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Preface

Elementary Differential Equations is an introductory level textbook for un-
dergraduate students majoring in mathematics, applied mathematics, com-
puter science, one of the various fields of engineering, or one of the physical or
social sciences. During the past century, the manner in which solutions to dif-
ferential equations have been calculated has changed dramatically. We have
advanced from paper and pencil solution, to calculator and programmable
calculator solution, to high speed computer calculation. Yet, in the past fifty
years there has been very little change in the topics taught in an introductory
differential equations course, in the order in which the topics are taught, or
in the methods by which the topics are taught. The “age of computing” is
upon us and we need to develop new courses and new methods for teaching
differential equations. This text is an attempt to facilitate some changes. It
is designed for instructors who wish to bring the computer into the classroom
and emphasize and integrate the use of computers in the teaching of differ-
ential equations. In the traditional curriculum, students study few nonlinear
differential equations and almost no nonlinear systems due to the difficulty
or impossibility of computing explicit solutions manually. The theory asso-
ciated with nonlinear systems may be considered advanced, but generating
a numerical solution with a computer and interpreting that solution is fairly
elementary. The computer has put the study of nonlinear systems well within
our grasp.

In this text, several examples and exercises require the use of some computer
software to solve a problem. Consequently, the reader needs to have computer
software available which can perform, at least, the following functions:

1. Graph a given function on a specified rectangle.

2. Graph the direction field of the first-order differential equation y′ =
f(x, y) in a specified rectangle.

3. Solve the first-order initial value problem y′ = f(x, y); y(c) = d on an
interval [a, b] which contains c.

4. Find all roots of a polynomial with complex coefficients.

5. Calculate the eigenvalues and eigenvectors of a real n × n matrix A
where 2 ≤ n ≤ 6.

xi
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6. Solve on an interval [a, b] a vector initial value problem consisting of
a system of n first-order differential equations and n initial conditions
where 2 ≤ n ≤ 6.

Many computer software packages are readily available which include these
features and usually many additional features. Three of the best known and
most widely used packages are MAPLE, Mathematica, and MATLAB R©. In
general, each instructor already has his or her own favorite differential equa-
tions software package or combination of packages. For this reason, the text
was written to be independent of any particular software package. The soft-
ware we used to generate solutions and many of the graphs for the examples
as well as the answers to the selected exercises which appear at the end of
this text is contained in the two files CSODE User’s Guide and PORTRAIT
User’s Guide which can be downloaded from the website:
cs.indstate.edu/∼roberts/DEq.html

It is assumed the reader has completed calculus at least up to and including
the concept of partial derivatives and knows how to add, subtract, multiply,
and divide complex numbers. Concepts with which the reader may not already
be familiar are introduced and explained to the degree necessary for use within
the text at the location where the concept is first used.

Students who enroll in ordinary differential equations courses normally do
so for only one or two semesters as an undergraduate. In addition, few of these
students ever enroll in a numerical analysis course. However, most students
who complete a differential equations course find employment in business,
industry, or government and will use a computer and numerical methods to
solve mathematical problems almost exclusively. Consequently, one objective
of this text is to solve ordinary differential equations in the same way they are
solved in many professions—by computer. Thus, the single most useful and
distinguishing feature of this text is the use of computer software through-
out the entire text to numerically solve various types of ordinary differential
equations. Prior to generating a numerical solution, applicable theory must be
considered; therefore, we state (but usually do not prove) existence, unique-
ness, and continuation theorems for initial value problems at various points in
the text. Numerical case studies illustrate the possible pitfalls of computing
a numerical solution without first considering the appropriate theory.

Differential equations are an important tool in constructing mathemati-
cal models for physical phenomena. Throughout the text, we show how to
numerically solve many interesting mathematical models—such as popula-
tion growth models, epidemic models, mixture problems, curves of pursuit,
the Richardson’s arms race model, Lanchester’s combat models, Volterra-
Lotka prey-predator models, pendulum problems, and the restricted three-
body problem. When feasible we develop models entirely within separate
sections. This gives the instructor more flexibility in selecting the material
to be covered in the course. We hope to enrich and enliven the study of dif-
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ferential equations by including several biographical sketches and historical
comments. In this text, we also attempt to provide an even balance between
theory, computer solution, and application.

We recommend that the core of a one quarter or one semester course con-
sist of material from Chapters 1, 2, 4, 5, 7, 8, and Sections 10.1, 10.2, and
10.3. The remainder of material covered in the course should come from the
applications and models in Chapters 3, 6, 9, and Sections 10.4 through 10.11.
The selection of applications and models to be included in the course will
depend on the time available, on the intent of the course, on the student au-
dience, and, of course, on the preferences of the instructor. The following is
a summary of the material to be found in each chapter.

In Chapter 1 we present a very brief history of the development of calculus
and differential equations. We introduce essential definitions and terminology.
And we define and discuss initial value problems and boundary value prob-
lems.

In Chapter 2 we discuss in detail the first-order initial value problem
y′ = f(x, y); y(c) = d. First, we define the direction field for the differential
equation y′ = f(x, y), we discuss the significance of the direction field, and we
show how to use a computer program to produce a graph of the direction field.
Next, we state a fundamental existence theorem, a fundamental existence and
uniqueness theorem, and a continuation theorem for the initial value problem.
We show how to apply these theorems to a variety of initial value problems
and we illustrate and emphasize the importance of these theorems. Then we
discuss how to find explicit solutions of simple first-order differential equations
such as separable equations and linear equations. Next, we present simple ap-
plications of linear first-order differential equations. Finally, we present some
of the simpler single-step methods for computing a numerical approximation
to the solution of an initial value problem. We explain how to use a computer
program to generate approximate, numerical solutions to initial value prob-
lems. (Appendix A contains additional single-step, multistep, and predictor-
corrector methods for computing numerical approximations to initial value
problems.) We illustrate and interpret the various kinds of results which the
computer produces. Furthermore, we reiterate the importance of performing
a thorough mathematical analysis, which includes applying the fundamental
theorems to the problem, prior to generating a numerical solution.

In Chapter 3 we consider a variety of applications of the initial value prob-
lem y′ = f(x, y); y(c) = d. First, in the section Calculus Revisited, we show
that the solution to the special initial value problem y′ = f(x); y(a) = 0

on the interval [a, b] is equivalent to the definite integral
∫ b
a f(x) dx. Then

we show how to use computer software to calculate an approximation to the

definite integral
∫ b
a f(x) dx. This will allow one to numerically solve many

problems from calculus. In the sections Learning Theory Models, Population
Models, Simple Epidemic Models, Falling Bodies, Mixture Problems, Curves
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of Pursuit, and Chemical Reactions, we examine physical problems from a
number of diverse disciplines which can be written as initial value problems
and then solved using numerical integration software. At the end of the chap-
ter, we present additional applications.

In Chapter 4 we discuss the basic theory for n-th order linear differential
equations. We present a history of the attempts of mathematicians to find
roots of polynomials. Then we illustrate how to use computer software to
approximate the roots of polynomials numerically. Next, we show how to find
the general solution of an n-th order homogeneous linear differential equation
with constant coefficients by finding the roots of an n-th degree polynomial.
Finally, we indicate how to find the general solution of a nonhomogeneous
linear differential equation with constant coefficients using the method of un-
determined coefficients.

In Chapter 5 we define the Laplace transform and examine its properties.
Next, we show how to solve homogeneous and nonhomogeneous linear dif-
ferential equations with constant coefficients and their corresponding initial
value problems using the Laplace transform method. Then we define the con-
volution of two functions and prove the convolution theorem. Finally, we show
how to solve nonhomogeneous linear differential equations with constant coef-
ficients in which the nonhomogeneity is a discontinuous function, a time-delay
function, or an impulse function.

InChapter 6 we examine several linear differential equations with constant
coefficients which arise in the study of various physical and electrical systems.

In Chapter 7 we define a system of first-order differential equations. We
state a fundamental existence and uniqueness theorem and a continuation
theorem for the system initial value problem. Then, we show how to apply
these theorems to several initial value problems. Next, we show how to rewrite
an n-th order differential equation as an equivalent system of n first-order
equations.

In Chapter 8 we discuss linear systems of first-order differential equations.
First, we introduce matrix notation and terminology, we review fundamental
facts from matrix theory and linear algebra, and we discuss some compu-
tational techniques. Next, we define the concepts of eigenvalues and eigen-
vectors of a constant matrix, we show how to manually compute eigenvalues
and eigenvectors, and we illustrate how to use computer software to calcu-
late eigenvalues and eigenvectors. We show how to write a system of linear
first-order differential equations with constant coefficients using matrix-vector
notation, we state existence and representation theorems regarding the gen-
eral solution of both homogeneous and nonhomogeneous linear systems, and
we show how to write the general solution in terms of eigenvalues and eigen-
vectors.
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In Chapter 9 we examine a few linear systems with constant coefficients
which arise in various physical systems such as coupled spring-mass systems,
pendulum systems, the path of an electron, and mixture problems.

In Chapter 10 we present techniques for determining the behavior of so-
lutions to systems of first-order differential equations without first finding
the solutions. To this end, we define and discuss equilibrium points (criti-
cal points), various types of stability and instability, and phase-plane graphs.
Next, we show how to use computer software to solve systems of first-order
differential equations numerically, how to graph the solution components and
how to produce phase-plane graphs. We also state stability theorems for sys-
tems of first-order differential equations. Throughout this chapter we develop
and discuss a wide variety of models and applications which can be written
as vector initial value problems and then solved numerically.

Comments on Our Computer Software No prior knowledge of com-
puters or of any particular programming language is required to use our com-
puter software. Furthermore, no programming can be done. The user simply
selects a program to perform a particular task and enters the appropriate
data. Then the user interacts with the program by selecting options to be
executed. The user only needs to know the acceptable formats for entering
numerical data and the appropriate syntax for entering functions.

The computer software provided with this text contains two main programs.
The first program, CSODE, includes the six subprograms: GRAPH, DIR-
FIELD, SOLVEIVP, POLYRTS, EIGEN, and SOLVESYS. The subprogram
GRAPH graphs a function y = f(x) on a specified rectangle in the xy-plane.
The instructional purposes of this program are to teach the user how to en-
ter functions into programs properly and how to interact with programs.
Of course, GRAPH may be used to graph explicit solutions of differential
equations and view their behavior. The subprogram DIRFIELD graphs the
direction field of the first-order differential equation y′ = f(x, y) on a spec-
ified rectangle. The output of DIRFIELD permits the user to “see” where
the differential equation is and is not defined, where solutions increase and
decrease, and where extreme values occur. Sometimes asymptotic behavior
of the solutions can also be determined. SOLVEIVP solves the scalar first-
order initial value problem y′ = f(x, y); y(c) = d on an interval [a, b] where
c ∈ [a, b]. The solution values yi at 1001 equally spaced points xi ∈ [a, b]
may be viewed or plotted, with or without the associated direction field, on
a rectangle specified by the user. The subprogram POLYRTS calculates the
roots of a polynomial with complex coefficients of degree less than or equal
to ten. EIGEN calculates the eigenvalues and associated eigenvectors of an
n × n matrix with real coefficients where 2 ≤ n ≤ 6. The sixth subprogram
SOLVESYS solves the vector initial value problem y′ = f(x,y); y(c) = d on
the interval [a, b] where c ∈ [a, b] and the vector has from two to six com-
ponents. The user may view the solution values on the interval [a, b], may
graph any subset of solution components on any subinterval of [a, b], and may
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view a phase-plane graph of any solution component versus any other solu-
tion component on any specified rectangle. Complete details for using the
six subprograms GRAPH, DIRFIELD, SOLVEIVP, POLYRTS, EIGEN, and
SOLVESYS appear in the file CSODE User’s Guide which can be downloaded
from the website: cs.indstate.edu/∼roberts/DEq.html

The second program, PORTRAIT, solves the two component, autonomous
initial value problem

dy1
dx

= f1(y1, y2); y1(ci) = d1i

dy2
dx

= f2(y1, y2); y2(ci) = d2i

on the interval [ai, bi] where ci ∈ [ai, bi] for 1 ≤ i ≤ 10. After the solution
of an initial value problem has been calculated, the user may elect (i) to
print the solution components of any initial value problem already solved,
(ii) to graph any subset of the solution components previously solved in a
rectangle, (iii) to produce a phase-plane portrait of any pair of initial value
problems already solved on any rectangle, (iv) to rerun the most recent initial
value problem using a different interval of integration or initial conditions, or
(v) to input the initial conditions for the next initial value problem to be
solved. Complete details for using PORTRAIT appear in the file CSODE
User’s Guide at the website: cs.indstate.edu/∼roberts/DEq.html

The numerical integration procedure which is employed in the programs
SOLVEIVP, SOLVESYS, and PORTRAIT is a variable order, variable step-
size, multistep, Adams predictor-corrector method. The order is selected by
the program and varies from order one to order twelve. At each step, the step-
size is selected so that the maximum of the relative error and the absolute
error remains less than 10−12.
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Chapter 1

Introduction

1.1 Historical Prologue

The singular concept which characterizes calculus and simultaneously sets
it apart from arithmetic, algebra, geometry, and trigonometry is the notion
of a limit. The idea of a limit originated with the ancient Greek philosophers
and mathematicians. However, they failed to fully develop and exploit this
concept. It was not until the latter half of the seventeenth century, when
the English mathematician Isaac Newton (1642-1727) and the German math-
ematician Gottfried Wilhelm Leibniz (1646-1716) independently and almost
simultaneously invented differential and integral calculus, that the concept of
a limit was revived and developed more fully.

Calculus, as presently taught, begins with differential calculus, continues
with the consideration of integral calculus, and then analyzes the relation-
ship between the two. Historically, however, integral calculus was developed
much earlier than differential calculus. The idea of integration arose first in
conjunction with attempts by the ancient Greeks to compute areas of plane
figures, volumes of solids, and arc lengths of plane curves.

Archimedes was born about 287 B.C. in the Greek city-state of Syracuse
on the island of Sicily. He was the first person to determine the area and the
circumference of a circle. Archimedes determined the volume of a sphere and
the surface areas of a sphere, cylinder, and cone. In addition, he calculated
areas of ellipses, parabolic segments, and sectors of spirals. However, some-
what surprisingly, no Greek mathematician continued the work of Archimedes,
and the ideas which he had advanced regarding integration lay dormant until
about the beginning of the seventeenth century. Using the present day theory
of limits, Archimedes’ ingenious method of equilibrium can be shown to be
equivalent to our definition of integration.

Early in the seventeenth century a significant development, which would
effect calculus dramatically, was taking place in mathematics—the inven-
tion of analytic geometry. Credit for this innovation is given to both René
Descartes (1596-1650) and Pierre de Fermat (c. 1601-1665). In 1637, Descartes
published the philosophical treatise on universal science, A Discourse on the
Method of Rightly Conducting the Reason and Seeking for Truth in the Sci-
ences. The third and last appendix to his Discourse is titled La géométrie.
In La géométrie, Descartes discusses finding normals to algebraic curves—

1
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2 Elementary Differential Equations

which is equivalent to finding tangents to the curves; he also introduces into
mathematics the custom of using letters which appear first in the alphabet for
constants and letters which appear last for variables; and he formulates our
present system of exponents in which x2 denotes x · x, in which x3 denotes
x · x · x, etc. Pierre de Fermat’s claim to priority in the invention of analytic
geometry is based on a letter he wrote to Gilles Roberval in September 1636,
in which he claims that the ideas he is advancing are seven years old. Fermat’s
method for finding a tangent to a curve was devised in conjunction with his
procedure for determining maxima and minima. Thus, Fermat was the first
mathematician to develop the central idea of differential calculus—the notion
of a derivative. Fermat also had great success in the theory of integration. By
1636 or earlier, Fermat had discovered and proved by geometrical means the
power formula for positive integer exponents—that is, Fermat had proved for
positive integers n ∫ a

0

xn dx =
an+1

n+ 1
.

Later, Fermat generalized this result to rational exponents n �= −1. In many
respects, the work of Descartes and Fermat were antipodal. Generally speak-
ing, Descartes started with a locus and then derived its equation, whereas
Fermat began with an equation and then found the locus. Their combined
efforts illustrate the two fundamental and inverse properties of analytic ge-
ometry.

Until approximately the middle of the seventeenth century, integral and
differential calculus appeared to be two distinct branches of mathematics.
Integration, in the case of calculating the area under a curve, consisted of
finding the limit approached by the sum of a very large number of extremely
thin rectangles as the number of rectangles increased indefinitely and the
width of each rectangle approached zero. Differentiation, on the other hand,
consisted of finding the limit of a difference quotient. About 1646, Evangelista
Torricelli (1608-1647), a student of Galileo and inventor of the barometer
(1643), showed that integration and differentiation were inverse operations
for equations of the form y = xn where n is a positive integer. That is,
Torricelli showed for n a positive integer

d

dx

∫ x

0

tn dt =
d

dx

(
xn+1

n+ 1

)

= xn.

Isaac Barrow (1630-1677) is usually given credit for being the first mathemati-
cian to recognize in its fullest generality that differentiation and integration
are inverse operations. In his Lectiones, Barrow essentially stated and proved
geometrically the fundamental theorem of calculus—that is, if f(x) is a
continuous function on the interval [a, b] and if x is in the interval [a, b], then

d

dx

∫ x

a

f(t) dt = f(x).
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Introduction 3

By 1670 the idea of a limit had been conceived; integration had been de-
fined; many integrals had been calculated to find the areas under curves, the
volumes of solids, and the arc lengths of curves; differentiation had been de-
fined; tangents to many curves had been effected; many minima and maxima
problems had been solved; and the relationship between integration and differ-
entiation had been discovered and proved. What remained to be done? And
why should Isaac Newton and Gottfried Wilhelm Leibniz be given credit for
inventing the calculus? The answers to these question are: A general symbol-
ism for integration and differentiation needed to be invented and strictly for-
mal rules, independent of geometric meaning, for analytic operations needed
to be discovered. Working independently of each other, Newton and Leibniz
both developed the required symbolism and rules for operation. Newton’s
“fluxional calculus” was invented as early as 1665, but he did not publish his
work until 1687. Leibniz, on the other hand, formulated his “differential cal-
culus” about 1676, ten years later than Newton, but published his results in
1684, thus provoking a bitter priority dispute. It is noteworthy that Leibniz’s
notation is superior to Newton’s, and it is Leibniz’s notation which we use
today.

In 1661, at the age of eighteen, Isaac Newton was admitted to Trinity Col-
lege in Cambridge. The Great Plague of 1664-65 (a bubonic plague) closed the
university in 1665, and Newton returned home. During the next two years,
1665-1667, Newton discovered the binomial theorem, invented differential cal-
culus (his fluxional calculus), proved that white light is composed of all the
spectral colors, and began work on what would later evolve into the universal
law of gravitation. In 1670-71, Isaac Newton wrote his Methodus fluxionum et
serierum infinitorum, but it was not published until 1736—nine years after his
death. Newton’s approach to differential calculus was a physical one. He con-
sidered a curve to be generated by the continuous motion of a point. He called
a quantity which changes with respect to time a fluent (a flowing quantity).
And the rate of change of a fluent with respect to time he called a fluxion of
the fluent. If a fluent is represented by y, then the fluxion of the fluent y is
represented by ẏ. The fluxion of ẏ is denoted by ÿ and so on. The fluent of y
was denoted by y or ý. Thus, to Newton ẏ was the derivative of y and y or
ý was the integral. Newton considered two different types of problems. The
first problem, which is equivalent to differentiation, is to find a relation con-
necting fluents and their fluxions given some relation connecting the fluents.
The inverse problem, which is equivalent to solving a differential equation, is
to find a relation between fluents alone given a relation between the fluents
and their fluxions. Using his method of fluxions, Newton determined tangents
to curves, maxima and minima, points of inflection, curvature, and convexity
and concavity of curves; he calculated numerous quadratures; and he com-
puted the arc length of many curves. Newton was the first to systematically
use results of differentiation to obtain antiderivatives—that is, Newton used
his results from differentiation problems to solve integration problems.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


4 Elementary Differential Equations

Sometime between 1673 and 1676 Leibniz invented his calculus. In 1675
he introduced the modern integral sign, an elongated letter S to denote the
first letter of the Latin word summa (sum). After some trial and error in
selecting notation, Leibniz settled on dx and dy for small differences in x and
y. He first used these two notations in conjunction late in 1675 when he wrote∫
y dy = y2/2. In 1676, Leibniz used the term “differential equation” to de-

note a relationship between two differentials dx and dy. Thus, the branch of
mathematics which deals with equations involving differentials or derivatives
was christened. To find tangents to curves Leibniz used the calculus differ-
entialis from which we derive the phrase “differential calculus,” and to find
quadratures he used the calculus summatorius or the calculus integralis from
which we derive the phrase “integral calculus.”

Initially, it was believed that the elementary functions1 would be sufficient
for representing the solutions of differential equations arising from problems in
geometry and mechanics. So early attempts at solving differential equations
were directed toward finding explicit solutions or reducing the solution to a
finite number of quadratures. By the end of the seventeenth century most
of the calculus which appears in current undergraduate textbooks had been
discovered along with some more advanced topics such as the calculus of
variation.

Until the beginning of the nineteenth century, the central theme of differ-
ential equations was to find the general solution of a specified equation or
class of equations. However, it was becoming increasingly clear that solving
a differential equation by quadrature was possible in only a few exceptional
cases. Thus, the emphasis shifted to obtaining approximate solutions—in
particular, to finding series solutions. About 1820, the French mathematician
Augustin-Louis Cauchy (1789-1857) made the solution of the initial value
problem y′ = f(x, y); y(x0) = y0 the cornerstone in his theory of differential
equations. Prior to the lectures developed and presented by Cauchy at the
Paris École Polytechnique in the 1820s, no adequate discussion of differen-
tial equations as a unified topic existed. Cauchy presented the first existence
and uniqueness theorems for first-order differential equations in these lectures.
Later, he extended his theory to include a system of n first-order differential
equations in n dependent variables.

There are two fundamental subdivisions in the study of differential equa-
tions: quantitative theory and qualitative theory. The object of quantitative
theory is (i) to find an explicit solution of a given differential equation or
system of equations, (ii) to express the solution as a finite number of quadra-

1Let a be a constant and let f(x) and g(x) be functions. The following operations are called
elementary operations: f(x) ± g(x), f(x) · g(x), f(x)/g(x), (f(x))a, af(x), loga f(x), and
T (f(x)), where T is any trigonometric or inverse trigonometric function. Elementary func-
tions are those functions that can be generated using constants, the independent variable,
and a finite number of elementary operations.
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Introduction 5

tures, or (iii) to compute an approximate solution. Early in the development
of the subject of differential equations, it was thought that elementary func-
tions were sufficient for representing the solutions of differential equations.
However, in 1725, Daniel Bernoulli published results which showed that even
a first-order, ordinary differential equation does not necessarily have a solu-
tion which is finitely expressible in terms of elementary functions. And in the
1880s, Picard proved that the general linear differential equation of order n is
not integrable by quadratures. In a series of papers published between 1880
and 1886, Henri Poincaré (1854-1912) initiated the qualitative theory of dif-
ferential equations. The object of this theory is to obtain information about
an entire set of solutions without actually solving the differential equation or
system of equations. For example, one tries to determine the behavior of a
solution with respect to that of one of its neighbors. That is, one wants to
know whether or not a solution v(t) which is “near” another solution w(t) at
time t = t0 remains “near” w(t) for all t ≥ t0.

1.2 Definitions and Terminology

One purpose of this section is to discuss the meaning of the statement:

“Solve the differential equation y′′ + y = 0.”

Several questions must be asked, discussed, and answered before we can fully
understand the meaning of the statement above. Some of those questions are

“What is a differential equation?”

“What is a solution of a differential equation?”

“Given a particular differential equation and some appropriate constraints,
how do we know if there is a solution?”

“Given a particular differential equation and some appropriate constraints,
how do we know how many solutions there are?”

“How do we find a solution to a differential equation?”

We will answer the first two questions in this section and devote much of the
remainder of the text to answering the last three questions.

At this point in your study of mathematics you probably completely un-
derstand the meaning of the statement:

“Solve the equation 2x4 − 3x3 − 13x2 + 37x− 15 = 0.”

You recognize this is an algebraic equation. More specifically you recognize
this is a polynomial of degree four. Furthermore, you know there are exactly
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6 Elementary Differential Equations

four roots to this equation and they can all be found in the set of complex
numbers. This last fact is due to the fundamental theorem of algebra
which states:

“Every polynomial of degree n ≥ 1 with complex coefficients has n
roots (not necessarily distinct) among the complex numbers.”

The fundamental theorem of algebra is an existence theorem, since it states
that there exist n roots to a polynomial equation of degree n. Of course, the
set of roots of a polynomial equation is unique. So the solution of the equation
2x4 − 3x3 − 13x2 + 37x − 15 = 0 is a set of four complex numbers and that
set is unique. Can you solve this equation?

Throughout this text, we will state existence and uniqueness theorems for
various types of problems involving differential equations and systems of dif-
ferential equations. Before generating a numerical solution to any such prob-
lem, it is necessary to verify that the hypotheses of appropriate existence and
uniqueness theorems are satisfied. Otherwise, the computer may generate a
“solution” where none exists or it may generate a single solution in a region
where the solution is not unique—that is, the computer may generate a single
solution where there are multiple solutions. Sometimes we present examples
which illustrate the erroneous results one may obtain if a numerical solution
is produced without regard for the appropriate theory.

An equation that contains one or more derivative of an unknown function or
functions or that contains differentials is called a differential equation (DE).
When a differential equation contains one or more derivatives with respect to
a particular variable, that variable is called an independent variable. A
variable is said to be a dependent variable, if some derivative of the variable
appears in the differential equation.

In order to systematically study differential equations, it is convenient and
advantageous to classify the equations into different categories. Two broad,
general categories used to classify differential equations are ordinary differen-
tial equations and partial differential equations. This classification is based on
the type of unknown function appearing in the differential equation. If the un-
known function depends on only one independent variable and the differential
equation contains only ordinary derivatives, then the differential equation is
called an ordinary differential equation (ODE). If the unknown function
depends on two or more independent variables and the differential equation
contains partial derivatives, then the differential equation is called a partial
differential equation (PDE). The order of a differential equation, ordinary
or partial, is the order of the highest derivative occuring in the equation.

For example,

(1)
dy

dx
= cos y

is a first-order, ordinary differential equation. The dependent variable is y
and the independent variable is x—that is, the unknown function is y(x).
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Introduction 7

The equation

(2)
d3y

dx3
− x

(
dy

dx

)2

+ x2y = tanx

is a third-order, ordinary differential equation.

The equation

(3)

(
d4y

dt4

)3

+ ty
d2y

dt2
− y5 = et

is a fourth-order, ordinary differential equation. The dependent variable is y
and the independent variable is t—thus, the unknown function is y(t).

The equation

(4)
∂z

∂x
+
∂z

∂y
= z

is a first-order, partial differential equation. The dependent variable is z and
the independent variables are x and y. Hence, the unknown function is z(x, y).

The equation

(5) α

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

=
∂u

∂t

is a second-order, partial differential equation. The unknown function is
u(x, y, z, t).

