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This series of textbooks was begun in 1951 by the
late Dr. James L. Meriam. At that time, the books
represented a revolutionary transformation in un-
dergraduate mechanics education. They became the
definitive textbooks for the decades that followed as
well as models for other engineering mechanics texts
that have subsequently appeared. Published under
slightly different titles prior to the 1978 First Edi-
tions, this textbook series has always been charac-
terized by logical organization, clear and rigorous
presentation of the theory, instructive sample prob-
lems, and a rich collection of real-life problems, all
with a high standard of illustration. In addition to
the U.S. versions, the books have appeared in SI ver-
sions and have been translated into many foreign
languages. These textbooks collectively represent an
international standard for undergraduate texts in
mechanics.

The innovations and contributions of Dr. Meriam
(1917-2000) to the field of engineering mechanics
cannot be overstated. He was one of the premier
engineering educators of the second half of the twentieth
century. Dr. Meriam earned the B.E., M.Eng., and
Ph.D. degrees from Yale University. He had early in-
dustrial experience with Pratt and Whitney Aircraft
and the General Electric Company. During the
Second World War he served in the U.S. Coast Guard.
He was a member of the faculty of the University of
California—Berkeley, Dean of Engineering at Duke
University, a faculty member at the California Poly-
technic State University, and visiting professor at
the University of California—Santa Barbara, finally
retiring in 1990. Professor Meriam always placed
great emphasis on teaching, and this trait was recog-
nized by his students wherever he taught. He was
the recipient of several teaching awards, including
the Benjamin Garver Lamme Award, which is the
highest annual national award of the American
Society of Engineering Education (ASEE).

Dr. L. Glenn Kraige, coauthor of the Engineering
Mechanics series since the early 1980s, has also
made significant contributions to mechanics educa-
tion. Dr. Kraige earned his B.S., M.S., and Ph.D. de-
grees at the University of Virginia, principally in
aerospace engineering, and he is Professor Emeritus
of Engineering Science and Mechanics at Virginia
Polytechnic Institute and State University. During the
mid-1970s, I had the singular pleasure of chairing
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Professor Kraige’s graduate committee and take par-
ticular pride in the fact that he was the first of my
fifty-four Ph.D. graduates. Professor Kraige was in-
vited by Professor Meriam to team with him, thereby
ensuring that the Meriam legacy of textbook author-
ship excellence would be carried forward to future
generations of engineers.

In addition to his widely recognized research
and publications in the field of spacecraft dynamics,
Professor Kraige has devoted his attention to the
teaching of mechanics at both introductory and
advanced levels. His outstanding teaching has been
widely recognized and has earned him teaching
awards at the departmental, college, university,
state, regional, and national levels. These awards in-
clude the Outstanding Educator Award from the
State Council of Higher Education for the Common-
wealth of Virginia. In 1996, the Mechanics Division
of ASEE bestowed upon him the Archie Higdon Dis-
tinguished Educator Award. The Carnegie Founda-
tion for the Advancement of Teaching and the Council
for Advancement and Support of Education awarded
him the distinction of Virginia Professor of the Year
for 1997. In his teaching, Professor Kraige stresses
the development of analytical capabilities along with
the strengthening of physical insight and engineer-
ing judgment. Since the early 1980s, he has worked
on personal-computer software designed to enhance
the teaching/learning process in statics, dynamics,
strength of materials, and higher-level areas of
dynamics and vibrations.

Continuing as coauthor for this edition is Dr.
Jeffrey N. Bolton, Associate Professor of Mechanical
Engineering Technology and Director of Digital
Learning at Bluefield State College. Dr. Bolton
earned his B.S., M.S., and Ph.D. in Engineering
Mechanics from Virginia Polytechnic Institute and
State University. His research interests include
automatic balancing of six-degree-of-freedom
elastically-mounted rotors. He has a wealth of teach-
ing experience, including at Virginia Tech, where he
was the 2010 recipient of the Sporn Teaching Award
for Engineering Subjects, which is primarily chosen
by students. In 2014, Professor Bolton received the
Outstanding Faculty Award from Bluefield State
College. Professor Bolton was selected as the 2016
West Virginia Professor of the Year by the Faculty
Merit Foundation. He has the unusual ability to set
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high levels of rigor and achievement in the classroom
while establishing a high degree of rapport with his
students. In addition to maintaining time-tested tra-
ditions for future generations of students, Dr. Bolton
brings effective application of technology to this text-
book series.

The Ninth Edition of Engineering Mechanics con-
tinues the same high standards set by previous edi-
tions and adds new features of help and interest to
students. It contains a vast collection of interesting
and instructive problems. The faculty and students
privileged to teach or study from the Meriam/Kraige/
Bolton Engineering Mechanics series will benefit
from several decades of investment by three highly

accomplished educators. Following the pattern of the
previous editions, this textbook stresses the applica-
tion of theory to actual engineering situations, and at
this important task it remains the best.

4L & ' 'i)w--;@usm
/S

6/ -~

JOHN L. JUNKINS

Distinguished Professor of Aerospace Engineering
Holder of the Royce E. Wisebaker ‘39 Chair in
Engineering Innovation

Texas A&M University

College Station, Texas



Engineering mechanics is both a foundation and a
framework for most of the branches of engineering.
Many of the topics in such areas as civil, mechanical,
aerospace, and agricultural engineering, and of
course engineering mechanics itself, are based upon
the subjects of statics and dynamics. Even in a dis-
cipline such as electrical engineering, practitioners,
in the course of considering the electrical compon-
ents of a robotic device or a manufacturing process,
may find themselves first having to deal with the
mechanics involved.

Thus, the engineering mechanics sequence is
critical to the engineering curriculum. Not only is
this sequence needed in itself, but courses in engin-
eering mechanics also serve to solidify the student’s
understanding of other important subjects, including
applied mathematics, physics, and graphics. In addi-
tion, these courses serve as excellent settings in
which to strengthen problem-solving abilities.

Philosophy

The primary purpose of the study of engineering
mechanics is to develop the capacity to predict the
effects of force and motion while carrying out the cre-
ative design functions of engineering. This capacity
requires more than a mere knowledge of the physical
and mathematical principles of mechanics; also re-
quired is the ability to visualize physical configura-
tions in terms of real materials, actual constraints,
and the practical limitations which govern the beha-
vior of machines and structures. One of the primary
objectives in a mechanics course is to help the stu-
dent develop this ability to visualize, which is so vital
to problem formulation. Indeed, the construction of a
meaningful mathematical model is often a more im-
portant experience than its solution. Maximum pro-
gress is made when the principles and their limita-
tions are learned together within the context of
engineering application.

There is a frequent tendency in the presentation
of mechanics to use problems mainly as a vehicle to
illustrate theory rather than to develop theory for
the purpose of solving problems. When the first view
is allowed to predominate, problems tend to become
overly idealized and unrelated to engineering with
the result that the exercise becomes dull, academic,
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and uninteresting. This approach deprives the stu-
dent of valuable experience in formulating problems
and thus of discovering the need for and meaning of
theory. The second view provides by far the stronger
motive for learning theory and leads to a better
balance between theory and application. The crucial
role played by interest and purpose in providing the
strongest possible motive for learning cannot be
overemphasized.

Furthermore, as mechanics educators, we should
stress the understanding that, at best, theory can
only approximate the real world of mechanics rather
than the view that the real world approximates the
theory. This difference in philosophy is indeed basic
and distinguishes the engineering of mechanics from
the science of mechanics.

Over the past several decades, several unfortu-
nate tendencies have occurred in engineering educa-
tion. First, emphasis on the geometric and physical
meanings of prerequisite mathematics appears to
have diminished. Second, there has been a signific-
ant reduction and even elimination of instruction in
graphics, which in the past enhanced the visualiza-
tion and representation of mechanics problems.
Third, in advancing the mathematical level of our
treatment of mechanics, there has been a tendency
to allow the notational manipulation of vector opera-
tions to mask or replace geometric visualization.
Mechanics is inherently a subject which depends on
geometric and physical perception, and we should in-
crease our efforts to develop this ability.

A special note on the use of computers is in order.
The experience of formulating problems, where
reason and judgment are developed, is vastly more
important for the student than is the manipulative
exercise in carrying out the solution. For this reason,
computer usage must be carefully controlled. At
present, constructing free-body diagrams and formu-
lating governing equations are best done with pencil
and paper. On the other hand, there are instances in
which the solution to the governing equations can
best be carried out and displayed using the computer.
Computer-oriented problems should be genuine in
the sense that there is a condition of design or critic-
ality to be found, rather than “makework” problems
in which some parameter is varied for no apparent
reason other than to force artificial use of the com-
puter. These thoughts have been kept in mind during
the design of the computer-oriented problems in the

vii
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Ninth Edition. To conserve adequate time for prob-
lem formulation, it is suggested that the student be
assigned only a limited number of the computer-
oriented problems.

As with previous editions, this Ninth Edition of
Engineering Mechanics is written with the foregoing
philosophy in mind. It is intended primarily for the
first engineering course in mechanics, generally
taught in the second year of study. Engineering
Mechanics is written in a style which is both concise
and friendly. The major emphasis is on basic prin-
ciples and methods rather than on a multitude of
special cases. Strong effort has been made to show
both the cohesiveness of the relatively few funda-
mental ideas and the great variety of problems which
these few ideas will solve.

Organization

In Chapter 1, the fundamental concepts necessary
for the study of mechanics are established.

In Chapter 2, the properties of forces, moments,
couples, and resultants are developed so that the
student may proceed directly to the equilibrium of
nonconcurrent force systems in Chapter 3 without
unnecessarily belaboring the relatively trivial prob-
lem of the equilibrium of concurrent forces acting on
a particle.

In both Chapters 2 and 3, analysis of two-
dimensional problems is presented in Section A before
three-dimensional problems are treated in Section B.
With this arrangement, the instructor may cover all of
Chapter 2 before beginning Chapter 3 on equilibrium,
or the instructor may cover the two chapters in the
order 2A, 3A, 2B, 3B. The latter order treats force sys-
tems and equilibrium in two dimensions and then
treats these topics in three dimensions.

Application of equilibrium principles to simple
trusses and to frames and machines is presented in
Chapter 4 with primary attention given to two-
dimensional systems. A sufficient number of three-
dimensional examples are included, however, to
enable students to exercise more general vector tools
of analysis.

The concepts and categories of distributed forces
are introduced at the beginning of Chapter 5, with
the balance of the chapter divided into two main sec-
tions. Section A treats centroids and mass centers;
detailed examples are presented to help students
master early applications of calculus to physical and
geometrical problems. Section B includes the special
topics of beams, flexible cables, and fluid forces,
which may be omitted without loss of continuity of
basic concepts.

Chapter 6 on friction is divided into Section A on
the phenomenon of dry friction and Section B on se-
lected machine applications. Although Section B may
be omitted if time is limited, this material does
provide a valuable experience for the student in
dealing with both concentrated and distributed fric-
tion forces.

Chapter 7 presents a consolidated introduc-
tion to virtual work with applications limited to
single-degree-of-freedom systems. Special emphasis
is placed on the advantage of the virtual-work and
energy method for interconnected systems and
stability determination. Virtual work provides an
excellent opportunity to convince the student of
the power of mathematical analysis in mechanics.

Moments and products of inertia of areas are
presented in Appendix A. This topic helps to bridge
the subjects of statics and solid mechanics. Appendix
C contains a summary review of selected topics of ele-
mentary mathematics as well as several numerical
techniques which the student should be prepared to
use in computer-solved problems. Useful tables of
physical constants, centroids, moments of inertia,
and conversion factors are contained in Appendix D.

Pedagogical Features

The basic structure of this textbook consists of an
article which rigorously treats the particular subject
matter at hand, followed by one or more sample
problems. For the Ninth Edition, all homework prob-
lems have been moved to a special Student Problems
section found after Appendix D near the end of the
textbook. There is a Chapter Review at the end of
each chapter which summarizes the main points in
that chapter, and a corresponding Chapter Review
Problem set found in the Student Problems section.

Problems

The 89 Sample Problems appear on specially de-
signed pages by themselves. The solutions to typical
statics problems are presented in detail. In addition,
explanatory and cautionary notes (Helpful Hints)
are number-keyed to the main presentation.

There are 898 homework exercises. The problem
sets are divided into Introductory Problems and Repre-
sentative Problems. The first section consists of simple,
uncomplicated problems designed to help students
gain confidence with the new topic, while most of the
problems in the second section are of average difficulty
and length. The problems are generally arranged in
order of increasing difficulty. More difficult exercises



appear near the end of the Representative Problems
and are marked with the triangular symbol ». Com-
puter-Oriented Problems, marked with an asterisk, ap-
pear throughout the problems and also in a special
section at the conclusion of the Chapter Review Prob-
lems. Problems marked with the student-solution icon
EED have solutions available onWileyPlus. The an-
swers to all problems have been provided in a special
section near the end of the textbook.

In recognition of the need for emphasis on SI units,
there are approximately two problems in SI units for
every one in U.S. customary units. This apportionment
between the two sets of units permits anywhere from
a 50-50 emphasis to a 100-percent SI treatment.

A notable feature of the Ninth Edition, as with
all previous editions, is the wealth of interesting and
important problems which apply to engineering
design. Whether directly identified as such or not,
virtually all of the problems deal with principles and
procedures inherent in the design and analysis of
engineering structures and mechanical systems.

[llustrations

In order to bring the greatest possible degree of real-
ism and clarity to the illustrations, the electronic ver-
sion of this textbook series continues to be produced in
full color. It is important to note that color is used con-
sistently for the identification of certain quantities:

¢ red for forces and moments
e green for velocity and acceleration arrows

e orange dashes for selected trajectories of moving
points

Subdued colors are used for those parts of an
illustration which are not central to the problem at
hand. Whenever possible, mechanisms or objects
which commonly have a certain color will be portrayed
in that color. All of the fundamental elements of tech-
nical illustration which have been an essential part of
this Engineering Mechanics series of textbooks have
been retained. The authors wish to restate the convic-
tion that a high standard of illustration is critical to
any written work in the field of mechanics.

Special Features

We have retained the following hallmark features of
previous editions:

e All theory portions are constantly reexamined in
order to maximize rigor, clarity, readability, and
level of friendliness.
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¢ Key Concepts areas within the theory presenta-
tion are specially marked and highlighted.

¢ The Chapter Reviews are highlighted and feature
itemized summaries.

e All Sample Problems are printed on specially de-
signed pages for quick identification.

e Within-the-chapter photographs are provided in
order to provide additional connection to actual
situations in which statics has played a major role.

Resources and Formats

The following items have been prepared to comple-
ment this textbook:

Instructor and Student Resources

The following resources are available online at www.
wiley.com/college / meriam. There may be additional
resources not listed.

WileyPlus: A complete online learning system
to help prepare and present lectures, assign and
manage homework, keep track of student progress,
and customize your course content and delivery.
Newly added materials for WileyPlus include step-
by-step video solutions for approximately 200
problems, all of which are similar to those found in
the textbook. These author-generated videos illus-
trate clear and concise solution strategies for stu-
dents, further emphasizing key concepts and
demonstrating sound principles of problem solving
in mechanics.

Instructor’s Manual: Prepared by the authors
and independently checked, fully worked solutions to
all problems in the text are available to faculty by
contacting their local Wiley representative.

All figures in the text are available in electronic
format for use in creating lecture presentations.

All Sample Problems are available as elec-
tronic files for display and discussion in the
classroom.

Formats

This Ninth Edition is available in a variety of
formats, including conventional print, WileyPlus
standalone, standalone alone e-text (now with nu-
merous enhancements), and other bundled formats.
Please contact a Wiley representative (www.wiley.
com/go/whosmyrep) for more information.
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CHAPTER 1

Introduction
to Statics

CHAPTER OUTLINE

1/1 Mechanics

1/2 Basic Concepts

1/3 Scalars and Vectors

1/4 Newton’s Laws

1/5 Units

1/6 Law of Gravitation

1/7 Accuracy, Limits, and Approximations

By Duke.of.arcH - www.flickr.com/photos/dukeofarch/Getty Images, Inc.

1/8 Problem Solving in Statics Structures which support large forces must

1/9 Chapter Review be designed with the principles of mechanics
foremost in mind. In this view of Sydney,
Australia, one can see a variety of such
structures.

11 | Mechanics

Mechanics is the physical science which deals with the effects of forces
on objects. No other subject plays a greater role in engineering analysis
than mechanics. Although the principles of mechanics are few, they
have wide application in engineering. The principles of mechanics are
central to research and development in the fields of vibrations, stability
and strength of structures and machines, robotics, rocket and space-
craft design, automatic control, engine performance, fluid flow, electri-
cal machines and apparatus, and molecular, atomic, and subatomic
behavior. A thorough understanding of this subject is an essential pre-
requisite for work in these and many other fields.

Mechanics is the oldest of the physical sciences. The early history
of this subject is synonymous with the very beginnings of engineering.
The earliest recorded writings in mechanics are those of Archimedes
(287-212 B.C.) on the principle of the lever and the principle of buoy-
ancy. Substantial progress came later with the formulation of the laws
of vector combination of forces by Stevinus (1548-1620), who also for-
mulated most of the principles of statics. The first investigation of a
dynamics problem is credited to Galileo (1564-1642) for his experi-
ments with falling stones. The accurate formulation of the laws of mo-
tion, as well as the law of gravitation, was made by Newton (1642—-1727), who also
conceived the idea of the infinitesimal in mathematical analysis. Substantial 1

S. Terry/Science Source

Sir Isaac Newton



2 CHAPTER1

Introduction to Statics

contributions to the development of mechanics were also made by da Vinci,
Varignon, Euler, D’Alembert, Lagrange, Laplace, and others.

In this book we will be concerned with both the development of the principles
of mechanics and their application. The principles of mechanics as a science are
rigorously expressed by mathematics, and thus mathematics plays an important
role in the application of these principles to the solution of practical problems.

The subject of mechanics is logically divided into two parts: statics, which con-
cerns the equilibrium of bodies under action of forces, and dynamics, which con-
cerns the motion of bodies. Engineering Mechanics is divided into these two parts,
Vol. 1 Statics and Vol. 2 Dynamics.

12 | Basic Concepts

The following concepts and definitions are basic to the study of mechanics, and they
should be understood at the outset.

Space is the geometric region occupied by bodies whose positions are described
by linear and angular measurements relative to a coordinate system. For three-
dimensional problems, three independent coordinates are needed. For two-dimensional
problems, only two coordinates are required.

Time is the measure of the succession of events and is a basic quantity in dy-
namics. Time is not directly involved in the analysis of statics problems.

Mass is a measure of the inertia of a body, which is its resistance to a change of
velocity. Mass can also be thought of as the quantity of matter in a body. The mass
of a body affects the gravitational attraction force between it and other bodies. This
force appears in many applications in statics.

Force is the action of one body on another. A force tends to move a body in the
direction of its action. The action of a force is characterized by its magnitude, by the
direction of its action, and by its point of application. Thus force is a vector quan-
tity, and its properties are discussed in detail in Chapter 2.

A particle is a body of negligible dimensions. In the mathematical sense, a
particle is a body whose dimensions are considered to be near zero so that we may
analyze it as a mass concentrated at a point. We often choose a particle as a differ-
ential element of a body. We may treat a body as a particle when its dimensions are
irrelevant to the description of its position or the action of forces applied to it.

Rigid body. A body is considered rigid when the change in distance between
any two of its points is negligible for the purpose at hand. For instance, the calcula-
tion of the tension in the cable which supports the boom of a mobile crane under load
is essentially unaffected by the small internal deformations in the structural mem-
bers of the boom. For the purpose, then, of determining the external forces which act
on the boom, we may treat it as a rigid body. Statics deals primarily with the calcula-
tion of external forces which act on rigid bodies in equilibrium. Determination of the
internal deformations belongs to the study of the mechanics of deformable bodies,
which normally follows statics in the curriculum.

13 | Scalars and Vectors

We use two kinds of quantities in mechanics—scalars and vectors. Scalar quanti-
ties are those with which only a magnitude is associated. Examples of scalar quan-
tities are time, volume, density, speed, energy, and mass. Vector quantities, on the
other hand, possess direction as well as magnitude, and must obey the parallelogram
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law of addition as described later in this article. Examples of vector quantities are
displacement, velocity, acceleration, force, moment, and momentum. Speed is a sca-
lar. It is the magnitude of velocity, which is a vector. Thus velocity is specified by a
direction as well as a speed.

Vectors representing physical quantities can be classified as free, sliding, or
fixed.

A free vector is one whose action is not confined to or associated with a unique
line in space. For example, if a body moves without rotation, then the movement
or displacement of any point in the body may be taken as a vector. This vector de-
scribes equally well the direction and magnitude of the displacement of every
point in the body. Thus, we may represent the displacement of such a body by a
free vector.

A sliding vector has a unique line of action in space but not a unique point of
application. For example, when an external force acts on a rigid body, the force can
be applied at any point along its line of action without changing its effect on the
body as a whole,* and thus it is a sliding vector.

A fixed vector is one for which a unique point of application is specified. The ac-
tion of a force on a deformable or nonrigid body must be specified by a fixed vector at
the point of application of the force. In this instance the forces and deformations
within the body depend on the point of application of the force, as well as on its mag-
nitude and line of action.

Conventions for Equations and Diagrams

A vector quantity V is represented by a line segment, Fig. 1/1, having the direction v
of the vector and having an arrowhead to indicate the sense. The length of the di-

rected line segment represents to some convenient scale the magnitude |V| of the 6
vector, which is printed with lightface italic type V. For example, we may choose a -v _-~

scale such that an arrow one inch long represents a force of twenty pounds. £~

In scalar equations, and frequently on diagrams where only the magnitude of
a vector is labeled, the symbol will appear in lightface italic type. Boldface type is
used for vector quantities whenever the directional aspect of the vector is a part of
its mathematical representation. When writing vector equations, always be certain
to preserve the mathematical distinction between vectors and scalars. In handwrit-
ten work, use a distinguishing mark for each vector quantity, such as an underline,
V, or an arrow over the symbol, V', to take the place of boldface type in print.

Working with Vectors

The direction of the vector V may be measured by an angle 6 from some known
reference direction as shown in Fig. 1/1. The negative of V is a vector —V having
the same magnitude as V but directed in the sense opposite to V, as shown in
Fig. 1/1.

Vectors must obey the parallelogram law of combination. This law states that
two vectors V; and V,, treated as free vectors, Fig. 1/2a, may be replaced by their
equivalent vector V, which is the diagonal of the parallelogram formed by V; and V,
as its two sides, as shown in Fig. 1/2b. This combination is called the vector sum and
is represented by the vector equation

V=V1+V2

*This is the principle of transmissibility, which is discussed in Art. 2/2.
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FIGURE 1/2

where the plus sign, when used with the vector quantities (in boldface type), means
vector and not scalar addition. The scalar sum of the magnitudes of the two vectors
is written in the usual way as V; + V,. The geometry of the parallelogram shows
that V # V1 + V2.

The two vectors V; and V,, again treated as free vectors, may also be added head-
to-tail by the triangle law, as shown in Fiig. 1/2¢, to obtain the identical vector sum V.

v, v, We see from the diagram that the order of addition of the vectors does

< not affect their sum, so that V; + V, =V, + V.
\\\ \/ £ \\\ The difference V; — V, between the two vectors is easily obtained
v -V, S by adding —V, to V; as shown in Fig. 1/3, where either the triangle or

FIGURE 1/3

A\ parallelogram procedure may be used. The difference V' between the
two vectors is expressed by the vector equation

V,=V1—V2

where the minus sign denotes vector subtraction.

Any two or more vectors whose sum equals a certain vector V are said to be
the components of that vector. Thus, the vectors V; and V, in Fig. 1/4a are the
components of V in the directions 1 and 2, respectively. It is usually most conve-
nient to deal with vector components which are mutually perpendicular; these are
called rectangular components. The vectors V, and V, in Fig. 1/4b are the x- and
y-components, respectively, of V. Likewise, in Fig. 1/4c, V,. and V,, are the x'- and
y’-components of V. When expressed in rectangular components, the direction of
the vector with respect to, say, the x-axis is clearly specified by the angle 6, where

v
6 =tan™! —*
an Vx

A vector V may be expressed mathematically by multiplying its magnitude V by
a vector n whose magnitude is one and whose direction coincides with that of V. The
vector n is called a unit vector. Thus,

V=Vn

In this way both the magnitude and direction of the vector are conveniently contained
in one mathematical expression. In many problems, particularly three-dimensional

(a) (®)

FIGURE 1/4



ones, it is convenient to express the rectangular components of V, Fig. 1/5,
in terms of unit vectors i, j, and k, which are vectors in the x-, y-, and
z-directions, respectively, with unit magnitudes. Because the vector V is the
vector sum of the components in the x-, y-, and z-directions, we can express V
as follows:

V=Vi+V,j+Vk

We now make use of the direction cosines [, m, and n of V, which are defined by
[ =cos 6, m = cos 0, n =-cos 6,

Thus, we may write the magnitudes of the components of V as

V,=IV  V,=mV  V,=nV
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FIGURE 1/5

where, from the Pythagorean theorem,

VE=V2+Vz2+ V2

Note that this relation implies that 12 + m? + n? = 1.

14 | Newton’s Laws

Sir Isaac Newton was the first to state correctly the basic laws governing the mo-
tion of a particle and to demonstrate their validity.* Slightly reworded with modern
terminology, these laws are:

Law I. A particle remains at rest or continues to move with uniform velocity
(in a straight line with a constant speed) if there is no unbalanced force acting
on it.

Law II. The acceleration of a particle is proportional to the vector sum of forces
acting on it and is in the direction of this vector sum.

Law III. The forces of action and reaction between interacting bodies are
equal in magnitude, opposite in direction, and collinear (they lie on the same
line).

The correctness of these laws has been verified by innumerable accurate phys-
ical measurements. Newton’s second law forms the basis for most of the analysis in
dynamics. As applied to a particle of mass m, it may be stated as

F =ma (1/1)

where F is the vector sum of forces acting on the particle and a is the resulting ac-
celeration. This equation is a vector equation because the direction of F must agree
with the direction of a, and the magnitudes of F and ma must be equal.

Newton’s first law contains the principle of the equilibrium of forces, which is
the main topic of concern in statics. This law is actually a consequence of the second
law, since there is no acceleration when the force is zero, and the particle either is at

*Newton’s original formulations may be found in the translation of his Principia (1687) revised
by F. Cajori, University of California Press, 1934.



6 CHAPTER1

Introduction to Statics

rest or is moving with a uniform velocity. The first law adds nothing new to the
description of motion but is included here because it was part of Newton’s classical
statements.

The third law is basic to our understanding of force. It states that forces always
occur in pairs of equal and opposite forces. Thus, the downward force exerted on the
desk by the pencil is accompanied by an upward force of equal magnitude exerted
on the pencil by the desk. This principle holds for all forces, variable or constant,
regardless of their source, and holds at every instant of time during which the forces
are applied. Lack of careful attention to this basic law is the cause of frequent error
by the beginner.

In the analysis of bodies under the action of forces, it is absolutely necessary to
be clear about which force of each action—reaction pair is being considered. It is nec-
essary first of all to isolate the body under consideration and then to consider only
the one force of the pair which acts on the body in question.

s | Units

In mechanics we use four fundamental quantities called dimensions. These are
length, mass, force, and time. The units used to measure these quantities cannot all
be chosen independently because they must be consistent with Newton’s second
law, Eq. 1/1. Although there are a number of different systems of units, only the two
systems most commonly used in science and technology will be used in this text.
The four fundamental dimensions and their units and symbols in the two systems
are summarized in the following table.

Dimensional SI Units U.S. Customary Units

Quantity Symbol Unit Symbol Unit

Mass M kilogram kg slug —
Base

Length L .. { meter m foot ft
units Base

Time T second .. { second sec

units
Force F newton N pound Ib

SI Units

The International System of Units, abbreviated SI (from the French, Systéme In-
ternational d’Unités), is accepted in the United States and throughout the world,
and is a modern version of the metric system. By international agreement, SI units
will in time replace other systems. As shown in the table, in SI, the units kilogram
(kg) for mass, meter (m) for length, and second (s) for time are selected as the base
units, and the newton (N) for force is derived from the preceding three by Eq. 1/1.
Thus, force (N) = mass (kg) x acceleration (m/s?) or

N = kg-m/s?

Thus, 1 newton is the force required to give a mass of 1 kg an acceleration of 1 m/s%

Consider a body of mass m which is allowed to fall freely near the surface of the
earth. With only the force of gravitation acting on the body, it falls with an accelera-
tion g toward the center of the earth. This gravitational force is the weight W of the
body and is found from Eq. 1/1:

W(N) = m(kg) x g(m/s?)



U.S. Customary Units

The U.S. customary, or British system of units, also called the foot-pound-second
(FPS) system, has been the common system in business and industry in English-
speaking countries. Although this system will in time be replaced by SI units, for
many more years engineers must be able to work with both SI units and FPS units,
and both systems are used freely in Engineering Mechanics.

As shown in the table, in the U.S. or FPS system, the units of feet (ft) for length,
seconds (sec) for time, and pounds (Ib) for force are selected as base units, and the slug
for mass is derived from Eq. 1/1. Thus, force (Ib) = mass (slugs) x acceleration (ft/sec?), or

Ib-sec?
ft
Therefore, 1 slug is the mass which is given an acceleration of 1 ft/sec? when acted

on by a force of 1 1b. If W is the gravitational force or weight and g is the accelera-
tion due to gravity, Eq. 1/1 gives

slug =

W (Ib)
g (ft/sec?)

Note that seconds is abbreviated as s in SI units, and as sec in FPS units.

In U.S. units the pound is also used on occasion as a unit of mass, especially to
specify thermal properties of liquids and gases. When distinction between the two
units is necessary, the force unit is frequently written as lbf and the mass unit as
Ibm. In this book we use almost exclusively the force unit, which is written simply
as lb. Other common units of force in the U.S. system are the kilopound (kip), which
equals 1000 b, and the ton, which equals 2000 1b.

The International System of Units (SI) is termed an absolute system because the
measurement of the base quantity mass is independent of its environment. On the
other hand, the U.S. system (FPS) is termed a gravitational system because its base
quantity force is defined as the gravitational attraction (weight) acting on a standard
mass under specified conditions (sea level and 45° latitude). A standard pound is also
the force required to give a one-pound mass an acceleration of 32.1740 ft/sec?.

In ST units the kilogram is used exclusively as a unit of mass—never force. In the
MKS (meter, kilogram, second) gravitational system, which has been used for many
years in non-English-speaking countries, the kilogram, like the pound, has been
used both as a unit of force and as a unit of mass.

m (slugs) =

Primary Standards

Primary standards for the measurements of mass, length, and time
have been established by international agreement and are as follows:

Mass. Thekilogram is defined as the mass of a specific platinum—
iridium cylinder which is kept at the International Bureau of
Weights and Measures near Paris, France. An accurate copy of
this cylinder is kept in the United States at the National Insti-
tute of Standards and Technology (NIST), formerly the National
Bureau of Standards, and serves as the standard of mass for the
United States.

Length. The meter, originally defined as one ten-millionth of the
distance from the pole to the equator along the meridian through
Paris, was later defined as the length of a specific platinum—
iridium bar kept at the International Bureau of Weights and
Measures. The difficulty of accessing the bar and reproducing

Article 1/5 Units 7
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accurate measurements prompted the adoption of more accurate The standard kilogram
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and reproducible standards of length for the meter, which is now defined as the
distance traveled by light in a vacuum in (1/299 792 458) second.

Time. The second was originally defined as the fraction 1/(86 400) of the mean
solar day. However, irregularities in the earth’s rotation led to difficulties with
this definition, and a more accurate and reproducible standard has been ad-
opted. The second is now defined as the duration of 9 192 631 770 periods of the
radiation of a specific state of the cesium-133 atom.

For most engineering work, and for our purpose in studying mechanics, the
accuracy of these standards is considerably beyond our needs. The standard
value for gravitational acceleration g is its value at sea level and at a 45° lati-
tude. In the two systems these values are

SI units g = 9.806 65 m/s?
U.S. units g = 32.1740 ft/sec?

The approximate values of 9.81 m/s? and 32.2 ft/sec? respectively, are sufficiently
accurate for the vast majority of engineering calculations.

Unit Conversions

A list of the SI units used in mechanics is shown in Table D/5 of Appendix D, along
with the numerical conversions between U.S. customary and SI units. Although this
table is useful for obtaining a feel for the relative size of SI and U.S. units, in time
engineers will find it essential to think directly in terms of SI units without converting
from U.S. units. In statics we are primarily concerned with the units of length and
force, with mass needed only when we compute gravitational force, as explained in
Art. 1/6. Unit conversion is unnecessary for the majority of problems in this textbook.

Figure 1/6 depicts examples of force, mass, and length in the two systems of
units, to aid in visualizing their relative magnitudes.

32.2 Ibf
(143.1N)

1 lbm
0.454 k
1kg ( 2
MASS  (2.20 lIbm)
1ft 1 slug or 32.2 Ibm
e hE
(0.305 m)
LENGTH
1m

(3.28 )
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1/6 | Law of Gravitation

In statics as well as dynamics we often need to compute the weight of a body, which
is the gravitational force acting on it. This computation depends on the law of
gravitation, which was also formulated by Newton. The law of gravitation is ex-
pressed by the equation

(1/2)

where F = the mutual force of attraction between two particles
G = a universal constant known as the constant of gravitation
mq, my = the masses of the two particles

r = the distance between the centers of the particles

The mutual forces F obey the law of action and reaction, since they are equal
and opposite and are directed along the line joining the centers of the particles,
as shown in Fig. 1/7. By experiment the gravitational constant is found to be
G =6.673(10"") m%/(kg-s?).

Gravitational Attraction of the Earth

Gravitational forces exist between every pair of bodies. On the
surface of the earth the only gravitational force of appreciable
magnitude is the force due to the attraction of the earth. For ex-
ample, each of two iron spheres 100 mm in diameter is attracted
to the earth with a gravitational force of 37.1 N, which is its
weight. On the other hand, the force of mutual attraction between
the spheres if they are just touching is 0.000 000 095 1 N. This
force is clearly negligible compared with the earth’s attraction of
37.1 N. Consequently the gravitational attraction of the earth is
the only gravitational force we need to consider for most engineer-
ing applications on the earth’s surface.

The gravitational attraction of the earth on a body (its weight)
exists whether the body is at rest or in motion. Because this at-
traction is a force, the weight of a body should be expressed in
newtons (N) in ST units and in pounds (Ib) in U.S. customary units.

FIGURE 1/7

- - et The gravitational force which the
Unfortunately, in common practice the mass unit kilogram (kg)  ¢arth exerts on the moon (fore-

has been frequently used as a measure of weight. This usage ground) is a key factor in the motion
should disappear in time as SI units become more widely used,  of the moon.
because in SI units the kilogram is used exclusively for mass and

the newton is used for force, including weight.

NASA Marshall Space Flight Center (NASA-

MSFC)
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For a body of mass m near the surface of the earth, the gravitational attraction
F on the body is specified by Eq. 1/2. We usually denote the magnitude of this
gravitational force or weight with the symbol W. Because the body falls with an
acceleration g, Eq. 1/1 gives

W =mg (1/3)

The weight W will be in newtons (N) when the mass m is in kilograms (kg) and the
acceleration of gravity g is in meters per second squared (m/s?). In U.S. customary
units, the weight W will be in pounds (Ib) when m is in slugs and g is in feet per sec-
ond squared. The standard values for g of 9.81 m/s® and 32.2 ft/sec? will be suffi-
ciently accurate for our calculations in statics.

The true weight (gravitational attraction) and the apparent weight (as mea-
sured by a spring scale) are slightly different. The difference, which is due to the
rotation of the earth, is quite small and will be neglected. This effect will be dis-
cussed in Vol. 2 Dynamics.

y7 | Accuracy, Limits, and Approximations

The number of significant figures in an answer should be no greater than the num-
ber of figures justified by the accuracy of the given data. For example, suppose the
24-mm side of a square bar was measured to the nearest millimeter, so we know the
side length to two significant figures. Squaring the side length gives an area of
576 mm?. However, according to our rule, we should write the area as 580 mm?,
using only two significant figures.

When calculations involve small differences in large quantities, greater accu-
racy in the data is required to achieve a given accuracy in the results. Thus, for
example, it is necessary to know the numbers 4.2503 and 4.2391 to an accuracy of
five significant figures to express their difference 0.0112 to three-figure accuracy. It
is often difficult in lengthy computations to know at the outset how many signifi-
cant figures are needed in the original data to ensure a certain accuracy in the
answer. Accuracy to three significant figures is considered satisfactory for most
engineering calculations.

In this text, answers will generally be shown to three significant figures unless the
answer begins with the digit 1, in which case the answer will be shown to four signifi-
cant figures. For purposes of calculation, consider all data given in this book to be exact.

Differentials

The order of differential quantities frequently causes misunderstanding in the
derivation of equations. Higher-order differentials may always be neglected com-
pared with lower-order differentials when the mathematical limit is approached.
For example, the element of volume AV of a right circular cone of altitude -2 and
base radius r may be taken to be a circular slice a distance x from the vertex and of
thickness Ax. The expression for the volume of the element is

2
AV =75 e Ax + x(A%)% + 5(Ax)]
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Note that, when passing to the limit in going from AV to dV and from Ax to dx, the
terms containing (Ax)? and (Ax)® drop out, leaving merely

2
dV = %x2dx

which gives an exact expression when integrated.

Small-Angle Approximations

When dealing with small angles, we can usually make use of simpli-
fying approximations. Consider the right triangle of Fig. 1/8 where
the angle 6, expressed in radians, is relatively small. If the hypote-

sin 6

nuse is unity, we see from the geometry of the figure that the arc
length 1 x 6 and sin 6 are very nearly the same. Also, cos 6 is close to
unity. Furthermore, sin 6 and tan 6 have almost the same values.
Thus, for small angles we may write

sinf=tanf =0 cosf=1

provided that the angles are expressed in radians. These approximations may be
obtained by retaining only the first terms in the series expansions for these three
functions. As an example of these approximations, for an angle of 1°

1°=0.017 453 rad tan 1° = 0.017 455
sin 1° = 0.017 452 cos 1° = 0.999 848

If a more accurate approximation is desired, the first two terms may be retained,
and they are

sin @ =6 — 6%6 tan 6 = 6 + 6%/3 cosf=1-6%2

where the angles must be expressed in radians. (To convert degrees to radians,
multiply the angle in degrees by 7/180°.) The error in replacing the sine by the
angle for 1° (0.0175 rad) is only 0.005 percent. For 5° (0.0873 rad) the error is
0.13 percent, and for 10° (0.1745 rad), the error is still only 0.51 percent. As the
angle 6 approaches zero, the following relations are true in the mathematical limit:

sin d6 = tan d6 = d© cosdf =1

where the differential angle d6 must be expressed in radians.

y8 | Problem Solving in Statics

We study statics to obtain a quantitative description of forces which act on engi-
neering structures in equilibrium. Mathematics establishes the relations between
the various quantities involved and enables us to predict effects from these rela-
tions. We use a dual thought process in solving statics problems: We think about
both the physical situation and the corresponding mathematical description. In
the analysis of every problem, we make a transition between the physical and the
mathematical. One of the most important goals for the student is to develop the
ability to make this transition freely.

cos 6

|
|

Arc length =
1x6=06
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Making Appropriate Assumptions

We should recognize that the mathematical formulation of a physical problem repre-
sents an ideal description, or model, which approximates but never quite matches the
actual physical situation. When we construct an idealized mathematical model for a
given engineering problem, certain approximations will always be involved. Some of
these approximations may be mathematical, whereas others will be physical.

For instance, it is often necessary to neglect small distances, angles, or forces
compared with large distances, angles, or forces. Suppose a force is distributed over
a small area of the body on which it acts. We may consider it to be a concentrated
force if the dimensions of the area involved are small compared with other pertinent
dimensions.

We may neglect the weight of a steel cable if the tension in the cable is many
times greater than its total weight. However, if we must calculate the deflection or
sag of a suspended cable under the action of its weight, we may not ignore the cable
weight.

Thus, what we may assume depends on what information is desired and on the ac-
curacy required. We must be constantly alert to the various assumptions called for in
the formulation of real problems. The ability to understand and make use of the appro-
priate assumptions in the formulation and solution of engineering problems is certainly
one of the most important characteristics of a successful engineer. One of the major aims
of this book is to provide many opportunities to develop this ability through the formula-
tion and analysis of many practical problems involving the principles of statics.

Using Graphics
Graphics is an important analytical tool for three reasons:

1. We use graphics to represent a physical system on paper with a sketch or dia-
gram. Representing a problem geometrically helps us with its physical inter-
pretation, especially when we must visualize three-dimensional problems.

2. We can often obtain a graphical solution to problems more easily than with a
direct mathematical solution. Graphical solutions are both a practical way to
obtain results and an aid in our thought processes. Because graphics represents
the physical situation and its mathematical expression simultaneously, graphics
helps us make the transition between the two.

3. Charts or graphs are valuable aids for representing results in a form which is
easy to understand.
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Key Concepts Formulating Problems and Obtaining Solutions

In statics, as in all engineering problems, we need to use
a precise and logical method for formulating problems
and obtaining their solutions. We formulate each prob-
lem and develop its solution through the following se-
quence of steps.
1. Formulate the problem:
(a) State the given data.
(b) State the desired result.
(¢) State your assumptions and approximations.
2. Develop the solution:

(a) Draw any diagrams you need to understand
the relationships.

(b) State the governing principles to be applied to
your solution.

(d) Ensure that your calculations are consistent
with the accuracy justified by the data.

(e) Be sure that you have used consistent units
throughout your calculations.

(f) Ensure that your answers are reasonable in
terms of magnitudes, directions, common
sense, etc.

(g) Draw conclusions.

Keeping your work neat and orderly will help your
thought process and enable others to understand
your work. The discipline of doing orderly work will
help you develop skill in formulation and analysis.
Problems which seem complicated at first often be-
come clear when you approach them with logic and

discipline.
(¢) Make your calculations. 1seipine

The Free-Body Diagram

The subject of statics is based on surprisingly few fundamental concepts and in-
volves mainly the application of these basic relations to a variety of situations. In
this application the method of analysis is all-important. In solving a problem, it is
essential that the laws which apply be carefully fixed in mind and that we apply
these principles literally and exactly. In applying the principles of mechanics to
analyze forces acting on a body, it is essential that we isolate the body in question
from all other bodies so that a complete and accurate account of all forces acting on
this body can be taken. This isolation should exist mentally and should be repre-
sented on paper. The diagram of such an isolated body with the representation of
all external forces acting on it is called a free-body diagram.

The free-body-diagram method is the key to the understanding of mechanics.
This is so because the isolation of a body is the tool by which cause and effect are
clearly separated and by which our attention is clearly focused on the literal appli-
cation of a principle of mechanics. The technique of drawing free-body diagrams is
covered in Chapter 3, where they are first used.

Numerical Values versus Symbols

In applying the laws of statics, we may use numerical values to represent quanti-
ties, or we may use algebraic symbols and leave the answer as a formula. When
numerical values are used, the magnitude of each quantity expressed in its par-
ticular units is evident at each stage of the calculation. This is useful when we need
to know the magnitude of each term.

The symbolic solution, however, has several advantages over the numerical
solution. First, the use of symbols helps to focus our attention on the connection
between the physical situation and its related mathematical description. Second,
we can use a symbolic solution repeatedly for obtaining answers to the same type
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of problem, but having different units or numerical values. Third, a symbolic solu-
tion enables us to make a dimensional check at every step, which is more difficult
to do when numerical values are used. In any equation representing a physical
situation, the dimensions of every term on both sides of the equation must be the
same. This property is called dimensional homogeneity.

Thus, facility with both numerical and symbolic forms of solution is essential.

Solution Methods

Solutions to the problems of statics may be obtained in one or more of the following
ways.

1. Obtain mathematical solutions by hand, using either algebraic symbols or
numerical values. We can solve most problems this way.

2. Obtain graphical solutions for certain problems.

3. Solve problems by computer. This is useful when a large number of equations
must be solved, when a parameter variation must be studied, or when an in-
tractable equation must be solved.

Many problems can be solved with two or more of these methods. The method uti-
lized depends partly on the engineer’s preference and partly on the type of problem
to be solved. The choice of the most expedient method of solution is an important
aspect of the experience to be gained from the problem work. There are a number of
problems in Vol. 1 Statics which are designated as Computer-Oriented Problems.
These problems appear at the end of the Review Problem sets and are selected to
illustrate the type of problem for which solution by computer offers a distinct
advantage.

ys | Chapter Review

This chapter has introduced the concepts, definitions, 3. Perform calculations using SI and U.S. customary
and units used in statics, and has given an overview of units, using appropriate accuracy.

the procedure used to formulate? and solye problems in 4. Express the law of gravitation and calculate the
statics. Now that you have finished this chapter, you weight of an object.

should be able to do the following:

5. Apply simplifications based on differential and

1. Express vectors in terms of unit vectors and per- small-angle approximations.
pendicular components, and perform vector addi- 6. Describe the methodology used to formulate and

tion and subtraction.

solve statics problems.

2. State Newton’s laws of motion.
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SAMPLE PROBLEM 1/1

Determine the weight in newtons of a car whose mass is 1400 kg. Convert
the mass of the car to slugs and then determine its weight in pounds.

Solution From relationship 1/3, we have
W =mg =1400(9.81) =13 730 N © Ans.

From the table of conversion factors in Table D/5 of Appendix D, we see
that 1 slug is equal to 14.594 kg. Thus, the mass of the car in slugs is

lug
m = 1400 kg [m] =959 slugs @ Ans.
Finally, its weight in pounds is
W=mg=(959)(32.2) =30901b @ Ans.

As another route to the last result, we can convert from kg to lbm.
Again using Table D/5, we have

1 lbm
0.45359 kg

The weight in pounds associated with the mass of 3090 lbm is 3090 1b, as
calculated above. We recall that 1 lbm is the amount of mass which un-
der standard conditions has a weight of 1 1b of force. We rarely refer to
the U.S. mass unit Ibm in this textbook series, but rather use the slug for
mass. The sole use of slug, rather than the unnecessary use of two units
for mass, will prove to be powerful and simple—especially in dynamics.

m = 1400 kg [ = 3090 lbm

m = 1400 kg

HELPFUL HINTS

® Our calculator indicates a result of

13 734 N. Using the rules of significant-
figure display used in this textbook, we
round the written result to four
significant figures, or 13 730 N. Had
the number begun with any digit other
than 1, we would have rounded to three
significant figures.

A good practice with unit conversion
is to multiply by a factor such as
1 slug
[14.594 kg
because the numerator and the denomi-
nator are equivalent. Make sure that
cancellation of the units leaves the units
desired; here the units of kg cancel,

leaving the desired units of slug.

], which has a value of 1,

® Note that we are using a previously calculated result (95.9 slugs). We must be sure that when a calculated number
is needed in subsequent calculations, it is retained in the calculator to its full accuracy, (95.929834 . . .), until it is
needed. This may require storing it in a register upon its initial calculation and recalling it later. We must not
merely punch 95.9 into our calculator and proceed to multiply by 32.2—this practice will result in loss of numerical
accuracy. Some individuals like to place a small indication of the storage register used in the right margin of the

work paper, directly beside the number stored.

SAMPLE PROBLEM 1/2

Use Newton’s law of universal gravitation to calculate the weight of a 70-kg
person standing on the surface of the earth. Then repeat the calculation by
using W = mg and compare your two results. Use Table D/2 as needed.

Solution The two results are

Gm,m  (6.673-107'1)(5.976-10*)(70)
R 16371-10%

W = mg="70(9.81) =687N Ans.

W = =688 N @ Ans.

The discrepancy is due to the fact that Newton’s universal gravitational
law does not take into account the rotation of the earth. On the other
hand, the value g = 9.81 m/s? used in the second equation does account
for the earth’s rotation. Note that had we used the more accurate value
g =9.80665 m/s? (which likewise accounts for the earth’s rotation) in the
second equation, the discrepancy would have been larger (686 N would
have been the result).

m="170kg

HELPFUL HINT

® The effective distance between the mass

centers of the two bodies involved is the
radius of the earth.
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SAMPLE PROBLEM 1/3

For the vectors V; and V, shown in the figure,
(a) determine the magnitude S of their vector sum S =V; + V,
(b) determine the angle a between S and the positive x-axis

(¢) write S as a vector in terms of the unit vectors i and j and then
write a unit vector n along the vector sum S

(d) determine the vector difference D =V, —V,

Solution (a) We construct to scale the parallelogram shown in Fig. a
for adding V; and V,. Using the law of cosines, we have

82 =3% + 42 — 2(3)(4) cos 105°
S = 5.59 units Ans.
(b) Using the law of sines for the lower triangle, we have @

sin 105°  sin(a + 30°)

559 4
sin(a + 30°) = 0.692
(a + 30°) =43.8° a=13.76° Ans.

(c) With knowledge of both S and a, we can write the vector S as
S = Slicosa+jsina]

5.59[i cos 13.76° + j sin 13.76°] = 5.43i + 1.328j units Ans.

Th _S_SMA LI gmicoss © 0 A
en "8 smg TR "

(d) The vector difference D is
D =V, -V, =4(icos 45° + j sin 45°) — 3(i cos 30° — j sin 30°)
= 0.230i + 4.33j units Ans.
The vector D is shown in Fig. b as D =V + (-=V)).

y
[
\
| V1 =4 units
\
Ll
J 45°
i x
30°
V5 = 3 units

V, = 3 units

(@)

(®)

HELPFUL HINTS

® You will frequently use the laws of cosines
and sines in mechanics. See Art. C/6 of
Appendix C for a review of these impor-
tant geometric principles.

@ A unit vector may always be formed by di-
viding a vector by its magnitude. Note
that a unit vector is dimensionless.
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21 | |ntroduction

In this and the following chapters, we study the effects of forces which act on engi-
neering structures and mechanisms. The experience gained here will help you in
the study of mechanics and in other subjects such as stress analysis, design of
structures and machines, and fluid flow. This chapter lays the foundation for a
basic understanding not only of statics but also of the entire subject of mechanics,
and you should master this material thoroughly.

22 | Force

Before dealing with a group or system of forces, it is necessary to examine the
properties of a single force in some detail. A force has been defined in Chapter 1
as an action of one body on another. In dynamics we will see that a force is de-
fined as an action which tends to cause acceleration of a body. A force is a vector
quantity, because its effect depends on the direction as well as on the magnitude
of the action. Thus, forces may be combined according to the parallelogram law
of vector addition. 17
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& Cable tension

|

j%

) p
b)

B A P
(0] C

FIGURE 2/2

The forces associated with this lifting
crane must be carefully identified,
classified, and analyzed in order to
provide a safe and effective working
environment.

The action of the cable tension on the bracket in Fig. 2/1a is
represented in the side view, Fig. 2/1b, by the force vector P of
magnitude P. The effect of this action on the bracket depends on
P, the angle 6, and the location of the point of application A.
Changing any one of these three specifications will alter the ef-
fect on the bracket, such as the force in one of the bolts which
secure the bracket to the base, or the internal force and deforma-
tion in the material of the bracket at any point. Thus, the com-
plete specification of the action of a force must include its magni-
tude, direction, and point of application, and therefore we must
treat it as a fixed vector.

External and Internal Effects

We can separate the action of a force on a body into two effects, exter-
nal and internal. For the bracket of Fig. 2/1 the effects of P external
to the bracket are the reactive forces (not shown) exerted on the
bracket by the foundation and bolts because of the action of P. Forces
external to a body can be either applied forces or reactive forces. The
effects of P internal to the bracket are the resulting internal forces
and deformations distributed throughout the material of the bracket.
The relation between internal forces and internal deformations de-
pends on the material properties of the body and is studied in strength
of materials, elasticity, and plasticity.

Principle of Transmissibility

When dealing with the mechanics of a rigid body, we ignore defor-
mations in the body and concern ourselves with only the net exter-
nal effects of external forces. In such cases, experience shows us
that it is not necessary to restrict the action of an applied force to
a given point. For example, the force P acting on the rigid plate in
Fig. 2/2 may be applied at A or at B or at any other point on its line
of action, and the net external effects of P on the bracket will not
change. The external effects are the force exerted on the plate by
the bearing support at O and the force exerted on the plate by the
roller support at C.

This conclusion is summarized by the principle of transmissibility,
which states that a force may be applied at any point on its given
line of action without altering the resultant effects of the force exter-
nal to the rigid body on which it acts. Thus, whenever we are inter-
ested in only the resultant external effects of a force, the force may be
treated as a sliding vector, and we need specify only the magnitude,
direction, and line of action of the force, and not its point of applica-
tion. Because this book deals essentially with the mechanics of rigid
bodies, we will treat almost all forces as sliding vectors for the rigid
body on which they act.

Force Classification

Forces are classified as either contact or body forces. A contact force is
produced by direct physical contact; an example is the force exerted
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on a body by a supporting surface. On the other hand, a body force is generated by
virtue of the position of a body within a force field such as a gravitational, electric,

or magnetic field. An example of a body force is your weight.

Forces may be further classified as either concentrated or distributed. Every
contact force is actually applied over a finite area and is therefore really a distrib-
uted force. However, when the dimensions of the area are very small compared with
the other dimensions of the body, we may consider the force to be concentrated at a
point with negligible loss of accuracy. Force can be distributed over an area, as in the

case of mechanical contact, over a volume when a body force such as weight
is acting, or over a line, as in the case of the weight of a suspended cable.

The weight of a body is the force of gravitational attraction distributed
over its volume and may be taken as a concentrated force acting through the
center of gravity. The position of the center of gravity is frequently obvious
if the body is symmetric. If the position is not obvious, then a separate cal-
culation, explained in Chapter 5, will be necessary to locate the center of
gravity.

We can measure a force either by comparison with other known forces,
using a mechanical balance, or by the calibrated movement of an elastic ele-
ment. All such comparisons or calibrations have as their basis a primary
standard. The standard unit of force in SI units is the newton (N) and in the
U.S. customary system is the pound (Ib), as defined in Art. 1/5.

Action and Reaction

According to Newton’s third law, the action of a force is always accompa-
nied by an equal and opposite reaction. It is essential to distinguish be-
tween the action and the reaction in a pair of forces. To do so, we first
isolate the body in question and then identify the force exerted on that
body (not the force exerted by the body). It is very easy to mistakenly use
the wrong force of the pair unless we distinguish carefully between action
and reaction.

Concurrent Forces

Two or more forces are said to be concurrent at a point if their lines of
action intersect at that point. The forces F; and Fy shown in Fig. 2/3a
have a common point of application and are concurrent at the point A.
Thus, they can be added using the parallelogram law in their common
plane to obtain their sum or resultant R, as shown in Fig. 2/3a. The
resultant lies in the same plane as F; and F,.

Suppose the two concurrent forces lie in the same plane but are applied
at two different points as in Fig. 2/3b. By the principle of transmissibility,
we may move them along their lines of action and complete their vector sum
R at the point of concurrency A, as shown in Fig. 2/3b. We can replace F;
and F, with the resultant R without altering the external effects on the
body upon which they act.

We can also use the triangle law to obtain R, but we need to move the
line of action of one of the forces, as shown in Fig. 2/3c. If we add the same
two forces as shown in Fig. 2/3d, we correctly preserve the magnitude and
direction of R, but we lose the correct line of action, because R obtained in
this way does not pass through A. Therefore this type of combination should
be avoided.

FIGURE 2/3
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We can express the sum of the two forces mathematically by the vector
equation

R=F1+F2

Vector Components

In addition to combining forces to obtain their resultant, we often need to replace a
force by its vector components in directions which are convenient for a given appli-
cation. The vector sum of the components must equal the original vector. Thus, the
force R in Fig. 2/3a may be replaced by, or resolved into, two vector components F,
and F, with the specified directions by completing the parallelogram as shown to
obtain the magnitudes of F; and F,.

The relationship between a force and its vector components along given
axes must not be confused with the relationship between a force and its perpen-
dicular* projections onto the same axes. Figure 2/3e shows the perpendicular
projections F, and F; of the given force R onto axes a and b, which are parallel
to the vector components F; and F, of Fig. 2/3a. Figure 2/3e shows that the
components of a vector are not necessarily equal to the projections of the vector
onto the same axes. Furthermore, the vector sum of the projections F, and F,, is
not the vector R, because the parallelogram law of vector addition must be used
to form the sum. The components and projections of R are equal only when the
axes a and b are perpendicular.

A Special Case of Vector Addition

To obtain the resultant when the two forces F; and F,, are parallel as in Fig. 2/4,
we use a special case of addition. The two vectors are combined by first adding
two equal, opposite, and collinear forces F and —F of convenient magnitude,
which taken together produce no external effect on the body. Adding F; and F to
produce R, and combining with the sum R, of Fy and —F yield the resultant R,
which is correct in magnitude, direction, and line of action. This procedure is
also useful for graphically combining two forces which have a remote and incon-
venient point of concurrency because they are almost parallel.

It is usually helpful to master the analysis of force systems in two dimensions
before undertaking three-dimensional analysis. Thus the remainder of Chapter 2 is

subdivided into these two categories.

sectionA  Two-Dimensional Force Systems

23 | Rectangular Components

The most common two-dimensional resolution of a force vector is into rectan-
gular components. It follows from the parallelogram rule that the vector F of
Fig. 2/5 may be written as

F=F,+F, (2/1)

FIGURE 2/5

*Perpendicular projections are also called orthogonal projections.
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where F, and F, are vector components of F in the x- and y-directions. Each of the
two vector components may be written as a scalar times the appropriate unit vector.
In terms of the unit vectors i and j of Fig. 2/5, F, = F.i and F, = F, j, and thus we
may write

F=Fi+F,j 2/2)

where the scalars F, and F) are the x and y scalar components of the vector F.

The scalar components can be positive or negative, depending on the quad-
rant into which F points. For the force vector of Fig. 2/5, the x and y scalar
components are both positive and are related to the magnitude and direction of
F by

F.=Fcos® F=+F*+F};

Fy
F,=Fsin6 6=tan‘lF—

X

(2/3)

Conventions for Describing Vector Components

We express the magnitude of a vector with lightface italic type in print; that is, |F|
is indicated by F, a quantity which is always nonnegative. However, the scalar com-
ponents, also denoted by lightface italic type, will include sign information. See
Sample Problems 2/1 and 2/3 for numerical examples which involve both positive
and negative scalar components.

When both a force and its vector components appear in a diagram, it is
desirable to show the vector components of the force with dashed lines, as in
Fig. 2/5, and show the force with a solid line, or vice versa. With either of these
conventions it will always be clear that a force and its components are being
represented, and not three separate forces, as would be implied by three solid-
line vectors.

Actual problems do not come with reference axes, so their assignment is a
matter of arbitrary convenience, and the choice is frequently up to the student. The
logical choice is usually indicated by the way in which the geometry of the problem
is specified. When the principal dimensions of a body are given in the horizontal
and vertical directions, for example, you would typically assign reference axes in
these directions.

Determining the Components of a Force

Dimensions are not always given in horizontal and vertical directions, angles need
not be measured counterclockwise from the x-axis, and the origin of coordinates
need not be on the line of action of a force. Therefore, it is essential that we be able
to determine the correct components of a force no matter how the axes are oriented
or how the angles are measured. Figure 2/6 suggests a few typical examples of
vector resolution in two dimensions.

F =—Fcosf
Fy:—F’sin,@
y
F /
/
/
ﬁ 5
~
~

x
Fx:Fsin(ﬂ—,B)
Fy: —Fcos(m—p)

F.=Fcos(f—a)
Fy =Fsin(f—a)

FIGURE 2/6

21
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The structural elements in the
fore-ground transmit concentrated

forces to the brackets at both ends.

Memorization of Egs. 2/3 is not a substitute for understanding the
parallelogram law and for correctly projecting a vector onto a reference
axis. A neatly drawn sketch always helps to clarify the geometry and
avoid error.

Rectangular components are convenient for finding the sum or re-
sultant R of two forces which are concurrent. Consider two forces F;
and F, which are originally concurrent at a point O. Figure 2/7 shows
the line of action of F, shifted from O to the tip of F; according to the
triangle rule of Fig. 2/3. In adding the force vectors F; and F,, we may
write

R = Fl + Fz = (lei + Flyj) + (F2xi + ngj)
or
in +Ryj = (F]_I+F2x)i + (Fl_y +F2y)j
from which we conclude that
Rx=F1,‘+F2x= ZFx
(2/4)
Ry =F1y+F2y = ZFy

The term XF, means “the algebraic sum of the x scalar components”.
For the example shown in Fig. 2/7, note that the scalar component Fy
would be negative.

————x

FIGURE 2/7
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SAMPLE PROBLEM 2/1

The forces F;, Fy, and F3, all of which act on point A of the bracket, are
specified in three different ways. Determine the x and y scalar compo-
nents of each of the three forces.

Solution The scalar components of Fy, from Fig. a, are

F; =600 cos 35° =491 N Ans.

F; =600 sin 35° = 344 N Ans.
The scalar components of Fy, from Fig. b, are

Fy = —500(3) = —400 N Ans.

Fy =500(3) = 300 N Ans

Note that the angle which orients F, to the x-axis is never calculated.
The cosine and sine of the angle are available by inspection of the 3-4-5
triangle. Also note that the x scalar component of F, is negative by
inspection.

The scalar components of F5 can be obtained by first computing
the angle « of Fig. c.

0.2
= -1 == = 26. ©
a=tan [0_4] 6.6
Then, F; =F;sin a=800sin26.6°=358N O Ans.

F3 = —F5cos a = —800 cos 26.6° = —T16 N Ans.

Alternatively, the scalar components of F3 can be obtained by writ-
ing F3 as a magnitude times a unit vector nyp in the direction of the line
segment AB. Thus,

0.2i — 0.4j

O - @<
V(0.2)? + (-0.4)?

=800 [0.447i — 0.894j]
= 358i — 716§ N

F3:F3nAB:F3A:B:

The required scalar components are then
F; =358 N Ans.
F3 =-7T16 N Ans.

which agree with our previous results.

®)

HELPFUL HINTS

® You should carefully examine the geom-
etry of each component-determination
problem and not rely on the blind use of
such formulas as F, = F cos 6 and F, =
Fsin 6.

@ A unit vector can be formed by dividing
any vector, such as the geometric position
vector AB, by its length or magnitude.
Here we use the overarrow to denote the
vector which runs from A to B and the
overbar to determine the distance
between A and B.
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SAMPLE PROBLEM 2/2

Combine the two forces P and T, which act on the fixed structure at B,
into a single equivalent force R.

Graphical Solution The parallelogram for the vector addition of
forces T and P is constructed as shown in Fig.a.® The scale used here
is 1 in. = 800 Ib; a scale of 1 in. = 200 1b would be more suitable for
regular-size paper and would give greater accuracy. Note that the angle
a must be determined prior to construction of the parallelogram. From
the given figure

BD 6 sin 60°
tan a = —

AD 3+ 6cos6oc 0566

a=40.9°

Measurement of the length R and direction 6 of the resultant force R
yields the approximate results

R=5251b 0 =49° Ans.

Geometric Solution The triangle for the vector addition of T and P
is shown in Fig. 5. @ The angle « is calculated as above. The law of
cosines gives

R? = (600)% + (800)% — 2(600)(800) cos 40.9° = 274,300
R =5241b Ans.

From the law of sines, we may determine the angle 6 which orients R.
Thus,

600 524
sin 6 ~ sin 40.9°

sin 6 = 0.750 6 = 48.6° Ans.

