistor, (b) a nonlinear resistor.
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Example 2.1

An electric iron draws 2 A at 120 V. Find its resistance.

Solution:
From Ohm’s law,
v 120

R =— =600
i 2

Practice Problem 2.1

The essential component of a toaster is an electrical element (a resis-
tor) that converts electrical energy to heat energy. How much current
is drawn by a toaster with resistance 15 () at 110 V?

Answer: 7.333 A.

Example 2.2

v(®) 5kQ §

Figure 2.8
For Example 2.2.

In the circuit shown in Fig. 2.8, calculate the current i, the conductance
G, and the power p.

Solution:

The voltage across the resistor is the same as the source voltage (30 V)
because the resistor and the voltage source are connected to the same
pair of terminals. Hence, the current is

30
=0 = —6mA
R 5X10
The conductance is
1 1
G=—=—"—""—=>=02mS
R 5X 10

We can calculate the power in various ways using either Egs. (1.7),
(2.10), or (2.11).

p =vi=2306 X 10"°) = 180 mW
or

p=i’R = (6 X 10?725 X 10°> = 180 mW
or

p = v’G = (30)°0.2 X 102 = 180 mW

Practice Problem 2.2

*i

+

3ma(d) 10kg§v

Figure 2.9
For Practice Prob. 2.2

For the circuit shown in Fig. 2.9, calculate the voltage v, the conduc-
tance G, and the power p.

Answer: 30 V, 100 S, 90 mW.
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A voltage source of 20 sinart V is connected across a 5-k{) resistor.
Find the current through the resistor and the power dissipated.
Solution:

_ 20sin¢

3—73=4sin77th
R 5 X 10

i =

Hence,

p = vi = 80 sin’* 7t mW

Example 2.3

A resistor absorbs an instantaneous power of 30 cos® t mW when con-
nected to a voltage source v = 15 cos ¢ V. Find i and R.

Answer: 2 cos t mA, 7.5 k().

2.3 TNodes, Branches, and Loops

Since the elements of an electric circuit can be interconnected in sev-
eral ways, we need to understand some basic concepts of network
topology. To differentiate between a circuit and a network, we may
regard a network as an interconnection of elements or devices, whereas
a circuit is a network providing one or more closed paths. The con-
vention, when addressing network topology, is to use the word network
rather than circuit. We do this even though the word network and cir-
cuit mean the same thing when used in this context. In network topol-
ogy, we study the properties relating to the placement of elements in
the network and the geometric configuration of the network. Such ele-
ments include branches, nodes, and loops.

A branch represents a single element such as a voltage source or a
resistor.

In other words, a branch represents any two-terminal element. The cir-
cuit in Fig. 2.10 has five branches, namely, the 10-V voltage source,
the 2-A current source, and the three resistors.

A node is the point of connection between two or more branches.

A node is usually indicated by a dot in a circuit. If a short circuit (a
connecting wire) connects two nodes, the two nodes constitute a sin-
gle node. The circuit in Fig. 2.10 has three nodes a, b, and c. Notice
that the three points that form node b are connected by perfectly con-
ducting wires and therefore constitute a single point. The same is true
of the four points forming node ¢. We demonstrate that the circuit in
Fig. 2.10 has only three nodes by redrawing the circuit in Fig. 2.11.
The two circuits in Figs. 2.10 and 2.11 are identical. However, for the
sake of clarity, nodes b and ¢ are spread out with perfect conductors
as in Fig. 2.10.

Practice Problem 2.3

v (*

29?39? CDZA

C 7

Figure 2.10

Nodes, branches, and loops.

2A

10V

Figure 2.11
The three-node circuit of Fig. 2.10 is
redrawn.
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A loop is any closed path in a circuit.

A loop is a closed path formed by starting at a node, passing through a
set of nodes, and returning to the starting node without passing through
any node more than once. A loop is said to be independent if it contains
at least one branch which is not a part of any other independent loop.
Independent loops or paths result in independent sets of equations.

It is possible to form an independent set of loops where one of the
loops does not contain such a branch. In Fig. 2.11, abca with the 2Q)
resistor is independent. A second loop with the 3() resistor and the cur-
rent source is independent. The third loop could be the one with the 2}
resistor in parallel with the 3() resistor. This does form an independent
set of loops.

A network with b branches, n nodes, and / independent loops will
satisfy the fundamental theorem of network topology:

b=1l+n-1 (2.12)

As the next two definitions show, circuit topology is of great value
to the study of voltages and currents in an electric circuit.

Two or more elements are in series if they exclusively share a single
node and consequently carry the same current.

Two or more elements are in parallel if they are connected to the same
two nodes and consequently have the same voltage across them.

Elements are in series when they are chain-connected or connected
sequentially, end to end. For example, two elements are in series if
they share one common node and no other element is connected to
that common node. Elements in parallel are connected to the same pair
of terminals. Elements may be connected in a way that they are nei-
ther in series nor in parallel. In the circuit shown in Fig. 2.10, the volt-
age source and the 5-() resistor are in series because the same current
will flow through them. The 2-Q) resistor, the 3-() resistor, and the cur-
rent source are in parallel because they are connected to the same two
nodes b and ¢ and consequently have the same voltage across them.
The 5-Q and 2-() resistors are neither in series nor in parallel with
each other.

Example 2.4

Determine the number of branches and nodes in the circuit shown in
Fig. 2.12. Identify which elements are in series and which are in
parallel.

Solution:

Since there are four elements in the circuit, the circuit has four
branches: 10 V, 50, 6(), and 2 A. The circuit has three nodes as
identified in Fig. 2.13. The 5-() resistor is in series with the 10-V
voltage source because the same current would flow in both. The 6-()
resistor is in parallel with the 2-A current source because both are
connected to the same nodes 2 and 3.
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50 [ 5Q 2

10V 6Q 24 1ov (£ 6Q })2aA
Figure 2.12 3
For Example 2.4. Figure 2.13

The three nodes in the circuit of

Fig. 2.12.
How many branches and nodes does the circuit in Fig. 2.14 have? Iden- Practice Problem 2.4

tify the elements that are in series and in parallel.

Answer: Five branches and three nodes are identified in Fig. 2.15. The
1-Q and 2-Q) resistors are in parallel. The 4-() resistor and 10-V source
are also in parallel.

5Q 1 50 2
MW ANV
1Q 20 0V 40 1Q 20 T)iov24Q
¢ : D
Figure 2.14 3
For Practice Prob. 2.4. Figure 2.15

Answer for Practice Prob. 2.4.

2.4 Kirchhoff’'s Laws

Ohm’s law by itself is not sufficient to analyze circuits. However, when
it is coupled with Kirchhoff’s two laws, we have a sufficient, powerful
set of tools for analyzing a large variety of electric circuits. Kirchhoff’s
laws were first introduced in 1847 by the German physicist Gustav
Robert Kirchhoff (1824—1887). These laws are formally known as
Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL).

Kirchhoff’s first law is based on the law of conservation of charge,
which requires that the algebraic sum of charges within a system cannot
change.

Kirchhoff’s current law (KCL) states that the algebraic sum of currents
entering a node (or a closed boundary) is zero.

Mathematically, KCL implies that

N

i, =0 (2.13)

n=1

where N is the number of branches connected to the node and i, is
the nth current entering (or leaving) the node. By this law, currents
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Historical

Gustav Robert Kirchhoff (1824-1887), a German physicist, stated
two basic laws in 1847 concerning the relationship between the cur-
rents and voltages in an electrical network. Kirchhoff’s laws, along
with Ohm’s law, form the basis of circuit theory.

Born the son of a lawyer in Konigsberg, East Prussia, Kirchhoff
entered the University of Konigsberg at age 18 and later became a lec-
turer in Berlin. His collaborative work in spectroscopy with German
chemist Robert Bunsen led to the discovery of cesium in 1860 and
rubidium in 1861. Kirchhoff was also credited with the Kirchhoff law
of radiation. Thus Kirchhoff is famous among engineers, chemists, and
physicists.

Figure 2.16

Currents at a node illustrating KCL.

L Closed boundary

Figure 2.17
Applying KCL to a closed boundary.

Two sources (or circuits in general) are

I said to be equivalent if they have the
same /-v relationship at a pair of
terminals.

entering a node may be regarded as positive, while currents leaving the
node may be taken as negative or vice versa.

To prove KCL, assume a set of currents i, (¢), k = 1,2, ..., flow
into a node. The algebraic sum of currents at the node is

Integrating both sides of Eq. (2.14) gives
qr(®) = q:i(1) + gx(t) + g3(0) + -+ (2.15)

where ¢, (t) = [i;(t)dt and q1(¢) = [ ir(¥)dt. But the law of conserva-

tion of electric charge requires that the algebraic sum of electric

charges at the node must not change; that is, the node stores no net

charge. Thus g7(f) = 0 — iz() = 0, confirming the validity of KCL.
Consider the node in Fig. 2.16. Applying KCL gives

ip T (=ip) +i3+isg+(=is) =0 (2.16)

since currents iy, i3, and i, are entering the node, while currents i, and
is are leaving it. By rearranging the terms, we get

i] + l3 + i4 = i2 + i5 (2.17)

Equation (2.17) is an alternative form of KCL:

The sum of the currents entering a node is equal to the sum of the cur-
rents leaving the node.

Note that KCL also applies to a closed boundary. This may be
regarded as a generalized case, because a node may be regarded as a
closed surface shrunk to a point. In two dimensions, a closed bound-
ary is the same as a closed path. As typically illustrated in the circuit
of Fig. 2.17, the total current entering the closed surface is equal to the
total current leaving the surface.

A simple application of KCL is combining current sources in par-
allel. The combined current is the algebraic sum of the current supplied
by the individual sources. For example, the current sources shown in
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Fig. 2.18(a) can be combined as in Fig. 2.18(b). The combined or
equivalent current source can be found by applying KCL to node a.
Ir+L =1 +1
or
Ir=1 -1, + I (2.18)

A circuit cannot contain two different currents, /; and I,, in series,
unless I; = I,; otherwise KCL will be violated.

Kirchhoff’s second law is based on the principle of conservation
of energy:

Kirchhoff’s voltage law (KVL) states that the algebraic sum of all volt-
ages around a closed path (or loop) is zero.

Expressed mathematically, KVL states that

(2.19)

where M is the number of voltages in the loop (or the number of
branches in the loop) and v,, is the mth voltage.

To illustrate KVL, consider the circuit in Fig. 2.19. The sign on
each voltage is the polarity of the terminal encountered first as we
travel around the loop. We can start with any branch and go around
the loop either clockwise or counterclockwise. Suppose we start with
the voltage source and go clockwise around the loop as shown; then
voltages would be —v;, +v,, +v3, —U4, and +vs, in that order. For
example, as we reach branch 3, the positive terminal is met first; hence,
we have +v3. For branch 4, we reach the negative terminal first; hence,
—v4. Thus, KVL yields

—U; +t U, +tv3— v+ Us5=0 (2.20)
Rearranging terms gives
Uy + U3+ Us =0, + Uy (2.21)
which may be interpreted as
Sum of voltage drops = Sum of voltage rises (2.22)

This is an alternative form of KVL. Notice that if we had traveled
counterclockwise, the result would have been +v;, —vs, +v4, —U3,
and —v,, which is the same as before except that the signs are reversed.
Hence, Egs. (2.20) and (2.21) remain the same.

When voltage sources are connected in series, KVL can be applied
to obtain the total voltage. The combined voltage is the algebraic sum
of the voltages of the individual sources. For example, for the voltage
sources shown in Fig. 2.20(a), the combined or equivalent voltage
source in Fig. 2.20(b) is obtained by applying KVL.

_V(1b+V1+V2_V3:0

39
Iy
-—
a o
I I I
b o
(@
Iy
———
a
Ir=1-L+1
b

(b)
Figure 2.18
Current sources in parallel: (a) original
circuit, (b) equivalent circuit.

KVL can be applied in two ways: by
taking either a clockwise or a counter-
clockwise trip around the loop. Either
way, the algebraic sum of voltages
around the loop is zero.

+ 2 45

@ () @

_US+

Figure 2.19
A single-loop circuit illustrating KVL.



www.konkur.in

40 Chapter 2 Basic Laws

or

Vab - Vl + V2 - V’; (2.23)
To avoid violating KVL, a circuit cannot contain two different voltages
V) and V, in parallel unless V| = V,.

(@ (b)
Figure 2.20
Voltage sources in series: (a) original circuit, (b) equivalent circuit.
Example 2.5 For the circuit in Fig. 2.21(a), find voltages v, and v,.

2Q 2Q
NWY %

+ oy = -

+ 4
20v () v2§39 20v (%) Q y2_§39
+

(a) (b)

Figure 2.21
For Example 2.5.

Solution:

To find v; and v,, we apply Ohm’s law and Kirchhoff’s voltage law.
Assume that current i flows through the loop as shown in Fig. 2.21(b).
From Ohm’s law,

v, = 20, v, = —3i (2.5.1)
Applying KVL around the loop gives
-20+v;, —v,=0 (2.5.2)
Substituting Eq. (2.5.1) into Eq. (2.5.2), we obtain
—20+2i+3i=0 or 5i=20 = i=4A
Substituting i in Eq. (2.5.1) finally gives
v, =8V, v, = —12V



www.konkur.in

2.4  Kirchhoff's Laws

41

Find v, and v, in the circuit of Fig. 2.22.

Answer: 16 V, —8 V.

Practice Problem 2.5

4Q

v () &) -8v

2Q

Figure 2.22
For Practice Prob. 2.5.

Determine v,, and i in the circuit shown in Fig. 2.23(a).

', 40 2y, 4Q 24,
MW + - AN 70 S
2v(®) W@ nv@®) @ av (%)
6 Q 6 Q
AWV MY
+ oy - + oy -
(@ (b)
Figure 2.23
For Example 2.6.
Solution:
We apply KVL around the loop as shown in Fig. 2.23(b). The result is
—12+4i+2v,—-4+6i=0 (2.6.1)

Applying Ohm’s law to the 6-() resistor gives
v, = —6i (2.6.2)
Substituting Eq. (2.6.2) into Eq. (2.6.1) yields
—16 + 10i — 12i =0 = i=—-8A
and v, = 48 V.

Example 2.6

Find v, and v, in the circuit of Fig. 2.24.

Answer: 20V, —10 V.

Practice Problem 2.6

10 Q

MWV
+ oy -
70V 29,
5Q
AWV
+ oy -

Figure 2.24
For Practice Prob. 2.6.
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Example 2.7 Find current i, and voltage v,, in the circuit shown in Fig. 2.25.
Solution:
4 Applying KCL to node a, we obtain
. b 3405, =i, = i,=6A
0.5, <} v"_% 4Q Q 3A For the 4-Q) resistor, Ohm’s law gives
v, =4i, =24V
Figure 2.25
For Example 2.7.
Practice Problem 2.7 Find v, and i, in the circuit of Fig. 2.26.
Answer: 12V, 6 A.
bo
. +
oA (D) 20 ? 8Q 2 %
Figure 2.26
For Practice Prob. 2.7.
Example 2.8 Find currents and voltages in the circuit shown in Fig. 2.27(a).
sa L, & s L, o

+ + + +
v () %%39 v;%sn v (*) @ w%m @ V3%6Q

(a) (b)

Figure 2.27
For Example 2.8.

Solution:
We apply Ohm’s law and Kirchhoff’s laws. By Ohm’s law,

[ Sil, Uy, = 3i2, U3 = 613 (2.8.1)
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Since the voltage and current of each resistor are related by Ohm’s
law as shown, we are really looking for three things: (v, v,, U3) or
(i1, i», 13). At node a, KCL gives
i —ip—i3=0 (2.8.2)
Applying KVL to loop 1 as in Fig. 2.27(b),
-30+v,+tv,=0
We express this in terms of i; and i, as in Eq. (2.8.1) to obtain
=30 + 8i; +3i, =0
or
i = % (2.8.3)
Applying KVL to loop 2,
—v, +tv3=0 = Uz = Uy (2.8.4)
as expected since the two resistors are in parallel. We express v; and
U, in terms of i; and i, as in Eq. (2.8.1). Equation (2.8.4) becomes
6i3 = 3i, = iz = 152 (2.8.5)
Substituting Egs. (2.8.3) and (2.8.5) into (2.8.2) gives
or i, = 2 A. From the value of i,, we now use Egs. (2.8.1) to (2.8.5)
to obtain
i = 3A, iz = 1A, v, =24V, U, =6V, v3 =6V
Find the currents and voltages in the circuit shown in Fig. 2.28. Practice Problem 2.8
Answer: v, =6V, v,=4V, 03=10V, i =3 A, i, = 500 mA, 20 1 3 40
iz = 1.25 A. P $i2+ .
IAY v: % 8Q 6V

2.5 Series Resistors and Voltage Division

The need to combine resistors in series or in parallel occurs so fre-
quently that it warrants special attention. The process of combining the
resistors is facilitated by combining two of them at a time. With this
in mind, consider the single-loop circuit of Fig. 2.29. The two resistors

Figure 2.28
For Practice Prob. 2.8.
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_La Ry R,
O—ANVWY

oo - oy -
v
b

Figure 2.29
A single-loop circuit with two resistors in
series.

Figure 2.30

Equivalent circuit of the Fig. 2.29 circuit.

Resistors in series behave as a single
resistor whose resistance is equal to
the sum of the resistances of the
individual resistors.

Chapter 2 Basic Laws

are in series, since the same current i flows in both of them. Applying
Ohm’s law to each of the resistors, we obtain

v, = iR, v, = iR, (2.24)

If we apply KVL to the loop (moving in the clockwise direction), we
have

—v+uv, +tv,=0 (2.25)
Combining Egs. (2.24) and (2.25), we get
V=0, +0,=IiR, + Ry) (2.26)
or
v
i= m (2.27)
Notice that Eq. (2.26) can be written as
U = iRy (2.28)

implying that the two resistors can be replaced by an equivalent resis-
tor R.q; that is,

Req = RI + R2 (2.29)

Thus, Fig. 2.29 can be replaced by the equivalent circuit in Fig. 2.30.
The two circuits in Figs. 2.29 and 2.30 are equivalent because they
exhibit the same voltage-current relationships at the terminals a-b. An
equivalent circuit such as the one in Fig. 2.30 is useful in simplifying
the analysis of a circuit. In general,

The equivalent resistance of any number of resistors connected in
series is the sum of the individual resistances.

For N resistors in series then,

N
Ryq=R +Ry+ -+ Ry=>R,

n=1

(2.30)

To determine the voltage across each resistor in Fig. 2.29, we sub-
stitute Eq. (2.26) into Eq. (2.24) and obtain

R, R,

e 2.31)
R, + R, R, + R,

U

Notice that the source voltage v is divided among the resistors in direct
proportion to their resistances; the larger the resistance, the larger the
voltage drop. This is called the principle of voltage division, and the
circuit in Fig. 2.29 is called a voltage divider. In general, if a voltage
divider has N resistors (R, R,, ..., Ry) in series with the source volt-
age v, the nth resistor (R,) will have a voltage drop of

R

v, = " v (2.32)
Rl +R2++RN
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2.6 Parallel Resistors
and Current Division

Consider the circuit in Fig. 2.31, where two resistors are connected
in parallel and therefore have the same voltage across them. From
Ohm’s law,

v = i]R] - isz

or
v v
i = —, iy = — 2.33
l R, ) R, ( )
Applying KCL at node a gives the total current i as
=it (2.34)
Substituting Eq. (2.33) into Eq. (2.34), we get
1 1
=+ = <+>=” (2.35)
Rl RZ Rl R2 Req
where R4 is the equivalent resistance of the resistors in parallel:
1 1 1
— =+ — (2.36)
Ryq R R,
or
1 R +R
Req RIRZ
or
RiR,
Reg= - (2.37)
R + R,
Thus,

The equivalent resistance of two parallel resistors is equal to the prod-
uct of their resistances divided by their sum.

It must be emphasized that this applies only to two resistors in paral-
lel. From Eq. (2.37), if Ry = R,, then R,y = R,/2.

We can extend the result in Eq. (2.36) to the general case of a cir-
cuit with N resistors in parallel. The equivalent resistance is

1 _r 1, .., 1 (2.38)
R R

Note that R is always smaller than the resistance of the smallest resis-
tor in the parallel combination. If Ry = R, = -+ = Ry = R, then
R

R =7y (2.39)

®  %x

Figure 2.31

Two resistors in parallel.

45
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Conductances in parallel behave as a
single conductance whose value is
equal to the sum of the individual
conductances.

o () :

Figure 2.32
Equivalent circuit to Fig. 2.31.

%Rl Ry=0

O
(a)
i
—
O
ll]:l llzzc
(0]
%RI R2=<>o
o
O

(b
Figure 2.33

(a) A shorted circuit, (b) an open circuit.

Chapter 2 Basic Laws

For example, if four 100-() resistors are connected in parallel, their
equivalent resistance is 25 ().

It is often more convenient to use conductance rather than resist-
ance when dealing with resistors in parallel. From Eq. (2.38), the equiv-
alent conductance for N resistors in parallel is

Geq:G1+G2+G3+”’+GN (2.40)

where Geq = I/Req, Gl = l/Rl, G2 = 1/R2, G3 = 1/R3,
Equation (2.40) states:

The equivalent conductance of resistors connected in parallel is the
sum of their individual conductances.

This means that we may replace the circuit in Fig. 2.31 with that in
Fig. 2.32. Notice the similarity between Eqs. (2.30) and (2.40). The
equivalent conductance of parallel resistors is obtained the same way
as the equivalent resistance of series resistors. In the same manner,
the equivalent conductance of resistors in series is obtained just
the same way as the resistance of resistors in parallel. Thus the
equivalent conductance G4 of N resistors in series (such as shown in
Fig. 2.29) is

(2.41)

Given the total current i entering node « in Fig. 2.31, how do we
obtain current i; and i,? We know that the equivalent resistor has the
same voltage, or

iR\ R,

= iRy = — 2.42
O M T R T Ry (2.42)
Combining Eqgs. (2.33) and (2.42) results in
. R2 i . Rl i
LW = h=—"—" (2.43)
R, + R, R, + R,

which shows that the total current i is shared by the resistors in
inverse proportion to their resistances. This is known as the princi-
ple of current division, and the circuit in Fig. 2.31 is known as a
current divider. Notice that the larger current flows through the
smaller resistance.

As an extreme case, suppose one of the resistors in Fig. 2.31 is
zero, say R, = 0; that is, R, is a short circuit, as shown in
Fig. 2.33(a). From Eq. (2.43), R, = 0 implies that iy = 0, i, = i. This
means that the entire current i bypasses R; and flows through the
short circuit R, = 0, the path of least resistance. Thus when a circuit
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is short circuited, as shown in Fig. 2.33(a), two things should be kept
in mind:

1. The equivalent resistance R.q, = 0. [See what happens when
R, = 0 in Eq. (2.37).]
2. The entire current flows through the short circuit.

As another extreme case, suppose R, = %, that is, R, is an open
circuit, as shown in Fig. 2.33(b). The current still flows through the
path of least resistance, R;. By taking the limit of Eq. (2.37) as R, — %,
we obtain R.q = R, in this case.

If we divide both the numerator and denominator by R R,, Eq. (2.43)
becomes

G,

B 2.44
G, + G, (2.44a)

i =
Gy

- (2.44b)

i

Thus, in general, if a current divider has N conductors (G4, G», ..., Gy)
in parallel with the source current i, the nth conductor (G,) will have
current

. Gn .
1, = 1
G] + Gz + -+ GN

(2.45)

In general, it is often convenient and possible to combine resis-
tors in series and parallel and reduce a resistive network to a single
equivalent resistance R.q. Such an equivalent resistance is the resist-
ance between the designated terminals of the network and must
exhibit the same i-v characteristics as the original network at the
terminals.

47

Find R, for the circuit shown in Fig. 2.34.

Solution:
To get R.,, we combine resistors in series and in parallel. The 6-} and
3-Q) resistors are in parallel, so their equivalent resistance is

6 X3
6+3

=20

6030 =

(The symbol || is used to indicate a parallel combination.) Also, the 1-Q
and 5-() resistors are in series; hence their equivalent resistance is

10+50=60Q

Thus the circuit in Fig. 2.34 is reduced to that in Fig. 2.35(a). In
Fig. 2.35(a), we notice that the two 2-() resistors are in series, so the
equivalent resistance is

20+20=40Q

Example 2.9

8Q
O—AWW

Figure 2.34

For Example 2.9.

5Q
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40
o—MWW
R 20
Req §sg
20
8Q
o MW
(a)
4Q
R
M 24Q
8Q

(b)
Figure 2.35

Equivalent circuits for Example 2.9.

Chapter 2 Basic Laws

This 4-() resistor is now in parallel with the 6-() resistor in Fig. 2.35(a);
their equivalent resistance is

4 X6
40)60 =
4+6

=240

The circuit in Fig. 2.35(a) is now replaced with that in Fig. 2.35(b). In
Fig. 2.35(b), the three resistors are in series. Hence, the equivalent
resistance for the circuit is

Rg=40+240+80=1440

Practice Problem 2.9

4Q 3Q 4Q

3Q

Figure 2.36
For Practice Prob. 2.9.

By combining the resistors in Fig. 2.36, find R..

Answer: 10 Q).

Example 2.10

Calculate the equivalent resistance R, in the circuit in Fig. 2.37.

e . 1Q 4 1Q

a O—AMAN AN A%
60
R
b, 3Q§ %40 %59
120
b o
b b

Figure 2.37
For Example 2.10.

Solution:
The 3-Q) and 6-Q) resistors are in parallel because they are connected

to the same two nodes ¢ and b. Their combined resistance is

3X6
3+6

3060 = =20 (2.10.1)
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Similarly, the 12-€) and 4-Q) resistors are in parallel since they are
connected to the same two nodes d and b. Hence

12 X4
12 +4

12040 = 30 (2.10.2)
Also the 1-€) and 5-0) resistors are in series; hence, their equivalent
resistance is

10+50=60 (2.10.3)

With these three combinations, we can replace the circuit in Fig. 2.37 with
that in Fig. 2.38(a). In Fig. 2.38(a), 3-() in parallel with 6-() gives 2-(},
as calculated in Eq. (2.10.1). This 2-{) equivalent resistance is now in series
with the 1-() resistance to give a combined resistance of 1 Q) +2 Q) = 3 ().
Thus, we replace the circuit in Fig. 2.38(a) with that in Fig. 2.38(b). In
Fig. 2.38(b), we combine the 2-) and 3-() resistors in parallel to get

2 X3

20[30="""=120Q
2+ 3

This 1.2-0) resistor is in series with the 10-{) resistor, so that

Ry=10+12=1120

49
10Q . 1Q 4
a
2Q 3Q 6Q
b o
b b b
(a)
10Q ¢
a
2Q 3Q
b o
b b
(b)

Figure 2.38

Equivalent circuits for Example 2.10.

Find R, for the circuit in Fig. 2.39.

Answer: 19 ().

Practice Problem 2.10

20 Q
AW
16 Q 5Q
a ANV MY
R, 18Q 20 Q
S, 3 Zi0
9Q
2Q
b MM

Figure 2.39
For Practice Prob. 2.10.

Find the equivalent conductance G, for the circuit in Fig. 2.40(a).

Solution:
The 8-S and 12-S resistors are in parallel, so their conductance is

8S+12S=20S

This 20-S resistor is now in series with 5 S as shown in Fig. 2.40(b)

so that the combined conductance is
20 X5
20 + 5

45

This is in parallel with the 6-S resistor. Hence,
Gyq=6+4=10S

We should note that the circuit in Fig. 2.40(a) is the same as that
in Fig. 2.40(c). While the resistors in Fig. 2.40(a) are expressed in

Example 2.11
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50
5S
AN
G
e 6  8S 128
(a)
5S
Ge
— 20 S
(b)
1
o
AW
R
1 1 1
62 g Q 2

(©
Figure 2.40
For Example 2.11: (a) original circuit,
(b) its equivalent circuit, (c) same circuit as
in (a) but resistors are expressed in ohms.

Chapter 2 Basic Laws

siemens, those in Fig. 2.40(c) are expressed in ohms. To show that the
circuits are the same, we find R for the circuit in Fig. 2.40(c).

L1 11 11 1 11
Ro=—-lz+=l=)==llz+=)==|~+
6I\5 8|12 61\5 20 614

i1
= =—0
+110

ol
INEN

o=
FSE

1
—=10S

cq

G

Cq:

This is the same as we obtained previously.

Practice Problem 2.11

O
%85 %45
ch
—_—
2 6S
% S 128 %
o MWV

Figure 2.41
For Practice Prob. 2.11.

Calculate G in the circuit of Fig. 2.41.

Answer: 4 S.

Example 2.12

Find i, and v, in the circuit shown in Fig. 2.42(a). Calculate the power
dissipated in the 3-() resistor.

Solution:
The 6-() and 3-() resistors are in parallel, so their combined resistance is
6 X3
60|30 = =20
” 6+3

Thus our circuit reduces to that shown in Fig. 2.42(b). Notice that v,, is
not affected by the combination of the resistors because the resistors are
in parallel and therefore have the same voltage v,. From Fig. 2.42(b),
we can obtain v, in two ways. One way is to apply Ohm’s law to get

12
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and hence, v, = 2i = 2 X 2 = 4 V. Another way is to apply voltage
division, since the 12 V in Fig. 2.42(b) is divided between the 4-() and
2-() resistors. Hence,

2
=——{12V)=4V
v{) 2 + 4( )
Similarly, i, can be obtained in two ways. One approach is to apply
Ohm’s law to the 3-() resistor in Fig. 2.42(a) now that we know v,,; thus,
4

i,=—A

=
3

v, =3i,=4

Another approach is to apply current division to the circuit in Fig. 2.42(a)
now that we know i, by writing
4

6 2oa=ta
T 613 T3 3

The power dissipated in the 3-Q) resistor is

4
Py = Ui, = 4(3) = 5333 W

51
a0 lo
—_— a —_—

AN
+
12V 6Q % S3Q
b
(a)
40 a
+
12v 5,220
b

(b)
Figure 2.42
For Example 2.12: (a) original circuit,
(b) its equivalent circuit.

Find v, and v, in the circuit shown in Fig. 2.43. Also calculate /1 and
i, and the power dissipated in the 12-) and 40-() resistors.

Answer: v; =10V, i; = 8333 mA, p; = 8333 W, 0, =20V, i, =
500 mA, p, = 10 W.

Practice Problem 2.12

i
L 12Q
MW
+ oy -
6Q
A

K
.

v (®) %109 1’2_%409

Figure 2.43
For Practice Prob. 2.12.

For the circuit shown in Fig. 2.44(a), determine: (a) the voltage v,,
(b) the power supplied by the current source, (c) the power absorbed
by each resistor.

Solution:

(a) The 6-k) and 12-k{) resistors are in series so that their combined
value is 6 + 12 = 18 k(). Thus the circuit in Fig. 2.44(a) reduces to
that shown in Fig. 2.44(b). We now apply the current division technique
to find i; and i,.

18,000
9,000 + 18,000

9,000
9,000 + 18,000

i (30 mA) = 20 mA

(30mA) = 10 mA

15)

Example 2.13
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6 kQ
+
30 mA b Z 9kQ 12 kQ
(a)
ia i2

—_— —

vi
30ma (}) vo§9kg %181{9

+

(b)
Figure 2.44

For Example 2.13: (a) original circuit,
(b) its equivalent circuit.

Chapter 2 Basic Laws

Notice that the voltage across the 9-k{) and 18-k} resistors is the same,
and v, = 9,000i; = 18,000i, = 180 V, as expected.
(b) Power supplied by the source is

Do = Ui, = 18030) mW = 54 W
(c) Power absorbed by the 12-k() resistor is
p=1iv=1i(iLR) = i3R = (10 X 107°)*(12,000) = 1.2 W
Power absorbed by the 6-k{) resistor is
p =i3R = (10 X 107*)*(6,000) = 0.6 W
Power absorbed by the 9-k() resistor is

_ v _ (807
P=R " 9000

or
P = v,i, = 180(20) mW = 3.6 W

Notice that the power supplied (5.4 W) equals the power absorbed
(1.2 + 0.6 + 3.6 = 5.4 W). This is one way of checking results.

Practice Problem 2.13

Ry
AW
R, R
Ry
Rs Rq
Figure 2.46
The bridge network.

For the circuit shown in Fig. 2.45, find: (a) v, and v,, (b) the power
dissipated in the 3-k{) and 20-kQ) resistors, and (c) the power supplied
by the current source.

1 kQ

+ +
3kQ S v ()30 ma %51(9 2 20kQ

Figure 2.45
For Practice Prob. 2.13.

Answer: (a) 45 V, 60 V, (b) 675 mW, 180 mW, (c) 1.8 W.

2.7 TWye-Delta Transformations

Situations often arise in circuit analysis when the resistors are neither in
parallel nor in series. For example, consider the bridge circuit in Fig. 2.46.
How do we combine resistors R through R when the resistors are neither
in series nor in parallel? Many circuits of the type shown in Fig. 2.46
can be simplified by using three-terminal equivalent networks. These are
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the wye (Y) or tee (T) network shown in Fig. 2.47 and the delta (A) or R,
pi (IT) network shown in Fig. 2.48. These networks occur by themselves 1 MW 3
or as part of a larger network. They are used in three-phase networks,

electrical filters, and matching networks. Our main interest here is in how Ry R,
to identify them when they occur as part of a network and how to apply
wye-delta transformation in the analysis of that network. ) 4
(a)
1 — 3 R,
R, Ry
R, %, 1 X 1 AW 3
R, Ry R, § § R,
2 4 2 4 » 4
(a) (b) (b)
Figure 2.47 Figure 2.48
Two forms of the same network: (a) Y, (b) T. Two forms of the same network: (a) A,

(b) IT.

Delta to Wye Conversion

Suppose it is more convenient to work with a wye network in a place
where the circuit contains a delta configuration. We superimpose a wye
network on the existing delta network and find the equivalent resistances
in the wye network. To obtain the equivalent resistances in the wye net-
work, we compare the two networks and make sure that the resistance
between each pair of nodes in the A (or IT) network is the same as the
resistance between the same pair of nodes in the Y (or T) network. For
terminals 1 and 2 in Figs. 2.47 and 2.48, for example,

Ri>(Y) =R, + Rz (2.46)
Rix(A) =R, H (R T R
Setting R;»(Y) = Ry,(A) gives
Ry(R, + R.)

Rro=R +Ry=——"—"— 2.47a
12 1 3 R, + R, + R, ( )
Similarly,
R((Ra + Rh)
Rl3 = Rl + R2 - (2.47b)
R,+ R, + R,
Rys = Ry + Ry = aBo + RO (2.47¢)
S U R+ R,+ R, e

Subtracting Eq. (2.47c) from Eq. (2.47a), we get

R('(Rb - Ra)
Rl —R=—7"7"—"—""-+- (2.48)
R, + R, + R,

Adding Egs. (2.47b) and (2.48) gives

R,R.

=—2c (2.49)
R, + R, + R,

R,
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Figure 2.49
Superposition of Y and A networks as an
aid in transforming one to the other.

Chapter 2 Basic Laws

and subtracting Eq. (2.48) from Eq. (2.47b) yields

R, = L (2 50)
> R,+R,+R, :
Subtracting Eq. (2.49) from Eq. (2.47a), we obtain
R.R,
Ry=—""" """ (2.51)
R, + R, + R,

We do not need to memorize Egs. (2.49) to (2.51). To transform a A net-
work to Y, we create an extra node n as shown in Fig. 2.49 and follow
this conversion rule:

Each resistor in the ¥ network is the product of the resistors in the two
adjacent A branches, divided by the sum of the three A resistors.

One can follow this rule and obtain Egs. (2.49) to (2.51) from Fig. 2.49.

Wye to Delta Conversion

To obtain the conversion formulas for transforming a wye network to
an equivalent delta network, we note from Egs. (2.49) to (2.51) that
R,R,R.(R, + R, + R,)

(R, + R, + R,

R,R,R.
"R, + R, + R,

Dividing Eq. (2.52) by each of Eqgs. (2.49) to (2.51) leads to the fol-
lowing equations:

R1R2 + RzRg + Rqu -
(2.52)

R\R> + RoRs + R3R
= 1442 2133 34\ (2.53)
R,
R\R> + RoRs + RsR
Rb: 142 24\3 380 (2.54)
R,
R\R> + RoRs + RyR
e —— (2.55)
3

From Eqgs. (2.53) to (2.55) and Fig. 2.49, the conversion rule for Y to
A is as follows:

Each resistor in the A network is the sum of all possible products of ¥
resistors taken two at a time, divided by the opposite Y resistor.
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The Y and A networks are said to be balanced when
Ry = Ry = R3 = Ry, R, =R, =R.=Ra (2.56)

Under these conditions, conversion formulas become

Ra
RY = ? or RA = 3RY (2.57)

One may wonder why Ry is less than R. Well, we notice that the Y-
connection is like a “series” connection while the A-connection is like
a “parallel” connection.

Note that in making the transformation, we do not take anything
out of the circuit or put in anything new. We are merely substituting
different but mathematically equivalent three-terminal network patterns
to create a circuit in which resistors are either in series or in parallel,
allowing us to calculate R, if necessary.

Convert the A network in Fig. 2.50(a) to an equivalent Y network. Example 2.14

() (b)

Figure 2.50
For Example 2.14: (a) original A network, (b) Y equivalent network.

Solution:
Using Egs. (2.49) to (2.51), we obtain

RyR. 10 X 25 250
R, = = =" _50
R, +R,+R. 15+10+25 50
R.R, 25 X 15
R, = = =750
R, + R, + R, 50
R.R 15 % 1
R, + R, + R. 50

The equivalent Y network is shown in Fig. 2.50(b).
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Practice Problem 2.14

Transform the wye network in Fig. 2.51 to a delta network.

R, R, _ _ _
4 0 AMA M0 b Answer: R, = 140 O, R, = 70 Q, R. = 35 Q.
10 Q 20 Q
Ry 240Q
c
Figure 2.51
For Practice Prob. 2.14.
Example 2.15 Obtain the equivalent resistance R, for the circuit in Fig. 2.52 and use
it to find current i.
L u Solution:
1. Define. The problem is clearly defined. Please note, this part
1250 109 normally will deservedly take much more time.
2. Present. Clearly, when we remove the voltage source, we end
0 ith ly resistive circuit. Since it i d of delt
120V D . " § 300 up with a purely resistive circuit. Since it is composed of deltas
and wyes, we have a more complex process of combining the
150 200 elements together. We can use wye-delta transformations as one
approach to find a solution. It is useful to locate the wyes (there
are two of them, one at n and the other at ¢) and the deltas
b b (there are three: can, abn, cnb).

Figure 2.52
For Example 2.15.

. Alternative. There are different approaches that can be used to

solve this problem. Since the focus of Sec. 2.7 is the wye-delta
transformation, this should be the technique to use. Another
approach would be to solve for the equivalent resistance by
injecting one amp into the circuit and finding the voltage
between a and b; we will learn about this approach in Chap. 4.

The approach we can apply here as a check would be to use
a wye-delta transformation as the first solution to the problem.
Later we can check the solution by starting with a delta-wye
transformation.

. Attempt. In this circuit, there are two Y networks and three A

networks. Transforming just one of these will simplify the circuit.
If we convert the Y network comprising the 5-Q, 10-(), and
20-Q) resistors, we may select

Rl = IOQ, R2:2093
Thus from Egs. (2.53) to (2.55) we have

CR\R,+RRy+ RsR, 10X 20 +20X 5+ 5 X 10

R, =
R, 10
350
=== =350
10
R\Ry + RyRy + RsR, 350
Ry=——"——"—1 ="—=1750
R, 20
R\Ry + RyRy + RsR, 350
R = 112 2R3 3% _ Y o0
R 5
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ao
1250 17.5Q ao
§7OQ § 30 Q 7292 Q
35Q §21 Q
15Q
10.5Q
b o b O

(@) (b)
Figure 2.53

Equivalent circuits to Fig. 2.52, with the voltage source removed.

With the Y converted to A, the equivalent circuit (with the
voltage source removed for now) is shown in Fig. 2.53(a).
Combining the three pairs of resistors in parallel, we obtain

70 X 30

70130 = ——= =210Q)
” 70 + 30
12.5 X 17.5
125[175 = ———————-=72920Q
125 + 17.5
15 X 35
1535 =—""—-=105Q
15 + 35
so that the equivalent circuit is shown in Fig. 2.53(b). Hence, we
find
17.792 X 21
R, =1(7292 + 105 |2l = ———=9.632Q
a» = ( | 17.792 + 21
Then
) U 120
i = = = 12.458 A
Ry  9.632

We observe that we have successfully solved the problem.
Now we must evaluate the solution.

5. Evaluate. Now we must determine if the answer is correct and
then evaluate the final solution.

It is relatively easy to check the answer; we do this by
solving the problem starting with a delta-wye transformation. Let
us transform the delta, can, into a wye.

Let R. = 10Q, R, =50, and R, = 12.5 (). This will lead
to (let d represent the middle of the wye):

_ RR, 10X 125
" R,+R.+R, 5+10+ 125
Rd:RaR,, _ 5% 125
“ 275 275
_RR. 5%X10
T 2715 275

Ry = 4.545 Q)

=2273Q

R,y = 181820

57

2273 Q

15Q

4.545 Q

1.8182 Q

n

20 Q

(©)
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This now leads to the circuit shown in Figure 2.53(c). Looking

at the resistance between d and b, we have two series

combination in parallel, giving us

_ (2.273 +15)(1.8182 + 20)  376.9
2273 + 15 + 1.8182 + 20  39.09

db =9.642 Q)

This is in series with the 4.545-) resistor, both of which are in

parallel with the 30-() resistor. This then gives us the equivalent

resistance of the circuit.

_(9.642 +4.545)30  425.6
9.642 + 4.545 + 30  44.19

= 9.631 O

ab

This now leads to

v, 120
Ry 9.631

i= = 1246 A
We note that using two variations on the wye-delta transformation
leads to the same results. This represents a very good check.

6. Satisfactory? Since we have found the desired answer by
determining the equivalent resistance of the circuit first and the
answer checks, then we clearly have a satisfactory solution. This
represents what can be presented to the individual assigning the
problem.

Practice Problem 2.15
L4 13

24 Q 10 Q

20V ()

30 Q 50 Q

b

Figure 2.54
For Practice Prob. 2.15.

So far, we have assumed that connect-
ing wires are perfect conductors (i.e.,
conductors of zero resistance). In real
physical systems, however, the resist-
ance of the connecting wire may be
appreciably large, and the modeling
of the system must include that
resistance.

For the bridge network in Fig. 2.54, find R,;, and i.

Answer: 40 (), 6 A.

2.8 T Applications

Resistors are often used to model devices that convert electrical energy
into heat or other forms of energy. Such devices include conducting
wire, light bulbs, electric heaters, stoves, ovens, and loudspeakers. In
this section, we will consider two real-life problems that apply the con-
cepts developed in this chapter: electrical lighting systems and design
of dc meters.

2.8.1 Lighting Systems

Lighting systems, such as in a house or on a Christmas tree, often con-
sist of N lamps connected either in parallel or in series, as shown in
Fig. 2.55. Each lamp is modeled as a resistor. Assuming that all the lamps
are identical and V,, is the power-line voltage, the voltage across each
lamp is V, for the parallel connection and V,,/N for the series connec-
tion. The series connection is easy to manufacture but is seldom used
in practice, for at least two reasons. First, it is less reliable; when a lamp
fails, all the lamps go out. Second, it is harder to maintain; when a lamp
is bad, one must test all the lamps one by one to detect the faulty one.
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Historical

Thomas Alva Edison (1847-1931) was perhaps the greatest
American inventor. He patented 1093 inventions, including such
history-making inventions as the incandescent electric bulb, the phono-
graph, and the first commercial motion pictures.

Born in Milan, Ohio, the youngest of seven children, Edison received
only three months of formal education because he hated school. He was
home-schooled by his mother and quickly began to read on his own. In
1868, Edison read one of Faraday’s books and found his calling. He
moved to Menlo Park, New Jersey, in 1876, where he managed a well-
staffed research laboratory. Most of his inventions came out of this
laboratory. His laboratory served as a model for modern research organ-
izations. Because of his diverse interests and the overwhelming number
of his inventions and patents, Edison began to establish manufacturing
companies for making the devices he invented. He designed the first elec-
tric power station to supply electric light. Formal electrical engineering
education began in the mid-1880s with Edison as a role model and leader.

Library of Congress

+ 1 2 3 N
v, j} o o Cb ees( b
Power \
plug
(a) Lamp (b)

Figure 2.55

(a) Parallel connection of light bulbs, (b) series connection of light bulbs.

Three light bulbs are connected to a 9-V battery as shown in Fig. 2.56(a). Example 2.16
Calculate: (a) the total current supplied by the battery, (b) the current

through each bulb, (c) the resistance of each bulb.

I I
—_— —_—
K
+
V, R,
_ +
15W OV — ViZ> R,
+ _
9V — D 20W Vi S R,
10W _

(@)
Figure 2.56

(b)

(a) Lighting system with three bulbs, (b) resistive circuit equivalent model.
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Solution:
(a) The total power supplied by the battery is equal to the total power
absorbed by the bulbs; that is,

p=15+10+20=45W
Since p = VI, then the total current supplied by the battery is

45
1=2-"2_54
v

(b) The bulbs can be modeled as resistors as shown in Fig. 2.56(b).
Since R; (20-W bulb) is in parallel with the battery as well as the series
combination of R, and Rs,

Vl = V2 + V3 =9V
The current through R; is

20

L= _00ma

Vi 9

By KCL, the current through the series combination of R, and Rj is
L=1—1 =5—-2222=2778 A

(c) Since p = I°R,

20
R=BL-—=__ 4050
12 20
15
R=D2- 2 _josq
12297
10
R=D2— = — 12970
13 27

Practice Problem 2.16

Figure 2.57
The potentiometer controlling potential
levels.

Refer to Fig. 2.55 and assume there are 10 light bulbs that can be con-
nected in parallel and 10 light bulbs that can be connected in series,
each with a power rating of 40 W. If the voltage at the plug is 110 V
for the parallel and series connections, calculate the current through
each bulb for both cases.

Answer: 364 mA (parallel), 3.64 A (series).

2.8.2 Design of DC Meters

By their nature, resistors are used to control the flow of current. We
take advantage of this property in several applications, such as in a
potentiometer (Fig. 2.57). The word potentiometer, derived from the
words potential and meter, implies that potential can be metered out.
The potentiometer (or pot for short) is a three-terminal device that oper-
ates on the principle of voltage division. It is essentially an adjustable
voltage divider. As a voltage regulator, it is used as a volume or level
control on radios, TVs, and other devices. In Fig. 2.57,

R bc

Vout = Vl)c = R

vin (2'58)
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where R,. = R, + Ry Thus, V,, decreases or increases as the sliding
contact of the pot moves toward c¢ or a, respectively.

Another application where resistors are used to control current flow
is in the analog dc meters—the ammeter, voltmeter, and ohmmeter,
which measure current, voltage, and resistance, respectively. Each of
these meters employs the d’Arsonval meter movement, shown in
Fig. 2.58. The movement consists essentially of a movable iron-core coil
mounted on a pivot between the poles of a permanent magnet. When
current flows through the coil, it creates a torque which causes the pointer
to deflect. The amount of current through the coil determines the deflec-
tion of the pointer, which is registered on a scale attached to the meter
movement. For example, if the meter movement is rated 1 mA, 50 (), it
would take 1 mA to cause a full-scale deflection of the meter movement.
By introducing additional circuitry to the d’Arsonval meter movement,
an ammeter, voltmeter, or ohnmmeter can be constructed.

Consider Fig. 2.59, where an analog voltmeter and ammeter are
connected to an element. The voltmeter measures the voltage across a
load and is therefore connected in parallel with the element. As shown

permanent magnet
rotating coil

stationary iron core

Figure 2.58

A d’ Arsonval meter movement.

in Fig. 2.60(a), the voltmeter consists of a d’Arsonval movement in
series with a resistor whose resistance R,, is deliberately made very
large (theoretically, infinite), to minimize the current drawn from the
circuit. To extend the range of voltage that the meter can measure,
series multiplier resistors are often connected with the voltmeters, as
shown in Fig. 2.60(b). The multiple-range voltmeter in Fig. 2.60(b) can
measure voltage from 0 to 1 V, 0 to 10 V, or 0 to 100 V, depending on
whether the switch is connected to Ry, R,, or R3, respectively.

Let us calculate the multiplier resistor R, for the single-range volt-
meter in Fig. 2.60(a), or R, = Ry, R,, or R3 for the multiple-range
voltmeter in Fig. 2.60(b). We need to determine the value of R, to be
connected in series with the internal resistance R,, of the voltmeter. In
any design, we consider the worst-case condition. In this case, the
worst case occurs when the full-scale current I, = I, flows through
the meter. This should also correspond to the maximum voltage read-
ing or the full-scale voltage Vi,. Since the multiplier resistance R,, is in
series with the internal resistance R,,,

Vﬁ = Ifs (Rn + Rm) (2'59)

61

I An instrument capable of measuring

voltage, current, and resistance is
called a multimeter or a volt-ohm
meter VOM).

A load is a component that is receiving

I energy (an energy sink), as opposed
to a generator supplying energy (an
energy source). More about loading
will be discussed in Section 4.9.1.

Ammeter [
—
o—_

+
Voltmeter C\D 74 Element

O

Figure 2.59
Connection of a voltmeter and an amme-
ter to an element.
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o, & 1

! P MWW—— !

3 Meter 3

@ |

Al

V4 Probes ~
(@)

~ Probes ~
(b)

Figure 2.61

Ammeters: (a) single-range type,

(b) multiple-range type.

Chapter 2 Basic Laws

Multiplier ~ Meter

Figure 2.60
Voltmeters: (a) single-range type, (b) multiple-range type.

From this, we obtain
R,=——-R, (2.60)

Similarly, the ammeter measures the current through the load and
is connected in series with it. As shown in Fig. 2.61(a), the ammeter
consists of a d’Arsonval movement in parallel with a resistor whose
resistance R,, is deliberately made very small (theoretically, zero) to
minimize the voltage drop across it. To allow multiple ranges, shunt
resistors are often connected in parallel with R,, as shown in
Fig. 2.61(b). The shunt resistors allow the meter to measure in the
range 0—10 mA, 0-100 mA, or 0-1 A, depending on whether the switch
is connected to R, R,, or R3, respectively.

Now our objective is to obtain the multiplier shunt R, for the single-
range ammeter in Fig. 2.61(a), or R, = R, R,, or R; for the multiple-
range ammeter in Fig. 2.61(b). We notice that R,, and R,, are in parallel
and that at full-scale reading I = Ity = I, + I,,, where I, is the current
through the shunt resistor R,. Applying the current division principle
yields

R

n

l,=—"—1I
"R R,
or
R, = LR (2.61)
n 11‘5 o Im m .

The resistance R, of a linear resistor can be measured in two ways.
An indirect way is to measure the current / that flows through it by
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connecting an ammeter in series with it and the voltage V across it by
connecting a voltmeter in parallel with it, as shown in Fig. 2.62(a).
Then
Vv
R, =— (2.62)
1
The direct method of measuring resistance is to use an ohmmeter. An
ohmmeter consists basically of a d’Arsonval movement, a variable
resistor or potentiometer, and a battery, as shown in Fig. 2.62(b).
Applying KVL to the circuit in Fig. 2.62(b) gives

E=R+R,+R)I,

or

E
R, = I (R+R,) (2.63)
The resistor R is selected such that the meter gives a full-scale deflec-
tion; that is, I,, = Iy, when R, = 0. This implies that

E=(R+R,)I (2.64)
Substituting Eq. (2.64) into Eq. (2.63) leads to

R, = (1ls - 1) (R +R,) (2.65)
I}’l'l

As mentioned, the types of meters we have discussed are known
as analog meters and are based on the d’Arsonval meter movement.
Another type of meter, called a digital meter, is based on active circuit
elements such as op amps. For example, a digital multimeter displays
measurements of dc or ac voltage, current, and resistance as discrete
numbers, instead of using a pointer deflection on a continuous scale as
in an analog multimeter. Digital meters are what you would most likely
use in a modern lab. However, the design of digital meters is beyond
the scope of this book.

63
;A}
e
RX§_V
(a)
e Ohmmeter
A

Figure 2.62

Two ways of measuring resistance:
(a) using an ammeter and a voltmeter,
(b) using an ohmmeter.

Historical

Samuel F. B. Morse (1791-1872), an American painter, invented
the telegraph, the first practical, commercialized application of
electricity.

Morse was born in Charlestown, Massachusetts and studied at Yale
and the Royal Academy of Arts in London to become an artist. In the
1830s, he became intrigued with developing a telegraph. He had a
working model by 1836 and applied for a patent in 1838. The U.S.
Senate appropriated funds for Morse to construct a telegraph line
between Baltimore and Washington, D.C. On May 24, 1844, he sent
the famous first message: “What hath God wrought!”” Morse also devel-
oped a code of dots and dashes for letters and numbers, for sending
messages on the telegraph. The development of the telegraph led to the
invention of the telephone.

Library of Congress
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Example 2.17

Following the voltmeter setup of Fig. 2.60, design a voltmeter for the
following multiple ranges:

(a) 0-1V (b) 0-5V (c) 0-50 V (d) 0-100 V

Assume that the internal resistance R,, = 2 k{) and the full-scale cur-
rent Iy, = 100 pA.

Solution:

We apply Eq. (2.60) and assume that Ry, R», R3, and R, correspond
with ranges 0-1 V, 0-5 V, 0-50 V, and 0-100 V, respectively.

(a) For range 0-1V,

1
T 100 X 10°°
(b) For range 0-5 V,
5
" 100 X 10°°
(c) For range 0-50 V,
50
" 100 X 10°°
(d) For range 0-100 V,

100V
100 X 107°

— 2000 = 10,000 — 2000 = 8 k()

1

R, — 2000 = 50,000 — 2000 = 48 k()

R3 — 2000 = 500,000 — 2000 = 498 k()

4 — 2000 = 1,000,000 — 2000 = 998 k)

Note that the ratio of the total resistance (R, + R,,) to the full-scale
voltage Vi, is constant and equal to 1/l for the four ranges. This ratio
(given in ohms per volt, or /V) is known as the sensitivity of the
voltmeter. The larger the sensitivity, the better the voltmeter.

Practice Problem 2.17

Following the ammeter setup of Fig. 2.61, design an ammeter for the
following multiple ranges:

(a) 0-1 A (b) 0-100 mA (c) 0-10 mA

Take the full-scale meter current as /,, = 1 mA and the internal resist-
ance of the ammeter as R,, = 50 ().

Answer: Shunt resistors: 50 m{), 505 m{), 5.556 ().

2.9 Summary

1. A resistor is a passive element in which the voltage v across it is
directly proportional to the current i through it. That is, a resistor
is a device that obeys Ohm’s law,

v =R

where R is the resistance of the resistor.
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2.9 Summary

. A short circuit is a resistor (a perfectly, conducting wire) with zero

resistance (R = 0). An open circuit is a resistor with infinite resis-
tance (R = ).

. The conductance G of a resistor is the reciprocal of its resistance:

. A branch is a single two-terminal element in an electric circuit. A

node is the point of connection between two or more branches. A
loop is a closed path in a circuit. The number of branches b, the
number of nodes n, and the number of independent loops / in a
network are related as

b=1+n-1

. Kirchhoff’s current law (KCL) states that the currents at any node

algebraically sum to zero. In other words, the sum of the currents
entering a node equals the sum of currents leaving the node.

. Kirchhoff’s voltage law (KVL) states that the voltages around a

closed path algebraically sum to zero. In other words, the sum of
voltage rises equals the sum of voltage drops.

. Two elements are in series when they are connected sequentially,

end to end. When elements are in series, the same current flows
through them (i; = i,). They are in parallel if they are connected
to the same two nodes. Elements in parallel always have the same
voltage across them (v; = v,).

. When two resistors R, (=1/G,) and R, (=1/G,) are in series, their

equivalent resistance R.q and equivalent conductance G.q are

GG,
Req=R1+R2’ Gequ TG
1 2

. When two resistors R, (=1/G,) and R, (=1/G,) are in parallel,

their equivalent resistance R.q and equivalent conductance G are

RiR,

=—2—  Gu=G +G
eq R] + R2 eq 1 2

The voltage division principle for two resistors in series is

R, R,

v, = ——U, UVp= ———0U
R, + R, R, + R,

. The current division principle for two resistors in parallel is

R, . R,

=i, = i
R, + R, R, +R,

The formulas for a delta-to-wye transformation are

RyR, R.R,
Ri=——F7", Ry=—"7""—
R, + R, + R, R, + R, + R,
R, R
R3 a ‘b

TR, R, + R,

65
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13. The formulas for a wye-to-delta transformation are

_ RiRy + RyRs + R3R, o _ RiRa+ RoRs + RsR,

R b
a Rl b R2

RR, + R,R; + R3R,
R;

R. =

14. The basic laws covered in this chapter can be applied to the prob-
lems of electrical lighting and design of dc meters.

1

Review Questions

2.1 The reciprocal of resistance is: 2.7 The current /, of Fig. 2.64 is:
(a) voltage (b) current (a) —4 A (b) =2 A (©)4A (d) 16 A
(c) conductance (d) coulombs

2.2 An electric heater draws 10 A from a 120-V line. The
resistance of the heater is:

(a) 1200 (b) 120 Q f 10A
©12Q @120 %
2.3 The voltage drop across a 1.5-kW toaster that draws 2A 4A
12 A of current is: o A A -
(a) 1I8kV (b) 125V
() 120V (d) 1042V %
2.4 The maximum current that a 2W, 80 k() resistor can i 1,
safely conduct is: o
(a) 160 kA (b) 40 kKA Figure 2.64
For Review Question 2.7.
(c) 5mA (d) 25 uA

2.5 Anetwork has 12 branches and 8 independent
loops. How many nodes are there in the
network?

(a) 19 ()17  (©)5 (d4
2.6 The current / in the circuit of Fig. 2.63 is:

2.8 In the circuit in Fig. 2.65, Vis:
(a)30V (b) 14V 10V do6v

(a) —0.8A (b) —0.2A
(©02A (d) 0.8 A
10V
M
|
| I
s 1
MW 12V Ct) C‘:) 8V
3V 5V
6Q | I
AN ty -
Figure 2.63 Figure 2.65

For Review Question 2.6. For Review Question 2.8.
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2.9 Which of the circuits in Fig. 2.66 will give you 2.10 In the circuit of Fig. 2.67, a decrease in R; leads to a
Var =1V? decrease of, select all that apply:

(a) current through R;
oa (b) voltage across R3
(c) voltage across R;
(d) power dissipated in R,

(e) none of the above

R,
AW

v
(@ (b)

5V 5V

Figure 2.67

For Review Question 2.10.

Answers: 2.1c, 2.2¢, 2.3b, 2.4c, 2.5¢, 2.6b, 2.7a, 2.8d,
e o b 2.9d, 2.10b, d.

©) (d)
Figure 2.66

For Review Question 2.9.

1 Problems

Section 2.2 Ohm’s Law

2.1 Design a problem, complete with a solution, to help
efJd students to better understand Ohm’s Law. Use at
least two resistors and one voltage source. Hint, you
could use both resistors at once or one at a time, it is
up to you. Be creative.

2.2 Find the hot resistance of a light bulb rated 60 W, 120 V.

2.3 Abar of silicon is 4 cm long with a circular cross sec-
tion. If the resistance of the bar is 240 () at room tem-

Figure 2.69

perature, what is the cross-sectional radius of the bar? For Prob. 2.5.
2.4 (a) Calculate current i in Fig. 2.68 when the switch is
in position 1. 2.6 1In the network graph shown in Fig. 2.70, determine
(b) Find the current when the switch is in position 2. the number of branches and nodes.
SR S

§IOOQ Tl §2509

Figure 2.68
For Prob. 2.4.

Section 2.3 Nodes, Branches, and Loops

2.5 For the network graph in Fig. 2.69, find the number Figure 2.70
of nodes, branches, and loops. For Prob. 2.6.
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2.7 Determine the number of branches and nodes in the
circuit of Fig. 2.71.

1Q 4Q

ANV

12V

gsg §59 1)2a

Figure 2.71
For Prob. 2.7.

Section 2.4 Kirchhoff’s Laws

2.8
eod

Design a problem, complete with a solution, to help
other students better understand Kirchhoff’s Current
Law. Design the problem by specifying values of i,
ip, and i, shown in Fig. 2.72, and asking them to

solve for values of i, i, and i3. Be careful to specify
realistic currents.

iy 4

Figure 2.72
For Prob. 2.8.

2.9 Find iy, iy, and i3 in Fig. 2.73.

4A

~—

fua T
| |

Til 6A

2A

Figure 2.73
For Prob. 2.9.

2.10 Determine i, and i, in the circuit of Fig. 2.74.

_8A/(

Figure 2.74
For Prob. 2.10.

Basic Laws

2.11 In the circuit of Fig. 2.75, calculate V; and V.

1V 2V
+ - + -
1 1
L L
+ + +
Vi 5V v,

Figure 2.75
For Prob. 2.11.

2.12 In the circuit in Fig. 2.76, obtain v, v,, and vs.

+30V -

-50V +

] di

Figure 2.76
For Prob. 2.12.

+uy—

(]

2.13 For the circuit in Fig. 2.77, use KCL to find the
branch currents /; to /4.

11?

Figure 2.77
For Prob. 2.13.

2.14 Given the circuit in Fig. 2.78, use KVL to find the
branch voltages V; to V.

+ + -
3V Vi Va
_ _ +2V_ i
| [ |
L | I
— + - + +
V3
4V v, 5V
+

Figure 2.78
For Prob. 2.14.
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2.19 From the circuit in Fig. 2.83, find /, the power
dissipated by the resistor, and the power supplied by
each source.

2.15 Calculate v and i, in the circuit of Fig. 2.79.

10V
G
N\

ov(®)
12v(®) §3Q

Figure 2.79
For Prob. 2.15.

@

-8V

Figure 2.83

For Prob. 2.19.
2.16 Determine V,, in the circuit in Fig. 2.80. or Prob. 2.19

2.20 Determine i, in the circuit of Fig. 2.84.
16 Q 14 Q

1v(®) v, ®asv
sav () > si,

Figure 2.80

For Prob. 2.16. Figure 2.84
For Prob. 2.20.

2.17 Obtain v, through vs in the circuit of Fig. 2.81. 2.21 Find V, in the circuit of Fig. 2.85.
+ U1 2V
WA 1Q §
MW & 2
vy +
uv(®) § i () 10v .
- 15v () 50 § v,
- -
S
12V Wvy
) 2Q
Figure 2.81 Figure 2.85
For Prob. 2.17. For Prob. 2.21.
2.18 Find I and V,, in the circuit of Fig. 2.82. 2.22 Find V, in the circuit in Fig. 2.86 and the power

absorbed by the dependent source.

10V 10Q
3Q 5Q
a MWWV

+V, -

§IOQ sa(h) {2y,

Figure 2.82 Figure 2.86
For Prob. 2.18. For Prob. 2.22.
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2.23 In the circuit shown in Fig. 2.87, determine v, and
the power absorbed by the 12-) resistor.

1Q 12Q
VW

+ —
Uy

4Q

204(}) %29 %89 %129

Figure 2.87
For Prob. 2.23.

2.24 For the circuit in Fig. 2.88, find V,,/V, in terms of
a, R], R2, R3, and R4. If R] = Rz = R3 = R4, what
value of a will produce IV, / V| = 10?

1, R,
—_—
+
VS#; Rz% ala%? R, R,V

Figure 2.88
For Prob. 2.24.

2.25 For the network in Fig. 2.89, find the current,
voltage, and power associated with the 20-k()
resistor.

+
5mA({; IOkQ%\{) <$0.01\{, 5kQ <20 kQ

Figure 2.89
For Prob. 2.25.

Sections 2.5 and 2.6 Series and Parallel Resistors

2.26 For the circuit in Fig. 2.90, i, = 3 A. Calculate i,
and the total power absorbed by the entire circuit.

lX
> 10Q —

Sia Zia Do

§16Q

Figure 2.90
For Prob. 2.26.

Basic Laws

2.27 Calculate I, in the circuit of Fig. 2.91.

8 Q
4%
e

I

0

10v (&) §3Q §6Q

Figure 2.91
For Prob. 2.27.

2.28 Design a problem, using Fig. 2.92, to help other
efJd students better understand series and parallel
circuits.

Figure 2.92
For Prob. 2.28.

2.29 All resistors in Fig. 2.93 are 5 () each. Find R..

Figure 2.93
For Prob. 2.29.

2.30 Find R, for the circuit in Fig. 2.94.

180 Q

Rey ——> 60 Q

Figure 2.94
For Prob. 2.30.
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2.31 For the circuit in Fig. 2.95, determine i, to is.

200v(*)

Figure 2.95
For Prob. 2.31.

2.32 Find i; through i, in the circuit in Fig. 2.96.

60 Q

40 Q

iy ip

200 Q
-—

50 Q
-~ —_

? CD 16 Ail

Figure 2.96
For Prob. 2.32.

2.33 Obtain v and i in the circuit of Fig. 2.97.

6

‘L 4S

9A

[

S

Figure 2.97
For Prob. 2.33.

2.34 Using series/parallel resistance combination, find the
equivalent resistance seen by the source in the circuit
of Fig. 2.98. Find the overall absorbed power by the

resistor network.

200V

20Q 28 Q

60 Q

MWV

16OQ§ 16OQ§ 80 Q

ANV

Figure 2.98
For Prob. 2.34.

52Q

20 Q

Problems

2.35 Calculate V, and I, in the circuit of Fig. 2.99.

200v (%)

Figure 2.99
For Prob. 2.35.

70 Q

20 Q

2.36 Find i and V, in the circuit of Fig. 2.100.

', 80Q

24 Q

50 Q

30 Q

20v ()

60§2§

Figure 2.100

For Prob. 2.36.

2.37 Find R for the circuit in Fig. 2.101.

20v ()

R 10 Q
NV ANV
+10V —

G

Figure 2.101
For Prob. 2.37.

30V

2.38 Find R.q and i, in the circuit of Fig. 2.102.

60 Q
o
120
VWY
to, 250 6Q
WY VWY

35v(E)

80 Q

| R,

Figure 2.102

For Prob. 2.38.
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2.39 Evaluate R for each of the circuits shown in

Fig. 2.103.
o 6 kQ
AW
2kQ
1kQ 4kQ 12 kQ
o AW

2kQ 1 kQ 12 kQ

o o
(a) (b)

Figure 2.103
For Prob. 2.39.

2.40 For the ladder network in Fig. 2.104, find I and Reg.

AR Yol 20 1Q
WW—— AW
15v (%) 40 6Q 20
|_>
| R

Figure 2.104
For Prob. 2.40.

2.41 If R,y = 50 () in the circuit of Fig. 2.105, find R.

12Q

Figure 2.105
For Prob. 2.41.

2.42 Reduce each of the circuits in Fig. 2.106 to a single
resistor at terminals a-b.

5Q
VWA

8Q 20Q
.. ]
30Q
(a)

Basic Laws

2Q 4Q 5Q
o—WWA wy W b
5Q 3Q 10 Q
AN
8Q 4Q
W
®

Figure 2.106

For Prob. 2.42.

2.43 Calculate the equivalent resistance R, at terminals
a-b for each of the circuits in Fig. 2.107.

5Q

20 Q

10 Q 40 Q

(a)

ao VWWA

80 Q
60 Q %ZOQ 30 Q
b o
b)

(

Figure 2.107
For Prob. 2.43.

2.44 For the circuits in Fig. 2.108, obtain the equivalent
resistance at terminals a-b.

§2£2 §3Q

b e

Figure 2.108
For Prob. 2.44.
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2.45 Find the equivalent resistance at terminals a-b of
each circuit in Fig. 2.109.

10 Q

40 Q

20 Q

50 Q
b o MV

(a)

30 Q

Figure 2.109
For Prob. 2.45.

2.46 Find [ in the circuit of Fig. 2.110.

Figure 2.110
For Prob. 2.46.

Problems 73

2.47 Find the equivalent resistance R, in the circuit of
Fig. 2.111.

Figure 2.111
For Prob. 2.47.

Section 2.7 Wye-Delta Transformations

2.48 Convert the circuits in Fig. 2.112 from Y to A.

10 Q 10 Q 30 Q 20 Q

10 Q 50 Q

¢ ¢
(@) (b)

Figure 2.112
For Prob. 2.48.

2.49 Transform the circuits in Fig. 2.113 from A to Y.

12Q 60 Q
a A b a AN b
12Q 12Q 30Q 10Q
C C
(a) (b)

Figure 2.113
For Prob. 2.49.
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2.50 Design a problem to help other students better
efd understand wye-delta transformations using
Fig. 2.114.

9 mA +)

Figure 2.114
For Prob. 2.50.

2.51 Obtain the equivalent resistance at the terminals a-b
for each of the circuits in Fig. 2.115.

ao
10 Q 20 Q
30§2§ 10 Q
10Q 20 Q
b o
(@)
30Q
AWV
25Q 10 Q 20 Q

5Q 15Q

b o

(b)

Figure 2.115
For Prob. 2.51.

*2.52 For the circuit shown in Fig. 2.116, find the
equivalent resistance. All resistors are 3 ().

5

eq
Figure 2.116
For Prob. 2.52.

* An asterisk indicates a challenging problem.

*2.53 Obtain the equivalent resistance R, in each of the
circuits of Fig. 2.117. In (b), all resistors have a

value of 30 ().
30 Q 40 Q
20 Q
a o
60 Q 50 Q 80Q
b o
(a)
a o
30 Q
bo AN AN
(b)

Figure 2.117
For Prob. 2.53.

2.54 Consider the circuit in Fig. 2.118. Find the
equivalent resistance at terminals: (a) a-b, (b) c-d.

50 Q 150 Q 60 Q

100 Q 100 Q

150 Q

Figure 2.118
For Prob. 2.54.

2.55 Calculate /, in the circuit of Fig. 2.119.

20Q 60 Q
40Q
24V (t)

50 Q

Figure 2.119
For Prob. 2.55.



www.konkur.in

2.56 Determine V in the circuit of Fig. 2.120.

30 Q
AN
16 Q 15Q 10 Q
+
100 V V%ﬁﬁ 12 Q 20 Q

Figure 2.120
For Prob. 2.56.

*2.57 Find R4 and [ in the circuit of Fig. 2.121.

6Q

1Q

2Q

10 Q 3Q

)
(==}
<
N
)
[®)
)
)

eq
Figure 2.121
For Prob. 2.57.

Section 2.8 Applications

2.58 The 60 W light bulb in Fig. 2.122 is rated at 120 volts.
Calculate V, to make the light bulb operate at the rated
conditions.

40 Q

=

Bulb 80 Q

Figure 2.122
For Prob. 2.58.

2.59 Three light bulbs are connected in series to a 120-V
source as shown in Fig. 2.123. Find the current /
through the bulbs. Each bulb is rated at 120 volts.
How much power is each bulb absorbing? Do they
generate much light?

Problems 75

30 W 40W 50 W

-~ 9o 9 Q9
120VC:>

Figure 2.123
For Prob. 2.59.

2.60 If the three bulbs of Prob. 2.59 are connected in
parallel to the 120-V source, calculate the current
through each bulb.

2.61 As adesign engineer, you are asked to design a
lighting system consisting of a 70-W power supply
and two light bulbs as shown in Fig. 2.124. You must
select the two bulbs from the following three
available bulbs.

R, = 80 (), cost = $0.60 (standard size)
R, = 90, cost = $0.90 (standard size)
R; = 100 Q, cost = $0.75 (nonstandard size)

The system should be designed for minimum cost
such that lies within the range / = 1.2 A * 5 percent.

1
 ———
+
70-W
Power D R, D R,
Supply
-

Figure 2.124
For Prob. 2.61.

2.62 A three-wire system supplies two loads A and B as
shown in Fig. 2.125. Load A consists of a motor
drawing a current of 8 A, while load B is a PC
drawing 2 A. Assuming 10 h/day of use for 365 days
and 6 cents/kWh, calculate the annual energy cost of

the system.
% A

nové
B

\\F

ov ()

Figure 2.125
For Prob. 2.62.

2.63 If an ammeter with an internal resistance of 100 )
and a current capacity of 2 mA is to measure 5 A,
determine the value of the resistance needed.
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Calculate the power dissipated in the shunt
resistor.

2.64 The potentiometer (adjustable resistor) R, in Fig. 2.126
is to be designed to adjust current i, from 1 A to
10 A. Calculate the values of R and R, to achieve this.

110V

Figure 2.126
For Prob. 2.64.

2.65 A d’Arsonval meter with an internal resistance of
1 kQ requires 10 mA to produce full-scale deflection.
Calculate the value of a series resistance needed to
measure 50 V of full scale.

2.66 A 20-kQ)/V voltmeter reads 10 V full scale.
(a) What series resistance is required to make the
meter read 50 V full scale?
(b) What power will the series resistor dissipate

when the meter reads full scale?

2.67 (a) Obtain the voltage V, in the circuit of Fig. 2.127(a).

(b) Determine the voltage V, measured when a
voltmeter with 6-k() internal resistance is
connected as shown in Fig. 2.127(b).

(c) The finite resistance of the meter introduces an
error into the measurement. Calculate the percent
error as

v, - V.
V,

X 100%

(d) Find the percent error if the internal resistance
were 36 k().

1 kQ
AW

5kQ 4kQ

Ia<+

(a)

1 kQ

+

2 mA 5kQ 4kQ =V, Voltmeter

(b)
Figure 2.127
For Prob. 2.67.

Basic Laws

2.68 (a) Find the current / in the circuit of Fig. 2.128(a).

(b) An ammeter with an internal resistance of 1 ) is
inserted in the network to measure I’ as shown in
Fig. 2.128(b). What is I'?

(c) Calculate the percent error introduced by the

meter as
I—-1T
X 100%
1
e 16Q
MWV
4V 40 Q 60 Q
(a)
Ammeter
I
S 16Q

(b)

Figure 2.128
For Prob. 2.68.

2.69 A voltmeter is used to measure V,, in the circuit in
Fig. 2.129. The voltmeter model consists of an ideal
voltmeter in parallel with a 100-k{) resistor. Let
V, =40V, R, = 10k, and R, = 20 k(). Calculate
V,, with and without the voltmeter when

(@) R, = 1kQ (b) R, = 10kQ
(c) R, = 100 kQ
RX
R
VS O O
+
R, v, 100 kQ
o o

Figure 2.129
For Prob. 2.69.



www.konkur.in

2.70 (a) Consider the Wheatstone bridge shown in
Fig. 2.130. Calculate v, v;, and v .

(b) Rework part (a) if the ground is placed at
a instead of o.

15 kQ

12kQ 10 kQ

o

Figure 2.130
For Prob. 2.70.

2.71 Figure 2.131 represents a model of a solar
photovoltaic panel. Given that V, = 30V,
R, =20Q,and i, = 1A, find R,.

R,
VWA

i

Figure 2.131
For Prob. 2.71.

2.72 Find V, in the two-way power divider circuit in
Fig. 2.132.

2Q

ov o~ i

\\F

Figure 2.132
For Prob. 2.72.

2.73 An ammeter model consists of an ideal ammeter
in series with a 20-() resistor. It is connected
with a current source and an unknown resistor
R, as shown in Fig. 2.133. The ammeter reading
is noted. When a potentiometer R is added and
adjusted until the ammeter reading drops to one
half its previous reading, then R = 65 (). What
is the value of R,?

Problems 77

Ammeter
model

Figure 2.133
For Prob. 2.73.

2.74 The circuit in Fig. 2.134 is to control the speed of a
motor such that the motor draws currents 5 A, 3 A,
and 1 A when the switch is at high, medium, and low
positions, respectively. The motor can be modeled as
a load resistance of 20 m{). Determine the series
dropping resistances Ry, R,, and R;.

Low
R,
10-A, 0.01-Q fuse
o— |

Medium

High § R
6V —
N
Motor

Figure 2.134
For Prob. 2.74.

2.75 Find R, in the four-way power divider circuit in
Fig. 2.135. Assume each element is 1 {).

1 1
1
1 1
1
1 1
1
1 1

b o

Figure 2.135
For Prob. 2.75.
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Basic Laws

1 Comprehensive Problems

2.76 Repeat Prob. 2.75 for the eight-way divider shown in
Fig. 2.136.

—_
—_
—_

b o

Figure 2.136
For Prob. 2.76.

2.77 Suppose your circuit laboratory has the following
efJd standard commercially available resistors in large
quantities:

1.8Q 20 Q) 300 Q2 24 kQ) 56 kQ)

Using series and parallel combinations and a
minimum number of available resistors, how would
you obtain the following resistances for an electronic
circuit design?

(@)5Q (b)311.8Q
(c) 40 kQ (d) 52.32 k)
2.78 In the circuit in Fig. 2.137, the wiper divides the

potentiometer resistance between aR and (1 — )R,
0=a=1.Findv,/v,.

Figure 2.137
For Prob. 2.78.

2.79 An electric pencil sharpener rated 240 mW, 6 V is
connected to a 9-V battery as shown in Fig. 2.138.
Calculate the value of the series-dropping resistor R,
needed to power the sharpener.

Switch R«

9v IT dm
|

Figure 2.138
For Prob. 2.79.

2.80 A loudspeaker is connected to an amplifier as shown
in Fig. 2.139. If a 10-() loudspeaker draws the
maximum power of 12 W from the amplifier,
determine the maximum power a 4-{) loudspeaker
will draw.

Amplifier Q

[ Loudspeaker

Figure 2.139
For Prob. 2.80.

2.81 In a certain application, the circuit in Fig. 2.140
must be designed to meet these two criteria:

@) V,/Vy =005  (b) Ry =40KkQ

If the load resistor 5 k() is fixed, find R, and R, to
meet the criteria.

Ry

O

Figure 2.140
For Prob. 2.81.
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2.82 The pin diagram of a resistance array is shown in
Fig. 2.141. Find the equivalent resistance between

the following:

(a) 1 and 2
(b) 1 and 3
(c) 1and 4

Figure 2.141
For Prob. 2.82.

Comprehensive Problems

2.83 Two delicate devices are rated as shown in Fig. 2.142.
Find the values of the resistors R; and R, needed to

power the devices using a 24-V battery.

60-mA, 2-Q fuse

24V, 480 mW
R,

9V, 45 mW

Figure 2.142
For Prob. 2.83.

Deviczl
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Methods of
Analysis

No great work is ever done in a hurry. To develop a great scientific
discovery, to print a great picture, to write an immortal poem, to
become a minister, or a famous general—to do anything great requires
time, patience, and perseverance. These things are done by degrees,
“little by little.”

—W. J. Wilmont Buxton

Enhancing Your Career

Career in Electronics

One area of application for electric circuit analysis is electronics. The
term electronics was originally used to distinguish circuits of very low
current levels. This distinction no longer holds, as power semiconduc-
tor devices operate at high levels of current. Today, electronics is
regarded as the science of the motion of charges in a gas, vacuum, or
semiconductor. Modern electronics involves transistors and transistor
circuits. The earlier electronic circuits were assembled from compo-
nents. Many electronic circuits are now produced as integrated circuits,
fabricated in a semiconductor substrate or chip.

Electronic circuits find applications in many areas, such as automa-
tion, broadcasting, computers, and instrumentation. The range of devices Troﬁbleshooting an electronic circuit
that use electronic circuits is enormous and is limited only by our imag- board.
ination. Radio, television, computers, and stereo systems are but a few. © BrandX Pictures/Punchstock

An electrical engineer usually performs diverse functions and is likely
to use, design, or construct systems that incorporate some form of elec-
tronic circuits. Therefore, an understanding of the operation and analysis
of electronics is essential to the electrical engineer. Electronics has
become a specialty distinct from other disciplines within electrical engi-
neering. Because the field of electronics is ever advancing, an electronics
engineer must update his/her knowledge from time to time. The best way
to do this is by being a member of a professional organization such as
the Institute of Electrical and Electronics Engineers (IEEE). With a mem-
bership of over 300,000, the IEEE is the largest professional organization
in the world. Members benefit immensely from the numerous magazines,
journals, transactions, and conference/symposium proceedings published
yearly by IEEE. You should consider becoming an IEEE member.

81
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I Nodal analysis is also known as the
node-voltage method.

Chapter 3 Methods of Analysis

3.1 Introduction

Having understood the fundamental laws of circuit theory (Ohm’s law
and Kirchhoff’s laws), we are now prepared to apply these laws to
develop two powerful techniques for circuit analysis: nodal analysis,
which is based on a systematic application of Kirchhoff’s current law
(KCL), and mesh analysis, which is based on a systematic application
of Kirchhoff’s voltage law (KVL). The two techniques are so impor-
tant that this chapter should be regarded as the most important in the
book. Students are therefore encouraged to pay careful attention.

With the two techniques to be developed in this chapter, we can ana-
lyze any linear circuit by obtaining a set of simultaneous equations that
are then solved to obtain the required values of current or voltage. One
method of solving simultaneous equations involves Cramer’s rule, which
allows us to calculate circuit variables as a quotient of determinants. The
examples in the chapter will illustrate this method; Appendix A also
briefly summarizes the essentials the reader needs to know for applying
Cramer’s rule. Another method of solving simultaneous equations is to
use MATLAB, a computer software discussed in Appendix E.

Also in this chapter, we introduce the use of PSpice for Windows,
a circuit simulation computer software program that we will use
throughout the text. Finally, we apply the techniques learned in this
chapter to analyze transistor circuits.

3.2 Nodal Analysis

Nodal analysis provides a general procedure for analyzing circuits
using node voltages as the circuit variables. Choosing node voltages
instead of element voltages as circuit variables is convenient and
reduces the number of equations one must solve simultaneously.

To simplify matters, we shall assume in this section that circuits
do not contain voltage sources. Circuits that contain voltage sources
will be analyzed in the next section.

In nodal analysis, we are interested in finding the node voltages.
Given a circuit with n nodes without voltage sources, the nodal analy-
sis of the circuit involves taking the following three steps.

Steps to Determine Node Voltages:

1. Select a node as the reference node. Assign voltages v,
Uy, ..., U,— to the remaining n — 1 nodes. The voltages are
referenced with respect to the reference node.

2. Apply KCL to each of the n — 1 nonreference nodes. Use
Ohm’s law to express the branch currents in terms of node
voltages.

3. Solve the resulting simultaneous equations to obtain the
unknown node voltages.

We shall now explain and apply these three steps.
The first step in nodal analysis is selecting a node as the reference
or datum node. The reference node is commonly called the ground
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3.2 Nodal Analysis

since it is assumed to have zero potential. A reference node is indicated
by any of the three symbols in Fig. 3.1. The type of ground in Fig. 3.1(c)
is called a chassis ground and is used in devices where the case, enclo-
sure, or chassis acts as a reference point for all circuits. When the
potential of the earth is used as reference, we use the earth ground in
Fig. 3.1(a) or (b). We shall always use the symbol in Fig. 3.1(b).

Once we have selected a reference node, we assign voltage desig-
nations to nonreference nodes. Consider, for example, the circuit in
Fig. 3.2(a). Node 0 is the reference node (v = 0), while nodes 1 and
2 are assigned voltages v, and v,, respectively. Keep in mind that the
node voltages are defined with respect to the reference node. As illus-
trated in Fig. 3.2(a), each node voltage is the voltage rise from the ref-
erence node to the corresponding nonreference node or simply the
voltage of that node with respect to the reference node.

As the second step, we apply KCL to each nonreference node in
the circuit. To avoid putting too much information on the same circuit,
the circuit in Fig. 3.2(a) is redrawn in Fig. 3.2(b), where we now add
i1, I, and i3 as the currents through resistors R;, R,, and R;, respec-
tively. At node 1, applying KCL gives

L=05L+i +i 3.1
At node 2,
L+ iy, =i

3.2)

We now apply Ohm’s law to express the unknown currents iy, i, and
i3 in terms of node voltages. The key idea to bear in mind is that, since
resistance is a passive element, by the passive sign convention, current
must always flow from a higher potential to a lower potential.

Current flows from a higher potential to a lower potential in a resistor.

We can express this principle as

Uhigher — Ulower
R

1=

3.3)

Note that this principle is in agreement with the way we defined resist-
ance in Chapter 2 (see Fig. 2.1). With this in mind, we obtain from
Fig. 3.2(b),

vy — 0
i] = IR or il = G]U]
1
. U1 — U2 .
I, = R or I, = G2(U| - Uz) (3.4)
2
v, — 0
i3 = 2R or lg = G3U2
3

Substituting Eq. (3.4) in Egs. (3.1) and (3.2) results, respectively, in

-0,

=5+t 3.5)

1 2 Rl R2 .
U U U2

L+ 22 3.6

2 R R, (3.6)
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The number of nonreference nodes is
equal to the number of independent
equations that we will derive.

R

(@) (b) ©
Figure 3.1
Common symbols for indicating a
reference node, (a) common ground,
(b) ground, (c) chassis ground.

Figure 3.2

Typical circuit for nodal analysis.
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I Appendix A discusses how to use
Cramer’s rule.

Chapter 3 Methods of Analysis

In terms of the conductances, Egs. (3.5) and (3.6) become

L =5L + G + Gyvy — V) 3.7)
12 + GQ(U] - 1)2) = G3Uz (3.8)

The third step in nodal analysis is to solve for the node voltages.
If we apply KCL to n — 1 nonreference nodes, we obtain n — 1 simul-
taneous equations such as Egs. (3.5) and (3.6) or (3.7) and (3.8). For
the circuit of Fig. 3.2, we solve Eqgs. (3.5) and (3.6) or (3.7) and (3.8)
to obtain the node voltages v, and v, using any standard method, such
as the substitution method, the elimination method, Cramer’s rule, or
matrix inversion. To use either of the last two methods, one must cast
the simultaneous equations in matrix form. For example, Eqgs. (3.7) and
(3.8) can be cast in matrix form as

G] + GQ _G2 :| |:U]:| _ |:1] - 12:| (3'9)
_G2 Gz"’ G3 1% ]2

which can be solved to get v; and v,. Equation 3.9 will be generalized
in Section 3.6. The simultaneous equations may also be solved using
calculators or with software packages such as MATLAB, Mathcad,
Maple, and Quattro Pro.

Example 3.1

35 @y

ZQ% 6Q§ 10A

5A

(<)

P
$11=5 f,‘1=5
i iy=10
2 40 | e

vy MW

oot
2Q§ 6Q§ (D) 10a

(b)
Figure 3.3
For Example 3.1: (a) original circuit,
(b) circuit for analysis.

Calculate the node voltages in the circuit shown in Fig. 3.3(a).

Solution:

Consider Fig. 3.3(b), where the circuit in Fig. 3.3(a) has been prepared
for nodal analysis. Notice how the currents are selected for the
application of KCL. Except for the branches with current sources, the
labeling of the currents is arbitrary but consistent. (By consistent, we
mean that if, for example, we assume that i, enters the 4-() resistor
from the left-hand side, i, must leave the resistor from the right-hand
side.) The reference node is selected, and the node voltages v, and v,
are now to be determined.

At node 1, applying KCL and Ohm’s law gives

UI_U2+UI_0
4 2

i1:i2+i3 = 5=

Multiplying each term in the last equation by 4, we obtain

20:U1_U2+2U1

or
3v; — vy, =20 3.1.1
At node 2, we do the same thing and get
bt =i s = U‘;U2+10=5+U26_0

Multiplying each term by 12 results in
301 - 3U2 + 120 = 60 + 202
or

—3v, + 5v, = 60 (3.1.2)
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Now we have two simultaneous Egs. (3.1.1) and (3.1.2). We can solve
the equations using any method and obtain the values of v; and v,.

B METHOD 1 Using the elimination technique, we add Eqs. (3.1.1)
and (3.1.2).

4v, = 80 = v, =20V
Substituting v, = 20 in Eq. (3.1.1) gives

40
30, -20=20 = v == 13333V

B METHOD 2 To use Cramer’s rule, we need to put Egs. (3.1.1)
and (3.1.2) in matrix form as

3 —1]|v, 20
= 3.1.3
2 sl @1
The determinant of the matrix is
Az‘ 3 _1‘ —15-3=12
-3 5

We now obtain v; and v, as

20 —1’
A, |60 5| 100+ 60
=—1= = = 13.333V
LT A A 12
‘ 3 20‘
A, |=3 60| 180 + 60
Y2770 A 12

giving us the same result as did the elimination method.

If we need the currents, we can easily calculate them from the
values of the nodal voltages.
Uy — Uy %1

il =S5A == SL6668 A, i = = 6.666 A

. . Us
iy, = 10 A, 15=€=3.333A

The fact that i, is negative shows that the current flows in the direction
opposite to the one assumed.

85

Obtain the node voltages in the circuit of Fig. 3.4.

Answer: v, = —6V,v, = —42 V.

Practice Problem 3.1

1

6 Q

2

NG 20

MWV

7Q

G 12A

Figure 3.4

For Practice Prob.

=

3.1.
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Example 3.2

Determine the voltages at the nodes in Fig. 3.5(a).

Solution:

The circuit in this example has three nonreference nodes, unlike the pre-
vious example which has two nonreference nodes. We assign voltages
to the three nodes as shown in Fig. 3.5(b) and label the currents.