In calculus, you used the notations
d2y

dx2
and y′′ to represent the second

derivative of y. In the first notation, it is clear that x is the independent
variable. In the second notation, the prime notation, it is not obvious what the
independent variable is. The first notation is somewhat cumbersome, while
the second is convenient only for writing lower order derivatives. Reading
and writing the tenth derivative using prime notation would be tedious, so
we introduce another notation, y(2), for the second derivative. The tenth
derivative in this notation is y(10), which is both easy to read and write. The
kth derivative of y is written y(k). Throughout the text, we will use all three
notations for the derivative of a function. (Caution: When first using this
new notation, one sometimes mistakenly writes y2 for the second derivative
instead of y(2). Of course, y2 is “y squared” and not the second derivative of
y.)

In this text, we will deal mainly with ordinary differential equations. How-
ever, ordinary and partial differential equations are both subdivided into two
large classes, linear equations and nonlinear equations, depending on whether
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8 Elementary Differential Equations

the differential equation is linear or nonlinear in the unknown function and
its derivatives.

The general n-th order ordinary differential equation can be written
symbolically as

(6) F (x, y, y(1), . . . , y(n)) = 0.

An n-th order ordinary differential equation is linear, if it can be written in
the form

(7) a0(x)y
(n) + a1(x)y

(n−1) + · · ·+ an(x)y = g(x).

The functions ak(x) are called the coefficient functions. A nonlinear
ordinary differential equation is an ordinary differential equation which
is not linear.

It follows from the definition that for an ordinary differential equation to be
linear it is necessary that:

1. Each coefficient function ak(x) depends only on the independent variable
x and not on the dependent variable y.

2. The dependent variable y and all of its derivatives y(k) occur algebraically
to the first degree only. That is, the power of each term involving y and
its derivatives is 1.

3. There are no terms which involve the product of either the dependent
variable y and any of its derivatives or two or more of its derivatives.

4. Functions of y or any of its derivatives such as ey or cos y′ cannot
appear in the equation.

Equations (1), (2), and (3) are all nonlinear ordinary differential equations.
Equation (1) is nonlinear because of the term cos y. Equation (2) is nonlinear
because of the term (dy/dx)2. And equation (3) is nonlinear because of the
terms (d4y/dt4)3 and ty(d2y/dt2). The equations

(8) y(2) − 3y(1) + 2y = x

(9) x3y(4) − (sinx)y(3) + 2y(1) − exy = x+ 1

are both linear ordinary differential equations.

A solution of the n-th order ordinary differential equation

F (x, y(1), . . . , y(n)) = 0

on an interval I = (a,b) is a function y = f(x) which is defined on I,
which is at least n times differentiable on I, and which satisfies the equation
F (x, f (1), . . . , f (n)) = 0 for all x in I.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Introduction 9

Since a solution y = f(x) is at least n times differentiable on the interval
I, the functions f(x), f (1)(x), . . . , f (n−1)(x) are all continuous on I. Usually
the interval I is not specified explicitly, but it is understood to be the largest
possible interval on which y = f(x) is a solution.

Let p(x) be a polynomial. By definition, a solution of the equation p(x) = 0
is a root of the polynomial. To determine if any particular complex number
s is a root of p(x) or not, we compute p(s) and see if the value is 0 or not.
That is, to determine if a number s is a root of a polynomial, we do not
need to be able to “solve the polynomial” by factoring, by using some formula
such as the quadratic formula, or by using a numerical technique such as
Newton’s method to find the roots of the polynomial. All we need to do is
substitute the number s into the polynomial p(x) and see if p(s) = 0 or not.
Similarly, if we write a differential equation so that 0 is the right-hand side
of the equation, then to determine if some function y(x) is a solution of the
differential equation or not, all we need to do is (1) determine the order n
of the given differential equation, (2) differentiate the function y(x) n times,
(3) substitute y(x) and its n derivatives into the given differential equation,
and (4) see if the result is 0 or not. If the result is not 0, then the function
is not a solution of the given differential equation. If the result is 0, then the
function y(x) is a solution on any interval on which it and its n derivatives
are simultaneously defined.

Example 1 Verifying that a Function is a Solution of a DE

Verify that y = xe2x is a solution of the linear second-order differential
equation y′′ − 4y′ + 4y = 0 on the interval (−∞,∞).

Solution

Differentiating y = xe2x twice, we find

y′ = 2xe2x + e2x

y′′ = 2(2xe2x + e2x) + 2e2x = 4xe2x + 4e2x.

The three functions y, y′, and y′′ are defined on (−∞,∞) and

y′′ − 4y′ + 4y = (4xe2x + 4e2x)− 4(2xe2x + e2x) + 4xe2x

= (4 − 8 + 4)xe2x + (4− 4)e2x = 0

for all x in (−∞,∞). So y = xe2x is a solution of y′′ − 4y′ + 4y = 0 on
(−∞,∞). �

Example 2 Being a Solution Depends on the Interval

a. Show that y = x + 1
x is not a solution of x2y′′ + xy′ − y = 0 on the

interval (−∞,∞).

b. Verify that y = x+ 1
x is a solution of x2y′′+xy′− y = 0 on the intervals

(−∞, 0) and (0,∞).
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10 Elementary Differential Equations

Solution

a. The function y = x + 1
x is not defined at x = 0, so it cannot be the

solution of any differential equation on any interval which contains the
point x = 0.

b. Differentiating y = x+
1

x
= x+ x−1 twice, we find

y′ = 1− x−2 = 1− 1

x2
and y′′ = 2x−3 =

2

x3
.

The three functions y, y′, and y′′ are defined on the intervals (−∞, 0)
and (0,∞). And for x �= 0

x2y′′ + xy′ − y = x2(
2

x3
) + x(1− 1

x2
)− (x+

1

x
)

=
2

x
+ x− 1

x
− x− 1

x
= 0.

So the function y = x+
1

x
is a solution of x2y′′+xy′−y = 0 on (−∞, 0),

on (0,∞), and on any subinterval of these intervals, but y = x + 1
x is

not a solution of the differential equation on any interval which includes
the point x = 0. �

In calculus, you learned the definition of the derivative of a function, and you
calculated the derivative of a few functions from the definition. Also, you may
have seen the definition of the left-hand derivative and right-hand derivative of
a function in calculus. Since we want to determine where piecewise functions
are differentiable, we provide those definitions again.

Let f(x) be a real valued function of a real variable defined on some interval
I and let c be in the interval I.

The derivative of f at c is

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
, provided the limit exists.

The left-hand derivative of f at c is

f ′
−(c) = lim

h→0−

f(c+ h)− f(c)

h
, provided the limit exists.

The right-hand derivative of f at c is

f ′
+(c) = lim

h→0+

f(c+ h)− f(c)

h
, provided the limit exists.
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Introduction 11

Remarks: The derivative of the function f at c exists if and only if both the
left-hand derivative at c and the right-hand derivative at c exist and are equal.
Recall from calculus, if f is differentiable at c, then f is continuous at c. In
order to show that a function f is not differentiable at c, we can show that
(1) the function f is not continuous at c, or (2) either the left-hand derivative
at c or the right-hand derivative at c does not exist, or (3) the left-hand
derivative at c and the right-hand derivative at c both exist, but they are not
equal.

For example, the piecewise defined function

y(x) =

{
x3 + 2, x < 0
x2 − 1, 0 ≤ x

is defined on the interval (−∞,∞). It is continuous on the intervals (−∞, 0)
and (0,∞), but it is not continuous at x = 0, since

lim
x→0−

y(x) = 2 �= −1 = lim
x→0+

y(x) = y(0).

Because y(x) is not continuous at x = 0, the function y(x) is not differentiable
at x = 0; however, y(x) is differentiable on (−∞, 0) and (0,∞). In fact,

y′(x) =
{
3x2, x < 0
2x, 0 < x.

The absolute value function

y(x) = |x| =
{−x, x < 0

x, 0 ≤ x

is a piecewise defined function which is continuous on (−∞,∞). Computing
the left-hand derivative of y(x) = |x| at x = 0, we find

y′−(0) = lim
h→0−

|0 + h| − |0|
h

= lim
h→0−

|h|
h

= lim
h→0−

−h
h

= −1.

And computing the right-hand derivative of y(x) = |x| at x = 0, we find

y′+(0) = lim
h→0+

|0 + h| − |0|
h

= lim
h→0+

|h|
h

= lim
h→0−

h

h
= 1.

Since y′−(0) = −1 �= 1 = y′+(0), the absolute value function, y(x) = |x|, is not
differentiable at x = 0. However, the absolute value function is differentiable
on (−∞, 0) and (0,∞), and its derivative is

y′(x) =
d|x|
dx

=

{−1, x < 0
1, 0 < x

}

=
|x|
x

= sgn(x)

where sgn(x) is an abbreviation for the signum function.
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12 Elementary Differential Equations

The previous two examples illustrate that points where piecewise defined
functions may not be continuous or may not be differentiable are points at
which the definition of the function changes from one mathematical expression
to another.

Example 3 A Solution that is Defined Piecewise

Verify that the piecewise defined function

y(x) =

{−x2, x < 0
x2, 0 ≤ x

is differentiable on the interval (−∞,∞) and is a solution of the differential
equation xy′ − 2y = 0 on (−∞,∞).

Solution

On the interval (−∞, 0), y(x) = −x2; therefore, on (−∞, 0) its derivative is
y′(x) = −2x. On the interval (0,∞), y(x) = x2; hence, on (0,∞) its derivative
is y′(x) = 2x. To determine if y(x) is differentiable at x = 0, we compute the
left-hand derivative at 0 and the right-hand derivative at 0. Doing so, we find

y′−(0) = lim
h→0−

−(0 + h)2 + 02

h
= lim

h→0−

−h2
h

= lim
h→0−

−h = 0

and

y′+(0) = lim
h→0+

(0 + h)2 − 02

h
= lim

h→0+

h2

h
= lim

h→0+
h = 0.

Since y′−(0) = 0 = y′+(0), the function y(x) is differentiable at x = 0. Since
y(x) is differentiable on (−∞, 0), on (0,∞), and at x = 0, the function y(x)
is differentiable on the interval (−∞,∞), and its derivative is

y′(x) =
{−2x, x < 0

2x, 0 ≤ x.

A graph of y(x) and y′(x) is shown in Figure 1.1. For x < 0, xy′ − 2y =
x(−2x) − 2(−x2) = −2x2 + 2x2 = 0, so y(x) satisfies the given differential
equation on the interval (−∞, 0). For x > 0, xy′ − 2y = x(2x) − 2(x2) =
2x2−2x2 = 0, so y(x) satisfies the differential equation on the interval (0,∞).
At x = 0, xy′−2y = 0(0)−2(0) = 0, so y(x) satisfies the differential equation
at x = 0. Therefore, the piecewise defined, differentiable function y(x) satisfies
the differential equation xy′ − 2y = 0 on the interval (−∞,∞).
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Figure 1.1 Graph of y(x) and y′(x).

EXERCISES 1.2

In Exercises 1–14 determine the order of the given ordinary dif-
ferential equation and state whether the equation is linear or non-
linear.

1. y′ + x2y = 3 cosx 2. y′ + a(x)y = b(x)

3. y′ − 2exy = y2 4. y′ + a(x)yn = b(x) (where n �= 0 and n �= 1)

5. (y′)3 − xy2 = sinx 6. 3x2dx− 4ydy = 0 (Hint: Divide by dx.)

7. ydx− xdy = 0 8. y(1 + (y′)2) = 5

9. y′′ − 3y′y = 4 10. y′′ + x2y′ − x3y = tanx

11. y′′ + y sinx = 3 12. y′′ + x sin y = 3

13. (y(3))2 − 4(y(2))4 + x2y = 0

14. y(4) + x2y(3) − (sin x)y(2) = y

15. For what values of x is y =
√
x2 − 1 a solution of the differential

equation x− yy′ = 0?

16. Show that the differential equation |y′|+ y2 + 5 = 0 has no solution.

17. What is the unique solution of the differential equation |y′| + 5y2 = 0
on the interval (−∞,∞)?
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14 Elementary Differential Equations

18. Show that y = ex
2

+ex
2 ∫ x

0
et

2

dt is a solution of the differential equation
y′ = 2xy + 1.

19. Is y(x) = 1/x a solution of the differential equation x2y′′ + xy′ − y = 0

a. on the interval (−1, 1)? Why?

b. on the interval (0,∞)? Why?

c. on the interval (−∞, 0)? Why?

20. Is y = |x| a solution of the differential equation xy′ − y = 0

a. on the interval (−1, 1)? Why?

b. on the interval (0,∞)? Why?

c. on the interval (−∞, 0)? Why?

21. Is y =
√
x a solution of the differential equation 2x2y′′ + 3xy′ − y = 0

a. on the interval (−1, 1)? Why?

b. on the interval (0,∞)? Why?

c. on the interval (−∞, 0)? Why?

In Exercises 22–30 verify that the given function or functions is a
solution of the given differential equation and specify the interval
or intervals on which the solution exists.

22. y′′ − 3y′ + 2y = 0; y1(x) = 3ex, y2(x) = e2x

23. x2y′′ − 2y = 0; y1(x) = x2 − 1/x

24. y′ + 1/(2y) = 0; y1(x) =
√
3− x

25. y′ − y/x = 1; y1(x) = x lnx

26. y′ − 2
√|y| = 0; y1(x) = x|x|

27. x2dy + 2xydx = 0; y1(x) = −1/x2

28. y′ − y2 = 1; y1(x) = tanx
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29. 2x2y′′ + xy′ − y = 0; y1(x) = x, y2(x) = 1/
√
x

30. xy′ − sinx = 0; y1(x) =
∫ x
0

sin t dt

t
, y2(x) = − ∫ π

x

sin t dt

t

In Exercises 31–34 find the value or values of r for which the function
y(x) = erx is a solution of the given differential equation.

31. y′ + 3y = 0 32. y′′ − 3y′ − 10y = 0

33. y′′ + 2y′ + y = 0 34. y′′′ − 7y′′ + 12y′ = 0

In Exercises 35–38 find the value or values of r for which the
function y(x)=xr is a solution of the given differential equation.

35. 2xy′ − y = 0 36. x2y′′ − xy′ = 0

37. x2y′′ + 6xy′ + 4y = 0 38. x2y′′ − 5xy′ + 9y = 0

39. Find the values of r for which the function y = rx3 is a solution of the

following differential equations.

a. x2y′′ + 6xy′ + 5y = 0 b. x2y′′ + 6xy′ + 5y = 2x3

c. x2y′′ + 6xy′ + 5y = x3

40. Verify that the piecewise defined function

y(x) =

⎧
⎨

⎩

0, x < 0

x2, 0 ≤ x

is differentiable on the interval (−∞,∞) and is a solution of the differ-
ential equation (y′)2 − 4y = 0 on (−∞,∞).

41. Verify that the piecewise defined function

y(x) =

⎧
⎨

⎩

x3, x < 0

0, 0 ≤ x

is differentiable on (−∞,∞) and is a solution of the differential equation
(y′)2 − 9xy = 0 on (−∞,∞).
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16 Elementary Differential Equations

42. The differential equation

(L) y′ = x3

is linear, but the differential equation

(N) (y′)2 = x6

is nonlinear.

a. Verify that the derivative of the piecewise defined function

y(x) =

⎧
⎨

⎩

−x4/4, x < 0

x4/4, 0 ≤ x

is

y′(x) =

⎧
⎨

⎩

−x3, x < 0

x3, 0 ≤ x.

b. Show that y(x) is a solution on (−∞,∞) of (N) (y′)2 = x6, but
y(x) is not a solution on (−∞,∞) of either (L) y′ = x3 or y′ = −x3.

43. a. Show that the one-parameter family of lines y(x) = Cx+f(C), where
C is a constant, is a solution of Clairaut’s equation y = xy′ + f(y′).

b. For f(y′) = − 1
4 (y

′)2 Clairaut equation becomes (*) y = xy′ − 1
4 (y

′)2;
and the one-parameter family of lines y(x) = Cx − 1

4C
2 is a solution

of (*) for arbitrary C. Show for any constant C that the line y(x) =
Cx − 1

4C
2 is tangent to the parabola y = x2 at the point (C/2, C2/4)

and show that the parabola y = x2 is a solution of equation (*).

44. Let f and g be any two twice differentiable functions of x and t. Show
that u(x, t) = f(x+at)+g(x−at) is a solution of the partial differential
equation

a2
∂2u

∂x2
=
∂2u

∂t2
.

This equation is called the wave equation.
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Introduction 17

1.3 Solutions and Problems

In the previous section, we learned what a solution to a differential equa-
tion is and how to check if a particular function is a solution to a specified
differential equation or not. At this point, you might ask: “How many solu-
tions does a differential equation have?” The short answer is “It depends on
the differential equation.” For instance, the differential equation |y′|+ 1 = 0
has no solution, while the differential equation (y′)2 + y2 = 0 has exactly one
solution—the function y(x) = 0. By integration, we find that the solution of
the differential equation y′ = 2x is

(1) y(x) = x2 + C

where C is an arbitrary constant. Hence, the differential equation y′ = 2x has
an infinite number of solutions—one solution for each choice of the value of
the constant C. The set of solutions y(x) = x2+C is called a one-parameter
family of solutions of the differential equation y′ = 2x. The graph of this
family of solutions is called the integral curves or solution curves of the
differential equation. A solution of a differential equation which contains
no arbitrary constants is called a particular solution. Choosing C = 1 in
equation (1), we obtain the particular solution y(x) = x2+1 of the differential
equation y′ = 2x. A graph of the particular solutions obtained from (1) by
choosing C = −2, C = −1, C = 0, C = 1, and C = 2 are shown in Figure 1.2.
The graphs of these solution curves are parabolas which open upward, have
vertices at (0, C), and have the y-axis as their axes of symmetry. Thus,
Figure 1.2 represents the solution curves of the differential equation y′ = 2x.

C = 2

C = –2

y

x

–4

–2

0

2

4

 

–4 –2 2 4 

Figure 1.2 Solution Curves of the Differential Equation y′ = 2x.
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18 Elementary Differential Equations

Integrating the second-order differential equation y′′ = 2x+1 twice, we find
y′ = x2 + x+ c1 and

(2) y(x) =
1

3
x3 +

1

2
x2 + c1x+ c2.

Hence, (2) is a two-parameter family of solutions of the DE y′′ = 2x+ 1.

When specifying the number of parameters in a family of functions, we
must be careful to avoid calling every constant a parameter. For example,
the family of functions y = c1e

x+c2 contains two constants c1 and c2, but this
family is not a two-parameter family, since

y = c1e
x+c2 = c1e

xec2 = kex.

That is, y = c1e
x+c2 is actually the one-parameter family of functions y = kex

disguised as a two-parameter family. When a set of constants {c1, c2, . . . , cn}
in a family of functions cannot be reduced to a smaller number by algebraic
manipulation, then the constants are called essential parameters. Hence-
forth, when we say a family of functions is an n-parameter family, we will
assume that it has n essential parameters.

Example 1 Verifying a Two-Parameter Family is a Solution

Verify that

(3) y(x) = c1e
x + c2e

−x

is a two-parameter family of solutions of the second-order, linear differential
equation

(4) y′′ − y = 0.

Solution

Differentiating (3) twice, we get y′ = c1e
x − c2e

−x and y′′ = c1e
x + c2e

−x.
Substituting these expressions for y′′ and y into (4), we find

y′′ − y = (c1e
x + c2e

−x)− (c1e
x + c2e

−x) = 0

for all x and all choices of c1 and c2. Hence, (3) is a solution of the DE (4)
on the interval (−∞,∞) for all choices of c1 and c2. �

If every solution on an interval I of the n-th order differential equation

(5) F (x, y, y(1), y(2), . . . , y(n)) = 0

is obtainable from an n-parameter family of functions

(6) G(x, y, c1, c2, . . . , cn) = 0
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by an appropriate choice of the parameters c1, c2, . . . , cn, then the family of
functions (6) is called the general solution of the differential equation (5).
A solution of an n-th order differential equation which cannot be obtained
from an n-parameter family of solutions is called a singular solution.

As we shall see later in the text, when the coefficient functions of a lin-
ear differential equation satisfy fairly simple conditions on an interval, then
solutions exist on the interval and all solutions are obtainable from a fam-
ily of functions. With the exception of a few first-order equations, nonlinear
differential equations are difficult or impossible to solve explicitly. So for all
practical purposes, the term general solution is used only in conjunction with
linear differential equations. The general solution of a differential equation
may not have a unique representation as an n-parameter family of functions.
That is, there may be more than one function of the form (6) which is the
general solution of (5). For example, both of the two-parameter families

y1 = c1e
−x + c2e

x and y2 = k1 sinhx+ k2 coshx

are general solutions of the differential equation y′′ − y = 0. They are simply
two different ways to represent the same solutions, since

sinhx =
1

2
ex − 1

2
e−x and coshx =

1

2
ex +

1

2
e−x.

Example 2 Singular Solution of a Differential Equation

a. Verify that

(7) y(x) = cx+ c2

is a one-parameter family of solutions of the first-order nonlinear differ-
ential equation

(8) (y′)2 + xy′ − y = 0.

b. Show that
y(x) = −x2/4

is a singular solution of the DE (8).

Solution

a. Differentiating y(x) = cx + c2, we get y′ = c. Substituting for y and y′

in (8), yields

(y′)2 + xy′ − y = c2 + xc− (cx+ c2) = 0.

Thus, (7) is a one-parameter family of solutions of the DE (8).
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20 Elementary Differential Equations

b. The function y(x) = −x2/4 cannot be obtained from the one-parameter
family y(x) = cx + c2 by any choice of the constant c. Differentiating
y(x) = −x2/4, we find y′ = −x/2. Substituting for y and y′ in (8), we
find

(y′)2 + xy′ − y = (−x
2
)2 + x(−x

2
)− (−x

2

4
) = (

1

4
− 1

2
+

1

4
)x2 = 0.

Thus, y(x) = −x2/4 is a solution of the DE (8) and it is not a member
of the one-parameter family (7). So by definition y(x) = −x2/4 is a
singular solution of (8). A graph of the singular solution y(x) = −x2/4
and members of the one-parameter family of solutions y(x) = cx + c2

obtained by choosing c = −2, c = −1, c = 0, c = 1, and c = 2
are displayed in Figure 1.3. Observe that the one-parameter family of
lines y(x) = cx+ c2 are tangent to the singular solution (the parabola)
y(x) = −x2/4.

y(x) =   x  /4

y(x) = x+1

c = 0

c = 1c = 2c = –2c = –1 y

x

–4

–2

0

2

4

 

–4 –2 2 4 

2

y(x) =    x+1

- -

-

Figure 1.3 A One-Parameter Family of Solutions and the

Singular Solution of (y′)2 + xy′ − y = 0. �

Given a function y(x), we are usually able to determine where the function
is differentiable and to calculate its derivative. For example, the function
y(x) = x3−4x+1 has derivative y′(x) = 3x2−4.Given the differential equation
y′(x) = 3x2 − 4, how do we recover the original function y(x) = x3 − 4x+ 1?
Integrating the differential equation y′(x) = 3x2 − 4 we get, not a single
function, but the one-parameter family of functions, y(x) = x3 − 4x + C
where C is an arbitrary constant. In order to select the specific function
y(x) = x3 − 4x+ 1 from the family of functions y(x) = x3 − 4x+C, we must
specify some condition to be satisfied in addition to the differential equation.
The original curve y(x) = x3−4x+1 passes through the point (2, 1). Requiring
y(x) = x3 − 4x + C to satisfy the condition y(2) = 1, we see that C must
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satisfy the equation y(2) = 1 = 23 − 4(2) + C. Hence, C = 1 and we recover
the original function.

Proceeding one step further, we differentiate y(x) = x3 − 4x+ 1 twice and
find y′′(x) = 6x. Integrating this differential equation twice, we obtain the
two-parameter family of solutions y(x) = x3 + Ax + B where A and B are
arbitrary constants. To recover the original function, in this case, we must
specify two additional conditions which will require us to choose A = −4 and
B = 1. For instance, we could require y(2) = 1 and y′(2) = 8, since the
original curve passes through the point (2, 1) and has slope 8 at (2, 1)—that
is,

dy

dx

∣
∣
∣
∣
x=2

= y′(2) = 8.

Or, we could require y(1) = −2 and y(2) = 1, since the original curve passes
through both (1,−2) and (2, 1).

The problem of solving the differential equation y′′ = 6x subject to the two
conditions

(9) y(2) = 1 and y′(2) = 8

is called an initial value problem and the conditions (9) are called initial
conditions.

The problem of solving the differential equation y′′ = 6x subject to the two
conditions

(10) y(1) = −2 and y(2) = 1

is called a boundary value problem and the conditions (10) are called
boundary conditions.

So two types of problems to be solved in the study of differential equations
are initial value problems and boundary value problems. A precise statement
of these two types of problems for n-th order ordinary differential equations
follows.

The problem of finding a solution y = f(x) of the n-th order differential
equation

(DE) y(n) = F (x, y, y(1), . . . , y(n−1))

subject to a set of n conditions, called initial conditions,

(IC) y(x0) = c0, y
(1)(x0) = c1, . . . , y

(n−1)(x0) = cn−1

where x0, c0, c1, . . . , cn−1 are real constants is called an initial value prob-
lem (IVP). Notice that in an initial value problem all n conditions to be
satisfied are specified at a single value of the independent variable—namely,
at x0.
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22 Elementary Differential Equations

The problem of finding a solution y = f(x) to the differential equation

(DE) y(n) = F (x, y, y(1), . . . , y(n−1))

subject to a set of n conditions, called boundary conditions (BC), which
specify values of the function y or some of its derivatives at two or more dis-
tinct values of the independent variable is called a boundary value problem
(BVP).

The theory associated with initial value problems is well established and
relatively simple. As a consequence, throughout this text we will state various
theorems which guarantee the existence of solutions and theorems which guar-
antee the uniqueness of solutions to different types of initial value problems—
such as, initial value problems in which the differential equation is first-order,
initial value problems in which the differential equation is linear with constant
coefficients, and initial value problems in which the differential equation is lin-
ear with variable coefficients. We will also define an analogous initial value
problem for systems of first-order differential equations and state an existence
and uniqueness theorem for this problem.

At this point, we need to examine a few initial value problems and bound-
ary value problems to determine whether all initial value problems and all
boundary value problems have a solution or not. That is, we need to examine
the question of existence of solutions to initial value problems and the ques-
tion of existence of solutions to boundary value problems. We also need to
discover if any initial value problem or any boundary value problem has more
than one solution. That is, we need to consider the question of uniqueness of
solutions to initial value problems and the question of uniqueness of solutions
to boundary value problems.

Let us examine the differential equation

(11) xy′ − y = 0.

The function y(x) = cx, where c is an arbitrary constant, and its derivative
y′(x) = c are both defined on the interval (−∞,∞). Substituting y and y′

into the DE (11), we find

xy′ − y = xc− cx = 0

for all x and for all choices of c. Thus, y(x) = cx is a one-parameter family of
solutions to the DE (11) on (−∞,∞). This family of functions is the set of
all lines which pass through the origin except for the line x = 0 (the y-axis).