Algebraic Solution By using the x-y coordinate system on the
given figure, we may write

R, = ZF, = 800 — 600 cos 40.9° = 346 Ib
R, = TF, = —600 sin 40.9° = —393 Ib

The magnitude and direction of the resultant force R as shown in Fig. ¢
are then

R=+R>2+R?=1/(346)* + (-393) =524 1b Ans.
IR, | 393
_ -1 7Y -1 2YY o
0 = tan | x|—tan 346—48.6 Ans.

The resultant R may also be written in vector notation as

R=R,i+R,j=346i — 393j1b Ans.

B

P =8001b 7
P
@Q
7

<

6’

e
\
|
K

HELPFUL HINTS

® Note the repositioning of P to permit
parallelogram addition at B.

800 1b

@ Note the repositioning of T so as to
preserve the correct line of action of the
resultant R.

y
|
'R, =3461b
By >————x
R,=-3931b,
R

(c)
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SAMPLE PROBLEM 2/3

The 500-N force F is applied to the vertical pole as shown. (1) Write F
in terms of the unit vectors i and j and identify both its vector and sca-
lar components. (2) Determine the scalar components of the force vec-
tor F along the x’- and y’-axes. (3) Determine the scalar components of F
along the x- and y’-axes.

Solution Part (1). From Fig. ¢ we may write F as

F = (F cos 6)i — (F sin 0)j
= (500 cos 60°)i — (500 sin 60°)j
= (250i — 433j) N Ans.
The scalar components are F, = 250 N and F, = —433 N. The vector
components are F, = 250i N and F, = —433j N.
Part (2). From Fig. b we may write F as F = 500i’ N, so that the

required scalar components are

F, =500 N F,=0 Ans.

y

Part (3). The components of F in the x- and y’-directions are
nonrectangular and are obtained by completing the parallelogram as
shown in Fig. ¢. The magnitudes of the components may be calculated
by the law of sines. Thus,

|F,| 500
= Fl=1 O]
sin 90°  sin 30° IF 000 N
|y 500
sin60" ~singor v =866N

The required scalar components are then

F,.=1000 N F, =-866 N Ans.

iy
A /300
T > "x
i
F=
30° 500 N
o\
\ !
X
y Ly
| -
A Q Ay
I B = 60°
- F
F
7 \
\il
\
(@) ()

HELPFUL HINT

@ Obtain F, and F,, graphically and compare
your results with the calculated values.

SAMPLE PROBLEM 2/4

Forces F; and F, act on the bracket as shown. Determine the projection
F, of their resultant R onto the b-axis.

Solution The parallelogram addition of F; and Fy is shown in the
figure. Using the law of cosines gives us

R? = (80)% + (100)% — 2(80)(100) cos 130° R=1634N

The figure also shows the orthogonal projection F;, of R onto the b-axis.
Its length is

F, =80+ 100 cos 50° = 144.3 N Ans.

Note that the components of a vector are in general not equal to the
projections of the vector onto the same axes. If the a-axis had been
perpendicular to the b-axis, then the projections and components of R
would have been equal.
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FIGURE 2/8

(@)

2/4a | Moment

In addition to the tendency to move a body in the direction of its application, a
force can also tend to rotate a body about an axis. The axis may be any line
which neither intersects nor is parallel to the line of action of the force. This
rotational tendency is known as the moment M of the force. Moment is also re-
ferred to as torque.

As a familiar example of the concept of moment, consider the pipe wrench
of Fig. 2/8a. One effect of the force applied perpendicular to the handle of the
wrench is the tendency to rotate the pipe about its vertical axis. The magnitude
of this tendency depends on both the magnitude F' of the force
and the effective length d of the wrench handle. Common experi-
ence shows that a pull which is not perpendicular to the wrench
handle is less effective than the right-angle pull shown.

Moment about a Point

Figure 2/8b shows a two-dimensional body acted on by a force F
in its plane. The magnitude of the moment or tendency of the force
to rotate the body about the axis O-O perpendicular to the plane of
the body is proportional both to the magnitude of the force and to
the moment arm d, which is the perpendicular distance from the
axis to the line of action of the force. Therefore, the magnitude of
the moment is defined as

M =Fd (2/5)

The moment is a vector M perpendicular to the plane of the body.
The sense of M depends on the direction in which F tends to rotate
the body. The right-hand rule, Fig. 2/8¢c, is used to identify this
sense. We represent the moment of F about O-O as a vector point-
ing in the direction of the thumb, with the fingers curled in the di-
rection of the rotational tendency.

The moment M obeys all the rules of vector combination and
may be considered a sliding vector with a line of action coinciding
with the moment axis. The basic units of moment in SI units are
newton-meters (N-m), and in the U.S. customary system are
pound-feet (I1b-ft).

When dealing with forces which all act in a given plane, we
customarily speak of the moment about a point. By this we mean
the moment with respect to an axis normal to the plane and
passing through the point. Thus, the moment of force F about
point A in Fig. 2/8d has the magnitude M = Fd and is counter-
clockwise.

Moment directions may be accounted for by using a stated sign
convention, such as a plus sign (+) for counterclockwise moments
and a minus sign (-) for clockwise moments, or vice versa. Sign
consistency within a given problem is essential. For the sign con-
vention of Fig. 2/8d, the moment of F about point A (or about the
z-axis passing through point A) is positive. The curved arrow of the
figure is a convenient way to represent moments in two-dimensional
analysis.



The Cross Product

In some two-dimensional and many of the three-dimensional problems to fol-
low, it is convenient to use a vector approach for moment calculations. The mo-
ment of F about point A of Fig. 2/8b may be represented by the cross-product
expression

M=rxF (2/6)

where r is a position vector which runs from the moment reference point A to any
point on the line of action of F. The magnitude of this expression is given by*

M =Frsina=Fd 2/7)

which agrees with the moment magnitude as given by Eq. 2/5. Note that the mo-
ment arm d = r sin a does not depend on the particular point on the line of action
of F to which the vector r is directed. We establish the direction and sense of M by
applying the right-hand rule to the sequence r x F. If the fingers of the right hand
are curled in the direction of rotation from the positive sense of r to the positive
sense of F, then the thumb points in the positive sense of M.

We must maintain the sequence r x F, because the sequence F x r would
produce a vector with a sense opposite to that of the correct moment. As was the
case with the scalar approach, the moment M may be thought of as the moment
about point A or as the moment about the line O-O which passes through point
A and is perpendicular to the plane containing the vectors r and F. When we
evaluate the moment of a force about a given point, the choice between using the
vector cross product or the scalar expression depends on how the geometry of the
problem is specified. If we know or can easily determine the perpendicular dis-
tance between the line of action of the force and the moment center, then the
scalar approach is generally simpler. If, however, F and r are not perpendicular
and are easily expressible in vector notation, then the cross-product expression
is often preferable.

In Section B of this chapter, we will see how the vector formulation of the mo-
ment of a force is especially useful for determining the moment of a force about a
point in three-dimensional situations.

Varignon’s Theorem

One of the most useful principles of mechanics is Varignon’s theorem, which states
that the moment of a force about any point is equal to the sum of the moments of
the components of the force about the same point.

To prove this theorem, consider the force R acting in the plane of the body
shown in Fig. 2/9a. The forces P and Q represent any two nonrectangular compo-
nents of R. The moment of R about point O is

MOZPXR

*See item 7 in Art. C/7 of Appendix C for additional information concerning the cross product.
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Because R = P + Q, we may write
rxR=rx (P+Q)
Using the distributive law for cross products, we have
My=rxR=rxP+rxQ (2/8)

which says that the moment of R about O equals the sum of the moments about O
of its components P and Q. This proves the theorem.

Varignon’s theorem need not be restricted to the case of two components, but it
applies equally well to three or more. Thus we could have used any number of con-
current components of R in the foregoing proof.*

Figure 2/9b illustrates the usefulness of Varignon’s theorem. The moment of
R about point O is Rd. However, if d is more difficult to determine than p and q, we
can resolve R into the components P and Q, and compute the moment as

My =Rd = -pP + qQ
where we take the clockwise moment sense to be positive.

Sample Problem 2/5 shows how Varignon’s theorem can help us to calculate
moments.

(@) (b)

FIGURE 2/9

*As originally stated, Varignon’s theorem was limited to the case of two concurrent components
of a given force. See The Science of Mechanics, by Ernst Mach, originally published in 1883.
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SAMPLE PROBLEM 2/5

Calculate the magnitude of the moment about the base point O of the
600-N force in five different ways.

Solution (I) The moment arm to the 600-N force is
d =4 cos 40° + 2 sin 40° = 4.35 m
By M = Fd the moment is clockwise and has the magnitude ®
My =600(4.35) = 2610 N-m Ans.
(II) Replace the force by its rectangular components at A,
F; =600 cos 40° = 460 N, F, =600 sin 40° = 386 N

By Varignon’s theorem, the moment becomes

My, =460(4) + 386(2) =2610N-m @ Ans.

(III) By the principle of transmissibility, move the 600-N force
along its line of action to point B, which eliminates the moment of the
component Fy. The moment arm of F'; becomes

di=4+2tan 40°=5.68 m
and the moment is
M, =460(5.68) = 2610 N-m Ans.

(IV) Moving the force to point C eliminates the moment of the
component F;.® The moment arm of Fy becomes

dy=2+4cot40°=6.77Tm
and the moment is
M, = 386(6.77) = 2610 N-m Ans.

(V) By the vector expression for a moment, and by using the coor-
dinate system indicated on the figure together with the procedures for
evaluating cross products, we have

M, =r x F = (2i + 4j) x 600(i cos 40° — j sin 40°) @
= -2610k N-m

The minus sign indicates that the vector is in the negative z-direction.
The magnitude of the vector expression is

Mp=2610 N-m Ans.

UTT 40°
j: ‘ \600N
|

(0]

2m F; =600 cos 40°

y

HELPFUL HINTS

@ The required geometry here and in similar
problems should not cause difficulty if the
sketch is carefully drawn.

@ This procedure is frequently the shortest
approach.

® The fact that points B and C are not on
the body proper should not cause concern,
as the mathematical calculation of the
moment of a force does not require that
the force be on the body.

® Alternative choices for the position vec-
torrarer =d;j =5.68j mand r =d,i =
6.77i m.
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SAMPLE PROBLEM 2/6

The trap door OA is raised by the cable AB, which passes over the small
frictionless guide pulleys at B. The tension everywhere in the cable is
T, and this tension applied at A causes a moment M, about the hinge
at O. Plot the quantity My/T as a function of the door elevation angle 6
over the range 0 = 6 = 90° and note minimum and maximum values.
What is the physical significance of this ratio?

Solution We begin by constructing a figure which shows the tension
force T acting directly on the door, which is shown in an arbitrary angu-
lar position 6. It should be clear that the direction of T will vary as 6
varies. In order to deal with this variation, we write a unit vector nyp
which “aims” T:
nAB:rﬂerB Toa ®
TAB T'AB

Using the x-y coordinates of our figure, we can write
rop=04jm roao =05(cosfi+sinfj)m @
rag =Trog — ros = 0.4j — (0.5)(cos 6i + sin 6j)

=-0.5cos 6i + (0.4 — 0.5sin 6)j m

So rap = V(0.5 cos 8)% + (0.4 — 0.5 sin 6)2

=4/0.41 - 0.4sinfm

The desired unit vector is

rag —0.5cos6i+ (0.4 — 0.5 sin 0)j

Nip = =
A7 rag \0.41 - 0.45in 6

Our tension vector can now be written as

—0.5 cos 6i + (0.4 — 0.5 sin 0)j
T =Tnyg = T[ ]

1/0.41 — 0.4 sin 6

The moment of T about point O, as a vector, is My = rop X T, where rop =
0.4j m,or ®

. —0.5 cos 6i + (0.4 — 0.5 sin 0)j
M, = 0.4j x T[ ]
1/0.41 — 0.4 sin 6
0.2T cos 6

= "k

1/0.41 — 0.4 sin 6

The magnitude of My is
0.2T cos 6

1/0.41 — 0.4 sin 6

MOI

and the requested ratio is

Mo _ 0.2 cos 6 Ans,

T 1/041-04sin6

which is plotted in the accompanying graph. The expression My/T is the
moment arm d (in meters) which runs from O to the line of action of T. It
has a maximum value of 0.4 m at 6 = 53.1° (at which point T is horizontal)
and a minimum value of 0 at 6 = 90° (at which point T is vertical). The
expression is valid even if T varies.

H
6]

Mo 1 \
T 0.2

ELPFUL HINTS

Recall that any unit vector can be writ-
ten as a vector divided by its magnitude.
In this case the vector in the numerator
is a position vector.

Recall that any vector may be written as
a magnitude times an “aiming” unit
vector.

In the expression M =r X F, the position
vector r runs from the moment center to
any point on the line of action of F. Here,
rop is more convenient than rp,.

0.5

0.4 — ~
0.3 — \

Mo

0:1 \

0
0 10 20 30 40 50 60 70 80 90
0, deg
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The moment produced by two equal, opposite, and noncollinear forces is called a
couple. Couples have certain unique properties and have important applications in

mechanics.

Consider the action of two equal and opposite forces F and —F a distance d apart,
as shown in Fig. 2/10a. These two forces cannot be combined into a single force because
their sum in every direction is zero. Their only effect is to produce a tendency of rota-
tion. The combined moment of the two forces about an axis normal to their plane and
passing through any point such as O in their plane is the couple M. This couple has a

magnitude
M=F(a+d) - Fa

or
M =Fd

Its direction is counterclockwise when viewed from above for the case illus-
trated. Note especially that the magnitude of the couple is independent of
the distance a which locates the forces with respect to the moment center
O. It follows that the moment of a couple has the same value for all moment
centers.

Vector Algebra Method

We may also express the moment of a couple by using vector algebra. With
the cross-product notation of Eq. 2/6, the combined moment about point O
of the forces forming the couple of Fig. 2/10b is

M=r,xF+rzx(-F)=(ry,—rg) xF

where r, and rp are position vectors which run from point O to arbitrary
points A and B on the lines of action of F and —F, respectively. Because
r, — rg = r, we can express M as

M=rxF

Here again, the moment expression contains no reference to the moment
center O and, therefore, is the same for all moment centers. Thus, we may
represent M by a free vector, as shown in Fig. 2/10¢, where the direction
of M is normal to the plane of the couple and the sense of M is established
by the right-hand rule.

Because the couple vector M is always perpendicular to the plane of the
forces which constitute the couple, in two-dimensional analysis we can rep-
resent the sense of a couple vector as clockwise or counterclockwise by one of
the conventions shown in Fig. 2/10d. Later, when we deal with couple vectors
in three-dimensional problems, we will make full use of vector notation to
represent them, and the mathematics will automatically account for their
sense.

Equivalent Couples

Changing the values of F' and d does not change a given couple as long as
the product Fd remains the same. Likewise, a couple is not affected if the

(@)

Lom

=

(c)

Counterclockwise Clockwise
couple couple

(@)

FIGURE 2/10
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i } } }
’f -F —2F
Q|> d F QI) Q|> CT)% oF
= =T =
F ] d N
P=F

FIGURE 2/11

forces act in a different but parallel plane. Figure 2/11 shows four different
configurations of the same couple M. In each of the four cases, the couples are
equivalent and are described by the same free vector which represents the identical
tendencies to rotate the bodies.

Force-Couple Systems

The effect of a force acting on a body is the tendency to push or pull the body in the
direction of the force and to rotate the body about any fixed axis which does not
intersect the line of the force. We can represent this dual effect more easily by re-
placing the given force by an equal parallel force and a couple to compensate for the
change in the moment of the force.

The replacement of a force by a force and a couple is illustrated in Fig. 2/12,
where the given force F acting at point A is replaced by an equal force F at some
point B and the counterclockwise couple M = Fd. The transfer is seen in the middle
figure, where the equal and opposite forces F and —F are added at point B without
introducing any net external effects on the body. We now see that the original force
at A and the equal and opposite one at B constitute the couple M = Fd, which is coun-
terclockwise for the sample chosen, as shown in the right-hand part of the figure.
Thus, we have replaced the original force at A by the same force acting at a different
point B and a couple, without altering the external effects of the original force on the
body. The combination of the force and couple in the right-hand part of Fig. 2/12 is
referred to as a force—couple system.

By reversing this process, we can combine a given couple and a force which
lies in the plane of the couple (normal to the couple vector) to produce a single,
equivalent force. Replacement of a force by an equivalent force—couple system,
and the reverse procedure, have many applications in mechanics and should be
mastered.

FIGURE 2/12
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SAMPLE PROBLEM 2/7

The rigid structural member is subjected to a couple consisting of the
two 100-N forces. Replace this couple by an equivalent couple consist-
ing of the two forces P and —P, each of which has a magnitude of
400 N. Determine the proper angle 6.

Solution The original couple is counterclockwise when the plane of
the forces is viewed from above, and its magnitude is

[M = Fd] M =100(0.1) =10 N'm

The forces P and —P produce a counterclockwise couple
M = 400(0.040) cos 6

Equating the two expressions gives @

10 = (400)(0.040) cos 6

0= cos‘l% =51.3° Ans.

HELPFUL HINT

® Since the two equal couples are parallel free vectors, the only dimen-
sions which are relevant are those which give the perpendicular
distances between the forces of the couples.

100 N

Dimensions in millimeters

P=400N

d } 40 mm

SAMPLE PROBLEM 2/8

Replace the horizontal 80-1b force acting on the lever by an equivalent
system consisting of a force at O and a couple.

Solution We apply two equal and opposite 80-l1b forces at O and
identify the counterclockwise couple

[M = Fd] M = 80(9 sin 60°) = 624 lb-in. Ans.

Thus, the original force is equivalent to the 80-lb force at O and the
624-1b-in. couple as shown in the third of the three equivalent figures. ®

HELPFUL HINT

® The reverse of this problem is often encountered, namely, the re-
placement of a force and a couple by a single force. Proceeding in re-
verse is the same as replacing the couple by two forces, one of which is
equal and opposite to the 80-1b force at O. The moment arm to the
second force would be M/F = 624 /80 = 7.79 in., which is 9 sin 60°, thus
determining the line of action of the single resultant force of 80 1b.

80 Ib

9”

60°

80 Ib

80 1b

)

0)

80 1b—80 Ib

80 1b

624 1b-in.
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2/6 | Resultants

The properties of force, moment, and couple were developed in the
previous four articles. Now we are ready to describe the resultant ac-
tion of a group or system of forces. Most problems in mechanics deal
with a system of forces, and it is usually necessary to reduce the sys-
tem to its simplest form to describe its action. The resultant of a sys-
tem of forces is the simplest force combination which can replace the
original forces without altering the external effect on the rigid body
to which the forces are applied.

Equilibrium of a body is the condition in which the resultant of
all forces acting on the body is zero. This condition is studied in stat-
ics. When the resultant of all forces on a body is not zero, the accel-
eration of the body is obtained by equating the force resultant to the
(@) product of the mass and acceleration of the body. This condition is
studied in dynamics. Thus, the determination of resultants is basic to
both statics and dynamics.

The most common type of force system occurs when the forces all
act in a single plane, say, the x-y plane, as illustrated by the system of
three forces Fy, Fy, and F; in Fig. 2/13a. We obtain the magnitude
and direction of the resultant force R by forming the force polygon
shown in part b of the figure, where the forces are added head-to-tail
in any sequence. Thus, for any system of coplanar forces we may write

R=F1+F2+F3+"'=EF
R,=%F, R,=3F, R=+/(ZF)%+ (F,) (2/9)
R 2F,
b — —l_y= -1 Y
(d) 6 = tan R, tan SF.

Graphically, the correct line of action of R may be obtained by preserving the
correct lines of action of the forces and adding them by the parallelogram law. We
see this in part a of the figure for the case of three forces where the sum R, of F,
and F; is added to F; to obtain R. The principle of transmissibility has been used
in this process.

Algebraic Method

We can use algebra to obtain the resultant force and its line of action as follows:

1. Choose a convenient reference point and move all forces to that point. This
process is depicted for a three-force system in Figs. 2/14a and b, where M,
M,, and M4 are the couples resulting from the transfer of forces F;, F,, and
F; from their respective original lines of action to lines of action through
point O.

2. Add all forces at O to form the resultant force R, and add all couples to form the
resultant couple M. We now have the single force—couple system, as shown in
Fig. 2/14c.

3. In Fig. 2/14d, find the line of action of R by requiring R to have a moment of
M, about point O. Note that the force systems of Figs. 2/14a and 2/14d are
equivalent, and that 2(Fd) in Fig. 2/14a is equal to Rd in Fig. 2/14d.
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(@) (b)

M = 2(Fd)
[
0

(e) (d)

FIGURE 2/14

Principle of Moments

This process is summarized in equation form by

R=C>F
M, =3M = X(Fd) (2/10)
Rd =M,

The first two of Egs. 2/10 reduce a given system of forces to a force—couple system
at an arbitrarily chosen but convenient point O. The last equation specifies the
distance d from point O to the line of action of R, and states that the moment of the
resultant force about any point O equals the sum of the moments of the original
forces of the system about the same point. This extends Varignon’s theorem
to the case of nonconcurrent force systems; we call this extension the princi-
ple of moments.

For a concurrent system of forces where the lines of action of all forces
pass through a common point O, the moment sum XM, about that point is
zero. Thus, the line of action of the resultant R = ZF, determined by the first
of Eqgs. 2/10, passes through point O. For a parallel force system, select a co-
ordinate axis in the direction of the forces. If the resultant force R for a given
force system is zero, the resultant of the system need not be zero because the
resultant may be a couple. The three forces in Fig. 2/15, for instance, have a
zero resultant force but have a resultant clockwise couple M = Fsd.
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SAMPLE PROBLEM 2/9

Determine the resultant of the four forces and one couple which act on
the plate shown.

Solution Point O is selected as a convenient reference point for the
force—couple system which is to represent the given system.

R, = ZF] R, = 40 + 80 cos 30° — 60 cos 45° = 66.9 N
[R, = ZF)] R, =50 + 80 sin 30° + 60 cos 45° = 132.4 N

[R=+vVR2+R* R =+/(66.9)7+ (132.4)°=1483N Ans.
[9 =tan™! 1%] 0 =tan™! % =63.2° Ans.

Mo =2(Fd)] My =140 — 50(5) + 60 cos 45°(4) — 60 sin 45°(7) @
=-237N'm

The force—couple system consisting of R and My, is shown in Fig. a.
We now determine the final line of action of R such that R alone
represents the original system.

[Rd = |Mo|] 148.3d =237  d=1.600m Ans.

Hence, the resultant R may be applied at any point on the line which
makes a 63.2° angle with the x-axis and is tangent at point A to a circle of
1.600-m radius with center O, as shown in part b of the figure. We apply
the equation Rd = My in an absolute-value sense (ignoring any sign of
M) and let the physics of the situation, as depicted in Fig. a, dictate the
final placement of R. Had M/ been counterclockwise, the correct line of
action of R would have been the tangent at point B.

The resultant R may also be located by determining its intercept
distance b to point C on the x-axis, Fig. c. With R, and R, acting through
point C, only R, exerts a moment about O so that

237

Ryb = |M0| and b= m =1.792m

Alternatively, the y-intercept could have been obtained by noting that
the moment about O would be due to R, only.

A more formal approach in determining the final line of action of R
is to use the vector expression

I'XR:MO

where r = xi + yj is a position vector running from point O to any point
on the line of action of R. Substituting the vector expressions for r, R,
and My and carrying out the cross product result in

(xi +yj) x (66.9i + 132.4j) = -237k
(132.4x — 66.9y)k = —237k
Thus, the desired line of action, Fig. ¢, is given by
132.4x — 66.9y = —-237

By setting y = 0, we obtain x = —1.792 m, which agrees with our earlier
calculation of the distance b. @

y
2m !
60 N <= 5m ‘
50N |
A ~
45° —
o r 140 N-m
2m |
7**‘7 } 80N
2m
40 N ‘fffffffg‘/éfx
1m
(@)
R =1483 N
(b) 1.600 m i 63.2°
N
[ \\L
A R
\ O
132.4x — 66.9y =
—237
(c)

HELPFUL HINTS

® We note that the choice of point O as a mo-
ment center eliminates any moments due
to the two forces which pass through O.
Had the clockwise sign convention been
adopted, M, would have been +237 N-m,
with the plus sign indicating a sense
which agrees with the sign convention.
Either sign convention, of course, leads to
the conclusion of a clockwise moment M.

@ Note that the vector approach yields
sign information automatically, whereas
the scalar approach is more physically
oriented. You should master both methods.
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sectione  Three-Dimensional Force Systems

2/7 | Rectangular Components

Many problems in mechanics require analysis in three dimensions, and for such
problems it is often necessary to resolve a force into its three mutually perpendicu-
lar components. The force F acting at point O in Fig. 2/16 has the rectangular
components F,, F,, F,, where

F,.=F cos 6, F=\F?+F?+F?

F,=Fcos6, F=Fi+Fj+Fk (2/11)

F,=F cos 6, F =F(icos 6, +jcos 6, + kcos6,)

The unit vectors i, j, and k are in the x-, y-, and z-directions, respec-
tively. Using the direction cosines of F, which are [ = cos 6,, m =
cos 6,, and n = cos 0,, where 2 + m? + n? = 1, we may write the force
as

F =F(i+ mj + nk) (2/12)

FIGURE 2/16

We may regard the right-side expression of Eq. 2/12 as the
force magnitude F times a unit vector ny which characterizes the
direction of F, or

F =Fn; (2/12a) P
Ve
It is clear from Eqgs. 2/12 and 2/12a that ny = li + mj + nk, which B (xg, 9, 22)
shows that the scalar components of the unit vector ny are the direc-
tion cosines of the line of action of F. ( y
22— 21

In solving three-dimensional problems, one must usually find
the x, y, and z scalar components of a force. In most cases, the di-
rection of a force is described (a) by two points on the line of action
of the force or (b) by two angles which orient the line of action.

(a) Specification by two points on the line of action

a4
7//(35/2—361)

of the force. If the coordinates of points A and B of Fig. 2/17 Tyl)\
are known, the force F may be written as

F =FnF=F£=F (xg —xi + (y2 —y1)j + (22 — 21 )k
AB \/(.’XIQ — x1)2 + (y2 - y1)2 + (22 - 21)2

Thus the x, y, and z scalar components of F are the scalar coefficients of the unit
vectors 1, j, and k, respectively.
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FIGURE 2/18

(b) Specification by two angles which orient the line of

action of the force. Consider the geometry of Fig. 2/18. We as-
sume that the angles 6 and ¢ are known. First resolve F into horizontal
and vertical components.

F,, =Fcos ¢
F,=Fsin ¢

Then resolve the horizontal component F,, into x- and y-components.

F,=F, cos0=Fcos ¢cos 0

F,=F, sin0=F cos ¢sinf

The quantities F,, F,, and F, are the desired scalar components of F.

The choice of orientation of the coordinate system is arbitrary, with convenience
being the primary consideration. However, we must use a right-handed set of axes
in our three-dimensional work to be consistent with the right-hand-rule definition
of the cross product. When we rotate from the x- to the y-axis through the 90° angle,
the positive direction for the z-axis in a right-handed system is that of the advance-
ment of a right-handed screw rotated in the same sense. This is equivalent to the
right-hand rule.

Dot Product

We can express the rectangular components of a force F (or any other vector) with the
aid of the vector operation known as the dot or scalar product (see item 6 in Art. C/7 of
Appendix C). The dot product of two vectors P and Q, Fig. 2/19a, is defined as the prod-
uct of their magnitudes times the cosine of the angle a between them. It is written as

P-Q=PQcosa

We can view this product either as the orthogonal projection P cos a of P in the
direction of Q multiplied by @, or as the orthogonal projection @ cos a of Q in the
direction of P multiplied by P. In either case the dot product of the two vectors is a
scalar quantity. Thus, for instance, we can express the scalar component F,, = F cos 6,
of the force F in Fig. 2/16 as F, = F-i, where i is the unit vector in the x-direction.

In more general terms, if n is a unit vector in a specified direction, the projec-
tion of F in the n-direction, Fig. 2/19b, has the magnitude F,, = F-n. If we want to

\

y ) \
\

P —
am .
=7 \ ¥, zf_“_ =~ “n (unit vector)

Q //;/;FF“/A

(@) (b)

FIGURE 2/19
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express the projection in the n-direction as a vector quantity, then we multiply its
scalar component, expressed by F-n, by the unit vector n to give F,, = (F-n)n. We
may write this as F, = F-nn without ambiguity because the term nn is not de-
fined, and so the complete expression cannot be misinterpreted as F-(nn).

If the direction cosines of n are «, 8, and y, then we may write n in vector com-
ponent form like any other vector as

n=oai+pfj+yk

where in this case its magnitude is unity. If the direction cosines of F with respect
to reference axes x-y-z are [, m, and n, then the projection of F in the n-direction
becomes

F,=F-n=F(i+mj+nk) (ai+ fj+7rk)
=F(la + mB + ny)
because
i'i=j-j=k-k=1
and
i-j=ji=ick=k-i=j-k=k-j=0

The latter two sets of equations are true because i, j, and k have unit length and
are mutually perpendicular.

Angle between Two Vectors

If the angle between the force F and the direction specified by the unit vector n is 6,
then from the dot-product definition we have F-n = Fn cos 8 = F cos 8, where |n| =
n = 1. Thus, the angle between F and n is given by

F:n
= cos™1 = 2/1
6 = cos 7 (2/13)

In general, the angle between any two vectors P and Q is

1

0 = cos™ (2/13a)

P-Q
PQ
If a force F is perpendicular to a line whose direction is specified by the unit
vector n, then cos 6 = 0, and F-n = 0. Note that this relationship does not
mean that either F or n is zero, as would be the case with scalar multiplica-

tion where (A)(B) = 0 requires that either A or B (or both) be zero.

The dot-product relationship applies to nonintersecting vectors as well as
to intersecting vectors. Thus, the dot product of the nonintersecting vectors
P and Q in Fig. 2/20 is @ times the projection of P’ on Q, or P'Q cos o = PQ
cos a because P’ and P are the same when treated as free vectors.
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SAMPLE PROBLEM 2/10

A force F with a magnitude of 100 N is applied at the origin O of the
axes x-y-z as shown. The line of action of F passes through a point A
whose coordinates are 3 m, 4 m, and 5 m. Determine (a) the x, y, and z
scalar components of F, () the projection F,, of F on the x-y plane, and
(c) the projection Fpp of F along the line OB.

Solution Part (a). We begin by writing the force vector F as its
magnitude F times a unit vector np,.

3i + 4j + 5k

OA
FanOAzFﬁZ]-OO[ 32+42+52

= 100[0.424i + 0.566j + 0.707k]
= 42.4i + 56.6j + 70.7k N

The desired scalar components are thus
F,=424N  F,=566N F,=70.7N O Ans.

Part (b). The cosine of the angle 6,, between F and the x-y plane is

VE P

cos 0,, = ————=0.707
V3% 4+ 4% 4+ 52
so that F,, = F cos 6,, = 100(0.707) = 70.7 N Ans.

Part (¢). The unit vector npg along OB is

The scalar projection of F on OB is

Fop=F - nypp = (42.4i + 56.6j + 70.7k) - (0.688i + 0.688j + 0.229k) @
= (42.4)(0.688) + (56.6)(0.688) + (70.7)(0.229)
=844N Ans.

If we wish to express the projection as a vector, we write

Fop = F-npgnpp
= 84.4(0.688i + 0.688j + 0.229Kk)
=58.1i + 58.1j + 19.35k N

HELPFUL HINTS

® In this example all scalar components are positive. Be prepared for the
case where a direction cosine, and hence the scalar component, is
negative.

@ The dot product automatically finds the projection or scalar compo-
nent of F along line OB as shown.

F=100N

F,,=707N
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In two-dimensional analyses it is often convenient to determine a moment magni-
tude by scalar multiplication using the moment-arm rule. In three dimensions,
however, the determination of the perpendicular distance between a point or line
and the line of action of the force can be a tedious computation. A vector approach

with cross-product multiplication then becomes advantageous.

Moments in Three Dimensions

Consider a force F with a given line of action acting on a body, Fig.
2/21a, and any point O not on this line. Point O and the line of F establish a
plane A. The moment My, of F about an axis through O normal to the plane
has the magnitude M, = Fd, where d is the perpendicular distance from O
to the line of F. This moment is also referred to as the moment of F about
the point O.

The vector My is normal to the plane and is directed along the axis
through O. We can describe both the magnitude and the direction of M,
by the vector cross-product relation introduced in Art. 2/4. (Refer to item
7 in Art. C/7 of Appendix C.) The vector r runs from O to any point on the
line of action of F. As described in Art. 2/4, the cross product of r and F is
written r X F and has the magnitude (r sin «)F, which is the same as Fd,
the magnitude of M.

The correct direction and sense of the moment are established by the
right-hand rule, described previously in Arts. 2/4 and 2/5. Thus, with r
and F treated as free vectors emanating from O, Fig. 2/21b, the thumb
points in the direction of My, if the fingers of the right hand curl in the
direction of rotation from r to F through the angle a. Therefore, we may
write the moment of F about the axis through O as

My=rxF (2/14)

The order r x F of the vectors must be maintained because F x r
would produce a vector with a sense opposite to that of My; that is,
Fxr= —Mo.

Evaluating the Cross Product

The cross-product expression for My may be written in the determinant form

i j k
MO= Ty ry r,
F, F, F,

(2/15)

(Refer to item 7 in Art. C/7 of Appendix C if you are not already familiar with the
determinant representation of the cross product.) Note the symmetry and order of
the terms, and note that a right-handed coordinate system must be used. Expansion

of the determinant gives

My=F,-r,Fli+ (r,F,-r.F)j+ . F,-r,F)k

®)

FIGURE 2/21
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To gain more confidence in the cross-product relationship, examine the three
components of the moment of a force about a point as obtained from Fig. 2/22.
This figure shows the three components of a force F acting at a point A located
relative to O by the vector r. The scalar magnitudes of the moments of these forces
about the positive x-, y-, and z-axes through O can be obtained from the moment-
arm rule, and are

M,=r,F,-r,F

) M,=r,F,-r,F, M,=r.F,—rF,
which agree with the respective terms in the determinant expansion for the cross
product r x F.

Moment about an Arbitrary Axis

We can now obtain an expression for the moment M; of F about any axis 4 through
0, as shown in Fig. 2/23. If n is a unit vector in the A-direction, then we can use the
dot-product expression for the component of a vector as described in Art. 2/7 to ob-
tain My -n, the component of My, in the direction of 1. This scalar is the magnitude
of the moment M, of F about A.

To obtain the vector expression for the moment M, of F about A, multiply the
magnitude by the directional unit vector n to obtain

M,=(rxF:n)n (2/16)

where r x F replaces My. The expression r X F-n is known as a triple scalar
product (see item 8 in Art. C/7, Appendix C). It need not be written (r x F)-n be-
cause a cross product cannot be formed by a vector and a scalar. Thus, the associa-
tion r X (F-n) would have no meaning.

The triple scalar product may be represented by the determinant

IM,;| =M, = (2/17)

R My
™ Sy
<

where «, 8, y are the direction cosines of the unit vector n.

FIGURE 2/22 FIGURE 2/23
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Varignon’s Theorem in Three Dimensions Fs

In Art. 2/4 we introduced Varignon’s theorem in two dimensions. The the-

orem is easily extended to three dimensions. Figure 2/24 shows a system

of concurrent forces Fq, Fy, Fs, . . .. The sum of the moments about O of A
these forces is

rxFi+rxF,+rxFs+ - =rx(F+F,+Fs+ --+)
FIGURE 2/24
g | FIGURE 2/24]

where we have used the distributive law for cross products. Using the
symbol My to represent the sum of the moments on the left side of the
above equation, we have

My=2(xF)=rxR (2/18)

This equation states that the sum of the moments of a system of concur-
rent forces about a given point equals the moment of their sum about the
same point. As mentioned in Art. 2/4, this principle has many applications
in mechanics.

Couples in Three Dimensions

The concept of the couple was introduced in Art. 2/5 and is easily extended
to three dimensions. Figure 2/25 shows two equal and opposite forces F
and —F acting on a body. The vector r runs from any point B on the line of
action of —F to any point A on the line of action of F. Points A and B are
located by position vectors r, and rp from any point O. The combined mo-
ment of the two forces about O is

FIGURE 2/25

M=ry,XxF+rzgx (-F)=(ry—r3) xF

However, r4 — rz = r, so that all reference to the moment center O disappears, and
the moment of the couple becomes

M=rxF (2/19)

Thus, the moment of a couple is the same about all points. The magnitude of M is
M = Fd, where d is the perpendicular distance between the lines of action of the two
forces, as described in Art. 2/5.
The moment of a couple is a free vector, whereas the mo-
ment of a force about a point (which is also the moment about M

a defined axis through the point) is a sliding vector whose di- T\Ml
rection is along the axis through the point. As in the case of _F a>
two dimensions, a couple tends to produce a pure rotation of i_( > F,

the body about an axis normal to the plane of the forces which
constitute the couple. MW /

Couple vectors obey all of the rules which govern vector S
quantities. Thus, in Fig. 2/26 the couple vector M; due to F;
and —F; may be added as shown to the couple vector M, due
to F, and —F, to produce the couple M, which, in turn, can be

produced by F and —F.




SKatzenberger/Shutterstock
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In Art. 2/5 we learned how to replace a force by its equivalent
force—couple system. You should also be able to carry out this replace-
ment in three dimensions. The procedure is represented in Fig. 2/27,
where the force F acting on a rigid body at point A is replaced by an
equal force at point B and the couple M = r x F. By adding the equal
and opposite forces F and —F at B, we obtain the couple composed of
—F and the original F. Thus, we see that the couple vector is simply the
moment of the original force about the point to which the force is being
moved. We emphasize that r is a vector which runs from B to any point
on the line of action of the original force passing through A.

*B
The three-dimensionality of the cable
system on the Leonard P. Zakim
Bunker Hill Bridge is evident in this

View.

Byelikova Oksana/Shutterstock

Another view of the Zakim Bunker Hill Bridge in Boston.
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SAMPLE PROBLEM 2/11

Determine the moment of force F about point O (a) by inspection and
(b) by the formal cross-product definition My =r x F.

Solution (a) Because F is parallel to the y-axis, F has no moment
about that axis. It should be clear that the moment arm from the x-axis
to the line of action of F is ¢ and that the moment of F about the x-axis
is negative. Similarly, the moment arm from the z-axis to the line of ac-
tion of F is a, and the moment of F about the z-axis is positive. So we
have

My = —cFi + aFk = F(—ci + ak) Ans.
(b) Formally,
My=r x F =(ai + ck) x Fj = aFk — cFi ©)
= F(—ci + ak) Ans.

HELPFUL HINT

® Again we stress that r runs from the moment center to the line of
action of F. Another permissible, but less convenient, position vector
isr=ai+ bj +ck.

SAMPLE PROBLEM 2/12

The turnbuckle is tightened until the tension in cable AB is 2.4 kN. De-
termine the moment about point O of the cable force acting on point A
and the magnitude of this moment.

Solution We begin by writing the described force as a vector.

0.8i + 1.55 — 2k
1/0.82 + 1.5% 4 22

=0.731i + 1.371j — 1.829k kN

T="Tnuy=24

The moment of this force about point O is
Mj =rp4 x T = (1.6i + 2k) x (0.731i + 1.371j — 1.829Kk)
=-2.74i + 439 + 2.19kkN-m @ Ans.
This vector has a magnitude

My =+/2.74> + 4392 + 219 = 562 kN-m Ans.

HELPFUL HINT

® The student should verify by inspection the signs of the moment
components.
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SAMPLE PROBLEM 2/13

A tension T of magnitude 10 kN is applied to the cable attached to the
top A of the rigid mast and secured to the ground at B. Determine the
moment M, of T about the z-axis passing through the base O.

Solution (a) The required moment may be obtained by finding the
component along the z-axis of the moment My of T about point O. The
vector My is normal to the plane defined by T and point O, as shown in
the accompanying figure. In the use of Eq. 2/14 to find My, the vector r is
any vector from point O to the line of action of T. @ The simplest choice
is the vector from O to A, which is written as r = 15j m. The vector expres-
sion for T is

12i — 15§ + 9k
V(12)2 + (=15)2 + (9)2
= 10(0.566i — 0.707j + 0.424k) kN

From Eq. 2/14,
[Myp=r X F] M, = 15j x 10(0.566i — 0.707j + 0.424k)
= 150(-0.566k + 0.424i) kN-m

The value M, of the desired moment is the scalar component of My in
the z-direction or M, = M, -k. Therefore,

M, = 150(-0.566k + 0.424i)-k = -84.9 kN-m Ans.

The minus sign indicates that the vector M, is in the negative z-direction.
Expressed as a vector, the moment is M, = —84.9k kN-m. @

Solution (b) The force of magnitude 7'is resolved into components 7',
and T, in the x-y plane. Since T, is parallel to the z-axis, it can exert no
moment about this axis. The moment M, is, then, due only to T, and is
M, =T, d, where d is the perpendicular distance from 7= to O.® The
cosine of the angle between T and T, is y/15% + 122/1/15% + 122 + 92 =
0.906, and therefore,

T,, = 10(0.906) = 9.06 kN

The moment arm d equals OA multiplied by the sine of the angle between
T., and OA, or

d=15iz9.37m

V2P + 15
Hence, the moment of T about the z-axis has the magnitude
M, =9.06(9.37) = 84.9 kN-m Ans.
and is clockwise when viewed in the x-y plane.

Solution (¢) The component T, is further resolved into its components
T, and T,. It is clear that T, exerts no moment about the z-axis since it
passes through it, so that the required moment is due to T, alone. The direc-
tion cosine of T with respect to the x-axis is 12/4/92 + 122 + 152 = 0.566 so
that T, = 10(0.566) = 5.66 kN. Thus,

M, =5.66(15) = 84.9 kN-m Ans.

y
A
15 m
T=10kN
0 &
B S
~ ~
P //%\x
27 gm -~ 9m
B

HELPFUL HINTS

® We could also use the vector from O to B
for r and obtain the same result, but
using vector OA is simpler.

@ Itis always helpful to accompany your vec-
tor operations with a sketch of the vectors
so as to retain a clear picture of the geom-
etry of the problem.

® Sketch the x-y view of the problem and
show d.

=
=
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SAMPLE PROBLEM 2/14

Determine the magnitude and direction of the couple M which will re-
place the two given couples and still produce the same external effect on
the block. Specify the two forces F and —F, applied in the two faces of
the block parallel to the y-z plane, which may replace the four given
forces. The 30-N forces act parallel to the y-z plane.

Solution The couple due to the 30-N forces has the magnitude M, =
30(0.06) = 1.80 N -m. The direction of M, is normal to the plane defined
by the two forces, and the sense, shown in the figure, is established by the
right-hand convention. The couple due to the 25-N forces has the magni-
tude M, = 25(0.10) = 2.50 N-m with the direction and sense shown in
the same figure. The two couple vectors combine to give the components

M, =1.80sin 60° = 1.559 N-m
M, =-2.50 + 1.80 cos 60° = —1.600 N-m

Thus, M= \/(1.559)2 +(-1.600)2=223Nm O Ans.
1.559
3 — -1 =99y -1 — o
with 6 = tan 1600 = tan™" 0.974 = 44.3 Ans.

The forces F and —F lie in a plane normal to the couple M, and their
moment arm as seen from the right-hand figure is 100 mm. Thus, each
force has the magnitude

[M = Fd] F =

\V]

.23 HELPFUL HINT

=223N Ans.
1 ® Bear in mind that the couple vectors are
and the direction 6 = 44.3°. free vectors and therefore have no unique
lines of action.

e
S

SAMPLE PROBLEM 2/15

A force of 40 1b is applied at A to the handle of the control lever which is 2
attached to the fixed shaft OB. In determining the effect of the force on \
the shaft at a cross section such as that at O, we may replace the force by \ 401b
an equivalent force at O and a couple. Describe this couple as a vector M. }

Solution The couple may be expressed in vector notation as M=r x F,
where r = OA = 8j + 5k in. and F = —40i lb. Thus,

M = (8 + 5k) x (—40i) = —200j + 320k lb-in.

Alternatively we see that moving the 40-1b force through a distance
d = /5% + 8> =9.43 in. to a parallel position through O requires the
addition of a couple M whose magnitude is

M = Fd = 40(9.43) = 377 1lb-in. Ans.

(40 1b)
The couple vector is perpendicular to the plane in which the force is
shifted, and its sense is that of the moment of the given force about O.
The direction of M in the y-z plane is given by

6= tan‘lg = 32.0° Ans.
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One of the two Golden Jubilee Bridges
in London, England, adjacent to the
Hungerford Bridge. The cables of this
bridge exert a three-dimensional
system of concentrated forces on each

bridge tower.

2/9 | Resultants

In Art. 2/6 we defined the resultant as the simplest force combination
which can replace a given system of forces without altering the exter-
nal effect on the rigid body on which the forces act. We found the
magnitude and direction of the resultant force for the two-dimensional
force system by a vector summation of forces, Eq. 2/9, and we located
the line of action of the resultant force by applying the principle of
moments, Eq. 2/10. These same principles can be extended to three
dimensions.

In the previous article we showed that a force could be moved to a
parallel position by adding a corresponding couple. Thus, for the sys-
tem of forces Fy, Fo, F5 . . . acting on a rigid body in Fig. 2/28a, we may
move each of them in turn to the arbitrary point O, provided we also
introduce a couple for each force transferred. Thus, for example, we may
move force F; to O, provided we introduce the couple M; = r; x Fy,
where r; is a vector from O to any point on the line of action of F};.
When all forces are shifted to O in this manner, we have a system of
concurrent forces at O and a system of couple vectors, as represented
in part b of the figure. The concurrent forces may then be added vecto-
rially to produce a resultant force R, and the couples may also be added
to produce a resultant couple M, Fig. 2/28¢. The general force system,
then, is reduced to

R=F1+F2+F3+"'=ZF
M=M,+My,+M;+ - ---=2Z(rxF)

(2/20)

The couple vectors are shown through point O, but because they are free vectors,
they may be represented in any parallel positions. The magnitudes of the resultants
and their components are

R,=3F, R,=%F, R,=3F,
R =+/(ZF,)? + (ZF,)? + (ZF,)*
M,=S(rxF), M=3xxF), M=S(rxF),

M=+vM?+M?+M?

(2/21)

F,

N,

1l
S
L]

(@) ®) (©

FIGURE 2/28



The point O selected as the point of concurrency for the forces is arbitrary, and
the magnitude and direction of M depend on the particular point O selected. The
magnitude and direction of R, however, are the same no matter which point is
selected.

In general, any system of forces may be replaced by its resultant force R and the
resultant couple M. In dynamics we usually select the mass center as the reference
point. The change in the linear motion of the body is determined by the resultant
force, and the change in the angular motion of the body is determined by the resul-
tant couple. In statics, the body is in complete equilibrium when the resultant force
R is zero and the resultant couple M is also zero. Thus, the determination of resul-
tants is essential in both statics and dynamics.

We now examine the resultants for several special force systems.

Concurrent Forces. When forces are concurrent at a point, only the first
of Eqgs. 2/20 needs to be used because there are no moments about the point of
concurrency.

Parallel Forces. For a system of parallel forces not all in the same plane,
the magnitude of the parallel resultant force R is simply the magnitude of the al-
gebraic sum of the given forces. The position of its line of action is obtained from the
principle of moments by requiring that r x R = M. Here r is a position vector ex-
tending from the force—couple reference point O to the final line of action of R, and
M, is the sum of the moments of the individual forces about O. See Sample Prob-
lem 2/17 for an example of parallel-force systems.

Coplanar Forces. Article 2/6 was devoted to this force system.

Wrench Resultant. When the resultant couple vector M is parallel to the
resultant force R, as shown in Fig. 2/29, the resultant is called a wrench. By defini-
tion a wrench is positive if the couple and force vectors point in the same direction
and negative if they point in opposite directions. A common example of a positive
wrench is found with the application of a screwdriver, to drive a right-handed
screw. Any general force system may be represented by a wrench applied along a
unique line of action. This reduction is illustrated in Fig. 2/30, where part a of the
figure represents, for the general force system, the resultant force R acting at some
point O and the corresponding resultant couple M. Although M is a free vector, for
convenience we represent it as acting through O.

In part b of the figure, M is resolved into components M; along the direction of
R and M, normal to R. In part ¢ of the figure, the couple M, is replaced by its
equivalent of two forces R and —R separated by a distance d = M,/R with —R ap-
plied at O to cancel the original R. This step leaves the resultant R, which acts
along a new and unique line of action, and the parallel couple M;, which is a free
vector, as shown in part d of the figure. Thus, the resultants of the original general

Positive wrench Negative wrench

FIGURE 2/29
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/

M, |
:% R Cfgl M, g
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(c) (d)

FIGURE 2/30

force system have been transformed into a wrench (positive in this illustration)
with its unique axis defined by the new position of R.

We see from Fig. 2/30 that the axis of the wrench resultant lies in a plane
through O normal to the plane defined by R and M. The wrench is the simplest form
in which the resultant of a general force system may be expressed. This form of the
resultant, however, has limited application, because it is usually more convenient to
use as the reference point some point O such as the mass center of the body or
another convenient origin of coordinates not on the wrench axis.

e i f ey

Mark A Paulda/Moment/Getty Images, Inc.

Another view of the Golden Jubilee Bridge in London.
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SAMPLE PROBLEM 2/16

Determine the resultant of the force and couple system which acts on
the rectangular solid.

Solution We choose point O as a convenient reference point for the
initial step of reducing the given forces to a force—couple system. The
resultant force is

R =2F = (80 — 80)i + (100 — 100)j + (50 - 500k =01b @
The sum of the moments about O is
M, = [50(16) — 700]i + [80(12) — 960]j + [100(10) — 1000]k lb-in.
=100i Ib-in. @

Hence, the resultant consists of a couple, which of course may be
applied at any point on the body or the body extended.

HELPFUL HINTS

@ Since the force summation is zero, we conclude that the resultant, if
it exists, must be a couple.

® The moments associated with the force pairs are easily obtained by
using the M = Fd rule and assigning the unit-vector direction by in-
spection. In many three-dimensional problems, this may be simpler
than the M =r x F approach.

700 1b-in.
28
1000 Ib-in.

SAMPLE PROBLEM 2/17

Determine the resultant of the system of parallel forces which act on
the plate. Solve with a vector approach.

Solution Transfer of all forces to point O results in the force—couple
system

R =ZF = (200 + 500 — 300 — 50)j = 350j N
M, = [50(0.35) — 300(0.35)]i + [-50(0.50) — 200(0.50)]k
= -87.5i — 125k N-m

The placement of R so that it alone represents the above force—couple
system is determined by the principle of moments in vector form

rxR=M,
(xi + yj + zk) x 350j = —87.51 — 125k
350xk — 350zi = —87.51 — 125k
From the one vector equation we may obtain the two scalar equations
350x = —125 and —350z = —87.5

Hence, x = —0.357 m and z = 0.250 m are the coordinates through
which the line of action of R must pass. The value of y may, of course, be
any value, as permitted by the principle of transmissibility. Thus, as
expected, the variable y drops out of the above vector analysis. ©®

HELPFUL HINT

® You should also carry out a scalar solution
to this problem.




52 CHAPTER 2 Force Systems

SAMPLE PROBLEM 2/18

Replace the two forces and the negative wrench by a single force R
applied at A and the corresponding couple M.

Solution The resultant force has the components

[R,=%F]  R,=500sin 40° + 700 sin 60° = 928 N

[R, = ZF)] R, =600 + 500 cos 40° cos 45° = 871 N

[R, = ZF,] R, =700 cos 60° + 500 cos 40° sin 45° = 621 N

Thus, R =928i + 871j + 621k N

and R =1/(928)2 + (871)2 + (621)? = 1416 N Ans.

The couple to be added as a result of moving the 500-N force is

[M=rxFl My =(0.08i + 0.12j + 0.05k) x 500(i sin 40°
+ j cos 40° cos 45° + k cos 40° sin 45°) @

where r is the vector from A to B.

The term-by-term, or determinant, expansion gives
M;p0 = 18.95i — 5.59j — 16.90k N-m

The moment of the 600-N force about A is written by inspection of its
x- and z-components, which gives @

Moo = (600)(0.060)i + (600)(0.040)k
=36.0i + 24.0k N-m

The moment of the 700-N force about A is easily obtained from the
moments of the x- and z-components of the force. The result becomes

M, = (700 cos 60°)(0.030)i — [(700 sin 60°)(0.060)
+ (700 cos 60°)(0.100)]j — (700 sin 60°)(0.030)k

=10.5i — 71.4j — 18.19k N-m
Also, the couple of the given wrench may be written ®
M’ = 25.0(—1i sin 40° — j cos 40° cos 45° — k cos 40° sin 45°)
=-16.07i — 13.54j — 13.54k N-m

Therefore, the resultant couple on adding together the i-, j-, and
k-terms of the four M’s is

M =49.4i - 90.5j - 246k N-m @
M = /(49.4)2 + (90.5)2 + (24.6)2 = 106.0 N-m

and Ans.

HELPFUL HINTS

@

©}

Suggestion: Check the cross-product re-
sults by evaluating the moments about
A of the components of the 500-N force
directly from the sketch.

For the 600-N and 700-N forces it is
easier to obtain the components of their
moments about the coordinate direc-
tions through A by inspection of the fig-
ure than it is to set up the cross-product
relations.

The 25-N-m couple vector of the
wrench points in the direction opposite
to that of the 500-N force, and we must
resolve it into its x-,y-, and z-components
to be added to the other couple-vector
components.

Although the resultant couple vector M
in the sketch of the resultants is shown
through A, we recognize that a couple
vector is a free vector and therefore has
no specified line of action.
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SAMPLE PROBLEM 2/19

Determine the wrench resultant of the three forces acting on the
bracket. Calculate the coordinates of the point P in the x-y plane
through which the resultant force of the wrench acts. Also find the
magnitude of the couple M of the wrench.

Solution The direction cosines of the couple M of the wrench must be
the same as those of the resultant force R, assuming that the wrench is
positive. @ The resultant force is

R = 20i + 40j + 40k 1b R =1/(20)% + (40)2 + (40)2=601b

and its direction cosines are
cos 6, = 20/60 = 1/3 cos 6, = 40/60 = 2/3 cos 6, = 40/60 = 2/3

The moment of the wrench couple must equal the sum of the
moments of the given forces about point P through which R passes. The
moments about P of the three forces are

(M)g, = 20yk Ib-in.
(M)g, = —40(3)i — 40xk Ib-in.
(Mg, = 40(4 — y)i — 40(5 — x)j 1b-in.
and the total moment is
M = (40 — 40y)i + (—200 + 40x)j + (—40x + 20y)k lb-in.
The direction cosines of M are
cos 6, = (40 — 40y)/M
cos 6, = (=200 + 40x)/M
cos 6, = (-40x + 20y)/M

where M is the magnitude of M. Equating the direction cosines of R and
M gives

40 — 40y = %
—200 + 40x = %
—40x + 20y = %
Solution of the three equations gives
M = -120 lb-in. x = 3in. y =2in. Ans.

We see that M turned out to be negative, which means that the couple
vector is pointing in the direction opposite to R, which makes the
wrench negative.

HELPFUL HINT

® We assume initially that the wrench is
positive. If M turns out to be negative,
then the direction of the couple vector is
opposite to that of the resultant force.
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210 | Chapter Review

In Chapter 2 we have established the properties of
forces, moments, and couples, and the correct proced-
ures for representing their effects. Mastery of this ma-
terial is essential for our study of equilibrium in the
chapters which follow. Failure to correctly use the pro-
cedures of Chapter 2 is a common cause of errors in ap-
plying the principles of equilibrium. When difficulties
arise, you should refer to this chapter to be sure that the
forces, moments, and couples are correctly represented.

Forces

There is frequent need to represent forces as vectors, to
resolve a single force into components along desired dir-
ections, and to combine two or more concurrent forces
into an equivalent resultant force. Specifically, you should
be able to:

1. Resolve a given force vector into its components
along given directions, and express the vector in
terms of the unit vectors along a given set of axes.

2. Express a force as a vector when given its magni-
tude and information about its line of action. This
information may be in the form of two points along
the line of action or angles which orient the line of
action.

3. Use the dot product to compute the projection of a
vector onto a specified line and the angle between
two vectors.

4. Compute the resultant of two or more forces con-
current at a point.

Moments

The tendency of a force to rotate a body about an axis is
described by a moment (or torque), which is a vector
quantity. We have seen that finding the moment of a
force is often facilitated by combining the moments of
the components of the force. When working with mo-
ment vectors you should be able to:

1. Determine a moment by using the moment-arm
rule.

2. Use the vector cross product to compute a moment
vector in terms of a force vector and a position vec-
tor locating the line of action of the force.

3. Utilize Varignon’s theorem to simplify the calcula-
tion of moments, in both scalar and vector forms.

4. Use the triple scalar product to compute the mo-
ment of a force vector about a given axis through a
given point.

Couples

A couple is the combined moment of two equal, opposite,
and noncollinear forces. The unique effect of a couple is
to produce a pure twist or rotation regardless of where
the forces are located. The couple is useful in replacing
a force acting at a point by a force—couple system at a
different point. To solve problems involving couples you
should be able to:

1. Compute the moment of a couple, given the couple
forces and either their separation distance or any
position vectors locating their lines of action.

2. Replace a given force by an equivalent force—couple
system, and vice versa.

Resultants

We can reduce an arbitrary system of forces and couples
to a single resultant force applied at an arbitrary point,
and a corresponding resultant couple. We can further
combine this resultant force and couple into a wrench to
give a single resultant force along a unique line of ac-
tion, together with a parallel couple vector. To solve
problems involving resultants you should be able to:

1. Compute the magnitude, direction, and line of ac-
tion of the resultant of a system of coplanar forces
if that resultant is a force; otherwise, compute the
moment of the resultant couple.

2. Apply the principle of moments to simplify the cal-
culation of the moment of a system of coplanar
forces about a given point.

3. Replace a given general force system by a wrench
along a specific line of action.

Equilibrium

You will use the preceding concepts and methods when
you study equilibrium in the following chapters. Let us
summarize the concept of equilibrium:

1. When the resultant force on a body is zero (ZF = 0),
the body is in translational equilibrium. This
means that its center of mass is either at rest or
moving in a straight line with constant velocity.

2. In addition, if the resultant couple is zero (ZM = 0),
the body is in rotational equilibrium, either having
no rotational motion or rotating with a constant
angular velocity.

3. When both resultants are zero, the body is in
complete equilibrium.
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31 | |Introduction

Statics deals primarily with the description of the force conditions necessary and
sufficient to maintain the equilibrium of engineering structures. This chapter on
equilibrium, therefore, constitutes the most important part of statics, and the proce-
dures developed here form the basis for solving problems in both statics and dynam-
ics. We will make continual use of the concepts developed in Chapter 2 involving
forces, moments, couples, and resultants as we apply the principles of equilibrium.

When a body is in equilibrium, the resultant of all forces acting on it is zero.
Thus, the resultant force R and the resultant couple M are both zero, and we have
the equilibrium equations

R=2F=0 M=XM=0 (3/1)

These requirements are both necessary and sufficient conditions for equilibrium.
All physical bodies are three-dimensional, but we can treat many of them as
two-dimensional when the forces to which they are subjected act in a single plane
or can be projected onto a single plane. When this simplification is not possible, the
problem must be treated as three-dimensional. We will follow the arrangement
used in Chapter 2 and discuss in Section A the equilibrium of bodies subjected to
two-dimensional force systems and in Section B the equilibrium of bodies subjected
to three-dimensional force systems. 55
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sectioNA  Equilibrium in Two Dimensions

32 | System Isolation and the Free-Body
Diagram

Before we apply Eqgs. 3/1, we must define unambiguously the particular body or
mechanical system to be analyzed and represent clearly and completely all forces
acting on the body. Omission of a force which acts on the body in question, or inclu-
sion of a force which does not act on the body, will give erroneous results.

A mechanical system is defined as a body or group of bodies which can be con-
ceptually isolated from all other bodies. A system may be a single body or a combi-
nation of connected bodies. The bodies may be rigid or nonrigid. The system may
also be an identifiable fluid mass, either liquid or gas, or a combination of fluids and
solids. In statics we study primarily forces which act on rigid bodies at rest, although
we also study forces acting on fluids in equilibrium.

Once we decide which body or combination of bodies to analyze, we then treat
this body or combination as a single body isolated from all surrounding bodies. This
isolation is accomplished by means of the free-body diagram, which is a diagram-
matic representation of the isolated system treated as a single body. The diagram
shows all forces applied to the system by mechanical contact with other bodies,
which are imagined to be removed. If appreciable body forces are present, such as
gravitational or magnetic attraction, then these forces must also be shown on the
free-body diagram of the isolated system. Only after such a diagram has been care-
fully drawn should the equilibrium equations be written. Because of its critical
importance, we emphasize here that

the free-body diagram is the most important single step in the solution
of problems in mechanics.

Before attempting to draw a free-body diagram, we must recall the basic
characteristics of force. These characteristics were described in Art. 2/2, with
primary attention focused on the vector properties of force. Forces can be applied
either by direct physical contact or by remote action. Forces can be either inter-
nal or external to the system under consideration. Application of force is accom-
panied by reactive force, and both applied and reactive forces may be either
concentrated or distributed. The principle of transmissibility permits the treat-
ment of force as a sliding vector as far as its external effects on a rigid body are
concerned.

We will now use these force characteristics to develop conceptual models of
isolated mechanical systems. These models enable us to write the appropriate
equations of equilibrium, which can then be analyzed.

Modeling the Action of Forces

Figure 3/1 shows the common types of force application on mechanical systems for
analysis in two dimensions. Each example shows the force exerted on the body to
be isolated, by the body to be removed. Newton’s third law, which notes the exis-
tence of an equal and opposite reaction to every action, must be carefully observed.
The force exerted on the body in question by a contacting or supporting member is
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always in the sense to oppose the movement of the isolated body which would occur
if the contacting or supporting body were removed.

In Fig. 3/1, Example 1 depicts the action of a flexible cable, belt, rope, or
chain on the body to which it is attached. Because of its flexibility, a rope or cable
is unable to offer any resistance to bending, shear, or compression and therefore
exerts only a tension force in a direction tangent to the cable at its point of at-
tachment. The force exerted by the cable on the body to which it is attached is
always away from the body. When the tension T is large compared with the
weight of the cable, we may assume that the cable forms a straight line. When
the cable weight is not negligible compared with its tension, the sag of the cable
becomes important, and the tension in the cable changes direction and magni-
tude along its length.

When the smooth surfaces of two bodies are in contact, as in Example 2, the
force exerted by one on the other is normal to the tangent to the surfaces and is
compressive. Although no actual surfaces are perfectly smooth, we can assume this
to be so for practical purposes in many instances.

When mating surfaces of contacting bodies are rough, as in Example 3, the
force of contact is not necessarily normal to the tangent to the surfaces, but

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin Action on Body to Be Isolated
1. Flexible cable, belt,
chain, or rope i o - E - Force exerted by
Weight of cable 6 a flexible cable is
negligible T always a tension away
- o from the body in the
Weight of cable 0 = 6 direction of the cable.
not negligible T

2. Smooth surfaces

A\ Contact force is
N compressive and is
N ~  normal to the surface.