4Q 4Q
AW MWV
. i . . i
o200 e La uz_’aw_’a*
1 MWV MW 3 ) — MW — A% U3
3at] i |46
3a(d) §4Q D 2, INQ) §4Q D 2,
0
(a) (b)
Figure 3.5
For Example 3.2: (a) original circuit, (b) circuit for analysis.
At node 1,
vy — U vy — U
3=i+i, = 3=—=>>4"0—"2
4 2

Multiplying by 4 and rearranging terms, we get

3U] - 2U2 — U3 = 12 (3.2.1)
At node 2,
. . . Uy — Uy Uy—U3 U,—0
=i, + = = +
T hTh 2 8 4
Multiplying by 8 and rearranging terms, we get
—4dv, +Tv, —v3 =0 3.2.2)
At node 3,
v, — U U, — U 2wy — v
— N 1 3 b2 3:(1 2)
4 8 2

Multiplying by 8, rearranging terms, and dividing by 3, we get
20, —3v, +v3=0 3.2.3)

We have three simultaneous equations to solve to get the node voltages
U4, U,, and v3. We shall solve the equations in three ways.

B METHOD 1 Using the elimination technique, we add Eqs. (3.2.1)

and (3.2.3).
5U1 - 5U2 =12
or
12
Uy — Uy = ? =24 (3.2.4)
Adding Egs. (3.2.2) and (3.2.3) gives
_21)1 + 402 =0 = U = 202 (3.2.5)
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Substituting Eq. (3.2.5) into Eq. (3.2.4) yields
20, — v, = 24 = v, = 2.4, v, =2v, =48V
From Eq. (3.2.3), we get
U3 =30, — 2v; = 30, —4v, = —v, = =24V
Thus,
v, =48V, v, =24V, vy = —24V

B METHOD 2 To use Cramer’s rule, we put Egs. (3.2.1) to (3.2.3)
in matrix form.

3 -2 -1 o 12
-4 7 -1 v, | =1 0 3.2.6)
2 -3 1 U3 0
From this, we obtain
A A, A;
v1=X, UZZX’ 03=X

where A, A;, A,, and A; are the determinants to be calculated as
follows. As explained in Appendix A, to calculate the determinant of
a 3 by 3 matrix, we repeat the first two rows and cross multiply.

3 -2 —1
A=|-4 7 —1|=
2 -3 1

=21-12+4+14-9-8=10

Similarly, we obtain

A= =84+0+0—-0—-36—-0=48
+
+
- +

A, = =0+0—-24-0—-0+48=24

=0+14+0—-168—-0—-0=—24

87
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Thus, we find
A48 sy A2 o4y
V1 =—=—= . s U = — = — = .
YA 10 A 10
A T2 Huvy
v = — = = —2.
A 10

as we obtained with Method 1.

B METHOD 3 We now use MATLAB to solve the matrix. Equa-
tion (3.2.6) can be written as
AV =B =

where A is the 3 by 3 square matrix, B is the column vector, and V is
a column vector comprised of vy, v,, and v; that we want to determine.
We use MATLAB to determine V as follows:

V=AB

>>A=[3 -2 -1, =4 7 -1, 2 =3 1],
>>B =1[12 0 0];
>>V = inv(A) * B
4.8000
vV = 24000
—2.4000

Thus,v; = 4.8 V,v, = 2.4 V,and vy = —2.4 V, as obtained previously.

Practice Problem 3.2

20
MM
4i
30 5 §
1 o - 3

4A D

Figure 3.6
For Practice Prob. 3.2.

Find the voltages at the three nonreference nodes in the circuit of
Fig. 3.6.

Answer: v, = 32V, v, = —25.6 V, v5 = 62.4 V.

3.3 Nodal Analysis with Voltage Sources

We now consider how voltage sources affect nodal analysis. We use the
circuit in Fig. 3.7 for illustration. Consider the following two possibilities.

B CASE 1 If a voltage source is connected between the reference
node and a nonreference node, we simply set the voltage at the non-
reference node equal to the voltage of the voltage source. In Fig. 3.7,

for example,

v, =10V (3.10)

Thus, our analysis is somewhat simplified by this knowledge of the volt-
age at this node.

B CASE 2 If the voltage source (dependent or independent) is con-
nected between two nonreference nodes, the two nonreference nodes
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4Q
VW Supernode

—yt

2 \\
Y AM—— O vy

o] T

Figure 3.7

A circuit with a supernode.

form a generalized node or supernode; we apply both KCL and KVL
to determine the node voltages.

A supernode is formed by enclosing a (dependent or independent)
voltage source connected between two nonreference nodes and any
elements connected in parallel with it.

In Fig. 3.7, nodes 2 and 3 form a supernode. (We could have more
than two nodes forming a single supernode. For example, see the cir-
cuit in Fig. 3.14.) We analyze a circuit with supernodes using the
same three steps mentioned in the previous section except that the
supernodes are treated differently. Why? Because an essential com-
ponent of nodal analysis is applying KCL, which requires knowing
the current through each element. There is no way of knowing the
current through a voltage source in advance. However, KCL must
be satisfied at a supernode like any other node. Hence, at the super-
node in Fig. 3.7,

il + i4 = i2 + i3 (3.113)
or

Vi — U, U —V3 U,—0 wv3—0
= + A1
2 4 8 6 (3.11b)

To apply Kirchhoff’s voltage law to the supernode in Fig. 3.7, we
redraw the circuit as shown in Fig. 3.8. Going around the loop in the
clockwise direction gives

_U2+5+U3:0 = U2_U3:5 (3.12)

From Egs. (3.10), (3.11b), and (3.12), we obtain the node voltages.
Note the following properties of a supernode:

1. The voltage source inside the supernode provides a constraint
equation needed to solve for the node voltages.

2. A supernode has no voltage of its own.

3. A supernode requires the application of both KCL and KVL.

89

I A supernode may be regarded as a
closed surface enclosing the voltage
source and its two nodes.

Figure 3.8
Applying KVL to a supernode.
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Example 3.3 For the circuit shown in Fig. 3.9, find the node voltages.
m Solution:
The supernode contains the 2-V source, nodes 1 and 2, and the 10-Q)
" g o resistor. Applying KCL to the supernode as shown in Fig. 3.10(a) gives
& 2=iy+i+7

2A CD % 2Q 4Q % G) 7A  Expressing iy and i, in terms of the node voltages

2:U1_0+U2_0+

Figure 3.9
For Example 3.3.

T > 2 7 = 8 =2v;, +v, +28

or
v, = —20 — 2v, (3.3.1)

To get the relationship between v, and v,, we apply KVL to the circuit
in Fig. 3.10(b). Going around the loop, we obtain

v, —2+v,=0 = vy, =v; +2 3.3.2)
From Egs. (3.3.1) and (3.3.2), we write
v, =v; +2=-20— 2u,
or
3v, = —22 = vy = —7333V

and v, = v; + 2 = —5.333 V. Note that the 10-{) resistor does not
make any difference because it is connected across the supernode.

2A<) §ZQ 4Q§ G>7A g”l q 1}2; !

T el
= (b)
(@)
Figure 3.10
Applying: (a) KCL to the supernode, (b) KVL to the loop.
Practice Problem 3.3 Find v and i in the circuit of Fig. 3.11.
6V . —
4Q o Answer: —400 mV, 2.8 A.
N i
+
14V 3Q § vo20 § 6Q

Figure 3.11

For Practice Prob. 3.3.
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Find the node voltages in the circuit of Fig. 3.12.

30
AW
——————— + UX - PR —
P 20V S sa ” .
i G AAAA— G 4

.||—

Figure 3.12
For Example 3.4.

Solution:
Nodes 1 and 2 form a supernode; so do nodes 3 and 4. We apply KCL
to the two supernodes as in Fig. 3.13(a). At supernode 1-2,

i3+10:i1+i2

Expressing this in terms of the node voltages,

Example 3.4

U3 — U v, — VU v
B2 0= ATt
6 3 2
or
5v; + v, —v3 — 2v4 = 60 3.4.1)
At supernode 3-4,
Uy — U Uz — U v v
i1=i3+i4+i5 = 13 4: 36 2+T4+ZS
or
4v, + 2v, — Sv;3 — 16V, =0 3.4.2)
3Q
3Q
AW
+'\/\/\/\« + oy -
v -
?11 ! "1 @
PO » 6Q T T 20V i 3y,
Apeaee- ,4_'\/\/\/\/4_\ """" vy} N\ A - N
Tr----- A i i1 L N\ + 60 L+ +
E s[4 | | s
2Q§ <)1OA §4Q §19 E”l @ 1’2§ 57/3 @ 1’45
J__ _____________________________________________________
(@) (b)

Figure 3.13
Applying: (a) KCL to the two supernodes, (b) KVL to the loops.
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We now apply KVL to the branches involving the voltage sources as
shown in Fig. 3.13(b). For loop 1,

—v; +20+0v, =0 = v, — vy, =20 3.4.3)
For loop 2,
—v3+3v,+tv,=0
But v, = v; — vy so that
v, —v3—20,=0 3.44)
For loop 3,
v, — 3v, + 6iz —20 =0
But 6i3 = v3 — v, and v, = v; — v4. Hence,
—2v; — U, + v3 + 2v4 = 20 3.4.5)

We need four node voltages, vy, U,, U3, and vy, and it requires only
four out of the five Egs. (3.4.1) to (3.4.5) to find them. Although the fifth
equation is redundant, it can be used to check results. We can solve
Egs. (3.4.1) to (3.4.4) directly using MATLAB. We can eliminate one
node voltage so that we solve three simultaneous equations instead of
four. From Eq. (3.4.3), v, = v; — 20. Substituting this into Egs. (3.4.1)
and (3.4.2), respectively, gives

6V, — vs — 20, = 80 (3.4.6)
and
6Ul - 5U3 - 16U4 =40 (3.4.7)

Equations (3.4.4), (3.4.6), and (3.4.7) can be cast in matrix form as

3 -1 =27 v, 0
6 -1 —2||uvs|=1]80
6 -5 —16] Lv, 40

Using Cramer’s rule gives

3 -1 -2 0 -1 =2
A=(6 -1 =2|=-18§, A =180 —1 —2|= —480,
6 -5 —16 40 -5 —16
30 -2 3 -1 0
Ay =16 80 —2|= —3120, A, =16 —1 80| =840
6 40 —16 6 —5 40

Thus, we arrive at the node voltages as

A, —480 A; 3120
= =—"=12667V, =—= = 17333V,
T ST
Ay 840
=—"=——=-4667V
4TA T a8

and v, = v; — 20 = 6.667 V. We have not used Eq. (3.4.5); it can be
used to cross check results.
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Find vy, v,, and v5 in the circuit of Fig. 3.14 using nodal analysis.

Answer: v, = 7.608 V, v, = —17.39 V, v3 = 1.6305 V.

34 Mesh Analysis

Mesh analysis provides another general procedure for analyzing cir-
cuits, using mesh currents as the circuit variables. Using mesh currents
instead of element currents as circuit variables is convenient and
reduces the number of equations that must be solved simultaneously.
Recall that a loop is a closed path with no node passed more than once.
A mesh is a loop that does not contain any other loop within it.

Nodal analysis applies KCL to find unknown voltages in a given
circuit, while mesh analysis applies KVL to find unknown currents.
Mesh analysis is not quite as general as nodal analysis because it is
only applicable to a circuit that is planar. A planar circuit is one that
can be drawn in a plane with no branches crossing one another; oth-
erwise it is nonplanar. A circuit may have crossing branches and still
be planar if it can be redrawn such that it has no crossing branches.
For example, the circuit in Fig. 3.15(a) has two crossing branches, but
it can be redrawn as in Fig. 3.15(b). Hence, the circuit in Fig. 3.15(a)
is planar. However, the circuit in Fig. 3.16 is nonplanar, because there
is no way to redraw it and avoid the branches crossing. Nonplanar cir-
cuits can be handled using nodal analysis, but they will not be con-
sidered in this text.

1Q
AW
5Q
4Q§ 7Q §29
6Q
N 3Q
130 MWV
SA §129 §9Q
C*D 11Q 8 Q
AN
10 Q

Figure 3.16

A nonplanar circuit.

To understand mesh analysis, we should first explain more about
what we mean by a mesh.

A mesh is a loop which does not contain any other loops within it.

Practice Problem 3.4

6 Q

v3

le@

Figure 3.14

For Practice Prob. 3.4.

I Mesh analysis is also known as /oop
analysis or the mesh-current method.

1Q

4Q

50 6Q

7Q

IQ§

3Q§

SQ§

sg%

79%

§6£2

Figure 3.15

()

(a) A planar circuit with crossing branches,
(b) the same circuit redrawn with no cross-

ing branches.
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Although path abcaefa is a loop and

I not a mesh, KVL still holds. This is the
reason for loosely using the terms
Joop analysis and mesh analysis to
mean the same thing.

I The direction of the mesh current is

arbitrary—(clockwise or counterclock-
wise)—and does not affect the validity
of the solution.

The shortcut way will not apply if one
mesh current is assumed clockwise
and the other assumed counter-
clockwise, although this is permissible.

Chapter 3 Methods of Analysis

1y R, L R,
—_— —_—
N MW

o M)zl Moo

f e d
Figure 3.17

A circuit with two meshes.

In Fig. 3.17, for example, paths abefa and bcdeb are meshes, but path
abcdefa is not a mesh. The current through a mesh is known as mesh
current. In mesh analysis, we are interested in applying KVL to find
the mesh currents in a given circuit.

In this section, we will apply mesh analysis to planar circuits that
do not contain current sources. In the next section, we will consider
circuits with current sources. In the mesh analysis of a circuit with n
meshes, we take the following three steps.

Steps to Determine Mesh Currents:

1. Assign mesh currents iy, i, ..., i, to the n meshes.

2. Apply KVL to each of the n meshes. Use Ohm’s law to
express the voltages in terms of the mesh currents.

3. Solve the resulting n simultaneous equations to get the mesh
currents.

To illustrate the steps, consider the circuit in Fig. 3.17. The first
step requires that mesh currents i; and i, are assigned to meshes 1 and
2. Although a mesh current may be assigned to each mesh in an arbi-
trary direction, it is conventional to assume that each mesh current
flows clockwise.

As the second step, we apply KVL to each mesh. Applying KVL
to mesh 1, we obtain

=V + Ry + R3(i; — i) =0
or
(Ry + R3)i; — R3i», =V, (3.13)
For mesh 2, applying KVL gives
Ryir + Vo + R3(in — i) = 0
or
—R3i; + (R, + Ry)in = =V, (3.14)

Note in Eq. (3.13) that the coefficient of i; is the sum of the resistances
in the first mesh, while the coefficient of i, is the negative of the resis-
tance common to meshes 1 and 2. Now observe that the same is true
in Eq. (3.14). This can serve as a shortcut way of writing the mesh
equations. We will exploit this idea in Section 3.6.



www.konkur.in

3.4  Mesh Analysis

The third step is to solve for the mesh currents. Putting Egs. (3.13)
and (3.14) in matrix form yields

R, + R —R ] \%
1 3 3 } {11} _ { 1} (3.15)
_R3 R2 + R3 15 _V2

which can be solved to obtain the mesh currents i; and i,. We are at
liberty to use any technique for solving the simultaneous equations.
According to Eq. (2.12), if a circuit has n nodes, b branches, and / inde-
pendent loops or meshes, then / = b — n + 1. Hence, [ independent
simultaneous equations are required to solve the circuit using mesh
analysis.

Notice that the branch currents are different from the mesh cur-
rents unless the mesh is isolated. To distinguish between the two types
of currents, we use i for a mesh current and / for a branch current. The
current elements ;, I,, and /5 are algebraic sums of the mesh currents.
It is evident from Fig. 3.17 that

Il - i], 12 - iz, 13 - il - i2 (3.16)

95

For the circuit in Fig. 3.18, find the branch currents /,, I,, and /5 using
mesh analysis.

Solution:
We first obtain the mesh currents using KVL. For mesh 1,

—15 4 5i; + 10(, — iy) + 10 =10

or
3i, —2i, =1 3.5.1)
For mesh 2,
6i, + 4i, + 10(i, — i) — 10 =0
or

i] = 2l2 -1 (3.5.2)

B METHOD 1 Using the substitution method, we substitute
Eq. (3.5.2) into Eq. (3.5.1), and write

From Eq. (3.5.2), iy = 2i, — 1 =2 — 1 =1A. Thus,
I]:i]ZIA, 12:i2:1A, 13211_12:0

B METHOD 2 To use Cramer’s rule, we cast Egs. (3.5.1) and
(3.5.2) in matrix form as

BRI

Example 3.5
Isa B osa
NWV MWWV

15V@> fz-l)

§IOQ
(2) Zaa
@) 10V

Figure 3.18
For Example 3.5.
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We obtain the determinants

3 -2
A:‘—l 2‘26—224
AI_H _§’=2+2=4, Az—‘_? ”=3+1=4
Thus,
A, . _ A
11=A=1A, 12=X=1A
as before.

Practice Problem 3.5

2Q

MM
asv (2) @ N Qﬁ)
2

ANV
40

Figure 3.19
For Practice Prob. 3.5.

Calculate the mesh currents i; and i, of the circuit of Fig. 3.19.

Answer: i; = 25A, i, = 0A.

Example 3.6

10Q

24V Ct) @
120

Figure 3.20
For Example 3.6.

Use mesh analysis to find the current /, in the circuit of Fig. 3.20.

Solution:
We apply KVL to the three meshes in turn. For mesh 1,

=24 4+ 10(i; — ip) + 123, —i3) =0

or
11i; — 5i; — 6i3 = 12 (3.6.1)
For mesh 2,
24i, + 4(i, — i3) + 10(i, — i1) =0
or
—5i; + 19, —2i3 =0 (3.6.2)
For mesh 3,

41, + 12(i5 — iy) + 433 — i) = 0
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But at node A, I, = i; — iy, so that
4G — i) + 12(i3 — i) + 4@ — i) =0
or
—i; — i t2i5=0 (3.6.3)

In matrix form, Egs. (3.6.1) to (3.6.3) become

11 -5 —61[q 12
-5 19 —2||il=]0
-1 -1 2]l4 0

We obtain the determinants as

-5

=24+ 120 = 144

_|_

/S

-5

As = = 60 + 228 = 288
-~ +
— 19 +
-~ +

We calculate the mesh currents using Cramer’s rule as

Y VN .. S PN
N T Y T T
A, 288
=2 =""2_15A

BTN T 192

ThuS, I() = il - i2 =15A.

97
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Practice Problem 3.6

6Q
N

AW

| ®)
¢ 4Q 8Q

MV

Figure 3.21

For Practice Prob. 3.6.

5

4Q
6 Q

Figure 3.22

A circuit with a current source.

16v (*) @ mﬁ) 10,
2

30
AW
@$5A

Using mesh analysis, find 7, in the circuit of Fig. 3.21.

Answer: —4 A.

3.5 Mesh Analysis with Current Sources

Applying mesh analysis to circuits containing current sources (dependent
or independent) may appear complicated. But it is actually much easier
than what we encountered in the previous section, because the presence
of the current sources reduces the number of equations. Consider the
following two possible cases.

B CASE 1 When a current source exists only in one mesh: Consider
the circuit in Fig. 3.22, for example. We set i, = —5 A and write a
mesh equation for the other mesh in the usual way; that is,

10+ 4, +6(, — i) =0 = ii=-2A @17
B CASE 2 When a current source exists between two meshes: Con-
sider the circuit in Fig. 3.23(a), for example. We create a supermesh

by excluding the current source and any elements connected in series
with it, as shown in Fig. 3.23(b). Thus,

A supermesh results when two meshes have a (dependent or inde-
pendent) current source in common.

10 Q

Figure 3.23

(a) Two meshes having a current source in common, (b) a supermesh, created by excluding the current

source.

=h -

Exclude these (b)
elements

As shown in Fig. 3.23(b), we create a supermesh as the periphery of
the two meshes and treat it differently. (If a circuit has two or more
supermeshes that intersect, they should be combined to form a larger
supermesh.) Why treat the supermesh differently? Because mesh analy-
sis applies KVL—which requires that we know the voltage across each
branch—and we do not know the voltage across a current source in
advance. However, a supermesh must satisfy KVL like any other mesh.
Therefore, applying KVL to the supermesh in Fig. 3.23(b) gives
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or
6i; + 14i, = 20 (3.18)

We apply KCL to a node in the branch where the two meshes inter-
sect. Applying KCL to node 0 in Fig. 3.23(a) gives

ih=1 +6 3.19)
Solving Egs. (3.18) and (3.19), we get
i = —3.2A, i =28A (3.20)

Note the following properties of a supermesh:

1. The current source in the supermesh provides the constraint equa-
tion necessary to solve for the mesh currents.

2. A supermesh has no current of its own.

3. A supermesh requires the application of both KVL and KCL.
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For the circuit in Fig. 3.24, find i; to i, using mesh analysis.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.24
For Example 3.7.

Solution:

Note that meshes 1 and 2 form a supermesh since they have an
independent current source in common. Also, meshes 2 and 3 form
another supermesh because they have a dependent current source in
common. The two supermeshes intersect and form a larger supermesh
as shown. Applying KVL to the larger supermesh,

2iy + 4i3 + 8(i3 —iy) + 6i, =0
or
ip +3i, + 6is —4i, =0 3.7.1)
For the independent current source, we apply KCL to node P:
ih=1i +5 3.7.2)
For the dependent current source, we apply KCL to node Q:

i =iy + 3I,

Example 3.7
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But 7, = —iy4, hence,
iy = i3 — 3iy 3.7.3)
Applying KVL in mesh 4,
2iy + 83y —i3) +10=0

or

Siy — 4iz = —5 3.7.4)
From Egs. (3.7.1) to (3.7.4),

ip = —15A, ip = —25A, iz = 3.93 A, iy =2.143 A

Practice Problem 3.7

2Q

v ® (1) .,

Figure 3.25
For Practice Prob. 3.7.

v G,

W@ (D) En (0) O

(b)

Figure 3.26
(a) The circuit in Fig. 3.2, (b) the circuit
in Fig. 3.17.

Use mesh analysis to determine i, i, and i3 in Fig. 3.25.

Answer: i, = 4.632 A, i, = 631.6 mA, iy = 1.4736 A.

3.6 TNodal and Mesh Analyses
by Inspection

This section presents a generalized procedure for nodal or mesh analy-
sis. It is a shortcut approach based on mere inspection of a circuit.
When all sources in a circuit are independent current sources, we
do not need to apply KCL to each node to obtain the node-voltage
equations as we did in Section 3.2. We can obtain the equations by
mere inspection of the circuit. As an example, let us reexamine the cir-
cuit in Fig. 3.2, shown again in Fig. 3.26(a) for convenience. The
circuit has two nonreference nodes and the node equations were

derived in Section 3.2 as
I, — I
S e
Us I,

G, + G, —G,
-G, G, + G

Observe that each of the diagonal terms is the sum of the conductances
connected directly to node 1 or 2, while the off-diagonal terms are the
negatives of the conductances connected between the nodes. Also, each
term on the right-hand side of Eq. (3.21) is the algebraic sum of the
currents entering the node.

In general, if a circuit with independent current sources has N non-
reference nodes, the node-voltage equations can be written in terms of
the conductances as

Gy G ... Gy U1 I
G G .. G v ]
S A R (3.22)



www.konkur.in
3.6 Nodal and Mesh Analyses by Inspection
or simply

Gv =i (3.23)

G = Sum of the conductances connected to node k

9
|

= Gj = Negative of the sum of the conductances directly

connecting nodes k and j, k # j
v, = Unknown voltage at node k

i = Sum of all independent current sources directly connected
to node k, with currents entering the node treated as positive

G is called the conductance matrix; v is the output vector; and i is the
input vector. Equation (3.22) can be solved to obtain the unknown node
voltages. Keep in mind that this is valid for circuits with only inde-
pendent current sources and linear resistors.

Similarly, we can obtain mesh-current equations by inspection
when a linear resistive circuit has only independent voltage sources.
Consider the circuit in Fig. 3.17, shown again in Fig. 3.26(b) for con-
venience. The circuit has two nonreference nodes and the node equa-
tions were derived in Section 3.4 as

AN
7R3 R2+R3 15 —Uy

We notice that each of the diagonal terms is the sum of the resistances
in the related mesh, while each of the off-diagonal terms is the nega-
tive of the resistance common to meshes 1 and 2. Each term on the
right-hand side of Eq. (3.24) is the algebraic sum taken clockwise of
all independent voltage sources in the related mesh.

In general, if the circuit has N meshes, the mesh-current equations
can be expressed in terms of the resistances as

Ry Ry ... Ry i U1
Sl I ) e (3:29)
Ryt Rya -.. Ry N Un
or simply
Ri=v (3.26)
where

Ry = Sum of the resistances in mesh &
Ry; = Ry = Negative of the sum of the resistances in common
with meshes k and j, k # j
i = Unknown mesh current for mesh & in the clockwise direction

Ux = Sum taken clockwise of all independent voltage sources in
mesh k, with voltage rise treated as positive

R is called the resistance matrix; i is the output vector; and v is
the input vector. We can solve Eq. (3.25) to obtain the unknown mesh
currents.

101
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Example 3.8

Write the node-voltage matrix equations for the circuit in Fig. 3.27 by
inspection.

3a () e (§)1A %49 29% @) 4a
L

Figure 3.27
For Example 3.8.

Solution:

The circuit in Fig. 3.27 has four nonreference nodes, so we need four
node equations. This implies that the size of the conductance matrix
G, is 4 by 4. The diagonal terms of G, in siemens, are

+—=1325

+ 03 Gpei+ian
() 22 5 1

0 | —

+ — = 05, G44 = + +

1
— = 1.625
1

0 | —
N | —

The off-diagonal terms are

1
G, = _g = —0.2, G3=G4=0

1 1
GZI = _02, G23 = _g = _0125, G24 = _T = —1

1
Gs =0, Gy, = —0.125, Gay = 5= -0.125

G41 = O, G42 = _1, G43 = —0.125
The input current vector i has the following terms, in amperes:
i1:3, l2:_1_2:_3, i3:0, l4:2+4:6

Thus the node-voltage equations are

03 —02 0 0 v, 3
—02 1325 —0.125 -1 v, || -3
0 —0.125 05 —0125||vs| | O
0o -1 —0.125  1.625] L v, 6

which can be solved using MATLAB to obtain the node voltages vy, v»,
U3, and Uy4.
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By inspection, obtain the node-voltage equations for the circuit in

Fig. 3.28.

Answer:
125 —-02 -1 0 U, 0
-0.2 0.2 0 0 vy | 5
-1 0 1.25 —-0.25 U3 -3
0 0 —-0.25 1.25 Uy 2

Practice Problem 3.8

1Q v; 4Q o
AW

" ()3a
o) v §IQ @) 2a
20Q @) 2a

€L

Figure 3.28
For Practice Prob. 3.8.

By inspection, write the mesh-current equations for the circuit in Fig. 3.29.

50
AN
0
20 4(‘4 20
AW . AW

20
i
@ 4g§ §3Q
10V

AW
) 2v
4Q @ 30 @ (?6V

Figure 3.29
For Example 3.9.

Solution:
We have five meshes, so the resistance matrix is 5 by 5. The diagonal

terms, in ohms, are:

Ry =5+2+2=09, Ryn=2+4+1+1+2=10,
Ryy;y=2+3+4=9, Ry=1+3+4=8, Rss=1+3=4
The off-diagonal terms are:

Ry = =2, Ri3 = =2, Ri4 =0 =Rys,
Ry = -2, Ry; = —4, Ry, = —1, Rys = —1,
Ry = -2, Ry = —4, R3, = 0 = Rss,
R4 =0, Ry = —1, Ry =0, R4s = =3,
Rs; =0, Rsy = —1, Rs3 =0, Rsy = -3
The input voltage vector v has the following terms in volts:
v =4, v, =10 —4 =6,
vy =—12+ 6 = —6, vy =0, vs = —6

Example 3.9
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Thus, the mesh-current equations are:

9 —2 =2 0 0][i 4
—2 10 -4 -1 —1||i 6
—2 =4 9 0 0|l|is|=]-6
0 -1 0 8 =3||i 0
0 -1 0 =3 4]l|is -6
From this, we can use MATLAB to obtain mesh currents i, i», i3, iy,
and is.
Practice Problem 3.9 By inspection, obtain the mesh-current equations for the circuit in
Fig. 3.30.
50 Q
MV

20 Q

15Q 20Q
30v () @ AN A

80 Q ()20v 60 Q
Figure 3.30
For Practice Prob. 3.9.
Answer:
150 —40 0 —80 0114 30
—40 65 —30 -—15 0] 0
0 —30 50 0 =20 |iz|=]|—12
—-80 —15 0 95 0] iy 20
0 0 —20 0 80 | | is —-20
3.3 Nodal Versus Mesh Analysis

Both nodal and mesh analyses provide a systematic way of analyzing
a complex network. Someone may ask: Given a network to be ana-
lyzed, how do we know which method is better or more efficient? The
choice of the better method is dictated by two factors.
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The first factor is the nature of the particular network. Networks
that contain many series-connected elements, voltage sources, or super-
meshes are more suitable for mesh analysis, whereas networks with
parallel-connected elements, current sources, or supernodes are more
suitable for nodal analysis. Also, a circuit with fewer nodes than
meshes is better analyzed using nodal analysis, while a circuit with
fewer meshes than nodes is better analyzed using mesh analysis. The
key is to select the method that results in the smaller number of
equations.

The second factor is the information required. If node voltages are
required, it may be expedient to apply nodal analysis. If branch or mesh
currents are required, it may be better to use mesh analysis.

It is helpful to be familiar with both methods of analysis, for at
least two reasons. First, one method can be used to check the results
from the other method, if possible. Second, since each method has its
limitations, only one method may be suitable for a particular problem.
For example, mesh analysis is the only method to use in analyzing tran-
sistor circuits, as we shall see in Section 3.9. But mesh analysis can-
not easily be used to solve an op amp circuit, as we shall see in Chapter 5,
because there is no direct way to obtain the voltage across the op amp
itself. For nonplanar networks, nodal analysis is the only option,
because mesh analysis only applies to planar networks. Also, nodal
analysis is more amenable to solution by computer, as it is easy to pro-
gram. This allows one to analyze complicated circuits that defy hand
calculation. A computer software package based on nodal analysis is
introduced next.

3.8 Circuit Analysis with PSpice

PSpice is a computer software circuit analysis program that we will
gradually learn to use throughout the course of this text. This section
illustrates how to use PSpice for Windows to analyze the dc circuits we
have studied so far.

The reader is expected to review Sections D.1 through D.3 of
Appendix D before proceeding in this section. It should be noted that
PSpice is only helpful in determining branch voltages and currents
when the numerical values of all the circuit components are known.

Use PSpice to find the node voltages in the circuit of Fig. 3.31.

Solution:

The first step is to draw the given circuit using Schematics. If one
follows the instructions given in Appendix sections D.2 and D.3, the
schematic in Fig. 3.32 is produced. Since this is a dc analysis, we use
voltage source VDC and current source IDC. The pseudocomponent
VIEWPOINTS are added to display the required node voltages. Once
the circuit is drawn and saved as exam310.sch, we run PSpice by
selecting Analysis/Simulate. The circuit is simulated and the results

105

I Appendix D provides a tutorial on
using PSpice for Windows.
Example 3.10
1 20Q 5, 10Q 3
MWV
120V 30Q 40 Q 3A
0

Figure 3.31
For Example 3.10.
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120.00001 r1 812900 R3 890320 ;
AW AW
20 10
+ IDC
120V =V,

R2§30

R4§40

11@

o
Figure 3.32
For Example 3.10; the schematic of the circuit in Fig. 3.31.

are displayed on VIEWPOINTS and also saved in output file
exam310.out. The output file includes the following:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
(1) 120.0000 (2) 81.2900 (3) 89.0320

indicating that V; = 120V, V, = 81.29 V, V; = 89.032 V.

Practice Problem 3.10 For the circuit in Fig. 3.33, use PSpice to find the node voltages.

| S%HA 5 100 3
N

MW

3OQ§ 60Q 500

§259 C_r 50V

Figure 3.33
For Practice Prob. 3.10.

Answer: V, = —10V,V, = 14286 V, V3 = 50 V.

Example 3.11

In the circuit of Fig. 3.34, determine the currents iy, i, and is.

1Q
MW

3y

0

I

24V ZQ§ SQ§

Figure 3.34
For Example 3.11.
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Solution:

The schematic is shown in Fig. 3.35. (The schematic in Fig. 3.35
includes the output results, implying that it is the schematic displayed
on the screen affer the simulation.) Notice that the voltage-controlled
voltage source El in Fig. 3.35 is connected so that its input is the
voltage across the 4-() resistor; its gain is set equal to 3. In order to
display the required currents, we insert pseudocomponent IPROBES in
the appropriate branches. The schematic is saved as exam31l.sch and
simulated by selecting Analysis/Simulate. The results are displayed on
IPROBES as shown in Fig. 3.35 and saved in output file exam311.out.
From the output file or the [IPROBES, we obtain i; = i, = 1.333 A and
iz = 2.667 A.

RI
——\WW——
4
. 4
24V =V,
1.333E + 00 1.333E+00 | 2.667E + 00

%
Figure 3.35
The schematic of the circuit in Fig. 3.34.
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Use PSpice to determine currents iy, i», and i3 in the circuit of Fig. 3.36.

Answer: i; = —428.6 mA, i, = 2.280 A, i; = 2 A.

3.9 T Applications: DC Transistor Circuits

Most of us deal with electronic products on a routine basis and have
some experience with personal computers. A basic component for
the integrated circuits found in these electronics and computers is the
active, three-terminal device known as the transistor. Understanding
the transistor is essential before an engineer can start an electronic cir-
cuit design.

Figure 3.37 depicts various kinds of transistors commercially avail-
able. There are two basic types of transistors: bipolar junction transis-
tors (BJTs) and field-effect transistors (FETs). Here, we consider only
the BJTs, which were the first of the two and are still used today. Our
objective is to present enough detail about the BJT to enable us to apply
the techniques developed in this chapter to analyze dc transistor circuits.

Practice Problem 3.11

iy

, 40
o
2A
-~
wzu
2Q
§1Q VD §2Q
10V

Figure 3.36
For Practice Prob. 3.11.
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Technologies/Bell Labs

Historical

William Schockley (1910-1989), John Bardeen (1908—1991), and
Walter Brattain (1902—-1987) co-invented the transistor.

Nothing has had a greater impact on the transition from the “Indus-
trial Age” to the “Age of the Engineer” than the transistor. I am sure
that Dr. Shockley, Dr. Bardeen, and Dr. Brattain had no idea they would
have this incredible effect on our history. While working at Bell Lab-
oratories, they successfully demonstrated the point-contact transistor,
invented by Bardeen and Brattain in 1947, and the junction transistor,
which Shockley conceived in 1948 and successfully produced in 1951.

It is interesting to note that the idea of the field-effect transistor,
the most commonly used one today, was first conceived in 1925-1928
by J. E. Lilienfeld, a German immigrant to the United States. This is
evident from his patents of what appears to be a field-effect transistor.
Unfortunately, the technology to realize this device had to wait until
1954 when Shockley’s field-effect transistor became a reality. Just think
what today would be like if we had this transistor 30 years earlier!

For their contributions to the creation of the transistor, Dr. Shockley,
Dr. Bardeen, and Dr. Brattain received, in 1956, the Nobel Prize in
physics. It should be noted that Dr. Bardeen is the only individual to
win two Nobel prizes in physics; the second came later for work in
superconductivity at the University of Illinois.

Collector

T

Base o—

oO— B |~

Emitter
(@)

Collector

Base o— n B

Emitter

(b)
Figure 3.38
Two types of BJTs and their circuit
symbols: (a) npn, (b) pnp.

s}

a

Figure 3.37
Various types of transistors.
(Courtesy of Tech America.)

There are two types of BJTs: npn and pnp, with their circuit sym-
bols as shown in Fig. 3.38. Each type has three terminals, designated
as emitter (E), base (B), and collector (C). For the npn transistor, the
currents and voltages of the transistor are specified as in Fig. 3.39.
Applying KCL to Fig. 3.39(a) gives

Ip =1 + Ic 3.27)
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where I, I, and I are emitter, collector, and base currents, respec-
tively. Similarly, applying KVL to Fig. 3.39(b) gives

Vee + Veg + Vae =0 (3.28)

where Vg, Vg, and Ve are collector-emitter, emitter-base, and base-
collector voltages. The BJT can operate in one of three modes: active,
cutoff, and saturation. When transistors operate in the active mode, typ-
ically Vgr = 0.7V,

IC = DtIE (3'29)

where « is called the common-base current gain. In Eq. (3.29),
« denotes the fraction of electrons injected by the emitter that are col-
lected by the collector. Also,

Ic = By (3.30)

where 8 is known as the common-emitter current gain. The o and 8
are characteristic properties of a given transistor and assume constant
values for that transistor. Typically, « takes values in the range of 0.98 to
0.999, while B takes values in the range of 50 to 1000. From Egs. (3.27)

to (3.30), it is evident that

and
o

B = (3.32)

1l -«

These equations show that, in the active mode, the BJT can be modeled
as a dependent current-controlled current source. Thus, in circuit analy-
sis, the dc equivalent model in Fig. 3.40(b) may be used to replace the
npn transistor in Fig. 3.40(a). Since 3 in Eq. (3.32) is large, a small base
current controls large currents in the output circuit. Consequently, the
bipolar transistor can serve as an amplifier, producing both current gain
and voltage gain. Such amplifiers can be used to furnish a considerable
amount of power to transducers such as loudspeakers or control motors.

C

+
Iy
—

V,
B T CE
Ve B

E

(a) (b)
Figure 3.40

(a) An npn transistor, (b) its dc equivalent model.

It should be observed in the following examples that one cannot
directly analyze transistor circuits using nodal analysis because of the
potential difference between the terminals of the transistor. Only when the
transistor is replaced by its equivalent model can we apply nodal analysis.

109

Figure 3.39
The terminal variables of an npn transistor:
(a) currents, (b) voltages.

I Infact, transistor circuits provide moti-
vation to study dependent sources.
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Example 3.12 Find Iy, I, and v, in the transistor circuit of Fig. 3.41. Assume that
the transistor operates in the active mode and that 8 = 50.

c 1000

-

4V -‘r
Figure 3.41
For Example 3.12.

Solution:
For the input loop, KVL gives

—4 + 1520 X 10%) + Vg = 0
Since Vgr = 0.7 V in the active mode,

4—-0.7

T x100 (OkA

B

But
I = BIz = 50 X 165 nA = 8.25 mA
For the output loop, KVL gives
—v, — 100l + 6 =0
or
v, =6 — 100l = 6 — 0.825 = 5.175V

Note that v, = V- in this case.

Practice Problem 3.12 For the transistor circuit in Fig. 3.42, let 8 = 100 and Vg = 0.7 V.
Determine v, and V.

Answer: 2.876 V, 1.984 V.

Figure 3.42
For Practice Prob. 3.12.
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For the BJT circuit in Fig. 3.43, 8 = 150 and Vgzz = 0.7 V. Find v,.
Solution:

1. Define. The circuit is clearly defined and the problem is clearly
stated. There appear to be no additional questions that need to
be asked.

2. Present. We are to determine the output voltage of the circuit
shown in Fig. 3.43. The circuit contains an ideal transistor with
B =150 and Vg = 0.7 V.

3. Alternative. We can use mesh analysis to solve for v,. We can
replace the transistor with its equivalent circuit and use nodal
analysis. We can try both approaches and use them to check
each other. As a third check, we can use the equivalent circuit
and solve it using PSpice.

4. Attempt.

B METHOD 1 Working with Fig. 3.44(a), we start with the first loop.

—2 4 100k, + 200k(I, — ) =0  or 3, — 2L, =2 % 1073
(3.13.1)

1 kQ

AN

= 16V

200 kQ @ - B
1
(a)

™)
< +
i
1
3
Q§
3
11
+

1kQ
MWW
15075 | +
1 v "
_ — 16V
(b)
1 700 OOmV 14.58 V R,
100k 1k
+
t Fl €L
2V _— 200k 0.7V ; — 16V
K F

? 8 . é ? S

(©)
Figure 3.44

Solution of the problem in Example 3.13: (a) Method 1, (b) Method 2,
(c) Method 3.

Example 3.13

100 kQ

+

2V _‘, 200kQ | T

1 kQ
—AWW—

+

Q
1|

Figure 3.43

For Example 3.13.

=16V
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Now for loop 2.
200k(l, — I,) + Vg =0 or =21, + 2, = —0.7 X 107>
(3.13.2)

Since we have two equations and two unknowns, we can solve for I,
and ,. Adding Eq. (3.13.1) to (3.13.2) we get;

I, =13X107°A and L =(—0.7+26)107°/2=95uA
Since I; = — 1501, = —1.425 mA, we can now solve for v,, using loop 3:

—v,+'kl; +16=0 or v,=—1425+16= 14575V

B METHOD 2 Replacing the transistor with its equivalent circuit
produces the circuit shown in Fig. 3.44(b). We can now use nodal
analysis to solve for v,,.

At node number 1: V;, = 0.7V
(0.7 — 2)/100k + 0.7/200k + I = 0 or Iz = 9.5 A
At node number 2 we have:

15013 + (v, — 16)/1k =0  or
v, =16 — 150 X 10> X 9.5 X 10°° = 14.575V

5. Evaluate. The answers check, but to further check we can use
PSpice (Method 3), which gives us the solution shown in
Fig. 3.44(c).

6. Satisfactory? Clearly, we have obtained the desired answer with
a very high confidence level. We can now present our work as a
solution to the problem.

Practice Problem 3.13

120 kQ

+ +\
IVT Vg

10 kQ
MWW
O
]+
+
—20V
10 kQ § % —

Figure 3.45

For Practice Prob. 3.13.

The transistor circuit in Fig. 3.45 has 8 = 80 and Vzz = 0.7 V. Find v,,
and I,,.

Answer: 12V, 600 nA.

3.10 Summary

1. Nodal analysis is the application of Kirchhoff’s current law at the
nonreference nodes. (It is applicable to both planar and nonplanar
circuits.) We express the result in terms of the node voltages. Solv-
ing the simultaneous equations yields the node voltages.

2. A supernode consists of two nonreference nodes connected by a
(dependent or independent) voltage source.

3. Mesh analysis is the application of Kirchhoff’s voltage law around
meshes in a planar circuit. We express the result in terms of mesh
currents. Solving the simultaneous equations yields the mesh
currents.
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Review Questions

4. A supermesh consists of two meshes that have a (dependent or

5.

independent) current source in common.

Nodal analysis is normally used when a circuit has fewer node
equations than mesh equations. Mesh analysis is normally used
when a circuit has fewer mesh equations than node equations.

ered in this chapter.

. Circuit analysis can be carried out using PSpice.
. DC transistor circuits can be analyzed using the techniques cov-
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1

3.1 Atnode 1 in the circuit of Fig. 3.46, applying KCL

Figu

Review Questions

gives:
®2+12;m:¥§+3%;3
(c)2+12;v1:0—6v1+111;vz
(d)2+v1;12:0—6ul+02;v1

re 3.46

For Review Questions 3.1 and 3.2.

3.2

In the circuit of Fig. 3.46, applying KCL at node 2

gives:
Uy, — U v v
(a)g_,_ 2 _ 22
4 8 6
v, — U v v
(b)¥+ 2_22
4 8 6
vy — U 12 —v
(C)l 2+ 2
4 8
Uy — U vy, — 12
d +
@ 4 8

3.3

For the circuit in Fig. 3.47, v, and v, are related as:
(aA)v, =6i +8 + v, b)v, =6i — 8 + v,
(C)U1:_6i+8+l}2 (d)U1:_6i_8+U2

Figure 3.47

For Review Questions 3.3 and 3.4.

34

3.5

3.6 The loop equation for the circuit in Fig. 3.48 is:

In the circuit of Fig. 3.47, the voltage v, is:

(a) =8V (b) —1.6 V
(© 16V @s8v
The current i in the circuit of Fig. 3.48 is:
(a) —2.667 A (b) —0.667 A
(c) 0.667 A (d) 2.667 A
4Q
MW
10V @) ﬁ) @) 6V
VWW
2Q

Figure 3.48
For Review Questions 3.5 and 3.6.

@—-10+4i+6+2i=0
M 10+4i+6+2i=0
©10+4i—6+2i=0
d)-10+4i—6+2i=0
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3.7 In the circuit of Fig. 3.49, current iy is: 3.9 The PSpice part name for a current-controlled

(@) 4A (b)3A ©)2A @1A voltage source is:
(a) EX (b) FX (c) HX (d) GX

3.10 Which of the following statements are not true of the

2Q 1Q pseudocomponent IPROBE:
AN A ) )
(a) It must be connected in series.
+
20V @ v 2A @ (b) It plots the branch current.
(c) It displays the current through the branch in
WA%%Y AW which it is connected.
3Q 4Q

. (d) It can be used to display voltage by connecting it
Figure 3.49 . in parallel.

For Review Questions 3.7 and 3.8. (e) It is used only for dc analysis.
(f) It does not correspond to a particular circuit

. L element.
3.8 The voltage v across the current source in the circuit

of Fig. 3.49 is:

Answers: 3.1a, 3.2¢, 3.3a, 3.4c, 3.5¢, 3.6a, 3.7d, 3.8b,

@20V OISV (©I10V @5V 3.9¢. 3.10b.d.
1 Problems
Sections 3.2 and 3.3 Nodal Analysis 3.3 Find the currents /; through I, and the voltage v, in

the circuit of Fig. 3.52.
3.1 Using Fig. 3.50, design a problem to help other

efJd students better understand nodal analysis.

%

W on e e

o sA (4 109% 209% 309% 204 (§ 609%
12V R; CD9V

€L

Figure 3.50 Figure 3.52
For Prob. 3.1 and Prob. 3.39. For Prob. 3.3.

3.2 For the circuit in Fig. 3.51, obtain v, and v,.
3.4 Given the circuit in Fig. 3.53, calculate the currents
i1 through i .

2Q
MWW
6A 3A
121 @ v, @
b T T e

106 e e " 6a(}) %209 %109 409% 409% O

Figure 3.51 Figure 3.53
For Prob. 3.2. For Prob. 3.4.
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3.5 Obtain v, in the circuit of Fig. 3.54.

30V 20V +

4k9§”o

2kQ 5kQ -

Figure 3.54
For Prob. 3.5.

3.6 Solve for V| in the circuit of Fig. 3.55 using nodal

analysis.
10 Q
4Q
— WH
5Q +

v ()

Figure 3.55
For Prob. 3.6.

3.7 Apply nodal analysis to solve for V. in the circuit of
Fig. 3.56.

2A 109§ inzog V> 02V,

Figure 3.56
For Prob. 3.7.

3.8 Using nodal analysis, find v, in the circuit of Fig. 3.57.

6Q 20Q
A A

+ 60V

%%49 sy,

- 20Q

Figure 3.57
For Prob. 3.8 and Prob. 3.37.

Problems 115

3.9 Determine I, in the circuit in Fig. 3.58 using nodal

analysis.
I 601,
b 250Q
MW -
24V 50 Q 150 Q

Figure 3.58
For Prob. 3.9.

3.10 Find /, in the circuit of Fig. 3.59.

1Q

4A 21,
1<

2Q %49

3.11 Find V, and the power dissipated in all the resistors
in the circuit of Fig. 3.60.

Iy

sg%

Figure 3.59
For Prob. 3.10.

120 v 6Q

60 V %129 24V

Figure 3.60
For Prob. 3.11.

3.12 Using nodal analysis, determine V,, in the circuit in

Fig. 3.61.
20 Q 10 Q
AWV

*Ix +

40V 20Q ar 1093y,

Figure 3.61
For Prob. 3.12.
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3.13 Calculate v, and v, in the circuit of Fig. 3.62 using 3.17 Using nodal analysis, find current i, in the circuit of
nodal analysis. Fig. 3.66.
, 20 1OV
i()
—_—
8Q 4Q MD)15a
4Q 2Q
10 Q
L % 8Q
Figure 3.62 _
For Prob. 3.13. 60V 3y
3.14 Using nodal analysis, find v,, in the circuit of Fig. 3.63. Figure 3.66
For Prob. 3.17.
125A
o)
N
30 3.18 Determine the node voltages in the circuit in Fig. 3.67
AN using nodal analysis.
2Q
1Q +
% % 4Q 50V
100V - 30V
)
N
Figure 3.63
For Prob. 3.14. 2Q 2 2Q
1 MW AWV 3
3.15 Apply nodal analysis to find i, and the power
dissipated in each resistor in the circuit of Fig. 3.64. 4Q % 154 % 8Q
2A 1
o) -
— Figure 3.67
10V 35 For Prob. 3.18.
GO
i * N WW
653 58 <> 4A 3.19 Use nodal analysis to find vy, v, and v3 in the circuit
1 of Fig. 3.68.
Figure 3.64 ML
For Prob. 3.15.
DA
3.16 Determine voltages v, through v; in the circuit of N
Fig. 3.65 using nodal analysis. 2Q
AWV
25 " 8Q 4,  4Q
A\/\/\/\l /\/\N\ /\/\N\ VS
2y,
vy vy 8S § 8Q
&= ANV v3 5A é 4Q § 2Q
. ®
+
2A %IS Ui 4S T)13V @12\,

=

Figure 3.65 Figure 3.68
For Prob. 3.16. For Prob. 3.19.
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3.20 For the circuit in Fig. 3.69, find v, v,, and v using

nodal analysis.

2Q v3
AN +i

%Q

3.21 For the circuit in Fig. 3.70, find v, and v, using
nodal analysis.

vy

%49

Figure 3.69
For Prob. 3.20.

Problems

117

3.24 Use nodal analysis and MATLAB to find V, in the
1} circuit of Fig. 3.73.

ML
8Q
MWV
+ V, -
4A 40 2A
O

IQ% 2Q 2Q 1Q

Figure 3.73
For Prob. 3.24.

3.25 Use nodal analysis along with MATLAB to determine
4kQ R
AN ﬁ the node voltages in Fig. 3.74.
ML
3y,
2kQ
Y MW\ = v2 200 ”
* A
3mA (4 1kQ S %
- 10Q
19 45 10Q
g1 v3
— § 30Q
Figure 3.70 4A Q) 8Q 200
For Prob. 3.21.
3.22 Determine v; and v, in the circuit of Fig. 3.71. JT—
c0 Figure 3.74
For Prob. 3.25.
—WW—
3A
2Q
”1 ) v
+y - N 3.26 Calculate the node voltages v, v, and v5 in the
1Q 1 circuit of Fig. 3.75.
12v % 40 ML
5y,
3A
= o)
. N i
Figure 3.71 10Q o
For Prob. 3.22. NV
" 5Q ” 50 ”
3.23 Use nodal analysis to find V,, in the circuit of Fig. 3.72. MW MY
20 Q 5Q 15Q
15V 4, 10V
L

Figure 3.72
For Prob. 3.23.

Figure 3.75

For Prob. 3.26.
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Chapter 3 Methods of Analysis
*#3.27 Use nodal analysis to determine voltages vy, U,, and 3.30 Using nodal analysis, find v, and i, in the circuit of
ﬁ v in the circuit of Fig. 3.76. Fig. 3.79.
ML
48
MV
3i,
Lo
g}

400
vy 1S

TR
2a(d) %25 %45 2s§

4A
Figure 3.76

96 V

+
%
Figure 3.79
For Prob. 3.30.
For Prob. 3.27.
s
ML

and d in the circuit of Fig. 3.77.

c

*3.28 Use MATLAB to find the voltages at nodes a, b, c,

b ]
IOQ§

3.31 Find the node voltages for the circuit in Fig. 3.80.
ML
=50
20Q
d

1Q
AW
§ 40 L
41 2
8Q ” © oy, ], 20
AW = WW b Z 2 #
= 3
8Q
e §169 NG 40 10 40 10V
60 V M0V
L
a =
Figure 3.77 Figure 3.80
For Prob. 3.28. For Prob. 3.31.
3.29 Use MATLAB to solve for the node voltages in the
1 circuit of Fig. 3.78.
ML

3.32 Obtain the node voltages v, U,, and v5 in the circuit
of Fig. 3.81.
5kQ
10V 20V
SA 28 2S 6A " )\
N4
L
Figure 3.78
For Prob. 3.29.
* An asterisk indicates a challenging problem.

AW
> &
4mA<) é?lzv %wkg
1
Figure 3.81

For Prob. 3.32.
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Sections 3.4 and 3.5 Mesh Analysis

3.33 Which of the circuits in Fig. 3.82 is planar? For the
planar circuit, redraw the circuits with no crossing
branches.

1Q
ANV
- 4Q 50
29%
VWAL
6Q
S
2A
(a)
3Q
AN
140
50

2v () %29

(b)
Figure 3.82
For Prob. 3.33.

3.34 Determine which of the circuits in Fig. 3.83 is planar
and redraw it with no crossing branches.

20
A
1Q 50
70 %39
v (* 6Q
40

Problems 119

8Q

IQ§ 6Q 39%

7Q 20

(®)
Figure 3.83
For Prob. 3.34.
3.35 Rework Prob. 3.5 using mesh analysis.

3.36 Use mesh analysis to obtain iy, i,, and i3 in the
circuit in Fig. 3.84.

4 Q ?—X
i1£ izl ~ li3
12V 6Q 2Q

Figure 3.84
For Prob. 3.36.

3.37 Solve Prob. 3.8 using mesh analysis.
3.38 Apply mesh analysis to the circuit in Fig. 3.85 and

ﬁ obtain /,,.
ML
40 3Q
—— A ——AMN——
sov(®) ) 104 %19
20 20
——AMA———AMA——
10
Y
19% %19 C_r 225
N V4VQW
5A

Figure 3.85
For Prob. 3.38.

3.39 Using Fig. 3.50 from Prob. 3.1, design a problem to
efdd help other students better understand mesh analysis.
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3.40 For the bridge network in Fig. 3.86, find i, using

1} mesh analysis.
ML i
o 2kQ
AN
6 kQ 6 kQ
2kQ
sov(*) MW
4kQ 4 kQ

Figure 3.86
For Prob. 3.40.

3.41 Apply mesh analysis to find i in Fig. 3.87.

H
ML

4Q§ @

e}
WWA
W
o

Figure 3.87
For Prob. 3.41.

3.42 Using Fig. 3.88, design a problem to help students
eJd better understand mesh analysis using matrices.

20Q 30Q

10 Q

WWW——— MW

G

VlC) @ %309@ 409@@)‘/3

A%

N
Va

Figure 3.88

For Prob. 3.42.

3.43 Use mesh analysis to find v,;, and i, in the circuit of

ﬁ Fig. 3.89.
ML
20 Q
AW
30 Q
80V (*
20 Q +
30 Q § Yab
m
80V (S 30 Q
20 Q
AW

Figure 3.89
For Prob. 3.43.

Methods of Analysis

3.44 Use mesh analysis to obtain i, in the circuit of

Fig. 3.90.

180 V

¢

45A

Figure 3.90
For Prob. 3.44.

3.45 Find current i in the circuit of Fig. 3.91.

H
ML

it

30V<"_P

4Q 8Q
AWV AMVY
4A
2Q 6 Q
NV VWY
3Q

?g

Figure 3.91
For Prob. 3.45.

3.46 Calculate the mesh currents i, and i, in Fig. 3.92.

3Q

6Q
MW\

AW
+ gy -
1zv<D @ 8(2@ 24,

Figure 3.92
For Prob. 3.46.

3.47 Rework Prob. 3.19 using mesh analysis.

H
ML
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3.48 Determine the current through the 10-k{} resistor in
ﬁ the circuit of Fig. 3.93 using mesh analysis.

ML
3kQ
AW
4kQ 2kQ 5kQ
—AWA—
1 kQ

6V CD

Figure 3.93
For Prob. 3.48.

3.49 Find v, and i, in the circuit of Fig. 3.94.

3Q
AN
Q4 20
MM ———MA——
b

20 b 2, (?27V

Figure 3.94
For Prob. 3.49.

3.50 Use mesh analysis to find the current i, in the circuit
1 of Fig. 3.95.
ML

4Q 2Q
10 Q

35V 3

Figure 3.95
For Prob. 3.50.

Problems 121

3.51 Apply mesh analysis to find v, in the circuit of

Fig. 3.96.
5A
20 , 8Q
o
10
§4g G)2ov
40V

Figure 3.96
For Prob. 3.51.

3.52 Use mesh analysis to find #;, i, and i3 in the circuit
1} ofFig. 3.97.
ML

S+

VWA
[\S]
e}

%89

12v () @

D,

Figure 3.97
For Prob. 3.52.

3.53 Find the mesh currents in the circuit of Fig. 3.98
1 using MATLAB.

ML
2kQ
M
0
6kQ 8 kQ
A ANV
@ 8 kQ @ (H3ma
1kQ 4kQ
A ANV
n2v(®) @ 3k9% @

Figure 3.98
For Prob. 3.53.
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3.54 Find the mesh currents iy, i,, and i3 in the circuit in

ﬁ Fig. 3.99.
ML

1kQ 1kQ 1kQ

VWAL VWA VWA

1kQ
+ i i 1Q i3 =
12V<_> 1 2 Q 12V
v

Figure 3.99
For Prob. 3.54.

*3.55 In the circuit of Fig. 3.100, solve for I, I5, and 5.

H
ML

sa(d) & %29

o
<

Figure 3.100
For Prob. 3.55.

3.56 Determine v; and v, in the circuit of Fig. 3.101.

2Q
W
+ oy -
2Q 2Q
+
12V 2Q =22Q

Figure 3.101
For Prob. 3.56.

3.57 In the circuit of Fig. 3.102, find the values of R, V,
and V, given that i, = 15 mA.

sov ()

Figure 3.102
For Prob. 3.57.

Methods of Analysis

3.58 Find iy, iy, and 75 in the circuit of Fig. 3.103.

H

ML 30Q

300 ®

Figure 3.103
For Prob. 3.58.

3.59 Rework Prob. 3.30 using mesh analysis.

H
ML

3.60 Calculate the power dissipated in each resistor in the
circuit of Fig. 3.104.

0.51,

0

—

4Q 8Q

iy

1Q 56V 2Q

Figure 3.104
For Prob. 3.60.

3.61 Calculate the current gain i,/i, in the circuit of
Fig. 3.105.

10Q
e .
o
+
i, %2300 %%5% 40 Q

Figure 3.105
For Prob. 3.61.

3.62 Find the mesh currents iy, i,, and i3 in the network of

1+ Fig 3.106.
ML

8 kQ 2kQ

410
AW AW
100V @ 4mA@¢2i,@§f>4OV

Figure 3.106
For Prob. 3.62.
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3.63 Find v, and i, in the circuit shown in Fig. 3.107.

B
w
e}

Figure 3.107
For Prob. 3.63.

3.64 Find v, and i, in the circuit of Fig. 3.108.

3
ML &/ 50Q 10Q

oy *tow -

250v ()

Figure 3.108
For Prob. 3.64.

3.65 Use MATLAB to solve for the mesh currents in the
1 circuit of Fig. 3.109.
ML

Figure 3.109
For Prob. 3.65.

Problems 123

3.66 Write a set of mesh equations for the circuit in
1 Fig. 3.110. Use MATLAB to determine the mesh
ML currents.

10 Q 10 Q
AWV AW
4Q 8Q
B @
24V 40V
AW A% MV
2Q 2Q 6Q
8Q
(i (@) (i)
32V

Figure 3.110
For Prob. 3.66.

Section 3.6 Nodal and Mesh Analyses
by Inspection

3.67 Obtain the node-voltage equations for the circuit in
ﬁ Fig. 3.111 by inspection. Then solve for V,,.

ML
5A
/)
N
40 20
MWWY ANW—
+ vV, -
3v, <} IOQ§ 59§ (D1oa
L

Figure 3.111
For Prob. 3.67.

3.68 Using Fig. 3.112, design a problem, to solve for V,,
efd to help other students better understand nodal
analysis. Try your best to come up with values to
make the calculations easier.

I

JORNLE-

Figure 3.112
For Prob. 3.68.
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3.72 By inspection, write the mesh-current equations for

3.69 For the circuit shown in Fig. 3.113, write the node-
the circuit in Fig. 3.116.

voltage equations by inspection.

4Q
AV
1kQ
8V 4V 10

C 2
—— NS NS W
" 4KQ 0| 4KQ 50 @ 29% @ 40 @ (’_Plov

MY AMMW— 73
20 mA 2kQ §2k§2 $) 10mA Figure 3.116
For Prob. 3.72.
= 3.73 Write the mesh-current equations for the circuit in
Figure 3.113 Fig. 3.117.
For Prob. 3.69.
2Q 5Q
M MW
3.70 Write the node-voltage equations by inspection and ! q Q -
then determine values of V, and V, in the circuit of ov <—> 1) 30 § ’ <+> 4v
Fig. 3.114. 4Q
M
() 1z (%) <
v, v, 1Q § 1Q 1Q
o
l i, o0 .
N N

20A 1S 2S { 7A 2V 3V
<> § § §5S <> Figure 3.117
For Prob. 3.73.

L
= 3.74 By inspection, obtain the mesh-current equations for
Figure 3.114 the circuit in Fig. 3.118.
For Prob. 3.70.
R, Ry Rs
—WW N MV
3.71 Write the mesh-current equations for the circuit - i Rs
1 inFig. 3.115. Next, determine the values of iy, iy, Vi <f> @ § Ry
ML andis. V. .
k Q) o

@ N
59§ @ §3Q W N
7 V3

1Q

Figure 3.118

0V <t> @ VWY For Prob. 3.74.
2Q

40 § @ Section 3.8 Circuit Analysis with PSpice or
15V g MultiSim

3.75 Use PSpice or MultiSim to solve Prob. 3.58.

Figure 3.115
For Prob. 3.71. 3.76 Use PSpice or MultiSim to solve Prob. 3.27.
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3.77 Solve for V, and V; in the circuit of Fig. 3.119 using
PSpice or MultiSim.

vi| s |v

5ACD §2§2 §IQ 2A

Figure 3.119
For Prob. 3.77.

3.78 Solve Prob. 3.20 using PSpice or MultiSim.
3.79 Rework Prob. 3.28 using PSpice or MultiSim.

3.80 Find the nodal voltages v; through v, in the circuit
1} of Fig. 3.120 using PSpice or MultiSim.

ML
61,
10Q | 12Q
) AN AMW— 3
8 A §4Q
20
+
o — C_ 20V
10
1Q

Figure 3.120
For Prob. 3.80.

3.81 Use PSpice or MultiSim to solve the problem in
Example 3.4.

3.82 If the Schematics Netlist for a network is as follows,
draw the network.

R_.R1 1 2 2K

R_R2 2 0 4K

R_.R3 3 0 8K

R_R4 3 4 oK

R_.R5 1 3 3K

V_.VS 4 0 DC 100
I_IS © 1 DC 4

F_F1 1 3 VF_F1 2
VF_F1 5 0 oV

E_LE1L 3 2 1 3 3

Problems 125

3.83 The following program is the Schematics Netlist of a
particular circuit. Draw the circuit and determine the
voltage at node 2.

R_R1L 1 2 20
R_R2 2 0 50
R_.R3 2 3 70
R_R4 3 0 30
V_VS 1 0 20V
I_IS 2 © DC 2A

Section 3.9 Applications

3.84 Calculate v, and [, in the circuit of Fig. 3.121.

+ O

&

(o]

Figure 3.121
For Prob. 3.84.

3.85 An audio amplifier with a resistance of 9 () supplies
efd power to a speaker. What should be the resistance of
the speaker for maximum power to be delivered?

3.86 For the simplified transistor circuit of Fig. 3.122,
calculate the voltage v,,.
1 kQ

? ! 4001

5k§2§%

+

47 mV
2kQ

Figure 3.122
For Prob. 3.86.

3.87 For the circuit in Fig. 3.123, find the gain v, /v,.

2kQ 200 Q

+ +
s 71 Z 500 Q 60y, 400Q > %
L

Figure 3.123
For Prob. 3.87.
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*3,88 Determine the gain v, /v, of the transistor amplifier 3.91 For the transistor circuit of Fig. 3.127, find I, V¢,
circuit in Fig. 3.124. and v,,. Take B = 200, Vg = 0.7 V.
1
200 Q 2kQ o 5kQ
AA%%Y%
+
% 1009§ oo <> a0, y ”o%lOkQ
_ AAAA

Figure 3.124
For Prob. 3.88. 3V —

3.89 For the transistor circuit shown in Fig. 3.125, find I
and Vg Let B = 100, and Vg = 0.7 V.

I|— Figure 3.127
0.7V
_ 4 100KQ +15V - For Prob. 3.91.
225V § KO
3.92 Using Fig. 3.128, design a problem to help other
efJd students better understand transistors. Make sure you
l use reasonable numbers!

Figure 3.125
For Prob. 3.89.

3.90 Calculate v, for the transistor in Fig. 3.126 given that
v, =4V,B =150,V =0.7V.

1 kQ

Figure 3.128
For Prob. 3.92.

Figure 3.126
For Prob. 3.90.

1 Comprehensive Problem

*3.93 Rework Example 3.11 with hand calculation.
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Circult Theorems

Your success as an engineer will be directly proportional to your ability
to communicate!
—Charles K. Alexander

Enhancing Your Skills and Your Career

Enhancing Your Communication Skills

Taking a course in circuit analysis is one step in preparing yourself for
a career in electrical engineering. Enhancing your communication skills
while in school should also be part of that preparation, as a large part
of your time will be spent communicating.

People in industry have complained again and again that graduat-
ing engineers are ill-prepared in written and oral communication. An
engineer who communicates effectively becomes a valuable asset.

You can probably speak or write easily and quickly. But how effec-
tively do you communicate? The art of effective'communication is of garded by many as the most important
the utmost importance to your success as an engineer. step 1o an executive promotion.

For engineers in industry, communication is key to promotability. © IT Stock/Punchstock
Consider the result of a survey of U.S. corporations that asked what
factors influence managerial promotion. The survey includes a listing
of 22 personal qualities and their importance in advancement. You may
be surprised to note that “technical skill based on experience” placed
fourth from the bottom. Attributes such as self-confidence, ambition,
flexibility, maturity, ability to make sound decisions, getting things
done with and through people, and capacity for hard work all ranked
higher. At the top of the list was “ability to communicate.” The higher
your professional career progresses, the more you will need to com-
municate. Therefore, you should regard effective communication as an
important tool in your engineering tool chest.

Learning to communicate effectively is a lifelong task you should

always work toward. The best time to begin is while still in school.
Continually look for opportunities to develop and strengthen your read-
ing, writing, listening, and speaking skills. You can do this through
classroom presentations, team projects, active participation in student
organizations, and enrollment in communication courses. The risks are
less now than later in the workplace.

Ability to communicate effectively is re-

127



www.konkur.in

128

Chapter 4 Circuit Theorems

4.1 Introduction

A major advantage of analyzing circuits using Kirchhoff’s laws as we
did in Chapter 3 is that we can analyze a circuit without tampering
with its original configuration. A major disadvantage of this approach
is that, for a large, complex circuit, tedious computation is involved.

The growth in areas of application of electric circuits has led to an
evolution from simple to complex circuits. To handle the complexity,
engineers over the years have developed some theorems to simplify cir-
cuit analysis. Such theorems include Thevenin’s and Norton’s theorems.
Since these theorems are applicable to linear circuits, we first discuss the
concept of circuit linearity. In addition to circuit theorems, we discuss the
concepts of superposition, source transformation, and maximum power
transfer in this chapter. The concepts we develop are applied in the last
section to source modeling and resistance measurement.

4.2 Linearity Property

Linearity is the property of an element describing a linear relationship
between cause and effect. Although the property applies to many cir-
cuit elements, we shall limit its applicability to resistors in this chap-
ter. The property is a combination of both the homogeneity (scaling)
property and the additivity property.

The homogeneity property requires that if the input (also called the
excitation) is multiplied by a constant, then the output (also called the
response) is multiplied by the same constant. For a resistor, for exam-
ple, Ohm’s law relates the input i to the output v,

v =iR 4.1

If the current is increased by a constant k, then the voltage increases
correspondingly by k; that is,

kiR = kv 4.2)

The additivity property requires that the response to a sum of
inputs is the sum of the responses to each input applied separately.
Using the voltage-current relationship of a resistor, if

[ l]R (4.33)
and
Uy, = lzR (4.3b)
then applying (i; + i») gives
v = (ll + lz)R = llR + 12R = U + 1% (4.4)

We say that a resistor is a linear element because the voltage-current
relationship satisfies both the homogeneity and the additivity properties.

In general, a circuit is linear if it is both additive and homoge-
neous. A linear circuit consists of only linear elements, linear depend-
ent sources, and independent sources.
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For example, when current /4 flows
through resistor &, the power is o1 = R/%,
and when current /5 flows through R, the

' . . o . power is py = Ris. If current /1 + /g flows
Throughout this book we consider only linear circuits. Note that since through R, the power absorbed is o5 =

p= i’R = v? /R (making it a quadratic function rather than a linear one), RUy + 7ol = RIS+ Ris+ Rivg # g +
the relationship between power and voltage (or current) is nonlinear. Po. Thus, the power relation is nonlinear.
Therefore, the theorems covered in this chapter are not applicable to power.
To illustrate the linearity principle, consider the linear circuit li
shown in Fig. 4.1. The linear circuit has no independent sources inside
it. It is excited by a voltage source v,, which serves as the input. The vy G) Linear circuit R
circuit is terminated by a load R. We may take the current i through R
as the output. Suppose vy, = 10V gives i = 2 A. According to the lin-
earity principle, v, = 1V will give i = 0.2 A. By the same token,
i = 1 mA must be due to vy, = 5mV.

A linear circuit is one whose output is linearly related (or directly pro-
portional) to its input.

Figure 4.1

A linear circuit with input v, and output i.

For the circuit in Fig. 4.2, find I, when vy = 12V and vy, = 24 V. Example 4.1
o 20 8Q
Solutl.on. ' M AVA
Applying KVL to the two loops, we obtain + o, — I
12iy — 4i, + v, =0 4.1.1 4Q
1 Ip T U ( ) - : 10
—4iy + 16i, — 3v, — v, = 0 @.12) 69 § @ @
But v, = 2i,. Equation (4.1.2) becomes " 3,
—10i; + 16i, — v, =0 4.1.3)
Figure 4.2

Adding Eqgs. (4.1.1) and (4.1.3) yields

2i1 + 1212 =0 = il = _612

For Example 4.1.

Substituting this in Eq. (4.1.1), we get

vS
=76i, + v, =0 = i =
15 v 153 76
When v, = 12V,
hen -2
o %) 76
When v, =24V,
I ) 24A
= =
° 776

showing that when the source value is doubled, I, doubles.

For the circuit in Fig. 4.3, find v, when i, = 30 and i; = 45 A. Practice Problem 4.1
Answer: 40 V, 60 V. 12Q
+
Iy 4Q 8Q < v,

Figure 4.3
For Practice Prob. 4.1.



www.konkur.in

130 Chapter 4 Circuit Theorems
Example 4.2 Assume I, = 1 A and use linearity to find the actual value of 7, in the
circuit of Fig. 4.4.
I 6Q 2 V, I, 2Q 1 v, 3Q
I I I,

=154 (}) 7Q§ 40 59§

=

Figure 4.4
For Example 4.2.

Solution:
IfI,= 1A, thenV;, = 3 + 5)I,=8VandI, = V,/4 = 2 A. Applying
KCL at node 1 gives

12211 +IU=3A
Vo=V, +2L,=8+6=14V, L=—=2A
Applying KCL at node 2 gives

14:I3+12:5A

Therefore, I, = 5 A. This shows that assuming I, = 1 gives Iy = 5 A,
the actual source current of 15 A will give I, = 3 A as the actual value.

Practice Problem 4.2 Assume that V, = 1 V and use linearity to calculate the actual value
of V, in the circuit of Fig. 4.5.
12Q
Ve + Answer: 16 V.
40V 50 8Q <V,

Figure 4.5
For Practice Prob. 4.2.

4.3 Superposition

If a circuit has two or more independent sources, one way to determine
the value of a specific variable (voltage or current) is to use nodal or
mesh analysis as in Chapter 3. Another way is to determine the con-
tribution of each independent source to the variable and then add them
up. The latter approach is known as the superposition.

Superposition is not limited to circuit The idea of superposition rests on the linearity property.

analysis but is applicable in many

fields where cause and effect bear a

. ; ; The superposition principle states that the voltage across (or current
linear relationship to one another. Perp _— S (

through) an element in a linear circuit is the algebraic sum of the volt-
ages across (or currents through) that element due to each independ-
ent source acting alone.
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The principle of superposition helps us to analyze a linear circuit with
more than one independent source by calculating the contribution of
each independent source separately. However, to apply the superposi-
tion principle, we must keep two things in mind:

1. We consider one independent source at a time while all other inde-
pendent sources are turned off. This implies that we replace every
voltage source by 0 V (or a short circuit), and every current source
by 0 A (or an open circuit). This way we obtain a simpler and more
manageable circuit.

2. Dependent sources are left intact because they are controlled by
circuit variables.

With these in mind, we apply the superposition principle in three
steps:

Steps to Apply Superposition Principle:

1. Turn off all independent sources except one source. Find the
output (voltage or current) due to that active source using
the techniques covered in Chapters 2 and 3.

2. Repeat step 1 for each of the other independent sources.

3. Find the total contribution by adding algebraically all the
contributions due to the independent sources.

Analyzing a circuit using superposition has one major disadvan-
tage: It may very likely involve more work. If the circuit has three
independent sources, we may have to analyze three simpler circuits
each providing the contribution due to the respective individual source.
However, superposition does help reduce a complex circuit to simpler
circuits through replacement of voltage sources by short circuits and
of current sources by open circuits.

Keep in mind that superposition is based on linearity. For this
reason, it is not applicable to the effect on power due to each source,
because the power absorbed by a resistor depends on the square of
the voltage or current. If the power value is needed, the current
through (or voltage across) the element must be calculated first using
superposition.

131

Other terms such as killed, madle inac-
tive, deadened, or set equal to zero
are often used to convey the same

idea.

Use the superposition theorem to find v in the circuit of Fig. 4.6.

Solution:
Since there are two sources, let

V=0t

where v, and v, are the contributions due to the 6-V voltage source
and the 3-A current source, respectively. To obtain v, we set the current
source to zero, as shown in Fig. 4.7(a). Applying KVL to the loop in
Fig. 4.7(a) gives

12if —6=0 = i,=05A

Figure 4.6
For Example 4.3.

Example 4.3

8Q

MWW

4Q v 3A
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8Q
AN S
R +
6V @ 4Q = v
O
(a)

8Q

(b)
Figure 4.7

For Example 4.3: (a) calculating vy,
(b) calculating v,.

Chapter 4 Circuit Theorems
Thus,
U = 411 =2V

We may also use voltage division to get v; by writing

v, 6) =2V

T 4+38

To get v,, we set the voltage source to zero, as in Fig. 4.7(b). Using
current division,

i3=4i8(3)=2A
Hence,
v, =4i3 =8V
And we find
v=v,tuv,=2+8=10V

Practice Problem 4.3

3Q 5Q

Figure 4.8
For Practice Prob. 4.3.

Using the superposition theorem, find v,, in the circuit of Fig. 4.8.

Answer: 7.4 V.

Example 4.4

3Q

NO)

5Q

Figure 4.9
For Example 4.4.

Find i, in the circuit of Fig. 4.9 using superposition.

Solution:
The circuit in Fig. 4.9 involves a dependent source, which must be left
intact. We let

i, =i + i 4.4.1)

where i/, and i, are due to the 4-A current source and 20-V voltage
source respectively. To obtain i/, we turn off the 20-V source so that
we have the circuit in Fig. 4.10(a). We apply mesh analysis in order to
obtain i,,. For loop 1,

ip=4A 44.2)
For loop 2,
=3i; + 6i, — 1liz — 5i, =0 4.4.3)
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20
AN o
§3Q @ 3Q§
1Q
4A CD A 4 “,,

(a)
Figure 4.10
For Example 4.4: Applying superposition to (a) obtain i}, (b) obtain i,

For loop 3,
=5i; — li, + 10i5 + 5i, = 0 4.4.49)
But at node 0,
3=1i — i, =41, (4.4.5)

Substituting Eqs. (4.4.2) and (4.4.5) into Egs. (4.4.3) and (4.4.4) gives
two simultaneous equations

3i — 2i, =8 (4.4.6)
ip +5i, =20 4.4.7)
which can be solved to get
52
[, = — 44.8
=15 (4.4.8)

To obtain i/, we turn off the 4-A current source so that the circuit
becomes that shown in Fig. 4.10(b). For loop 4, KVL gives

6iy —is — 50, =0 (4.4.9)
and for loop 5,
—iy + 10is — 20 + 5i), =0 (4.4.10)
But is = —i/. Substituting this in Egs. (4.4.9) and (4.4.10) gives
6iy — 4iy, =0 4.4.11)
iy +5i,=-20 (4.4.12)
which we solve to get
iy = —%A (4.4.13)

Now substituting Eqgs. (4.4.8) and (4.4.13) into Eq. (4.4.1) gives

= = 04706 A
17

(b)

133
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Practice Problem 4.4

20Q o

X

25V &#} 4Q
L

Figure 4.11
For Practice Prob. 4.4.

0.1v

Use superposition to find v, in the circuit of Fig. 4.11.

Answer: v, = 31.25 V.

Example 4.5
24V 30
E D—n
4Q 4Q
MMV MW

v (©®

Figure 4.12
For Example 4.5.

For the circuit in Fig. 4.12, use the superposition theorem to find i.

Solution:
In this case, we have three sources. Let
I = il + i2 + i3

where iy, i, and i3 are due to the 12-V, 24-V, and 3-A sources respec-
tively. To get i;, consider the circuit in Fig. 4.13(a). Combining 4 ()
(on the right-hand side) in series with 8 Q) gives 12 Q. The 12 Q) in
parallel with 4 Q gives 12 X 4/16 = 3 Q). Thus,

.12

51 6 2A

To get i,, consider the circuit in Fig. 4.13(b). Applying mesh analysis
gives

16i, — 4i, + 24 =0 = —i,=—6  (45.1)

Tiy — 4i, =0 = 4.5.2)

Substituting Eq. (4.5.2) into Eq. (4.5.1) gives
i2 = ib = —1
To get i3, consider the circuit in Fig. 4.13(c). Using nodal analysis gives

Us Uy — Uy

3=—4+ — = 24 = 3v, — 2u, (4.5.3)
8 4
Uy — U U U 10
= =4+ = =— 4.5.4
4 43 2T gn @5.4)

Substituting Eq. (4.5.4) into Eq. (4.5.3) leads to v; = 3 and

Thus,
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40 40 30
li
[ 1

—= 12V 3Q

ANN————AMA—=—] ,

(b) (©)

Figure 4.13
For Example 4.5.

135

Find [ in the circuit of Fig. 4.14 using the superposition principle.

Figure 4.14
For Practice Prob. 4.5.

Answer: 375 mA.

4.4 Source Transformation

We have noticed that series-parallel combination and wye-delta trans-
formation help simplify circuits. Source transformation is another tool
for simplifying circuits. Basic to these tools is the concept of equiva-
lence. We recall that an equivalent circuit is one whose v-i character-
istics are identical with the original circuit.

In Section 3.6, we saw that node-voltage (or mesh-current) equa-
tions can be obtained by mere inspection of a circuit when the sources
are all independent current (or all independent voltage) sources. It is
therefore expedient in circuit analysis to be able to substitute a voltage
source in series with a resistor for a current source in parallel with a

Practice Problem 4.5
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resistor, or vice versa, as shown in Fig. 4.15. Either substitution is
known as a source transformation.

R
a a

s

b b
Figure 4.15

Transformation of independent sources.

A source transformation is the process of replacing a voltage source
v, in series with a resistor R by a current source /. in parallel with a resis-
tor R, or vice versa.

The two circuits in Fig. 4.15 are equivalent—provided they have the
same voltage-current relation at terminals a-b. It is easy to show that
they are indeed equivalent. If the sources are turned off, the equivalent
resistance at terminals a-b in both circuits is R. Also, when terminals
a-b are short-circuited, the short-circuit current flowing from a to b is
isc = Uy/R in the circuit on the left-hand side and i, = i for the circuit
on the right-hand side. Thus, v,/R = i, in order for the two circuits to
be equivalent. Hence, source transformation requires that

Uy = iiR or iy =— 4.5)

Source transformation also applies to dependent sources, provided
we carefully handle the dependent variable. As shown in Fig. 4.16, a
dependent voltage source in series with a resistor can be transformed
to a dependent current source in parallel with the resistor or vice versa
where we make sure that Eq. (4.5) is satisfied.

R
a a

s - is R

b b
Figure 4.16

Transformation of dependent sources.

Like the wye-delta transformation we studied in Chapter 2, a
source transformation does not affect the remaining part of the circuit.
When applicable, source transformation is a powerful tool that allows
circuit manipulations to ease circuit analysis. However, we should keep
the following points in mind when dealing with source transformation.

1. Note from Fig. 4.15 (or Fig. 4.16) that the arrow of the current source
is directed toward the positive terminal of the voltage source.

2. Note from Eq. (4.5) that source transformation is not possible when
R = 0, which is the case with an ideal voltage source. However, for
a practical, nonideal voltage source, R # 0. Similarly, an ideal cur-
rent source with R = oo cannot be replaced by a finite voltage source.
More will be said on ideal and nonideal sources in Section 4.10.1.
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Use source transformation to find v,, in the circuit of Fig. 4.17. Example 4.6
Solution: e
We first transform the current and voltage sources to obtain the circuit .
in Fig. 4.18(a). Combining the 4-() and 2-() resistors in series and 4o 3A 8Q 2 4, 12V

transforming the 12-V voltage source gives us Fig. 4.18(b). We now -
combine the 3-) and 6-() resistors in parallel to get 2-Q). We also
combine the 2-A and 4-A current sources to get a 2-A source. Thus, Figure 4.17

by repeatedly applying source transformations, we obtain the circuit in ~ For Example 4.6.

Fig. 4.18(c).

4Q 2Q

+
12V 8Q < v, 3Q 4A
(a)
i
+ * +
2A 6Q 8Q < v, 3Q 4A 8Q <y, 20 2A

(b) (©
Figure 4.18
For Example 4.6.

We use current division in Fig. 4.18(c) to get

2
i=———(2)=04A
2+8

and
v, =8 =8(04) =32V
Alternatively, since the 8-Q) and 2-() resistors in Fig. 4.18(c) are

in parallel, they have the same voltage v, across them. Hence,

8 %2
v, = B D2A) = =@ =32V

Find i, in the circuit of Fig. 4.19 using source transformation. Practice Problem 4.6
O * i VW
6Q SA 3Q 7Q 3A 4Q

Figure 4.19
For Practice Prob. 4.6.

Answer: 1.78 A.
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Example 4.7 Find v, in Fig. 4.20 using source transformation.
4Q Solution:
The circuit in Fig. 4.20 involves a voltage-controlled dependent current
) 0.252, source. We transform this dependent current source as well as the 6-V
AN o independent voltage source as shown in Fig. 4.21(a). The 18-V voltage
+ source is not transformed because it is not connected in series with any
6V 10 S v, 18y resistor. The two 2-Q) resistors in parallel combine to give a 1-Q)
- resistor, which is in parallel with the 3-A current source. The current
source is transformed to a voltage source as shown in Fig. 4.21(b).
Figure 4.20 Notice that the terminals for v, are intact. Applying KVL around the
For Example 4.7. loop in Fig. 4.21(b) gives
—-3+5+v,+18=0 4.7.1)
UX
4Q I
3a(d) 20 20 v sv(®) v q () 1sv

Figure 4.21

(b)

For Example 4.7: Applying source transformation to the circuit in Fig. 4.20.

Applying KVL to the loop containing only the 3-V voltage source, the
1-Q) resistor, and v, yields

-3+1litv,=0 = v, =3-—1i 4.7.2)
Substituting this into Eq. (4.7.1), we obtain
I5+5i+3—-i=0 = i=—45A

Alternatively, we may apply KVL to the loop containing v, the 4-()
resistor, the voltage-controlled dependent voltage source, and the 18-V
voltage source in Fig. 4.21(b). We obtain

v, t4i+v,+18=0 = i=—45A
Thus, v, =3 —-i=75V.

Practice Problem 4.7

5Q

Figure 4.22
For Practice Prob. 4.7.

2,

Use source transformation to find i, in the circuit shown in Fig. 4.22.

Answer: 7.059 mA.
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Thevenin’s Theorem

4.5

Thevenin’s Theorem

It often occurs in practice that a particular element in a circuit is vari-
able (usually called the load) while other elements are fixed. As a typ-
ical example, a household outlet terminal may be connected to different
appliances constituting a variable load. Each time the variable element
is changed, the entire circuit has to be analyzed all over again. To avoid
this problem, Thevenin’s theorem provides a technique by which the
fixed part of the circuit is replaced by an equivalent circuit.

According to Thevenin’s theorem, the linear circuit in Fig. 4.23(a)
can be replaced by that in Fig. 4.23(b). (The load in Fig. 4.23 may be
a single resistor or another circuit.) The circuit to the left of the ter-
minals a-b in Fig. 4.23(b) is known as the Thevenin equivalent circuit;
it was developed in 1883 by M. Leon Thevenin (1857-1926), a French
telegraph engineer.

Thevenin’s theorem states that a linear two-terminal circuit can be
replaced by an equivalent circuit consisting of a voltage source V4, in
series with a resistor Ry, where V4, is the open-circuit voltage at the
terminals and Ry, is the input or equivalent resistance at the terminals
when the independent sources are turned off.

The proof of the theorem will be given later, in Section 4.7. Our
major concern right now is how to find the Thevenin equivalent volt-
age Vy, and resistance Ry,. To do so, suppose the two circuits in
Fig. 4.23 are equivalent. Two circuits are said to be equivalent if they
have the same voltage-current relation at their terminals. Let us find
out what will make the two circuits in Fig. 4.23 equivalent. If the ter-
minals a-b are made open-circuited (by removing the load), no current
flows, so that the open-circuit voltage across the terminals a-b in
Fig. 4.23(a) must be equal to the voltage source Vyy, in Fig. 4.23(b),
since the two circuits are equivalent. Thus Vrpy, is the open-circuit volt-
age across the terminals as shown in Fig. 4.24(a); that is,

VTh = VUpe (4'6)
L oa . . . ——0a
. Linear circuit with
Linear + .
. all independent R.

two-terminal v in
- oc sources set equal
circuit _

[ to zero —— N /]

VIh = e Ry = Ry,

(a) (b)
Figure 4.24
Finding V1, and Ry,

Again, with the load disconnected and terminals a-b open-
circuited, we turn off all independent sources. The input resistance
(or equivalent resistance) of the dead circuit at the terminals a-b in
Fig. 4.23(a) must be equal to Ry, in Fig. 4.23(b) because the two circuits
are equivalent. Thus, Ry, is the input resistance at the terminals when the
independent sources are turned off, as shown in Fig. 4.24(b); that is,

Ry, = Ry, 4.7)

139

Linear +
two-terminal v
circuit -

Load

+

Load

5
=
<

o—
b

(b)
Figure 4.23
Replacing a linear two-terminal circuit
by its Thevenin equivalent: (a) original
circuit, (b) the Thevenin equivalent
circuit.
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;
a 2
Circuit with
all independent
sources set equal %
to zero
b
Vl}
R =—
o
()
a
Circuit with +
all independent
7, i,
sources set equal o
to zero -
b

Ry =
o

(b)
Figure 4.25
Finding Ry, when circuit has dependent
sources.

I Later we will see that an alternative way
of finding Rty is Rrn = Vioe flse-

a
2
Linear R
circuit L
b

(a)

Ry u
§i
" ® "
b
(b)

Figure 4.26
A circuit with a load: (a) original circuit,
(b) Thevenin equivalent.

Chapter 4 Circuit Theorems

To apply this idea in finding the Thevenin resistance Ry, we need
to consider two cases.

B CASE 1 If the network has no dependent sources, we turn off all
independent sources. Ry, is the input resistance of the network look-
ing between terminals a and b, as shown in Fig. 4.24(b).

B CASE 2 If the network has dependent sources, we turn off all
independent sources. As with superposition, dependent sources are not
to be turned off because they are controlled by circuit variables. We
apply a voltage source v, at terminals @ and b and determine the result-
ing current i,. Then Ry, = v,/i,, as shown in Fig. 4.25(a). Alterna-
tively, we may insert a current source i, at terminals a-b as shown in
Fig. 4.25(b) and find the terminal voltage v,. Again Ry, = v,/i,. Either
of the two approaches will give the same result. In either approach we
may assume any value of v, and i,. For example, we may usev, = 1 V
or i, = 1 A, or even use unspecified values of v, or i,,.

It often occurs that Ry, takes a negative value. In this case, the
negative resistance (v = —iR) implies that the circuit is supplying
power. This is possible in a circuit with dependent sources; Example 4.10
will illustrate this.

Thevenin’s theorem is very important in circuit analysis. It helps
simplify a circuit. A large circuit may be replaced by a single indepen-
dent voltage source and a single resistor. This replacement technique
is a powerful tool in circuit design.

As mentioned earlier, a linear circuit with a variable load can be
replaced by the Thevenin equivalent, exclusive of the load. The equiv-
alent network behaves the same way externally as the original circuit.
Consider a linear circuit terminated by a load R;, as shown in Fig. 4.26(a).
The current ; through the load and the voltage V; across the load are
easily determined once the Thevenin equivalent of the circuit at the
load’s terminals is obtained, as shown in Fig. 4.26(b). From Fig. 4.26(b),
we obtain

o VTh
I, = ———— (4.8a)
Ry, + Ry,
Ve =R/, = LV (4.8b)
L — LLfRTh_i_RL Th .