Example 3 An Initial Value Problem with No Solution

Consider the initial value problem

(12) xy′ − y = 0; y(0) = 1.
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For x = 0 the differential equation xy′ − y = 0 reduces to −y = 0. Conse-
quently, for x = 0 the differential equation xy′ − y = 0 is undefined unless
y(0) = 0 also. Hence, the IVP (12) is an example of an initial value problem
which does not have a solution. Furthermore, there is no solution to any
initial value problem of the form xy′ − y = 0; y(0) = d �= 0. In geometric
terms, there is no solution of the differential equation xy′−y = 0 which passes
through any point on the positive or negative y-axis—that is, any point of the
form (0, d) where d �= 0. �

Example 4 An Initial Value Problem with an Infinite Number of
Solutions

The differential equation of the initial value problem

(13) xy′ − y = 0; y(0) = 0

is the same as the differential equation in the previous example. As we noted
earlier, y = cx is a one-parameter family of solutions on (−∞,∞). Sub-
stituting the initial condition y(0) = 0 into the solution y(x) = cx results
in the equation y(0) = 0 = c(0) which is satisfied by any constant c. Thus,
y(x) = cx is a solution of the IVP (13) on the interval (−∞,∞) for any choice
of the constant c. Consequently, the IVP (13) is an example of an initial value
problem with an infinite number of solutions. �

Example 5 An Initial Value Problem with a Unique Solution

Now consider the initial value problem

(14) xy′ − y = 0; y(1) = 4.

Again, the function y(x) = cx, where c is an arbitrary constant, is a one-
parameter family of solutions of the differential equation xy′ − y = 0 on the
interval (−∞,∞). Imposing the initial condition y(1) = 4 = c(1), we find
c = 4. So the IVP (14) has the unique solution y(x) = 4x on (−∞,∞). �

Let us examine initial value problems of the form xy′ − y = 0; y(a) = b
where a �= 0. The solution of the differential equation is y(x) = cx. Imposing
the initial condition y(a) = b, we find c must satisfy the equation y(a) =
b = ca. Since we have assumed a �= 0, the unique solution of this equation
is c = b/a; and, therefore, the unique solution of the initial value problem
xy′ − y = 0; y(a) = b where a �= 0 is y(x) = bx/a. Interpreted geometrically,
this means that for any point (a, b) where a �= 0—that is, for any point which
is not on the y-axis—there is a unique solution of the differential equation
xy′ − y = 0 which passes through (a, b).

Example 6 An Initial Value Problem with an Infinite Number

of Piecewise Defined Solutions

One solution on the interval (−∞,∞) of the initial value problem

(15) y′ = 3y2/3; y(0) = 0
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24 Elementary Differential Equations

is clearly y1(x) = 0. A second solution is y2(x) = x3. (Verify this fact.) As
a matter of fact, there are an infinite number of solutions to this initial value
problem. In Exercise 6 at the end of this section, you are asked to show that

yab(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x − a)3, x < a ≤ 0

0, a ≤ x ≤ b

(x− b)3, 0 ≤ b < x

is a solution on (−∞,∞) for every choice of a ≤ 0 and b ≥ 0. This example
illustrates that if an initial value problem has a solution, the solution may not
be unique. �

In the following three examples of boundary value problems, we will use
the same differential equation and vary only one boundary condition. First,
we verify that a two-parameter family of solutions of the differential equation
y′′ + y = 0 is y = A sinx + B cosx, where A and B are arbitrary constants.
Differentiating y = A sinx+B cosx twice, we find

y′ = A cos x− B sinx and y′′ = −A sinx−B cosx.

Substitution into the differential equation, yields

y′′ + y = (−A sinx−B cosx) + (A sinx+B cosx) = 0

for all real x and for all A and B. Since y, y′, and y′′ are all defined on
(−∞,∞), the function y = A sinx+B cosx is a solution of y′′ + y = 0 on the
interval (−∞,∞). Suppose in addition to satisfying y′′ + y = 0, we require
that y(0) = 0. Imposing this condition, results in the equation

y(0) = 0 = A sin 0 +B cos 0 = B.

Thus, B = 0 and A is arbitrary. Consequently, the solution of the differential
equation y′′+y = 0 which satisfies the condition y(0) = 0 is the one-parameter
family of functions y = A sinx. A graph of this family on the interval (−5, 5)
is shown in Figure 1.4.

A = –3

A = –2

A = –1

A = 0

A = 1

A = 2

A = 3y

x

–3

–2

–1

0

1

2

3
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Figure 1.4 Solutions Curves y = A sinx of y′′ + y = 0; y(0) = 0.
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Example 7 A Boundary Value Problem with No Solution

Consider the boundary value problem

(16) y′′ + y = 0; y(0) = 0, y(π) = 1.

We already know from the previous discussion that if there is a solution to
this boundary value problem, it must be of the form y = A sinx. Imposing
the second boundary condition, y(π) = 1, results in the following equation
and contradiction

y(π) = 1 = A sinπ = 0 or 1 = 0.

Hence, there is no solution to the boundary value problem (16). �

Example 8 A Boundary Value Problem with a Unique Solution

Now consider the boundary value problem

(17) y′′ + y = 0; y(0) = 0, y(π/2) = 1.

Again, if a solution of this boundary value problem exists, it must be of the
form y = A sinx. Imposing the second boundary condition, y(π/2) = 1, yields

y(π/2) = 1 = A sin(π/2) = A.

So A = 1 and the unique solution of the boundary value problem (17) is
y = sinx. �

Example 9 A Boundary Value Problem with an Infinite Number

of Solutions

As in the previous two examples, if the boundary value problem

(18) y′′ + y = 0; y(0) = 0, y(π) = 0

is to have a solution, it must be of the form y = A sinx. Imposing the second
boundary condition, y(π) = 0, results in the equation A sinπ = A · 0 = 0,
which is satisfied by all choices of the constant A. So the boundary value
problem (18) has an infinite number of solutions—the one-parameter family
of functions y = A sinx, where A is an arbitrary constant. �

In the previous three examples, the differential equation and one boundary
condition were identical. However, the results which we obtained were rad-
ically different because of the second boundary condition. These examples
illustrate the complexities inherent in the study of boundary value problems.
These complexities can, at least partially, be attributed to the interaction
of the boundary conditions with the differential equation. Because of these
inherent complexities, we shall not present any general theory for boundary
value problems.
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EXERCISES 1.3

1. Verify that y(x) = c1e
x2

is a one-parameter family of solutions of the
differential equation y′ − 2xy = 0 on the interval (−∞,∞).

2. Show that y = c1e
−x + x2 − 1 is a one-parameter family of solutions of

the differential equation y′ + y = x2 + 2x− 1 on (−∞,∞).

3. Show that y = c1e
−2x + c2e

3x is a two-parameter family of solutions of
the differential equation y′′ − y′ − 6y = 0 on (−∞,∞).

4. Show that y = (
1

4
x2 + c2)2 is a one-parameter family of solutions of the

differential equation y′ = xy1/2 on (−∞,∞) and verify that y(x) = 0 is
a singular solution.

5. Consider the differential equation (19) y′′ − y = 0.

a. Show that y = c1e
−x+ c2e

x is a two-parameter family of solutions of
the DE (19).

b. Show that y = k1 sinhx+ k2 coshx is also a two-parameter family of
solutions of the DE (19).

6. Show that for all a ≤ 0 and all b ≥ 0

yab(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x− a)3, x < a ≤ 0

0, a ≤ x ≤ b

(x − b)3, 0 ≤ b < x

is a solution of the initial value problem (20) y′ = 3y2/3; y(0) = 0 on
the interval (−∞,∞). This proves that the initial value problem (20)
has an infinite number of solutions.

7. Verify that y = c1x lnx is a one-parameter family of solutions of the
differential equation (21) (x ln x)y′ − (1 + lnx)y = 0 on the interval
(0,∞). Solve, if you can, the three initial value problems consisting of
the DE (21) and the following three sets of initial conditions

a. y(2) = 4 b. y(1) = 0 c. y(1) = 2

8. Verify that y = c1e
−x + c2e

2x is a two-parameter family of solutions
of the differential equation (22) y′′ − y′ − 2y = 0 on (−∞,∞).

a. Solve the initial value problems consisting of the DE (22) and the fol-
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lowing two sets of initial conditions.

(i) y(0) = 2, y′(0) = −5 (ii) y(1) = 3, y′(1) = −1

b. Solve the boundary value problems consisting of the DE (22) and
the following two sets of boundary conditions

(i) y(0) = 1, y(2) = 0 (ii) y(0) = 0, y′(2) = 1

9. Verify that y = c1x+c2x
2+c3x

3 is a three-parameter family of solutions
of the differential equation (23) x3y(3) − 3x2y(2) + 6xy(1) − 6y = 0 on
(−∞,∞). Find the solution of the initial value problem consisting of
the DE (23) and the initial conditions y(1) = 2, y′(1) = 3, y′′(1) = 4.

10. Verify that y = c1x
2 + c2x

3 is a two-parameter family solution of the
differential equation (24) x2y′′ − 4xy′ + 6y = 0 on (−∞,∞). Solve, if
you can, the boundary value problems consisting of the DE (24) and the
following sets of boundary conditions.

a. y(1) = 0, y(2) = −4 b. y′(1) = 0, y(2) = 4

c. y(1) = 1, y′(2) = −12 d. y′(1) = 3, y′(2) = 0

e. y(0) = 0, y(2) = 4 f. y(0) = 2, y′(2) = −1

1.4 A Nobel Prize Winning Application

Generally a mathematical model is constructed to approximate a physical
problem. Often this model includes a differential equation. Unless the model
was poorly constructed, the solution of the differential equation, if one exists,
will usually approximate the solution of the physical problem.

Radioactive Decay Physical experimentation has shown that radioac-
tive substances decompose at a rate which is proportional to the quantity of
radioactive substance present. If we let Q(t) represent the quantity of radioac-
tive substance present at time t, then the statement above may be expressed
mathematically by the differential equation

(1)
dQ

dt
= kQ

where k is the constant of proportionality. Multiplying equation (1) by dt and
dividing by Q, we obtain

(2)
dQ

Q
= kdt.
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The variables Q and t are “separated” in this equation in the sense that Q
and its differential dQ appear on the left-hand side of the equation, while the
differential of t, dt, appears on the right-hand side of the equation. Integrating
equation (2), we find

∫
dQ

Q
=

∫
k dt or ln |Q| = kt+ C

where C is an arbitrary constant of integration. Exponentiating the right-
hand equation, we see

|Q| = ekt+C = eCekt.

Since Q and eC are positive constants, we may rewrite this last equation as

(3) Q(t) = Pekt

where P is a positive constant. To determine the two constants k and P
in equation (3), we need to specify two physical conditions to be satisfied.
Suppose at time t0 the amount of radioactive substance present is Q0 and
suppose at some later time t1 the amount of substance present is Q1. Then
stated mathematically, the two conditions to be satisfied are

(4) Q(t0) = Q0

and

(5) Q(t1) = Q1.

Evaluating equation (3) at t = t0 and imposing the condition (4), we see
the constant P must be chosen to satisfy Q(t0) = Q0 = Pekt0 . Hence,
P = Q0e

−kt0 . Substituting this expression into equation (3), we find the
solution of the DE (1) which satisfies condition (4) has the form

(6) Q(t) = Q0e
k(t−t0).

Evaluating equation (6) at t = t1 and imposing the condition (5), we see the
constant k must satisfy

(7) Q(t1) = Q1 = Q0e
k(t1−t0).

Solving equation (7) for k, we find the constant of proportionality is

(8) k =
lnQ1 − lnQ0

t1 − t0
.

In the radioactive decay process, the amount of substance present decreases
with increasing time. Since we have assumed t1 > t0, it follows that Q1 < Q0.
Hence, t1 − t0 > 0, and since lnQ1 < lnQ0, we have lnQ1 − lnQ0 < 0. It
then follows from equation (8) that k < 0.
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The rate of decay of a radioactive substance is often expressed in terms of
half-life—that is, the time required for any given quantity of the substance
to be reduced by a factor of one-half. If in equation (8) we let Q1 = 1

2Q0,
then the half-life T = t1 − t0 satisfies the equation

(9) kT = − ln 2.

Consequently, if either k or T is known or can be determined experimentally,
then the other variable can be determined from equation (9).

The half-life of uranium 238 is 4.5 billion years, the half-life of potassium
40 is 1.4 billion years, and the half-life of rubidium 87 is 60 billion years.
By checking the ratio of elements such as these to the elements into which
they decay radioactively, geologists and archaeologists can reliably estimate
dates of significant events that occurred millions and even billions of years
ago. However, since they decay so slowly, radioactive elements with half-lives
of millions or billions of years are not suitable for dating events which took
place relatively recently.

In the late 1940s and early 1950s, the American chemist Willard F. Libby
(1908-1980) developed the technique of radiocarbon dating, which can be
used to estimate the dates of events that occurred up to 50,000 years ago.
In 1960, Libby was awarded the Nobel Prize in Chemistry for this achieve-
ment. Libby’s technique is based on a phenomenon which involves the radioac-
tive isotope carbon 14, 14C, which is called radiocarbon and has a half-life of
5568 years. Radioactive carbon is constantly being produced in the earth’s
upper atmosphere by incoming cosmic rays. These rays produce neutrons,
which in turn collide with nitrogen 14 to produce carbon 14. The radioactive
carbon is oxidized and forms radioactive carbon dioxide, which circulates in
the earth’s atmosphere. Plants which “breathe” carbon dioxide also breathe
radioactive carbon dioxide and through their life processes absorb radiocarbon
in their tissue. Likewise, animals which eat these plants absorb radiocarbon in
their tissue. The rate of absorption of radiocarbon by living tissue is in equi-
librium with the rate of disintegration. However, when a plant or animal dies,
it ceases to absorb radiocarbon and only the process of disintegration contin-
ues. The age of a substance of organic origin can be estimated by measuring
the radioactivity of carbon 14 of a sample of that substance. For example,
a piece of charcoal that has one-half the radioactivity of a living tree died
approximately 5568 years ago, and a piece of charcoal that has one-fourth the
radioactivity of a living tree died approximately 11,136 years ago.

Solving equation (9), kT = − ln 2, for the decay constant k, and substituting
5568 for the half-life, T , we find the decay constant for radioactive carbon,
14C, is

k = − ln 2

5568 years
= −.00012449/years.

From equation (6) we see that the amount, Q(t), of 14C present at time t ≥ t0

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


30 Elementary Differential Equations

in some organic substance is

Q(t) = Q0e
k(t−t0)

where Q0 is the amount that was present at the time t0 when the substance
died. Differentiating this equation, we find that the rate of disintegration,
R(t), of 14C at any time t ≥ t0 is

R(t) = kQ0e
k(t−t0).

At time t = t0 the rate of disintegration is

R(t0) = kQ0.

So the ratio of the disintegration rate at time t to the disintegration rate at
time t0 is

R(t)

R(t0)
= ek(t−t0).

Solving for the time since the death of the substance, t− t0, we find

(10) t− t0 =
1

k
ln

(
R(t)

R(t0)

)

.

Assuming that for any particular living substance the rate of disintegration of
14C is a constant (that is, the rate of disintegration is the same now as it was
in the past), the time that a particular sample of the same substance died can
be calculated from equation (10). For example, in 1950 the rate of radioactive
disintegration of 14C from a piece of charcoal found in the Lascaux cave in
France was .97 disintegrations per minute per gram. Tissue from living wood
has a disintegration rate of 6.68 disintegrations per minute per gram. So the
tree from which the charcoal came died

t− t0 =
1

−.00012449 ln
(
.97

6.68

)

= 15,500 years before 1950.

We have only discussed radioactive substances with relative long half-lives.
However, the reader should be aware that there are radioactive substances
with half-lives on the order of a few years, a year, a day, a second, and even
a very small fraction of a second.

EXERCISES 1.4

1. If 5% of a radioactive substance decomposes in 50 years, what percentage
will be present at the end of 500 years? 1000 years? What is the half-
life of the substance?
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2. If the half-life of a radioactive substance is 1800 years, what percentage
is present at the end of 100 years? In how many years does only 10% of
the substance remain?

3. If 100 grams of a radioactive substance is present 1 year after the sub-
stance was produced and 75 grams is present 2 years after the substance
was produced, how much was produced and what is the half-life of the
substance?

4. In 1977 the rate of carbon 14 radioactivity of a piece of charcoal found
at Stonehenge in southern England was 4.16 disintegrations per minute
per gram. Given that the rate of carbon 14 radioactivity of a living tree
is 6.68 disintegrations per minute per gram and assuming the tree which
was burned to produce the charcoal was cut during the construction of
Stonehenge, estimate the date of the construction of Stonehenge.

5. During the 1950 excavation of the Babylonian city of Nippur, charcoal
from a roof beam was discovered which had a rate of carbon 14 radioac-
tivity of 4.09 disintegrations per minute per gram. Given that the rate of
radioactivity of a living tree is 6.68 disintegrations per minute per gram
and assuming the charcoal was created during the reign of Hammurabi,
approximately when was the reign of Hammurabi?
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Chapter 2

The Initial Value Problem
y′ = f(x,y); y(c) = d

In this chapter, we discuss in detail the first-order initial value problem
y′ = f(x, y); y(c) = d. First, we define the direction field for the differential
equation y′ = f(x, y), we discuss the significance of the direction field, and we
show how to use a computer program to produce a graph of the direction field.
Next, we state a fundamental existence theorem, a fundamental existence and
uniqueness theorem, and a continuation theorem for the initial value problem.
We show how to apply these theorems to a variety of initial value problems
and we illustrate and emphasize the importance of these theorems. Then we
discuss how to obtain the general solution to first-order differential equations
which are separable or linear and, thereby, solve initial value problems in which
the differential equation is separable or linear. Next, we present some simple
numerical techniques for solving first-order initial value problems. Finally, we
explain how to use a computer program to generate approximate, numerical
solutions to first-order initial value problems. We illustrate and interpret the
various kinds of results which computer software may produce. Furthermore,
we reiterate the importance of performing a thorough mathematical analysis,
which includes applying the fundamental theorems to the problem, prior to
generating a numerical solution.

The first-order initial value problem is to solve the differential equation
(DE)

(1) y′ = f(x, y)

subject to the constraint, called an initial condition (IC),

(2) y(c) = d.

It is customary to write this initial value problem (IVP) more compactly as

(3) y′ = f(x, y); y(c) = d.

In Chapter 1 we gave examples of initial value problems with no solution,
with a unique solution, and with multiple solutions. Later, we will state a
theorem which will guarantee the existence of a solution to an initial value
problem of the form (3) and we will state a second theorem which will guar-
antee the existence and uniqueness of a solution.

33
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34 Elementary Differential Equations

2.1 Direction Fields

First, let us examine the geometric significance of the differential equation
(1) y′ = f(x, y). At each point (x, y) in the xy-plane for which the function
f is defined, the differential equation defines a real value, f(x, y). This value
is the slope of the tangent line to every solution of the differential equation
which passes through the point (x, y). Thus, the differential equation specifies
the direction that a solution must have at every point (x, y) in the domain of
f . Imagine passing a short line segment of slope f(x, y) through each point
(x, y) in the domain of f . The set of all such line segments is called the
direction field of the differential equation y′ = f(x, y). Usually, the domain
of f contains an infinite number of points; and, therefore, we cannot possibly
draw the direction field. Instead, we choose some rectangle

R = {(x, y)| Xmin ≤ x ≤ Xmax and Ymin ≤ y ≤ Ymax}

which contains points of the domain of f ; we select a set of points (xi, yi)
contained in R; and for those points (xi, yi) in the domain of f , we construct
a short line segment at (xi, yi) with slope f(xi, yi). We will call a graph
constructed in this manner the direction field of y′ = f(x, y) in the rectangleR.
The direction field indicates subregions in R in which solutions are increasing
and decreasing, it often reveals maxima and minima of solutions in R, it
sometimes indicates the asymptotic behavior of solutions, and it illustrates
the dependence of solutions on the initial conditions.

Let (x, y) be a fixed point in the rectangle R at which f(x, y) is defined.

• If y′ = f(x, y) > 0, then the solution which passes through the point
(x, y) is increasing.

• Similarly, if y′ = f(x, y) < 0, then the solution which passes through the
point (x, y) is decreasing.

• When y′ = f(x, y) = 0, we must consider the direction lines near (x, y),
and there are five distinct cases to consider.

(1) If the direction lines of points immediately to the left and right of (x, y)
are also horizontal (y′ = 0 to the right and left of (x, y)), then the solution
through (x, y) is constant on some interval containing x.

(2) If the direction lines immediately below and to the left of (x, y) have
positive slope (y′ > 0 below and to the left of (x, y)), then the solution through
the point (x, y) increases as it approaches (x, y) from the left.

(3) If the direction lines immediately above and to the left of (x, y) have
negative slope (y′ < 0 above and to the left of (x, y)), then the solution
through the point (x, y) decreases as it approaches (x, y) from the left.

(4) If below and to the right of (x, y) the direction lines have negative slope,
then the solution through (x, y) decreases to the right of (x, y).
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(5) If above and to the right of (x, y) the direction lines have positive slope,
then the solution through (x, y) increases to the right of (x, y).

• When f(x, y) = 0 and (2) and (4) both occur, then there is a relative
maximum at, or near, (x, y).

• When f(x, y) = 0 and (3) and (5) both occur, then there is a relative
minimum at, or near, (x, y).

• When f(x, y) = 0 and either (2) and (5) both occur or (3) and (4) both
occur, then there is an inflection point at, or near, (x, y).

In order to use a computer program to graph the direction field of y′ =
f(x, y) in a rectangular region R of the xy-plane bounded by the lines x =
Xmin, x = Xmax, y = Ymin, and y = Ymax, you must enter the function
f and the values for Xmin, Xmax, Ymin, and Ymax. The way in which
you do this depends upon the software you are using. The following example
illustrates the typical output of such computer programs.

Example 1 Direction Field for y′ = x− y

Graph the direction field of the differential equation y′ = x − y = f(x, y)
on the rectangle R = {(x, y)| − 5 ≤ x ≤ 5 and − 5 ≤ y ≤ 5}.
Solution

We input the function f(x, y)—namely, x − y and indicated Xmin = −5,
Xmax = 5, Ymin =−5, and Ymax = 5. The direction field shown in Figure 2.1
is the output from MAPLE.

Notice that on the line y = x, y′ = x− y = 0. Above the line y = x, y > x
so y′ = x−y is negative. Thus, any solution which passes through some point
above the line y = x decreases until it reaches a minimum, which occurs when
the solution crosses the line y = x (where y′ = 0). Once the solution crosses
the line y = x, y′ = x − y becomes positive, since x > y and the solution
increases.

Look carefully at the direction field in Figure 2.1. You should be able to
pick out the line y = x − 1. That is, from Figure 2.1 it looks like y = x − 1
may be a solution of the differential equation y′ = x − y. To determine
if it is, we differentiate y = x − 1 and find y′ = 1. Since for y = x − 1,
x − y = x − (x − 1) = 1 also, the function y = x − 1 is a solution of the
differential equation y′ = x− y.

Notice that a solution which passes through any point below the line y =
x−1 is strictly increasing, since below y = x−1, y < x and y′ = x−y > 0. We
also claim that as x increases all of the solutions approach the line y = x− 1.
That is, all solutions approach the line y = x− 1 asymptotically.

Verify that the general solution of the differential equation y′ = x − y is
y = Ce−x+x−1, where C is any arbitrary constant. Observe that y = x−1 is
the solution corresponding to C = 0 and that for any C �= 0, y = Ce−x+x−1
approaches x− 1 as x approaches +∞. Figure 2.2 is a graph of the direction
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field for y′ = x − y and the solution curves y = Ce−x + x − 1 for C = −2,
C = −1, C = 0, C = 1, and C = 2.
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Figure 2.1 Direction Field for y′ = x− y.
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Figure 2.2 Direction Field and Solution Curves for y′ = x− y, �
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Perhaps the following analogy will help you better understand the relation-
ship of the direction field and a solution to an initial value problem. Think of
the rectangle R as a football field and imagine that you are floating above the
football field in a hot air balloon and looking down upon the field. Suppose
flags have been placed on the field to form a grid work. And suppose a gentle
breeze starts to blow across the field. Each flag will point in the direction the
breeze is blowing at that point on the field. Since we are above the field, we
see only the top of the flag which will be a straight line. If a dandelion seed is
released at some point on the field (the initial point), then the seed will float
across the field. The path of the dandelion seed corresponds to the solution of
the initial value problem (3) consisting of the differential equation (1), which
corresponds to the direction field, and the initial condition (2), which corre-
sponds to the point at which the seed was released. At any point where the
path of the seed touches a flag, the path will be tangent to the flag.

Comments on Computer Software The software which accompanies
this text contains a program named DIRFIELD. It graphs the direction field
of the differential equation y′ = f(x, y) in the rectangular region R of the xy-
plane bounded by the lines x = Xmin, x = Xmax, y = Ymin, and y = Ymax.
To graph the direction field you need to enter an expression for the function
f(x, y) and the values for Xmin, Xmax, Ymin, and Ymax. The output of
DIRFIELD is similar to the output shown in Figure 2.1. Complete instruc-
tions for using DIRFIELD are contained in the file CSODE User’s Guide
which is on the website: cs.indstate.edu/∼roberts/DEq.html. Figure 2.1 was
produced using the following four MAPLE statements.

with(DEtools): with(plots):

de:=diff(y(x), x) = x− y(x):

p:=DEplot(de, y(x), x = −5..5, y = −5..5, arrows=LINE, axes=BOXED):

display(p);

The first statement informs MAPLE what software packages are required
to run the program. The second statement specifies the differential equation

whose direction field is to be plotted—in this instance,
dy

dx
= x−y. To specify

any other differential equation, the expression x− y(x) which appears in the
second statement must be replaced and written in the appropriate MAPLE
syntax. The third statement specifies that the x values for the graph are to
vary from −5 to 5, the y values for the graph are to vary from −5 to 5, the
direction field elements are to be graphed as line segments (arrows = LINE),
and the x and y axes are to appear as a box outside of the rectangle (axes =
BOXED) instead of passing through the origin perpendicular to one another.
You can change the size and location of the rectangle by changing the range
of the variables x and y. The fourth statement causes the graph shown in
Figure 2.1 to be displayed on the computer monitor.
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Example 2 Direction Field for y′ = −x/y

Graph the direction field of the differential equation y′ = −x/y = f(x, y)
on the rectangle R = {(x, y)| − 5 ≤ x ≤ 5 and − 5 ≤ y ≤ 5}.
Solution

Notice that f(x, y) is undefined when y = 0—that is, f is undefined on the
x-axis. So there is no solution which passes through (x, 0) for any x. To graph
the direction field on the rectangle R, we set f(x, y) = −x/y, Xmin = −5,
Xmax = 5, Ymin = −5, and Ymax = 5. The resulting graph is displayed in
Figure 2.3. From the graph we see that the solution curves above the x-axis
increase in the second quadrant, have a maximum at the y-axis, and decrease
in the first quadrant. We also see from the graph that solution curves below
the x-axis decrease in the third quadrant, have a minimum at the y-axis,
and increase in the fourth quadrant. The solution of the differential equation
y′ = −x/y is discussed in detail in Example 4 of the following section.
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Figure 2.3 Direction Field for y′ = −x/y. �

Example 3 Direction Field for y′ =
√
xy

Graph the direction field of the differential equation y′ =
√
xy = f(x, y) on

the rectangle R = {(x, y)| − 5 ≤ x ≤ 5 and − 5 ≤ y ≤ 5}.
Solution

To graph this direction field, we entered f(x, y) =
√
xy and set Xmin =

-5, Xmax = 5, Ymin = -5, and Ymax = 5. The graph of this direction
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field and some of its solution curves are shown in Figure 2.4. Observe that
the function f(x, y) =

√
xy is undefined in the second and fourth quadrants

where xy < 0. Since the differential equation y′ =
√
xy is undefined for

xy < 0, there can be no solution to an initial value problem consisting of this
differential equation and an initial condition which corresponds to a point in
the second or fourth quadrant. Notice that the curve y = 0 (the x-axis) is a
solution of the differential equation. In the first and third quadrants xy > 0,
so y′ =

√
xy > 0; and, therefore, all solutions in the first or third quadrant

are increasing functions. A solution which is in the third quadrant increases
until it terminates at the y-axis, or it increases until it reaches the x-axis.
If a solution in the third quadrant reaches the x-axis, it may continue along
the x-axis indefinitely or, once x becomes positive, it may increase into and
through the first quadrant. This is an example of a differential equation with
an infinite number of solutions passing through some points. Any point in the
third quadrant above the curve y = x3/9 and any point in the first quadrant
below the curve y = x3/9 has an infinite number of solutions passing through
it.
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Figure 2.4 Direction Field and Solution Curves for y′ =
√
xy. �

EXERCISES 2.1

In Exercises 1–5 match the given differential equations with their
direction fields without using any computer software. Then use your
computer software to verify that you have matched them correctly.
Finally, on the direction field of each differential equation sketch a
few solution curves.
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1. A. y′ = 1− x B. y′ = x− 1
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2. C. y′ = 1− y D. y′ = 1 + y
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3. E. y′ = y2 − 4 F. y′ = 4− y2
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4. G. y′ = xy H. y′ = −xy
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5. I. y′ = x2 − y2 J. y′ = y2 − x2
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In Exercises 6–17 graph the direction field of the given differential
equation on the rectangle

R={(x,y) | −5 ≤ x ≤ 5 and −5 ≤ y ≤ 5}.
When possible, indicate where the direction field is undefined, where
solutions are increasing and decreasing, where relative maxima and
relative minima occur, and the asymptotic behavior of solutions.