3. Rough surfaces Rough surfaces are

Fn < capable of supporting a
N // tangential component F
~ (frictional force) as well
as a normal component
N of the resultant
contact force R.

4. Roller support
T Roller, rocker, or ball
support transmits a
compressive force
o N 1o\ normal to the
supporting surface.

5. Freely sliding guide

=

Collar or slider free to

move along smooth
. guides; can support
force normal to guide
N N

only.

FIGURE 3/1
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MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont.)
Type of Contact and Force Origin Action on Body to Be Isolated

6. Pin connection Pin free to turn A freely hinged pin

connection is capable
G?* of supporting a force
R in any direction in the
* R plane normal to the
Ry pin axis. We may
either show two
Pin not free to turn components R, and
Ryora magmtude R
and direction 6. A pin
not free to turn also
supports a couple M.

7. Built-in or fixed support A A built-in or fixed
‘ support is capable of
A A supporting an axial

|

or F force F, a transverse
Weld force V (shear force),

and a couple M
\74 (bending moment) to
prevent rotation.

8. Gravitational attraction The resultant of

gravitational

attraction on all

ZL G elements of a body of
mass m is the weight

‘L‘L‘Lill W = mg and acts

W =mg toward the center of

the earth through the

center of gravity G.

9. Spring action . . Spring force is tensile if
Linear Nonlinear the spring is stretched

Neutral F F and compressive if
pOSItlon | Hardening

_ compressed. For a
\ F=kx \ | F=khx linearly elastic spring
\ - the stiffness % is the

3‘\'\\\\\"‘» ‘ ‘ Softening force reguired tp deform
— — % the spring a unit
distance.

10. Torsional spring action For a linear torsional
spring, the applied
moment M is
— A 6 T u proportional to the
% angular deflection 6
M @ \f . 3 from the neutral
position. The stiffness
kp kpis the moment
- required to deform the
Neutral position spring one radian.

HAIAVSTEN continued

may be resolved into a tangential or frictional component F and a normal
component N.

Example 4 illustrates a number of forms of mechanical support which effec-
tively eliminate tangential friction forces. In these cases the net reaction is normal
to the supporting surface.
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Example 5 shows the action of a smooth guide on the body it sup-
ports. There cannot be any resistance parallel to the guide.

Example 6 illustrates the action of a pin connection. Such a connec-
tion can support force in any direction normal to the axis of the pin. We
usually represent this action in terms of two rectangular components.
The correct sense of these components in a specific problem depends on
how the member is loaded. When not otherwise initially known, the
sense is arbitrarily assigned and the equilibrium equations are then
written. If the solution of these equations yields a positive algebraic
sign for the force component, the assigned sense is correct. A negative
sign indicates the sense is opposite to that initially assigned.

If the joint is free to turn about the pin, the connection can support
only the force R. If the joint is not free to turn, the connection can also
support a resisting couple M. The sense of M is arbitrarily shown here,
but the true sense depends on how the member is loaded.

Example 7 shows the resultants of the rather complex distribution
of force over the cross section of a slender bar or beam at a built-in or
fixed support. The sense of the reactions /' and V and the bending couple
M in a given problem depends, of course, on how the member is loaded.

One of the most common forces is that due to gravitational
attraction, Example 8. This force affects all elements of mass in a Another type of car-lifting apparatus
body and is, therefore, distributed throughout it. The resultant of the to be considered along with that in
gravitational forces on all elements is the weight W = mg of the the chapter-opening photograph.
body, which passes through the center of gravity G and is directed
toward the center of the earth for earthbound structures. The location of G is
frequently obvious from the geometry of the body, particularly where there is
symmetry. When the location is not readily apparent, it must be determined by
experiment or calculations.

Similar remarks apply to the remote action of magnetic and electric forces.

These forces of remote action have the same overall effect on a rigid body as forces
of equal magnitude and direction applied by direct external contact.

Example 9 illustrates the action of a linear elastic spring and of a nonlinear
spring with either hardening or softening characteristics. The force exerted by a
linear spring, in tension or compression, is given by F' = kx, where % is the stiff-
ness or modulus of the spring and x is its deformation measured from the neutral
or undeformed position.

In Example 10 we see the action of a torsional (or clockwork) spring. Shown is
a linear version; as suggested in Example 9 for extension springs, nonlinear tor-
sional springs also exist.

The representations in Fig. 3/1 are not free-body diagrams, but are merely ele-
ments used to construct free-body diagrams. Study these ten conditions and iden-
tify them in the problem work so that you can draw the correct free-body diagrams.

Friedrich Stark / Alamy Stock Photo

Key Concepts Construction of Free-Body Diagrams

The full procedure for drawing a free-body diagram boundary. This boundary defines the isolation of
which isolates a body or system consists of the following the system from all other attracting or contacting
steps. bodies, which are considered removed. This step is

often the most crucial of all. Make certain that you
have completely isolated the system before proceed-
ing with the next step.

Step 1. Decide which system to isolate. The system
chosen should usually involve one or more of the
desired unknown quantities.

Step 2. Next isolate the chosen system by drawing Step 3. Identify all forces which act on the isolated
v a diagram which represents its complete external system as applied by the removed contacting and
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attracting bodies, and represent them in their
proper positions on the diagram of the isolated sys-
tem. Make a systematic traverse of the entire
boundary to identify all contact forces. Include body
forces such as weights, where appreciable. Repres-
ent all known forces by vector arrows, each with its
proper magnitude, direction, and sense indicated.
Each unknown force should be represented by a
vector arrow with the unknown magnitude or direc-
tion indicated by symbol. If the sense of the vector is
also unknown, you must arbitrarily assign a sense.
The subsequent calculations with the equilibrium

consistent with the assigned characteristics of un-
known forces throughout all of the calculations. If
you are consistent, the solution of the equilibrium
equations will reveal the correct senses.

Step 4. Show the choice of coordinate axes directly
on the diagram. Pertinent dimensions may also be
represented for convenience. Note, however, that
the free-body diagram serves the purpose of focus-
ing attention on the action of the external forces,
and therefore the diagram should not be cluttered
with excessive extraneous information. Clearly dis-
tinguish force arrows from arrows representing

equations will yield a positive quantity if the correct
sense was assumed and a negative quantity if the
incorrect sense was assumed. It is necessary to be

quantities other than forces. For this purpose a
colored pencil may be used.

Completion of the foregoing four steps will produce a correct free-body dia-
gram to use in applying the governing equations, both in statics and in dynam-
ics. Be careful not to omit from the free-body diagram certain forces which may
not appear at first glance to be needed in the calculations. It is only through
complete isolation and a systematic representation of all external forces that a
reliable accounting of the effects of all applied and reactive forces can be made.
Very often a force which at first glance may not appear to influence a desired
result does indeed have an influence. Thus, the only safe procedure is to in-
clude on the free-body diagram all forces whose magnitudes are not obviously
negligible.

Examples of Free-Body Diagrams

Figure 3/2 gives four examples of mechanisms and structures together with their
correct free-body diagrams. Dimensions and magnitudes are omitted for clarity. In
each case we treat the entire system as a single body, so that the internal forces are not
shown. The characteristics of the various types of contact forces illustrated in Fig. 3/1
are used in the four examples as they apply.

In Example 1 the truss is composed of structural elements which, taken all
together, constitute a rigid framework. Thus, we may remove the entire truss
from its supporting foundation and treat it as a single rigid body. In addition to
the applied external load P, the free-body diagram must include the reactions
on the truss at A and B. The rocker at B can support a vertical force only, and
this force is transmitted to the structure at B (Example 4 of Fig. 3/1). The pin
connection at A (Example 6 of Fig. 3/1) is capable of supplying both a horizon-
tal and a vertical force component to the truss. If the total weight of the truss
members is appreciable compared with P and the forces at A and B, then the
weights of the members must be included on the free-body diagram as external
forces.

In this relatively simple example it is clear that the vertical component A,
must be directed down to prevent the truss from rotating clockwise about B.
Also, the horizontal component A, will be to the left to keep the truss from mov-
ing to the right under the influence of the horizontal component of P. Thus, in
constructing the free-body diagram for this simple truss, we can easily perceive
the correct sense of each of the components of force exerted on the truss by the
foundation at A and can, therefore, represent its correct physical sense on the
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SAMPLE FREE-BODY DIAGRAMS
Mechanical System Free-Body Diagram of Isolated Body

1. Plane truss

Weight of truss P
assumed negligible P
compared with P y
\
\
Lo«

2. Cantilever beam

AR
1 ! ¢

A Mass m M

3. Beam
/\ N\
Smooth surface / M M

contact at A.

Mass m

A
P — P —> /l
B \ W =mg

4. Rigid system of interconnected bodies
analyzed as a single unit

y

\
P —<=—= Weight of mechanism P —<=— \
neglected Ly

FIGURE 3/2

diagram. When the correct physical sense of a force or its component is not eas-
ily recognized by direct observation, it must be assigned arbitrarily, and the cor-
rectness of or error in the assignment is determined by the algebraic sign of its
calculated value.

In Example 2 the cantilever beam is secured to the wall and subjected to three
applied loads. When we isolate that part of the beam to the right of the section at
A, we must include the reactive forces applied ¢o the beam by the wall. The resul-
tants of these reactive forces are shown acting on the section of the beam (Example 7
of Fig. 3/1). A vertical force V to counteract the excess of downward applied force is
shown, and a tension F' to balance the excess of applied force to the right must also
be included. Then, to prevent the beam from rotating about A, a counterclockwise
couple M is also required. The weight mg of the beam must be represented through
the mass center (Example 8 of Fig. 3/1).

In the free-body diagram of Example 2, we have represented the somewhat
complex system of forces which actually act on the cut section of the beam by the
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equivalent force—couple system in which the force is broken down into its verti-
cal component V (shear force) and its horizontal component F (tensile force). The
couple M is the bending moment in the beam. The free-body diagram is now
complete and shows the beam in equilibrium under the action of six forces and
one couple.

In Example 3 the weight W = mg is shown acting through the center of mass of
the beam, whose location is assumed known (Example 8 of Fig. 3/1). The force ex-
erted by the corner A on the beam is normal to the smooth surface of the beam
(Example 2 of Fig. 3/1). To perceive this action more clearly, visualize an enlarge-
ment of the contact point A, which would appear somewhat rounded, and consider
the force exerted by this rounded corner on the straight surface of the beam, which
is assumed to be smooth. If the contacting surfaces at the corner were not smooth,
a tangential frictional component of force could exist. In addition to the applied
force P and couple M, there is the pin connection at B, which exerts both an x- and
a y-component of force on the beam. The positive senses of these components are
assigned arbitrarily.

In Example 4 the free-body diagram of the entire isolated mechanism contains
three unknown forces if the loads mg and P are known. Any one of many internal
configurations for securing the cable leading from the mass m would be possible
without affecting the external response of the mechanism as a whole, and this fact
is brought out by the free-body diagram. This hypothetical example is used to show
that the forces internal to a rigid assembly of members do not influence the values
of the external reactions.

We use the free-body diagram in writing the equilibrium equations, which
are discussed in the next article. When these equations are solved, some of the
calculated force magnitudes may be zero. This would indicate that the assumed
force does not exist. In Example 1 of Fig. 3/2, any of the reactions A,, A,, or B,
can be zero for specific values of the truss geometry and of the magnitude, di-
rection, and sense of the applied load P. A zero reaction force is often difficult
to identify by inspection, but can be determined by solving the equilibrium
equations.

Similar comments apply to calculated force magnitudes which
are negative. Such a result indicates that the actual sense is the
opposite of the assumed sense. The assumed positive senses of B,
and B, in Example 3 and B, in Example 4 are shown on the free-
body diagrams. The correctness of these assumptions is proved or
disproved according to whether the algebraic signs of the computed
forces are plus or minus when the calculations are carried out in
an actual problem.

The isolation of the mechanical system under consideration is
a crucial step in the formulation of the mathematical model. The
most important aspect to the correct construction of the all-
important free-body diagram is the clear-cut and unambiguous
decision as to what is included and what is excluded. This decision
becomes unambiguous only when the boundary of the free-body
diagram represents a complete traverse of the body or system of
bodies to be isolated, starting at some arbitrary point on the
boundary and returning to that same point. The system within
this closed boundary is the isolated free body, and all contact forces
and all body forces transmitted to the system across the boundary
must be accounted for.

The following exercises provide practice with drawing free-

Complex pulley sy;tems are easily body diagrams. This practice is helpful before using such diagrams

handled with a systematic equilibrium in the application of the principles of force equilibrium in the next

analysis.

article.



Article 3/2 System Isolation and the Free-Body Diagram 63

Free-Body Diagram Exercises

3/A In each of the five following examples, the body to be
isolated is shown in the left-hand diagram, and an in-
complete free-body diagram (FBD) of the isolated body is
shown on the right. Add whatever forces are necessary in

each case to form a complete free-body diagram. The
weights of the bodies are negligible unless otherwise in-
dicated. Dimensions and numerical values are omitted for
simplicity.

Body Incomplete FBD
1. Bell crank m T“k "
supporting mass Flexible
m with pin support | .aple A AO :
atA. 4

2. Control lever
applying torque
to shaft at O.

3. Boom OA, of
negligible mass
compared with
mass m. Boom
hinged at O and
supported by
hoisting cable at B.

4. Uniform crate of
mass m leaning
against smooth
vertical wall and
supported on a
rough horizontal
surface.

5. Loaded bracket
supported by pin i
connection at A and B
fixed pin in smooth
slot at B. A e

\ A

Load L . L

PROB

LEM 3/A
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3/B In each of the five following examples, the body to be necessary in each case to form a correct and complete free-
isolated is shown in the left-hand diagram, and either a body diagram. The weights of the bodies are negligible un-
wrong or an incomplete free-body diagram (FBD) is shown less otherwise indicated. Dimensions and numerical values
on the right. Make whatever changes or additions are are omitted for simplicity.

Wrong or Incomplete FBD

1. Lawn roller of
mass m being
pushed up
incline 6.

2. Prybar lifting
body A having
smooth horizontal
surface. Bar rests
on horizontal
rough surface.

3. Uniform pole of
mass m being
hoisted into posi-
tion by winch.
Horizontal sup-
porting surface
notched to prevent
slipping of pole.

4. Supporting angle
bracket for frame;
pin joints.

5. Bent rod welded to
support at A and
subjected to two
forces and couple.

PROBLEM 3/B
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3/C Draw a complete and correct free-body diagram of each known and unknown, should be labeled. (Note: The sense of

of the bodies designated in the statements. The weights of the some reaction components cannot always be determined
bodies are significant only if the mass is stated. All forces, without numerical calculation.)
1. Uniform horizontal bar of mass m 5. Uniform grooved wheel of mass m
suspended by vertical cable at A and supported by a rough surface and by
supported by rough inclined surface action of horizontal cable.
at B.
Al m | B
2. Wheel of mass m on verge of being 6. Bar, initially horizontal but deflected
rolled over curb by pull P. under load L. Pinned to rigid support

at each end.

P o =SS

L

3. Loaded truss supported by pin joint at 7. Uniform heavy plate of mass m

A and by cable at B. supported in vertical plane by cable
C and hinge A.
B C
A
A
4. Uniform bar of mass m and roller of 8. Entire frame, pulleys, and contacting
mass m taken together. Subjected to cable to be isolated as a single unit.

couple M and supported as shown.

R i .
oller is free to turnm ,-) u
0
m

A

PROBLEM 3/C
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33 | Equilibrium Conditions

In Art. 3/1 we defined equilibrium as the condition in which the resultant of all
forces and moments acting on a body is zero. Stated in another way, a body is in
equilibrium if all forces and moments applied to it are in balance. These require-
ments are contained in the vector equations of equilibrium, Eqs. 3/1, which in two
dimensions may be written in scalar form as

XF,. =0 2F, =0 XMy=0 (3/2)

The third equation represents the zero sum of the moments of all forces about any
point O on or off the body. Equations 3/2 are the necessary and sufficient condi-
tions for complete equilibrium in two dimensions. They are necessary conditions
because, if they are not satisfied, there can be no force or moment balance. They
are sufficient because once they are satisfied, there can be no imbalance, and equi-
librium is assured.

The equations relating force and acceleration for rigid-body motion are devel-
oped in Vol. 2 Dynamics from Newton’s second law of motion. These equations show
that the acceleration of the mass center of a body is proportional to the resultant
force ZF acting on the body. Consequently, if a body moves with constant velocity
(zero acceleration), the resultant force on it must be zero, and the body may be
treated as in a state of translational equilibrium.

For complete equilibrium in two dimensions, all three of Eqs. 3/2 must
hold. However, these conditions are independent requirements, and one may
hold without another. Take, for example, a body which slides along a horizontal
surface with increasing velocity under the action of applied forces. The force—
equilibrium equations will be satisfied in the vertical direction where the ac-
celeration is zero, but not in the horizontal direction. Also, a body, such as a
flywheel, which rotates about its fixed mass center with increasing angular
speed is not in rotational equilibrium, but the two force—equilibrium equations
will be satisfied.

Categories of Equilibrium

Applications of Egs. 3/2 fall naturally into a number of categories which are easily
identified. The categories of force systems acting on bodies in two-dimensional
equilibrium are summarized in Fig. 3/3 and are explained further as follows.

Category 1, equilibrium of collinear forces, clearly requires only the one force
equation in the direction of the forces (x-direction), since all other equations
are automatically satisfied.

Category 2, equilibrium of forces which lie in a plane (x-y plane) and are con-
current at a point O, requires the two force equations only, since the moment
sum about O, that is, about a z-axis through O, is necessarily zero. Included in
this category is the case of the equilibrium of a particle.

Category 3, equilibrium of parallel forces in a plane, requires the one force
equation in the direction of the forces (x-direction) and one moment equation
about an axis (z-axis) normal to the plane of the forces.

Category 4, equilibrium of a general system of forces in a plane (x-y), requires
the two force equations in the plane and one moment equation about an axis
(z-axis) normal to the plane.



Article 3/3 Equilibrium Conditions 67

CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS

Force System Free-Body Diagram Independent Equations

1. Collinear
XF.=0

2. Concurrent SF,=0

at a point

XF,=0

3. Parallel XF,.=0 XM,=0

4. General XF,=0 XM,=0
2F,=0

FIGURE 3/3

Two- and Three-Force Members

You should be alert to two frequently occurring equilibrium situations. The first
situation is the equilibrium of a body under the action of two forces only. Two
examples are shown in Fig. 3/4, and we see that for such a two-force member to
be in equilibrium, the forces must be equal, opposite, and collinear. The shape of
the member does not affect this simple requirement. In the illustrations cited,
we consider the weights of the members to be negligible compared with the ap-
plied forces.

The second situation is a three-force member, which is a body under the action
of three forces, Fig. 3/5a. We see that equilibrium requires the lines of action of the
three forces to be concurrent. If they were not concurrent, then one of the forces
would exert a resultant moment about the point of intersection of the other two,

/}}}

e
e
e
e

LAY Two-force members

-P
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FIGURE 3/6

M, = 0 satisfied

(@)

ZMAZO
SF,=0

} satisfied

XM, = 0 satisfied

(c)

M, =0
ZMBZO

} satisfied

Fy

F,

F;
(a) Three-force member (b) Closed polygon satisfies XF = 0

which would violate the requirement of zero moment about every point. The only
exception occurs when the three forces are parallel. In this case we may consider
the point of concurrency to be at infinity.

The principle of the concurrency of three forces in equilibrium is of consider-
able use in carrying out a graphical solution of the force equations. In this case the
polygon of forces is drawn and made to close, as shown in Fig. 3/5b. Frequently, a
body in equilibrium under the action of more than three forces may be reduced to
a three-force member by a combination of two or more of the known forces.

Alternative Equilibrium Equations

In addition to Egs. 3/2, there are two other ways to express the general conditions
for the equilibrium of forces in two dimensions. The first way is illustrated in Fig. 3/6,
parts (a) and (). For the body shown in Fig. 3/6a, if ZM4 = 0, then the resultant, if
it still exists, cannot be a couple, but must be a force R passing through A. If now
the equation XF, = 0 holds, where the x-direction is arbitrary, it follows from
Fig. 3/6b that the resultant force R, if it still exists, not only must pass through A,
but also must be perpendicular to the x-direction as shown. Now, if XMz = 0, where
B is any point such that the line AB is not perpendicular to the x-direction, we see that
R must be zero, and thus the body is in equilibrium. Therefore, an alternative set
of equilibrium equations is

SF,=0 SM,=0 SMz=0

where the two points A and B must not lie on a line perpendicular to the x-direction.

A third formulation of the equilibrium conditions may be made for a coplanar
force system. This is illustrated in Fig. 3/6, parts (c) and (d). Again, if XM, = 0 for
any body such as that shown in Fig. 3/6¢, the resultant, if any, must be a force R
through A. In addition, if Mz = 0, the resultant, if one still exists, must pass
through B as shown in Fig. 3/6d. Such a force cannot exist, however, if XM = 0,
where C is not collinear with A and B. Thus, we may write the equations of equilib-
rium as

SM,=0 3IMz=0 SM,=0

where A, B, and C are any three points not on the same straight line.

When equilibrium equations are written which are not independent, redun-
dant information is obtained, and a correct solution of the equations will yield 0 = 0.
For example, for a general problem in two dimensions with three unknowns, three
moment equations written about three points which lie on the same straight line
are not independent. Such equations will contain duplicated information, and solu-
tion of two of them can at best determine two of the unknowns, with the third equa-
tion merely verifying the identity 0 = 0.
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Constraints and Statical Determinacy

The equilibrium equations developed in this article are both necessary and suffi-
cient conditions to establish the equilibrium of a body. However, they do not neces-
sarily provide all the information required to calculate all the unknown forces
which may act on a body in equilibrium. Whether the equations are adequate to
determine all the unknowns depends on the characteristics of the constraints
against possible movement of the body provided by its supports. By constraint we
mean the restriction of movement.

In Example 4 of Fig. 3/1 the roller, ball, and rocker provide constraint normal
to the surface of contact, but none tangent to the surface. Thus, a tangential force
cannot be supported. For the collar and slider of Example 5, constraint exists only
normal to the guide. In Example 6 the fixed-pin connection provides constraint in
both directions, but offers no resistance to rotation about the pin unless the pin is
not free to turn. The fixed support of Example 7, however, offers constraint against
rotation as well as lateral movement.

If the rocker which supports the truss of Example 1 in Fig. 3/2 were replaced by
a pin joint, as at A, there would be one additional constraint beyond those required
to support an equilibrium configuration with no freedom of movement. The three
scalar conditions of equilibrium, Egs. 3/2, would not provide sufficient information
to determine all four unknowns, since A, and B, could not be solved for separately;
only their sum could be determined. These two components of force would be
dependent on the deformation of the members of the truss as influenced by their
corresponding stiffness properties. The horizontal reactions A, and B, would also
depend on any initial deformation required to fit the dimensions of the structure to
those of the foundation between A and B. Thus, we cannot determine A, and B, by
a rigid-body analysis.

Again referring to Fig. 3/2, we see that if the pin B in Example 3 were not free
to turn, the support could transmit a couple to the beam through the pin. Therefore,
there would be four unknown supporting reactions acting on the beam—namely, the
force at A, the two components of force at B, and the couple at B. Consequently the
three independent scalar equations of equilibrium would not provide enough infor-
mation to compute all four unknowns.

A rigid body, or rigid combination of elements treated as a single body, which
possesses more external supports or constraints than are necessary to maintain an
equilibrium position is called statically indeterminate. Supports which can be
removed without destroying the equilibrium condition of the body are said to be
redundant. The number of redundant supporting elements present corresponds to
the degree of statical indeterminacy and equals the total number of unknown exter-
nal forces, minus the number of available independent equations of equilibrium.
On the other hand, bodies which are supported by the minimum number of
constraints necessary to ensure an equilibrium configuration are called statically
determinate, and for such bodies the equilibrium equations are sufficient to
determine the unknown external forces.

The problems on equilibrium in this article and throughout Vol. 1 Statics are
generally restricted to statically determinate bodies where the constraints are
just sufficient to ensure a stable equilibrium configuration and where the un-
known supporting forces can be completely determined by the available inde-
pendent equations of equilibrium.

We must be aware of the nature of the constraints before we attempt to solve
an equilibrium problem. A body can be recognized as statically indeterminate
when there are more unknown external reactions than there are available inde-
pendent equilibrium equations for the force system involved. It is always well to
count the number of unknown variables on a given body and to be certain that
an equal number of independent equations can be written; otherwise, effort
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FIGURE 3/7

(a) Complete fixity
Adequate constraints

//

(b) Incomplete fixity
Partial constraints

(¢) Incomplete fixity
Partial constraints

Z

(d) Excessive fixity
Redundant constraint

might be wasted in attempting an impossible solution with the aid of the equi-
librium equations only. The unknown variables may be forces, couples, distances,
or angles.

Adequacy of Constraints

In discussing the relationship between constraints and equilibrium, we should look
further at the question of the adequacy of constraints. The existence of three con-
straints for a two-dimensional problem does not always guarantee a stable equilib-
rium configuration. Figure 3/7 shows four different types of constraints. In part a
of the figure, point A of the rigid body is fixed by the two links and cannot move, and
the third link prevents any rotation about A. Thus, this body is completely fixed with
three adequate (proper) constraints.

In part b of the figure, the third link is positioned so that the force transmitted
by it passes through point A where the other two constraint forces act. Thus, this
configuration of constraints can offer no initial resistance to rotation about A, which
would occur when external loads were applied to the body. We conclude, therefore,
that this body is incompletely fixed under partial constraints.

The configuration in part ¢ of the figure gives us a similar condition of incom-
plete fixity because the three parallel links could offer no initial resistance to a
small vertical movement of the body as a result of external loads applied to it in
this direction. The constraints in these two examples are often termed improper.

In part d of Fig. 3/7 we have a condition of complete fixity, with link 4 acting as
a fourth constraint which is unnecessary to maintain a fixed position. Link 4, then,
is a redundant constraint, and the body is statically indeterminate.

As in the four examples of Fig. 3/7, it is generally possible by direct observa-
tion to conclude whether the constraints on a body in two-dimensional equilibrium
are adequate (proper), partial (improper), or redundant. As indicated previously, the
vast majority of problems in this book are statically determinate with adequate
(proper) constraints.

Key Concepts  Approach to Solving Problems

and unknown.

The sample problems at the end of this article illustrate

the application of free-body diagrams and the equations

of equilibrium to typical statics problems. These solu-

tions should be studied thoroughly. In the problem work

of this chapter and throughout mechanics, it is impor-

tant to develop a logical and systematic approach which 4
includes the following steps:

1. Identify clearly the quantities which are known

best choice is one through which as many unknown
forces pass as possible. Simultaneous solutions of
equilibrium equations are frequently necessary,
but can be minimized or avoided by a careful choice
of reference axes and moment centers.

. Identify and state the applicable force and moment
principles or equations which govern the equilibrium
conditions of the problem. In the following sample
problems these relations are shown in brackets and
precede each major calculation.

2.

Make an unambiguous choice of the body (or sys-
tem of connected bodies treated as a single body) to
be isolated and draw its complete free-body dia-
gram, labeling all external known and unknown but
identifiable forces and couples which act on it.

. Choose a convenient set of reference axes, always

using right-handed axes when vector cross prod-
ucts are employed. Choose moment centers with a
view to simplifying the calculations. Generally the

. Match the number of independent equations with

the number of unknowns in each problem.

. Carry out the solution and check the results. In

many problems engineering judgment can be de-
veloped by first making a reasonable guess or es-
timate of the result prior to the calculation and
then comparing the estimate with the calculated
value.
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SAMPLE PROBLEM 3/1

Determine the magnitudes of the forces C and T, which, along with the
other three forces shown, act on the bridge-truss joint.

Solution The given sketch constitutes the free-body diagram of the
isolated section of the joint in question and shows the five forces which
are in equilibrium. ©®

Solution I (scalar algebra) For the x-y axes as shown we have

[2F, = 0] 8+ Tcos40°+ Csin20°-16 =0

0.766T + 0.342C =8 (@)
[ZF, = 0] T sin 40° — C cos 20° -3 =0

0.643T — 0.940C =3 (b)

Simultaneous solution of Egs. (a) and (b) produces
T =9.09 kN C =3.03kN Ans.
Solution II (scalar algebra) To avoid a simultaneous solution, we

may use axes x’-y’ with the first summation in the y’-direction to elimi-
nate reference to 7. @ Thus,

[ZF, = 0] —C cos 20° — 3 cos 40° — 8 sin 40° + 16 sin 40° =0
C =3.03kN Ans.
[2F, = 0] T + 8 cos 40° — 16 cos 40° — 3 sin 40° — 3.03 sin 20° =0
T =9.09 kN Ans.

Solution III (vector algebra) With unit vectors i and j in the x- and
y-directions, the zero summation of forces for equilibrium yields the
vector equation

[ZF = 0] 8i + (T cos 40°)i + (T sin 40°)j — 3j + (C sin 20°)i
— (Ccos 20°)j — 161 =0
Equating the coefficients of the i- and j-terms to zero gives
8 + T cos40° + Csin20°—-16 =0
T'sin 40° — 3 — C cos 20°=0

which are the same, of course, as Eqgs. (@) and (b), which we solved
above.

Solution IV (geometric) The polygon representing the zero vector
sum of the five forces is shown. Equations (a) and (b) are seen immedi-
ately to give the projections of the vectors onto the x- and y-directions.
Similarly, projections onto the x’- and y’-directions give the alternative
equations in Solution II.

A graphical solution is easily obtained. The known vectors are laid
off head-to-tail to some convenient scale, and the directions of T and C
are then drawn to close the polygon. ® The resulting intersection at
point P completes the solution, thus enabling us to measure the magni-
tudes of T and C directly from the drawing to whatever degree of ac-
curacy we incorporate in the construction.

HELPFUL HINTS

® Since this is a problem of concurrent
forces, no moment equation is necessary.

@ The selection of reference axes to facili-
tate computation is always an important
consideration. Alternatively in this ex-
ample we could take a set of axes along
and normal to the direction of C and em-
ploy a force summation normal to C to
eliminate it.

3 kN

16 kN

® The known vectors may be added in any
order desired, but they must be added
before the unknown vectors.
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SAMPLE PROBLEM 3/2

Calculate the tension 7' in the cable which supports the 1000-1b load
with the pulley arrangement shown. Each pulley is free to rotate about
its bearing, and the weights of all parts are small compared with the
load. Find the magnitude of the total force on the bearing of pulley C.

Solution The free-body diagram of each pulley is drawn in its rela-
tive position to the others. We begin with pulley A, which includes the
only known force. With the unspecified pulley radius designated by r,
the equilibrium of moments about its center O and the equilibrium of
forces in the vertical direction require

[EM, = 0] Tor-Ty =0 Ty=T, @

[EF,=0] Ty+T,-1000 =0 2T, =1000 T,=T,=5001b

From the example of pulley A we may write the equilibrium of forces on
pulley B by inspection as
T3 = T4 = T2/2 = 250 ].b

For pulley C the angle 6 = 30° in no way affects the moment of 7' about
the center of the pulley, so that moment equilibrium requires

T="Ts or T =2501b Ans.
Equilibrium of the pulley in the x- and y-directions requires
[ZF, =0] 250 cos 30° - F, =0 F,=2171b
[XF, = 0] F, + 250 sin 30° — 250 = 0 F,=1251b

[F=+F2+F F = +/(217)? + (125)% = 250 1b Ans.

'
1000 1b

HELPFUL HINT

® Clearly the radius r does not influence
the results. Once we have analyzed a
simple pulley, the results should be per-
fectly clear by inspection.

SAMPLE PROBLEM 3/3

The uniform 100-kg I-beam is supported initially by its end rollers on
the horizontal surface at A and B. By means of the cable at C, it is de-
sired to elevate end B to a position 3 m above end A. Determine the re-
quired tension P, the reaction at A, and the angle 6 made by the beam
with the horizontal in the elevated position.

Solution In constructing the free-body diagram, we note that the
reaction on the roller at A and the weight are vertical forces. Consequently,
in the absence of other horizontal forces, P must also be vertical. From
Sample Problem 3/2 we see immediately that the tension P in the cable
equals the tension P applied to the beam at C.

Moment equilibrium about A eliminates force R and gives

[ZM, = 0] P(6 cos 6) —981(4 cos 6) =0 P=654N O© Ans.
Equilibrium of vertical forces requires
[ZF, = 0] 654 + R—-981=0 R=327TN Ans.
The angle 6 depends only on the specified geometry and is

sin 6 = 3/8 6 =22.0° Ans.

HELPFUL HINT

® Clearly the equilibrium of this parallel
force system is independent of 6.
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SAMPLE PROBLEM 3/4

Determine the magnitude T of the tension in the supporting cable and
the magnitude of the force on the pin at A for the jib crane shown. The
beam AB is a standard 0.5-m I-beam with a mass of 95 kg per meter of
length.

Algebraic Solution The system is symmetrical about the vertical
x-y plane through the center of the beam, so the problem may be ana-
lyzed as the equilibrium of a coplanar force system. The free-body dia-
gram of the beam is shown in the figure with the pin reaction at A rep-
resented in terms of its two rectangular components. The weight of the
beam is 95(1072)(5)9.81 = 4.66 kN and acts through its center. Note that
there are three unknowns A,, A,, and T, which may be found from the
three equations of equilibrium. We begin with a moment equation
about A, which eliminates two of the three unknowns from the equa-
tion. In applying the moment equation about A, it is simpler to consider
the moments of the x- and y-components of T than it is to compute the
perpendicular distance from T to A. @ Hence, with the counterclock-
wise sense as positive we write

[EM, = 0] (T cos 25°)0.25 + (T sin 25°)(5 - 0.12)
-10(6-1.5-0.12) - 4.66(25-0.12) =0 @
from which T =19.61 kN Ans.
Equating the sums of forces in the x- and y-directions to zero gives
[ZF, =0] A, —19.61cos25°=0 A, =17.77kN
[ZF, = 0] A, +19.615sin25° - 4.66 -10=0 A, =6.37TkN

[A=vVAZ+A% A=+/(17.77)"+ (6.37)*=18.88kN @ Ans.

Graphical Solution The principle that three forces in equilibrium
must be concurrent is utilized for a graphical solution by combining the
two known vertical forces of 4.66 and 10 kN into a single 14.66-kN
force, located as shown on the modified free-body diagram of the beam
in the lower figure. The position of this resultant load may easily be
determined graphically or algebraically. The intersection of the 14.66-kIN
force with the line of action of the unknown tension T defines the
point of concurrency O through which the pin reaction A must pass.
The unknown magnitudes of T and A may now be found by adding the
forces head-to-tail to form the closed equilibrium polygon of forces, thus
satisfying their zero vector sum. After the known vertical load is laid
off to a convenient scale, as shown in the lower part of the figure, a line
representing the given direction of the tension T is drawn through the
tip of the 14.66-kN vector. Likewise a line representing the direction of
the pin reaction A, determined from the concurrency established with
the free-body diagram, is drawn through the tail of the 14.66-kN vector.
The intersection of the lines representing vectors T and A establishes
the magnitudes 7' and A necessary to make the vector sum of the forces
equal to zero. These magnitudes are scaled from the diagram. The x-
and y-components of A may be constructed on the force polygon if
desired.

2555 B
2 06m € |
- 0.12m 15m
10 kN
5m

3" T
\ %
AJC
e e A T ]
A, Y ¢
4.66 kN

10 kN
Free-body diagram

HELPFUL HINTS

® The justification for this step is Vari-
gnon’s theorem, explained in Art. 2/4. Be
prepared to take full advantage of this
principle frequently.

® The calculation of moments in two-
dimensional problems is generally han-
dled more simply by scalar algebra than
by the vector cross product r x F. In
three dimensions, as we will see later, the
reverse is often the case.

® The direction of the force at A could be
easily calculated if desired. However, in
designing the pin A or in checking its
strength, it is only the magnitude of the
force that matters.

\Q/
-7 T
A - ‘2EN
- - L i ]
‘A - i
-
~== T4 4.66kN+ :LOkN

Y

14.66 kN

14.66 kN

Graphical solution
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sectione  Equilibrium in Three Dimensions

3/4 | Equilibrium Conditions

We now extend our principles and methods developed for two-dimensional equi-
librium to the case of three-dimensional equilibrium. In Art. 3/1 the general
conditions for the equilibrium of a body were stated in Eqgs. 3/1, which require
that the resultant force and resultant couple on a body in equilibrium be zero.
These two vector equations of equilibrium and their scalar components may be
written as

XF. =0
2F =0 or IF, =0

XF.=0
(3/3)
XM, =0
M =0 or { M, =0
XM,=0

The first three scalar equations state that there is no resultant force acting on
a body in equilibrium in any of the three coordinate directions. The second
three scalar equations express the further equilibrium requirement that there
be no resultant moment acting on the body about any of the coordinate axes or
about axes parallel to the coordinate axes. These six equations are both neces-
sary and sufficient conditions for complete equilibrium. The reference axes
may be chosen arbitrarily as a matter of convenience, the only restriction being
that a right-handed coordinate system should be chosen when vector notation
is used.

The six scalar relationships of Egs. 3/3 are independent conditions because any
of them can be valid without the others. For example, for a car which accelerates on
a straight and level road in the x-direction, Newton’s second law tells us that the
resultant force on the car equals its mass times its acceleration. Thus XF, # 0, but
the remaining two force—equilibrium equations are satisfied because all other
acceleration components are zero. Similarly, if the flywheel of the engine of the
accelerating car is rotating with increasing angular speed about the x-axis, it is not
in rotational equilibrium about this axis. Thus, for the flywheel alone, 2M, # 0 along
with 2F, # 0, but the remaining four equilibrium equations for the flywheel would
be satisfied for its mass-center axes.

In applying the vector form of Eqgs. 3/3, we first express each of the forces
in terms of the coordinate unit vectors i, j, and k. For the first equation, ZF = 0,
the vector sum will be zero only if the coefficients of i, j, and k in the expres-
sion are, respectively, zero. These three sums, when each is set equal to zero,
yield precisely the three scalar equations of equilibrium, 2F, = 0, ZF, = 0, and
XF,=0.

For the second equation, M = 0, where the moment sum may be taken
about any convenient point O, we express the moment of each force as the
cross product r X F, where r is the position vector from O to any point on the
line of action of the force F. Thus XM = X(r x F) = 0. When the coefficients
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of i, j, and k in the resulting moment equation are set equal to zero, respec-
tively, we obtain the three scalar moment equations M, = 0, ZM, = 0, and
M, = 0.

Free-Body Diagrams

The summations in Eqgs. 3/3 include the effects of al/ forces on the body under con-
sideration. We learned in the previous article that the free-body diagram is the only
reliable method for disclosing all forces and moments which should be included in
our equilibrium equations. In three dimensions the free-body diagram serves the
same essential purpose as it does in two dimensions and should always be drawn.
We have our choice either of drawing a pictorial view of the isolated body with all
external forces represented or of drawing the orthogonal projections of the free-
body diagram. Both representations are illustrated in the sample problems at the
end of this article.

The correct representation of forces on the free-body diagram requires knowl-
edge of the characteristics of contacting surfaces. These characteristics were
described in Fig. 3/1 for two-dimensional problems, and their extension to three-
dimensional problems is represented in Fig. 3/8 for the most common situations of
force transmission. The representations in both Figs. 3/1 and 3/8 will be used in
three-dimensional analysis.

The essential purpose of the free-body diagram is to develop a reliable pic-
ture of the physical action of all forces (and couples if any) acting on a body. So
it is helpful to represent the forces in their correct physical sense whenever
possible. In this way, the free-body diagram becomes a closer model to the ac-
tual physical problem than it would be if the forces were arbitrarily assigned or
always assigned in the same mathematical sense as that of the assigned coordi-
nate axis.

For example, in part 4 of Fig. 3/8, the correct sense of the unknowns R, and R,
may be known or perceived to be in the sense opposite to those of the assigned coordi-
nate axes. Similar conditions apply to the sense of couple vectors, parts 5 and 6, where
their sense by the right-hand rule may be assigned opposite to that of the respective
coordinate direction. By this time, you should recognize that a negative answer for an
unknown force or couple vector merely indicates that its physical action is in the sense
opposite to that assigned on the free-body diagram. Frequently, of course, the correct
physical sense is not known initially, so that an arbitrary assignment on the free-body
diagram becomes necessary.

Categories of Equilibrium

Application of Eqgs. 3/3 falls into four categories which we identify with the aid of
Fig. 3/9. These categories differ in the number and type (force or moment) of inde-
pendent equilibrium equations required to solve the problem.

Category 1, equilibrium of forces all concurrent at point O, requires all three
force equations, but no moment equations because the moment of the forces
about any axis through O is zero.

Category 2, equilibrium of forces which are concurrent with a line, requires
all equations except the moment equation about that line, which is automati-
cally satisfied.

Category 3, equilibrium of parallel forces, requires only one force equation,
the one in the direction of the forces (x-direction as shown), and two moment
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MODELING THE ACTION OF FORCES IN THREE-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin

Action on Body to Be Isolated

1. Member in contact with smooth

with lateral \
constraint

x y

surface, or ball-supported member Z"
2 Z | Force must be normal to the
| | | surface and directed toward
} } the member.
~ - é\ ~
— - - ~ — - h ~ x” N
x” Sy ox”
2. Member in contact z z
with rough \ \
surface \ \ The possibility exists for a
\ \ . force F tangent to the surface
< (friction force) to act on the
> s P < F member, as well as a normal
— ~ — ~
_ ~ _ 'f ~ force N.
x y x N
3. Roller or wheel support P

A lateral force P exerted by the
guide on the wheel can exist, in
addition to the normal force N.

4. Ball-and-socket joint

A ball-and-socket joint free to
pivot about the center of the
ball can support a force R with
all three components.

5. Fixed connection (embedded or welded)

In addition to three components
of force, a fixed connection

can support a couple M
represented by its three
components.

6. Thrust-bearing support
z
~ \

~

Thrust bearing is capable of
supporting axial force R, as
well as radial forces R, and R,.
Couples M, and M, must, in
some cases, be assumed zero
in order to provide statical
determinacy.

FIGURE 3/8
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CATEGORIES OF EQUILIBRIUM IN THREE DIMENSIONS

Force System Free-Body Diagram Independent Equations
1. Concurrent y
at a point Fl\ / Fp
~ A l< —
A N SF,=0
/ ~, Y
F \F3 SF, =0
|
2. Concurrent |y
with a line F2/ ‘ x
F, Kk $F,=0 M, =0
\ . ~;
i F,=0 M, =0
N N \ Fs Y z

IF,=0

3. Parallel F y
/ ! |

Fyl _x | ZF,=0 M, =0

/ \\ ZM2=0

4. General Fl\ F, / M 3‘/
,&» b= SF,=0 IM,=0
l< —
S IF,=0 M, =0
— IF,=0 IM,=0

N\F

equations about the axes (y and z) which are normal to the direction of the
forces.

Category 4, equilibrium of a general system of forces, requires all three force
equations and all three moment equations.

The observations contained in these statements are generally quite evident
when a given problem is being solved.

Constraints and Statical Determinacy

The six scalar relations of Egs. 3/3, although necessary and sufficient conditions to
establish equilibrium, do not necessarily provide all of the information required to
calculate the unknown forces acting in a three-dimensional equilibrium situation.
Again, as we found with two dimensions, the question of adequacy of information
is decided by the characteristics of the constraints provided by the supports. An
analytical criterion for determining the adequacy of constraints is available, but it
is beyond the scope of this treatment.* In Fig. 3/10, however, we cite four examples
of constraint conditions to alert the reader to the problem.

*See the first author’s Statics, 2nd Edition SI Version, 1975, Art. 16.
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FIGURE 3/10

(a) Complete fixity
Adequate constraints

(b) Incomplete fixity (c) Incomplete fixity (d) Excessive fixity
Partial constraints Partial constraints Redundant constraints

Part a of Fig. 3/10 shows a rigid body whose corner point A is completely fixed
by the links 1, 2, and 3. Links 4, 5, and 6 prevent rotations about the axes of links
1, 2, and 3, respectively, so that the body is completely fixed and the constraints are
said to be adequate. Part b of the figure shows the same number of constraints, but
we see that they provide no resistance to a moment which might be applied about
axis AE. Here the body is incompletely fixed and only partially constrained.

Similarly, in Fig. 3/10c the constraints provide no resistance to an unbalanced
force in the y-direction, so here also is a case of incomplete fixity with partial con-
straints. In Fig. 3/10d, if a seventh constraining link were imposed on a system of
six constraints placed properly for complete fixity, more supports would be provided
than would be necessary to establish the equilibrium position, and link 7 would be
redundant. The body would then be statically indeterminate with such a seventh
link in place. With only a few exceptions, the supporting constraints for rigid bodies
in equilibrium in this book are adequate, and the bodies are statically determinate.

I T e R B R T

Aleksandr Veremeev/Shutterstock

The three-dimensional equilibrium of the cell-phone tower must be carefully analyzed so
that excessive net horizontal force applied by the cable system is avoided.
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SAMPLE PROBLEM 3/5

The uniform 7-m steel shaft has a mass of 200 kg and is supported by
a ball-and-socket joint at A in the horizontal floor. The ball end B rests
against the smooth vertical walls as shown. Compute the forces exerted
by the walls and the floor on the ends of the shaft.

Solution The free-body diagram of the shaft is first drawn where the
contact forces acting on the shaft at B are shown normal to the wall sur-
faces. In addition to the weight W = mg = 200(9.81) = 1962 N, the force
exerted by the floor on the ball joint at A is represented by its x-, y-, and
z-components. These components are shown in their correct physical
sense, as should be evident from the requirement that A be held in
place. @ The vertical position of B is found from 7 = 1/22 + 62 + h2,
h = 3 m. Right-handed coordinate axes are assigned as shown.

Vector Solution We will use A as a moment center to eliminate ref-
erence to the forces at A. The position vectors needed to compute the

moments about A are
rpg=-1i-3j+1.5km and rap=—2i-6j+3km

where the mass center G is located halfway between A and B.
The vector moment equation gives

[ZM, = 0] rapX (B, +B) +r,aXxW=0

(—2i — 6j + 3k) x (B, + B,j) + (—i — 3j + 1.5k) x (~1962k) = 0

i j k i j k
-2 -6 3|+|-1 -3 1.5 |=0
B, B, 0 0 0 -1962
(~3B, + 5890)i + (3B, — 1962)j + (—2B, + 6B,)k = 0
Equating the coefficients of 1, j, and k to zero and solving give
B,=654N and B,=1962N © Ans.

The forces at A are easily determined by

[ZF = 0] (654 — ADi + (1962 — A))j + (-1962 +A,)k =0
and A, =654N A, =1962N A ,=1962N
Finally, A=VAZ+AZ+A?
= 1/(654)% + (1962)% + (1962)2 = 2850 N Ans.

Scalar Solution Evaluating the scalar moment equations about
axes through A parallel, respectively, to the x- and y-axes, gives

(XM, = 0] 1962(3) - 3B, =0 B,=1962N
(=M, = 0] -1962(1) +3B,=0  B,=654N O
The force equations give, simply,

[SF, = 0] —A, +654 =0 A, =654N
[ZF, = 0] -A, +1962=0 A, =1962 N
[ZF, = 0] A, -1962 =0 A, =1962 N

HELPFUL HINTS

® We could, of course, assign all of the un-

known components of force in the
positive mathematical sense, in which
case A, and A, would turn out to be nega-
tive upon computation. The free-body dia-
gram describes the physical situation, so
it is generally preferable to show the forces
in their correct physical senses wherever
possible.

@ Note that the third equation —-2B, +

6B, = 0 merely checks the results of the
first two equations. This result could be
anticipated from the fact that an equi-
librium system of forces concurrent with
a line requires only two moment equa-
tions (Category 2 under Categories of
Equilibrium).

® We observe that a moment sum about an

axis through A parallel to the z-axis
merely gives us 6B, — 2B, = 0, which
serves only as a check as noted previ-
ously. Alternatively we could have first
obtained A, from XF,=0 and then
taken our moment equations about axes
through B to obtain A, and A,.




80 CHAPTER 3 Equilibrium

SAMPLE PROBLEM 3/6

A 200-N force is applied to the handle of the hoist in the direction shown.
The bearing A supports the thrust (force in the direction of the shaft
axis), while bearing B supports only radial load (load normal to the
shaft axis). Determine the mass m which can be supported and the total
radial force exerted on the shaft by each bearing. Assume neither bear-
ing to be capable of supporting a moment about a line normal to the
shaft axis.

Solution The system is clearly three-dimensional with no lines or
planes of symmetry, and therefore the problem must be analyzed as a
general space system of forces. A scalar solution is used here to illus-
trate this approach, although a solution using vector notation would
also be satisfactory. The free-body diagram of the shaft, lever, and drum
considered a single body could be shown by a space view if desired, but
is represented here by its three orthogonal projections. @

The 200-N force is resolved into its three components, and each of the
three views shows two of these components. The correct directions of A,
and B, may be seen by inspection by observing that the line of action of the
resultant of the two 70.7-N forces passes between A and B. The correct
sense of the forces A, and B, cannot be determined until the magnitudes
of the moments are obtained, so they are arbitrarily assigned. The x-y
projection of the bearing forces is shown in terms of the sums of the un-
known x- and y-components. The addition of A, and the weight W = mg
completes the free-body diagrams. It should be noted that the three
views represent three two-dimensional problems related by the corre-
sponding components of the forces.

From the x-y projection: @

[2M, = 0] 100(9.81m) — 250(173.2) =0 m =44.1kg Ans.
From the x-z projection:

[ZM, = 0] 150B, + 175(70.7) — 250(70.7) = 0

[ZF, = 0] A, +354-707=0

B,=354N
A, =354N
The y-z view gives @

[ZM, = 0] 150B, + 175(173.2) — 250(44.1)(9.81) =0 B,=520N
[ZF, = 0] A, +520 - 173.2 — (44.1)(9.81) =0 A, =868N
[ZF, = 0] A,=70.TN

The total radial forces on the bearings become

[A, = VA + A7) (35.4)% + (86.8)2 =935 N Ans.
B =vB2+B2 B =1(354)7%+(5202=521N @ Ans.

!
Radial
bearing C Thrust

bearing

Dimensions in millimeters

HELPFUL HINTS

@ If the standard three views of ortho-
graphic projection are not entirely fa-
miliar, then review and practice them.
Visualize the three views as the images
of the body projected onto the front, top,
and end surfaces of a clear plastic box
placed over and aligned with the body.

® We could have started with the x-z
projection rather than with the x-y
projection.

® The y-z view could have followed imme-
diately after the x-y view since the de-
termination of A, and B, may be made
after m is found.

® Without the assumption of zero moment
supported by each bearing about a line
normal to the shaft axis, the problem
would be statically indeterminate.
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SAMPLE PROBLEM 3/7

The welded tubular frame is secured to the horizontal x-y plane by a
ball-and-socket joint at A and receives support from the loose-fitting
ring at B. Under the action of the 2-kN load, rotation about a line from
A to B is prevented by the cable CD, and the frame is stable in the posi-
tion shown. Neglect the weight of the frame compared with the applied
load and determine the tension 7 in the cable, the reaction at the ring,
and the reaction components at A.

Solution The system is clearly three-dimensional with no lines or
planes of symmetry, and therefore the problem must be analyzed as
a general space system of forces. The free-body diagram is drawn,
where the ring reaction is shown in terms of its two components. All
unknowns except T may be eliminated by a moment sum about the
line AB. @ The direction of AB is specified by the unit vector

1
n = o (45 + 6k) = £(3j + 4k). The moment of T about AB

V6% + 4.
is the component in the direction of AB of the vector moment about the
point A and equals r; X T-n. Similarly the moment of the applied
load F about AB is ry X F-n. With CD = 1/46.2 m, the vector expres-
sions for T, F, r;, and r, are

=T Gi+25-6k) F=2kN

\V46.2

r=-i+25jm r,=25i+6km @

The moment equation now becomes 2" B
\
|

(2i + 2.5) — 6k)- 2(3j + 4k)

T
1/46.2
+ (2,51 + 6k) X (2j)-2(3j + 4k) = 0 | ey xT
Completion of the vector operations gives !
48T AT
- +20=0 T =283 kN Ans. x” Ty

1/46.2

and the components of 7' become

HELPFUL HINTS

® The advantage of using vector notation
T, =0.833 kN T, =1.042 kN T,=-250 kN in this problem is the freedom to take
moments directly about any axis. In this
problem this freedom permits the choice
of an axis that eliminates five of the un-

We may find the remaining unknowns by moment and force sum-
mations as follows:

[XM,=0] 2(2.5) —4.5B, —1.042(3) =0 B,=0417kN Ans. knowns.

[EM,=0] 45B, - 2(6) — 1.042(6) =0 B, = 4.06 kN Ans. @ Recall that the vector r in the expression
r X F for the moment of a force is a vector

[ZF, =0] A, + 0417 +0.833 =0 A,=-1250kN  Ans. from the moment center to any point on

the line of action of the force. Instead of

[ZF, =0] Ay+2+1.042 =0 A, =-3.04kN O Ans. r;, an equally simple choice would be the
—_—>
[2F, = 0] A, +4.06-250 =0 A,=-1556 kN  Ans. vector AC.

®@ The negative signs associated with the
A-components indicate that they are in
the opposite direction to those shown on
the free-body diagram.
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35 | Chapter Review

In Chapter 3 we have applied our knowledge of the
properties of forces, moments, and couples studied in
Chapter 2 to solve problems involving rigid bodies in
equilibrium. Complete equilibrium of a body requires
that the vector resultant of all forces acting on it be zero
(ZF = 0) and the vector resultant of all moments on the
body about a point (or axis) also be zero (ZM = 0). We
are guided in all of our solutions by these two require-
ments, which are easily comprehended physically.

Frequently, it is not the theory but its application
which presents difficulty. The crucial steps in applying
our principles of equilibrium should be quite familiar by
now. They are:

1. Make an unequivocal decision as to which system
(a body or collection of bodies) in equilibrium is to
be analyzed.

2. Isolate the system in question from all contacting
bodies by drawing its free-body diagram showing
all forces and couples acting on the isolated system
from external sources.

3. Observe the principle of action and reaction (Newton’s
third law) when assigning the sense of each force.

4. Label all forces and couples, known and unknown.

5. Choose and label reference axes, always choosing a
right-handed set when vector notation is used
(which is usually the case for three-dimensional
analysis).

6. Check the adequacy of the constraints (supports) and
match the number of unknowns with the number of
available independent equations of equilibrium.

When solving an equilibrium problem, we should
first check to see that the body is statically determin-
ate. If there are more supports than are necessary to
hold the body in place, the body is statically indeterm-
inate, and the equations of equilibrium by themselves
will not enable us to solve for all of the external reac-
tions. In applying the equations of equilibrium, we
choose scalar algebra, vector algebra, or graphical ana-
lysis according to both preference and experience; vec-
tor algebra is particularly useful for many three-
dimensional problems.

The algebra of a solution can be simplified by the
choice of a moment axis which eliminates as many un-
knowns as possible or by the choice of a direction for a
force summation which avoids reference to certain un-
knowns. A few moments of thought to take advantage
of these simplifications can save appreciable time and
effort.

The principles and methods covered in Chapters 2
and 3 constitute the most basic part of statics. They lay
the foundation for what follows not only in statics but in
dynamics as well.
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The Seri Wawasan Bridge in Putrajaya, Malay-
sia has a total length of 787 feet and a height of
279 feet. It opened in 2003.

a1 | Introduction

In Chapter 3 we studied the equilibrium of a single rigid body or a system of con-
nected members treated as a single rigid body. We first drew a free-body diagram of
the body showing all forces external to the isolated body, and then we applied the
force and moment equations of equilibrium. In Chapter 4 we focus on the determi-
nation of the forces internal to a structure—that is, forces of action and reaction
between the connected members. An engineering structure is any connected sys-
tem of members built to support or transfer forces and to safely withstand the loads
applied to it. To determine the forces internal to an engineering structure, we must
dismember the structure and analyze separate free-body diagrams of individual
members or combinations of members. This analysis requires careful application of
Newton’s third law, which states that each action is accompanied by an equal and
opposite reaction.

In Chapter 4 we analyze the internal forces acting in several types of structures—
namely, trusses, frames, and machines. In this treatment we consider only stati-
cally determinate structures, which do not have more supporting constraints
than are necessary to maintain an equilibrium configuration. Thus, as we have
already seen, the equations of equilibrium are adequate to determine all
unknown reactions.

The analysis of trusses, frames and machines, and beams under concentrated
loads constitutes a straightforward application of the material developed in the pre-
vious two chapters. The basic procedure developed in Chapter 3 for isolating a body
by constructing a correct free-body diagram is essential for the analysis of statically
determinate structures. 83
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a2 | Plane Trusses

A framework composed of members joined at their ends to form a rigid structure is
called a #russ. Bridges, roof supports, derricks, and other such structures are com-
mon examples of trusses. Structural members commonly used are I-beams, chan-
nels, angles, bars, and special shapes which are fastened together at their ends by
welding, riveted connections, or large bolts or pins. When the members of the truss
lie essentially in a single plane, the truss is called a plane truss.

For bridges and similar structures, plane trusses are commonly utilized in pairs
with one truss assembly placed on each side of the structure. A section of a typical
bridge structure is shown in Fig. 4/1. The combined weight of the roadway and
vehicles is transferred to the longitudinal stringers, then to the cross beams, and
finally, with the weights of the stringers and cross beams accounted for, to the upper
joints of the two plane trusses which form the vertical sides of the structure. A
simplified model of the truss structure is indicated at the left side of the illustration;
the forces L represent the joint loadings.

Several examples of commonly used trusses which can be analyzed as plane
trusses are shown in schematic form in Fig. 4/2.

Simple Trusses

The basic element of a plane truss is the triangle. Three bars joined by pins at their
ends, Fig. 4/3a, constitute a rigid frame. The term rigid is used to mean noncollaps-
ible and also to mean that deformation of the members due to induced internal
strains is negligible. On the other hand, four or more bars pin-jointed to form a poly-
gon of as many sides constitute a nonrigid frame. We can make the nonrigid frame in
Fig. 4/3b rigid, or stable, by adding a diagonal bar joining A and D or B and C and
thereby forming two triangles. We can extend the structure by adding additional
units of two end-connected bars, such as DE and CE or AF and DF, Fig. 4/3¢c, which
are pinned to two fixed joints. In this way the entire structure will remain rigid.
Structures built from a basic triangle in the manner described are known as
simple trusses. When more members are present than are needed to prevent collapse,
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the truss is statically indeterminate. A statically indeterminate truss cannot be ana-
lyzed by the equations of equilibrium alone. Additional members or supports which
are not necessary for maintaining the equilibrium configuration are called redundant.

To design a truss, we must first determine the forces in the various members
and then select appropriate sizes and structural shapes to withstand the forces.
Several assumptions are made in the force analysis of simple trusses. First, we as-
sume all members to be two-force members. A two-force member is one in equilib-
rium under the action of two forces only, as defined in general terms with Fig. 3/4
in Art. 3/3. Each member of a truss is normally a straight link joining the two

A O Ry

(@) b) (c)

FIGURE 4/3

Article 4/2 Plane Trusses

85
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points of application of force. The two forces are applied at the ends
of the member and are necessarily equal, opposite, and collinear for
equilibrium.

The member may be in tension or compression, as shown in
Fig. 4/4. When we represent the equilibrium of a portion of a two-
force member, the tension T or compression C acting on the cut sec-
tion is the same for all sections. We assume here that the weight of
the member is small compared with the force it supports. If it is not,
or if we must account for the small effect of the weight, we can replace
the weight W of the member by two forces, each W/2 if the member is
uniform, with one force acting at each end of the member. These
forces, in effect, are treated as loads externally applied to the pin
connections. Accounting for the weight of a member in this way gives
the correct result for the average tension or compression along the
member but will not account for the effect of bending of the member.

Truss Connections and Supports

When welded or riveted connections are used to join structural mem-
bers, we may usually assume that the connection is a pin joint if the
centerlines of the members are concurrent at the joint as in Fig. 4/5.

We also assume in the analysis of simple trusses that all external
forces are applied at the pin connections. This condition is satisfied in
most trusses. In bridge trusses the deck is usually laid on cross beams
which are supported at the joints, as shown in Fig. 4/1.

For large trusses, a roller, rocker, or some kind of slip joint is used
at one of the supports to provide for expansion and contraction due to
temperature changes and for deformation from applied loads. Trusses
and frames in which no such provision is made are statically indeter-
minate, as explained in Art. 3/3. Figure 3/1 shows examples of such
joints.

Two methods for the force analysis of simple trusses will be given.
Each method will be explained for the simple truss shown in Fig. 4/6a.
The free-body diagram of the truss as a whole is shown in Fig. 4/6b.
The external reactions are usually determined first, by applying the
equilibrium equations to the truss as a whole. Then the force analysis
of the remainder of the truss is performed.

43 | Method of Joints

This method for finding the forces in the members of a truss consists
of satisfying the conditions of equilibrium for the forces acting on the
connecting pin of each joint. The method therefore deals with the
equilibrium of concurrent forces, and only two independent equilib-
rium equations are involved.

We begin the analysis with any joint where at least one known
load exists and where not more than two unknown forces are present.
The solution may be started with the pin at the left end. Its free-body
diagram is shown in Fig. 4/7. With the joints indicated by letters, we
usually designate the force in each member by the two letters defining
the ends of the member. The proper directions of the forces should be
evident by inspection for this simple case. The free-body diagrams of



portions of members AF and AB are also shown to clearly indicate the
mechanism of the action and reaction. The member AB actually makes
contact on the left side of the pin, although the force AB is drawn from the
right side and is shown acting away from the pin. Thus, if we consistently
draw the force arrows on the same side of the pin as the member, then
tension (such as AB) will always be indicated by an arrow away from the
pin, and compression (such as AF') will always be indicated by an arrow
toward the pin. The magnitude of AF is obtained from the equation
2F, = 0 and AB is then found from XF, = 0.

Joint F' may be analyzed next, since it now contains only two un-
knowns, EF and BF. Proceeding to the next joint having no more than two
unknowns, we subsequently analyze joints B, C, E, and D in that order.
Figure 4/8 shows the free-body diagram of each joint and its correspond-
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ing force polygon, which represents graphically the two equilibrium conditions
2F, = 0 and XF, = 0. The numbers indicate the order in which the joints are ana-
lyzed. We note that, when joint D is finally reached, the computed reaction Ry must
be in equilibrium with the forces in members CD and ED, which were determined
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suggests that members of a simple
truss need not be straight.

Lisbon Oriente Station in Portugal.

previously from the two neighboring joints. This requirement provides
a check on the correctness of our work. Note that isolation of joint C
shows that the force in CE is zero when the equation XF, = 0 is applied.
The force in this member would not be zero, of course, if an external
vertical load were applied at C.

It is often convenient to indicate the tension T and compression C
of the various members directly on the original truss diagram by draw-
ing arrows away from the pins for tension and toward the pins for
compression. This designation is illustrated at the bottom of Fig. 4/8.

Sometimes we cannot initially assign the correct direction of one
or both of the unknown forces acting on a given pin. If so, we may make
an arbitrary assignment. A negative computed force value indicates
that the initially assumed direction is incorrect.

Internal and External Redundancy

If a plane truss has more external supports than are necessary to
ensure a stable equilibrium configuration, the truss as a whole is stat-
ically indeterminate, and the extra supports constitute external re-
dundancy. If a truss has more internal members than are necessary to
prevent collapse when the truss is removed from its supports, then
the extra members constitute internal redundancy and the truss is
again statically indeterminate.