Note from Fig. 4.26(b) that the Thevenin equivalent is a simple volt-
age divider, yielding V; by mere inspection.

Example 4.8

40 1Q

32V(# 129% ﬁ)zA %RL
b

Figure 4.27

For Example 4.8.

Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.27, to
the left of the terminals a-b. Then find the current through R; = 6, 16,
and 36 Q.

Solution:
We find Ry, by turning off the 32-V voltage source (replacing it
with a short circuit) and the 2-A current source (replacing it with an
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open circuit). The circuit becomes what is shown in Fig. 4.28(a).
Thus,

4 X 12

+1=4Q
16

Ry, =412+ 1=

VTh

@ 2A Vin

40 1Q 4Q
a AN
Ry .
12Q -— 32V iy 12Q
o b
(a)

Figure 4.28
For Example 4.8: (a) finding Ry, (b) finding Vry,.

To find Vrpy, consider the circuit in Fig. 4.28(b). Applying mesh
analysis to the two loops, we obtain

—32 + 4iy + 12(i; — i) = 0, i =—2A
Solving for i;, we get i; = 0.5 A. Thus,
Vin = 123, — i) = 12(0.5 + 2.0) =30V

Alternatively, it is even easier to use nodal analysis. We ignore the
1-Q) resistor since no current flows through it. At the top node, KCL
gives

32 - VTh _ VTh

+2=
4 12

or
96 - 3VTh + 24 = VTh = VTh =30V

as obtained before. We could also use source transformation to find Vy,
The Thevenin equivalent circuit is shown in Fig. 4.29. The current
through R; is

Lo Vmo 30
LRy, + R, 4+R,
When R; = 6,
30
I =—=3A
L0
When R; = 16,
30
I, =—=15A
L0
When R; = 36,
30
I, ="—"=075A

40

30V Ci) Ry,

Figure 4.29
The Thevenin equivalent circuit for
Example 4.8.

141
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Practice Problem 4.8

6 Q 6Q

%

12V 2A 4Q 1Q

Using Thevenin’s theorem, find the equivalent circuit to the left of the

terminals in the circuit of Fig. 4.30. Then find 1.

Answer: Vi, =6V, R, =3Q,1=15A.

b
Figure 4.30
For Practice Prob. 4.8.
Example 4.9
2v,
2Q 2Q
ANV "MWW—0 a
+
SA 4Q S U 6Q
O b
Figure 4.31
For Example 4.9.
2v,
=+
0

(@)
Figure 4.32
Finding Ry, and Vyy, for Example 4.9.

Find the Thevenin equivalent of the circuit in Fig. 4.31 at terminals a-b.

Solution:

This circuit contains a dependent source, unlike the circuit in the
previous example. To find Ry, we set the independent source equal to
zero but leave the dependent source alone. Because of the presence of
the dependent source, however, we excite the network with a voltage
source v,, connected to the terminals as indicated in Fig. 4.32(a). We
may set v, = 1 V to ease calculation, since the circuit is linear. Our
goal is to find the current i, through the terminals, and then obtain
Ry, = 1/i,. (Alternatively, we may insert a 1-A current source, find the

corresponding voltage v, and obtain Ry, = v,/1)

20

NVVN—0 a
+
UUL'
ob

i3
20 4 20
A , AW
K
+ +
49%_& @ %69 @ 5=1V 5A @49%_& i %69
b

Applying mesh analysis to loop I in the circuit of Fig. 4.32(a)

results in

—2v, + 2(i; — i) =0 or U, =

But —4i, = v, = i; — i»; hence,
i] = _312

For loops 2 and 3, applying KVL produces

_l'2

(4.9.1)

(4.9.2)
(4.9.3)
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SO]Ving these equations gives
. 1
I3 = —EA

But i, = —i; = 1/6 A. Hence,
1V
Rpy=—"=6Q
l

o

To get Vpy,, we find v, in the circuit of Fig. 4.32(b). Applying
mesh analysis, we get

i=5 (4.9.4)
W+ 2i3— i) =0 =  v.=is—i, (49.5)
Uiy — iy) + 2is — i3) + 6iy = 0
or
12i, — 4i, — 2i3 =0 (4.9.6)

But 4(i; — i,) = v,. Solving these equations leads to i, = 10/3.
Hence,

VTh = Uy — 612 =20V

The Thevenin equivalent is as shown in Fig. 4.33.

143

6 Q

20V

Figure 4.33
The Thevenin equivalent of the circuit in
Fig. 4.31.

Find the Thevenin equivalent circuit of the circuit in Fig. 4.34 to the
left of the terminals.

Answer: Vo, = 5333V, Ry, = 444.4 m().

Practice Problem 4.9

s Lo3a
AW o
GV#D—W <%1.51X 40
O

Figure 4.34
For Practice Prob. 4.9.

a

b

Determine the Thevenin equivalent of the circuit in Fig. 4.35(a) at
terminals a-b.

Solution:

1. Define. The problem is clearly defined; we are to determine the
Thevenin equivalent of the circuit shown in Fig. 4.35(a).

2. Present. The circuit contains a 2-{) resistor in parallel with a
4-Q) resistor. These are, in turn, in parallel with a dependent
current source. It is important to note that there are no
independent sources.

3. Alternative. The first thing to consider is that, since we have no
independent sources in this circuit, we must excite the circuit
externally. In addition, when you have no independent
sources you will not have a value for Vyy,; you will only have
to find Ry,

Example 4.10
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2i

o b

(a)

40 a 9Q

-4Q a 9Q

Figure 4.35
For Example 4.10.

Chapter 4 Circuit Theorems

The simplest approach is to excite the circuit with either a
1-V voltage source or a 1-A current source. Since we will end
up with an equivalent resistance (either positive or negative), |
prefer to use the current source and nodal analysis which will
yield a voltage at the output terminals equal to the resistance
(with 1 A flowing in, v,, is equal to 1 times the equivalent
resistance).

As an alternative, the circuit could also be excited by a 1-V
voltage source and mesh analysis could be used to find the
equivalent resistance.

. Attempt. We start by writing the nodal equation at @ in Fig. 4.35(b)

assuming i, = 1 A.
2i, + (v, — 0)/4+ (v, —0)/2+(=1)=0 (4.10.1)

Since we have two unknowns and only one equation, we will
need a constraint equation.

i,=0-v,)/2=-v,/2 (4.10.2)
Substituting Eq. (4.10.2) into Eq. (4.10.1) yields

2(=v,/2) + (v, = 0)/4 + (v, = 0)/2 + (=1) =0
=(-l+5+3v, -1 or v,=-4V

Since v, = 1 X Ry, then Ry, = v,/1 = —4 Q.

The negative value of the resistance tells us that, according
to the passive sign convention, the circuit in Fig. 4.35(a) is
supplying power. Of course, the resistors in Fig. 4.35(a) cannot
supply power (they absorb power); it is the dependent source
that supplies the power. This is an example of how a
dependent source and resistors could be used to simulate
negative resistance.

. Evaluate. First of all, we note that the answer has a negative

value. We know this is not possible in a passive circuit, but in
this circuit we do have an active device (the dependent current
source). Thus, the equivalent circuit is essentially an active
circuit that can supply power.

Now we must evaluate the solution. The best way to do this
is to perform a check, using a different approach, and see if we
obtain the same solution. Let us try connecting a 9-() resistor in
series with a 10-V voltage source across the output terminals of
the original circuit and then the Thevenin equivalent. To make
the circuit easier to solve, we can take and change the parallel
current source and 4-() resistor to a series voltage source and
4-Q) resistor by using source transformation. This, with the new
load, gives us the circuit shown in Fig. 4.35(c).

We can now write two mesh equations.

Note, we only have two equations but have 3 unknowns, so we
need a constraint equation. We can use
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This leads to a new equation for loop 1. Simplifying leads to

A+2—8)i, + (-2 +8)i, =0
or
_211 + 612 =0 or il = 312

Substituting the first equation into the second gives
ip=—10/5=-2A

Using the Thevenin equivalent is quite easy since we have only
one loop, as shown in Fig. 4.35(d).

—6i, + 11i, = —10 or

—4i+9 +10=0 or i=-10/5=-2A

6. Satisfactory? Clearly we have found the value of the equivalent
circuit as required by the problem statement. Checking does
validate that solution (we compared the answer we obtained by
using the equivalent circuit with one obtained by using the load
with the original circuit). We can present all this as a solution to
the problem.
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Obtain the Thevenin equivalent of the circuit in Fig. 4.36.

Answer: Vp, = 0V, R, = —7.5 Q.

4.6 Norton’s Theorem

In 1926, about 43 years after Thevenin published his theorem, E. L.
Norton, an American engineer at Bell Telephone Laboratories, pro-
posed a similar theorem.

Norton’s theorem states that a linear two-terminal circuit can be
replaced by an equivalent circuit consisting of a current source / in
parallel with a resistor Ry, Where /5 is the short-circuit current through
the terminals and Ry is the input or equivalent resistance at the termi-
nals when the independent sources are turned off.

Thus, the circuit in Fig. 4.37(a) can be replaced by the one in Fig. 4.37(b).

The proof of Norton’s theorem will be given in the next section.
For now, we are mainly concerned with how to get Ry and /. We find
Ry in the same way we find Rpy,. In fact, from what we know about
source transformation, the Thevenin and Norton resistances are equal;
that is,

RN = RTh (4.9)

To find the Norton current I, we determine the short-circuit current
flowing from terminal a to b in both circuits in Fig. 4.37. It is evident

Practice Problem 4.10

4o,
10Q $
+ = O a
+
v = 5Q 15Q
O b
Figure 4.36
For Practice Prob. 4.10.
Linear ©a
two-terminal
circuit o
(a)
0 a
Iy Ry
0 b

(b)
Figure 4.37

(a) Original circuit, (b) Norton equivalent

circuit.
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Linear
two-terminal i =1y
circuit

Figure 4.38

Finding Norton current /y.

The Thevenin and Norton equivalent
circuits are related by a source
transformation.

Chapter 4 Circuit Theorems

that the short-circuit current in Fig. 4.37(b) is Iy. This must be the same
short-circuit current from terminal a to b in Fig. 4.37(a), since the two
circuits are equivalent. Thus,

IN = i.w? (4.10)

shown in Fig. 4.38. Dependent and independent sources are treated the
same way as in Thevenin’s theorem.

Observe the close relationship between Norton’s and Thevenin’s
theorems: Ry = Ry, as in Eq. (4.9), and

Iy=—2 @.11)

This is essentially source transformation. For this reason, source trans-
formation is often called Thevenin-Norton transformation.

Since Vqy, Iy, and Ry, are related according to Eq. (4.11), to deter-
mine the Thevenin or Norton equivalent circuit requires that we find:

e The open-circuit voltage v, across terminals a and b.

e The short-circuit current iy at terminals a and b.

* The equivalent or input resistance R;, at terminals @ and b when
all independent sources are turned off.

We can calculate any two of the three using the method that takes the
least effort and use them to get the third using Ohm’s law. Example 4.11
will illustrate this. Also, since

vTh = Uoc (4.123)
Iy =i, (4.12b)

Ry, = -2 =Ry (4.12¢)

the open-circuit and short-circuit tests are sufficient to find any Thevenin
or Norton equivalent, of a circuit which contains at least one inde-
pendent source.

Example 4.11

8Q
MW O a

4Q

24D §59

12V

Figure 4.39
For Example 4.11.

Find the Norton equivalent circuit of the circuit in Fig. 4.39 at
terminals a-b.

Solution:

We find Ry in the same way we find Ry, in the Thevenin equivalent
circuit. Set the independent sources equal to zero. This leads to the
circuit in Fig. 4.40(a), from which we find Ry. Thus,

20 X 5
25

Ry=5[@8+4+8 =5]20= =40

To find Iy, we short-circuit terminals a and b, as shown in Fig. 4.40(b).
We ignore the 5-) resistor because it has been short-circuited.
Applying mesh analysis, we obtain

ip =2A, 20i, — 4i; — 12 =0
From these equations, we obtain
h=1A=1i,.=1Iy
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80 80 ;
o AN O a AWV
liscle
ﬁ) 40
R
4Q§ 59§ = Q)
12V S0
80 8Q
o AW o b AW
b
(a)
(b)
8Q
AW\ o a

+
() 20 ()

2A Q} 5Q § Vih = e

Figure 4.40
For Example 4.11; finding: (a) Ry, (b) Iy = s, (€) Vi, = Uge-

Alternatively, we may determine I from Vi,/Rp,. We obtain Vi,
as the open-circuit voltage across terminals a and b in Fig. 4.40(c).
Using mesh analysis, we obtain

is=2A
25i, —4iy—12=0 =  i,=08A

and
Voe = VTh = 514 =4V
Hence,
V. 4
y=-"=-=1A

as obtained previously. This also serves to confirm Eq. (4.12c) that
Ry = U, /ige = 4/1 = 4 Q). Thus, the Norton equivalent circuit is as
shown in Fig. 4.41.

Figure 4.41
Norton equivalent of the circuit in Fig. 4.39.

Find the Norton equivalent circuit for the circuit in Fig. 4.42, at
terminals a-b.

Answer: Ry =3 Q, Iy =45 A.

Practice Problem 4.11

3Q 3Q
MW O a
15V 4A¢ 6 Q
O b

Figure 4.42
For Practice Prob. 4.11.
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Example 412 Using Norton’s theorem, find Ry and Iy of the circuit in Fig. 4.43 at
terminals a-b.
2i,
o Solution:
To find Ry, we set the independent voltage source equal to zero and
_ 5Q connect a voltage source of v, = 1 V (or any unspecified voltage v,)
'xl MWW ©a to the terminals. We obtain the circuit in Fig. 4.44(a). We ignore the

410 (P 10V 4-() resistor because it is short-circuited. Also due to the short circuit,

the 5-Q) resistor, the voltage source, and the dependent current source
0 b are all in parallel. Hence, i, = 0. At node a, i, = 5% = (0.2 A, and

Figure 4.43 v 1
For Example 4.12. Ry=-2= 02 =50
i, .

To find Iy, we short-circuit terminals a and b and find the current
is, as indicated in Fig. 4.44(b). Note from this figure that the 4-Q)
resistor, the 10-V voltage source, the 5-() resistor, and the dependent
current source are all in parallel. Hence,

=10 25A
iy 7 .
At node a, KCL gives
. 10 .
zsc=?+ 2i, =2 +225) =TA

Thus,

2i 2i,

50 50 “
,l AW y ixl MY
l[)

o,
4Q =1V  4Q C‘:Dlov fae = SN

(a) (b)

Figure 4.44
For Example 4.12: (a) finding Ry, (b) finding /y.

Practice Problem 4.12 Find the Norton equivalent circuit of the circuit in Fig. 4.45 at

terminals a-b.
2v

X

I = oa Answer: Ry=1Q,Iy=10A.

Figure 4.45
For Practice Prob. 4.12.
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4.7 TDerivations of Thevenin’s and
Norton’s Theorems

In this section, we will prove Thevenin’s and Norton’s theorems using
the superposition principle.

Consider the linear circuit in Fig. 4.46(a). It is assumed that the
circuit contains resistors and dependent and independent sources. We
have access to the circuit via terminals a and b, through which current
from an external source is applied. Our objective is to ensure that the
voltage-current relation at terminals a and b is identical to that of the
Thevenin equivalent in Fig. 4.46(b). For the sake of simplicity, sup-
pose the linear circuit in Fig. 4.46(a) contains two independent voltage
sources Uy and vy, and two independent current sources i, and is,. We
may obtain any circuit variable, such as the terminal voltage v, by
applying superposition. That is, we consider the contribution due to
each independent source including the external source i. By superpo-
sition, the terminal voltage v is

v = A()i + Alv.rl + szsz + A3l’s1 + A4l'32 (4.13)

where Ag, Ay, A>, A3, and A, are constants. Each term on the right-hand
side of Eq. (4.13) is the contribution of the related independent source;
that is, Ayl is the contribution to v due to the external current source i,
Ajvy; is the contribution due to the voltage source vy, and so on. We
may collect terms for the internal independent sources together as B,
so that Eq. (4.13) becomes

v = A()i + B() (4.14)

where By = Avg + Avg + Azig + Auiy. We now want to evalu-
ate the values of constants Ay and By. When the terminals a and b are
open-circuited, i = 0 and v = By. Thus, By is the open-circuit voltage
U,., Which is the same as Vi, so

By = Vm 4.15)

When all the internal sources are turned off, By = 0. The circuit can
then be replaced by an equivalent resistance R.,, which is the same as
Ry, and Eq. (4.14) becomes

eq>

v = Aol = RThi = AO = RTh (4.16)
Substituting the values of Ay and B, in Eq. (4.14) gives
U = Rpul + Vo 4.17)

which expresses the voltage-current relation at terminals @ and b of the
circuit in Fig. 4.46(b). Thus, the two circuits in Fig. 4.46(a) and 4.46(b)
are equivalent.

When the same linear circuit is driven by a voltage source v as
shown in Fig. 4.47(a), the current flowing into the circuit can be
obtained by superposition as

1= C()U + D() (4.18)

where Cyv is the contribution to i due to the external voltage source v
and D, contains the contributions to i due to all internal independent
sources. When the terminals a-b are short-circuited, v = 0 so that
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a
+ Linear
i v .
_ circuit
b
(@
a R Th
+
i v V1n
b

(b)
Figure 4.46
Derivation of Thevenin equivalent: (a) a
current-driven circuit, (b) its Thevenin
equivalent.

s a
Linear
v . .
circuit
b
(@)
i
—» 4
v Ry Iy
b

(b)
Figure 4.47
Derivation of Norton equivalent: (a) a
voltage-driven circuit, (b) its Norton
equivalent.
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Vin CD Ry

Figure 4.48
The circuit used for maximum power
transfer.

Ry
Figure 4.49

Power delivered to the load as a function
of R;.

Chapter 4 Circuit Theorems

i = Dy = —ig. where iy is the short-circuit current flowing out of ter-
minal a, which is the same as the Norton current I, i.e.,
Dy = —1Iy (4.19)

When all the internal independent sources are turned off, Dy = 0 and
the circuit can be replaced by an equivalent resistance R (or an equiv-
alent conductance G.q = 1/R.y), which is the same as Ry, or Ry. Thus
Eq. (4.19) becomes
v

= — — 1 4.20

! R N ( )
This expresses the voltage-current relation at terminals a-b of the cir-
cuit in Fig. 4.47(b), confirming that the two circuits in Fig. 4.47(a) and
4.47(b) are equivalent.

4.8 Maximum Power Transfer

In many practical situations, a circuit is designed to provide power to
a load. There are applications in areas such as communications where
it is desirable to maximize the power delivered to a load. We now
address the problem of delivering the maximum power to a load when
given a system with known internal losses. It should be noted that this
will result in significant internal losses greater than or equal to the
power delivered to the load.

The Thevenin equivalent is useful in finding the maximum power
a linear circuit can deliver to a load. We assume that we can adjust the
load resistance R;. If the entire circuit is replaced by its Thevenin
equivalent except for the load, as shown in Fig. 4.48, the power deliv-
ered to the load is

Vin Y
2 T
=i"R,=\—""—"]|R 4.21
P <RT.]+RL> ' @b
For a given circuit, Vpy, and Ry, are fixed. By varying the load resist-
ance R;, the power delivered to the load varies as sketched in Fig. 4.49.
We notice from Fig. 4.49 that the power is small for small or large val-
ues of R; but maximum for some value of R; between 0 and . We
now want to show that this maximum power occurs when R; is equal
to Ryy,. This is known as the maximum power theorem.

Maximum power is transferred to the load when the load resistance
equals the Thevenin resistance as seen from the load (R, = Ryp,).

To prove the maximum power transfer theorem, we differentiate p
in Eq. (4.21) with respect to R; and set the result equal to zero. We
obtain

dp {(Rm + Ry)® — 2R (Rqy + RL)}
ar, " (R + Ry’
R, + R; — 2R
V%h{( Th L 3L)}:0
(Rrn + Ry)
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This implies that
0= (Rm + R, — 2R;) = (R — Ry) (4.22)

which yields

R; = R, (4.23)

showing that the maximum power transfer takes place when the load
resistance R; equals the Thevenin resistance Ry,. We can readily confirm
that Eq. (4.23) gives the maximum power by showing that dp /dR7 < 0.

The maximum power transferred is obtained by substituting
Eq. (4.23) into Eq. (4.21), for

Vin
= 4.24
4R, ( )

pmax

Equation (4.24) applies only when R; = Ry,. When R; # Ry, we
compute the power delivered to the load using Eq. (4.21).
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I The source and load are said to be
matched when R, = Ry,

Find the value of R; for maximum power transfer in the circuit of
Fig. 4.50. Find the maximum power.

30 20 4
A
12Q $ 2A R,
b
Solution:

We need to find the Thevenin resistance Ry, and the Thevenin voltage
Vry, across the terminals a-b. To get Ry, we use the circuit in Fig. 4.51(a)
and obtain

6Q

12V

Figure 4.50
For Example 4.13.

6X12

Example 4.13

3Q 2Q

Rpy=2+3+6|12=5+ T 90
6Q 3Q 2Q 6Q
AW A—O AW
RTh
12Q - 12V @
O

(a)
Figure 4.51
For Example 4.13: (a) finding Ry, (b) finding Vry,.

AW AMN—0
N
120 @ $ 2A v,
(b)



www.konkur.in

152

Chapter 4 Circuit Theorems

To get Vi, we consider the circuit in Fig. 4.51(b). Applying mesh
analysis gives

—12 418, — 12i, =0, ir,=—-2A

Solving for i;, we get i; = —2/3. Applying KVL around the outer loop
to get Vi, across terminals a-b, we obtain

=12 + 6i; + 3i, + 2(0) + Vy, = 0 = Vi =22V
For maximum power transfer,
R, =Ry =9Q
and the maximum power is
Vi, 227
P = 4R, 4 %9

= 1344 W

Practice Problem 4.13

2Q 4Q
P
: 1Q
9V @) Ry
3v

Figure 4.52
For Practice Prob. 4.13.

Determine the value of R; that will draw the maximum power from
the rest of the circuit in Fig. 4.52. Calculate the maximum power.

Answer: 4.222 (), 2.901 W.

49 Verifying Circuit Theorems with PSpice

In this section, we learn how to use PSpice to verify the theorems cov-
ered in this chapter. Specifically, we will consider using DC Sweep analy-
sis to find the Thevenin or Norton equivalent at any pair of nodes in a
circuit and the maximum power transfer to a load. The reader is advised
to read Section D.3 of Appendix D in preparation for this section.

To find the Thevenin equivalent of a circuit at a pair of open ter-
minals using PSpice, we use the schematic editor to draw the circuit
and insert an independent probing current source, say, Ip, at the termi-
nals. The probing current source must have a part name ISRC. We then
perform a DC Sweep on Ip, as discussed in Section D.3. Typically, we
may let the current through Ip vary from O to 1 A in 0.1-A increments.
After saving and simulating the circuit, we use Probe to display a plot
of the voltage across Ip versus the current through Ip. The zero inter-
cept of the plot gives us the Thevenin equivalent voltage, while the
slope of the plot is equal to the Thevenin resistance.

To find the Norton equivalent involves similar steps except that we
insert a probing independent voltage source (with a part name VSRC),
say, Vp, at the terminals. We perform a DC Sweep on Vp and let Vp
vary from O to 1 V in 0.1-V increments. A plot of the current through
Vp versus the voltage across Vp is obtained using the Probe menu after
simulation. The zero intercept is equal to the Norton current, while the
slope of the plot is equal to the Norton conductance.

To find the maximum power transfer to a load using PSpice
involves performing a DC parametric Sweep on the component value
of R; in Fig. 4.48 and plotting the power delivered to the load as a
function of R;. According to Fig. 4.49, the maximum power occurs
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when R; = Rpy,. This is best illustrated with an example, and Ex-
ample 4.15 provides one.

We use VSRC and ISRC as part names for the independent volt-
age and current sources, respectively.
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Consider the circuit in Fig. 4.31 (see Example 4.9). Use PSpice to find
the Thevenin and Norton equivalent circuits.

Solution:

(a) To find the Thevenin resistance Ry, and Thevenin voltage Vryy, at
the terminals a-b in the circuit in Fig. 4.31, we first use Schematics to
draw the circuit as shown in Fig. 4.53(a). Notice that a probing current
source 12 is inserted at the terminals. Under Analysis/Setput, we select
DC Sweep. In the DC Sweep dialog box, we select Linear for the
Sweep Type and Current Source for the Sweep Var. Type. We enter 12
under the Name box, 0 as Start Value, 1 as End Value, and 0.1 as
Increment. After simulation, we add trace V(I2:-) from the PSpice A/D
window and obtain the plot shown in Fig. 4.53(b). From the plot, we
obtain

26— 20
1

Von = Zero intercept = 20V, Ry, = Slope = 6Q

These agree with what we got analytically in Example 4.9.

Figure 4.53
For Example 4.14: (a) schematic and (b) plot for finding Ry, and Vry,.

(b) To find the Norton equivalent, we modify the schematic in Fig. 4.53(a)
by replaying the probing current source with a probing voltage source
V1. The result is the schematic in Fig. 4.54(a). Again, in the DC Sweep
dialog box, we select Linear for the Sweep Type and Voltage Source
for the Sweep Var. Type. We enter V1 under Name box, 0 as Start Value,
1 as End Value, and 0.1 as Increment. Under the PSpice A/D Window,
we add trace I (V1) and obtain the plot in Fig. 4.54(b). From the plot,
we obtain
Iy = Zero intercept = 3.335 A
3.335 — 3.165

Gy = Slope = 1 =0.17S

Example 4.14
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Figure 4.54

Chapter 4 Circuit Theorems

For Example 4.14: (a) schematic and (b) plot for finding Gy and Iy.

Practice Problem 4.14

Rework Practice Prob. 4.9 using PSpice.

Answer: Vo, = 5333V, Ry, = 444.4 mQ.

Example 4.15

1kQ

Figure 4.55
For Example 4.15.

PARAMETERS :
RL 2k
R1
1k
Vi
DC=1 V R2 {RL}

<~
Figure 4.56
Schematic for the circuit in Fig. 4.55.

Refer to the circuit in Fig. 4.55. Use PSpice to find the maximum
power transfer to R;.

Solution:

We need to perform a DC Sweep on R, to determine when the power
across it is maximum. We first draw the circuit using Schematics as
shown in Fig. 4.56. Once the circuit is drawn, we take the following

three steps to further prepare the circuit for a DC Sweep.
The first step involves defining the value of R; as a parameter,
since we want to vary it. To do this:

1. DCLICKL the value 1k of R2 (representing R;) to open up the
Set Attribute Value dialog box.
2. Replace 1k with {RL} and click OK to accept the change.

Note that the curly brackets are necessary.
The second step is to define parameter. To achieve this:

. Select Draw/Get New Part/Libraries - --/special.slb.

. Type PARAM in the PartName box and click OK.

. DRAG the box to any position near the circuit.

. CLICKL to end placement mode.

. DCLICKL to open up the PartName: PARAM dialog box.

. CLICKL on NAMEI = and enter RL (with no curly brackets)
in the Value box, and CLICKL Save Attr to accept change.

7. CLICKL on VALUEI = and enter 2k in the Value box, and

CLICKL Save Attr to accept change.
8. Click OK.

AN AW~
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The value 2k in item 7 is necessary for a bias point calculation; it
cannot be left blank.

The third step is to set up the DC Sweep to sweep the parameter.
To do this:

—_

. Select Analysis/Setput to bring up the DC Sweep dialog box.

. For the Sweep Type, select Linear (or Octave for a wide range
of R;).

. For the Sweep Var. Type, select Global Parameter.

. Under the Name box, enter RL.

. In the Start Value box, enter 100.

. In the End Value box, enter 5k.

. In the Increment box, enter 100.

. Click OK and Close to accept the parameters.

[\

[c BN I e) S I SOV ]

After taking these steps and saving the circuit, we are ready to
simulate. Select Analysis/Simulate. If there are no errors, we select
Add Trace in the PSpice A/D window and type —V(R2:2)*I(R2) in
the Trace Command box. [The negative sign is needed since I(R2) is
negative.] This gives the plot of the power delivered to R; as R; varies
from 100 Q) to 5 k{). We can also obtain the power absorbed by R; by
typing V(R2:2)*V(R2:2)/RL in the Trace Command box. Either way,
we obtain the plot in Fig. 4.57. It is evident from the plot that the
maximum power is 250 uW. Notice that the maximum occurs when
R; = 1k, as expected analytically.
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250
200 N N 3
150
100
50 UMW oo

0 2.0 K 4.0 K 6.0 K

O -V(R2:2) *I (R2)

RL

Figure 4.57
For Example 4.15: the plot of power
across R;.

Find the maximum power transferred to R; if the 1-k{) resistor in
Fig. 4.55 is replaced by a 2-k() resistor.

Answer: 125 uW.

4.10 TAppIications

In this section we will discuss two important practical applications of
the concepts covered in this chapter: source modeling and resistance
measurement.

4.10.1 Source Modeling

Source modeling provides an example of the usefulness of the
Thevenin or the Norton equivalent. An active source such as a battery
is often characterized by its Thevenin or Norton equivalent circuit. An
ideal voltage source provides a constant voltage irrespective of the cur-
rent drawn by the load, while an ideal current source supplies a con-
stant current regardless of the load voltage. As Fig. 4.58 shows,
practical voltage and current sources are not ideal, due to their inter-
nal resistances or source resistances R; and R,,. They become ideal as
R; — 0 and R, — . To show that this is the case, consider the effect

Practice Problem 4.15

,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,

Figure 4.58
(a) Practical voltage source, (b) practical
current source.
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(b)

Figure 4.60

(a) Practical current source connected to a
load R;, (b) load current decreases as R;,
increases.

Chapter 4 Circuit Theorems

of the load on voltage sources, as shown in Fig. 4.59(a). By the volt-
age division principle, the load voltage is

R
Lo, (4.25)

Uy = ——————U
LR 4+ R,

As R; increases, the load voltage approaches a source voltage v, as
illustrated in Fig. 4.59(b). From Eq. (4.25), we should note that:

1. The load voltage will be constant if the internal resistance R, of
the source is zero or, at least, R, << R;. In other words, the
smaller R, is compared with R;, the closer the voltage source is to
being ideal.

Practical source

0
@ ®) Ry

Figure 4.59
(a) Practical voltage source connected to a load R;, (b) load volt-
age decreases as R; decreases.

2. When the load is disconnected (i.e., the source is open-circuited so
that R;, — ), v,,. = v,. Thus, v, may be regarded as the unloaded
source voltage. The connection of the load causes the terminal volt-
age to drop in magnitude; this is known as the loading effect.

The same argument can be made for a practical current source when
connected to a load as shown in Fig. 4.60(a). By the current division
principle,

R

P

__r 4.26
R, +R," (4.26)

i
Figure 4.60(b) shows the variation in the load current as the load resist-
ance increases. Again, we notice a drop in current due to the load (load-
ing effect), and load current is constant (ideal current source) when the
internal resistance is very large (i.e., R, — % or, at least, R, > R,).
Sometimes, we need to know the unloaded source voltage v, and
the internal resistance R; of a voltage source. To find v, and R, we fol-
low the procedure illustrated in Fig. 4.61. First, we measure the open-
circuit voltage v, as in Fig. 4.61(a) and set

Uy = Uge (4.27)

Then, we connect a variable load R; across the terminals as in
Fig. 4.61(b). We adjust the resistance R; until we measure a load volt-
age of exactly one-half of the open-circuit voltage, v; = v,./2,
because now R; = Ry, = R,. At that point, we disconnect R; and
measure it. We set

Ry =Ry (4.28)
For example, a car battery may have vy, = 12V and R, = 0.05 Q.
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—o
+ +
Signal Signal
source foc source UL Ry
_ _
(a) (b)
Figure 4.61
(a) Measuring v,,., (b) measuring v;.
The terminal voltage of a voltage source is 12 V when connected to a Example 4.16
2-W load. When the load is disconnected, the terminal voltage rises to
12.4 V. (a) Calculate the source voltage v, and internal resistance Rj.
(b) Determine the voltage when an 8-() load is connected to the source.
Solution:
(a) We replace the source by its Thevenin equivalent. The terminal
voltage when the load is disconnected is the open-circuit voltage,
Uy = U, = 124V
When the load is connected, as shown in Fig. 4.62(2), v, = 12Vand
pr. = 2 W. Hence, R, i
2 2 2 MWV
v v 12
pinL = RL:7L:7:72,Q \+
R, PL 2 v - Ry
The load current is o
vy 121
= —=—=—
R, 72 6 (a)
The voltage across R, is the difference between the source voltage vy, """ "-"-"--- 2 ’4 Q
and the load voltage v;, or A
0.4 : P T
124 — 12 = 0.4 = R,i,, R, = T =240 124V 'y 8Q
. ! ‘

(b) Now that we have the Thevenin equivalent of the source, we
connect the 8-() load across the Thevenin equivalent as shown in
Fig. 4.62(b). Using voltage division, we obtain

v = (12.4) = 9538V

8 +24

Figure 4.62
For Example 4.16.

The measured open-circuit voltage across a certain amplifier is 9 V.
The voltage drops to 8 V when a 20-{) loudspeaker is connected to the
amplifier. Calculate the voltage when a 10-Q) loudspeaker is used
instead.

Answer: 7.2 V.

Practice Problem 4.16



www.konkur.in
158 Chapter 4 Circuit Theorems

4.10.2 Resistance Measurement

Although the ohmmeter method provides the simplest way to measure
resistance, more accurate measurement may be obtained using the
Wheatstone bridge. While ohmmeters are designed to measure resist-
ance in low, mid, or high range, a Wheatstone bridge is used to mea-
sure resistance in the mid range, say, between 1 {) and 1 M{). Very low
values of resistances are measured with a milliohmmeter, while very
high values are measured with a Megger tester.

Historical note: The bridge was The Wheatstone bridge (or resistance bridge) circuit is used in a
invented by Charles Wheatstone number of applications. Here we will use it to measure an unknown
(1802-1875), a British professor who resistance. The unknown resistance R, is connected to the bridge as

also invented the telegraph, as Samuel  shown in Fig. 4.63. The variable resistance is adjusted until no current
Morse did independently in the flows through the galvanometer, which is essentially a d’Arsonval
United States. movement operating as a sensitive current-indicating device like an
ammeter in the microamp range. Under this condition v; = v,, and the
bridge is said to be balanced. Since no current flows through the gal-

vanometer, R; and R, behave as though they were in series; so do R3
R ® and R,. The fact that no current flows through the galvanometer also
: Galvanometer *  implies that v; = v,. Applying the voltage division principle,
d @ R R,
+ + V)= —————UV=U,="—"_"0 (4.29)
R, ” » 2 R, Ry + R, R; + R,
B - Hence, no current flows through the galvanometer when
Figure 4.63 R, R, —  R.R.=RR
Th . . . = . = J
f.:Wheatstone bridge; R, is the R, + R, R; + R, 2033 [EARY
resistance to be measured.
or
R;
R, = —R, (4.30)
R,

If Ry = R;, and R, is adjusted until no current flows through the gal-
vanometer, then R, = R,.

How do we find the current through the galvanometer when the
Wheatstone bridge is unbalanced? We find the Thevenin equivalent
(Vry, and Rpy,) with respect to the galvanometer terminals. If R,, is the
resistance of the galvanometer, the current through it under the unbal-
anced condition is

o VTh
I=—"— 4.31)
RTh + Rm
Example 4.18 will illustrate this.
Example 417 In Fig. 4.63, R; = 500 Q) and R3; = 200 (). The bridge is balanced when

R, is adjusted to be 125 (). Determine the unknown resistance R,.

Solution:
Using Eq. (4.30) gives
_R; 200

R.= —R,=-—-125=500Q
TR, 500
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A Wheatstone bridge has R, = R; = 1 k(). R, is adjusted until no cur-
rent flows through the galvanometer. At that point, R, = 3.2 k(). What
is the value of the unknown resistance?

Answer: 3.2 k().

Practice Problem 4.17

The circuit in Fig. 4.64 represents an unbalanced bridge. If the gal-
vanometer has a resistance of 40 (), find the current through the
galvanometer.

3KQ 400 Q
a 40Q b
20V Ct)
1kQ 600 Q

Figure 4.64
Unbalanced bridge of Example 4.18.

Solution:

We first need to replace the circuit by its Thevenin equivalent at
terminals @ and b. The Thevenin resistance is found using the circuit
in Fig. 4.65(a). Notice that the 3-k{) and 1-k{) resistors are in parallel;
so are the 400-() and 600-Q) resistors. The two parallel combinations
form a series combination with respect to terminals a and b. Hence,

Ry, = 3000 || 1000 + 400 || 600
3000 X 1000 400 X 600
3000 + 1000 400 + 600

= 750 + 240 = 990 Q)

To find the Thevenin voltage, we consider the circuit in Fig. 4.65(b).
Using the voltage division principle gives

1000 600

= 200)=55V, -
Y1 = 7000 + 3000 22 Y2 7600 + 400

(220) = 132V

Applying KVL around loop ab gives

U, + Vo, t0,=0 or Vipn=0v, —0,=55—-132=-77V

Having determined the Thevenin equivalent, we find the current

through the galvanometer using Fig. 4.65(c).

_ VTh _ _77
R, + R, 990 + 40

I = —74.76 mA

The negative sign indicates that the current flows in the direction
opposite to the one assumed, that is, from terminal b to terminal a.

Example 4.18
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3kQ

1kQ

Figure 4.65

400 Q 3kQ 400 Q
+ _
220V (+ V.
® o Vn o
600 Q 1kQ 41 &) 600 Q
(b)
Ry a
AN
flo
40 Q
b

(c)

For Example 4.18: (a) Finding Ry, (b) finding Vyy, (c) determining the current through the galvanometer.

Practice Problem 4.18

20Q

30Q

40 Q

Figure 4.66
For Practice Prob. 4.18.

Obtain the current through the galvanometer, having a resistance of
14 Q, in the Wheatstone bridge shown in Fig. 4.66.

Answer: 64 mA.

4.11 Summary

1.

2.

A linear network consists of linear elements, linear dependent
sources, and linear independent sources.

Network theorems are used to reduce a complex circuit to a sim-
pler one, thereby making circuit analysis much simpler.

. The superposition principle states that for a circuit having multi-

ple independent sources, the voltage across (or current through) an
element is equal to the algebraic sum of all the individual voltages
(or currents) due to each independent source acting one at a time.

. Source transformation is a procedure for transforming a voltage

source in series with a resistor to a current source in parallel with
a resistor, or vice versa.

. Thevenin’s and Norton’s theorems allow us to isolate a portion of

a network while the remaining portion of the network is replaced
by an equivalent network. The Thevenin equivalent consists of a
voltage source Vrpy, in series with a resistor Ryy,, while the Norton
equivalent consists of a current source I, in parallel with a resis-
tor Ry. The two theorems are related by source transformation.

YV

Ry = Ry, Iy =
N Th N R
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6. For a given Thevenin equivalent circuit, maximum power transfer
occurs when R; = Rry; that is, when the load resistance is equal
to the Thevenin resistance.

7. The maximum power transfer theorem states that the maximum
power is delivered by a source to the load R; when R; is equal to
Ry, the Thevenin resistance at the terminals of the load.

8. PSpice can be used to verify the circuit theorems covered in this
chapter.

9. Source modeling and resistance measurement using the Wheat-
stone bridge provide applications for Thevenin’s theorem.

1

4.1

4.2

4.3

4.4

Review Questions

The current through a branch in a linear network is

2 A when the input source voltage is 10 V. If the
voltage is reduced to 1 V and the polarity is reversed,
the current through the branch is:

(a—2A (b)—02A (¢)02A

@2A (e)20A

For superposition, it is not required that only one
independent source be considered at a time; any

number of independent sources may be considered
simultaneously.

(a) True (b) False

The superposition principle applies to power
calculation.

(a) True (b) False

Refer to Fig. 4.67. The Thevenin resistance at
terminals @ and b is:

(a) 25 Q)
©) 50

(6)20 Q
@40
50

sov (%) §20§2

o > = o—]

Figure 4.67
For Review Questions 4.4 to 4.6.

4.5

4.6

The Thevenin voltage across terminals a and b of the
circuit in Fig. 4.67 is:

(@) 50V
(©)20V

(b) 40 V
@10V

The Norton current at terminals a and b of the circuit
in Fig. 4.67 is:

(@) 10A
(c)2A

(b)25A
(dOA

4.7

4.8

20
4

The Norton resistance Ry is exactly equal to the
Thevenin resistance Ry,

(a) True (b) False
Which pair of circuits in Fig. 4.68 are equivalent?
(a)aand b (b)bandd

(c)aandc (d)candd

50 50
V(? 4Aﬁ)

(a) (b)
b

(c) )

Figure 4.68

For Review Question 4.8.

4.9

4.10

A load is connected to a network. At the terminals to
which the load is connected, Ry, = 10 () and

Vrn = 40 V. The maximum possible power supplied
to the load is:
(a) 160 W

(c)40 W

(b) 80 W
@1w
The source is supplying the maximum power to the

load when the load resistance equals the source
resistance.

(a) True (b) False

Answers: 4.1b, 4.2a, 4.3b, 4.4d, 4.5b, 4.6a, 4.7a, 4.8c,

4.9¢, 4.10a.
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1 Problems

Section 4.2 Linearity Property

4.1 Calculate the current i, in the circuit of Fig. 4.69.
What value of input voltage is necessary to make i,

equal to 5 amps?

5Q 25Q

30V 40 Q

b

15Q

Figure 4.69
For Prob. 4.1.

4.2 Using Fig. 4.70, design a problem to help other

efJd students better understand linearity.

Ry
M

Ry

Figure 4.70
For Prob. 4.2.

4.3
whenv, = 1 V.

(b) Find v, and i, when vy, = 10 V.

(a) In the circuit of Fig. 4.71, calculate v, and i,

(¢c) What are v, and i, when each of the 1-Q)
resistors is replaced by a 10-() resistor and

v, = 10 V?

Figure 4.71
For Prob. 4.3.

4.4 Use linearity to determine i, in the circuit of Fig. 4.72.

30 20
AV

o
60 40

Figure 4.72
For Prob. 4.4.

4.5 For the circuit in Fig. 4.73, assume v,,

=1V, and

use linearity to find the actual value of v,,.

2Q 3Q

o

2Q

15V 6 Q 6 Q

<

Figure 4.73
For Prob. 4.5.

4Q

4.6 For the linear circuit shown in Fig. 4.74, use linearity

to complete the following table.

Experiment Vi v,
1 12V 4V
2 16V
3 v
4 -2V
+
vV, Ci') Linear v,
circuit -
Figure 4.74
For Prob. 4.6.
4.7 Use linearity and the assumption that V, = 1 V to

find the actual value of V,, in Fig. 4.75.

1Q
MW

4Q

§3Q 29§

av(®)

Figure 4.75
For Prob. 4.7.

Section 4.3 Superposition

+
V,

14

4.8 Using superposition, find V, in the circuit of Fig. 4.76.

g Check with PSpice or MultiSim.

4Q v, 1Q

3Q
(Hov
1

5Q

GE

Figure 4.76
For Prob. 4.8.
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Given that / = 4 amps when V, = 40 volts and I, = 4 4.13 Use superposition to find v,, in the circuit of Fig. 4.81.

amps and / = 1 amp when V; = 20 volts and I, = 0,

use superposition and linearity to determine
of I when V; = 60 volts and /; = —2 amps.

Figure 4.77
For Prob. 4.9.

4.10 Using Fig. 4.78, design a problem to help other
efd students better understand superposition. Note, the

the value

2A

109%

4.14 Apply the superposition principle to find v,, in the
g circuit of Fig. 4.82.

Figure 4.81
For Prob. 4.13.

letter k is a gain you can specify to make the

problem easier to solve but must not be zero.

Figure 4.78
For Prob. 4.10.

4.11 Use the superposition principle to find i, and v,, in

Q the circuit of Fig. 4.79.

i, 10Q

N
+ oy, -
6 A 40 Q

Figure 4.79
For Prob. 4.11.

200
i()

¢

4.12 Determine v, in the circuit of Fig. 4.80 using the

superposition principle.

2A

12V

Figure 4.80
For Prob. 4.12.

6Q
MW\
2A
(<)
N
40 20
AN ANV
+
1A 4

20V<“:>

Figure 4.82
For Prob. 4.14.

4.15 For the circuit in Fig. 4.83, use superposition to find i.
g Calculate the power delivered to the 3-() resistor.

2A

20V 4Q

30V

2Q 16V

Figure 4.83
For Probs. 4.15 and 4.56.

4.16 Given the circuit in Fig. 4.84, use superposition to

g obtain .

9V

Figure 4.84
For Prob. 4.16.
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4.17 Use superposition to obtain v, in the circuit of
ﬁ Fig. 4.85. Check your result using PSpice or

ML MultiSim.
300 10Q 200
AV
+ oy -
90 vV 60 Q D 6A 230Q 40V

Figure 4.85
For Prob. 4.17.

4.18 Use superposition to find V, in the circuit of Fig. 4.86.

&

1Q
AN
0.5V
2Q °
N —

10V

S+

ZACP 40

4.19 Use superposition to solve for v, in the circuit of

g Fig. 4.87.

Figure 4.86
For Prob. 4.18.

bis N
20 Mea 4a(d) sazwn

&

4i,

Figure 4.87
For Prob. 4.19.

Section 4.4 Source Transformation

4.20 Use source transformation to reduce the circuit in
Fig. 4.88 to a single voltage source in series with a
single resistor.

3A 10 Q 20Q 40 Q
12V 16V

Figure 4.88
For Prob. 4.20.

Circuit Theorems

4.21 Using Fig. 4.89, design a problem to help other
efd students better understand source transformation.

ih R,
—

Figure 4.89
For Prob. 4.21.

4.22 For the circuit in Fig. 4.90, use source
transformation to find i.

50 100
AN
*i

§SQ §4Q

20V

24 ()

Figure 4.90
For Prob. 4.22.

4.23 Referring to Fig. 4.91, use source transformation to
determine the current and power absorbed by the
8-} resistor.

8Q 3Q
%%

3a(®) §109

Figure 4.91
For Prob. 4.23.

4.24 Use source transformation to find the voltage V. in
the circuit of Fig. 4.92.

3A
3Q 10Q
MM MM
+V, -

40V 100 2V,

Figure 4.92
For Prob. 4.24.
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4.25 Obtain v, in the circuit of Fig. 4.93 using source
transformation. Check your result using PSpice or
MultiSim.

2A

)
N

9Q
ANWY

Figure 4.93
For Prob. 4.25.

4.26 Use source transformation to find i, in the circuit of

Fig. 4.94.
50
&
6A 2Q 20V

Figure 4.94
For Prob. 4.26.

4.27 Apply source transformation to find v, in the circuit

of Fig. 4.95.
10Q 4 12Q 5, 20Q
AW —e
+ o -
50V 400 M sa 40V

Figure 4.95
For Probs. 4.27 and 4.40.

4.28 Use source transformation to find /, in Fig. 4.96.

1Q 1, 40
AMMN—" AMA,
+ v, -

sv () §3Q Ly,

Figure 4.96
For Prob. 4.28.

Problems 165

4.29 Use source transformation to find v,, in the circuit of

Fig. 4.97.
4kQ
MWV
3y,
2kQ
MWW =
+

3mA<P 1kQ %_vo

Figure 4.97
For Prob. 4.29.

4.30 Use source transformation on the circuit shown in
Fig 4.98 to find i,.

i 24Q 60 Q

W%

§3OQ

§ 10Q 0.7,

12V Ci)

Figure 4.98
For Prob. 4.30.

4.31 Determine v, in the circuit of Fig. 4.99 using source
transformation.

Figure 4.99
For Prob. 4.31.

4.32 Use source transformation to find i, in the circuit of

Fig. 4.100.
10 Q
AW
0.5i,
L  15Q
AW &

60 V %SOQ

Figure 4.100
For Prob. 4.32.

%409
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Sections 4.5 and 4.6 Thevenin’s and Norton’s

Theorems

4.33 Determine the Thevenin equivalent circuit, shown in
Fig. 4.101, as seen by the 5-ohm resistor.

Then calculate the current flowing through the 5-ohm
resistor.

10 Q

§109 5Q

N

Figure 4.101
For Prob. 4.33.

4.34 Using Fig. 4.102, design a problem that will help
efJdd other students better understand Thevenin equivalent
circuits.

1% % Ry
o b
Figure 4.102
For Probs. 4.34 and 4.49.

4.35 Use Thevenin’s theorem to find v,, in Prob. 4.12.

4.36 Solve for the current i in the circuit of Fig. 4.103
using Thevenin’s theorem. (Hint: Find the Thevenin
equivalent seen by the 12-() resistor.)

li

10 Q 12Q

§4OQ

50V 30V

Figure 4.103
For Prob. 4.36.

Circuit Theorems

4.37 Find the Norton equivalent with respect to terminals
a-b in the circuit shown in Fig. 4.104.

2A

20Q

40 Q

120V C’:)

12Q

O b

Figure 4.104
For Prob. 4.37.

4.38 Apply Thevenin’s theorem to find V,, in the circuit of

Fig. 4.105.
40 10
A ANMA—
5Q +
3A<D §169 IOQ§VO
2V

Figure 4.105
For Prob. 4.38.

4.39 Obtain the Thevenin equivalent at terminals a-b of
the circuit shown in Fig. 4.106.

3A
&
10Q 16 Q
MW O a
10Q

24V

Figure 4.106
For Prob. 4.39.

4.40 Find the Thevenin equivalent at terminals a-b of the
circuit in Fig. 4.107.

+ Vo_
MW AW
10 kQ 20 kQ
oa
+ +
0V C_> T>4v,
ob

Figure 4.107
For Prob. 4.40.
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4.41 Find the Thevenin and Norton equivalents at
terminals a-b of the circuit shown in Fig. 4.108.

14V 140

O oa
Q) §6Q ING) §5Q

ob

Figure 4.108
For Prob. 4.41.

*4.42 For the circuit in Fig. 4.109, find the Thevenin
equivalent between terminals a and b.

20Q
;;)2ov
10Q 20Q
ao AW AW O b
10Q
5A 10Q §IOQ
30V

Figure 4.109
For Prob. 4.42.

4.43 Find the Thevenin equivalent looking into terminals
a-b of the circuit in Fig. 4.110 and solve for i,.

10Q 4 6Q

20V

Figure 4.110
For Prob. 4.43.

4.44 For the circuit in Fig. 4.111, obtain the Thevenin
equivalent as seen from terminals:

(a) a-b (b) b-¢
3Q 1Q
a
24V 4Q
b
2Q 5Q 2A
O C

Figure 4.111
For Prob. 4.44.

* An asterisk indicates a challenging problem.

Problems 167

4.45 Find the Thevenin equivalent of the circuit in
Fig. 4.112 as seen by looking into terminals a and b.

6Q
AA%% O a

4A 6Q 4Q

O b

Figure 4.112
For Prob. 4.45.

4.46 Using Fig. 4.113, design a problem to help other
ed students better understand Norton equivalent circuits.

Ry
A oa

Ob
Figure 4.113
For Prob. 4.46.

4.47 Obtain the Thevenin and Norton equivalent circuits
of the circuit in Fig. 4.114 with respect to terminals a
and b.

12Q

30v () V.:é 600 O

ob

Figure 4.114
For Prob. 4.47.

4.48 Determine the Norton equivalent at terminals a-b for
the circuit in Fig. 4.115.

10

4

Liw—oa

24 () §4Q

Figure 4.115
For Prob. 4.48.

4.49 Find the Norton equivalent looking into terminals
a-b of the circuit in Fig. 4.102. Let V=40V,
I=3AR =10Q,R, =40, and R3 = 20 Q.
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4.50 Obtain the Norton equivalent of the circuit in
Fig. 4.116 to the left of terminals a-b. Use the

result to find current i.

60 12V

V\N\/—@%a
2a(d) §4Q

‘i

§59 OF

Figure 4.116
For Prob. 4.50.

4.51 Given the circuit in Fig. 4.117, obtain the Norton

equivalent as viewed from terminals:
(a) a-b (b) c-d

a b
R

120 V 3Q 6 A 2Q

Figure 4.117
For Prob. 4.51.

4.52 For the transistor model in Fig. 4.118, obtain the

Thevenin equivalent at terminals a-b.

3kQ
a
o
6V 20i, 2kQ
o b

Figure 4.118
For Prob. 4.52.

4.53 Find the Norton equivalent at terminals a-b of the

circuit in Fig. 4.119.

0.25,
6Q 2Q
AN AW oa
+
18V 303 %

Figure 4.119
For Prob. 4.53.

Circuit Theorems

4.54 Find the Thevenin equivalent between terminals a-b
of the circuit in Fig. 4.120.

ob

Figure 4.120
For Prob. 4.54.

*4.55 Obtain the Norton equivalent at terminals a-b of the
circuit in Fig. 4.121.

gk 1
—

oy e 0.001V,, é 801 S0kQ 2V,

+

o b

Figure 4.121
For Prob. 4.55.

4.56 Use Norton’s theorem to find V,, in the circuit of
Fig. 4.122.

12 kQ 2kQ 10 kQ
MY NWY MY

36V @) 24kQ

+
G 3mA 1kQS v,

o

Figure 4.122
For Prob. 4.56.

4.57 Obtain the Thevenin and Norton equivalent circuits
at terminals a-b for the circuit in Fig. 4.123.

3Q 2Q
AN 0 a
+
50V 6Q = v 0.5, 10Q

o b

Figure 4.123
For Probs. 4.57 and 4.79.
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4.58 The network in Fig. 4.124 models a bipolar transistor

common-emitter amplifier connected to a load. Find
the Thevenin resistance seen by the load.

. bi

b Ry b

—

Figure 4.124
For Prob. 4.58.

4.59 Determine the Thevenin and Norton equivalents at
terminals a-b of the circuit in Fig. 4.125.

100 200
sa(®) a b
500 400

Figure 4.125
For Probs. 4.59 and 4.80.

*4.,60 For the circuit in Fig. 4.126, find the Thevenin and
Norton equivalent circuits at terminals a-b.

2A

Figure 4.126
For Probs. 4.60 and 4.81.

*4.61 Obtain the Thevenin and Norton equivalent circuits
1}  atterminals a-b of the circuit in Fig. 4.127.

ML
20
A o a
v () o o ) 2v
6Q
2Q§ §29
12v

Figure 4.127
For Prob. 4.61.

Problems 169

*4.62 Find the Thevenin equivalent of the circuit in

ﬁ Fig. 4.128.
ML
0.1,
— O a
+
10Q o
Vi
40 Q % 20 Q
% = o b
2y,

Figure 4.128
For Prob. 4.62.

4.63 Find the Norton equivalent for the circuit in

Fig. 4.129.
100
AN o
N
%2200 0.5

Figure 4.129
For Prob. 4.63.

4.64 Obtain the Thevenin equivalent seen at terminals a-b
of the circuit in Fig. 4.130.

4Q 1Q

Figure 4.130
For Prob. 4.64.

4.65 For the circuit shown in Fig. 4.131, determine the
relationship between V,, and /.

4Q 2Q
AV M

32V 12Q V.

Figure 4.131
For Prob. 4.65.
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Section 4.8 Maximum Power Transfer

4.66 Find the maximum power that can be delivered to
the resistor R in the circuit of Fig. 4.132.

20V 5Q 6A

1.

Figure 4.132
For Prob. 4.66.

4.67 The variable resistor R in Fig. 4.133 is adjusted until
it absorbs the maximum power from the circuit.
(a) Calculate the value of R for maximum power.
(b) Determine the maximum power absorbed by R.

20 Q

40V
S

SR

10 Q

Figure 4.133
For Prob. 4.67.

*4.68 Compute the value of R that results in maximum
power transfer to the 10-() resistor in Fig. 4.134.
Find the maximum power.

R

10 Q

12v (%)
(D) sv

§ZOQ

Figure 4.134
For Prob. 4.68.

4.69 Find the maximum power transferred to resistor R in
the circuit of Fig. 4.135.

10 kQ 22 kQ
AN
+
100 V v < 40K g 003, 30 kQ R

Figure 4.135
For Prob. 4.69.

Circuit Theorems

4.70 Determine the maximum power delivered to the
variable resistor R shown in the circuit of Fig. 4.136.

5Q 5Q
AV AV
4V@—> §ISQ §R
6Q
AW~
V

Figure 4.136
For Prob. 4.70.

4.71 For the circuit in Fig. 4.137, what resistor connected
across terminals a-b will absorb maximum power
from the circuit? What is that power?

10 kQ

1204, 40 kQ

0 b

Figure 4.137
For Prob. 4.71.

4.72 (a) For the circuit in Fig. 4.138, obtain the Thevenin
equivalent at terminals a-b.

(b) Calculate the current in R; = 8 ().
(c) Find R; for maximum power deliverable to R;.

(d) Determine that maximum power.

2A
4Q 6Q a
ANV AN
4A 2Q R,
Q)
N\ b
20V

Figure 4.138
For Prob. 4.72.
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4.73 Determine the maximum power that can be delivered
to the variable resistor R in the circuit of Fig. 4.139.

R
60V CD AW
w

Figure 4.139
For Prob. 4.73.

4.74 For the bridge circuit shown in Fig. 4.140, find the
load R; for maximum power transfer and the
maximum power absorbed by the load.

Figure 4.140
For Prob. 4.74.

*4.75 For the circuit in Fig. 4.141, determine the value of
R such that the maximum power delivered to the
load is 3 mW.

R
R
MWW
R

1V 2V 3V

Figure 4.141
For Prob. 4.75.

Section 4.9 Verifying Circuit Theorems
yo, with PSpice

4.76 Solve Prob. 4.34 using PSpice or MultiSim. Let
V=40V, I=3A,R =10Q,R, =400, and
R3 = 20 Q.

4.77 Use PSpice or MultiSim to solve Prob. 4.44.
4.78 Use PSpice or MultiSim to solve Prob. 4.52.

4.79 Obtain the Thevenin equivalent of the circuit in
Fig. 4.123 using PSpice or MultiSim.

Problems 171

4.80

4.81

Use PSpice or MultiSim to find the Thevenin
equivalent circuit at terminals a-b of the circuit in
Fig. 4.125.

For the circuit in Fig. 4.126, use PSpice or MultiSim
to find the Thevenin equivalent at terminals a-b.

Section 4.10 Applications

4.82

4.83

4.84

4.85

A battery has a short-circuit current of 20 A and an
open-circuit voltage of 12 V. If the battery is
connected to an electric bulb of resistance 2 (),
calculate the power dissipated by the bulb.

The following results were obtained from
measurements taken between the two terminals of a
resistive network.

Terminal Voltage 12V ov
Terminal Current 0A 15A

Find the Thevenin equivalent of the network.

When connected to a 4-() resistor, a battery has a
terminal voltage of 10.8 V but produces 12 V on an
open circuit. Determine the Thevenin equivalent
circuit for the battery.

The Thevenin equivalent at terminals a-b of the
linear network shown in Fig. 4.142 is to be
determined by measurement. When a 10-k() resistor
is connected to terminals a-b, the voltage V,,, is
measured as 6 V. When a 30-k() resistor is connected
to the terminals, V,,;, is measured as 12 V. Determine:
(a) the Thevenin equivalent at terminals a-b, (b) V.,
when a 20-k{) resistor is connected to terminals a-b.

Linear

network

Figure 4.142

4.86

For Prob. 4.85.

A black box with a circuit in it is connected to a
variable resistor. An ideal ammeter (with zero
resistance) and an ideal voltmeter (with infinite
resistance) are used to measure current and voltage
as shown in Fig. 4.143. The results are shown in the
table on the next page.

N
@)
Black
box

Figure 4.143

For Prob. 4.86.
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(a) Find i when R = 4 Q).

(b) Determine the maximum power from the box.

R(Y)  V(V) iA)
2 3 1.5
8 8 1.0
14 105 075

4.87 A transducer is modeled with a current source /, and
efd aparallel resistance R,. The current at the terminals
of the source is measured to be 9.975 mA when an
ammeter with an internal resistance of 20 () is used.

(a) If adding a 2-k{) resistor across the source
terminals causes the ammeter reading to fall to
9.876 mA, calculate /, and R;.

(b) What will the ammeter reading be if the
resistance between the source terminals is
changed to 4 k(?

4.88 Consider the circuit in Fig. 4.144. An ammeter with
internal resistance R; is inserted between A and B to

measure /,. Determine the reading of the ammeter if:

(a) R; = 500 Q, (b) R; = 0 ). (Hint: Find the
Thevenin equivalent circuit at terminals a-b.)

30 kQ

Figure 4.144
For Prob. 4.88.

4.89 Consider the circuit in Fig. 4.145. (a) Replace the
resistor R; by a zero resistance ammeter and
determine the ammeter reading. (b) To verify the
reciprocity theorem, interchange the ammeter and
the 12-V source and determine the ammeter reading
again.

10 kQ 20 kQ

12v CD

12 kQ 15 kQ

Figure 4.145
For Prob. 4.89.

Circuit Theorems

4.90 The Wheatstone bridge circuit shown in Fig. 4.146 is
efJd used to measure the resistance of a strain gauge. The
adjustable resistor has a linear taper with a maximum
value of 100 (). If the resistance of the strain gauge
is found to be 42.6 (), what fraction of the full slider
travel is the slider when the bridge is balanced?

4 kQ

Figure 4.146
For Prob. 4.90.

X

4.91 (a) In the Wheatstone bridge circuit of Fig. 4.147,
eqd select the values of R, and R5 such that the bridge
can measure R, in the range of 0-10 ().

46

Figure 4.147
For Prob. 4.91.

(b) Repeat for the range of 0—100 ().

*4.,92 Consider the bridge circuit of Fig. 4.148. Is the
efJdd bridge balanced? If the 10-k() resistor is replaced by
an 18-k() resistor, what resistor connected between
terminals a-b absorbs the maximum power? What is
this power?

2kQ

220V (i)

10 kQ

Figure 4.148
For Prob. 4.92.
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Comprehensive Problems

4.93 The circuit in Fig. 4.149 models a common-emitter
transistor amplifier. Find i, using source

transformation.
LR,
—_—
AW
U R, Bi,

Figure 4.149
For Prob. 4.93.

4.94 An attenuator is an interface circuit that reduces the
efJd voltage level without changing the output resistance.

(a) By specifying R, and R, of the interface circuit in

Fig. 4.150, design an attenuator that will meet the
following requirements:

Vo
—=0.125,
4

14

Req = Ry = R, = 100 Q

(b) Using the interface designed in part (a), calculate
the current through a load of R; = 50 () when

Vg =12 V.

R, ' R |
—AVW -
] s

4 R, 1V, Ry,
: -~
[ ) Load
Attenuator R

Figure 4.150
For Prob. 4.94.

*4.95 A dc voltmeter with a sensitivity of 20 k{)/V is used
efJd to find the Thevenin equivalent of a linear network.
Readings on two scales are as follows:

(a) 0-10 V scale: 4V (b) 0-50 V scale: 5V

Obtain the Thevenin voltage and the Thevenin
resistance of the network.

*4.96 A resistance array is connected to a load resistor R
efd and a9-V battery as shown in Fig. 4.151.
(a) Find the value of R such that V,, = 1.8 V.

(b) Calculate the value of R that will draw the
maximum current. What is the maximum current?

Figure 4.151
For Prob. 4.96.

4.97 A common-emitter amplifier circuit is shown in
efd Fig. 4.152. Obtain the Thevenin equivalent to the

left of points B and E.

RL

6 kQ
B +
—-— 12V

4kQ

RC

E
L

Figure 4.152
For Prob. 4.97.

*4,98 For Practice Prob. 4.18, determine the current
through the 40-() resistor and the power dissipated
by the resistor.
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Operational
Amplifiers

He who will not reason is a bigot; he who cannot is a fool; and he
who dares not is a slave.
—Lord Byron

Enhancing Your Career

Career in Electronic Instrumentation
Engineering involves applying physical principles to design devices for
the benefit of humanity. But physical principles cannot be understood
without measurement. In fact, physicists often say that physics is the
science that measures reality. Just as measurements are a tool for under-
standing the physical world, instruments are tools for measurement.
The operational amplifier introduced in this chapter is a building block
of modern electronic instrumentation. Therefore, mastery of operational
amplifier fundamentals is paramount to any practical application of
electronic circuits.

Electronic instruments are used in all fields of science and engi- Electronic Instrumentation used in
neering. They have proliferated in science and technology to the extent =~ medical research.
that it would be ridiculous to have a scientific or technical education ~ © Royalty-Free/Corbis
without exposure to electronic instruments. For example, physicists,
physiologists, chemists, and biologists must learn to use electronic
instruments. For electrical engineering students in particular, the skill
in operating digital and analog electronic instruments is crucial. Such
instruments include ammeters, voltmeters, ohmmeters, oscilloscopes,
spectrum analyzers, and signal generators.

Beyond developing the skill for operating the instruments, some
electrical engineers specialize in designing and constructing electronic
instruments. These engineers derive pleasure in building their own
instruments. Most of them invent and patent their inventions. Special-
ists in electronic instruments find employment in medical schools, hos-
pitals, research laboratories, aircraft industries, and thousands of other
industries where electronic instruments are routinely used.

175
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The term operational amplifier was in-
troduced in 1947 by John Ragazzini
and his colleagues, in their work on
analog computers for the National
Defense Research Council after World
War Il. The first op amps used vacuum
tubes rather than transistors.

I Anop amp may also be regarded as a
voltage amplifier with very high gain.

Figure 5.1
A typical operational amplifier.
Courtesy of Tech America.

The pin diagram in Fig. 5.2(a)
corresponds to the 741 general-
purpose op amp made by Fairchild
Semiconductor.

Chapter5  Operational Amplifiers

5.1 Introduction

Having learned the basic laws and theorems for circuit analysis, we are
now ready to study an active circuit element of paramount importance:
the operational amplifier, or op amp for short. The op amp is a versa-
tile circuit building block.

The op amp is an electronic unit that behaves like a voltage-controlled
voltage source.

It can also be used in making a voltage- or current-controlled current
source. An op amp can sum signals, amplify a signal, integrate it, or
differentiate it. The ability of the op amp to perform these mathemat-
ical operations is the reason it is called an operational amplifier. 1t is
also the reason for the widespread use of op amps in analog design.
Op amps are popular in practical circuit designs because they are ver-
satile, inexpensive, easy to use, and fun to work with.

We begin by discussing the ideal op amp and later consider the
nonideal op amp. Using nodal analysis as a tool, we consider ideal op
amp circuits such as the inverter, voltage follower, summer, and dif-
ference amplifier. We will also analyze op amp circuits with PSpice.
Finally, we learn how an op amp is used in digital-to-analog convert-
ers and instrumentation amplifiers.

5.2 Operational Amplifiers

An operational amplifier is designed so that it performs some mathe-
matical operations when external components, such as resistors and
capacitors, are connected to its terminals. Thus,

An op amp is an active circuit element designed to perform mathe-
matical operations of addition, subtraction, multiplication, division, dif-
ferentiation, and integration.

The op amp is an electronic device consisting of a complex
arrangement of resistors, transistors, capacitors, and diodes. A full dis-
cussion of what is inside the op amp is beyond the scope of this book.
It will suffice to treat the op amp as a circuit building block and sim-
ply study what takes place at its terminals.

Op amps are commercially available in integrated circuit packages
in several forms. Figure 5.1 shows a typical op amp package. A typical
one is the eight-pin dual in-line package (or DIP), shown in Fig. 5.2(a).
Pin or terminal 8 is unused, and terminals 1 and 5 are of little concern
to us. The five important terminals are:

1. The inverting input, pin 2.

2. The noninverting input, pin 3.

3. The output, pin 6.

4. The positive power supply V™, pin 7.
5. The negative power supply V, pin 4.

The circuit symbol for the op amp is the triangle in Fig. 5.2(b); as
shown, the op amp has two inputs and one output. The inputs are
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5.2  Operational Amplifiers
V+
7
N
Balance O 1 8 0 No connection Inverting input 2
) o 6 Output
Inverting input o 2 7hH vt Noninverting input 3
Noninverting input f 3 6 [0 Output
Vv g4 5 [ Balance ;4/_1‘1
Offset Null
(a) (b)

Figure 5.2

A typical op amp: (a) pin configuration, (b) circuit symbol.
marked with minus (—) and plus (+) to specify inverting and nonin- l
verting inputs, respectively. An input applied to the noninverting ter- i {u Ve

. . . . . . 7 ']
minal will appear with the same polarity at the output, while an input 2o ‘o -
applied to the inverting terminal will appear inverted at the output. 3 } 6
As an active element, the op amp must be powered by a voltage 4 V+ =

supply as typically shown in Fig. 5.3. Although the power supplies are ’ f i T «

often ignored in op amp circuit diagrams for the sake of simplicity, the
power supply currents must not be overlooked. By KCL,

ir) = i] + i2 + i+ + i (5.1)

The equivalent circuit model of an op amp is shown in Fig. 5.4.
The output section consists of a voltage-controlled source in series with
the output resistance R,,. It is evident from Fig. 5.4 that the input resis-
tance R; is the Thevenin equivalent resistance seen at the input termi-
nals, while the output resistance R, is the Thevenin equivalent resistance
seen at the output. The differential input voltage v, is given by

Vg = Uz — Uy (5.2)

where v is the voltage between the inverting terminal and ground and
U, is the voltage between the noninverting terminal and ground. The
op amp senses the difference between the two inputs, multiplies it by
the gain A, and causes the resulting voltage to appear at the output.
Thus, the output v,, is given by

Up = sz/ = A(UZ - Ul) (5'3)

A is called the open-loop voltage gain because it is the gain of the op
amp without any external feedback from output to input. Table 5.1

TABLE 5.1

Typical ranges for op amp parameters.

Parameter Typical range Ideal values
Open-loop gain, A 10° to 10® 0

Input resistance, R; 10° t0 103 Q ()
Output resistance, R, 10 to 100 Q) 00

Supply voltage, Ve 5t024V

Figure 5.3

Powering the op amp.

e

vy O

Figure 5.4
The equivalent circuit of the nonideal
op amp.

Sometimes, voltage gain is expressed
in decibels (dB), as discussed in
Chapter 14.

A dB = 201log;g A
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Positive saturation

- . A —Vee
Negative saturation

Figure 5.5
Op amp output voltage v,, as a function of
the differential input voltage v,,.

Throughout this book, we assume that
an op amp operates in the linear range.
Keep in mind the voltage constraint on
the op amp in this mode.

Chapter5  Operational Amplifiers

shows typical values of voltage gain A, input resistance R;, output
resistance R,, and supply voltage V.

The concept of feedback is crucial to our understanding of op amp
circuits. A negative feedback is achieved when the output is fed back
to the inverting terminal of the op amp. As Example 5.1 shows, when
there is a feedback path from output to input, the ratio of the output
voltage to the input voltage is called the closed-loop gain. As a result
of the negative feedback, it can be shown that the closed-loop gain is
almost insensitive to the open-loop gain A of the op amp. For this rea-
son, op amps are used in circuits with feedback paths.

A practical limitation of the op amp is that the magnitude of its
output voltage cannot exceed |V ¢l. In other words, the output voltage
is dependent on and is limited by the power supply voltage. Figure 5.5
illustrates that the op amp can operate in three modes, depending on
the differential input voltage v,:

1. Positive saturation, v, = V.
2. Linear region, —Vee = v, = Avy; = Ve
3. Negative saturation, v, = — V.

If we attempt to increase v, beyond the linear range, the op amp
becomes saturated and yields v, = V¢ or v, = — V. Throughout
this book, we will assume that our op amps operate in the linear mode.
This means that the output voltage is restricted by

—Vee =0, = Vee (5.4)

Although we shall always operate the op amp in the linear region, the
possibility of saturation must be borne in mind when one designs with
op amps, to avoid designing op amp circuits that will not work in the
laboratory.

Example 5.1 A 741 op amp has an open-loop voltage gain of 2 X 10°, input resis-
tance of 2 M(), and output resistance of 50 (). The op amp is used in
the circuit of Fig. 5.6(a). Find the closed-loop gain v,/v,. Determine
current i when vy, = 2 V.

20 kQ
MWV
20 kQ yi
MWy . 10kQ __ |, R,=50Q ,
10kQ | Vi ! ol o
= 1 ' - 0
741> - i
Y 2 0 + 5 vy < R=2MQ Ay
: % +
T ° T i
(a) (b)
Figure 5.6

For Example 5.1: (a) original circuit, (b) the equivalent circuit.
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Solution:

Using the op amp model in Fig. 5.4, we obtain the equivalent circuit
of Fig. 5.6(a) as shown in Fig. 5.6(b). We now solve the circuit in
Fig. 5.6(b) by using nodal analysis. At node 1, KCL gives

Uy — U Uy Uy — U,
3 5t 3
10 X 10 2000 X 10 20 X 10

Multiplying through by 2000 X 107, we obtain
200v, = 301v, — 100v,,

or
v, =3v, —v, = U= w (5.1.1)
At node O,
vy — U, U, — Avg
20 X 10° 50
But v; = —v; and A = 200,000. Then
v, — v, = 400(v, + 200,0000,) (5.1.2)
Substituting v, from Eq. (5.1.1) into Eq. (5.1.2) gives
0 = 26,667,067v,, + 53,333,333v, = L —1.9999699

s

This is closed-loop gain, because the 20-k{) feedback resistor closes
the loop between the output and input terminals. When v, = 2 V, v, =
—3.9999398 V. From Eq. (5.1.1), we obtain v; = 20.066667 wV. Thus,

. U1 — U,

i = ———5 =0.19999 mA

20 X 10°

It is evident that working with a nonideal op amp is tedious, as we are
dealing with very large numbers.

179

If the same 741 op amp in Example 5.1 is used in the circuit of Fig. 5.7,
calculate the closed-loop gain v,/v,. Find i, when v, = 1 V.

Answer: 9.00041, 657 nA.

5.3 Ideal Op Amp

To facilitate the understanding of op amp circuits, we will assume ideal
op amps. An op amp is ideal if it has the following characteristics:

1. Infinite open-loop gain, A = .
2. Infinite input resistance, R; = .
3. Zero output resistance, R, = 0.

Practice Problem 5.1

lO
—>

AW
+
% C_D 40 kQ +
§ 5kQ 20kQ S 4,

Figure 5.7
For Practice Prob. 5.1.
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=0
—_—
O —
+
ih=0 vd
— + +
o= *|
21 + )
=7 v
o— T o
Figure 5.8

Ideal op amp model.

The two characteristics can be ex-
ploited by noting that for voltage cal-
culations the input port behaves as a
short circuit, while for current calcula-
tions the input port behaves as an

Chapter5  Operational Amplifiers

An ideal op amp is an amplifier with infinite open-loop gain, infinite
input resistance, and zero output resistance.

Although assuming an ideal op amp provides only an approxi-
mate analysis, most modern amplifiers have such large gains and
input impedances that the approximate analysis is a good one. Unless
stated otherwise, we will assume from now on that every op amp is
ideal.

For circuit analysis, the ideal op amp is illustrated in Fig. 5.8,
which is derived from the nonideal model in Fig. 5.4. Two important
characteristics of the ideal op amp are:

1. The currents into both input terminals are zero:

il = 0, i2 =0 (5.5)

This is due to infinite input resistance. An infinite resistance
between the input terminals implies that an open circuit exists there
and current cannot enter the op amp. But the output current is not
necessarily zero according to Eq. (5.1).

2. The voltage across the input terminals is equal to zero; i.e.,
(5.6)

U(]:UQ_UIZO

or

U = U, 5.7)

Thus, an ideal op amp has zero current into its two input ter-
minals and the voltage between the two input terminals is equal
to zero. Equations (5.5) and (5.7) are extremely important
and should be regarded as the key handles to analyzing op amp

open circuit. circuits.
Example 5.2 Rework Practice Prob. 5.1 using the ideal op amp model.
i=0 Solution:
= 5 We may replace the op amp in Fig. 5.7 by its equivalent model in
v > . Fig. 5.9 as we did in Example 5.1. But we do not really need to do
ij=0 * 0 this. We just need to keep Egs. (5.5) and (5.7) in mind as we analyze
’ - the circuit in Fig. 5.7. Thus, the Fig. 5.7 circuit is presented as in
AV i -
v @) 0 b ol} Fig. 5.9. Notice that
5kQ + Uy = Uy (5.2.1)
4 > 20kQ
- Since i; = 0, the 40-k{) and 5-k{) resistors are in series; the same
1 current flows through them. v, is the voltage across the 5-k{) resistor.
Figure 5.9 B Hence, using the voltage division principle,

For Example 5.2.

5 U,
5+40°°

v, = (5.2.2)

9
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According to Eq. (5.7),
Uy, = U (5.2.3)

Substituting Egs. (5.2.1) and (5.2.2) into Eq. (5.2.3) yields the closed-
loop gain,

Ul) U()
vy = — = —=9 (5.24)
9 Uy
which is very close to the value of 9.00041 obtained with the nonideal
model in Practice Prob. 5.1. This shows that negligibly small error
results from assuming ideal op amp characteristics.
At node O,

=20 1 Yoma (5.2.5)
40 +5 20

From Eq. (5.2.4), when vy, = 1 V, v, = 9 V. Substituting for v, = 9V
in Eq. (5.2.5) produces

i, = 0.2 + 045 = 0.65 mA

This, again, is close to the value of 0.657 mA obtained in Practice
Prob. 5.1 with the nonideal model.

181

Repeat Example 5.1 using the ideal op amp model.

Answer: —2, 200 pA.

5.4 Inverting Amplifier

In this and the following sections, we consider some useful op amp
circuits that often serve as modules for designing more complex cir-
cuits. The first of such op amp circuits is the inverting amplifier shown
in Fig. 5.10. In this circuit, the noninverting input is grounded, v; is
connected to the inverting input through R;, and the feedback resistor
Ryis connected between the inverting input and output. Our goal is to
obtain the relationship between the input voltage v; and the output volt-
age v,,. Applying KCL at node 1,

U; — Uy Uy — U,

=i = = 5.8
1= 12 R, R; (5.8)
But v; = v, = 0 for an ideal op amp, since the noninverting terminal
is grounded. Hence,
UI v()

Practice Problem 5.2

Figure 5.10

The inverting amplifier.

A key feature of the inverting amplifier
is that both the input signal and the
feedback are applied at the inverting
terminal of the op amp.
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Note there are two types of gains: The
one here is the closed-loop voltage
gainA,, while the op amp itself has an
open-loop voltage gain A.

Figure 5.11

An equivalent circuit for the inverter in

Chapter5  Operational Amplifiers

or
Ry

v, = ——U; (5.9)
R

The voltage gain is A, = v,/v; = —Ry/R,. The designation of the cir-

cuit in Fig. 5.10 as an inverter arises from the negative sign. Thus,

An inverting amplifier reverses the polarity of the input signal while
amplifying it.

Notice that the gain is the feedback resistance divided by the
input resistance which means that the gain depends only on the
external elements connected to the op amp. In view of Eq. (5.9), an
equivalent circuit for the inverting amplifier is shown in Fig. 5.11.
The inverting amplifier is used, for example, in a current-to-voltage

Fig. 5.10. converter.
Example P.3 Refer to the op amp in Fig. 5.12. If v; = 0.5V, calculate: (a) the output
25 KQ voltage v,,, and (b) the current in the 10-k() resistor.
NV
10 kQ Solution:
AN - (a) Using Eq. (5.9),

ol & +£

Figure 5.12
For Example 5.3.

vo _ R 25 _

v, R, 10
v, = —2.50; = —2.5(0.5) = —1.25V

—25

(b) The current through the 10-k{) resistor is

v, =0  05-0
TR T oxi00 M

Practice Problem 5.3

280 kQ
AN

4kQ

RS

45 mV

ol & +(g

Figure 5.13
For Practice Prob. 5.3.

Find the output of the op amp circuit shown in Fig. 5.13. Calculate the
current through the feedback resistor.

Answer: —3.15 'V, 26.25 pA.
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Determine v,, in the op amp circuit shown in Fig. 5.14. Example 5.4
. 40 kQ
Solution:
Applying KCL at node a,
pplying at node a 20kQ
v,—v, 6-uv, W b + o
= +
40 kQ 20 kQ
6V Y 4
v, —v,=12 — 2v, = v, =3v, — 12
O

But v, = v, = 2 V for an ideal op amp, because of the zero voltage
drop across the input terminals of the op amp. Hence,

v,=6—-12=-6V
Notice that if v, = 0 = v,, then v, = —12, as expected from Eq. (5.9).

Figure 5.14
For Example 5.4.

Two kinds of current-to-voltage converters (also known as transresis-
tance amplifiers) are shown in Fig. 5.15.

(a) Show that for the converter in Fig. 5.15(a),
v()
- = —R
lS

(b) Show that for the converter in Fig. 5.15(b),

v, Ry Ry
Ls R, R,

Answer: Proof.

R
L O
+
i "
5
(a) (b)
Figure 5.15
For Practice Prob. 5.4.
53 Noninverting Amplifier

Another important application of the op amp is the noninverting ampli-
fier shown in Fig. 5.16. In this case, the input voltage v; is applied
directly at the noninverting input terminal, and resistor R; is connected

Practice Problem 5.4

iy
— Rf
aWA%Y%
i
R L |y
AV >0 1
) +
U2
Y %
1 ©

Figure 5.16

The noninverting amplifier.
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Figure 5.17

The voltage follower.

First
stage

+
Y

S o+

Figure 5.18

Second
stage

A voltage follower used to isolate two

cascaded stages of a circuit.
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between the ground and the inverting terminal. We are interested in the
output voltage and the voltage gain. Application of KCL at the invert-
ing terminal gives

0—v, vy —v,

i] = i2 = Rl = Rf (5.10)

But v; = v, = v,. Equation (5.10) becomes

—U; Ui — U,

or

v, = (l + >v,- (5.11)

The voltage gain is A, = v,/v; = 1 + R;/R,, which does not have a
negative sign. Thus, the output has the same polarity as the input.

A noninverting amplifier is an op amp circuit designed to provide a
positive voltage gain.

Again we notice that the gain depends only on the external resistors.

Notice that if feedback resistor R, = 0 (short circuit) or Ry =
(open circuit) or both, the gain becomes 1. Under these conditions
(Rr = 0 and R, = ), the circuit in Fig. 5.16 becomes that shown
in Fig. 5.17, which is called a voltage follower (or unity gain
amplifier) because the output follows the input. Thus, for a voltage
follower

v, =0, (5.12)

Such a circuit has a very high input impedance and is therefore use-
ful as an intermediate-stage (or buffer) amplifier to isolate one circuit
from another, as portrayed in Fig. 5.18. The voltage follower mini-
mizes interaction between the two stages and eliminates interstage
loading.

Example 5.5

For the op amp circuit in Fig. 5.19, calculate the output voltage v,,.

Solution:
We may solve this in two ways: using superposition and using nodal
analysis.

B METHOD 1 Using superposition, we let

Up = Vot + Un2
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where v,,; is due to the 6-V voltage source, and v,,, is due to the 4-V
input. To get v,;, we set the 4-V source equal to zero. Under this
condition, the circuit becomes an inverter. Hence Eq. (5.9) gives

10
Vo = = (6) = —15V

To get v,,, we set the 6-V source equal to zero. The circuit becomes
a noninverting amplifier so that Eq. (5.11) applies.

10
v =1+ )4=14V

Uy =Uyp T Up=—-15+14=-1V

Thus,

Bl METHOD 2 Applying KCL at node a,

6 —-v, v,—v,
4 10
But v, = v, = 4, and so
6—4 4-uv, N s—4
4 10 ST
orv, = —1V, as before.

185

10 kQ

Figure 5.19
For Example 5.5.

Calculate v,, in the circuit of Fig. 5.20.

Answer: 7 V.

5.6 Summing Amplifier

Besides amplification, the op amp can perform addition and subtrac-
tion. The addition is performed by the summing amplifier covered in
this section; the subtraction is performed by the difference amplifier
covered in the next section.

A summing amplifier is an op amp circuit that combines several inputs
and produces an output that is the weighted sum of the inputs.

The summing amplifier, shown in Fig. 5.21, is a variation of the
inverting amplifier. It takes advantage of the fact that the inverting con-
figuration can handle many inputs at the same time. We keep in mind

Practice Problem 5.5

§8k§2

Figure 5.20
For Practice Prob. 5.5.

i i

p——— Ry
1 O— AW AN
R ip i 0
2 —| — | —
v O— MWW P =
i +
Ry 3 — *
3 O—AAAN—— 0 4,
o o

Figure 5.21

The summing amplifier.
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that the current entering each op amp input is zero. Applying KCL at
node a gives
=i +ti+ti (5.13)
But
U Uq . Us Vg
n = > I =
R, R,
(5.14)
U3 U, U, U,
13 = 1=
R3 Ry
We note that v, = 0 and substitute Eq. (5.14) into Eq. (5.13). We get
R R R
v, = —(fvl + Lo, + fv3) (5.15)
R, Ry R,
indicating that the output voltage is a weighted sum of the inputs. For
this reason, the circuit in Fig. 5.21 is called a summer. Needless to say,
the summer can have more than three inputs.
Example 5.6 Calculate v, and i, in the op amp circuit in Fig. 5.22.

5kQ 10kQ
AV A
a i A
i —a
2.5kQ A
2v (@) b +

Figure 5.22
For Example 5.6.

Solution:
This is a summer with two inputs. Using Eq. (5.15) gives

10 10
v, = —{5(2) + 2.5(1)] = —@4+4)=-8V

The current i, is the sum of the currents through the 10-k() and 2-k(}
resistors. Both of these resistors have voltage v, = —8 V across them,
since v, = v, = 0. Hence,

v,—0 wv,—0

i, = + mA = —0.8 —4 = —48mA
10 2
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Find v, and i, in the op amp circuit shown in Fig. 5.23.

20 kQ 8 kQ
AN MW
10kQ i,
A, = —
6kQ i
+
1.5VC_>2V<+> .
= 4kQ § y
12V ’

Figure 5.23
For Practice Prob. 5.6.

Answer: —3.8 V, —1.425 mA.

5.7 Difference Amplifier

Difference (or differential) amplifiers are used in various applications
where there is a need to amplify the difference between two input sig-
nals. They are first cousins of the instrumentation amplifier, the most
useful and popular amplifier, which we will discuss in Section 5.10.

A difference amplifier is a device that amplifies the difference between
two inputs but rejects any signals common to the two inputs.

Consider the op amp circuit shown in Fig. 5.24. Keep in mind that
zero currents enter the op amp terminals. Applying KCL to node a,

Uy — U, Uy, Uy
R, R
or
(R, R,
v, =|\—+1]v, — v (5.16)
R, R,
R,
%
Rl v, _O>
4A%%Y -
R 0 ——>0
MWN— T +
+
vy Ry o
o

Figure 5.24

Difference amplifier.

Practice Problem 5.6

The difference amplifier is also known
as the subtractor, for reasons to be
shown later.
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Applying KCL to node b,
Uz_Uh_Uh_O
R5 Ry
or
R4
Up = %) (5.17)
Ry + R,
But v, = v,. Substituting Eq. (5.17) into Eq. (5.16) yields
R R R
v, = <2 + 1)402 — 7201
R, R; + R, R,
or
R,(1 + R//R R
v, = 2(—1/2)02 - 2y, (5.18)
Ry(1 + R3/Ry) Ry
Since a difference amplifier must reject a signal common to the two
inputs, the amplifier must have the property that v, = 0 when v; = v,.
This property exists when
Ry R
— = (5.19)
R, R,
Thus, when the op amp circuit is a difference amplifier, Eq. (5.18)
becomes
a ) (5.20)
v, = — ([, — v .
R
If R, = R; and R; = Ry, the difference amplifier becomes a subtractor,
with the output
UV, = Uy — U (5.21)
Example 5.7 Design an op amp circuit with inputs v, and v, such that

v, = —5v; + 3v,.
Solution:
The circuit requires that
v, = 3v, — 5v, (5.7.1)

This circuit can be realized in two ways.

Design 1 If we desire to use only one op amp, we can use the op
amp circuit of Fig. 5.24. Comparing Eq. (5.7.1) with Eq. (5.18), we see

R

=5 = R2 = 5R| (5.7.2)
R,
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Also,
A+ R/R) o0 s 3
(1 + Rs/R,) 1 +Ry/Ry 5
or
Ry

If we choose R; = 10 k) and R; = 20 k(), then R, = 50 k{) and
R, = 20 kQ.

Design 2 If we desire to use more than one op amp, we may cascade
an inverting amplifier and a two-input inverting summer, as shown in 3Rs
Fig. 5.25. For the summer,

v, = —v, — Sv; (5.7.4)

and for the inverter,
v, = —30, (5.7.5)
Combining Egs. (5.7.4) and (5.7.5) gives -

Figure 5.25
v, = 3v, — 5v, For Example 5.7.

which is the desired result. In Fig. 5.25, we may select R, = 10 k)
and R; = 20 kQ or R; = R; = 10 k().

Design a difference amplifier with gain 7.5. Practice Problem 5.7

Answer: Typical: R, = R; = 20k, R, = R, = 150 kQ.