6. y′ = x+ y 7. y′ = xy

8. y′ = x/y 9. y′ = y/x

10. y′ = 1 + y2 11. y′ = y2 − 3y

12. y′ = x3 + y3 13. y′ = |y|

14. y′ = ex−y 15. y′ = ln(x+ y)
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16. y′ =
2x− y

x+ 3y
17. y′ =

1
√
15− x2 − y2

18. Graph the direction field for y′ = 3y2/3 on the rectangle

R = {(x, y) | − 5 ≤ x ≤ 5 and − 5 ≤ y ≤ 5}.
(Hint: Enter y2/3 as ŷ (2/3) and as (ŷ 2)̂ (1/3). Notice the difference in the
graphs. Which graph is the correct direction field for y′ = 3y2/3?)

2.2 Fundamental Theorems

By stating and discussing three fundamental theorems regarding the initial
value problem

(1) y′ = f(x, y); y(c) = d

we hope to answer, at least in part, the following three questions:

“Under what conditions does a solution to the IVP (1) exist?”

“Under what conditions is the solution to the IVP (1) unique?”

“Where—that is, on what interval or what region—does the solution to the
IVP (1) exist and where is the solution unique?”

We state the following existence theorem without proof. This theorem is
due to the Italian mathematician and logician Giuseppe Peano (1858-1932).

Fundamental Existence Theorem

Let R = {(x, y)| α < x < β and γ < y < δ} where α, β, γ, and δ are
finite real constants. If f(x, y) is a continuous function of x and y in the finite
rectangle R and if (c, d) ∈ R, then there exists a solution to the initial value
problem y′ = f(x, y); y(c) = d on some interval I = (c− h, c+ h) where I is
a subinterval of the interval (α, β).

The geometry of the fundamental existence theorem is depicted in Fig-
ure 2.5. The theorem, itself, states a fairly simple condition—namely, con-
tinuity of f(x, y)—which guarantees the existence of a solution to the initial
value problem (1) y′ = f(x, y); y(c) = d. However, neither the theorem
nor its proof provides a method for producing the solution or for satisfacto-
rily calculating the value of h which, in theory, determines the interval on
which the solution exists. The theorem simply states that there is an interval
(c − h, c + h), which is a subinterval of (α, β), on which the solution exists.
But the length of the interval is not specified. As the following example il-
lustrates, there are instances in which the interval of existence depends to
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a greater extent upon the initial condition y(c) = d than it does upon the
function f(x, y).

x

y

(c, d)

cc - h c + h

d

R

α β

γ

δ

Figure 2.5 Geometry of the Fundamental Existence Theorem.

Example 1 An Initial Value Problem for which the Interval of

Existence Depends on the Initial Condition

Consider the initial value problem

(2) y′ = y2; y(0) = d.

Let R be any finite rectangle containing the point (0, d), which lies on the
y -axis. The function f(x, y) = y2 is continuous on R. So by the fundamental
existence theorem there exists a solution to the IVP (2). In this case, we can
easily verify that

(3) y(x) =
1

K − x
,

where K is an arbitrary constant, is a one-parameter family of solutions of
the differential equation y′ = y2. Differentiating (3), we find

y′(x) =
1

(K − x)2
= y2(x)

for any K. So, indeed, y(x) = 1/(K − x) is the solution of y′ = y2. Notice
that y(x) is defined, continuous, and differentiable for all real x �= K. That
is, y(x) = 1/(K − x) is defined, continuous, differentiable, and the solution
of y′ = y2 on the intervals (−∞,K) and (K,∞). To solve the IVP (2), K
must be chosen to satisfy the initial condition y(0) = d = 1/K. Consequently,
K = 1/d; and, therefore, the interval of existence depends solely on the initial
value d and not on the function f(x, y) = y2.
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44 Elementary Differential Equations

Notice that when d = 2, the solution of the IVP y′ = y2; y(0) = 2 on the
interval (−∞, 1/2) is

y(x) =
1

1
2 − x

.

Since the interval of existence specified in the fundamental existence theorem
is symmetric with respect to the initial point c, which in this example is the
point 0, the value of h specified in the theorem must of necessity be less than
or equal to 1/2 when d = 2. Likewise, for arbitrary d > 0 the solution of
the IVP (2) exists on the interval (−∞, 1/d); and, therefore, the value of h
specified by the existence theorem must be less than or equal to 1/d. The
direction field for y′ = y2 and the solution of the IVP y′ = y2; y(0) = 2 are
displayed in Figure 2.6.

–4

–2

0

2

4

y(x)

–4 –2 0 2 4
x

Figure 2.6 Direction Field for the DE y′ = y2 and the

Solution of the IVP y′ = y2; y(0) = 2. �

You might well ask: “What value is the fundamental existence theorem?
It does not provide a technique for finding the solution to an initial value
problem. Nor does it provide a means of determining the interval on which
the solution exists.” The answer is quite simple. The fundamental existence
theorem assures us that there is a solution. It is a waste of time, energy, and
often money to search for a solution when there is none.
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In Chapter 1, we saw that both y1(x) = 0 and y2(x) = x3 were solutions of
the initial value problem

(4) y′ = 3y2/3; y(0) = 0.

Notice that f(x, y) = 3y2/3 is a continuous function of x and y in any finite
rectangle R which contains (0, 0). So the IVP (4) satisfies the hypotheses of
the fundamental existence theorem and as guaranteed by the theorem there
is a solution to the initial value problem. But, in this instance, there is not
a unique solution. Consequently, some additional condition stronger than
continuity of f(x, y) must be required in order to guarantee the uniqueness of
a solution to an initial value problem.

We state the following existence and uniqueness theorem, again without
proof. This theorem is due to the French mathematician Charles Émile Picard
(1856-1941).

Fundamental Existence and Uniqueness Theorem

Let R = {(x, y)| α < x < β and γ < y < δ} where α, β, γ, and δ are
finite real constants. If f(x, y) is a continuous function of x and y in the
finite rectangle R, if fy(x, y) is a continuous function of x and y in R, and
if (c, d) ∈ R, then there exists a unique solution to the initial value problem
(1) y′ = f(x, y); y(c) = d on some interval I = (c − h, c + h) where I is a
subinterval of the interval (α, β).

This existence and uniqueness theorem tells us two things. First, when the
hypotheses are satisfied, there is a solution of the IVP (1) on some “small”
interval about c. And second, the solution is unique. That is, there is only
one solution of the IVP (1). Geometrically, the theorem states there is one
and only one solution of the differential equation in (1) which passes through
any point (c, d) in the rectangle R.

Returning to the IVP (4) y′ = 3y2/3; y(0) = 0 and taking the partial
derivative of f(x, y) = 3y2/3 with respect to y, we find fy(x, y) = 2y−1/3.
Observe that fy(x, y) = 2y−1/3 is defined and continuous for all x and for all
y �= 0. So fy is continuous in any finite rectangle R which does not contain
any point of the x-axis (where y = 0). Thus, the fundamental existence and
uniqueness theorem just stated guarantees the existence of a unique solution
to the initial value problem

y′ = 3y2/3; y(c) = d

on some interval centered about c provided d �= 0. Notice that the IVP (4)
does not satisfy the hypotheses of the fundamental existence and uniqueness
theorem because d = 0.

The conditions (hypotheses) of the fundamental existence theorem are suffi-
cient to guarantee the existence of a solution to an initial value problem. And
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the conditions of the fundamental existence and uniqueness theorem are suf-
ficient to guarantee the existence of a unique solution to an initial value prob-
lem. However, the conditions are not necessary conditions. Hence, if f(x, y)
does not satisfy the hypothesis of the fundamental existence theorem—that
is, if f(x, y) is not a continuous function of x and y in R, then we cannot
conclude that there is no solution to the initial value problem. If f(x, y) is
not continuous, the initial value problem may have a solution or it may not
have a solution. Likewise, if f(x, y) does not satisfy the hypotheses of the
fundamental existence and uniqueness theorem—that is, if f(x, y) is not a
continuous function of x and y or if fy(x, y) is not a continuous function of
x and y, then the initial value problem may have no solution, it may have a
unique solution, or it may have multiple solutions.

Example 2 The IVP y′ = x
√
y; y(c) = d

Analyze initial value problems of the form

(5) y′ = x
√
y; y(c) = d.

Solution

In this example, the function f(x, y) = x
√
y is defined and a continuous

function of x and y on any finite rectangle in the xy-plane where y ≥ 0. Thus,
by the fundamental existence theorem, for every point (c, d) where d ≥ 0,
there is some interval I with center c in which the initial value problem (5)
has a solution. Calculating the partial derivative of f with respect to y, we
find fy(x, y) = x/(2

√
y). The function fy(x, y) is defined and continuous for

y > 0. Thus, by the fundamental existence and uniqueness theorem, when
d > 0 the solution of the IVP (5) is guaranteed to be unique. Hence, the
solution of the initial value problem

(6) y′ = x
√
y; y(1) = 2

is unique on some interval with center 1. However, the solution to the initial
value problem

(7) y′ = x
√
y; y(1) = 0

may or may not be unique, since d = 0. In this case, we easily find the solution
of the IVP (7) is not unique, since both y1(x) = 0 and y2(x) = (x2 − 1)2/16
are solutions of (7). �

The fundamental existence and uniqueness theorem is called a local the-
orem, because the solution is guaranteed to exist and be unique only on a
“small” interval. The following theorem, which we again state without proof,
is called a continuation theorem.
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Continuation Theorem

If f(x, y) and fy(x, y) are both continuous functions of x and y in a finite
rectangle R and if (c, d) ∈ R, then the solution of the initial value problem

(8) y′ = f(x, y); y(c) = d

can be extended uniquely until the boundary of R is reached.

If f(x, y) and fy(x, y) are both defined and continuous on a finite rectangle,
the rectangle can be enlarged until either f(x, y) or fy(x, y) is not defined or
not continuous on bounding sides of the rectangle or until the bounding side
of the rectangle approaches infinity. Thus, by the continuation theorem the
solution to the IVP y′ = f(x, y); y(c) = d has a unique solution which extends
from one boundary of the enlarged rectangle to another (although perhaps,
the same) boundary of the enlarged rectangle. Suppose, for instance, the
enlarged rectangle R for a particular differential equation y′ = f(x, y) has left
boundary x = L, right boundary x = +∞, bottom boundary y = B, and top
boundary y = T, where L, B, and T are real numbers and B < T . That
is, suppose f(x, y) and fy(x, y) are both defined and continuous inside the
“infinite” rectangle

R = {(x, y) | L < x and B < y < T }
and that either f(x, y) or fy(x, y) is not defined or not continuous at some
point or set of points on all of the lines x = L, y = B, and y = T. Displayed
in Figure 2.7 is the “infinite” rectangle R and the solutions yi(x) of the initial
value problems y′ = f(x, y); y(c) = di for i = 1, 2, 3, 4.

(c,d)(c,d)

(c, d  )

ce a b
x = L

y = B

y = T

(c, d  )

(c, d  )

(c, d  )1
1

2 2

3

3

4

4

y (x)

y (x)

y (x)

y (x)

Figure 2.7 Solutions to an Initial Value Problem on an Infinite Rectangle.

Notice that the solution y1(x) exists and is unique on the interval (a, b) and
that both endpoints (a,B) and (b, B) of y1(x) lie on the bottom boundary of
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R. If f(x, y) and fy(x, y) are both defined and continuous at (a,B), then the
solution y1(x) can be extended uniquely to the left. If f(x, y) is continuous
at (a,B) but fy(x, y) is not defined or not continuous at (a,B), then the
solution can be extended to the left, but the extension may not be unique.
Furthermore, if f(x, y) is not continuous at (a,B), the solution may or may
not be extendable to the left. And if extendable, the solution may or may not
be unique. Similar comments apply regarding extending y1(x) to the right
from the point (b, B). The solution y2(x) is unique on the interval (e,+∞).
The endpoint (e,B) of y2(x) lies on the bottom boundary of R. If f(x, y)
and fy(x, y) are both defined and continuous at (e,B), then y2(x) can be
extended uniquely to the left. If f(x, y) is continuous at (e,B) but fy(x, y)
is not defined or not continuous at (e,B), then the solution can be extended
to the left, but the extension may not be unique. If f(x, y) is not continuous
at (e,B), then the solution y2(x) may or may not be extendable to the left.
Moreover, if the solution y2(x) can be extended to the left, the extension may
or may not be unique. Notice that the solution y3(x) extends from the bottom
boundary of R to the top boundary and may or may not be extendable to
the left or right in a unique or nonunique fashion. Likewise, the solution
y4(x) extends from the left boundary of R to the top boundary and may or
may not be extendable to the left or right in a unique or nonunique manner.
The following two examples should help further clarify the results that can be
obtained by using the continuation theorem.

Example 3 At Every Point in the xy-plane a Unique Solution Exists

Yet the Interval of Existence of the Solution is Finite

Analyze the initial value problem

(9) y′ = 1 + y2; y(π/4) = 1.

Solution

Here f(x, y) = 1+ y2 and fy(x, y) = 2y are both defined and continuous on
any finite rectangle in the xy-plane which contains the point (π/4, 1). By the
fundamental existence and uniqueness theorem, there exists a unique solution
to the IVP (9) on some interval with center π/4. By the continuation theorem
the solution can be extended uniquely until the boundary of the rectangle—
the xy-plane, in this case—is reached. Thus, the solution can be extended
until two of the following four things occur: x → −∞, x → ∞, y(x) → −∞,
y(x) → ∞. It is tempting to erroneously jump to the conclusion that since
the functions f(x, y) and fy(x, y) are continuous on the entire plane, the
solution to the IVP (9) should be valid for all real x. However, this is not
what the continuation theorem states. Verify that y(x) = tanx is the unique
solution of the IVP (9). Notice that y(x) = tanx is defined, continuous, and
differentiable on the interval (−π/2, π/2), but it is not defined at x = −π/2
or at x = π/2. So (−π/2, π/2) is the largest interval on which the IVP (9)
has a solution. Observe that as x → −π+/2, y(x) = tanx → −∞ and as
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x → π−/2, y(x) → +∞. Notice that these results satisfy the conclusion of
the continuation theorem. The direction field for the differential equation
y′ = 1 + y2 and the solution of the IVP (9) are displayed in Figure 2.8.
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y(x)
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x

Figure 2.8 Direction Field for the DE y′ = 1 + y2 and the

Solution of the IVP y′ = 1 + y2; y(π/4) = 1. �

Example 4 The IVP y′ = −x/y; y(−1) = 1

Analyze the initial value problem

(10) y′ = −x/y; y(−1) = 1.

Solution

The functions f(x, y) = −x/y and fy(x, y) = x/y2 are defined and continu-
ous except for y = 0. Since the point (−1, 1) is in the upper half plane (where
y > 0), and since f and fy are defined and continuous for y > 0, by the
continuation theorem the solution of the IVP (10) can be extended uniquely
until two of the following four things occur: x → −∞, x → ∞, y(x) → 0, or
y(x) → +∞.

Verify that y(x) =
√
2− x2 is the unique solution of the IVP (10) and that

y(x) is defined, continuous, and differentiable on the interval (−√
2,
√
2). Since

y(x) is not defined outside the interval [−√
2,
√
2], (−√

2,
√
2) is the largest

interval on which the IVP (10) has a solution. Observe that as x → −√
2
+
,
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y(x) → 0+ and as x→ √
2
−
, y(x) → 0+. Notice that these results satisfy the

conclusion of the continuation theorem. In this example, we have y(x) → 0+

for two different values of x. So in this case the solution approaches the same
boundary of the rectangle twice instead of two different boundaries. The
direction field for the differential equation y′ = −x/y and the solution of the
IVP (10) are displayed in Figure 2.9.
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Figure 2.9 Direction Field for the DE y′ = −x/y and the

Solution of the IVP y′ = −x/y; y(−1) = 1. �

When the function f(x, y) in the initial value problem (1) y′ = f(x, y);
y(c) = d has the form f(x, y) = a(x)y + b(x), the initial value problem is
called a linear first-order initial value problem; otherwise, the initial
value problem is said to be nonlinear. The initial value problems (2), (5), and
(9) which we examined in Examples 1, 2, and 3, respectively, are all nonlinear
first-order initial value problems. The intervals on which the solutions to these
problems existed and were unique exhibited no discernable pattern, mainly
because the initial value problems were nonlinear. However, when we apply
the fundamental existence and uniqueness theorem to the linear first-order
initial value problem

(11) y′ = a(x)y + b(x) = f(x, y); y(c) = d

we obtain an existence and uniqueness theorem in which the interval of ex-
istence and uniqueness is completely determined by the functions a(x) and
b(x). Differentiating f(x, y) = a(x)y+b(x) partially with respect to y, we find
fy(x, y) = a(x). Hence, when the functions a(x) and b(x) are both defined
and continuous functions of x on the interval (α, β), the functions f(x, y) and
fy(x, y) are both defined and continuous functions of x and y in any finite
rectangle R = {(x, y)| α < x < β and γ < y < δ}. So the linear IVP (11)
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has a unique solution and this solution can be extended uniquely until the
boundary of the largest rectangle on which both a(x) and b(x) are defined
and continuous functions of x on (α, β) is reached. For linear initial value
problems, it is always the left-hand and right-hand boundary of the largest
rectangle that the solution approaches. Hence, for linear initial value problems
we have the following theorem.

An Existence and Uniqueness Theorem for Linear First-Order

Initial Value Problems

If the functions a(x) and b(x) are defined and continuous on the interval
(α, β) and if c ∈ (α, β), then the linear initial value problem

(11) y′ = a(x)y + b(x); y(c) = d

has a unique solution on the interval (α, β).

The existence and uniqueness theorem for the linear IVP (11) states that
it always has a solution on any interval (α, β) containing c on which both
a(x) and b(x) are continuous for any choice of the initial value d. Further-
more, the linear IVP (11) has only one solution on the entire interval (α, β).
Moreover, because of the uniqueness of solutions throughout the rectangle R,
no two distinct solution curves can cross one another. This existence and
uniqueness theorem and the previous two examples illustrate one of the im-
portant differences between the types of results we can expect for linear initial
value problems versus nonlinear initial value problems. For the linear initial
value problem, we are able to explicitly determine the interval of existence
and uniqueness of the solution from the differential equation and initial con-
dition prior to producing a solution; whereas, for the nonlinear initial value
problem we are, in general, unable to do so. For this reason when producing
a numerical solution to a nonlinear initial value problem, it is often desirable
to be able to monitor the solution as it is being generated.

Example 5 Determination of the Interval of Existence and

Uniqueness

On what interval does each of the following linear initial value problems
have a unique solution?

a. y′ = 3x2y + ex; y(−2) = 4

b. y′ =
y

(x− 1)(x+ 2)
+

1

x
; y(−1) = 2

c. y′ = (cotx)y + tanx; y(2) = 3

Solution

a. The functions a(x) = 3x2 and b(x) = ex are both defined and continuous
on (−∞,∞). So by the previous existence and uniqueness theorem
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the given initial value problem has a unique solution on the interval
(−∞,∞).

b. In this instance, a(x) = 1/((x − 1)(x + 2)) is defined and continuous
for x �= −2 and x �= 1. So a(x) is defined and continuous on the
intervals (−∞,−2), (−2, 1), and (1,∞). The function b(x) = 1/x is
defined and continuous for x �= 0. Thus, b(x) is defined and continuous
on the intervals (−∞, 0) and (0,∞). Taking the intersection of these
intervals with the intervals on which a(x) is defined and continuous,
we find a(x) and b(x) are simultaneously defined and continuous on the
intervals (−∞,−2), (−2, 0), (0, 1), and (1,∞). Since−1 is in the interval
(−2, 0), the initial value problem b. has a unique solution on (−2, 0). If
the initial condition y(−1) = 2 were changed to y(1) = 2, then there
would be no solution to the corresponding new initial value problem,
since a(x)—and, therefore, the differential equation—is not defined at
x = 1. If the initial condition were changed to y(2) = 2, then the unique
solution to the corresponding initial value problem would exist on the
interval (1,∞).

c. In this case, a(x) = cotx is defined and continuous on the inter-
vals (nπ, (n + 1)π) for n = 0,±1,±2, . . . and b(x) = tanx is defined
and continuous on the intervals ((2n − 1)π/2, (2n + 1)π/2) for n =
0,±1,±2, . . .. The intersection of these sets of intervals is the set of in-
tervals (nπ/2, (n+ 1)π/2) for n = 0,±1,±2, . . .. Since 2 ∈ (π/2, π), the
initial value problem c. has a unique solution on the interval (π/2, π).

EXERCISES 2.2

In Exercises 1–6 find all points (c,d) where solutions to the initial
value problem consisting of the given differential equation and the
initial condition y(c) = d may not exist.

1. y′ =
3y

(x− 5)(x+ 3)
+ e−x 2. y′ =

xy

(x2 + y2)

3. y′ =
1

xy
4. y′ = ln(y − 1)

5. y′ =
√
(y + 2)(y − 1) 6. y′ =

y

y − x

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


The Initial Value Problem y′ = f(x, y); y(c) = d 53

In Exercises 7–14 find all points (c,d) where solutions to the initial
value problem consisting of the given differential equation and the
initial condition y(c) = d may not exist or may not be unique.

7. y′ = x/y2 8. y′ =
√
y/x

9. (4− y2)y′ = x2 10. (x2 + y2)y′ = y2

11. y′ = xy/(1− y) 12. y′ = (xy)1/3

13. y′ =
√
(y − 4)/x 14. y′ = −y/x+ y1/4

In Exercises 15–24 state the interval on which the solution to the
linear initial value problem exists and is unique.

15. y′ = 4y − 5; y(1) = 4

16. y′ + 3y = 1; y(−2) = 1

17. y′ = ay + b; y(c) = d where a, b, c, and d are real constants.

18. y′ = x2 + ex − sinx; y(2) = −1

19. y′ = xy +
1

1 + x2
; y(−5) = 0

20. y′ =
y

x
+ cosx; y(−1) = 0

21. y′ =
y

x
+ tanx; y(π) = 0

22. y′ =
y

4− x2
+
√
x; y(3) = 4

23. y′ =
y

4− x2
+
√
x; y(1) = −3

24. y′ = (cotx)y + cscx; y(π/2) = 1

25. Show that y(x) = −1 is the unique solution of the initial value problem

y′ = x(1 + y); y(0) = −1.

26. a. Verify that y = tanx is the solution of the initial value problem

y′ = 1 + y2; y(0) = 1.

b. On what interval is y = tanx the solution?

27. Does the initial value problem y′ = y/x; y(0) = 2 have a solution?
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28. Verify that y1(x) = 1 and y2(x) = sin(
x2 + π

2
) are both solutions

on the interval (−√
π,

√
π) of the initial value problem

y′ = −x
√
1− y2; y(0) = 1.

Does this violate the fundamental existence and uniqueness theorem?

Explain.

29. Verify that y1(x) = 9− 3x and y2(x) = −x2/4 are both solutions of

the initial value problem

y′ = (−x+
√
x2 + 4y)/2; y(6) = −9.

Does this violate the fundamental existence and uniqueness theorem?

Explain.

2.3 Solution of Simple First-Order Differential

Equations

Sometimes one can solve the initial value problem y′ = f(x, y); y(c) = d by
finding the solution φ(x, y, C) = 0 of the differential equation y′ = f(x, y) and
then determining the value of C which satisfies the initial condition y(c) = d.
Perhaps in calculus, you examined various elementary techniques for finding
the solution of the differential equation y′ = f(x, y), such as separating vari-
ables, performing a change of variable, testing for exactness and solving those
equations which are exact, and using integrating factors. These techniques
for solving first-order differential equations were all developed and employed
prior to 1800. However, relatively few differential equations can actually be
solved using these techniques. In Chapter 1, we showed how to verify that a
given function is the solution of a specific differential equation; however, we
did not discuss how to actually find a solution. In this section, we shall show
how to solve the differential equation y′ = f(x, y) when f(x, y) has one of the
three forms:

(i) f(x, y) = g(x), (ii) f(x, y) = g(x)/h(y), and (iii) f(x, y) = a(x)y+b(x).

2.3.1 Solution of y′ =g(x)

In calculus, you solved many linear differential equations of the form

(1) y′ = g(x)

by finding the antiderivative of g. Integrating equation (1) symbolically, we
find the general solution to be

(2) y(x) =

∫ x

g(t) dt+ C
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where C is an arbitrary constant. By the existence and uniqueness theorem
for first-order linear initial value problems, this solution exists and is unique
on any interval on which the function g(x) is defined and continuous.

Example 1 Solving an Initial Value Problem by Finding the General

Solution

a. Find the general solution of the differential equation

(3) y′ =
1

(x+ 2)
.

b. Solve the initial value problem

y′ =
1

(x+ 2)
; y(1) = 4

and specify the interval on which the solution exists and is unique.

c. Solve the initial value problem

y′ =
1

(x+ 2)
; y(−7) = 3

and specify the interval on which the solution exists and is unique.