For a truss which is statically determinate externally, there is a
definite relation between the number of its members and the number
of its joints necessary for internal stability without redundancy. Be-
cause we can specify the equilibrium of each joint by two scalar force
equations, there are in all 2j such equations for a truss with j joints.
For the entire truss composed of m two-force members and having the
maximum of three unknown support reactions, there are in all m + 3
unknowns (m tension or compression forces and three reactions).
Thus, for any plane truss, the equation m + 3 = 2j will be satisfied if
the truss is statically determinate internally.

A simple plane truss, formed by starting with a triangle and add-
ing two new members to locate each new joint with respect to the exist-
ing structure, satisfies the relation automatically. The condition holds
for the initial triangle, where m =j = 3, and m increases by 2 for each
added joint while j increases by 1. Some other (nonsimple) statically
determinate trusses, such as the K-truss in Fig. 4/2, are arranged dif-
ferently, but can be seen to satisfy the same relation.

This equation is a necessary condition for stability but it is not a
sufficient condition, since one or more of the m members can be arranged
in such a way as not to contribute to a stable configuration of the entire
truss. If m + 3 > 2j, there are more members than independent equa-
tions, and the truss is statically indeterminate internally with redun-
dant members present. If m + 3 < 2j, there is a deficiency of internal
members, and the truss is unstable and will collapse under load.

Special Conditions

We often encounter several special conditions in the analysis of trusses. When two
collinear members are under compression, as indicated in Fig. 4/9a, it is necessary
to add a third member to maintain alignment of the two members and prevent
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2F, = O requires F; = F,
ZF, = 0 requires F; = 0 2F, = O requires F3 = F,

2F, = 0 requires F, = 0

2F, = 0 requires F3 = 0
2F, = 0 requi = F2 Fy
. = O requires F] = F, F,
Fy
(@) )] (©

FIGURE 4/9

buckling. We see from a force summation in the y-direction that the force F3 in
the third member must be zero and from the x-direction that F; = F,. This con-
clusion holds regardless of the angle 6 and holds also if the collinear members
are in tension. If an external force with a component in the y-direction were
applied to the joint, then F3 would no longer be zero.

When two noncollinear members are joined as shown in Fig. 4/9b, then in the
absence of an externally applied load at this joint, the forces in both members
must be zero, as we can see from the two force summations.

When two pairs of collinear members are joined as shown in Fig. 4/9¢, the forces
in each pair must be equal and opposite. This conclusion follows from the force
summations indicated in the figure.

Truss panels are frequently cross-braced as shown in Fig. 4/10a. Such a panel is
statically indeterminate if each brace can support either tension or compression. How-
ever, when the braces are flexible members incapable of supporting compression, as
are cables, then only the tension member acts and we can disregard the other member.
It is usually evident from the asymmetry of the loading how the panel will deflect. If
the deflection is as indicated in Fig. 4/10b, then member AB should be retained and
CD disregarded. When this choice cannot be made by inspection, we may arbitrarily
select the member to be retained. If the assumed tension turns out to be positive upon
calculation, then the choice was correct. If the assumed tension force turns out to be
negative, then the opposite member must be retained and the calculation redone.

We can avoid simultaneous solution of the equilibrium equations for two un-
known forces at a joint by a careful choice of reference axes. Thus, for the joint in-
dicated schematically in Fig. 4/11 where L is known and F; and F, are unknown, a
force summation in the x-direction eliminates reference to F; and a force summa-
tion in the x’-direction eliminates reference to F,. When the angles involved are not
easily found, then a simultaneous solution of the equations using one set of refer-
ence directions for both unknowns may be preferable.

A C A C
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FIGURE 4/10 FIGURE 4/11
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SAMPLE PROBLEM 4/1

Compute the force in each member of the loaded cantilever truss by the
method of joints.

Solution If it were not desired to calculate the external reactions at
D and E, the analysis for a cantilever truss could begin with the joint
at the loaded end. However, this truss will be analyzed completely, so
the first step will be to compute the external forces at D and E from the
free-body diagram of the truss as a whole. The equations of equilibrium
give

[ZME = 0] 5T —20(5) — 30(10) =0 T =80kN
[ZF, = 0] 80 cos 30°-E, =0 E, =69.3 kN
[ZF, = 0] 80sin 30° + E, —20-30 =0 E,=10kN

Next we draw free-body diagrams showing the forces acting on
each of the connecting pins. The correctness of the assigned directions of
the forces is verified when each joint is considered in sequence. There
should be no question about the correct direction of the forces on joint A.
Equilibrium requires

[ZF, = 0] 0.866AB —30=0 AB=346KkNT Ans.
[ZF, = 0] AC -0.5(34.6) =0 AC=1732kNC Ans.

where T stands for tension and C stands for compression. @

Joint B must be analyzed next, since there are more than two un-
known forces on joint C. The force BC must provide an upward compo-
nent, in which case BD must balance the force to the left. Again the
forces are obtained from

[ZF, = 0] 0.866BC — 0.866(34.6) =0 BC=346kNC Ans.
[ZF, = 0] BD - 2(0.5)(34.6) =0 BD =346kNT Ans.

Joint C now contains only two unknowns, and these are found in
the same way as before:

[ZF, = 0] 0.866CD — 0.866(34.6) —20 =10

CD=577kNT Ans.
[ZF, = 0] CE - 17.32 — 0.5(34.6) — 0.5(57.7) =0

CE =635kNC Ans.

Finally, from joint E there results
[ZF, = 0] 0.866DE = 10 DE =1155kN C Ans.

and the equation XF, = 0 checks.
Note that the weights of the truss members have been neglected in
comparison with the external loads.

y

\ AB

\

\

|/ 60° BD

~<—AC——x

AB = 600
34.6 kN 60°
BC
30 kN
Joint A Joint B

HELPFUL HINT

® It should be stressed that the tension/
compression designation refers to the
member, not the joint. Note that we draw
the force arrow on the same side of the
joint as the member which exerts the
force. In this way tension (arrow away
from the joint) is distinguished from
compression (arrow toward the joint).

BC =
34.6 kN

oD DE
6M° eoxk 69.3 kN
AC = l CE CE= T
17.32 kN 63.5 kKN
10 kN

20 kN

Joint C Joint E
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SAMPLE PROBLEM 4/2

The simple truss shown supports the two loads, each of magnitude L.
Determine the forces in members DE, DF, DG, and CD.

Solution First of all, we note that the curved members of this simple
truss are all two-force members, so that the effect of each curved mem-
ber within the truss is the same as that of a straight member.

We can begin with joint £ because there are only two unknown
member forces acting there. With reference to the free-body diagram
and accompanying geometry for joint E, we note that § = 180° - 11.25° -
90° = 78.8°.

[ZF, = 0]
[ZF, = 0]

DE sin78.8°-L =0 DE=1020LT ® Ans

EF — DE cos 78.8° =0 EF =0.1989L C

We must now move to joint F, as there are still three unknown members
at joint D. From the geometric diagram,

1 2R sin 22.5°

9R cos 225" — R |~ 121

y =tan™

From the free-body diagram of joint F,
[ZF, = 0] —GF cos 67.5° + DF cos 42.1° — 0.1989L =0
[ZF, = 0] GF sin 67.5° + DF sin 42.1° - L =0

Simultaneous solution of these two equations yields

GF =0.646L T DF =0.601L T Ans.

For member DG, we move to the free-body diagram of joint D and the
accompanying geometry.

1| 2R cos 22.5° — 2R cos 45°
2R sin 45° — 2R sin 22.5°

d =tan~ ] = 33.8°

1 [ 2R sin 22.5° — R sin 45°
2R cos 22.5° — R cos 45°

€ =tan” ] = 2.92°

Then from joint D:

[SF, = 0]
—DG cos 2.92°—CD sin 33.8° — 0.601L sin 47.9°+ 1.020L cos 78.8° = 0

[ZF, = 0]
—DG sin 2.92°+CD cos 33.8° — 0.601L cos 47.9°—1.020L sin 78.8° =0

The simultaneous solution is

CD=1617LT DG=-1147LorDG =1147LC Ans. ¢
=

Note that € is shown exaggerated in the accompanying DG

figures.

DE
11250
) b
| 11.25°
B X
- B
EF o) !
11.25° E
OD = OE = 2R
L
Joint £

HELPFUL HINT

® Rather than calculate and use the angle
B ="78.8°1n the force equations, we could
have used the 11.25° angle directly.

GF
DF
D
2R
615°\ /7 92.5°
0.1989L O r
F E
OF=FE=R
L
Joint F'
CD C
\
5
5 \
. hor. D
—
B 2250 ¢ o1
o 0 < T~
47.9 5 50
DF = 0.601L _ o
DE =1.020L 56 - GG - R

Joint D
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a/a | Method of Sections

When analyzing plane trusses by the method of joints, we need only two of the
three equilibrium equations because the procedures involve concurrent forces
at each joint. We can take advantage of the third or moment equation of equilib-
rium by selecting an entire section of the truss for the free body in equilibrium
under the action of a nonconcurrent system of forces. This method of sections
has the basic advantage that the force in almost any desired member may be
found directly from an analysis of a section which has cut that member. Thus, it
is not necessary to proceed with the calculation from joint to joint until the
member in question has been reached. In choosing a section of the truss, we
note that, in general, not more than three members whose forces are unknown
should be cut, since there are only three available independent equilibrium
relations.

[llustration of the Method

The method of sections will now be illustrated for the truss in Fig. 4/6, which was
used in the explanation of the method of joints. The truss is shown again in Fig.
4/12a for ready reference. The external reactions are first computed as with the
method of joints, by considering the truss as a whole.

Let us determine the force in the member BE, for example. An imaginary
section, indicated by the dashed line, is passed through the truss, cutting it
into two parts, Fig. 4/12b. This section has cut three members whose forces are
initially unknown. In order for the portion of the truss on each side of the

section to remain in equilibrium, it is necessary to apply to each
cut member the force which was exerted on it by the member cut
away. For simple trusses composed of straight two-force members,
these forces, either tensile or compressive, will always be in the
directions of the respective members. The left-hand section is in
| equilibrium under the action of the applied load L, the end reac-
A Bi "\ c D tion R;, and the three forces exerted on the cut members by the

right-hand section which has been removed.
We can usually draw the forces with their proper senses by a
Ry L Ry visual approximation of the equilibrium requirements. Thus, in
@ balancing the moments about point B for the left-hand section, the
force EF is clearly to the left, which makes it compressive, because
it acts toward the cut section of member EF. The load L is greater
F E E than the reaction R;, so that the force BE must be up and to the
, right to supply the needed upward component for vertical equilib-
} /BE / } rium. Force BE is therefore tensile, since it acts away from the cut
| | section.
BC With the approximate magnitudes of R; and L in mind, we see
B B c that the balance of moments about point E requires that BC be to the
right. A casual glance at the truss should lead to the same conclusion
R, L y R, when it is realized that the lower horizontal member will stretch un-
| der the tension caused by bending. The equation of moments about
\ joint B eliminates three forces from the relation, and EF can be deter-
L——x mined directly. The force BE is calculated from the equilibrium equa-
®) tion for the y-direction. Finally, we determine BC by balancing mo-
ments about point E. In this way each of the three unknowns has been
determined independently of the other two.
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The right-hand section of the truss, Fig. 4/12b, is in equilibrium under the ac-
tion of Ry and the same three forces in the cut members applied in the directions
opposite to those for the left section. The proper sense for the horizontal forces can

easily be seen from the balance of moments about points B and E.

Additional Considerations

It is essential to understand that in the method of sections an entire portion of the
truss is considered a single body in equilibrium. Thus, the forces in members inter-
nal to the section are not involved in the analysis of the section as a whole. To clarify
the free body and the forces acting externally on it, the cutting section is preferably
passed through the members and not the joints. We may use either portion of a truss
for the calculations, but the one involving the smaller number of forces will usually

yield the simpler solution.

In some cases the methods of sections and joints can be combined
for an efficient solution. For example, suppose we wish to find the force
in a central member of a large truss. Furthermore, suppose that it is
not possible to pass a section through this member without passing
through at least four unknown members. It may be possible to deter-
mine the forces in nearby members by the method of sections and then
progress to the unknown member by the method of joints. Such a com-
bination of the two methods may be more expedient than exclusive use
of either method.

The moment equations are used to great advantage in the
method of sections. One should choose a moment center, either on
or off the section, through which as many unknown forces as pos-
sible pass.

It is not always possible to assign the proper sense of an unknown
force when the free-body diagram of a section is initially drawn. Once
an arbitrary assignment is made, a positive answer will verify the as-
sumed sense, and a negative result will indicate that the force is in
the sense opposite to that assumed. An alternative notation preferred
by some is to assign all unknown forces arbitrarily as positive in the
tension direction (away from the section) and let the algebraic sign of
the answer distinguish between tension and compression. Thus, a
plus sign would signify tension and a minus sign compression. On the
other hand, the advantage of assigning forces in their correct senses
on the free-body diagram of a section wherever possible is that doing
so emphasizes the physical action of the forces more directly. This
practice is the one which is preferred here.

Many simple trusses are periodic in
that there are repeated and identical
structural sections.

JayBoivin/iStock/Getty Images, Inc.
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SAMPLE PROBLEM 4/3

Calculate the forces induced in members KL, CL, and CB by the 20-ton
load on the cantilever truss.

Solution Although the vertical components of the reactions at A
and M are statically indeterminate with the two fixed supports, all
members other than AM are statically determinate. We may pass a
section directly through members KL, CL, and CB and analyze the
portion of the truss to the left of this section as a statically determi-
nate rigid body. ®

The free-body diagram of the portion of the truss to the left of the
section is shown. A moment sum about L quickly verifies the assignment
of CB as compression, and a moment sum about C quickly discloses that
KL is in tension. The direction of CL is not quite so obvious until we ob-
serve that KL and CB intersect at a point P to the right of G. A moment
sum about P eliminates reference to KL and CB and shows that CL must
be compressive to balance the moment of the 20-ton force about P. With
these considerations in mind the solution becomes straightforward, as
we now see how to solve for each of the three unknowns independently
of the other two.

__ Summing moments about L requires finding the moment arm
BL =16 + (26 -16)/2 =21 ft.® Thus,

[ZM;, = 0] 20(5)(12) - CB(21) =0 CB =57.1tons C Ans.

Next we take moments about C, which requires a calculation of cos 6.
From the given dimensions we see 8 = tan™(5/12) so that cos 6 = 12/13.
Therefore,

[EM = 0] 20(4)(12) - %KL(16) =0 KL =65tons T Ans.

Finally, we may find CL by a moment sum about P, whose distance
from C is given by PC/16 = 24/(26 — 16) or PC = 38.4 ft. We also need 3,
which is given by g = tan™' (CB/BL) = tan"'(12/21) = 29.7° and cos § =
0.868. We now have

[ZMp = 0] 20(48 — 38.4) — CL(0.868)(38.4) =0 O
CL =5.76 tons C Ans.

20 tons
0
KL L
y /)# 7
| a2
// /
/8
P C CB
20 tons

HELPFUL HINTS

® We note that analysis by the method of
joints would necessitate working with
eight joints in order to calculate the
three forces in question. Thus, the
method of sections offers a considerable
advantage in this case.

@ We could have started with moments
about C or P just as well.

® We could also have determined CL by
a force summation in either the x- or
y-direction.
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SAMPLE PROBLEM 4/4

Calculate the force in member DJ of the Howe roof truss illustrated.
Neglect any horizontal components of force at the supports.

Solution It is not possible to pass a section through DJ without cut-
ting four members whose forces are unknown. Although three of these
cut by section 2 are concurrent at JJ and therefore the moment equation
about </ could be used to obtain DE, the force in D.J cannot be obtained
from the remaining two equilibrium principles. It is necessary to con-
sider first the adjacent section 1 before analyzing section 2.

The free-body diagram for section 1 is drawn and includes the reac-
tion of 18.33 kN at A, which is previously calculated from the equilibri-
um of the truss as a whole. In assigning the proper directions for the
forces acting on the three cut members, we see that a balance of mo-
ments about A eliminates the effects of CD and JK and clearly requires
that CJ be up and to the left. A balance of moments about C eliminates
the effect of the three forces concurrent at C and indicates that JK must
be to the right to supply sufficient counterclockwise moment. Again it
should be fairly obvious that the lower chord is under tension because of
the bending tendency of the truss. Although it should also be apparent
that the top chord is under compression, for purposes of illustration the
force in CD will be arbitrarily assigned as tension. @

By the analysis of section 1, CJ is obtained from

[ZM, = 0] 0.707CJ(12) — 10(4) — 10(8) =0 CJ =14.14 kN C

In this equation the moment of CJ is calculated by considering its
horizontal and vertical components acting at point J. Equilibrium of
moments about JJ requires

[2M; = 0] 0.894CD(6) + 18.33(12) — 10(4) — 10(8) =0
CD = -18.63 kN

The moment of CD about J is calculated here by considering its two
components as acting through D. The minus sign indicates that CD was
assigned in the wrong direction. @

Hence, CD =18.63 kN C

From the free-body diagram of section 2, which now includes the
known value of CeJ, a balance of moments about G is seen to eliminate
DE and JK.® Thus,

[EMG = 0]
12DJ +10(16) +10(20) — 18.33(24) — 14.14(0.707)(12) = 0

DJ =1667TkNT Ans.

Again the moment of CJ is determined from its components considered
to be acting at J. The answer for DJ is positive, so that the assumed
tensile direction is correct.

An alternative approach to the entire problem is to utilize section 1
to determine CD and then use the method of joints applied at D to deter-
mine DdJ.

L
10 kN
6 panels at 4 m

10 kN

Section 1

18.33 kN

HELPFUL HINTS

® There is no harm in assigning one or

more of the forces in the wrong direction,
as long as the calculations are consistent
with the assumption. A negative answer
will show the need for reversing the
direction of the force.

@ If desired, the direction of CD may be

changed on the free-body diagram and
the algebraic sign of CD reversed in the
calculations, or else the work may be left
as it stands with a note stating the
proper direction.

10 kN

Section 2

~

Yo T

14.14kN >~

18.33 kN

® Observe that a section through members

CD, DJ, and DE could be taken which
would cut only three unknown members.
However, since the forces in these three
members are all concurrent at D, a mo-
ment equation about D would yield no
information about them. The remaining
two force equations would not be suffi-
cient to solve for the three unknowns.
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(c)

FIGURE 4/13

45 | Space Trusses

A space truss is the three-dimensional counterpart of the plane truss described in
the three previous articles. The idealized space truss consists of rigid links con-
nected at their ends by ball-and-socket joints (such a joint is illustrated in Fig. 3/8
in Art. 3/4). Whereas a triangle of pin-connected bars forms the basic noncollapsible
unit for the plane truss, a space truss, on the other hand, requires six bars joined
at their ends to form the edges of a tetrahedron as the basic noncollapsible unit. In
Fig. 4/13a the two bars AD and BD joined at D require a third support CD to keep
the triangle ADB from rotating about AB. In Fig. 4/13b the supporting base is re-
placed by three more bars AB, BC, and AC to form a tetrahedron not dependent on
the foundation for its own rigidity.

We may form a new rigid unit to extend the structure with three addi-
tional concurrent bars whose ends are attached to three fixed joints on the
existing structure. Thus, in Fig. 4/13c¢ the bars AF, BF, and CF are attached
to the foundation and therefore fix point F'in space. Likewise, point H is fixed
in space by the bars AH, DH, and CH. The three additional bars CG, FG, and
HG are attached to the three fixed points C, F, and H and therefore fix G in
space. The fixed point E is similarly created. We see now that the structure is
entirely rigid. The two applied loads shown will result in forces in all of the
members. A space truss formed in this way is called a simple space truss.

Ideally there must be point support, such as that given by a ball-and-
socket joint, at the connections of a space truss to prevent bending in
the members. As in riveted and welded connections for plane trusses, if
the centerlines of joined members intersect at a point, we can justify the
assumption of two-force members under simple tension and compression.

Statically Determinate Space Trusses

When a space truss is supported externally so that it is statically determi-
nate as an entire unit, a relationship exists between the number of its
joints and the number of its members necessary for internal stability with-
out redundancy. Because the equilibrium of each joint is specified by three
scalar force equations, there are in all 3j such equations for a space truss
with j joints. For the entire truss composed of m members there are m un-
knowns (the tensile or compressive forces in the members) plus six un-
known support reactions in the general case of a statically determinate
space structure. Thus, for any space truss, the equation m + 6 = 3; will be
satisfied if the truss is statically determinate internally. A simple space
truss satisfies this relation automatically. Starting with the initial tetrahe-
dron, for which the equation holds, the structure is extended by adding
three members and one joint at a time, thus preserving the equality.

As in the case of the plane truss, this relation is a necessary condition
for stability, but it is not a sufficient condition, since one or more of the m
members can be arranged in such a way as not to contribute to a stable
configuration of the entire truss. If m + 6 > 3j, there are more members
than there are independent equations, and the truss is statically indetermi-
nate internally with redundant members present. If m + 6 < 3j, there is a
deficiency of internal members, and the truss is unstable and subject to
collapse under load. This relationship between the number of joints and the
number of members is very helpful in the preliminary design of a stable
space truss, since the configuration is not as obvious as with a plane truss,
where the geometry for statical determinacy is generally quite apparent.



Method of Joints for Space Trusses

The method of joints developed in Art. 4/3 for plane trusses may be extended
directly to space trusses by satisfying the complete vector equation

ZF=0 (4/1)

for each joint. We normally begin the analysis at a joint where at least one known force
acts and not more than three unknown forces are present. Adjacent joints on which not
more than three unknown forces act may then be analyzed in turn.

This step-by-step joint technique tends to minimize the number of simultane-
ous equations to be solved when we must determine the forces in all members of the
space truss. For this reason, although it is not readily reduced to a routine, such an
approach is recommended. As an alternative procedure, however, we may simply
write 3j joint equations by applying Eq. 4/1 to all joints of the space frame. The num-
ber of unknowns will be m + 6 if the structure is noncollapsible when removed from
its supports and those supports provide six external reactions. If, in addition, there
are no redundant members, then the number of equations (3;) equals
the number of unknowns (m + 6), and the entire system of equations
can be solved simultaneously for the unknowns. Because of the large
number of coupled equations, a computer solution is usually required.
With this latter approach, it is not necessary to begin at a joint where
at least one known and no more than three unknown forces act.

Method of Sections for Space Trusses

The method of sections developed in the previous article may also be
applied to space trusses. The two vector equations

2F=0 and M=0

must be satisfied for any section of the truss, where the zero moment
sum will hold for all moment axes. Because the two vector equations
are equivalent to six scalar equations, we conclude that, in general, a
section should not be passed through more than six members whose
forces are unknown. The method of sections for space trusses is not
widely used, however, because a moment axis can seldom be found

Article 4/5 Space Trusses 97

which eliminates all but one unknown, as in the case of plane trusses. A gpace truss is incorporated into the
Vector notation for expressing the terms in the force and moment world’s longest glass skywalk, which is

equations for space trusses is of considerable advantage and is used  located in

Huangshi National Forest

in the sample problem which follows. Park in Chongqing, China.

Whitehotpix/ZUMAPRESS.com
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SAMPLE PROBLEM 4/5

The space truss consists of the rigid tetrahedron ABCD anchored by a
ball-and-socket connection at A and prevented from any rotation about
the x-, y-, or z-axes by the respective links 1, 2, and 3. The load L is ap-
plied to joint E, which is rigidly fixed to the tetrahedron by the three
additional links. Solve for the forces in the members at joint £ and in-
dicate the procedure for the determination of the forces in the remaining
members of the truss.

Solution We note first that the truss is supported with six properly
placed constraints, which are the three at A and the links 1, 2, and 3.
Also, with m = 9 members and j = 5 joints, the condition m + 6 = 3j
for a sufficiency of members to provide a noncollapsible structure is
satisfied.

The external reactions at A, B, and D can be calculated easily as a
first step, although their values will be determined from the solution of
all forces on each of the joints in succession. ®

We start with a joint on which at least one known force and not more
than three unknown forces act, which in this case is joint E. The free-body
diagram of joint E is shown with all force vectors arbitrarily assumed in
their positive tension directions (away from the joint). @ The vector
expressions for the three unknown forces are

F, F F
Fup = —2 (=i -j), FEC=%(—3i—4k), FED=%(—3j—4k)

V2
Equilibrium of joint E requires

[ZF=0] L+FEB+FEC+FED=0 or

F, F, F
-Li+ﬂ(—i-j)+%(—3i-4k)+%(—3j-4k)=o

V2

Rearranging terms gives

F 3F, F 3F, 4F, 4F
(_L_ﬂ_ EC)i+<_ﬂ_ ED>j+<_ EC ED>k:O

V2 5 V2 5 5 5

Equating the coefficients of the i-, j-, and k-unit vectors to zero gives
the three equations

Fes 8Fpc _ . Fio  SFup_

+ +
v2 b vz o5
Solving the equations gives us

Fpp=-L/\/2  Fy=-5L/6  Fyp=5L/6 Ans.

0 FEC+FED:0

Thus, we conclude that Fzp and Fzc are compressive forces and Fgp is
tension.

Unless we have computed the external reactions first, we must next
analyze joint C with the known value of Fc and the three unknowns
Fep, Foa, and Fcp. The procedure is identical to that used for joint E.
Joints B, D, and A are then analyzed in the same way and in that order,
which limits the scalar unknowns to three for each joint. The external
reactions computed from these analyses must, of course, agree with the
values which can be determined initially from an analysis of the truss as
a whole.

HELPFUL HINTS

® Suggestion: Draw a free-body diagram of
the truss as a whole and verify that the
external forces acting on the truss are A, =
Li,A =1TLj A =4L/3)k,B,=0,D, =-Lj,
D, =-(4L/3)k.

@ With this assumption, a negative nu-
merical value for a force indicates com-
pression.

z
Bl L
< E
Fgp
F
EC/ I'Fpp
4m // // 4m
Ty
- /
/y
- /
AL ;
/
3111 / 3%
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a6 | Frames and Machines

A structure is called a frame or machine if at least one of its individual
members is a multiforce member. A multiforce member is defined as one
with three or more forces acting on it, or one with two or more forces
and one or more couples acting on it. Frames are structures which are
designed to support applied loads and are usually fixed in position.
Machines are structures which contain moving parts and are designed
to transmit input forces or couples to output forces or couples.

Because frames and machines contain multiforce members, the
forces in these members in general will not be in the directions of the
members. Therefore, we cannot analyze these structures by the methods
developed in Arts. 4/3, 4/4, and 4/5 because these methods apply to sim-
ple trusses composed of two-force members where the forces are in the
directions of the members.

Interconnected Rigid Bodies

Billy Gadbury/Shutterstock

with Mu ltIfO rce Members Two devices used by rescuers to free
accident victims from wreckage. The
In Chapter 3 we discussed the equilibrium of multiforce bodies, but we = “jaws of life” machine shown at the

concentrated on the equilibrium of a single rigid body. In the present  left is the subject of problems in this
article we focus on the equilibrium of interconnected rigid bodies which ~ article and the chapter-review article.
include multiforce members. Although most such bodies may be analyzed
as two-dimensional systems, there are numerous examples of frames
and machines which are three-dimensional.
The forces acting on each member of a connected system are found by isolating
the member with a free-body diagram and applying the equations of equilibrium.
The principle of action and reaction must be carefully observed when we represent
the forces of interaction on the separate free-body diagrams. If the structure contains
more members or supports than are necessary to prevent collapse, then, as in the
case of trusses, the problem is statically indeterminate, and the principles of equilib-
rium, though necessary, are not sufficient for solution. Although many frames and
machines are statically indeterminate, in this article we will consider only those
which are statically determinate.
If the frame or machine constitutes a rigid unit by itself when removed from its
supports, like the A-frame in Fig. 4/14a, the analysis is best begun by establishing
all the forces external to the structure treated as a single rigid body. We then dis-
member the structure and consider the equilibrium of each part separately. The
equilibrium equations for the several parts will be related through the terms
involving the forces of interaction. If the structure is not a rigid unit by itself but

NI

Nonrigid
noncollapsible collapsible

FIGURE 4/14
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depends on its external supports for rigidity, as illustrated in Fig.

. 4/14b, then the calculation of the external support reactions cannot
be completed until the structure is dismembered and the individual
parts are analyzed.

/@

Force Representation and
Free-Body Diagrams

In most cases the analysis of frames and machines is facilitated by
representing the forces in terms of their rectangular components.

This is particularly so when the dimensions of the parts are given in
mutually perpendicular directions. The advantage of this represen-
tation is that the calculation of moment arms is simplified. In
some three-dimensional problems, particularly when moments are

evaluated about axes which are not parallel to the coordinate axes,
use of vector notation is advantageous.

A, It is not always possible to assign the proper sense to every force

A, l or its components when drawing the free-body diagrams, and it be-
ol AZ\L comes necessary to make an arbitrary assignment. In any event, it is
T\ A / absolutely necessary that a force be consistently represented on the
‘ A, diagrams for interacting bodies which involve the force in question.

A, Thus, for two bodies connected by the pin A, Fig. 4/15a, the force
components must be consistently represented in opposite directions

on the separate free-body diagrams.

FIGURE 4/15 For a ball-and-socket connection between members of a space
frame, we must apply the action-and-reaction principle to all three
components as shown in Fig. 4/15b. The assigned directions may
prove to be wrong when the algebraic signs of the components are
determined upon calculation. If A, for instance, should turn out to be

‘ negative, it is actually acting in the direction opposite to that origi-
’ nally represented. Accordingly, we would need to reverse the direc-

tion of the force on both members and to reverse the sign of its force

terms in the equations. Or we may leave the representation as origi-

nally made, and the proper sense of the force will be understood

O from the negative sign. If we choose to use vector notation in label-

>

I
-

{/ ing the forces, then we must be careful to use a plus sign for an ac-
tion and a minus sign for the corresponding reaction, as shown in
Vector :
0 Fig. 4/16.
notation . . .
A, We may occasionally need to solve two or more equations simul-
taneously in order to separate the unknowns. In most instances,
however, we can avoid simultaneous solutions by careful choice of
the member or group of members for the free-body diagram and by
a careful choice of moment axes which will eliminate undesired terms from the
equations. The method of solution described in the foregoing paragraphs is illus-
trated in the following sample problems.
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SAMPLE PROBLEM 4/6

The frame supports the 400-kg load in the manner shown. Neglect the
weights of the members compared with the forces induced by the load
and compute the horizontal and vertical components of all forces acting
on each of the members.

Solution We observe first that the three supporting members which
constitute the frame form a rigid assembly which can be analyzed as a
single unit. ® We also observe that the arrangement of the external
supports makes the frame statically determinate.

From the free-body diagram of the entire frame we determine the
external reactions. Thus,

[EM, = 0] 5.5(0.4)(9.81) = 5D =0 D =4.32kN
[SF, = 0] A, -432 =0 A, =432kN
[SF, = 0] A, -392 =0 A, =392 kN

Next we dismember the frame and draw a separate free-body dia-
gram of each member. The diagrams are arranged in their approximate
relative positions to aid in keeping track of the common forces of interac-
tion. The external reactions just obtained are entered onto the diagram
for AD. Other known forces are the 3.92-kN forces exerted by the shaft of
the pulley on the member BF, as obtained from the free-body diagram of
the pulley. The cable tension of 3.92 kN is also shown acting on AD at its
attachment point.

Next, the components of all unknown forces are shown on the dia-
grams. Here we observe that CE is a two-force member. @ The force
components on CE have equal and opposite reactions, which are shown
on BF at E and on AD at C. We may not recognize the actual sense of
the components at B at first glance, so they may be arbitrarily but
consistently assigned.

The solution may proceed by use of a moment equation about B or
E for member BF, followed by the two force equations. Thus,

[EMj = 0] 3.92(5) - 3E.(3)=0  E,=13.08kN Ans.
[ZF, = 0] B,+392-13.08/2=0 B, =262kN Ans.
[LF, = 0] B,+392-13.08=0 B,=9.15kN Ans.

Positive numerical values of the unknowns mean that we assumed their
directions correctly on the free-body diagrams. The value of C, = E, =
13.08 kN obtained by inspection of the free-body diagram of CE is now
entered onto the diagram for AD, along with the values of B, and B,
just determined. The equations of equilibrium may now be applied to
member AD as a check, since all the forces acting on it have already
been computed. The equations give

[ZM = 0] 4.32(3.5) + 4.32(1.5) — 3.92(2) — 9.15(1.5) =0
[ZF, = 0] 4.32 -13.08 +9.15+ 392+ 4.32=0
[ZF, = 0] -13.08/2 + 2.62 + 3.92 =0

-1
A |
5m

0.5m

F

| |
il S
— (e o) 6
3m P
%70

o 400 kg

HELPFUL HINTS

® We see that the frame corresponds to the
category illustrated in Fig. 4/14a.

@ Without this observation, the problem so-
lution would be much longer, because the
three equilibrium equations for member
BF would contain four unknowns: B,, B,,
E,, and E,. Note that the direction of the
line joining the two points of force applica-
tion, and not the shape of the member,
determines the direction of the forces
acting on a two-force member.

Aoy
A~~~ \
|
L———x
0.4(9.81)
=3.92kN
D —>
3.92 kN
A,=392kN
3.92 kN
}I‘ X i i
A, = \ 3.92 kN 3.92 kKN
4.32 kN| 3.92 kKN E 3.92 kN
‘ : Y
By E—@l ﬂ ~
1 B, 4/ 1. 3.92 kN
_Cx By 27
2 C, . g S
-~ E
1 7 x
C —

X ﬁ/
e B (R
D= 1,
4.32 kN 2%
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SAMPLE PROBLEM 4/7

Neglect the weight of the frame and compute the forces acting on all of
its members.

Solution We note first that the frame is not a rigid unit when removed
from its supports since BDEF' is a movable quadrilateral and not a rigid
triangle. ® Consequently, the external reactions cannot be completely
determined until the individual members are analyzed. However, we
can determine the vertical components of the reactions at A and C from
the free-body diagram of the frame as a whole. @ Thus,

[(ZM¢ = 0]

50(12) + 30(40) — 304, =0 A, =601b Ans.

[ZF, = 0] C, -50(4/5) —60=0 C,=1001b Ans.

Next we dismember the frame and draw the free-body diagram of
each part. Since EF is a two-force member, the direction of the force at E
on ED and at F on AB is known. We assume that the 30-1b force is applied
to the pin as a part of member BC.® There should be no difficulty in as-
signing the correct directions for forces E, F', D, and B,. The direction of B,,
however, may not be assigned by inspection and therefore is arbitrarily
shown as downward on AB and upward on BC.

Member ED The two unknowns are easily obtained by

[ZMp = 0] 50(12) - 12E =0 E=501b Ans.

[ZF = 0] D-50-50=0 D =1001b Ans.

Member EF Clearly F is equal and opposite to E with the magnitude
of 50 1b.

Member AB Since F is now known, we solve for B,, A,, and B, from

[ZM, = 0] 50(3/5)(20) — B.(40)=0  B,=151b Ans.
[LF, = 0] A, +15-50(3/56)=0 A, =151b Ans.
[ZF, = 0] 50(4/5) —60 —B,=0  B,=-201b Ans.

The minus sign shows that we assigned B, in the wrong direction.

Member BC The results for B,, B,, and D are now transferred to BC,
and the remaining unknown C, is found from
C.,=751b ® Ans.

[EF,=0] 30+ 100(3/5) — 15— C, =0

We may apply the remaining two equilibrium equations as a check.
Thus,

[ZF, =0] 100 + (-20) — 100(4/5) =0

[ZM = 0] (30 — 15)(40) + (-20)(30) =0

HELPFUL HINTS

® We see that this frame corresponds to the
category illustrated in Fig. 4/14b.

@ The directions of A, and C, are not obvi-
ous initially and can be assigned arbi-
trarily, to be corrected later if necessary.

® Alternatively, the 30-lb force could be
applied to the pin considered a part of
BA, with a resulting change in the
reaction B,.

A,=60b g

@ Alternatively, we could have returned to
the free-body diagram of the frame as a
whole and found C,.
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SAMPLE PROBLEM 4/8

The machine shown is designed as an overload protection device which
releases the load when it exceeds a predetermined value T'. A soft metal
shear pin S is inserted in a hole in the lower half and is acted on by the
upper half. When the total force on the pin exceeds its strength, it will
break. The two halves then rotate about A under the action of the ten-
sions in BD and CD, as shown in the second sketch, and rollers E and F'
release the eye bolt. Determine the maximum allowable tension T if the
pin S will shear when the total force on it is 800 N. Also compute the
corresponding force on the hinge pin A.

Solution Because of symmetry, we analyze only one of the two hinged
members. The upper part is chosen, and its free-body diagram along
with that for the connection at D is drawn. Because of symmetry the
forces at S and A have no x-components. @ The two-force members
BD and CD exert forces of equal magnitude B = C on the connection at
D. Equilibrium of the connection gives

[ZF, =0] Bcos6+Ccos6-T=0
B =T/(2cos 6)

2Bcos6=T

From the free-body diagram of the upper part we express the equi-
librium of moments about point A. Substituting S = 800 N and the
expression for B gives

[(ZM, = 0]

(cos 0)(50) + (sin 6)(36) — 36(800) — g (26)=0 @

2 cos 6 2 cos 6

Substituting sin 6/cos 6 = tan 6 = 5/12 and solving for T give

5(36)
T<25 + 2012) 13> = 28 800
T=1477TN or T =1.477kN Ans.

Finally, equilibrium in the y-direction gives us

[ZF, = 0] S—-Bsin6-A =0
1477 5

800 - 2(12/13) 13

A =0 A =492 N Ans.

120 36 | 60

Released
position

HELPFUL HINTS

® It is always useful to recognize sym-

metry. Here it tells us that the forces act-
ing on the two parts behave as mirror
images of each other with respect to the
x-axis. Thus, we cannot have an action on
one member in the plus x-direction and
its reaction on the other member in the
negative x-direction. Consequently, the
forces at S and A have no x-components.

Be careful not to forget the moment of the
y-component of B. Note that our units here
are newton-millimeters.
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SAMPLE PROBLEM 4/9

In the particular position shown, the excavator applies a 0.2m
20-kN force parallel to the ground. There are two hydrau-
lic cylinders AC to control the arm OAB and a single cyl-  0.1m

[Zl;lm 09m 14m [0'6m

D

inder DE to control arm EBIF. (a) Determine the force in 0.4 mi:

the hydraulic cylinders AC and the pressure p,¢ against 0.28 m—

A

their pistons, which have an effective diameter of 95 mm. 045 m nd
(b) Also determine the force in hydraulic cylinder DE and ’ G
the pressure ppz against its 105-mm-diameter piston. Ne-
glect the weights of the members compared with the
effects of the 20-kN force. 35m

Solution (a) We begin by constructing a free-body dia-
gram of the entire arm assembly. Note that we include 2
only the dimensions necessary for this portion of the

0.55 m 5| = _q
B

oy~

20 kN

problem—details of the cylinders DE and GH are unneces-
sary at this time.

[ZM, = 0]
—20 000(3.95) — 2F ¢ cos 41.3°(0.68) + 2F ¢ sin 41.3°(2) =0
F,c =48 800 N or 48.8 kN Ans.
Fyc 48 800 5
Pac= A (ﬂ 0'0952> =6.89(10°) Paor 6.89MPa ©® Ans.
4

(b) For cylinder DF, we “cut” the assembly at a location which makes the
desired cylinder force external to our free-body diagram. This means
isolating the vertical arm EBIF along with the bucket and its applied
force.

—20 000(3.5) + Fpg cos 11.31°(0.73) + Fpg sin 11.31°(0.4) =0
Fpr =88 100 N or 88.1 kN Ans.
Fpg 88 100
= = =10.18(10%) P 10.18 MP Ans.
Pop Aps <ﬂ 01052) 0.18(10°) Pa or 10.18 MPa ns
4
0.4m
Oy 0.68 m 7
— 0.73m
o, 0
3.95m
3.5m
o _1(0.4+0.28 + 055\ _ -+ ao
a=tan (71.4 ) =413
20 kN

HELPFUL HINT

® Recall that force = (pressure)(area).

A
B Fpg

y

(@)
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In Chapter 4 we have applied the principles of equilib-
rium to two classes of problems: (a) simple trusses and
(b) frames and machines. No new theory was needed,
since we merely drew the necessary free-body diagrams
and applied our familiar equations of equilibrium. The
structures dealt with in Chapter 4, however, have given
us the opportunity to further develop our appreciation
for a systematic approach to mechanics problems.

The most essential features of the analysis of these
two classes of structures are reviewed in the following
statements.

(a) Simple Trusses

1. Simple trusses are composed of two-force members
joined at their ends and capable of supporting ten-
sion or compression. Each internal force, therefore,
is always in the direction of the line joining the
endpoints of its member.

2. Simple trusses are built from the basic rigid (non-
collapsible) unit of the triangle for plane trusses
and the tetrahedron for space trusses. Additional
units of a truss are formed by adding new members,
two for plane trusses and three for space trusses,
attached to existing joints and joined at their ends
to form a new joint.

3. The joints of simple trusses are assumed to be pin
connections for plane trusses and ball-and-socket
connections for space trusses. Thus, the joints can
transmit force but not moment.

4, External loads are assumed to be applied only at
the joints.

5. Trusses are statically determinate externally when
the external constraints are equal to but not in excess
of those required to maintain an equilibrium position.

6. Trusses are statically determinate internally when
constructed in the manner described in item (2),
where internal members are not in excess of those
required to prevent collapse.

7. The method of joints utilizes the force equations of
equilibrium for each joint. Analysis normally be-
gins at a joint where at least one force is known and
not more than two forces are unknown for plane
trusses or not more than three forces are unknown
for space trusses.

8. The method of sections utilizes a free body of an en-
tire section of a truss containing two or more joints.
In general, the method involves the equilibrium of
a nonconcurrent system of forces. The moment
equation of equilibrium is especially useful when
the method of sections is used. In general, the forces
acting on a section which cuts more than three

.

10.

11.
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unknown members of a plane truss cannot be
solved for completely because there are only three
independent equations of equilibrium.

The vector representing a force acting on a joint or
a section is drawn on the same side of the joint or
section as the member which transmits the force.
With this convention, tension is indicated when the
force arrow is away from the joint or section, and
compression is indicated when the arrow points
toward the joint or section.

When the two diagonal members which brace a
quadrilateral panel are flexible members incapable
of supporting compression, only the one in tension
is retained in the analysis, and the panel remains
statically determinate.

When two joined members under load are collinear
and a third member with a different direction is
joined with their connection, the force in the third
member must be zero unless an external force is
applied at the joint with a component normal to the
collinear members.

(b) Frames and Machines
1.

Frames and machines are structures which contain
one or more multiforce members. A multiforce mem-
ber is one which has acting on it three or more
forces, or two or more forces and one or more couples.

. Frames are structures designed to support loads,

generally under static conditions. Machines are
structures which transform input forces and mo-
ments to output forces and moments and generally
involve moving parts. Some structures may be clas-
sified as either a frame or a machine.

. Only frames and machines which are statically deter-

minate externally and internally are considered here.

. If a frame or machine as a whole is a rigid (noncol-

lapsible) unit when its external supports are re-
moved, then we begin the analysis by computing
the external reactions on the entire unit. If a frame
or machine as a whole is a nonrigid (collapsible)
unit when its external supports are removed, then
the analysis of the external reactions cannot be
completed until the structure is dismembered.

. Forces acting in the internal connections of frames

and machines are calculated by dismembering the
structure and constructing a separate free-body dia-
gram of each part. The principle of action and reaction
must be strictly observed; otherwise, error will result.

. The force and moment equations of equilibrium are

applied to the members as needed to compute the
desired unknowns.
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s | Introduction
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The Gateshead Millennium Bridge spans the
River Tyne in the United Kingdom. This
award-winning bridge can rotate about a
horizontal axis along its span to allow ships to
pass underneath. Therefore, the cumulative
effect of its weight distribution must have been
determined over a range of orientations during
the design process.

In the previous chapters we treated all forces as concentrated along their lines of
action and at their points of application. This treatment provided a reasonable
model for those forces. Actually, “concentrated” forces do not exist in the exact
sense, since every external force applied mechanically to a body is distributed over
a finite contact area, however small.

The force exerted by the pavement on an automobile tire, for instance, is ap-
plied to the tire over its entire area of contact, Fig. 5/1a, which may be appre-
ciable if the tire is soft. When analyzing the forces acting on the car as a whole, if
the dimension b of the contact area is negligible compared with the other perti-
nent dimensions, such as the distance between wheels, then we may replace the
actual distributed contact forces by their resultant R treated as a concentrated
force. Even the force of contact between a hardened steel ball and its race in a
loaded ball bearing, Fig. 5/1b, is applied over a finite, though extremely small,
contact area. The forces applied to a two-force member of a truss, Fig. 5/1c, are
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applied over an actual area of contact of the pin against the hole and
internally across the cut section as shown. In these and other similar
examples, we may treat the forces as concentrated when analyzing their
external effects on bodies as a whole.

If, on the other hand, we want to find the distribution of internal
forces in the material of the body near the contact location, where the
internal stresses and strains may be appreciable, then we must not
treat the load as concentrated but must consider the actual distribu-
tion. This problem will not be discussed here because it requires knowl-
edge of the properties of the material and belongs in more advanced
treatments of the mechanics of materials and the theories of elasticity (@)
and plasticity.

When forces are applied over a region whose dimensions are not neg- Enlarged view
ligible compared with other pertinent dimensions, then we must account of contact
for the actual manner in which the force is distributed. We do this by sum-

ming the effects of the distributed force over the entire region using math-

ematical integration. This requires that we know the intensity of the force l Jx/
I
[

at any location. There are three categories of such problems.

(1) Line Distribution. When a force is distributed along a line, as in R
the continuous vertical load supported by a suspended cable, Fig. 5/2a, the in- ®)
tensity w of the loading is expressed as force per unit length of line, newtons per
meter (N/m) or pounds per foot (1b/ft).

C
1
]
1
e c / / /'
(2) Area Distribution. When a force is distributed over an area, as V/ //
with the hydraulic pressure of water against the inner face of a section of dam, /
Fig. 5/2b, the intensity is expressed as force per unit area. This intensity is
called pressure for the action of fluid forces and stress for the internal distribu-
tion of forces in solids. The basic unit for pressure or stress in SI is the newton
per square meter (N/mz), which is also called the pascal (Pa). This unit, how-
ever, is too small for most applications (6895 Pa = 1 Ib/in.?). The kilopascal
(kPa), which equals 10* Pa, is more commonly used for fluid pressure, and the
megapascal, which equals 10° Pa, is used for stress. In the U.S. customary sys- ¢ 1
tem of units, both fluid pressure and mechanical stress are commonly expressed 1
in pounds per square inch (Ib/in.?). C
(c)
(3) Volume Distribution. A force which is distributed over the vol-
ume of a body is called a body force. The most common body force is the force
of gravitational attraction, which acts on all elements of mass in a body. The
determination of the forces on the supports of the heavy cantilevered structure in Fig. 5/2¢,
for example, would require accounting for the distribution of gravitational force throughout
the structure. The intensity of gravitational force is the specific weight pg, where p is the
density (mass per unit volume) and g is the acceleration due to gravity. The units for pg are
(kg/m3)(m/sz) = N/m? in SI units and Ib/ft’ or 1b/in.? in the U.S. customary system.
The body force due to the gravitational attraction of the earth (weight) is by
far the most commonly encountered distributed force. Section A of this chapter
treats the determination of the point in a body through which the resultant
gravitational force acts, and discusses the associated geometric properties of
lines, areas, and volumes. Section B treats distributed forces which act on and
in beams and flexible cables and distributed forces which fluids exert on ex-
posed surfaces.
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FIGURE 5/2

(a)

FIGURE 5/3

(c)

secTionA Centers of Mass and Centroids

52| Center of Mass

Consider a three-dimensional body of any size and shape, having a mass m. If we
suspend the body, as shown in Fig. 5/3, from any point such as A, the body will
be in equilibrium under the action of the tension in the cord and the resultant W
of the gravitational forces acting on all particles of the body. This re-
sultant is clearly collinear with the cord. Assume that we mark its
position by drilling a hypothetical hole of negligible size along its line of
action. We repeat the experiment by suspending the body from other
points such as B and C, and in each instance we mark the line of ac-
o 1C tion of the resultant force. For all practical purposes these lines of
cle. action will be concurrent at a single point G, which is called the
center of gravity of the body.
An exact analysis, however, would account for the slightly differ-
W ing directions of the gravity forces for the various particles of the body,
because those forces converge toward the center of attraction of the
(c) earth. Also, because the particles are at different distances from the
earth, the intensity of the force field of the earth is not exactly constant
over the body. As a result, the lines of action of the gravity-force resul-
tants in the experiments just described will not be quite concurrent, and therefore
no unique center of gravity exists in the exact sense. This is of no practical impor-
tance as long as we deal with bodies whose dimensions are small compared with
those of the earth. We therefore assume a uniform and parallel force field due to the
gravitational attraction of the earth. This assumption results in the concept of a
unique center of gravity.

Determining the Center of Gravity

To determine mathematically the location of the center of gravity of any body,
Fig. 5/4a, we apply the principle of moments (see Art. 2/6) to the parallel system of
gravitational forces. The moment of the resultant gravitational force W about any
axis equals the sum of the moments about the same axis of the gravitational forces
dW acting on all particles treated as infinitesimal elements of the body. The resultant
of the gravitational forces acting on all elements is the weight of the body and is
given by the sum W = [ dW. If we apply the moment principle about the y-axis, for
example, the moment about this axis of the elemental weight is x dW, and the sum of
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FIGURE 5/4

these moments for all elements of the body is [ x dW. This sum of moments must
equal Wx, the moment of the sum. Thus, xW = [ x dW.

With similar expressions for the other two components, we may express the
coordinates of the center of gravity G as

fxdW fydW - szW
2 =

W Y= "w W

(5/1a)

E:

To visualize the physical moments of the gravity forces appearing in the third equa-
tion, we may reorient the body and attached axes so that the z-axis is horizontal. It
is essential to recognize that the numerator of each of these expressions represents
the sum of the moments, whereas the product of W and the corresponding coordinate
of G represents the moment of the sum. This moment principle finds repeated use
throughout mechanics.

With the substitution of W = mg and dW = g dm, the expressions for the coor-
dinates of the center of gravity become

fxdm fydm

m Y m m

zdm

=

N
I

7=

(5/1b)

Equations 5/16 may be expressed in vector form with the aid of Fig. 5/4b, in
which the elemental mass and the mass center G are located by their respective posi-
tion vectors r = xi + yj + zk and r = xi + yj + zk. Thus, Egs. 5/16 are the components
of the single vector equation

rdm

)

(5/2)

]|
I

The density p of a body is its mass per unit volume. Thus, the mass of a differ-
ential element of volume dV becomes dm = p dV. If p is not constant throughout the
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FIGURE 5/5

(c)

body but can be expressed as a function of the coordinates of the body, we must
account for this variation when calculating the numerators and denominators of
Eqgs. 5/1b. We may then write these expressions as

fxpdV fy,odV - fz,odV
J z=

L y= L
deV fpdV fpdV

X =

(5/3)

Center of Mass versus Center of Gravity

Equations 5/1b, 5/2, and 5/3 are independent of gravitational effects since g no lon-

ger appears. They therefore define a unique point in the body which is a function

solely of the distribution of mass. This point is called the center of mass, and clearly
it coincides with the center of gravity as long as the gravity field is treated as uni-
form and parallel.

It is meaningless to speak of the center of gravity of a body which is removed
from the gravitational field of the earth, since no gravitational forces would act on
it. The body would, however, still have its unique center of mass. We will usually
refer henceforth to the center of mass rather than to the center of gravity. Also, the

center of mass has a special significance in calculating the dynamic re-
sponse of a body to unbalanced forces. This class of problems is dis-
cussed at length in Vol. 2 Dynamics.

In most problems the calculation of the position of the center of
mass may be simplified by an intelligent choice of reference axes. In gen-

. eral, the axes should be placed so as to simplify the equations of the

boundaries as much as possible. Thus, polar coordinates will be useful

for bodies with circular boundaries.

(®) Another important clue may be taken from considerations of sym-
metry. Whenever there exists a line or plane of symmetry in a homoge-
neous body, a coordinate axis or plane should be chosen to coincide with
this line or plane. The center of mass will always lie on such a line or
plane, since the moments due to symmetrically located elements will
always cancel, and the body may be considered to be composed of pairs
of these elements. Thus, the center of mass G of the homogeneous

B right-circular cone of Fig. 5/5a will lie somewhere on its central axis,

which is a line of symmetry. The center of mass of the half right-circu-
lar cone lies on its plane of symmetry, Fig. 5/5b. The center of mass of
the half ring in Fig. 5/5¢ lies in both of its planes of symmetry and
therefore is situated on line AB. It is easiest to find the location of G by
using symmetry when it exists.

53 | Centroids of Lines, Areas, and Volumes

When the density p of a body is uniform throughout, it will be a constant factor in
both the numerators and denominators of Egs. 5/3 and will therefore cancel. The
remaining expressions define a purely geometrical property of the body, since any
reference to its mass properties has disappeared. The term centroid is used when
the calculation concerns a geometrical shape only. When speaking of an actual phys-
ical body, we use the term center of mass. If the density is uniform throughout the
body, the positions of the centroid and center of mass are identical, whereas if the
density varies, these two points will, in general, not coincide.
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Article 5/3 Centroids of Lines, Areas, and Volumes

FIGURE 5/7

The calculation of centroids falls within three distinct categories, depending
on whether we can model the shape of the body involved as a line, an area, or a

volume.

(1) Lines. For a slender rod or wire of length L, cross-sectional area A, and density p,
Fig. 5/6, the body approximates a line segment, and dm = pA dL. If p and A are constant
over the length of the rod, the coordinates of the center of mass also become the coordinates
of the centroid C of the line segment, which, from Eqs. 5/15, may be written

fde

L

x =

y =

fydL

L

Z =

fzdL

L

(5/4)

Note that, in general, the centroid C will not lie on the line. If the rod lies on a single
plane, such as the x-y plane, only two coordinates need to be calculated.

(2) Areas. When a body of density p has a small but constant thickness 7, we can
model it as a surface area A, Fig. 5/7. The mass of an element becomes dm = pt dA. Again,
if p and 7 are constant over the entire area, the coordinates of the center of mass of the body
also become the coordinates of the centroid C of the surface area, and from Eqs. 5/1b the

coordinates may be written

fdi

A

9_C=

y:

jydA
A

E:

fsz

A

(5/5)

The numerators in Eqs. 5/5 are called the first moments of area.* If the surface is
curved, as illustrated in Fig. 5/7 with the shell segment, all three coordinates will
be involved. The centroid C for the curved surface will in general not lie on the
surface. If the area is a flat surface in, say, the x-y plane, only the coordinates of C

in that plane need to be calculated.

(3) Volumes. Fora general body of volume V and density p, the element has a mass
dm = p dV. The density p cancels if it is constant over the entire volume, and the coordinates

*Second moments of areas (moments of first moments) appear later in our discussion of area

moments of inertia in Appendix A.
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of the center of mass also become the coordinates of the centroid C of the body. From
Egs. 5/3 or 5/1b they become

fde fde fde

x="— y = R 5/6
v Y=y v (5/6)

key Concepts Choice of Element for Integration

The principal difficulty with a theory often lies not in its ¥

concepts but in the procedures for applying it. With y \ dy

mass centers and centroids the concept of the moment ‘ ! JL

. N ; . \ \

principle is simple enough; the difficult steps are the | ‘

choice of the differential element and setting up the | | T

integrals. The following five guidelines will be useful. | [ y

(1) Order of Element. Whenever possible, a first- } | s
order differential element should be selected in L % F dx
preference to a higher-order element so that only X1
one integration will be required to cover the entire FIGURE 5/9

figure. Thus, in Fig. 5/8a a first-order horizontal
strip of area dA = [ dy will require only one integra-
tion with respect to y to cover the entire figure. The
second-order element dx dy will require two inte-
grations, first with respect to x and second with re-
spect to y, to cover the figure. As a further example,
for the solid cone in Fig. 5/8b we choose a first-
order element in the form of a circular slice of (2) Continuity. Whenever possible, we choose an el-
ement which can be integrated in one continuous
operation to cover the figure. Thus, the horizontal
strip in Fig. 5/8a would be preferable to the verti-
cal strip in Fig. 5/9, which, if used, would require
two separate integrals because of the discontinuity
in the expression for the height of the strip at
X =Xq.

(3) Discarding Higher-Order Terms. Higher-
o _x order terms may always be dropped compared with
lower-order terms (see Art. 1/7). Thus, the vertical
(@ strip of area under the curve in Fig. 5/10 is given
by the first-order term dA =y dx, and the second-
|y |y order triangular area ;dx dy is discarded. In the

\ \ limit, of course, there is no error.

(4) Choice of Coordinates. As a general rule, we

choose the coordinate system which best matches

dy the boundaries of the figure. Thus, the boundaries of

G v the area in Fig. 5/11a are most easily described in
3 rectangular coordinates, whereas the boundaries

of the circular sector of Fig. 5/11b are best suited
> to polar coordinates.

i z (5) Centroidal Coordinate of Element. When a
) first- or second-order differential element is chosen,

it is essential to use the coordinate of the centroid of
y FIGURE 5/8 the element for the moment arm in expressing the

volume dV = 7r? dy. This choice requires only one
integration, and thus is preferable to choosing a
third-order element dV = dx dy dz, which would
require three awkward integrations.

/
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FIGURE 5/11

moment of the differential element. Thus, for the hor-
izontal strip of area in Fig. 5/12a, the moment of dA
about the y-axis is x, dA, where x, is the x-coordinate
of the centroid C of the element. Note that x, is not
the x which describes either boundary of the area.
In the y-direction for this element the moment arm
y. of the centroid of the element is the same, in the
limit, as the y-coordinates of the two boundaries.

As a second example, consider the solid half-cone of
Fig. 5/12b with the semicircular slice of differential
thickness as the element of volume. The moment arm
for the element in the x-direction is the distance x, to the
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centroid of the face of the element and not the x-distance
to the boundary of the element. On the other hand, in
the z-direction the moment arm z, of the centroid of the
element is the same as the z-coordinate of the element.

With these examples in mind, we rewrite Eqs. 5/5
and 5/6 in the form

fxCdA J’ych fzch
X = A y = A z2 = A (5/5a)
and
fxch fych jzch
=" y="— Z=" (5/6a)

It is essential to recognize that the subscript ¢ serves as
a reminder that the moment arms appearing in the nu-
merators of the integral expressions for moments are
always the coordinates of the centroids of the particular
elements chosen.

At this point you should be certain to understand

clearly the principle of moments, which was introduced
in Art. 2/4. You should recognize the physical meaning of
this principle as it is applied to the system of parallel
weight forces depicted in Fig. 5/4a. Keep in mind the
equivalence between the moment of the resultant weight
W and the sum (integral) of the moments of the elemen-
tal weights dW, to avoid mistakes in setting up the nec-
essary mathematics. Recognition of the principle of
moments will help in obtaining the correct expression
for the moment arm «,, y., or z, of the centroid of the
chosen differential element.

Keeping in mind the physical picture of the princi-
ple of moments, we will recognize that Eqs. 5/4, 5/5, and
5/6, which are geometric relationships, are descriptive
also of homogeneous physical bodies, because the den-
sity p cancels. If the density of the body in question is
not constant but varies throughout the body as some
function of the coordinates, then it will not cancel from
the numerator and denominator of the mass-center
expressions. In this event, we must use Eqgs. 5/3 as
explained earlier.

FIGURE 5/12

Sample Problems 5/1 through 5/5 which follow have been carefully chosen to
illustrate the application of Eqs. 5/4, 5/5, and 5/6 for calculating the location of the
centroid for line segments (slender rods), areas (thin flat plates), and volumes
(homogeneous solids). The five integration considerations listed above are illustrated
in detail in these sample problems.

Section C/10 of Appendix C contains a table of integrals which includes those
needed for the problems in this and subsequent chapters. A summary of the cen-
troidal coordinates for some of the commonly used shapes is given in Tables D/3
and D/4, Appendix D.
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SAMPLE PROBLEM 5/1

Centroid of a circular arc Locate the centroid of a circular arc as
shown in the figure.

Solution Choosing the axis of symmetry as the x-axis makes y =0. A
differential element of arc has the length dL = r d9 expressed in polar
coordinates, and the x-coordinate of the element is r cos 6. @

Applying the first of Egs. 5/4 and substituting L = 2ar give

[Lx = f x dL] (2ar)x = f (rcos9)rdod
2arx = 2r? sin a

rsina
Ans.

X =
a

For a semicircular arc 2a = 7, which gives x = 2r/7. By symmetry
we see immediately that this result also applies to the quarter-circular
arc when the measurement is made as shown.

HELPFUL HINT

® It should be perfectly evident that polar coordinates are preferable to
rectangular coordinates to express the length of a circular arc.

SAMPLE PROBLEM 5/2

Centroid of a triangular area Determine the distance % from the
base of a triangle of altitude % to the centroid of its area.

Solution The x-axis is taken to coincide with the base. A differential
strip of area dA = x dy is chosen. ® By similar triangles x/(h — y) =
b/h. Applying the second of Egs. 5/5a gives

_ bh_ (" bh-y bh?
My—fych] 2 Y=Y 4 dy =—¢

and y= Ans.

h
3

This same result holds with respect to either of the other two sides
of the triangle considered a new base with corresponding new altitude.
Thus, the centroid lies at the intersection of the medians, since the dis-
tance of this point from any side is one-third the altitude of the triangle
with that side considered the base.

HELPFUL HINT

® We save one integration here by using
the first-order element of area. Recog-
nize that dA must be expressed in terms
of the integration variable y; hence, x =
f(y) is required.
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SAMPLE PROBLEM 5/3

Centroid of the area of a circular sector Locate the centroid of
the area of a circular sector with respect to its vertex.

Solution I The x-axis is chosen as the axis of symmetry, and y is
therefore automatically zero. We may cover the area by moving an ele-
ment in the form of a partial circular ring, as shown in the figure, from
the center to the outer periphery. The radius of the ring is ry and its
thickness is dry, so that its area is dA = 2rya dry. @

The x-coordinate to the centroid of the element from Sample Prob-
lem 5/1 is x, = ry sin a/a, where ry replaces r in the formula. ® Thus,
the first of Eqgs. 5/5a gives

2 " (rysin a
[Ax = f x, dA] 22 artyx = f (07)(2&;06(1?0)
27 0 a
rlax = %r3 sin a
_2rsina
3 «a

Ans.

K|

Solution IT The area may also be covered by swinging a triangle of
differential area about the vertex and through the total angle of the sec-
tor. This triangle, shown in the illustration, has an area dA = (r/2)(r d©),
where higher-order terms are neglected. From Sample Problem 5/2 the
centroid of the triangular element of area is two-thirds of its altitude
from its vertex, so that the x-coordinate to the centroid of the element is
X, = %r cos 0. Applying the first of Eqgs. 5/5a gives

[Ax = f x, dA] (ra)x = f 21 cos 6)(3r% d6)
rlax = §r3 sin
and as before x = 2rsina Ans.
3 «a

For a semicircular area 2a = 7, which gives x = 4r/37. By symmetry
we see immediately that this result also applies to the quarter-circular
area where the measurement is made as shown.