An instrumentation amplifier shown in Fig. 5.26 is an amplifier of low- Example 5.8
level signals used in process control or measurement applications and
commercially available in single-package units. Show that

U, = R] R4 Us U

Solution:
We recognize that the amplifier A3 in Fig. 5.26 is a difference amplifier.
Thus, from Eq. (5.20),

_ &

TR (Vo2 = V1) (5.8.1)

Vo

Since the op amps A; and A, draw no current, current i flows through
the three resistors as though they were in series. Hence,

Upr — Uy = l(R3 + R4 + R3) = 1(2R3 + R4) (5.8.2)



www.konkur.in

190 Chapter5  Operational Amplifiers

N4

- oo

Figure 5.26

Instrumentation amplifier; for Example 5.8.

But

and v, = vy, v, = U,. Therefore,

% %]
=—F 5.8.3
i R (5.8.3)

Inserting Eqgs. (5.8.2) and (5.8.3) into Eq. (5.8.1) gives

R, 2R,
Vo = o \ L+ 7 J2 —v)
R, Ry

as required. We will discuss the instrumentation amplifier in detail in
Section 5.10.

Practice Problem 5.8 Obtain i, in the instrumentation amplifier circuit of Fig. 5.27.
20 kQ
ANV >
MW p ;
20 kQ ¢ ¢

7v 40 kQ% 50kQ

Figure 5.27

Instrumentation amplifier; for Practice Prob. 5.8.

Answer: —800 uA.
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5.8 Cascaded Op Amp Circuits

As we know, op amp circuits are modules or building blocks for
designing complex circuits. It is often necessary in practical applica-
tions to connect op amp circuits in cascade (i.e., head to tail) to achieve
a large overall gain. In general, two circuits are cascaded when they
are connected in tandem, one behind another in a single file.

A cascade connection is a head-to-tail arrangement of two or more op
amp circuits such that the output of one is the input of the next.

When op amp circuits are cascaded, each circuit in the string is
called a stage; the original input signal is increased by the gain of the
individual stage. Op amp circuits have the advantage that they can be
cascaded without changing their input-output relationships. This is due to
the fact that each (ideal) op amp circuit has infinite input resistance and
zero output resistance. Figure 5.28 displays a block diagram represen-
tation of three op amp circuits in cascade. Since the output of one stage
is the input to the next stage, the overall gain of the cascade connection
is the product of the gains of the individual op amp circuits, or

A= A1A2A3 (5.22)

Although the cascade connection does not affect the op amp input-
output relationships, care must be exercised in the design of an actual
op amp circuit to ensure that the load due to the next stage in the cas-
cade does not saturate the op amp.

o— —o
+ + + +
" Stigle 1 vy = Ay, Stigze 2 vy = Mgy Stiie 3 5= Asvs
_ _ _ _
Figure 5.28
A three-stage cascaded connection.
Find v, and i, in the circuit in Fig. 5.29. Example 5.9
Solution:
This circuit consists of two noninverting amplifiers cascaded. At the
output of the first op amp,
12 20 mvV Cf) 10 kQ
v,=(1+—1](20) =100 mV - %
( 3 >( ) § 3kQ § 4kQ
At the output of the second op amp, _
10 N ©
v,=|1+—)v, =1+ 25)100 = 350 mV -
4 Figure 5.29

i i . For E le 5.9.
The required current i, is the current through the 10-k{} resistor. or Example 5.9

v, — U
i, = 2—"mA
10
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But v, = v, = 100 mV. Hence,

. (350 — 100) x 10~°

o =25 uA
’ 10 X 10° a
Practice Problem 5.9 Determine v, and i, in the op amp circuit in Fig. 5.30.
Answer: 6V, 24 uA.
+
12v(®) 200kQ g,
50 k§2§
o -
O
Figure 5.30
For Practice Prob. 5.9.
Example 5.10 Ifvy,=1Vandv, =2V, find v, in the op amp circuit of Fig. 5.31.
,,,,,,,,,,,,,,,, L
,,,,,,,,,,,,,,,,,,, ey
10 kQ

Figure 5.31
For Example 5.10.

Solution:

1. Define. The problem is clearly defined.

2. Present. With an input of v, of 1 V and of v, of 2 V, determine
the output voltage of the circuit shown in Figure 5.31. The op
amp circuit is actually composed of three circuits. The first
circuit acts as an amplifier of gain —3(—6 kQ/2 k) for v; and
the second functions as an amplifier of gain —2(—8 k{/4 kQ)
for v,. The last circuit serves as a summer of two different gains
for the output of the other two circuits.

3. Alternative. There are different ways of working with this circuit.
Since it involves ideal op amps, then a purely mathematical
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approach will work quite easily. A second approach would be to

use PSpice as a confirmation of the math.

as Uy,. Then we get

U1 = _31)1: -3X1= _3V,
022:_21)2: —2X2=-4V

In the third circuit we have

UO
= =2(=3) = 2/3)(=4)
=6 + 2.667 = 8.667V

provide that check.

Now we can simulate this in PSpice. We see the results are

shown in Fig. 5.32.

. Attempt. Let the output of the first op amp circuit be designated
as vy and the output of the second op amp circuit be designated

—(10kQ/5kQ) vy, + [—(10kQ/15kQ)v,,]

. Evaluate. In order to properly evaluate our solution, we need to
identify a reasonable check. Here we can easily use PSpice to

R2

—4.000

5kQ

R3

15 kQ

8.667V

Figure 5.32
For Example 5.10.

We note that we obtain the same results using two entirely

different techniques (the first is to treat the op amp circuits as
just gains and a summer and the second is to use circuit analysis
with PSpice). This is a very good method of assuring that we

have the correct answer.

. Satisfactory? We are satisfied we have obtained the asked for

results. We can now present our work as a solution to the

problem.

193
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Practice Problem 5.10

LF411

(a) JFET—input op
amp subcircuit

Figure 5.34

If v, =7V and v, = 3.1V, find v, in the op amp circuit of
Fig. 5.33.

60 kQ
< 20 kQ
N AN = ,
+ (@
Figure 5.33
For Practice Prob. 5.10.
Answer: 10 V.
5.9 Op Amp Circuit Analysis with PSpice

PSpice for Windows does not have a model for an ideal op amp, although
one may create one as a subcircuit using the Create Subcircuit line in
the Tools menu. Rather than creating an ideal op amp, we will use one
of the four nonideal, commercially available op amps supplied in the
PSpice library eval.slb. The op amp models have the part names LF411,
LMI111, LM324, and uA741, as shown in Fig. 5.34. Each of them can
be obtained from Draw/Get New Part/libraries - - - /eval.lib or by sim-
ply selecting Draw/Get New Part and typing the part name in the
PartName dialog box, as usual. Note that each of them requires dc sup-
plies, without which the op amp will not work. The dc supplies should
be connected as shown in Fig. 5.3.

3 4|U1A
1
2
11
LM111 LM324 uA741
(b) Op amp (c) Five— (d) Five—connection
subcircuit connection op amp subcircuit

op amp subcircuit

Nonideal op amp model available in PSpice.
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Use PSpice to solve the op amp circuit for Example 5.1.

Solution:

Using Schematics, we draw the circuit in Fig. 5.6(a) as shown in
Fig. 5.35. Notice that the positive terminal of the voltage source vy is
connected to the inverting terminal (pin 2) via the 10-k{) resistor, while
the noninverting terminal (pin 3) is grounded as required in Fig. 5.6(a).
Also, notice how the op amp is powered; the positive power supply
terminal V+ (pin 7) is connected to a 15-V dc voltage source, while
the negative power supply terminal V— (pin 4) is connected to —15 V.
Pins 1 and 5 are left floating because they are used for offset null
adjustment, which does not concern us in this chapter. Besides adding
the dc power supplies to the original circuit in Fig. 5.6(a), we have also
added pseudocomponents VIEWPOINT and IPROBE to respectively
measure the output voltage v, at pin 6 and the required current i
through the 20-kQ) resistor.

0
V2
Ul ¢ +
VS 2V 3 T S — 15V
© 5 —3.9983 -
V+()52 6
R1 IR
2| V=5 +
1 =15V 0
10K ) =
uA741 Vi
< 1.999E-04
R2
AWV
20K

Figure 5.35
Schematic for Example 5.11.

After saving the schematic, we simulate the circuit by selecting
Analysis/Simulate and have the results displayed on VIEWPOINT and
IPROBE. From the results, the closed-loop gain is

v, —3.9983

— =———= —1.99915

Uy 2
and i = 0.1999 mA, in agreement with the results obtained analytically
in Example 5.1.

Example 5.11

Rework Practice Prob. 5.1 using PSpice.

Answer: 9.0027, 650.2 uA.

Practice Problem 5.11
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Digital ~o——
irlff)lu?tl Four-bit Analog
o 1
(0000-1111) | DAC output
()
4 , V» Y
Ry
R, SR SRy SR, '
MSB LSB & Y

(b)
Figure 5.36
Four-bit DAC: (a) block diagram,
(b) binary weighted ladder type.

I In practice, the voltage levels may be
typically Oand £ 5 V.

Chapter5  Operational Amplifiers

5.10 TAppIications

The op amp is a fundamental building block in modern electronic
instrumentation. It is used extensively in many devices, along with
resistors and other passive elements. Its numerous practical applications
include instrumentation amplifiers, digital-to-analog converters, analog
computers, level shifters, filters, calibration circuits, inverters, sum-
mers, integrators, differentiators, subtractors, logarithmic amplifiers,
comparators, gyrators, oscillators, rectifiers, regulators, voltage-to-
current converters, current-to-voltage converters, and clippers. Some of
these we have already considered. We will consider two more applica-
tions here: the digital-to-analog converter and the instrumentation
amplifier.

5.10.1

The digital-to-analog converter (DAC) transforms digital signals into
analog form. A typical example of a four-bit DAC is illustrated in
Fig. 5.36(a). The four-bit DAC can be realized in many ways. A sim-
ple realization is the binary weighted ladder, shown in Fig. 5.36(b).
The bits are weights according to the magnitude of their place value,
by descending value of R//R, so that each lesser bit has half the
weight of the next higher. This is obviously an inverting summing
amplifier. The output is related to the inputs as shown in Eq. (5.15).
Thus,

Digital-to-Analog Converter

R, R, R, R,

_Vo = 7‘/1 + 7‘/2 + 7‘/3 + 7‘V4 (5.23)
R, R, R3 Ry

Input V| is called the most significant bit (MSB), while input V, is the

least significant bit (LSB). Each of the four binary inputs Vi, . . ., V4

can assume only two voltage levels: 0 or 1 V. By using the proper input

and feedback resistor values, the DAC provides a single output that is

proportional to the inputs.

Example 5.12

In the op amp circuit of Fig. 5.36(b), let R, = 10 kQ, R, = 10 kQ,
R, = 20 kQ, R; = 40 k), and R, = 80 k(). Obtain the analog output
for binary inputs [0000], [0001], [0010],..., [1111].

Solution:
Substituting the given values of the input and feedback resistors in
Eq. (5.23) gives
R R R R
_V{, = JV] + JVz + JV3 + JV4
R, Ry Rs Ry
=V, + 0.5V, + 0.25V; + 0.125V,

Using this equation, a digital input [V;V,V5V,] = [0000] produces an ana-
log output of =V, = 0V; [V,V,V5V,] = [0001] gives —V, = 0.125 V.
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Similarly,
(ViV,V3V,] =[0011] = —V,=025+0.125=0375V
[(ViV,V3V,] =[1111] = —=V,=1+05+ 025+ 0.125
=1.875V

Table 5.2 summarizes the result of the digital-to-analog conversion.
Note that we have assumed that each bit has a value of 0.125 V. Thus,
in this system, we cannot represent a voltage between 1.000 and 1.125,
for example. This lack of resolution is a major limitation of digital-to-
analog conversions. For greater accuracy, a word representation with a
greater number of bits is required. Even then a digital representation
of an analog voltage is never exact. In spite of this inexact represen-
tation, digital representation has been used to accomplish remarkable
things such as audio CDs and digital photography.

TABLE 5.2

Input and output values of the four-bit DAC.

Binary input Output
[ViV,V3V4] Decimal value -V,
0000 0 0
0001 1 0.125
0010 2 0.25
0011 3 0.375
0100 4 0.5
0101 5 0.625
0110 6 0.75
0111 7 0.875
1000 8 1.0
1001 9 1.125
1010 10 1.25
1011 11 1.375
1100 12 1.5
1101 13 1.625
1110 14 1.75
1111 15 1.875
A three-bit DAC is shown in Fig. 5.37. Practice Problem 5.12
(a) Determine |V,| for [V,V,V3] = [010]. 10 kQ 10 kQ
(b) Find IV, if [V,V,V3] = [110]. v o—MWA—
(c) If IVl = 1.25 V is desired, what should be [V;V,V3]? 20 kO
(d) To get IV,| = 1.75 V, what should be [V,V,V3]? "o A = ”
4= 4
Answer: 0.5V, 1.5V, [101], [111]. v3 O—W— =

Figure 5.37
Three-bit DAC; for Practice Prob. 5.12.
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Inverting input

Gain set

Gain set

Noninverting input

Figure 5.38
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5.10.2 Instrumentation Amplifiers

One of the most useful and versatile op amp circuits for precision
measurement and process control is the instrumentation amplifier (1A),
so called because of its widespread use in measurement systems. Typ-
ical applications of IAs include isolation amplifiers, thermocouple
amplifiers, and data acquisition systems.

The instrumentation amplifier is an extension of the difference
amplifier in that it amplifies the difference between its input signals.
As shown in Fig. 5.26 (see Example 5.8), an instrumentation amplifier
typically consists of three op amps and seven resistors. For conven-
ience, the amplifier is shown again in Fig. 5.38(a), where the resistors are
made equal except for the external gain-setting resistor R, connected
between the gain set terminals. Figure 5.38(b) shows its schematic
symbol. Example 5.8 showed that

v, = Ay(V2 — V1) (5.24)
y, Output
o— 1=
o
N o—+

(b)

(a) The instrumentation amplifier with an external resistance to adjust the gain, (b) schematic diagram.

g
A

where the voltage gain is

2R
A=142 (5.25)
Rg

As shown in Fig. 5.39, the instrumentation amplifier amplifies small
differential signal voltages superimposed on larger common-mode

oO——

S

o

Small differential signals riding on larger Instrumentation amplifier Amplified differential signal,

common-mode signals

Figure 5.39

no common-mode signal

The IA rejects common voltages but amplifies small signal voltages.
Floyd, Thomas, L, Electronic Devices, 4th edition, © 1995, p. 795. Reprinted by permission of Pearson
Education, Inc., Upper Saddle River, NJ.
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voltages. Since the common-mode voltages are equal, they cancel each
other.
The TA has three major characteristics:

1. The voltage gain is adjusted by one external resistor R.

2. The input impedance of both inputs is very high and does not vary
as the gain is adjusted.

3. The output v, depends on the difference between the inputs v,
and v,, not on the voltage common to them (common-mode
voltage).

Due to the widespread use of IAs, manufacturers have developed
these amplifiers on single-package units. A typical example is the
LHO0036, developed by National Semiconductor. The gain can be var-
ied from 1 to 1,000 by an external resistor whose value may vary from
100 Q to 10 k€.

In Fig. 5.38, let R = 10 kQ, v, = 2.011 V, and v, = 2.017 V. If Ry Example 5.13
is adjusted to 500 (), determine: (a) the voltage gain, (b) the output

voltage v,,.

Solution:

(a) The voltage gain is

2R 2 X 10,000
Ay=1+—=1+———"=
R 500

41

(b) The output voltage is
v, = Ay(Uy —vy) = 41(2.017 — 2.011) = 41(6) mV = 246 mV

Determine the value of the external gain-setting resistor Rg required Practice Problem 5.13
for the IA in Fig. 5.38 to produce a gain of 142 when R = 25 k().

Answer: 354.6 ().

5.11 Summary

1. The op amp is a high-gain amplifier that has high input resistance
and low output resistance.

2. Table 5.3 summarizes the op amp circuits considered in this chap-
ter. The expression for the gain of each amplifier circuit holds
whether the inputs are dc, ac, or time-varying in general.
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TABLE 5.3

Summary of basic op amp circuits.

Op amp circuit Name/output-input relationship
R, Inverting amplifier
R,
, R v, = R, v;

Noninverting amplifier

T
v, R] U;

Voltage follower
v, =V,
v L0 g,
R, Ry Summer
1oV Ry Ry Ry
R, v, = —(Fvl + Rflh + Rfvg)
v o ., 1 2 3
Ry ’
U3 0—WW— —
R, R, Difference amplifier
V1 0— \MWW\— R,
Vo = E(Uz — vy
1}0
R,

V2 O—\WW—

i

10.

11.
12.

. An ideal op amp has an infinite input resistance, a zero output

resistance, and an infinite gain.

. For an ideal op amp, the current into each of its two input termi-

nals is zero, and the voltage across its input terminals is negligi-
bly small.

. In an inverting amplifier, the output voltage is a negative multiple

of the input.

. In a noninverting amplifier, the output is a positive multiple of the

input.

. In a voltage follower, the output follows the input.
. In a summing amplifier, the output is the weighted sum of the

inputs.

. In a difference amplifier, the output is proportional to the differ-

ence of the two inputs.

Op amp circuits may be cascaded without changing their input-
output relationships.

PSpice can be used to analyze an op amp circuit.

Typical applications of the op amp considered in this chapter include
the digital-to-analog converter and the instrumentation amplifier.
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1

5.1

5.2

53

Review Questions

The two input terminals of an op amp are labeled as:

(a) high and low.

(b) positive and negative.

(c) inverting and noninverting.

(d) differential and nondifferential.

For an ideal op amp, which of the following statements
are not true?

(a) The differential voltage across the input terminals
is zero.

(b) The current into the input terminals is zero.
(c) The current from the output terminal is zero.
(d) The input resistance is zero.

(e) The output resistance is zero.

For the circuit in Fig. 5.40, voltage v,, is:

(a) —6V (b) =5V
©—12V () —02V
10kQ
—AMA—
2k0
o
+
v 3kQ § 2
o

Figure 5.40
For Review Questions 5.3 and 5.4.

54

5.5

For the circuit in Fig. 5.40, current i, is:

(a) 0.6 mA (b) 0.5 mA
(¢) 0.2 mA (d) 1/12mA

If vy = 0 in the circuit of Fig. 5.41, current i, is:

(@) —10 mA (b) —2.5mA
(c) 10/12 mA (d) 10/14 mA
8 kQ

a N * )
1omv (%) CFF 10 +yo
-

4kQ
MWW -
DS

Figure 5.41
For Review Questions 5.5, 5.6, and 5.7.

5.6

5.7

5.8

If vy, = 8 mV in the circuit of Fig. 5.41, the output
voltage is:

(a) =44 mV
(c)4 mV

(b) —8 mV
(d)7mV

Refer to Fig. 5.41. If vy = 8 mV, voltage v,, is:
(@) —8mV (b) 0 mV
(¢) 10/3 mV (d) 8 mV

The power absorbed by the 4-k(} resistor in
Fig. 5.42 is:

(2) 9 mW (b) 4 mW
(c) 2 mW (d) 1 mW
4kQ
> :
6v () 2kQ S o,

Ol

L

Figure 5.42

For Review Questions 5.8.

5.9

5.10

Which of these amplifiers is used in a digital-to-analog
converter?

(a) noninverter
(b) voltage follower
(c) summer

(d) difference amplifier

Difference amplifiers are used in (please check all that
apply):

(a) instrumentation amplifiers

(b) voltage followers

(c) voltage regulators

(d) buffers

(e) summing amplifiers

(f) subtracting amplifiers

Answers: 5.1c, 5.2¢,d, 5.3b, 5.4b, 5.5a, 5.6¢, 5.7d, 5.8b,
5.9¢, 5.10a.f.
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1 Problems

Section 5.2 Operational Amplifiers
p— O Y,
5.1 The equivalent model of a certain op amp is shown -
in Fig. 5.43. Determine: G
(a) the input resistance Ly
m

(b) the output resistance Figure 5.45

(c) the voltage gain in dB For Prob. 5.6.

60 Q 5.7 The op amp in Fig. 5.46 has R; = 100 k),

- R, =100 Q, A = 100,000. Find the differential

v, 15 MQ 8 x 104, voltage v, and the output voltage v,,.

+

Figure 5.43
For Prob. 5.1. -

5.2 The open-loop gain of an op amp is 100,000. Calculate 10 kQ 100 kKQ
the output voltage when there are inputs of +10 uV AN
on the inverting terminal and +20 wV on the
noninverting terminal.

1 mV

oI & +0

5.3 Determine the output voltage when —20 uV is
applied to the inverting terminal of an op amp and
+30 wV to its noninverting terminal. Assume that Figure 5.46
the op amp has an open-loop gain of 200,000. For Prob. 5.7.

1|

5.4 The output voltage of an op amp is —4 V when the
noninverting input is 1 mV. If the open-loop gain
of the op amp is 2 X 10°, what is the inverting Section 5.3 Ideal Op Amp
input?

5.5 For the op amp circuit of Fig. 5.4, the op amp has 5.8 Obtain v, for each of the op amp circuits in Fig. 5.47.

an open-loop gain of 100,000, an input resistance of
10 k{), and an output resistance of 100 (). Find the
voltage gain v,/v; using the nonideal model of the 10kQ
op amp.
2kQ

+
1 mA " 1v 2kQ
G
O
Figure 5.44 ) @ (b)
For Prob. 5.5. Figure 5.47
For Prob. 5.8.

5.6 Using the same parameters for the 741 op amp in
Example 5.1, find v, in the op amp circuit of 5.9 Determine v, for each of the op amp circuits in
Fig. 5.45. Fig. 5.48.
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2 kQ 25kQ
A AW
5kQ

= AN =

+ > ©° + o 9
+ +

v,
1 mA (+ ; 4V v, ) 10k ”_o

_ o)
o T

= Figure 5.51
For Prob. 5.12.

+
- ] 5.13 Find v, and i, in the circuit of Fig. 5.52.
+
+
v (©) CEIV 2kQ %IOkQ

Figure 5.48
For Prob. 5.9.

S

5.10 Find the gain v,/v; of the circuit in Fig. 5.49.

Figure 5.52

20 kQ For Prob. 5.13.
AW 5.14 Determine the output voltage v,, in the circuit of
Fig. 5.53.
10 kQ
6
10 kQ
20 kQ
AW =
>
Figure 5.49 2mA 5kQ Y
For Prob. 5.10. N
o
5.11 Using Fig. 5.50, design a problem to help other Fi 5.53 -
efd students better understand how ideal op amps work. igure o.
For Prob. 5.14.
Section 5.4 Inverting Amplifier
R
’\NZV\, 5.15 (a) Determine the ratio v, /i, in the op amp circuit of
Fig. 5.54.
R .
y > o (b) Evaluate the ratio for R; = 20 kQ, R, = 25 k(),
R; = 40 kQ.
+
Rs +
14 Ry Rs § K

Figure 5.50
For Prob. 5.11.

5.12 Calculate the voltage ratio v, /v, for the op amp
circuit of Fig. 5.51. Assume that the op amp is Figure 5.54
ideal. For Prob. 5.15.
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5.16 Using Fig. 5.55, design a problem to help students 5.19 Determine i, in the circuit of Fig. 5.58.
eJd better understand inverting op amps.

2kQ 4kQ
Ry
NV
i 750 mV 4kQ
R, _l", iy
MVY - —
+

10 kQ

2kQ

AV .
Figure 5.58

+
16 For Prob. 5.19.

5.20 In the circuit of Fig. 5.59, calculate v, of vy, =2 V.

i 3kQ
Figure 5.55
For Prob. 5.16. 2kQ
4 kQ 4 kQ
MV -~ 1 4
5.17 Calculate the gain v,,/v; when the switch in Fig. 5.56 + +
is in: LAY y, Y
(a) position 1 (b) position 2 (c) position 3. -
T 0

12kQ

Figure 5.59
For Prob. 5.20.

5.21 Calculate v,, in the op amp circuit of Fig. 5.60.

10 kQ

5kQ

3V

Figure 5.56

For Prob. 5.17. Figure 5.60

For Prob. 5.21.
*5.18 For the circuit shown in Figure 5.57, solve for the

Thevenin equivalent circuit looking into terminals A 5.22 Design an inverting amplifier with a gain of —15.
and B.
10kQ 5.23 For the op amp circuit in Fig. 5.61, find the voltage
gain v,/v;.
10 kQ Ry
aA%%Y
75V 250 Ry
AW
Lo
o + +
= % R, ”

Figure 5.57
For Prob. 5.18. 1 0

Figure 5.61

* An asterisk indicates a challenging problem. For Prob. 5.23.
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5.24 In the circuit shown in Fig. 5.62, find k in the voltage

transfer function v, = kv,.

Ry
A

Figure 5.62
For Prob. 5.24.

Section 5.5 Noninverting Amplifier

5.25 Calculate v, in the op amp circuit of Fig. 5.63.

12 kQ

+
+
37V 20kQ 2 7,
L

Figure 5.63
For Prob. 5.25.

5.26 Using Fig. 5.64, design a problem to help other

efJd students better understand noninverting op amps.

v @) R, § Ry

Figure 5.64
For Prob. 5.26.

5.27 Find v, in the op amp circuit of Fig. 5.65.

8Q
16 Q ” } vy

75v (%) 40 1202y,

Figure 5.65
For Prob. 5.27.

Problems

5.28 Find i, in the op amp circuit of Fig. 5.66.

50 kQ
A
+ i .
l()
10kQ 04V 20 kQ
L

Figure 5.66
For Prob. 5.28.

5.29 Determine the voltage gain v,/v; of the op amp
circuit in Fig. 5.67.

Ry

Figure 5.67
For Prob. 5.29.

5.30 In the circuit shown in Fig. 5.68, find i, and the
power absorbed by the 20-k() resistor.

60 kQ
7 * ix

12V 30 kQ 20 kQ

Figure 5.68
For Prob. 5.30.

5.31 For the circuit in Fig. 5.69, find i,.

12 kQ

4 mA §3k9

Figure 5.69
For Prob. 5.31.

205
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5.32 Calculate i, and v,, in the circuit of Fig. 5.70. Find
the power dissipated by the 60-k{) resistor.

.
4mv C’:) 50k 60 kQ § 30kQ § %

Figure 5.70
For Prob. 5.32.

5.33 Refer to the op amp circuit in Fig. 5.71. Calculate i,
and the power absorbed by the 3-k{ resistor.

1 kQ
i
+

Figure 5.71
For Prob. 5.33.

5.34 Given the op amp circuit shown in Fig. 5.72, express
v, in terms of v and v,.

Figure 5.72
For Prob. 5.34.

5.35 Design a noninverting amplifier with a gain of 7.5.

5.36 For the circuit shown in Fig. 5.73, find the Thevenin
equivalent at terminals a-b. (Hint: To find Ry, apply
a current source i, and calculate v,,.)

Operational Amplifiers

Figure 5.73
For Prob. 5.36.

Section 5.6 Summing Amplifier

5.37 Determine the output of the summing amplifier in

Fig. 5.74.
2V ke
—O—ww 30kQ
2V ke
= Z +
SV 30k - o

Figure 5.74
For Prob. 5.37.

5.38 Using Fig. 5.75, design a problem to help other
efJd students better understand summing amplifiers.

Figure 5.75
For Prob. 5.38.

5.39 For the op amp circuit in Fig. 5.76, determine the

value of v, in order to make v, = —16.5 V.

10 kQ 50 kQ

+2V O—AMWW— ——WW—
20 kQ

v O 2A%%Y
>—1 0y,

50 kQ >

-1V o—AMWWN—-

Figure 5.76
For Prob. 5.39.
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5.40 Referring to the circuit shown in Fig. 5.77,
determine V,, in terms of V; and V,.

100 kQ 200 kQ
A AV
100 kQ
10Q
5
Vl Cf> v +
’ 002V,
L

Figure 5.77
For Prob. 5.40.

5.41 An averaging amplifier is a summer that provides
ed an output equal to the average of the inputs. By
using proper input and feedback resistor values,
one can get

1
“Uou = (U1 T U2 + U3+ Vy)

Using a feedback resistor of 10 k(), design an
averaging amplifier with four inputs.

5.42 A three-input summing amplifier has input resistors

with R; = R, = R; = 75 k(. To produce an

averaging amplifier, what value of feedback resistor

is needed?

5.43 A four-input summing amplifier has R; = R, =
R; = R, = 80 k(). What value of feedback resistor
is needed to make it an averaging amplifier?

5.44 Show that the output voltage v,, of the circuit in

Fig. 5.78 is
(R3 + Ry)
Vo = o (Ryv; + Rivy)
R3(Ry + Ry)
Ry
—— W
Ry
MW
= %
Ry
" o—— A +
R,

v O—AMAN——

Figure 5.78
For Prob. 5.44.

5.45 Design an op amp circuit to perform the following
operation:

v, = 3v; — 20,

All resistances must be = 100 k().

Problems 207

5.46 Using only two op amps, design a circuit to solve

Uy — Uy U3
“VUout = ? +

Section 5.7 Difference Amplifier

5.47 The circuit in Fig. 5.79 is for a difference amplifier.
Findv, given thatv; = 1 Vandv, =2 V.

30 kQ
M
2kQ
MV =
2 kQ —— 0
ANV + +
w (@
- y
) 20 kQ o
o)
L

Figure 5.79
For Prob. 5.47.

5.48 The circuit in Fig. 5.80 is a differential amplifier
driven by a bridge. Find v,,.

80 kQ

+ 10 mV

N

80 kQ

Figure 5.80
For Prob. 5.48.

5.49 Design a difference amplifier to have a gain of 4 and
edd acommon-mode input resistance of 20 k() at each
input.

5.50 Design a circuit to amplify the difference between
two inputs by 2.5.

(a) Use only one op amp.

(b) Use two op amps.
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5.51 Using two op amps, design a subtractor.

*5.52 Design an op amp circuit such that
v, = 4v, + 6V, — 3v;3 — Svy

Let all the resistors be in the range of 20 to 200 k().

*5.53 The ordinary difference amplifier for fixed-gain
operation is shown in Fig. 5.81(a). It is simple and
reliable unless gain is made variable. One way of
providing gain adjustment without losing simplicity
and accuracy is to use the circuit in Fig. 5.81(b).
Another way is to use the circuit in Fig. 5.81(c).
Show that:

(a) for the circuit in Fig. 5.81(a),

U, R2

v R
(b) for the circuit in Fig. 5.81(b),
U, R2 1

v R R
U; 11+ 1
2R;

(c) for the circuit in Fig. 5.81(c),

Vo R2<1 Ry )
v; R, 2R;

R,
MV
R
o MWW =
Yi O
+ +
+
R, 4
Ry
o T °

Operational Amplifiers

(c)

Figure 5.81
For Prob. 5.53.

Section 5.8 Cascaded Op Amp Circuits

5.54 Determine the voltage transfer ratio v,/v, in the op
amp circuit of Fig. 5.82, where R = 10 k().

Figure 5.82
For Prob. 5.54.

5.55 In a certain electronic device, a three-stage amplifier
is desired, whose overall voltage gain is 42 dB. The
individual voltage gains of the first two stages are to
be equal, while the gain of the third is to be one-
fourth of each of the first two. Calculate the voltage
gain of each.

5.56 Using Fig. 5.83, design a problem to help other
efJd students better understand cascaded op amps.

Figure 5.83
For Prob. 5.56.
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5.57 Find v, in the op amp circuit of Fig. 5.84. 5.61 Determine v, in the circuit of Fig. 5.88.

25 kQ 50kQ 100k 100 kQ

%1 AAM i v, 20kQ 02V 10kQ  40kQ
> O—MMW—
04V 10kQ 20k
% n A
50 kO 100 kQ n
Vs

50 kQ

= Figure 5.88
Figure 5.84 For Prob. 5.61.
For Prob. 5.57.
5.62 Obtain the closed-loop voltage gain v,/v; of the

5.58 Calculate i, in the op amp circuit of Fig. 5.85. circuit in Fig. 5.89.

10 kQ

Ry

+0

1
Ol

Figure 5.85 . =
For Prob. 5.58. Figure 5.89
For Prob. 5.62.
5.59 In the op amp circuit of Fig. 5.86, determine the

voltage gain v,,/v,. Take R = 10 k(. 5.63 Determine the gain v,/v; of the circuit in Fig. 5.90.

4R
Ry
AWV
R, Ry
+ R1 R
v —VWW— 5
0

_ " Ry +
o 0 AV %

o}

Figure 5.86 =

For Prob. 5.59. Figure 5.90

For Prob. 5.63.
5.60 Calculate v,/v; in the op amp circuit of Fig. 5.87. or o

5.64 For the op amp circuit shown in Fig. 5.91, find

4%Q
A v,/Us.
10kQ
Gy
G A
G3
—AM—
Gl
AN = ¢
N 10 M %
= ?
Figure 5.87 Figure 5.91

For Prob. 5.60. For Prob. 5.64.
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5.65 Find v, in the op amp circuit of Fig. 5.92. 5.68 Find v, in the circuit of Fig. 5.95, assuming that
Ry = o (open circuit).

15 kQ

15 mV 6 kQ v0§lk£2

Figure 5.92
For Prob. 5.65. J__

Figure 5.95
For Probs. 5.68 and 5.69.

5.66 For the circuit in Fig. 5.93, find v,,.

100 k& 5.69 Repeat the previous problem if R, = 10 k().
+ +
1/0
5.70 Determine v,, in the op amp circuit of Fig. 5.96.
o
Figure 5.93 30kQ 40 kQ
For Prob. 5.66. ——MWW—
10 kQ A
> 20 kQ C
MW =
5.67 Obtain the output v, in the circuit of Fig. 5.94. v t N %
= 60 kQ
= 10kQ 10 kQ
2V 20 kQ =
—WW—
= 10kQ
B
3V ( i: )
= 10kQ
4V ( i )
Figure 5.94 Figure 5.96

For Prob. 5.67. For Prob. 5.70.
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5.71 Determine v,, in the op amp circuit of Fig. 5.97. 5.74 Find i, in the op amp circuit of Fig. 5.100.

10 kQ

09V

Figure 5.100
For Prob. 5.74.

Section 5.9 Op Amp Circuit Analysis with
PSpice

5.75 Rework Example 5.11 using the nonideal op amp
LM324 instead of uA741.

Figure 5.97 5.76 Solve Prob. 5.19 using PSpice or MultiSim and
For Prob. 5.71. op amp uA741.

5.77 Solve Prob. 5.48 using PSpice or MultiSim and
op amp LM324.

5.72 Find the load voltage v, in the circuit of Fig. 5.98. 5.78 Use PSpice or MultiSim to obtain v, in the circuit of

Fig. 5.101.

100kQ 250 kQ 10 kQ 20 kQ 30 kQ 40 kQ

A MW
20 kQ } }
+
18v () 2k 2y 1v(®)
T L
Figure 5.98 Figure 5.101
For Prob. 5.72. For Prob. 5.78.
5.79 Determine v,, in the op amp circuit of Fig. 5.102,
using PSpice or MultiSim.
5.73 Determine the load voltage v, in the circuit of
Fig. 5.99.
20 kQ 10 kQ

20 kQ 10 kQ 40 kQ

100 kQ

|||—0| S +0

1Y

Figure 5.99 Figure 5.102
For Prob. 5.73. For Prob. 5.79.
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5.80 Use PSpice or MultiSim to solve Prob. 5.70.

5.81 Use PSpice or MultiSim to verify the results in
Example 5.9. Assume nonideal op amps LM324.

Section 5.10 Applications

5.82 A five-bit DAC covers a voltage range of 0 to 7.75 V.
e“ Calculate how much voltage each bit is worth.

5.83 Design a six-bit digital-to-analog converter.

(a) If IV, = 1.1875 V is desired, what should
[Vl V2V3V4V5V6] be?

(b) Calculate IV, | if [V, V,V5V,V5Ve] = [011011].
(c) What is the maximum value |V, can assume?

*5.84 A four-bit R-2R ladder DAC is presented in Fig. 5.103.

(a) Show that the output voltage is given by
V=Rl —+ -+ -+
! ( 16R

2R 4R ' S8R
(b) If R, = 12 kQ and R = 10 kQ, find V| for
[V,V,V3Va] = [1011] and [V,V,V3V4] = [0101].

Ry
2R
Y v
[
R
2R =
Vs 0— AW —
§ R
2R
Vi 0—AMA—
§ R
2R
Vy 0—AMA—

Figure 5.103
For Prob. 5.84.

5.85 In the op amp circuit of Fig. 5.104, find the value of
R so that the power absorbed by the 10-k() resistor is
10 mW. Take vy, = 2 V.

10 kQ

GF R

%40 kQ
L

Figure 5.104
For Prob. 5.85.

Operational Amplifiers

5.86 Design a voltage controlled ideal current source
efJd (within the operating limits of the op amp) where the
output current is equal to 200 v(f) nA.

5.87 Figure 5.105 displays a two-op-amp instrumentation
amplifier. Derive an expression for v,, in terms of v
and v,. How can this amplifier be used as a
subtractor?

Figure 5.105
For Prob. 5.87.

*5.88 Figure 5.106 shows an instrumentation amplifier
driven by a bridge. Obtain the gain v,/v; of the
amplifier.

25kQ 500 kQ

500 kQ

Figure 5.106
For Prob. 5.88.
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1 Comprehensive Problems

5.89 Design a circuit that provides a relationship between
e?dd output voltage v, and input voltage v, such that
v, = 12v; — 10. Two op amps, a 6-V battery, and
several resistors are available.

5.90 The op amp circuit in Fig. 5.107 is a current
amplifier. Find the current gain i,/i, of the amplifier.

20 kQ
— MW

§4k§2
b
§2kQ

i (D) §5m

Figure 5.107
For Prob. 5.90.

5.91 A noninverting current amplifier is portrayed in
Fig. 5.108. Calculate the gain i,/i,. Take R, = 8 k()
and R, = 1 k.

Figure 5.108
For Prob. 5.91.

5.92 Refer to the bridge amplifier shown in Fig. 5.109.
Determine the voltage gain v,/v;.

60 kQ

L

§

Figure 5.109
For Prob. 5.92.

*5.93 A voltage-to-current converter is shown in Fig. 5.110,
which means that i; = Av; if R{R, = R3R,. Find the
constant term A.

Figure 5.110
For Prob. 5.93.
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Capacitors and
Inductors

But in science the credit goes to the man who convinces the world, not
to the man to whom the idea first occurs.
—Francis Darwin

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.c), “an ability to design a system,
component, or process to meet desired needs.”

The “ability to design a system, component, or process to meet
desired needs” is why engineers are hired. That is why this is the
most important technical skill that an engineer has. Interestingly, your
success as an engineer is directly proportional to your ability to com-
municate but your being able to design is why you will be hired in
the first place.

Design takes place when you have what is termed an open-ended
problem that eventually is defined by the solution. Within the context
of this course or textbook, we can only explore some of the elements
of design. Pursuing all of the steps of our problem-solving technique Photo by Charles Alexander
teaches you several of the most important elements of the design
process.

Probably the most important part of design is clearly defining what
the system, component, process, or, in our case, problem is. Rarely is
an engineer given a perfectly clear assignment. Therefore, as a student,
you can develop and enhance this skill by asking yourself, your col-
leagues, or your professors questions designed to clarify the problem
statement.

Exploring alternative solutions is another important part of the
design process. Again, as a student, you can practice this part of the
design process on almost every problem you work.

Evaluating your solutions is critical to any engineering assignment.

Again, this is a skill that you as a student can practice on every prob-
lem you work.

215
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In contrast to a resistor, which spends
or dissipates energy irreversioly, an
inductor or capacitor stores or releases
energy (i.e., has a memory).

Dielectric with permittivity €

Metal plates,
each with area A

X

-

d

Figure 6.1
A typical capacitor.

Figure 6.2
A capacitor with applied voltage v.

I Alternatively, capacitance is the amount
of charge stored per plate for a unit
voltage difference in a capacitor.

Chapter 6 Capacitors and Inductors

601

So far we have limited our study to resistive circuits. In this chapter,
we shall introduce two new and important passive linear circuit ele-
ments: the capacitor and the inductor. Unlike resistors, which dissipate
energy, capacitors and inductors do not dissipate but store energy,
which can be retrieved at a later time. For this reason, capacitors and
inductors are called sforage elements.

The application of resistive circuits is quite limited. With the intro-
duction of capacitors and inductors in this chapter, we will be able to
analyze more important and practical circuits. Be assured that the cir-
cuit analysis techniques covered in Chapters 3 and 4 are equally appli-
cable to circuits with capacitors and inductors.

We begin by introducing capacitors and describing how to com-
bine them in series or in parallel. Later, we do the same for inductors.
As typical applications, we explore how capacitors are combined with
op amps to form integrators, differentiators, and analog computers.

Introduction

6.2 Capacitors

A capacitor is a passive element designed to store energy in its elec-
tric field. Besides resistors, capacitors are the most common electrical
components. Capacitors are used extensively in electronics, communi-
cations, computers, and power systems. For example, they are used in
the tuning circuits of radio receivers and as dynamic memory elements
in computer systems.

A capacitor is typically constructed as depicted in Fig. 6.1.

A capacitor consists of two conducting plates separated by an insu-
lator (or dielectric).

In many practical applications, the plates may be aluminum foil while
the dielectric may be air, ceramic, paper, or mica.

When a voltage source v is connected to the capacitor, as in
Fig. 6.2, the source deposits a positive charge ¢ on one plate and a neg-
ative charge —¢ on the other. The capacitor is said to store the electric
charge. The amount of charge stored, represented by ¢, is directly pro-
portional to the applied voltage v so that

g = Cv (6.1)

where C, the constant of proportionality, is known as the capacitance
of the capacitor. The unit of capacitance is the farad (F), in honor of
the English physicist Michael Faraday (1791-1867). From Eq. (6.1),
we may derive the following definition.

Capacitance is the ratio of the charge on one plate of a capacitor to
the voltage difference between the two plates, measured in farads (F).

Note from Eq. (6.1) that 1 farad = 1 coulomb/volt.
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Historical

Michael Faraday (1791-1867), an English chemist and physicist,
was probably the greatest experimentalist who ever lived.

Born near London, Faraday realized his boyhood dream by work-
ing with the great chemist Sir Humphry Davy at the Royal Institu-
tion, where he worked for 54 years. He made several contributions
in all areas of physical science and coined such words as electroly-
sis, anode, and cathode. His discovery of electromagnetic induction
in 1831 was a major breakthrough in engineering because it provided
a way of generating electricity. The electric motor and generator oper-
ate on this principle. The unit of capacitance, the farad, was named
in his honor.

The Burndy Library Collection
at The Huntington Library,
San Marino, California.

Although the capacitance C of a capacitor is the ratio of the charge

q per plate to the applied voltage v, it does not depend on ¢ or v. It

depends on the physical dimensions of the capacitor. For example, for

the parallel-plate capacitor shown in Fig. 6.1, the capacitance is given by

€A

C 7 (6.2)

where A is the surface area of each plate, d is the distance between

the plates, and € is the permittivity of the dielectric material between

the plates. Although Eq. (6.2) applies to only parallel-plate capacitors,

we may infer from it that, in general, three factors determine the value
of the capacitance:

1. The surface area of the plates—the larger the area, the greater the
capacitance.

2. The spacing between the plates—the smaller the spacing, the greater
the capacitance.

3. The permittivity of the material—the higher the permittivity, the
greater the capacitance.

Capacitors are commercially available in different values and types.
Typically, capacitors have values in the picofarad (pF) to microfarad (uF)
range. They are described by the dielectric material they are made of and
by whether they are of fixed or variable type. Figure 6.3 shows the cir-
cuit symbols for fixed and variable capacitors. Note that according to the
passive sign convention, if v > Qandi > Oorifv < 0 andi < 0, the
capacitor is being charged, and if v + i < 0, the capacitor is discharging.

Figure 6.4 shows common types of fixed-value capacitors. Poly-
ester capacitors are light in weight, stable, and their change with tem-
perature is predictable. Instead of polyester, other dielectric materials
such as mica and polystyrene may be used. Film capacitors are rolled
and housed in metal or plastic films. Electrolytic capacitors produce
very high capacitance. Figure 6.5 shows the most common types of
variable capacitors. The capacitance of a trimmer (or padder) capacitor

Capacitor voltage rating and capaci-
tance are typically inversely rated due
to the relationships in Egs. (6.1) and
(6.2). Arcing occurs if @ is small and V/
is high.

i C i C
— I} o o— X o
+ v - + v -
(a) (b)
Figure 6.3

Circuit symbols for capacitors: (a) fixed
capacitor, (b) variable capacitor.
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/

(a)

(b) ©

Figure 6.4

Fixed capacitors: (a) polyester capacitor, (b) ceramic capacitor, (c) electrolytic capacitor.

Courtesy of Tech America.

(a)

&

(b)

Figure 6.5

Variable capacitors: (a) trimmer capacitor,
(b) filmtrim capacitor.

Courtesy of Johanson.

According to Eq. (6.4), for a capacitor
to carry current, its voltage must vary
with time. Hence, for constant voltage,
/= 0.

~— Slope =C

0 dv/d
Figure 6.6

Current-voltage relationship of a capacitor.

is often placed in parallel with another capacitor so that the equivalent
capacitance can be varied slightly. The capacitance of the variable air
capacitor (meshed plates) is varied by turning the shaft. Variable capac-
itors are used in radio receivers allowing one to tune to various sta-
tions. In addition, capacitors are used to block dc, pass ac, shift phase,
store energy, start motors, and suppress noise.

To obtain the current-voltage relationship of the capacitor, we take
the derivative of both sides of Eq. (6.1). Since

dq
| = — 6.3
= (6.3)
differentiating both sides of Eq. (6.1) gives
dv
| = C— 6.4
i ar (6.4)

This is the current-voltage relationship for a capacitor, assuming the
passive sign convention. The relationship is illustrated in Fig. 6.6 for
a capacitor whose capacitance is independent of voltage. Capacitors
that satisfy Eq. (6.4) are said to be linear. For a nonlinear capacitor,
the plot of the current-voltage relationship is not a straight line.
Although some capacitors are nonlinear, most are linear. We will
assume linear capacitors in this book.

The voltage-current relation of the capacitor can be obtained by
integrating both sides of Eq. (6.4). We get

v(r) = lC J i (T)dt (6.5)

—o

or

u(t) = éJ i(m)dr + v(ty) (6.6)

fo

where v(ty) = q(ty)/C is the voltage across the capacitor at time %,
Equation (6.6) shows that capacitor voltage depends on the past history
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of the capacitor current. Hence, the capacitor has memory—a property
that is often exploited.
The instantaneous power delivered to the capacitor is

d
p=vi= CUd—’; 6.7)

The energy stored in the capacitor is therefore

t t dU v(1) 1 v(1)
w=J p(T)dr =CJ UddTZCJ Udv=§Cvz (6.8)

T (=) v(—)

—o0 —

We note that v(—o) = 0, because the capacitor was uncharged at
t = —oo, Thus,

1
w = ECUZ (6.9)

Using Eq. (6.1), we may rewrite Eq. (6.9) as

(12

w =
2C

(6.10)
Equation (6.9) or (6.10) represents the energy stored in the electric field
that exists between the plates of the capacitor. This energy can be
retrieved, since an ideal capacitor cannot dissipate energy. In fact, the
word capacitor is derived from this element’s capacity to store energy
in an electric field.

We should note the following important properties of a capacitor:

1. Note from Eq. (6.4) that when the voltage across a capacitor is not
changing with time (i.e., dc voltage), the current through the capac-
itor is zero. Thus,

A capacitor is an open circuit to dc.

However, if a battery (dc voltage) is connected across a capacitor,
the capacitor charges.
2. The voltage on the capacitor must be continuous.

The voltage on a capacitor cannot change abruptly.

The capacitor resists an abrupt change in the voltage across it.
According to Eq. (6.4), a discontinuous change in voltage requires
an infinite current, which is physically impossible. For example,
the voltage across a capacitor may take the form shown in
Fig. 6.7(a), whereas it is not physically possible for the capacitor
voltage to take the form shown in Fig. 6.7(b) because of the abrupt
changes. Conversely, the current through a capacitor can change
instantaneously.

3. The ideal capacitor does not dissipate energy. It takes power from
the circuit when storing energy in its field and returns previously
stored energy when delivering power to the circuit.

4. A real, nonideal capacitor has a parallel-model leakage resistance,
as shown in Fig. 6.8. The leakage resistance may be as high as

219

(@) ()
Figure 6.7
Voltage across a capacitor: (a) allowed,
(b) not allowable; an abrupt change is not
possible.

An alternative way of looking at this is
using Eq. (6.9), which indicates that
energy is proportional to voltage
squared. Since injecting or extracting
energy can only be done over some
finite time, voltage cannot change
instantaneously across a capacitor.

J Leakage resistance

Il
o i} 0
Capacitance

Figure 6.8

Circuit model of a nonideal capacitor.
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100 MQ and can be neglected for most practical applications. For
this reason, we will assume ideal capacitors in this book.
Example 6.1 (a) Calculate the charge stored on a 3-pF capacitor with 20 V across it.

(b) Find the energy stored in the capacitor.

Solution:
(a) Since g = Cuv,

g=3x%x10""x20=60pC
(b) The energy stored is

1. ,_1 12
w=5Cv =5><3><10 X 400 = 600 pJ

Practice Problem 6.1

What is the voltage across a 4.5-uF capacitor if the charge on one plate
is 0.12 mC? How much energy is stored?

Answer: 26.67 A, 1.6 mJ.

Example 6.2

The voltage across a 5-uF capacitor is
v(t) = 10 cos 6000t V

Calculate the current through it.

Solution:
By definition, the current is

d d
i) cjl; = 5% 107°% (10 cos 60001

—5 X 107° X 6000 X 10 sin 6000r = —0.3 sin 60007 A

Practice Problem 6.2

If a 10-uF capacitor is connected to a voltage source with
v(f) = 75 sin 20007 V

determine the current through the capacitor.

Answer: 1.5 cos 2000z A.

Example 6.3

Determine the voltage across a 2-uF capacitor if the current through it is
i(f) = 6" mA

Assume that the initial capacitor voltage is zero.
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Solution:
1 13
Since v = — f idt + v(0) and v(0) = 0,
¢ 0
1 t
v = 6‘[ 6e % dr - 1073
2 X 10 o

' — (1 _ e—3000t)V
0

_ 3X0° 00,
—3000

221

The current through a 100-uF capacitor is i(f) = 50 sin 12077 ¢ mA.
Calculate the voltage across it at # = 1 ms and ¢ = 5 ms. Take v(0) = 0.

Answer: 93.14 mV, 1.736 V.

Practice Problem 6.3

Determine the current through a 200-uF capacitor whose voltage is
shown in Fig. 6.9.

Solution:
The voltage waveform can be described mathematically as
50tV 0<tr<1
o) = 100 — 50t V 1 <1r<3
—200 + 50tV 3<t<4
0 otherwise

Since i = Cdv/dt and C = 200 uF, we take the derivative of v to obtain

50 0<tr<1
i) =200 x 106 x4 0 Lsr<3
50 3<r<4
0 otherwise

10 mA 0<tr<I1

)-1omA 1<1<3

] 1omA  3<:<4

0 otherwise

Thus the current waveform is as shown in Fig. 6.10.

Example 6.4

v(t) A

50 -

0 1 1 ]
1 z\3/t ‘
-50 +

Figure 6.9

For Example 6.4.
i (MA) A
10
0 ] >
1 2 3 4 t
—10 +

Figure 6.10
For Example 6.4.

An initially uncharged 1-mF capacitor has the current shown in
Fig. 6.11 across it. Calculate the voltage across it at + = 2 ms and
t = 5ms.

Answer: 100 mV, 400 mV.

Practice Problem 6.4

i (mA)

100

0 1 1
2 4 6

Figure 6.11
For Practice Prob. 6.4.

t’(ms)
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Example 6.5

Obtain the energy stored in each capacitor in Fig. 6.12(a) under dc
conditions.

2 mF —O+ v —
I 2kQ i
MM
2kQ
A 5kQ

4 mF

6ma (1) %31(9 SkQ% %41@ sma (1) %31@ 0 %41@

T 7

(a)
Figure 6.12
For Example 6.5.

(b)

Solution:

Under dc conditions, we replace each capacitor with an open circuit,
as shown in Fig. 6.12(b). The current through the series combination
of the 2-kQ) and 4-k() resistors is obtained by current division as

l=m(6mA)=2mA

Hence, the voltages v, and v, across the capacitors are
v, =2000i =4V v, = 4000i = 8V

and the energies stored in them are

1 1
w, = Eclu% = 5(2 X 107%)4)> = 16 mJ

2 1 -3 2
wy = Co3 = (4 X 107)®) = 128m]

_ !
2

Practice Problem 6.5

3kQ
1kQ
30 uF
50V 20 uF == 6 kQ

Figure 6.13
For Practice Prob. 6.5.

Under dc conditions, find the energy stored in the capacitors in Fig. 6.13.

Answer: 20.25 m], 3.375 mJ.

6.3 Series and Parallel Capacitors

We know from resistive circuits that the series-parallel combination is a
powerful tool for reducing circuits. This technique can be extended to
series-parallel connections of capacitors, which are sometimes encoun-
tered. We desire to replace these capacitors by a single equivalent
capacitor Ceq.

In order to obtain the equivalent capacitor C, of N capacitors in
parallel, consider the circuit in Fig. 6.14(a). The equivalent circuit is
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in Fig. 6.14(b). Note that the capacitors have the same voltage v across
them. Applying KCL to Fig. 6.14(a),

But iy = C, dv/dt. Hence,

el i ® i
=0, 27 37, N,
dt dt dt dt 6.12)
(Sa) ol
) ar T T ar
where
Ceq = Cl + C2 + C3 + -+ CN (6.13)

The equivalent capacitance of N parallel-connected capacitors is the
sum of the individual capacitances.

We observe that capacitors in parallel combine in the same manner as
resistors in series.

We now obtain Cq of N capacitors connected in series by com-
paring the circuit in Fig. 6.15(a) with the equivalent circuit in
Fig. 6.15(b). Note that the same current i flows (and consequently
the same charge) through the capacitors. Applying KVL to the loop
in Fig. 6.15(a),

U:U1+U2+U3+"'+UN (6.14)
t

1
But v, = c J i(T)dt + vi(ty). Therefore,
k

1 L[
v = F J i(t)dr + v(ty) + FZ J i(T)dt + vs(to)

o o

1 t
+ -+ F J l(T)d’T + UN(Z())

N
Iy

1 ] ) (6.15)
1
(C] G, CN> ’[U e i e
+ o 4 vplty)
1 J !
= — l('T)dT + U(l())
ch to
where
1 1 1 1 1
Ceq C] 2 3 N
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(a)

=+

eq T

(b)
Figure 6.14
(a) Parallel-connected N capacitors,
(b) equivalent circuit for the parallel
capacitors.

i o G Cy
—
|| || |
1 1 I 4}7
+V - + V- +VU3— + VN —
()
i
e
+
v Ceq —
(b)

Figure 6.15

(a) Series-connected N capacitors,
(b) equivalent circuit for the series
capacitor.



www.konkur.in

224 Chapter 6 Capacitors and Inductors
The initial voltage v(zy) across Ceq is required by KVL to be the sum
of the capacitor voltages at ty. Or according to Eq. (6.15),
v(tg) = v(fp) + va(fp) + -+ + vn(lp)
Thus, according to Eq. (6.16),
The equivalent capacitance of series-connected capacitors is the
reciprocal of the sum of the reciprocals of the individual capacitances.
Note that capacitors in series combine in the same manner as resistors
in parallel. For N =2 (i.e., two capacitors in series), Eq. (6.16)
becomes
1
_ = — 4 —
Ceq Cl CZ
or
. =& (6.17)
a4+ G )
Example 6.6 Find the equivalent capacitance seen between terminals a and b of the

circuit in Fig. 6.16.

5 uF 60 uF
| o a
Ceq
20 uF == 6 uF = 20 uF == -
)
Figure 6.16
For Example 6.6.

Solution:
The 20-uF and 5-uF capacitors are in series; their equivalent capaci-
tance is

This 4-uF capacitor is in parallel with the 6-uF and 20-uF capacitors;
their combined capacitance is

4+ 6+ 20=30uF

This 30-uwF capacitor is in series with the 60-wF capacitor. Hence, the
equivalent capacitance for the entire circuit is

<30 + 60
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Find the equivalent capacitance seen at the terminals of the circuit in
Fig. 6.17.

Answer: 40 uF.

Practice Problem 6.6

50 uF
[|
i
Ceq ‘ }7
—  TOuF =—=20uF == 120uF
o

Figure 6.17
For Practice Prob. 6.6.

For the circuit in Fig. 6.18, find the voltage across each capacitor.

Solution:

We first find the equivalent capacitance Ceg4, shown in Fig. 6.19. The two
parallel capacitors in Fig. 6.18 can be combined to get 40 + 20 = 60 mF.
This 60-mF capacitor is in series with the 20-mF and 30-mF capacitors.
Thus,

Ceq = r mF = 10 mF

ottt m
The total charge is
q=Cequ=10X107°%x30=03C

This is the charge on the 20-mF and 30-mF capacitors, because they are
in series with the 30-V source. (A crude way to see this is to imagine
that charge acts like current, since i = dq/dt.) Therefore,

0.3 0.3
b= == =I5V py= b= =[OV
C, 20X 10 G, 30X 10
Having determined v; and v,, we now use KVL to determine v; by

U3:3O_UI_U2ISV

Alternatively, since the 40-mF and 20-mF capacitors are in parallel,
they have the same voltage v; and their combined capacitance is 40 +
20 = 60 mF. This combined capacitance is in series with the 20-mF and
30-mF capacitors and consequently has the same charge on it. Hence,

9 0.3
60mF 60 X 103

U3 =5V

Example 6.7
20 mF 30 mF
; |

+ % - + V2 - +
30V 40mF == v3 == 20 mF
Figure 6.18
For Example 6.7.

30V = Cyq

Figure 6.19
Equivalent circuit for Fig. 6.18.

Find the voltage across each of the capacitors in Fig. 6.20.

Answer: v, =45V, v, =45V, v5=15V, v, =30 V.

Practice Problem 6.7

40 uF 60 uF
|| ]
Il il
+ 7 - + U3 —
+ +
90V V2 == 20 uF vy == 30 uF

Figure 6.20
For Practice Prob. 6.7.
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I-—Length, € —>|

Cross-sectional area, A

Core material

Number of turns, N

Figure 6.21

Typical form of an inductor.

In view of Eq. (6.18), for an inductor
to have voltage across its terminals, its
current must vary with time. Hence,

v = 0 for constant current through

the inductor.

(b)

()

Figure 6.22

Various types of inductors: (a) solenoidal
wound inductor, (b) toroidal inductor,

(c) chip inductor.

Courtesy of Tech America.

Chapter 6 Capacitors and Inductors

6.4 Inductors

An inductor is a passive element designed to store energy in its mag-
netic field. Inductors find numerous applications in electronic and
power systems. They are used in power supplies, transformers, radios,
TVs, radars, and electric motors.

Any conductor of electric current has inductive properties and may
be regarded as an inductor. But in order to enhance the inductive effect,
a practical inductor is usually formed into a cylindrical coil with many
turns of conducting wire, as shown in Fig. 6.21.

An inductor consists of a coil of conducting wire.
If current is allowed to pass through an inductor, it is found that the

voltage across the inductor is directly proportional to the time rate of
change of the current. Using the passive sign convention,

di
v=L—

o (6.18)

where L is the constant of proportionality called the inductance of the
inductor. The unit of inductance is the henry (H), named in honor of
the American inventor Joseph Henry (1797-1878). It is clear from
Eq. (6.18) that 1 henry equals 1 volt-second per ampere.

Inductance is the property whereby an inductor exhibits opposition
to the change of current flowing through it, measured in henrys (H).

The inductance of an inductor depends on its physical dimension
and construction. Formulas for calculating the inductance of inductors
of different shapes are derived from electromagnetic theory and can be
found in standard electrical engineering handbooks. For example, for
the inductor, (solenoid) shown in Fig. 6.21,

B N*unA

L
¢

(6.19)
where N is the number of turns, € is the length, A is the cross-sectional
area, and w is the permeability of the core. We can see from Eq. (6.19)
that inductance can be increased by increasing the number of turns of
coil, using material with higher permeability as the core, increasing the
cross-sectional area, or reducing the length of the coil.

Like capacitors, commercially available inductors come in differ-
ent values and types. Typical practical inductors have inductance values
ranging from a few microhenrys (wH), as in communication systems,
to tens of henrys (H) as in power systems. Inductors may be fixed or
variable. The core may be made of iron, steel, plastic, or air. The terms
coil and choke are also used for inductors. Common inductors are
shown in Fig. 6.22. The circuit symbols for inductors are shown in
Fig. 6.23, following the passive sign convention.

Equation (6.18) is the voltage-current relationship for an inductor.
Figure 6.24 shows this relationship graphically for an inductor whose
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Historical

Joseph Henry (1797-1878), an American physicist, discovered induc-
tance and constructed an electric motor.

Born in Albany, New York, Henry graduated from Albany Acad-
emy and taught philosophy at Princeton University from 1832 to 1846.
He was the first secretary of the Smithsonian Institution. He conducted
several experiments on electromagnetism and developed powerful elec-
tromagnets that could lift objects weighing thousands of pounds. Inter-
estingly, Joseph Henry discovered electromagnetic induction before
Faraday but failed to publish his findings. The unit of inductance, the
henry, was named after him.

NOAA's People Collection

inductance is independent of current. Such an inductor is known as a
linear inductor. For a nonlinear inductor, the plot of Eq. (6.18) will
not be a straight line because its inductance varies with current. We
will assume linear inductors in this textbook unless stated otherwise.
The current-voltage relationship is obtained from Eq. (6.18) as

1

| S 4 e
O
|Q+<;
O
| 4 .
O

3«

di = —vdt le) fe) le)
L
(@) (b) (©
Integrating gives Figure 6.23
. Circuit symbols for inductors: (a) air-core,
P = % J v(T)dr (6.20) (b) iron-core, (c) variable iron-core.
or
v A
t
i = z J v(T)dr + i(ty) (6.21)
o ~— Slope =L
where i(#y) is the total current for —o0 < ¢t < ¢, and i(—o) = 0. The

idea of making i(—c°) = 0 is practical and reasonable, because there
must be a time in the past when there was no current in the inductor.

The inductor is designed to store energy in its magnetic field. The
energy stored can be obtained from Eq. (6.18). The power delivered to
the inductor is

0 difdt
Figure 6.24

Voltage-current relationship of an inductor.

. di.
p=1vi= (Ld)l (6.22)

The energy stored is

! "odi
w = J p(r)dr = LJ — idt
. . dr
, (6.23)
=L J idi = lLiz(t) - lLiz(foo)
2 2

—
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~

(a) (b)
Figure 6.25

Current through an inductor: (a) allowed,
(b) not allowable; an abrupt change is not
possible.

Since an inductor is often made of a
highly conducting wire, it has a very
small resistance.

Figure 6.26

Circuit model for a practical inductor.

Chapter 6 Capacitors and Inductors

Since i(—») = 0,

1
w = ELiz (6.24)

We should note the following important properties of an inductor.

1. Note from Eq. (6.18) that the voltage across an inductor is zero
when the current is constant. Thus,

An inductor acts like a short circuit to dc.

2. An important property of the inductor is its opposition to the
change in current flowing through it.

The current through an inductor cannot change instantaneously.

According to Eq. (6.18), a discontinuous change in the current
through an inductor requires an infinite voltage, which is not phys-
ically possible. Thus, an inductor opposes an abrupt change in the
current through it. For example, the current through an inductor
may take the form shown in Fig. 6.25(a), whereas the inductor cur-
rent cannot take the form shown in Fig. 6.25(b) in real-life situa-
tions due to the discontinuities. However, the voltage across an
inductor can change abruptly.

3. Like the ideal capacitor, the ideal inductor does not dissipate
energy. The energy stored in it can be retrieved at a later time. The
inductor takes power from the circuit when storing energy and
delivers power to the circuit when returning previously stored
energy.

4. A practical, nonideal inductor has a significant resistive component,
as shown in Fig. 6.26. This is due to the fact that the inductor is
made of a conducting material such as copper, which has some
resistance. This resistance is called the winding resistance R,,, and
it appears in series with the inductance of the inductor. The pres-
ence of R, makes it both an energy storage device and an energy
dissipation device. Since R,, is usually very small, it is ignored in
most cases. The nonideal inductor also has a winding capacitance
C,, due to the capacitive coupling between the conducting coils. C,,
is very small and can be ignored in most cases, except at high fre-
quencies. We will assume ideal inductors in this book.

Example 6.8

The current through a 0.1-H inductor is i(f) = 10ze>" A. Find the volt-
age across the inductor and the energy stored in it.

Solution:
Since v = Ldi/dt and L = 0.1 H,

d
v = 0.1E(10ze*5’) =e M+ 1(—=5e T =e1-5)V
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The energy stored is

1 1
w = ELi2 = 5(0.1)100#5“” = 5t% 1]

229

If the current through a 1-mH inductor is i(f) = 60 cos 100 mA, find
the terminal voltage and the energy stored.

Answer: —6 sin 100r mV, 1.8 cos® (1007) uJ.

Practice Problem 6.8

Find the current through a 5-H inductor if the voltage across it is

o) = 300,  +>0
0, 1 <0

Also, find the energy stored at + = 5s. Assume i(v) > 0.

Solution:

] t
Since i = I J v(t)dt + i(ty) and L = 5 H,

fo

1 (f 3
i=J30t2dt+O=6><=2t3A
5, 3

The power p = vi = 60¢°, and the energy stored is then

5
= 156.25 k]

5 t6
w = dez=J 6Ot5dt=60g
0

0

Alternatively, we can obtain the energy stored using Eq. (6.24), by
writing

1 1 1
w|’ = ELiZ(S) - 5 Li0) = 5(5)2 X 5% — 0 = 156.25kJ

as obtained before.

Example 6.9

The terminal voltage of a 2-H inductor is v = 10(1 — ) V. Find the
current flowing through it at ¥ = 4 s and the energy stored initats = 4 s.
Assume i(0) = 2 A.

Answer: —18 A, 320 J.

Practice Problem 6.9
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Example 6.10

i1 5Q
I
4Q
+
v () . 2H§
ve —|— 1F
(@)
_i1e 5Q
o
4Q

v (®) .
<3

(b)

Figure 6.27
For Example 6.10.

Consider the circuit in Fig. 6.27(a). Under dc conditions, find: (a) i, v,
and i, (b) the energy stored in the capacitor and inductor.

Solution:

(a) Under dc conditions, we replace the capacitor with an open circuit
and the inductor with a short circuit, as in Fig. 6.27(b). It is evident
from Fig. 6.27(b) that

1+5

2A

i=1 I
The voltage v is the same as the voltage across the 5-() resistor. Hence,
Ve=5i=10V

(b) The energy in the capacitor is
1., _1 2
we = —Cve = —(1)(10°) = 5017
2 2
and that in the inductor is

— 2 - Lo =4l
wL_2 lL_z( (27 =

Practice Problem 6.10

i 6H
—

£11R

a
6Q ch4F

10 A 2Q

Figure 6.28
For Practice Prob. 6.10.

i L L, Ly Ly
— -
O— TN T —------
+ +”1_+V2_+”3_ B +1’1v_

(b)
Figure 6.29
(a) A series connection of N inductors,
(b) equivalent circuit for the series
inductors.

Determine v, iz, and the energy stored in the capacitor and inductor
in the circuit of Fig. 6.28 under dc conditions.

Answer: 15V, 7.5 A, 450 J, 168.75 J.

605

Now that the inductor has been added to our list of passive elements, it is
necessary to extend the powerful tool of series-parallel combination. We
need to know how to find the equivalent inductance of a series-connected
or parallel-connected set of inductors found in practical circuits.

Consider a series connection of N inductors, as shown in Fig. 6.29(a),
with the equivalent circuit shown in Fig. 6.29(b). The inductors have
the same current through them. Applying KVL to the loop,

Series and Parallel Inductors

vV=v; t vy, tvyt+ oy (6.25)
Substituting v, = L, di/dt results in
o=
dt dt S dt dt
— Ly Ly Ly + o+ LN)g (6.26)
_ (iL )d _, di
=y “dt
where
Leyg=1Ly+Ly+Ly+ -+ Ly (6.27)
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Thus,

The equivalent inductance of series-connected inductors is the sum
of the individual inductances.

Inductors in series are combined in exactly the same way as resistors
in series.

We now consider a parallel connection of N inductors, as shown
in Fig. 6.30(a), with the equivalent circuit in Fig. 6.30(b). The induc-
tors have the same voltage across them. Using KCL,

1 t
But i, = I J v dt + ii(ty); hence,
k

fy

~.

1 (" 1 ("
- LJ Udf“l‘ il(t()) +LJ Udt“l‘ iz(t())

1 2
to 1y

1 12

N to
t
—(1+1 +~~~+1>J dt + iy(tp) + ix(ty)
L L L ,UU 11t (1
+ o F (o)
N t N 1 t
‘(E )J vdi + ) ilto) —J vdt + ity (6.29)
k:1Lk fo k=1 L‘:q 1o
where
1 1
= — (6.30)
Leq Ll 2 3 ‘N

The initial current i(fy) through L., at t = ¢, is expected by KCL to be
the sum of the inductor currents at #y. Thus, according to Eq. (6.29),

i(ty) = i1(tg) + ix(tg) + -+ + in(to)
According to Eq. (6.30),

The equivalent inductance of parallel inductors is the reciprocal of the
sum of the reciprocals of the individual inductances.

Note that the inductors in parallel are combined in the same way as
resistors in parallel.
For two inductors in parallel (N = 2), Eq. (6.30) becomes

1 1 1 L\L,

=—+ — or L,=—""
L, L, L+ L,

3 (6.31)

eq
As long as all the elements are of the same type, the A-Y transforma-
tions for resistors discussed in Section 2.7 can be extended to capacitors
and inductors.

231
i
e
O
+ 0 * i2¢ l;* 11\4
v L, L, Ly Ly
o

eq

(b)
Figure 6.30
(a) A parallel connection of N inductors,
(b) equivalent circuit for the parallel
inductors.
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TABLE 6.1

Important characteristics of the basic elements.’

Capacitors and Inductors

Relation  Resistor (R) Capacitor (C) Inductor (L)
v-i v =1IiR v ! Jt i(T)dT +v(ty) v Ldi
-i: =i =— | i(t)dr =L—
c) 0 dt
d 1 (7
i-v i=v/R i= ?l; i= I [ v(r)dr + i(to)
v> 1
2 2 2
. - 2R =" = s
porw p=i R w Cv w > i
. G
Series:  Req=R+ R, Coq = m Lg=1L, + L,
RiR, LiL,
Parallel: Ry = Cqq=Ci + G Leg =
R, + R, L, + L,

Atdc: Same Open circuit Short circuit

Circuit variable
that cannot
change abruptly: Not applicable v i

 Passive sign convention is assumed.

It is appropriate at this point to summarize the most important
characteristics of the three basic circuit elements we have studied. The
summary is given in Table 6.1.

The wye-delta transformation discussed in Section 2.7 for resistors
can be extended to capacitors and inductors.

Example 6.11

4H 20H
o SN A1
Leg
- 7H
o SN A1
8H 10H

Figure 6.31

For Example 6.11.

12H

Find the equivalent inductance of the circuit shown in Fig. 6.31.

Solution:

The 10-H, 12-H, and 20-H inductors are in series; thus, combining
them gives a 42-H inductance. This 42-H inductor is in parallel with
the 7-H inductor so that they are combined, to give

7TX42
7+42

6 H

This 6-H inductor is in series with the 4-H and 8-H inductors. Hence,

Ly=4+6+8=18H

Practice Problem 6.11

Calculate the equivalent inductance for the inductive ladder network in
Fig. 6.32.

20 mH 100 mH 40 mH
o A1 A1
Leg
E—— 50 mH 40 mH 30 mH 20 mH
o

Figure 6.32
For Practice Prob. 6.11.

Answer: 25 mH.
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For the circuit in Fig. 6.33, i(f) = 42 — ¢ '") mA. If i,(0) = —1 mA,
find: (a) i;(0); (b) v(z), v,(f), and v,(1); (c) i1(¢) and i»(7).
Solution:
(a) From i(/) = 42 — ¢ ') mA, i(0) = 42 — 1) = 4 mA. Since i =
iy + is,

i1(0) = i(0) — i,(0) =4 — (—1) = 5mA
(b) The equivalent inductance is

Lg=2+4|12=2+3=5H

Thus,

di

i 5)(—D(—=10)e "' mV = 200e ' mV

U(1) = Leg
and
di —10r —10¢
V(1) = ZE = 2(—4)(—10)e mV = 80e mV

Since v = v + Uy,
v,(1) = (1) — v,(1) = 120e " mV
(c) The current i; is obtained as

. 1 (' . 120 (" _ .0,
LWt =— | vodt +i;(0)=— | e dt + 5mA
4 0 4 0

= 3 +5mA= -3¢ +3+5=8-3""mA

Similarly,
1 [’ 120 (" _
iz([)zjvzd[+i2(0)zje IOIdl_]mA
12 12
0 0
= —eilo’|; —1mA=——¢'""41—-1=—¢1""mA

Note that i;(¥) + ir(t) = i(?).

Example 6.12

i 2H
— -
. fi i
+ oy - i )
+
v 4H vy 12H
°

Figure 6.33
For Example 6.12.

In the circuit of Fig. 6.34, i1(7) = 0.6 > A. If i(0) = 1.4 A, find:
(@) i2(0); (b) ix(2) and i(7); () v(1), Vx(7), and V(D).

Answer: (a) 0.8 A, (b) (0.4 + 12¢ %) A, (0.4 + 1.8¢ %) A,
(c) —36e¢ 2V, —=72¢ 2V, —28.8¢ > V.

6.6 T Applications

Circuit elements such as resistors and capacitors are commercially
available in either discrete form or integrated-circuit (IC) form. Unlike
capacitors and resistors, inductors with appreciable inductance are dif-
ficult to produce on IC substrates. Therefore, inductors (coils) usually

Practice Problem 6.12

L 3H
—
i 2L
—
o—— + v -
+
N +
™ 6H
v 5]
o

VzéSH

Figure 6.34

For Practice Prob. 6.12.
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i Ry
P VWW——
i R’ vy | OA
O AMAN————
+ L=
ov L—o
+
v; vy
o 1
(@)
lC C
i R
O ANN—-
+ a

’ L
(b

Figure 6.35

Replacing the feedback resistor in the
inverting amplifier in (a) produces an
integrator in (b).

)

Chapter 6 Capacitors and Inductors

come in discrete form and tend to be more bulky and expensive. For
this reason, inductors are not as versatile as capacitors and resistors,
and they are more limited in applications. However, there are several
applications in which inductors have no practical substitute. They are
routinely used in relays, delays, sensing devices, pick-up heads, tele-
phone circuits, radio and TV receivers, power supplies, electric motors,
microphones, and loudspeakers, to mention a few.

Capacitors and inductors possess the following three special prop-
erties that make them very useful in electric circuits:

1. The capacity to store energy makes them useful as temporary volt-
age or current sources. Thus, they can be used for generating a large
amount of current or voltage for a short period of time.

2. Capacitors oppose any abrupt change in voltage, while inductors
oppose any abrupt change in current. This property makes induc-
tors useful for spark or arc suppression and for converting pulsat-
ing dc voltage into relatively smooth dc voltage.

3. Capacitors and inductors are frequency sensitive. This property
makes them useful for frequency discrimination.

The first two properties are put to use in dc circuits, while the third
one is taken advantage of in ac circuits. We will see how useful these
properties are in later chapters. For now, consider three applications
involving capacitors and op amps: integrator, differentiator, and analog
computer.

6.6.1 Integrator

Important op amp circuits that use energy-storage elements include
integrators and differentiators. These op amp circuits often involve
resistors and capacitors; inductors (coils) tend to be more bulky and
expensive.

The op amp integrator is used in numerous applications, especially
in analog computers, to be discussed in Section 6.6.3.

An integrator is an op amp circuit whose output is proportional to the
integral of the input signal.

If the feedback resistor R, in the familiar inverting amplifier of
Fig. 6.35(a) is replaced by a capacitor, we obtain an ideal integrator,
as shown in Fig. 6.35(b). It is interesting that we can obtain a mathe-
matical representation of integration this way. At node «a in Fig. 6.35(b),

i]( = iC (6.32)
But

v,
k=g € dt

Substituting these in Eq. (6.32), we obtain

Vi o _ 4 (6.33a)

R dt o
!

dv, = ——v, dt (6.33b)
RC
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Integrating both sides gives

V(1) — v,(0) = —R% J vi(r)dr (6.34)

0

To ensure that v,(0) = 0, it is always necessary to discharge the integra-
tor’s capacitor prior to the application of a signal. Assuming v,(0) = 0,

1 t
v, = —E JO l)[(’T)dT (6.35)

which shows that the circuit in Fig. 6.35(b) provides an output voltage
proportional to the integral of the input. In practice, the op amp inte-
grator requires a feedback resistor to reduce dc gain and prevent satu-
ration. Care must be taken that the op amp operates within the linear
range so that it does not saturate.

235

If v; = 10 cos 2t mV and v, = 0.5t mV, find v, in the op amp circuit
in Fig. 6.36. Assume that the voltage across the capacitor is initially zero.

Solution:
This is a summing integrator, and

1 1
=—— dt — —— dt
Yo7 TRC J ST RyC J 02

1 13
= J 10 cos 27)dt
0

T 3X10°%x 2% 106

1
100 X 10° X 2 X 10°°

t
J 0.57dr
0

110 1 0.5¢2
= ———sin2t — —

= —0.833 sin 2t — 1.25:> mV
6 2 02 2

Example 6.13

v

()

Figure 6.36
For Example 6.13.

2 uF
||
]

:‘: > O 7

100kQ L

The integrator in Fig. 6.35(b) has R = 100 k(}, C = 20 uF. Determine
the output voltage when a dc voltage of 2.5 mV is applied at r = 0.
Assume that the op amp is initially nulled.

Answer: —1.25tmV.

6.6.2 Differentiator

A differentiator is an op amp circuit whose output is proportional to
the rate of change of the input signal.

In Fig. 6.35(a), if the input resistor is replaced by a capacitor, the
resulting circuit is a differentiator, shown in Fig. 6.37. Applying KCL
at node a,

iR = i(j (6.36)

Practice Problem 6.13
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i R
——AMAN——

: +
Yo
O

o —,
|

Figure 6.37

An op amp differentiator.

Chapter 6 Capacitors and Inductors
But
v dv,
ir =~ ic=C—"
R dt

Substituting these in Eq. (6.36) yields

dv;

, = —RC
v dt

(6.37)

showing that the output is the derivative of the input. Differentiator cir-
cuits are electronically unstable because any electrical noise within the
circuit is exaggerated by the differentiator. For this reason, the differ-
entiator circuit in Fig. 6.37 is not as useful and popular as the inte-
grator. It is seldom used in practice.

Example 6.14

5kQ
A
0.2 uF
}7
n
i % v,
L
(@)
7,(V)
4
1 1 >
0 2 4 6 8 £ (ms)

Figure 6.38
For Example 6.14.

Sketch the output voltage for the circuit in Fig. 6.38(a), given the input
voltage in Fig. 6.38(b). Take v, = 0 at t = 0.

Solution:
This is a differentiator with
RC=5X10°X02x107°=10"s
For 0 < ¢ < 4 ms, we can express the input voltage in Fig. 6.38(b) as

{2000: 0<t<2ms
8 — 2000 2<t<4ms

U;
This is repeated for 4 < ¢ < 8 ms. Using Eq. (6.37), the output is
obtained as

0<tr<2ms
2 < t<4ms

7R (N A
Thus, the output is as sketched in Fig. 6.39.

v, (V)4
2+

tr(ms)

Figure 6.39
Output of the circuit in Fig. 6.38(a).

Practice Problem 6.14

The differentiator in Fig. 6.37 has R = 100 k() and C = 0.1 uF. Given
that v; = 1.25¢ V, determine the output v,,.

Answer: —12.5 mV.
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6.6.3 Analog Computer

Op amps were initially developed for electronic analog computers.
Analog computers can be programmed to solve mathematical models of
mechanical or electrical systems. These models are usually expressed in
terms of differential equations.

To solve simple differential equations using the analog computer
requires cascading three types of op amp circuits: integrator circuits,
summing amplifiers, and inverting/noninverting amplifiers for negative/
positive scaling. The best way to illustrate how an analog computer solves
a differential equation is with an example.

Suppose we desire the solution x(#) of the equation

d*x dx
a— + b—
dt dt

fex =), >0 (6.38)

where a, b, and ¢ are constants, and f(¢) is an arbitrary forcing func-
tion. The solution is obtained by first solving the highest-order deriv-
ative term. Solving for d’x/dt? yields

d*>x f(y bdx ¢

F—T*ZE*;X (6.39)
To obtain dx/dt, the d’x/dt* term is integrated and inverted. Finally,
to obtain x, the dx/dr term is integrated and inverted. The forcing func-
tion is injected at the proper point. Thus, the analog computer for solv-
ing Eq. (6.38) is implemented by connecting the necessary summers,
inverters, and integrators. A plotter or oscilloscope may be used to view
the output x, or dx/dt, or d*x/dt?, depending on where it is connected
in the system.

Although the above example is on a second-order differential equa-
tion, any differential equation can be simulated by an analog computer
comprising integrators, inverters, and inverting summers. But care must
be exercised in selecting the values of the resistors and capacitors, to
ensure that the op amps do not saturate during the solution time interval.

The analog computers with vacuum tubes were built in the 1950s and
1960s. Recently their use has declined. They have been superseded by
modern digital computers. However, we still study analog computers for
two reasons. First, the availability of integrated op amps has made it pos-
sible to build analog computers easily and cheaply. Second, understand-
ing analog computers helps with the appreciation of the digital computers.

237

Design an analog computer circuit to solve the differential equation:

d*v, dv, )
> +2 + v, = 10 sin 41, t>0
dt dt
subject to v,(0) = —4,v,(0) = 1, where the prime refers to the time
derivative.
Solution:

1. Define. We have a clearly defined problem and expected solution.
I might remind the student that many times the problem is not so
well defined and this portion of the problem-solving process could

Example 6.15
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require much more effort. If this is so, then you should always
keep in mind that time spent here will result in much less effort
later and most likely save you a lot of frustration in the process.

. Present. Clearly, using the devices developed in Section 6.6.3

will allow us to create the desired analog computer circuit. We
will need the integrator circuits (possibly combined with a
summing capability) and one or more inverter circuits.

. Alternative. The approach for solving this problem is straight-

forward. We will need to pick the correct values of resistances
and capacitors to allow us to realize the equation we are repre-
senting. The final output of the circuit will give the desired result.

. Attempt. There are an infinite number of possibilities for

picking the resistors and capacitors, many of which will result
in correct solutions. Extreme values of resistors and capacitors
will result in incorrect outputs. For example, low values of
resistors will overload the electronics. Picking values of
resistors that are too large will cause the op amps to stop
functioning as ideal devices. The limits can be determined from
the characteristics of the real op amp.
We first solve for the second derivative as
d*, dv

= 10sin4r — 2—2 — v, (6.15.1)
dr? dt

Solving this requires some mathematical operations, including
summing, scaling, and integration. Integrating both sides of
Eq. (6.15.1) gives

dv,
dt

' : dvy(7)
= —J’ <—10 sin(4r) + 27 + U{,(T))dT + v,(0)

T
0

(6.15.2)
where v,,(0) = 1. We implement Eq. (6.15.2) using the summing
integrator shown in Fig. 6.40(a). The values of the resistors and
capacitors have been chosen so that RC = 1 for the term

1 t
—J v, (T)dt
RC b

Other terms in the summing integrator of Eq. (6.15.2) are
implemented accordingly. The initial condition dv,(0)/dr = 1 is
implemented by connecting a 1-V battery with a switch across the
capacitor as shown in Fig. 6.40(a).

The next step is to obtain v, by integrating dv,/dr and
inverting the result,

v, = _f <-dv0(7))d7 + v(0) (6.15.3)
b dr

This is implemented with the circuit in Fig. 6.40(b) with the
battery giving the initial condition of —4 V. We now combine the
two circuits in Fig. 6.40(a) and (b) to obtain the complete circuit
shown in Fig. 6.40(c). When the input signal 10 sin 4¢ is applied,
we open the switches at + = 0 to obtain the output waveform v,,
which may be viewed on an oscilloscope.
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-1V +
j>5z=0
o o -4V + 0
1M 1 uF =
.
~10 sin (41) t H o
| MO l 1 uF
Il 1 MQ
Y% dv, MO I
0.5 MQ dt dv, 1 MQ
d L ~
. = B WVVVW?L AV = ,
dt —, + 0
(a) (b)
-1V +
1 MQ A v+

—i o 1=0
— o—
10 sin (4¢) 1V 1uF
T i i 1Mo
- 1 MQ [
1 MQ
7, A > A I~ 1 MQ
+ —
‘E{ i I\NW + O %
0.5 MQ = =

()

Figure 6.40
For Example 6.15.

5. Evaluate. The answer looks correct, but is it? If an actual
solution for v, is desired, then a good check would be to first
find the solution by realizing the circuit in PSpice. This result
could then be compared with a solution using the differential
solution capability of MATLAB.

Since all we need to do is check the circuit and confirm that
it represents the equation, we have an easier technique to use.
We just go through the circuit and see if it generates the desired
equation.

However, we still have choices to make. We could go through
the circuit from left to right but that would involve differentiating
the result to obtain the original equation. An easier approach
would be to go from right to left. This is the approach we will
use to check the answer.

Starting with the output, v,, we see that the right-hand op
amp is nothing more than an inverter with a gain of one. This
means that the output of the middle circuit is —v,,. The following
represents the action of the middle circuit.

{[%aom)- |
a 1+ v,0) )= —|v,
= —( (1) = v,(0) + v,(0))

where v,(0) = —4 V is the initial voltage across the capacitor.
We check the circuit on the left the same way.

dv, —<Jt B dzv”a’t B ’(0)) B _(_dvo +00) ’(0))
dt , dr Vol = ar e Vo

t

-v,

00)

0
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Now all we need to verify is that the input to the first op amp is
—d*v,/dt’.
Looking at the input we see that it is equal to

V100 dv, _ o 4ty + v, + 2%
05MQ a L0sin(n +u, 427

—10 sin(4t) + v, +

which does produce —d”v,/df* from the original equation.
6. Satisfactory? The solution we have obtained is satisfactory. We
can now present this work as a solution to the problem.

Practice Problem 6.15 Design an analog computer circuit to solve the differential equation:

d*v, N 3a’vo
dr? dt

subject to v,(0) = 2, v.,(0) = 0.

+ 2v, = 4 cos 101, t>0

Answer: See Fig. 6.41, where RC = 1s.

d*v,
dr’

cos (101)

Figure 6.41
For Practice Prob. 6.15.

6.7 Summary
1. The current through a capacitor is directly proportional to the time
rate of change of the voltage across it.
= o
: dt

The current through a capacitor is zero unless the voltage is chang-
ing. Thus, a capacitor acts like an open circuit to a dc source.
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Review Questions

. The voltage across a capacitor is directly proportional to the time

integral of the current through it.

1 (f 1 (f
UZCJ idlZCJidl-Fv(tO)

—® fy

The voltage across a capacitor cannot change instantly.

. Capacitors in series and in parallel are combined in the same way

as conductances.

. The voltage across an inductor is directly proportional to the time

rate of change of the current through it.

The voltage across the inductor is zero unless the current is chang-
ing. Thus, an inductor acts like a short circuit to a dc source.

. The current through an inductor is directly proportional to the time

integral of the voltage across it.

1 (" 1 ("
i:LJ UdtZLJUdl-Fi(to)

—®° fo

The current through an inductor cannot change instantly.

. Inductors in series and in parallel are combined in the same way

resistors in series and in parallel are combined.

. At any given time 7, the energy stored in a capacitor is 3 Cv?, while

the energy stored in an inductor is L.

. Three application circuits, the integrator, the differentiator, and the

analog computer, can be realized using resistors, capacitors, and
op amps.
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6.4 Can the voltage waveform in Fig. 6.42 be associated
with a real capacitor? (a) 3.8 mF

(a) Yes (b) No (d) 44 mF

Review Questions

6.1 What charge is on a 5-F capacitor when it is v(1)

connected across a 120-V source?

(a) 600 C (b) 300 C
(©24C @12c¢
6.2 Capacitance is measured in:
(a) coulombs (b) joules ~10
(c) henrys (d) farads
6.3 When the total charge in a capacitor is doubled, the Figure 6.42
energy stored: For Review Question 6.4.
(a) remains the same (b) is halved
(c) is doubled (d) is quadrupled

~

6.5 The total capacitance of two 40-mF series-connected
capacitors in parallel with a 4-mF capacitor is:

(c) 24 mF



www.konkur.in

242 Chapter 6

6.6 InFig. 6.43,if i = cos 4t and v = sin 41, the
element is:

(a) a resistor (b) a capacitor (¢) an inductor

{i

Element

46

Figure 6.43

For Review Question 6.6.