Solution

a. Integrating equation (3), we find the general solution to be

(4) y(x) =

∫ x 1

(t+ 2)
dt+ C = ln |x+ 2|+ C.

Since the function g(x) = 1/(x + 2) is defined and continuous on the
intervals (−∞,−2) and (−2,∞), equation (4) is the general solution of
differential equation (3) on the intervals (−∞,−2) and (−2,∞).

b. To solve the initial value problem

(5) y′ =
1

(x+ 2)
; y(1) = 4

all we need to do is find the value of C in the general solution (4) which
will yield y(1) = 4. Setting x = 1 in (4), we see that C must satisfy

y(1) = ln |1 + 2|+ C = 4.

Solving for C, we get C = 4 − ln 3. Substituting this value into (4)
produces the following general solution to the IVP (5)

(6) y(x) = ln |x+ 2|+ 4− ln 3 = ln
|x+ 2|

3
+ 4.

Since the initial condition, y(1) = 4, is specified at x = 1 ∈ (−2,∞),
equation (6) is the unique solution of the IVP (5) on the interval (−2,∞).
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c. To solve the initial value problem

(7) y′ =
1

(x+ 2)
; y(−7) = 3

we set x = −7 in the general solution (4), solve the resulting equation
for C, and substitute this value into (4). Doing so, we find the solution
to the IVP (7) to be

(8) y(x) = ln
|x+ 2|

5
+ 3.

Since the initial condition, y(−7) = 3, is specified at x = −7 ∈ (−∞,−2),
equation (8) is the unique solution of the IVP (7) on the interval
(−∞,−2). �

Many pages in calculus texts and much student effort is devoted to methods
for calculating and expressing antiderivatives of continuous function in terms
of elementary functions. Expressions for antiderivatives have been collected
and appear in tables of integrals. However, the reader should be aware that
there are many relatively simple continuous functions whose antiderivatives
cannot be expressed as an elementary function. For example, the following
list of functions which are defined and continuous on certain intervals do not
have antiderivatives that can be expressed as elementary functions:

e−x2

,
ex

x
, ex lnx,

1

lnx
, sinx2,

sinx

x
,

sin2 x

x
, x tanx,

1√
1− x3

When it is impossible or impractical to express the antiderivative of a func-
tion f(x) as an elementary function, then one must use series or numerical
integration techniques to calculate the integral of f(x). In some cases, even
if an antiderivative for f(x) can be expressed as an elementary function, it
may still be simpler to approximate the integral of f(x) than to evaluate the
antiderivative.

EXERCISES 2.3.1

In Exercises 1–16 find the general solution of the differential equa-
tion and specify the interval(s) on which the solution exists.

1. y′ = x1/2 2. y′ = 2−x

3.
dy

dx
=

2

x− 3
4.

ds

dt
= e−πt
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5. y′ =
1

x+ 1
6. y′ =

x

x+ 1

7. y′ = lnx 8. y′ = x lnx

9. y′ =
dx

1− cosx
10. y′ =

1

sin 2x

11. y′ =
1

x2 + 1
12. y′ =

1√
x2 + 1

13. y′ =
1√

x2 − 1
14. y′ = e−x sin 2x

15. y′ =
1

x2 − 4x+ 5
16. y′ =

x

x2 − 4x+ 5

In Exercises 17–26 solve the given initial value problem by first
finding the general solution of the differential equation and then
determining the value of the constant of integration which satisfies
the initial condition. Also specify the interval(s) on which each
solution exists.

17. y′ = 3x+ 1; y(1) = 2 18. y′ = x+
1

x
; y(1) = 2

19. y′ = 2 sinx; y(π) = 1 20. y′ = x sinx; y(π/2) = 1

21. y′ =
1

x− 1
; y(2) = 1 22. y′ =

1

x− 1
; y(0) = 1

23. y′ =
1

x2 − 1
; y(2) = 1 24. y′ =

1

x2 − 1
; y(0) = 1

25. y′ = tanx; y(0) = 0 26. y′ = tanx; y(π) = 0

2.3.2 Solution of the Separable Equation y′ = g(x)/h(y)

From your study of calculus, you are already familiar with the concept of
explicit and implicit functions and you know how to differentiate both explic-
itly and implicitly. In differential equations, we distinguish between explicit
and implicit solutions as well. Thus far in the text, we have encountered only
explicit solutions to differential equations; therefore, we have referred to them
simply as solutions. The definitions of explicit solution and implicit solution
for first-order differential equations follow.
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An explicit solution of the differential equation y′ = f(x, y) on an interval
I = (a, b) is a function y = φ(x) which is differentiable at least once on I and
satisfies φ′ = f(x, φ(x)).

A relation R(x, y) = 0 is an implicit solution of the differential equation
y′ = f(x, y) on an interval I, if the relation defines at least one function y1(x)
on I such that y1(x) is an explicit solution of y′ = f(x, y) on I.

Usually we refer to both explicit and implicit solutions simply as solutions.
However, when we want to be specific about the kind of solution we are talking
about, we will include the designation explicit or implicit.

We solved the radioactive differential equation (1) of Section 1.4 by “sep-
arating” the variables. Differential equations which can be solved using this
technique are called separable equations and are defined as follows.

The differential equation y′ = f(x, y) is a separable equation, if it can
be written in the form

(9) y′ =
g(x)

h(y)
.

In most cases, a separable differential equation will not be in the form
(9) initially. Some algebraic manipulation will usually be required in order
to write the given equation in the form (9). Of course, most differential
equations are not separable; and, therefore, no amount of valid algebraic
manipulation will produce an equation of the form (9). For example, the
differential equation y′ = (x − y)/x is not separable. When possible, the
algebraic process of converting y′ = f(x, y) into the form y′ = g(x)/h(y)
is called “separating variables.” Once an equation is in the form (9), the
process of separating variables is completed by replacing y′ by dy/dx and
then multiplying the resulting equation by h(y) dx to obtain

(10) h(y) dy = g(x) dx.

In this form, you can clearly see that the variables x and y are “separated”
and associated with their respective differentials. Symbolically integrating
equation (10) yields

(11)

∫
h(y) dy =

∫
g(x) dx.

The explicit solution of the separable differential equation (9) and the deter-
mination of the interval of existence of the solution depends upon being able
to represent both integrals appearing in equation (11) as elementary functions
and upon being able to solve the resulting equation for y.
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Example 2 Solving a Separable Differential Equation

Solve the differential equation

(12) y′ = −x/y.
Solution

The direction field for the differential equation y′ = −x/y appears in Fig-
ure 2.9. The equation y′ = −x/y is already in the form of a separable differ-
ential equation. Replacing y′ by dy/dx and multiplying the resulting equation
by y dx, we get

y dy = −x dx.
Integration yields ∫

y dy =

∫
−x dx

or

(13)
y2

2
=

−x2
2

+ C,

where C is an arbitrary constant.

(Note: When integrating a separable equation, there is no need for two con-
stants of integration—one constant, c1, for the left-hand side of the equation
and another constant, c2, for the right-hand side of the equation, since these
constants can be combined by subtraction into the single constant, C = c2−c1.
In addition, since a multiple of a constant, combinations of constants, and
functions of constants are constant, when solving differential equations we
will often replace such expressions by a new constant.)

Multiplying the equation (13) by 2 and then adding x2 to the resulting
equation, we obtain the following relation for the solution to the DE (12)

(14) y2 + x2 = 2C.

For C < 0, equation (14) yields no real solution to the DE (12). For C = 0,
equation (14) produces the point (0, 0) which is not a solution to the DE (12).
Assuming C > 0 and replacing 2C in equation (14) by the new constant K2,
where we may also assume K > 0, equation (14) becomes

(15) y2 + x2 = K2.

From equation (15) we see that geometrically the general solution the DE (12)
is a family of concentric circles with centers at the origin and radii K > 0.
To verify that (15) is actually an implicit solution, we must show that (15)
defines at least one function y1(x) which is an explicit solution of (12). Solving
equation (15) for y, we get y(x) = ±√

K2 − x2. The functions

y1(x) =
√
K2 − x2 and y2(x) = −

√
K2 − x2

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


60 Elementary Differential Equations

are both defined and real for x ∈ [−K,K]. Differentiating y1(x) and y2(x), we
obtain

y′1(x) =
−x√

K2 − x2
and y′2(x) =

x√
K2 − x2

.

Both y′1(x) and y′2(x) are defined and real for x ∈ (−K,K). Substituting y1
and y′1 into the DE (12) y′ = −x/y, we obtain the identity

−x√
K2 − x2

= −x/
√
K2 − x2

for x ∈ (−K,K). Thus, y1(x) is an explicit solution of (12) on the interval
(−K,K). And consequently, by definition, equation (15) is an implicit solution
of (12) on (−K,K). Likewise, y2(x) can be shown to be an explicit solution
of (12) on the interval (−K,K). Hence, the implicit solution (15) defines at
least two explicit solutions of (12) on the interval (−K,K). The graph of the
solution y1(x) is shown in Figure 2.10 (a) and the graph of the solution y2(x)
is shown in Figure 2.10 (b).

y

xK-K

–2

–1
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1

2
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x

K-K

–2

–1

0

1

2
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(a) (b)
Figure 2.10 Graph of Explicit Solutions y1(x) and y2(x) of the DE (12). �

In the previous example, it was fairly easy to determine an explicit solution
from the implicit solution and to determine the interval on which the solution
exists. However, this will not be the case in general. Normally, we will not be
able to solve the given relation in x and y explicitly for either x or y. Therefore,
usually we will obtain a relation in x and y by some means, verify that this
relation formally satisfies the differential equation under consideration, and
say that the relation is an implicit solution. For example, we will say that the
relation

(16) y3 + 2xy − x2 = C,

where C is a constant, is an implicit solution of the differential equation

(17) y′ =
2x− 2y

3y2 + 2x
.
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In order to verify formally that (16) is a solution of (17), we implicitly differ-
entiate (16) with respect to x and obtain

3y2y′ + 2(xy′ + y)− 2x = 0.

Solving this equation for y′ yields the differential equation (17).

We will soon discover that, in theory, we will be able to explicitly solve
linear differential equations and determine the interval on which the solution
exists directly from the differential equation itself. However, the best we will
be able to accomplish usually for nonlinear differential equations is to obtain
an implicit solution, a series solution, or a numerical solution. This is one
of the primary differences between the kinds of results that we can expect to
obtain for linear differential equations versus nonlinear differential equations.

Example 3 Solving an IVP Using Separation of Variables

Solve the initial value problem

(18) y′ = xy + 2x; y(0) = 3.

Solution

Writing the derivative y′ as the ratio of differentials, dy/dx, and factoring
the right-hand side of the differential equation in (18), we obtain the equivalent
equation

dy

dx
= x(y + 2).

Multiplying by dx and dividing by (y + 2), we get

dy

y + 2
= x dx, provided y �= −2.

Integration yields ∫
dy

y + 2
=

∫
x dx

and then the implicit solution

ln |y + 2| = x2

2
+ C, provided y �= −2

and where C is an arbitrary constant. Exponentiating, we find

(19) |y + 2| = eln |y+2| = ex
2/2+C = eCex

2/2 for y �= −2.

Both the left-hand side and the right-hand side of (19) are positive. Since
|y + 2| = ±(y + 2) and eC is an arbitrary positive constant, we may remove
the absolute value appearing in equation (19), if we replace eC by a new
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arbitrary constant K which may be positive or negative. Doing so, we obtain
the following solution of the differential equation y′ = xy + 2x :

y + 2 = Kex
2/2

where K �= 0. Noting that y = −2 is a particular solution of the differential
equation y′ = xy + 2x, we can remove the restriction K �= 0 and obtain the
explicit solution of y′ = xy + 2x

(20) y + 2 = Kex
2/2

where K is any arbitrary real constant. Since the initial condition, y(0) = 3,
in the IVP (18) is specified at x = 0, we set x = 0 in equation (20) and find
that K must satisfy

y(0) + 2 = Ke0 or 3 + 2 = 5 = K.

So the explicit solution of the IVP (18) is

y(x) = 5ex
2/2 − 2.

Notice that this solution exists on the interval (−∞,∞). �

EXERCISES 2.3.2

In Exercises 1–12 use the technique of separation of variables to
solve the given differential equation.

1. y′ = x2/y 2.
dV

dP
= −V

P

3.
ds

dt
= ts3 4. 4dt = t

√
t2 − 4 ds

5. y′ = ex+y 6. y′ = x2 sin y

7. (x2y + y) dx− dy = 0 8. xy dx+ y2 dy = 0

9. xy dx+ (1 + x2) dy = 0 10. dr = e(r sin θ dθ − cos θ dr)

11. y lnx ln y dx+ dy = 0 12.
dq

dt
+
t sin t

q
= 0
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In Exercises 13–24 solve the given initial value problem by finding
the solution of the separable differential equation and then deter-
mining the value of the constant of integration which satisfies the
initial condition. Specify the interval on which each solution exists.

13. y′ = 3y; y(0) = −1 14. y′ = −y + 1; y(0) = 1

15. y′ = −y + 1; y(0) = 2 16. y′ = xey−x2

; y(0) = 0

17. y′ = y/x; y(−1) = 2 18. y′ = 2x/y; y(0) = 2

19. y′ = −2y + y2; y(0) = 1 20. y′ = xy + x; y(1) = 2

21. xey dx + dy = 0; y(0) = 0 22. y dx− x2 dy = 0; y(1) = 1

23.
dr

dt
= −4rt; r(0) = v0 24. v

dv

dx
= g; v(x0) = v0

25. Verify that y2 − x = 1 is an implicit solution of the differential equation

2yy′ = 1 on the interval (−1,∞).

26. Verify that xy2+x = 1 is an implicit solution of the differential equation

2xyy′ + y2 = −1 on the interval (0, 1).

27. Verify that x = exy is an implicit solution of the differential equation

y′ = (1 − xy)/x2 on the interval (0,∞).

28. Verify that the relation xy2 + yx2 = 1 formally satisfies the differential

equation y′ = −y(2x+ y)/x(2y + x).

29. Verify that the relation y = exy formally satisfies the differential equa-

tion y′ = y2/(1− xy).

30. A snowplow problem One morning it started snowing at a heavy
and constant rate. A snowplow started out at 8 a.m. By 9 a.m. the
snowplow had gone 2 miles. By 10 a.m. the snowplow had gone 3 miles.
Assuming that the snowplow removes a constant volume of snow per
hour, determine the time at which it started snowing.
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2.3.3 Solution of the Linear Equation y′ = a(x)y + b(x)

Throughout this subsection, we will assume that the functions a(x) and
b(x) are both defined and continuous on some interval (α, β). By the existence
and uniqueness theorem for linear first-order initial value problems stated in
Section 2.2, we are assured that for any c ∈ (α, β) the initial value problem

(21) y′ = a(x)y + b(x); y(c) = d

has a unique solution on (α, β). The purpose of this section is to present
a technique for finding the solution of the differential equation appearing in
(21), namely,

(22) y′ = a(x)y + b(x)

and to express the solution of (22) as an equation which involves two quadra-
tures (integrals).

If b(x) is identically equal to zero on the interval (α, β), then equation (22)
reduces to

(23) y′ = a(x)y.

Equation (23) is called a homogeneous linear first-order differential equa-
tion. (To indicate mathematically that “b(x) is identically equal to zero on
the interval (α, β),” we write “b(x) ≡ 0 on the interval (α, β).”) Notice that
equation (23) is separable. We rewrite y′ as dy/dx, multiply by dx, and divide
by y to obtain the separation of variables

dy

y
= a(x) dx provided y �= 0.

Integrating, we find
∫
dy

y
=

∫
a(x) dx or ln |y| =

∫
a(x) dx + C provided y �= 0

and where C is an arbitrary constant. Exponentiation yields

(24) |y| = e
∫
a(x)dx+C = eCe

∫
a(x) dx.

The left-hand side and the right-hand side of equation (24) are both positive.
Since |y| = ±y and since eC is an arbitrary positive constant, we may remove
the absolute value appearing in (24), if we also replace eC by a new constant
K which may be positive or negative. Observing that y(x) = 0 is a solution
of equation (23) y′ = a(x)y, we also may allow K to assume the value zero.
Thus, we find the explicit solution of (23) on the interval (α, β) is

(25) y(x) = Ke
∫
a(x) dx

where K is an arbitrary constant. Thus, we have proved the following theo-
rem.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


The Initial Value Problem y′ = f(x, y); y(c) = d 65

An Existence Theorem for the Homogeneous Linear First-Order

Differential Equation

If a(x) is a continuous function on the interval (α, β), then the solution on
(α, β) of the homogeneous linear first-order differential equation

(23) y′ = a(x)y

is

(25) y(x) = Ke
∫
a(x) dx

where K is an arbitrary constant.

Example 4 Solution of a Homogeneous Linear First-Order IVP

a. Find the solution of y′ = (tanx)y.

b. Solve the initial value problem

(26) y′ = (tanx)y; y(2) = 3

and specify the interval on which the solution exists and is unique.

Solution

a. In this example, the function a(x) = tanx is defined and continu-
ous on each of the intervals In = ((2n − 1)π/2, (2n + 1)π/2) for n =
0,±1,±2, . . .. By the previous theorem the solution of y′ = (tanx)y on
any interval In is

(27) y(x) = Ke
∫
tan x dx = Ke− ln | cosx| =

K

| cosx| = C secx

where C is an arbitrary constant.

b. Setting x = 2 in equation (27) and imposing the initial condition,
y(2) = 3, requires that C satisfy the equation y(2) = 3 = C sec 2.
Thus, C = 3/ sec 2 and the solution of the IVP (26) is y = 3 secx/ sec 2.
Since x = 2 ∈ I1 = (π/2, 3π/2), this solution exists and is unique on the
interval (π/2, 3π/2). �

Next, we consider the nonhomogeneous linear first-order differential equa-
tion

(28) y′ = a(x)y + b(x)

where a(x) and b(x) are assumed to be defined and continuous on the interval
(α, β) and b(x) �≡ 0 on (α, β). (Here “b(x) �≡ 0 on (α, β)” is read “b(x) is
not identically equal to zero on the interval (α, β)” and equation (28) is called
nonhomogeneous because b(x) �≡ 0 on (α, β).) Let yK(x) denote the solution
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of the homogeneous linear differential equation y′ = a(x)y associated with the
nonhomogeneous linear differential equation (28). The exact expression for
yK(x), which contains one arbitrary constant K, is given explicitly by equa-
tion (25). On the interval (α, β), the function yK(x) satisfies y′K = a(x)yK .
Suppose that yp(x) is any particular solution of the nonhomogeneous differ-
ential equation y′ = a(x)y + b(x) on the interval (α, β). Since yp(x) is a
particular solution, it contains no arbitrary constants and it satisfies y′p(x) =
a(x)yp(x)+b(x) on the interval (α, β). Assume that z(x) is any solution of the
nonhomogeneous differential equation (28) y′ = a(x)y+ b(x) which is defined
on the interval (α, β). Since z(x) satisfies (28), z′(x) = a(x)z(x) + b(x) on
(α, β). Now consider the function w(x) = z(x) − yp(x). Differentiating, we
find for all x ∈ (α, β),

w′(x) = z′(x) − y′p(x) = {a(x)z(x) + b(x)} − {a(x)yp(x) + b(x)}
= a(x)(z(x) − yp(x)) = a(x)w(x).

That is, w(x) is a solution of the associated homogeneous differential equation
(23) y′ = a(x)y on (α, β). Since equation (25) is the solution of (23), there is
a specific value of K such that for all x ∈ (α, β)

w(x) = z(x)− yp(x) = Ke
∫
a(x) dx.

Hence, any solution z(x) of the nonhomogeneous linear differential equation
(28) y′ = a(x)y + b(x) on the interval (α, β) has the form

(29) z(x) = yK(x) + yp(x) = Ke
∫
a(x) dx + yp(x)

where K is an arbitrary constant and yp(x) is any particular solution of the
associated homogeneous differential equation (28).

It would be nice if we had an expression for the particular solution yp(x)
appearing in equation (29) or a procedure for computing yp(x) given specific
functions a(x) and b(x). Since the function a(x) appears explicitly in the first
term of (29), we anticipate that the function b(x) will appear explicitly in the
particular solution, the second term of (29). Let us assume that a(x) and b(x)
are both continuous on the interval (α, β). Letting K = 1 in equation (25),
we obtain the function

(30) y1(x) = e
∫
a(x)dx.

Remember that y1(x) is a solution of the homogeneous differential equation
y′ = a(x)y on the interval (α, β). Observe that y1(x) is positive on (α, β)
and that any constant times y1(x) is also a solution of y′ = a(x)y on (α, β).
Let us see if it is possible to find a nonconstant function v(x) defined on (α, β)
such that the function

(31) y(x) = v(x)y1(x)
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is a particular solution on (α, β) of the nonhomogeneous differential equation
(28) y′ = a(x)y + b(x). Differentiating (31), we find

(32) y′(x) = v′(x)y1(x) + v(x)y′1(x).

Substituting (31) and (32) into (28), we see that v(x) must satisfy

(33) v′(x)y1(x) + v(x)y′1(x) = a(x)(v(x)y1(x)) + b(x).

Since the function y1(x) satisfies the homogeneous linear differential equation
y′1(x) = a(x)y1(x), it follows that v(x)y

′
1(x) = v(x)a(x)y1(x). Consequently,

(33) reduces to

(34) v′(x)y1(x) = b(x).

Since y1(x) is positive on the interval (α, β), the function v′(x) = b(x)/y1(x)
is defined for all x ∈ (α, β) and since b(x) and y1(x) are continuous on (α, β),

v(x) =

∫ x b(t)

y1(t)
dt

exists on (α, β). Therefore, a particular solution to the nonhomogeneous
differential equation (28) is

(35) yp(x) = v(x)y1(x) = y1(x)

∫ x b(t)

y1(t)
dt.

Substituting (30) and (35) into (29), we find the solution of the nonhomoge-
neous differential equation (28) is

z(x) = Ky1(x) + v(x)y1(x) = y1(x)(K + v(x))

where K is any arbitrary constant, y1(x) = e
∫

x a(t) dt, and v(x) =
∫ x b(t)

y1(t)
dt.

Consequently, we have proved the following theorem.

An Existence Theorem for the Nonhomogeneous Linear First-Order

Differential Equation

If a(x) and b(x) are continuous functions on the interval (α, β), then the
solution on (α, β) of the nonhomogeneous linear first-order differential equa-
tion

(28) y′ = a(x)y + b(x)

is

(36) y(x) = y1(x)(K + v(x))

where K is an arbitrary constant, y1(x) = e
∫ x a(t) dt, and v(x) =

∫ x b(t)

y1(t)
dt.
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From equation (36), we observe that in order to write explicitly the solu-
tion of the nonhomogeneous linear first-order differential equation (28) as
an elementary function, we must be able to write y1(x) = e

∫ x a(t) dt and

v(x) =
∫ x b(t)

y1(t)
dt as elementary functions. Of course, being able to write

both of these integrals in terms of elementary functions is often very difficult
or even impossible. Also notice by setting b(x) ≡ 0 in equation (36) reduces
this equation to equation (25), the solution of the homogeneous linear differ-
ential equation. Thus, equation (36) is an expression for the solution of both
the homogeneous and nonhomogeneous linear first-order differential equation.

Example 5 Solution of a Nonhomogeneous Linear IVP

a. Find the solution of the linear differential equation

(37) y′ = (tanx)y + sinx.

b. Solve the initial value problem

(38) y′ = (tanx)y + sinx; y(
π

4
) =

√
2

and specify the interval on which the solution exists.

Solution

a. In this instance, the function a(x) = tanx is defined and continuous on
the intervals In = ((2n− 1)π/2, (2n+ 1)π/2) where n is an integer and
undefined at the endpoints of the intervals. The function b(x) = sinx is
defined and continuous for all real x. So the solution to the differential
equation (37) will exist only on the intervals In. Integrating, we find

y1(x) = e
∫ x a(t) dt = e

∫ x tan t dt = e− ln | cosx| =
1

| cosx| = | secx|.

One often obtains y1(x) as the absolute value of some function, as we
did in this instance. We may choose y1(x) to be secx or − secx. We
select y1(x) = secx. Then, integrating, we find

v(x) =

∫ x b(t)

y1(t)
dt =

∫ x sin t

sec t
dt =

∫ x

sin t cos t dt =
1

2
sin2 x+ C.

For computational convenience, we select C = 0 and obtain the following
solution of (37)

(39) y(x) = y1(x)(K + v(x)) = (secx)(K +
1

2
sin2 x)

= K secx+
1

2
(sinx)(tan x).
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b. The solution to the IVP (38) is the member of the one-parameter
family (39) which satisfies the initial condition y(π/4) =

√
2. Impos-

ing the initial condition, we see that K must satisfy the equation

√
2 = K sec

(π
4

)
+

1

2
sin
(π
4

)
tan
(π
4

)
= K

√
2 +

(
1

2

)(
1√
2

)

(1).

Solving for K, we find K = 3/4. Hence, the solution of the IVP (38) is

y(x) =
3 secx

4
+

1

2
(sinx)(tan x).

Since the initial condition is specified at π/4 ∈ I0 = (−π/2, π/2) this
solution exists on the interval (−π/2, π/2). �

Newton’s Law of Cooling It has been shown experimentally that un-
der certain conditions the temperature of a body can be predicted by using
Newton’s law of cooling which states:

“The rate of change of the temperature of a body is proportional to
the difference between the temperature of the body and the temperature
of the surrounding medium.”

Hence, if T (t) is the temperature of the body at time t and A is the temper-
ature of the surrounding medium, then according to Newton’s law of cooling,
T (t) satisfies the differential equation

(40)
dT

dt
= k(T −A) = kT − kA

where k is the constant of proportionality. Equation (40) is linear in the
dependent variable T—that is, T ′ = a(t)T + b(t) where a(t) = k and b(t) =
−kA. Since k and A are constants, a(t) and b(t) are constant functions which
are defined on (−∞,∞). Integrating, we find

T1(t) = e
∫ t a(s) ds = e

∫ t k ds = ekt+C .

Setting C = 0, substituting into v(t), and integrating, yields

v(t) =

∫ t b(s)

T1(s)
ds =

∫ t −kA
eks

ds = −kA
∫ t

e−ksds = Ae−kt +D.

Setting D = 0 and substituting T1(t) and v(t) into equation (36) where y has
been replaced by T and x has been replaced by t, we find the solution of the
linear differential equation (40) is

(41) T (t) = ekt(K +Ae−kt) = Kekt +A

where K is an arbitrary constant.
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70 Elementary Differential Equations

Example 6 An Application of Newton’s Law of Cooling

A cup of coffee whose temperature is 190◦F is poured in a room whose
temperature is 65◦F . Two minutes later the temperature of the coffee is
175◦F . How long after the coffee is poured does it reach a temperature of
150◦F?

Solution

For this problem, A = 65◦F and the constants K and k of equation (41)
must be chosen to satisfy the two conditions T (0) = 190◦F and T (2) = 175◦F .
Evaluating equation (41) at t = 0 and imposing the first condition, we find K
must satisfy

T (0) = K +A or 190◦F = K + 65◦F.