It should be noted that, if we had chosen a second-order element
ro dry db, one integration with respect to 6 would yield the ring with
which Solution I began. On the other hand, integration with respect to
ro initially would give the triangular element with which Solution IT
began.

Solution I

HELPFUL HINTS

® Note carefully that we must distinguish
between the variable ry and the constant r.

@ Be careful not to use r( as the centroidal
coordinate for the element.
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SAMPLE PROBLEM 5/4

Locate the centroid of the area under the curve x = ky® from x = 0 to
x=a.

Solution I A vertical element of area dA =y dx is chosen as shown in
the figure. The x-coordinate of the centroid is found from the first of
Eqgs. 5/5a. Thus,

W=J’xch] TCJ’ ydx:J xydx @
0

0
Substituting y = (x/)"® and & = a/b® and integrating give

@,_3(1%
4 T 7

~_4
x=za Ans.

In the solution for y from the second of Eqgs. 5/5a, the coordinate
to the centroid of the rectangular element is y, = y/2, where y is the
height of the strip governed by the equation of the curve x = £y®. Thus,
the moment principle becomes

_ 3ab (" (¥
My=fych] = <*>y dx
4 0o \2
Substituting y = b(x/a)”? and integrating give
3ab _  3ab? _ 9
T Ans

Solution IT The horizontal element of area shown in the lower figure
may be employed in place of the vertical element. The x-coordinate to
the centroid of the rectangular element is seen to be x, = x + %(a —x) =
(a + x)/2, which is simply the average of the coordinates a and x of the
ends of the strip. Hence,

b b
[Af:fxchJ fJO (a—x)dy:fo <a-2|-x>(a_x)dy

The value of y is found from

[Ay = J’yc dA] yfob (@ —x)dy = f: y(a —x) dy

where y, = y for the horizontal strip. The evaluation of these integrals
will check the previous results for x and y.

. y

1y
yc:E
2
‘%XH{ ‘<—dx a

X a—Xx

HELPFUL HINT

® Note that x, = x for the vertical
element.
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SAMPLE PROBLEM 5/5

Hemispherical volume Locate the centroid of the volume of a hemi-
sphere of radius r with respect to its base.

Solution I With the axes chosen as shown in the figure, x = z = 0 by
symmetry. The most convenient element is a circular slice of thickness
dy parallel to the x-z plane. Since the hemisphere intersects the y-z plane
in the circle y* + z® = r%, the radius of the circular slice is z = +1/r% — y2.
The volume of the elemental slice becomes

dV=n(r?-y>dy O

The second of Egs. 5/6a requires
Vy= fyc dv] ifo n(r? = y*) dy =f0 yr(r® = y?) dy
where y, = y. Integrating gives

rdy = irfr‘1 y= %r Ans.

SV

Solution IT Alternatively we may use for our differential element a
cylindrical shell of length y, radius z, and thickness dz, as shown in the
lower figure. By expanding the radius of the shell from zero to r, we
cover the entire volume. By symmetry the centroid of the elemental
shell lies at its center, so that y. = y/2. The volume of the element is
dV = (27z dz)(y). Expressing y in terms of z from the equation of the circle
gives y = +/r? — z%. Using the value of %71'1"3 computed in Solution I for
the volume of the hemisphere and substituting in the second of Eqs. 5/6a
give us

2

roy /2
Vy= fyc dv] (%ﬂr3)§=f %(2712\/7’2 -2)) dz
0

4

= f 7(r?z —2°) dz = .
0 4
y = %r Ans.

Solutions I and II are of comparable use since each involves an
element of simple shape and requires integration with respect to one
variable only.

Solution III As an alternative, we could use the angle 6 as our vari-
able with limits of 0 and 7/2. The radius of either element would be-
come r sin 6, whereas the thickness of the slice in Solution I would be
dy = (r d6) sin 6 and that of the shell in Solution II would be dz =
(r d6) cos 6. The length of the shell would be y = r cos 6.

Solution I

ji

Ye=y/2

Solution II

Solution III

HELPFUL HINT

® Can youidentify the higher-order element
of volume which is omitted from the
expression for dV?
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si4 | Composite Bodies and Figures;
Approximations

When a body or figure can be conveniently divided into several parts whose mass
centers are easily determined, we use the principle of moments and treat each part
as a finite element of the whole. Such a body is illustrated schematically in Fig.
5/13. Its parts have masses m1, mq, ms with the respective mass-center coordinates
X1, X9, X3 in the x-direction. The moment principle gives

(m1 + moy + m3))? = mlﬂzl + mZEZ + m3E3

where X is the x-coordinate of the center of mass of the whole. Similar relations
hold for the other two coordinate directions.

We generalize, then, for a body of any number of parts and express the sums in
condensed form to obtain the mass-center coordinates

0
3
&
¥
S
N

Pl
I

(5/7)

i
[

4
7l
NI
[

Analogous relations hold for composite lines, areas, and volumes, where the m’s are
replaced by L’s, A’s, and Vs, respectively. Note that if a hole or cavity is considered
one of the component parts of a composite body or figure, the corresponding mass
represented by the cavity or hole is treated as a negative quantity.

An Approximation Method

In practice, the boundaries of an area or volume might not be expressible in terms
of simple geometrical shapes or as shapes which can be represented mathemati-
cally. For such cases we must resort to a method of approximation. As an example,
consider the problem of locating the centroid C of the irregular area shown in Fig.
5/14. The area is divided into strips of width Ax and variable height i. The area A
of each strip, such as the one shown in red, is 2 Ax and is multiplied by the

X3
Xxg
e;lﬁ / /
I I’
| .
3 \ G2 e G |
G\ \\ G
mgy
my mg
X

FIGURE 5/13 FIGURE 5/14



Article 5/4 Composite Bodies and Figures; Approximations

coordinates x, and y, of its centroid to obtain the moments of the element of area.
The sum of the moments for all strips divided by the total area of the strips will
give the corresponding centroidal coordinate. A systematic tabulation of the results
will permit an orderly evaluation of the total area ZA, the sums XAx, and XAy,, and
the centroidal coordinates

TAx, _ ZAy,
YA Y="3A

X =

We can increase the accuracy of the approximation by decreasing the widths of
the strips. In all cases the average height of the strip should be estimated in ap-
proximating the areas. Although it is usually advantageous to use elements of con-
stant width, it is not necessary. In fact, we may use elements of any size and shape
which approximate the given area to satisfactory accuracy.

Irregular Volumes

To locate the centroid of an irregular volume, we may reduce the problem to one of
locating the centroid of an area. Consider the volume shown in Fig. 5/15, where the
magnitudes A of the cross-sectional areas normal to the x-direction are plotted
against x as shown. A vertical strip of area under the curve is A Ax, which equals
the corresponding element of volume AV. Thus, the area under the plotted curve
represents the volume of the body, and the x-coordinate of the centroid of the area
under the curve is given by

_ 2(A Ax)x, hich 1 _ 2Vx,
x_izAAx which equals x = SV

for the centroid of the actual volume.

FIGURE 5/15
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SAMPLE PROBLEM 5/6

Locate the centroid of the shaded area.

Solution The composite area is divided into the four elementary
shapes shown in the lower figure. The centroid locations of all these
shapes may be obtained from Table D/3. Note that the areas of the
“holes” (parts 3 and 4) are taken as negative in the following table:

A x y XA yA

PART in.2 in. in. in? in?

1 120 6 5 720 600

2 30 14 10/3 420 100

3 -14.14 6 1.273 -84.8 -18

4 -8 12 4 -96 -32

TOTALS 127.9 959 650

The area counterparts to Eqs. 5/7 are now applied and yield

YAx = 959

[X = H X= m =17.501n Ans.
= XAy - 650

[ =SA Y= 1279—5.081n Ans.

| 12" |

SAMPLE PROBLEM 5/7

Approximate the x-coordinate of the volume centroid of a body whose
length is 1 m and whose cross-sectional area varies with x as shown in

the figure.

Solution The body is divided into five sections. For each section, the
average area, volume, and centroid location are determined and en-

tered in the following table:

A Volume V x Vx
INTERVAL m? m? m m*
0-0.2 3 0.6 0.1 0.060
0.2-0.4 45 0.90 0.3 0.270
0.4-0.6 5.2 1.04 0.5 0.520
0.6-0.8 5.2 1.04 0.7 0.728
0.8-1.0 45 0.90 0.9 0.810
TOTALS 4.48 2.388
[)? = va] x=238 _0533m @ Ans.

vV

A, m?
O H N WA U D

HELPFUL HINTS

@ Note that the shape of the body as a
function of y and z does not affect X.
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SAMPLE PROBLEM 5/8

Locate the center of mass of the bracket-and-shaft combination. The
vertical face is made from sheet metal which has a mass of 25 kg/m?.
The material of the horizontal base has a mass of 40 kg/m?, and the steel
shaft has a density of 7.83 Mg/m®.

Solution The composite body may be considered to be composed of the x
five elements shown in the lower portion of the illustration. The triangu-
lar part will be taken as a negative mass. For the reference axes indi-

cated, it is clear by symmetry that the x-coordinate of the center of mass 150 75
is zero.
The mass m of each part is easily calculated and should need no 25

further explanation. For Part 1 we have from Sample Problem 5/3

_  4r 4(50) 100
z 2m

For Part 3 we see from Sample Problem 5/2 that the centroid of the tri- Dimensions in millimeters
angular mass is one-third of its altitude above its base. Measurement
from the coordinate axes becomes

z = ~[150 - 25 — 5(75)] = ~100 mm

The y- and z-coordinates to the mass centers of the remaining parts
should be evident by inspection. The terms involved in applying Eqgs. 5/7

are best handled in the form of a table as follows: _
D
_ _ _ _ B <
m y z my mz
PART kg mm mm kg-mm kg-mm
1 0.098 0 21.2 0 2.08
2 0.562 0 -75.0 0 -42.19
3 -0.094 0 -100.0 0 9.38
4 0.600 50.0 -150.0 30.0 -90.00
5 1.476 75.0 0 110.7 0
TOTALS 2.642 140.7 -120.73

Equations 5/7 are now applied and the results are

- Zmy - 140.7

[Y—g] Y—m— 53.3 mm Ans.
= Zmz - -120.73

[Z = Sm Z = W = —45.7 mm Ans.
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si5 | Theorems of Pappus*

A very simple method exists for calculating the surface area generated by revolving
a plane curve about a nonintersecting axis in the plane of the curve. In Fig. 5/16 the
line segment of length L in the x-y plane generates a surface when revolved about the
x-axis. An element of this surface is the ring generated by dL. The area of this ring
is its circumference times its slant height or dA = 27y dL. The total area is then

A=27rfydL

Because yL = [ydL, the area becomes

A =2nyL (5/8)

where y is the y-coordinate of the centroid C for the line of length L. Thus, the gener-
ated area is the same as the lateral area of a right-circular cylinder of length L and
radius y.

In the case of a volume generated by revolving an area about a nonintersecting
line in its plane, an equally simple relation exists for finding the volume. An element
of the volume generated by revolving the area A about the x-axis, Fig. 5/17, is the
elemental ring of cross section dA and radius y. The volume of the element is its cir-
cumference times dA or dV = 27y dA, and the total volume is

V=271JydA
7 —— f
o 1
| i/ TCT | |
BN 1\ R |
N 1) ]

FIGURE 5/16 FIGURE 5/17

theorems often bear the name of Guldinus (Paul Guldin, 1577-1643), who claimed original
authorship, although the works of Pappus were apparently known to him.
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Because yA = [y dA, the volume becomes

V= 27yA (5/9)

where y is the y-coordinate of the centroid C of the revolved area A. Thus, we obtain
the generated volume by multiplying the generating area by the circumference of the
circular path described by its centroid.

The two theorems of Pappus, expressed by Eqs. 5/8 and 5/9, are useful for deter-
mining areas and volumes of revolution. They are also used to find the centroids of
plane curves and plane areas when we know the corresponding areas and volumes
created by revolving these figures about a nonintersecting axis. Dividing the area or
volume by 27 times the corresponding line segment length or plane area gives the
distance from the centroid to the axis.

If a line or an area is revolved through an angle 6 less than 27, we can deter-
mine the generated surface or volume by replacing 27 by 6 in Eqs. 5/8 and 5/9.
Thus, the more general relations are

and

V=0yA (5/9a)

where 0 is expressed in radians.

goldhafen/Getty Images, Inc.

The theorems of Pappus are useful for determining the
volume and surface area of bodies such as this water
storage tank.
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SAMPLE PROBLEM 5/9

Determine the volume V and surface area A of the complete torus of cir-
cular cross section.

Solution The torus can be generated by revolving the circular area of
radius a through 360° about the z-axis. With the use of Eq. 5/9a, we
have

V = 67A = 27(R)(7a?) = 2n°Ra®? © Ans.
Similarly, using Eq. 5/8a gives
A =0rL = 27(R)(27a) = 47*Ra Ans.

HELPFUL HINT

® We note that the angle 6 of revolution is 27 for the complete ring. This
common but special-case result is given by Eq. 5/9.

SAMPLE PROBLEM 5/10

Calculate the volume V of the solid generated by revolving the 60-mm
right-triangular area through 180° about the z-axis. If this body were
constructed of steel, what would be its mass m?

Solution With the angle of revolution 6 = 180°, Eq. 5/9a gives
V = 6rA = 7130 + £(60)1[5(60)(60)] = 2.83(10°) mm® © Ans.
The mass of the body is then
kg 3 lm 1]°
m=pV= [7830 m3] [2.83(10°)mm?] [1000 mm]
=2.21kg Ans.

HELPFUL HINT
® Note that 6 must be in radians.




Article 5/6 Beams—External Effects

sectionB  Special Topics

56 | Beams—External Effects

Beams are structural members which offer resistance to bending due to applied
loads. Most beams are long prismatic bars, and the loads are usually applied normal
to the axes of the bars.

Beams are undoubtedly the most important of all structural members, so it is
important to understand the basic theory underlying their design. To analyze the
load-carrying capacities of a beam, we must first establish the equilibrium re-
quirements of the beam as a whole and any portion of it considered separately.
Second, we must establish the relations between the resulting forces and the ac-
companying internal resistance of the beam to support these forces. The first part
of this analysis requires the application of the principles of statics. The second
part involves the strength characteristics of the material and is usually treated in
studies of the mechanics of solids or the mechanics of materials.

This article is concerned with the external loading and reactions acting on a
beam. In Art. 5/7 we calculate the distribution along the beam of the internal force
and moment.

Types of Beams

Beams supported so that their external support reactions can be calculated by the
methods of statics alone are called statically determinate beams. A beam which has
more supports than needed to provide equilibrium is statically indeterminate. To
determine the support reactions for such a beam we must consider its load-deformation
properties in addition to the equations of static equilibrium. Figure 5/18 shows
examples of both types of beams. In this article we will analyze statically determi-
nate beams only.

Beams may also be identified by the type of external loading they support. The
beams in Fig. 5/18 are supporting concentrated loads, whereas the beam in Fig.
5/19 is supporting a distributed load. The intensity w of a distributed load may be

{ b

E | E - OI

Simple
Continuous

L\

N N {

| | G
‘ Cantilever ‘

End-supported cantilever

* Ll

[
Combination Fixed
Statically determinate beams Statically indeterminate beams

FIGURE 5/18
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expressed as force per unit length of beam. The intensity may be con-
stant or variable, continuous or discontinuous. The intensity of the load-

w ing in Fig. 5/19 is constant from C to D and variable from A to C and
W from D to B. The intensity is discontinuous at D, where it changes mag-
[~ - ——x nitude abruptly. Although the intensity itself is not discontinuous at C,
L\ C D _O the rate of change of intensity dw/dx is discontinuous.
A B

Distributed Loads

Loading intensities which are constant or which vary linearly are easily
handled. Figure 5/20 illustrates the three most common cases and the
resultants of the distributed loads in each case.

=—L/2—1
R =wL

I
l
I
Y

In cases a and b of Fig. 5/20, we see that the resultant load R is
w represented by the area formed by the intensity w (force per unit length
of beam) and the length L over which the force is distributed. The resul-

‘ tant passes through the centroid of this area.

\ L \ In part ¢ of Fig. 5/20, the trapezoidal area is broken into a rectangu-
(@) lar and a triangular area, and the corresponding resultants R; and R, of
rolur these subareas are determined separately. Note that a single resultant

=zw . . . . .
2 could be determined by using the composite technique for finding cen-
2L/3— troids, which was discussed in Art. 5/4. Usually, however, the determina-
I w tion of a single resultant is unnecessary.
Y For a more general load distribution, Fig. 5/21, we must start with
a differential increment of force dR = w dx. The total load R is then the

} I } sum of the differential forces, or

)
1 R = f w dx
RZ = 5 (w2 - wl)L
<—2L/3—
Ry =w.L I

L2 /:// As before, the resultant R is located at the centroid of the area under

u \ consideration. The x-coordinate of this centroid is found by the principle
: ws of moments Rx = [ xw dx, or

wy
¥

} L } o f xw dx
(c) R

For the distribution of Fig. 5/21, the vertical coordinate of the centroid
need not be found.

Once the distributed loads have been reduced to their equivalent
dR = wdx\ concentrated loads, the external reactions acting on the beam may be
found by a straightforward static analysis as developed in Chapter 3.

Loy

< —

FIGURE 5/21
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SAMPLE PROBLEM 5/11

Determine the equivalent concentrated load(s) and external reactions
for the simply supported beam which is subjected to the distributed
load shown.

Solution The area associated with the load distribution is divided
into the rectangular and triangular areas shown. The concentrated-load
values are determined by computing the areas, and these loads are
located at the centroids of the respective areas. ®

Once the concentrated loads are determined, they are placed on the
free-body diagram of the beam along with the external reactions at A
and B. Using principles of equilibrium, we have

[ZM, = 0] 1200(5) + 480(8) — Rp(10) =0

Rz =9841b Ans.
[ZMp = 0] R,(10) — 1200(5) — 480(2) =0

R, =696 1b Ans.

fe— 4’ ‘ 6 }

280 b/t
A 1B

HELPFUL HINT

® Note that it is usually unnecessary to
reduce a given distributed load to a
single concentrated load.

%(160) (6) = 480 Tb

Ty Jeowm
120 Ib/ft | 120 b/t
A Y B

(120) (10) = 1200 1b

12001b 4801b

<~ 5 Y~ 3

r

SAMPLE PROBLEM 5/12

Determine the reaction at the support A of the loaded cantilever beam.

Solution The constants in the load distribution are found to be w, =
1000 N/m and k = 2 N/m*. @ The load R is then

8

=10050 N

8 4
R:fwdxzf (1000 + 2x%) dx = (1000x+x§>
0 0

The x-coordinate of the centroid of the area is found by @

fxw dx

R 10050

X =

8
J x(1000 + 2x%) dx
0

= 10 050 P00" + 2V)p = 4.49 m

From the free-body diagram of the beam, we have

[ZM, = 0] M, — (10 050)(4.49) =0
M, =45100 N-m Ans.
[ZF, = 0] A,=10050 N Ans.

Note that A, = 0 by inspection.

w‘(x) w = wy + kx®
11000 N/m 2024
) N/m
——Xx
L B
l 8m
A

HELPFUL HINTS

® Use caution with the units of the constants
w, and k.

@ The student should recognize that the
calculation of R and its location x is
simply an application of centroids as
treated in Art. 5/3.

10050 N




128 CHAPTER 5 Distributed Forces

5/7 | Beams—Internal Effects

The previous article treated the reduction of a distributed force to one or more
equivalent concentrated forces and the subsequent determination of the external
reactions acting on the beam. In this article we introduce internal beam effects and
apply principles of statics to calculate the internal shear force and bending moment
as functions of location along the beam.

Shear, Bending, and Torsion

- <

In addition to supporting tension or compression, a beam can resist
shear, bending, and torsion. These three effects are illustrated in Fig.
5/22. The force V is called the shear force, the couple M is called the

4 bending moment, and the couple T is called a torsional moment. These
Shear effects represent the vector components of the resultant of the forces
acting on a transverse section of the beam as shown in the lower part
of the figure.
M Consider the shear force V and bending moment M caused by forces

Bending M applied to the beam in a single plane. The conventions for positive
values of shear V and bending moment M shown in Fig. 5/23 are the

\0 ones generally used. From the principle of action and reaction we can
T G\ see that the directions of V and M are reversed on the two sections. It
is frequently impossible to tell without calculation whether the shear

Torsion T and moment at a particular section are positive or negative. For this
reason it is advisable to represent V and M in their positive directions
on the free-body diagrams and let the algebraic signs of the calculated

C_>_ T values indicate the proper directions.
As an aid to the physical interpretation of the bending couple M,

O consider the beam shown in Fig. 5/24 bent by the two equal and oppo-

M site positive moments applied at the ends. The cross section of the beam

v is treated as an H-section with a very narrow center web and heavy top

Combined loading and bottom flanges. For this beam we may neglect the load carried by

the small web compared with that carried by the two flanges. The upper
flange of the beam clearly is shortened and is under compression,

whereas the lower flange is lengthened and is under tension. The resul-

tant of the two forces, one tensile and the other compressive, acting on

+V +M +M

M

?+§$

FIGURE 5/23 FIGURE 5/24




Article 5/7 Beams—Internal Effects

any section is a couple and has the value of the bending moment on the section. If a
beam having some other cross-sectional shape were loaded in the same way, the
distribution of force over the cross section would be different, but the resultant
would be the same couple.

Shear-Force and Bending-Moment Diagrams

The variation of shear force V and bending moment M over the length of a beam
provides information necessary for the design analysis of the beam. In particular,
the maximum magnitude of the bending moment is usually the primary consider-
ation in the design or selection of a beam, and its value and position should be de-
termined. The variations in shear and moment are best shown graphically, and the
expressions for V and M when plotted against distance along the beam give the
shear-force and bending-moment diagrams for the beam.

The first step in the determination of the shear and moment relations is to es-
tablish the values of all external reactions on the beam by applying the equations of
equilibrium to a free-body diagram of the beam as a whole. Next, we isolate a por-
tion of the beam, either to the right or to the left of an arbitrary transverse section,
with a free-body diagram, and apply the equations of equilibrium to this isolated
portion of the beam. These equations will yield expressions for the shear force V and
bending moment M acting at the cut section on the part of the beam isolated. The
part of the beam which involves the smaller number of forces, either to the right or
to the left of the arbitrary section, usually yields the simpler solution.

We should avoid using a transverse section which coincides with the location of
a concentrated load or couple, as such a position represents a point of discontinuity
in the variation of shear or bending moment. Finally, it is important to note that the
calculations for V and M on each section chosen should be consistent with the posi-
tive convention illustrated in Fig. 5/23.

General Loading, Shear, and Moment Relationships

For any beam with distributed loads, we can establish certain general relationships
which will aid greatly in the determination of the shear and moment distributions
along the beam. Figure 5/25 represents a portion of a loaded beam, where an ele-
ment dx of the beam is isolated. The loading w represents the force per unit length
of beam. At the location x the shear V and moment M acting on the element are
drawn in their positive directions. On the opposite side of the element where the
coordinate is x + dx, these quantities are also shown in their positive directions. They
must, however, be labeled V + dV and M + dM, since V and M change with x. The
applied loading w may be considered constant over the length of the element, since

w=f j [ d=
X T §M+dM
A

V+dV
FIGURE 5/25
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this length is a differential quantity and the effect of any change in w disappears in
the limit compared with the effect of w itself.

Equilibrium of the element requires that the sum of the vertical forces be zero.
Thus, we have

V—wdx - (V+dV)=0

or

_av
dx

w =

(5/10)

We see from Eq. 5/10 that the slope of the shear dia-
gram must everywhere be equal to the negative of the
value of the applied loading. Equation 5/10 holds on
either side of a concentrated load but not at the
concentrated load because of the discontinuity pro-
duced by the abrupt change in shear.

We may now express the shear force V in terms of
the loading w by integrating Eq. 5/10. Thus,

\4 X
dV=—f w dx

Vo

or

Because of its economical use of material in achieving
bending stiffness, the I-beam is a very common
structural element.

V =V, + (the negative of the area under
the loading curve from x, to x)

In this expression V, is the shear force at x, and V is the shear force at x. Summing
the area under the loading curve is usually a simple way to construct the shear-force
diagram.

Equilibrium of the element in Fig. 5/25 also requires that the moment sum
be zero. Summing moments about the left side of the element gives

M+wdx%+(V+dV)dx—(M+dM)=0

The two M’s cancel, and the terms w(dx)?/2 and dV dx may be dropped, since they
are differentials of higher order than those which remain. This leaves

V== (5/11)

which expresses the fact that the shear everywhere is equal to the slope of the mo-
ment curve. Equation 5/11 holds on either side of a concentrated couple but not at
the concentrated couple because of the discontinuity caused by the abrupt change in
moment.
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We may now express the moment M in terms of the shear V by integrating

Eq. 5/11. Thus,
M x
f dM=f Vdx
M,

or
M = M, + (area under the shear diagram from x, to x)

In this expression M is the bending moment at xy and M is the bending moment
at x. For beams where there is no externally applied moment M, at x, = 0, the total
moment at any section equals the area under the shear diagram up to that section.
Summing the area under the shear diagram is usually the simplest way to con-
struct the moment diagram.

When V passes through zero and is a continuous function of x with dV/dx # 0,
the bending moment M will be a maximum or a minimum, since dM/dx = 0 at such
a point. Critical values of M also occur when V crosses the zero axis discontinu-
ously, which occurs for beams under concentrated loads.

We observe from Egs. 5/10 and 5/11 that the degree of V in x is one higher than
that of w. Also, M is of one higher degree in x than is V. Consequently, M is two de-
grees higher in x than w. Thus for a beam loaded by w = kx, which is of the first de-
gree in x, the shear V'is of the second degree in x and the bending moment M is of the
third degree in x.

Equations 5/10 and 5/11 may be combined to yield

d’M 5
dx®

—w (5/12)

Thus, if w is a known function of x, the moment M can be obtained by two integra-
tions, provided that the limits of integration are properly evaluated each time. This
method is usable only if w is a continuous function of x.*

When bending in a beam occurs in more than a single plane, we may perform
a separate analysis in each plane and combine the results vectorially.

*When w is a discontinuous function of x, it is possible to introduce a special set of expressions
called singularity functions which permit writing analytical expressions for shear V and moment
M over an interval which includes discontinuities. These functions are not discussed in this book.
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SAMPLE PROBLEM 5/13

Determine the shear and moment distributions produced in the simple
beam by the 4-kN concentrated load.

Solution From the free-body diagram of the entire beam we find the
support reactions, which are

R,=16kN  R,=24kN

A section of the beam of length x is next isolated with its free-body
diagram on which we show the shear V and the bending moment M in
their positive directions. Equilibrium gives

[ZF, = 0] 16-V=0 V=16kN
[EMp, = 0] M-16x=0 M =1.6x

These values of V and M apply to all sections of the beam to the left of
the 4-kN load. ®

A section of the beam to the right of the 4-kN load is next isolated
with its free-body diagram on which V and M are shown in their posi-
tive directions. Equilibrium requires

[ZF, = 0] V+24=0 V=-24kN
[EMp, = 0] ~(24)10 -x) + M =0 M =2.4(10 - x)

These results apply only to sections of the beam to the right of the 4-kN
load.

The values of V and M are plotted as shown. The maximum bend-
ing moment occurs where the shear changes direction. As we move in
the positive x-direction starting with x = 0, we see that the moment M
is merely the accumulated area under the shear diagram.

L | —=
\
| \
\
R1=1.6kN R2—24kN
y 1%
\
F PM &’%M
x 10 — x
\%4
1.6 kN 2.4 kN
V, kN
} \ \
\ \
1.6} |
I
01 ‘7x,m
0 6 10

HELPFUL HINT

® We must be careful not to take our sec-
tion at a concentrated load (such as
x = 6 m) since the shear and moment
relations involve discontinuities at such
positions.
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SAMPLE PROBLEM 5/14

The cantilever beam is subjected to the load intensity (force per unit
length) which varies as w = wy sin (7x/l). Determine the shear force V
and bending moment M as functions of the ratio x/I.

Solution The free-body diagram of the entire beam is drawn first so
that the shear force V; and bending moment M, which act at the sup-
ported end at x = 0 can be computed. By convention V, and M, are shown
in their positive mathematical senses. A summation of vertical forces for
equilibrium gives

X 2wyl

1 1
[ZF, = 0] Vo—fwdx=0 V0=fwosin7dx
0 0

A summation of moments about the left end at x = 0 for equilibrium
gives @

1 1
[ZM = 0] —Mo—fx(wdx)=o M0=—f woxsin%dx
0 0
ppo Tl [ me ] ol
0= no = cos , =

From a free-body diagram of an arbitrary section of length x, inte-
gration of Eq. 5/10 permits us to find the shear force internal to the
beam. Thus,

4 x

[dV = —w dx] dV = —f wy sin ﬂalx @

v, 0 l

2wl wyl
wol x ¥ _ aol  Wol o
V-V,= [TOCOST]O \4 - - (cos . 1)

or in dimensionless form

L=l<1+cosﬂ> Ans.

wol 7w l

The bending moment is obtained by integration of Eq. 5/11, which

gives
M X l
[dM = V dx] f dM=f w—°<1+cos”—x> dx
M, 0o T l
l x
M—M0=w—0 x+£sinﬂ]
T T L o
wol®  wyl [ [ . nx ]
=——+4+— |x+—sin— -0
T T l
or in dimensionless form
M2=l<§_1+lsinﬂ> Ans.
wol T\l V.4 l

The variations of V/w,l and M/w,I* with x/l are shown in the bot-
tom figures. The negative values of M/w,{? indicate that physically the
bending moment is in the direction opposite to that shown.

~—28

IO ‘

——x

0 0.2 «x/l 06 08 10

0
M
l/UOl2

—-0.318

HELPFUL HINTS

@ In this case of symmetry, it is clear that
the resultant R = V; = 2w,l/7 of the load
distribution acts at midspan, so that the
moment requirement is simply M, =
—RI/2 = —wyl¥r. The minus sign tells us
that physically the bending moment at
x = 0 is opposite to that represented on
the free-body diagram.

® The free-body diagram serves to re-
mind us that the integration limits for
V as well as for x must be accounted
for. We see that the expression for V is
positive, so that the shear force is as
represented on the free-body diagram.
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SAMPLE PROBLEM 5/15

Draw the shear-force and bending-moment diagrams for the loaded
beam and determine the maximum moment M and its location x from
the left end.

Solution The support reactions are most easily obtained by considering
the resultants of the distributed loads as shown on the free-body
diagram of the beam as a whole. The first interval of the beam is ana-
lyzed from the free-body diagram of the section for 0 < x < 4 ft. A sum-
mation of vertical forces and a moment summation about the cut
section yield

[ZF, =0] V =247 — 12.5x*

[ZM = 0] M + (12.5x%) % —247x =0 M =247x — 41743
These values of V and M hold for 0 < x < 4 ft and are plotted for that
interval in the shear and moment diagrams shown.

From the free-body diagram of the section for which 4 < x < 8 ft,
equilibrium in the vertical direction and a moment sum about the cut
section give

[ZF, = 0] V +100(x — 4) + 200 — 247 =0 V =447 — 100x

x—4

2
M = —267 + 447x — 50x2

[EM =01  M+100(x - 4) *— +200[x — 5(4)] - 2472 =0

These values of V and M are plotted on the shear and moment dia-
grams for the interval 4 < x < 8 ft.

The analysis of the remainder of the beam is continued from the
free-body diagram of the portion of the beam to the right of a section in
the next interval. It should be noted that V and M are represented in
their positive directions. A vertical-force summation and a moment
summation about the section yield

V=-3531b and M = 2930 — 353«

These values of V and M are plotted on the shear and moment dia-
grams for the interval 8 < x < 10 ft.

The last interval may be analyzed by inspection. The shear is con-
stant at +300 lb, and the moment follows a straight-line relation begin-
ning with zero at the right end of the beam.

The maximum moment occurs at x = 4.47 ft, where the shear curve
crosses the zero axis, and the magnitude of M is obtained for this value
of x by substitution into the expression for M for the second interval.
The maximum moment is

M = 732 1b-ft Ans.

As before, note that the change in moment M up to any section
equals the area under the shear diagram up to that section. For
instance, for x < 4 ft,

[AM = f V dxl M-0 =f (247 — 12.5x2) dx
0

and, as above, M =24Tx — 4.17x°

100 1b/ft
300 Ib
e
L1 O
L 4 & 9 >L 9~
y
2 b 4001b
L8 I
NER I 300 1b
| 1
\ Y Y
] —x
TRl = 2471b TRZ =653 1b
12.5x2
] 300 1b
2 x v
F 3 100
12 — x
M
X
M
247 b 653 Ib
100(x — 4)
20011 1 x—4 ‘
= 2 \
\
’ Y i YiSw |
\
x \
| |
v \
247 1b |
\
Vv, 1b |
| \
\
241 \ .
\
| \
0l ‘ | _
0 4 8 10 12 % ft
L 447 J } }
\
M, To-ft —353,
732 ‘P -———= \
\
\ \
\ \
0 | | |
0 4 8 0712
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s5i8 | Flexible Cables

One important type of structural member is the flexible cable which is used in sus-
pension bridges, transmission lines, messenger cables for supporting heavy trolley
or telephone lines, and many other applications. To design these structures we
must know the relations involving the tension, span, sag, and length of the cables.
We determine these quantities by examining the cable as a body in equilibrium. In
the analysis of flexible cables we assume that any resistance offered to bending is
negligible. This assumption means that the force in the cable is always in the direc-
tion of the cable.

Flexible cables may support a series of distinct concentrated loads, as shown in
Fig. 5/26a, or they may support loads continuously distributed over the length of
the cable, as indicated by the variable-intensity loading w in 5/26b. In some in-
stances the weight of the cable is negligible compared with the loads it supports. In
other cases the weight of the cable may be an appreciable load or the sole load and
cannot be neglected. Regardless of which of these conditions is present, the equi-
librium requirements of the cable may be formulated in the same manner.

General Relationships
If the intensity of the variable and continuous load applied to the cable of Fig.

5/26b is expressed as w units of force per unit of horizontal length x, then the re-
sultant R of the vertical loading is

R=de=fwdx

where the integration is taken over the desired interval. We find the position of R
from the moment principle, so that
f xdR

Ra?:fde x=

R

Fy F F
2 3

(a)
E——

Y
R

®

FIGURE 5/26
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The elemental load dR = wdx is represented by an elemental strip of vertical
length w and width dx of the shaded area of the loading diagram, and R is repre-
sented by the total area. It follows from the foregoing expressions that R passes
through the centroid of the shaded area.

The equilibrium condition of the cable is satisfied if each infinitesimal element of
the cable is in equilibrium. The free-body diagram of a differential element is shown
in Fig. 5/26¢. At the general position x the tension in the cable is 7', and the cable
makes an angle 6 with the horizontal x-direction. At the section x + dx the tension is
T + dT, and the angle is 6 + d6. Note that the changes in both 7' and 6 are taken to be
positive with a positive change in x. The vertical load wdx completes the free-body
diagram. The equilibrium of vertical and horizontal forces requires, respectively, that

(T+dT)sin (6 +df) =Tsin 6 + w dx
(T +dT) cos (6 +db) =T cos 6

The trigonometric expansion for the sine and cosine of the sum of two angles and
the substitutions sin d6 = d6 and cos d6 = 1, which hold in the limit as d6 ap-
proaches zero, yield

(T+dT)(sin 0 + cos 6dO) =T sin 6 + w dx
(T + dT)(cos 6 —sin6dB) =T cos 6
Dropping the second-order terms and simplifying give us
Tcos0dO +dT sin 6 = w dx
—Tsin6d0 +dT cos0=0
which we write as
d(T sin 6) = w dx and d(T cos 6) =0

The second relation expresses the fact that the horizontal component of 7' remains
unchanged, which is clear from the free-body diagram. If we introduce the symbol
Ty =T cos 6 for this constant horizontal force, we may then substitute 7'= Ty/cos 6
into the first of the two equations just derived and obtain d(T, tan 6) = w dx. Be-
cause tan 6 = dy/dx, the equilibrium equation may be written in the form

d?y

= (5/13)

Sig

Equation 5/13 is the differential equation for the flexible cable. The solution to
the equation is that functional relation y = f(x) which satisfies the equation and also
satisfies the conditions at the fixed ends of the cable, called boundary conditions. This
relationship defines the shape of the cable, and we will use it to solve two important
and limiting cases of cable loading.

Parabolic Cable

When the intensity of vertical loading w is constant, the condition closely approxi-
mates that of a suspension bridge where the uniform weight of the roadway may be
expressed by the constant w. The mass of the cable itself is not distributed uni-
formly with the horizontal but is relatively small, and thus we neglect its weight.
For this limiting case we will prove that the cable hangs in a parabolic arc.



Article 5/8 Flexible Cables

w = Load per unit of horizontal length

(@) (®)

FIGURE 5/27

We start with a cable suspended from two points A and B which are not on the
same horizontal line, Fig. 5/27a. We place the coordinate origin at the lowest point
of the cable, where the tension is horizontal and is T. Integration of Eq. 5/13 once
with respect to x gives

dy wx
>~ _= .
dx TO +

where C is a constant of integration. For the coordinate axes chosen, dy/dx = 0

when x = 0, so that C = 0. Thus,

dy wx

dx T,

which defines the slope of the curve as a function of x. One further integration
yields

Y T wx wx?
dy = f wx o _ wx 5/14
fo y 0 TO X or y 2T0 ( )

Alternatively, you should be able to obtain the identical results with the indefi-
nite integral together with the evaluation of the constant of integration. Equation
5/14 gives the shape of the cable, which we see is a vertical parabola. The constant
horizontal component of cable tension becomes the cable tension at the origin.

Inserting the corresponding values x =4 and y = h, in Eq. 5/14 gives

wlA2

T:
7 o,

so that y = h(x/ly)?

The tension T is found from a free-body diagram of a finite portion of the cable,
shown in Fig. 5/27b. From the Pythagorean theorem

T =Ty + w’x*
Elimination of T, gives

T = wyx* + (1,%/2hy)* (5/15)

The maximum tension occurs where x = [, and is

Trax = Wia V1 + (14/2h4)* (5/15a)
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We obtain the length s, of the cable from the origin to point A by integrating
the expression for a differential length ds = 1/(dx)? + (dy)?. Thus,

Sa N la
J ds=f 1+ (dy/dx)zdx=f V1 + (wx/Ty)? dx
0 0 0

Although we can integrate this expression in closed form, for computational pur-
poses it is more convenient to express the radical as a convergent series and then
integrate it term by term. For this purpose we use the binomial expansion

nn-1) , nh-1n-2) ,
or 7 3l e

A+x)"=1+nx+

which converges for x> < 1. Replacing x in the series by (wx/T,)* and setting n = %
give the expression
la 2,2 4,4
wx®  wx
Sa= 1+ - +--0 )dx
4 fo ( 27,2 8T, >

_ 2 (hy)? 2<}‘A>4
‘ZA[”s(zA) K ] (5/16)

This series is convergent for values of h, /I, < %, which holds for most practical cases.

The relationships which apply to the cable section from the origin to point B can
be easily obtained by replacing h,, I4, and s, by hg, I, and sg, respectively.

For a suspension bridge where the supporting towers are on the same horizon-
tal line, Fig. 5/28, the total span is L = 2l,, the sag is & = hy4, and the total length
of the cable is S = 2s4. With these substitutions, the maximum tension and the total
length become

Toax = % V1 + (L/4h)* (5/15b)

8 (h\%2 32 (h\*
S=L[1+3<L> _5<L> +] (5/16(1)

This series converges for all values of h/L < i In most cases & is much smaller
than L/4, so that the three terms of Eq. 5/16a give a sufficiently accurate
approximation.

Catenary Cable

Consider now a uniform cable, Fig. 5/29¢a, suspended from two points A and B and
hanging under the action of its own weight only. We will show in this limiting case
that the cable assumes a curved shape known as a catenary.

B

~

FIGURE 5/28
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(@) ®)

FIGURE 5/29

The free-body diagram of a finite portion of the cable of length s measured from
the origin is shown in part b of the figure. This free-body diagram differs from the
one in Fig. 5/27b in that the total vertical force supported is equal to the weight of
the cable section of length s rather than the load distributed uniformly with respect
to the horizontal. If the cable has a weight u per unit of its length, the resultant R
of the load is R = us, and the incremental vertical load w dx of Fig. 5/26¢ is re-
placed by u ds. With this replacement the differential relation, Eq. 5/13, for the
cable becomes

A e (5/17)

Because s = f(x, y), we must change this equation to one containing only the two
variables.
We may substitute the identity (ds)? = (dx)* + (dy)* to obtain

d’y u dy>2
o= VT < I (5/18)

Equation 5/18 is the differential equation of the curve (catenary) formed by the
cable. This equation is easier to solve if we substitute p = dy/dx to obtain

dp )2

Viep T

Integrating this equation gives us

dx

1n(p+\/1+p2)=Tﬁx+c
0

The constant C is zero because dy/dx = p = 0 when x = 0. Substituting p = dy/dx,
changing to exponential form, and clearing the equation of the radical give

di:y B el/Lx/To _ e—llx/To _ sinh &
dx - 2 - TO
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In addition to the distributed weight
of the cable, these tramway cars exert
concentrated loads on the suspending

cable.

where the hyperbolic function* is introduced for convenience. The slope may be
integrated to obtain

T X
y=—cosh—+K
K Ty
The integration constant K is evaluated from the boundary condition x = 0 when
y = 0. This substitution requires that K = —T/u, and hence,

w (o)
=—|(cosh -1 (6/19)
Y M T,

Equation 5/19 is the equation of the curve (catenary) formed by the cable hanging
under the action of its weight only.

From the free-body diagram in Fig. 5/29b we see that dy/dx = tan 6 = us/T.
Thus, from the previous expression for the slope,

T

s=—"sinh &~ (5/20)
K T,

We obtain the tension 7 in the cable from the equilibrium triangle of the forces in

Fig. 5/29b. Thus,

TZ — #232 + TOZ

which, when combined with Eq. 5/20, becomes

g MX px
T? = T,? <1 + sinh? T@) = T,? cosh? Fo

or

T = T, cosh = (5/21)
T,

We may also express the tension in terms of y with the aid of Eq. 5/19,
which, when substituted into Eq. 5/21, gives

T=Ty + uy (5/22)

Equation 5/22 shows that the change in cable tension from that at the
lowest position depends only on uy.

Most problems dealing with the catenary involve solutions of Egs.
5/19 through 5/22, which can be handled by a graphical approximation
or solved by computer. The procedure for a graphical or computer solu-
tion is illustrated in Sample Problem 5/17 following this article.

The solution of catenary problems where the sag-to-span ratio is
small may be approximated by the relations developed for the parabolic
cable. A small sag-to-span ratio means a tight cable, and the uniform
distribution of weight along the cable is not very different from the same
load intensity distributed uniformly along the horizontal.

Many problems dealing with both the catenary and parabolic cables involve
suspension points which are not on the same level. In such cases we may apply the
relations just developed to the part of the cable on each side of the lowest point.

*See Arts. C/8 and C/10, Appendix C, for the definition and integral of hyperbolic functions.
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SAMPLE PROBLEM 5/16
A 100-ft length of surveyor’s tape weighs 0.6 1b. When the tape is stretched T T
between two points on the same level by a tension of 10 1b at each end, —-<— f —_
calculate the sag & in the middle. A 5 B

Solution The weight per unit length is u = 0.6/100 = 0.006 1b/ft. The
total length is 2s = 100 or s = 50 ft.

T2 =122 + T&  10% = (0.006)%(50)% + T2

T, =9.9951b @

10 = 9.995 + 0.006A
h=0.750ft or 9.00in.

(T =Ty + wyl
Ans.

HELPFUL HINT

® An extra significant figure is displayed
here for clarity.

SAMPLE PROBLEM 5/17

The light cable supports a mass of 12 kg per meter of horizontal length
and is suspended between the two points on the same level 300 m apart.
If the sag is 60 m, find the tension at midlength, the maximum tension,
and the total length of the cable.

300 m |

60 m

Solution With a uniform horizontal distribution of load, the solution
of part (b) of Art. 5/8 applies, and we have a parabolic shape for the ca-
ble. For 4 = 60 m, L = 300 m, and w = 12(9.81)(10~%) kN/m, the relation
following Eq. 5/14 with [, = L/2 gives for the midlength tension

_0.1177(300)*

=" gg0) = 221N

2
wL ] Ans.

[T‘):@

The maximum tension occurs at the supports and is given by Eq. 5/15b.

Thus,
L 2
1+ <E> ]

12(9.81)(1072)(300)
2

wL
[Tmax = 7

Tmax =

1+(300

2
4(60)> =28.3kN @ Ans

The sag-to-span ratio is 60/300 = 1/5 < 1/4. Therefore, the series
expression developed in Eq. 5/16a is convergent, and we may write for

the total length
L) R ()
3\5 5 \5

=300[1 + 0.1067 — 0.01024 + - - -]
=329 m

S =300

Ans.

12 kg/m

R = 12(150)(9.81)(1073)
=17.66 kN

HELPFUL HINT

® Suggestion: Check the value of T',,, di-
rectly from the free-body diagram of the
right-hand half of the cable, from which
a force polygon may be drawn.
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SAMPLE PROBLEM 5/18

Replace the cable of Sample Problem 5/17, which is loaded uniformly
along the horizontal, by a cable which has a mass of 12 kg per meter of
its own length and supports its own weight only. The cable is suspended
between two points on the same level 300 m apart and has a sag of
60 m. Find the tension at midlength, the maximum tension, and the
total length of the cable.

Solution With a load distributed uniformly along the length of
the cable, the solution of part (c¢) of Art. 5/8 applies, and we have
a catenary shape of the cable. Equations 5/20 and 5/21 for the
cable length and tension both involve the minimum tension 7T, at mid-
length, which must be found from Eq. 5/19. Thus, for x = 150 m,
y=60m,and u = 12(9.81)(1073) = 0.1177 kN/m, we have

Ty (0.1177)(150)
= h -1
60 = 01177 | ©° T,
o 706 1766
T, T,

This equation can be solved graphically. We compute the expression
on each side of the equals sign and plot it as a function of T|. The
intersection of the two curves establishes the equality and determines
the correct value of T',. This plot is shown in the figure accompanying this
problem and yields the solution

Ty =23.2kN
Alternatively, we may write the equation as

17.66 7.06

f(Ty) = cosh

and set up a computer program to calculate the value(s) of Ty which
renders f(T,) = 0. See Art. C/11 of Appendix C for an explanation of one
applicable numerical method.

The maximum tension occurs for maximum y and from Eq. 5/22 is

T = 23.2 + (0.1177)(60) = 30.2 kN Ans.
From Eq. 5/20 the total length of the cable becomes
23.2 (0.1177)(150)
2s =2 01177 Sin 93.9 =330m @ Ans.

HELPFUL HINT

® Note that the solution of Sample Problem 5/17 for the parabolic
cable gives a very close approximation to the values for the catenary
even though we have a fairly large sag. The approximation is even
better for smaller sag-to-span ratios.

0.33

0.32

Solution
T,= 2)3.2 kN

SN

S

0.30 \
17.66 )\\
0.29 7(0%11 - 1) \
0.28 ‘
225 23.0 23.5

Ty,

24.0
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s/ | Fluid Statics

So far in this chapter we have treated the action of forces on and between solid
bodies. In this article we consider the equilibrium of bodies subjected to forces due
to fluid pressures. A fluid is any continuous substance which, when at rest, is un-
able to support shear force. A shear force is one tangent to the surface on which it
acts and is developed when differential velocities exist between adjacent layers of
fluids. Thus, a fluid at rest can exert only normal forces on a bounding surface.
Fluids may be either gaseous or liquid. The statics of fluids is generally called
hydrostatics when the fluid is a liquid and aerostatics when the fluid is a gas.

Fluid Pressure

The pressure at any given point in a fluid is the same in all directions
(Pascal’s law). We may prove this by considering the equilibrium of an
infinitesimal triangular prism of fluid as shown in Fig. 5/30. The fluid
pressures normal to the faces of the element are py, ps, p3, and p, as

forces in the x- and y-directions gives

shown. With force equal to pressure times area, the equilibrium of p 2 s ds dz
prdyds . /

p1dy dz =psds dz sin 6 podx dz = psds dz cos 6 dy e
. . . . 6 ——_
Since ds sin 6 = dy and ds cos 6 = dx, these equations require that / ,f\ x
dx dy dx |
P1=P2=p3=p Pay podx dz

By rotating the element through 90°, we see that p, is also equal to the

other pressures. Thus, the pressure at any point in a fluid at rest is

the same in all directions. In this analysis we need not account for the

weight of the fluid element because, when the weight per unit volume |
(density p times g) is multiplied by the volume of the element, a dif- |
ferential quantity of third order results which disappears in the limit !
compared with the second-order pressure-force terms.

In all fluids at rest, the pressure is a function of the vertical di- ogdAdh —
mension. To determine this function, we consider the forces acting on |
a differential element of a vertical column of fluid of cross-sectional
area dA, as shown in Fig. 5/31. The positive direction of vertical mea-
surement A is taken downward. The pressure on the upper face is p,

(p + dp)dA

and that on the lower face is p plus the change in p, or p + dp. The

weight of the element equals pg multiplied by its volume. The normal

forces on the lateral surface, which are horizontal and do not affect the balance of
forces in the vertical direction, are not shown. Equilibrium of the fluid element in
the h-direction requires

pdA+pgdAdh - (p+dp)dA=0
dp = pg dh (5/23)

This differential relation shows us that the pressure in a fluid increases with depth
or decreases with increased elevation. Equation 5/23 holds for both liquids and
gases, and agrees with our common observations of air and water pressures.



144 CHAPTER 5 Distributed Forces

Fluids which are essentially incompressible are called liquids, and for most prac-
tical purposes we may consider their density p constant for every part of the liquid.*
With p a constant, integration of Eq. 5/23 gives

P =po+ pgh (5/24)

The pressure p, is the pressure on the surface of the liquid where & = 0. If p, is due
to atmospheric pressure and the measuring instrument records only the incre-
ment above atmospheric pressure,’ the measurement gives what is called gage pres-
sure. It is computed from p = pgh.

The common unit for pressure in SI units is the kilopascal (kPa), which is the
same as a kilonewton per square meter (10° N/m?). In computing pressure, if we use
Mg/m? for p, m/s? for g, and m for 4, then the product pgh gives us pressure in kPa
directly. For example, the pressure at a depth of 10 m in fresh water is

M kg-m 1
p = pgh = <1.o f) <9.81 Iﬁ)(m m) = 98.1 (103 s 2)
m S S m

= 98.1 kN/m? = 98.1 kPa

In the U.S. customary system, fluid pressure is generally expressed in pounds
per square inch (Ib/in.?) or occasionally in pounds per square foot (Ib/ft?). Thus, at a
depth of 10 ft in fresh water the pressure is

b/ 1 £ . L
p=pgh = (62.4 ft3> <1728 in.3> (120 in.) = 4.33 1b/in.

Hydrostatic Pressure on Submerged Rectangular Surfaces

A body submerged in a liquid, such as a gate valve in a dam or the wall of a tank,
is subjected to fluid pressure acting normal to its surface and distributed over its
area. In problems where fluid forces are appreciable, we must determine the resul-
tant force due to the distribution of pressure on the surface and the position at
which this resultant acts. For systems open to the atmosphere, the atmospheric
pressure p, acts over all surfaces and thus yields a zero resultant. In such cases,
then, we need to consider only the gage pressure p = pgh, which is the increment
above atmospheric pressure.

Consider the special but common case of the action of hydrostatic pressure on
the surface of a rectangular plate submerged in a liquid. Figure 5/32a shows such
a plate 1-2-3-4 with its top edge horizontal and with the plane of the plate making
an arbitrary angle 6 with the vertical plane. The horizontal surface of the liquid is
represented by the x-y’ plane. The fluid pressure (gage) acting normal to the plate
at point 2 is represented by the arrow 6-2 and equals pg times the vertical distance
from the liquid surface to point 2. This same pressure acts at all points along the
edge 2-3. At point 1 on the lower edge, the fluid pressure equals pg times the depth
of point 1, and this pressure is the same at all points along edge 1-4. The variation
of pressure p over the area of the plate is governed by the linear depth relationship
and therefore it is represented by the arrow p, shown in Fig. 5/32b, which varies
linearly from the value 6-2 to the value 5-1. The resultant force produced by this
pressure distribution is represented by R, which acts at some point P called the
center of pressure.

*See Table D/1, Appendix D, for table of densities.
TAtmospheric pressure at sea level may be taken to be 101.3 kPa or 14.7 Ib/in.?
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FIGURE 5/32

The conditions which prevail at the vertical section 1-2-6-5 in Fig. 5/32a are identi-
cal to those at section 4-3-7-8 and at every other vertical section normal to the plate.
Thus, we may analyze the problem from the two-dimensional view of a vertical sec-
tion as shown in Fig. 5/32b for section 1-2-6-5. For this section the pressure distribu-
tion is trapezoidal. If b is the horizontal width of the plate measured normal to the
plane of the figure (dimension 2-3 in Fig. 5/32a), an element of plate area over which
the pressure p = pgh acts is dA = b dy, and an increment of the resultant force is dR =
p dA = bp dy. But p dy is merely the shaded increment of trapezoidal area dA’, so
that dR = b dA’. We may therefore express the resultant force acting on the entire
plate as the trapezoidal area 1-2-6-5 times the width b of the plate,

szfdA’:bA’

Be careful not to confuse the physical area A of the plate with the geometrical area
A’ defined by the trapezoidal distribution of pressure.

The trapezoidal area representing the pressure distribution is easily expressed
by using its average altitude. The resultant force R may therefore be written in
terms of the average pressure p,, = %( p1 + po) times the plate area A. The average
pressure is also the pressure which exists at the average depth, measured to the
centroid O of the plate. An alternative expression for R is therefore

R =p.A=pghA

where & = y cos 6.

Article 5/9 Fluid Statics
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(@)

®)

(c)

FIGURE 5/33

We obtain the line of action of the resultant force R from the prin-
ciple of moments. Using the x-axis (point B in Fig. 5/32b) as the mo-
ment axis yields RY = [ y(pb dy). Substituting p dy = dA’ and R = bA’
and canceling b give

which is simply the expression for the centroidal coordinate of the trap-
ezoidal area A’. In the two-dimensional view, therefore, the resultant R
passes through the centroid C of the trapezoidal area defined by the
pressure distribution in the vertical section. Clearly Y also locates the
centroid C of the truncated prism 1-2-3-4-5-6-7-8 in Fig. 5/32a through
which the resultant passes.

For a trapezoidal distribution of pressure, we may simplify the
calculation by dividing the trapezoid into a rectangle and a triangle,
Fig. 5/32¢, and separately considering the force represented by each
part. The force represented by the rectangular portion acts at the cen-
ter O of the plate and is Ry = p,A, where A is the area 1-2-3-4 of the
plate. The force R, represented by the triangular increment of pres-
sure distribution is %( p1— P2)A and acts through the centroid of the
triangular portion shown.

Hydrostatic Pressure on Cylindrical Surfaces

The determination of the resultant R due to distributed pressure on a
submerged curved surface involves more calculation than for a flat sur-
face. For example, consider the submerged cylindrical surface shown in
Fig. 5/33a where the elements of the curved surface are parallel to the
horizontal surface x-y’ of the liquid. Vertical sections perpendicular to
the surface all disclose the same curve AB and the same pressure distri-
bution. Thus, the two-dimensional representation in Fig. 5/33b may
be used. To find R by a direct integration, we need to integrate the x-
and y-components of dR along the curve AB, since dR continuously
changes direction. Thus,

Rx=bf(de)x=bfpdy and Ry=bf(de)y=bfpdx

A moment equation would now be required if we wished to establish the position

of R.

A second method for finding R is usually much simpler. Consider the equilib-
rium of the block of liquid ABC directly above the surface, shown in Fig. 5/33c.
The resultant R then appears as the equal and opposite reaction of the surface on
the block of liquid. The resultants of the pressures along AC and CB are P, and
P,, respectively, and are easily obtained. The weight W of the liquid block is cal-
culated from the area ABC of its section multiplied by the constant dimension &
and by pg. The weight W passes through the centroid of area ABC. The equili-
brant R is then determined completely from the equilibrium equations which we
apply to the free-body diagram of the fluid block.



Hydrostatic Pressure on Flat Surfaces of Any Shape

Figure 5/34a shows a flat plate of any shape submerged in a liquid. The horizontal
surface of the liquid is the plane x-y’, and the plane of the plate makes an angle 6 with
the vertical. The force acting on a differential strip of area dA parallel to the surface
of the liquid is dR = p dA = pgh dA. The pressure p has the same magnitude through-
out the length of the strip, because there is no change of depth along the strip. We
obtain the total force acting on the exposed area A by integration, which gives

R=de=fpdA=pgfhdA

Substituting the centroidal relation hA = [ h dA gives us

R =pghA (5/25)

The quantity pgh is the pressure which exists at the depth of the centroid O of the
area and is the average pressure over the area.

We may also represent the resultant R geometrically by the volume V’ of the
figure shown in Fig. 5/34b. Here the fluid pressure p is represented as a dimension
normal to the plate regarded as a base. We see that the resulting volume is a trun-
cated right cylinder. The force dR acting on the differential area dA = x dy is repre-
sented by the elemental volume p dA shown by the shaded slice, and the total force
is represented by the total volume of the cylinder. We see from Eq. 5/25 that the aver-
age altitude of the truncated cylinder is the average pressure pgh which exists at a
depth corresponding to the centroid O of the area exposed to pressure.

For problems where the centroid O or the volume V’ is not readily apparent, a
direct integration may be performed to obtain R. Thus,

R=de=fpdA=fpghxdy

where the depth ~ and the length x of the horizontal strip of differential area must
be expressed in terms of y to carry out the integration.

(@) (b)
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The Diablo Dam supplies electrical
power to Seattle, Washington.

The designers of high-performance
sailboats must consider both air-
pressure distributions on the sails
and water-pressure distributions on
the hull.

After the resultant is obtained, we must determine its location.
Using the principle of moments with the x-axis of Fig. 5/34b as the
moment axis, we obtain

fy(px dy)

(5/26)
f pxdy

RY:fydR or Y =

This second relation satisfies the definition of the coordinate Y to the
centroid of the volume V' of the pressure-area truncated cylinder. We
conclude, therefore, that the resultant R passes through the centroid C
of the volume described by the plate area as base and the linearly vary-
ing pressure as the perpendicular coordinate. The point P at which R is
applied to the plate is the center of pressure. Note that the center of
pressure P and the centroid O of the plate area are not the same.

Buoyancy

Archimedes is credited with discovering the principle of buoyancy. This
principle is easily explained for any fluid, gaseous or liquid, in equilib-
rium. Consider a portion of the fluid defined by an imaginary closed
surface, as illustrated by the irregular dashed boundary in Fig. 5/35a.
If the body of the fluid could be sucked out from within the closed cavity
and replaced simultaneously by the forces which it exerted on the
boundary of the cavity, Fig. 5/35b, the equilibrium of the surrounding
fluid would not be disturbed. Furthermore, a free-body diagram of the
fluid portion before removal, Fig. 5/35¢, shows that the resultant of the
pressure forces distributed over its surface must be equal and opposite
to its weight mg and must pass through the center of mass of the fluid
element. If we replace the fluid element by a body of the same dimen-
sions, the surface forces acting on the body held in this position will be
identical to those acting on the fluid element. Thus, the resultant force
exerted on the surface of an object immersed in a fluid is equal and
opposite to the weight of fluid displaced and passes through the center
of mass of the displaced fluid. This resultant force is called the force of
buoyancy

F=pgV (5/27)

where p is the density of the fluid, g is the acceleration due to gravity,
and V is the volume of the fluid displaced. In the case of a liquid whose
density is constant, the center of mass of the displaced liquid coincides
with the centroid of the displaced volume.

/// \) §\\+/é’
NI
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FIGURE 5/35
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Thus when the density of an object is less than the density of the fluid in which
it is fully immersed, there is an imbalance of force in the vertical direction, and the
object rises. When the immersing fluid is a liquid, the object continues to rise until
it comes to the surface of the liquid and then comes to rest in an equilibrium position,
assuming that the density of the new fluid above the surface is less than the density
of the object. In the case of the surface boundary between a liquid and a gas, such as
water and air, the effect of the gas pressure on that portion of the floating object
above the liquid is balanced by the added pressure in the liquid due to the action of
the gas on its surface.

An important problem involving buoyancy is the determination of the stability
of a floating object, such as a ship hull shown in cross section in an upright position
in Fig. 5/36a. Point B is the centroid of the displaced volume and is called the
center of buoyancy. The resultant of the forces exerted on the hull by the water pres-
sure is the buoyancy force F, which passes through B and is equal and opposite to
the weight W of the ship. If the ship is caused to list through an angle «, Fig. 5/36b,
the shape of the displaced volume changes, and the center of buoyancy shifts to B’.

The point of intersection of the vertical line through B’ with the centerline of
the ship is called the metacenter M, and the distance 2 of M from the center of mass
G is called the metacentric height. For most hull shapes & remains practically con-
stant for angles of list up to about 20°. When M is above G, as in Fig. 5/36b, there is
a righting moment which tends to bring the ship back to its upright position. If M is
below G, as for the hull of Fig. 5/36¢, the moment accompanying the list is in the
direction to increase the list. This is clearly a condition of instability and must be
avoided in the design of any ship.

© culture-images GmbH/Alamy

Wind-tunnel testing of this full-scale car is extremely useful
in predicting its performance.
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SAMPLE PROBLEM 5/19

A rectangular plate, shown in vertical section AB, is 4 m high and 6 m
wide (normal to the plane of the paper) and blocks the end of a fresh-water
channel 3 m deep. The plate is hinged about a horizontal axis along its
upper edge through A and is restrained from opening by the fixed ridge B
which bears horizontally against the lower edge of the plate. Find the force
B exerted on the plate by the ridge.

Solution The free-body diagram of the plate is shown in section and
includes the vertical and horizontal components of the force at A, the
unspecified weight W = mg of the plate, the unknown horizontal force
B, and the resultant R of the triangular distribution of pressure against
the vertical face.

The density of fresh water is p = 1.000 Mg/m? so that the average
pressure is

Doy = pgh) Pay = 1.000(9.81)(3) = 14.72kPa ®
The resultant R of the pressure forces against the plate becomes
[R = p.,Al R = (14.72)(3)(6) = 265 kN

This force acts through the centroid of the triangular distribution of
pressure, which is 1 m above the bottom of the plate. A zero moment
summation about A establishes the unknown force B. Thus,

[ZM, = 0] 3(265) - 4B =0 B =198.7TkN Ans.

HELPFUL HINT
® Note that the units of pressure pgh are

kg\ /m . kg'm 1
() (5

= kN/m? = kPa.

SAMPLE PROBLEM 5/20

The air space in the closed fresh-water tank is maintained at a pres-
sure of 0.80 Ib/in.? (above atmospheric). Determine the resultant force
R exerted by the air and water on the end of the tank.