6.7 A S5-H inductor changes its current by 3 Ain 0.2 s. The
voltage produced at the terminals of the inductor is:

@75V (b) 8.888 V
©3V @12V

6.8 If the current through a 10-mH inductor increases
from zero to 2 A, how much energy is stored in the

Capacitors and Inductors

6.9 Inductors in parallel can be combined just like
resistors in parallel.

(a) True (b) False

6.10 For the circuit in Fig. 6.44, the voltage divider
formula is:

Ly + L,

@v, = L Uy

L+ L,

U
Ly

Uy

L +L, "

(®) vy

©uv, = Do, =

Us
L+ L, "

L,
AIIR

+ o

Figure 6.44

For Review Question 6.10.

inductor?
(a) 40 mJ (b) 20 mJ Answers: 6.1a, 6.2d, 6.3d, 6.4b, 6.5¢, 6.6b, 6.7a, 6.8b,
(c) 10 mJ (d)5mJ 6.9a, 6.10d.

4 Problems

Section 6.2 Capacitors

6.1 If the voltage across a 7.5-F capacitor is 2te” ' V,
find the current and the power.

6.2 A 50-uF capacitor has energy w(s) = 10 cos>377¢J.

Determine the current through the capacitor.

6.3 Design a problem to help other students better
efJd understand how capacitors work.

6.4 A current of 4 sin 47 A flows through a 5-F capacitor.

Find the voltage v(f) across the capacitor given that
v(0)=1V.

6.5 The voltage across a 4-uF capacitor is shown in
Fig. 6.45. Find the current waveform.

v(t) V

O 1 1 |
2 4\6/3
_10 -

Figure 6.45
For Prob. 6.5.

t (ms)

6.6 The voltage waveform in Fig. 6.46 is applied across
a 55-uF capacitor. Draw the current waveform
through it.

v(f) VA
10

0 |
2 4 8 10 /12 t(ms)
—10 +

Figure 6.46
For Prob. 6.6.

6.7 Atr = 0, the voltage across a 25-mF capacitor is 10 V.
Calculate the voltage across the capacitor for r > 0
when current 5 mA flows through it.

6.8 A 4-mF capacitor has the terminal voltage

R t=0
T Ae 1 4 By =
If the capacitor has an initial current of 2 A, find:
(a) the constants A and B,

(b) the energy stored in the capacitor at t = 0,

(c) the capacitor current for # > 0.
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6.9 The current through a 0.5-F capacitor is 6(1 — ¢~ ") A.
Determine the voltage and power at t = 2 s. Assume
v(0) = 0.

6.10 The voltage across a 5-mF capacitor is shown in
Fig. 6.47. Determine the current through the capacitor.

v () (V)
16

0 1 2 3 4 1 (us)

Figure 6.47
For Prob. 6.10.

6.11 A 4-mF capacitor has the current waveform shown in
Fig. 6.48. Assuming that v(0) = 10 V, sketch the
voltage waveform v(7).

i(f) (mA) 4

15
10 -

5k
0
-5

2 4 6 8 (%)

—-10

Figure 6.48
For Prob. 6.11.

6.12 A voltage of 30e 2°°” V appears across a parallel
combination of a 100-mF capacitor and a 12-()
resistor. Calculate the power absorbed by the parallel
combination.

6.13 Find the voltage across the capacitors in the circuit
of Fig. 6.49 under dc conditions.

10Q 50 Q
VWA VW
+ 200 +
40 Q % C, == v m =,
B 6OV

Figure 6.49
For Prob. 6.13.

Section 6.3 Series and Parallel Capacitors

6.14 Series-connected 20-pF and 60-pF capacitors are
placed in parallel with series-connected 30-pF and
70-pF capacitors. Determine the equivalent
capacitance.

Problems 243

6.15 Two capacitors (25 uF and 75 uF) are connected
to a 100-V source. Find the energy stored in each

capacitor if they are connected in:
(a) parallel (b) series

6.16 The equivalent capacitance at terminals a-b in the
circuit of Fig. 6.50 is 30 uF. Calculate the value of C.

ao
= C
14 uF ==
= 80 uF
bo

Figure 6.50
For Prob. 6.16.

6.17 Determine the equivalent capacitance for each of the
circuits of Fig. 6.51.

4F 12F

Figure 6.51
For Prob. 6.17.

6.18 Find Cq in the circuit of Fig. 6.52 if all capacitors
are 4 uF.

Figure 6.52
For Prob. 6.18.
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6.19 Find the equivalent capacitance between terminals
a and b in the circuit of Fig. 6.53. All capacitances

are in uF.

80

It

1

12 40

I I

ao Il Il

50 20
12 == 30 == — 10

I

b o il
60

Figure 6.53
For Prob. 6.19.

6.20 Find the equivalent capacitance at terminals a-b of
the circuit in Fig. 6.54.

2,LFl 2 uF = lZMF
L |

YN R A
L TLT

b

Figure 6.54
For Prob. 6.20.

6.21 Determine the equivalent capacitance at terminals
a-b of the circuit in Fig. 6.55.

5 uF 6 uF 4 uF

L LAl
]

12 uF
b o

Figure 6.55
For Prob. 6.21.

6.22 Obtain the equivalent capacitance of the circuit in
Fig. 6.56.

Capacitors and Inductors

40 uF

= 10uF 10 uF

Il Il

1
20 uF
— 15 uF 15 uF ==

Figure 6.56
For Prob. 6.22.

6.23 Using Fig. 6.57, design a problem that will help
efd other students better understand how capacitors work
together when connected in series and in parallel.

J‘C

1

J

v <f> L :I: &

Figure 6.57
For Prob. 6.23.

6.24 For the circuit in Figure 6.58, determine (a) the
voltage across each capacitor and (b) the energy
stored in each capacitor.

60 uF 20 uF

R

Figure 6.58
For Prob. 6.24.

6.25 (a) Show that the voltage-division rule for two
capacitors in series as in Fig. 6.59(a) is
G G

vV, = ———U,, Uy = ——— Uy
Yo+ Gt 20 +G

assuming that the initial conditions are zero.

(b)

Figure 6.59
For Prob. 6.25.
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(b) For two capacitors in parallel as in Fig. 6.59(b),
show that the current-division rule is
. ¢ . G
W =i, ih = ———1I
o+t O+ G”
assuming that the initial conditions are zero.

6.26 Three capacitors, C; = 5 uF, C, = 10 uF, and
C; = 20 uF, are connected in parallel across a
150-V source. Determine:

(a) the total capacitance,

(b) the charge on each capacitor,

(c) the total energy stored in the parallel
combination.

6.27 Given that four 4-uF capacitors can be connected in
e?Jd series and in parallel, find the minimum and
maximum values that can be obtained by such
series/parallel combinations.

*6.28 Obtain the equivalent capacitance of the network
shown in Fig. 6.60.

1 1
=

40 uF 50 uF

10 uF 20 uF

O

Figure 6.60
For Prob. 6.28.

6.29 Determine C, for each circuit in Fig. 6.61.

Figure 6.61
For Prob. 6.29.

* An asterisk indicates a challenging problem.

Problems 245

6.30 Assuming that the capacitors are initially uncharged,
find v,(¢) in the circuit of Fig. 6.62.

i, (mA) ]

90

3u v,(1)
0 _
1 2 t(s)

Figure 6.62
For Prob. 6.30.

6.31 If v(0) = 0, find v(2), i,(7), and i»(¢) in the circuit of
Fig. 6.63.

i, (mA) A
30

-
——
5

|+

Figure 6.63
For Prob. 6.31.

6.32 In the circuit of Fig. 6.64, let iy = 50e” % mA and
v1(0) = 50 V, v,(0) = 20 V. Determine: (a) v,()
and v,(), (b) the energy in each capacitor at
t=05s.

12 uF
Il
o I

i C) 20 uF == vy == 40 uF

Figure 6.64
For Prob. 6.32.
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6.33 Obtain the Thevenin equivalent at the terminals, a-b,
of the circuit shown in Fig. 6.65. Please note that
Thevenin equivalent circuits do not generally exist
for circuits involving capacitors and resistors. This is
a special case where the Thevenin equivalent circuit
does exist.

— 5F

Le Lo
T,

s5vE

Figure 6.65
For Prob. 6.33.

Section 6.4 Inductors

6.34 The current through a 10-mH inductor is 1072 A.
Find the voltage and the power att = 3 s.

6.35 An inductor has a linear change in current from
50 mA to 100 mA in 2 ms and induces a voltage of
160 mV. Calculate the value of the inductor.

6.36 Design a problem to help other students better
efJd understand how inductors work.

6.37 The current through a 12-mH inductor is 4 sin 1007 A.

Find the voltage, across the inductor for 0 < r <
/200 s, and the energy stored at = 575 S.

6.38 The current through a 40-mH inductor is

0,
1) =
i) {te_Z’A,

Find the voltage v(¢).

<0
t>0

6.39 The voltage across a 200-mH inductor is given by

v =37 +2t+4V forz > 0.

Determine the current i(¢) through the inductor.
Assume that i((0) = 1 A.

6.40 The current through a 5-mH inductor is shown in
Fig. 6.66. Determine the voltage across the inductor
att = 1,3, and 5 ms.

i(A)
10

0 1 1
2 4 6

t (ms)

Figure 6.66
For Prob. 6.40.

Capacitors and Inductors

6.41 The voltage across a 2-H inductor is 20(1 — e V.
If the initial current through the inductor is 0.3 A,
find the current and the energy stored in the inductor
atr = 1s.

6.42 If the voltage waveform in Fig. 6.67 is applied
across the terminals of a 5-H inductor, calculate the
current through the inductor. Assume i(0) = —1 A.

v(t) (V)A

10

0

Figure 6.67
For Prob. 6.42.

6.43 The current in an 80-mH inductor increases from 0
to 60 mA. How much energy is stored in the
inductor?

*6.44 A 100-mH inductor is connected in parallel with a
2-k() resistor. The current through the inductor is
i(1) = 50 4% mA. (a) Find the voltage v; across
the inductor. (b) Find the voltage vy across the
resistor. (¢) Does vg(f) + v () = 0? (d) Calculate
the energy in the inductor at = 0.

6.45 If the voltage waveform in Fig. 6.68 is applied to a
10-mH inductor, find the inductor current i(¢).
Assume i(0) = 0.

v(t) A
5 —
0 | >
1 2 t
-5+

Figure 6.68
For Prob. 6.45.

6.46 Find v, i;, and the energy stored in the capacitor
and inductor in the circuit of Fig. 6.69 under dc
conditions.

20
¢vvv+i _
2F pi

3a(®) %49 - %O.SH

5Q

Figure 6.69
For Prob. 6.46.
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6.47 For the circuit in Fig. 6.70, calculate the value of R that
e7Jd will make the energy stored in the capacitor the same
as that stored in the inductor under dc conditions.

sa®) %29

Figure 6.70
For Prob. 6.47.

6.48 Under steady-state dc conditions, find i and v in the
circuit in Fig. 6.71.

i 2mH
IR
+

30 kQ ”T 6 uF < 20 kQ

5 mA

Figure 6.71
For Prob. 6.48.

Section 6.5 Series and Parallel Inductors

6.49 Find the equivalent inductance of the circuit in
Fig. 6.72. Assume all inductors are 10 mH.

O

1

Figure 6.72
For Prob. 6.49.

6.50 An energy-storage network consists of series-
connected 16-mH and 14-mH inductors in parallel
with series-connected 24-mH and 36-mH inductors.
Calculate the equivalent inductance.

6.51 Determine L., at terminals a-b of the circuit in

Fig. 6.73.
10 mH
AN
60 mH
25 mH 20 mH
a o AR 1IN o b

30 mH

Figure 6.73
For Prob. 6.51.
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6.52 Using Fig. 6.74, design a problem to help other
efJd students better understand how inductors behave
when connected in series and when connected in

parallel.
Ly
N
L, L,
o SITR
ch L, Ls
Lg

o AN

Figure 6.74
For Prob. 6.52.

6.53 Find L. at the terminals of the circuit in Fig. 6.75.

6 mH 8 mH
a o—TI SR
5 mH
12 mH
8mH§
6 mH
4 mH
b o——TII AR
10 mH 8 mH

Figure 6.75
For Prob. 6.53.

6.54 Find the equivalent inductance looking into the
terminals of the circuit in Fig. 6.76.

9H

10H

6 H

e

NIy

QO
SO

Figure 6.76
For Prob. 6.54.
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6.55 Find L., in each of the circuits in Fig. 6.77.

L
o N
L
Leg
— L L
L
O
(a)
L
L L
L L
f o

Figure 6.77
For Prob. 6.55.

6.56 Find L., in the circuit of Fig. 6.78.

L
212
L L
L L L
212
L L
T Leq

Figure 6.78
For Prob. 6.56.

*6.57 Determine L., that may be used to represent the
inductive network of Fig. 6.79 at the terminals.

di
2=
i dt
_‘» 4H
a o TN 2L =
Leq
—_— 3H 5H
b o

Figure 6.79
For Prob. 6.57.

Capacitors and Inductors

6.58 The current waveform in Fig. 6.80 flows through a
3-H inductor. Sketch the voltage across the inductor
over the interval 0 < ¢ < 6 s.

i(1)

Figure 6.80
For Prob. 6.58.

6.59 (a) For two inductors in series as in Fig. 6.81(a),
show that the voltage division principle is
L, L,
Uy = U, UVp=—""0
YL+ L+,
assuming that the initial conditions are zero.
(b) For two inductors in parallel as in Fig. 6.81(b),
show that the current-division principle is
. L, . . Ly .
L L =7 I
L + L, L + L,

assuming that the initial conditions are zero.

« @

(a) (b)
Figure 6.81
For Prob. 6.59.

6.60 In the circuit of Fig. 6.82,i,(0) = 2 A. Determine
i,(t) and v(¢) fort > 0.

de 2 A Q)

Figure 6.82
For Prob. 6.60.
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6.61 Consider the circuit in Fig. 6.83. Find: (a) Leg, i1(2),
and ix(¢) if iy = 3¢~ " mA, (b) v,(?), (c) energy stored
in the 20-mH inductor at r = 1 s.

4 mH

6 mH

Figure 6.83
For Prob. 6.61.

6.62 Consider the circuit in Fig. 6.84. Given that
v(f) = 12¢ > mV for r > 0and i;(0) = —10 mA,
find: (a) i5(0), (b) i;(¢) and i5(?).

25 mH

+ 0

v(t)

O

Figure 6.84
For Prob. 6.62.

6.63 In the circuit of Fig. 6.85, sketch v,,.

IO

21 () Lo

i) (A3) ir(1) (A‘g

0 3 61(s) 0 2 4
Figure 6.85

For Prob. 6.63.

61(s)
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6.64 The switch in Fig. 6.86 has been in position A for a
long time. At ¢ = 0, the switch moves from position
A to B. The switch is a make-before-break type so
that there is no interruption in the inductor current.
Find:
(a) i(t) for t > 0,
(b) v just after the switch has been moved to position B,

(c) v(¢) long after the switch is in position B.

t=0A0C

IZVC

Figure 6.86
For Prob. 6.64.

6.65 The inductors in Fig. 6.87 are initially charged and are
connected to the black box at r = 0. If i;(0) = 4 A,
i»(0) = =2 A, and v(r) = 50e 2" mV, r = 0, find:
(a) the energy initially stored in each inductor,

(b) the total energy delivered to the black box from
t=0tor = oo,

() i1(¢) and ir(?), t = O,
(d) i(r),t = 0.

e
gZOH

Black box

Figure 6.87
For Prob. 6.65.

6.66 The current i(f) through a 20-mH inductor is equal,
in magnitude, to the voltage across it for all values of
time. If i(0) = 2 A, find i(7).

Section 6.6 Applications

6.67 An op amp integrator has R = 50 k() and C =
0.04 wF. If the input voltage is v; = 10sin50f mV,
obtain the output voltage.
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6.68 A 10-V dc voltage is applied to an integrator with
R = 50kQ, C = 100 uF at t = 0. How long will it
take for the op amp to saturate if the saturation
voltages are +12 V and —12 V? Assume that the
initial capacitor voltage was zero.

6.69 An op amp integrator with R = 4 M) and
C = 1 uF has the input waveform shown in
Fig. 6.88. Plot the output waveform.

v;(mV) 4
20 —I_
10
0 | | |
1 2 3 45 6 t(ms)
-10 -
20 _I

Figure 6.88
For Prob. 6.69.

6.70 Using a single op amp, a capacitor, and resistors of
e dd 100 kQ or less, design a circuit to implement

t
v, = —50 J v(t) dt
0

Assume v, = 0atr = 0.

6.71 Show how you would use a single op amp to generate
13
v, = —J (v, + 4v, + 10v3)dt
0
If the integrating capacitor is C = 2 uF, obtain the

other component values.

6.72 Att = 1.5 ms, calculate v, due to the cascaded
integrators in Fig. 6.89. Assume that the integrators
areresettoO Vatt = 0.

2 uF

}7

>

0.5 uF

10 kQ 20kQ

1v(®)

OI§+(L

L

Figure 6.89
For Prob. 6.72.

Capacitors and Inductors

6.73 Show that the circuit in Fig. 6.90 is a noninverting
integrator.

Figure 6.90
For Prob. 6.73.

6.74 The triangular waveform in Fig. 6.91(a) is applied to
the input of the op amp differentiator in Fig. 6.91(b).

Plot the output.
v(t) 4
10 -
0 1 1 ] >
1 2 3 t (ms)
10 |-
(a)
20 kQ
0.01 uF
+
v; v,
o
(b)

Figure 6.91
For Prob. 6.74.

6.75 An op amp differentiator has R = 250k and C =
10 wF. The input voltage is a ramp r(f) = 12t mV.
Find the output voltage.

6.76 A voltage waveform has the following characteristics:
a positive slope of 20 V/s for 5 ms followed by a
negative slope of 10 V/s for 10 ms. If the waveform
is applied to a differentiator with R = 50 k(),

C = 10 uF, sketch the output voltage waveform.
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*6.77 The output v, of the op amp circuit in Fig. 6.92(a) is 6.79 Design an analog computer circuit to solve the
shown in Fig. 6.92(b). Let R; = R, = 1 MQ and eqd following ordinary differential equation.
C = 1 uF. Determine the input voltage waveform
: dy(1)
and sketch it. “u + 4y() = f(0)
t

where y(0) = 1 V.

6.80 Figure 6.93 presents an analog computer designed
to solve a differential equation. Assuming f(#) is

R known, set up the equation for f(7).
f
—MWW—
C
||
R; I
>————0 1 uF
+ K 1 uF
v, ) F— 1MQ
o
1 MQ 1 MQ
S 500 k2
(a) ’ = 9,0 =
100 kQ
Uy, A
4t 100 ke 200 kQ2
= —f(t) o—
0 1 1 v _ 5

1 2 3 4t
© Figure 6.93
For Prob. 6.80.

(b)
Figure 6.92
For Prob. 6.77. 6.81 Design an analog computer to simulate the following
efdd equation:

2

dv
— + 5v = =2f(t
i (1)

6.82 Design an op amp circuit such that

6.78 Design an analog computer to simulate ed
e‘d d, _dv, , v, = 100, + 2 J v,dt
> T2 + v, = 10 sin 2¢
dt dt

where v and v,, are the input voltage and output
where v(0) = 2 and v(0) = 0. voltage, respectively.

1

Comprehensive Problems

6.83 Your laboratory has available a large number of 6.84 An 8-mH inductor is used in a fusion power
e7Jd 10-uF capacitors rated at 300 V. To design a experiment. If the current through the inductor is
capacitor bank of 40 uF rated at 600 V, how many i(f) = 5sin* wrmA, r > 0, find the power being
10-uF capacitors are needed and how would you delivered to the inductor and the energy stored in it

connect them? att = 0.5s.
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6.85 A square-wave generator produces the voltage
waveform shown in Fig. 6.94(a). What kind of a
circuit component is needed to convert the voltage
waveform to the triangular current waveform shown

in Fig. 6.94(b)? Calculate the value of the

component, assuming that it is initially uncharged.

v(V)A
5 —

1 2 3 4 1(ms)

(a)

Capacitors and Inductors

i(A)
4

Figure 6.94
For Prob. 6.85.

6.86 An electric motor can be modeled as a series
combination of a 12-) resistor and 200-mH inductor.
If a current i(r) = 2te” '” A flows through the series
combination, find the voltage across the combination.
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We live in deeds, not years; in thoughts, not breaths, in feelings, not in
figures on a dial. We should count time in heart-throbs. He most lives
who thinks most, feels the noblest, acts the best.

—P. J. Bailey

Enhancing Your Career

Careers in Computer Engineering _ -
Electrical engineering education has gone through drastic changes in I
recent decades. Most departments have come to be known as Department
of Electrical and Computer Engineering, emphasizing the rapid changes & e
due to computers. Computers occupy a prominent place in modern soci- i i i
ety and education. They have become commonplace and are helping to ' s gl 3
change the face of research, development, production, business, and enter- i I
tainment. The scientist, engineer, doctor, attorney, teacher, airline pilot, i f gl o F
businessperson—almost anyone benefits from a computer’s abilities to | "SE8 e : .
store large amounts of information and to process that information in very Computer design of very large scale
short periods of time. The internet, a computer communication network,  jteorated (VLSI) circuits.
is essential in business, education, and library science. Computer usage  Courtesy Brian Fast, Cleveland State
continues to grow by leaps and bounds. University

An education in computer engineering should provide breadth in soft-
ware, hardware design, and basic modeling techniques. It should include
courses in data structures, digital systems, computer architecture, micro-
processors, interfacing, software engineering, and operating systems.

Electrical engineers who specialize in computer engineering find
jobs in computer industries and in numerous fields where computers
are being used. Companies that produce software are growing rapidly
in number and size and providing employment for those who are skilled
in programming. An excellent way to advance one’s knowledge of
computers is to join the IEEE Computer Society, which sponsors
diverse magazines, journals, and conferences.

253
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Figure 7.1

A source-free RC circuit.

I A circuit response is the manner in

=

which the circuit reacts to an

excitation.

Chapter 7 First-Order Circuits

7.1 Introduction

Now that we have considered the three passive elements (resistors,
capacitors, and inductors) and one active element (the op amp) indi-
vidually, we are prepared to consider circuits that contain various com-
binations of two or three of the passive elements. In this chapter, we
shall examine two types of simple circuits: a circuit comprising a resis-
tor and capacitor and a circuit comprising a resistor and an inductor.
These are called RC and RL circuits, respectively. As simple as these
circuits are, they find continual applications in electronics, communi-
cations, and control systems, as we shall see.

We carry out the analysis of RC and RL circuits by applying
Kirchhoff’s laws, as we did for resistive circuits. The only difference
is that applying Kirchhoff’s laws to purely resistive circuits results in
algebraic equations, while applying the laws to RC and RL circuits pro-
duces differential equations, which are more difficult to solve than
algebraic equations. The differential equations resulting from analyz-
ing RC and RL circuits are of the first order. Hence, the circuits are
collectively known as first-order circuits.

A first-order circuit is characterized by a first-order differential
equation.

In addition to there being two types of first-order circuits (RC and
RL), there are two ways to excite the circuits. The first way is by ini-
tial conditions of the storage elements in the circuits. In these so-called
source-free circuits, we assume that energy is initially stored in the
capacitive or inductive element. The energy causes current to flow in
the circuit and is gradually dissipated in the resistors. Although source-
free circuits are by definition free of independent sources, they may
have dependent sources. The second way of exciting first-order circuits
is by independent sources. In this chapter, the independent sources we
will consider are dc sources. (In later chapters, we shall consider sinu-
soidal and exponential sources.) The two types of first-order circuits
and the two ways of exciting them add up to the four possible situa-
tions we will study in this chapter.

Finally, we consider four typical applications of RC and RL cir-
cuits: delay and relay circuits, a photoflash unit, and an automobile
ignition circuit.

7.2 The Source-Free RC Circuit

A source-free RC circuit occurs when its dc source is suddenly dis-
connected. The energy already stored in the capacitor is released to the
resistors.

Consider a series combination of a resistor and an initially charged
capacitor, as shown in Fig. 7.1. (The resistor and capacitor may be the
equivalent resistance and equivalent capacitance of combinations of
resistors and capacitors.) Our objective is to determine the circuit
response, which, for pedagogic reasons, we assume to be the voltage
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v(t) across the capacitor. Since the capacitor is initially charged, we
can assume that at time ¢ = 0, the initial voltage is

v(0) = V, (7.1)

with the corresponding value of the energy stored as
1
w(0) = - Ccvs (7.2)

Applying KCL at the top node of the circuit in Fig. 7.1 yields

iC + iR =0 (7.3)
By definition, i = C dv/dt and i = v/R. Thus,
dv v
T il-0 7.4
¢ dt R (7.42)
or
dv v
—+—=0 7.4b
dt  RC ( )

This is a first-order differential equation, since only the first derivative
of v is involved. To solve it, we rearrange the terms as

d 1
e (1.5)
v RC

Integrating both sides, we get
t
Inv=—-——+hA
RC

where In A is the integration constant. Thus,

EA—— (7.6)
A RC
Taking powers of e produces
v(r) = Ae”"/RC
But from the initial conditions, v(0) = A = V,,. Hence,
v(t) = Vye /RC (7.7)

This shows that the voltage response of the RC circuit is an exponen-
tial decay of the initial voltage. Since the response is due to the initial
energy stored and the physical characteristics of the circuit and not due
to some external voltage or current source, it is called the natural
response of the circuit.

The natural response of a circuit refers to the behavior (in terms of
voltages and currents) of the circuit itself, with no external sources of
excitation.

The natural response is illustrated graphically in Fig. 7.2. Note that at
t = 0, we have the correct initial condition as in Eq. (7.1). As ¢
increases, the voltage decreases toward zero. The rapidity with which

255

The natural response depends on the

nature of the circuit alone, with no ex-
ternal sources. In fact, the circuit has a
response only because of the energy

initially stored in the capacitor.
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Figure 7.2

The voltage response of the RC circuit.

TABLE 7.1

Values of v(¢)/Vo = e ™.

t v(®)/Vy
T 0.36788
27 0.13534
37 0.04979
4t 0.01832
57 0.00674
v
VoA
1.0

0.50 Tangent at t =0

037 |--+¢
025 |-

iy ]
0 T 27 37 4T 57 t(s)
Figure 7.3

Graphical determination of the time
constant 7 from the response curve.

Chapter 7 First-Order Circuits

the voltage decreases is expressed in terms of the time constant,
denoted by 7, the lowercase Greek letter tau.

The time constant of a circuit is the time required for the response to
decay to a factor of 1/e or 36.8 percent of its initial value.”

This implies that at + = 7, Eq. (7.7) becomes
Voe R = yye ! = 0.368V,

or
;= RC (7.8)

In terms of the time constant, Eq. (7.7) can be written as
v(t) = Ve /7 (7.9)

With a calculator it is easy to show that the value of v(r)/V, is as
shown in Table 7.1. It is evident from Table 7.1 that the voltage v()
is less than 1 percent of V| after 57 (five time constants). Thus, it is
customary to assume that the capacitor is fully discharged (or charged)
after five time constants. In other words, it takes 57 for the circuit to
reach its final state or steady state when no changes take place with
time. Notice that for every time interval of 7, the voltage is reduced
by 36.8 percent of its previous value, v(t + 7) = v(t)/e = 0.368v(),
regardless of the value of 7.

Observe from Eq. (7.8) that the smaller the time constant, the more
rapidly the voltage decreases, that is, the faster the response. This is
illustrated in Fig. 7.4. A circuit with a small time constant gives a fast
response in that it reaches the steady state (or final state) quickly due
to quick dissipation of energy stored, whereas a circuit with a large
time constant gives a slow response because it takes longer to reach
steady state. At any rate, whether the time constant is small or large,
the circuit reaches steady state in five time constants.

With the voltage v(¢) in Eq. (7.9), we can find the current i(?),

00 _ Vo s

iwh) = =" = (7.10)

! The time constant may be viewed from another perspective. Evaluating the derivative
of v(r) in Eq. (7.7) at t = 0, we obtain

i)
dt\ 'V,

Thus, the time constant is the initial rate of decay, or the time taken for v/V, to decay
from unity to zero, assuming a constant rate of decay. This initial slope interpretation of
the time constant is often used in the laboratory to find 7 graphically from the response
curve displayed on an oscilloscope. To find 7 from the response curve, draw the tangent
to the curve at r = 0, as shown in Fig. 7.3. The tangent intercepts with the time axis at
t=r.

— _le*l/f

T

T

=0 t=0
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7.2  The Source-Free RC Circuit

v _
Y _y t/7

Vo 4

0 1 2 3 4 5 ¢
Figure 7.4

Plot of v/V, = e~ "™ for various values of the time constant.

The power dissipated in the resistor is

. V% —2t/T
p(t) = vig = — e (7.11)

The energy absorbed by the resistor up to time 7 is
2

t t V
wi(t) = J p(V)dA = J ?‘)e*”/%\

0 0

(7.12)

2 t
VO _onr

2R

1
= ECV%(I — e 27, 7 =RC

0

Notice that as t — %, wr(®) — %CV%, which is the same as w(0),
the energy initially stored in the capacitor. The energy that was initially
stored in the capacitor is eventually dissipated in the resistor.

In summary:

The Key to Working with a Source-Free RC Circuit
Is Finding:

1. The initial voltage v(0) = V,, across the capacitor.
2. The time constant 7.

With these two items, we obtain the response as the capacitor voltage
ve(t) = v(t) = v(O)eit/ . Once the capacitor voltage is first obtained,
other variables (capacitor current i, resistor voltage v, and resistor cur-
rent ip) can be determined. In finding the time constant 7 = RC, R is
often the Thevenin equivalent resistance at the terminals of the capacitor;
that is, we take out the capacitor C and find R = Ry, at its terminals.
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The time constant is the same regard-
less of what the output is defined
to be.

When a circuit contains a single
capacitor and several resistors and
dependent sources, the Thevenin
equivalent can be found at the
terminals of the capacitor to form a
simple RC circuit. Also, one can use
Thevenin’s theorem when several
capacitors can be combined to form
a single equivalent capacitor.

In Fig. 7.5, let v-(0) = 15 V. Find v, v,, and i, for > 0.

Solution:
We first need to make the circuit in Fig. 7.5 conform with the standard
RC circuit in Fig. 7.1. We find the equivalent resistance or the Thevenin

Example 7.1
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8Q
MV * ;
+ +
SQ§ 0.1F == v, 129§7X
Figure 7.5
For Example 7.1.
+
Req § v — 0.1F

Figure 7.6
Equivalent circuit for the circuit in
Fig. 7.5.

Chapter 7 First-Order Circuits

resistance at the capacitor terminals. Our objective is always to first
obtain capacitor voltage v,. From this, we can determine v, and i,.

The 8- and 12-() resistors in series can be combined to give a
20-Q) resistor. This 20-{) resistor in parallel with the 5-() resistor can
be combined so that the equivalent resistance is

_20X5

o = =40
20 + 5

Hence, the equivalent circuit is as shown in Fig. 7.6, which is analogous
to Fig. 7.1. The time constant is

T = R C = 4(0.1) =045
Thus,

v = U(O)e—t/r = 15¢ /04 v, Ve=v = 15625ty
From Fig. 7.5, we can use voltage division to get v,; so

v, = v =0.6(15¢>) = 9¢ >V

12+ 8
Finally,

Practice Problem 7.1

Refer to the circuit in Fig. 7.7. Let v-(0) = 60 V. Determine v, v,,
and i, for t = 0.

o 80
MW Answer: 60e "'V, 20e PV, —5¢ 02 A,
+ +
12Q 6Q 2 v, LF == o,
Figure 7.7
For Practice Prob. 7.1.
Example 1.2 The switch in the circuit in Fig. 7.8 has been closed for a long time,
and it is opened at t = 0. Find v(¢) for + = 0. Calculate the initial
s0 9 g energy stored in the capacitor.
+ Solution:
20V o0 v 20mE Eor ¢ < 0, the switch is closed; the capacitor is an open circuit to dc,
T as represented in Fig. 7.9(a). Using voltage division
Figure 7.8 9
For Example 7.2. ve(t) = ——(20) =15V, <0

9+3

Since the voltage across a capacitor cannot change instantaneously, the
voltage across the capacitor at t = 0~ is the same at t = 0, or

Uc(o) = VO =15V
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7.3 The Source-Free RL Circuit

For t > 0, the switch is opened, and we have the RC circuit
shown in Fig. 7.9(b). [Notice that the RC circuit in Fig. 7.9(b) is
source free; the independent source in Fig. 7.8 is needed to provide
V, or the initial energy in the capacitor.] The 1-Q) and 9-Q) resistors
in series give

Rg=1+9=10Q
The time constant is
T=R,C=10X20X107°=02s
Thus, the voltage across the capacitor for 1 = 0 is
v(1) = ve(0)e /™ = 15¢7702 v
or
v() = 15¢'V

The initial energy stored in the capacitor is

1 1
we(0) = ECU%(O) =5 X 20 X 1073 X 152 =225]7
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3Q 1Q
AN AMM——0
+
20V 90 v6(0)
o
(a)
1Q
o AW
+
9Q V,=15V == 20 mF
O
(b)
Figure 7.9

For Example 7.2: (a) t < 0, (b)t > 0.

If the switch in Fig. 7.10 opens at ¢ = 0, find v(#) for r = 0 and w(0).

Answer: 8¢ 2V, 5333 .

7.3 The Source-Free RL Circuit

Consider the series connection of a resistor and an inductor, as shown
in Fig. 7.11. Our goal is to determine the circuit response, which we
will assume to be the current i(f) through the inductor. We select the
inductor current as the response in order to take advantage of the idea
that the inductor current cannot change instantaneously. At ¢ = 0, we
assume that the inductor has an initial current /,, or

i(0) = I (7.13)

with the corresponding energy stored in the inductor as
1
w(0) = EL I (7.14)

Applying KVL around the loop in Fig. 7.11,

U + Ur — 0 (7.15)
But v, = Ldi/dt and vg = iR. Thus,
di .
L—+Ri=0

dt

Practice Problem 7.2

24V Ip —

| = +

12 Q

Figure 7.10

For Practice Prob. 7.2.

Figure 7.11

A source-free RL circuit.

4Q
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i(t) A

03681,

Figure 7.12

The current response of the RL circuit.

The smaller the time constant 7 of a
circuit, the faster the rate of decay of
the response. The larger the time con-
stant, the slower the rate of decay of
the response. At any rate, the response
decays to less than 1 percent of its
initial value (i.e., reaches steady state)
after 57.

I Figure 7.12 shows an initial slope inter-
pretation may be given to 7.

Chapter 7 First-Order Circuits
or

R
—+—-i=0 (7.16)
dt L

Rearranging terms and integrating gives

it 4. t
d R
[T [
i L

Io 0

) Rt Rt
Inif =-—— = Ini(t) —Inly=—"+0
L L
Io 0
or
i(t Rt
In 0 = —— (7.17)
Iy L
Taking the powers of e, we have
i(t) = Iye ®/* (7.18)

This shows that the natural response of the RL circuit is an exponen-
tial decay of the initial current. The current response is shown in
Fig. 7.12. It is evident from Eq. (7.18) that the time constant for the
RL circuit is

(7.19)

L
T=—
R

with 7 again having the unit of seconds. Thus, Eq. (7.18) may be
written as

i) = Ipe "™ (7.20)

With the current in Eq. (7.20), we can find the voltage across the
resistor as

vr(t) = iR = IyRe "™ (7.21)
The power dissipated in the resistor is
p = vgi = [3Re 2" (7.22)
The energy absorbed by the resistor is
12 t T t L
we(t) = j p(NYdA = J e dh = —~ 3R, ==
2 R
0 0 0
or
1
we(t) = L 1201 — e 27 (7.23)

Note that as t — o, wr(®) — %L I3, which is the same as w;(0),
the initial energy stored in the inductor as in Eq. (7.14). Again, the
energy initially stored in the inductor is eventually dissipated in
the resistor.
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7.3 The Source-Free RL Circuit

In summary:

The Key to Working with a Source-Free RL Circuit
Is to Find:

1. The initial current i(0) = [, through the inductor.
2. The time constant 7 of the circuit.

With the two items, we obtain the response as the inductor current
i(H =i() = i(O)eft/ ". Once we determine the inductor current i,
other variables (inductor voltage v;, resistor voltage vz, and resistor
current i) can be obtained. Note that in general, R in Eq. (7.19) is the
Thevenin resistance at the terminals of the inductor.

261

When a circuit has a single inductor
and several resistors and dependent
sources, the Thevenin equivalent can
be found at the terminals of the induc-
tor to form a simple AL circuit. Also,
one can use Thevenin’s theorem when
several inductors can be combined to
form a single equivalent inductor.

Assuming that i(0) = 10 A, calculate i(f) and i.(¢) in the circuit of
Fig. 7.13.

Solution:

There are two ways we can solve this problem. One way is to obtain
the equivalent resistance at the inductor terminals and then use
Eq. (7.20). The other way is to start from scratch by using Kirchhoft’s
voltage law. Whichever approach is taken, it is always better to first
obtain the inductor current.

B METHOD 1 The equivalent resistance is the same as the
Thevenin resistance at the inductor terminals. Because of the depend-
ent source, we insert a voltage source with v, = 1 V at the inductor
terminals a-b, as in Fig. 7.14(a). (We could also insert a 1-A current
source at the terminals.) Applying KVL to the two loops results in

1
Z(ll - 12) +1=0 = il - iz = _5 (7.3.1)

5
6i2 - 211 - 311 =0 = i2 = gll (7.3.2)

Substituting Eq. (7.3.2) into Eq. (7.3.1) gives
i1:_3A, l(,:_l1:3A

40
AW

Example 7.3

4Q

W
O.SHg §ZQ 3i

Figure 7.13
For Example 7.3.

SICIOEE R QIR I N BNy

3i

(a)
Figure 7.14
Solving the circuit in Fig. 7.13.

(b)
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Hence,
vO
Req:RTh_.izi(2
lO
The time constant is
L 3 3
T=—=—-—=—8
Rq 3 2

Thus, the current through the inductor is

ity = i(0e /" =10 A, >0

B METHOD 2 We may directly apply KVL to the circuit as in
Fig. 7.14(b). For loop 1,

1di; . .

EE + 2(11 - 12) =0
or

ﬂ—i—4' —4i, =0 (7.3.3)

dt 1 15) oD
For loop 2,

. . , . 5.
612 - 211 - 3l1 =0 = I = gll (7.3.4)

Substituting Eq. (7.3.4) into Eq. (7.3.3) gives

dn 2. _
dr 3"
Rearranging terms,
di, 2

Since i; = i, we may replace #; with i and integrate:

it 2|t
In i = ——t
i(0) 3 0
or
i(t 2
ln,l(i) = ——t
i(0) 3

Taking the powers of e, we finally obtain
i() = i(0)e ¥ =10e" ¥ A, >0
which is the same as by Method 1.

The voltage across the inductor is

di 2 10
= L= = 0.5010) =2 |e @ = — —@/3y
vl )< 3)6 3¢
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7.3 The Source-Free RL Circuit

Since the inductor and the 2-() resistor are in parallel,

i(f) = % = 16667 VA, >0

263

Find i and v, in the circuit of Fig. 7.15. Let i(0) = 12 A.

Answer: 12¢ 2 A, —12¢" 2V, t> 0.

Practice Problem 7.3

1Q

-
+

NQ

|

(3]
jan
£11A
AW
o
e}

Figure 7.15
For Practice Prob. 7.3.

The switch in the circuit of Fig. 7.16 has been closed for a long time.
At t = 0, the switch is opened. Calculate i(¢) for + > 0.

Solution:

When ¢ < 0, the switch is closed, and the inductor acts as a short
circuit to dc. The 16-0) resistor is short-circuited; the resulting circuit
is shown in Fig. 7.17(a). To get i, in Fig. 7.17(a), we combine the 4-)
and 12-Q) resistors in parallel to get

412

=30
4+ 12 3
Hence,
40
7 = = 8 A
T3
We obtain i(f) from i; in Fig. 7.17(a) using current division, by
writing
12
i(fy=——i; = 6A, <0
12 +4

Since the current through an inductor cannot change instantaneously,
i(0)=i0")=6A

When ¢ > 0, the switch is open and the voltage source is
disconnected. We now have the source-free RL circuit in Fig. 7.17(b).
Combining the resistors, we have

Rg=(12+4)]16=80Q

The time constant is

Thus,
i(t) = i(0)e /™ = 6e * A

Example 7.4
=0
2Q 4Q
*i(z)
40V 12Q ?169 §2H

Figure 7.16

For Example 7.4.
-0 S
‘ i(f)
40V 12Q
(a)
4Q
AN
‘ i(1)
12Q 16 Q 2H

(b)

Figure 7.17
Solving the circuit of Fig. 7.16: (a) for
t <0, (b)fort > 0.
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Chapter 7 First-Order Circuits

Practice Problem 7.4

t=0

<>S
§24Q Q)lSAi(Iw -

2H

Figure 7.18
For Practice Prob. 7.4.

12Q §8Q

For the circuit in Fig. 7.18, find i(¢) for + > 0.

Answer: 5¢ ' A, t > 0.

Example 7.5

2Q 3Q
oy T *ia ‘i
10V <>2t=0 §6Q gzﬂ

Figure 7.19
For Example 7.5.

2Q 3Q

10V 6Q§

3Q
MW
+ ~ ;
et
6!2% ULSZH

(b)
Figure 7.20
The circuit in Fig. 7.19 for: (a) t < 0,
b)yr > 0.

In the circuit shown in Fig. 7.19, find i,, v,, and i for all time, assum-
ing that the switch was open for a long time.

Solution:
It is better to first find the inductor current i and then obtain other
quantities from it.

For ¢ < 0, the switch is open. Since the inductor acts like a short
circuit to dc, the 6-() resistor is short-circuited, so that we have the
circuit shown in Fig. 7.20(a). Hence, i, = 0, and

=—2 —2A  1<o0
! 2+3 ’

v,(t) = 3i(t) =6V, <0

Thus, i(0) = 2.

For t > 0, the switch is closed, so that the voltage source is short-
circuited. We now have a source-free RL circuit as shown in
Fig. 7.20(b). At the inductor terminals,

Rm=36=20Q
so that the time constant is

L
rT=—=1s
Ry,

Hence,
i) =i0e /"=2e"A, t>0

Since the inductor is in parallel with the 6-0) and 3-() resistors,

p
v() = —v; = —LE; =22 ) =4e 'V, >0

and
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7.4 Singularity Functions
Thus, for all time,
A <

” 02’ r<0 o [6V. 1< 0
i = s v,(1) = _
¢ —ge*’A, r>0 4¢7'V, >0

. 2A, <0

i(n = —

2¢ "A, t=0

‘We notice that the inductor current is continuous at ¢ = 0, while the
current through the 6-Q) resistor drops from 0 to —2/3 at t = 0, and
the voltage across the 3-() resistor drops from 6 to 4 at t = 0. We also
notice that the time constant is the same regardless of what the output
is defined to be. Figure 7.21 plots i and i,.

265

0

e

L~

3 i,(t)

Figure 7.21
Aplot of i and i,,.

Determine i, i,, and v, for all ¢ in the circuit shown in Fig. 7.22.
Assume that the switch was closed for a long time. It should be noted
that opening a switch in series with an ideal current source creates an
infinite voltage at the current source terminals. Clearly this is impossi-
ble. For the purposes of problem solving, we can place a shunt resis-
tor in parallel with the source (which now makes it a voltage source
in series with a resistor). In more practical circuits, devices that act like
current sources are, for the most part, electronic circuits. These circuits
will allow the source to act like an ideal current source over its oper-
ating range but voltage-limit it when the load resistor becomes too large
(as in an open circuit).

Answer:
. 16 A, +<0 ) 8 A, t<0
l = 9’ l() = - ’
16 % A, r=0 —5.333¢ 2 A, r>0
32y, t<0
Yo 10667¢ ¥V, >0

7.4 Singularity Functions

Before going on with the second half of this chapter, we need to digress
and consider some mathematical concepts that will aid our under-
standing of transient analysis. A basic understanding of singularity
functions will help us make sense of the response of first-order circuits
to a sudden application of an independent dc voltage or current source.

Singularity functions (also called switching functions) are very use-
ful in circuit analysis. They serve as good approximations to the
switching signals that arise in circuits with switching operations. They
are helpful in the neat, compact description of some circuit phenom-
ena, especially the step response of RC or RL circuits to be discussed
in the next sections. By definition,

Singularity functions are functions that either are discontinuous or have
discontinuous derivatives.

Practice Problem 7.5

30
—AMA——
=0 I 1H
l()

24 A G)

e

Figure 7.22
For Practice Prob. 7.5.
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u(t)

0 t
Figure 7.23

The unit step function.

u(t—ty) A

(a)

u(t +t;) 4

~ty 0 t
(b)
Figure 7.24

(a) The unit step function delayed by 1,
(b) the unit step advanced by #.

Alternatively, we may derive

Eqgs. (7.25) and (7.26) from Eq. (7.24)
by writing u[£f(£)] = 1, f(¢t) > 0O,
where f(¢) may be t — tyort + ¢

Chapter 7 First-Order Circuits

The three most widely used singularity functions in circuit analy-
sis are the unit step, the unit impulse, and the unit ramp functions.

The unit step function w(¢) is 0 for negative values of £ and 1 for pos-
itive values of ¢.

In mathematical terms,

<0

7.24
t>0 ( )

u(t) = {(1):

The unit step function is undefined at r = 0, where it changes abruptly
from O to 1. It is dimensionless, like other mathematical functions such
as sine and cosine. Figure 7.23 depicts the unit step function. If the
abrupt change occurs at t = #, (where #, > 0) instead of r = 0, the unit
step function becomes

0, t <t
Ll(l - t()) - 1 >0
B 0

(7.25)

which is the same as saying that u () is delayed by #, seconds, as shown
in Fig. 7.24(a). To get Eq. (7.25) from Eq. (7.24), we simply replace
every t by t — ty. If the change is at t = —¢;, the unit step function
becomes

0, 1 < _t()

7.2
1, t> —t (7.26)

M([ + to) - {

meaning that u(¢) is advanced by #, seconds, as shown in Fig. 7.24(b).

We use the step function to represent an abrupt change in voltage

or current, like the changes that occur in the circuits of control systems
and digital computers. For example, the voltage

(1) 0. £< 1o (7.27)
v(r) = .
Vo, 1> 1
may be expressed in terms of the unit step function as
v(n) = Voult — 1o) (7.28)

If we let 7, = 0, then v(7) is simply the step voltage Vyu(#). A voltage
source of Vyu(?) is shown in Fig. 7.25(a); its equivalent circuit is shown
in Fig. 7.25(b). It is evident in Fig. 7.25(b) that terminals a-b are short-
circuited (v = 0) for + < 0 and that v = V|, appears at the terminals

Vou(t)

B

b b
(a) (b)
Figure 7.25

(a) Voltage source of Vyu(t), (b) its equivalent circuit.
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for t > 0. Similarly, a current source of Iyu(¢) is shown in Fig. 7.26(a),
while its equivalent circuit is in Fig. 7.26(b). Notice that for ¢ < 0,
there is an open circuit (i = 0), and that i = I flows for t > 0.

t=0 _‘»
————O0 a O——O0 aa
fuy () = 1 ®
L——ob b
(a) (b)

Figure 7.26

(a) Current source of Iyu(z), (b) its equivalent circuit.

The derivative of the unit step function u(f) is the wunit impulse
function 6(tf), which we write as

J 0, <0
o(t) = au(t) = ¢ Undefined, t=20 (7.29)
0, t>0

The unit impulse function—also known as the delta function—is
shown in Fig. 7.27.

The unit impulse function 8(¢) is zero everywhere except at ¢ = 0,
where it is undefined.

Impulsive currents and voltages occur in electric circuits as a result of
switching operations or impulsive sources. Although the unit impulse
function is not physically realizable (just like ideal sources, ideal
resistors, etc.), it is a very useful mathematical tool.

The unit impulse may be regarded as an applied or resulting shock.
It may be visualized as a very short duration pulse of unit area. This
may be expressed mathematically as

0+
j 8(1) dr = 1 (7.30)
o
where t = 07 denotes the time just before t = 0 and r = 0™ is the time
just after + = 0. For this reason, it is customary to write 1 (denoting
unit area) beside the arrow that is used to symbolize the unit impulse
function, as in Fig. 7.27. The unit area is known as the strength of the
impulse function. When an impulse function has a strength other than
unity, the area of the impulse is equal to its strength. For example, an
impulse function 106(f) has an area of 10. Figure 7.28 shows the
impulse functions 56(¢t + 2), 106(¢), and —46(t — 3).

To illustrate how the impulse function affects other functions, let
us evaluate the integral

b
J J0d(t — to)dt (7.31)

a

267
o(1) 4 (=)
0 t
Figure 7.27
The unit impulse function.
105(1)

56(t +2)

T Il Il Il Il >

-2 -1 0 1 2 3 t
\J
—46(t=3)

Figure 7.28

Three impulse functions.
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r(f) A

Figure 7.29

The unit ramp function.

r(t—tg)

>

) —to+1 0 ¢t

(b)

Figure 7.30
The unit ramp function: (a) delayed by 1,
(b) advanced by #.

Chapter 7 First-Order Circuits

where a < t, < b. Since 6(t — f,) = 0 except at ¢t = t, the integrand
is zero except at fy. Thus,
b

b
J f@o(t — to)dt = J fto)o(t — ty)dt

a a

b
= f(to) J ot — to)dt = f(ty)

a

or

b
J J0d(t — to)dt = f(to) (7.32)

This shows that when a function is integrated with the impulse func-
tion, we obtain the value of the function at the point where the impulse
occurs. This is a highly useful property of the impulse function known
as the sampling or sifting property. The special case of Eq. (7.31) is
for 5 = 0. Then Eq. (7.32) becomes

0
J f(nd(dt = f(0) (7.33)

0
Integrating the unit step function u(¢) results in the unit ramp func-
tion r(t); we write

r(t) = J u(N)dA = tu(r) (7.34)
or
0, tr=0
r(n) = {t, £=0 (7.35)

The unit ramp function is zero for negative values of # and has a unit
slope for positive values of .

Figure 7.29 shows the unit ramp function. In general, a ramp is a func-
tion that changes at a constant rate.

The unit ramp function may be delayed or advanced as shown in
Fig. 7.30. For the delayed unit ramp function,

0, =1,
t— 1ty = 7.36
(i = to) {t_to’ . (7.36)
and for the advanced unit ramp function,
0, = —1
m+m={ 0 (7.37)
t + t(), IE _t()

We should keep in mind that the three singularity functions
(impulse, step, and ramp) are related by differentiation as

du)) o dr®

o(t) =
® dt dt

(7.38)
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or by integration as
t 14
u(t) = J S(N)dA, r(t) = J u(A)dxr (7.39)
Although there are many more singularity functions, we are only inter-
ested in these three (the impulse function, the unit step function, and
the ramp function) at this point.
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Express the voltage pulse in Fig. 7.31 in terms of the unit step. Cal-
culate its derivative and sketch it.

Solution:

The type of pulse in Fig. 7.31 is called the gate function. It may be
regarded as a step function that switches on at one value of ¢ and
switches off at another value of 7. The gate function shown in Fig. 7.31
switches on at r = 2's and switches off at + = 5s. It consists of the
sum of two unit step functions as shown in Fig. 7.32(a). From the
figure, it is evident that

v(t) = 10u(t — 2) — 10u( — 5) = 10[u(t — 2) — u(t — 5)]
Taking the derivative of this gives
dv
— = 10[6(t —2) — 6(t — 5
i [8( ) — & ]

which is shown in Fig. 7.32(b). We can obtain Fig. 7.32(b) directly
from Fig. 7.31 by simply observing that there is a sudden increase by
10 V at t = 2 s leading to 106(r — 2). At t = 5s, there is a sudden
decrease by 10 V leading to —10 V (¢ — 5).

Example 7.6
I Gate functions are used along
with switches to pass or block

another signal.

v(t) A

10 -

I I I
0 1 2 3 4 5

Figure 7.31
For Example 7.6.

~

10u(t—2) —10u(t —5) A
10 — 10
L 0 L
0o 1 2 t 1
~10
(@)
dv
dr 4
10 I~ A
0 1 1 1 >

(b)
Figure 7.32

(a) Decomposition of the pulse in Fig. 7.31, (b) derivative of the pulse in Fig. 7.31.
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Practice Problem 7.6

Express the current pulse in Fig. 7.33 in terms of the unit step. Find
its integral and sketch it.

Answer: 10[u(t) — 2u(t — 2) + u(® — 4], 10[r(t) — 2r(t — 2) +
r(t — 4)]. See Fig. 7.34.

i(r) A
Jidt
10
20
0
2 4 t
-10 |- :
0 2 4 t

Figure 7.33
For Practice Prob. 7.6.

Figure 7.34
Integral of i(¢) in Fig. 7.33.

Example 7.7
v(t) A
10 -
0 2 t
Figure 7.35
For Example 7.7.
(1)
10
0 2t

(@)
Figure 7.36

Express the sawtooth function shown in Fig. 7.35 in terms of singu-
larity functions.

Solution:

There are three ways of solving this problem. The first method is by
mere observation of the given function, while the other methods
involve some graphical manipulations of the function.

B METHOD 1 By looking at the sketch of v() in Fig. 7.35, it is
not hard to notice that the given function v(f) is a combination of sin-
gularity functions. So we let

v(t) = v(t) + va(t) + -+ (7.7.1)

The function v4(¢) is the ramp function of slope 5, shown in Fig. 7.36(a);
that is,

v(t) = 5r() (7.7.2)
v+,
10
vy(1) T
. . .
2 t 0 2 t

(b) (©

Partial decomposition of v(?) in Fig. 7.35.
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Since v (#) goes to infinity, we need another function at = 2 s in order to
get v(f). We let this function be v,, which is a ramp function of slope —35,
as shown in Fig. 7.36(b); that is,

V(1) = —5r(t — 2) (7.7.3)

Adding v, and v, gives us the signal in Fig. 7.36(c). Obviously, this is
not the same as v(¢) in Fig. 7.35. But the difference is simply a constant
10 units for t > 2's. By adding a third signal v;, where

vy = —10u(t — 2) (7.7.4)

we get v(?), as shown in Fig. 7.37. Substituting Eqs. (7.7.2) through
(7.7.4) into Eq. (7.7.1) gives

v(t) = 5r(t) — 5r(t — 2) — 10u(t — 2)

v+,
10 + o) —
0 R —
0 2 t 2 t
-10 S

(@) (b)

Figure 7.37
Complete decomposition of v(¢) in Fig. 7.35.

B METHOD 2 A close observation of Fig. 7.35 reveals that v(¢) is
a multiplication of two functions: a ramp function and a gate function.
Thus,
v(t) = S5tlu(t) — u(t — 2)]

= S5tu(t) — Stu(t — 2)

=5r(t) — 5(t — 2 + u(t — 2)

=5r() — 5(t — 2u(t — 2) — 10u(t — 2)

=5r(t) — 5r(t —2) — 10u(t — 2)

the same as before.
M METHOD 3 This method is similar to Method 2. We observe

from Fig. 7.35 that v(r) is a multiplication of a ramp function and a
unit step function, as shown in Fig. 7.38. Thus,

v(t) = Sr(Hu(—t + 2)

If we replace u(—f) by 1 — u(¢), then we can replace u(—t + 2) by
1 — u(r — 2). Hence,

v(t) = 5r(O[1 — u(t — 2)]

which can be simplified as in Method 2 to get the same result.

v(t)

10

©

271
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S5r(1)
10 p-mm--- / u(—t +2)
X 1
0 2 ' 0 2 1
Figure 7.38
Decomposition of v(¢) in Fig. 7.35.
Practice Problem 7.7 Refer to Fig. 7.39. Express i(7) in terms of singularity functions.
i(0) (A) A Answer: 2u(t) — 2r(f) + 4r(t — 2) — 2r(t — 3) A.
2
0 \l | | >
1\/23 1)
2+

Figure 7.39
For Practice Prob. 7.7.

Example 7.8 Given the signal

3, <0
gty =4 —2, 0<r<1
2t — 4, tr>1

express g(#) in terms of step and ramp functions.

Solution:
The signal g(#) may be regarded as the sum of three functions specified
within the three intervals r < 0,0 < ¢ < 1,and ¢t > 1.

For + < 0, g(f) may be regarded as 3 multiplied by u(—¢), where
u(—t) =1 for t <0 and O for r > 0. Within the time interval
0 <t < 1, the function may be considered as —2 multiplied by a
gated function [u(f) — u(t — 1)]. For ¢t > 1, the function may be
regarded as 2t — 4 multiplied by the unit step function u (¢ — 1). Thus,

g(t) =3u(—t) — 2[u(®) —u(t — D] + 2t — Hu(@ — 1)
=3u(—1) —2u() + 2t — 4 + u(t — 1)
=3u(—1t) — 2u(@®) + 2(t — Du(t — 1)
= 3u(—1) — 2u(t) + 2r(t — 1)

One may avoid the trouble of using u(—f) by replacing it with
1 — u(?). Then

gt =3[1 —u@®] —2u(@®) +2r(t—1)=3 — Su(®) + 2r(t — 1)
Alternatively, we may plot g(f) and apply Method 1 from Example 7.7.
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If
0, <0
ht) = —4, 0<r<2
3t — 8, 2<tr<6
0, t>6

express h(f) in terms of the singularity functions.

Answer: —4u(t) + 2u(t—2) + 3r(t —2) — 10u(t —6) — 3r(t — 6).

Practice Problem 7.8

Evaluate the following integrals involving the impulse function:

10
f ( + 4t — 2)8(t — 2)dt
0

J [6(r — e "cost + 8(tr + 1)e” " sin f]dt

—o

Solution:
For the first integral, we apply the sifting property in Eq. (7.32).

10
J (F+4t—2)8(t—2)dt = +4t— 2|, =4+8-2=10
0

Similarly, for the second integral,

J [8(t — 1)e “cost + 8(t + 1)e 'sin f]dt

—oo
— 1 -t 3
=e¢ 'cost|—; + e "sint|,__,

=e¢ 'cos1 + e'sin(—1)=0.1988 — 2.2873 = —2.0885

Example 7.9

Evaluate the following integrals:

oo 10
J (# + 52 + 10)8(t + 3)dt, j 8(t — r) cos 3t dt

—» 0

Answer: 28, —1.

1.5 Step Response of an RC Circuit

When the dc source of an RC circuit is suddenly applied, the voltage
or current source can be modeled as a step function, and the response
is known as a step response.

The step response of a circuit is its behavior when the excitation is the
step function, which may be a voltage or a current source.

Practice Problem 7.9
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B
T—‘
I = +

| = +

vt (F) ==

(®)
Figure 7.40
An RC circuit with voltage step input.

Chapter 7 First-Order Circuits

The step response is the response of the circuit due to a sudden appli-
cation of a dc voltage or current source.

Consider the RC circuit in Fig. 7.40(a) which can be replaced by
the circuit in Fig. 7.40(b), where V| is a constant dc voltage source.
Again, we select the capacitor voltage as the circuit response to be
determined. We assume an initial voltage V|, on the capacitor, although
this is not necessary for the step response. Since the voltage of a capac-
itor cannot change instantaneously,

v(07) = v(0") = V, (7.40)

where v(0 ) is the voltage across the capacitor just before switching and
v(0™) is its voltage immediately after switching. Applying KCL, we have

di — Vau(t
v v M():0

C— +
dt R
or
dv v Vi
— 4+ — == R
ar " rRC T RC"® (7.41)

where v is the voltage across the capacitor. For > 0, Eq. (7.41) becomes

d Vs
L0 (7.42)
dt  RC RC
Rearranging terms gives
o _ vV,
dt RC
or
d dt
L= & (7.43)
v—V RC
Integrating both sides and introducing the initial conditions,
v(n) t
In(v — V. = ——
nw — V) RC
Vo 0
t
In(w(@) — Vo) —In(Vy — Vo) =—""—75+0
@) — Vo) — In(Vo — Vy RC
or
v — Vi t
In——=——= (7.44)
Vo — Vi RC
Taking the exponential of both sides
U e T =RC
VO - Vs
v= Vo= (Vo= Ve
or
o) = Vy+ (Vo= Ve " 1>0 (7.45)
Thus,

Vo, <0
0= 7.46
vl {VS + (Vo= Ve ™, >0 (7.46)
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This is known as the complete response (or total response) of the RC
circuit to a sudden application of a dc voltage source, assuming the
capacitor is initially charged. The reason for the term “complete” will
become evident a little later. Assuming that V, > V,, a plot of v(¢) is
shown in Fig. 7.41.

If we assume that the capacitor is uncharged initially, we set
Vo = 0 in Eq. (7.46) so that

0, t<0
A = 7.47
v {m A 747
which can be written alternatively as
v(r) = V(1 — e M) (7.48)

This is the complete step response of the RC circuit when the capaci-
tor is initially uncharged. The current through the capacitor is obtained
from Eq. (7.47) using i(f) = Cdv/dr. We get

dvv _C_ .
—=—Ve "7, T = RC, r>0

i(t)=C— =
10 dt T
or
Ve _
i) = e "u()

R (7.49)

Figure 7.42 shows the plots of capacitor voltage v(¢) and capacitor cur-
rent (7).

Rather than going through the derivations above, there is a sys-
tematic approach—or rather, a short-cut method—for finding the step
response of an RC or RL circuit. Let us reexamine Eq. (7.45), which is
more general than Eq. (7.48). It is evident that v(¢) has two components.
Classically there are two ways of decomposing this into two compo-
nents. The first is to break it into a “natural response and a forced
response’” and the second is to break it into a “transient response and
a steady-state response.”” Starting with the natural response and forced
response, we write the total or complete response as

Complete response = natural response + forced response
stored energy independent source

or

v=uv,+uv (7.50)
where

v, = Ve /7
and

vp=Vy(l — e ")

We are familiar with the natural response v,, of the circuit, as discussed
in Section 7.2. v, is known as the forced response because it is pro-
duced by the circuit when an external “force” (a voltage source in this
case) is applied. It represents what the circuit is forced to do by the
input excitation. The natural response eventually dies out along with
the transient component of the forced response, leaving only the steady-
state component of the forced response.
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v(t)

0 t
Figure 7.41

Response of an RC circuit with initially
charged capacitor.

v(t)
Vx ,,,,,,,,,,,,,,,,,,,
0 t
(a)
i(1)
v,
R
0 t

(b)
Figure 7.42
Step response of an RC circuit with
initially uncharged capacitor: (a) voltage
response, (b) current response.



www.konkur.in

276

This is the same as saying that the com-
plete response is the sum of the tran-
sient response and the steady-state
response.

Once we know x(0), x(), and T,
almost all the circuit problems in this
chapter can be solved using the
formula

x(f) = x(20) + [x(0) — x()]e /"

Chapter 7 First-Order Circuits

Another way of looking at the complete response is to break into
two components—one temporary and the other permanent, i.e.,

Complete response = transient response + steady-state response

temporary part permanent part
or
v =0, t v (7.51)
where
v, = (V, — Ve /7 (7.52a)
and
Uss = Vi (7.52b)

The transient response v, is temporary; it is the portion of the com-
plete response that decays to zero as time approaches infinity. Thus,

The transient response is the circuit’s temporary response that will die
out with time.

The steady-state response v is the portion of the complete response
that remains after the transient reponse has died out. Thus,

The steady-state response is the behavior of the circuit a long time
after an external excitation is applied.

The first decomposition of the complete response is in terms of the
source of the responses, while the second decomposition is in terms of
the permanency of the responses. Under certain conditions, the natural
response and transient response are the same. The same can be said
about the forced response and steady-state response.

Whichever way we look at it, the complete response in Eq. (7.45)
may be written as

(1) = v(®) + [V(0) — v(=®)]e /" (7.53)

where v(0) is the initial voltage at = 0" and v(%) is the final or steady-
state value. Thus, to find the step response of an RC circuit requires
three things:

1. The initial capacitor voltage v(0).
2. The final capacitor voltage v ().
3. The time constant 7.

We obtain item | from the given circuit for + < 0 and items 2 and 3
from the circuit for + > 0. Once these items are determined, we obtain
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the response using Eq. (7.53). This technique equally applies to RL cir-
cuits, as we shall see in the next section.

Note that if the switch changes position at time ¢ = 7, instead of
at + = 0, there is a time delay in the response so that Eq. (7.53)
becomes

(1) = v(®) + [V(tg) — v()]e /T (7.54)

where v(t,) is the initial value at = ¢; . Keep in mind that Eq. (7.53)
or (7.54) applies only to step responses, that is, when the input exci-
tation is constant.
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The switch in Fig. 7.43 has been in position A for a long time. At = 0,
the switch moves to B. Determine v(f) for t+ > 0 and calculate its value
att = 1sand 4 s.

3kQ A B 4kQ

24V 5k(2§ v 0.5 mF 30V

Figure 7.43
For Example 7.10.

Solution:

For t+ < 0, the switch is at position A. The capacitor acts like an open
circuit to dc, but v is the same as the voltage across the 5-k{) resistor.
Hence, the voltage across the capacitor just before = 0 is obtained
by voltage division as

- _ 5 B
v(0 )—75+3(24)—15V

Using the fact that the capacitor voltage cannot change instantaneously,
v0) =v(0)=v0") =15V

For t > 0, the switch is in position B. The Thevenin resistance
connected to the capacitor is Rp, = 4 k{), and the time constant is

T=RpC=4X10°X 05X 103 =25

Since the capacitor acts like an open circuit to dc at steady state,
v(e0) = 30 V. Thus,

v(t) = v(=) + [0(0) = v(=)]le” "
=30 + (15 = 30)e "/ = (30 — 15¢ >V

Atr=1,
v(l) =30 — 15¢ %> =209V
At =4,
v(4) =30 — 15¢ > =2797V

Example 7.10
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Practice Problem 7.10

t=0

75V

Figure 7.44
For Practice Prob. 7.10.

Find v(¢) for + > 0 in the circuit of Fig. 7.44. Assume the switch has
been open for a long time and is closed at t = 0. Calculate v(¢) at
t=0.5.

Answer: (9.375 + 5.625¢ %) V forallr > 0,7.63 V.

Example 7.11

0o !

—
+
20Q v 10V
(a)
e _f
+
30V 200 v==1F

(b)
Figure 7.46

Solution of Example 7.11: (a) for r < 0,
(b) fort > 0.

In Fig. 7.45, the switch has been closed for a long time and is opened
at t = 0. Find i and v for all time.

0o i

ot

30u(r) V 20 Q

I = +

Figure 7.45
For Example 7.11.

Solution:
The resistor current i can be discontinuous at ¢+ = 0, while the capacitor
voltage v cannot. Hence, it is always better to find v and then obtain i
from v.

By definition of the unit step function,

0, <0
30, t>0

For ¢t < 0, the switch is closed and 30u(r) = 0, so that the 30u(r)
voltage source is replaced by a short circuit and should be regarded as
contributing nothing to v. Since the switch has been closed for a long
time, the capacitor voltage has reached steady state and the capacitor
acts like an open circuit. Hence, the circuit becomes that shown in
Fig. 7.46(a) for ¢+ < 0. From this circuit we obtain

30u(t) = {

v

v=10V, i=——=
10

-1A

Since the capacitor voltage cannot change instantaneously,
v(0)=v0 )=10V

For t > 0, the switch is opened and the 10-V voltage source is
disconnected from the circuit. The 30u(f) voltage source is now operative,
so the circuit becomes that shown in Fig. 7.46(b). After a long time, the
circuit reaches steady state and the capacitor acts like an open circuit
again. We obtain v() by using voltage division, writing

2

0
= =20V
v(®) 20 + 10(30) 0
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The Thevenin resistance at the capacitor terminals is

Rpp = 10]20 = 12X 20 _ 20 ¢
B 30 3
and the time constant is
201 5
:R Czi-—zf
TS Ty T gt

Thus,

v(@) + [W(0) = v(=)e "
20 + (10 = 20)e” /> = (20 — 10e ")V

v(t) =

To obtain i, we notice from Fig. 7.46(b) that i is the sum of the currents
through the 20-{) resistor and the capacitor; that is,

v dv
=—+ C—
20 dt

=1 - 0.5e" %+ 025(-0.6)(—10)e > = (1 + e ") A

i

Notice from Fig. 7.46(b) that v + 10i = 30 is satisfied, as expected.
Hence,

. 10V,
(20 — 10e %) v,

<0
t=0

<0
t>0

f-1A
T ey A,

Notice that the capacitor voltage is continuous while the resistor current
is not.
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The switch in Fig. 7.47 is closed at r = 0. Find i(f) and v(¢) for all time.
Note that u(—¢) = 1 for t < 0 and O for r > 0. Also, u(—1t) = 1 — u(?).

. =0
5 ' X
. ’
20u(-1) V v==02F 10Q 3A
Figure 7.47
For Practice Prob. 7.11.
Answer: i(f) 0. r<0
2 () =
=21 +e YA, >0,
20V, r<o0
U =
101 +e YV, >0

Practice Problem 7.11
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Vo) (2) Lg w0

(b)
Figure 7.48

An RL circuit with a step input voltage.

i1

=[S

0 t
Figure 7.49

Total response of the RL circuit with
initial inductor current /.

Chapter 7 First-Order Circuits

7.6 Step Response of an RL Circuit

Consider the RL circuit in Fig. 7.48(a), which may be replaced by the
circuit in Fig. 7.48(b). Again, our goal is to find the inductor current i
as the circuit response. Rather than apply Kirchhoff’s laws, we will use
the simple technique in Egs. (7.50) through (7.53). Let the response be
the sum of the transient response and the steady-state response,

=0+ g (7.55)
We know that the transient response is always a decaying exponential,
that is,

. —t,
i, = Ae /7 T =

L
R (7.56)
where A is a constant to be determined.

The steady-state response is the value of the current a long time after
the switch in Fig. 7.48(a) is closed. We know that the transient response
essentially dies out after five time constants. At that time, the inductor
becomes a short circuit, and the voltage across it is zero. The entire
source voltage V, appears across R. Thus, the steady-state response is

= (7.57)
lys = R .
Substituting Egs. (7.56) and (7.57) into Eq. (7.55) gives
. —t/T ‘/S
i = Ae + — (7.58)

R

We now determine the constant A from the initial value of i. Let I, be
the initial current through the inductor, which may come from a source
other than V. Since the current through the inductor cannot change
instantaneously,

i(07) =i(07) =1, (7.59)
Thus, at + = 0, Eq. (7.58) becomes
Vi
[0 - A + F
From this, we obtain A as
Vi
A=1— E

Substituting for A in Eq. (7.58), we get
(1) = 2 + (1 — V) o (7.60)
i = R 0T p e X

This is the complete response of the RL circuit. It is illustrated in
Fig. 7.49. The response in Eq. (7.60) may be written as

i(r) = i(%0) + [i(0) — i(>0)le™"" (7.61)




www.konkur.in

7.6 Step Response of an R Circuit

where i(0) and i(%) are the initial and final values of i, respectively.
Thus, to find the step response of an RL circuit requires three things:

1. The initial inductor current i(0) at r = 0.
2. The final inductor current i(0).
3. The time constant 7.

We obtain item 1 from the given circuit for ¢+ < 0 and items 2 and 3
from the circuit for £ > 0. Once these items are determined, we obtain
the response using Eq. (7.61). Keep in mind that this technique applies
only for step responses.

Again, if the switching takes place at time ¢t = ¢, instead of 1 = 0,
Eq. (7.61) becomes

i(r) = i() + [i(tg) — i(0)]e U7/ (7.62)
If I, = 0, then
0, <0
O L N (7.63a)
R
or
. VS —t/
i() = E(l — e "MNu(r) (7.63b)

This is the step response of the RL circuit with no initial inductor cur-
rent. The voltage across the inductor is obtained from Eq. (7.63) using
v = Ldi/dt. We get

0] Loy Lk L t>0
= _— = . 7] s T = -,
dt TR R
or
v(t) = Ve "u(r) (7.64)

Figure 7.50 shows the step responses in Eqgs. (7.63) and (7.64).

i(f) (1)
Vel oo . v

= s

R

(@) (b)
Figure 7.50
Step responses of an RL circuit with no initial inductor
current: (a) current response, (b) voltage response.
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Example 7.12

Figure 7.51
For Example 7.12.

Find i(7) in the circuit of Fig. 7.51 for + > 0. Assume that the switch
has been closed for a long time.

Solution:

When ¢ < 0, the 3-Q) resistor is short-circuited, and the inductor acts
like a short circuit. The current through the inductor at t = 0~ (i.e., just
before r = 0) is

10

i(07) = > SA

Since the inductor current cannot change instantaneously,
i0)=i0 ) =i0")=5A

When 7 > 0, the switch is open. The 2-() and 3-() resistors are in series,
so that

10
2+3

i(0) = 2A

The Thevenin resistance across the inductor terminals is
RTh =2+3=50
For the time constant,
L 5 1
T=——=—=—3§
Ry, 5 15
Thus,
i(t) = i() + [i(0) — i()]e /"
24+ (55— B=2+3A, >0

Check: In Fig. 7.51, for t > 0, KVL must be satisfied; that is,
di
10=5i+L—
! dt
. di —15¢ 1 —15¢
5i + LE =[10 + 15¢ "] + 5(3)(—15)e =10

This confirms the result.

Practice Problem 7.12

! 1.5H
£11%

5Q >it=0

10 Q

Figure 7.52
For Practice Prob. 7.12.

The switch in Fig. 7.52 has been closed for a long time. It opens at
t = 0. Find i(r) for t > 0.

Answer: (4 + 2¢ ') A forall 7 > 0.
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Att = 0, switch 1 in Fig. 7.53 is closed, and switch 2 is closed 4 s later.
Find i(¢) for t > 0. Calculate i for t = 2s and t = 5 s.

40V () 20 §5H

Figure 7.53
For Example 7.13.

Solution:

We need to consider the three time intervals t = 0,0 = = 4, and
t = 4 separately. For + < 0, switches S, and S, are open so that i = 0.
Since the inductor current cannot change instantly,

i(07) =i0)=i0")=0
For 0 =t =4, S, is closed so that the 4-() and 6-() resistors are

in series. (Remember, at this time, S, is still open.) Hence, assuming
for now that S, is closed forever,

40
] = =4 A Ryy=4+6=100Q
i(%0) 4+6 s Th 6 0
L 5 1
T=—=—=—3
RTh 10

Thus,
i(6) = i(e0) + [i(0) — i(=)le ™"/
=44+ 0—4e ¥=41-¢A, 0=1=4
For t = 4, S, is closed; the 10-V voltage source is connected, and
the circuit changes. This sudden change does not affect the inductor
current because the current cannot change abruptly. Thus, the initial
current is
i4)=i4)=41—-e®*=4A
To find i(c0), let v be the voltage at node P in Fig. 7.53. Using KCL,
40—-v 10—-v v 180
J’_ —

= — = -
4 2 6 T

v 30
() =~ =L = 2727 A
==

The Thevenin resistance at the inductor terminals is

4 X2

22
Ry =42+6= +6:?Q

and

T=E——=55= "

L 5 15
Ry % 22

Example 7.13
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Hence,
i(f) = i(0) + [i(4) — i(0)]e 7, =4

We need (¢t — 4) in the exponential because of the time delay. Thus,

15
i(1) = 2727 + (4 — 2.72T)e” /7, T=2
= 2727 + 1.273¢ 146570~ =4
Putting all this together,
0, t =0
i(t) = 4(1 — e, 0<t=<4
2727 + 1273 146676=H 4 =4
Att =2,
i2)=4(1—-e*H=393A
Att =5,

i(5) = 2727 + 1.273¢ 1467 = 3,02 A

Practice Problem 7.13

t=2

Si 100Q

A 0o | |io

6AG> §159 SH

Figure 7.54
For Practice Prob. 7.13.

Switch S in Fig. 7.54 is closed at + = 0, and switch S, is closed at
t = 2 s. Calculate i(¢) for all z. Find i(1) and i(3).

Answer:
0, t <0
i) =<2(1 — e %, 0<t<2
3.6 — 1.6, ¢t >2
i(1) = 1.9997 A, i(3) = 3.589 A.

7.7 TFirst-Order Op Amp Circuits

An op amp circuit containing a storage element will exhibit first-order
behavior. Differentiators and integrators treated in Section 6.6 are
examples of first-order op amp circuits. Again, for practical reasons,
inductors are hardly ever used in op amp circuits; therefore, the op amp
circuits we consider here are of the RC type.

As usual, we analyze op amp circuits using nodal analysis. Some-
times, the Thevenin equivalent circuit is used to reduce the op amp cir-
cuit to one that we can easily handle. The following three examples
illustrate the concepts. The first one deals with a source-free op amp
circuit, while the other two involve step responses. The three examples
have been carefully selected to cover all possible RC types of op amp
circuits, depending on the location of the capacitor with respect to the
op amp; that is, the capacitor can be located in the input, the output,
or the feedback loop.
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For the op amp circuit in Fig. 7.55(a), find v, for ¢t > 0, given that Example 7.14
v(0) =3 V. Let R, = 80k, R, = 20k}, and C = 5 uF.

Ry 80 kQ 80 kQ
1A
1 OIS 1 c 5 ~
Cpa— " = +
v - + + 3V - + v +
R 1 v, 20 kQ v, (0+) 20 kQ Yy
o o o

(a) (b) ©
Figure 7.55
For Example 7.14.

Solution:
This problem can be solved in two ways:

B METHOD 1 Consider the circuit in Fig. 7.55(a). Let us derive the
appropriate differential equation using nodal analysis. If v, is the volt-
age at node 1, at that node, KCL gives

00— (%] dl

=C 7.14.1
R, dt ( )

Since nodes 2 and 3 must be at the same potential, the potential at node
2 is zero. Thus, vy — 0 = v or v; = v and Eq. (7.14.1) becomes

dl v

— =0 7.14.2
dt CR, ( )

This is similar to Eq. (7.4b) so that the solution is obtained the same
way as in Section 7.2, i.e.,

v(r) = Vee 7, T =R,C (7.14.3)

where V|, is the initial voltage across the capacitor. But v(0) = 3 =V,
and 7 =20 X 10° X 5 X 107° = 0.1. Hence,

v(f) = 3¢ 1 (7.14.4)

Applying KCL at node 2 gives

dv 0—-v,
dt R,
or
dv
o= —RC— 7.14.5
v f dt ( )

Now we can find v, as

v, = —80 X 10* X 5 X 107%(—30e ') =127 'V, >0
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B METHOD 2 Let us apply the short-cut method from Eq. (7.53).
We need to find v,(0™"), v,(), and 7. Since v(0") = v(0") = 3V, we
apply KCL at node 2 in the circuit of Fig. 7.55(b) to obtain
3 0-0v,0")
20,000 80,000

or v,(0") = 12 V. Since the circuit is source free, v(*) = 0 V. To find
7, we need the equivalent resistance R, across the capacitor terminals.
If we remove the capacitor and replace it by a 1-A current source, we
have the circuit shown in Fig. 7.55(c). Applying KVL to the input loop
yields

20,000(1) —v =0 = v =20kV
Then

eq

R =%=20k(2

and 7 = R.,C = 0.1. Thus,

Vo(1) = U,() + [0,(0) — v ()]e "
=0+ 12-0e ""=122"""V, >0

as before.

Practice Problem 7.14

c
I
I
+ v -
A —
Ry
s >——>0
+
R, .,
o

Figure 7.56
For Practice Prob. 7.14.

For the op amp circuit in Fig. 7.56, find v, for + > 0 if v(0) = 4 V.
Assume that R, = 50k{), R; = 10k(}, and C = 10 uF.

Answer: —4e¢ ¥V, 1> 0.

Example 7.15

Determine v(#) and v,(¢) in the circuit of Fig. 7.57.

Solution:

This problem can be solved in two ways, just like the previous example.
However, we will apply only the second method. Since what we are
looking for is the step response, we can apply Eq. (7.53) and write

v(t) = v(®) + [V(0) — v(®@)]e /", >0 (7.15.1)
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where we need only find the time constant 7, the initial value v(0), and
the final value v(%e). Notice that this applies strictly to the capacitor
voltage due a step input. Since no current enters the input terminals of
the op amp, the elements on the feedback loop of the op amp constitute
an RC circuit, with

7=RC=50X%10°xX10"°=0.05 (7.15.2)

For ¢+ < 0, the switch is open and there is no voltage across the
capacitor. Hence, v(0) = 0. For + > 0, we obtain the voltage at node
1 by voltage division as

20

=—3=2V
20 + 10

Uy (7.15.3)

Since there is no storage element in the input loop, v remains constant
for all 7. At steady state, the capacitor acts like an open circuit so that
the op amp circuit is a noninverting amplifier. Thus,

V(%) = (1 + ;g)h =35X2=7V (7.15.4)
But
Up = U, =0 (7.15.5)
so that
v(e)=2—-7= -5V
Substituting 7, v(0), and v(*) into Eq. (7.15.1) gives
v)=-5+[0—(=9]e X =5e""-1DHV, >0 (7.15.6)
From Egs. (7.15.3), (7.15.5), and (7.15.6), we obtain
v,() =v,) —v®) =7 -5V, >0 (7.15.7)

287

+ v -

—I{MF

t= 50 kQ

10 kQ "

+
3V 20k£2§ §20k£2 2,
o

Figure 7.57
For Example 7.15.

Find v(#) and v,(¢) in the op amp circuit of Fig. 7.58.

Answer: (Note, the voltage across the capacitor and the output voltage
must be both equal to zero, for r < 0, since the input was zero for all
1< 0)40(1 — e Y u@)mv, 40(e ' — 1) u(r) mV.

Practice Problem 7.15

100 kQ
—MWAW—
1 uF
I
i
B + v -
0kQ  ~
—
+
4 mV v,
o

Figure 7.58
For Practice Prob. 7.15.
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Example 7.16

Figure 7.59
For Example 7.16.

5kQ

~25u) (%) 1
—

Figure 7.61

2 uF

Thevenin equivalent circuit of the circuit

in Fig. 7.59.

Find the step response v,(¢) for t > 0 in the op amp circuit of Fig. 7.59.
Let v; = 2u() V, R, =20k, R,=50k(), R, = R; = 10k}, C =
2 uF.

Solution:
Notice that the capacitor in Example 7.14 is located in the input loop,
while the capacitor in Example 7.15 is located in the feedback loop. In
this example, the capacitor is located in the output of the op amp. Again,
we can solve this problem directly using nodal analysis. However, using
the Thevenin equivalent circuit may simplify the problem.

We temporarily remove the capacitor and find the Thevenin
equivalent at its terminals. To obtain Vg, consider the circuit in
Fig. 7.60(a). Since the circuit is an inverting amplifier,

R
Vab = _lvt
R,
By voltage division,
Ry Ry, R
Vin =775V = — - Ui
R, + R R, + Rz Ry
Ry
R, R,
MWV o}
v R, Ry T L
O

(a) (b
Figure 7.60

Obtaining Vy, and Ry, across the capacitor in Fig. 7.59.

To obtain Ryy, consider the circuit in Fig. 7.60(b), where R, is the
output resistance of the op amp. Since we are assuming an ideal op amp,
R, = 0, and
RyR;3

Ry =R | Ry = ———
=Rl =

Substituting the given numerical values,

R, R 10 50
= ) = —2.5u
R+ R RV T 202020 u(®)

RoR
RThz%:st

Vin =

The Thevenin equivalent circuit is shown in Fig. 7.61, which is similar
to Fig. 7.40. Hence, the solution is similar to that in Eq. (7.48); that is,
v () = —2.5(1 — e ()

where 7 = Ry, C =5 X 10° X 2 X 107® = 0.01. Thus, the step response
for t > 0 is
v, (1) = 2.5 " — Du(r) vV
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Obtain the step response v,,(¢) for the circuit in Fig. 7.62. Letv; = 4.5u(f) V,
R, =20k, Ry =40k, R, = Ry = 10k}, C = 2 uF.

Answer: 13.5(1 — ¢ ")u(r) V.

7.8

As we discussed in Section 7.5, the transient response is the temporary
response of the circuit that soon disappears. PSpice can be used to
obtain the transient response of a circuit with storage elements. Sec-
tion D.4 in Appendix D provides a review of transient analysis using
PSpice for Windows. It is recommended that you read Section D.4
before continuing with this section.

If necessary, dc PSpice analysis is first carried out to determine the
initial conditions. Then the initial conditions are used in the transient
PSpice analysis to obtain the transient responses. It is recommended
but not necessary that during this dc analysis, all capacitors should be
open-circuited while all inductors should be short-circuited.

Transient Analysis with PSpice

Practice Problem 7.16

+
ag
N

Figure 7.62
For Practice Prob. 7.16.

PSpice uses “transient” to mean “func-
tion of time.” Therefore, the transient
response in ASpice may not actually
die out as expected.

Use PSpice to find the response i(f) for t > 0 in the circuit of Fig. 7.63.

Solution:
Solving this problem by hand gives i(0) = 0,i(®) = 2 A, Ry, = 6,
T =3/6 =0.5s, so that

i(f) = i() + [i(0) — i(®@)]e /T =21 —e ), >0

To use PSpice, we first draw the schematic as shown in Fig. 7.64.
We recall from Appendix D that the part name for a closed switch is
Sw_tclose. We do not need to specify the initial condition of the
inductor because PSpice will determine that from the circuit. By
selecting Analysis/Setup/Transient, we set Print Step to 25 ms and
Final Step to 57 = 2.5s. After saving the circuit, we simulate by
selecting Analysis/Simulate. In the PSpice A/D window, we select
Trace/Add and display —I(L1) as the current through the inductor.
Figure 7.65 shows the plot of i(f), which agrees with that obtained by
hand calculation.

tClose =0
5O R
uL ¥ 4
IDC
6A(d) RIZ2 LI E3H

Yo

Figure 7.64
The schematic of the circuit in Fig. 7.63.

Example 7.17

4Q

A @)

Figure 7.63
For Example 7.17.

Figure 7.65
For Example 7.17; the response of the
circuit in Fig. 7.63.
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Note that the negative sign on I(LL1) is needed because the current
enters through the upper terminal of the inductor, which happens to be
the negative terminal after one counterclockwise rotation. A way to avoid
the negative sign is to ensure that current enters pin 1 of the inductor.
To obtain this desired direction of positive current flow, the initially
horizontal inductor symbol should be rotated counterclockwise 270°
and placed in the desired location.

Practice Problem 7.17

t=0

3Q

12V = v(1)

Figure 7.66
For Practice Prob. 7.17.

For the circuit in Fig. 7.66, use Pspice to find v(¢) for t > 0.

Answer: v(t) = 8(1 — e ")V, t > 0. The response is similar in shape
to that in Fig. 7.65.

Example 7.18

In the circuit of Fig. 7.67(a), determine the response v(?).

t=0 t=0
20 + o(t) —
— Pl
I 7
0.1F

30V 6Q§ 6Q§ 3Q§ Q>4A

3ovC_r> §6Q §69

10Q + o(t) —

0V @)

1
(c)

Figure 7.67
For Example 7.18. Original circuit (a), circuit for # > 0 (b), and
reduced circuit for t > 0 (c).
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Solution:

1. Define. The problem is clearly stated and the circuit is clearly
labeled.

2. Present. Given the circuit shown in Fig. 7.67(a), determine the
response vU(?).

3. Alternative. We can solve this circuit using circuit analysis
techniques, nodal analysis, mesh analysis, or PSpice. Let us
solve the problem using circuit analysis techniques (this time
Thevenin equivalent circuits) and then check the answer using
two methods of PSpice.

4. Attempt. For time <0, the switch on the left is open and the
switch on the right is closed. Assume that the switch on the right
has been closed long enough for the circuit to reach steady state;
then the capacitor acts like an open circuit and the current from
the 4-A source flows through the parallel combination of the 6-()
and 3-Q) resistors (6 | 3 = 18/9 = 2), producing a voltage equal
to2 X4=8V = —v(0).

At t = 0, the switch on the left closes and the switch on
the right opens, producing the circuit shown in Fig. 7.67(b).

The easiest way to complete the solution is to find the
Thevenin equivalent circuit as seen by the capacitor. The open-
circuit voltage (with the capacitor removed) is equal to the
voltage drop across the 6-() resistor on the left, or 10 V (the
voltage drops uniformly across the 12-() resistor, 20 V, and
across the 6-Q) resistor, 10 V). This is V. The resistance
looking in where the capacitor was is equal to 126 + 6 =
72/18 + 6 = 10 Q, which is R.q. This produces the Thevenin
equivalent circuit shown in Fig. 7.67(c). Matching up the
boundary conditions (v(0) = —8 Vand v(®) = 10 V) and 7 =
RC =1, we get

v() =10 — 18e” 'V

5. Evaluate. There are two ways of solving the problem using
PSpice.

B METHOD 1 One way is to first do the dc PSpice analysis to
determine the initial capacitor voltage. The schematic of the revelant
circuit is in Fig. 7.68(a). Two pseudocomponent VIEWPOINTS are
inserted to measure the voltages at nodes 1 and 2. When the circuit
is simulated, we obtain the displayed values in Fig. 7.68(a) as
Vi =0V and V, = 8 V. Thus, the initial capacitor voltage is v(0) =

Vi — V, = —8 V. The PSpice transient analysis uses this value along
with the schematic in Fig. 7.68(b). Once the circuit in Fig. 7.68(b)
is drawn, we insert the capacitor initial voltage as IC = —8. We

select Analysis/Setup/Transient and set Print Step to 0.1 s and
Final Step to 4t = 4 s. After saving the circuit, we select Analysis/
Simulate to simulate the circuit. In the PSpice A/D window, we
select Trace/Add and display V(R2:2) — V(R3:2) or V(CI1:1) —
V(CI1:2) as the capacitor voltage v(f). The plot of v(¢) is shown in
Fig. 7.69. This agrees with the result obtained by hand calculation,
v =10 — 18¢ 'V.
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0.0000 C1 8.0000 10 v
1 | J_ 2 .
0.1 !
5V
R2§6 R3IZ 6 re33 11(})
0o v
Yo
(a) -5 v
R1 c1l
—e AW ————{—— 10 v
12 0.1 s
O V(R2:2) — V(R3:2)
30 v(Ff)ve R2§6 R3§6 Time
Figure 7.69
Response v(?) for the circuit in Fig. 7.67.