Solving for K, we find

K = 190◦F − 65◦F = 125◦F.

Substituting the value 125◦F for K in equation (41), evaluating the resulting
equation at t = 2, and imposing the second condition, we obtain the equation

T (2) = 125◦Fe2k +A or 175◦F = 125◦Fe2k + 65◦F.

Solving the right-hand equation for e2k, we find

e2k =
175− 65

125
=

110

125
=

22

25
.

Hence,

ek =

(
22

25

)1/2

.

It is not necessary to determine the value of the constant of proportionality k
explicitly, since the expression ekt = (ek)t appears in equation (41). Substi-
tuting the expression above for ek in equation (41), we find the temperature
of the coffee as a function of the time after it is poured is

T (t) = 125◦F
(
22

25

)t/2

+ 65◦F.

The coffee reaches the temperature of 150◦F when t satisfies the equation

150◦F = 125◦F
(
22

25

)t/2

+ 65◦F.

Solving for t, we find

t =

2 ln

(
150− 65

125

)

ln

(
22

25

) =

2 ln

(
85

125

)

ln

(
22

25

) = 6.034 minutes. �
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EXERCISES 2.3.3

In Exercises 1–10 find the general solution of the given linear
differential equation.

1. y′ = 3y 2. y′ = y + 1

3. y′ =
3y

x
+ x3 4. y′ = 2y + x2e2x

5.
di

dt
+ i− 2 = 0 6.

di

dt
+ i = e−t

7. dy = (cscx+ y cotx)dx 8. dy = cscx− y cotx

9.
dr

dθ
+

4r

θ
= θ 10.

dr

dθ
+
r

θ
=

sin θ

θ

In Exercises 11–17 solve the given initial value problem by finding
the general solution of the differential equation and then determin-
ing the value of the constant of integration which satisfies the initial
condition. Also specify the interval on which each solution exists.

11. y′ = 4y + 1; y(0) = 1

12. y′ = xy + 2; y(0) = 1

13. y′ = y/x; y(−1) = 2

14. y′ = y/(x− 1) + x2; y(0) = 1

15. y′ = y/x+ sinx2; y(−1) = −1

16. y′ = 2y/x+ ex; y(1) =
1

2

17. y′ = (cotx)y + sinx; y(π/2) = 0

18. Let y1(x) be a solution of the homogeneous linear first-order differential
equation

y′ = a(x).

Show that cy1(x) is also a solution for any constant c.
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72 Elementary Differential Equations

19. a. Show that y(x) = 0 is the solution of the initial value problem

(0) y′ = a(x)y; y(c) = 0

b. Suppose that y1(x) and y2(x) are two different solutions of the non-
homogeneous linear initial value problem

(*) y′ = a(x)y + b(x); y(c) = d

Show that y3(x) = y1(x)− y2(x) satisfies the homogeneous linear initial
value problem (0). Therefore, y3(x) ≡ 0 and, consequently, y1(x) =
y2(x). This result proves that the solution of the linear initial value
problem (∗) is “unique.”

20. A thermometer reading 70◦F is taken outside where the temperature is
10◦F . Five minutes later the thermometer reads 40◦F . How long after
being taken outside is the thermometer reading within one-half a degree
of the outside temperature?

21. A thermometer reading 80◦F is taken outside. Five minutes later the
thermometer reads 60◦F . After another 5 minutes the thermometer
reads 50◦F . What is the temperature outside?

22. At 1:00 p.m. a thermometer reading 10◦F is removed from a freezer
and placed in a room whose temperature is 65◦F . At 1:05 p.m. the
thermometer reads 25◦F . Later the thermometer is placed back in the
freezer. At 1:30 p.m. the thermometer reads 32◦F . When was the
thermometer returned to the freezer and what was the thermometer
reading at that time?

23. A invited B for morning coffee. A poured two cups of coffee. B added
enough cream to lower the temperature of his coffee 1◦F . After 5 min-
utes A added enough cream to his coffee to lower the temperature 1◦F
and both A and B began to drink their coffee. Who had the cooler
coffee?

24. Various nonlinear first-order differential equations can be transformed
into linear first-order differential equations by some change of variables.
Perhaps most notable among such equations is Bernoulli’s equation

(B) y′ = P (x)y +Q(x)yn

where n is a real constant. For n = 0 and n = 1, equation (B) is
linear and the solution is immediate. Equation (B) is named in honor
of Jacques Bernoulli (1654-1705), who is also called James or Jacques.
After graduating from the University in Basel, Jacques traveled across
Europe from 1676 to 1682 learning about the latest discoveries in math-
ematics and science. In 1683 he returned to the University in Basel
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and began teaching mechanics. In 1687, he was appointed professor of
mathematics and remained in that position for the rest of his life. In
1696, Leibniz (1646-1716) showed that the change of variable z = y1−n

reduces Bernoulli’s equation to a linear first-order differential equation.
Differentiating the transformation equation with respect to x, we obtain
z′ = (1 − n)y−ny′. Multiplying equation (B) by (1 − n)y−n and per-
forming the change of variables results in the following linear first-order
differential equation

z′ = (1− n)P (x)z + (1− n)Q(x).

Solve the following Bernoulli initial value problems and specify the in-
terval on which each solution is valid.

a. y′ = 2x/y; y(0) = 2 b. y′ = −2y + y2; y(0) = 1

c. y′ = −y/x+ y1/2; y(1) = 1 d. y′ = y/x+ x2y3; y(−1) = −1

In Exercises 25–30 use any technique to solve the given differential
equation.

25. x dx − y dy = 0

26. y dx− x dy = 0

27. (x2 − y) dx+ x dy = 0

28. xy(1 − y) dx− 2 dy = 0

29. x(1 − y3) dx− 3y2 dy = 0

30. y(2x− 1) dx+ x(x + 1) dy = 0

2.4 Numerical Solution

The oldest and simplest algorithm for generating a numerical approxima-
tion to a solution of a differential equation was developed by Leonhard Euler
in 1768. Given a specific point (x0, y0) on the solution of the differential equa-
tion y′ = f(x, y), Euler wrote the equation for the tangent line to the solution
through (x0, y0)—namely, y = y0 + f(x0, y0)(x − x0). To obtain an approxi-
mation to the solution through (x0, y0) at x1, Euler took a small step along
the tangent line and arrived at the approximation y1 = y0+f(x0, y0)(x1−x0)
to the solution at x1, y(x1). Continuing to generate points successively in
this manner and by connecting the points (x0, y0), (x1, y1), (x2, y2), . . . in
succession, Euler produced a polygonal path which approximated the so-
lution. This first numerical algorithm for solving the initial value problem
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y′ = f(x, y); y(x0) = y0 is called Euler’s method or, due to its particular
geometric construction, the tangent line method.

Euler’s method is a single-step method. In single-step methods, only one
solution value, (x0, y0), is required to produce the next approximate solution
value. On the other hand, multistep methods require two or more previous
solution values to produce the next approximate solution value. In 1883, more
than a century after Euler developed the first single-step method, the English
mathematicians Francis Bashforth (1819-1912) and John Couch Adams (1819-
1892) published an article on the theory of capillary action which included
multistep methods that were both explicit methods and implicit methods. In
1895, the German mathematician Carl David Tolmé Runge (1856-1927) wrote
an article in which he developed two single-step methods. The second-order
method was based on the midpoint rule while the third-order method was
based on the trapezoidal rule. In an article which appeared in 1900, Karl
Heun (1859-1929) improved Runge’s results by increasing the order of the
method to four. And in 1901, Martin Wilhelm Kutta (1867-1944) completed
the derivation for the fourth-order methods by finding the complete set of
eight equations the coefficients must satisfy. He also specified the values for
the coefficients of the classic fourth-order Runge-Kutta method and those of
a fifth-order method.

Prior to 1900, most calculations were performed by hand with paper and
pencil. Euler’s method and Runge-Kutta methods are single-step methods.
Euler’s method is of order one and requires only one f function evaluation
per step. The classic Runge-Kutta method is fourth-order and requires four
f function evaluations per step. Adams-Bashforth, Adams-Moulton, and
predictor-corrector methods require only two f function evaluations per step;
however, since these methods are multistep methods, they require starting
values obtained by some other method. By the 1930s significant numerical
integration techniques had been developed; however, their effective implemen-
tation was severely limited by the need to perform the computations by hand
or with the aid of primitive mechanical calculators.

In the late nineteenth century and early twentieth century, several com-
mercially viable mechanical calculators capable of adding, subtracting, multi-
plying, and dividing were invented and manufactured. Electric motor driven
calculators began to appear as early as 1900. These mechanical and electrical
computing devices improved the speed and accuracy of generating numerical
solutions of simple differential equations. In 1936, the German civil engineer
Konrad Zuse (1910-1995) built the first mechanical binary computer, the Z1,
in the living room of his parents’ home. From 1942 to 1946 the first large
scale, general purpose electronic computer was designed and built by John
W. Mauchly (1907-1980) and J. Presper Eckert (1919-1995) at the University
of Pennsylvania. The computer was named ENIAC, which is an acronym
for “Electronic Numerical Integrator and Computer.” ENIAC, which used
vacuum tube technology, was operated from 1946 to 1955. After many tech-
nological inventions such as the transistor and integrated circuitry, the first
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hand-held, battery-powered, pocket calculator capable of performing addition,
subtraction, multiplication, and division was introduced by Texas Instruments
in 1967. The first scientific pocket calculator, the HP-35, was produced in 1972
by Hewlett Packard.

In the 1960s and 1970s several sophisticated computer programs were de-
veloped to solve differential equations numerically. Since then significant ad-
vances in graphical display capabilities have occurred also. Consequently, at
the present time there are many computer software packages available to gen-
erate numerical solutions of differential equations and to graphically display
the results.

Most differential equations and initial value problems cannot be
solved explicitly or implicitly; and, therefore, we must be satisfied
with obtaining a numerical approximation to the solution. Thus, we
need to know how to generate a numerical approximation to the solution of
the initial value problem

(1) y′ = f(x, y); y(x0) = y0.

In the differential equation in (1) replace y′ by dy/dx, multiply by dx, and
integrate both sides of the resulting equation from x0 to x to obtain

∫ x

x0

dy =

∫ x

x0

f(t, y(t)) dt or y(x)− y(x0) =

∫ x

x0

f(t, y(t)) dt.

Adding y(x0) = y0 to the last equation, we find the symbolic solution to the
IVP (1) on [x0, x] to be

(2) y(x) = y0 +

∫ x

x0

f(t, y(t)) dt.

When f(x, y) in (1) is a function of the independent variable alone—that
is, when the initial value problem is y′ = f(x); y(x0) = y0—we can approx-
imate the function f(x) on the interval [x0, x1], where x1 is a specific point,
by step functions or some polynomial in x, say p1(x), and then using this
approximation integrate (2) over [x0, x1] to obtain an approximation y1 to
the solution φ(x1). Next, we approximate f(x) on [x1, x2] by some function
p2(x) and integrate over [x1, x2] to obtain y2 = y1 +

∫ x2

x1
p2(t) dt which is an

approximation to the solution φ(x2), and so on.

When f(x, y) in (1) is a function of the dependent variable y, the value of
the approximate solution y1 at x1 depends on the unknown solution φ(x) on
the interval [x0, x1] and the function f(x, y) on the rectangle

R1 = {(x, y) | x0 ≤ x ≤ x1, y ∈ {φ(x) |x0 ≤ x ≤ x1}}.

Thus, we must approximate φ(x) on [x0, x1] and f(x, y) on R1 in order to
be able to integrate (2) over the interval [x0, x1] and obtain an approximate
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solution y1. In this case, additional approximate values y2, . . . , yn are obtained
in a like manner.

For single-step methods, it is convenient to symbolize the numerical approx-
imation to the exact solution y = φ(x) of the IVP (1) y′ = f(x, y); y(x0) = y0
by the recursive formula

(3) yn+1 = yn + ψ(xn, yn, hn)

where hn = xn+1 − xn. The quantity hn is called the stepsize at xn and it
can vary with each step. However, for computations performed by hand it is
usually best to keep the stepsize constant—that is, set hn = h, a constant,
for n = 0, 1, . . ..

If the function y(x) has m+ 1 continuous derivatives on an interval I con-
taining x0, then by Taylor’s formula with remainder,

(4) y(x) = y(xn) + y(1)(xn)(x − xn) +
y(2)(xn)

2
(x− xn)

2 + · · ·

+
y(m)(xn)

m!
(x − xn)

m +
y(m+1)(ξ)

(m+ 1)!
(x − xn)

m+1

where ξ is between x and xn. Usually, one chooses m in equation (4) to be
reasonably small and approximates y(xn+1) by

(5) yn+1 = yn + f(xn, yn)hn +
f (1)(xn, yn)

2
h2n + · · ·+ f (m−1)(xn, yn)

m!
hmn .

The discretization error, truncation error, or formula error for this
method is given by

(6) En =
f (m)(ξ, y(ξ))

(m+ 1)!
hm+1
n

where ξ ∈ (xn, xn+1).

If all calculations were performed with infinite precision, discretization error
would be the only error present. Local discretization error is the error
that would be made in one step, if the previous values were exact and there
were no round-off error. Ignoring round-off error, global discretization
error is the difference between the solution φ(x) of the IVP (1) and the
numerical approximation at xn—that is, the global discretization error is en =
yn − φ(xn).

A derivation of the series that bears his name was published by the En-
glish mathematician Brook Taylor (1685-1731) in 1715. However, the Scottish
mathematician James Gregory (1638-1675) seems to have discovered the se-
ries more than forty years before Taylor published it. And Johann Bernoulli
had published a similar result in 1694. The series was published without
any discussion of convergence and without giving the truncation error term—
equation (6).
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2.4.1 Euler’s Method Again consider the IVP (1) y′ = f(x, y); y(x0) =
y0. Substituting the initial condition y(x0) = y0 into the differential equation
of (1), we can calculate y′(x0) = f(x0, y(x0)) = f(x0, y0), which is the slope
of the tangent line of the exact solution φ(x) at x = x0. If in equation

(2) y(x) = y0 +

∫ x

x0

f(t, y(t)) dt

which we obtained from (1) earlier by integration, we approximate y(t) by
the constant function y0 and f(t, y(t)) by the constant function f(x0, y0) on
the interval [x0, x1], then we obtain the following approximation to the exact
solution at x1 :

y1 = y0 +

∫ x1

x0

f(x0, y0) dt = y0 + f(x0, y0)(x1 − x0).

Knowing y1 we can compute f(x1, y1) from the differential equation in (1).
The value f(x1, y1) is an approximation to the slope of the tangent line of the
exact solution φ(x) at x = x1. Notice that f(x1, y1) is only an approximation
to φ′(x1) = f(x1, φ(x1)), the slope of the tangent line of the exact solution
φ(x) at x = x1, since in general y1 �= φ(x1). See Figure 2.11.
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Figure 2.11 Euler’s Method.

Just as we found that the IVP (1) is equivalent to the integral equation (2),
we find the IVP y′ = f(x, y); y(x1) = y1 is equivalent to the integral equation

y(x) = y1 +

∫ x

x1

f(t, y(t)) dt.

Using the constant function y1 to approximate y(t) and the constant function
f(x1, y1) to approximate the integrand f(t, y(t)) on the interval [x1, x2], we
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obtain the following approximation to the exact solution at x2

y2 = y1 +

∫ x2

x1

f(x1, y1) dt = y1 + f(x1, y1)(x2 − x1).

Proceeding in this manner, we find the following general recursion for this
numerical approximation method to be

(7) yn+1 = yn + f(xn, yn)(xn+1 − xn).

Equation (7) is known as Euler’s method or the tangent line method.

We note that Euler’s method is the Taylor series expansion method of
order one, so the local discretization error is

(8) EE
n =

1

2!
f (1)(ξ, y(ξ))h2n =

h2n
2
y(2)(ξ)

where ξ ∈ (xn, xn+1) and hn = xn+1 − xn. Equation (7) is a simple formula
to use, especially for hand calculation; but, in general, it is not very accurate.
The error of equation (8) is a local error—that is, the error per single step.
As one moves away from the initial point x0, the total error usually builds
up. The total error at any point is composed of the accumulated local error
and round-off error. It can be shown that if the exact solution of the IVP (1),
φ(x), has a continuous second derivative on [x0, xn] and if |fy(x, y)| ≤ L and
|y(2)(x)| ≤ Y for x ∈ [x0, xn], then the global discretization error at xn,
which is yn − φ(xn), is bounded by

(9) |yn − φ(xn)| ≤ hY

2L
(e(xn−x0)L − 1)

for a fixed stepsize h. Suppose we have reasonable estimates for L and Y on the
interval [x0, xn] and we wish to maintain a specified accuracy A throughout
the interval [x0, xn]. Then we can require that

|yn − φ(xn)| ≤ hY

2L
(e(xn−x0)L − 1) ≤ A.

Solving the right-most inequality for h, we usually obtain an underestimate
of the stepsize to use throughout the interval [x0, xn] in order to maintain the
specified accuracy. It should be noted that global discretization error bound
in equation (9) is an upper bound and not a realistic error estimate. However,
equation (9) does show that as h → 0, the global discretization error goes to
zero. Thus, neglecting round-off error, as h → 0, the Euler approximation
converges to the exact solution.

The Swiss mathematician Leonhard Euler (1707-1783) was one of the most
prolific authors in the field of mathematics. He introduced the now common
notations of e for the base of natural logarithms, π for the ratio of the cir-
cumference of a circle to its diameter, Σ for the sign for summation, i for the
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imaginary unit, and sinx and cosx for the trigonometric functions. Euler’s
famous formula eiθ = cos θ+ i sin θ expresses a relation between the exponen-
tial function and trigonometric functions. The special case θ = π provides the
following relation between the numbers e, π, and i: eiπ = −1. Euler’s contri-
bution to differential equations includes the concept of an integrating factor,
the method for solving linear differential equations with constant coefficients,
the method of reduction of order, and power series solutions, to name a few.

Example 1 Euler’s Approximation to the Solution of the

Initial Value Problem: y′ = y + x; y(0) = 1

a. Find an approximate solution to the initial value problem

(10) y′ = y + x = f(x, y); y(0) = 1

on the interval [0, 1] using Euler’s method and constant stepsizes h = .2 and
h = .1.

b. Use equation (9) to estimate the maximum global discretization error at
x = 1 for constant stepsizes h = .2 and h = .1.

Solution

a. Table 2.1 contains Euler’s approximation to the IVP (10) on the interval
[0, 1] obtained using a constant stepsize of h = .2. And Table 2.2 contains
Euler’s approximation to the IVP (10) on the interval [0, 1] obtained using
a constant stepsize of h = .1. All calculations were performed using six
significant digits.

Table 2.1 Euler’s Approximation to the Initial Value Problem:

(10) y′ =y+x; y(0) = 1 on [0,1] with Stepsize h = .2

f(xn, yn) = yn+1 =
n xn yn yn + xn hf(xn, yn) yn + hf(xn, yn)

0 .0 1.0 1.0 .2 1.2
1 .2 1.2 1.4 .28 1.48
2 .4 1.48 1.88 .376 1.856
3 .6 1.856 2.456 .4912 2.3472
4 .8 2.3472 3.1472 .62944 2.97664
5 1.0 2.97664
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Table 2.2 Euler’s Approximation to the Initial Value Problem:

(10) y′ =y+x; y(0) = 1 on [0,1] with Stepsize h = .1

f(xn, yn) = yn+1 =
n xn yn yn + xn hf(xn, yn) yn + hf(xn, yn)

0 .0 1.0 1.0 .1 1.1
1 .1 1.1 1.2 .12 1.22
2 .2 1.22 1.42 .142 1.362
3 .3 1.362 1.662 .1662 1.5282
4 .4 1.5282 1.9282 .19282 1.72102
5 .5 1.72102 2.22102 .222102 1.94312
6 .6 1.94312 2.54312 .254312 2.19743
7 .7 2.19743 2.89743 .289743 2.48718
8 .8 2.48718 3.28718 .328718 2.81590
9 .9 2.81590 3.71590 .371590 3.18748
10 1.0 3.18748

b. Taking the partial derivative of f(x, y) = y + x with respect to y, we find
fy = 1, so |fy| ≤ 1 = L on [0, 1]. Differentiating the differential equation
appearing in (10), y′ = y + x, we get y(2) = y′ + 1 = y + x + 1. Examining
the Euler numerical approximation values in Tables 2.1 and 2.2, we see that
|y| < 3.2 for x ∈ [0, 1]. So, for x ∈ [0, 1] we assume |y| < 7 which is approx-
imately twice the largest y value appearing in Table 2.2. Using the triangle
inequality, we find that |y(2)| < |y|+ |x|+1 < 9 = Y for x ∈ [0, 1]. Therefore,
by equation (9) with h = .2 the maximum global discretization error satisfies

|y5 − φ(1)| ≤ hY

2L
(e(xn−x0)L − 1) =

(.2)(9)

2
(e− 1) ≈ 1.54645.

For h = .1 the maximum global discretization error is approximately .773227.
Since the given differential equation is linear, we easily calculate the exact
solution of the IVP (10) to be φ(x) = 2ex − x − 1. So the value of the exact
solution at x = 1 is φ(1) = 2e − 2 ≈ 3.43656. Hence, the actual total error
due to discretization and round-off at x = 1 for h = .2 is 3.43656− 2.97664 =
.45992, which is about one-third of the estimated error of 1.54645. �

Comments on Computer Software Historically, the numerical solution
of initial value problems originated in the 1700s with the work of Euler and
Taylor. In the late 1800s and early 1900s, Runge, Heun, and Kutta developed
their numerical integration techniques. All of these techniques were used to
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generate numerical solutions of initial value problems by hand—that is, with
paper and pencil. There were no electronic calculators or computers available
to compute the solutions. The numerical results which appear in Example 1
and Tables 2.1 and 2.2 were generated using relatively simple computer pro-
grams. If you know a scientific computing language, you should be able to
write computer programs to produce similar output. The software which ac-
companies this text does not include programs to produce a numerical solution
using the Taylor series method, Euler’s method, the improved Euler’s method,
the modified Euler’s method, or the fourth-order Runge-Kutta method. None
of these methods is capable of producing an extremely accurate numerical
solution over a “large” interval of the independent variable, because none of
these methods is an adaptive method and because most of these methods
are of low order. The software included with this text contains a program
named SOLVEIVP which uses a sophisticated, variable order, variable step-
size, numerical integration scheme to generate a numerical solution to an ini-
tial value problem. Computer algebra systems (CAS) such as Mathematica,
MATLAB, and MAPLE R© contain commands which allow you to generate a
numerical solution using the methods listed above. For example, the following
six MAPLE statements enable you to generate Euler’s approximation to the
IVP (10) y′ = y + x; y(0) = 1 on the interval [0, 1] with a constant stepsize
of h = .2. When rounded to six significant digits, the values output by this
program are the same values which appear in the columns labeled xn and yn
of the table of values in Example 3.

with(DEtools):
de:=diff(y(x), x) = y(x) + x:
sol:=dsolve({de, y(0) = 1}, numeric, method=classical[foreuler], stepsize=

0.2):
for i from 0 to 5 do
sol(.2 ∗ i);
end do;

The first statement informs MAPLE to load the required software package
DEtools. The second statement specifies the differential equation which is
to be solved—dy/dx = y + x. In order to solve a different differential equa-
tion, the expression y(x)+x must be replaced with an appropriate expression
which conforms to MAPLE syntax. The third statement specifies the ini-
tial condition to use—in this case, y(0) = 1. To change the initial condition
change the values 0 and 1 accordingly. The specification “numeric” which
appears in the third statement tells the computer to solve the initial value
problem numerically. The third statement also indicates the integration is to
be performed using the forward Euler’s method (method=classical[foreuler])
and the stepsize is to be 0.2. The forward Euler’s method, called foreuler in
MAPLE, denotes Euler’s method. Other methods we have discussed are spec-
ified in MAPLE as follows: heunform denotes the improved Euler’s method,
impoly denotes the modified Euler’s method, and rk4 denotes the fourth-order
Runge-Kutta method. The last three statements in the program form a “loop”

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


82 Elementary Differential Equations

which computes the values x = .2 ∗ i at which the independent variable and
its associated numerical solution value, sol(.2 ∗ i), are to be printed. In this
example, the values printed will be (0, sol(0)), (.2, sol(.2)), . . . , (1.0, sol(1.0)).
If the initial condition is specified at x = a and integration takes place over
the interval [a, b] where the stepsize h is chosen so that n = (b − a)/h is an
integer, then in the fourth statement above change 5 to n and in the fifth
statement above change .2 ∗ i to a+h ∗ i. This will cause n+1 pairs of values
(x, sol(x)) to be printed at n+1 equally spaced points throughout the interval
[a, b]. The spacing between the values will be h. When h is very small, instead
of printing the solution every step, you may want to print the solution only
every ten steps, or every one hundred steps, or every one thousand steps. This
is accomplished by changing the value 5 in statement four and the expression
.2 ∗ i in statement six appropriately.

EXERCISES 2.4.1

1. a. Compute an approximate solution to the initial value problem

y′ = x2 − y; y(0) = 1 on the interval [0, 1] using Euler’s method

and a constant stepsize of h = .1.

b. Find an upper bound for the total discretization error at x = 1.

c. How small must the stepsize be to ensure six decimal place
accuracy per step?

d. How small must the stepsize be to ensure six decimal place
accuracy over the interval [0, 1]?

2. Use Euler’s method to generate a numerical solution to the initial value
problem y′ = y/x+ 2; y(1) = 1 on the interval [1, 2] with a stepsize of
h = .05

2.4.2 Pitfalls of Numerical Methods

Comments on Computer Software Most mathematical software pack-
ages which contain algorithms to solve ordinary differential equations include
one or more routines which attempt to numerically approximate the solution
of the initial value problem y′ = f(x, y); y(c) = d on the interval [a, b] where
a ≤ c ≤ b. The best way for us to illustrate how to use these programs,
the typical output of the programs, and some of the pitfalls that may occur
when the programs are used is through the following set of examples. We sug-
gest that you run these examples and compare your results with those given
here. It is very possible that your results will not be exactly the same. The nu-
merical results and graphical output presented in Examples 2, 3, 4, and 5 were
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generated using MAPLE software. We selected the default integration tech-
nique which is the fourth-order Runge-Kutta method with fixed stepsize. The
stepsize is determined by the software. Included with this text is a computer
program named SOLVEIVP. It numerically solves the initial value problem
y′ = f(x, y); y(c) = d on the interval [a, b] where a ≤ c ≤ b. After the nu-
merical integration process is completed, SOLVEIVP will graph the solution
in the rectangle R bounded by the lines x =Xmin, x =Xmin, y =Ymin, and
y =Ymax, where the values for Xmin, Xmin, Ymin, and Ymax are speci-
fied by the user. Complete details for running the program SOLVEIVP are
contained in the file CSODE User’s Guide which can be downloaded from
the website: cs.indstate.edu/∼roberts/DEq.html. Results for the initial value
problems of Examples 2 and 3 obtained using SOLVEIVP appear in CSODE
User’s Guide. Compare those results with the ones appearing in Examples 2
and 3. You should also use SOLVEIVP to solve the initial value problem in
Example 4 and compare those results with the ones given in Example 4.