Solution The pressure distribution on the end surface is shown,
where p, = 0.80 Ib/in.? The specific weight of fresh water is u = pg =
62.4/1728 = 0.0361 1b/in.? so that the increment of pressure Ap due to
the water is

Ap = u Ah = 0.0361(30) = 1.083 Ib/in.2

The resultant forces R; and R, due to the rectangular and triangular
distributions of pressure, respectively, are @

R, =poA, = 0.80(38)(25) = 760 Ib

1.
Ry = Ap, Ay = % (30)(25) = 406 1b

The resultant is then R = R; + Ry, = 760 + 406 = 1166 lb. Ans.

We locate R by applying the moment principle about A noting that
R; acts through the center of the 38-in. depth and that R, acts through
the centroid of the triangular pressure distribution 20 in. below the
surface of the water and 20 + 8 = 28 in. below A. Thus,

[Rh = ZM,] 1166A = 760(19) + 406(28) h =22.1in. Ans.

=2 al oo

Air 8”
Water 30”
Side view B End view

HELPFUL HINT

@ Dividing the pressure distribution into
these two parts is decidedly the simplest
way in which to make the calculation.
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SAMPLE PROBLEM 5/21

Determine completely the resultant force R exerted on the cylindrical
dam surface by the water. The density of fresh water is 1.000 Mg/m?,
and the dam has a length b, normal to the paper, of 30 m.

Solution The circular block of water BDO is isolated and its free-
body diagram is drawn. The force P, is

par, _ (1LO0D)O.81)(4)

P, =pghA = 5 br 5 (30)(4) =2350 kN @

The weight W of the water passes through the mass center G of the
quarter-circular section and is

2
mg = pgV = (1.000)(9.81) % (30) = 3700 kN

Equilibrium of the section of water requires
[ZF, = 0] R, =P, =2350 kN
[ZF, = 0] R, = mg = 3700 kN

The resultant force R exerted by the fluid on the dam is equal and
opposite to that shown acting on the fluid and is

[R=+vR>+RA R = 1/(2350)% + (3700)* = 4380 kN Ans.

The x-coordinate of the point A through which R passes may be found
from the principle of moments. Using B as a moment center gives

4 16
2350 — 3700 —
<3> " <3n>

r 4r
Px*+mg37r—Ryx—0, x = 3700 =2.55m Ans.

Alternative Solution The force acting on the dam surface may be
obtained by a direct integration of the components @

dR,=p dA cos 6 and dR,=p dAsin 6
where p = pgh = pgr sin 6 and dA = b(r d6). Thus,

/2 /2
26
R, = f pgr?b sin 0 cos 6 d6 = —pgr’b [%] = %Pgrzb
0 0
/2 . /2
6 26
R, = f pgr’b sin? 0 d6 = pgr’b [5 - %] = %ﬂpgrzb
0 0

Thus, R = VR,2+R,? = %pgrzb\/ 1+ 7%/4 . Substituting the numerical

values gives

R = 5(1.000)(9.81)(4*)(30)y/1 + 774 = 4380 kN Ans.

Since dR always passes through point O, we see that R also passes
through O and, therefore, the moments of R, and R, about O must
cancel. So we write R,y; = R,x;, which gives us

x1/y1 = Bo/R, = (3p8r°b)/(ympgr®) = Yn
By similar triangles we see that

xfr =x/y1 =2/ and x =2rfr = 2(4)/r =2.55 m Ans.

B

HELPFUL HINTS

® See note @ in Sample Problem 5/19 if
there is any question about the units for
pgh.

@ This approach by integration is feasi-
ble here mainly because of the simple
geometry of the circular arc.
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SAMPLE PROBLEM 5/22

Determine the resultant force R exerted on the semicircular end of the
water tank shown in the figure if the tank is filled to capacity. Express
the result in terms of the radius r and the water density p.

Solution I We will obtain R first by a direct integration. With a hori-
zontal strip of area dA = 2x dy acted on by the pressure p = pgy, the
increment of the resultant force is dR = p dA so that

R=fpdA=fpgy(2xdy)=2ng yVr¥—y*dy

Integrating gives R= %pgr3 Ans.

The location of R is determined by using the principle of moments.
Taking moments about the x-axis gives

[RY = fy dR] %pgr3l7: 2,ogf y2\rt —y2dy
0
4
R 2 35 PST T - Sar
Integrating gives sp8rY = 1 2 and Y= 16 Ans.

Solution II 'We may use Eq. 5/25 directly to find R, where the aver-
age pressure is pgh and % is the coordinate to the centroid of the area
over which the pressure acts. For a semicircular area, h = 4r/(37).

_ 4 2
[R = pghAl R=pg LT _ 2,43 Ans.
3T 2 3

which is the volume of the pressure-area figure.
The resultant R acts through the centroid C of the volume defined

by the pressure-area figure. @ Calculation of the centroidal distance
Y involves the same integral obtained in Solution I.

HELPFUL HINT

® Be very careful not to make the mis-
take of assuming that R passes through
the centroid of the area over which the
pressure acts.

SAMPLE PROBLEM 5/23

A buoy in the form of a uniform 8-m pole 0.2 m in diameter has a mass
of 200 kg and is secured at its lower end to the bottom of a fresh-water
lake with 5 m of cable. If the depth of the water is 10 m, calculate the
angle 6 made by the pole with the horizontal.

Solution The free-body diagram of the buoy shows its weight acting
through G, the vertical tension 7 in the anchor cable, and the buoyancy
force B which passes through centroid C of the submerged portion of the
buoy. Let x be the distance from G to the waterline. The density of fresh
water is p = 10 kg/m?, so that the buoyancy force is

[B =pgVl] B =10%(9.81)7(0.1)%(4 + x) N
Moment equilibrium, ZM, = 0, about A gives

4+ x
2

200(9.81)(4 cos 6) — [103(9.81)7(0.1)%(4 + x)] cos6=0

5
_ I Y I _ o
Thus, x=3.14m and 6 = sin <4 ; 3'14> =445 Ans.

10 m
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In Chapter 5 we have studied various common examples
of forces distributed throughout volumes, over areas,
and along lines. In all these problems we often need to
determine the resultant of the distributed forces and
the location of the resultant.

Finding Resultants of Distributed Forces

To find the resultant and line of action of a distributed
force:

1. Begin by multiplying the intensity of the force by
the appropriate element of volume, area, or length
in terms of which the intensity is expressed. Then
sum (integrate) the incremental forces over the re-
gion involved to obtain their resultant.

2. To locate the line of action of the resultant, use the
principle of moments. Evaluate the sum of the mo-
ments, about a convenient axis, of all of the incre-
ments of force. Equate this sum to the moment of
the resultant about the same axis. Then solve for
the unknown moment arm of the resultant.

Gravitational Forces

When force is distributed throughout a mass, as in the case
of gravitational attraction, the intensity is the force of
attraction pg per unit of volume, where p is the density
and g is the gravitational acceleration. For bodies whose
density is constant, we saw in Section A that pg cancels
when the moment principle is applied. This leaves us
with a strictly geometric problem of finding the centroid
of the figure, which coincides with the mass center of
the physical body whose boundary defines the figure.

1. For flat plates and shells which are homogeneous
and have constant thickness, the problem becomes
one of finding the properties of an area.
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2. For slender rods and wires of uniform density and
constant cross section, the problem becomes one of
finding the properties of a line segment.

Integration of Differential Relationships

For problems which require the integration of differen-
tial relationships, keep in mind the following considera-
tions.

1. Select a coordinate system which provides the sim-
plest description of the boundaries of the region of
integration.

N

Eliminate higher-order differential quantities
whenever lower-order differential quantities will
remain.

3. Choose a first-order differential element in prefer-
ence to a second-order element and a second-order
element in preference to a third-order element.

4. Whenever possible, choose a differential element
which avoids discontinuities within the region of in-
tegration.

Distributed Forces in Beams, Cables, and Fluids

In Section B we used these guidelines along with the
principles of equilibrium to solve for the effects of dis-
tributed forces in beams, cables, and fluids. Remember
that:

1. For beams and cables the force intensity is ex-
pressed as force per unit length.

2. For fluids the force intensity is expressed as force
per unit area, or pressure.

Although beams, cables, and fluids are physically quite
different applications, their problem formulations share
the common elements cited above.
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6/1 | Introduction

In the preceding chapters we have usually assumed that the forces of action and
reaction between contacting surfaces act normal to the surfaces. This assumption
characterizes the interaction between smooth surfaces and was illustrated in Ex-
ample 2 of Fig. 3/1. Although this ideal assumption often involves only a relatively
small error, there are many problems in which we must consider the ability of con-
tacting surfaces to support tangential as well as normal forces. Tangential forces
generated between contacting surfaces are called friction forces and occur to some
degree in the interaction between all real surfaces. Whenever a tendency exists for
one contacting surface to slide along another surface, the friction forces developed
are always in a direction to oppose this tendency.

In some types of machines and processes we want to minimize the retarding ef-
fect of friction forces. Examples are bearings of all types, power screws, gears, the flow
of fluids in pipes, and the propulsion of aircraft and missiles through the atmosphere.
In other situations we wish to maximize the effects of friction, as in brakes, clutches,
belt drives, and wedges. Wheeled vehicles depend on friction for both starting and
stopping, and ordinary walking depends on friction between the shoe and the ground.

Friction forces are present throughout nature and exist in all machines no

154 matter how accurately constructed or carefully lubricated. A machine or process in
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which friction is small enough to be neglected is said to be ideal. When friction
must be taken into account, the machine or process is termed real. In all cases
where there is sliding motion between parts, the friction forces result in a loss of
energy which is dissipated in the form of heat. Wear is another effect of friction.

secTioNA Frictional Phenomena

62 | Types of Friction

In this article we briefly discuss the types of frictional resistance encountered in
mechanics. The next article contains a more detailed account of the most common
type of friction, dry friction.

(a) Dry Friction. Dry friction occurs when the unlubricated surfaces of two
solids are in contact under a condition of sliding or a tendency to slide. A friction
force tangent to the surfaces of contact occurs both during the interval leading up
to impending slippage and while slippage takes place. The direction of this friction
force always opposes the motion or impending motion. This type of friction is also
called Coulomb friction. The principles of dry or Coulomb friction were developed
largely from the experiments of Coulomb in 1781 and from the work of Morin from
1831 to 1834. Although we do not yet have a comprehensive theory of dry friction,
in Art. 6/3 we describe an analytical model sufficient to handle the vast majority of
problems involving dry friction. This model forms the basis for most of this chapter.

(b) Fluid Friction. Fluid friction occurs when adjacent layers in a fluid
(liquid or gas) are moving at different velocities. This motion causes frictional forces
between fluid elements, and these forces depend on the relative velocity between
layers. When there is no relative velocity, there is no fluid friction. Fluid friction
depends not only on the velocity gradients within the fluid but also on the viscosity
of the fluid, which is a measure of its resistance to shearing action between fluid
layers. Fluid friction is treated in the study of fluid mechanics and will not be dis-
cussed further in this book.

(c) Internal Friction. Internal friction occurs in all solid materials which
are subjected to cyclical loading. For highly elastic materials the recovery from
deformation occurs with very little loss of energy due to internal friction. For ma-
terials which have low limits of elasticity and which undergo appreciable plastic
deformation during loading, a considerable amount of internal friction may accom-
pany this deformation. The mechanism of internal friction is associated with the
action of shear deformation, which is discussed in references on materials science.
Because this book deals primarily with the external effects of forces, we will not
discuss internal friction further.

63 | Dry Friction

The remainder of this chapter describes the effects of dry friction acting on the
exterior surfaces of rigid bodies. We will now explain the mechanism of dry friction
with the aid of a very simple experiment.
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Mechanism of Dry Friction

Consider a solid block of mass m resting on a horizontal surface, as shown in
Fig. 6/1a. We assume that the contacting surfaces have some roughness. The
experiment involves the application of a horizontal force P which continuously in-
creases from zero to a value sufficient to move the block and give it an appreciable
velocity. The free-body diagram of the block for any value of P is shown in Fig. 6/1b,
where the tangential friction force exerted by the plane on the block is labeled F.
This friction force acting on the body will always be in a direction to oppose motion
or the tendency toward motion of the body. There is also a normal force N which in
this case equals mg, and the total force R exerted by the supporting surface on the
block is the resultant of V and F.

A magnified view of the irregularities of the mating surfaces, Fig. 6/1c, helps
us to visualize the mechanical action of friction. Support is necessarily intermittent
and exists at the mating humps. The direction of each of the reactions on the block,
Ri, Ry, R;, etc., depends not only on the geometric profile of the irregularities but
also on the extent of local deformation at each contact point. The total normal force
N is the sum of the n-components of the R’s, and the total frictional force F' is the
sum of the ¢-components of the R’s. When the surfaces are in relative motion,
the contacts are more nearly along the tops of the humps, and the z-components of
the R’s are smaller than when the surfaces are at rest relative to one another. This
observation helps to explain the well-known fact that the force P necessary to
maintain motion is generally less than that required to start the block when the
irregularities are more nearly in mesh.

If we perform the experiment and record the friction force F' as a function of P,
we obtain the relation shown in Fig. 6/1d. When P is zero, equilibrium requires
that there be no friction force. As P is increased, the friction force must be equal
and opposite to P as long as the block does not slip. During this period the block is

mg
m P Y P
F
I
(a) a\\ ‘
NL_NR
b)
Impending
motion
\
Static Kinetic
F friction | friction
(no motion) | (motion)
n \
‘ Finax = #s N Fr=mN
\ \ —
—= +—t ‘ 7
| | | ! }
I\ \ ‘
Ry R, Ry P
(c) (d)

FIGURE 6/1



in equilibrium, and all forces acting on the block must satisfy the equilibrium equa-
tions. Finally, we reach a value of P which causes the block to slip and to move in
the direction of the applied force. At this same time the friction force decreases
slightly and abruptly. It then remains essentially constant for a time but then
decreases still more as the velocity increases.

Static Friction

The region in Fig. 6/1d up to the point of slippage or impending motion is called
the range of static friction, and in this range the value of the friction force is deter-
mined by the equations of equilibrium. This friction force may have any value from
zero up to and including the maximum value. For a given pair of mating surfaces
the experiment shows that this maximum value of static friction F,, is propor-
tional to the normal force N. Thus, we may write

Fmax = /’tsN (6/1)

where u, is the proportionality constant, called the coefficient of static friction.

Be aware that Eq. 6/1 describes only the limiting or maximum value of the
static friction force and not any lesser value. Thus, the equation applies only to
cases where motion is impending with the friction force at its peak value. For a
condition of static equilibrium when motion is not impending, the static friction
force is

F < uN

Kinetic Friction

After slippage occurs, a condition of kinetic friction accompanies the ensuing mo-
tion. Kinetic friction force is usually somewhat less than the maximum static fric-
tion force. The kinetic friction force F, is also proportional to the normal force.
Thus,

where w,, is the coefficient of kinetic friction. It follows that u, is generally less than
Us. As the velocity of the block increases, the kinetic friction decreases somewhat,
and at high velocities, this decrease may be significant. Coefficients of friction
depend greatly on the exact condition of the surfaces, as well as on the relative
velocity, and are subject to considerable uncertainty.

Because of the variability of the conditions governing the action of friction, in
engineering practice it is frequently difficult to distinguish between a static and a
kinetic coefficient, especially in the region of transition between impending motion
and motion. Well-greased screw threads under mild loads, for example, often exhibit
comparable frictional resistance whether they are on the verge of turning or
whether they are in motion.

In the engineering literature we frequently find expressions for maximum
static friction and for kinetic friction written simply as F = uN. It is understood
from the problem at hand whether maximum static friction or kinetic friction is
described. Although we will frequently distinguish between the static and kinetic
coefficients, in other cases no distinction will be made, and the friction coefficient
will be written simply as u. In those cases you must decide which of the friction
conditions, maximum static friction for impending motion or kinetic friction, is
involved. We emphasize again that many problems involve a static friction force

Article 6/3 Dry Friction
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This tree surgeon depends on the
friction between the rope and the
mechanical devices through which
the rope can slip.

which is less than the maximum value at impending motion, and there-
fore under these conditions the friction relation Eq. 6/1 cannot be used.

Figure 6/1c shows that rough surfaces are more likely to have
larger angles between the reactions and the n-direction than are
smoother surfaces. Thus, for a pair of mating surfaces, a friction coeffi-
cient reflects the roughness, which is a geometric property of the
surfaces. With this geometric model of friction, we describe mating sur-
faces as “smooth” when the friction forces they can support are
negligibly small. It is meaningless to speak of a coefficient of friction for
a single surface.

Friction Angles

The direction of the resultant R in Fig. 6/1b6 measured from the direc-
tion of NV is specified by tan a = F/N. When the friction force reaches its
limiting static value F,,,, the angle a reaches a maximum value ¢,.
Thus,

tan ¢ =

When slippage is occurring, the angle « has a value ¢, corresponding to
the kinetic friction force. In like manner,

tan ¢, =

In practice we often see the expression tan ¢ = y, in which the coefficient of

friction may refer to either the static or the kinetic case, depending on the particu-
lar problem. The angle ¢, is called the angle of static friction, and the angle ¢, is
called the angle of kinetic friction. The friction angle for each case clearly defines
the limiting direction of the total reaction R between two contacting surfaces. If
motion is impending, R must be one element of a right-circular cone of vertex angle
2¢,, as shown in Fig. 6/2. If motion is not impending, R is within the cone. This cone
of vertex angle 2¢, is called the cone of static friction and represents the locus of
possible directions for the reaction R at impending motion. If motion occurs, the
angle of kinetic friction applies, and the reaction must lie on the surface of a slight-
ly different cone of vertex angle 2¢,. This cone is the cone of kinetic friction.

Cone of
static friction

Cone of
kinetic friction

FIGURE 6/2

Factors Affecting Friction

Further experiment shows that the friction force is essentially independent of the
apparent or projected area of contact. The true contact area is much smaller than



the projected value, since only the peaks of the contacting surface irregularities
support the load. Even relatively small normal loads result in high stresses at
these contact points. As the normal force increases, the true contact area also in-
creases as the material undergoes yielding, crushing, or tearing at the points of
contact.

A comprehensive theory of dry friction must go beyond the mechanical expla-
nation presented here. For example, there is evidence that molecular attraction
may be an important cause of friction under conditions where the mating surfaces
are in very close contact. Other factors which influence dry friction are the genera-
tion of high local temperatures and adhesion at contact points, relative hardness of
mating surfaces, and the presence of thin surface films of oxide, oil, dirt, or other
substances.

Some typical values of coefficients of friction are given in Table D/1, Appendix D.
These values are only approximate and are subject to considerable variation,
depending on the exact conditions prevailing. They may be used, however, as typi-
cal examples of the magnitudes of frictional effects. To make a reliable calculation
involving friction, the appropriate friction coefficient should be determined by
experiments which duplicate the surface conditions of the application as closely
as possible.
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Key Concepts Types of Friction Problems

We can now recognize the following three types of prob-
lems encountered in applications involving dry friction.
The first step in solving a friction problem is to identify
its type.

1. In the first type of problem, the condition of
impending motion is known to exist. Here a body
which is in equilibrium is on the verge of slipping,
and the friction force equals the limiting static fric-
tion Fp,, = uN. The equations of equilibrium will,
of course, also hold.

2. In the second type of problem, neither the condition
of impending motion nor the condition of motion is
known to exist. To determine the actual friction con-
ditions, we first assume static equilibrium and then
solve for the friction force F' necessary for equilib-
rium. Three outcomes are possible:

(@) F < (Fpa = uN): Here the friction force nec-
essary for equilibrium can be supported, and
therefore the body is in static equilibrium as

assumed. We emphasize that the actual fric-
tion force F'is less than the limiting value F .
given by Eq. 6/1 and that F is determined
solely by the equations of equilibrium.

(b) F = (Fpay = uN): Since the friction force F'is at
its maximum value F,,,,, motion impends, as
discussed in problem type (1). The assumption
of static equilibrium is valid.

(¢) F > (Fpa = usN): Clearly this condition is
impossible, because the surfaces cannot support
more force than the maximum u/N. The as-
sumption of equilibrium is therefore invalid,
and motion occurs. The friction force F is equal
to w,N from Eq. 6/2.

. In the third type of problem, relative motion is

known to exist between the contacting surfaces,
and thus the kinetic coefficient of friction clearly
applies. For this problem type, Eq. 6/2 always gives
the kinetic friction force directly.

The foregoing discussion applies to all dry contacting surfaces and, to a limited

extent, to moving surfaces which are partially lubricated.
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SAMPLE PROBLEM 6/1

Determine the maximum angle 6 which the adjustable incline may
have with the horizontal before the block of mass m begins to slip. The
coefficient of static friction between the block and the inclined surface

is .

Solution The free-body diagram of the block shows its weight
W = mg, the normal force N, and the friction force F exerted by the
incline on the block. The friction force acts in the direction to oppose the
slipping which would occur if no friction were present.

Equilibrium in the x- and y-directions requires @

[ZF, = 0] mgsind—-F=0 F=mgsin6

[ZF, = 0] -mgcos@+N=0 N =mg cos 6

Dividing the first equation by the second gives F/N = tan 6. Since the
maximum angle occurs when F = F,,,, = u.N, for impending motion we
have

U = tan 6, or Omax = tanu, @ Ans.

y

\ W=mg

\
x///
/Q/Fr N

HELPFUL HINTS

® We choose reference axes along and
normal to the direction of F' to avoid re-
solving both F and N into components.

@ This problem describes a very simple
way to determine a static coefficient of
friction. The maximum value of 6 is
known as the angle of repose.

SAMPLE PROBLEM 6/2

Determine the range of values which the mass m, may have so that the
100-kg block shown in the figure will neither start moving up the plane
nor slip down the plane. The coefficient of static friction for the contact
surfaces is 0.30.

Solution The maximum value of m( will be given by the requirement
for motion impending up the plane. The friction force on the block
therefore acts down the plane, as shown in the free-body diagram of the
block for Case I in the figure. With the weight mg = 100(9.81) = 981 N,
the equations of equilibrium give

[F, = 0] N-981cos20°=0 N=922N
[Finax = 4N F...=0.30(922) = 277N

[ZF,=0] my(9.81) — 277 — 981 sin 20°=0 my=62.4kg Ans.

The minimum value of m is determined when motion is impending
down the plane. ® The friction force on the block will act up the plane
to oppose the tendency to move, as shown in the free-body diagram for
Case II. Equilibrium in the x-direction requires

[2F,=0] m(9.81) + 277 — 981 sin 20° =0 my,=6.01kg Ans.

Thus, my may have any value from 6.01 to 62.4 kg, and the block will
remain at rest.

In both cases equilibrium requires that the resultant of F,,, and
N be concurrent with the 981-N weight and the tension T

XQQ\K% =
— 20° m

0

y
\ 981N X
\ _ - -
T=mog
- Frmax
20° N
Case I
y
\\981 N .
T=myg
Fmax 0
s>
20°
Case I1

HELPFUL HINT

® We see from the results of Sample Prob-
lem 6/1 that the block would slide down
the incline without the restraint of at-
tachment to mg since tan 20° > 0.30.
Thus, a value of m, will be required to
maintain equilibrium.
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SAMPLE PROBLEM 6/3

Determine the magnitude and direction of the friction force acting on
the 100-kg block shown if, first, P = 500 N and, second, P = 100 N. The
coefficient of static friction is 0.20, and the coefficient of kinetic friction
is 0.17. The forces are applied with the block initially at rest.

Solution There is no way of telling from the statement of the prob-
lem whether the block will remain in equilibrium or whether it will
begin to slip following the application of P. It is therefore necessary
that we make an assumption, so we will take the friction force to be up
the plane, as shown by the solid arrow. From the free-body diagram a
balance of forces in both x- and y-directions gives

[ZF, =0] P cos 20° + F — 981 sin 20° =0

[ZFy = 0] N — P sin 20° — 981 cos 20° =0

Casel P=500N
Substitution into the first of the two equations gives

F=-1343N

The negative sign tells us that if the block is in equilibrium, the friction
force acting on it is in the direction opposite to that assumed and there-
fore is down the plane, as represented by the dashed arrow. We cannot
reach a conclusion on the magnitude of F, however, until we verify that
the surfaces are capable of supporting 134.3 N of friction force. This
may be done by substituting P = 500 N into the second equation, which
gives

N =1093 N

The maximum static friction force which the surfaces can support is
then

[F,an = 4N Foo = 0.20(1093) = 219 N

Since this force is greater than that required for equilibrium, we con-
clude that the assumption of equilibrium was correct. The answer is,
then,

F =134.3 N down the plane Ans.

CaselIl P=100N
Substitution into the two equilibrium equations gives

F=242N N =956 N
But the maximum possible static friction force is
[Finax = N1 Fprax =0.20(956) = 191.2 N

It follows that 242 N of friction cannot be supported. Therefore, equilib-
rium cannot exist, and we obtain the correct value of the friction force
by using the kinetic coefficient of friction accompanying the motion
down the plane. Hence, the answer is

[F,=w,N] F=0.17(956) = 162.5 N up the plane @ Ans.

\ 100(9.81) =981 N

HELPFUL HINT

® We should note that even though XF, is
no longer equal to zero, equilibrium does
exist in the y-direction, so that LF, = 0.
Therefore, the normal force N is 956 N
whether or not the block is in equilibrium.
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SAMPLE PROBLEM 6/4

The homogeneous rectangular block of mass m, width b, and height H
is placed on the horizontal surface and subjected to a horizontal force P
which moves the block along the surface with a constant velocity. The
coefficient of kinetic friction between the block and the surface is w,.
Determine (@) the greatest value which 2 may have so that the block
will slide without tipping over and (b) the location of a point C on the
bottom face of the block through which the resultant of the friction and
normal forces acts if A = H/2.

Solution (a) With the block on the verge of tipping, we see that the
entire reaction between the plane and the block will necessarily be at
A. The free-body diagram of the block shows this condition. Since slip-
ping occurs, the friction force is the limiting value u,V, and the angle 6
becomes 6 = tan™! y;,. The resultant of F), and N passes through a point B
through which P must also pass, since three coplanar forces in equilib-
rium are concurrent. @ Hence, from the geometry of the block

b/2
tan6=/.tk=% h=2iluk

Ans.
If A were greater than this value, moment equilibrium about A
would not be satisfied, and the block would tip over.
Alternatively, we may find A by combining the equilibrium
requirements for the x- and y-directions with the moment-equilibrium
equation about A. Thus,

[ZF, = 0] N-mg=0 N =mg
[ZF, = 0] F,-P=0  P=F,=muN=mmg
b b
(5M, =0l Ph-mgl= p80_ meb _ b Ans.

2" 2P~ 2umg 2,

(b) With A = H/2 we see from the free-body diagram for case
(b) that the resultant of F, and N passes through a point C which is a
distance x to the left of the vertical centerline through G. The angle 6 is
still 6 = ¢ = tan™! y; as long as the block is slipping. Thus, from the
geometry of the figure we have

x
A = = @ .
a2 tan 0 = ) x = u,H/2 Ans.

If we were to replace y, by the static coefficient u, then our solu-
tions would describe the conditions under which the block is () on the
verge of tipping and (b) on the verge of slipping, both from a rest
position.

y
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HELPFUL HINTS

® Recall that the equilibrium equations
apply to a body moving with a constant
velocity (zero acceleration) just as well
as to a body at rest.

@ Alternatively, we could equate the mo-
ments about G to zero, which would give
us F(H/2) — Nx = 0. Thus, with F}, = u,N
we get x = w, H/2.
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SAMPLE PROBLEM 6/5

The three flat blocks are positioned on the 30° incline as shown, and a
force P parallel to the incline is applied to the middle block. The upper
block is prevented from moving by a wire which attaches it to the fixed
support. The coefficient of static friction for each of the three pairs of
mating surfaces is shown. Determine the maximum value which P may
have before any slipping takes place.

Solution The free-body diagram of each block is drawn. The friction
forces are assigned in the directions to oppose the relative motion
which would occur if no friction were present. © There are two possi-
ble conditions for impending motion. Either the 50-kg block slips and
the 40-kg block remains in place, or the 50- and 40-kg blocks move to-
gether with slipping occurring between the 40-kg block and the incline.

The normal forces, which are in the y-direction, may be determined
without reference to the friction forces, which are all in the x-direction.
Thus,

[ZF,=0] (30-kg) N;—30(9.81)cos30°=0 N, = 255N
(50-kg) N, —50(9.81) cos 30° — 255 =0 N, =680 N
(40-kg) N3 —40(9.81) cos 30° — 680 =0 N;=1019N
We will assume arbitrarily that only the 50-kg block slips, so that
the 40-kg block remains in place. Thus, for impending slippage at both
surfaces of the 50-kg block, we have
[F pax = us NI F,=0.30(255) =76.5 N F,=0.40(680) = 272N

The assumed equilibrium of forces at impending motion for the
50-kg block gives

[ZF,=0] P -176.5-272+ 50(9.81) sin 30° =0 P=103.1N

We now check on the validity of our initial assumption. For the
40-kg block with Fy = 272 N the friction force F5 would be given by

[ZF, =0] 272 + 40(9.81) sin 30° — F3 =0 F; =468 N

But the maximum possible value of F3 is F3 = u,N3 = 0.45(1019) = 459 N.
Thus, 468 N cannot be supported and our initial assumption was
wrong. We conclude, therefore, that slipping occurs first between the
40-kg block and the incline. With the corrected value F3 = 459 N, equi-
librium of the 40-kg block for its impending motion requires

[EF,=0]  F,+40(9.81)sin30°-459=0 F,=263N @
Equilibrium of the 50-kg block gives, finally,

[ZF, = 0] P + 50(9.81) sin 30° — 263 — 76.5 =0
P=938N Ans.

Thus, with P = 93.8 N, motion impends for the 50-kg and 40-kg blocks
as a unit.

40(9.81) N

HELPFUL HINTS

® In the absence of friction the middle
block, under the influence of P, would
have a greater movement than the 40-kg
block, and the friction force Fy will be in
the direction to oppose this motion as
shown.

® We see now that Fy is less than u/Ny =
272 N.
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section e Applications of Friction
in Machines

In Section B we investigate the action of friction in various machine applications.
Because the conditions in these applications are normally either limiting static or
kinetic friction, we will use the variable u (rather than y, or ;) in general. Depend-
ing on whether motion is impending or actually occurring, u can be interpreted as
either the static or kinetic coefficient of friction.

s/a | Wedges

A wedge is one of the simplest and most useful machines. A wedge is used to pro-
duce small adjustments in the position of a body or to apply large forces. Wedges
largely depend on friction to function. When sliding of a wedge is impending, the
resultant force on each sliding surface of the wedge will be inclined from the nor-
mal to the surface by an amount equal to the friction angle. The component of the
resultant along the surface is the friction force, which is always in the direction to
oppose the motion of the wedge relative to the mating surfaces.

Figure 6/3a shows a wedge used to position or lift a large mass
m, where the vertical loading is mg. The coefficient of friction for each
pair of surfaces is u = tan ¢. The force P required to start the wedge
is found from the equilibrium triangles of the forces on the load and
on the wedge. The free-body diagrams are shown in Fig. 6/3b, where
the reactions are inclined at an angle ¢ from their respective normals
and are in the direction to oppose the motion. We neglect the mass of
the wedge. From the free-body diagrams we write the force equilib-
rium conditions by equating to zero the sum of the force vectors act-
ing on each body. The solutions of these equations are shown in part ¢
(@) of the figure, where R, is found first in the upper diagram using the
known value of mg. The force P is then found from the lower triangle
once the value of R has been established.

If P is removed and the wedge remains in place, equilibrium of
the wedge requires that the equal reactions R; and R, be collinear
as shown in Fig. 6/4, where the wedge angle a is taken to be less
than ¢. Part a of the figure represents impending slippage at the
upper surface, and part ¢ of the figure represents impending slip-
page at the lower surface. In order for the wedge to slide out of its
space, slippage must occur at both surfaces simultaneously; other-
wise, the wedge is self-locking, and there is a finite range of possible
intermediate angular positions of R, and R, for which the wedge will
remain in place. Figure 6/4b illustrates this range and shows that
simultaneous slippage is not possible if a < 2¢. You are encouraged
to construct additional diagrams for the case where o > ¢ and verify
that the wedge is self-locking as long as a < 2¢.

If the wedge is self-locking and is to be withdrawn, a pull P on
the wedge will be required. To oppose the new impending motion,
(b) (e) the reactions R; and R, must act on the opposite sides of their nor-
mals from those when the wedge was inserted. The solution can be
obtained as with the case of raising the load. The free-body diagrams
and vector polygons for this condition are shown in Fig. 6/5.

Forces to raise load



Range of Ry

20— «a
e

Range of R;

(a) Slipping impending (b) Range of Ry = Ry (¢) Slipping impending
at upper surface for no slip at lower surface

FIGURE 6/4

Wedge problems lend themselves to graphical solutions as indicated
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Forces to lower load

FIGURE 6/5

in the

three figures. The accuracy of a graphical solution is easily held within tolerances
consistent with the uncertainty of friction coefficients. Algebraic solutions may also

be obtained from the trigonometry of the equilibrium polygons.

/s | Screws

Screws are used for fastening and for transmitting power or motion. In each case
the friction developed in the threads largely determines the action of the screw. For
transmitting power or motion the square thread is more efficient than the V-thread,

and the analysis here is confined to the square thread.

Force Analysis

Consider the square-threaded jack, Fig. 6/6, under the action of the axial
load W and a moment M applied about the axis of the screw. The screw has
a lead L (advancement per revolution) and a mean radius r. The force R ex-
erted by the thread of the jack frame on a small representative portion of
the screw thread is shown on the free-body diagram of the screw. Similar
reactions exist on all segments of the screw thread where contact occurs
with the thread of the base.

If M is just sufficient to turn the screw, the thread of the screw will slide
around and up on the fixed thread of the frame. The angle ¢ made by R with
the normal to the thread is the angle of friction, so that tan ¢ = u. The mo-
ment of R about the vertical axis of the screw is Rr sin (a + ¢), and the total
moment due to all reactions on the threads is ZRr sin (a + ¢). Since r sin
(a + ¢) appears in each term, we may factor it out. The moment equilibrium
equation for the screw becomes

M =[rsin (a + )] ZR
Equilibrium of forces in the axial direction further requires that

W =ZR cos (a + ¢) = [cos (a + $)] ZR

RN

FIGURE 6/6

==
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Combining the expressions for M and W gives
M = Wr tan (a + ¢) (6/3)

To determine the helix angle «, unwrap the thread of the screw for one complete
turn and note that « = tan™" (L/27r).

We may use the unwrapped thread of the screw as an alternative model to
simulate the action of the entire screw, as shown in Fig. 6/7a. The equivalent force
required to push the movable thread up the fixed incline is P = M/r, and the tri-
angle of force vectors gives Eq. 6/3 immediately.

Conditions for Unwinding

If the moment M is removed, the friction force changes direction so that ¢ is mea-
sured to the other side of the normal to the thread. The screw will remain in place
and be self-locking provided that a < ¢, and will be on the verge of unwinding if
a=¢.

To lower the load by unwinding the screw, we must reverse the direction of M
as long as a < ¢. This condition is illustrated in Fig. 6/7b for our simulated thread
on the fixed incline. An equivalent force P = M/r must be applied to the thread to
pull it down the incline. From the triangle of vectors we therefore obtain the mo-
ment required to lower the screw, which is

M = Wrtan (¢ — a) (6/3a)

If a > ¢, the screw will unwind by itself, and Fig. 6/7¢ shows that the moment
required to prevent unwinding is

M = Wrtan (a — ¢) (6/3b)

(¢) To lower load (a>¢)

FIGURE 6/7
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SAMPLE PROBLEM 6/6

The horizontal position of the 500-kg rectangular block of concrete is
adjusted by the 5° wedge under the action of the force P. If the coeffi-
cient of static friction for both wedge surfaces is 0.30 and if the coeffi-
cient of static friction between the block and the horizontal surface is
0.60, determine the least force P required to move the block.

Solution The free-body diagrams of the wedge and the block are
drawn with the reactions R, Ry, and Rj; inclined with respect to their
normals by the amounts of the friction angles for impending motion. ®
The friction angle for limiting static friction is given by ¢ = tan™! u.
Each of the two friction angles is computed and shown on the
diagram.

We start our vector diagram expressing the equilibrium of the
block at a convenient point A and draw the only known vector, the
weight W of the block. Next we add Rs, whose 31.0° inclination from
the vertical is now known. The vector —R,, whose 16.70° inclination
from the horizontal is also known, must close the polygon for equilibrium.
Thus, point B on the lower polygon is determined by the intersection of
the known directions of R; and —R,, and their magnitudes become
known.

For the wedge we draw R,, which is now known, and add R;, whose
direction is known. The directions of R; and P intersect at C, thus giv-
ing us the solution for the magnitude of P.

Algebraic solution The simplest choice of reference axes for calcu-
lation purposes is, for the block, in the direction a-a normal to R; and,
for the wedge, in the direction b-b normal to R;. @ The angle between
R, and the a-direction is 16.70° + 31.0° = 47.7°. Thus, for the block

[ZF, = 0] 500(9.81) sin 31.0° — R, cos 47.7° =0

R,=3750 N

For the wedge the angle between R, and the b-direction is 90° —
(2¢; + 5°) = 51.6° and the angle between P and the b-direction is
¢1 + 5° =21.7°. Thus,

[ZF, = 0] 3750 cos 51.6° — P cos 21.7° =0

P =2500 N Ans.

Graphical solution The accuracy of a graphical solution is well
within the uncertainty of the friction coefficients and provides a simple
and direct result. By laying off the vectors to a reasonable scale follow-
ing the sequence described, we obtain the magnitudes of P and the R’s
easily by scaling them directly from the diagrams.

5°

W =50009.81) N

\

b —
$1=tan"10.30 a” KR
= 16.70° gt 8

=31.0°

W=4905 N

HELPFUL HINTS

® Be certain to note that the reactions are
inclined from their normals in the direc-
tion to oppose the motion. Also, we note
the equal and opposite reactions R, and
-R,.

@ It should be evident that we avoid simul-
taneous equations by eliminating refer-
ence to Rs for the block and R; for the
wedge.
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SAMPLE PROBLEM 6/7

The single-threaded screw of the vise has a mean diameter of 1 in. and
has 5 square threads per inch. The coefficient of static friction in the
threads is 0.20. A 60-1b pull applied normal to the handle at A produces
a clamping force of 1000 lb between the jaws of the vise. (@) Determine
the frictional moment Mp, developed at B, due to the thrust of the screw
against the body of the jaw. (b) Determine the force @ applied normal to
the handle at A required to loosen the vise.

Solution From the free-body diagram of the jaw we first obtain the
tension 7 in the screw.

[ZM = 0] 1000(16) — 107T'=0 T =1600 1b

The helix angle a and the friction angle ¢ for the thread are given by

L 1
a=tan"! — =tan™! /5

omr 2 27(0.5) 3.64° ©

¢p=tan"! yu=tan"10.20 = 11.31°

where the mean radius of the thread is r = 0.5 in.

(a) To tighten The isolated screw is simulated by the free-body dia-
gram shown where all of the forces acting on the threads of the screw
are represented by a single force R inclined at the friction angle ¢ from
the normal to the thread. The moment applied about the screw axis is
60(8) = 480 lb-in. in the clockwise direction as seen from the front of the
vise. The frictional moment M3z due to the friction forces acting on the
collar at B is in the counterclockwise direction to oppose the impending
motion. From Eq. 6/3 with T substituted for W, the net moment acting
on the screw is

M = Tr tan (a + ¢)
480 — Mz = 1600(0.5) tan (3.64° + 11.31°)

Mz = 266 lb-in. Ans.

(b) To loosen The free-body diagram of the screw on the verge of be-
ing loosened is shown with R acting at the friction angle from the
normal in the direction to counteract the impending motion. @ Also
shown is the frictional moment Mz = 266 lb-in. acting in the clockwise
direction to oppose the motion. The angle between R and the screw axis
is now ¢ — a, and we use Eq. 6/3a with the net moment equal to the
applied moment M’ minus Mp. Thus

M =Trtan (¢ — a)
M’ — 266 = 1600(0.5) tan (11.31° — 3.64°)
M’ = 374 lb-in.
Thus, the force on the handle required to loosen the vise is

Q=M/d =374/8 = 46.8 Ib Ans.

1000 1b
T
C
60(8) 480 1b-in.
,jy' §
r
(a) To tlghten
$ T
a
R
;iP 1
R /T Mp M
(b) To loosen

HELPFUL HINTS

® Be careful to calculate the helix angle
correctly. Its tangent is the lead L
(advancement per revolution) divided by
the mean circumference 27 and not by
the diameter 2r.

@ Note that R swings to the opposite side
of the normal as the impending motion
reverses direction.
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s/6 | Journal Bearings

A journal bearing is one which gives lateral support to a shaft in

contrast to axial or thrust support. For dry bearings and for many

partially lubricated bearings we may apply the principles of dry fric-
tion. These principles provide a satisfactory approximation for
design purposes.

A dry or partially lubricated journal bearing with contact or
near contact between the shaft and the bearing is shown in Fig. 6/8,
where the clearance between the shaft and bearing is greatly exag-
gerated to clarify the action. As the shaft begins to turn in the direc- Bearing
tion shown, it will roll up the inner surface of the bearing until it
slips. Here it will remain in a more or less fixed position during rota-
tion. The torque M required to maintain rotation and the radial load
L on the shaft will cause a reaction R at the contact point A. For
vertical equilibrium R must equal L but will not be collinear with it.
Thus, R will be tangent to a small circle of radius 7 called the fric-
tion circle. The angle between R and its normal component N is the
friction angle ¢. Equating the sum of the moments about A to zero
gives

M = Lry = Lr sin ¢ (6/4)

For a small coefficient of friction, the angle ¢ is small, and the sine and tangent
may be interchanged with only small error. Since u = tan ¢, a good approximation
to the torque is

M = uLr (6/4a)

This relation gives the amount of torque or moment which must be applied to the
shaft to overcome friction for a dry or partially lubricated journal bearing.

6/7 | Thrust Bearings; Disk Friction

Friction between circular surfaces under distributed normal pressure occurs in
pivot bearings, clutch plates, and disk brakes. To examine these applications, we
consider the two flat circular disks shown in Fig. 6/9. Their shafts are mounted in
bearings (not shown) so that they can be brought into contact under the axial force
P. The maximum torque which this clutch can transmit is equal to the torque M
required to slip one disk against the other. If p is the normal pressure at any loca-
tion between the plates, the frictional force acting on an elemental area is up dA,

FIGURE 6/9

169
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where u is the friction coefficient and dA is the area r dr d6 of the element. The
moment of this elemental friction force about the shaft axis is upr dA, and the total
moment becomes

M=f/.(prdA

where we evaluate the integral over the area of the disk. To carry out this integra-
tion, we must know the variation of 4 and p with r.

In the following examples we will assume that u is constant. Furthermore, if
the surfaces are new, flat, and well supported, it is reasonable to assume that the
pressure p is uniform over the entire surface so that 7R?p = P. Substituting the
constant value of p in the expression for M gives

27
7rR2 f r?drdb = *,LLPR (6/5)

) : = P
2R; | }(— 2R, We may interpret this result as equivalent to the moment due to a friction

force uP acting at a distance %R from the shaft center.
If the friction disks are rings, as in the collar bearing shown in

(

FIGURE 6/10

Westend61 GmbH/Alamy Stock Photo

The change from mechanical energy
to heat energy is evident in this view

of a disk brake.

Fig. 6/10, the limits of integration are the inside and outside radii R; and
R,, respectively, and the frictional torque becomes

R 3
,uP “R? (6/5a)

After the initial wearing-in period is over, the surfaces retain their new relative
shape, and further wear is therefore constant over the surface. This wear depends
on both the circumferential distance traveled and the pressure p. Since the dis-
tance traveled is proportional to r, the expression rp = K may be written, where K
is a constant. The value of K is determined from the equilibrium condition for the
axial forces, which gives

P=fpdA=Kf f dr dé = 27KR
o “Jo
With pr = K = P/(27R), we may write the expression for M as

2m
M= f,uprd 2 R f rdrdé

which becomes

= % uPR (6/6)

The frictional moment for worn-in plates is, therefore, only (%) / (%), or ?1

as much as for new surfaces. If the friction disks are rings of inside radius
R; and outside radius R,, substitution of these limits gives for the fric-
tional torque for worn-in surfaces

M=uPR,+R,) (6/6a)

You should be prepared to deal with other disk-friction problems where the
pressure p is some other function of r.
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SAMPLE PROBLEM 6/8

The bell crank fits over a 100-mm-diameter shaft which is fixed and
cannot rotate. The horizontal force T is applied to maintain equilib-
rium of the crank under the action of the vertical force P = 100 N.
Determine the maximum and minimum values which 7' may have
without causing the crank to rotate in either direction. The coefficient
of static friction u between the shaft and the bearing surface of the
crank is 0.20.

Solution Impending rotation occurs when the reaction R of the fixed
shaft on the bell crank makes an angle ¢ = tan™' y with the normal to
the bearing surface and is, therefore, tangent to the friction circle. Also,
equilibrium requires that the three forces acting on the crank be con-
current at point C. These facts are shown in the free-body diagrams for
the two cases of impending motion.

The following calculations are needed:

Friction angle ¢ = tan™! u = tan™! 0.20 = 11.31°

Radius of friction circle 77 = r sin ¢ = 50 sin 11.31° = 9.81 mm

Angle 0 = tan! 120 33.7°

180
Iy

Angle 8 = sin™! —— = sin™! 9.81 = 2.60°
oC V/(120)% + (180)?

(a) Impending counterclockwise motion The equilibrium triangle
of forces is drawn and gives

T, = P cot (6 — B) = 100 cot (33.7° — 2.60°)
T, =Ty = 165.8N Ans.

(b) Impending clockwise motion The equilibrium triangle of
forces for this case gives

Ty =P cot (6 + ) =100 cot (33.7° + 2.60°)
TQ = Tmin =136.2 N Ans.

(b) Clockwise motion impends
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(b)

FIGURE 6/11

©Media Bakery

Just one turn of a line around a fixed
cylinder can produce a large change radians. If a rope were wrapped around a drum n times, the angle 8

would be 27n radians. Equation 6/7 holds equally well for a noncircular

in tension.

/8 | Flexible Belts

The impending slippage of flexible cables, belts, and ropes over sheaves and
drums is important in the design of belt drives of all types, band brakes, and
hoisting rigs.

Figure 6/11a shows a drum subjected to the two belt tensions 7T'; and T, the
torque M necessary to prevent rotation, and a bearing reaction R. With M in the
direction shown, T is greater than T';. The free-body diagram of an element of the belt
of length r d6 is shown in part b of the figure. We analyze the forces acting on this
differential element by establishing the equilibrium of the element, in a manner
similar to that used for other variable-force problems. The tension increases from
T at the angle 0 to T' + dT at the angle 6 + d6. The normal force is a differential dN,
since it acts on a differential element of area. Likewise the friction force, which
must act on the belt in a direction to oppose slipping, is a differential and is u dN
for impending motion.

Equilibrium in the ¢-direction gives

Tcos(izﬁ+udN:(T+dT) cosd?6

or uwdN =dT

since the cosine of a differential quantity is unity in the limit. Equilibrium in the
n-direction requires that
dé

dN = (T +dT) sin(éﬁ+Tsin?

or dN =Tdb

where we have used the facts that the sine of a differential angle in the
limit equals the angle and that the product of two differentials must
be neglected in the limit compared with the first-order differentials
remaining.
Combining the two equilibrium relations gives
dT

p =Ko

Integrating between corresponding limits yields

T, B
dT f
— = do
rn, T 0 K

In 22
or nT1 =up

where the In (T,/T;) is a natural logarithm (base e). Solving for T, gives

Ty = Tye#® (6/7)

Note that 3 is the total angle of belt contact and must be expressed in
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section where the total angle of contact is . This conclusion is evident from the fact
that the radius r of the circular drum in Fig. 6/11 does not enter into the equations
for the equilibrium of the differential element of the belt.

The relation expressed by Eq. 6/7 also applies to belt drives where both the belt
and the pulley are rotating at constant speed. In this case the equation describes
the ratio of belt tensions for slippage or impending slippage. When the speed of
rotation becomes large, the belt tends to leave the rim, so Eq. 6/7 involves some
error in this case.

s/s | Rolling Resistance

Deformation at the point of contact between a rolling wheel and its supporting
surface introduces a resistance to rolling, which we mention only briefly. This resis-
tance is not due to tangential friction forces and therefore is an entirely different
phenomenon from that of dry friction.

To describe rolling resistance, we consider the wheel shown in Fig. 6/12 under
the action of a load L on the axle and a force P applied at its center to produce roll-
ing. The deformation of the wheel and supporting surfaces as shown is greatly ex-
aggerated. The distribution of pressure p over the area of contact is similar to the
distribution shown. The resultant R of this distribution acts at some point A and
must pass through the wheel center for the wheel to be in equilibrium. We find the
force P necessary to maintain rolling at constant speed by equating the moments of
all forces about A to zero. This gives us

a
P="L=yL

where the moment arm of P is taken to be r. The ratio u, = a/r is called the coef-
ficient of rolling resistance. This coefficient is the ratio of resisting force to nor-
mal force and thus is analogous to the coefficient of static or kinetic friction. On
the other hand, there is no slippage or impending slippage in the interpretation
of u,.

Because the dimension a depends on many factors which are difficult to quan-
tify, a comprehensive theory of rolling resistance is not available. The distance a is
a function of the elastic and plastic properties of the mating materials, the radius of
the wheel, the speed of travel, and the roughness of the surfaces. Some tests indicate
that a varies only slightly with wheel radius, and thus « is often taken to be inde-
pendent of the rolling radius. Unfortunately, the quantity a has also been called the
coefficient of rolling friction in some references. However, a has the dimension of
length and therefore is not a dimensionless coefficient in the usual sense.

i)

FIGURE 6/12
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SAMPLE PROBLEM 6/9

A flexible cable which supports the 100-kg load is passed over a fixed
circular drum and subjected to a force P to maintain equilibrium. The
coefficient of static friction u between the cable and the fixed drum is
0.30. (@) For a« = 0, determine the maximum and minimum values
which P may have in order not to raise or lower the load. (b) For P =500 N,
determine the minimum value which the angle ¢ may have before the
load begins to slip.

Solution Impending slipping of the cable over the fixed drum is
given by Eq. 6/7, which is Ty/T; = e*.

(a) With a = 0 the angle of contact is § = /2 rad. ® For impending
upward motion of the load, Ty = P, 77 = 981 N, and we have

P /981 = 030@2 P _981(1.602) = 1572N @ Ans.

For impending downward motion of the load, 75, = 981 N and T'; = P,.
Thus,

981/P,;, = €32 P . —981/1.602 = 612 N Ans.

(b) With T, =981 N and T, = P =500 N, Eq. 6/7 gives us

981/500 = ¢%3%  0.308 = In(981/500) = 0.674

B =2.25rad or B =225 <%> =128.7°
a=128.7°-90°=38.7 @ Ans.

(b) P =500 N

HELPFUL HINTS

® We are careful to note that 8 must be
expressed in radians.

@ In our derivation of Eq. 6/7 be certain to
note that Ty, > T}.

® As was noted in the derivation of Eq. 6/7,
the radius of the drum does not enter into
the calculations. It is only the angle of con-
tact and the coefficient of friction which
determine the limiting conditions for im-
pending motion of the flexible cable over
the curved surface.
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SAMPLE PROBLEM 6/10

Determine the range of mass m over which the system is in static equi-
librium. The coefficient of static friction between the cord and the up-
per curved surface is 0.20, while that between the block and the incline
is 0.40. Neglect friction at the pivot O.

Solution From the FBD of the uniform slender bar, we can determine
the tension 7', in the cable at point A.

2L L
[ZM, = 0] -T, (? cos 35°) +9(9.81) (E cos 25°> =0

T,=733N

I. Motion of m impends up the incline.

The tension T, = 73.3 N is the larger of the two tensions associated

9(9.81) N
with the rough rounded surface. From Eq. 6/7 we have ©81)

[Ty = Tye*F 73.3 = T, e020180°+4077/180° T,=574N @

From the FBD of the block for Case I:

[SF, = 0] N-mgcosd0°=0 N =0.766mg T1=574N
[ZF, = 0] —57.4 + mg sin 40° + 0.40(0.766mg) = 0
mg=605N m=6.16kg Vit
/
. . . . < 400
II. Motion of m impends down the incline. N
X
The value T4 = 73.3 N is unchanged, but now this is the smaller of the N 0.40N
two tensions in Eq. 6/7. Case I
[Ty = Tre*F] T, = 73.3¢0-200307+4077/180° T,=935N
Considering the FBD of the block for Case II, we see that the normal mg
X Ty=935N
force N is unchanged from Case 1.
[ZF, = 0] ~93.5 — 0.4(0.766mg) + mg sin 40° = 0 0. 4:]\
mg =278 N m = 28.3 kg
S 40°
So the requested range is 6.16 = m = 28.3kg. @ Ans. N h
Case IT

HELPFUL HINTS

® Only the total angular contact enters Eq. 6/7
(as f3). So our results are independent of
the quantities r and d.

@ Re-solve the entire problem if the ramp
angle 6 were changed to 20°, with all
other given information remaining con-
stant. Be alert for a surprising result!
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610 | Chapter Review

In our study of friction we have concentrated on dry or
Coulomb friction where a simple mechanical model of
surface irregularities between the contacting bodies,
Fig. 6/1, explains the phenomenon adequately for most
engineering purposes. This model helps to visualize
the three types of dry-friction problems which are
encountered in practice. These problem types are:

1. Static friction of less than the maximum possible
value and determined by the equations of equilib-
rium. (This usually requires a check to see that
F < puN.)

2. Limiting static friction with impending motion
(F = pN).

3. Kinetic friction where sliding motion occurs be-
tween contacting surfaces (F = u,N).

Keep in mind the following when solving dry-
friction problems:

1. A coefficient of friction applies to a given pair of
mating surfaces. It is meaningless to speak of a co-
efficient of friction for a single surface.

2. The coefficient of static friction y, for a given pair of
surfaces is usually slightly greater than the kinetic
coefficient .

3. The friction force which acts on a body is always in
the direction to oppose the slipping of the body

which takes place or the slipping which would take
place in the absence of friction.

4, When friction forces are distributed over a surface
or along a line, we select a representative element
of the surface or line and evaluate the force and mo-
ment effects of the elemental friction force acting
on the element. We then integrate these effects over
the entire surface or line.

5. Friction coefficients vary considerably, depending
on the exact condition of the mating surfaces. Com-
puting coefficients of friction to three significant
figures represents an accuracy which cannot easily
be duplicated by experiment. When cited, such val-
ues are included for purposes of computational
check only. For design computations in engineering
practice, any handbook value for a coefficient of
static or kinetic friction must be viewed as an
approximation.

Other forms of friction mentioned in the introduct-
ory article of the chapter are important in engineering.
Problems which involve fluid friction, for example, are
among the most important of the friction problems en-
countered in engineering and are studied in the subject
of fluid mechanics.
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The analysis of multi-link structures which
change configuration is generally best
handled by a virtual-work approach. This
construction platform is a typical example.

71 | Introduction

In the previous chapters we have analyzed the equilibrium of a body by isolating it with
a free-body diagram and writing the zero-force and zero-moment summation equations.
This approach is usually employed for a body whose equilibrium position is known or
specified and where one or more of the external forces is an unknown to be determined.

There is a separate class of problems in which bodies are composed of intercon-
nected members which can move relative to each other. Thus various equilibrium
configurations are possible and must be examined. For problems of this type, the
force- and moment-equilibrium equations, although valid and adequate, are often
not the most direct and convenient approach.

A method based on the concept of the work done by a force is more direct.
Also, the method provides a deeper insight into the behavior of mechanical sys-
tems and enables us to examine the stability of systems in equilibrium. This
method is called the method of virtual work.

72 | Work

We must first define the term work in its quantitative sense, in contrast to its com-
mon nontechnical usage. 177
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Work of a Force

Consider the constant force F acting on the body shown in Fig. 7/1a,
whose movement along the plane from A to A’ is represented by the
vector As, called the displacement of the body. By definition the work U
done by the force F on the body during this displacement is the compo-
nent of the force in the direction of the displacement times the dis-
placement, or

U = (F cos a) As

From Fig. 7/1b we see that the same result is obtained if we multiply the
magnitude of the force by the component of the displacement in the direc-
tion of the force. This gives

U = F(As cos a)

Because we obtain the same result regardless of the direction in which
we resolve the vectors, we conclude that work U is a scalar quantity.

Work is positive when the working component of the force is in the
same direction as the displacement. When the working component is in
the direction opposite to the displacement, Fig. 7/2, the work done is
negative. Thus,

U= (Fcosa) As =—(F cos 0) As

We now generalize the definition of work to account for conditions
under which the direction of the displacement and the magnitude and
direction of the force are variable.

Figure 7/3a shows a force F acting on a body at a point A which
moves along the path shown from A; to A,. Point A is located by its posi-
tion vector r measured from some arbitrary but convenient origin O. The
infinitesimal displacement in the motion from A to A’ is given by the
differential change dr of the position vector. The work done by the force
F during the displacement dr is defined as

dU =F-dr (7/D)

If F denotes the magnitude of the force F and ds denotes the magnitude
of the differential displacement dr, we use the definition of the dot prod-
uct to obtain

dU=Fdscosa

We may again interpret this expression as the force component F' cos «
in the direction of the displacement times the displacement, or as the
displacement component ds cos « in the direction of the force times the

force, as represented in Fig. 7/3b. If we express F and dr in terms of their rectan-
gular components, we have

dU = ({F, +jF,+ kF,)-(idx +jdy + kdz)
=F.dx+F,dy+F,dz



To obtain the total work U done by F during a finite movement of point A from

A, to Ay, Fig. 7/3a, we integrate dU between these positions. Thus,

U=JF-dr:f(dex+Fydy+dez)
or

U:chosocds

To carry out this integration, we must know the relation between the force components
and their respective coordinates, or the relations between F and s and between

cos a and s.

In the case of concurrent forces which are applied at any particular point on a
body, the work done by their resultant equals the total work done by the several
forces. This is because the component of the resultant in the direction of the displace-
ment equals the sum of the components of the several forces in the same direction.

Work of a Couple

In addition to the work done by forces, couples also can do work. In Fig.
7/4a the couple M acts on the body and changes its angular position by
an amount d6. The work done by the couple is easily determined from
the combined work of the two forces which constitute the couple. In part
b of the figure we represent the couple by two equal and opposite forces
F and —F acting at two arbitrary points A and B such that F = M/b.
During the infinitesimal movement in the plane of the figure, line AB
moves to A”B’. We now take the displacement of A in two steps, first, a
displacement drp equal to that of B and, second, a displacement dryz
(read as the displacement of A with respect to B) due to the rotation
about B. Thus the work done by F during the displacement from A to A’
is equal and opposite in sign to that due to —F acting through the equal
displacement from B to B’. We therefore conclude that no work is done
by a couple during a translation (movement without rotation).

During the rotation, however, F does work equal to F-dry; =
Fb do, where dryz = b d® and where df is the infinitesimal angle of
rotation in radians. Since M = Fb, we have

dU =M do (7/2)

The work of the couple is positive if M has the same sense as d6
(clockwise in this illustration), and negative if M has a sense opposite
to that of the rotation. The total work of a couple during a finite rota-
tion in its plane becomes

U:fMdG

Dimensions of Work

FIGURE 7/4

Work has the dimensions of (force) x (distance). In SI units the unit of work is the
joule (J), which is the work done by a force of one newton moving through a dis-
tance of one meter in the direction of the force (J = N-m). In the U.S. customary
system the unit of work is the foot-pound (ft-1b), which is the work done by a one-
pound force moving through a distance of one foot in the direction of the force.

Article 7/2 Work
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The dimensions of the work of a force and the moment of a force are the same,
although they are entirely different physical quantities. Note that work is a scalar
given by the dot product and thus involves the product of a force and a distance, both
measured along the same line. Moment, on the other hand, is a vector given by the
cross product and involves the product of force and distance measured at right an-
gles to the force. To distinguish between these two quantities when we write their
units, in SI units we use the joule (J) for work and reserve the combined units
newton-meter (N-m) for moment. In the U.S. customary system we normally use
the sequence foot-pound (ft-1b) for work and pound-foot (lb-ft) for moment.

Virtual Work

We consider now a particle whose static equilibrium position is determined by the
forces which act on it. Any assumed and arbitrary small displacement dr away
from this natural position and consistent with the system constraints is called a
virtual displacement. The term virtual is used to indicate that the displacement
does not really exist but only is assumed to exist, so that we may compare various
possible equilibrium positions to determine the correct one.

The work done by any force F acting on the particle during the virtual displace-
ment dr is called virtual work and is

U =F-6r or U =F éscosa

where « is the angle between F and dr, and Js is the magnitude of ér. The difference
between dr and dr is that dr refers to an actual infinitesimal change in position and
can be integrated, whereas dr refers to an infinitesimal virtual or assumed move-
ment and cannot be integrated. Mathematically both quantities are first-order
differentials.

A virtual displacement may also be a rotation 66 of a body. According to Eq. 7/2
the virtual work done by a couple M during a virtual angular displacement 86 is
éU = M é6.

We may regard the force F or couple M as remaining constant during any
infinitesimal virtual displacement. If we account for any change in F or M during
the infinitesimal motion, higher-order terms will result which disappear in the
limit. This consideration is the same mathematically as that which permits us to
neglect the product dx dy when writing dA = y dx for the element of area under
the curve y = f(x).

73 | Equilibrium

We now express the equilibrium conditions in terms of virtual work, first for a par-
ticle, then for a single rigid body, and then for a system of connected rigid bodies.

Equilibrium of a Particle

Consider the particle or small body in Fig. 7/5 which attains an equilibrium posi-
tion as a result of the forces in the attached springs. If the mass of the particle were
significant, then the weight mg would also be included as one of the forces. For an
assumed virtual displacement dr of the particle away from its equilibrium position,
the total virtual work done on the particle is

SU=F,-r +Fy-6r + F3-6r + --- =ZF:6r



We now express ZF in terms of its scalar sums and dr in terms of its component
virtual displacements in the coordinate directions, as follows:

8U=3F-6r=(i2F, +j IF, + k £F,)- (i 8x + j oy + k &2)
= ¥F, &x +2F, 8y + 2F, 82 = 0

The sum is zero, since ZF = 0, which gives ZF, = 0, ZF, = 0, and ZF, = 0. The equa-
tion 6U = 0 is therefore an alternative statement of the equilibrium conditions for
a particle. This condition of zero virtual work for equilibrium is both necessary and
sufficient, since we may apply it to virtual displacements taken one at a time in each
of the three mutually perpendicular directions, in which case it becomes equivalent
to the three known scalar requirements for equilibrium.

The principle of zero virtual work for the equilibrium of a single particle usu-
ally does not simplify this already simple problem because U = 0 and XF = 0
provide the same information. However, we introduce the concept of virtual work
for a particle so that we can later apply it to systems of particles.

Equilibrium of a Rigid Body

We can easily extend the principle of virtual work for a single particle to a rigid body
treated as a system of small elements or particles rigidly attached to one another.
Because the virtual work done on each particle of the body in equilibrium is zero, it
follows that the virtual work done on the entire rigid body is zero. Only the virtual
work done by external forces appears in the evaluation of SU = 0 for the entire body,
since all internal forces occur in pairs of equal, opposite, and collinear forces, and
the net work done by these forces during any movement is zero.