Figure 7.68
(a) Schematic for dc analysis to get v(0), (b) schematic
for transient analysis used in getting the response v(z).

B METHOD 2 We can simulate the circuit in Fig. 7.67 directly,
since PSpice can handle the open and closed switches and determine
the initial conditions automatically. Using this approach, the schematic
is drawn as shown in Fig. 7.70. After drawing the circuit, we select
Analysis/Setup/Transient and set Print Step to 0.1 s and Final Step
to 47 = 4's. We save the circuit, then select Analysis/Simulate to sim-
ulate the circuit. In the PSpice A/D window, we select Trace/Add and
display V(R2:2) — V(R3:2) as the capacitor voltage v(¢). The plot of
v(?) is the same as that shown in Fig. 7.69.

R1 tClose
1
12 Ul

V1
30 v

Figure 7.70
For Example 7.18.

6. Satisfactory? Clearly, we have found the value of the output
response v(?), as required by the problem statement. Checking
does validate that solution. We can present all this as a complete
solution to the problem.
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The switch in Fig. 7.71 was open for a long time but closed at t = 0.
If i(0) = 10 A, find i(r) for + > 0 by hand and also by PSpice.

Answer: i(f) = 6 + 4e " A. The plot of i(f) obtained by PSpice analy-
sis is shown in Fig. 7.72.

O I(Ll)

Time
Figure 7.72
For Practice Prob. 7.18.

7.9 T Applications

The various devices in which RC and RL circuits find applications
include filtering in dc power supplies, smoothing circuits in digital com-
munications, differentiators, integrators, delay circuits, and relay circuits.
Some of these applications take advantage of the short or long time con-
stants of the RC or RL circuits. We will consider four simple applica-
tions here. The first two are RC circuits, the last two are RL circuits.

7.9.1 Delay Circuits

An RC circuit can be used to provide various time delays. Figure 7.73
shows such a circuit. It basically consists of an RC circuit with the capac-
itor connected in parallel with a neon lamp. The voltage source can pro-
vide enough voltage to fire the lamp. When the switch is closed, the
capacitor voltage increases gradually toward 110 V at a rate determined
by the circuit’s time constant, (R; + R,)C. The lamp will act as an open

R, s Rz(
+ 70V
110V T C == 0.1 uF C) Neon

lamp

Figure 7.73
An RC delay circuit.

Practice Problem 7.18

50
7§7 i i(0)

t=0

12A D §309 §69 2H

Figure 7.71
For Practice Prob. 7.18.
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circuit and not emit light until the voltage across it exceeds a particular
level, say 70 V. When the voltage level is reached, the lamp fires (goes
on), and the capacitor discharges through it. Due to the low resistance
of the lamp when on, the capacitor voltage drops fast and the lamp turns
off. The lamp acts again as an open circuit and the capacitor recharges.
By adjusting R,, we can introduce either short or long time delays into
the circuit and make the lamp fire, recharge, and fire repeatedly every
time constant 7 = (R, + R,)C, because it takes a time period 7 to get
the capacitor voltage high enough to fire or low enough to turn off.

The warning blinkers commonly found on road construction sites
are one example of the usefulness of such an RC delay circuit.

Example 7.19

Consider the circuit in Fig. 7.73, and assume that R; = 1.5 M{),
0 < R, < 2.5M(). (a) Calculate the extreme limits of the time con-
stant of the circuit. (b) How long does it take for the lamp to glow for
the first time after the switch is closed? Let R, assume its largest value.

Solution:

(a) The smallest value for R, is 0 ), and the corresponding time constant
for the circuit is

=R, +R)C=(.5%X10°+0)x01X%X10°=0.15s

The largest value for R, is 2.5 M{}, and the corresponding time constant
for the circuit is

T=@R +R)C=(15+25X10°%X0.1X10°=04s

Thus, by proper circuit design, the time constant can be adjusted to
introduce a proper time delay in the circuit.

(b) Assuming that the capacitor is initially uncharged, v(0) = 0, while
Ue(e) = 110. But

ve(t) = ve(®) + [0e(0) = ve(=)le ™7 = 110[1 — ¢*/"]
where 7 = 0.4 s, as calculated in part (a). The lamp glows when

Ve =T0V.If v(t) = 70 V at t = t,, then

7
70 = 110[1 — ¢ “7] = Tl e
or

4 11

—to/T — to/T — ~ -
= i —

¢ 1 ¢ 4

Taking the natural logarithm of both sides gives
11
fh=T lnI = 0.41n 2.75 = 0.4046 s

A more general formula for finding ¢, is
—u(%)
v(to) — v(*)

The lamp will fire repeatedly every #q seconds if and only if v (75) < v ().

t0=7'1n
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The RC circuit in Fig. 7.74 is designed to operate an alarm which Practice Problem 7.19
activates when the current through it exceeds 120 uA. If 0 =R =

6 kQ), find the range of the time delay that the variable resistor can 0k S R
create. o

+
Answer: Between 47.23 ms and 124 ms. oV —( =
7.9.2 Photoflash Unit Figure 7.74

For Practice Prob. 7.19.
An electronic flash unit provides a common example of an RC circuit.
This application exploits the ability of the capacitor to oppose any
abrupt change in voltage. Figure 7.75 shows a simplified circuit. It con-

sists essentially of a high-voltage dc supply, a current-limiting large Ry !
resistor Ry, and a capacitor C in parallel with the flashlamp of low >C' "'
resistance R,. When the switch is in position 1, the capacitor charges High 2 +
slowly due to the large time constant (7; = R;C). As shown in voltage vy R C=v
Fig. 7.76(a), the capacitor voltage rises gradually from zero to V,, while ~ dc supply g -
its current decreases gradually from I, = V,/R; to zero. The charging
time is approximately five times the time constant, N
Figure 7.75
feharge = SR\ C (7.65) Circuit for a ﬂe.lsh unit prov1d1pg slow .
charge in position 1 and fast discharge in

With the switch in position 2, the capacitor voltage is discharged. position 2.

The low resistance R, of the photolamp permits a high discharge
current with peak I, = V,/R, in a short duration, as depicted in
Fig. 7.76(b). Discharging takes place in approximately five times the
time constant,

[dischurge = SRZC (7.66)
i
v Il
Vs ,,,,,,,,,,,,,,,,,
0 >
0 ! -L |
(@) (b)

Figures 7.76

(a) Capacitor voltage showing slow charge and fast discharge, (b) capacitor
current showing low charging current I, = V,/R; and high discharge current
L = V,/R,.

Thus, the simple RC circuit of Fig. 7.75 provides a short-duration, high-
current pulse. Such a circuit also finds applications in electric spot
welding and the radar transmitter tube.
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Example 7.20

An electronic flashgun has a current-limiting 6-k{) resistor and 2000-wF
electrolytic capacitor charged to 240 V. If the lamp resistance is 12 (),
find: (a) the peak charging current, (b) the time required for the capac-
itor to fully charge, (c) the peak discharging current, (d) the total energy
stored in the capacitor, and (e) the average power dissipated by the
lamp.

Solution:

(a) The peak charging current is

Vs 240

127:7
"R, 6x10°

=40 mA

(b) From Eq. (7.65),
feharge = IR1C =5 X 6 X 10° X 2000 X 107 = 60s = 1 minute
(c) The peak discharging current is

Ve 240
=—=20 A

I:*_
2R, 12

(d) The energy stored is
1 1
W= Ecvf =5 X 2000 X 107 X 240%> = 57.6J
(e) The energy stored in the capacitor is dissipated across the lamp
during the discharging period. From Eq. (7.66),
tdischarge = SR,C =5 X 12 X 2000 X 107° = 0.12's

Thus, the average power dissipated is

w 57.6
= = —— = 480 watt
P tdischarge 0.12 WA

Practice Problem 7.20

The flash unit of a camera has a 2-mF capacitor charged to 80 V.

(a) How much charge is on the capacitor?

(b) What is the energy stored in the capacitor?

(c) If the flash fires in 0.8 ms, what is the average current through
the flashtube?

(d) How much power is delivered to the flashtube?

(e) After a picture has been taken, the capacitor needs to be
recharged by a power unit that supplies a maximum of 5 mA.
How much time does it take to charge the capacitor?

Answer: (a) 0.16 C, (b) 6.4 J, (c) 200 A, (d) 8 kW, (¢) 32 s.

7.9.3 Relay Circuits

A magnetically controlled switch is called a relay. A relay is essen-
tially an electromagnetic device used to open or close a switch that
controls another circuit. Figure 7.77(a) shows a typical relay circuit.



www.konkur.in

7.9  Applications

The coil circuit is an RL circuit like that in Fig. 7.77(b), where R and
L are the resistance and inductance of the coil. When switch S; in
Fig. 7.77(a) is closed, the coil circuit is energized. The coil current
gradually increases and produces a magnetic field. Eventually the mag-
netic field is sufficiently strong to pull the movable contact in the other
circuit and close switch S,. At this point, the relay is said to be pulled
in. The time interval ¢; between the closure of switches S; and S, is
called the relay delay time.

Relays were used in the earliest digital circuits and are still used
for switching high-power circuits.

[ ]

.— Coil

—

AN AN AN ANINAY
<

h

)
(@) (b)
Figure 7.77

A relay circuit.
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The coil of a certain relay is operated by a 12-V battery. If the coil has
a resistance of 150 ) and an inductance of 30 mH and the current
needed to pull in is 50 mA, calculate the relay delay time.

Solution:
The current through the coil is given by

i(r) = i(®) + [i(0) — i()]e” /"

where
i(0) =0 j(00) 12 80 mA
= =—=80m
' ! 150
L 30x10°
T=—=——""—"=02ms
R 150
Thus,

i(f) = 80[1 — ¢ /"I mA
If i(z;) = 50 mA, then

=1 —e "

5
50 =80[1 —e 7] = 3

or

—ty/T _ % = eld/T — §

Example 7.21
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By taking the natural logarithm of both sides, we get
8 8
=17 lng =02 lng ms = 0.1962 ms

Alternatively, we may find 7, using

i((0) — (=)

= T — i)

Practice Problem 7.21

Spark
plug

s
‘( ~— Air gap

Figure 7.78

Circuit for an automobile ignition system.

A relay has a resistance of 200 ) and an inductance of 500 mH. The
relay contacts close when the current through the coil reaches 350 mA.
What time elapses between the application of 110 V to the coil and
contact closure?

Answer: 2.529 ms.

7.9.4 Automobile Ignition Circuit

The ability of inductors to oppose rapid change in current makes them
useful for arc or spark generation. An automobile ignition system takes
advantage of this feature.

The gasoline engine of an automobile requires that the fuel-air
mixture in each cylinder be ignited at proper times. This is achieved
by means of a spark plug (Fig. 7.78), which essentially consists of a
pair of electrodes separated by an air gap. By creating a large voltage
(thousands of volts) between the electrodes, a spark is formed across
the air gap, thereby igniting the fuel. But how can such a large volt-
age be obtained from the car battery, which supplies only 12 V? This
is achieved by means of an inductor (the spark coil) L. Since the volt-
age across the inductor is v = L di/dt, we can make di/dr large by cre-
ating a large change in current in a very short time. When the ignition
switch in Fig. 7.78 is closed, the current through the inductor increases
gradually and reaches the final value of i = V /R, where V, = 12 V.
Again, the time taken for the inductor to charge is five times the time
constant of the circuit (t = L/R),

L
[charge = SE (7.67)

Since at steady state, i is constant, di/dtf = 0 and the inductor voltage
v = 0. When the switch suddenly opens, a large voltage is developed
across the inductor (due to the rapidly collapsing field) causing a spark
or arc in the air gap. The spark continues until the energy stored in the
inductor is dissipated in the spark discharge. In laboratories, when one
is working with inductive circuits, this same effect causes a very nasty
shock, and one must exercise caution.
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A solenoid with resistance 4 ) and inductance 6 mH is used in an auto- Example 7.22
mobile ignition circuit similar to that in Fig. 7.78. If the battery sup-

plies 12 V, determine: the final current through the solenoid when the

switch is closed, the energy stored in the coil, and the voltage across

the air gap, assuming that the switch takes 1 us to open.

Solution:
The final current through the coil is
Ve 12
I=—=—=3A
R 4

The energy stored in the coil is

1 2 1 -3 2
W= oL =2 X6x107° X3 =27m

The voltage across the gap is
Al

3
V=L_—=6x10" X ————=18kV
At 1 X 10

The spark coil of an automobile ignition system has a 20-mH inductance Practice Problem 7.22
and a 5-Q) resistance. With a supply voltage of 12 V, calculate: the
time needed for the coil to fully charge, the energy stored in the coil,
and the voltage developed at the spark gap if the switch opens in 2 us.

Answer: 20 ms, 57.6 mJ, and 24 kV.

7.10 Summary

1. The analysis in this chapter is applicable to any circuit that can be
reduced to an equivalent circuit comprising a resistor and a single
energy-storage element (inductor or capacitor). Such a circuit is
first-order because its behavior is described by a first-order differ-
ential equation. When analyzing RC and RL circuits, one must
always keep in mind that the capacitor is an open circuit to steady-
state dc conditions while the inductor is a short circuit to steady-
state dc conditions.

2. The natural response is obtained when no independent source is
present. It has the general form

x(f) = x(0)e” "7

where x represents current through (or voltage across) a resistor, a
capacitor, or an inductor, and x(0) is the initial value of x. Because
most practical resistors, capacitors, and inductors always have losses,
the natural response is a transient response, i.e. it dies out with time.

3. The time constant 7 is the time required for a response to decay
to 1/e of its initial value. For RC circuits, 7 = RC and for RL cir-
cuits, 7 = L/R.
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4. The singularity functions include the unit step, the unit ramp func-
tion, and the unit impulse functions. The unit step function u(7) is

o = 0, <0
! 1, t>0
The unit impulse function is
0, +r <0
6(t) = { Undefined, t=20
0, t>0

The unit ramp function is

0,
r(t) = {t

5. The steady-state response is the behavior of the circuit after an
independent source has been applied for a long time. The transient
response is the component of the complete response that dies out
with time.

6. The total or complete response consists of the steady-state
response and the transient response.

7. The step response is the response of the circuit to a sudden appli-
cation of a dc current or voltage. Finding the step response of a
first-order circuit requires the initial value x(0™), the final value
x(0), and the time constant 7. With these three items, we obtain
the step response as

x(f) = x(%) + [x(07) — x(0)]e” "

tr=0
tr=0

A more general form of this equation is
x(t) = x(e0) + [x(tg) — x(ee)le” T
Or we may write it as

Instantaneous value = Final + [Initial — Final]e %"/~

oo

. PSpice is very useful for obtaining the transient response of a circuit.
9. Four practical applications of RC and RL circuits are: a delay circuit,
a photoflash unit, a relay circuit, and an automobile ignition circuit.

3

7.1 AnRCcircuithas R = 2 () and C = 4 F. The time

Review Questions

capacitor voltage to reach 63.2 percent of its steady-

constant is:

state value is:

(a)0.5s (b)2s (c)4s (a)2s (b)4s (c)8s
(d)8s (e)15s (d) 16 (e) none of the above

7.2 The time constant for an RL circuit with R = 2 Q) 7.4 AnRL circuithas R = 2 Q) and L = 4 H. The time
and L = 4 His: needed for the inductor current to reach 40 percent
@05 (b)2s ©4s of its steady-state value is:
(d) 8s (e) 15s (a) 05s (b) ls (C) 2s

7.3 A capacitor in an RC circuit with R = 2 () and (d)4s (e) none of the above

C = 4 Fis being charged. The time required for the
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7.5

In the circuit of Fig. 7.79, the capacitor voltage just
before r = 0 is:

@10V (7V  (©)6V
)4V )0V
30
A
+ 20
10V @) o(f) == TF

Figure 7.79

For Review Questions 7.5 and 7.6.

Problems

* i(t)

0a(d) §2Q o

Figure 7.80

For Review Questions 7.7 and 7.8.

7.8 In the circuit of Fig. 7.80, i(®) is:
(a) 10A (b)6 A ©)4A
d2A e)0A

7.9 Ifuv,changes from2Vto4Vatr = 0, we may

express v, as:

(@) é®V

(©) 2u(—1) + 4u(t) V
(e)du(t)y — 2V

(b) 2u(h) V
()2 + 2u(n) V

301

7.6 In the circuit in Fig. 7.79, v() is:

@ 10V )7V © 6V 7.10 ;)F?;Eulsle i'n Fig. 7.'1 16(a) .can be expressed in terms
gularity functions as:
@4V eoVv
(a) 2u(®) + 2ut — HV () 2u(t) — 2u(t — 1)V

7.7 For the circuit in Fig. 7.80, the inductor current just _ _ _
before £ = 0 is: (©) 2u(t) — 4ut — 1)V (d) 2u(t) + 4u(r — 1)V
(@) 8A ®6A  (0)4A Answers: 7.1d, 7.2b, 7.3c, 7.4b, 7.5d, 7.6a, 7.7c, 7.8e,
@2A (e)0A 7.9¢,d, 7.10b.

1 Problems

Section 7.2 The Source-Free RC Circuit

7.1

In the circuit shown in Fig. 7.81

t>0
t>0

v(f) = 56e 2V,

i(1) = 8¢ 2 mA,
(a) Find the values of R and C.
(b) Calculate the time constant 7.

(c) Determine the time required for the voltage to
decay half its initial value at r = 0.

Figure 7.81
For Prob. 7.1.

7.2 Find the time constant for the RC circuit in Fig. 7.82.

120 Q 12Q

—‘7 200 mF

Figure 7.82
For Prob. 7.2.

7.3 Determine the time constant for the circuit in Fig. 7.83.

10 kQ 20 kQ

40 kQ 30 kQ

100 pF T

Figure 7.83
For Prob. 7.3.
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7.4 The switch in Fig. 7.84 has been in position A for a 7.8 For the circuit in Fig. 7.88, if
long time. Assume the switch moves instantaneously 4 . —4
=1 \Y =02 A, >
from A to Batt = 0. Find v forz > 0. v Oe and i=02e 1=0
(a) Find R and C.

5kQ 4 (b) Determine the time constant.
+ (c) Calculate the initial energy in the capacitor.
B 10 uF v (d) Obtain the time it takes to dissipate 50 percent of
4v 2k0 —‘7 - the initial energy.
i
Figure 7.84 -
For Prob. 7.4. +
R C =
7.5 Using Fig. 7.85, design a problem to help other -
efJdd students better understand source-free RC circuits.
Figure 7.88
=0 For Prob. 7.8.
R
* i 7.9 The switch in Fig. 7.89 opens at ¢+ = 0. Find v,, for
Ry t> 0.
v § R;
2kQ t=0
C
T N
Figure 7.85 +
For Prob. 7.5. 6V %o §4 kQ == 3 mF
7.6 The switch in Fig. 7.86 has been closed for a long Figure 7.89
time, and it opens at # = 0. Find v(¢) for t = 0. For Prob. 7.9.

7.10 For the circuit in Fig. 7.90, find v,(¢) for t > 0.

1=0 Determine the time necessary for the capacitor
D 10 kQ voltage to decay to one-third of its value at = 0.

t=0

<7§ 9kQ

v + AW\
v () 2kQ § v(1) == 40 uF !

B +
36v () 3kQ§20,uF:: ”,

Figure 7.86
For Prob. 7.6.

Figure 7.90
For Prob. 7.10.

7.7 Assuming that the switch in Fig. 7.87 has been in . o
position A for a long time and is moved to position 8 S¢ction 7.3 The Source-Free RL Circuit

att = 0, Then at r = 1 second, the switch moves

from B to C. Find v.(7) for t = 0. 7.11 For the circuit in Fig. 7.91, find i, for t > 0.

t=0
4Q 4H

P
B |C

T 2mF 24V 4Q 8Q

10kQ 4

12V

Figure 7.87 Figure 7.91
For Prob. 7.7. For Prob. 7.11.
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7.12 Using Fig. 7.92, design a problem to help other
efJd students better understand source-free RL circuits.

t=0
R,
*i(z)

v R, L

Figure 7.92
For Prob. 7.12.

7.13 In the circuit of Fig. 7.93,
() = 80e "V, 1> 0
i) =5¢"""mA, >0
(a) Find R, L, and 7.

(b) Calculate the energy dissipated in the resistance
for 0 <t < 0.5 ms.

Figure 7.93
For Prob. 7.13.

7.14 Calculate the time constant of the circuit in Fig. 7.94.

20 kQ
ANV

10 kQ
VWY

gSmH

40 kQ § § 30 kQ

Figure 7.94
For Prob. 7.14.

7.15 Find the time constant for each of the circuits in

Fig. 7.95.

10Q

40 Q

48 Q
40Q 160 Q
2Q
% SH 20 mH
(@) (b)

Figure 7.95
For Prob. 7.15.

Problems 303

7.16 Determine the time constant for each of the circuits

in Fig. 7.96.
Ly Ly
R,
L R R,
(@) (b)

Figure 7.96
For Prob. 7.16.

7.17 Consider the circuit of Fig. 7.97. Find v,(¢) if
i(0) =6Aandv() = 0.

30 +

o0 (2) Vo 0
L
O

Figure 7.97
For Prob. 7.17.

7.18 For the circuit in Fig. 7.98, determine v,(f) when
i(0) =5Aandv() = 0.

20
e
000
Et)’ +
v (F) % 30 40
O

Figure 7.98
For Prob. 7.18.

7.19 In the circuit of Fig. 7.99, find i(7) for ¢t > 0 if
i(0) = 6 A.

10 Q 0.5i 40 Q

Figure 7.99
For Prob. 7.19.
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7.20 For the circuit in Fig. 7.100,
v =90e "V
and
i= 30" A,
(a) Find L and R.

(b) Determine the time constant.

t>0

(c) Calculate the initial energy in the inductor.

(d) What fraction of the initial energy is dissipated
in 10 ms?

Figure 7.100
For Prob. 7.20.

7.21 In the circuit of Fig. 7.101, find the value of R for
eJd which the steady-state energy stored in the inductor
will be 11J.

40 Q R

60 V 80 Q 2H

Figure 7.101
For Prob. 7.21.

7.22 Find i(r) and v(¢) for + > 0 in the circuit of Fig. 7.102

if i(0) = 10 A.
(X0
2H +
50 % 20Q § o(f)
1Q -

Figure 7.102
For Prob. 7.22.

7.23 Consider the circuit in Fig. 7.103. Given that
v,(0) =10V, find v, and v, fort > 0.

3Q

Figure 7.103
For Prob. 7.23.

First-Order Circuits

Section 7.4 Singularity Functions

7.24 Express the following signals in terms of singularity

functions.
0, <0
t:
(@) v(®) {75’ £>0
0, <1
—10, 1 <r<3
b) i(r) =
(®) i) 10, 3<:t<5
0, t>5
t—1, 1<r<?2
© x(0) 1, 2<tr<3
C) Xl =
4 — ¢, 3<1r<4
0, Otherwise
2, <0
(@) y® =4 -5, 0<t<1
0, t>1

7.25 Design a problem to help other students better
efd understand singularity functions.

7.26 Express the signals in Fig. 7.104 in terms of
singularity functions.

vy (1)
1
vy(1)
! 2
-1 0 t I\‘
-1 0 2 4 ot
(a) (b)
v5(t)
4 -
2r v4(t) A
! 0
0 2 4 6 t 1 2t
(©)
-1+
L

(d)
Figure 7.104
For Prob. 7.26.

7.27 Express v(¢) in Fig. 7.105 in terms of step functions.
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(1) 4 7.35 Find the solution to the following differential
15 equations:
10 b dv
(a)— +2v =0, v(0)=—-1V
dt
> di ,
L (b)2— —3i =0, i0) =2
-1 1 2 3 0t dt
> 7.36 Solve for v in the following differential equations,
-10 | subject to the stated initial condition.
(a)dv/dt + v = u(y), v(0) =0
Figure 7.105
Fo?Prob. 7.27. (b)2dv/dt —v =3u(®),  v(0) = —6
7.37 A circuit is described by
7.28 Sketch the waveform represented by J
4 4 v =10

7.29

i=r@t)—r@t—1) —ult—2) —rit—12)
+rt—3)+ut—4
Sketch the following functions:

(@) x(r) = 10e” u(r — 1),

dt
(a) What is the time constant of the circuit?
(b) What is v(0), the final value of v?
(c) If v(0) = 2, find v(¢) fort = 0.

(b) y(t) = 10" Du(o),
(c) z(t) = cos 4t6(t — 1)

7.38 A circuit is described by

di .
Evaluate the following integrals involving the dr + 3= 2u(n)

impulse functions:

7.30

o Find i(¢) for + > 0 given that i(0) = 0.
(a) J 4°8(t — 1)dt
—o Section 7.5 Step Response of an RC Circuit
(b) J 47 cos 2 18(t — 0.5)dt 7.39 Calculate the capacitor voltage for r < O and r > 0
— for each of the circuits in Fig. 7.106.
7.31 Evaluate the following integrals:

@ | e *8(—2)ar

40

(b) [58(1) + ¢ '8(1) + cos 2 t8(1)]dt

|
B

| = +
o)

20V

7.32 Evaluate the following integrals:

@) | uh)dr

JI
1 (@)
|

4
r(t — 1)dt
5

(b)

(©) J (t — 6)*8(t — 2)dt
1

12V
7.33 The voltage across a 10-mH inductor is
156(t — 2) mV. Find the inductor current, assuming

that the inductor is initially uncharged.

7.34 Evaluate the following derivatives: ()

Figure 7.106

d
@ E[u(t — Dutt+ D For Prob. 7.39.

d
(b)  [r(t = O)u(t = 2)]

7.40 Find the capacitor voltage for + < 0 and t > 0 for

d
—[sin 4tu(t — 3
© dt Lsin 41 2 each of the circuits in Fig. 7.107.
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3Q 20
=0
+
12V 4V 3F—‘7”
(@
t=0
2'A%%Y%
4Q
+
6A ZQ§ v =— 5F
(b)

Figure 7.107
For Prob. 7.40.

7.41 Using Fig. 7.108, design a problem to help other
efJd students better understand the step response of an RC
circuit.

Figure 7.108
For Prob. 7.41.

7.42 (a) If the switch in Fig. 7.109 has been open for a
long time and is closed at ¢ = 0, find v,(?).

(b) Suppose that the switch has been closed for a
long time and is opened at r = 0. Find v,(?).

t=0
2Q
+
12V 4 Q 3F == v,

Figure 7.109
For Prob. 7.42.

7.43 Consider the circuit in Fig. 7.110. Find i(¢) fort < 0
andr > 0.

30 Q

80V 50Q

Figure 7.110
For Prob. 7.43.

First-Order Circuits

7.44 The switch in Fig. 7.111 has been in position a for a
long time. At ¢ = 0, it moves to position b. Calculate
i(r) forallr > 0.

§3Q = 2F

oov () 24v

Figure 7.111
For Prob. 7.44.

7.45 Find v, in the circuit of Fig. 7.112 when v, = 30u(r) V.
Assume that v,(0) = 5 V.

20 kQ 10kQ
AN AMAA
+
v, Ct) 40 kQ% 3uF = 2,

Figure 7.112
For Prob. 7.45.

7.46 For the circuit in Fig. 7.113, i() = Su(z). Find v().

z@) §69 v == 025F

Figure 7.113
For Prob. 7.46.

7.47 Determine v(f) for + > 0 in the circuit of Fig. 7.114
if v(0) = 0.

+ v -

0.1F

§ZQ

3u(t—1)A<> §SQ G 3u(n) A

Figure 7.114
For Prob. 7.47.
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7.48 Find v(¢) and i(?) in the circuit of Fig. 7.115.

20Q
*i
N
u-n A () 109? 01F == o
T - Figure 7.118
For Prob. 7.52.

Figure 7.115

For Prob. 7.48. 7.53 Determine the inductor current i(¢) for both r < 0

7.49 If the waveform in Fig. 7.116(a) is applied to the and t > 0 for each of the circuits in Fig. 7.119.

circuit of Fig. 7.116(b), find v(f). Assume v(0) = 0.

3Q 2Q
i (A) 4

2

25V 4H

6a(}) §4Q §2Q §3H

(b) (b)
Figure 7.116 Figure 7.119
For Prob. 7.49 and Review Question 7.10. For Prob. 7.53.

*#7.50 In the circuit of Fig. 7.117, find i, for t > 0. Let

7.54 Obtain the induct t for both < 0and 7 > 0
R, = Ry, = 1kQ, Ry = 2k, and C = 0.25 mF. ain the incuctor current for bo an

in each of the circuits in Fig. 7.120.

t=0

R,
A i
v ¢ 4
12Q 4Q
30 mA §R1 =C §R3 2AG 49§
t=0 35H
Figure 7.117 (a)
For Prob. 7.50. *
i
Section 7.6 Step Response of an L Circuit 0V 24av -
7.51 Rather than applying the short-cut technique used in =0
Section 7.6, use KVL to obtain Eq. (7.60).
2Q 3Q
7.52 Using Fig. 7.118, design a problem to help other 6Q
ed students better understand the step response of an RL
circuit. (b)

Figure 7.120

* An asterisk indicates a challenging problem. For Prob. 7.54.
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7.60 Find v(¢) for + > 0 in the circuit of Fig. 7.125 if the

7.55 Find v(¢) fort < 0 and ¢ > 0 in the circuit of
initial current in the inductor is zero.

Fig. 7.121.
o 0.5H
- ( y
< o N — 4u(f) A 50 8 H 20Q _u
3Q N
8Q A Figure 7.125
Ho G 29 g_” For Prob. 7.60.
24V 20V
7.61 In the circuit in Fig. 7.126, i, changes from S Ato 10 A
att = 0; thatis, iy = Su(—1) + 10u(t). Find v and i.
Figure 7.121 ;
For Prob. 7.55. #
+
7.56 For the network shown in Fig. 7.122, find v(7) for Iy C* 4Q § 0.5H % v
t>0. -
5Q Figure 7.126
AW For Prob. 7.61.
1 7.62 For the circuit in Fig. 7.127, calculate i(z) if i(0) = 0.
)V
2a(h) ne 200 05H 2 o 3Q
Figure 7.122 ut=1Hv u® v
For Prob. 7.56.
#7.57 Find i,(¢) and i5(7) for t > 0 in the circuit of Figure 7.127
Fig. 7.123. For Prob. 7.62.
yio |l 7.63 Obtain v(7) and i(7) in the circuit of Fig. 7.128.
sa () 6Q§ 1=0_J 30 200 50 i
25H 4H
10u(~) V 20 Q 05H

Figure 7.123
For Prob. 7.57.

) Figure 7.128
7.58 Rework Prob. 7.17 if i(0) = 10 A and For Prob. 7.63.
v(t) = 20u(t) V.
7.59 Determine the step response v,(?) to v, = 18u(?) in
the circuit of Fig. 7.124.

7.64 Determine the value of i;(7) and the total energy
dissipated by the circuit from ¢ = 0 sec to t = < sec.
The value of v;,(7) is equal to [40 — 40u(r)] volts.

6Q
40 Q ir(1)
10 AW >
g 3Q § +
15H 3 o, Vin(0) 40Q 10H

Figure 7.124 Figure 7.129
For Prob. 7.59. For Prob. 7.64.
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7.65 If the input pulse in Fig. 7.130(a) is applied to the
circuit in Fig. 7.130(b), determine the response i(f).

v (V)

10

0 1 t(s)

(a)
Figure 7.130
For Prob. 7.65.

5Q

li
§209 ng

(b)

Section 7.7 First-order Op Amp Circuits

7.66 Using Fig. 7.131, design a problem to help other
efJd students better understand first-order op amp

circuits.

Ry
—AMA—

C

Il

1

N o
+
1}0
o

Figure 7.131
For Prob. 7.66.

7.67 Ifv(0) = 5V, find v,(¢) for + > 0 in the op amp
circuit in Fig. 7.132. Let R = 10 kQ and C = 1 uF.

Figure 7.132
For Prob. 7.67.

7.68 Obtain v, for t > 0 in the circuit of Fig. 7.133.

Problems

4V

10k9§

10kQ 25 pF =

I
S+

Figure 7.133
For Prob. 7.68.

7.69 For the op amp circuit in Fig. 7.134, find v,,(¢) for

t> 0.
25 mF
I
_ i
0kQ ~ 20 kQ 100 kQ
} AN AMNW—

av + <
UO
o

Figure 7.134
For Prob. 7.69.

309

7.70 Determine v, for t > 0 when vy, = 20 mV in the op

amp circuit of Fig. 7.1
t=0

35.

Figure 7.135
For Prob. 7.70.

7.71 For the op amp circuit in Fig. 7.136, suppose vy = 0

and v, = 3 V. Find v(¢) for t > 0.

10 kQ

|
=

Figure 7.136
For Prob. 7.71.
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7.72 Find i, in the op amp circuit in Fig. 7.137. Assume
thatv(0) = =2V, R = 10k, and C = 10 uF.

3u(r) C_f) R

Figure 7.137
For Prob. 7.72.

7.73 For the op amp circuit of Fig. 7.138, let R,

Ry =20k, C = 20 uF, and v(0) = 1V. Find v,.

4u(r)

Figure 7.138
For Prob. 7.73.

7.74 Determine v,(¢) for + > 0 in the circuit of Fig. 7.139.
Let iy = 10u(r) wA and assume that the capacitor is

initially uncharged.

2 uF 10 kQ
+
+
i, 50 kQ ”
o

Figure 7.139
For Prob. 7.74.

7.75 In the circuit of Fig. 7.140, find v, and i, given that

v, = 4u(r) Vand v(0) = 1 V.

4E

Figure 7.140
For Prob. 7.75.

&

First-Order Circuits

Section 7.8 Transient Analysis with PSpice

7.76 Repeat Prob. 7.49 using PSpice or MultiSim.

7.77 The switch in Fig. 7.141 opens at t = 0. Use PSpice
or MultiSim to determine v(¢) for t > 0.

0 + v - 50

sa(d) 4Q§ 6Q§ 209§ 30V

Figure 7.141
For Prob. 7.77.

7.78 The switch in Fig. 7.142 moves from position a to b
att = 0. Use PSpice or MultiSim to find i(r) for
t>0.

L ir)

108 V 2H

Figure 7.142
For Prob. 7.78.

7.79 In the circuit of Fig. 7.143, the switch has been in
position a for a long time but moves instantaneously
to position b at t = 0. Determine i,,(7).

12V CD % 0.lH

4V

Figure 7.143
For Prob. 7.79.

7.80 In the circuit of Fig. 7.144, assume that the switch
has been in position a for a long time, find:

(a) 11(0), i> (0), and v,(0)
(b) i (1)

(€) i1(%), in(®), and v ,(*).
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4 MQ
+
120V 6 uF = Neon lamp

30V C_D

Figure 7.144
For Prob. 7.80.

7.81 Repeat Prob. 7.65 using PSpice or MultiSim.

Section 7.9 Applications

7.82 In designing a signal-switching circuit, it was found
that a 100-wF capacitor was needed for a time
constant of 3 ms. What value resistor is necessary for
the circuit?

7.83 An RC circuit consists of a series connection of a
120-V source, a switch, a 34-M(Q) resistor, and a
15-uF capacitor. The circuit is used in estimating the
speed of a horse running a 4-km racetrack. The
switch closes when the horse begins and opens when
the horse crosses the finish line. Assuming that the
capacitor charges to 85.6 V, calculate the speed of

the horse.

7.84 The resistance of a 160-mH coil is 8 ). Find the
time required for the current to build up to 60
percent of its final value when voltage is applied to

the coil.

7.85 A simple relaxation oscillator circuit is shown in
e7Jd Fig. 7.145. The neon lamp fires when its voltage
reaches 75 V and turns off when its voltage drops to
30 V. Its resistance is 120 ) when on and infinitely
high when off.

(a) For how long is the lamp on each time the
capacitor discharges?

(b) What is the time interval between light flashes?

Figure 7.145
For Prob. 7.85.

7.86 Figure 7.146 shows a circuit for setting the length of
e7Jd time voltage is applied to the electrodes of a welding
machine. The time is taken as how long it takes the
capacitor to charge from 0 to 8 V. What is the time
range covered by the variable resistor?

100 kQ to 1 MQ

12 V-J;iiF =

Figure 7.146
For Prob. 7.86.

Welding |*. ¢
— | control » K
unit - ‘ .

Electrode

7.87 A 120-V dc generator energizes a motor whose coil
e7Jd has an inductance of 50 H and a resistance of 100 (.
A field discharge resistor of 400 () is connected in
parallel with the motor to avoid damage to the
motor, as shown in Fig. 7.147. The system is at
steady state. Find the current through the discharge
resistor 100 ms after the breaker is tripped.

Circuit breaker

120V Motor 400 Q

Figure 7.147
For Prob. 7.87.

1

7.88 The circuit in Fig. 7.148(a) can be designed as

e?Jd an approximate differentiator or an integrator,
depending on whether the output is taken across
the resistor or the capacitor, and also on the time
constant 7 = RC of the circuit and the width 7T of
the input pulse in Fig. 7.148(b). The circuit is a
differentiator if 7 << T, say 7 < 0.17, or an
integrator if 7 => T, say 7 > 107.

Comprehensive Problems

(a) What is the minimum pulse width that will allow
a differentiator output to appear across the
capacitor?

(b) If the output is to be an integrated form of the
input, what is the maximum value the pulse
width can assume?
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300 kQ v

200 pF

(a) (b)

Figure 7.148
For Prob. 7.88.

7.89

An RL circuit may be used as a differentiator if the

efJd output is taken across the inductor and 7 << T (say

7.90

7 < 0.17), where T is the width of the input pulse.
If R is fixed at 200 k), determine the maximum
value of L required to differentiate a pulse with

T =10 us.

An attenuator probe employed with oscilloscopes
was designed to reduce the magnitude of the input
voltage v; by a factor of 10. As shown in Fig. 7.149,
the oscilloscope has internal resistance R, and
capacitance C,, while the probe has an internal
resistance R,,. If R,, is fixed at 6 M), find R, and C,
for the circuit to have a time constant of 15 us.

Probe Scope
o— MWW O
+ R +

S
=
VW
0
||
Il

N

Figure 7.149
For Prob. 7.90.

7.91 The circuit in Fig. 7.150 is used by a biology student
e7Jd to study “frog kick.” She noticed that the frog kicked

a little when the switch was closed but kicked
violently for 5 s when the switch was opened. Model
the frog as a resistor and calculate its resistance.
Assume that it takes 10 mA for the frog to kick
violently.

Switch
Frog

12V 2H

Figure 7.150
For Prob. 7.91.

7.92 To move a spot of a cathode-ray tube across the

screen requires a linear increase in the voltage across
the deflection plates, as shown in Fig. 7.151. Given
that the capacitance of the plates is 4 nF, sketch the
current flowing through the plates.

v (V)

10

t
Rise time =2 m;\ Drop time = 5 us

(not to scale)

Figure 7.151
For Prob. 7.92.
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Second-Order
Circuits

Everyone who can earn a masters degree in engineering must earn a
masters degree in engineering in order to maximize the success of their
career! If you want to do research, state-of-the-art engineering, teach in
a university, or start your own business, you really need to earn a doctoral
degree!

—Charles K. Alexander

Enhancing Your Career

To increase your engineering career opportunities after graduation,
develop a strong fundamental understanding in a broad set of engineer-
ing areas. When possible, this might best be accomplished by working
toward a graduate degree immediately upon receiving your undergradu-
ate degree.

Each degree in engineering represents certain skills the student
acquires. At the Bachelor degree level, you learn the language of engi-
neering and the fundamentals of engineering and design. At the Mas-
ter’s level, you acquire the ability to do advanced engineering projects
and to communicate your work effectively both orally and in writing.
The Ph.D. represents a thorough understanding of the fundamentals of
electrical engineering and a mastery of the skills necessary both for
working at the frontiers of an engineering area and for communicating
one’s effort to others.

If you have no idea what career you should pursue after gradua-
tion, a graduate degree program will enhance your ability to explore
career options. Since your undergraduate degree will only provide you
with the fundamentals of engineering, a Master’s degree in engineer-
ing supplemented by business courses benefits more engineering stu- anticipating opportunities, and planning
dents than does getting a Master’s of Business Administration (MBA). your own niche. ’

The best time to get your MBA is after you have been a practicing & 5005 Institute of Electrical and
engineer for some years and decide your career path would be  Ejecyronics Engineers (IEEE).
enhanced by strengthening your business skills.

Engineers should constantly educate themselves, formally and
informally, taking advantage of all means of education. Perhaps there
is no better way to enhance your career than to join a professional soci-
ety such as IEEE and be an active member.

Enhancing your career involves under-
standing your goals, adapting to changes,

313
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i R C T L
(b)
R, R,
Vs Ll L2
(©
R
MW
Iy = C, C, ==

(d)
Figure 8.1
Typical examples of second-order circuits:
(a) series RLC circuit, (b) parallel RLC
circuit, (¢) RL circuit, (d) RC circuit.

Chapter8  Second-Order Circuits

8.1 Introduction

In the previous chapter we considered circuits with a single storage ele-
ment (a capacitor or an inductor). Such circuits are first-order because
the differential equations describing them are first-order. In this chap-
ter we will consider circuits containing two storage elements. These are
known as second-order circuits because their responses are described
by differential equations that contain second derivatives.

Typical examples of second-order circuits are RLC circuits, in
which the three kinds of passive elements are present. Examples of
such circuits are shown in Fig. 8.1(a) and (b). Other examples are RL
and RC circuits, as shown in Fig. 8.1(c) and (d). It is apparent from
Fig. 8.1 that a second-order circuit may have two storage elements of
different type or the same type (provided elements of the same type
cannot be represented by an equivalent single element). An op amp cir-
cuit with two storage elements may also be a second-order circuit. As
with first-order circuits, a second-order circuit may contain several
resistors and dependent and independent sources.

A second-order circuit is characterized by a second-order differen-
tial equation. It consists of resistors and the equivalent of two energy
storage elements.

Our analysis of second-order circuits will be similar to that used for
first-order. We will first consider circuits that are excited by the ini-
tial conditions of the storage elements. Although these circuits may
contain dependent sources, they are free of independent sources.
These source-free circuits will give natural responses as expected.
Later we will consider circuits that are excited by independent
sources. These circuits will give both the transient response and the
steady-state response. We consider only dc independent sources in
this chapter. The case of sinusoidal and exponential sources is deferred
to later chapters.

We begin by learning how to obtain the initial conditions for the
circuit variables and their derivatives, as this is crucial to analyzing
second-order circuits. Then we consider series and parallel RLC cir-
cuits such as shown in Fig. 8.1 for the two cases of excitation: by
initial conditions of the energy storage elements and by step inputs.
Later we examine other types of second-order circuits, including op
amp circuits. We will consider PSpice analysis of second-order cir-
cuits. Finally, we will consider the automobile ignition system and
smoothing circuits as typical applications of the circuits treated in this
chapter. Other applications such as resonant circuits and filters will
be covered in Chapter 14.

8.2 Finding Initial and Final Values

Perhaps the major problem students face in handling second-order cir-
cuits is finding the initial and final conditions on circuit variables.
Students are usually comfortable getting the initial and final values
of v and i but often have difficulty finding the initial values of their
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derivatives: dv/dt and di/dt. For this reason, this section is explicitly
devoted to the subtleties of getting v(0), i(0), dv(0)/dt, di(0)/dt, i(),
and v(e). Unless otherwise stated in this chapter, v denotes capacitor
voltage, while 7 is the inductor current.

There are two key points to keep in mind in determining the ini-
tial conditions.

First—as always in circuit analysis—we must carefully handle the
polarity of voltage v(f) across the capacitor and the direction of the cur-
rent i(f) through the inductor. Keep in mind that v and i are defined
strictly according to the passive sign convention (see Figs. 6.3 and 6.23).
One should carefully observe how these are defined and apply them
accordingly.

Second, keep in mind that the capacitor voltage is always contin-
uous so that

v(0") =v(0") (8.1a)
and the inductor current is always continuous so that
i07) = i(0") (8.1b)

where + = 0~ denotes the time just before a switching event and
t =07 is the time just after the switching event, assuming that the
switching event takes place at t = 0.

Thus, in finding initial conditions, we first focus on those vari-
ables that cannot change abruptly, capacitor voltage and inductor cur-
rent, by applying Eq. (8.1). The following examples illustrate these
ideas.

The switch in Fig. 8.2 has been closed for a long time. It is open at
t = 0. Find: (a) i(0"), v(0™), (b) di(0")/dt, dv(0")/dt, (c) i(*), v(x).

Solution:

(a) If the switch is closed a long time before r = 0, it means that the
circuit has reached dc steady state at t = 0. At dc steady state, the
inductor acts like a short circuit, while the capacitor acts like an open
circuit, so we have the circuit in Fig. 8.3(a) at r = 0 . Thus,

12
i(07) = =2A, 07)=2i0") =
i07) =77 v(07)=2i0")=4V
4
_>O—O O
+
12V 2Q§,, 12V
O
(a) (b)
Figure 8.3

Equivalent circuit of that in Fig. 8.2 for: (a)t = 0", (b)t = 0", (c) t — °.

315
Example 8.1
4Q 1 _025H
T
12V 202 (gL,
t=0 -

Figure 8.2
For Example 8.1.

12V
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As the inductor current and the capacitor voltage cannot change
abruptly,

07 =i(07) = 2 A, v =v0)=4V

(b) At t = 0™, the switch is open; the equivalent circuit is as shown in
Fig. 8.3(b). The same current flows through both the inductor and
capacitor. Hence,

ic(07) = i(0") =2 A
Since Cdv/dt = i, dv/dt = ic/C, and

d(0") ic(0"
O ) 1O 2 gy
dr c ol

Similarly, since L di/dt = v;,di/dt = v;/L. We now obtain v; by
applying KVL to the loop in Fig. 8.3(b). The result is

—12 4+ 4i(0") + v, (07 + v(0") =0
or
v, (0N =12-8-4=0

Thus,

di(0" 0"
(07) _ vl )=0:0A/s
dt L 0.25

(c) For t > 0, the circuit undergoes transience. But as ¢+ — oo, the
circuit reaches steady state again. The inductor acts like a short circuit
and the capacitor like an open circuit, so that the circuit in Fig. 8.3(b)
becomes that shown in Fig. 8.3(c), from which we have

() =0A, v(®) =12V

Practice Problem 8.1

The switch in Fig. 8.4 was open for a long time but closed at r = 0.
Determine: (a) i(0"), v(0™), (b) di(0™)/dt, dv(0™)/dt, (c) i(), v().

10Q 04H i
AN T
+
20 v = 5F 24V
Figure 8.4

For Practice Prob. 8.1.

Answer: (2) 2 A, 4V, (b) 50 Als, 0 Vs, (c) 12 A, 24 V.
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In the circuit of Fig. 8.5, calculate: (a) i,(07), ve(0™), VR(0T),
(b) dig(0")/dt, dvc(0")/dt, dvg(0™)/dt, (¢) iz (%), ve(2), V().

Solution:

3u(r) A CD

+
29?”}{

I
30.6H

Figure 8.5

For Example 8.2.

(a) For t < 0,3u(r) = 0. At t = 0, since the circuit has reached
steady state, the inductor can be replaced by a short circuit, while the
capacitor is replaced by an open circuit as shown in Fig. 8.6(a). From

this figure

we obtain

ir(0°) =0,

vr(07) =0,

ve(07) = =20V

8.2.1)

Although the derivatives of these quantities at r = 0~ are not required,
it is evident that they are all zero, since the circuit has reached steady
state and nothing changes.

For t > 0, 3u(f) = 3, so that the circuit is now equivalent to that
in Fig. 8.6(b). Since the inductor current and capacitor voltage cannot

4Q
AN

[,
vc
20V

Figure 8.6

(a)

a + 22— b
o [je
+
lF::vC +
3ACD ZQ§}R ’ C - 3
)20V

The circuit in Fig. 8.5 for: (a)t = 07, (b)r = 0™.

change abruptly,

i(0") =i (07) =0,

ve(0) = ve(07) = =20V

Example 8.2

(8.2.2)

Although the voltage across the 4-() resistor is not required, we will

use it to apply KVL and KCL; let it be called v,,. Applying KCL at

node a in Fig. 8.6(b) gives

3:
2

vR(0™) N

v,(0")

4

Applying KVL to the middle mesh in Fig. 8.6(b) yields
—vR(0") + v,(07) + ve(01) +20 =0

8.2.3)

8.2.4)

(b)
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Since v-(0") = —20 V from Eq. (8.2.2), Eq. (8.2.4) implies that
vr(0™) = v,(07) (8.2.5)
From Egs. (8.2.3) and (8.2.5), we obtain
vr(07) =0v,(07) =4V (8.2.6)
(b) Since L di,/dt = v,

dif(0") v (0")
dt L

But applying KVL to the right mesh in Fig. 8.6(b) gives
07 =ve(0") +20=0
Hence,
di (0")
— =0 8.2.7
& (8.2.7)

Similarly, since C dv/dt = ic, then dv/dt = i-/C. We apply KCL at
node b in Fig. 8.6(b) to get ic:
v,(0")
4

=ic(0") + i (0 (8.2.8)

Since v,(0") = 4 and i,(0") = 0,i-(0") = 4/4 = 1 A. Then

d 0+ . 0+ 1
ve@7) _ic07) 1 2V/s (8.2.9)

To get dvg(0")/dt, we apply KCL to node a and obtain

Taking the derivative of each term and setting t = 0" gives

dvg(0")  dv,(07)
2 + 8.2.10
dt dt ( )
We also apply KVL to the middle mesh in Fig. 8.6(b) and obtain
_UR + UC + 20 + UO = 0

Again, taking the derivative of each term and setting = 0" yields

d + + +
_ dvg(0 )+ dvc(0 )+ dv,(07) _ 0
dt dt dt

Substituting for dv-(0")/dt = 2 gives

d + +
v0) _, , dv0)
dt dt

(8.2.11)

From Egs. (8.2.10) and (8.2.11), we get

dv(0") _ 2

v/
dt 3 ;
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We can find dig(0")/dt although it is not required. Since vz = Sig,

diz(0") 1 dvg(0") 12 2
=— =—"="Als
dt 5 dt 53 15

(c) As t — oo, the circuit reaches steady state. We have the equivalent
circuit in Fig. 8.6(a) except that the 3-A current source is now
operative. By current division principle,

2
if(0)=—"—3A=1A
2+ 4
(8.2.12)

4
Up(®) = m?’ AX2=4V, V() = =20V

319

For the circuit in Fig. 8.7, find: (a) i (0"), ve(0), vR(01),
(b) di(07)/dt, dve(07)/dt, dvg(0™)/dt, () ir(), ve(), V().

i v
R 4 VR _

‘ic ’\g\g\, LiL
+ +

F = vc ngzﬂ G>6A

D=

4u(t) A D

Figure 8.7
For Practice Prob. 8.2.

Answer: (a) —6 A, 0,0, (b) 0,20 V/s, 0, (c) =2 A, 20V, 20 V.

8.3 The Source-Free Series RLC Circuit

An understanding of the natural response of the series RLC circuit is
a necessary background for future studies in filter design and commu-
nications networks.

Consider the series RLC circuit shown in Fig. 8.8. The circuit is
being excited by the energy initially stored in the capacitor and induc-
tor. The energy is represented by the initial capacitor voltage V,, and
initial inductor current /. Thus, at t = 0,

1 0
v(0) = C J idt =V, (8.2a)

i0) = I (8.2b)
Applying KVL around the loop in Fig. 8.8,

di (!
Ri+L—+ — i = .
i x T Jx i(t)ydr =0 8.3)

Practice Problem 8.2

R L
ANV ALIN
IO

Figure 8.8

A source-free series RLC circuit.
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I See Appendix C.1 for the formula to
find the roots of a quadratic equation.

Chapter8  Second-Order Circuits

To eliminate the integral, we differentiate with respect to ¢ and
rearrange terms. We get
d*i R di i
— + +

— =0 8.4
d* L dt LC 34

This is a second-order differential equation and is the reason for call-
ing the RLC circuits in this chapter second-order circuits. Our goal is
to solve Eq. (8.4). To solve such a second-order differential equation
requires that we have two initial conditions, such as the initial value
of i and its first derivative or initial values of some i and v. The ini-
tial value of 7 is given in Eq. (8.2b). We get the initial value of the
derivative of i from Eqs. (8.2a) and (8.3); that is,

. di(0)
Ri(0) + L7 +Vo=0

or

di(o)_—iRI + V 8.5
= (Rl Vy) 8.5)

With the two initial conditions in Egs. (8.2b) and (8.5), we can now
solve Eq. (8.4). Our experience in the preceding chapter on first-order
circuits suggests that the solution is of exponential form. So we let

i = Ae” (8.6)
where A and s are constants to be determined. Substituting Eq. (8.6)
into Eq. (8.4) and carrying out the necessary differentiations, we obtain
A

set + —e" =0
LC

AR
As?e® +

or

, R 1
Ae‘”(sz + —s5 + ) =0 8.7)
L LC
Since i = Ae” is the assumed solution we are trying to find, only the
expression in parentheses can be zero:
R 1
S+ —s+-—=0 (8.8)
L LC
This quadratic equation is known as the characteristic equation of the
differential Eq. (8.4), since the roots of the equation dictate the char-
acter of i. The two roots of Eq. (8.8) are

R RY 1

s = ——+ () - — (8.9a)
2L 2L LC
R RY 1

Sy = _i - (2L> - E (89b)

A more compact way of expressing the roots is

1= —a+ Va® — g, s5=—a— Vo — o} (8.10)
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where

a=— wy = —F— (8.11)

The roots s, and s, are called natural frequencies, measured in
nepers per second (Np/s), because they are associated with the natural
response of the circuit; wqy is known as the resonant frequency or
strictly as the undamped natural frequency, expressed in radians per
second (rad/s); and « is the neper frequency or the damping factor,
expressed in nepers per second. In terms of «a and wy, Eq. (8.8) can be
written as

s> + 2as + w5 =0 (8.8a)

The variables s and w, are important quantities we will be discussing
throughout the rest of the text.

The two values of s in Eq. (8.10) indicate that there are two pos-
sible solutions for i, each of which is of the form of the assumed solu-
tion in Eq. (8.6); that is,

il = Ale‘y‘t, iz = Aze‘\vzt (8.12)

Since Eq. (8.4) is a linear equation, any linear combination of the
two distinct solutions i; and i, is also a solution of Eq. (8.4). A com-
plete or total solution of Eq. (8.4) would therefore require a linear
combination of i; and i,. Thus, the natural response of the series RLC
circuit is

l(t) = Ale“‘" + Azeszr (8.13)

where the constants A; and A, are determined from the initial values
i(0) and di(0)/dr in Egs. (8.2b) and (8.5).
From Eq. (8.10), we can infer that there are three types of solutions:

1. If @« > wp, we have the overdamped case.
2. If @« = wq, we have the critically damped case.
3. If @ < wy, we have the underdamped case.

We will consider each of these cases separately.
Overdamped Case (o > w,)

From Eqs. (8.9) and (8.10), & > w, implies C > 4L/R* When this
happens, both roots s; and s, are negative and real. The response is

l(t) = Algxlt + A2€x2t (8.14)

which decays and approaches zero as ¢ increases. Figure 8.9(a) illus-
trates a typical overdamped response.

Critically Damped Case (o = w,)
When a = w,, C = 4L/R* and

=-—a=——" (8.15)

321

I The neper (Np) is a dimensionless unit
named after John Napier (1550-1617),
a Scottish mathematician.

I The ratio a/wq is known as the damp-
/ng ratio {.

The response is overaamped when

the roots of the circuit’s characteristic
equation are unequal and real, critically
damped when the roots are equal and
real, and underdamped when the

roots are complex.
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i(1)

()
i(1)

,
,
Y[ ——
,
Y

10

(©
Figure 8.9
(a) Overdamped response, (b) critically
damped response, (c¢) underdamped
response.

Chapter8  Second-Order Circuits

For this case, Eq. (8.13) yields
l(t) - Ale_m + Aze_at - A3€_a,

where A; = A, + A, . This cannot be the solution, because the two ini-
tial conditions cannot be satisfied with the single constant A;. What
then could be wrong? Our assumption of an exponential solution is
incorrect for the special case of critical damping. Let us go back to
Eq. (8.4). When @ = wy, = R/2L, Eq. (8.4) becomes

d?i di ,
E + ZCYE +a%i=0
or
d(di di
(’ + ai> + a<’ + ai) =0 (8.16)
dr\ dt dt
If we let
f LA (8.17)
= - ol .
’ dt

then Eq. (8.16) becomes

at

which is a first-order differential equation with solution f= Aje
where A; is a constant. Equation (8.17) then becomes

dl . —at
— + ai = Aje
dt
or
e"— + eai = A, (8.18)
This can be written as
d 1
—(¥i) = A 8.19
dt(e i) 1 (8.19)

Integrating both sides yields
eMi= At + A,
or
i= (At + Aye @ (8.20)

where A, is another constant. Hence, the natural response of the criti-
cally damped circuit is a sum of two terms: a negative exponential and
a negative exponential multiplied by a linear term, or

i) = (Ay + Ayp)e ™ (8.21)

A typical critically damped response is shown in Fig. 8.9(b). In fact,
Fig. 8.9(b) is a sketch of i(f) = te” “, which reaches a maximum value of
e "Jaatt = 1/a, one time constant, and then decays all the way to zero.
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Underdamped Case (@ < w,)
For a < w,y, C < 4L/R*. The roots may be written as

si=—a+ V—(05— ) =—a+ jo, (8.22a)

e e V@) e, (822

where j = V—1 and w; = Vi — o, which is called the damping
frequency. Both w, and w, are natural frequencies because they help
determine the natural response; while w, is often called the undamped
natural frequency, w, is called the damped natural frequency. The natural
response is

i() = Ay @TION 4 Aje @Ot

= ¢ (A" + Aze ) (®:23

Using Euler’s identities,

e’ = cosf + jsinb, e = cosh — jsin6 (8.24)

we get
i(f) = e “"[A;(coswyt + jsinw,t) + Ax(coswyt — jsinw,t)]

= e*af[(Al + Az) COS (l)dt + j(Al - A2) Sin wdt] (8.25)

Replacing constants (A; + A,) and j(A; — A,) with constants B, and B»,
we write

i(f) = e *'(B; coswyt + B,sinw,t) (8.26)

With the presence of sine and cosine functions, it is clear that the nat-
ural response for this case is exponentially damped and oscillatory in
nature. The response has a time constant of 1/« and a period of
T = 27 /w,. Figure 8.9(c) depicts a typical underdamped response.
[Figure 8.9 assumes for each case that i(0) = 0.]

Once the inductor current i(¢) is found for the RLC series circuit
as shown above, other circuit quantities such as individual element
voltages can easily be found. For example, the resistor voltage is
Ug = Ri, and the inductor voltage is v, = L di/dr. The inductor cur-
rent i(f) is selected as the key variable to be determined first in order
to take advantage of Eq. (8.1b).

We conclude this section by noting the following interesting, pecu-
liar properties of an RLC network:

1. The behavior of such a network is captured by the idea of damping,
which is the gradual loss of the initial stored energy, as evidenced by
the continuous decrease in the amplitude of the response. The damp-
ing effect is due to the presence of resistance R. The damping factor
a determines the rate at which the response is damped. If R = 0,
then o = 0, and we have an LC circuit with 1/ VLC as the
undamped natural frequency. Since & < wj in this case, the response
is not only undamped but also oscillatory. The circuit is said to be
loss-less, because the dissipating or damping element (R) is absent.
By adjusting the value of R, the response may be made undamped,
overdamped, critically damped, or underdamped.

2. Oscillatory response is possible due to the presence of the two
types of storage elements. Having both L and C allows the flow of
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R = 0 produces a perfectly sinusoidal
response. This response cannot be
practically accomplished with £ and C
because of the inherent losses in them.
See Figs 6.8 and 6.26. An electronic
device called an oscillator can pro-
duce a perfectly sinusoidal response.

Examples 8.5 and 8.7 demonstrate the
effect of varying k.

The response of a second-order circuit
with two storage elements of the same
type, as in Fig. 8.1(c) and (d), cannot
be oscillatory.
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What this means in most practical cir-
cuits is that we seek an overdamped
circuit that is as close as possible to a
critically damped circuit.

Chapter8  Second-Order Circuits

energy back and forth between the two. The damped oscillation
exhibited by the underdamped response is known as ringing. It
stems from the ability of the storage elements L and C to transfer
energy back and forth between them.

. Observe from Fig. 8.9 that the waveforms of the responses differ.

In general, it is difficult to tell from the waveforms the difference
between the overdamped and critically damped responses. The crit-
ically damped case is the borderline between the underdamped and
overdamped cases and it decays the fastest. With the same initial
conditions, the overdamped case has the longest settling time,
because it takes the longest time to dissipate the initial stored
energy. If we desire the response that approaches the final value
most rapidly without oscillation or ringing, the critically damped
circuit is the right choice.

Example 8.3

In Fig. 8.8, R =40, L = 4H, and C = 1/4 F. Calculate the charac-
teristic roots of the circuit. Is the natural response overdamped, under-
damped, or critically damped?

Solution:

We first calculate
R 40 5 1 1 )
a = —= — = . w = = =
2L 2(4) NI Vaxi

The roots are

or

sip=—a* Vo' —wj=-5* V251

S = _0101, Sy = —9.899

Since o > w,, we conclude that the response is overdamped. This is
also evident from the fact that the roots are real and negative.

Practice Problem 8.3

IfR=10Q,L = 5H, and C = 2 mF in Fig. 8.8, find &, w, s;, and s,.
What type of natural response will the circuit have?

Answer: 1, 10, —1 = j9.95, underdamped.

Example 8.4

Find i(?) in the circuit of Fig. 8.10. Assume that the circuit has reached
steady state at 1 = 0.

Solution:

For ¢ < 0, the switch is closed. The capacitor acts like an open circuit
while the inductor acts like a shunted circuit. The equivalent circuit is
shown in Fig. 8.11(a). Thus, at t = 0,

i(0) = 41+06 =1A, v0)=6i0)=6V
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9Q
10V

| = +

10V v?GQ 0.02F ==
- 05H

Figure 8.10 (@) (b)
For Example 8.4. Figure 8.11
The circuit in Fig. 8.10: (a) for # < 0, (b) for r > 0.

where i(0) is the initial current through the inductor and v(0) is the
initial voltage across the capacitor.

For t+ > 0, the switch is opened and the voltage source is discon-
nected. The equivalent circuit is shown in Fig. 8.11(b), which is a source-
free series RLC circuit. Notice that the 3-€) and 6-() resistors, which are
in series in Fig. 8.10 when the switch is opened, have been combined to
give R = 9 () in Fig. 8.11(b). The roots are calculated as follows:

R 9 1 1
a=i=@=9, wOZVE: ?X%=10
s1o=—a = Va® — w3 = -9 £ V8l — 100

or
S12=—9 £ j4.359
Hence, the response is underdamped (o < w); that is,
i(t) = e (A, cos 4.359¢ + A, sin 4.3591) (8.4.1)

We now obtain A; and A, using the initial conditions. At r = 0,
i(0) =1= A4, 8.4.2)
From Eq. (8.9),
di
dt

=0

_ —%[m(m + ()] = —2[9(1) — 6] = ~6 Als  (8.4.3)

Note that v(0) = V, = —6V is used, because the polarity of v in
Fig. 8.11(b) is opposite that in Fig. 8.8. Taking the derivative of i(¢) in
Eq. (8.4.1),

% = —9¢ (A, cos4.359t + A, sin4.3591)
+ e %(4.359)(—A, sin 4.359¢ + A, cos 4.3591)
Imposing the condition in Eq. (8.4.3) at t = 0 gives
—6= -9, +0) +4.359(-0 + A,)
But A; = 1 from Eq. (8.4.2). Then
—6 = -9+ 43594, = A, = 0.6882

Substituting the values of A; and A, in Eq. (8.4.1) yields the
complete solution as

i(f) = ¢ "(cos 4.359¢ + 0.6882 sin 4.3597) A
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Practice Problem 8.4

1
s F

100 V l "

Figure 8.12
For Practice Prob. 8.4.

<

Figure 8.13

A source-free parallel RLC circuit.

| <+

The circuit in Fig. 8.12 has reached steady state at + = 0. If the make-
before-break switch moves to position b at t = 0, calculate i(f) for
t > 0.

Answer: ¢ >(10cos 1.65837 — 15.076 sin 1.65837) A.

8.4 The Source-Free Parallel RLC Circuit

Parallel RLC circuits find many practical applications, notably in com-
munications networks and filter designs.

Consider the parallel RLC circuit shown in Fig. 8.13. Assume ini-
tial inductor current I and initial capacitor voltage V,

0
i0) = I, = % J v(f)dt (8.27a)

v(0) = V, (8.27b)

Since the three elements are in parallel, they have the same voltage v
across them. According to passive sign convention, the current is enter-
ing each element; that is, the current through each element is leaving
the top node. Thus, applying KCL at the top node gives

v

l t
+J’ v(r)dr + C

dv
—=0 8.28
R L t ( )

d
Taking the derivative with respect to ¢ and dividing by C results in

d’ 1 d 1
T =0 (8.29)
d’  RCdr ' LC

We obtain the characteristic equation by replacing the first derivative
by s and the second derivative by s*. By following the same reasoning
used in establishing Eqs. (8.4) through (8.8), the characteristic equa-
tion is obtained as

1
s+ —s+—=0 (8.30)
The roots of the characteristic equation are

1 ( 1 >2 1
S12 = T A5~ =+ P
2RC 2RC LC

or

S1p= —a =* Va? — o} (8.31)

where

(8.32)
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The names of these terms remain the same as in the preceding section,
as they play the same role in the solution. Again, there are three pos-
sible solutions, depending on whether a > wg, @ = wg, or a < w,.
Let us consider these cases separately.

Overdamped Case (@ > w,)
From Eq. (8.32), a > wy when L > 4R?C. The roots of the charac-
teristic equation are real and negative. The response is

V(1) = A’ + Aye™ (8.33)

Critically Damped Case (@ = w,)
For @ = wo, L = 4R*C. The roots are real and equal so that the
response is

v() = (A, + Ae ™ (8.34)

Underdamped Case (¢ < w,)
When a < g, L < 4R*C. In this case the roots are complex and may
be expressed as

Si2 = —a E juy (8.35)
where
ws = Vi — o (8.36)
The response is
v(t) = e “Y(A, cosw,t + A, sinwyt) (8.37)

The constants A; and A, in each case can be determined from the
initial conditions. We need v(0) and dv(0)/dt. The first term is known
from Eq. (8.27b). We find the second term by combining Eqs. (8.27)
and (8.28), as

Vo v ©) _

+ I() + Ci
or

dv(0) (Vo + RI)
dt RC

(8.38)

The voltage waveforms are similar to those shown in Fig. 8.9 and will
depend on whether the circuit is overdamped, underdamped, or criti-
cally damped.

Having found the capacitor voltage v(¢) for the parallel RLC cir-
cuit as shown above, we can readily obtain other circuit quantities such
as individual element currents. For example, the resistor current is
i = U/R and the capacitor voltage is v = C dv/dt. We have selected
the capacitor voltage v(¢) as the key variable to be determined first in
order to take advantage of Eq. (8.1a). Notice that we first found the
inductor current i(¢) for the RLC series circuit, whereas we first found
the capacitor voltage v(r) for the parallel RLC circuit.

327
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Example 8.5

In the parallel circuit of Fig. 8.13, find v(¢) for + > 0, assuming
v(0) =5V,i0) =0,L=1H, and C = 10 mF. Consider these cases:
R=19230,R=5Q, and R = 6.25 ().

Solution:

B CASE 1 IfR= 19230,
1 1
CTORCT 2Xx 1923 X 10X 107
1 1
Wy = = =10

VILC V1X10x1073

Since a > wq in this case, the response is overdamped. The roots of
the characteristic equation are

/2 2
S12= —a = a” — wy= —2,—50

and the corresponding response is

=26

v() = Ae ¥ + Aye (8.5.1)
We now apply the initial conditions to get A; and A,.
v0)=5=A,+A, 8.5.2)
dv(0) _ _ v(0) + Ri(0) _ 5+0 — —260
dt RC 1.923 X 10 X 1073
But differentiating Eq. (8.5.1),
% = 24, % — 50A,e "
Att =0,
—260 = —2A; — 504, 8.5.3)
From Eqgs. (8.5.2) and (8.5.3), we obtain A; = —0.2083 and A, = 5.208.
Substituting A; and A, in Eq. (8.5.1) yields
v(f) = —0.2083¢ > + 5.208¢ " (8.5.4)
M CASE 2 WhenR=5Q,
1 1

a=——= —~ =10
2RC 2 X 5% 10 X 10

while wg = 10 remains the same. Since o = wg = 10, the response is
critically damped. Hence, s; = s, = —10, and

v(f) = (A, + At ' (8.5.5)
To get A; and A,, we apply the initial conditions
v(0) =5=A4, (8.5.6)
dv(0) v + Ri(O) 5+0
dt RC 5% 10 % 1072
But differentiating Eq. (8.5.9),
dv

- (—10A; — 10A,t + Ay)e '

= —100
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Atr=0,
—100 = —10A, + A, (8.5.7)
From Egs. (8.5.6) and (8.5.7), A; = 5 and A, = —50. Thus,
v(n) = (5 — 50ne 'V (8.5.8)

B CASE 3 When R = 6250,
1 1
o= - —
2RC  2X 625X 10X 1073

while wy = 10 remains the same. As @ < w in this case, the response
is underdamped. The roots of the characteristic equation are

Sip = —a =* Va? — wi= -8 + j6

Hence,
v(f) = (A, cos6r + A, sin6r)e ¥ (8.5.9)
We now obtain A; and A,, as
v(0) =5=A, (8.5.10)
dv(0) _ _v(0) + Ri(0) _ 5+0 — _%0
dt RC 6.25 X 10 X 107°
But differentiating Eq. (8.5.9),
% = (—8A; cos 6r — 8A, sin6f — 6A, sin 6t + 6A, cos 61)e” ¥
Atr =0,
—80 = —8A, + 6A, (8.5.11)
From Egs. (8.5.10) and (8.5.11), A; = 5 and A, = —6.667. Thus,
v(r) = (5 cos 61 — 6.667 sin 61)e ¥ (8.5.12)

Notice that by increasing the value of R, the degree of damping
decreases and the responses differ. Figure 8.14 plots the three cases.

v() V

5 —
4k
3
2
1

Overdamped

/ Critically damped
o0k

/

. ~— IIJnderdamped | |

0 0.5 1 L5 1(s)
Figure 8.14

For Example 8.5: responses for three degrees of damping.
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Practice Problem 8.5

In Fig. 8.13,1et R =2 Q, L =0.4 H, C =25 mF, v(0) =0, i(0) = 50 mA.
Find v(t) fort > 0.

Answer: —2te ' u(r) V.

Example 8.6

Find v(?) for + > 0 in the RLC circuit of Fig. 8.15.

30Q 04H i
N :

il

= +

40V =0/ 50Q 20 pF =

Figure 8.15
For Example 8.6.

Solution:

When ¢ < 0, the switch is open; the inductor acts like a short circuit

while the capacitor behaves like an open circuit. The initial voltage across

the capacitor is the same as the voltage across the 50-() resistor; that is,
50

5
0)= — 27 (40) =2 x 40 = 25V 8.6.1
0O =307 5040 7% 8.6.1)

The initial current through the inductor is

i(0) = 0 05A

O =30+ 50 '
The direction of i is as indicated in Fig. 8.15 to conform with the
direction of [, in Fig. 8.13, which is in agreement with the convention
that current flows into the positive terminal of an inductor (see Fig. 6.23).
We need to express this in terms of dv/dt, since we are looking for v.

dv(0)  v(0) + Ri(0) 25 —50X0.5
dt RC 50 X 20 X 107°

=0 (8.6.2)

When ¢ > 0, the switch is closed. The voltage source along with the
30-() resistor is separated from the rest of the circuit. The parallel RLC
circuit acts independently of the voltage source, as illustrated in Fig. 8.16.
Next, we determine that the roots of the characteristic equation are

1 1
a= -
2RC 2X 50 X 20 X 107°
1 1
wy = = = 354

VLC V04 Xx20X10°°
Sip = —a * Va? — w(z)

—500 = \/250,000 — 124,997.6 = =500 = 354

= 500

or

S = _854, Sy, = —146
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30Q 0.4 H

40V 50 Q 20 uF ==

Figure 8.16
The circuit in Fig. 8.15 when ¢ > 0. The parallel
RLC circuit on the right-hand side acts independently
of the circuit on the left-hand side of the junction.
Since « > wg, we have the overdamped response
v(f) = Aje B + Aye 1Y (8.6.3)
At t = 0, we impose the condition in Eq. (8.6.1),
v(0)=25=A, + A, = A, =25 — A (8.6.4)
Taking the derivative of v(¢) in Eq. (8.6.3),

d
O = ST — 146,

Imposing the condition in Eq. (8.6.2),

dv(0)
—— =0 = —8544, — 146A,
dt
or
0 = 8544, + 1464, (8.6.5)

Solving Egs. (8.6.4) and (8.6.5) gives

A = —5.156, A, = 30.16
Thus, the complete solution in Eq. (8.6.3) becomes

v() = —5.156e 8 + 30.16¢ 140"V
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Refer to the circuit in Fig. 8.17. Find v(¢) for t > 0.

Answer: 150(e” 1% — ¢33 V.

8.5 Step Response of a Series RLC Circuit

As we learned in the preceding chapter, the step response is obtained
by the sudden application of a dc source. Consider the series RLC cir-
cuit shown in Fig. 8.18. Applying KVL around the loop for ¢ > 0,

P
L2 4 Ri+v=V, (8.39)
dt
But
) dv
i=C—
dt

Practice Problem 8.6

10H 4 mF =
Figure 8.17
For Practice Prob. 8.6.
=0 R L 1,
+
VS Ct) C==v

Figure 8.18
Step voltage applied to a series RLC circuit.
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Substituting for i in Eq. (8.39) and rearranging terms,

d>v  Rdv v Vi
Lt = 8.40
> Ldt LC LC 8.40)

which has the same form as Eq. (8.4). More specifically, the coeffi-
cients are the same (and that is important in determining the frequency
parameters) but the variable is different. (Likewise, see Eq. (8.47).)
Hence, the characteristic equation for the series RLC circuit is not
affected by the presence of the dc source.

The solution to Eq. (8.40) has two components: the transient
response U/(f) and the steady-state response v (); that is,

v(1) = v,(1) + (1) (8.41)

The transient response v,(f) is the component of the total response that
dies out with time. The form of the transient response is the same as the
form of the solution obtained in Section 8.3 for the source-free circuit,
given by Egs. (8.14), (8.21), and (8.26). Therefore, the transient response
v,(?) for the overdamped, underdamped, and critically damped cases are:

v,(t) = A’ + Ae™  (Overdamped) (8.42a)
v,(t) = (A, + Asp)e @ (Critically damped) (8.42b)
v,(1) = (A cos wyt + A, sinwyt)e (Underdamped)  (8.42c¢)

The steady-state response is the final value of v(¢). In the circuit in
Fig. 8.18, the final value of the capacitor voltage is the same as the
source voltage V. Hence,

Uis(1) = v(%®) =V (8.43)

Thus, the complete solutions for the overdamped, underdamped, and
critically damped cases are:

v(t) =V, + A’ + Ae®™  (Overdamped) (8.44a)
v(t) = Vi + (A + Ayp)e” " (Critically damped) (8.44b)
v(t) =V, + (A cos wyt + Ay sinwyt)e @ (Underdamped) | (8.44c)

The values of the constants A; and A, are obtained from the initial con-
ditions: v(0) and dv(0)/dt. Keep in mind that v and i are, respectively,
the voltage across the capacitor and the current through the inductor.
Therefore, Eq. (8.44) only applies for finding v. But once the capaci-
tor voltage v = v is known, we can determine i = C dv/dt, which is
the same current through the capacitor, inductor, and resistor. Hence,
the voltage across the resistor is v = iR, while the inductor voltage is
v, = Ldi/dt.

Alternatively, the complete response for any variable x(7) can be
found directly, because it has the general form

x(1) = x5(1) + x40) (8.45)

where the x,;, = x(°) is the final value and x,(7) is the transient response.
The final value is found as in Section 8.2. The transient response has
the same form as in Eq. (8.42), and the associated constants are deter-
mined from Eq. (8.44) based on the values of x(0) and dx(0)/dt.
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For the circuit in Fig. 8.19, find v(#) and i(¢) for + > 0. Consider these
cases: R=5O0,R=4Q0,and R =1Q.

Solution:

B CASE 1 When R = 5Q. For t < 0, the switch is closed for a
long time. The capacitor behaves like an open circuit while the
inductor acts like a short circuit. The initial current through the
inductor is

24

=4A
541

i(0) =

and the initial voltage across the capacitor is the same as the voltage
across the 1-() resistor; that is,

v(0) = 1i(0) = 4V

For t > 0, the switch is opened, so that we have the 1-Q) resistor
disconnected. What remains is the series RLC circuit with the voltage
source. The characteristic roots are determined as follows:

R 5 1 1
o= =25, wy= - -2
2L 2% 1 VI V1x025

S1p= —a* \/az—w%= -1, —4

Since o > w,, we have the overdamped natural response. The total
response is therefore

(1) = vy + (Aje "+ Aye™ ™)

where v is the steady-state response. It is the final value of the
capacitor voltage. In Fig. 8.19, v, = 24 V. Thus,

v(t) = 24 + (A" + Ae™) (8.7.1)
We now need to find A; and A, using the initial conditions.
v0)=4=24+ A, + A,
or
=20=A, + A, 8.7.2)

The current through the inductor cannot change abruptly and is the
same current through the capacitor at # = 0" because the inductor and
capacitor are now in series. Hence,

dv(0) 4 4

dv(0)
=4 = —=——=16
dt dt C 025

i(0) =C

Before we use this condition, we need to take the derivative of v in
Eq. (8.7.1).

dv _ _
- —Aje " — 4Ae (8.7.3)
Att =0,
dv(0)
=16 = _Al - 4A2 (8.7.4)

dt

24V

Example 8.7

Figure 8.19
For Example 8.7.
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From Egs. (8.7.2) and (8.7.4), A; = —64/3 and A, = 4/3. Substituting
A; and A, in Eq. (8.7.1), we get

4 _ _
v(f) = 24 + 5(—16e T+e MV (8.7.5)
Since the inductor and capacitor are in series for ¢ > 0, the inductor
current is the same as the capacitor current. Hence,
dv
dt

Multiplying Eq. (8.7.3) by C = 0.25 and substituting the values of A,
and A, gives

i(y=0C

. 4 —1 —4r
i(r) = §(4e —e A (8.7.6)
Note that i(0) = 4 A, as expected.

Bl CASE 2 When R = 4 . Again, the initial current through the
inductor is

24

O =37

=48A

and the initial capacitor voltage is
v(0) = 1i(0) =48V

For the characteristic roots,

R 4
o= —— = =2
2L 2 X1
while wy = 2 remains the same. In this case, s; = s, = —a = —2, and

we have the critically damped natural response. The total response is
therefore

V() = vy + (A + Ast)e™
and, as before v, = 24V,
v(1) = 24 + (A, + Ae ™ (8.7.7)
To find A; and A,, we use the initial conditions. We write
v(0) =48 =24 + A = A= —19.2 (8.7.8)
Since i(0) = C dv(0)/dt = 4.8 or
dv(0) 4.8

22 192
dt C
From Eq. (8.7.7),
d
?l; = (=24, — 214y + Ay (8.7.9)
Attt =0,
dv(0)
=192 = 24, + A, (8.7.10)

dt



www.konkur.in

8.5  Step Response of a Series RLC Circuit

From Egs. (8.7.8) and (8.7.10), A; = —19.2 and A, = —19.2. Thus,
Eq. (8.7.7) becomes

v(t) =24 — 192(1 + e >V (8.7.11)

The inductor current is the same as the capacitor current; that is,
dv
(1) = C—
(1) ”

Multiplying Eq. (8.7.9) by C = 0.25 and substituting the values of A,
and A, gives

i(t) = (4.8 + 9.60)e > A (8.7.12)
Note that i(0) = 4.8 A, as expected.

B CASE 3 When R = 1. The initial inductor current is

'(O)—A—IZA
! 1+ 1

and the initial voltage across the capacitor is the same as the voltage
across the 1-() resistor,
v(0) = 1i(0) = 12V
R 1
oa=—= =
2L 2 X1

0.5

Since a = 0.5 < wy = 2, we have the underdamped response
si2=—a* Vo — wg = —05 * j1.936
The total response is therefore
v(r) = 24 + (A, cos 19361 + A, sin 1.9361)e > (8.7.13)
We now determine A; and A,. We write
v(0) =12=24 + A, = A =—12 (8.7.14)
Since i(0) = C dv(0)/dt = 12,

WO _ 12 _ 4 (8.7.15)
dt C o
But
d
&2 e 93(—1.936A, sin 1.936¢ + 1.936A, cos 1.9361)
dt (8.7.16)
— 0.5¢ %A, cos 1.936¢ + A, sin 1.9367)
Attt =0,
dv(0)
o 48 = (—0 + 1.9364,) — 0.5(4; + 0)

Substituting A; = —12 gives A, = 21.694, and Eq. (8.7.13) becomes
v(t) = 24 + (21.694 sin 1.9361 — 12 cos 1.9360e *>'V  (8.7.17)
The inductor current is

dv

i) = C—-

335
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Multiplying Eq. (8.7.16) by C = 0.25 and substituting the values of A,
and A, gives

i(r) = (3.1 sin 1.9367 + 12 cos 1.9360e *F' A (8.7.18)

Note that i(0) = 12 A, as expected.

Figure 8.20 plots the responses for the three cases. From this
figure, we observe that the critically damped response approaches the
step input of 24 V the fastest.

v() V
40
a5 | /Underdamped
30 -
Critically damped
35 /

Overdamped

0 1 2 3 4 5 6 7 8 1(v)
Figure 8.20

For Example 8.7: response for three degrees of damping.

Practice Problem 8.7 Having been in position « for a long time, the switch in Fig. 8.21 is
moved to position b at + = 0. Find v(f) and vg(r) for t > 0.

1Q « b 25H 10Q

=0 Tt
+
18V 29? L v

Figure 8.21
For Practice Prob. 8.7.

Answer: 15 — (1.7321 sin 3.4647 + 3 cos 3.4641)e >V,
3.464¢ ' sin 3.4641 V.

/i ., 8.6 Step Response of a Parallel RLC Circuit
L CD " O‘X R § L 3 €Y Consider the parallel RLC circuit shown in Fig. 8.22. We want to find
i due to a sudden application of a dc current. Applying KCL at the top
node for r > 0,
Figure 8.22
Parallel RLC circuit with an applied v i dv

—tit+C—=1, (8.46)

current. R dt



www.konkur.in

8.6  Step Response of a Parallel RLC Circuit

But

= L—
v dt
Substituting for v in Eq. (8.46) and dividing by LC, we get
i 1.di i I
s+ ——+—====
dt© RCdt LC LC

(8.47)

which has the same characteristic equation as Eq. (8.29).
The complete solution to Eq. (8.47) consists of the transient
response i,(f) and the steady-state response i; that is,

i(t) = i,(t) + i) (8.48)

The transient response is the same as what we had in Section 8.4. The
steady-state response is the final value of i. In the circuit in Fig. 8.22,
the final value of the current through the inductor is the same as the
source current /,. Thus,

i(f) = I, + A1’ + Ay (Overdamped)
i(f)y =I,+ (A, + At)e " (Critically damped) (8.49)
i(f) = I, + (A, coswyt + A, sinwyt)e " (Underdamped)

The constants A; and A, in each case can be determined from the initial
conditions for i and di/dr. Again, we should keep in mind that Eq. (8.49)
only applies for finding the inductor current i. But once the inductor
current i; = i is known, we can find v = L di/dt, which is the same
voltage across inductor, capacitor, and resistor. Hence, the current
through the resistor is ir = v/R, while the capacitor current is
ic = Cdv/dt. Alternatively, the complete response for any variable x(7)
may be found directly, using

x(1) = x4(t) + x/7) (8.50)

where x,, and x; are its final value and transient response, respectively.
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In the circuit of Fig. 8.23, find i(f) and ix(¢) for t+ > O.
1=0X 20Q

b T

4a(}) 20w % 200 § 8 mF =

il

I = +

30u(~1) V

Figure 8.23
For Example 8.8.

Solution:
For < 0, the switch is open, and the circuit is partitioned into two inde-
pendent subcircuits. The 4-A current flows through the inductor, so that

i(0)=4A

Example 8.8
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Since 30u(—1) = 30 when # < 0 and 0 when ¢ > 0, the voltage source
is operative for ¢+ < 0. The capacitor acts like an open circuit and the
voltage across it is the same as the voltage across the 20-) resistor
connected in parallel with it. By voltage division, the initial capacitor
voltage is

v(0) = (30) = 15V

20 + 20

For ¢t > 0, the switch is closed, and we have a parallel RLC circuit
with a current source. The voltage source is zero which means it acts
like a short-circuit. The two 20-() resistors are now in parallel. They
are combined to give R = 20 || 20 = 10 Q. The characteristic roots are
determined as follows:

1 1
a: = 73
2RC 2X 10X 8 X 107

1 1
wo = = =25

VLC 20 X 8 X 1073
512 = —a = Va? — wg = —625 + V/39.0625 — 6.25

= —06.25 £ 5.7282

= 6.25

or
s; = —11.978, 5, = —0.5218

Since @ > w,, we have the overdamped case. Hence,
i(f) = I, + Aje 178 4 A e 03218 8.8.1)

where I, = 4 is the final value of i(f). We now use the initial conditions
to determine A; and A,. At ¢t = 0,

l(O) =4 =4+ Al + A2 = A2 = _A] (8.8.2)
Taking the derivative of i(f) in Eq. (8.8.1),

i
Z; = —11.978A,¢ 78 — (0.5218A4,¢ *>21¥

so that at r = O,

di(0)
== T119784; — 052184, (8.8.3)
But
di(0) di0)y 15 15
L =v0) =15 = =" =_"=075
a YO d L 20

Substituting this into Eq. (8.8.3) and incorporating Eq. (8.8.2), we get
0.75 = (11.978 — 0.5218)A, = A, = 0.0655

Thus, A} = —0.0655 and A, = 0.0655. Inserting A and A, in Eq. (8.8.1)
gives the complete solution as

ity =4+ 0.0655(6*0~5218t _ 6*11.9781) A
From i(f), we obtain v(r) = L di/dt and

. () L di —11.978¢ —0.5218¢
H)=—=——=0.785 : — 0.0342¢ A
WO =50 = 20 ar ¢ ¢
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Find i(f) and v(¢) for + > 0 in the circuit of Fig. 8.24.

Answer: 10(1 — cos(0.250) A, 50 sin(0.25¢) V.

8.7

Now that we have mastered series and parallel RLC circuits, we are
prepared to apply the ideas to any second-order circuit having one or
more independent sources with constant values. Although the series and
parallel RLC circuits are the second-order circuits of greatest interest,
other second-order circuits including op amps are also useful. Given a
second-order circuit, we determine its step response x(¢) (which may
be voltage or current) by taking the following four steps:

General Second-Order Circuits

1. We first determine the initial conditions x(0) and dx(0)/dt and the
final value x(o0), as discussed in Section 8.2.

2. We turn off the independent sources and find the form of the tran-
sient response x,(¢) by applying KCL and KVL. Once a second-order
differential equation is obtained, we determine its characteristic
roots. Depending on whether the response is overdamped, critically
damped, or underdamped, we obtain x,() with two unknown con-
stants as we did in the previous sections.

3. We obtain the steady-state response as

Xy (1) = x(°)

where x() is the final value of x, obtained in step 1.
4. The total response is now found as the sum of the transient
response and steady-state response

x(1) = x{0) + x4(0)

(8.51)

(8.52)

We finally determine the constants associated with the transient
response by imposing the initial conditions x(0) and dx(0)/dt,
determined in step 1.

We can apply this general procedure to find the step response of
any second-order circuit, including those with op amps. The following
examples illustrate the four steps.

10u(r) A CD

Practice Problem 8.8

*i

20H

||

— 02F

| = +

Figure 8.24
For Practice Prob. 8.8.

A circuit may look complicated at first.
But once the sources are turned off in
an attempt to find the form of the tran-
sient response, it may be reducible to
a first-order circuit, when the storage
elements can be combined, or to a
parallel/series RLC circuit. If it is re-
ducible to a first-order circuit, the solu-
tion becomes simply what we had in
Chapter 7. If it is reducible to a parallel
or series RLC circuit, we apply the tech-
niques of previous sections in this
chapter.

Problems in this chapter can also be
solved by using Laplace transforms,
which are covered in Chapters 15
and 16.

Find the complete response v and then i for # > 0 in the circuit of
Fig. 8.25.