Example 2 Numerical Approximation and Graph of the IVP:

y′ = x − y; y(0) = 2

Calculate and graph a numerical approximation of the solution to the initial
value problem y′ = x− y; y(0) = 2 on the interval [−1, 4] using MAPLE.

Solution

The following four MAPLE statements produced the output shown in
Figure 2.12.

with(DEtools):with(plots):

de:=diff(y(x), x)=x-y(x):

p:=DEplot(de, y(x), x=-1..4, y=0..10, {[y(0)=2]}, arrows=LINE, axes=

BOXED):

display(p);

The second statement specifies the differential equation to be solved is y′ =
x − y. The third statement instructs MAPLE to graph the solution in the
rectangle bounded by the lines x = −1, x = 4, y = 0, and y = 10. The third
statement also specifies the initial condition is y(0) = 2, the direction field is
to be displayed as lines (arrows=LINE), and the x and y axes are to appear
as a box outside the rectangle (axes=BOXED).

We did not encounter any difficulties in generating the solution to the given
initial value problem, because y′ = x − y is a linear differential equation—
recall, y′ = f(x, y) is linear if and only if f(x, y) = a(x)y+ b(x)—and because
the functions a(x) = −1 and b(x) = x are defined and continuous on the
interval [−1, 4].
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Figure 2.12 Direction Field and Graph of a Numerical Approximation of

y′ = x− y; y(0) = 2. �
The following example illustrates one type of result we might obtain in the

event we attempt to produce a numerical approximation to a solution on an
interval which is too large—that is, on an interval larger than the interval on
which the solution exists.

Example 3 A Numerical Approximation Outside of the Interval

of Existence

Use the fundamental existence, uniqueness, and continuation theorems to
analyze mathematically the initial value problem

(11) y′ =
y

(x− 1)(x+ 2)
+

1

x
; y(−1) = 2

on the interval [−2.5, .5]. Then use MAPLE to calculate and graph a numer-
ical approximation of the solution to the IVP (11).

Solution

Mathematical Analysis

The differential equation of (11) is linear with a(x) = 1/((x−1)(x+2)) and
b(x) = 1/x. The function a(x) is not defined; and, therefore, not continuous
at x = −2 and x = 1. The function b(x) is not defined and not continuous at
x = 0. Hence, the functions a(x) and b(x) are both continuous on the intervals
(−∞,−2), (−2, 0), (0, 1), and (1,∞). Since the initial point −1 ∈ (−2, 0), the
IVP (11) has a unique solution on (−2, 0) and this is the largest interval on
which (11) has a solution.
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Numerical Solution

A graph of the numerical approximation to the solution of the IVP (11)
generated using MAPLE is shown in Figure 2.13.

0.5�0�-0.5�-1�-1.5�-2�-2.5�
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y(x)

x

Figure 2.13 Numerical Approximation of the Solution to

y′ =
y

(x− 1)(x+ 2)
+

1

x
; y(−1) = 2.

This output was created using the following four Maple statements. These
statements were obtained by modifying of the four statements in Example 2.

with(DEtools):with(plots):

de:=diff(y(x), x)= y(x)/((x-1)*(x-2))+1/x:

p:=DEplot(de, y(x), x=-2.5..0.5, {[y(-1)=2]}, arrows=NONE, axes=

BOXED):

display(p);

In the second statement, we changed the specification of the differential equa-
tion from x− y(x) to y(x)/((x − 1) ∗ (x − 2)) + 1/x. In the third statement,
we replaced the range of x values −1..4 with the new range −2.5..0.5. We did
not specify a range for the y values, so the program selected a range based
on the computed solution. From Figure 2.13 it appears the minimum y value
selected by the software was −5 and the maximum y value selected was 16.
Also, in the third statement we changed the initial condition to y(−1) = 2 and
we indicated we did not want a direction field displayed by replacing LINE
by NONE.
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Notice that the graph indicates the presence of vertical asymptotes in the
solution near x = −2 and x = 0. �

Example 3 illustrates that it is necessary for you to perform a thorough
mathematical analysis for each initial value problem prior to computing a
numerical solution. In this example, the computer generated a numerical
approximation to the solution outside the interval of existence—that is, out-
side of the interval (−2, 0). So you must analyze each initial value problem
separately and determine what the fundamental theorems tell you about the
problem with respect to existence, uniqueness, and continuation of the solu-
tion. When you use your computer software to numerically solve the IVP (11),
what does the graph of the solution look like?

Example 4 Numerical Approximation and Graph of the IVP:

y′ = −x/y; y(−1) = 1

Mathematically analyze the initial value problem

(12) y′ = −x/y; y(−1) = 1

on the interval [−2, 2] taking into account the fundamental existence, unique-
ness, and continuation theorems. Then calculate and graph a numerical ap-
proximation of the solution to the IVP (12) using MAPLE.

Solution

Mathematical Analysis

Here f(x, y) = −x/y and ∂f/∂y = x/y2 are defined and continuous on any
finite rectangle which does not contain any point (x, 0)—that is, on any finite
rectangle which does not contain a point of the x-axis, where y = 0. So by the
fundamental theorems there exists a unique solution of the IVP (12) and this
solution can be continued in a unique manner until either x→ −∞, x→ +∞,
y → 0 (since existence and uniqueness may no longer be guaranteed at y = 0),
or y → +∞ (since the y coordinate of the initial condition, y(−1) = 1, is
positive).

Numerical Solution

A graph of the numerical solution to the IVP (12) generated using MAPLE
is shown in Figure 2.14. The following four MAPLE statements were used to
produce the graph.

with(DEtools):with(plots):

de:=diff(y(x), x)= -x/y(x):

p:=DEplot(de,y(x),x=-2..2,{[y(-1)=1]},arrows=NONE,axes=BOXED,

view=[-2.2..2.2,-2.2..2.2]):

display(p);
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The second statement specifies the differential equation of (12). The third
statement specifies the interval of integration with x = −2..2 and the
initial condition with y(−1) = −1. We included the specification: view=
[−2.2..2.2,−2.2..2.2] because we wanted the horizontal axis of the graph to
be slightly longer than the interval of integration and because we wanted to
control the range of the y values instead of letting the software do so. The
solution is “reasonably” accurate—but, of course, not exact—on the inter-
val [−1.4, 1.4] where the computed solution is positive. The solution of the
IVP (12) is y(x) =

√
2− x2. (Verify this fact.) This solution exists only on

the interval (−√
2,
√
2). The graph of the solution is the upper half of a circle

with center at the origin and radius
√
2.

The general solution of the differential equation of the IVP (12), y′ = −x/y,
is x2 + y2 = k2, where k is an arbitrary constant. For k �= 0 the graph of
x2 + y2 = k2 is a circle with center at the origin and radius |k|. Thus, the
graph of the one-parameter family of curves x2 + y2 = k2 is the set of all
concentric circles with center at the origin. Look at Figure 2.14 again. Notice
for −2 < x < −1.4 and for 1.4 < x < 2 the computer generated solution
is attempting to approximate other members of the general solution of the
differential equation.
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Figure 2.14 Graph of a Numerical Approximation of the Solution to
y′ = −x/y; y(−1) = 1. �
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Example 5 Numerical Approximation of the IVPs:

y′ =
√
xy; y(−1) = d

Mathematically analyze the following two initial value problems.

y′ =
√
xy; y(−1) = 0(13a)

y′ =
√
xy; y(−1) = −1/9 ≈ −.11111111(13b)

Then calculate a numerical approximation of the solution to initial value prob-
lems on the interval [−1, 1] using MAPLE and SOLVEIVP.

Solution

Mathematical Analysis

The function f(x, y) =
√
xy is defined and continuous in the first quadrant,

in the third quadrant, on the x-axis (where y = 0), and on the y-axis (where
x = 0). The function ∂f/∂y =

√
x/y is defined and continuous in the first

quadrant, in the third quadrant, and on the y-axis; but it is not defined on
the x-axis. Applying the fundamental theorems to the initial value problem

y′ =
√
xy; y(c) = d

we see that a solution exists as long as (x, y(x)) remains in the first or third
quadrant or y(x) = 0. Furthermore, the solution is unique as long as (x, y(x))
remains in the first or third quadrant. Once the solution, y(x), reaches the
x-axis—that is, once y(x) = 0—the solution may no longer be unique.

a. The point (−1, 0), which corresponds to the initial condition y(−1) = 0,
is on the x-axis so the solution to the IVP (13a) exists, but the solution
may not be unique. Notice that y(x) ≡ 0 is a solution of (13a). Verify
that for all r ≤ −1 and all s ≥ 0

yrs(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−[(−x)3/2 − r]2/9 , r ≤ −1

0 , −1 < x < 0

(x3/2 − s)2/9 , 0 ≤ s

is a solution of the IVP (13a). Hence (13a) has an infinite number of
solutions on (−∞,∞).

b. Since (−1,−1/9) is in the third quadrant, the IVP (13b) has a unique
solution until x → −∞, x→ 0−, y → −∞, or y → 0−. On the interval
(−∞, 0) the unique solution to the IVP (13b) is y(x) = x3/9. (Verify
this fact.) At x = 0, y(x) = 0 and the solution may no longer be unique.
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Show that for all u ≥ 0

yu(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x3/9 , x ≤ 0

0 , 0 < x < u

(x3/2 − u)2/9 , u ≤ x

is a solution of the IVP (13b). Hence, (13b) has an infinite number of
solutions on (−∞,∞).

Numerical Solution

We generated numerical approximations to the IVPs (13a) and (13b) using
both MAPLE and SOLVEIVP.

a. The initial point (−1, 0) is on the x-axis and as we saw in the math-
ematical analysis section, there are an infinite number of solutions to
the IVP (13a). SOLVEIVP generated the solution y(x) ≡ 0. The soft-
ware gave us no indication that this is not a unique solution. MAPLE
indicated floating point overflow no matter how small the interval of
integration was chosen. This result would often lead one to assume the
IVP (13a) has no solution.

b. In this case, SOLVEIVP generated a numerical approximation on the
interval [−1, 1] which is a very good approximation of the solution
y(x) = x3/9 to the IVP (13b). However, the integration procedure
gave us no indication that there are an infinite number of solutions of
the IVP (13b) on the interval [−1, 1] or that the solution is not unique
once y(x) = 0. MAPLE generated a numerical approximation of the
solution to the IVP (13b) on the interval [−1,−.054] which is a very
good approximation of the solution y(x) = x3/9. The software gave us
no indication that the solution could be extended further to the right,
that there are an infinite number of solutions of the IVP (13b) on the
interval [−1, 1], or that the solution is not unique once y(x) = 0. �

The previous examples were presented to show that computer programs
which generate numerical approximations of solutions to initial value problems
sometimes generate a solution where no solution exists, sometimes generate
a single solution where there are multiple solutions, and sometimes do not
produce a solution where there is one or more solutions. This is the typical
behavior of such computer programs. It is not a flaw of the computer program.
Hence, the previous examples should vividly illustrate to you the necessity of
performing a thorough mathematical analysis for each individual initial value
problem based on the fundamental theorems prior to generating any numerical
approximation. Use your computer software numerical integration algorithm
to solve the previous examples and compare your results to ours.
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90 Elementary Differential Equations

EXERCISES 2.4.2

Use the fundamental existence, uniqueness, and continuation the-
orems to mathematically analyze each of the following initial value
problems. Then use SOLVEIVP or a Computer Algebra System
(CAS) such as MAPLE, Mathematica, or MATLAB R© to calculate
and graph a numerical solution on the interval specified. Based
on the analysis or graph specify, when possible, the subinterval on
which the solution exists and the subinterval on which the solution
is unique.

1. y′ = 1/(x− 1); y(0) = 1 on [−2, 2]

2. y′ = y + x; y(0) = 0 on [−1, 1]

3. y′ = y/x on [−2, 2] a. y(−1) = 1 b. y(−1) = −1

4. y′ = y/(1− x2) +
√
x on [−2, 2]

a. y(.5) = 1 b. y(1) = 1 c. y(2) = 1

5. y′ = y2 on [−5, 5]

a. y(−1) = 1 b. y(−1) = 0 c. y(1) = .5

6. y′ = y3 on [−2, 2]

a. y(−1) = 1 b. y(−1) = 0 c. y(−1) = −1

7. y′ = −3x2/(2y) on [−1, 1]

a. y(−1) = 1 b. y(−1) = .5 c. y(−1) = 0 d. y(−1) = −1

8. y′ =
√
y/x on [−2, 2]

a. y(−1) = 1 b. y(−1) = 0 c. y(−1) = −1 d. y(1) = 1

9. y′ = 3xy1/3 on [−1, 1]

[Hint: Input y1/3 as sgn(y)∗exp((log(abs(y)))/3)]
a. y(−1) = 1.5 b. y(−1) = 1 c. y(−1) = 0.5

d. y(−1) = 0 e. y(−1) = −1

10. y′ =
√
(y + 2)(y − 1) on [−2, 2]

a. y(0) = 0 b. y(0) = 1 c. y(0) = −3

11. y′ = y/(y − x) on [−1, 1]

a. y(1) = 2 b. y(1) = 1 c. y(1) = 0 d. y(1) = −1
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The Initial Value Problem y′ = f(x, y); y(c) = d 91

12. y′ = xy/(x2 + y2) on [−1, 1]

a. y(0) = 1 b. y(0) = 0 c. y(0) = −1

13. y′ = x
√
1− y2 on [−1, 1]

a. y(0) = 1 b. y(0) = .9 c. y(0) = .5 d. y(0) = 0

14. y′ = (−x+
√
x2 + 4y)/2 on [−1, 1]

a. y(0) = 1 b. y(0) = 0 c. y(0) = −1 d. y(1) = −.2
e. y(1) = −.25
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Chapter 3

Applications of the Initial Value

Problem y′ = f(x,y); y(c) = d

In this chapter, we consider a variety of applications of the initial value
problem y′ = f(x, y); y(c) = d. First, in the section titled Calculus Re-
visited, we show that the solution to the particular initial value problem
y′ = f(x); y(a) = 0 is equivalent to the definite integral

∫ x
a
f(t) dt. Then,

we show how to use computer software to calculate an approximation to the

definite integral
∫ b
a f(x) dx. This will allow us to solve problems from calcu-

lus numerically. In the sections titled Learning Theory Models, Population
Models, Simple Epidemic Models, Falling Bodies, Mixture Problems, Curves
of Pursuit, and Chemical Reactions, we examine some physical problems from
a number of diverse disciplines which can be written as initial value problems
and then solved using numerical integration software. Finally, we present a
few additional applications in the Miscellaneous Exercises which appear at
the end of this chapter.

3.1 Calculus Revisited

Many calculus problems involve computing a value for the definite integral∫ b
a
f(x) dx. Examples of such problems include finding the area under a curve,

finding the area between two curves, finding the length of an arc of a curve,
finding the area of a surface generated by revolving a curve about an axis,
finding the volume of a solid generated by revolving a region about an axis,
and computing physical quantities such as work, force, pressure, moments,
center of mass, and centroids.

A function F (x) is called an antiderivative of the function f(x) on an
interval [a, b], if F ′(x) = f(x) for all x ∈ [a, b]. The fundamental theorem of
integral calculus stated below tells us how to compute the value of the definite

integral of f(x) on [a, b],
∫ b
a
f(x) dx, provided we can find an antiderivative of

f(x) on [a, b].
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94 Elementary Differential Equations

The Fundamental Theorem of Integral Calculus

If f(x) is continuous on the interval [a, b] and if F ′(x) = f(x) for all x in
[a, b], then

∫ b

a

f(x) dx = F (x)

∣
∣
∣
∣
∣

b

a

= F (b)− F (a).

Problems which appear in calculus texts are chosen very carefully so that
required integrations can be performed—that is, so that the antiderivative
of the integrand can be written as an elementary function. In this respect,
problems which appear in calculus texts are somewhat artificial, because in
practice the required integration usually cannot be performed explicitly. Look
at the section on computing arc length in any calculus text and you will see
that very few examples and exercises are given. This is because it is difficult
to choose many functions y(x) such that the integral of

√
1 + [y′(x)]2 can be

written as an elementary function.

Unfortunately, most functions f(x) which arise in practice do not
have antiderivatives that can be written as elementary functions.
So we need to answer the following questions:

“How can we rewrite any definite integral
∫ b
a f(x) dx as an initial value

problem?”

“How can we numerically solve the resulting initial value problem and
thereby compute a value for the definite integral?”

If f(x) is integrable on [a, b], we can symbolically write the antiderivative
of f(x) on [a, b] as

(1) F (x) =

∫ x

a

f(t) dt for x ∈ [a, b].

Suppose F (x) is differentiable on [a, b]. Differentiating (1) with respect to
x, we find F ′(x) = f(x) for all x ∈ [a, b]. So F (x) satisfies the differential
equation y′ = f(x) on [a, b]. Evaluating F (x) at x = a, we get F (a) = 0.
Thus, the antiderivative F (x) of f(x) satisfies the initial value problem

(2) y′ = f(x); y(a) = 0

on the interval [a, b] and the value of the definite integral of f(x) on [a, b] is

∫ b

a

f(t) dt = y(b) = F (b).

Hence, the integral

y(x) =

∫ x

a

f(t) dt

is equivalent to y(x) being the solution of the initial value problem

y′ = f(x); y(a) = 0
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and
∫ b

a

f(t) dt

is equivalent to y(b), where y(b) is the solution to the initial value problem
y′ = f(x); y(a) = 0 evaluated at b.

Example 1 A Continuous Integrand Whose Antiderivative Is Not

an Elementary Function

Compute
∫ 2
1 sinx2 dx.

Solution

The function f(x) = sinx2 is defined and continuous on the interval [1, 2].
So f(x) is integrable on [1, 2], but its antiderivative F (x) cannot be expressed
as an elementary function. However, as we have just seen, the antiderivative
F (x) satisfies the initial value problem

(3) y′ = sinx2; y(1) = 0

and F (2) =
∫ 2
1 sinx2 dx. We used the program SOLVEIVP to solve the initial

value problem (3) numerically on the interval [1, 2]. Detailed instructions for
running the computer program SOLVEIVP is contained in CSODE User’s

Guide. We found that
∫ 2
1
sinx2 dx is approximately equal to 0.4945103.

The two MAPLE statements

sol:=dsolve({diff(y(x), x) = sin(x ∧ 2), y(1) = 0} , numeric):

sol(2);

produces the value .494508245219554054 as its numerical approximation to∫ 2
1
sinx2 dx. This result was calculated using the default MAPLE numerical

integration procedure Runge-Kutta-Fehlberg 4(5), RKF45.

Use your computer software to solve the initial value problem (3) on the
interval [1, 2]. How does your result compare with the ones we obtained above?
�

In what follows we summarize some results and formulas from calculus for
computing area, arc length, and volume when the curves involved are defined
in rectangular coordinates, in polar coordinates, and parametrically.

Formulas Involving Curves Defined in Rectangular Coordinates

The Area Under a Curve

Let y = f(x) be a continuous, nonnegative function (f(x) ≥ 0) on the
interval [a, b]. The area, A, of the region in the xy-plane bounded above by
the curve y = f(x), bounded below by the x-axis (y = 0), and bounded by
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96 Elementary Differential Equations

the vertical lines x = a and x = b is

A =

∫ b

a

f(x) dx.

The Area between Two Curves

Let y = f(x) and y = g(x) be continuous functions on the interval [a, b]
with the property that f(x) ≥ g(x) for all x ∈ [a, b]. The area bounded above
by the curve y = f(x), bounded below by the curve y = g(x), and bounded
by the vertical lines x = a and x = b is

A =

∫ b

a

[f(x)− g(x)] dx.

Arc Length

If y = f(x) has a continuous first derivative, f ′(x), on the interval [a, b],
then the arc length of the curve y = f(x) from a to b is

s =

∫ b

a

√
1 + [f ′(x)]2 dx.

Areas of Surfaces of Revolution

If y = f(x) has a continuous first derivative, f ′(x), on the interval [a, b],
then

(1) the area of the surface generated by revolving the curve y = f(x) from a
to b about the x-axis is

Sx = 2π

∫ b

a

|f(x)|
√

1 + [f ′(x)]2 dx

and

(2) the area of the surface generated by revolving about the y-axis the curve
y = f(x) from a to b where 0 ≤ a ≤ b is

Sy = 2π

∫ b

a

x
√

1 + [f ′(x)]2 dx.

Volumes of Solids of Revolution

Let f(x) and g(x) be continuous functions on the interval [a, b] with the
property that f(x) ≥ g(x) ≥ 0 for all x ∈ [a, b]. The volume of the solid
generated by revolving the region bounded by the curves y = f(x), y = g(x),
x = a, and x = b

(1) about the x-axis is

Vx = π

∫ b

a

[f2(x) − g2(x)] dx
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and

(2) about the y-axis for 0 ≤ a ≤ b is

Vy = 2π

∫ b

a

x[f(x) − g(x)] dx.

Formulas Involving Curves Defined in Polar Coordinates

Area

Let r = f(θ) be a continuous, nonnegative function on the interval [α, β]
where 0 < β−α ≤ 2π. The area of the region bounded by the curves r = f(θ),
θ = α, and θ = β is

A =
1

2

∫ β

α

f2(θ) dθ.

The Area between Two Curves

Let r = f(θ) and r = g(θ) be continuous functions on the interval [α, β]
where 0 < β−α ≤ 2π. And let f and g have the property that 0 ≤ g(θ) ≤ f(θ)
for all θ in [α, β]. The area of the region bounded by the curves r = f(θ),
r = g(θ), θ = α, and θ = β is

A =
1

2

∫ β

α

[f2(θ) − g2(θ)] dθ.

Arc Length

If r = f(θ) has a continuous first derivative on the interval [α, β], then the
arc length of the curve r = f(θ) from α to β is

s =

∫ β

α

√
r2 + [df/dθ]2 dθ.

Formulas Involving Curves Defined Parametrically

Area

If y(x) is a nonnegative, continuous function of x on the interval [a, b], if x
and y are defined parametrically by

x = f(t), y = g(t) for t1 ≤ t ≤ t2

where f(t1) = a and f(t2) = b, and if f ′(t) and g(t) are both continuous on
the interval [t1, t2], then the definite integral of y(x) on the interval [a, b]—the
area under the curve y(x) over [a, b]—is

∫ b

a

y(x) dx =

∫ t2

t1

g(t)f ′(t) dt.
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98 Elementary Differential Equations

Arc Length

If a curve is defined parametrically on the interval [a, b] by x = f(t), y = g(t)
for t1 ≤ t ≤ t2 where f(t1) = a and f(t2) = b and if f ′(t) and g′(t) are
continuous on the interval [t1, t2], then the arc length of the curve over [a, b]
is

s =

∫ t2

t1

√
(dx/dt)2 + (dy/dt)2 dt =

∫ t2

t1

√
[f ′(t)]2 + [g′(t)]2 dt.

Example 2 Numerical Calculation of Arc Length, Surface Area,

and Volume

a. Find the arc length of the semi-circle y(x) =
√
9− x2 over the interval

[1, 2].

b. Find the area of the surface generated by revolving the given arc of the
semi-circle over the interval [1, 2] about the y-axis.

c. Find the volume of the solid generated by revolving the region bounded by
the given arc of the semi-circle, the horizontal line y =

√
5, and the vertical

line x = 1 about the y-axis.

Solution

a. Differentiating the equation for the semi-circle, we find

y′(x) =
−x√
9− x2

.

So the arc length is

s =

∫ 2

1

√
1 + (y′)2 dx =

∫ 2

1

√

1 +
x2

9− x2
dx

=

∫ 2

1

√
9− x2 + x2

9− x2
dx =

∫ 2

1

3dx√
9− x2

.

We numerically calculated an approximate value for this arc length using
SOLVEIVP by setting f(x, y) = 3/

√
9− x2, by inputting [1, 2] for the interval

of integration, and by inputting the initial condition y(1) = 0. The program
output showed ∫ 2

1

3dx√
9− x2

≈ 1.169672.

Thus, the desired arc length, s, is approximately equal to 1.169672.

b. The surface area of the solid generated by revolving the given arc of the
semi-circle about the y-axis is

Sy = 2π

∫ 2

1

x
√

1 + (y′)2 dx = 6π

∫ 2

1

xdx√
9− x2

.
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We calculated an approximate value for the integral
∫ 2
1
x dx/

√
9− x2 using

SOLVEIVP by setting f(x, y) = x/
√
9− x2, by inputting [1, 2] for the interval

of integration, and inputting the initial condition y(1) = 0. From the program
output, we found

∫ 2

1

xdx√
9− x2

≈ .5923588.

Hence, the surface area S ≈ 6π(.5923588) = 11.16570.

c. The volume of the solid generated by revolving the given region about the
y-axis is

Vy = 2π

∫ 2

1

x[y(x) −√
5] dx = 2π

∫ 2

1

x[
√
9− x2 −√

5] dx.

Setting f(x, y) = x[
√
9− x2 −√

5], inputting [1, 2] as the interval of integra-
tion, and inputting the initial condition y(1) = 0, SOLVEIVP numerically
computed

∫ 2

1

x[
√

9− x2 −√
5]dx ≈ 0.4615936.

So, the desired volume is Vy ≈ 2π(.4615936) = 2.900278. �

Graphs of polar equations of the form r = a ± b cos θ and r = a ± b sin θ
are called limaçons. If |a| < |b|, the limaçon is a closed curve with two loops.
(See Figure 3.1.) If |a| = |b|, the limaçon is a single heart-shaped loop and
is, therefore, called a cardioid. (See Figure 3.2.) If |a| > |b|, the limaçon is a
single, flattened, convex loop. (See Figure 3.3.)

o
300

o60

y

x

–2

–1

0

1

2

 

–2 –1 1 

y

x

–3

–2

–1
0

1

2

3

1 2 3 4-3

Figure 3.1 Limaçon r = 1− 2 cos θ. Figure 3.2 Cardioid r = 2+ 2 cos θ.

Graphs of polar equations of the form r = a cosnθ and r = a sinnθ (n ≥ 2)
are called rose curves. If n is odd, the rose curve has n loops (petals); whereas,
if n is even the rose curve has 2n loops (petals). (See Figures 3.4 and 3.5.)
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100 Elementary Differential Equations

Graphs of r = a cos θ and r = a sin θ are circles. And lemniscates are graphs of
polar equations of the form r2 = a2 cos 2θ and r2 = a2 sin 2θ. (See Figure 3.6.)
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Figure 3.3 Limaçon r = 3−2 sin θ. Figure 3.4 Rose Curve r = 4 cos 3θ.
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Figure 3.5 Rose Curve r = 3 sin 2θ. Figure 3.6 Lemniscate r2 = 9 sin 2θ.

EXERCISES 3.1

In the following exercises approximate π by 3.141593 when nec-
essary.

In Exercises 1–6 use SOLVEIVP or your computer software to
evaluate numerically the given definite integrals.

1.
∫ 0
−1

√
x3 + 1 dx 2.

∫ 1
−1

√
1 + e−2x dx

3.
∫ 3
1 e

−x2

dx 4.
∫ 2
0 x

x dx

5.
∫ 3
−1

ex

x
dx 6.

∫ π
0

√
1 + cosx dx
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In Exercises 7–12 use SOLVEIVP or your computer software to
calculate the area under the given curve y = f(x) over the given
interval [a,b].