As in the case of a particle, we again find that the principle of virtual work offers
no particular advantage to the solution for a single rigid body in equilibrium. Any
assumed virtual displacement defined by a linear or angular movement will appear
in each term in 6U = 0 and when canceled will leave us with the same expression we
would have obtained by using one of the force or moment equations of equilibrium
directly.

This condition is illustrated in Fig. 7/6, where we want to determine the
reaction R under the roller for the hinged plate of negligible weight under the
action of a given force P. A small assumed rotation 66 of the plate about O is
consistent with the hinge constraint at O and is taken as the virtual displace-
ment. The work done by P is —Pa 66, and the work done by R is +Rb 66. There-
fore, the principle §U = 0 gives

—Pa 56 + Rb 66 =0
Canceling 86 leaves
Pa—Rb=0

which is simply the equation of moment equilibrium about O. Therefore, nothing is
gained by using the virtual-work principle for a single rigid body. The principle is,
however, decidedly advantageous for interconnected bodies, as discussed next.

Equilibrium of Ideal Systems of Rigid Bodies

We now extend the principle of virtual work to the equilibrium of an interconnected
system of rigid bodies. Our treatment here will be limited to so-called ideal systems.
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These are systems composed of two or more rigid members linked together by me-
chanical connections which are incapable of absorbing energy through elongation or
compression, and in which friction is small enough to be neglected.

Figure 7/7a shows a simple example of an ideal system where relative motion
between its two parts is possible and where the equilibrium position is determined
by the applied external forces P and F. We can identify three types of forces which
act in such an interconnected system. They are as follows:

(1) Active forces are external forces capable of doing virtual work during pos-
sible virtual displacements. In Fig. 7/7a forces P and F are active forces because
they would do work as the links move.

(2) Reactive forces are forces which act at fixed support positions where no
virtual displacement takes place in the direction of the force. Reactive forces do no
work during a virtual displacement. In Fig. 7/7b the horizontal force Fp exerted on
the roller end of the member by the vertical guide can do no work because there can
be no horizontal displacement of the roller. The reactive force Fy exerted on the
system by the fixed support at O also does no work because O cannot move.

(3) Internal forces are forces in the connections between members. During any
possible movement of the system or its parts, the net work done by the internal
forces at the connections is zero. This is so because the internal forces always exist
in pairs of equal and opposite forces, as indicated for the internal forces F, and —F,
at joint A in Fig. 7/7¢. The work of one force therefore necessarily cancels the work
of the other force during their identical displacements.

Principle of Virtual Work

Noting that only the external active forces do work during any possible movement
of the system, we may now state the principle of virtual work as follows:

The virtual work done by external active forces on an ideal mechanical
system in equilibrium is zero for any and all virtual displacements
consistent with the constraints.

By constraint we mean restriction of the motion by the supports. We state the prin-
ciple mathematically by the equation

oU=0 (7/3)

where U stands for the total virtual work done on the system by all active forces
during a virtual displacement.

Only now can we see the real advantages of the method of virtual work. There
are essentially two. First, it is not necessary for us to dismember ideal systems in
order to establish the relations between the active forces, as is generally the case
with the equilibrium method based on force and moment summations. Second, we
may determine the relations between the active forces directly without reference to
the reactive forces. These advantages make the method of virtual work particularly
useful in determining the position of equilibrium of a system under known loads.
This type of problem is in contrast to the problem of determining the forces acting
on a body whose equilibrium position is known.

The method of virtual work is especially useful for the purposes mentioned but
requires that the internal friction forces do negligible work during any virtual dis-
placement. Consequently, if internal friction in a mechanical system is appreciable,
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(a) Examples of one-degree-of-freedom systems (b) Examples of two-degree-of-freedom systems

FIGURE 7/8

the method of virtual work cannot be used for the system as a whole unless the work
done by internal friction is included.

When using the method of virtual work, you should draw a diagram which iso-
lates the system under consideration. Unlike the free-body diagram, where all forces
are shown, the diagram for the method of virtual work need show only the active
forces, since the reactive forces do not enter into the application of §U = 0. Such a
drawing will be termed an active-force diagram. Figure 7/7a is an active-force dia-
gram for the system shown.

Degrees of Freedom

The number of degrees of freedom of a mechanical system is the number of indepen-
dent coordinates needed to specify completely the configuration of the system.
Figure 7/8a shows three examples of one-degree-of-freedom systems. Only one
coordinate is needed to establish the position of every part of the system. The
coordinate can be a distance or an angle. Figure 7/8b shows three examples of two-
degree-of-freedom systems where two independent coordinates are needed to deter-
mine the configuration of the system. By the addition of more links to the mechanism
in the right-hand figure, there is no limit to the number of degrees of freedom which
can be introduced.

The principle of virtual work §U = 0 may be applied as many times as there are
degrees of freedom. With each application, we allow only one independent coordinate
to change at a time while holding the others constant. In our treatment of virtual
work in this chapter, we consider only one-degree-of-freedom systems.*

Systems with Friction

When sliding friction is present to any appreciable degree in a mechanical system,
the system is said to be “real.” In real systems some of the positive work done on the
system by external active forces (input work) is dissipated in the form of heat gen-
erated by the kinetic friction forces during movement of the system. When there is
sliding between contacting surfaces, the friction force does negative work because
its direction is always opposite to the movement of the body on which it acts. This
negative work cannot be regained.

*For examples of solutions to problems of two or more degrees of freedom, see Chapter 7 of the
first author’s Statics, 2nd Edition, 1971, or SI Version, 1975.
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Thus, the kinetic friction force w, N acting on the sliding block in
Fig. 7/9a does work on the block during the displacement x in the
amount of —u;,Nx. During a virtual displacement 6x, the friction force
does work equal to —y, N 6x. The static friction force acting on the
rolling wheel in Fig. 7/9b, on the other hand, does no work if the wheel
does not slip as it rolls.

In Fig. 7/9c the moment M about the center of the pinned joint due
to the friction forces which act at the contacting surfaces does negative
work during any relative angular movement between the two parts.
Thus, for a virtual displacement 66 between the two parts, which have
the separate virtual displacements §6; and 86, as shown, the negative
work done is —M; 66, — My 66, = —M (66, + 66,), or simply —M; §6. For
each part, M; is in the sense to oppose the relative motion of rotation.

It was noted earlier in the article that a major advantage of the
method of virtual work is in the analysis of an entire system of con-
nected members without taking them apart. If there is appreciable
kinetic friction internal to the system, it becomes necessary to dis-
member the system to determine the friction forces. In such cases the
method of virtual work finds only limited use.

Mechanical Efficiency

Because of energy loss due to friction, the output work of a machine is
always less than the input work. The ratio of the two amounts of work
is the mechanical efficiency e. Thus,

_ output work
" input work

The mechanical efficiency of simple machines which have a single
degree of freedom and which operate in a uniform manner may be
determined by the method of work by evaluating the numerator and
denominator of the expression for e during a virtual displacement.

As an example, consider the block being moved up the inclined
plane in Fig. 7/10. For the virtual displacement s shown, the output
work is that necessary to elevate the block, or mg ds sin 6. The input
work is T' 8s = (mg sin 6 + w,mg cos 6) 8s. The efficiency of the inclined
plane is, therefore,

mg ds sin 0 1

e=mg(sin6+,ukc0s9)5s=1+,ukcot6

As a second example, consider the screw jack described in Art. 6/5
and shown in Fig. 6/6. Equation 6/3 gives the moment M required to
raise the load W, where the screw has a mean radius r and a helix
angle a, and where the friction angle is ¢ = tan™" y,. During a small
rotation 86 of the screw, the input work is M 66 = Wr 86 tan (a + ¢). The
output work is that required to elevate the load, or Wr 86 tan «a. Thus
the efficiency of the jack can be expressed as

_ Wr 66 tan a _ tan a
" Wré0tan (a + ¢)  tan (a + ¢)

e

As friction is decreased, ¢ becomes smaller, and the efficiency approaches unity.
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SAMPLE PROBLEM 7/1

Each of the two uniform hinged bars has a mass m and a length /, and
is supported and loaded as shown. For a given force P determine the
angle 6 for equilibrium.

Solution The active-force diagram for the system composed of the
two members is shown separately and includes the weight mg of each
bar in addition to the force P. All other forces acting externally on the
system are reactive forces which do no work during a virtual movement
6x and are therefore not shown.

The principle of virtual work requires that the total work of all
external active forces be zero for any virtual displacement consistent
with the constraints. Thus, for a movement dx the virtual work becomes
[6U = 0] Péx+2mgdéh=0 O
We now express each of these virtual displacements in terms of the
variable 6, the required quantity. Hence,

x =2l sing and 5x=lcos§59

Similarly,

5h=—£sin956 @

—Acosg and
T2 2 4 2

Substitution into the equation of virtual work gives us

0 I . 0
Plcos§56—2mgzsm256—0

from which we get

tan o = 2P or 0=2tan"?! 2P Ans.
2 mg mg

To obtain this result by the principles of force and moment summa-
tion, it would be necessary to dismember the frame and take into
account all forces acting on each member. Solution by the method of
virtual work involves a simpler operation.

HELPFUL HINTS
® Note carefully that with x positive to the

right dx is also positive to the right in
the direction of P, so that the virtual
work is P(+6x). With A positive down 6h
is also mathematically positive down in
the direction of mg, so that the correct
mathematical expression for the work is
mg(+6h). When we express 6h in terms
of 80 in the next step, 6h will have a
negative sign, thus bringing our mathe-
matical expression into agreement with
the physical observation that the weight
mg does negative work as each center of
mass moves upward with an increase in
x and 6.

We obtain 6k and 6x with the same
mathematical rules of differentiation
with which we may obtain dh and dx.
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SAMPLE PROBLEM 7/2

The mass m is brought to an equilibrium position by the application of
the couple M to the end of one of the two parallel links which are hinged
as shown. The links have negligible mass, and all friction is assumed to
be absent. Determine the expression for the equilibrium angle 6 as-
sumed by the links with the vertical for a given value of M. Consider
the alternative of a solution by force and moment equilibrium.

Solution The active-force diagram shows the weight mg acting
through the center of mass G and the couple M applied to the end of the
link. There are no other external active forces or moments which do
work on the system during a change in the angle 6.

The vertical position of the center of mass G is designated by the
distance & below the fixed horizontal reference line and is 2 = b cos 6 + c.
The work done by mg during a movement 84 in the direction of mg is

+mg 6h =mg 8(b cos 6 + ¢)
=mg(—b sin 6 66 + 0)
= —mgb sin 6 66

The minus sign shows that the work is negative for a positive value of
86.® The constant ¢ drops out since its variation is zero.

With 6 measured positive in the clockwise sense, 89 is also positive
clockwise. Thus, the work done by the clockwise couple M is +M 6.
Substitution into the virtual-work equation gives us

[6U = 0] M 80 +mgSh=0
which yields

M 66 = mgb sin 6 86

M
6 =sin"! migb Ans.

Inasmuch as sin 6 cannot exceed unity, we see that for equilibrium, M
is limited to values that do not exceed mgb.

The advantage of the virtual-work solution for this problem is
readily seen when we observe what would be involved with a solution
by force and moment equilibrium. For the latter approach, it would be
necessary for us to draw separate free-body diagrams of all of the three
moving parts and account for all of the internal reactions at the pin con-
nections. To carry out these steps, it would be necessary for us to include
in the analysis the horizontal position of G with respect to the attach-
ment points of the two links, even though reference to this position
would finally drop out of the equations when they were solved. We
conclude, then, that the virtual-work method in this problem deals
directly with cause and effect and avoids reference to irrelevant
quantities.

HELPFUL HINT

® Again, as in Sample Problem 7/1, we are
consistent mathematically with our defi-
nition of work, and we see that the alge-
braic sign of the resulting expression
agrees with the physical change.
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SAMPLE PROBLEM 7/3

For link OA in the horizontal position shown, determine the force P on
the sliding collar which will prevent OA from rotating under the action
of the couple M. Neglect the mass of the moving parts.

Solution The given sketch serves as the active-force diagram for the
system. All other forces are either internal or nonworking reactive
forces due to the constraints.

We will give the crank OA a small clockwise angular movement 56
as our virtual displacement and determine the resulting virtual work
done by M and P. From the horizontal position of the crank, the angular
movement gives a downward displacement of A equal to

dy=ad6 @

where 86 is, of course, expressed in radians.
From the right triangle for which link AB is the constant hypote-
nuse we may write

br=a%+y°
We now take the differential of the equation and get

0O=2x0ox+2d or ox=-23 O
Thus,
y
5x=—5a56

and the virtual-work equation becomes

[6U = 0] M&6+Péx=0 M56+P<—%a56>=0 ®
== Ans.

Again, we observe that the virtual-work method produces a direct
relationship between the active force P and the couple M without in-
volving other forces which are irrelevant to this relationship. Solution
by the force and moment equations of equilibrium, although fairly sim-
ple in this problem, would require accounting for all forces initially and
then eliminating the irrelevant ones.

HELPFUL HINTS

@ Note that the displacement a 66 of point
A would no longer equal 8y if the crank
OA were not in a horizontal position.

® The length b is constant so that
b = 0. Notice the negative sign, which
merely tells us that if one change is
positive, the other must be negative.

® We could just as well use a counterclock-
wise virtual displacement for the crank,
which would merely reverse the signs of
all terms.
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714 | Potential Energy and Stability

The previous article treated the equilibrium configuration of mechanical systems
composed of individual members which we assumed to be perfectly rigid. We now
extend our method to account for mechanical systems which include elastic ele-
ments in the form of springs. We introduce the concept of potential energy, which is
useful for determining the stability of equilibrium.

Elastic Potential Energy

The work done on an elastic member is stored in the member in the form of elastic
potential energy V,. This energy is potentially available to do work on some other
body during the relief of its compression or extension.

Consider a spring, Fig. 7/11, which is being compressed by a force F. We assume
that the spring is elastic and linear, which means that the force F is directly propor-
tional to the deflection x. We write this relation as F' = kx, where £ is the spring
constant or stiffness of the spring. The work done on the spring by ¥ during a move-
ment dx is dU = F dx, so that the elastic potential energy of the spring for a com-
pression x is the total work done on the spring

Ve:f Fdx:f kx dx
0 0

or V, = 2kx? (7/4)

Thus, the potential energy of the spring equals the triangular area in the diagram
of F versus x from 0 to x.

|<—— Uncompressed length———] During an increase in the compression of the spring from x; to x,, the

W work done on the spring equals its change in elastic potential energy or

AV, = f kx dx = Sh(x,? - 5,%)

<x1>‘ which equals the trapezoidal area from x; to xs.

During a virtual displacement éx of the spring, the virtual work
done on the spring is the virtual change in elastic potential energy

6V, =F éx = kx 6x

Fy émmmmmﬂ‘ During a decrease in the compression of the spring as it is relaxed

from x = x5 to x = x1, the change (final minus initial) in the potential en-
ergy of the spring is negative. Consequently, if dx is negative, 8V, is also
negative.

When we have a spring in tension rather than compression, the work
and energy relations are the same as those for compression, where x now
represents the elongation of the spring rather than its compression.

8V, = kxbx While the spring is being stretched, the force again acts in the direction

of the displacement, doing positive work on the spring and increasing its
potential energy.

F z
$ 7
F2 7777777
F 77777
Fy —
e
OO X1 X9
}%x% ox

FIGURE 7/11

Because the force acting on the movable end of a spring is the nega-
tive of the force exerted by the spring on the body to which its movable
end is attached, the work done on the body is the negative of the potential
energy change of the spring.
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A torsional spring, which resists the rotation of a shaft or another element,
can also store and release potential energy. If the torsional stiffness, expressed
as torque per radian of twist, is a constant &, and if 6 is the angle of twist in
radians, then the resisting torque is M = k6. The potential energy becomes V, =
fs kr6 d6 or

(7/4a)

which is analogous to the expression for the linear extension spring.
The units of elastic potential energy are the same as those of work and are
expressed in joules (J) in SI units and in foot-pounds (ft-1b) in U.S. customary units.

Gravitational Potential Energy

In the previous article we treated the work of a gravitational force or weight
acting on a body in the same way as the work of any other active force. Thus, for
an upward displacement 8h of the body in Fig. 7/12 the weight W = mg does
negative work U = —mg 6h. If, on the other hand, the body has a downward
displacement 8k, with A measured positive downward, the weight
does positive work U = +mg Sh.

An alternative to the foregoing treatment expresses the work
done by gravity in terms of a change in potential energy of the body.
This alternative treatment is a useful representation when we de-
scribe a mechanical system in terms of its total energy. The gravita-
tional potential energy V, of a body is defined as the work done on the
body by a force equal and opposite to the weight in bringing the body
to the position under consideration from some arbitrary datum plane
where the potential energy is defined to be zero. The potential energy,
then, is the negative of the work done by the weight. When the body
is raised, for example, the work done is converted into energy which
is potentially available, since the body can do work on some other
body as it returns to its original lower position. If we take V, to be
zero at h = 0, Fig. 7/12, then at a height & above the datum plane, the
gravitational potential energy of the body is

V, = mgh (7/5)

If the body is a distance & below the datum plane, its gravitational
potential energy is —mgh.

Note that the datum plane for zero potential energy is arbitrary
because only the change in potential energy matters, and this change
is the same no matter where we place the datum plane. Note also that
the gravitational potential energy is independent of the path followed
in arriving at a particular level A. Thus, the body of mass m in Fig.
7/13 has the same potential-energy change no matter which path it
follows in going from datum plane 1 to datum plane 2 because Ah is
the same for all three paths.

The virtual change in gravitational potential energy is simply

6V, = mg Sh

—— Datum plane

Iy oU = -Wéh
L oh or
6V, = +Wéh
w +h
v,=0

+h alternative

FIGURE 7/12

Reference datum

FIGURE 7/13

Ah
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where 8h is the upward virtual displacement of the mass center of the body. If the
mass center has a downward virtual displacement, then §V, is negative.

The units of gravitational potential energy are the same as those for work and
elastic potential energy, joules (J) in SI units and foot-pounds (ft-1b) in U.S. custom-
ary units.

Energy Equation

We saw that the work done by a linear spring on the body to which its movable
end is attached is the negative of the change in the elastic potential energy of
the spring. Also, the work done by the gravitational force or weight mg is the
negative of the change in gravitational potential energy. Therefore, when we
apply the virtual-work equation to a system with springs and with changes in
the vertical position of its members, we may replace the work of the springs and
the work of the weights by the negative of the respective potential energy
changes.

We can use these substitutions to write the total virtual work §U in Eq. 7/3 as
the sum of the work U’ done by all active forces, other than spring forces and
weight forces, and the work —(6V, + 6V,) done by the spring and weight forces. Equa-
tion 7/3 then becomes

oU" — (8V,+6V,) =0 or oU' =6V (7/6)

where V =V, + V, stands for the total potential energy of the system. With this
formulation a spring becomes internal to the system, and the work of spring and
gravitational forces is accounted for in the §V term.

Active-Force Diagrams

With the method of virtual work it is useful to construct the active-force dia-
gram of the system you are analyzing. The boundary of the system must clearly
distinguish those members which are part of the system from other bodies
which are not part of the system. When we include an elastic member within
the boundary of our system, the forces of interaction between it and the mov-
able members to which it is attached are internal to the system. Thus these
forces need not be shown because their effects are accounted for in the V, term.
Similarly, weight forces are not shown because their work is accounted for in
the V, term.

Figure 7/14 illustrates the difference between the use of Egs. 7/3 and 7/6. We
consider the body in part a of the figure to be a particle for simplicity, and we as-
sume that the virtual displacement is along the fixed path. The particle is in equi-
librium under the action of the applied forces F; and F,, the gravitational force mg,
the spring force kx, and a normal reaction force. In Fig. 7/14b, where the particle
alone is isolated, U includes the virtual work of all forces shown on the active-
force diagram of the particle. (The normal reaction exerted on the particle by the
smooth guide does no work and is omitted.) In Fig. 7/14¢ the spring is included in
the system, and U’ is the virtual work of only F; and F,, which are the only
external forces whose work is not accounted for in the potential-energy terms. The
work of the weight mg is accounted for in the §V, term, and the work of the spring
force is included in the &V, term.
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FIGURE 7/14

Principle of Virtual Work

(@)

Eq. 7/6: 8U = 6V, + 6V, = 6V

(c)
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Thus, for a mechanical system with elastic members and members which undergo
changes in position, we may restate the principle of virtual work as follows:

The virtual work done by all external active forces (other than the gravi-
tational and spring forces accounted for in the potential energy terms)
on a mechanical system in equilibrium equals the corresponding change
in the total elastic and gravitational potential energy of the system for
any and all virtual displacements consistent with the constraints.

Stability of Equilibrium

Consider now the case of a mechanical system where movement is accompanied by
changes in gravitational and elastic potential energies and where no work is done
on the system by nonpotential forces. The mechanism treated in Sample Problem 7/6
is an example of such a system. With §U’ = 0 the virtual-work relation, Eq. 7/6,

becomes

8(V, +V,) =0

or

V=0

(7/7)

Equation 7/7 expresses the requirement that the equilibrium configuration of a me-
chanical system is one for which the total potential energy V of the system has a
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QD QD

Stable Unstable Neutral

FIGURE 7/15

stationary value. For a system of one degree of freedom where the potential energy
and its derivatives are continuous functions of the single variable, say, x, which de-
scribes the configuration, the equilibrium condition §V = 0 is equivalent mathemat-
ically to the requirement

av

s (7/8)

Equation 7/8 states that a mechanical system is in equilibrium when the derivative
of its total potential energy is zero. For systems with several degrees of freedom the
partial derivative of V with respect to each coordinate in turn must be zero for
equilibrium.*

There are three conditions under which Eq. 7/8 applies, namely, when the total
potential energy is a minimum (stable equilibrium), a maximum (unstable equilib-
rium), or a constant (neutral equilibrium). Figure 7/15 shows a simple example of
these three conditions. The potential energy of the roller is clearly a minimum in the
stable position, a maximum in the unstable position, and a constant in the neutral
position.

We may also characterize the stability of a mechanical system by noting that a
small displacement away from the stable position results in an increase in poten-
tial energy and a tendency to return to the position of lower energy. On the other
hand, a small displacement away from the unstable position results in a decrease
in potential energy and a tendency to move farther away from the equilibrium posi-
tion to one of still lower energy. For the neutral position a small displacement one
way or the other results in no change in potential energy and no tendency to move
either way.

When a function and its derivatives are continuous, the second derivative is
positive at a point of minimum value of the function and negative at a point of
maximum value of the function. Thus, the mathematical conditions for equilibrium
and stability of a system with a single degree of freedom x are:

Equilibrium v =0
dx
d*v
Stabl — >0 7/9
able I (7/9)
d’v
Unstable w <0

The second derivative of V may also be zero at the equilibrium position, in which case
we must examine the sign of a higher derivative to ascertain the type of equilibrium.

*For examples of two-degree-of-freedom systems, see Art. 43, Chapter 7, of the first author’s
Statics, 2nd Edition, SI Version, 1975.



Article 7/4 Potential Energy and Stability 193

When the order of the lowest remaining nonzero derivative is even, the equilibrium
will be stable or unstable according to whether the sign of this derivative is positive
or negative. If the order of the derivative is odd, the equilibrium is classified as un-
stable, and the plot of V versus x for this case appears as an inflection point in the
curve with zero slope at the equilibrium value.

Stability criteria for multiple degrees of freedom require more advanced treat-
ment. For two degrees of freedom, for example, we use a Taylor-series expansion for
two variables.

Tracey Whitefoot/Alamy Stock Photo

These lift platforms are examples of the type of structures which can be most easily
analyzed with a virtual-work approach.
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SAMPLE PROBLEM 7/4

The 10-kg cylinder is suspended by the spring, which has a stiffness of
2 kN/m. Plot the potential energy V of the system and show that it is
minimum at the equilibrium position.

Solution (Although the equilibrium position in this simple problem
is clearly where the force in the spring equals the weight mg, we will
proceed as though this fact were unknown in order to illustrate the en-
ergy relationships in the simplest way.) We choose the datum plane for
zero potential energy at the position where the spring is unextended. ®

The elastic potential energy for an arbitrary position x is V, = §kx2
and the gravitational potential energy is —mgx, so that the total poten-
tial energy is

V=V,+V,] V= 1ka® - mgx
Equilibrium occurs where

av av
s ] a—kx—mg—o x =mg/k

Although we know in this simple case that the equilibrium is sta-
ble, we prove it by evaluating the sign of the second derivative of V at
the equilibrium position. Thus, d?V/dx® = k, which is positive, proving
that the equilibrium is stable.

Substituting numerical values gives

V = 2(2000)2% — 10(9.81)x
expressed in joules, and the equilibrium value of x is
x = 10(9.81)/2000 = 0.0490 m or 49.0 mm Ans.

We calculate V for various values of x and plot V versus x as shown.
The minimum value of V occurs at x = 0.0490 m where dV/dx = 0 and
d?V/dx? is positive. @

k =2kN/m
V=0
ix
A
m =10 kg

0 A x,
0.02 0.04; 0.06 O.M.m

X, m

HELPFUL HINTS

€}

©}

The choice is arbitrary but simplifies the
algebra.

We could have chosen different datum
planes for V, and V, without affecting
our conclusions. Such a change would
merely shift the separate curves for V,
and V, up or down but would not affect
the position of the minimum value of V.
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SAMPLE PROBLEM 7/5

The two uniform links, each of mass m, are in the vertical plane and are
connected and constrained as shown. As the angle 6 between the links
increases with the application of the horizontal force P, the light rod,
which is connected at A and passes through a pivoted collar at B, com-
presses the spring of stiffness k. If the spring is uncompressed in the
position where 6 = 0, determine the force P which will produce equilib-
rium at the angle 6.

Solution The given sketch serves as the active-force diagram of the
system. The compression x of the spring is the distance which A has
moved away from B, which is x = 2b sin 6/2. Thus, the elastic potential
energy of the spring is

1 1 . 6)\?2 .0
[V, = gkx?] V, =gk <2b sin 5) = 2kb? sin® 5

With the datum for zero gravitational potential energy taken
through the support at O for convenience, the expression for V, becomes

[V, = mghl V,=2mg <—b cos g)

The distance between O and C is 4b sin 6/2, so that the virtual work
done by P is

dU' =P5& <4b sin g) = 2Pb cosgée
The virtual-work equation now gives
[6U" =46V, + 8V,]

2Pb cos g 56=46 (Zkb2 sin? g) +6 (—ngb cos g)

0 0 ]
- 20 e .
= 2kb” sin g Cos 5 86 + mgb sin 9 86
Simplifying gives finally

) )
P =Fkb sin 3 + %mg tan 3 Ans.

If we had been asked to express the equilibrium value of 6 corre-
sponding to a given force P, we would have difficulty solving explicitly
for 6 in this particular case. But for a numerical problem we could resort
to a computer solution and graphical plot of numerical values of the
sum of the two functions of 6 to determine the value of 6 for which the
sum equals P.
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SAMPLE PROBLEM 7/6

The ends of the uniform bar of mass m slide freely in the horizontal and
vertical guides. Examine the stability conditions for the positions of
equilibrium. The spring of stiffness % is undeformed when x = 0.

Solution The system consists of the spring and the bar. Since there
are no external active forces, the given sketch serves as the active-force
diagram. ® We will take the x-axis as the datum for zero gravitational
potential energy. In the displaced position the elastic and gravitational
potential energies are

V,=tka® = 1kb%sin®6  and  V,=mg g cos 6

The total potential energy is then
V=V, +V,=1kb?sin’ 6 + Smgb cos 6
Equilibrium occurs for dV/d6 = 0 so that

% = kb?sin 0 cos 6 — %mgb sin @ = (kb? cos 6 — %mgb) sin6=0

The two solutions to this equation are given by

sin@=0 and cos@-% @

We now determine the stability by examining the sign of the second
derivative of V for each of the two equilibrium positions. The second
derivative is

d*v

W = kb%(cos? 6 — sin? ) — %mgb cos 6

=kb%(2cos?6-1) — %mgb cos 6

SolutionI sin6=0,6=0

d?v 9 1 9 ( mg)
7 =kb*(2-1) - 5mgb =kb 1_2kb

= positive (stable) if & > mg/2b
= negative (unstable) if 2 < mg/2b Ans.

Thus, if the spring is sufficiently stiff, the bar will return to the vertical
position even though there is no force in the spring at that position. ®

1 mg

Solution IT cos 0= 2 9= cos™! &
olution COS = y = COS 2kb

2kb

23 |- e(22) 3

J kb [2 <2kb - 1] - 3mgb orb ) = kb [ b ) 1] Ans.
Since the cosine must be less than unity, we see that this solution is
limited to the case where & > mg/2b, which makes the second deriva-
tive of V negative. Thus, equilibrium for Solution II is never stable. @ If

k < mg/2b, we no longer have Solution II since the spring will be too
weak to maintain equilibrium at a value of 6 between 0 and 90°.

T )«

x — — — (A MWWIWIWWIWIWWIWWS

i

HELPFUL HINTS

® With no external active forces there is
no SU’ term, and 8V = 0 is equivalent to
dVv/de = 0.

@ Be careful not to overlook the solution
6 =0 given by sin 6 = 0.

® We might not have anticipated this re-
sult without the mathematical analysis
of the stability.

® Again, without the benefit of the math-
ematical analysis of the stability we
might have supposed erroneously that
the bar could come to rest in a stable
equilibrium position for some value of 6
between 0 and 90°.
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In this chapter we have developed the principle of vir-
tual work. This principle is useful for determining the
possible equilibrium configurations of a body or a sys-
tem of interconnected bodies where the external forces
are known. To apply the method successfully, you must
understand the concepts of virtual displacement, degrees
of freedom, and potential energy.

Method of Virtual Work

When various configurations are possible for a body or a
system of interconnected bodies under the action of ap-
plied forces, we can find the equilibrium position by ap-
plying the principle of virtual work. When using this
method, keep the following in mind.

1. The only forces which need to be considered when
determining the equilibrium position are those
which do work (active forces) during the assumed
differential movement of the body or system away
from its equilibrium position.

2. Those external forces which do no work (reactive
forces) need not be involved.

3. For this reason the active-force diagram of the body
or system (rather than the free-body diagram) is use-
ful to focus attention on only those external forces
which do work during the virtual displacements.

Virtual Displacements

A virtual displacement is a first-order differential
change in a linear or angular position. This change is
fictitious in that it is an assumed movement which need
not take place in reality. Mathematically, a virtual dis-
placement is treated the same as a differential change
in an actual movement. We use the symbol & for the dif-
ferential virtual change and the usual symbol d for the
differential change in a real movement.
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Relating the linear and angular virtual displace-
ments of the parts of a mechanical system during a vir-
tual movement consistent with the constraints is often
the most difficult part of the analysis. To do this,

1. Write the geometric relationships which describe
the configuration of the system.

2. Establish the differential changes in the posi-
tions of parts of the system by differentiating the
geometric relationship to obtain expressions for
the differential virtual movements.

Degrees of Freedom

In Chapter 7 we have restricted our attention to mech-
anical systems for which the positions of the members
can be specified by a single variable (single-degree-of-
freedom systems). For two or more degrees of freedom,
we would apply the virtual-work equation as many
times as there are degrees of freedom, allowing one
variable to change at a time while holding the remain-
ing ones constant.

Potential Energy Method

The concept of potential energy, both gravitational (V,)
and elastic (V,), is useful in solving equilibrium prob-
lems where virtual displacements cause changes in the
vertical positions of the mass centers of the bodies and
changes in the lengths of elastic members (springs). To
apply this method,

1. Obtain an expression for the total potential energy
V of the system in terms of the variable which spec-
ifies the possible position of the system.

2. Examine the first and second derivatives of V to
establish, respectively, the position of equilibrium
and the corresponding stability condition.
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A/4 Products of Inertia and Rotation of Axes

a1 | Introduction

When forces are distributed continuously over an area on which they act, it is often
necessary to calculate the moment of these forces about some axis either in or per-
pendicular to the plane of the area. Frequently the intensity of the force (pressure
or stress) is proportional to the distance of the line of action of the force from the
moment axis. The elemental force acting on an element of area, then, is propor-
tional to distance times differential area, and the elemental moment is propor-
tional to distance squared times differential area. We see, therefore, that the total
moment involves an integral of form [ (distance)? d (area). This integral is called
the moment of inertia or the second moment of the area. The integral is a function
of the geometry of the area and occurs frequently in the applications of mechanics.
Thus it is useful to develop its properties in some detail and to have these proper-
ties available for ready use when the integral arises.

Figure A/1 illustrates the physical origin of these integrals. In part a of the
figure, the surface area ABCD is subjected to a distributed pressure p whose in-
tensity is proportional to the distance y from the axis AB. This situation was
treated in Art. 5/9 of Chapter 5, where we described the action of liquid pressure
on a plane surface. The moment about AB due to the pressure on the element of
area dA is py dA = ky? dA. Thus, the integral in question appears when the total
moment M =k [ y? dA is evaluated.

In Fig. A/1b we show the distribution of stress acting on a transverse section
of a simple elastic beam bent by equal and opposite couples applied to its ends. At
any section of the beam, a linear distribution of force intensity or stress o, given by
o = ky, is present. The stress is positive (tensile) below the axis O-O and negative
(compressive) above the axis. We see that the elemental moment about the axis
0-0 is dM = y(c dA) = ky* dA. Thus, the same integral appears when the total mo-

198 ment M =k [ y* dA is evaluated.



A third example is given in Fig. A/le, which shows a circular shaft sub-
jected to a twist or torsional moment. Within the elastic limit of the material,
this moment is resisted at each cross section of the shaft by a distribution of
tangential or shear stress 7, which is proportional to the radial distance r from
the center. Thus, T = kr, and the total moment about the central axis is M =
[ r(t dA) =k [ r* dA. Here the integral differs from that in the preceding two
examples in that the area is normal instead of parallel to the moment axis and
in that r is a radial coordinate instead of a rectangular one.

Although the integral illustrated in the preceding examples is generally
called the moment of inertia of the area about the axis in question, a more fitting
term is the second moment of area, since the first moment y dA is multiplied by
the moment arm y to obtain the second moment for the element dA. The word
inertia appears in the terminology by reason of the similarity between the math-
ematical form of the integrals for second moments of areas and those for the
resultant moments of the so-called inertia forces in the case of rotating bodies.
The moment of inertia of an area is a purely mathematical property of the area
and in itself has no physical significance.

a2 | Definitions

The following definitions form the basis for the analysis of area moments of inertia.

Rectangular and Polar Moments of Inertia

Consider the area A in the x-y plane, Fig. A/2. The moments of inertia of the
element dA about the x- and y-axes are, by definition, dI, = y* dA and dl, =
x% dA, respectively. The moments of inertia of A about the same axes are therefore

g:fﬁdA
(A/1)
g:thm

where we carry out the integration over the entire area.
The moment of inertia of dA about the pole O (z-axis) is, by similar defini-
tion, dI, = r> dA. The moment of inertia of the entire area about O is

I = f r? dA (A/2)

The expressions defined by Eqs. A/1 are called rectangular moments of
inertia, whereas the expression of Eq. A/2 is called the polar moment of
inertia.* Because x* + y* = 1%, it is clear that

L=I+I, (A/3)

For an area whose boundaries are more simply described in rectangular
coordinates than in polar coordinates, its polar moment of inertia is easily

calculated with the aid of Eq. A/3. 0
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A

FIGURE A/1

.............. FIGURE A/2

*The polar moment of inertia of an area is sometimes denoted in mechanics literature
by the symbol .
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The moment of inertia of an element involves the square of the distance from the
inertia axis to the element. Thus an element whose coordinate is negative contributes
as much to the moment of inertia as does an equal element with a positive coordinate
of the same magnitude. Consequently the area moment of inertia about any axis is
always a positive quantity. In contrast, the first moment of the area, which was in-
volved in the computations of centroids, could be either positive, negative, or zero.

The dimensions of moments of inertia of areas are clearly L* where L stands for
the dimension of length. Thus, the SI units for area moments of inertia are expressed
as quartic meters (m*) or quartic millimeters (mm®). The U.S. customary units for
area moments of inertia are quartic feet (ft*) or quartic inches (in.*).

The choice of the coordinates to use for the calculation of moments of inertia is
important. Rectangular coordinates should be used for shapes whose boundaries are
most easily expressed in these coordinates. Polar coordinates will usually simplify
problems involving boundaries which are easily described in r and 6. The choice of an
element of area which simplifies the integration as much as possible is also impor-
tant. These considerations are quite analogous to those we discussed and illustrated
in Chapter 5 for the calculation of centroids.

Radius of Gyration

Consider an area A, Fig. A/3a, which has rectangular moments of inertia I, and I,
and a polar moment of inertia I, about O. We now visualize this area as concen-
trated into a long narrow strip of area A a distance &, from the x-axis, Fig. A/3b. By
definition the moment of inertia of the strip about the x-axis will be the same as
that of the original area if £,2A = I,. The distance &, is called the radius of gyration
of the area about the x-axis. A similar relation for the y-axis is written by consider-
ing the area as concentrated into a narrow strip parallel to the y-axis as shown in
Fig. A/3c. Also, if we visualize the area as concentrated into a narrow ring of ra-
dius %, as shown in Fig. A/3d, we may express the polar moment of inertia as
kA =I,. In summary we write

I=Fk2A k.= IJA
I,=k’A | or k, = I, /A (A/4)
L=Fk2A k.= +L/A

The radius of gyration, then, is a measure of the distribution of the area from the
axis in question. A rectangular or polar moment of inertia may be expressed by
specifying the radius of gyration and the area.

When we substitute Eqgs. A/4 into Eq. A/3, we have

k2 =k + k> (A/5)
y
% ‘*V =
\ }ekyﬂ
\ y |
| A \ A
o — | ——
| b e
- L _ 1,

(@) b) () d)
FIGURE A/3



Thus, the square of the radius of gyration about a polar axis equals the sum of the
squares of the radii of gyration about the two corresponding rectangular axes.

Do not confuse the coordinate to the centroid C of an area with the radius of
gyration. In Fig. A/3a the square of the centroidal distance from the x-axis, for
example, is y2, which is the square of the mean value of the distances from the ele-
ments of the area to the x-axis. The quantity %,2, on the other hand, is the mean of
the squares of these distances. The moment of inertia is not equal to Ay?, since the
square of the mean is less than the mean of the squares.

Transfer of Axes

The moment of inertia of an area about a noncentroidal axis may be
easily expressed in terms of the moment of inertia about a parallel
centroidal axis. In Fig. A/4 the x,-y, axes pass through the centroid
C of the area. Let us now determine the moments of inertia of the
area about the parallel x-y axes. By definition, the moment of iner-
tia of the element dA about the x-axis is

dl, = (yo +d,)*dA

Expanding and integrating give us
Ix=fy02dA +2dxfy0dA +dx2fdA

We see that the first integral is by definition the moment of inertia I, about the

centroidal x,-axis. The second integral is zero, since [y, dA = Ay, and y, is automati-

cally zero with the centroid on the x;-axis. The third term is simply Ad, 2. Thus, the
expression for I, and the similar expression for I, become

I.=1I +Ad?
_ ) (A/6)
I,=1,+Ad,
By Eq. A/3 the sum of these two equations gives
I =1+ Ad? (A/6a)

Equations A/6 and A/6a are the so-called parallel-axis theorems. Two points in
particular should be noted. First, the axes between which the transfer is made
must be parallel, and second, one of the axes must pass through the centroid of
the area.

If a transfer is desired between two parallel axes neither of which passes
through the centroid, it is first necessary to transfer from one axis to the parallel
centroidal axis and then to transfer from the centroidal axis to the second axis.

The parallel-axis theorems also hold for radii of gyration. With substitution of
the definition of £ into Eqs. A/6, the transfer relation becomes

k2 =Fk% + d2 (A/6b)

where £ is the radius of gyration about a centroidal axis parallel to the axis about
which % applies and d is the distance between the two axes. The axes may be either
in the plane or normal to the plane of the area.

A summary of the moment-of-inertia relations for some common plane figures
is given in Table D/3, Appendix D.
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SAMPLE PROBLEM A/1

Determine the moments of inertia of the rectangular area about the
centroidal xy- and y,-axes, the centroidal polar axis z, through C, the
x-axis, and the polar axis z through O.

Solution For the calculation of the moment of inertia I, about the
xp-axis, a horizontal strip of area b dy is chosen so that all elements of
the strip have the same y-coordinate. ® Thus,

B h/2
I, = f y2 dA] L=| y%dy=-2Lbm Ans.
2 12

By interchange of symbols, the moment of inertia about the centroidal
Yyo-axis is

7 1

I,= ﬁhb3 Ans.
The centroidal polar moment of inertia is
T -7 47T 7 173 3y L Acp2 ., 2
=1 +1I] I = 5(bh” + hb®) = 5 A(b* + h%) Ans.

By the parallel-axis theorem, the moment of inertia about the x-axis is
-7 2 _ 143 h ? _ 1323 _1,32
I, =1, + Ad,”] I, = {5bh +bh<2> =3bh" = 3Ah Ans.

We also obtain the polar moment of inertia about O by the parallel-axis

theorem, which gives us
b\? h\?2
)+ ()]

L=3A®% +h?) Ans.

I, = I, + Ad? = AG R + A

yoow
\ |

i oy

L —

2 ]

h

2

\L (0} —X

HELPFUL HINT

® If we had started with the second-order
element dA = dx dy, integration with
respect to x holding y constant amounts
simply to multiplication by & and gives us
the expression y®b dy, which we chose at
the outset.

SAMPLE PROBLEM A/2

Determine the moments of inertia of the triangular area about its base
and about parallel axes through its centroid and vertex.

Solution A strip of area parallel to the base is selected as shown in
the figure, and it has the area dA = x dy = [(h — y)b/h]l dy. ® @ By
definition

h—y

Ans.

A
4h

h 3
y
— 2 — 2 — < Z —
[Ix—jy dA] Ix—joy bdy—b[3 T 12

By the parallel-axis theorem, the moment of inertia I about an axis
through the centroid, a distance #/3 above the x-axis, is

- - bh? bh\(h\2 bh?
= —_ 2 = — — —_— — = —
[I=1 - Ad9] I 12 <2><3) 36 Ans.

A transfer from the centroidal axis to the x'-axis through the vertex
gives

- bh? bh\[(2h\%* bR®
_ 2 _on or(feh) _on
=1+ Ad] Ix,_36+<2><3> =" Ans.

77777 r——X

HELPFUL HINTS

® Here again we choose the simplest possi-
ble element. If we had chosen dA = dx dy,
we would have to integrate y* dx dy with
respect to x first. This gives us y* dy,
which is the expression we chose at the
outset.

@ Expressing x in terms of ¥ should cause
no difficulty if we observe the propor-
tional relationship between the similar
triangles.
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SAMPLE PROBLEM A/3

Calculate the moments of inertia of the area of a circle about a diame-
tral axis and about the polar axis through the center. Specify the radii
of gyration.

Solution A differential element of area in the form of a circular ring
may be used for the calculation of the moment of inertia about the po-
lar z-axis through O since all elements of the ring are equidistant from
0.® The elemental area is dA = 27r dry, and thus,

" 4
[Iz = f 72 dA] IZ = f ,.02(27”,0 dro) _ r _ %Arz s
0

2

The polar radius of gyration is

[k:\/z] kz:% Ans.

By symmetry I, = I, so that from Eq. A/3

77.'7'4

1
IL=I+1I) L=3L="=

1 Ar? Ans.

=

The radius of gyration about the diametral axis is

i

The foregoing determination of I is the simplest possible. The re-
sult may also be obtained by direct integration, using the element of
area dA = ry dry d9 shown in the lower figure. By definition

Ans.

DO | N

27 pr
[IxznydA] IxIJ f (7'0 sin e)zrodrode
o Jo
27 4 i 2
r*sin” 6
_fo Td@
rt1 [ sinZO]Z” 4
LA - N e Ans.
42 2 o 4

HELPFUL HINTS

® Polar coordinates are certainly indicated
here. Also, as before, we choose the sim-
plest and lowest-order element possible,
which is the differential ring. It should be
evident immediately from the definition
that the polar moment of inertia of the
ring is its area 271, dr, times 2.

@ This integration is straightforward, but
the use of Eq. A/3 along with the result
for I, is certainly simpler.




204 APPENDIX A Area Moments of Inertia

SAMPLE PROBLEM A/4

Determine the moment of inertia of the area under the parabola about
the x-axis. Solve by using (a) a horizontal strip of area and (b) a vertical
strip of area.

Solution The constant & = g is obtained first by substituting x = 4

and y = 3 into the equation for the parabola.

(a) Horizontal strip Since all parts of the horizontal strip are the
same distance from the x-axis, the moment of inertia of the strip about
the x-axis is y? dA where dA = (4 — x) dy = 4(1 — ¥¥/9) dy. Integrating
with respect to y gives us

8 y? 72
[, = fy2 dA] I = J:) 4y? (1 - 5) dy = 5= 14.4 (units)* Ans.
(b) Vertical strip Here all parts of the element are at different dis-
tances from the x-axis, so we must use the correct expressions for the
moment of inertia of the elemental rectangle about its base, which,
from Sample Problem A/1, is bh%3. For the width dx and the height y
the expression becomes

dI, = L(dx)y®

To integrate with respect to x, we must express y in terms of x, which
givesy = 3\/;5 /2, and the integral becomes

4 3 3
=1 f (\/’;> dx = 2 2144 (units)* © Ans.
3, (2 5

1
gl

I

9
22
%

I

I

|
0

0

Solution (a)

———x

Solution (b)

—— —x

N B

HELPFUL HINT

@ There is little preference between Solutions
(a) and (b). Solution (b) requires knowing
the moment of inertia for a rectangular
area about its base.

SAMPLE PROBLEM A/5

Find the moment of inertia about the x-axis of the semicircular area.

Solution The moment of inertia of the semicircular area about the
x’-axis is one-half of that for a complete circle about the same axis.
Thus, from the results of Sample Problem A/3,

We obtain the moment of inertia I about the parallel centroidal axis x,
next. Transfer is made through the distance r = 4r/(37) = (4)(20)/(37) =
80/(377) mm by the parallel-axis theorem. Hence,

2 2
I=I - Ad® I=2(10Y7 - (207”> (%) = 1.755(10%) mm*

Finally, we transfer from the centroidal xy-axis to the x-axis. ® Thus,

_ 2 2 2
[=1+Ad% I, =1755(10% + (%) (15 + %)

= 1.755(10%) + 34.7(10%) = 86.4(10Y) mm*  Ans.

HELPFUL HINT

® This problem illustrates the caution we
should observe in using a double trans-
fer of axes since neither the x'- nor the
x-axis passes through the centroid C of
the area. If the circle were complete
with the centroid on the x’ axis, only one
transfer would be needed.
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SAMPLE PROBLEM A/6

Calculate the moment of inertia about the x-axis of the area enclosed
between the y-axis and the circular arcs of radius ¢ whose centers are
at O and A.

Solution The choice of a vertical differential strip of area permits one
integration to cover the entire area. A horizontal strip would require
two integrations with respect to y by virtue of the discontinuity. The mo-
ment of inertia of the strip about the x-axis is that of a strip of height y,
minus that of a strip of height y,. Thus, from the results of Sample Prob-
lem A/1 we write

dI, = 5y, dx)ys® — (1 dx)y? = 5(35° - 3,%) dix

The values of y, and y; are obtained from the equations of the two
curves, which are x® + y,? = a® and (x — @)? + y,? = a?, and which give

ys=1a? —x?>andy; = Va? - (x —a)?.. @ Thus,
1 a/2
I = gf {(a2 —x2)va? —x? - [a® - (x — a)?Va® — (x — a)2} dx
0

Simultaneous solution of the two equations which define the two circles
gives the x-coordinate of the intersection of the two curves, which, by
inspection, is a/2. Evaluation of the integrals gives

4 2 3
a/2 4 \/5
_ 2 /2_ 2. 2 (VS T
f x“va® — x*dx 16<4 +3>

a/2 4 3
- a2mwc=z<\f+2ﬂ)
0

a/2 4 \/g
N2/ (e 2 a (Ve 7«
fo (x —a)Va® - (x —a) dx—8<8 +3)

Collection of the integrals with the factor of % gives

4
1= 3—6 (9v/3 — 27) = 0.0969a* Ans.

If we had started from a second-order element dA = dx dy, we would
write y? dx dy for the moment of inertia of the element about the x-axis.
Integrating from y; to y, holding x constant produces for the vertical
strip

Y2

at,= | [y | as=jost -y do

pa!

which is the expression we started with by having the moment-of-
inertia result for a rectangle in mind.

Yy
Iy
<= = dx
|
>
‘ N
N
| \
a \ \\
Iye
‘ \
1! \
\ \
\ \
L
,,,,,,,, {12
0 a/2 a

HELPFUL HINT

® We choose the positive signs for the rad-
icals here since both y; and y, lie above

the x-axis.
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a3 | Composite Areas

It is frequently necessary to calculate the moment of inertia of an area composed of
a number of distinct parts of simple and calculable geometric shape. Because a
moment of inertia is the integral or sum of the products of distance squared times
element of area, it follows that the moment of inertia of a positive area is always a
positive quantity. The moment of inertia of a composite area about a particular axis
is therefore simply the sum of the moments of inertia of its component parts about
the same axis. It is often convenient to regard a composite area as being composed
of positive and negative parts. We may then treat the moment of inertia of a nega-
tive area as a negative quantity.

When a composite area is composed of a large number of parts, it is convenient
to tabulate the results for each of the parts in terms of its area A, its centroidal
moment of inertia I, the distance d from its centroidal axis to the axis about which
the moment of inertia of the entire section is being computed, and the product Ad>.
For any one of the parts the moment of inertia about the desired axis by the
transfer-of-axis theorem is I + Ad®. Thus, for the entire section the desired moment
of inertia becomes I = I + ZAd>.

For such an area in the x-y plane, for example, and with the notation of Fig. A/4,
where I, is the same as I, and I, is the same as I, the tabulation would include

Part Area, A d, d Ad 2 Ad 2 I I

Yy x y

Sums TA TAd? | zAd? | =L, | =

From the sums of the four columns, then, the moments of inertia for the com-
posite area about the x- and y-axes become

I, =3I, + XAd,?
I, =3I, + LAd,*

Although we may add the moments of inertia of the individual parts of a compos-
ite area about a given axis, we may not add their radii of gyration. The radius of gyra-
tion for the composite area about the axis in question is given by k& = m, where 1
is the total moment of inertia and A is the total area of the composite figure. Simi-
larly, the radius of gyration & about a polar axis through some point equals /I,/A,
where I, = I, + I, for x-y axes through that point.
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SAMPLE PROBLEM A/7

Determine the moments of inertia about the x- and y-axes for the shad-
ed area. Make direct use of the expressions given in Table D/3 for the
centroidal moments of inertia of the constituent parts.

Solution The given area is subdivided into the three subareas
shown—a rectangular (1), a quarter-circular (2), and a triangular (3)
area. Two of the subareas are “holes” with negative areas. Centroidal B R
Xy — Yo axes are shown for areas (2) and (3), and the locations of cen- “40 mm%“lo mm%
troids C, and Cj are from Table D/3.

The following table will facilitate the calculations.

y
I Yo
[
¢a Fol
I
r [(2) ]
Ti.f — +Xg
C2 //
il Yo
P o)) |
/l/ i i
_713)
- 03‘ 10 mm ¥
i T N
7 =489 _ 1973 mm 4 40
3r 3
mm
A d, d, Ad,? Ad? I, I,
PART mm?2 mm mm mm* mm?* mm? mm?
6 6 1 3 1 3
1 80(60) 30 40 4.32(10°) 7.68(10°) E(80)(60) E(GO)(SO)
_1 2 _ _ 6 _ 6 N RN A POV U SN 2 POV
2 47r(30) (60 — 12.73) 12.73 1.579(10°) 0.1146(10°) <16 9;1)30 16~ 97 30
_1 30 _40) _ 6 _ 6 _1 3 _1 3
3 2(40)(30) 3 (80 3 ) 0.06(10°) 2.67(10°) 36 40(30) 36 (30)(40)
TOTALS 3490 2.68(106) 4.90(10%) 1.366(109) 2.46(10)

(I, =XI, + ZAd2 I, =1.366(10°) + 2.68(10°) = 4.05(10°) mm* Ans.
[, =21, + ZAd2] I, =2.46(10°) + 4.90(10°) = 7.36(10°) mm* Ans.

The following sample problem will determine I, by a different tech-
nique. For example, the area moment of inertia of subareas (1) and (3)
about the x-axis are commonly tabulated quantities. While the above so-
lution began with the centroidal moments of inertia of subareas (1) and
(3), the following sample problem will make more direct use of the tabu-
lated moments of inertia about the baselines.
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SAMPLE PROBLEM A/8

Calculate the moment of inertia and radius of gyration about the x-
axis for the shaded area shown. Wherever possible, make expedient use
of tabulated moments of inertia.

Solution The composite area is composed of the positive area of the
rectangle (1) and the negative areas of the quarter circle (2) and triangle
(3). For the rectangle the moment of inertia about the x-axis, from Sam-
ple Problem A/1 (or Table D/3), is

1_—Ah2 3(80)(60)(60)2 5.76(10°) mm*

From Sample Problem A/3 (or Table D/3), the moment of inertia of the
negative quarter-circular area about its base axis x’ is

1 (nrt 71 4 s 4
L. = ~2 < n > =16 (30)* = —-0.1590(10°) mm

We now transfer this result through the distance r = 4r/(37) =
4(30)/(37) = 12.73 mm by the transfer-of-axis theorem to get the cen-
troidal moment of inertia of part (2) (or use Table D/3 directly).

2
I=1I-Ad? ix=-0.1590(106)—[ ”(iO) (12. 73)2] @)

= —0.0445(10%) mm*

The moment of inertia of the quarter-circular part about the x-axis is
now

7(30)2

I=I+Ad% I ,=-0.0445(10°% + [ ] (60 — 12.73)2 @

= -1.624(10%) mm*

Finally, the moment of inertia of the negative triangular area (3) about
its base, from Sample Problem A/2 (or Table D/3), is

_ 13,3 1 3 _ 6 4
I, =- 12bh = - 12(40)(30) =-0.90(10°) mm

The total moment of inertia about the x-axis of the composite area
is, consequently,

I, =5.76(10%) — 1.624(10°%) — 0.09(10°) = 4.05(10%) mm* @ Ans.
This result agrees with that of Sample Problem A/7.

The net area of the figure is A = 60(80) — 71'(30)2 *(40)(30) =
3490 mm? so that the radius of gyration about the x-axis is

k. = \/IJA = \/4.05(10°)/3490 = 34.0 mm Ans.

o)

HELPFUL HINTS

® Note that we must transfer the moment
of inertia for the quarter-circular area to
its centroidal axis x, before we can trans-
fer it to the x-axis, as was done in Sample
Problem A/5.

® We watch our signs carefully here. Since
the area is negative, both I and A carry
negative signs.

® Always use common sense at key points
such as this. The two minus signs are
consistent with the fact that subareas
(2) and (3) reduce the numerical value of
the moment of inertia of the basic rect-
angular area.
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a4 | Products of Inertia and Rotation of Axes

In this article, we define the product of inertia with respect to rectangular axes and
develop the parallel-axis theorem for centroidal and noncentroidal axes. In addi-
tion, we discuss the effects of rotation of axes on moments and products of inertia.

Definition

In certain problems involving unsymmetrical cross sections and in the calculation
of moments of inertia about rotated axes, an expression dI,, = xy dA occurs, which
has the integrated form

I, = f xy dA (A/T)

where x and y are the coordinates of the element of area dA = dx dy. The quantity
L, is called the product of inertia of the area A with respect to the x-y axes. Unlike
moments of inertia, which are always positive for positive areas, the product of
inertia may be positive, negative, or zero.

The product of inertia is zero whenever either of the reference axes is an axis of
symmetry, such as the x-axis for the area in Fig. A/5. Here we see that the sum of the
terms x(—y) dA and x(+y) dA due to symmetrically placed elements vanishes. Because
the entire area may be considered as composed of pairs of such elements, it follows
that the product of inertia I, for the entire area is zero.

Transfer of Axes

By definition the product of inertia of the area A in Fig. A/4 with respect to the
x- and y-axes in terms of the coordinates x,, y, to the centroidal axes is

Ixy=f(x0+dy)(y0+dx) dA
=fx0y0dA+dxfx0dA+dyfy0dA+dxdyfdA

The first integral is by definition the product of inertia about the centroidal axes,
which we write as I,,. The middle two integrals are both zero because the first
moment of the area about its own centroid is necessarily zero. The fourth term is
merely d,d,A. Thus, the transfer-of-axis theorem for products of inertia becomes

IL,=1,+d.d,A (A/8)

FIGURE A/5

209
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i ©
s
y < 05 0

FIGURE A/6

Rotation of Axes

The product of inertia is useful when we need to calculate the
moment of inertia of an area about inclined axes. This consideration
leads directly to the important problem of determining the axes
about which the moment of inertia is a maximum and a minimum.

In Fig. A/6 the moments of inertia of the area about the x'- and
y'-axes are

Ix,=fy’2dA=f(ycos@—xsin@)sz

Iy,=fx'2dA=f(ysin6+xcos9)2dA

where x' and y’ have been replaced by their equivalent expressions as seen from
the geometry of the figure.
Expanding and substituting the trigonometric identities

sin? 0 — 1 —cos 20 c0s? 0 — 1+ cos 20

2 2

and the defining relations for I, I,, I, give us

IL.+1, I.-1,
I, = 2 + cos 26 — I, sin 26
(A/9)
IL.+1, I.-1,
I, = 5 cos 26 + I, sin 20

In a similar manner we write the product of inertia about the inclined axes as
Lo, = fx’y’ dA = f (y sin 6 + x cos 6)(y cos 6 — x sin ) dA
Expanding and substituting the trigonometric identities
sin 0 cos 6 = %sin 20 cos®> 6 — sin® 6 = cos 260

and the defining relations for I,, I,, I, give us

L., = "2 ~ sin 20 + I, cos 20 (A/9a)

xy

Adding Eqgs. A/9 gives I, + I, = I, + I, = I,, the polar moment of inertia about O,
which checks the results of Eq. A/3.

The angle which makes I, and I, either maximum or minimum may be deter-
mined by setting the derivative of either I, or I, with respect to 6 equal to zero.
Thus,

dI,
de

=, -1,)sin 26 — 2I,,cos 20 = 0

Denoting this critical angle by « gives

2I,,
T (A/10)

y x

tan 2a =
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Equation A/10 gives two values for 2a which differ by 7, since tan 2a = tan (2a + 7).
Consequently the two solutions for a will differ by 7/2. One value defines the axis
of maximum moment of inertia, and the other value defines the axis of minimum
moment of inertia. These two rectangular axes are called the principal axes of
inertia.

When we substitute Eq. A/10 for the critical value of 26 in Eq. A/9a, we see that
the product of inertia is zero for the principal axes of inertia. Substitution of sin 2«
and cos 2, obtained from Eq. A/10, for sin 20 and cos 26 in Egs. A/9 gives the expres-
sions for the principal moments of inertia as

IL+1, 1
Liw=—5—+5 V@~ LY + 4L

Lol (A/11)
Imin xz - _5 V(Ix_ly)2+41xy2

Mohr’s Circle of Inertia

We may represent the relations in Eqs. A/9, A/9a, A/10, and A/11 graphically by a dia-
gram called Mohr’s circle. For given values of I, I,, and I,,, the corresponding values of
I, I, and I,,,, may be determined from the diagram for any desired angle 6. A hori-
zontal axis for the measurement of moments of inertia and a vertical axis for the mea-
surement of products of inertia are first selected, Fig. A/7. Next, point A, which has the
coordinates (I, I,,), and point B, which has the coordinates (I,, —I,,), are located.

We now draw a circle with these two points as the extremities of a diameter.
The angle from the radius OA to the horizontal axis is 2« or twice the angle from the
x-axis of the area in question to the axis of maximum moment of inertia. The angle
on the diagram and the angle on the area are both measured in the same sense as
shown. The coordinates of any point C are (I, I,,), and those of the corresponding
point D are (I, —I,.,). Also the angle between OA and OC is 26 or twice the angle
from the x-axis to the x'-axis. Again we measure both angles in the same sense as
shown. We may verify from the trigonometry of the circle that Eqs. A/9, A/9a, and
A/10 agree with the statements made.

414#4#443;
!

Axis through P of
maximum moment
of inertia

T————
\
\
\
\
\
\
\
\
\
\

~N

|

I

FIGURE A/7
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SAMPLE PROBLEM A/9

Determine the product of inertia of the rectangular area with centroid
at C with respect to the x-y axes parallel to its sides.

Solution Since the product of inertia I , about the axes x,-y, is zero
by symmetry, the transfer-of-axis theorem gives us

L, =L, +d.d,Al 1, =d.dbh Ans.

In this example both d, and d, are shown positive. We must be careful
to be consistent with the positive directions of d, and d, as defined, so
that their proper signs are observed.

3" Yo

|
4
| f

|
.
|
h| o—|————1— X

| 0
el
| T
|

SAMPLE PROBLEM A/10

Determine the product of inertia about the x-y axes for the area under
the parabola.

Solution With the substitution of x = @ when y = b, the equation of
the curve becomes x = ay%/b>.

Solution I If we start with the second-order element dA = dx dy, we
have dI,, = xy dx dy. The integral over the entire area is

b
1 a’y
I, = f fz/bzxydxdy=f0 §<a2— bt >_ydy—ﬂzzl)2 Ans.

Solution IT Alternatively, we can start with a first-order elemental
strip and save one integration by using the results of Sample Problem
A/9. Taking a vertical strip dA = y dx gives dI,, = 0 + (2y)(x)(y dx),
where the distances to the centroidal axes of the elemental rectangle are
d.,=y/2andd,=x.@ Now we have

a 2 a 2 a
I, =f y*xdxzf ﬁxdxzbfxé’ a’b? Ans.
7)o 2 0 2a a

HELPFUL HINT
® If we had chosen a horizontal strip, our expression would have

become dI,, = y%(a + x2)[(a — x) dyl, which when integrated, of course,
gives us the same result as before.

SAMPLE PROBLEM A/11

Determine the product of inertia of the semicircular area with respect to
the x-y axes.

Solution We use the transfer-of-axis theorem, Eq. A/8, to write @

2 4
L, = jxy +d.d,A] IL,=0+ ( >(7”)<ﬂr > = —Z?T Ans.

where the x- and y-coordinates of the centroid C are d, = 4+r and d, =
—4r/(37). Because y, is an axis of symmetry, I, = 0.

—————

HELPFUL HINT

® Proper use of the transfer-of-axis theo-
rem saves a great deal of labor in com-
puting products of inertia.
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SAMPLE PROBLEM A/12 Y

% ‘}e 2.5 mm
Determine the orientation of the principal axes of inertia through the mm

centroid of the angle section and determine the corresponding maxi-
mum and minimum moments of inertia.

Solution The location of the centroid C is easily calculated, and its 50 mm
position is shown on the diagram.