Solution:

We first find the initial and final values. At = 0, the circuit is at steady

state. The switch is open; the equivalent circuit is shown in Fig. 8.26(a).

It is evident from the figure that
v(07) =12V, i(0)=0

At t = 0", the switch is closed; the equivalent circuit is in Fig. 8.26(b).

By the continuity of capacitor voltage and inductor current, we know that

v(0) =v(0) =12V, (0" =i0)=0  (8.9.1)

12V

Example 8.9
4Q I 1H
211
2Q N
IF=Fv
1=0

Figure 8.25
For Example 8.9.
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40 i
—_—
O———CO O
+
12V v
O
(a)
4Q 1H _'_,
Jie
+
12V 2QSv = 05F

|

(b)
Figure 8.26
Equivalent circuit of the circuit in Fig. 8.25
for: (a)r < 0, (b)t > 0.

[STES
gs]

Figure 8.27
Obtaining the form of the transient
response for Example 8.9.

Chapter8  Second-Order Circuits

To get dv(0")/dt, we use Cdv/dt = ic or dv/dt = i-/C. Applying
KCL at node a in Fig. 8.26(b),

0+
i07) = ic(0h) + U(2 )
. + 12 . +
O:lC(O)‘F? = ic0")=—-6A
Hence,
dv(0™) =6
i 05 12 V/s (8.9.2)

The final values are obtained when the inductor is replaced by a short
circuit and the capacitor by an open circuit in Fig. 8.26(b), giving

) 12
i(°) = =2A,

v(®) = 2i(®) =4V (8.9.3)

Next, we obtain the form of the transient response for ¢+ > 0. By
turning off the 12-V voltage source, we have the circuit in Fig. 8.27.
Applying KCL at node a in Fig. 8.27 gives

v ldv
= —+ —— 8.9.4
Y 529
Applying KVL to the left mesh results in
di
4i+1% 40 =0 (8.9.5)
dt

Since we are interested in v for the moment, we substitute i from
Eq. (8.9.4) into Eq. (8.9.5). We obtain

di 1d
2v+2—v+f—v+
dt 2 dt

or
[:;l; + 5% +6v=20
From this, we obtain the characteristic equation as
S +55+6=0
with roots s = —2 and s = —3. Thus, the natural response is
v,(t) = Ae > + Be (8.9.6)

where A and B are unknown constants to be determined later. The
steady-state response is
U (1) = v(°) = 4 (8.9.7)
The complete response is
V() =V, + v, =4+ Ae > + Be (8.9.8)

We now determine A and B using the initial values. From Eq. (8.9.1),
v(0) = 12. Substituting this into Eq. (8.9.8) at r = 0 gives

12=4+A+8B = A+B=28 8.9.9)
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Taking the derivative of v in Eq. (8.9.8),

% = —2A¢ > — 3B (8.9.10)
Substituting Eq. (8.9.2) into Eq. (8.9.10) at r = 0 gives
—12=-2A - 3B = 2A+ 3B =12 (8.9.11)
From Egs. (8.9.9) and (8.9.11), we obtain
A =12, B=—4
so that Eq. (8.9.8) becomes
v =4+ 12¢ " —4e ¥V, >0 (8.9.12)

From v, we can obtain other quantities of interest by referring to
Fig. 8.26(b). To obtain i, for example,

v

+ =24+ 6 H —2e ¥ —12¢7H + 6 H

<
N | —
&‘&
S

' (8.9.13)
=2 —6e 2+ 4 A, t>0

Notice that i(0) = 0, in agreement with Eq. (8.9.1).
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Determine v and i for > 0 in the circuit of Fig. 8.28. (See comments
about current sources in Practice Prob. 7.5.)

Answer: 12(1 — e )V, 3(1 — ¢ ) A.

Practice Problem 8.9

10Q 3A

*i

+
lp—,
20 T_

Figure 8.28
For Practice Prob. 8.9.

t=0

Find v,(¢) for + > 0 in the circuit of Fig. 8.29.

Solution:
This is an example of a second-order circuit with two inductors. We
first obtain the mesh currents i; and i,, which happen to be the currents
through the inductors. We need to obtain the initial and final values of
these currents.

For t+ < 0, 7u(t) = 0, so that i{{(0" ) = 0 = i,(0 ). For t > 0,
Tu(f) = 17, so that the equivalent circuit is as shown in Fig. 8.30(a). Due
to the continuity of inductor current,

00" =i(0) =0, i0")=i0)=0

v2,(07) = v,(07) = 1[1(07) — ix(0")] = 0

Applying KVL to the left loop in Fig. 8.30(a) at t = 07,
7 =307 +v.,(07) +v,07)

(8.10.1)
(8.10.2)

Example 8.10

Tu(®) V

[®)
MW
&
W
=
jan

iy

Figure 8.29
For Example 8.10.
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30 Li=3H 3Q
ALk ) 0—O )
_>i] + v ¢ 2] i| - ¢ 12
+ +
7V 19?% szngng 7V IQ§ I
(a) (b)
Figure 8.30
Equivalent circuit of that in Fig. 8.29 for: (a)t > 0, (b) t — o°.
or
v, (0 =7V
Since L] dll/dt = le’
di; (0" v, 7
O _ P Ty (8.10.3)
Similarly, since L, di»/dt = vy,
di,(0") v,
07 _ b _ (8.10.4)
dt L,
As t — o, the circuit reaches steady state, and the inductors can be
replaced by short circuits, as shown in Fig. 8.30(b). From this figure,
7
ij(®) = ip(®) = EA (8.10.5)
. Next, we obtain the form of the transient responses by removing
3Q 2

wil—

ORCEOR

Figure 8.31
Obtaining the form of the transient
response for Example 8.10.

the voltage source, as shown in Fig. 8.31. Applying KVL to the two
meshes yields

4y — iy 4 1A (8.10.6)
151 1) 2 dr = BN
and
. 1di, .
15 + gE - = 0 (8.10.7)
From Eq. (8.10.6),
i, = 4i; + lﬂ (8.10.8)
I, = 4l 2 di .1V,

Substituting Eq. (8.10.8) into Eq. (8.10.7) gives

ldi, 4di, 1 d%,

2dr 5dr 10 di?
ﬁ + 13@ + 30, =0
dt* dt !

From this we obtain the characteristic equation as

2+ 13s+30=0

411+ _11:()

which has roots s = —3 and s = —10. Hence, the form of the transient
response is

i, = Ae ¥ + Be 1 (8.10.9)
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where A and B are constants. The steady-state response is
: . 7
liss = ll(oc) = EA (8.10.10)
From Egs. (8.10.9) and (8.10.10), we obtain the complete response as
7
i) = 3t Ae 3 + Be 'V (8.10.11)

We finally obtain A and B from the initial values. From Egs. (8.10.1)
and (8.10.11),

7
0= 3 +A+B (8.10.12)

Taking the derivative of Eq. (8.10.11), setting r = O in the derivative,
and enforcing Eq. (8.10.3), we obtain

14 = —3A — 10B (8.10.13)
From Egs. (8.10.12) and (8.10.13), A = —4/3 and B = —1. Thus,

7 4
i) = 3 ge*’ — 1 (8.10.14)

We now obtain i, from i;. Applying KVL to the left loop in
Fig. 8.30(a) gives
7:411_12*‘77 = l2:_7+4ll+77
2 dt 2 dt
Substituting for i; in Eq. (8.10.14) gives

28 16
() = 7+ 3 - ?e*’ — 4710 4 273 4 5710
(8.10.15)
— z _ 170673[ + 6710t
3 3
From Fig. 8.29,
v,(1) = 1[i;() — ir(1)] (8.10.16)
Substituting Egs. (8.10.14) and (8.10.15) into Eq. (8.10.16) yields
V(1) = 2(e > — 1% (8.10.17)

Note that v,(0) = 0, as expected from Eq. (8.10.2).
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For + > 0, obtain v,(¢) in the circuit of Fig. 8.32. (Hint: First find v,
and v,.)

Answer: 8(¢ ' — e )V, 1t > 0.

Practice Problem 8.10

20u(t) V

Figure 8.32
For Practice Prob. 8.10.
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The use of op amps in second-order
circuits avoids the use of inductors,
which are undesirable in some
applications.

Chapter8  Second-Order Circuits

8.8 Second-Order Op Amp Circuits

An op amp circuit with two storage elements that cannot be combined
into a single equivalent element is second-order. Because inductors are
bulky and heavy, they are rarely used in practical op amp circuits. For
this reason, we will only consider RC second-order op amp circuits
here. Such circuits find a wide range of applications in devices such as
filters and oscillators.

The analysis of a second-order op amp circuit follows the same
four steps given and demonstrated in the previous section.

Example 8.11

In the op amp circuit of Fig. 8.33, find v,(¢) for t > 0 when v, =
10u(r) mV. Let Ry = R, = 10k, C; = 20 uF, and C, = 100 uF.

Figure 8.33
For Example 8.11.

Solution:

Although we could follow the same four steps given in the previous
section to solve this problem, we will solve it a little differently. Due
to the voltage follower configuration, the voltage across C; is v,,.
Applying KCL at node 1,

Uy, — Uy dv, vy —v,
=C,— + (8.11.1)
R, dt R,
At node 2, KCL gives
U U, =C dva (8 1 2)

R, Ut "
But

U, =V — U, (8.11.3)

We now try to eliminate v, and v, in Egs. (8.11.1) to (8.11.3).
Substituting Egs. (8.11.2) and (8.11.3) into Eq. (8.11.1) yields

Lo o ey o B (8.11.4)
R, *a Zdr Y dr o
From Eq. (8.11.2),
dv,,
U =0, + R2C17 (8.11.5)

dt
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Substituting Eq. (8.11.5) into Eq. (8.11.4), we obtain

Vs _ Yo RCidv, o Aoy RZCICZ& _ e, Pe o Lo
R, R, R, dt dt dr? dt dt
or
d*v, 1 1 dv, v, Us
a <R1C2 " R2C2> i T RRCG RGeSO
With the given values of R, R, C;, and C,, Eq. (8.11.6) becomes
Ao G0 L5 s, (8.11.7)
ar* dt ? *

To obtain the form of the transient response, set v, = 0 in Eq. (8.11.7),
which is the same as turning off the source. The characteristic equation is

$Z+25+5=0

which has complex roots s;, = —1 * j2. Hence, the form of the
transient response is

v,, = e (A cos2t+ B sin2f) (8.11.8)

where A and B are unknown constants to be determined.

As t — oo, the circuit reaches the steady-state condition, and the
capacitors can be replaced by open circuits. Since no current flows through
C, and C, under steady-state conditions and no current can enter the input
terminals of the ideal op amp, current does not flow through R; and R,.

Thus,

V() = v1(®) = vy
The steady-state response is then
Upss = Up(®) = v, = 10 mV, t>0 (8.11.9)
The complete response is
v,(H) = v, + U, = 10 + ¢ (A cos 2t + Bsin2f)mV (8.11.10)

To determine A and B, we need the initial conditions. For ¢t < 0, v, = 0,
so that

Uo(0) =0(0) =0

For t+ > 0, the source is operative. However, due to capacitor voltage
continuity,

v,(07) = v5(0") = 0 (8.11.11)
From Eq. (8.11.3),
v1(07) = v2(07) + v,(07) =0
and, hence, from Eq. (8.11.2),

dv,(0") v — v,
dt R,C,

=0 (8.11.12)

We now impose Eq. (8.11.11) on the complete response in Eq. (8.11.10)
at t = 0, for

0=10+A = A=-10 (8.11.13)

345
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Taking the derivative of Eq. (8.11.10),

dv,
dt

= e (—A cos2t — B sin2t — 2A sin 2t + 2B cos 2t)

Setting + = 0 and incorporating Eq. (8.11.12), we obtain
0=-A+2B (8.11.14)

From Eqgs. (8.11.13) and (8.11.14), A = —10 and B = —5. Thus, the
step response becomes

v,(H) = 10 — ¢ (10 cos 2t + 5 sin 2f) mV, t>0

Practice Problem 8.11

In the op amp circuit shown in Fig. 8.34, v, = 10u(r) V, find v(¢) for
t > 0. Assume that R, = R, = 10k, C; = 20 uF, and C, = 100 uF.

Answer: (10 — 12.5¢7" + 2.5¢ )V, t > 0.

Figure 8.34
For Practice Prob. 8.11.

8.9 PSpice Analysis of RLC Circuits

RLC circuits can be analyzed with great ease using PSpice, just like
the RC or RL circuits of Chapter 7. The following two examples will
illustrate this. The reader may review Section D.4 in Appendix D on
PSpice for transient analysis.

Example 8.12

Vs

12

0 2 t(s)
()

60 Q 3H

v, 60 Q !

(b)
Figure 8.35
For Example 8.12.

The input voltage in Fig. 8.35(a) is applied to the circuit in Fig. 8.35(b).
Use PSpice to plot v(?) for 0 < r < 4s.

Solution:

1. Define. As true with most textbook problems, the problem is
clearly defined.

2. Present. The input is equal to a single square wave of
amplitude 12 V with a period of 2 s. We are asked to plot the
output, using PSpice.

3. Alternative. Since we are required to use PSpice, that is the
only alternative for a solution. However, we can check it using
the technique illustrated in Section 8.5 (a step response for a
series RLC circuit).

4. Attempt. The given circuit is drawn using Schematics as in
Fig. 8.36. The pulse is specified using VPWL voltage source,
but VPULSE could be used instead. Using the piecewise linear
function, we set the attributes of VPWL as T1 = 0, V1 = 0,
T2 = 0.001, V2 = 12, and so forth, as shown in Fig. 8.36.
Two voltage markers are inserted to plot the input and output
voltages. Once the circuit is drawn and the attributes are set,
we select Analysis/Setup/Transient to open up the Transient
Analysis dialog box. As a parallel RLC circuit, the roots of the
characteristic equation are —1 and —9. Thus, we may set Final
Time as 4 s (four times the magnitude of the lower root). When
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T3=2 v3=12
T4=2.0001 V4=0

Figure 8.36
Schematic for the circuit in Fig. 8.35(b).

8.9  PSpice Analysis of RLC Circuits

the schematic is saved, we select Analysis/Simulate and obtain

the plots for the input and output voltages under the PSpice A/D

window as shown in Fig. 8.37.

12 v

10 v

8 Vv

6
T1=0 V1=0 4
T2=0.0001 Vv2=12

0.03703 o

L

Now we check using the technique from Section 8.5. We
can start by realizing the Thevenin equivalent for the resistor-
source combination is Vp, = 12/2 (the open circuit voltage
divides equally across both resistors) = 6 V. The equivalent
resistance is 30 Q) (60 || 60). Thus, we can now solve for the
response using R = 30 ), L = 3H, and C = (1/27)F.

We first need to solve for a and w:

1
a=R/QL)=30/6=5 and @, = =3

/3L
27

Since 5 is greater than 3, we have the overdamped case

si,=-5* V5 -9=-1,-9, 00 =0,

v(*®) =6V, i(0)=0

. dv(t)
i(ty=C o
where
v(H) =Ae "+ A 7+ 6
v0)=0=A;, +A, + 6
i(0) =0=C(—A; — 9A,)
which yields A; = —9A,. Substituting this into the above, we get

0=9A, — A, + 6,0orA, = 0.75and A; = —6.75.

v(f) = (—6.75¢ ™" + 0.75¢ ™ + 6)u(t) Vforall 0 < < 2.
Atr=1s,0(1) = —6.75¢ ' + 0.75¢° = —2.483 + 0.0001

+6=-3552V.Atr=2s,0(2) =—6.75¢ 2+ 0+6=5086V.

Note that from 2 < ¢t < 4, Vp, = 0, which implies that

v() = 0. Therefore, v(r) = (Aze 2 + Ae "t — 2) V.

Att=2s, Ay + A, = 5.086.
(—Ase D — 9A,e0D)
27

i(r) =

347

[m]

V(L1:2)<¢ V(R1:1)

Time

Figure 8.37
For Example 8.12: input and output.
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and
(6.75¢7 2 — 6.75¢ %)

i(2) = = 33. A
i(2) 27 33.83 m

Therefore, —A; — 94, = 0.9135.

Combining the two equations, we get —Az; — 9(5.086 — A3) =
0.9135, which leads to A; = 5.835 and A4, = —0.749.

v(t) = (5.835¢ 7“2 — 0.749¢ " P)ut - 2) V

Attr=3s,v(3) = (2.147 —0) =2.147V. Att = 4s,v4) =
0.7897 V.

5. Evaluate. A check between the values calculated above and the
plot shown in Figure 8.37 shows good agreement within the
obvious level of accuracy.

6. Satisfactory? Yes, we have agreement and the results can be
presented as a solution to the problem.

Practice Problem 8.12

5Q

g = 1l mF 2H

Figure 8.38
For Practice Prob. 8.12.

Find i(¢) using PSpice for 0 < ¢t < 4 s if the pulse voltage in Fig. 8.35(a)
is applied to the circuit in Fig. 8.38.

Answer: See Fig. 8.39.

Figure 8.39
Plot of i(#) for Practice Prob. 8.12.

Example 8.13

For the circuit in Fig. 8.40, use PSpice to obtain i() for 0 < ¢t < 3s.

b §io
Q) 59§ 6Q = 7H

Figure 8.40
For Example 8.13.

Solution:
When the switch is in position a, the 6-() resistor is redundant. The
schematic for this case is shown in Fig. 8.41(a). To ensure that current
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0.0000 4.000E+00
. ] . -
° (\
4A IDC R1S5 23.81m c1l 7TH Ll R2

e

(@)
Figure 8.41

For Example 8.13: (a) for dc analysis, (b) for transient analysis.

i(f) enters pin 1, the inductor is rotated three times before it is placed in
the circuit. The same applies for the capacitor. We insert pseudo-
components VIEWPOINT and IPROBE to determine the initial capacitor
voltage and initial inductor current. We carry out a dc PSpice analysis
by selecting Analysis/Simulate. As shown in Fig. 8.41(a), we obtain
the initial capacitor voltage as 0 V and the initial inductor current i(0)
as 4 A from the dc analysis. These initial values will be used in the
transient analysis.

When the switch is moved to position b, the circuit becomes a source-
free parallel RLC circuit with the schematic in Fig. 8.41(b). We set the
initial condition IC = 0 for the capacitor and IC = 4 A for the inductor.
A current marker is inserted at pin 1 of the inductor. We select Analysis/
Setup/Transient to open up the Transient Analysis dialog box and set
Final Time to 3 s. After saving the schematic, we select Analysis/
Transient. Figure 8.42 shows the plot of i(f). The plot agrees with
i(f) = 4.8¢7" — 0.8¢ % A, which is the solution by hand calculation.

349
6 23.81mTC1 TH Ll
-+
(b)
4.
3.
3.
3.88 A t--mmmmmime e
0 s 1.0 s 2.0 s 3.0 s
O I(L1)
Time

Figure 8.42
Plot of i(¢) for Example 8.13.

Refer to the circuit in Fig. 8.21 (see Practice Prob. 8.7). Use PSpice to
obtain v(z) for 0 < r < 2.

Answer: See Fig. 8.43.

Time

Figure 8.43
Plot of v(¢) for Practice Prob. 8.13.

Practice Problem 8.13
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TABLE 8.1

Dual pairs.

Resistance R Conductance G
Inductance L Capacitance C
Voltage v Current i
Voltage source Current source
Node Mesh

Series path Parallel path
Open circuit Short circuit
KVL KCL

Thevenin Norton

Even when the principle of linearity
applies, a circuit element or variable
may not have a dual. For example,
mutual inductance (to be covered in
Chapter 13) has no dual.

Chapter8  Second-Order Circuits

8.10 T Duality

The concept of duality is a time-saving, effort-effective measure of
solving circuit problems. Consider the similarity between Eq. (8.4) and
Eq. (8.29). The two equations are the same, except that we must inter-
change the following quantities: (1) voltage and current, (2) resistance
and conductance, (3) capacitance and inductance. Thus, it sometimes
occurs in circuit analysis that two different circuits have the same equa-
tions and solutions, except that the roles of certain complementary ele-
ments are interchanged. This interchangeability is known as the
principle of duality.

The duality principle asserts a parallelism between pairs of characteriz-
ing equations and theorems of electric circuits.

Dual pairs are shown in Table 8.1. Note that power does not appear in
Table 8.1, because power has no dual. The reason for this is the prin-
ciple of linearity; since power is not linear, duality does not apply. Also
notice from Table 8.1 that the principle of duality extends to circuit
elements, configurations, and theorems.

Two circuits that are described by equations of the same form, but
in which the variables are interchanged, are said to be dual to each other.

Two circuits are said to be duals of one another if they are described
by the same characterizing equations with dual quantities interchanged.

The usefulness of the duality principle is self-evident. Once we
know the solution to one circuit, we automatically have the solution
for the dual circuit. It is obvious that the circuits in Figs. 8.8 and 8.13
are dual. Consequently, the result in Eq. (8.32) is the dual of that in
Eq. (8.11). We must keep in mind that the method described here for
finding a dual is limited to planar circuits. Finding a dual for a non-
planar circuit is beyond the scope of this textbook because nonplanar
circuits cannot be described by a system of mesh equations.

To find the dual of a given circuit, we do not need to write down
the mesh or node equations. We can use a graphical technique. Given
a planar circuit, we construct the dual circuit by taking the following
three steps:

1. Place a node at the center of each mesh of the given circuit. Place
the reference node (the ground) of the dual circuit outside the
given circuit.

2. Draw lines between the nodes such that each line crosses an ele-
ment. Replace that element by its dual (see Table 8.1).

3. To determine the polarity of voltage sources and direction of cur-
rent sources, follow this rule: A voltage source that produces a pos-
itive (clockwise) mesh current has as its dual a current source whose
reference direction is from the ground to the nonreference node.

In case of doubt, one may verify the dual circuit by writing the nodal
or mesh equations. The mesh (or nodal) equations of the original circuit
are similar to the nodal (or mesh) equations of the dual circuit. The
duality principle is illustrated with the following two examples.
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Construct the dual of the circuit in Fig. 8.44.

Solution:

As shown in Fig. 8.45(a), we first locate nodes 1 and 2 in the two
meshes and also the ground node O for the dual circuit. We draw a line
between one node and another crossing an element. We replace the line
joining the nodes by the duals of the elements which it crosses. For
example, a line between nodes 1 and 2 crosses a 2-H inductor, and we
place a 2-F capacitor (an inductor’s dual) on the line. A line between
nodes 1 and O crossing the 6-V voltage source will contain a 6-A
current source. By drawing lines crossing all the elements, we construct
the dual circuit on the given circuit as in Fig. 8.45(a). The dual circuit
is redrawn in Fig. 8.45(b) for clarity.

6V

Example 8.14

2Q t=0

2H =/ 10mF

Figure 8.44
For Example 8.14.

(a)

Figure 8.45

(a) Construction of the dual circuit of Fig. 8.44, (b) dual circuit redrawn.

(b)

Draw the dual circuit of the one in Fig. 8.46.

Answer: See Fig. 8.47.

Practice Problem 8.14

3H
L
soma () 09 §4H 50 mV 0.1Q L 4F
Figure 8.46 Figure 8.47
For Practice Prob. 8.14. Dual of the circuit in Fig. 8.46.

Obtain the dual of the circuit in Fig. 8.48.

Solution:

The dual circuit is constructed on the original circuit as in Fig. 8.49(a).
We first locate nodes 1 to 3 and the reference node 0. Joining nodes
1 and 2, we cross the 2-F capacitor, which is replaced by a 2-H
inductor.

Example 8.15
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SH
A1k

wd o Tn el b

Figure 8.48
For Example 8.15.

Joining nodes 2 and 3, we cross the 20-{) resistor, which is replaced
by a 35-() resistor. We keep doing this until all the elements are crossed.
The result is in Fig. 8.49(a). The dual circuit is redrawn in Fig. 8.49(b).

10 A = S5F 3V

() (b)

Figure 8.49

For Example 8.15: (a) construction of the dual circuit of Fig. 8.48, (b) dual circuit redrawn.

To verify the polarity of the voltage source and the direction of
the current source, we may apply mesh currents iy, i>, and i3 (all in the
clockwise direction) in the original circuit in Fig. 8.48. The 10-V
voltage source produces positive mesh current iy, so that its dual is a
10-A current source directed from O to 1. Also, i3 = —3 A in Fig. 8.48
has as its dual v3 = —3 V in Fig. 8.49(b).

Practice Problem 8.15 For the circuit in Fig. 8.50, obtain the dual circuit.

Answer: See Fig. 8.51.

ZAC? 30 20V 2V<? lo (T)zo/x

Figure 8.50 Figure 8.51
For Practice Prob. 8.15. Dual of the circuit in Fig. 8.50.
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8.11 T Applications

Practical applications of RLC circuits are found in control and com-
munications circuits such as ringing circuits, peaking circuits, resonant
circuits, smoothing circuits, and filters. Most of these circuits cannot
be covered until we treat ac sources. For now, we will limit ourselves
to two simple applications: automobile ignition and smoothing circuits.

8.11.1 Automobile Ignition System

In Section 7.9.4, we considered the automobile ignition system as a
charging system. That was only a part of the system. Here, we con-
sider another part—the voltage generating system. The system is mod-
eled by the circuit shown in Fig. 8.52. The 12-V source is due to the
battery and alternator. The 4-() resistor represents the resistance of the
wiring. The ignition coil is modeled by the 8-mH inductor. The 1-uF
capacitor (known as the condenser to automechanics) is in parallel with
the switch (known as the breaking points or electronic ignition). In the
following example, we determine how the RLC circuit in Fig. 8.52 is
used in generating high voltage.

t=0
40 1 uF
Il
I
fe |} |
" \i/
12V v, N7
] L g 8 mH /}\
\\ Spark plug

Ignition coil

Figure 8.52

Automobile ignition circuit.

353

Assuming that the switch in Fig. 8.52 is closed prior to t = 0, find
the inductor voltage v, for ¢ > 0.

Solution:
If the switch is closed prior to + = 0~ and the circuit is in steady state,
then

12

i(07) = Vi 3A, ve(0) =0

At t = 07, the switch is opened. The continuity conditions require that
i(0%) =3 A, ve(07) =0 (8.16.1)
We obtain di(0™)/dt from v, (0™). Applying KVL to the mesh at 7 = 0"
yields
—12 + 4i(0") + v, (07) + ve(0T) =0
—12+4X3+0v,0)+0=0 = v,(07) =0

Example 8.16



www.konkur.in

354

Chapter8  Second-Order Circuits

Hence,
di©0") _ v, (0")
——=——=0 8.16.2
dt L ( )
As t — oo, the system reaches steady state, so that the capacitor acts
like an open circuit. Then
i(®) =0 (8.16.3)
If we apply KVL to the mesh for + > 0, we obtain
Y S N
12=Ri+L— + — | idt+ ve(0)
i CJ,

Taking the derivative of each term yields

d’i  Rdi i

—+——+—=0 8.16.4

dt> Ldt LC ( )
We obtain the form of the transient response by following the procedure
in Section 8.3. Substituting R = 4 (), L = 8 mH, and C = 1 uF, we get

R 4
a=— =250, wy = =1.118 X 10

2L

_1
VLC
Since a < wq, the response is underdamped. The damped natural
frequency is

wg= Vi — o =aw, = 1.118 X 10*

The form of the transient response is

i) = e (A coswyt + B sinwyt) (8.16.5)
where A and B are constants. The steady-state response is

I (1) = () =0 (8.16.6)
so that the complete response is
i(t) = i(t) + i (1) = e P"(A cos 11,1807 + Bsin 11,1801) (8.16.7)
We now determine A and B.
i(0)=3=A+4+0 = A=3

Taking the derivative of Eq. (8.16.7),

Ji
;; = —250e (A cos 11,180z + B sin 11,1807

+ ¢ P%—11,180A sin 11,1807 + 11,1808 cos 11,180¢)
Setting + = 0 and incorporating Eq. (8.16.2),

0= —250A + 11,180B = B = 0.0671
Thus,

i(t) = ¢ %3 cos 11,180r + 0.0671 sin 11,1807)  (8.16.8)

The voltage across the inductor is then

i
v, () = Lé = —268¢ > sin 11,1807 (8.16.9)
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This has a maximum value when sine is unity, that is, at 11,1807y =
/2 or t, = 140.5 us. At time = iy, the inductor voltage reaches its
peak, which is

v(fg) = —268¢ % = —259 v (8.16.10)

Although this is far less than the voltage range of 6000 to 10,000 V
required to fire the spark plug in a typical automobile, a device known
as a transformer (to be discussed in Chapter 13) is used to step up the
inductor voltage to the required level.

In Fig. 8.52, find the capacitor voltage v for r > 0. Practice Problem 8.16

Answer: 12 — 12¢ 2% cos 11,180 + 267.7¢ > sin 11,180z V.

8.11.2 Smoothing Circuits

In a typical digital communication system, the signal to be transmitted
is first sampled. Sampling refers to the procedure of selecting samples
of a signal for processing, as opposed to processing the entire signal.
Each sample is converted into a binary number represented by a series
of pulses. The pulses are transmitted by a transmission line such as a
coaxial cable, twisted pair, or optical fiber. At the receiving end, the () 7(®) Smoothing %)

. . . o . —— D/A - ——
signal is applied to a digital-to-analog (D/A) converter whose output is circuit
a “staircase” function, that is, constant at each time interval. In order
t.o recover the transmlttfd analo.g s’l,gn.al, the out.put is smogtheq by let- A series of pulses is applied to the digital-
ting it pass through a “smoothing” circuit, as illustrated in Fig. 8.53. to-analog (D/A) converter, whose output
An RLC circuit may be used as the smoothing circuit. is applied to the smoothing circuit.

Figure 8.53

The output of a D/A converter is shown in Fig. 8.54(a). If the RLC Example 8.17
circuit in Fig. 8.54(b) is used as the smoothing circuit, determine the
output voltage v, (7).

v A
10 -
1 1Q 1 H 3
MW 211
4 2 +
v, 1F= "%
0 _
ok 1(s)
0 0

(a) (b)
Figure 8.54
For Example 8.17: (a) output of a D/A converter, (b) an RLC
smoothing circuit.

Solution:
This problem is best solved using PSpice. The schematic is shown in
Fig. 8.55(a). The pulse in Fig. 8.54(a) is specified using the piecewise
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o . P
T1=0 v1=0
T2=0.001 Vv2=4 1 1H
T3=1 v3=4 |
T4=1.001 Vv4=10 /+
v1 f—
T5=2 v5=10 @ L cl
T6=2.001 V6=-2
T7=3 V7==2
T8=3.001 Vv8=0 o
é 0s 2.0s 4.0s 6.0s
0 OV(Vli:+) ¢ V(Cl:1)
Time
(2) (b)

Figure 8.55
For Example 8.17: (a) schematic, (b) input and output voltages.

linear function. The attributes of V1 are set as TI =0, V1 =0,
T2 = 0.001, V2 = 4, T3 = 1, V3 = 4, and so on. To be able to plot both
input and output voltages, we insert two voltage markers as shown. We
select Analysis/Setup/Transient to open up the Transient Analysis dialog
box and set Final Time as 6 s. Once the schematic is saved, we select
Analysis/Simulate to run and obtain the plots shown in Fig. 8.55(b).

Practice Problem 8.17 Rework Example 8.17 if the output of the D/A converter is as shown
in Fig. 8.56.

Answer: See Fig. 8.57.

Vs 4 8.0 Vv

S

0 1 1 | > —4.0 V- i :
1 2 3 4 ¢ () 0 s . . . s
-Ir OV(Vi:i+) o V(Cl:1)
3k .
Time
Figure 8.56 Figure 8.57
For Practice Prob. 8.17. Result of Practice Prob. 8.17.

8.12 Summary

1. The determination of the initial values x(0) and dx(0)/dt and final
value x(%°) is crucial to analyzing second-order circuits.

2. The RLC circuit is second-order because it is described by a
second-order differential equation. Its characteristic equation is
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Review Questions

s* + 2as + wj = 0, where « is the damping factor and w, is the
undamped natural frequency. For a series circuit, « = R/2L, for a
parallel circuit &« = 1/2RC, and for both cases w, = 1/0VLC.

. If there are no independent sources in the circuit after switching

(or sudden change), we regard the circuit as source-free. The com-
plete solution is the natural response.

. The natural response of an RLC circuit is overdamped, under-

damped, or critically damped, depending on the roots of the char-
acteristic equation. The response is critically damped when the
roots are equal (s; = s, or @« = w,), overdamped when the roots
are real and unequal (s; # s, or @« > wg), or underdamped when
the roots are complex conjugate (s; = 55 or @ < wy).

. If independent sources are present in the circuit after switching,

the complete response is the sum of the transient response and the
steady-state response.

. PSpice is used to analyze RLC circuits in the same way as for RC

or RL circuits.

. Two circuits are dual if the mesh equations that describe one circuit

have the same form as the nodal equations that describe the other.
The analysis of one circuit gives the analysis of its dual circuit.

. The automobile ignition circuit and the smoothing circuit are typ-

ical applications of the material covered in this chapter.
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8.1

Review Questions

For the circuit in Fig. 8.58, the capacitor voltage at 8.4
t = 0 (just before the switch is closed) is:

@0V ®m4V (©8V @12V

t=0

2Q
12V 1H T 2F 8.5
Figure 8.58
For Review Questions 8.1 and 8.2.
8.2  For the circuit in Fig. 8.58, the initial inductor
current (at r = 0) is: 8.6
@0A (B2A (©)6A (DI12A )
8.3 When a step input is applied to a second-order
circuit, the final values of the circuit variables are g7

found by:
(a) Replacing capacitors with closed circuits and
inductors with open circuits.

(b) Replacing capacitors with open circuits and
inductors with closed circuits.

(c) Doing neither of the above.

If the roots of the characteristic equation of an RLC
circuit are —2 and —3, the response is:

(a) (A cos2t + B sin 2)e ™

(b) (A + 2Bpe ™™

(c) Ae™* + Bre ™

(d)Ae ™ + Be ™

where A and B are constants.

In a series RLC circuit, setting R = 0 will produce:
(a) an overdamped response

(b) a critically damped response
(c) an underdamped response
(d) an undamped response

(e) none of the above

A parallel RLC circuit has L = 2H and C = 0.25 F.
The value of R that will produce unity damping factor is:
@050 M1IOY ©2Q (@40

Refer to the series RLC circuit in Fig. 8.59. What
kind of response will it produce?

(a) overdamped

(b) underdamped

(c) critically damped

(d) none of the above
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R
AN
v, { ) c=—= L R i c =
(@)
8.8 Consider the parallel RLC circuit in Fig. 8.60. What R, Ry
i (D) v, LY ¢ =—

¢ G

(a) overdamped T T

1Q 1H

Figure 8.59

For Review Question 8.7.

type of response will it produce?

(b) underdamped © ()
(c) critically damped X %
(d) none of the above l ! Y
R, c
i v, Cc=F L
L R,
1Q 1H = 1F
(e) (f)
Figure 8.61
Figure 8.60 For Review Question 8.9.

For Review Question 8.8.

8.10 In an electric circuit, the dual of resistance is:

8.9 Match the circuits in Fig. 8.61 with the following (a) conductance (b) inductance

items: . L
tems (c) capacitance (d) open circuit

(i) first-order circuit (e) short circuit

(ii) second-order series circuit

(iii) second-order parallel circuit Answers: 8.1a, 8.2¢, 8.3b, 8.4d, 8.5d, 8.6¢, 8.7b, 8.8b,
(iv) none of the above 8.9 (i)-c, (ii)-b, e, (iii)-a, (iv)-d, f, 8.10a.
1 Problems
Section 8.2 Finding Initial and Final Values 8.2 Using Fig. 8.63, design a problem to help other
efd students better understand finding initial and final

8.1 For the circuit in Fig. 8.62, find:
(a)i(0") and v(0 ™),
(b) di(0")/dt and dv(0™")/dt,
(c) i() and v(®).

“X1=0 ik R R,

U

values.

6Q 4Q N lic
wv® | ® T 3
2H O.4F—|—

Figure 8.62 Figure 8.63
For Prob. 8.1. For Prob. 8.2.

| = +
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8.3 Refer to the circuit shown in Fig. 8.64. Calculate: R, R
.t + + MW
(@) i(07), ve(07), and vR(0™T), +oop -,
(b) di(0")/dt, dve(0")/dt, and dvR(0")/dt, Viu(1) C — v L

(¢) ir(®), (%), and V().

Figure 8.67

40 Q For Prob. 8.6.
MY
-1, i
+ ‘e T aF Section 8.3 Source-Free Series RLC Circuit
0R§IOQ () 2u A %éH
- 0V 8.7 Aseries RLC circuit has R = 20k(), L = 0.2 mH,
and C = 5 uF. What type of damping is exhibited

N by the circuit?
Figure 8.64 .
For Prob. 8.3. 8.8 Design a problem to help other students better

e understand source-free RLC circuits.

o . 8.9 The current in an RLC circuit is described by
8.4 In the circuit of Fig. 8.65, find:

2. .
@ v(0") and i(0"), Ty 0% 4 05— 0
(b) do(0™)/dt and di(0™)/dr, dt di
(c) v() and i(%). If i(0) = 10 A and di(0)/dr = 0, find i(¢) for t > 0.
8.10 The differential equation that describes the voltage
30 0.25H in an RLC network is
voy 2
— d“v dv
L Y +5—+4v =
+ dt d
du(-1) v 0.1F == v § s (b)) auma

Given that v(0) = 0, dv(0)/dt = 10 V/s, obtain v(f).

8.11 The natural response of an RLC circuit is described

Figure 8.65 by the differential equation
For Prob. 8.4.
d*v N 2dv N
av LA L=
dr? d

8.5 Refer to the circuit in Fig. 8.66. Determine:
(@) i(0") and v(0™),
(b) di(0™)/dt and dv(0™)/dt,
(c) i() and v(®).

for which the initial conditions are v(0) = 10 V and
dv(0)/dt = 0. Solve for v().

8.12 If R = 50 (), L = 1.5 H, what value of C will make
an RLC series circuit:

(a) overdamped,

1H (b) critically damped,
{ ; (c) underdamped?
+ . .. .
4t A D 10 i FL£ 6035 8.13 For the circuit in Fig. 8.68, calculate the value of R

_ needed to have a critically damped response.

Figure 8.66
For Prob. 8.5. 60 Q

8.6 Inth f Fig. 8.67, find R GO am
.6 In the circuit of Fig. 8.67, find:
n the circuit o lg , In /\/\/\/\l H
(2) vg(0™) and v (0, l

(b) dvg(0")/dt and dv,(07)/dt, Figure 8.68
(¢) vg(e0) and v (). For Prob. 8.13.
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8.14 The switch in Fig. 8.69 moves from position A to
position B at t = 0 (please note that the switch must
connect to point B before it breaks the connection at
A, a make-before-break switch). Let v(0) = 0, find
v(t) fort > 0.

80V @)

025F % v(t) § 10 Q

Figure 8.69
For Prob. 8.14.

8.15 The responses of a series RLC circuit are
ve(®) = 30 — 10e™ 2 + 30 1% v
ir() = 40e” 2" — 60e ' mA

where v and i; are the capacitor voltage and
inductor current, respectively. Determine the values
of R, L, and C.

8.16 Find i(¢) for t > 0 in the circuit of Fig. 8.70.

1=0
100 60 Q
A <>,( ’\/\N\r] o
1 mF
30V @) 40Q §
25H

Figure 8.70
For Prob. 8.16.

8.17 In the circuit of Fig. 8.71, the switch instantaneously
moves from position A to B at t = 0. Find v(¢) for all
t=0.

1=0
A \: 0.25H
B
5A (1 L+
® 40 10Q 004F == 0

Figure 8.71
For Prob. 8.17.

8.18 Find the voltage across the capacitor as a function of
time for ¢+ > 0 for the circuit in Fig. 8.72. Assume
steady-state conditions existatr = 0.

Second-Order Circuits

100 V @)

Figure 8.72
For Prob. 8.18.

8.19 Obtain v(¢) for # > 0 in the circuit of Fig. 8.73.

+

i
10Q T

v
AV 1
t=0
120V %

Figure 8.73
For Prob. 8.19.

IF
4H

8.20 The switch in the circuit of Fig. 8.74 has been closed
for a long time but is opened at r = 0. Determine i(r)

fort > 0.
if) IH , 0
IR MMV
30V
C ' t=0
iF

Figure 8.74
For Prob. 8.20.

*8.21 Calculate v(¢) for r > 0 in the circuit of Fig. 8.75.

150
A
12Q =X 6Q
A )
1=0 §25£z
3H
24V 60 Q +
1
‘Tt

Figure 8.75
For Prob. 8.21.

* An asterisk indicates a challenging problem.
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Section 8.4 Source-Free Parallel RLC Circuit
8.22 Assuming R = 2 k{), design a parallel RLC circuit
that has the characteristic equation
s> + 100s + 10° = 0.

8.23 For the network in Fig. 8.76, what value of C is
needed to make the response underdamped with
unity damping factor (o = 1)?

10Q 20 mH

Figure 8.76
For Prob. 8.23.

8.24 The switch in Fig. 8.77 moves from position A to
position B at ¢+ = 0 (please note that the switch must
connect to point B before it breaks the connection at
A, a make-before-break switch). Determine i(¢) for
t>0.

il
4ACD gzog 1omF§1OQ 30.251-1

Figure 8.77
For Prob. 8.24.

8.25 Using Fig. 8.78, design a problem to help other
e7Jd students better understand source-free RLC circuits.

R, L io(0)

v R, § C== 50

Figure 8.78
For Prob. 8.25.

Section 8.5 Step Response of a Series RLC Circuit

8.26 The step response of an RLC circuit is given by
d—Zi + 2ﬁ + 5i =10
> dt
Given that i(0) = 2 and di(0)/dt = 4, solve for i(f).
8.27 A branch voltage in an RLC circuit is described by
d*v dv

?4-4;4'80:24

Problems 361

If the initial conditions are v(0) = 0 = dv(0)/dt,

find v(2).
8.28 A series RLC circuit is described by
PR UL
dar’ a C

Find the response when L = 0.5 H, R = 4 (),
and C = 0.2 F. Let i(0) = 1, di(0)/dt = 0.

8.29 Solve the following differential equations subject to
the specified initial conditions

(@) d*v/dt*> + 4v = 12, v(0) = 0, dv(0)/dr = 2
(b) d%i/dr* + 5 di/dt + 4i = 8,i(0) = —1,

di(0)/dt = 0

(¢)d*v/di* + 2 dv/dt + v = 3,v(0) = 5,
dv(0)/dr = 1

(d) d%i/di*> + 2 di/dt + 5i = 10, i(0) = 4,
di(0)/dr = =2

8.30 The step responses of a series RLC circuit are
ve = 40 — 10e” 200 — 10740y s> 0
in(t) =3¢ 2 + 6¢ " mA, >0

(a) Find C. (b) Determine what type of damping is
exhibited by the circuit.

8.31 Consider the circuit in Fig. 8.79. Find v,(0") and

g ve(07).

40Q 10Q
w
" +
2u(r) () 05HR vy,  1F= 7 50V

Figure 8.79
For Prob. 8.31.

8.32 For the circuit in Fig. 8.80, find v(¢) for r > 0.

&

2u(-1) A
1 H 0.04 F
AL |
+ v -
49% %29
o
N\
50u(r) V

Figure 8.80
For Prob. 8.32.
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8.33 Find v(?) for t+ > 0 in the circuit of Fig. 8.81.

t=0<>l< %
3AG> IOQ§ —= 4F 59§ <)4u(t)A

| = +

Figure 8.81
For Prob. 8.33.

8.34 Calculate i(r) for t > 0 in the circuit of Fig. 8.82.

sou-n v () g IH

Figure 8.82
For Prob. 8.34.

8.35 Using Fig. 8.83, design a problem to help other
efJd students better understand the step response of series

RLC circuits.
R
o) ( : AN
t=0
+
V1 Ct) Vz CcC=—v
AR
L

Figure 8.83
For Prob. 8.35.

8.36 Obtain v(¢) and i(¢) for t > 0 in the circuit of
Fig. 8.84.

M sg 10

6u(t) A = v(0)

Figure 8.84
For Prob. 8.36.

Second-Order Circuits

*8.37 For the network in Fig. 8.85, solve for i(r) for t > 0.

6 Q

i
ool—
T

Figure 8.85
For Prob. 8.37.

8.38 Refer to the circuit in Fig. 8.86. Calculate i(r) for
t> 0.

21 - u(t)) A

l i(r) @

3
i

10 Q

:

Figure 8.86
For Prob. 8.38.

8.39 Determine v(¢) for # > 0 in the circuit of Fig. 8.87.

05F

30Q 0.25H

+ 0 -

§ZOQ

60u(t) V 30u(n) V

Figure 8.87
For Prob. 8.39.

8.40 The switch in the circuit of Fig. 8.88 is moved from
g position a to b at t = 0. Determine i(f) for t > 0.

0.02F

14 Q
b ;t}lZV
a 2Q

M oy yog

t=0

6 Q
VWY

4A
()
N

Figure 8.88
For Prob. 8.40.
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*8.41 For the network in Fig. 8.89, find i(7) for r > 0.
5Q

20 Q 1H

100 V

Figure 8.89
For Prob. 8.41.

*8.42 Given the network in Fig. 8.90, find v(?) for r > 0.

Figure 8.90
For Prob. 8.42.

8.43 The switch in Fig. 8.91 is opened at r = 0 after the
circuit has reached steady state. Choose R and C
such that & = 8 Np/s and w, = 30 rad/s.

R
% 0.5H

“T
Figure 8.91
For Prob. 8.43.

40V

8.44 A series RLC circuit has the following parameters:
R=1kQ,L = 1H,and C = 10 nF. What type of
damping does this circuit exhibit?

Section 8.6 Step Response of a Parallel
RLC Circuit

8.45 In the circuit of Fig. 8.92, find v(¢) and i(¢) for r > 0.

Assume v(0) = 0 Vand i(0) = 1 A.

+
v

|
il
o
W
s
NIy
jan)

A () 20 §

Figure 8.92
For Prob. 8.45.

Problems 363

8.46 Using Fig. 8.93, design a problem to help other
efJd students better understand the step response of a

parallel RLC circuit.
in L
—
v C R

Figure 8.93
For Prob. 8.46.

8.47 Find the output voltage v,(7) in the circuit of
Fig. 8.94.

~

r=0"

ANV
10Q

+
BAGE 50 1H 10 mF == 2,

Figure 8.94
For Prob. 8.47.

8.48 Given the circuit in Fig. 8.95, find i(7) and v(¢) for
t> 0.

IQ§

FNE
o5
Il

= v(t)

Figure 8.95
For Prob. 8.48.

8.49 Determine i(7) for ¢+ > 0 in the circuit of Fig. 8.96.

12V

Figure 8.96
For Prob. 8.49.
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8.50 For the circuit in Fig. 8.97, find i(¢) for r > 0.

10 Q

MWV

30V C_r)

6u(r) A D 10 mF ==

Figure 8.97
For Prob. 8.50.

8.51 Find v(¢) for + > 0 in the circuit of Fig. 8.98.

U

t=0

I = +

Figure 8.98
For Prob. 8.51.

8.52 The step response of a parallel RLC circuit is

v = 10 + 20e **(cos 4001 — 2 sin 4007) V,
when the inductor is 50 mH. Find R and C.

Section 8.7 General Second-Order Circuits

Second-Order Circuits

¢ i(f)

§4OQ §4H

t=0

8.53 After being open for a day, the switch in the circuit
of Fig. 8.99 is closed at + = 0. Find the differential

equation describing i(r), r > 0.

80 Q )g P.

120 V =10 mF 025 H

Figure 8.99
For Prob. 8.53.

8.54 Using Fig. 8.100, design a problem to help other
efd students better understand general second-order

circuits.
A t=0
?< Ry
i
8 :
1 é R
! R, v=C

Figure 8.100
For Prob. 8.54.

8.55 For the circuit in Fig. 8.101, find v(?) for r > 0.
Assume that v(0") = 4 Vand i(0") = 2 A.

0.1F =

Figure 8.101
For Prob. 8.55.

8.56 In the circuit of Fig. 8.102, find i(¢) for > 0.

20V

Figure 8.102
For Prob. 8.56.

8.57 If the switch in Fig. 8.103 has been closed for a long
time before + = 0 but is opened at r = 0, determine:

(a) the characteristic equation of the circuit,
(b) i, and vg fort > 0.

Figure 8.103
For Prob. 8.57.

8.58 In the circuit of Fig. 8.104, the switch has been in
position 1 for a long time but moved to position 2 at
t = 0. Find:
(@ v(0™), dv(0")/dr,
(b) v(r) fort = 0.

o)
t=0

Eo.st §O,SQ o

Figure 8.104
For Prob. 8.58.
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8.59 The switch in Fig. 8.105 has been in position 1 for
t < 0.Atr = 0, it is moved from position 1 to the
top of the capacitor at t = 0. Please note that the
switch is a make before break switch, it stays in
contact with position 1 until it makes contact with
the top of the capacitor and then breaks the contact at
position 1. Determine v(z).

4Q 1

a0v (&) o1

Figure 8.105
For Prob. 8.59.

8.60 Obtain 7, and i, for > 0 in the circuit of Fig. 8.106.
3Q

4u A (1) 2Q§ ng IH

Figure 8.106
For Prob. 8.60.

8.61 For the circuit in Prob. 8.5, find i and v for t > 0.

8.62 Find the response vg(?) for # > 0 in the circuit of
Fig. 8.107.Let R =3Q,L = 2H,and C = 1/18 F.

10u(r) V

Figure 8.107
For Prob. 8.62.

Section 8.8 Second-Order Op Amp Circuits

8.63 For the op amp circuit in Fig. 8.108, find the
differential equation for i(7).

-

Figure 8.108
For Prob. 8.63.

Problems 365

8.64 Using Fig. 8.109, design a problem to help other
e7Jd students better understand second-order op amp

circuits.
C
Il
1
R, Ry
+
AW *
+
l’r C2 pr— o
o

Figure 8.109
For Prob. 8.64.

8.65 Determine the differential equation for the op amp
circuit in Fig. 8.110. If v,(0") = 2V and
v,(0") = 0V, findv, fort > 0. Let R = 100 kQ
and C = 1 uF.

0|§+<5

Figure 8.110
For Prob. 8.65.

8.66 Obtain the differential equations for v,(7) in the op
amp circuit of Fig. 8.111.

1

10 pF
60 kQ T60k£2 >

M +
+
vy =20 pF Yo
O

Figure 8.111
For Prob. 8.66.
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*8.67 In the op amp circuit of Fig. 8.112, determine v,,(f)
fort > 0.Letv;, = u() V,R; = R, = 10k{),
C, = C, = 100 uF.

Figure 8.112
For Prob. 8.67.

Section 8.9 PSpice Analysis of RLC Circuit

8.68 For the step function v, = u(t), use PSpice or
MultiSim to find the response v(7) for 0 < r < 6 sin
the circuit of Fig. 8.113.

2Q 1H
ANV AIIR

IF == o(0)

Figure 8.113
For Prob. 8.68.

8.69 Given the source-free circuit in Fig. 8.114, use PSpice
or MultiSim to get i(¢) for 0 < t < 20s.
Take v(0) = 30 V and i(0) = 2 A.

lz
+
10H§ 25F = v

IQ§

Figure 8.114
For Prob. 8.69.

8.70 For the circuit in Fig. 8.115, use PSpice or MultiSim
to obtain v(z) for 0 < ¢ < 4 s. Assume that the
capacitor voltage and inductor current at + = ( are
both zero.

6Q 2H
NV L1k

04F =

v © Tk

Figure 8.115
For Prob. 8.70.

Second-Order Circuits

8.71 Obtain v(r) for 0 < ¢t < 4 s in the circuit of Fig. 8.116
using PSpice or MultiSim.

04F IH 6Q
||
1

+

13u(t) A 6Q v(1) S20Q 3%u(t) V

Figure 8.116
For Prob. 8.71.

8.72 The switch in Fig. 8.117 has been in position 1 for a
long time. At ¢ = 0, it is switched to position 2. Use
PSpice or MultiSim to find i(r) for 0 < r < 0.2 s.

1kQ 100 mH
o T
5 w«/vv»

10V D q 2kQ

Figure 8.117
For Prob. 8.72.

8.73 Design a problem, to be solved using PSpice or
efd MultiSim, to help other students better understand
source-free RLC circuits.

Section 8.10 Duality

8.74 Draw the dual of the circuit shown in Fig. 8.118.

2Q 4Q
AW AW

9V 6 Q 1Q 3A

Figure 8.118
For Prob. 8.74.

8.75 Obtain the dual of the circuit in Fig. 8.119.

12V 10 Q

@ 24V

Figure 8.119
For Prob. 8.75.
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Comprehensive Problems

8.76 Find the dual of the circuit in Fig. 8.120.

1OQ§ %209

60 V 120 vV

—
4H§ —1F @) 2a

Figure 8.120
For Prob. 8.76.

8.77 Draw the dual of the circuit in Fig. 8.121.

§3OQ

SA

2Q 3Q
IFI SO.ZSH 1Q

12V

Figure 8.121
For Prob. 8.77.

367

Section 8.11 Applications

8.78 An automobile airbag igniter is modeled by the
circuit in Fig. 8.122. Determine the time it takes the
voltage across the igniter to reach its first peak after
switching from A to B.LetR = 3Q, C = 1/30F,
and L = 60 mH.

IZV%‘D

Figure 8.122
For Prob. 8.78.

S
o™

‘ /Airbag igniter

TC L R:

8.79 Aload is modeled as a 250-mH inductor in parallel
with a 12-() resistor. A capacitor is needed to be
connected to the load so that the network is
critically damped at 60 Hz. Calculate the size of
the capacitor.

1

8.80 A mechanical system is modeled by a series RLC
efJd circuit. It is desired to produce an overdamped response

with time constants 0.1 ms and 0.5 ms. If a series

50-k) resistor is used, find the values of L and C.

Comprehensive Problems

8.81 An oscillogram can be adequately modeled by a
e7Jd second-order system in the form of a parallel RLC
circuit. It is desired to give an underdamped voltage
across a 200-() resistor. If the damping frequency is
4 kHz and the time constant of the envelope is 0.25 s,
find the necessary values of L and C.

8.82 The circuit in Fig. 8.123 is the electrical analog of
body functions used in medical schools to study
convulsions. The analog is as follows:

C; = Volume of fluid in a drug
C, = Volume of blood stream in a specified region

R; = Resistance in the passage of the drug from
the input to the blood stream

R, = Resistance of the excretion mechanism,
such as kidney, etc.

Uy = Initial concentration of the drug dosage
v(t) = Percentage of the drug in the blood stream

Find v(¢) for t > 0 given that C; = 0.5 uF, C, =
SuF, R, = 5MQ, R, = 2.5MQ, and vy = 60u(f) V.

z=0>< R,
v AW

+
+

=C, R, C, = v(0)

[N
Il

Figure 8.123
For Prob. 8.82.

8.83 Figure 8.124 shows a typical tunnel-diode oscillator
e?d circuit. The diode is modeled as a nonlinear
resistor with i, = f(vp), i.e., the diode current is a
nonlinear function of the voltage across the diode.
Derive the differential equation for the circuit in
terms of v and ip,.

| = +

Figure 8.124
For Prob. 8.83.
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Sinusoids and
Phasors

He who knows not, and knows not that he knows not, is a fool—
shun him. He who knows not, and knows that he knows not, is a child—
teach him. He who knows, and knows not that he knows, is asleep—wake
him up. He who knows, and knows that he knows, is wise—follow him.

—Persian Proverb

Enhancing Your Skills and Your Career

ABET EC 2000 criteria (3.d), “an ability to function on
multi-disciplinary teams.”

The “ability to function on multidisciplinary teams” is inherently crit-
ical for the working engineer. Engineers rarely, if ever, work by them-
selves. Engineers will always be part of some team. One of the things
I like to remind students is that you do not have to like everyone on a
team; you just have to be a successful part of that team.

Most frequently, these teams include individuals from a variety of
engineering disciplines, as well as individuals from nonengineering dis-
ciplines such as marketing and finance.

Students can easily develop and enhance this skill by working in
study groups in every course they take. Clearly, working in study
groups in nonengineering courses, as well as engineering courses out-
side your discipline, will also give you experience with multidiscipli-
nary teams.

Photo by Charles Alexander
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Chapter 9 Sinusoids and Phasors

George Westinghouse. Photo
© Bettmann/Corbis

Historical

Nikola Tesla (1856-1943) and George Westinghouse (1846-1914)
helped establish alternating current as the primary mode of electricity
transmission and distribution.

Today it is obvious that ac generation is well established as the form
of electric power that makes widespread distribution of electric power
efficient and economical. However, at the end of the 19th century, which
was the better—ac or dc—was hotly debated and had extremely out-
spoken supporters on both sides. The dc side was led by Thomas Edison,
who had earned a lot of respect for his many contributions. Power gen-
eration using ac really began to build after the successful contributions
of Tesla. The real commercial success in ac came from George
Westinghouse and the outstanding team, including Tesla, he assembled.
In addition, two other big names were C. F. Scott and B. G. Lamme.

The most significant contribution to the early success of ac was
the patenting of the polyphase ac motor by Tesla in 1888. The induc-
tion motor and polyphase generation and distribution systems doomed
the use of dc as the prime energy source.

9.1 Introduction

Thus far our analysis has been limited for the most part to dc circuits:
those circuits excited by constant or time-invariant sources. We have
restricted the forcing function to dc sources for the sake of simplicity,
for pedagogic reasons, and also for historic reasons. Historically, dc
sources were the main means of providing electric power up until the
late 1800s. At the end of that century, the battle of direct current ver-
sus alternating current began. Both had their advocates among the elec-
trical engineers of the time. Because ac is more efficient and economical
to transmit over long distances, ac systems ended up the winner. Thus,
it is in keeping with the historical sequence of events that we consid-
ered dc sources first.

We now begin the analysis of circuits in which the source voltage or
current is time-varying. In this chapter, we are particularly interested in
sinusoidally time-varying excitation, or simply, excitation by a sinusoid.

A sinusoid is a signal that has the form of the sine or cosine function.

A sinusoidal current is usually referred to as alternating current (ac).
Such a current reverses at regular time intervals and has alternately pos-
itive and negative values. Circuits driven by sinusoidal current or volt-
age sources are called ac circuits.

We are interested in sinusoids for a number of reasons. First, nature
itself is characteristically sinusoidal. We experience sinusoidal varia-
tion in the motion of a pendulum, the vibration of a string, the ripples
on the ocean surface, and the natural response of underdamped second-
order systems, to mention but a few. Second, a sinusoidal signal is easy
to generate and transmit. It is the form of voltage generated throughout
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the world and supplied to homes, factories, laboratories, and so on. It
is the dominant form of signal in the communications and electric
power industries. Third, through Fourier analysis, any practical peri-
odic signal can be represented by a sum of sinusoids. Sinusoids,
therefore, play an important role in the analysis of periodic signals.
Lastly, a sinusoid is easy to handle mathematically. The derivative
and integral of a sinusoid are themselves sinusoids. For these and
other reasons, the sinusoid is an extremely important function in
circuit analysis.

A sinusoidal forcing function produces both a transient response
and a steady-state response, much like the step function, which we stud-
ied in Chapters 7 and 8. The transient response dies out with time so
that only the steady-state response remains. When the transient response
has become negligibly small compared with the steady-state response,
we say that the circuit is operating at sinusoidal steady state. It is this
sinusoidal steady-state response that is of main interest to us in this
chapter.

We begin with a basic discussion of sinusoids and phasors. We
then introduce the concepts of impedance and admittance. The basic
circuit laws, Kirchhoff’s and Ohm'’s, introduced for dc circuits, will be
applied to ac circuits. Finally, we consider applications of ac circuits
in phase-shifters and bridges.

9.2 Sinusoids
Consider the sinusoidal voltage

v(t) =V, sinwt 9.1)
where

V., = the amplitude of the sinusoid

w = the angular frequency in radians/s

wt = the argument of the sinusoid

The sinusoid is shown in Fig. 9.1(a) as a function of its argument and
in Fig. 9.1(b) as a function of time. It is evident that the sinusoid
repeats itself every T seconds; thus, 7T is called the period of the sinu-
soid. From the two plots in Fig. 9.1, we observe that w7 = 2,

=" 9.2)

v(t) v(1)

Vv \%
5 7\, / .

W N RS

(@)
Figure 9.1

A sketch of V,, sinwt: (a) as a function of wt, (b) as a function of .

I\J(
~

SISy

(b)

\/ZT[
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The Burndy Library Collection
at The Huntington Library,
San Marino, California.

Historical

Heinrich Rudorf Hertz (1857-1894), a German experimental physi-
cist, demonstrated that electromagnetic waves obey the same funda-
mental laws as light. His work confirmed James Clerk Maxwell’s
celebrated 1864 theory and prediction that such waves existed.

Hertz was born into a prosperous family in Hamburg, Germany.
He attended the University of Berlin and did his doctorate under the
prominent physicist Hermann von Helmholtz. He became a professor
at Karlsruhe, where he began his quest for electromagnetic waves.
Hertz successfully generated and detected electromagnetic waves; he
was the first to show that light is electromagnetic energy. In 1887, Hertz
noted for the first time the photoelectric effect of electrons in a molec-
ular structure. Although Hertz only lived to the age of 37, his discov-
ery of electromagnetic waves paved the way for the practical use of
such waves in radio, television, and other communication systems. The
unit of frequency, the hertz, bears his name.

| The unit of / is named after the German
physicist Heinrich R. Hertz (1857-1894).

The fact that v(f) repeats itself every T seconds is shown by replacing
tby t + T in Eq. (9.1). We get

2
vt +T)=V,sino(t+T) =1V, sinw(r + :)T>

. . 9.3)
=V, sin(wt + 27) = V,, sinwt = v(f)

Hence,

vt + T) = v() 9.4)

that is, v has the same value at r + T as it does at r and v() is said to
be periodic. In general,

A periodic function is one that satisfies /(¢) = (¢ + n7), for all ¢ and
for all integers 7.

As mentioned, the period T of the periodic function is the time of one
complete cycle or the number of seconds per cycle. The reciprocal of
this quantity is the number of cycles per second, known as the cyclic
frequency f of the sinusoid. Thus,

1
f= T 9.5

From Egs. (9.2) and (9.5), it is clear that
w=27f (9.6)

While w is in radians per second (rad/s), f is in hertz (Hz).
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Let us now consider a more general expression for the sinusoid,
v(t) =V, sin(wt + ¢) 9.7)

where (wf + ¢) is the argument and ¢ is the phase. Both argument and
phase can be in radians or degrees.
Let us examine the two sinusoids

v,(t) =V, sinwt and U, (f) = V,, sin(wt + ¢) 9.8)

shown in Fig. 9.2. The starting point of v, in Fig. 9.2 occurs first in
time. Therefore, we say that v, leads v, by ¢ or that v, lags v, by ¢.
If ¢ # 0, we also say that v, and v, are out of phase. If ¢ = 0, then
v; and v, are said to be in phase; they reach their minima and max-
ima at exactly the same time. We can compare v; and v, in this man-
ner because they operate at the same frequency; they do not need to
have the same amplitude.

vy =V, sin wt

wt

. .
V. b /
“'m

v, =V, sin(wt + ¢)

Figure 9.2

Two sinusoids with different phases.

A sinusoid can be expressed in either sine or cosine form. When
comparing two sinusoids, it is expedient to express both as either sine
or cosine with positive amplitudes. This is achieved by using the fol-
lowing trigonometric identities:

sinfA £ B) = sin Acos B = cosAsinB

_ . . 9.9
cos(A £ B) = cos AcosB * sin Asin B
With these identities, it is easy to show that
sin(lwt = 180°) = —sinwr
cos(wt = 180°) = —coswt
(9.10)

sinfwt = 90°) = *coswt

cos(wt = 90°) = Fsinwt

Using these relationships, we can transform a sinusoid from sine form
to cosine form or vice versa.

373
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+ cos wt
‘/—900

+ sin wt

(a)

180°

> + COS wf

+ sin wt

()
Figure 9.3
A graphical means of relating cosine
and sine: (a) cos(wr — 90°) = sinwt,
(b) sin(wr + 180°) = —sinwt.

Chapter 9 Sinusoids and Phasors

A graphical approach may be used to relate or compare sinusoids
as an alternative to using the trigonometric identities in Eqgs. (9.9) and
(9.10). Consider the set of axes shown in Fig. 9.3(a). The horizontal axis
represents the magnitude of cosine, while the vertical axis (pointing
down) denotes the magnitude of sine. Angles are measured positively
counterclockwise from the horizontal, as usual in polar coordinates.
This graphical technique can be used to relate two sinusoids. For exam-
ple, we see in Fig. 9.3(a) that subtracting 90° from the argument of
coswt gives sinwt, or cos(wt — 90°) = sinwt. Similarly, adding 180° to
the argument of sinwt gives —sinwt, or sin(wt + 180°) = —sinwt, as
shown in Fig. 9.3(b).

The graphical technique can also be used to add two sinusoids of
the same frequency when one is in sine form and the other is in cosine
form. To add A coswt and B sinwt, we note that A is the magnitude of
coswt while B is the magnitude of sinwt, as shown in Fig. 9.4(a). The
magnitude and argument of the resultant sinusoid in cosine form is
readily obtained from the triangle. Thus,

A coswt + B sinwt = C cos(wt — 6) 9.11)

where
B
C=VA®+ B> 0= tan*‘g 9.12)

For example, we may add 3 cos wt and —4 sin wt as shown in Fig. 9.4(b)
and obtain

3 coswt — 4 sinwt = 5 cos(wt + 53.1°) 9.13)

Compared with the trigonometric identities in Egs. (9.9) and
(9.10), the graphical approach eliminates memorization. However, we
must not confuse the sine and cosine axes with the axes for complex
numbers to be discussed in the next section. Something else to note in
Figs. 9.3 and 9.4 is that although the natural tendency is to have the
vertical axis point up, the positive direction of the sine function is down
in the present case.

el ‘
A |
: cos wt 5 !
-0 l
c 3 53.1° 3
Bl o ' 0 1 cos wt
+3
'
sin wt sin wt
(a) (b)
Figure 9.4

(a) Adding A coswt and B sinwt, (b) adding 3 cosw? and —4 sinwt.
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Find the amplitude, phase, period, and frequency of the sinusoid Example 9.1
v(t) = 12 cos(50¢ + 10°)

Solution:

The amplitude is V,, = 12 V.

The phase is ¢ = 10°.

The angular frequency is @ = 50 rad/s.
27 2w

The period T = — = —— = 0.1257 s.
® 50

1
The frequency is f = 7= 7.958 Hz.

Given the sinusoid 30 sin(47t — 75°), calculate its amplitude, phase, Practice Problem 9.1
angular frequency, period, and frequency.

Answer: 30, —75° 12.57 rad/s, 0.5 s, 2 Hz.

Calculate the phase angle between v, = —10 cos(wt + 50°) and v, = Example 9.2
12 sin(wt — 10°). State which sinusoid is leading.

Solution:
Let us calculate the phase in three ways. The first two methods use
trigonometric identities, while the third method uses the graphical
approach.

B METHOD 1 In order to compare v; and v,, we must express
them in the same form. If we express them in cosine form with pos-
itive amplitudes,

v; = —10 cos(wt + 50°) = 10 cos(wt + 50° — 180°)
v; = 10cos(wt — 130°)  or v; = 10 cos(wt + 230°)  (9.2.1)

and

v, = 12 sin(wt — 10°) = 12 cos(wt — 10° — 90°)
v, = 12 cos(wt — 100°) 9.2.2)

It can be deduced from Eqs. (9.2.1) and (9.2.2) that the phase differ-
ence between v; and v, is 30°. We can write v, as

U, = 12 cos(wr — 130° + 30°)  or v, = 12 cos(wr + 260°) (9.2.3)
Comparing Egs. (9.2.1) and (9.2.3) shows clearly that v, leads v, by 30°.

B METHOD 2 Alternatively, we may express v, in sine form:

v; = —10 cos(wt + 50°) = 10 sin(wr + 50° — 90°)
= 10 sin(wr — 40°) = 10 sin(wt — 10° — 30°)
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50°

"

v

10°

sin wt

Figure 9.5
For Example 9.2.

Ccos wt
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But v, = 12 sin(wt — 10°). Comparing the two shows that v, lags v,
by 30°. This is the same as saying that v, leads v; by 30°.

B METHOD 3 We may regard v, as simply —10 coswt with a
phase shift of +50°. Hence, v, is as shown in Fig. 9.5. Similarly, v,
is 12 sinwr with a phase shift of —10°, as shown in Fig. 9.5. It is easy
to see from Fig. 9.5 that v, leads v, by 30°, that is, 90° — 50° — 10°.

Practice Problem 9.2

Charles Proteus Steinmetz (1865-1923)
was a German-Austrian mathematician
and electrical engineer.

I Appendix B presents a short tutorial on

complex numbers.

Find the phase angle between
ii = —45sin(377t + 55°) and i, = 5cos(377t — 65°)

Does i; lead or lag i,?

Answer: 210°, i; leads i,.

9.3 Phasors

Sinusoids are easily expressed in terms of phasors, which are more con-
venient to work with than sine and cosine functions.

A phasor is a complex number that represents the amplitude and
phase of a sinusoid.

Phasors provide a simple means of analyzing linear circuits excited by
sinusoidal sources; solutions of such circuits would be intractable oth-
erwise. The notion of solving ac circuits using phasors was first intro-
duced by Charles Steinmetz in 1893. Before we completely define
phasors and apply them to circuit analysis, we need to be thoroughly
familiar with complex numbers.

A complex number z can be written in rectangular form as

Z=x+jy (9.14a)

where j = V/—1; x is the real part of z; y is the imaginary part of z.
In this context, the variables x and y do not represent a location as in
two-dimensional vector analysis but rather the real and imaginary parts
of z in the complex plane. Nevertheless, we note that there are some
resemblances between manipulating complex numbers and manipulat-
ing two-dimensional vectors.

The complex number z can also be written in polar or exponential
form as

z=r/¢ = re/? (9.14b)
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Historical

Charles Proteus Steinmetz (1865-1923), a German-Austrian
mathematician and engineer, introduced the phasor method (covered in
this chapter) in ac circuit analysis. He is also noted for his work on the
theory of hysteresis.

Steinmetz was born in Breslau, Germany, and lost his mother at the
age of one. As a youth, he was forced to leave Germany because of
his political activities just as he was about to complete his doctoral dis-
sertation in mathematics at the University of Breslau. He migrated to
Switzerland and later to the United States, where he was employed by
General Electric in 1893. That same year, he published a paper in
which complex numbers were used to analyze ac circuits for the first
time. This led to one of his many textbooks, Theory and Calculation
of ac Phenomena, published by McGraw-Hill in 1897. In 1901, he
became the president of the American Institute of Electrical Engineers,
which later became the IEEE.

© Bettmaﬁn/Corbis

where r is the magnitude of z, and ¢ is the phase of z. We notice that
z can be represented in three ways:

z=x+jy Rectangular form
z=r @ Polar form (9.15)
7= re/?® Exponential form

The relationship between the rectangular form and the polar form
is shown in Fig. 9.6, where the x axis represents the real part and the
y axis represents the imaginary part of a complex number. Given x and Imaginary axis

y, we can get r and ¢ as .
r=Vxi+y, ¢ =tan" % (9.16a)
On the other hand, if we know r and ¢, we can obtain x and y as 2; : y !
x=rcosd, y=rsing (9.16b) . 4 . L Redl axis
Thus, z may be written as L
z=x+tjy= r& = r(cos¢ + jsing) 9.17) T

Figure 9.6

Representation of a complex number z =

Addition and subtraction of complex numbers are better performed :
x+jy=r @

in rectangular form; multiplication and division are better done in polar
form. Given the complex numbers

c=xtjy=r/¢,  u=xtjiyi=r/$
=X+t jn=r/d

the following operations are important.
Addition:

2+ 2= (g Fx) F (v y) (9.18a)
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Subtraction:
21— 2= (0 = x) +j(yr — y2) (9.18b)
Multiplication:
21z = nin /o1 + ¢, (9.18¢)
Division:
71 1
o /b1 — b (9.18d)
Reciprocal:

1 1

—= /¢ (9.18¢)

Square Root:
Vz=Vr/¢/2 (9.18f)
Complex Conjugate:
F=x—jy=r/—p=re’ (9.18g)
Note that from Eq. (9.18e),
—=—j (9.18h)
J

These are the basic properties of complex numbers we need. Other
properties of complex numbers can be found in Appendix B.

The idea of phasor representation is based on Euler’s identity. In
general,

e ? = cos¢p * jsing 9.19)

which shows that we may regard cos¢ and sin¢ as the real and imag-
inary parts of ¢/*; we may write
cos¢p = Re(e’?) (9.20a)
sing = Im(e’?) (9.20b)
where Re and Im stand for the real part of and the imaginary part of.

Given a sinusoid v(f) = V,, cos(wt + ¢), we use Eq. (9.20a) to express
v(t) as

v(r) =V, cos(wt + ¢) = Re(V,,e’ @) (9.21)
or
v(f) = Re(V,,e/Pe/®" 9.22)
Thus,
v(t) = Re(Ve’!™) (9.23)
where

V=V,e?=V,/d (9.24)
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V is thus the phasor representation of the sinusoid v(¢), as we said ear-
lier. In other words, a phasor is a complex representation of the mag-
nitude and phase of a sinusoid. Either Eq. (9.20a) or Eq. (9.20b) can
be used to develop the phasor, but the standard convention is to use
Eq. (9.20a).

One way of looking at Egs. (9.23) and (9.24) is to consider the plot
of the sinor Ve’ = V,,e’“*® on the complex plane. As time increases,
the sinor rotates on a circle of radius V,, at an angular velocity w in the
counterclockwise direction, as shown in Fig. 9.7(a). We may regard v(r)
as the projection of the sinor Ve’’ on the real axis, as shown in
Fig. 9.7(b). The value of the sinor at time ¢t = 0 is the phasor V of the
sinusoid v (7). The sinor may be regarded as a rotating phasor. Thus, when-
ever a sinusoid is expressed as a phasor, the term e/’ is implicitly pres-
ent. It is therefore important, when dealing with phasors, to keep in mind
the frequency w of the phasor; otherwise we can make serious mistakes.

Rotation at w rad s

379

A phasor may be regarded as a mathe-
matical equivalent of a sinusoid with
the time dependence dropped.

If we use sine for the phasor instead of
cosine, then v(¢) =V, sin(fwt + ¢) =
Im(V,,,e”“* #) and the corresponding
phasor is the same as that in Eq. (9.24).

A o(f) = Re(Ve /@)

Im

(a)

Figure 9.7

(b)

Representation of Ve/®': (a) sinor rotating counterclockwise, (b) its projection

on the real axis, as a function of time.

Equation (9.23) states that to obtain the sinusoid corresponding to
a given phasor V, multiply the phasor by the time factor ¢/*’ and take
the real part. As a complex quantity, a phasor may be expressed in rec-
tangular form, polar form, or exponential form. Since a phasor has
magnitude and phase (“direction”), it behaves as a vector and is printed
in boldface. For example, phasors V =V, /¢ and I =1, /-0 are
graphically represented in Fig. 9.8. Such a graphical representation of
phasors is known as a phasor diagram.

Equations (9.21) through (9.23) reveal that to get the phasor cor-
responding to a sinusoid, we first express the sinusoid in the cosine
form so that the sinusoid can be written as the real part of a complex
number. Then we take out the time factor ¢/, and whatever is left is
the phasor corresponding to the sinusoid. By suppressing the time fac-
tor, we transform the sinusoid from the time domain to the phasor
domain. This transformation is summarized as follows:

v(t) = V,, cos(wt + ¢) = V= Vm& (9.25)

(Time-domain (Phasor-domain
representation) representation)

We use lightface italic letters such as

Z to represent complex numbers but
boldface letters such as V to represent
phasors, because phasors are vector-
like quantities.
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Imaginary axis
A

’ N\

Vm
\Leading direction
> Real axis

-0
/ Lagging direction
Im

I
A
Figure 9.8

A phasor diagram showing V. =V, & andI =1, /-0.

Given a sinusoid v(f) = V,, cos(wt + ¢), we obtain the corre-
sponding phasor as V =V, & Equation (9.25) is also demonstrated
in Table 9.1, where the sine function is considered in addition to the
cosine function. From Eq. (9.25), we see that to get the phasor repre-
sentation of a sinusoid, we express it in cosine form and take the
magnitude and phase. Given a phasor, we obtain the time domain
representation as the cosine function with the same magnitude as the
phasor and the argument as wt plus the phase of the phasor. The idea
of expressing information in alternate domains is fundamental to all
areas of engineering.

TABLE 9.1

Sinusoid-phasor transformation.

Time domain representation Phasor domain representation
V.. cos(wt + ¢) V. &

V,, sin(wt + ¢) V,, /b — 90°

I, cos(wt + 6) 1,,/6

1, sin(wt + ) I, /6 — 90°

Note that in Eq. (9.25) the frequency (or time) factor ¢/’ is sup-
pressed, and the frequency is not explicitly shown in the phasor domain
representation because w is constant. However, the response depends
on w. For this reason, the phasor domain is also known as the frequency
domain.

From Egs. (9.23) and (9.24), v(¢) = Re(Ve/'™) = V.. cos(wt + ¢b),
so that

dv

o —wV,, sin(wt + ¢) = oV, cos(wr + ¢ + 90°)

(9.26)

Re(wV,,e’e’®e’*") = Re(jw Ve
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This shows that the derivative v(¢) is transformed to the phasor domain
as joV

dv
— < jwV 9.27
r Jo 9.27)

(Time domain) (Phasor domain)

Similarly, the integral of v(f) is transformed to the phasor domain
as V/jw

\%
= — 9.28
vdt ‘ j(,z) ( )
(Time domain) (Phasor domain)

Equation (9.27) allows the replacement of a derivative with respect
to time with multiplication of jw in the phasor domain, whereas
Eq. (9.28) allows the replacement of an integral with respect to time
with division by jw in the phasor domain. Equations (9.27) and (9.28)
are useful in finding the steady-state solution, which does not require
knowing the initial values of the variable involved. This is one of the
important applications of phasors.

Besides time differentiation and integration, another important
use of phasors is found in summing sinusoids of the same fre-
quency. This is best illustrated with an example, and Example 9.6
provides one.

The differences between v(f) and V should be emphasized:

1. v(?) is the instantaneous or time domain representation, while V is
the frequency or phasor domain representation.

2. v(?) is time dependent, while V is not. (This fact is often forgot-
ten by students.)

3. v(?) is always real with no complex term, while V is generally
complex.

Finally, we should bear in mind that phasor analysis applies only when
frequency is constant; it applies in manipulating two or more sinusoidal
signals only if they are of the same frequency.

381

Differentiating a sinusoid is equivalent
to multiplying its corresponding phasor
by jw.

Integrating a sinusoid is equivalent to
dividing its corresponding phasor
by jw.

Adding sinusoids of the same fre-
guency is equivalent to adding their
corresponding phasors.

Evaluate these complex numbers:

(a) (40/50° + 20/-30°)'/2
10/=30° + (3 — j4)

2 +j4H3 — j5)*

(b)

Solution:
(a) Using polar to rectangular transformation,
40/50° = 40(cos 50° + j sin50°) = 25.71 + j30.64
20/—30° = 20[cos(—30°) + j sin(—30°)] = 17.32 — j10
Adding them up gives
40/50° + 20/—30° = 43.03 + j20.64 = 47.72/25.63°

Example 9.3
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Taking the square root of this,

(40/50° + 20/-30°"/* = 6.91/12.81°

(b) Using polar-rectangular transformation, addition, multiplication,
and division,

10/-30°+ (3 = j4 866 —j5 + (3 — j4)
Q+HGB -5 Q@+ jHB +5)

1166 —jo  14.73/-37.66°

—14+ 22 26.08/12247°

0.565/—160.13°

Practice Problem 9.3 Evaluate the following complex numbers:
@ [(5 +j2)(—1 + j4) — 5{600]*

10 + j5 + 3/40°
(b) ,L-f— 10/30° + j5
-3 + j4

Answer: (a) —15.5 — j13.67, (b) 8.293 + j7.2.

Example 9.4 Transform these sinusoids to phasors:
(a) i = 6 cos(50r — 40°) A
(b) v = —45sin(30r + 50°) V
Solution:
(a) i = 6 cos(50¢t — 40°) has the phasor
I=6/-40°A
(b) Since —sin A = cos(A + 90°),

v = —4sin(30r + 50°) = 4 cos(30r + 50° + 90°)
= 4 cos(30r + 140°) V

The phasor form of v is

V =4/140°V

Practice Problem 9.4 Express these sinusoids as phasors:

(a) v = 7 cos(2t + 40°) V
(b) i = —4sin(107 + 10°) A

Answer: (a) V = 7/40°V, (b) I = 4/100° A.
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Find the sinusoids represented by these phasors:
(@I=-3+j4A

(b) V = j8e 2V

Solution:

(@ I = =3+ j4 =5/126.87°. Transforming this to the time domain
gives

i(f) = 5 cos(wt + 126.87°) A
(b) Since j =1 @,
V = j8/—20° = (1,/90°)(8 /—20°)
=8/90° — 20° = 8/70°V

Converting this to the time domain gives

v(r) = 8 cos(wt + 70°) V

Example 9.5

Find the sinusoids corresponding to these phasors:
(a) V= —-25/40°V
() I'=j12 - j5A

Answer: (a) v(f) = 25 cos(wt — 140°) V or 25 cos(wt + 220°) V,
(b) i(r) = 13 cos(wt + 67.38°%) A.

Practice Problem 9.5

Given (1) = 4 cos(wt + 30°) A and i,() = 5 sin(wt — 20°) A, find
their sum.

Solution:
Here is an important use of phasors—for summing sinusoids of the
same frequency. Current #;(f) is in the standard form. Its phasor is

1 - 4/30

We need to express i»(#) in cosine form. The rule for converting sine
to cosine is to subtract 90°. Hence,

i» = 5cos(wt — 20° — 90°) = 5 cos(wt — 110°)
and its phasor is
L= 5/-110°
If we let i = i} + i,, then
I=1 +1,=4/30°+5/-110°
=3.464 +j2 — 1.71 — j4.698 = 1.754 — j2.698
= 3.218/-56.97° A

Example 9.6
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Transforming this to the time domain, we get
i(f) = 3.218 cos(wt — 56.97°) A

Of course, we can find i; + i, using Eq. (9.9), but that is the hard way.

Practice Problem 9.6

If v, = —10sin(wt — 30°) V and v, = 20 cos(wt + 45°)V, find v =
vy t+ U,

Answer: v(t) = 29.77 cos(wt + 49.98°) V.

Example 9.7

Using the phasor approach, determine the current i(f) in a circuit
described by the integrodifferential equation

d.
4i + 8 J idi — 33; = 50 cos(2r + 75°)

Solution:

We transform each term in the equation from time domain to phasor
domain. Keeping Egs. (9.27) and (9.28) in mind, we obtain the phasor
form of the given equation as

)
41 + = — 3jwl = 50/75°
jw
But w = 2, so
I(4 — j4 — j6) = 50/75°
50/75° 50/75°
C4—j10  10.77/-68.2°

= 4.642/143.2° A

Converting this to the time domain,
i(f) = 4.642 cos(2t + 143.2°) A

Keep in mind that this is only the steady-state solution, and it does not
require knowing the initial values.

Practice Problem 9.7

Find the voltage v(f) in a circuit described by the integrodifferential
equation

d
2;1: + 50+ 10 j v dt = 50 cos(5¢ — 30°)
using the phasor approach.

Answer: v(f) = 5.3 cos(5r — 88°) V.
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9.4 Phasor Relationships

for Circuit Elements

Now that we know how to represent a voltage or current in the pha-
sor or frequency domain, one may legitimately ask how we apply this
to circuits involving the passive elements R, L, and C. What we need
to do is to transform the voltage-current relationship from the time
domain to the frequency domain for each element. Again, we will
assume the passive sign convention.

We begin with the resistor. If the current through a resistor R is
i = 1, cos(wt + ¢), the voltage across it is given by Ohm’s law as

v = iR = RI, cos(wt + ¢) (9.29)
The phasor form of this voltage is
V =RI,/¢ (9.30)
But the phasor representation of the current is I = I, @ Hence,
V =RI 9.31)

showing that the voltage-current relation for the resistor in the phasor
domain continues to be Ohm’s law, as in the time domain. Figure 9.9
illustrates the voltage-current relations of a resistor. We should note
from Eq. (9.31) that voltage and current are in phase, as illustrated in
the phasor diagram in Fig. 9.10.
For the inductor L, assume the current through it is i =
I, cos(wt + ¢). The voltage across the inductor is
di .
v = L; = —wlLl,, sin(wt + ¢) 9.32)
Recall from Eq. (9.10) that —sin A = cos(A + 90°). We can write the
voltage as

v = wLl,, cos(wt + ¢ + 90°) 9.33)
which transforms to the phasor
V = wLl, e’ = uLl,e'* e = wLl, /¢ + 90° (9.34)
But I,,/¢ = I, and from Eq. (9.19), ¢”*" = j. Thus,
V = jwll (9.35)

showing that the voltage has a magnitude of wLl, and a phase of
¢ + 90°. The voltage and current are 90° out of phase. Specifically, the
current lags the voltage by 90°. Figure 9.11 shows the voltage-current
relations for the inductor. Figure 9.12 shows the phasor diagram.

For the capacitor C, assume the voltage across it is v =
V.. cos(wt + ¢). The current through the capacitor is

i=C—

i (9.36)

By following the same steps as we took for the inductor or by apply-
ing Eq. (9.27) on Eq. (9.36), we obtain

I

I =joCV = V=—7 (9.37)
joC

385

D
o— o—
+ +
v §R A% §R
o— o—
v=1iR V=IR

(a) (b)
Figure 9.9

Voltage-current relations for a resistor in
the: (a) time domain, (b) frequency domain.

Im A

0 Re
Figure 9.10

Phasor diagram for the resistor.

—_—
oO— oO—
+ +
v gL \Y% gl‘
o— o—
_rdi V = jwLl
v—Ldt J

(a) (®)
Figure 9.11
Voltage-current relations for an inductor in
the: (a) time domain, (b) frequency domain.

Im A

V N

0 Re
Figure 9.12

Phasor diagram for the inductor;
Ilags V.

Although it is equally correct to say
that the inductor voltage leads the cur-
rent by 90°, convention gives the current
phase relative to the voltage.
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i 1 Im 4
e e
o— o——
+ + ‘Y
I

v — \Y4 = C AV

o o ¢ R

i=c 1=juCV 0 Re
(a) (b) Figure 9.14

Figure 9.13 Phasor diagram for the capacitor; 1

Voltage-current relations for leads V.

a capacitor in the: (a) time
domain, (b) frequency
domain.

showing that the current and voltage are 90° out of phase. To be spe-
cific, the current leads the voltage by 90°. Figure 9.13 shows the voltage-
current relations for the capacitor; Fig. 9.14 gives the phasor diagram.
Table 9.2 summarizes the time domain and phasor domain representa-
tions of the circuit elements.

TABLE 9.2

Summary of voltage-current relationships.

Element Time domain Frequency domain
R v =Ri V =RI
L v = di V = joLI
dt e
c v vo L
T ra jwC
Example 9.8 The voltage v = 12 cos(60¢ + 45°) is applied to a 0.1-H inductor. Find
the steady-state current through the inductor.
Solution:
For the inductor, V = jwLI, where w = 60rad/s and V = 12/45° V.
Hence,

\Y 12 /45° 12 /45°

= —=- = =2/-45°A
joL  j60 X 0.1 6/90°

Converting this to the time domain,

i(f) = 2 cos(60r — 45°) A

Practice Problem 9.8 If voltage v = 10 cos(100¢ + 30°) is applied to a 50 uF capacitor, cal-
culate the current through the capacitor.

Answer: 50 cos(100r + 120°) mA.
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9.5 Impedance and Admittance

In the preceding section, we obtained the voltage-current relations for
the three passive elements as

I
V =RI, V = jwll, V=— (9.38)
JjoC
These equations may be written in terms of the ratio of the phasor volt-
age to the phasor current as
\% v v 1
— =R, — = joL, —=— 9.39
I 1 I joC ©-39)
From these three expressions, we obtain Ohm’s law in phasor form for
any type of element as

Z:

v
1 or V=17 (9.40)

where Z is a frequency-dependent quantity known as impedance, mea-
sured in ohms.

The impedance Z of a circuit is the ratio of the phasor voltage V to the
phasor current I, measured in ohms (£2).

The impedance represents the opposition that the circuit exhibits to
the flow of sinusoidal current. Although the impedance is the ratio of
two phasors, it is not a phasor, because it does not correspond to a sinu-
soidally varying quantity.

The impedances of resistors, inductors, and capacitors can be
readily obtained from Eq. (9.39). Table 9.3 summarizes their imped-
ances. From the table we notice that Z; = joL and Z, = —j/wC.
Consider two extreme cases of angular frequency. When w = 0 (i.e.,
for dc sources), Z; = 0 and Z — <°, confirming what we already
know—that the inductor acts like a short circuit, while the capacitor
acts like an open circuit. When w — % (i.e., for high frequencies),
Z, — © and Z, = 0, indicating that the inductor is an open circuit
to high frequencies, while the capacitor is a short circuit. Figure 9.15
illustrates this.

As a complex quantity, the impedence may be expressed in rec-
tangular form as

Z=R+jX (9.41)

where R = Re Z is the resistance and X = Im Z is the reactance. The
reactance X may be positive or negative. We say that the impedance is
inductive when X is positive or capacitive when X is negative. Thus,
impedance Z = R + jX is said to be inductive or lagging since current
lags voltage, while impedance Z = R — jX is capacitive or leading
because current leads voltage. The impedance, resistance, and reactance
are all measured in ohms. The impedance may also be expressed in
polar form as

Z=Z| /o (9.42)
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TABLE 9.3

Impedances and admittances
of passive elements.

Element Impedance Admittance

1
R Z =R Y=—
R
. 1
L 7 = joL Y=—
JjoL
C ! Y C
= = jw
JjoC J
—O0—o0—
I Short circuit at dc

—0 o—
Open circuit at
high frequencies

(a)

— 0 oO—
c Open circuit at dc

—o0—o0—
Short circuit at

high frequencies
(b)
Figure 9.15

Equivalent circuits at dc and high
frequencies: (a) inductor, (b) capacitor.
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Comparing Eqgs. (9.41) and (9.42), we infer that

Z=R+jX=12|/0 (9.43)
where
X
Z| = VR® + X2 0=tan ' (9.44)
and

R = |Z|cos, X = |Z|sin® (9.45)

It is sometimes convenient to work with the reciprocal of imped-
ance, known as admittance.

The admittance Y is the reciprocal of impedance, measured in
siemens (S).

The admittance Y of an element (or a circuit) is the ratio of the pha-
sor current through it to the phasor voltage across it, or

(9.46)

The admittances of resistors, inductors, and capacitors can be obtained
from Eq. (9.39). They are also summarized in Table 9.3.
As a complex quantity, we may write Y as

Y=G+jB (9.47)

where G = Re Y is called the conductance and B = ImY is called
the susceptance. Admittance, conductance, and susceptance are
all expressed in the unit of siemens (or mhos). From Egs. (9.41)
and (9.47),

G+ jB = , (9.48)

By rationalization,

I R—-jX R-jX

G + jB = . = 9.49
PRI iX R=—jx R+ X 049
Equating the real and imaginary parts gives
B R B X
“Rex BT TRex O30

showing that G # 1/R as it is in resistive circuits. Of course, if X = 0,
then G = 1/R.
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Find v(?) and i(¢) in the circuit shown in Fig. 9.16. Example 9.9
Solution: ', 5@
From the voltage source 10 cos 4, w = 4,
+
V, =10 0°V y,= 10 cos 4¢ 0.1F == v
The impedance is
1 1 Figure 9.16
Z=5+—=5+—-—=5—-j250 For Example 9.9.
JjoC j4 X 0.1

Hence the current

Ve 10/0°  10(5 + j2.5)
7 5-j25 524252 (9.9.1)

= 1.6 + ;0.8 = 1.789/26.57° A

The voltage across the capacitor is

[ 1.789/26.57°

V=IZ,=—=—"——
€ jwC  jax0.1

1.789 /26.57°

= —— = 447/-6343°V
0.4 /90°

(9.9.2)

Converting I and V in Egs. (9.9.1) and (9.9.2) to the time domain, we get

i(7) = 1.789 cos(4t + 26.57°) A
v(t) = 4.47 cos(4r — 63.43°) V

Notice that i(¢) leads v(¢) by 90° as expected.

Refer to Fig. 9.17. Determine v(f) and i(z). Practice Problem 9.9

Answer: 8.944 sin(10r + 93.43°) V, 4.472 sin(10r + 3.43°) A. _f, 40

5,=20sin(101 +30°) v (F) 02H v

9.6 TKirchhoff's Laws in the Figure 9.17
Fl’equency Domain For Practice Prob. 9.9.

We cannot do circuit analysis in the frequency domain without Kirch-
hoff’s current and voltage laws. Therefore, we need to express them in
the frequency domain.

For KVL, let vy, v,, ..., v, be the voltages around a closed loop.
Then

Uy +U2+"'+Un:0 (9.51)

In the sinusoidal steady state, each voltage may be written in cosine
form, so that Eq. (9.51) becomes
V1 cos(wt + 6,) + V,, cos(wt + 65)

(9.52)
+ -+ V,,cos(wt +86,) =0
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This can be written as
Re(V,, e’ e/") + Re(V,pe/2e’™) + -+ + Re(V,,e’e’") = 0
or
Re[(V, 1/ + V,pe’” + - + Ve’ =0  (9.53)
If we let V, = Ve’ then
Re[(V, + V, + - + V)™ =0 (9.54)
Since /" # 0,

V1+V2+"'+V”:0 (9.55)

indicating that Kirchhoff’s voltage law holds for phasors.
By following a similar procedure, we can show that Kirchhoff’s

current law holds for phasors. If we let iy, i», ..., i, be the current leav-

ing or entering a closed surface in a network at time ¢, then
iW+i,+ - +i,=0 (9.56)

It1, I, ..., I, are the phasor forms of the sinusoids iy, i, ..., i,, then
L+L+-+1,=0 9.57)

which is Kirchhoff’s current law in the frequency domain.

Once we have shown that both KVL and KCL hold in the frequency
domain, it is easy to do many things, such as impedance combination,
nodal and mesh analyses, superposition, and source transformation.

9.7 Impedance Combinations

Consider the N series-connected impedances shown in Fig. 9.18. The
same current I flows through the impedances. Applying KVL around
the loop gives

I Zl Z2 ZN
— e

ty, - ty, - VT

e

=
Ze,
Figure 9.18

N impedances in series.

The equivalent impedance at the input terminals is

\Y%

=—=Z +Z,+ -+ Zy

Z.
S |

or

Zey=2,+Z,+ -+ 17y (9.59)
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showing that the total or equivalent impedance of series-connected
impedances is the sum of the individual impedances. This is similar to
the series connection of resistances.

If N =2, as shown in Fig. 9.19, the current through the imped-
ances is

A"
I=——+ (9.60)
Since V, = Z,I and V, = Z,I, then
V, = LV V, = LV (9.61)
Yz, + 2, I+ 7, '

which is the voltage-division relationship.

In the same manner, we can obtain the equivalent impedance or
admittance of the N parallel-connected impedances shown in Fig. 9.20.
The voltage across each impedance is the same. Applying KCL at the
top node,

B B 1 1 1
I—Il+12+---+IN—V<Z too oty ) (9.62)

1 Z2 N

® v U z U 7 z,

Figure 9.20

N impedances in parallel.

The equivalent impedance is
1
— ==t — 4 — (9.63)

and the equivalent admittance is

qu = Y] + Y2 + -+ YN (9.64)

This indicates that the equivalent admittance of a parallel connection
of admittances is the sum of the individual admittances.
When N = 2, as shown in Fig. 9.21, the equivalent impedance
becomes
1 1 1 2,2,

Z,=_—= = = 9.65
“ Yo, YWt+Yy 1/Z,+1/2, Z,+1Z, ( )

e

v -

Figure 9.19

Voltage division.

391

Figure 9.21

Current division.
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Also, since
V - IZeq - IlZl - IzZz

the currents in the impedances are

z, Z,

L[ =——2>—1 L=—""-T1
'Yz, + 12, 7, + 17,

(9.66)

which is the current-division principle.

The delta-to-wye and wye-to-delta transformations that we applied
to resistive circuits are also valid for impedances. With reference to
Fig. 9.22, the conversion formulas are as follows.

Figure 9.22

Superimposed Y and A networks.

Y-A Conversion:

1,1, + 1,75 + 7157,
Z,

1.7, + 1,715 + 77
Zh _ 142 2443 341 (9.67)
7,

1.7, + 1,715 + 77,

7,

A-Y Conversion:

_ 7,7
7.+ 7, + 7,
_ 7.7,
7.+ 7, + 7,
_ 7,7,
7.+ 7, + 7,

z,
Z, (9.68)

3
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A delta or wye circuit is said to be balanced if it has equal imped-
ances in all three branches.

When a A-Y circuit is balanced, Egs. (9.67) and (9.68) become

1
Zy=3Ly o Zy=-Z (9.69)

where Zy =7y =72, =Zsand Zp = Z2Z,= 71, = Z..

As you see in this section, the principles of voltage division, cur-
rent division, circuit reduction, impedance equivalence, and Y-A trans-
formation all apply to ac circuits. Chapter 10 will show that other
circuit techniques—such as superposition, nodal analysis, mesh analysis,
source transformation, the Thevenin theorem, and the Norton theorem—
are all applied to ac circuits in a manner similar to their application in
dc circuits.

393

Find the input impedance of the circuit in Fig. 9.23. Assume that the
circuit operates at w = 50 rad/s.

Solution:
Let

7, = Impedance of the 2-mF capacitor

Z, = Impedance of the 3-() resistor in series with the10-mF

capacitor
Z; = Impedance of the 0.2-H inductor in series with the 8-()
resistor
Then
1 1
7, = — ="~ = jl0Q
JjoC  j50 X 2 X 107"
1
Z,=3+—=3+ =03-,20

joC = j50 X 10 X 1073
Z; =8+ joL =8 + j50 X 0.2 = (8 + j10) Q

The input impedance is

(3 — j2)@8 + jl10)
11 + 8

Zin = Zl + Z2||Z3 = _]10 +

44 + 1411 — 8
4 1]121582 ) _ 10+ 322 - 1070

= _]1

Thus,

Z,, =322 — j11.07Q

Example 9.10

2 mF 02H

dI1R

Zin 3Q

10 mF
o 1

Figure 9.23
For Example 9.10.
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Practice Problem 9.10 Determine the input impedance of the circuit in Fig. 9.24 at w =
10 rad/s.
ImF 100 8H
Answer: (149.52 — j195)

—_— — 1l mF 200 Q

Figure 9.24
For Practice Prob. 9.10.

Example 9.11 Determine v, (f) in the circuit of Fig. 9.25.
60 Q Solution:
N To do the analysis in the frequency domain, we must first transform
20 cos (41 — 15°) 10mF == sp 3o the time domain circuit in 'Fig. 9.25 to the phasor domain equivalent in
- Fig. 9.26. The transformation produces
Figure 9.25 v, = 20 cos(4t — 15°) = V,=20/—-15°V, w =4
1 1
For Example 9.11. 10 mF - : _ -
JoC  j4 X 10 X 107"
= —j250Q
60 Q
AW SH = JoL = j4 X 5= ;200
+ Let
2015° —-25Q =— j20Q 3V,
- Z, = Impedance of the 60-() resistor
Figure 9.26 7, = Impedance of the parallel combination of the
i . . .
The frequency domain equivalent of the 10-mF capacitor and the 5-H inductor
circuit in Fig. 9.25. Then Z; = 60 Q and
. . —j25 X j20 .
Z, = —j25|j20 = ————— =j100 Q
—j25 + j20

By the voltage-division principle,

7, j100
v, = Vv, = 20/—15°
° T Z,+7Z, ° 60 +j100( /=159

(0.8575 /30.96°)(20/—15° = 17.15/15.96° V

We convert this to the time domain and obtain

v, () = 17.15 cos(4t + 15.96°) V

Practice Problem 9.11 Calculate v, in the circuit of Fig. 9.27.

05 H Answer: v,(f) = 35.36 cos(10¢ — 105°) V.

50 cos(10z + 30°)

&+

Figure 9.27
For Practice Prob. 9.11.
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Find current I in the circuit of Fig. 9.28.

20 -4 Q
I
AV I
I .
—’@ﬁ AQ  ,  8Q
C
60
s0,0° () 30 ==
8Q

Figure 9.28
For Example 9.12.

Solution:

The delta network connected to nodes a, b, and ¢ can be converted to
the Y network of Fig. 9.29. We obtain the Y impedances as follows
using Eq. (9.68):

42 — ja A4 + j2
= PETIY MR 6y jog 0
jA4+2—j4+38 10
JA®) 82 —j4) .
=2 - 320, z,= = (1.6~ 32) O

The total impedance at the source terminals is
Z=12+Zy+ Zp—j3|(Z, +j6 +8)
12 + 1.6 +j0.8 + (j0.2) ] (9.6 + j2.8)
j0.2(9.6 + j2.8)
9.6 +j3
13.6 + j1 = 13.64/4.204° Q)

13.6 + jO.8 +

The desired current is

AV 50&

7 13.64/4204°

= 3.666/—4.204° A

I
1 e

j6Q
50,0°
30

Figure 9.29

The circuit in Fig. 9.28 after delta-to-wye transformation.

Example 9.12
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Practice Problem 9.12

I
—

j4Q -3 Q
8Q jS?\

45300V () AA—T

5Q
10Q
-2Q

Figure 9.30
For Practice Prob. 9.12.

I
> R
O———VMWW——
+
+
‘Ii C::\’(
o— |

(b)
Figure 9.31
Series RC shift circuits: (a) leading
output, (b) lagging output.

Find I in the circuit of Fig. 9.30.

Answer: 9.546/33.8° A.

9.8 T Applications

In Chapters 7 and 8, we saw certain uses of RC, RL, and RLC circuits
in dc applications. These circuits also have ac applications; among them
are coupling circuits, phase-shifting circuits, filters, resonant circuits, ac
bridge circuits, and transformers. This list of applications is inexhaus-
tive. We will consider some of them later. It will suffice here to observe
two simple ones: RC phase-shifting circuits, and ac bridge circuits.

9.8.1 Phase-Shifters

A phase-shifting circuit is often employed to correct an undesirable
phase shift already present in a circuit or to produce special desired
effects. An RC circuit is suitable for this purpose because its capacitor
causes the circuit current to lead the applied voltage. Two commonly
used RC circuits are shown in Fig. 9.31. (RL circuits or any reactive
circuits could also serve the same purpose.)

In Fig. 9.31(a), the circuit current I leads the applied voltage V;
by some phase angle 0, where 0 < 6 < 90°, depending on the values
of R and C.If X; = —1/wC, then the total impedance is Z = R + jX,
and the phase shift is given by

X
0= tan"' ?C 9.70)

This shows that the amount of phase shift depends on the values of R,
C, and the operating frequency. Since the output voltage V, across the
resistor is in phase with the current, V,, leads (positive phase shift) V;
as shown in Fig. 9.32(a).

In Fig. 9.31(b), the output is taken across the capacitor. The cur-
rent I leads the input voltage V; by 6, but the output voltage v, () across
the capacitor lags (negative phase shift) the input voltage v (?) as illus-
trated in Fig. 9.32(b).

0 '-—

Phase shift
(a)

Figure 9.32

Phase shift
(b)

Phase shift in RC circuits: (a) leading output, (b) lagging output.
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We should keep in mind that the simple RC circuits in Fig. 9.31
also act as voltage dividers. Therefore, as the phase shift 8 approaches
90°, the output voltage V, approaches zero. For this reason, these
simple RC circuits are used only when small amounts of phase shift
are required. If it is desired to have phase shifts greater than 60°,
simple RC networks are cascaded, thereby providing a total phase
shift equal to the sum of the individual phase shifts. In practice, the
phase shifts due to the stages are not equal, because the succeeding
stages load down the earlier stages unless op amps are used to sep-
arate the stages.

Design an RC circuit to provide a phase of 90° leading.

Solution:

If we select circuit components of equal ohmic value, say R = |X¢| =
20 (), at a particular frequency, according to Eq. (9.70), the phase shift
is exactly 45°. By cascading two similar RC circuits in Fig. 9.31(a), we
obtain the circuit in Fig. 9.33, providing a positive or leading phase
shift of 90°, as we shall soon show. Using the series-parallel combination
technique, Z in Fig. 9.33 is obtained as

z—20||(2o—'20)—w—12—'49 (9.13.1)
J 40 — 20 / o
Using voltage division,
Z 12 — j4 V2
V, = V, = V,=—/45°V, (9.13.2
"z —-207 12—-j247 3 i )
and
20 V2
V, =V, =—-/45°V 9.13.3
2020 " 2 ! ( )
Substituting Eq. (9.13.2) into Eq. (9.13.3) yields

V2 )(\@ ) 1
= (22 /a5o ) <2 /a5°V, ) = = /90° V,
v, (zg 2 fasv,) = L e,

Thus, the output leads the input by 90° but its magnitude is only about
33 percent of the input.

397
Example 9.13
—20Q —j20 Q
o Il ! Il °
I 1
+ +
v, 20Q 20Q v,
o r o
Z

Figure 9.33
An RC phase shift circuit with 90° leading
phase shift; for Example 9.13.

Design an RC circuit to provide a 90° lagging phase shift of the out-
put voltage relative to the input voltage. If an ac voltage of 60 V rms
is applied, what is the output voltage?

Answer: Figure 9.34 shows a typical design; 20 V rms.

Practice Problem 9.13

100 100
o AV AN

\ | L:
v, -j10Q -j10Q ==V,

T_"

o T

Figure 9.34
For Practice Prob. 9.13.
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Example 9.14 For the RL circuit shown in Fig. 9.35(a), calculate the amount of phase
shift produced at 2 kHz.
150 Q 100 Q
W ° Solution:
10 mH 5 mH At 2 kHz, we transform the 10-mH and 5-mH inductances to the
corresponding impedances.
O O
@ I0mH = X, =wL=27X2X10°X10x 10"
=407 = 125.7Q
150Q vy 100Q s s
o A L AW o 5 mH = X, =wL=27X2X10°X5X10
’ ’ = 207 = 62.83 O
\4 j1257Q j62.83 Q v,
- ™~ —  Consider the circuit in Fig. 9.35(b). The impedance Z is the parallel
© | ©  combination of j125.7 Q) and 100 + j62.83 (). Hence,
Z

(®)
Figure 9.35
For Example 9.14.

Z = j125.7 | (100 + j62.83)
_j125.7(100 + j62.83)

= 69.56/60.1° Q) 9.14.1)

100 + j188.5
Using voltage division,
7 69.56 /60.1°
Vi = V= ; Vi
Z + 150 184.7 + j60.3 (9.14.2)

0.3582 /42.02° V;
and

v - 62832
° 100 + j62.832

Combining Egs. (9.14.2) and (9.14.3),

V, = 0532/57.86°V, 9.14.3)

V, = (0.532 /57.86°)(0.3582 /42.02°) V; = 0.1906 /100° V,

showing that the output is about 19 percent of the input in magnitude
but leading the input by 100°. If the circuit is terminated by a load, the
load will affect the phase shift.

Practice Problem 9.14

1 mH 2 mH
o AR 11
+
V. 10 Q 50 Q
o

< +0

O

Figure 9.36
For Practice Prob. 9.14.

Refer to the RL circuit in Fig. 9.36. If 10 V is applied to the input, find
the magnitude and the phase shift produced at 5 kHz. Specify whether
the phase shift is leading or lagging.

Answer: 1.7161 V, 120.39°, lagging.

9.8.2 AC Bridges

An ac bridge circuit is used in measuring the inductance L of an
inductor or the capacitance C of a capacitor. It is similar in form to
the Wheatstone bridge for measuring an unknown resistance (dis-
cussed in Section 4.10) and follows the same principle. To measure
L and C, however, an ac source is needed as well as an ac meter
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instead of the galvanometer. The ac meter may be a sensitive ac
ammeter or voltmeter.

Consider the general ac bridge circuit displayed in Fig. 9.37. The
bridge is balanced when no current flows through the meter. This
means that V; = V,. Applying the voltage division principle,

Z, 7,
\/‘1 = 7\/“‘ = \]‘,2 = 7\7»&_ (9.71)
Z] + Z2 Z'& + ZX
Thus,
Z, Z,
= = Z2Z3 = Z]ZX (9'72)
7, +72, 7s;+17Z,
or

Z.=—17, 9.73)

This is the balanced equation for the ac bridge and is similar to Eq. (4.30)
for the resistance bridge except that the R’s are replaced by Z’s.

Specific ac bridges for measuring L and C are shown in Fig. 9.38,
where L, and C, are the unknown inductance and capacitance to be
measured while L, and C; are a standard inductance and capacitance
(the values of which are known to great precision). In each case, two
resistors, R; and R,, are varied until the ac meter reads zero. Then the
bridge is balanced. From Eq. (9.73), we obtain

L. = &L 9.74)
x R] s .
and
R,
C,=—C, 9.75)
R,

Notice that the balancing of the ac bridges in Fig. 9.38 does not depend
on the frequency f of the ac source, since f does not appear in the rela-
tionships in Egs. (9.74) and (9.75).

R, R, R, R,
AC AC
meter meter
Ly L, C; C,
(=) (=)
7/ 7/

(a) (b)
Figure 9.38

Specific ac bridges: (a) for measuring L, (b) for measuring C.

Figure 9.37
A general ac bridge.

399
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Example 9.15

The ac bridge circuit of Fig. 9.37 balances when Z, is a 1-k() resistor,
Z, is a 4.2-k() resistor, Z3 is a parallel combination of a 1.5-M(}
resistor and a 12-pF capacitor, and f = 2 kHz. Find: (a) the series com-
ponents that make up Z,, and (b) the parallel components that make
up Z,.

Solution:

1. Define. The problem is clearly stated.

2. Present. We are to determine the unknown components subject
to the fact that they balance the given quantities. Since a parallel
and series equivalent exists for this circuit, we need to find both.

3. Alternative. Although there are alternative techniques that can
be used to find the unknown values, a straightforward equality
works best. Once we have answers, we can check them by using
hand techniques such as nodal analysis or just using PSpice.

4. Attempt. From Eq. (9.73),

Z, = éZ2 (9.15.1)
Zl
where Z, = R, + jX,,
Z, = 1000 Q, Z, = 4200 Q (9.15.2)
and
Rs
1 JoCs R

Z; = R;3 || . = . = .
joC; R+ 1/joC; 1+ joR;C;

Since R; = 1.5 MQ and C3 = 12 pF,

3 1.5 x 10° 15 x10°
1+ 27 X2X10°X 15X 10°%x 12 x 107" 1 +0.2262

Z,

or
7Z; = 1.427 — j0.3228 M() (9.15.3)

(a) Assuming that Z, is made up of series components, we
substitute Egs. (9.15.2) and (9.15.3) in Eq. (9.15.1) and obtain

R, + jX, = @(1 427 — j0.3228) X 10°
X .] X 1000 * ] .

= (5.993 — j1.356) MQ 9.154)
Equating the real and imaginary parts yields R, = 5.993 M) and
a capacitive reactance

1
X, =— = 1356 X 10°
wC

or

1 1
C = - ; - = 58.69 pF
X, 27 X2 X 10° X 1.356 X 10
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(b) Z, remains the same as in Eq. (9.15.4) but R, and X, are in

parallel. Assuming an RC parallel combination,

Z,. = (5.993 — j1.356) MQ)
1 R,
= Re|— =
joC, 1+ joR.C,

By equating the real and imaginary parts, we obtain

_ Real(Z,)* + Imag(Z,)> 5993 + 1.356°

; = 6.3 MQ
Real(Z,) 5.993
Imag(Z,)
Cx == 2 2
w[Real(Z,)” + Imag(Z,)’]
—1.
= 356 = 2.852 uF

- 27 (2000)(5.917% + 1.3567)

We have assumed a parallel RC combination which works in
this case.

5. Evaluate. Let us now use PSpice to see if we indeed have the
correct equalities. Running PSpice with the equivalent circuits,
an open circuit between the “bridge” portion of the circuit,
and a 10-volt input voltage yields the following voltages at the
ends of the “bridge” relative to a reference at the bottom of
the circuit:

FREQ VM($N_0002) VP($SN_0002)

2.000E+03 9.993E+00 -8.634E-03
2.000E+03 9.993E+00 -8.637E-03

Since the voltages are essentially the same, then no measurable
current can flow through the “bridge” portion of the circuit for
any element that connects the two points together and we have a
balanced bridge, which is to be expected. This indicates we have
properly determined the unknowns.
There is a very important problem with what we have done!

Do you know what that is? We have what can be called an
ideal, “theoretical” answer, but one that really is not very good
in the real world. The difference between the magnitudes of the
upper impedances and the lower impedances is much too large
and would never be accepted in a real bridge circuit. For
greatest accuracy, the overall magnitude of the impedances must
at least be within the same relative order. To increase the
accuracy of the solution of this problem, I would recommend
increasing the magnitude of the top impedances to be in the
range of 500 kQ) to 1.5 M(). One additional real-world comment:
The size of these impedances also creates serious problems in
making actual measurements, so the appropriate instruments
must be used in order to minimize their loading (which would
change the actual voltage readings) on the circuit.

6. Satisfactory? Since we solved for the unknown terms and then
tested to see if they woked, we validated the results. They can
now be presented as a solution to the problem.
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Practice Problem 9.15

In the ac bridge circuit of Fig. 9.37, suppose that balance is achieved
when Z, is a 4.8-k{) resistor, Z, is a 10-() resistor in series with a
0.25-uH inductor, Z5 is a 12-k{} resistor, and f = 6 MHz. Determine
the series components that make up Z,.

Answer: A 25-() resistor in series with a 0.625-uH inductor.

9.9 Summary

1. A sinusoid is a signal in the form of the sine or cosine function.
It has the general form

v(t) = V,, cos(wt + ¢)

where V,, is the amplitude, @ = 27 f is the angular frequency,
(wt + ¢) is the argument, and ¢ is the phase.

2. A phasor is a complex quantity that represents both the magni-
tude and the phase of a sinusoid. Given the sinusoid v(f) =
V.. cos(wt + ¢), its phasor V is

vV=V,/¢é

3. In ac circuits, voltage and current phasors always have a fixed
relation to one another at any moment of time. If v(f) =
V,.cos(wt + ¢,) represents the voltage through an element and
i(f) = I cos(wt + ¢;) represents the current through the element,
then ¢; = ¢, if the element is a resistor, ¢; leads ¢, by 90° if the
element is a capacitor, and ¢; lags ¢, by 90° if the element is an
inductor.

4. The impedance Z of a circuit is the ratio of the phasor voltage
across it to the phasor current through it:

v
7= 1° R(w) + jX(w)
The admittance Y is the reciprocal of impedance:
1 :
Y = Z = G(w) + jB(w)

Impedances are combined in series or in parallel the same way as
resistances in series or parallel; that is, impedances in series add
while admittances in parallel add.

5. For a resistor Z = R, for an inductor Z = jX = jowL, and for a
capacitor Z = —jX = 1/jwC.

6. Basic circuit laws (Ohm’s and Kirchhoff’s) apply to ac circuits in
the same manner as they do for dc circuits; that is,

V=171
ST, =0 (KCL)
SV, =0 (KVL)
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7. The techniques of voltage/current division, series/parallel combi-
nation of impedance/admittance, circuit reduction, and Y-A trans-

formation all apply to ac circuit analysis.

8. AC circuits are applied in phase-shifters and bridges.

3

9.1 Which of the following is not a right way to express
the sinusoid A cos wt?

(a) A cos 2 ft
(c)Acosw(t — T)

Review Questions

(b) A cos(2mrt/T)

(d) A sin(wt — 90°)

9.2 A function that repeats itself after fixed intervals is
said to be:
(a) a phasor (b) harmonic

(c) periodic (d) reactive

9.3  Which of these frequencies has the shorter period?
(a) 1 krad/s (b) 1 kHz

9.4 Ifv, = 30 sin(wr + 10°) and v, = 20 sin(wt + 50°),
which of these statements are true?

(a) vy leads U, (b) v, leads v,

(c) Uy lags U (d) vy lags v,
(e) vy and U, are in phase

9.5 The voltage across an inductor leads the current
through it by 90°.
(a) True (b) False

9.6 The imaginary part of impedance is called:

(a) resistance (b) admittance

(c) susceptance (d) conductance
(e) reactance

9.7 The impedance of a capacitor increases with
increasing frequency.

(a) True (b) False

9.8 At what frequency will the output voltage v,(7) in
Fig. 9.39 be equal to the input voltage v(z) ?

(a) O rad/s (b) 1 rad/s (c) 4 rad/s

(d) oo rad/s (e) none of the above

1Q

0 @®

Figure 9.39

For Review Question 9.8.

9.9 Aseries RC circuit has |Vg| = 12V and |V¢| =5 V.
The magnitude of the supply voltage is:

(a) =7V b7V (c) 13V (d17V

9.10 A series RCL circuit has R = 30 ), X = 50 (), and
X; = 90 . The impedance of the circuit is:

()30 +140Q  (b)30 + j40 Q
(c) 30 — j40 Q (d) =30 — j40 Q
(e) =30 + j40 Q

Answers: 9.1d, 9.2c, 9.3b, 9.4b,d, 9.5a, 9.6¢, 9.7b, 9.8d,
9.9¢, 9.10b.

3

Section 9.2 Sinusoids

Problems

9.1 Given the sinusoidal voltage v(f) =
50 cos(30¢ + 10°) V, find: (a) the amplitude
V,n» (b) the period T, (c) the frequency f, and
(d) v(r) att = 10 ms.

9.2 A current source in a linear circuit has

iy, = 15 cos(25mt+25°) A

(a) What is the amplitude of the current?
(b) What is the angular frequency?
(c) Find the frequency of the current.
(d) Calculate i at t = 2 ms.
9.3 Express the following functions in cosine form:
(a) 10 sin(wt + 30°) (b) =9 sin (8¢)
(¢) —20 sin(wt + 45°)
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9.5

9.6

Chapter 9

Design a problem to help other students better
understand sinusoids.

Givenv; = 45 sin(wr + 30°) Vand v, =

50 cos(wt — 30°) V, determine the phase angle
between the two sinusoids and which one lags
the other.

For the following pairs of sinusoids, determine
which one leads and by how much.

(a) v(r) = 10 cos(4t — 60°) and
i(f) = 4 sin(4t + 50°)

(b) v,(t) = 4 cos(377t + 10°) and
v,(t) = —20 cos 377t

(c) x(t) = 13 cos2t + 5 sin 2t and
y(t) = 15 cos(2t — 11.8°)

Section 9.3 Phasors

9.7
9.8

9.9

9.10

9.11

9.12

If () = cose + jsing, show that f(¢p) = ’®.

Calculate these complex numbers and express your
results in rectangular form:

00 /25°

75710 "
/7200 20

6 —j8)4 +j2)  —10 + j24

(¢)20 + (16/=50°)(5 + j12)

Evaluate the following complex numbers and leave
your results in polar form:

. o 3/60°
(a) 5@(6 Bt +j)
(10/60°)(35/—50°)
b

2+j6) =G5 +))

(a) j2

(b)

Design a problem to help other students better
understand phasors.

Find the phasors corresponding to the following
signals:

(@) v(f) = 21 cos(4t — 15°) V

(b) i() = —8 sin(10f + 70°) mA

(c) v(t) = 120 sin(10¢ — 50°) V

(d) i(r) = —60 cos(30r + 10°) mA

Let X = 4/40°and Y = 20/—30°. Evaluate the

following quantities and express your results in
polar form:

(a) (X + Y)X*
(b)) (X = Y)*
X +Y)/X

9.13

9.14

9.15

9.16

9.17

9.18

9.19

9.20

Sinusoids and Phasors

Evaluate the following complex numbers:
2 +j3 7—j8

(a) - .
1—j6 —5+ 11

. (5/10°(10/—40°)

( )(4[780°)(—6{50°)
2+ 3 -2

(© . . ‘
-2 8 —j5

Simplify the following expressions:
(5-j0) — 2 +,8)
(=3+/HE—)+@E—jo
(240/75° + 160&)(60 — j80)
(67 + j84)(20/32°)
(10 + ;20
3+ j4

()

(b)

2
) V(0 + j5)(16 — j20)

Evaluate these determinants:

10+j6 2-—;3 ‘
=5 -1+

20/-30° —4/-10°
16/0° 3/45°

1—j —j 0

©| Jj 1 =

1 j 1+

(a)

(b)

Transform the following sinusoids to phasors:
(a) —20 cos(4t + 135°) (b) 8 sin(20r + 30°)
(¢) 20 cos (2t) + 15 sin(21)

Two voltages v; and v, appear in series so that their
sumisv = v, + v,. If vy = 10 cos(50t — 7/3) V
and v, = 12 cos(50¢ + 30°) V, find v.

Obtain the sinusoids corresponding to each of the
following phasors:

(@)V, =60/15V, 0 =1
BV, =6+8V,w =40
©I, =287 A, 0 = 377
(L =-05-j12A,0=10°

Using phasors, find:

(a) 3 cos(20t + 10°) — 5 cos(20r — 30°)

(b) 40 sin 507 + 30 cos(50¢ — 45°)

(c) 20 sin 4007 + 10 cos(400r + 60°)
—5 sin(400t — 20°)

A linear network has a current input

7.5 cos(10¢ + 30°) A and a voltage output

120 cos(10r + 75°) V. Determine the associated
impedance.
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9.21 Simplify the following: 9.30 A voltage v(r) = 100 cos(60r + 20°) V is applied to
(@) f(t) = 5 cos(2t + 15°) — 4 sin(2t — 30°) a parallel combination of a 40-k() resistor and a

50-uF capacitor. Find the steady-state currents

(b) g(1) = 8sinz + 4 cos(t + 50°) through the resistor and the capacitor.

t
©) h(t) = J' (10 cos 40t + 50 sin 401) dt 9.31 A series RLC circuit has R = 80 ), L = 240 mH,
0 and C = 5 mF. If the input voltage is v() =

9.22 An alternating voltage is given by v(f) = 10 cos 2¢, find the currrent flowing through the circuit.

55 cos(5t + 45%) V. Use phasors to find 9.32 Using Fig. 9.40, design a problem to help other
dv ! efdd students better understand phasor relationships for
10v(r) + 45 -2 j v(ndt circuit elements.

Assume that the value of the integral is zero at

= —o. *IL

9.23 Apply phasor analysis to evaluate the following:
Load

(a) v = [110 sin(20¢ + 30°) + 220 cos(207 — 90°)] V v C) (R + joL)

(b) i = [30 cos(5t + 60°) — 20 sin(5¢ + 60°)] A

9.24 Find v(?) in the following integrodifferential N
equations using the phasor approach: Figure 9.40
For Prob. 9.32.
(a) v(r) + J vdt = 10cost

9.33 A series RL circuit is connected to a 110-V ac
source. If the voltage across the resistor is 85 V, find
the voltage across the inductor.

d
(b) dfl; + 50(f) + 4 J v dt = 20 sin(4t + 10°)

9.25 Using phasors, determine i() in the following
equations: 9.34 What value of w will cause the forced response, v,

di in Fig. 9.41 to be zero?
(a) ZE + 3i() = 4 cos(2t — 45°)

i
(b) 10J idr + ;; + 6i(r) = 5 cos(5t + 22°) A )0

A%%Y L
9.26 The loop equation for a series RLC circuit gives 5 mF *

di ! + v,
E+2i+ J idt = cos?2t A SOCOS“”VC—D 20 mH

—o0

Assuming that the value of the integral att = — is
zero, find i(¢) using the phasor method. Figure 9.41

9.27 A parallel RLC circuit has the node equation For Prob. 9.34.

d
;‘[’ + 500 + 100 J vdr = 110 cos(377¢ — 10°) V
Section 9.5 Impedance and Admittance
Determine v(#) using the phasor method. You may
assume that the value of the integral at r = — o is zero. 9.35 Find current i in the circuit of Fig. 9.42, when
vy(t) = 50 cos200z V.

Section 9.4 Phasor Relationships for Circuit
Elements i 10Q 5 mF

—
9.28 Determine the current that flows through an 8-()
resistor connected to a voltage source

v, = 110 cos 377¢ V. ’ 20 mH

9.29 What is the instantaneous voltage across a 2-uF
capacitor when the current through it is Figure 9.492
i = 4sin(10% + 25° A? For Prob. 9.35.




www.konkur.in

406 Chapter 9 Sinusoids and Phasors

9.36 Using Fig. 9.43, design a problem to help other 9.40 In the circuit of Fig. 9.47, find i, when:
efJd students better understand impedance. (@ w = 1 rad/s ) w = 5 rad/s

(¢) w = 10 rad/s

_i> R, L
AW A1k .
i» 1H
- C =
% <—> § Ry § Rs 4coswt V ( ) 2Q % == 0.05F
Figure 9.43 Figure 9.47

For Prob. 9.36. For Prob. 9.40.

9.41 Find v(?) in the RLC circuit of Fig. 9.48.
9.37 Determine the admittance Y for the circuit in Fig. 9.44.

1Q
O
1Q +
R 4Q j8Q == —j10Q 10costV 1R ==0()
1H -
O

Figure 9.44 Figure 9.48
For Prob. 9.37. For Prob. 9.41.
9.38 Using Fig. 9.45, design a problem to help other 9.42 Calculate v, () in the circuit of Fig. 9.49.

efJd students better understand admittance.

50 Q
* ; 30Q
l
+
i(1) R C=Fv
- 50 uF +
60 sin 200t V 0.1H § y,(1)
(@)
Vi Figure 9.49
R, For Prob. 9.42.
R
+ 1
%) C—D * 9.43 Find current I, in the circuit shown in Fig. 9.50.
c "3L .
T 0y 50 Q 100 Q
MWW
®) ﬁ
Figure 9.45 60,/0°V 20 Q )
J —j40 Q
For Prob. 9.38. T ’

9.39 For the circuit shown in Fig. 9.46, find Z,, and use Figure 9.50
that to find current I. Let w = 10 rad/s. For Prob. 9.43.

9.44 Calculate i(7) in the circuit of Fig. 9.51.
I 40 200 —14Q

1
VVVV vv As5Q SﬁlF
I
12/0°V (* §16Q 25 Q
2 CD / 6 cos 200t V 40 10 mH 30
Figure 9.46 Figure 9.51

For Prob. 9.39. For prob. 9.44.
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9.45 Find current I, in the network of Fig. 9.52.

ML 2Q j4Q
2115
5/0°A —2Q = —2Q =

i

2Q

Figure 9.52
For Prob. 9.45.

9.46 If iy = 5 cos(107 + 40°) A in the circuit of Fig. 9.53,

Q find i,,.

4Q

3Q

Figure 9.53
For Prob. 9.46.

9.47 In the circuit of Fig. 9.54, determine the value

of i,(f).

i 2Q

5 cos 2,000t V

2 mH

= 50 uF

Figure 9.54
For Prob. 9.47.

9.48 Given that v(f) = 20 sin(100¢ — 40°) in Fig. 9.55,

g determine i (7).

10Q

v, (1)

30Q

i

X

20Q

02H _‘, 0.5 mF

Figure 9.55
For Prob. 9.48.

9.49 Find v,(?) in the circuit of Fig. 9.56 if the current i,

through the 1-Q) resistor is 0.5 sin 2007 A.

20 ix

—

B

2

1Q

Figure 9.56
For Prob. 9.49.

—‘——jIQ

Problems 407

9.50 Determine v, in the circuit of Fig. 9.57. Let i|(¢) =
5 cos(100z + 40°) A.

0.1H
11N

+
i (1) — 1 mF 20 Q v,

Figure 9.57
For Prob. 9.50.

9.51 If the voltage v, across the 2-() resistor in the circuit
of Fig. 9.58 is 10 cos 2t V, obtain i;.

0.1F 05H

Figure 9.58
For Prob. 9.51.

9.52 If V, = 8/30° V in the circuit of Fig. 9.59, find L.

—j5Q
Il
I
+
I 10Q 5Q BV,
Figure 9.59
For Prob. 9.52.
9.53 Find I, in the circuit of Fig. 9.60.
& ﬁl_ ‘o
MW
L 20 520 j6Q
ANV I 4112
60.,30°v (£) 8Q 100

Figure 9.60
For Prob. 9.53.

9.54 1In the circuit of Fig. 9.61, find V,if I, = 2/0° A.

53

L 20 A2 510

f GO |

1l &, | *1,,
20 jAQ 2Q 1Q

Figure 9.61
For Prob. 9.54.
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*9.55 Find Z in the network of Fig. 9.62, given that 9.59 For the network in Fig. 9.66, find Z;,. Let o =
2 v.=4/0°V. 10 rad/s.
ML
12 Q 1
4F
° 1
o Z
20,-90° V in
- 05H 5Q
O

Figure 9.62 .
For Prob. 9.55. Figure 9.66
For Prob. 9.59.

Section 9.7  Impedance Combinations 9.60 Obtain Z;, for the circuit in Fig. 9.67.

9.56 Atw = 377 rad/s, find the input impedance of the

circuit shown in Fig. 9.63. 5o 150
12Q 50 uF _

o AAAA —j50 Q 300
Zin
—_—

20 Q
O
C -
Figure 9.63 Figure 9.67

For Prob. 9.56. For Prob. 9.60.

9.57 Atw = 1 rad/s, obtain the input admittance in the 9:61 Find Z., in the circuit of Fig. 9.68.

circuit of Fig. 9.64.

O
1Q 20 Zq, o
O—— MW\ AV . —J
Y.
SaLLUINE 2H = IF —
1+3Q 1+2Q
© j5Q
Figure 9.64
For Prob. 9.57.

Figure 9.68
9.58 Using Fig. 9.65, design a problem to help other For Prob. 9.61.
efdd students better understand impedance combinations.

9.62 For the circuit in Fig. 9.69, find the input impedance

o Z;,, at 10 krad/s.
R, L 50Q 2 mH
¢ AW d115
+ oy -
C R, 2
° T ’_> 1 uF
It
Figure 9.65 © L
For Prob. 9.58. Z,

- Figure 9.69
* An asterisk indicates a challenging problem. For Prob. 9.62.
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9.63 For the circuit in Fig. 9.70, find the value of Z7.

ML
8Q —l2Q —j16 Q
I I
7 20Q 10Q
T 10Q
J15Q 16Q 10Q
o I

Figure 9.70
For Prob. 9.63.

9.64 Find Z; and I in the circuit in Fig. 9.71.

30/90° vV Jj8Q

Figure 9.71
For Prob. 9.64.

9.65 Determine Z; and I for the circuit in Fig. 9.72.

40 —j6 Q
1
20
3Q 4Q
120/10° V
ZT

Figure 9.72
For Prob. 9.65.

9.66 For the circuit in Fig. 9.73, calculate Z; and V.

200 j10Q
60,£90° V C:) oa bo
Vb
—j5Q T ‘ 400

Figure 9.73
For Prob. 9.66.

Problems 409

9.67 Atw = 10°rad/ s, find the input admittance of each
of the circuits in Fig. 9.74.

60 Q 60 Q
Yin 20 mH T 12.5 uF
O
(a)
20 uF 400Q
o—
Yo | 30 2 10 mH
O

(b)
Figure 9.74
For Prob. 9.67.

9.68 Determine Y. for the circuit in Fig. 9.75.

O
5Q 3Q
qu .
—_— _— —J4 Q
T pao 0
O

Figure 9.75
For Prob. 9.68.

9.69 Find the equivalent admittance Y4 of the circuit in
Fig. 9.76.

28 1S  —j3S -28

4

O

Figure 9.76
For Prob. 9.69.

9.70 Find the equivalent impedance of the circuit in

H  Fig9.77.
ML

O

100
= —j10Q

Jj15Q 50

00 % 8Q
-5 Q
O T !
Z,
Figure 9.77
For Prob. 9.70.
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9.71 Obtain the equivalent impedance of the circuit in

H Fig.978.
ML
j4Q
T11R
- Q 20
i} AN 0
I 129% pad _%

Figure 9.78
For Prob. 9.71.

9.72 Calculate the value of Z,,, in the network of

1 Fig. 9.79.
ML
Jj6 Q -9 Q
ao N I}
j6Q -9 Q
Jj6 € -9 Q
e
20Q
20Q 10Q
b O

Figure 9.79
For Prob. 9.72.

9.73 Determine the equivalent impedance of the circuit in

H  Fig 9.80.
ML

20 6L 40

a o AWV 11
%]69 %jSQ %]89 j12.Q
b o

Figure 9.80
For Prob. 9.73.

Section 9.8 Applications

9.74 Design an RL circuit to provide a 90° leading phase

e7Jd shift.

9.75 Design a circuit that will transform a sinusoidal
efJd voltage input to a cosinusoidal voltage output.

9.76 For the following pairs of signals, determine if v,
leads or lags v, and by how much.

(a) v, = 10 cos(5¢ — 20°),
(b) v; = 19 cos(2r + 90°),
(c)vy = —4 cos 101,

v, = 8 sin 5t
v, = 6sin2¢
v, = 15sin 10¢

Sinusoids and Phasors

9.77 Refer to the RC circuit in Fig. 9.81.

(a) Calculate the phase shift at 2 MHz.
(b) Find the frequency where the phase shift is 45°.

5Q
%

+

O
+
o

Figure 9.81
For Prob. 9.77.

9.78 A coil with impedance 8 + j6 () is connected in
series with a capacitive reactance X. The series
combination is connected in parallel with a resistor
R. Given that the equivalent impedance of the
resulting circuit is 5 E (), find the value of R and X.

9.79 (a) Calculate the phase shift of the circuit in Fig. 9.82.
(b) State whether the phase shift is leading or
lagging (output with respect to input).
(c) Determine the magnitude of the output when the
input is 120 V.

20 Q 40 Q 30Q

O— MW\ AN

* +
v, jl0Q j30Q j60Q 3V,
o

Figure 9.82
For Prob. 9.79.

9.80 Consider the phase-shifting circuit in Fig. 9.83. Let
V; = 120 V operating at 60 Hz. Find:

(a) V, when R is maximum
(b) V, when R is minimum

(c) the value of R that will produce a phase shift of 45°

0<R<100Q

50 Q

Figure 9.83
For Prob. 9.80.

9.81 The ac bridge in Fig. 9.37 is balanced when R, =
400 Q), R, = 600 Q, R; = 1.2k, and C, = 0.3 uF.
Find R, and C,. Assume R, and C, are in series.

9.82 A capacitance bridge balances when R, = 100 (),
R, = 2kQ, and C,; = 40 uF. What is C,, the
capacitance of the capacitor under test?

9.83 An inductive bridge balances when R, = 1.2 k(),
R, = 500 €, and L; = 250 mH. What is the value of
L,, the inductance of the inductor under test?
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9.84 The ac bridge shown in Fig. 9.84 is known as a
Maxwell bridge and is used for accurate measurement
of inductance and resistance of a coil in terms of a
standard capacitance C. Show that when the bridge
is balanced,

Lx = R2R3Cs and

Find L, and R, for R; = 40k, R, = 1.6 k(),
R; = 4k, and C; = 0.45 uF.

Ry

Figure 9.84
Maxwell bridge; For Prob. 9.84.

9.85 The ac bridge circuit of Fig. 9.85 is called a Wien
bridge. It is used for measuring the frequency of a
source. Show that when the bridge is balanced,

1

f - -
27V R2R4C2C4

©

Figure 9.85
Wien bridge; For Prob. 9.85.

1

9.86 The circuit shown in Fig. 9.86 is used in a television
receiver. What is the total impedance of this circuit?

!
[

Figure 9.86
For Prob. 9.86.

Comprehensive Problems

240 Q j95Q = —j84Q

9.87 The network in Fig. 9.87 is part of the schematic
describing an industrial electronic sensing device.
What is the total impedance of the circuit at 2 kHz?

l 50Q
[T

Figure 9.87
For Prob. 9.87.

10 mH
100 Q
80 Q

9.88 A series audio circuit is shown in Fig. 9.88.

(a) What is the impedance of the circuit?

(b) If the frequency were halved, what would be the
impedance of the circuit?

-20Q  j30Q  120Q

250 Hz Tl —20Q

Figure 9.88
For Prob. 9.88.

9.89 An industrial load is modeled as a series combination
of an inductor and a resistance as shown in Fig. 9.89.
Calculate the value of a capacitor C across the series
combination so that the net impedance is resistive at a

frequency of 2 kHz.
O
10 Q
C =
5 mH
o

Figure 9.89
For Prob. 9.89.

9.90 An industrial coil is modeled as a series combination
of an inductance L and resistance R, as shown in
Fig. 9.90. Since an ac voltmeter measures only
the magnitude of a sinusoid, the following
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measurements are taken at 60 Hz when the circuit
operates in the steady state:

[V, = 145V, V| =50V, [V,| =110V
Use these measurements to determine the values of L
and R.

m ‘””””‘:Coil
v T L+
' R !
16) | v,
P L :

Figure 9.90
For Prob. 9.90.

9.91 Figure 9.91 shows a parallel combination of an
inductance and a resistance. If it is desired to connect
a capacitor in series with the parallel combination
such that the net impedance is resistive at 10 MHz,
what is the required value of C?

C

o—

300 Q 20 wH

O

Figure 9.91
For Prob. 9.91.

Sinusoids and Phasors

9.92 A transmission line has a series impedance of
Z = 100/75° Q and a shunt admittance of Y =
450 E 1S. Find: (a) the characteristic impedance
Z, = VZ]Y, (b) the propagation constant y =
VZY.

9.93 A power transmission system is modeled as shown in
Fig. 9.92. Given the source voltage and circuit
elements

Vy =115 & vV, source impedance
Z,= (1 +j0.5)Q, line impedance
Z,= (04 +;0.3)Q, and load impedance

Z; = (23.2 + j18.9) Q, find the load current I;.

Load

Transmission line

Source

Figure 9.92
For Prob. 9.93.
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State Analysis

Three men are my friends—he that loves me, he that hates me, he that
is indifferent to me. Who loves me, teaches me tenderness;, who hates
me, teaches me caution; who is indifferent to me, teaches me self-
reliance.

—1J. E. Dinger

Enhancing Your Career

Career in Software Engineering

Software engineering is that aspect of engineering that deals with the
practical application of scientific knowledge in the design, construction,
and validation of computer programs and the associated documentation
required to develop, operate, and maintain them. It is a branch of elec-
trical engineering that is becoming increasingly important as more and
more disciplines require one form of software package or another to per-
form routine tasks and as programmable microelectronic systems are
used in more and more applications.

The role of a software engineer should not be confused with
that of a computer scientist; the software engineer is a practitioner,
not a theoretician. A software engineer should have good computer-
programming skills and be familiar with programming languages, in
particular C*, which is becoming increasingly popular. Because hard-
ware and software are closely interlinked, it is essential that a software
engineer have a thorough understanding of hardware design. Most
important, the software engineer should have some specialized knowl- ;o0 g0 printing of the
edge of the area in which the software development skill is to be output of an AutoCAD model of a
applied. NASA flywheel.

All in all, the field of software engineering offers a great career to
those who enjoy programming and developing software packages. The
higher rewards will go to those having the best preparation, with the
most interesting and challenging opportunities going to those with
graduate education.

413
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Frequency domain analysis of an ac
circuit via phasors is much easier
than analysis of the circuit in the
time domain.

Chapter 10 Sinusoidal Steady-State Analysis

10.1 Introduction

In Chapter 9, we learned that the forced or steady-state response of cir-
cuits to sinusoidal inputs can be obtained by using phasors. We also
know that Ohm’s and Kirchhoff’s laws are applicable to ac circuits. In
this chapter, we want to see how nodal analysis, mesh analysis,
Thevenin’s theorem, Norton’s theorem, superposition, and source trans-
formations are applied in analyzing ac circuits. Since these techniques
were already introduced for dc circuits, our major effort here will be
to illustrate with examples.
Analyzing ac circuits usually requires three steps.

Steps to Analyze AC Circuits:

—_

Transform the circuit to the phasor or frequency domain.

2. Solve the problem using circuit techniques (nodal analysis,
mesh analysis, superposition, etc.).

3. Transform the resulting phasor to the time domain.

Step 1 is not necessary if the problem is specified in the frequency
domain. In step 2, the analysis is performed in the same manner as dc
circuit analysis except that complex numbers are involved. Having read
Chapter 9, we are adept at handling step 3.

Toward the end of the chapter, we learn how to apply PSpice in
solving ac circuit problems. We finally apply ac circuit analysis to two
practical ac circuits: oscillators and ac transistor circuits.

10.2 Nodal Analysis

The basis of nodal analysis is Kirchhoff’s current law. Since KCL is
valid for phasors, as demonstrated in Section 9.6, we can analyze ac
circuits by nodal analysis. The following examples illustrate this.

Example 10.1

Find i, in the circuit of Fig. 10.1 using nodal analysis.

10 Q 1H

A1
i
20 cos 4t V — 0.1F 2i, 0.5H
L

Figure 10.1
For Example 10.1.

||
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Solution:
We first convert the circuit to the frequency domain:

20 cos 4t = 20/0°, w = 4rad/s
IH =  joL=j4
05H =  joL=j2
1
0.1F = — = —j25
JjoC

Thus, the frequency domain equivalent circuit is as shown in Fig. 10.2.

0Q vy, AQ v,

20,/0°V

Figure 10.2

Frequency domain equivalent of the circuit in Fig. 10.1.

Applying KCL at node 1,
20—V, V, V, -V,

= +
10 —j2.5 4
or
(1 + j1.5)V, + j2.5V, = 20 (10.1.1)
At node 2,
21x+7v‘ ,_szﬁ
J4 J2

But I, = V,;/—;2.5. Substituting this gives
2V, Vi-V, V,

e :
—j2.5 Jj4 j2

By simplifying, we get
11V, + 15V, =0 (10.1.2)

Equations (10.1.1) and (10.1.2) can be put in matrix form as
1 +j15 j25( V| |20
11 15 |1V, 0

We obtain the determinants as

1 +j15 j25

Az‘ i ls‘zls—]s
| = ‘2(? J?'SS‘ —300, A, = +1{1.5 2(?’ = 220
v, = Al 300 g7 18430 v
A 155
v, = B 220 591 /10830
A 15-J5

415
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The current I, is given by
v, 18.97/18.43°
— =7.59/1084° A

L=——=
-5 25/-90

Transforming this to the time domain,
i, = 7.59 cos(4r + 108.4°) A

Practice Problem 10.1

Using nodal analysis, find v, and v, in the circuit of Fig. 10.3.

02F
" 0 v 4Q
I
+
10 cos (21) A 2Q 35 v, 2H 30,
L
Figure 10.3
For Practice Prob. 10.1.
Answer: v,(r) = 11.325 cos(2r + 60.01°) V,
v,(1) = 33.02 cos(2t + 57.12°) V.
Example 10.2 Compute V; and V, in the circuit of Fig. 10.4.
10 /45° V
v 4Q A
11 AR 2 2
3/0°A L 30 ?ﬁﬂ 20
1

Figure 10.4
For Example 10.2.

Solution:
Nodes 1 and 2 form a supernode as shown in Fig. 10.5. Applying KCL

at the supernode gives

v v A%
3=+ 242
—j3  jb 12

or
36 = jaV, + (1 — j2)V, (10.2.1)



www.konkur.in

10.3  Mesh Analysis

/ Supernode
[T AN v,

3A () l—j3;“

Figure 10.5

A supernode in the circuit of Fig. 10.4.
But a voltage source is connected between nodes 1 and 2, so that
V, =V, +10/45° (10.2.2)

Substituting Eq. (10.2.2) in Eq. (10.2.1) results in
36 —40/135° = (1 + j2)V, =

From Eq. (10.2.2),

V, =31.41/-87.18°V

V, =V, + 10/45° = 25.78 /—70.48° V

417

Calculate V; and V, in the circuit shown in Fig. 10.6.

100/60° V
4Q vy v

75,/0°V

Figure 10.6
For Practice Prob. 10.2.

Answer: V, = 96.8/69.66°V,V, = 16.88/165.72° V.

10.3 Mesh Analysis

Kirchhoff’s voltage law (KVL) forms the basis of mesh analysis. The
validity of KVL for ac circuits was shown in Section 9.6 and is illus-
trated in the following examples. Keep in mind that the very nature of
using mesh analysis is that it is to be applied to planar circuits.

Practice Problem 10.2

Determine current I, in the circuit of Fig. 10.7 using mesh analysis.
Solution:
Applying KVL to mesh 1, we obtain

(8 + j10 — I, — (—j2)I, — j10I; = 0 (10.3.1)

Example 10.3
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h,
— _j20

@ ) 20290V

= -j2Q

5/0°A

8 Q

Figure 10.7
For Example 10.3.

For mesh 2,
4 —=j2—=2L — (=21, — (—j2)I3 +20/90° = 0 (10.3.2)
For mesh 3, Iy = 5. Substituting this in Eqs. (10.3.1) and (10.3.2), we get

2L+ (4 — AL, = —j20 — j10 (10.3.4)

Equations (10.3.3) and (10.3.4) can be put in matrix form as

8+8 2 |[1,] [js0
2 4-jlL —30

from which we obtain the determinants

§+j8 2
A= =321 + )1 — j) + 4 = 68
o 4 _j4‘ 1 +pHd =)
8+/8 j50 .
A, = = 340 — j240 = 416.17/-35.22°
27 2 —j30‘ /
A, 416.17/-3522°
L=-2=——=——"=_612/-3522°A

A 68
The desired current is

I, = L = 6.12/144.78° A

Practice Problem 10.3

10/0° A

Figure 10.8
For Practice Prob. 10.3.

50/30°V

Find I, in Fig. 10.8 using mesh analysis.

Answer: 5.969 /65.45° A.
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Solve for V,, in the circuit of Fig. 10.9 using mesh analysis.

—]49:: é“&)A 6Q

8Q 5o
WA R
+
10/0° V (? o=, 3/0°A

Figure 10.9
For Example 10.4.

Solution:
As shown in Fig. 10.10, meshes 3 and 4 form a supermesh due to the
current source between the meshes. For mesh 1, KVL gives

=10 + @ —j2)I; — (—j2)I, — 81, =0
or
@& — 2L, +j2I, — 81, = 10 (104.1)
For mesh 2,
L=-3 (104.2)
For the supermesh,
@ = —8I; + (6 + 5, — j5I, =0 (10.4.3)
Due to the current source between meshes 3 and 4, at node A,
LL=1L+t+4 (10.4.4)
Il METHOD 1 Instead of solving the above four equations, we

reduce them to two by elimination.
Combining Egs. (10.4.1) and (10.4.2),

@& —j2I, — 8L, = 10 + j6 (10.4.5)
Combining Egs. (10.4.2) to (10.4.4),
=8I, + (14 + HIz; = —24 — j35 (10.4.6)

I, o4 L /Supermesh

J—— g I

L4 o= @ 4A<> @ L 26Q
WA IR
. Be

8Q
1ov<? @ -2Q ==V, @ 3A

Figure 10.10
Analysis of the circuit in Fig. 10.9.

Example 10.4



www.konkur.in

420

Chapter 10 Sinusoidal Steady-State Analysis

From Egs. (10.4.5) and (10.4.6), we obtain the matrix equation

{S—ﬂ —8}11_ 10 + j6
-8 14+jllL —24 — j35

We obtain the following determinants

8- -8

A=‘ / ,‘=112+j8—jz8+2—64=50—j20
—8 14+
10+j6 -8

Alz‘ / ‘=140+j10+j84—6—192—j280

—24—j35 14+
= —58 — j186
Current I, is obtained as
I, = A = legé = 3.618/274.5° A
A 50 — ;20

The required voltage V, is

V, = —j2(; — L) = —j2(3.618/274.5° + 3)
—7.2134 — j6.568 = 9.756 /222.32°V

B METHOD 2 We can use MATLAB to solve Egs. (10.4.1) to
(10.4.4). We first cast the equations as

8—j2 2 -8 0 I, 10
0 1 0 0 I -3
, , 2= (10.4.72)
-8 —j5 8—j4 6+5| L 0
or
Al =B

By inverting A, we can obtain I as
I=A"'B (10.4.7b)
We now apply MATLAB as follows:

>> A = [(8-7*2) j*2 -8 0;
0 1 0 0;
-8 -j*5 (8-j*4) (6+j*5);
0 0 -1 11;
>> B =[10 -3 0 4]’;
>> I = inv(A)*B
I =
0.2828 - 3.60691
-3.0000

-1.8690 - 4.42761
2.1310 - 4.42761i
>> Vo = -2*%j*(I(1l) -I(2))

Vo =
-7.2138 - 6.56551

as obtained previously.
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Calculate current I, in the circuit of Fig. 10.11. Practice Problem 10.4
Answer: 6.089/5.94° A. e L

2.4/0° A

60,/0°V C_r) @ /

10.4 Superposition Theorem

Since ac circuits are linear, the superposition theorem applies to ac 5Q -j6Q
circuits the same way it applies to dc circuits. The theorem becomes
important if the circuit has sources operating at different frequencies.  Figure 10.11

In this case, since the impedances depend on frequency, we must have ~ For Practice Prob. 10.4.
a different frequency domain circuit for each frequency. The total

response must be obtained by adding the individual responses in the

time domain. It is incorrect to try to add the responses in the phasor

or frequency domain. Why? Because the exponential factor ¢/ is

implicit in sinusoidal analysis, and that factor would change for every

angular frequency w. It would therefore not make sense to add responses

at different frequencies in the phasor domain. Thus, when a circuit has

sources operating at different frequencies, one must add the responses

due to the individual frequencies in the time domain.

Use the superposition theorem to find I, in the circuit in Fig. 10.7. Example 10.5
Solution:
Let
IL,=1,+1) (10.5.1)
where I, and I, are due to the voltage and current sources, respectively. 10
To find I/, consider the circuit in Fig. 10.12(a). If we let Z be the o———MNV—
parallel combination of —j2 and 8 + j10, then Ir,
—j2(8 + j10
- TRB D o8 nos
—2j + 8 + /10
and current I, is
I = j20 _ j20
 4-024+Z 425—j425
or
I, = —2.353 + j2.353 (10.5.2)
To get I, consider the circuit in Fig. 10.12(b). For mesh 1,
8 + 78I, — j10I5 + j2I, = 0 (10.5.3)
For mesh 2,
4 —jdI, + 21, + j2I; =0 (10.5.4)
For mesh 3, ®)

Figure 10.12
L=5 (10.5.5)  Solution of Example 10.5.
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From Egs. (10.5.4) and (10.5.5),

4 —jdL, + 21, +j10 =0
Expressing I; in terms of I, gives

L=Q2+,2I,b -5 (10.5.6)
Substituting Egs. (10.5.5) and (10.5.6) into Eq. (10.5.3), we get
8 + L2 + j2)I, — 5] —j50 + j2I, =0
or
I, = 20— A0 = 2.647 — j1.176
34

Current 17 is obtained as

I, = -1, = —2.647 + j1.176 (10.5.7)
From Egs. (10.5.2) and (10.5.7), we write

I,=1I,+1I)= -5+ ;3529 = 6.12/144.78° A

which agrees with what we got in Example 10.3. It should be noted
that applying the superposition theorem is not the best way to solve
this problem. It seems that we have made the problem twice as hard
as the original one by using superposition. However, in Example 10.6,
superposition is clearly the easiest approach.

Practice Problem 10.5

Find current I, in the circuit of Fig. 10.8 using the superposition
theorem.

Answer: 5.97 /65.45° A.

Example 10.6

Find v,, of the circuit of Fig. 10.13 using the superposition theorem.

4Q

2H 1Q
VWA
o,
10 cos 2t V 2sin 5t A — O0.1F 5V

Figure 10.13
For Example 10.6.

Solution:

Since the circuit operates at three different frequencies (w = 0 for the
dc voltage source), one way to obtain a solution is to use superposition,
which breaks the problem into single-frequency problems. So we let

v, =U; T U, + s (10.6.1)
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where v, is due to the 5-V dc voltage source, v, is due to the 10 cos 2t V
voltage source, and v3 is due to the 2 sin 5¢ A current source.

To find v, we set to zero all sources except the 5-V dc source.
We recall that at steady state, a capacitor is an open circuit to
dc while an inductor is a short circuit to dc. There is an alternative
way of looking at this. Since w = 0, joL = 0, 1/jwC = . Either
way, the equivalent circuit is as shown in Fig. 10.14(a). By voltage
division,

1
v =, =1V (10.6.2)

To find v,, we set to zero both the 5-V source and the 2 sin 5¢ current
source and transform the circuit to the frequency domain.

10 cos 2t = 10/0°, w = 2rad/s
2H =  joL=jQ

1
0.1F = —=—j50
JjoC

The equivalent circuit is now as shown in Fig. 10.14(b). Let

) —j5 X 4 )
Z=—j5)|4=—"——=2439 — j1.951
4 —j5
1Q 40 L 10
AW m— YV
v tv, T
5V 1000V jloQ 2/-90°A =/ —j2Q

I

(@) (b) (©
Figure 10.14

423

4Q

Solution of Example 10.6: (a) setting all sources to zero except the 5-V dc source, (b) setting all sources to zero except the ac

voltage source, (c) setting all sources to zero except the ac current source.

By voltage division,

V,= ————(10/0°) = 10 408/-3079°
2+ A+ Z 3439 + j2.049 :
In the time domain,
v, = 2.498 cos(2t — 30.79°) (10.6.3)

To obtain vs, we set the voltage sources to zero and transform what
is left to the frequency domain.

2 sin 5¢ = 2/-90°, w = Srad/s
2H =  jwL=j100Q
1

0.1F = — =20
JjoC
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The equivalent circuit is in Fig. 10.14(c). Let

2 % 4

Z, = -p24=—""""—-08-j1.60
1= =22 PR J
By current division,
j10
[ =—————(2/-90°) A
! j10+1+zl(L)
Viel x 12— (o Z2308/-80°V
3T T8+ 84 T

In the time domain,
vs = 2.33 cos(5¢t — 80°) = 2.33 sin(5¢r + 10°) V. (10.6.4)
Substituting Egs. (10.6.2) to (10.6.4) into Eq. (10.6.1), we have

v,(t) = —1 + 2.498 cos(2t — 30.79°) + 2.33 sin(5¢ + 10°) V

Practice Problem 10.6

Calculate v, in the circuit of Fig. 10.15 using the superposition
theorem.

8Q

75 sin 5¢ V %o — 0.2F 1H 6 cos 10r A

Figure 10.15
For Practice Prob. 10.6.

Answer: 11.577 sin(5¢ — 81.12°) + 3.154 cos(10r — 86.24°) V.

10.5 Source Transformation

As Fig. 10.16 shows, source transformation in the frequency domain
involves transforming a voltage source in series with an impedance to
a current source in parallel with an impedance, or vice versa. As we
go from one source type to another, we must keep the following rela-
tionship in mind:

V,=27I < I,=-° (10.1)
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ZS
a a
v, -~ I [[ Z,
b b
V,=Z], 1= %

s

Figure 10.16

Source transformation.

Calculate V, in the circuit of Fig. 10.17 using the method of source Example 10.7
transformation.
50 40 —13Q
30 +
20 /-90° V 100 2V,
j4Q -

Figure 10.17
For Example 10.7.

Solution:
We transform the voltage source to a current source and obtain the
circuit in Fig. 10.18(a), where
20/-90°
I, =——"7-=4/-90°= —j4A
5
The parallel combination of 5-{) resistance and (3 + j4) impedance gives

53 +j4) :
Z,=—=25+j125Q
8 + j4
Converting the current source to a voltage source yields the circuit in
Fig. 10.18(b), where

V,=1Z, = —j425 +jl25) =5~ jlOV

40 —/1BQ 25Q j125Q 40 —/13Q
W {
30 . +
I,=—j4A Q) %59 10Q 2V, Vy=5-j10V 10Q 2V,
j4Q - -
(a) (b)

Figure 10.18
Solution of the circuit in Fig. 10.17.
By voltage division,

10
V. =
10425+ 125+ 4 -

i3 (5 — j10) = 5.519/—28°V
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Practice Problem 10.7

Linear

. . —_—
circuit Vin

4ob

Figure 10.20

Thevenin equivalent.

Linear

- —_—
circuit Iy

4ob

Figure 10.21

Norton equivalent.

Find I, in the circuit of Fig. 10.19 using the concept of source
transformation.

2Q j1Q

12/90° A

-j3Q

1 T

Figure 10.19
For Practice Prob. 10.7.

Answer: 9.863/99.46° A.

10.6 Thevenin and Norton
Equivalent Circuits

Thevenin’s and Norton’s theorems are applied to ac circuits in the same
way as they are to dc circuits. The only additional effort arises from
the need to manipulate complex numbers. The frequency domain ver-
sion of a Thevenin equivalent circuit is depicted in Fig. 10.20, where
a linear circuit is replaced by a voltage source in series with an imped-
ance. The Norton equivalent circuit is illustrated in Fig. 10.21, where
a linear circuit is replaced by a current source in parallel with an imped-
ance. Keep in mind that the two equivalent circuits are related as

Vi = Zyly, Iy, = Zy (10.2)

just as in source transformation. V-, is the open-circuit voltage while Iy
is the short-circuit current.

If the circuit has sources operating at different frequencies (see
Example 10.6, for example), the Thevenin or Norton equivalent circuit
must be determined at each frequency. This leads to entirely different
equivalent circuits, one for each frequency, not one equivalent circuit
with equivalent sources and equivalent impedances.

Example 10.8

Obtain the Thevenin equivalent at terminals a-b of the circuit in Fig. 10.22.

d

—j6 Q 4Q

120&\/@) e oa b c

Figure 10.22
For Example 10.8.
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Solution:

We find Zy, by setting the voltage source to zero. As shown in
Fig. 10.23(a), the 8-() resistance is now in parallel with the —j6
reactance, so that their combination gives

—j6 X 8

= =288 — 3840

7, =—-j6|8=—"7T
1 ]” 8 — 6

Similarly, the 4-€) resistance is in parallel with the j12 reactance, and
their combination gives

, j12 X 4 ,
Z,=4||jl2=""—"=36+j120
4+ j12
d
fd fd

N\
Y

120/75°V Ci

89% _j6Q == %49 %jnﬂ
SQ%

—-j6 Q ——

‘Il

+ Vm

a b
o T o F
e c
Zyy,

(b)
()

Figure 10.23
Solution of the circuit in Fig. 10.22: (a) finding Zry, (b) finding Vy,.

The Thevenin impedance is the series combination of Z; and Z;
that is,

To find Vry, consider the circuit in Fig. 10.23(b). Currents I, and
I, are obtained as

120 /75° 120 /75°
L= ==A L=, -
8 — j6 4 +j12
Applying KVL around loop bcdeab in Fig. 10.23(b) gives
VTh - 412 + (_J6)Il =0
or
480/75°  720/75° + 90°
+
4 + j12 8 — jo
37.95/3.43° + 72/201.87°
—28.936 — j24.55 = 37.95/220.31° V

VTh = 412 +]6Il =

427
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Practice Problem 10.8 Find the Thevenin equivalent at terminals a-b of the circuit in Fig. 10.24.

6Q j2Q a b
——O
100,£20° V L _jQ 10Q

Figure 10.24
For Practice Prob. 10.8.

Answer: Zp, = 12.4 — j32Q, Vo, = 63.24/—51.57° V.

Example 10.9 Find the Thevenin equivalent of the circuit in Fig. 10.25 as seen from
terminals a-b.

15,/0° A

Figure 10.25
For Example 10.9.

Solution:
To find V,,, we apply KCL at node 1 in Fig. 10.26(a).
15=1, +0.3I, = I, =10 A

Applying KVL to the loop on the right-hand side in Fig. 10.26(a), we
obtain

1,2 —j4) +051,4 +j3) + Vi, =0
or

Vi, = 102 — j4) — 54 + j3) = —j55
Thus, the Thevenin voltage is

VTh =55/-90°V

| osi, 4+i3Q ) 413y . L
- - 1 - o a 1 - -
| E— | | E— |
I, + I"l +
15A 2-j4Q q V)05, Vp 2-j40Q Vos,, v, Q) L=3/0°A
ob o
L b

(a) (b)

Figure 10.26
Solution of the problem in Fig. 10.25: (a) finding Vy, (b) finding Zxy,.
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To obtain Zyy,, we remove the independent source. Due to the
presence of the dependent current source, we connect a 3-A current
source (3 is an arbitrary value chosen for convenience here, a number
divisible by the sum of currents leaving the node) to terminals a-b as
shown in Fig. 10.26(b). At the node, KCL gives

3=1,+0.5I, = I,=2A
Applying KVL to the outer loop in Fig. 10.26(b) gives

Vo=1,4+j3+2—j4)=26—))
The Thevenin impedance is

V, _206—)
ZTh:7:7:

4 — 0.6667 Q
I, 3 /

429

Determine the Thevenin equivalent of the circuit in Fig. 10.27 as seen
from the terminals a-b.

Answer: Z,, = 4473 /=7.64° O, Vo, = 7.35/72.9° V.

Practice Problem 10.9

8 Q jaQ

—j2Q ——

% L0 A 0.2V,
4Q
o b

Figure 10.27
For Practice Prob. 10.9.

Obtain current I, in Fig. 10.28 using Norton’s theorem.

a
|
50 _ 3/0° A t
g 29 200
10 Q
40,/90° V j15Q
jaQ
b

Figure 10.28

For Example 10.10.
Solution:
Our first objective is to find the Norton equivalent at terminals a-b. Zy
is found in the same way as Zr,. We set the sources to zero as shown
in Fig. 10.29(a). As evident from the figure, the (8 — j2) and (10 + j4)
impedances are short-circuited, so that

To get Iy, we short-circuit terminals a-b as in Fig. 10.29(b) and
apply mesh analysis. Notice that meshes 2 and 3 form a supermesh
because of the current source linking them. For mesh 1,

—j40 + (18 + j2)I, — (8 — j2)L, — (10 + jAHL; = 0 (10.10.1)

Example 10.10
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3+/8 D %5
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a
O
5
g 2

L
Ly

10

4
O
b

(a)
Figure 10.29

S
S

(b) ©

Solution of the circuit in Fig. 10.28: (a) finding Zy;, (b) finding V, (c) calculating I,,.

For the supermesh,
13 = j2)I, + (10 + jH)I; — (18 + j2)I; =0 (10.10.2)
At node a, due to the current source between meshes 2 and 3,
L=L+3 (10.10.3)
Adding Eqgs. (10.10.1) and (10.10.2) gives
—j40 + 51, =0 = L =8
From Eq. (10.10.3),
L=L+3=3+;8
The Norton current is
Iyv=L=0CB+j8A

Figure 10.29(c) shows the Norton equivalent circuit along with the
impedance at terminals a-b. By current division,
5 3+8

I = — Iy = — = 1.465/38.48° A
5420 + /15 543

Practice Problem 10.10

Determine the Norton equivalent of the circuit in Fig. 10.30 as seen
from terminals a-b. Use the equivalent to find I,.

4Q e
AMA IR
8Q 1@ —/3e
R —_—
L 10Q
20,/0° V (D 4/-90° A
R
b

Figure 10.30
For Practice Prob. 10.10 and Prob. 10.35.

Answer: Z, = 3.176 + j0.706 Q, I, = 8.396/—32.68° A,
I, = 1.9714/-2.10° A.
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10.7 Op Amp AC Circuits

The three steps stated in Section 10.1 also apply to op amp circuits, as
long as the op amp is operating in the linear region. As usual, we will
assume ideal op amps. (See Section 5.2.) As discussed in Chapter 5,
the key to analyzing op amp circuits is to keep two important proper-
ties of an ideal op amp in mind:

1. No current enters either of its input terminals.
2. The voltage across its input terminals is zero.

The following examples will illustrate these ideas.
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Determine v,(f) for the op amp circuit in Fig. 10.31(a) if v, =
3 cos 10007 V.

Example 10.11

—0 V

20 kQ v
20 kQ f
A | MWy
L 01 uF = —j10kQ
10 kQ 10 kQ 10kQ Vv, 0k 4oy
A A = o, — T W\— 5 =
+ +
2 = 0.2 uF 3°V _jskQ
T ° T

(a)
Figure 10.31

For Example 10.11: (a) the original circuit in the time domain, (b) its frequency domain equivalent.

Solution:

We first transform the circuit to the frequency domain, as shown in
Fig. 10.31(b), where V, = 3&3,(0 = 1000 rad/s. Applying KCL at
node 1, we obtain

3£—V1:L+V1—0+V1—V,,
10 -5 10 20

or
6=06+j4HV, -V, (10.11.1)
At node 2, KCL gives
V,-0 0-YV,
10 —j10

which leads to
V.= -jV, (10.11.2)
Substituting Eq. (10.11.2) into Eq. (10.11.1) yields
6=—j5+jHV, =V, =03 -5V,

v, = 1.029/59.04°

T35
Hence,
v, (1) = 1.029 cos(10007 + 59.04°) V

(b)



www.konkur.in

432

Chapter 10 Sinusoidal Steady-State Analysis

Practice Problem 10.11

Find v, and i, in the op amp circuit of Fig. 10.32. Let v, =
12 cos 50007 V.

— 10nF

I
10 kQ T

A
20 kQ
20 nF

IF——

Figure 10.32
For Practice Prob. 10.11.

Answer: 4 sin 5,000¢ V, 400 sin 5,000 wA.

Example 10.12

S+

Figure 10.33
For Example 10.12.

Compute the closed-loop gain and phase shift for the circuit in Fig. 10.33.

Assume that R, = R, = 10kQ,C, =2 uF, C, = 1 uF, and w =
200 rad/s.
Solution:
The feedback and input impedances are calculated as
1 R
Z,=R,|| - = 2
ja)Cz 1+ ]wR2C2
1 1 + joR,C
Z, =Ry + - = .J =l
JjoC JjoC,

Since the circuit in Fig. 10.33 is an inverting amplifier, the closed-loop
gain is given by
G _ & _ _E _ _j(I)CIRz
Vs Z, (1 +](UR1C1)(1 +J(UR2C2)

Substituting the given values of Ry, R,, C;, C,, and w, we obtain
—i4

P L

(1 + 4 + j2)

Thus, the closed-loop gain is 0.434 and the phase shift is 130.6°.

= 0.434/130.6°

Practice Problem 10.12

« @

R

Figure 10.34
For Practice Prob. 10.12.

Obtain the closed-loop gain and phase shift for the circuit in Fig. 10.34.
Let R = 10k, C = 1 uF, and w = 1000 rad/s.

Answer: 1.0147, —5.6°.
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10.8 AC Analysis Using PSpice

PSpice affords a big relief from the tedious task of manipulating com-
plex numbers in ac circuit analysis. The procedure for using PSpice for
ac analysis is quite similar to that required for dc analysis. The reader
should read Section D.5 in Appendix D for a review of PSpice con-
cepts for ac analysis. AC circuit analysis is done in the phasor or fre-
quency domain, and all sources must have the same frequency.
Although ac analysis with PSpice involves using AC Sweep, our
analysis in this chapter requires a single frequency f = w/27. The out-
put file of PSpice contains voltage and current phasors. If necessary,
the impedances can be calculated using the voltages and currents in the
output file.
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Obtain v, and i, in the circuit of Fig. 10.35 using PSpice.

4kQ 50 mH
11N
i .
8 sin(1000¢ + 50°) V 2uF ==  05i, 2kQ < v,

Figure 10.35
For Example 10.13.

Solution:
We first convert the sine function to cosine.

8 sin(1000¢ + 50°) = 8 cos(1000z + 50° — 90°)
= 8 cos(1000r — 40°)

The frequency f is obtained from w as

0] 1000
f . . 159.155 Hz

The schematic for the circuit is shown in Fig. 10.36. Notice that the
current-controlled current source F1 is connected such that its current
flows from node 0 to node 3 in conformity with the original circuit in
Fig. 10.35. Since we only want the magnitude and phase of v, and i,, we
set the attributes of IPRINT and VPRINT1 each to AC = yes, MAG = yes,
PHASE = yes. As a single-frequency analysis, we select Analysis/
Setup/AC Sweep and enter Total Pts = 1, Start Freq = 159.155, and
Final Freq = 159.155. After saving the schematic, we simulate it by
selecting Analysis/Simulate. The output file includes the source
frequency in addition to the attributes checked for the pseudocomponents
IPRINT and VPRINT]I,

FREQ IM(V_PRINT3) IP(V_PRINT3)
1.592E+02 3.264E-03 -3.743E+01
FREQ VM(3) VP (3)
1.592E+02 1.550E+00 -9.518E+01

Example 10.13



www.konkur.in

434 Chapter 10 Sinusoidal Steady-State Analysis
R1 2 L1 3 =5 AC=ok
AN q il ° MAG=0k
4k B > 0mit PHASE=0k
mJI IPRINT
AcHAG=g ac=yes =
3 MAG=yes
aceuase=-40 &V O S0 R0
L GAIN=0.5 R2 § 2k
c1 T 2u

Figure 10.36
The schematic of the circuit in Fig. 10.35.

From this output file, we obtain
V,=155/-95.18°V, I, =3.264/—37.43° mA
which are the phasors for
v, = 1.55 cos(1000r — 95.18°) = 1.55 sin(1000r — 5.18°) V
and

i, = 3.264 cos(1000r — 37.43°) mA

Practice Problem 10.13  Use PSpice to obtain v, and i, in the circuit of Fig. 10.37.

iy 3kQ
—

2kQ

20 cos 3000t V 1 uF =

Figure 10.37
For Practice Prob. 10.13.

Answer: 536.4 cos(3,0007 — 154.6°) mV, 1.088 co0s(3,000r —55.12°) mA.

Example 10.14 Find V, and V, in the circuit of Fig. 10.38.

Solution:

1. Define. In its present form, the problem is clearly stated. Again,
we must emphasize that time spent here will save lots of time
and expense later on! One thing that might have created a
problem for you is that, if the reference was missing for this
problem, you would then need to ask the individual assigning
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v,| 20 20 |y, 2@ 20

18/30°V

Figure 10.38
For Example 10.14.

the problem where it is to be located. If you could not do that,
then you would need to assume where it should be and then
clearly state what you did and why you did it.

. Present. The given circuit is a frequency domain circuit and the

unknown node voltages V; and V, are also frequency domain
values. Clearly, we need a process to solve for these unknowns
in the frequency domain.

. Alternative. We have two direct alternative solution techniques

that we can easily use. We can do a straightforward nodal
analysis approach or use PSpice. Since this example is in a
section dedicated to using PSpice to solve problems, we will
use PSpice to find V| and V,. We can then use nodal analysis
to check the answer.

. Attempt. The circuit in Fig. 10.35 is in the time domain, whereas

the one in Fig. 10.38 is in the frequency domain. Since we are not
given a particular frequency and PSpice requires one, we select any
frequency consistent with the given impedances. For example, if
we select w = 1 rad/s, the corresponding frequency is f = w/2m =
0.15916 Hz. We obtain the values of the capacitance (C =

1/wX) and inductances (L = X, /w). Making these changes
results in the schematic in Fig. 10.39. To ease wiring, we have

1
AC=ok
MAG=ok
PHASE=yes

ACMAG=3A SD I1 R1<Z1

ACPHASE=0

J=]  AC=ok

4
=—=1% MaG=ok

PHASE=yes

R3

ACMAG=18V
ACPHASE=30

Figure 10.39
Schematic for the circuit in the Fig. 10.38.

V1

435
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exchanged the positions of the voltage-controlled current source G1
and the 2 + ;2 () impedance. Notice that the current of G1 flows
from node 1 to node 3, while the controlling voltage is across the
capacitor C2, as required in Fig. 10.38. The attributes of pseudo-
components VPRINT are set as shown. As a single-frequency
analysis, we select Analysis/Setup/AC Sweep and enter

Total Pts = 1, Start Freq = 0.15916, and Final Freq = 0.15916.
After saving the schematic, we select Analysis/Simulate

to simulate the circuit. When this is done, the output file
includes

FREQ VM (1) VP (1)
1.592E-01 2.708E+00 -5.673E+01

FREQ VM(3) VP (3)
1.592E-01 4.468E+00 -1.026E+02

from which we obtain,
V, = 2.708 /—56.74° V and V, = 6.911{—80.72° \"

5. Evaluate. One of the most important lessons to be learned is
that when using programs such as PSpice you still need to
validate the answer. There are many opportunities for making a
mistake, including coming across an unknown “bug” in PSpice
that yields incorrect results.

So, how can we validate this solution? Obviously, we can
rework the entire problem with nodal analysis, and perhaps
using MATLAB, to see if we obtain the same results. There is
another way we will use here: Write the nodal equations and
substitute the answers obtained in the PSpice solution, and see
if the nodal equations are satisfied.

The nodal equations for this circuit are given below. Note
we have substituted V; = V, into the dependent source.

VI_O VI_O Vl_Vz VI_V2
+ — + —= 4+ 02V, + ———=
1 —jl 2+ 52 —j2
(1 +j+025—j0.25 + 0.2 + j0.5)V,
—(0.25 — j0.25 + j0.5)V, = 3

(145 + j1.25)V, — (025 + j0.25)V, = 3

1.9144/40.76° V, — 0.3536/45° V, = 3

Now, to check the answer, we substitute the PSpice answers into
this.

-3 + =0

1.9144 /40.76° X 2.708 /—56.74° — 0.3536@ X 6.911/—80.72°
= 5.184/—15.98° - 2.444/—35.72°
=4.984 — j1.4272 — 1.9842 + j1.4269
=3 —;0.0003 [Answer checks]

6. Satisfactory? Although we used only the equation from node 1
to check the answer, this is more than satisfactory to validate the
answer from the PSpice solution. We can now present our work
as a solution to the problem.
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Obtain V, and I, in the circuit depicted in Fig. 10.40.

48,/0°V
. . J‘ij.ZS
1o 2 vy, j2Q
—
IX
16/60° A D %29 == _j1Q 41,

Figure 10.40
For Practice Prob. 10.14.

Answer: 39.37/44.78° V, 10.336 /158° A.

10.9 T Applications

The concepts learned in this chapter will be applied in later chapters
to calculate electric power and determine frequency response. The con-
cepts are also used in analyzing coupled circuits, three-phase circuits,
ac transistor circuits, filters, oscillators, and other ac circuits. In this
section, we apply the concepts to develop two practical ac circuits: the
capacitance multiplier and the sine wave oscillators.

10.9.1

The op amp circuit in Fig. 10.41 is known as a capacitance multiplier,
for reasons that will become obvious. Such a circuit is used in integrated-
circuit technology to produce a multiple of a small physical capaci-
tance C when a large capacitance is needed. The circuit in Fig. 10.41
can be used to multiply capacitance values by a factor up to 1,000.
For example, a 10-pF capacitor can be made to behave like a 100-nF
capacitor.

Capacitance Multiplier

v, RBioov R

Figure 10.41

Capacitance multiplier.

Practice Problem 10.14
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In Fig. 10.41, the first op amp operates as a voltage follower, while
the second one is an inverting amplifier. The voltage follower isolates
the capacitance formed by the circuit from the loading imposed by the
inverting amplifier. Since no current enters the input terminals of the
op amp, the input current I; flows through the feedback capacitor.
Hence, at node 1,

V()
IL=——"7"=joC(V;,—-V 10.3
T e v 0) (10.3)

Applying KCL at node 2 gives
V,i-0 0-YV,

or
V, = -2V, (10.4)

Substituting Eq. (10.4) into (10.3) gives

: R,
I[ =]wC 1 +— V,‘
R,

or
L_. (1+R2>c (10.5)
v, U TR '
The input impedance is
V; 1
Z,=—=—— (10.6)
I,‘ ](L)ch
where
R,
Ceq = <1 + > C (10.7)
R,

Thus, by a proper selection of the values of R, and R,, the op amp cir-
cuit in Fig. 10.41 can be made to produce an effective capacitance
between the input terminal and ground, which is a multiple of the phys-
ical capacitance C. The size of the effective capacitance is practically
limited by the inverted output voltage limitation. Thus, the larger the
capacitance multiplication, the smaller is the allowable input voltage to
prevent the op amps from reaching saturation.

A similar op amp circuit can be designed to simulate inductance.
(See Prob. 10.89.) There is also an op amp circuit configuration to cre-
ate a resistance multiplier.

Example 10.15

Calculate C. in Fig. 10.41 when R, = 10k{), R, = 1 M, and C = 1 nF.

Solution:
From Eq. (10.7)

R, 1 X 10°
Cqy=(1+—]C=(1+—-—5)1nF =101 nF
10 X 10
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Determine the equivalent capacitance of the op amp circuit in Fig. 1041 Practice Problem 10.15
if R, = 10kQ, R, = 10 MQ, and C = 10 nF.

Answer: 10 uF.

10.9.2 Oscillators

We know that dc is produced by batteries. But how do we produce ac?
One way is using oscillators, which are circuits that convert dc to ac.

An oscillator is a circuit that produces an ac waveform as output when
powered by a dc input.

The only external source an oscillator needs is the dc power sup-
ply. Ironically, the dc power supply is usually obtained by converting
the ac supplied by the electric utility company to dc. Having gone
through the trouble of conversion, one may wonder why we need to
use the oscillator to convert the dc to ac again. The problem is that the
ac supplied by the utility company operates at a preset frequency of
60 Hz in the United States (50 Hz in some other nations), whereas J This corresponds to w = 97f =
many applications such as electronic circuits, communication systems, 377 rad/s.
and microwave devices require internally generated frequencies that
range from 0 to 10 GHz or higher. Oscillators are used for generating
these frequencies.
In order for sine wave oscillators to sustain oscillations, they must
meet the Barkhausen criteria:

1. The overall gain of the oscillator must be unity or greater. There-
fore, losses must be compensated for by an amplifying device.

2. The overall phase shift (from input to output and back to the input)
must be zero.

Three common types of sine wave oscillators are phase-shift, twin 7, and
Wien-bridge oscillators. Here we consider only the Wien-bridge oscillator.

The Wien-bridge oscillator is widely used for generating sinusoids
in the frequency range below 1 MHz. It is an RC op amp circuit with
only a few components, easily tunable and easy to design. As shown
in Fig. 10.42, the oscillator essentially consists of a noninverting ampli-
fier with two feedback paths: The positive feedback path to the nonin-
verting input creates oscillations, while the negative feedback path to
the inverting input controls the gain. If we define the impedances of
the RC series and parallel combinations as Z, and Z,,, then

Negative feedback
path to control gain