Products of Inertia The product of inertia for each rectangle about 7.5 mm
its centroidal axes parallel to the x-y axes is zero by symmetry. Thus, the
product of inertia about the x-y axes for part I is

U,=1I,+d.d,Al I,=0+(-12.5)(+7.5)(400) = —3.75(10*) mm* 40 mm ——|
where d,=—(75+5)=-125mm

and d,=+(20 - 10 - 2.5) = 7.5 mm
Likewise for part II, \
L, =1I,+ddAl I, =0+ (12.5)(-7.5)(400) = —3.75(10%) mm* \ d
where d,=+(20-75)=125mm, d,=—(5+25) = -7.5mm N

N _
For the complete angle, d )L \ } e
I, = -3.75(10%) - 3.75(10*) = —7.5(10*) mm* ‘

T+ — —_——7—x
. . d

Moments of Inertia The moments of inertia about the x- and y-axes = I x

for part I are |

[I=1+Ad% I, = §(4O)(10)3 + (400)(12.5)% = 6.58(10*) mm* 9\

_1 3 2 _ 4 4
I, = 15(10)(40)° + (400)(7.5)* = 7.58(10*) mm HELPEUL HINT

and the moments of inertia for part II about these same axes are Mohr’s circle. Alternatively, we could use
Eqgs. A/11 to obtain the results for I,,,,, and I,
or we could construct the Mohr’s circle from the
calculated values of I, I, and I,,,. These values
are spotted on the diagram to locate points A
and B, which are the extremities of the diame-

I = 6.58(10% + 11.58(10%) = 18.17(10%) . ter ofth(? circle. The angle 2« and I,,,,, and I,;,
x = 0. + 11 = lo. mm are obtained from the figure, as shown.

I, =7.58(10*) + 2.58(10*) = 10.17(10*) mm*

[=I+Ad I ={5(10)(40)° + (400)(12.5)* = 11.58(10*) mm*

I, = %(40)(10)3 + (400)(7.5)% = 2.58(10*) mm*

Thus, for the entire section we have

+Ixy, (10%) mm?*

Principal Axes The inclination of the principal axes of inertia is
given by Eq. A/10, so we have Inax = 22.7
I,=10.17
2I, 2(-7.50) Y
Q0= — Q=" 1,
[tan I ] tan 2= 1017 - 187 - 7P B
% =619°  a=310° Ans. ‘fxy7=5)
We now compute the principal moments of inertia from Eqgs. A/9 = +7:5 4 4
using o for 6 and get Iy, from I and I, from I,. Thus, v : | 1, (10%) mm
2a =61.9° 1\
18.17 +10.17  18.17 — 10.17 IL,=-75
T = b + (0.471) + (7.50)(0.882) | (10*) !
2 2 lmin =
=22.7(10*) mm* Ans. 5.67 A
1817 +10.17 1817 - 10.17 L=18.17

Toin = [ (0.471) — (7.50)(0.882)] (104

2 2
= 5.67(10%) mm* Ans.

-1, (10*) mm*




APPENDIX B

Mass Moments of
Inertia

See Vol. 2 Dynamics for Appendix B, which fully treats the concept and calculation
of mass moment of inertia. Because this quantity is an important element in the
study of rigid-body dynamics and is not a factor in statics, we present only a brief
definition in this Statics volume so that the student can appreciate the basic differ-
ences between area and mass moments of inertia.

Consider a three-dimensional body of mass m as shown in Fig. B/1. The mass
moment of inertia I about the axis O-0 is defined as

I=fr2dm

where r is the perpendicular distance of the mass element dm from the axis O-O
and where the integration is over the entire body. For a given rigid body the mass
moment of inertia is a measure of the distribution of its mass relative to the axis in
question, and for that axis is a constant property of the body. Note that the dimen-
sions are (mass)(length)?, which are kg-m? in SI units and lb-ft-sec® in U.S. custom-
ary units. Contrast these dimensions with those of area moment of inertia, which
are (length)?, m* in SI units and ft* in U.S. customary units.

0
|

!

t; e dm
|

(0]

FIGURE B/1
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APPENDI|X

Selected Topics of
Mathematics

c1 | Introduction

Appendix C contains an abbreviated summary and reminder of selected topics in
basic mathematics which find frequent use in mechanics. The relationships are cited
without proof. The student of mechanics will have frequent occasion to use many of
these relations, and he or she will be handicapped if they are not well in hand. Other
topics not listed will also be needed from time to time.

As the reader reviews and applies mathematics, he or she should bear in mind
that mechanics is an applied science descriptive of real bodies and actual motions.
Therefore, the geometric and physical interpretation of the applicable mathematics
should be kept clearly in mind during the development of theory and the formula-
tion and solution of problems.

¢2 | Plane Geometry

1. When two intersect- 2 4. Circle

. i )

ng lines are, respec Circumference = 27r

tively, perpendicular 9

. Area = 7r
to two other lines, Arc 1 hser0
the angles formed by 0, relength s = r
; 1_ )
the two pairs are equal. 0. —0 Sector area = 576
1= 2
- r 5. Every triangle inscribed )

2. Similar triangles within a semicircle is \

x h-y A a right triangle. 61 By

b= & = |3 L

¥
b
3. Any triangle 6. Angles of a triangle
5
l 61+62+63=1800
Area = 2bh h 6, =0, + 6,
l 61 03\04
b
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¢3 | Solid Geometry

1. Sphere
Volume = %n'r?’ r
Surface area = 4712
2. Spherical wedge r\/\\yje
Volume = §r39 >
ci4 | Algebra
1. Quadratic equation
ax>+bx+c=0
b+ /b? — 4ac
x=————— b% = 4ac for real roots

2a
. Logarithms

b*=y,x=logyy
Natural logarithms

b=e=2718282
ef=y,x=log,y=Ilny
log(ab) =loga + logb
log(a/b) =loga — logb
log(1/n) = -logn
loga” =nloga
log1=0

logiox = 0.4343 In x

. Determinants

2nd order
a; by
= a,by — ashy
a; by
3rd order
a; by
(e 2] b2 Cy| = +a1b203 + a2b301 + a361(32
as by cs —agbocy — aghics — aibscy

3. Right-circular cone

Volume = %nr%

Lateral area = nrL

L=V +h? /»~~;—\\l

. Any pyramid or cone T

Volume = %Bh 3
where B = area of base l

. Cubic equation

x*=Ax +B
Letp =A/3, q = B/2.

CaseI: g2 — p® negative (three roots real and
distinct)

cosu = q/(p\/;)), 0 <u<180°
x; = 24/p cos (u/3)
Xg = 2\/;) cos (u/3 + 120°)
X3 = 2\/}3 cos (u/3 + 240°)

Case II: g% — p® positive (one root real, two
roots imaginary)

2= (g +Vg* - p)'"? + (g - Vg - p*)"?
Case III: g% — p® = 0 (three roots real, two

roots equal)

X1 = 2‘11/3, Xg = X3 = —ql/3

For general cubic equation
B rax+bx+c=0

Substitute x = xy — /3 and get x,®> = Ax, + B.
Then proceed as above to find values of x, from
which x = xq — a/3.



C/5

Analytic Geometry

1. Straight line

y y
\ \
\
L Zm
\
a 1
L x
y=a+mx
2. Circle
y
\
\
\
\
L
\
bl
\
24+y2=r faffifffx
x—aP+@y-b2=r2
ce | Trigonometry
1. Definitions
sinf=afc cscb=c/a :
cos6=b/c secH=c/b B
tan6=a/b cot O =b/a b

2. Signs in the four quadrants
(+)

4ol

—
—~
+
~
—
L
-
g;_q
f0)
D

‘ =)
III >1

Article C/6 Trigonometry

3. Parabola

Y
SN |
a? b2

5. Hyperbola

217

I II III v
sin 6 + + - -
cos 6 + - - +
tan 6 + - + —
csc 8 + + - -
sec 6 + - - +
cot 6 + - + -
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3. Miscellaneous relations 4. Law of sines
sin?6 + cos26=1 g_sinA
1+ tan®6 =sec? 0 b sinB

1+ cot?8 =csc?0

sing = \/%(1 — cos 6)
0
cos§: \/%(1 + cos 0)

sin 26 = 2 sin 6 cos 6

cos 26 = cos? 0 — sin® 6 ¢ =a?+ b% - 2ab cos C
sin (¢ *b) =sina cos b = cosa sin b 2=a?+ b2+ 2ab cos D
cos (@ =b)=cosacosb * sinasinb

5. Law of cosines

c¢7 | Vector Operations

1. Notation. Vector quantities are printed in boldface type, and scalar quantities
—_— Q appear in lightface italic type. Thus, the vector quantity V has a scalar magni-
tude V. In longhand work vector quantities should always be consistently indi-
cated by a symbol such as Vor V to distinguish them from scalar quantities.

2. Addition
Triangle addition P+ Q=R
Parallelogram addition P+ Q=R
Commutativelaw P+ Q=Q + P
Associativelaw P+ (Q+R)=P +Q) +R

3. Subtraction

P-Q=P+(-Q)

4. Unit vectors i, j, k
V=Vi+V,j+Vk

z
,LT K where V=V V2V, 4 V2
1
1

Sov 5. Direction cosines [, m, n are the cosines of the angles between V and the x-,

\
AN T/ y-, z-axes. Thus,
)
I \ 1=V,)V m=V,/V n=V,/V

|
I
\ \
: \JVy SO so that V = V(i + mj + nk)
N

- and P+m?+nt=1
iVx\xi
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6. Dot or scalar product
P-Q=PQcos b 0

This product may be viewed as the magnitude of P multiplied by the P
component @ cos 6 of Q in the direction of P, or as the magnitude of Q
multiplied by the component P cos 6 of P in the direction of Q.

Commutative law P-Q=Q-P

From the definition of the dot product
ifi=jj=kk=1
irj=ji=ick=ki=jk=k-j=0
P-Q=(P,i+P,j+Pk)(Qi+Qj+ k)
=PQ.+PQ,+PQ,
P-P=P*+P?+P?

It follows from the definition of the dot product that two vectors P and Q
are perpendicular when their dot product vanishes, P-Q = 0.

The angle 6 between two vectors P; and P, may be found from their dot
product expression P; P, = P, P, cos 6, which gives

P,-P, PiPs +P P, +P P,

cos 6 = = lllz + mimgy + ningy

PP, PP,
where [, m, n stand for the respective direction cosines of the vectors. It is also
observed that two vectors are perpendicular to each other when their direction @
cosines obey the relation /,l, + mims + niny = 0. T P
Q
Distributive law P-Q+R)=P-Q+P-R
7. Cross or vector product. The cross product P x Q of the two vectors P and Q PxQ
is defined as a vector with a magnitude \
> Q

IP x Q| = PQ sin 0

and a direction specified by the right-hand rule as shown. Reversing the vector ( 0 P
order and using the right-hand rule give Q x P = -P x Q. -\

Distributive law PxQ+R)=PxQ+PxR

From the definition of the cross product, using a right-handed coordinate
system,we get QxP=-PxQ

ixj=k jxk=i kxi=j
jxi=-k kxj=-i ixk=-j

ixi=jxj=kxk=0
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With the aid of these identities and the distributive law, the vector product may
be written

PxQ=(Pi+Pj+Pk) x(Qi+Qj+Qk)
= (Psz - PzQy)i + (PzQx - PxQz)j + (Pny - Pny)k

The cross product may also be expressed by the determinant

i j k
PxQ=|P, P, P,
Q. @ Q.

8. Additional relations

Triple scalar product (P x Q)R = R- (P x Q). The dot and cross may be inter-
changed as long as the order of the vectors is maintained. Parentheses are un-
necessary since P x (Q-R) is meaningless because a vector P cannot be crossed
into a scalar Q-R. Thus, the expression may be written

PxQ-R=P-QxR
The triple scalar product has the determinant expansion

P, P, P,
PxQR=Q, @ Q.
R, R, R,

Triple vector product (P x Q) x R=-R x (P x Q) = R x (Q x P). Here we
note that the parentheses must be used since an expression P x Q x R would
be ambiguous because it would not identify the vector to be crossed. It may be
shown that the triple vector product is equivalent to

(PxQ) xR=R-PQ-R-QP
or Px (@xR)=P-RQ - P-QR

The first term in the first expression, for example, is the dot product R-P, a
scalar, multiplied by the vector Q.

9. Derivatives of vectors obey the same rules as they do for scalars.

dP . - .
E=P=le+PyJ+sz
dPw) _p, | Py
dt
dP-Q) -
dt =P-Q+P-Q
d(P . .
%=PXQ+PXQ

10. Integration of vectors. If V is a function of x, y, and z and an element of
volume is dt = dx dy dz, the integral of V over the volume may be written as
the vector sum of the three integrals of its components. Thus,

deT=ifodT+jfVydT+kaZdT



c/s | Series

(Expression in brackets following a series indicates the range of convergence.)

-1 -1 -2
(1ix)"=1inx+n(n2' )xz | nln 3)'(n )xs W < 1]
3 45 7
X X X 2
s1nx—x—3’+5! 7'+ [x* < o]
I .
COS X = 2‘+4!_6!+ X 0o
x_ o -x P BN ,
sinh x = 9 _x+§+5+ﬂ+. [x <00]
e +e” x2  xt b \
cosh x = B =1+2—!+4—!+5+... [x <00]
a o o0
f) =2+ Zancos@+ansin@
2 n=1 l n=1 [

1 !
where a,, = %f f(x) cos nlﬂ dx, b, = % f f(x) sin nlﬂ dx
-1 -1

[Fourier expansion for -1 < x < []

c/o | Derivatives

d (U> , v
dx" o1 d(uv) dv du v dx dx
de de  Ydx TV dx dx v?
1im0 sin Ax = sin dx = tan dx = dx

X —>

lim cos Ax =cosdx =1

X —>

d sinx cos d cos x sin d tan x sec?
= x = —sinx = x
dx ’ dx ’ dx
d sinh x d cosh x _ d tanh x _

= cosh x ————— =sginhx ————= = sech®x
dx ’ dx ’ dx

Article C/9 Derivatives
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ci0 | Integrals

xn+1
nd —
fx x n+1
d
i:lnx
x

f\/a+bxdx—%\/(a + bx)?
Jx\/a + bx dx = %(W)x —2a)V/(a + bx)?

fo\/a + bx dx = 2 (8a? — 12abx + 156%®)4/(a + bx)?

10563

f dx B 24v/a + bx
Va + bx B b

f\/;%dx=—\/a+x\/b—x+(a+b)sin1 atx

a+b

x dx 1
fa+bx_ﬁ[a+bx—aln(a+bx)]

f xdx  (a+bx)'™" <a+bx a >

(a + bx)" b2 2-n 1-n
Vab —ab
dx 5= 1 tan~! ol A or ! tanh™ A
a + bx vab a —ab
x dx 1
Ja+bx2 2bn(a+bx)

f\/mdx=%[x\/mta21n(x+ Va2 +a?)]

[ Var= =t (v = v a2t )

[ xva® = ax = -1y =

[ var = dr = X @ = Oé(xm vatsin1 )
fx%/ﬂ dx = —%(x2 + %aQ)m

f*—iln <\/a+bx+cx2+x\/g+b> 01'_71sin‘1 <b+2cx>
Va +bx +cex® e 2¢/c V—c v/b% - 4ac
o dx R
f\/m_ln(x+\/x * a%)
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2_x2 a
x dx

f T 2 x - a?
x°—a
x dx

f 2 7= — a® * x*
a” fx

2 4
Jx2\/x2 +a?dx = E x®*+a®?F %x\/x2 +a%— %ln (x + V2 * a?)
f sin x dx = —cos x

fcosxdx:sinx

1. 1+sinx
secxdx=—Iln —F—
2 1-sinx
in 2x
.9 d =£_Sln
fsmx x 2 1
in 2x
9 d—f sin
fcosx x 2+ 1
)
fsinxcosxdx:sme

f sinh x dx = cosh x

f cosh x dx = sinh x
f tanh x dx = In cosh x
flnxdx:xlnx—x

eax
f e®dx = —
a

fxe“xdx = %(ax -1
a

e™(a sin px — p cos px)

f e™ sin px dx = 3 5
a”+p

e*(a cos px + p sin px)

e cos px dx =
f a® + p?
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ax

. . . 2
f e sin?x dx = 5 <a sin? x — sin 2x + >
4 a

+a

ax 2
e® cos? x dx = 3 <a cos?x + sin 2x + >
4+a a
ax o3 e™ a .
e sin x cos x dx = 5 | 5 sin 2x — cos 2x
4 +a* \2
. cos X .
sin® x dx = — (2 + sin® x)
sin x
cos® x dx = (2 + cos?x)

. 2 . 1 .
cos5xdx=51nx—§sm3x+gsm5x
x sin x dx = sin x — x cos x

X €cos x dx = cos x + x sin x

x2sinxdx = 2x sinx — (x2 — 2) cos x

x?cosx dx = 2x cos x + (x — 2) sinx

dy\21%2
1 Y
[ + (dx) ]
P = %y
Radius of dx?

curvature 2, < dr>2 3/2
do

Pre = 2 2
dr d°r

2 21 — o

r <d6) " de?
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c11 | Newton’s Method for Solving
Intractable Equations

Frequently, the application of the fundamental principles of mechanics leads to an
algebraic or transcendental equation which is not solvable (or easily solvable) in
closed form. In such cases, an iterative technique, such as Newton’s method, can be
a powerful tool for obtaining a good estimate to the root or roots of the equation.
Let us place the equation to be solved in the form f(x) = 0. Part a of the accom-
panying figure depicts an arbitrary function f(x) for values of x in the vicinity of the
desired root x,. Note that x, is merely the value of x at which the function crosses the

flx)

fe)
) fl)

| Tangent to
| fx) at x =x;

225

(@) (b)

x-axis. Suppose that we have available (perhaps via a hand-drawn plot) a rough esti-
mate x; of this root. Provided that x; does not closely correspond to a maximum or
minimum value of the function f(x), we may obtain a better estimate of the root x, by
extending the tangent to f(x) at x; so that it intersects the x-axis at x,. From the
geometry of the figure, we may write

fxy)

tan@:f(xﬁ:aq_x2

where f'(x;) denotes the derivative of f(x) with respect to x evaluated at x = x;.
Solving the above equation for x, results in

_ Fxy)
' (xqp)

X9 = X1

The term —f(x;)/f'(x;) is the correction to the initial root estimate x;. Once x; is
calculated, we may repeat the process to obtain x5, and so forth.
Thus, we generalize the above equation to

)

X, =X —
k+1 k f,(xk)

where
xp41 = the (& + 1)th estimate of the desired root x,
x;, = the kth estimate of the desired root x,
f(x,) = the function f(x) evaluated at x = x;,

f'(x;) = the function derivative evaluated at x = x;,
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This equation is repeatedly applied until f(x;,;) is sufficiently close to zero and
X341 = x3. The student should verify that the equation is valid for all possible sign
combinations of x;, f(x;), and f'(x;).

Several cautionary notes are in order:

. Clearly, f'(x;) must not be zero or close to zero. This would mean, as restricted

above, that x; exactly or approximately corresponds to a minimum or maxi-
mum of f(x). If the slope f'(x;) is zero, then the tangent to the curve never
intersects the x-axis. If the slope f'(x;) is small, then the correction to x; may be
so large that x;,; is a worse root estimate than x,. For this reason, experienced
engineers usually limit the size of the correction term; that is, if the absolute
value of f(x;)/f'(x;) is larger than a preselected maximum value, that maximum
value is used.

. If there are several roots of the equation f(x) = 0, we must be in the vicinity of

the desired root x, in order that the algorithm actually converges to that root.
Part b of the figure depicts the condition when the initial estimate x; will result
in convergence to x,, rather than x,..

. Oscillation from one side of the root to the other can occur if, for example, the

function is antisymmetric about a root which is an inflection point. The use of
one-half of the correction will usually prevent this behavior, which is depicted in
part ¢ of the accompanying figure.

Example: Beginning with an initial estimate of x; = 5, estimate the single root of
the equation ¢* — 10 cos x — 100 = 0.

The table below summarizes the application of Newton’s method to the given

equation. The iterative process was terminated when the absolute value of the cor-
rection —f(x;)/f'(x;) became less than 107°.

, f(xk)
k Xp, Slaxy) I () Xpp1 — X = T ()
1 5.000 000 45.576 537 138.823 916 —-0.328 305
2 4.671 695 7.285 610 96.887 065 —-0.075 197
3 4.596 498 0.292 886 89.203 650 —0.003 283
4 4.593 215 0.000 527 88.882 536 —0.000 006
5 4.593 209 —2(107%) 88.881 956 2.25(1071%)
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c12 | Selected Techniques for Numerical
Integration

1. Area determination. Consider the problem of determining the shaded
area under the curve y = f(x) from x = a to x = b, as depicted in part a of the
figure, and suppose that analytical integration is not feasible. The function may
be known in tabular form from experimental measurements, or it may be known
in analytical form. The function is taken to be continuous within the interval
a < x < b. We may divide the area into n vertical strips, each of width Ax =
(b — a)/n, and then add the areas of all strips to obtain A = [ y dx. A representa-
tive strip of area A; is shown with darker shading in the figure. Three useful
numerical approximations are cited. In each case the greater the number of
strips, the more accurate becomes the approximation geometrically. As a gen-
eral rule, one can begin with a relatively small number of strips and increase
the number until the resulting changes in the area approximation no longer
improve the accuracy obtained.

y
x
@ Xy X, X9 X3 X Xjy1 Xn-1 %p
=a =b
_
Rectangular
A Ai =ymAx
Yi Yo Yiv1l Im A=fydx£2ymAx

I. Rectangular [Figure (b)] The areas of the strips are taken to be rectangles, as
shown by the representative strip whose height y,, is chosen visually so that the
small cross-hatched areas are as nearly equal as possible. Thus, we form the sum Xy,,
of the effective heights and multiply by Ax. For a function known in analytical form,
a value for y,, equal to that of the function at the midpoint x; + Ax/2 may be calcu-
lated and used in the summation.

II. Trapezoidal [Figure (c)] The areas of the strips are taken to be trapezoids, as
shown by the representative strip. The area A; is the average height (y; + y; , 1)/2 times
Ax. Adding the areas gives the area approximation as tabulated. For the example with
the curvature shown, clearly the approximation will be on the low side. For the reverse
curvature, the approximation will be on the high side.

227
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. Trapezoidal
_YitlVisa

Ai =—FAx
2

A:fydxg &+yl+y2+”'+yn—l+& Ax
2 2
Yi+1

Parabolic
1
AA = E(yi +4y; 11+ 4 2)Ax

~ 1
Yies A=fydx:§(y0+4y1+2y2+4y3+2y4

+ o+ 2y, _o+ 4y, 1+ Y)AX

II1. Parabolic [Figure (d)] The area between the chord and the curve (neglected
in the trapezoidal solution) may be accounted for by approximating the function by
a parabola passing through the points defined by three successive values of y. This
area may be calculated from the geometry of the parabola and added to the trape-
zoidal area of the pair of strips to give the area AA of the pair as cited. Adding all
of the AA’s produces the tabulation shown, which is known as Simpson’s rule. To
use Simpson’s rule, the number n of strips must be even.

Example: Determine the area under the curve y = x /1 + x% fromx = 0 tox = 2. (An
integrable function is chosen here so that the three approximations can be com-
pared with the exact value, which is A = fg xV1+aidx = %(1 + x2)3/2|(2) =

5(5v/5 — 1) = 3.393 447).

Number of Area Approximations
Subintervals Rectangular Trapezoidal Parabolic
4 3.361 704 3.456 731 3.392 214
10 3.388 399 3.403 536 3.393 420
50 3.393 245 3.393 850 3.393 447
100 3.393 396 3.393 547 3.393 447
1000 3.393 446 3.393 448 3.393 447
2500 3.393 447 3.393 447 3.393 447

Note that the worst approximation error is less than 2 percent, even with only
four strips.

2. Integration of first-order ordinary differential equations. The
application of the fundamental principles of mechanics frequently results in dif-
ferential relationships. Let us consider the first-order form dy/dt = f(¢), where the
function f(¢) may not be readily integrable or may be known only in tabular form.
We may numerically integrate by means of a simple slope-projection technique,
known as Euler integration, which is illustrated in the figure.
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dy //
Slopea =f@®) y(t)y
t
Yo Slope = fi(ts) \
| Accumulated
| algorithmic
Slope = f(t5) | } error
Slope = f(¢;) \ \
\ | ¥4
_ - \ \
T | |73 ke
\ | Y2 | \ :
|1 \ \ \
\ \ \ \
| | | |
31 12 t3 ty !

Beginning at ¢;, at which the value y; is known, we project the slope over a
horizontal subinterval or step (¢, — #;) and see that y, = y; + f(¢1)(¢2 — t1). At £,, the
process may be repeated beginning at y,, and so forth until the desired value of ¢ is
reached. Hence, the general expression is

Yir1 =Y + FE) Ep1 — 1)

If y versus ¢ were linear, i.e., if f(¢) were constant, the method would be exact,
and there would be no need for a numerical approach in that case. Changes in the
slope over the subinterval introduce error. For the case shown in the figure, the
estimate y, is clearly less than the true value of the function y(¢) at ¢,. More accurate
integration techniques (such as Runge-Kutta methods) take into account changes in
the slope over the subinterval and thus provide better results.

As with the area-determination techniques, experience is helpful in the selec-
tion of a subinterval or step size when dealing with analytical functions. As a rough
rule, one begins with a relatively large step size and then steadily decreases the step
size until the corresponding changes in the integrated result are much smaller than
the desired accuracy. A step size which is too small, however, can result in increased
error due to a very large number of computer operations. This type of error is gener-
ally known as “round-off error,” while the error which results from a large step size
is known as algorithm error.

Example: For the differential equation dy/d¢ = 5¢ with the initial condition y = 2

when ¢ = 0, determine the value of y for ¢ = 4.
Application of the Euler integration technique yields the following results:

Number of

Subintervals Step Size yatt=4 Percent Error
10 0.4 38 9.5
100 0.04 41.6 0.95
500 0.008 41.92 0.19
1000 0.004 41.96 0.10

This simple example may be integrated analytically. The result is y = 42 (exactly).
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Useful Tables

TABLE D/1 Physical Properties
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Density (kg/m®) and specific weight (1b/ft?)

kg/m? Ib/At? kg/m? Ib/At?
Air* 1.2062 0.07530 Lead 11 370 710
Aluminum 2 690 168 Mercury 13 570 847
Concrete (av.) 2 400 150 0Oil (av.) 900 56
Copper 8910 556 Steel 7 830 489
Earth (wet, av.) 1760 110 Titanium 4510 281
(dry, av.) 1280 80 Water (fresh) 1 000 62.4
Glass 2 590 162 (salt) 1030 64
Gold 19 300 1205 Wood (soft pine) 480 30
Ice 900 56 (hard oak) 800 50
Iron (cast) 7 210 450

*At 20°C (68°F) and atmospheric pressure

Coefficients of Friction

(The coefficients in the following table represent typical values under normal
working conditions. Actual coefficients for a given situation will depend on the
exact nature of the contacting surfaces. A variation of 25 to 100 percent or more
from these values could be expected in an actual application, depending on prevailing
conditions of cleanliness, surface finish, pressure, lubrication, and velocity.)

Typical Values of
Coefficient of Friction

Contacting Surface Static, 4, Kinetic,
Steel on steel (dry) 0.6 0.4
Steel on steel (greasy) 0.1 0.05
Teflon on steel 0.04 0.04
Steel on babbitt (dry) 0.4 0.3
Steel on babbitt (greasy) 0.1 0.07
Brass on steel (dry) 0.5 0.4
Brake lining on cast iron 0.4 0.3
Rubber tires on smooth pavement (dry) 0.9 0.8
Wire rope on iron pulley (dry) 0.2 0.15
Hemp rope on metal 0.3 0.2
Metal on ice 0.02
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TABLE D/2 Solar System Constants

Universal gravitational constant G = 6.673(107'1) m%/(kg-s?)
= 3.439(107®) ft*/(Ib-sec*)
Mass of Earth m, = 5.976(10*) kg
= 4.095(10%) 1b-sec¥/ft
Period of Earth’s rotation (1 sidereal day) =23h 56 min 4 s
=23.9344 h
Angular velocity of Earth w = 0.7292(107*) rad/s
Mean angular velocity of Earth—Sun line @’ =0.1991(107%) rad/s
Mean velocity of Earth’s center about Sun =107 200 km/h
= 66,610 mi/hr
Mean Surface Escape
Distance Eccentricity Period Mean Mass Gravitational Velocity
to Sun of Orbit of Orbit Diameter Relative Acceleration km/s
km (mi) e solar days km (mi) to Earth m/s? (ft/sec?) (mi/sec)
Sun — — — 1 392 000 333 000 274 616
(865 000) (898) (383)
Moon 384 398! 0.055 27.32 3476 0.0123 1.62 2.37
(238 854)* (2 160) (5.32) (1.47)
Mercury 57.3 x 10° 0.206 87.97 5000 0.054 3.47 4.17
(35.6 x 109 (3 100) (11.4) (2.59)
Venus 108 x 10° 0.0068 224.70 12 400 0.815 8.44 10.24
(67.2 x 10°) (7 700) (27.7) (6.36)
Earth 149.6 x 10° 0.0167 365.26 12 7422 1.000 9.821° 11.18
(92.96 x 10°) (7 918)* (32.22)° (6.95)
Mars 227.9 x 10° 0.093 686.98 6 788 0.107 3.73 5.03
(141.6 x 105 (4 218) (12.3) (3.13)
Jupiter4 778 x 108 0.0489 4333 139 822 317.8 24.79 59.5
(483 x 105 (86 884) (81.3) (36.8)

!Mean distance to Earth (center-to-center)

“Diameter of sphere of equal volume, based on a spheroidal Earth with a polar diameter of 12 714 km (7900 mi) and an equatorial
diameter of 12 756 km (7926 mi)

3For nonrotating spherical Earth, equivalent to absolute value at sea level and latitude 37.5°

“Note that Jupiter is not a solid body.
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TABLE D/3 Properties of Plane Figures

Area Moments of
Figure Centroid Inertia
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TABLE D/3 Properties of Plane Figures Continued

Area Moments
Figure Centroid of Inertia

Rectangular Area I LhB
i T3
\
T ' _ b
iy
‘ - bh
_ b*# L= D) (b2 + h?)
}(—a X1 th
Tz jl r= aJ3r v
Triangular Area Z‘ » l bh3
x 36
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X T 4
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TABLE D/4 Properties of Homogeneous Solids

(m = mass of body shown)

Mass Mass Moments
Body Center of Inertia

l
l T 2 ﬂ 1 1,
2 I.= gmr + Eml
Circular
Cylindrical — 1, 1
Shell lexl = gmr + gml
I,=mr?
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l e XX vy
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X7 2 3
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g 2 1 1
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zz — 2 9ﬂ2
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TABLE D/4 Properties of Homogeneous Solids Continued

(m = mass of body shown)

Mass Moments
Body Mass Center of Inertia

=== Spherical . 2
Shell I, =gmr
G, ) ) T,=0,=0 = 2
Hemispherical _r 3
i y Shell =9 - 5
I,=1,=—mr
@ Yy 12
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R )
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| y 8
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7 wTTET 320
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2 i W 1
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TABLE D/4 Properties of Homogeneous Solids Continued

(m = mass of body shown)

Mass Mass Moments
Body Center of Inertia
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1 1
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TABLE D/4 Properties of Homogeneous Solids Continued

(m = mass of body shown)

Mass Moments
Body Mass Center of Inertia
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TABLE D/5 Conversion Factors; SI Units

Conversion Factors
U.S. Customary Units to SI Units

To convert from To Multiply by
(Acceleration)

foot/second? (ft/sec?) meter/second? (m/s?) 3.048 x 1071*

inch/second? (in./sec?) meter/second? (m/s?) 2.54 x 1072*
(Area)

foot? (ft?) meter? (m?) 9.2903 x 1072

inch? (in.%) meter” (m?) 6.4516 x 107**
(Density)

pound mass/inch® (lbm/in.%) kilogram/meter® (kg/m?) 2.7680 x 10*

pound mass/foot® (lbm/ft%) kilogram/meter® (kg/m?) 1.6018 x 10
(Force)

kip (1000 1b) newton (N) 4.4482 x 10°

pound force (Ib) newton (N) 4.4482
(Length)

foot (ft) meter (m) 3.048 x 1071*

inch (in.) meter (m) 2.54 x 1072*

mile (mi), (U.S. statute) meter (m) 1.6093 x 10°

mile (mi), (international nautical) meter (m) 1.852 x 10°*
(Mass)

pound mass (lbm) kilogram (kg) 4.5359 x 107!

slug (Ib-sec¥/ft) kilogram (kg) 1.4594 x 10

ton (2000 1bm) kilogram (kg) 9.0718 x 102
(Moment of force)

pound-foot (Ib-ft) newton-meter (N -m) 1.3558

pound-inch (Ib-in.) newton-meter (N-m) 0.1129 8
(Moment of inertia, area)

inch* meter* (m*) 41.623 x 107
(Moment of inertia, mass)

pound-foot-second? (Ib-ft-sec?) kilogram-meter? (kg-m?) 1.3558
(Momentum, linear)

pound-second (1b-sec) kilogram-meter/second (kg-m/s) 4.4482
(Momentum, angular)

pound-foot-second (Ib-ft-sec) newton-meter-second (kg-m?/s) 1.3558
(Power)

foot-pound/minute (ft-lb/min) watt (W) 2.2597 x 1072

horsepower (550 ft-1b/sec) watt (W) 7.4570 x 10?
(Pressure, stress)

atmosphere (std)(14.7 1b/in.?) newton/meter? (N/m? or Pa) 1.0133 x 10°

pound/foot? (Ib/ft%) newton/meter? (N/m? or Pa) 4.7880 x 10

pound/inch? (Ib/in.? or psi) newton/meter? (N/m? or Pa) 6.8948 x 103
(Spring constant)

pound/inch (Ib/in.) newton/meter (N/m) 1.7513 x 10?
(Velocity)

foot/second (ft/sec) meter/second (m/s) 3.048 x 1071*

knot (nautical mi/hr) meter/second (m/s) 5.1444 x 107

mile/hour (mi/hr) meter/second (m/s) 4.4704 x 1071*

mile/hour (mi/hr) kilometer/hour (km/h) 1.6093
(Volume)

foot? (ft%) meter? (m®) 2.8317 x 1072

inch? (in.%) meter? (m®) 1.6387 x 107°
(Work, Energy)

British thermal unit (BTU) joule (J) 1.0551 x 10°

foot-pound force (ft-1b) joule (J) 1.3558

kilowatt-hour (kw-h) joule (J) 3.60 x 10°%*

*Exact value
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TABLE D/5 Conversion Factors; SI Units Continued

SI Units Used in Mechanics

Quantity Unit SI Symbol
(Base Units)
Length meter* m
Mass kilogram kg
Time second s
(Derived Units)
Acceleration, linear meter/second? m/s?
Acceleration, angular radian/second? rad/s?
Area meter? m?
Density kilogram/meter? kg/m?®
Force newton N (= kg-m/s?)
Frequency hertz Hz (= 1/s)
Impulse, linear newton-second N-s
Impulse, angular newton-meter-second N-m-s
Moment of force newton-meter N-m
Moment of inertia, area meter? m*
Moment of inertia, mass kilogram-meter? kg-m?
Momentum, linear kilogram-meter/second kg-m/s (= N-s)

Momentum, angular
Power

kilogram-meter®/second
watt

kg-m?s (= N-m-s)
W (= J/s = N-m/s)

Pressure, stress pascal Pa (= N/m?)

Product of inertia, area meter? m*

Product of inertia, mass kilogram-meter? kg-m?

Spring constant newton/meter N/m

Velocity, linear meter/second m/s

Velocity, angular radian/second rad/s

Volume meter® m?

Work, energy joule J(=N-m)
(Supplementary and Other Acceptable Units)

Distance (navigation) nautical mile (= 1.852 km)

Mass

Plane angle
Plane angle
Speed

Time

Time

Time

ton (metric)
degrees (decimal)

t (= 1000 kg)

radian —

knot (1.852 km/h)
day d

hour h

minute min

*Also spelled metre.

SI Unit Prefixes

Selected Rules for Writing Metric Quantities

239

Multiplication Factor Prefix Symbol

1 000 000 000 000 = 10*2  tera T
1 000 000 000 = 10°  giga G
1 000 000 = 10° mega M
1000 =10% kilo k
100 = 10>  hecto h
10 = 10 deka da
0.1=10" deci d
0.01 =102 centi c
0.001 =10% milli m
0.000 001 = 10~°  micro u
0.000 000 001 = 10™° nano n
0.000 000 000 001 = 1072 pico p

. (a) Use prefixes to keep numerical values generally between 0.1 and 1000.

(b) Use of the prefixes hecto, deka, deci, and centi should generally be avoided
except for certain areas or volumes where the numbers would be awkward
otherwise.

(¢) Use prefixes only in the numerator of unit combinations. The one exception
is the base unit kilogram. (Example: write kN/m not N/mm; J/kg not mdJ/g)

(d) Avoid double prefixes. (Example: write GN not kKMN)

. Unit designations

(a) Use a dot for multiplication of units. (Example: write N-m not Nm)
(b) Avoid ambiguous double solidus. (Example: write N/m? not N/m/m)
(c) Exponents refer to entire unit. (Example: mm? means (mm)?)

. Number grouping

Use a space rather than a comma to separate numbers in groups of three,
counting from the decimal point in both directions. (Example: 4 607 321.048 72)
Space may be omitted for numbers of four digits. (Example: 4296 or 0.0476)







Problems

Chapter1

* Computer-oriented problem
» Difficult problem
D Student solution available in WileyPLUS

Problems for Articles 1/1-1/9

1/1 Determine the angles made by the vector V = 40i — 30j
with the positive x- and y-axes. Write the unit vector n in
the direction of V.

1/2 Determine the magnitude of the vector sum V =
V; + V, and the angle 6, which V makes with the positive
x-axis. Complete both graphical and algebraic solutions.

V5, = 12 units

PROBLEM 1/2

1/3 &3 For the given vectors V; and V, of Prob. 1/2, de-
termine the magnitude of the vector difference V' =V, — V;
and the angle 6, which V' makes with the positive x-axis.
Complete both graphical and algebraic solutions.

1/4 A force is specified by the vector F = 160i + 80j — 120k N.
Calculate the angles made by F with the positive x-, y-, and
z-axes.

1/5 3 What is the mass in both slugs and kilograms of a
3000-1b car?

1/6 From the gravitational law calculate the weight W (grav-
itational force with respect to the earth) of an 85-kg man in a
spacecraft traveling in a circular orbit 250 km above the
earth’s surface. Express W in both newtons and pounds.

1/7 Determine the weight in newtons of a woman whose
weight in pounds is 125. Also, find her mass in slugs and in
kilograms. Determine your own weight in newtons.

1/8 Suppose that two nondimensional quantities are ex-
actly A = 8.67 and B = 1.429. Using the rules for significant

figures as stated in this chapter, express the four quantities
(A +B),(A -B),(AB), and (A/B).

1/9 Compute the magnitude F of the force which the earth
exerts on the moon. Perform the calculation first in new-
tons and then convert your result to pounds. Refer to
Table D/2 for necessary physical quantities.

PROBLEM 1/9

1/10 Determine the small gravitational force F which the
copper sphere exerts on the steel sphere. Both spheres are
homogeneous, and the value of r is 50 mm. Express your res-
ult as a vector.

Copper

PROBLEM 1/10

1/11 &3 Evaluate the expression E = 3 sin?4 tan 6 cos 6
for 6 = 2°. Then use the small-angle assumptions and re-
peat the calculation.

1/12 A general expression is given by @ = kmbc/t?, where k
is a dimensionless constant, m is mass, b and ¢ are lengths,
and ¢ is time. Determine both the SI and U.S. units of @,
being sure to use the base units in each system.

P-1



P-2 Problems for Articles 2/1-2/3

Chapter 2

* Computer-oriented problem
» Difficult problem
P Student solution available in WileyPLUS

Introductory Problems

2/1 The force F has a magnitude of 600 N. Express Fasa | b x
vector in terms of the unit vectors i and j. Identify the x and
y scalar components of F.

Problems for Articles 2/1-2/3 !

PROBLEM 2/3

2/4 The line of action of the 3000-1b force runs through the
points A and B as shown in the figure. Determine the x and
y scalar components of F.

| y,‘ﬂ:
! \ B(8,6)
‘ | _e
\ F=600N | -
\ /F: 3000 Ib
— < —— — — — x, ft
PROBLEM 2/1 )

2/2 The magnitude of the force F is 400 lb. Express F as a
vector in terms of the unit vectors i and j. Identify both the
scalar and vector components of F. PROBLEM 2/4

2/5 The control rod AP exerts a force F on the sector as shown.

Determine both the x-y and the n-t components of the force.

F =4001b

PROBLEM 2/2

2/3 33 The slope of the 6.5-kN force F is specified as
shown in the figure. Express F as a vector in terms of the
unit vectors i and j.

PROBLEM 2/5




Problems for Articles 2/1-2/3 P-3

2/6 Two forces are applied to the construction bracket as 2/9 Determine the x-y and n-t components of the 13-kip
shown. Determine the angle 6 which makes the resultant force F acting on the simply-supported beam.

of the two forces vertical. Determine the magnitude R of

the resultant. F = 13 kips

F,=8001b y

PROBLEM 2/9

Representative Problems

2/10 The two structural members, one of which is in ten-
sion and the other in compression, exert the indicated
forces on joint O. Determine the magnitude of the resultant
R of the two forces and the angle 6 which R makes with the
positive x-axis.

PROBLEM 2/6

2/7 Two individuals are attempting to relocate a sofa by ap-
plying forces in the indicated directions. If ; = 500 N and F, =
350 N, determine the vector expression for the resultant R of
the two forces. Then determine the magnitude of the result-
ant and the angle which it makes with the positive x-axis.

1
\
L — —x

60° PROBLEM 2/10

2/11 3 The guy cables AB and AC are attached to the top
of the transmission tower. The tension in cable AB is 8 kN.
F, Determine the required tension 7 in cable AC such that the
net effect of the two cable tensions is a downward force at
point A. Determine the magnitude R of this downward force.

PROBLEM 2/7

2/8 The y-component of the force F which a person exerts i-M-i
on the handle of the box wrench is known to be 70 lb. De-
termine the x-component and the magnitude of F. A

|

Z ﬁ/ -

20m
. |

40 m 50 m

PROBLEM 2/8 PROBLEM 2/11




P-4 Problems for Articles 2/1-2/3

2/12 If the equal tensions T in the pulley cable are 400 N,
express in vector notation the force R exerted on the pulley
by the two tensions. Determine the magnitude of R.

PROBLEM 2/12

2/13 A force F of magnitude 800 lb is applied to point C of
the bar AB as shown. Determine both the x-y and the n-¢
components of F.

n
-

T

y
\
\
\

@)lb

PROBLEM 2/13

2/14 The two forces shown act in the x-y plane of the
T-beam cross section. If it is known that the resultant R of
the two forces has a magnitude of 3.5 kN and a line of ac-
tion that lies 15° above the negative x-axis, determine the
magnitude of F; and the inclination 6 of Fs.

PROBLEM 2/14

2/15 Determine the x- and y-components of the tension T
which is applied to point A of the bar OA. Neglect the effects
of the small pulley at B. Assume that r and 6 are known.

PROBLEM 2/15

2/16 Refer to the mechanism of the previous problem. De-
velop general expressions for the n- and #-components of the
tension T applied to point A. Then evaluate your expres-
sions for 7= 100 N and 6 = 35°.



2/17 The ratio of the lift force L to the drag force D for the
simple airfoil is L/D = 10. If the lift force on a short sec-
tion of the airfoil is 50 1b, compute the magnitude of the
resultant force R and the angle 6 which it makes with the
horizontal.

H\\
%N

PROBLEM 2/17

2/18 Determine the resultant R of the two forces applied
to the bracket. Write R in terms of unit vectors along the
x- and y-axes shown.

150 N

PROBLEM 2/18

2/19 A sheet of an experimental composite is subjected to
a simple tension test to determine its strength along a par-
ticular direction. The composite is reinforced by the Kevlar
fibers shown, and a close-up showing the direction of the
applied tension force F in relation to the fiber directions at
point A is shown. If the magnitude of F is 2.5 kN, determ-
ine the components F, and F}, of the force F along the ob-
lique axes a and b. Also determine the projections P, and P,
of F onto the a-b axes.

Problems for Articles 2/1-2/3 P-5

PROBLEM 2/19

2/20 Determine the scalar components R, and R, of the
force R along the nonrectangular axes a and b. Also de-
termine the orthogonal projection P, of R onto axis a.

R =800N

PROBLEM 2/20

2/21 Determine the components F, and Fj of the 4-kN
force along the oblique axes a and 4. Determine the projec-
tions P, and P, of F onto the a- and b-axes.

PROBLEM 2/21




P-6 Problems for Articles 2/1-2/3

2/22 If the projection P, and component F), of the force F
along oblique axes a and b are both 325 N, determine the
magnitude F and the orientation 6 of the b-axis.

|

|

|

|

|

%5" Tl
115° ~~q

PROBLEM 2/22

2/23 It is desired to remove the spike from the timber by
applying force along its horizontal axis. An obstruction A
prevents direct access, so that two forces, one 400 1b and
the other P, are applied by cables as shown. Compute the
magnitude of P necessary to ensure a resultant T directed
along the spike. Also find 7.

rsrrﬁ P d N

400 1b
PROBLEM 2/23

2/24 At what angle 6 must the 400-lb force be applied in
order that the resultant R of the two forces have a
magnitude of 1000 1b? For this condition what will be the
angle § between R and the horizontal?

400 1b

700 1b

PROBLEM 2/24

2/25 Power is to be transferred from the pinion A to the
output gear C inside a mechanical drive. Because of out-
put motion requirements and space limitations, an idler
gear B is introduced as shown. A force analysis has de-
termined that the total contact force between each pair of
meshing teeth has a magnitude F, = 5500 N, and these
forces are shown acting on idler gear B. Determine the
magnitude of the resultant R of the two contact forces
acting on the idler gear. Complete both a graphical and a
vector solution.

PROBLEM 2/25

2/26 To insert the small cylindrical part into a close-
fitting circular hole, the robot arm must exert a 90-N force
P on the part parallel to the axis of the hole as shown.
Determine the components of the force which the part
exerts on the robot along axes (a) parallel and perpendicu-
lar to the arm AB, and (b) parallel and perpendicular to
the arm BC.

PROBLEM 2/26



Problems for Article 2/4 P-7

Problems for Article 2/4

Introductory Problems

2/27 The 4-kN force F is applied at point A. Compute the T
moment of F about point O, expressing it both as a scalar 30 mm
and as a vector quantity. Determine the coordinates of the
points on the x- and y-axes about which the moment of F is

Zero.
PROBLEM 2/30

A(12, 15) nitude F' = 47 1b to the front edge of the rim at A to simulate
- the effect of a slam dunk. Determine the moments of the

i 3 force F' about point O and about point B. Finally, locate,
from the base at O, a point C on the ground about which the
force imparts zero moment.

3‘/ »m 2/31 3 An experimental device imparts a force of mag-
\
\
\
\
\

,,,,,,,,, 6 xm 36" 28"

PROBLEM 2/27

2/28 The force of magnitude F acts along the edge of the )
triangular plate. Determine the moment of F about point O. Q

o b

PROBLEM 2/28

2/29 Determine the moments of the 200-lb force about
point A and about point O.

PROBLEM 2/31

y
[
I
I

” |
35 2/32 A force F of magnitude 60 N is applied to the gear.
Determine the moment of F about point O.

PROBLEM 2/29

2/30 Calculate the moment of the 250-N force on the
handle of the monkey wrench about the center of the bolt. PROBLEM 2/32




P-8 Problems for Article 2/4

2/33 A prybar is used to remove a nail as shown. De-
termine the moment of the 240-N force about the point
O of contact between the prybar and the small support
block.

350 mm

30 mm

PROBLEM 2/33

Representative Problems

2/34 An overhead view of a door is shown. If the com-
pressive force F acting in the coupler arm of the hy-
draulic door closer is 17 1b with the orientation shown,
determine the moment of this force about the hinge
axis O.

F=171b

PROBLEM 2/34

2/35 The 30-N force P is applied perpendicular to the por-
tion BC of the bent bar. Determine the moments of P about
point B and about point A.

PROBLEM 2/35

2/36 A man exerts a force F on the handle of the stationary
wheelbarrow at A. The weight of the wheelbarrow along
with its load of dirt is 185 1b with center of gravity at G. For
the configuration shown, what force F must the man apply
at A to make the net moment about the tire contact point B
equal to zero?

377

PROBLEM 2/36

2/37 A 150-N pull T is applied to a cord, which is wound
securely around the inner hub of the drum. Determine the
moment of 7' about the drum center C. At what angle 6
should T be applied so that the moment about the contact
point P is zero?

— — 2 No

PROBLEM 2/37



2/38 As a trailer is towed in the forward direction, the
force F' = 120 1b is applied as shown to the ball of the
trailer hitch. Determine the moment of this force about

point O.

F=1201b

PROBLEM 2/38

2/39 Determine the general expressions for the moments
of F' about (a) point B and (b) point O. Evaluate your ex-
pressions for F = 750 N, R = 2.4 m, 6 = 30°, and ¢ = 15°.

A
| /
R‘G// N
N
B[\ \@F

PROBLEM 2/39

2/40 The cable AB carries a tension of 400 N. Determine
the moment about O of this tension as applied to point A of
the slender bar.

650 mm

6\9\

O

30°

o
PROBLEM 2/40

2/41 In raising the pole from the position shown, the ten-
sion T in the cable must supply a moment about O of
72 kN -m. Determine T.

Problems for Article 2/4 P-9

7/

Pm m-—~

PROBLEM 2/41

2/42 The lower lumbar region A of the spine is the part of
the spinal column most susceptible to abuse while resisting
excessive bending caused by the moment about A of a force
F. For given values of F, b, and h, determine the angle 6
which causes the most severe bending strain.

PROBLEM 2/42

2/43 A gate is held in the position shown by cable AB. If
the tension in the cable is 6.75 kN, determine the moment
M,, of the tension (as applied to point A) about the pivot
point O of the gate.

) B 0.5 m

0./60"4L
\

0.4m
<—2 m%

PROBLEM 2/43




P-10 Problems for Article 2/4

2/44 Elements of the lower arm are shown in the figure.
The weight of the forearm is 5 1b with center of gravity at
G. Determine the combined moment about the elbow pivot
O of the weights of the forearm and the sphere. What must
the biceps tension force be so that the overall moment
about O is zero?

13" |

PROBLEM 2/44

2/45 Calculate the moment M, of the 200-N force about
point A by using three scalar methods and one vector
method.

200 N
15° B
7
280 |
mm i
A
400 mm

PROBLEM 2/45

2/46 The small crane is mounted along the side of a pickup
bed and facilitates the handling of heavy loads. When the

boom elevation angle is 6 = 40°, the force in the hydraulic
cylinder BC is 4.5 kN, and this force applied at point C is in
the direction from B to C (the cylinder is in compression).
Determine the moment of this 4.5-kN force about the boom
pivot point O.

=

ﬂ

PROBLEM 2/46

2/47 The 120-N force is applied as shown to one end of the
curved wrench. If @« = 30°, calculate the moment of F' about
the center O of the bolt. Determine the value of a which
would maximize the moment about O; state the value of
this maximum moment.

PROBLEM 2/47



2/48 The mechanism shown is used to lower disabled
persons into a whirlpool tub for therapeutic treatment.
In the unloaded configuration, the weight of the boom
and hanging chair induces a compressive force of 575 N
in hydraulic cylinder AB. (Compressive means that the
force which cylinder AB exerts on point B is directed from
A toward B.) If 6 = 30°, determine the moments of this
cylinder force acting on pin B about (a) point O and
(b) point C.

100
175 |
|
=
|
|
|
800 :
|
|
|
|
|
|
200 [
¥ ==

ﬂzooL

Dimensions in millimeters

PROBLEM 2/48

2/49 The asymmetrical support arrangement is chosen for
a pedestrian bridge because conditions at the right end F'
do not permit a support tower and anchorages. During a
test, the tensions in cables 2, 3, and 4 are all adjusted to
the same value 7. If the combined moment of all four cable
tensions about point O is to be zero, what should be the
value T of the tension in cable 1? Determine the corres-
ponding value of the compression force P at O resulting

Problems for Article 2/4 P-11

from the four tensions applied at A. Neglect the weight of
the tower.

5o
e;)\ ! r\30’ 35

35—
50/ \
1 2 3 4
i A
_y By e e
16’ C D E
¥y o o

PROBLEM 2/49

*2/50 The woman maintains a slow steady motion over the
indicated 135° range as she exercises her triceps muscle.
For this condition, the tension in the cable can be assumed
to be constant at W = 10 lb. Determine and plot the mo-
ment M of the cable tension as applied at A about the elbow
joint O over the range 0 = 6 = 135°. Find the maximum
value of M and the value of 6 for which it occurs.

24"

PROBLEM 2/50




P-12 Problems for Article 2/5

Problems for Article 2/5

Introductory Problems

2/51 &3P Compute the combined moment of the two 90-1b
forces about (a) point O and (b) point A.

90 1b

y

\

\

\

\

\

\

\

\

7+ 77777777 4;777‘?6777 — X

8" ‘ 4" I

\

\

\

[

4" S

90 1b
PROBLEM 2/51

2/52 The caster unit is subjected to the pair of 80-1b forces
shown. Determine the moment associated with these forces.

— 14" %

80 Ib

@

80 1b

PROBLEM 2/52

2/53 For F = 65 lb, compute the combined moment of the
two forces about (a) point O, (b) point C, and (c¢) point D.

| F y, ft
1207 \
| \
|
\
|
| \
\
A (=10, 14) }
\
\
\
D@2
__________ O_‘T________(_(l’g)f x, ft
\
| B (20, -7)
\
| |
. | }
C (-12, -12) \ |
| 20°|
| Fo
\
\

PROBLEM 2/53

2/54 The indicated force—couple system is applied to a small
shaft at the center of the plate. Replace this system by a
single force and specify the coordinate of the point on the
x-axis through which the line of action of this resultant force
passes.

e
M =400 N-m

PROBLEM 2/54



2/55 Replace the 12-kN force acting at point A by a force—
couple system at (a) point O and (b) point B.

y
\
12 kN }
/ |
30° 4m |
AT T T To T *
\
\
\
}5m
\
\
\
B
\

PROBLEM 2/55

2/56 The top view of a revolving entrance door is shown.
Two persons simultaneously approach the door and exert
forces of equal magnitudes as shown. If the resulting mo-
ment about the door pivot axis at O is 25 N-m, determine
the force magnitude F.

PROBLEM 2/56

2/57 As part of a test, the two aircraft engines are revved
up and the propeller pitches are adjusted so as to result in
the fore and aft thrusts shown. What force F' must be exer-
ted by the ground on each of the main braked wheels at A
and B to counteract the turning effect of the two propeller
thrusts? Neglect any effects of the nose wheel C, which is
turned 90° and unbraked.

Problems for Article 2/5 P-13

PROBLEM 2/57

2/58 The cantilevered W530 x 150 beam shown is subjec-
ted to an 8-kN force F applied by means of a welded plate
at A. Determine the equivalent force—couple system at the
centroid of the beam cross section at the cantilever O.

—
0.65 m

v

3m ‘3()o
F

PROBLEM 2/58

2/59 &3 Each propeller of the twin-screw ship develops a
full-speed thrust of 300 kN. In maneuvering the ship, one
propeller is turning full speed ahead and the other full
speed in reverse. What thrust P must each tug exert on the
ship to counteract the effect of the ship’s propellers?

«50m{
|

()
RO
o
.

Ep="

=5

120 m }

PROBLEM 2/59




P-14 Problems for Article 2/5

Representative Problems

2/60 A lug wrench is used to tighten a square-head bolt. If
50-1b forces are applied to the wrench as shown, determine
the magnitude F of the equal forces exerted on the four con-
tact points on the 1-in. bolt head so that their external effect
on the bolt is equivalent to that of the two 50-1b forces. As-
sume that the forces are perpendicular to the flats of the
bolt head.

’e 17—

View C Detail
(clearances exaggerated)

PROBLEM 2/60

2/61 The force F'is applied at the end of arm ACD, which is
mounted to a vertical post. Replace this single force F' by an
equivalent force—couple system at B. Next, redistribute
this force and couple by replacing it with two forces acting
in the same direction as F, one at C and the other at D, and
determine the forces supported by the two hex-bolts. Use
values of F=425N,6=30°6=19m,d=02m,~ =0.8m,
and / = 2.75 m.

|
b |
|
did
|
Al - — — — — — — g._:_QQ,fﬁ*,
T
6 |
|
|
|
F | l
|
'B
A |
| | i
L ! !

PROBLEM 2/61

2/62 An overhead view of a portion of an exercise machine
is shown. If the tension in the cable is T'= 780 N, determine
the equivalent force—couple system at (a) point B and
(b) point O. Record your answers in vector format.

PROBLEM 2/62

2/63 Calculate the moment My of the 900-N force about
the bolt at B. Simplify your work by first replacing the force
by its equivalent force—couple system at A.

200 mm

900 N

PROBLEM 2/63

2/64 The force F is applied to the leg-extension exercise
machine as shown. Determine the equivalent force—couple
system at point O. Use values of F' =520 N, b = 450 mm, h =
215 mm, r = 325 mm, 6 = 15°, and ¢ = 10°.

d
\
R

PROBLEM 2/64



2/65 The system consisting of the bar OA, two identical
pulleys, and a section of thin tape is subjected to the two
180-N tensile forces shown in the figure. Determine the
equivalent force—couple system at point O.

180 N

PROBLEM 2/65

2/66 The device shown is a part of an automobile seat-
back-release mechanism. The part is subjected to the
4-N force exerted at A and a 300-N-mm restoring mo-
ment exerted by a hidden torsional spring. Determine
the y-intercept of the line of action of the single equival-
ent force.

3" F=4N

10 mm —— /
\ 15°
=)
| A

40 mm
] - — —x
300 N-mm

(

PROBLEM 2/66

Problems for Article 2/5 P-15

2/67 Replace the two cable tensions which act on the pul-
ley at O of the beam trolley by two parallel forces which act
at the track-wheel connections A and B.

200, 200
mm mm

6.3kN 4.1kN
PROBLEM 2/67
2/68 The force F acts along line MA, where M is the mid-

point of the radius along the x-axis. Determine the equival-
ent force—couple system at O if 6 = 40°.

=]
N}

PROBLEM 2/68




P-16 Problems for Article 2/6

Problems for Article 2/6

Introductory Problems

2/69 Calculate the magnitude of the tension T and the
angle 6 for which the eye bolt will be under a resultant
downward force of 15 kN.

PROBLEM 2/71

2/72 Determine the equivalent force—couple system at the
center O for each of the three cases of forces being applied
along the edges of a square plate of side d.

F F

y
[
|
|
o—

1 i
I I
| |
*— — o«— —

T
d PNg — © 0 0

|F F
B e R

(@) (®) (c)
PROBLEM 2/69 PROBLEM 2/72

. . . . 2/73 Determine the equivalent force—couple system at the
2/70 Determine t},le force magmtu.d(.e F and. dlrectlon.e origin O for each of the three cases of forces being applied
(measured clockwise from the p0s1t?ve y-axis) that _Wlu along the edges of a regular hexagon of width d. If the res-
cause the rc.esultar.lt R of the four applied forces to be direc- | 1¢a1¢ can be so expressed, replace this force—couple system
ted to the right with a magnitude of 9 kN. with a single force.

y y y
7 F! P Fl . Fl
F F
F Adv w}
(c)

(@) (®)
PROBLEM 2/73

20 kN

2/74 Determine the height i above the base B at which the
resultant of the three forces acts.

300 1b
\
0 | 30"
Py 650 Ib ]
PROBLEM 2/70 80"
250 1b
2/71 Replace the three horizontal forces and applied 30"
couple with an equivalent force—couple system at O by
specifying the resultant R and couple M. Next, determine E— ‘-— I B

the equation for the line of action of the stand-alone result-

ant force R. PROBLEM 2/74




2/75 If the resultant of the loads shown passes through
point B, determine the equivalent force—couple system at O.

10 kips 12 kips
- 4’ 3’ | 3 ——
0{ O -(—4%95
A OB ~ M

4 kips
PROBLEM 2/75

2/76 If the resultant of the two forces and couple M passes
through point O, determine M.

400 N

PROBLEM 2/76

Representative Problems

2/77 If the resultant of the forces shown passes through
point A, determine the magnitude of the unknown tension
T, which acts on the braked pulley.

275 N 1600 N
<—15m 2;15<—18m
oy —————+— - — - — - — =—300 N
A |
V| 1.25m
EA |
50° © -
0.6 m
Ty
650 N

PROBLEM 2/77

Problems for Article 2/6  P-17

2/78 Replace the three forces acting on the bent pipe by a
single equivalent force R. Specify the distance x from point
O to the point on the x-axis through which the line of action

of R passes.

y 50 Ib
[
[

| 401b

[

[

o

‘ 10” 10”
60 1b

PROBLEM 2/78

2/79 &3 Four people are attempting to move a stage plat-
form across the floor. If they exert the horizontal forces
shown, determine (a) the equivalent force—couple system
at O and (b) the points on the x- and y-axes through which
the line of action of the single resultant force R passes.

y 70 1b
\
\
\

A B/ 45°

90 1b

66"

- ——x

80 1b

88"

351b

PROBLEM 2/79

2/80 In the equilibrium position shown, the resultant of
the three forces acting on the bell crank passes through the
bearing O. Determine the vertical force P. Does the result
depend on 6?

PROBLEM 2/80




P-18 Problems for Article 2/6

2/81 Uneven terrain conditions cause the left front wheel of
the all-wheel-drive vehicle to lose traction with the ground.
If the driver causes the traction forces shown to be gener-
ated by the other three wheels while his two friends exert
the indicated forces on the vehicle periphery at points E and
F, determine the resultant of this system and the x- and
y-intercepts of its line of action. Note that the front and
rear tracks of the vehicle are equivalent; that is, AD = BC.
Treat this as a two-dimensional problem and realize that G
lies on the car centerline.

PROBLEM 2/81

2/82 A commercial airliner with four jet engines, each pro-
ducing 90 kN of forward thrust, is in a steady, level cruise
when engine number 3 suddenly fails. Determine and loc-
ate the resultant of the three remaining engine thrust vec-
tors. Treat this as a two-dimensional problem.

PROBLEM 2/82

2/83 Determine the x- and y-axis intercepts of the line of ac-
tion of the resultant of the three loads applied to the gearset.

PROBLEM 2/83

2/84 The asymmetric roof truss is of the type used when a
near normal angle of incidence of sunlight onto the south-
facing surface ABC is desirable for solar energy purposes.
The five vertical loads represent the effect of the weights of
the truss and supported roofing materials. The 400-N load
represents the effect of wind pressure. Determine the equi-
valent force—couple system at A. Also, compute the x-intercept
of the line of action of the system resultant treated as a
single force R.

500 N

500 N

PROBLEM 2/84



2/85 For the truss loaded as shown, determine the equa-
tion for the line of action of the stand-alone resultant R
and state the coordinates of the points on the x- and y-axes
through which the line of action passes. All triangles are
3-4-5.

40 kN

20 kN

35 kN

PROBLEM 2/85

2/86 Five forces are applied to the beam trolley as shown.
Determine the coordinates of the point on the y-axis through
which the stand-alone resultant R must pass if F = 5 kN
and 6 = 30°.

55 mm
] ] o @
3 kN
280mm; \ | o@®@)-—-—+-——"\—————- x
0.6 kN
Q)i
-/
0.8 kN

PROBLEM 2/86

Problems for Article 2/6  P-19

2/87 As part of a design test, th