7. f(x) = 1/ lnx on [2, 3] 8. f(x) = ex lnx on [.5, 2]

9. f(x) = x tanx on [0, π/4] 10. f(x) = ln(tanx) on [0, π/3]

11. f(x) = 1/
√
1− x3 on [−1, 0] 12. f(x) =

√
1 + sinx on [0, π]

In Exercises 13–16 numerically calculate the area of the region
bounded by the given sets of curves.

13. y =
√
2 + x2, y = x2, x = 0

14. y =
√
1 + x, y = (x+ 1)2

15. y = 1.5x
1.5

, y = x2.3, x = 0, x = 1

16. x = sin y2, x = y/(y3 + 1), y = 0, y = 1.2

In Exercises 17–22 numerically compute the arc length of the
given curve y = f(x) over the given interval [a,b].

17. f(x) = x3 on [0, 1] 18. f(x) = 1/x on [.5, 1.5]

19. f(x) = 3x2 +
1

6x2
on [1, 2] 20. f(x) = ln (1 + ex) on [0, 1.5]

21. f(x) =
sinx

x
on [.5, 2] 22. f(x) = x tanx on [0, π/4]

In Exercises 23–26 calculate numerically the area of the surface
generated by revolving the given curve y = f(x) over the given
interval [a,b] about (a) the x-axis and (b) the y-axis.

23. f(x) = 2x2 on [0, 1] 24. f(x) =
√
x on [1, 2]

25. f(x) = sinx on [0, π] 26. f(x) =
sinx

x
on [1, 2]

27. Find the surface area and volume of the ellipsoid obtained by revolving
the ellipse x2/16 + y2/25 = 1 (a) about the x-axis and (b) about the
y-axis.

28. Find the surface area and volume of the hyperboloid obtained by revolv-
ing the portion of the hyperbola y2/25 − x2/16 = 1 between x = −4
and x = 4 (a) about the x-axis and (b) about the y-axis.
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102 Elementary Differential Equations

29. Find the surface area and volume of the torus obtained by revolving
the circle (x − 1)2 + (y − 2)2 = 1 (a) about the x-axis and (b) about
the y-axis.

In Exercises 30–34 numerically calculate the volume of the solid
obtained by revolving the region bounded by the given set of curves
(a) about the x-axis and (b) about the y-axis.

30. y = sinx2, y = 0, x = 0, x = π/4

31. y = cosx, y = tanx, x = 0

32. y = lnx, y = 0, x = 1, x = 2

33. y = 3x, y = 3x3, x = 0

34. x2/3 + y2/3 = 1

35. The spiral of Archimedes is given by the equation r = aθ where a is a
constant. For a = 3 find the area inside the spiral of Archimedes from
θ = 0 to θ = 2π. For a = 4 find the arc length of the spiral of Archimedes
from θ = 0 to θ = π.

36. Find the area inside the logarithmic spiral r = 2e3θ from θ = 0 to θ = π.
Find the arc length of this spiral.

37. Find the area and arc length of the cardioid r = 2 + 2 cos θ.
(See Figure 3.2.)

38. Find the area and arc length of the limaçon r = 3− 2 sin θ.
(See Figure 3.3.)

39. Find the area and arc length of the rose curve r = 4 cos 3θ.
(See Figure 3.4.)

40. Find the area and arc length of the lemniscate r2 = 9 sin 2θ.
(See Figure 3.6.)

41. Find the area between the two loops of the limaçon r = 1 − 2 cos θ.
Find the arc length of each loop of the limaçon. (See Figure 3.1.)

42. Find the area inside both lemniscates r2 = cos 2θ and r2 = sin 2θ.

43. Find the area between the two limaçons r = 5+3 cosθ and r = 2−sin θ.

44. About 1638, René Descartes (1596-1650) sent the equation x3+y3 = 3xy
to Pierre Fermat (1601-1665) and challenged him to determine the tan-
gent line to the curve at any point. (Can you determine the tan-
gent line at any point?) The graph of the equation x3 + y3 = 3xy
is called the folium of Descartes. A sketch of the graph is shown in
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Figure 3.7. The equation may be rewritten in polar coordinates as
r = 3 sin θ cos θ/(cos3 θ + sin3 θ). Find the area and arc length of the
loop (“leaf”) in the folium of Descartes.

x  + y   = 3xy

y =    x–1
Asymptote
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Figure 3.7 Graph of the Folium of Descartes.

45. Find the area and arc length of the ellipse x = 4 cos t, y = 5 sin t.

46. The curve traced out by a point P on the circumference of a circle of
radius R as the circle rolls along the x-axis is called a cycloid. If when
t = 0, the point P is at the origin, then the equation of the cycloid is

x = R(t− sin t), y = R(1− cos t).

a. Find the area under one arch of the cycloid with R = 2.

b. Find the arc length of one arch of the cycloid with R = 3.

47. The curve traced out by a point P on the circumference of a circle of
radius r which rolls around on the inside of a larger circle of radius R
is called a hypocycloid. If the larger circle has equation x2 + y2 = R2

and if when t = 0 the point P is at (R, 0), then the equation of the
hypocycloid is

x = (R− r) cos t+ r cos
(R − r)t

r
, y = (R− r) sin t− r sin

(R − r)t

r
.

Find the area and arc length of the hypocycloid with R = 3 and r = 1.

48. The curve traced out by a point P on the circumference of a circle of
radius r which rolls around the outside of a circle of radius R is called
an epicycloid. If the larger circle has equation x2+ y2 = R2 and if when
t = 0 the point P is at (R, 0), then the equation of the epicycloid is

x = (R+ r) cos t− r cos
(R + r)t

r
, y = (R+ r) sin t− r sin

(R + r)t

r
.

Find the area and arc length of the epicycloid with R = 3 and r = 1.
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49. The involute of a circle is the curve traced out by a point P at the end
of a string which is being unwound tautly from about a circle. If the
equation of the circle is x2 + y2 = R2 and if when t = 0 the point P is
at (R, 0), then the equation of the involute of the circle is

x = R(cos t+ t sin t), y = R(sin t− t cos t).

Find the arc length of the involute of a circle with R = 2 for t = 0 to
t = 2π.

50. Find the arc length of the epitrochoid

x = 3 cos 2θ + 4 cos θ, y = 3 sin 2θ + 4 sin θ.

3.2 Learning Theory Models

Psychologists have studied the process of learning extensively. We will
now derive a few simple models of the memorization process. Let A be the
total amount of material to be memorized. Psychologists refer to the amount
of material memorized at time t as the attainment. Let y(t) denote the
attainment. In the simplest model of memorization, it is assumed that the
rate of change of attainment is proportional to the amount of material that
remains to be memorized. Thus, in mathematical symbolism

y′(t) = k(A− y(t))

where k > 0 is the constant of proportionality which indicates the natural
learning ability of the particular subject (person or perhaps animal). We
assume when the memorization process begins at t = 0, the subject has not
memorized any material. So, y(0) = 0. Hence, for the simplest memorization
model, we need to solve the initial value problem

(1) y′ = k(A− y); y(0) = 0.

Example 1 A Simple Learning Theory Model

Solve the initial value problem (1) numerically and graph the “learning
curve” (the solution to the IVP (1)) for a subject whose natural learning
ability is k = .06 items/minute, if the number of things to be memorized is
A = 50.

Solution

We ran SOLVEIVP by setting f(x, y) = .06(50 − y) and setting the left
endpoint of the interval of integration a = 0. We needed a reasonable value
for the right endpoint of the interval of integration b. Since 0 ≤ y(t) ≤ 50 and
y′(t) = .06(50−y(t)) = 3− .06y(t), y′(t) satisfies the inequality 0 ≤ y′(t) ≤ 3.
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Dividing the total number of items to be memorized, A, by the conservative
estimate of the rate of learning, y′ = 1, we decided to set b = A/1 = 50.
At the start of the experiment, the subject has learned nothing, so the initial
condition we used was y(0) = 0. A graph of the solution is shown in Figure 3.8.
Observe that y(t) increases rapidly for t near zero and limt→∞ y(t) = 50 = A.
Thus, the largest amount of material is memorized at the beginning of the
learning experience and in a relatively short period of time. As t increases and
maximum attainment, A, is approached, the rate of attainment, y′, becomes
small. This phenomenon is called the “law of diminishing returns.” Displaying
our solution values on the monitor, we saw that 25 items were memorized in
the first 11.6 minutes and a total of 37 items were memorized in 22.5 minutes.
So it took almost as long to memorize items 26 through 37 (12 items) as it
did to memorize the first 25 items. Thus, later in the learning experience it
takes a longer period of time to learn the same number of items.

0

10

20

30

40

50

y(x)

0 10 20 30 40 50
x

Figure 3.8 Graph of the “Learning Curve”: y′ = 3− .06y; y(0) = 0.

EXERCISES 3.2

1. Find the general solution of the differential equation y′ = k(A − y) by
any method.

2. Company XYZ tested two employees W1 and W2 to see who was better
suited to perform a particular job based upon the IVP (1). For i = 1, 2
the explicit solution of the differential equation in the IVP (1) is y′i(t) =
Ai + Cie

−kit. The employee who achieves the larger Ai value is better
suited to perform the job. At the end of the first hour worker W1 had
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performed 25 tasks and at the end of the second hourW1 had performed
45 tasks. At the end of the first hour workerW2 had performed 35 tasks
and at the end of the second hour W2 had performed 50 tasks. Which
worker, W1 or W2, is better suited to perform the job?

3. When the learning process is lengthy, k is not a constant but a func-
tion which decreases with time because the subject becomes fatigued or
distracted. Suppose k(t) = k0/(1+ .05t) where k0 is a constant. Numer-
ically solve and graph the learning curve for the initial value problem

(2) y′ =
k0(A− y)

1 + .05t
; y(0) = 0

with k0 = .06 items/minute and A = 50 items on the interval [0, 50].
When has the subject memorized 25 items? 37 items? Compare these
results with the corresponding answers for Example 1.

4. When a subject learns, he also forgets. In order to include the process
of forgetting in our model of the memorization process, we assume the
rate at which a subject forgets is proportional to the amount already
learned. Thus, we wish to solve the following initial value problem

(3) y′ = k(t)(A− y)−By; y(0) = 0

where B is a positive constant. The term −By represents the process
of forgetting and since B > 0 it produces a decrease in attainment. Nu-
merically solve and graph the learning curve of the initial value problem

y′ =
.06(50− y)

1 + .05t
− .02y; y(0) = 0

on the interval [0, 50]. When does y(t) = 25? When does y(t) = 37?
Compare your results with the results for Example 1 and Exercise 3.
What is the maximum value of y(t)?

3.3 Population Models

A central figure in the history of population growth modelling is Thomas
Robert Malthus (1766-1834). Malthus was the second of eight children of an
English country gentleman. He graduated from Cambridge University and
in 1788 was ordained as a minister in the Church of England. In the first
edition of his essay on population, which was published in 1798, Malthus
noted that the population of Europe doubled at regular intervals. Further
research indicated that the rate of increase of the population was proportional
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to the present population. So, Malthus formulated what we presently call the
Malthusian population model:

(1)
dP

dt
= kP where k > 0.

In this model, P (t) represents the population at time t and the positive con-
stant of proportionality k represents the “growth rate” per individual. If at
some time t0 we determine that the population has size P0, then the solu-
tion at any time t of the differential equation (1) which satisfies the initial
condition P (t0) = P0, is

(2) P (t) = P0e
k(t−t0).

Verify that (2) satisfies the initial value problem

(3)
dP

dt
= kP ; P (t0) = P0

for any constant k. Observe that k need not be positive. If we let b represent
the “birth rate” per individual and d represent the “death rate” per individual,
then the constant k = b − d represents the “growth rate” per individual of
the population. A graph of the solution (2) of the initial value problem (3)
for k > 0, k = 0, and k < 0 is shown in Figure 3.9. Observe for k > 0
the population grows exponentially and is unbounded—that is, as t → ∞,
P (t) → ∞. For k = 0 the population maintains the constant value P0. And
for k < 0 the population decreases exponentially to zero.

 

 

P(t)

P0

t0 t

k < 0

k = 0

k > 0

Figure 3.9 P (t) = P0e
k(t−t0) for k > 0, k = 0, and k < 0.
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For k > 0 the Malthusian population model indicates there is no limit
to the size of the population. This is totally unrealistic. Nonetheless, for
short intervals of time, exponential growth of a population is possible when
the population has enough room in which to expand and an abundance of
food and other natural resources to support its expansion. For example, the
population of the United States from 1800 through 1860 can be modelled
approximately by the function

(4) P (t) = P0e
.03(t−1800)

where P0 = 5.31 million is the population of the United States in 1800. Of
course, the function (4) is the solution of the Malthusian population model

dP

dt
= .03P ; P (1800) = 5.31 million.

A comparison of the predicted population and the actual population of the
United States from 1800 through 1900 is given in Table 3.1. As we can see
from this table, the function (4) does not model the population growth of the
United States from 1870 to 1900 very well. This is due to the fact that the
Malthusian population model ignores important factors such as the change
in the birth or death rate with time, wars, disease, immigration, emigration,
and changes in the age structure of the population. (What happened in the
United States between 1860 and 1870 which might account for the cessation
of exponential growth?)

Table 3.1 United States Population (in millions), 1800-1900

Year 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900

Actual 5.31 7.24 9.64 12.87 17.07 23.19 31.44 38.56 50.16 62.95 76.00

Predicted 5.31 7.17 9.68 13.06 17.63 23.80 32.12 43.36 58.53 79.01 106.65

Error (%) 0.00 −.97 .41 1.48 3.28 2.63 2.16 12.44 16.69 25.51 40.33

For k < 0 the Malthusian population model predicts that the population
will decrease exponentially to zero. In 1946, the pesticide DDT began to be
used extensively throughout the United States. The following year a decrease
in the population of peregrine falcons was noted. By 1970, due to the use of
DDT and other similar pesticides, the peregrine falcon was nearly extinct in
the continental United States. This particular tragedy illustrates that it is
currently possible for humans to alter the death rate of a species so that it
becomes greater than the birth rate thereby producing a dramatic population
decrease. Similar events may occur in the future if the delicate balance of
environmental factors are not properly considered before various courses of
action are pursued.
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In his text of 1835, Lambert Quetelet (1796-1874) criticized Malthus and
others who studied population growth for not establishing their results within
a more mathematical framework. Quetelet advanced the theory that popu-
lations tend to grow geometrically but the resistance to growth increases in
proportion to the square of the velocity with which the population tends to
increase. He drew an analogy between population growth and the motion of
a body through a resisting medium; however, he presented no mathematical
treatment of the problem. Pierre-François Verhulst (1804-1849) studied under
Quetelet in Ghent. In memoirs published in 1838, 1845, and 1847, Verhulst
developed his “logistic growth” model for populations. He was frustrated in
his attempts to verify the model, because no accurate census information was
available at that time. Verhulst’s population model lay dormant for approxi-
mately eighty years. It was independently rediscovered in the early 1920s by
two American scientists, Raymond Pearl (1879-1940) and Lowell Reed (1886-
1966). The logistic law model or Verhulst-Pearl model for population
growth is

dP

dt
= kP − εP 2

where k and ε are positive constants and ε is small relative to k. When
the population P is small, the term εP 2 is very small compared to kP and
so the population will grow at nearly an exponential rate. However, as the
population becomes large, the term εP 2 will approach the term kP in size
and the rate of population growth will approach zero. Using the techniques
of separation of variables and partial fraction decomposition, it can be shown
that the explicit solution of the initial value problem

(5)
dP

dt
= kP − εP 2; P (t0) = P0

is

(6) P (t) =
kP0

εP0 + (k − εP0)e−k(t−t0)

where P0 is the size of the population at time t0. Notice that as t → ∞,
P (t) → k/ε. So, regardless of the initial population size, the population
ultimately approaches the limiting value of k/ε. Consequently, the constants
k and ε are called the vital coefficients of a population and the constant
K = k/ε is called the carrying capacity of the population. The graph of
equation (6) has an elongated S-shape and is called the logistic curve. See
Figure 3.10.

Experts have estimated that the earth’s human population has a vital coef-
ficient k = .029. Given that the population of the world in 1960 was 3 billion
people and the growth rate, (dP/dt)/P , was 1.8% per year, we can deter-
mine the vital coefficient ε in the following manner. Dividing the differential
equation of (5) by P , we find that the growth rate expressed as a percentage
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satisfies
dP/dt

P
= k − εP.

Substituting the estimated value for k and the known 1960 values given above
for P and (dP/dt)/P , we find that the vital coefficient ε must satisfy

.018 = .029− ε(3× 109).

Solving this equation for ε yields ε = 3.667× 10−12. Using these vital coeffi-
cients, the logistic law model predicts a limiting value for the human popula-
tion of the earth of

K = k/ε = .029/(3.667× 10−12) = 7.91× 109 people.

In 2000, the size of the population reached 6.08 × 109. The graph displayed
in Figure 3.10 is the logistic curve for the earth’s human population ob-
tained from equation (6) by setting P0 = 3 billion, t0 = 1960, k = .029, and
ε = 3.667× 10−12.
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Figure 3.10 Graph of the “Logistic Curve”

for the Earth’s Human Population.

EXERCISES 3.3

1. Assume the human population of the earth obeys the Malthusian pop-
ulation model. In 1650 A.D. the earth’s human population numbered
2.5× 108. By 1950 A.D. the population had grown to 2.5× 109. Write a
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general equation for the population of the earth. (Hint: Use the infor-
mation given to determine the constants P0, k, and t0 in equation (2).
No computer is needed.) Suppose further that the earth can support at
most 2.5× 1010 people. When will this limit be reached?

2. If a population is being harvested by a predator or dying due to a
disease at a constant rate H > 0, then a possible model for the popula-
tion based on a modification of the Malthusian model is

dP

dt
= kP −H ; P (0) = P0.

Suppose for a specific population k = .1 and the initial population size
is 500. Use SOLVEIVP or your computer software to compute and
graph the population on the interval [0, 10] for the following values of
the harvesting constant:

a. H = 40 b. H = 50 c. H = 60

What do you think will happen to P (t) as t increases in each case?

3. The logistic law model with k = .03134 and ε = 1.589 × 10−10 pro-
vides a model for the population of the United States. Based on this
model, what is the limiting population of the United States? Assume
that in 1800 the population of the United States was 5.31 million
(5.31 × 106). Use SOLVEIVP or your computer software to compute
the population of the United States on the interval [1800, 1900]. Com-
pare your results with the actual results given in Table 3.1. Graph the
solution. (Hint: In the initial value problem (5) let t0 = 0 correspond to
the year 1800. So that t = 10 corresponds to 1810, t = 20 corresponds
to 1820, and so forth. Thus, the interval of integration becomes [0, 100]
instead of [1800, 1900]. Also let the population be expressed in millions.
That is, let P (t) = p(t) × 106. Substituting for P in the differential
equation of (5), we find d(p× 106)/dt = k(p× 106)− ε(p× 106)2. Divid-
ing by 106, we see that the population expressed in millions satisfies the
differential equation dp/dt = kp − εp2(106) and the initial condition is
p(0) = 5.31. Thus, in this example, you have translated the independent
variable, t, and scaled the dependent variable, P .)

4. If a population which is known to grow according to the logistic law
model begins to be harvested at a constant rate, H , at time t0, then for
t > t0 the population satisfies the following initial value problem

dP

dt
= kP − εP 2 −H ; P (t0) = P0

where k, ε and H are known positive constants and P0 is the population
size at time t0. Suppose when the population reaches the size P0 = 200
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a catfish farmer decides to harvest fish from his pond at a constant rate
H . And suppose for his species of catfish the vital coefficients of the
population are k = .2 and ε = .0004. Numerically compute and graph
the population of the catfish on the interval [0, 25] for

a. H = 10 b. H = 25 c. H = 50.

What do you think will happen to the catfish population as time in-
creases in each case? That is, what is limt→∞ P (t) in each case?

5. Suppose the catfish farmer in Exercise 4 waits to start harvesting fish
until the population size reaches 1000 instead of 200. Compute and
graph the catfish population on the interval [0, 25] for

a. H = 10 b. H = 25 c. H = 50.

What do you think will happen to the catfish population in each case
now?

Several other population growth models have been proposed by
various researchers. In the exercises which follow we present some
of these models.

6. The following population growth model, which is sometimes used in
actuarial predictions, was proposed by Gompertz:

dP

dt
= P (a− b lnP ); P (0) = P0.

Numerically compute and graph the solution to this initial value prob-
lem on the interval [0, 25] for P0 = 75, a = .15, and (i) b = .03 and
(ii) b = −.03. What is limt→∞ P (t) in each case?

7. The following two initial value problems are variations of the logistic
law model. Compute and graph numerical solutions to these problems
on the interval [0, 25]. However, before computing a solution see if you
can guess whether the population will increase or decrease in each case.

a.
dP

dt
= .2P lnP − .02P 2; P (0) = 1

b.
dP

dt
=
.2P

lnP
− .02P 2; P (0) = 2

8. In 1963, F. E. Smith proposed the following model to explain the pop-
ulation growth of a species of water fleas under laboratory conditions.

dP

dt
=
.2P − .02P 2

1 + .01P
; P (0) = 1.
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Use SOLVEIVP or your computer software to compute and graph the
solution of this initial value problem on the interval [0, 25]. How does
the solution behave as time increases? Does limt→∞ P (t) exist? If so,
what is it?

9. Another proposed modification of the logistic law model is

dP

dt
= P (a− bP )(1− c

P
); P (0) = P0

where a, b, c > 0. Compute and graph a numerical solution to this initial
value problem on the interval [0, 25] for a = .3, b = .005, c = .02, and
P0 = 100.

10. Compute and graph numerical solutions of the following two initial value
problems on the interval [0, 25]. Before computing the solutions see if
you can guess the behavior of the solution curves. Do they increase?
Do they decrease? Do they increase and then decrease? Or, do they
decrease and then increase? Does limt→∞ P (t) exist? If so, what is it?

a.
dP

dt
= .15P ln(

100

P
); P (0) = 25

b.
dP

dt
= −.15P (1− 100

P
); P (0) = 25

3.4 Simple Epidemic Models

One of the greatest causes of human suffering and misery is the outbreak of
various types of epidemics. Over the ages, numerous deaths have been caused
by epidemics and frequently a large proportion of a community has perished.
Today well-developed countries are relatively free from the threat of death
producing epidemics; however, epidemics of influenza still occur occasionally.
Less well-developed countries in Africa and the Far East are still susceptible
to lethal epidemics.

One of the earliest recorded accounts of an epidemic occurred in Athens
from 430 B.C. to 428 B.C. The “Golden Age” of Athens coincided closely
with the reign of Pericles, who rose to power in 469 B.C. The Peloponnesian
War began in 431 B.C. and lasted nearly one quarter of a century. The
war was essentially a conflict between the Greek city-states of Athens and
Sparta. Athens had a strong navy and a weak army, while Sparta had a strong
army and a weak navy. Pericles decided to bring the people from the areas
surrounding Athens into the fortified city to protect his state from attack by
land. Simultaneously, he had his navy attack the coastal areas of the Spartan
state. This strategy worked well during the first year and it appeared Athens
would soon win the war. However, overcrowding and unsanitary conditions
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produced an outbreak of a highly contagious disease. Victims of the disease
usually died within six to eight days after being infected and all told between
30% and 60% of the population of Athens perished due to the disease. When
the epidemic of 430 B.C. ended, Pericles sent his navy to capture the Spartan
stronghold of Potidaea. The dreaded disease struck the crews while they
were still at sea and forced them to return to Athens prior to accomplishing
their mission. The epidemic swept through Athens again in 429 B.C. and in
428 B.C. when Pericles died from it. The war, itself, continued for several
more years and finally the Spartans, aided by the epidemics, were able to
defeat the Athenians.

In the fourteenth century an epidemic of the bubonic plague killed ap-
proximately one-fourth of the population of Europe, which was estimated to
number 100 million. In 1520 a smallpox epidemic caused the death of half
of the Aztec population of 3.5 million. An epidemic of measles on the island
of Fiji in 1875 resulted in the death of 40,000 people out of a population of
150,000. From 1918 to 1921 there was a typhus epidemic in the Soviet Union
which killed approximately 2.5 million people. In 1919 in a worldwide in-
fluenza epidemic, an estimated 20 million people perished from the disease or
the complication of pneumonia.

In the seventeenth century John Graunt (1620-1674) and Sir William Petty
(1623-1687) collected information on the incidence and location of epidemics.
On April 30, 1760, Daniel Bernoulli presented a paper to the Academie Royale
des Sciences in which a mathematical model was used for the first time to
study the population dynamics of infectious disease. Bernoulli was investigat-
ing mortality due to smallpox and trying to assess the risks and advantages of
preventive inoculation. In his mathematical model, Bernoulli formulated and
solved a relevant differential equation. He evaluated the results in terms of
the value of preventive inoculation. The modern mathematical theory of epi-
demics originated in the works of William Hamer and Sir Ronald Ross which
appeared early in the twentieth century.

In the simplest epidemic model, we assume the population size has the
constant value of N . Thus, we assume there are no births and no immigration
to increase the population size and we assume there are no deaths and no
emigration to decrease the population size. Since the time span of an epidemic
is short (usually a few weeks or months) in comparison to the life span of
a person, the assumption of a constant population size is fairly reasonable.
Next, we assume the population is divided into two mutually exclusive sets:
The infectives is the set of people who are infected with and capable of
transmitting the disease. The susceptibles is the set of people who do not
have the disease but may become infected later. We denote the number of
infectives at time t by I(t) and the number of susceptibles at time t by S(t).
Under the assumptions we have made

(1) I(t) + S(t) = N for all t.

An assumption which was first made by William Hamer in 1906, and which
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has been included in every deterministic epidemic model ever since, is that
the rate of change of the number of susceptibles is proportional to the product
of the number of susceptibles and the number of infectives, which represents
the rate of contact between susceptibles and infectives. Thus, it is assumed
that

(2)
dS

dt
= S′(t) = −βS(t)I(t) for all t

where β > 0 is called the infection rate. Solving equation (1) for I(t) and
substituting into equation (2), we obtain the following differential equation
for the number of susceptibles

(3) S′(t) = −βS(t)(N − S(t)).

Differentiating (1), we see that

I ′(t) + S′(t) = 0.

So the number of infectives satisfies the differential equation

(4) I ′(t) = −S′(t) = βS(t)I(t) = β(N − I(t))I(t)

since S(t) = N − I(t) from (1). The differential equations (3) and (4) can
both be solved explicitly by the technique of separation of variables, or one
of these differential equations can be solved and the remaining function (I(t)
or S(t)) can be determined from equation (1). Observe that equation (4),
I ′ = βNI −βI2, has the same form as the logistic law model, P ′ = kP − εP 2,
which we studied in the previous section.

Example 1 Solution of a Simple Epidemic Model with Only One

Initial Infective

Solve numerically and graph the solution of the differential equation

(4) I ′(t) = β(N − I(t))I(t)

for the number of infectives, I(t), on the interval [0, 10] if β = .002, N = 1000,
and I(0) = 1. What is limt→∞ I(t)? What is limt→∞ S(t)?

Solution

We associated I(t) with y(x) and ran SOLVEIVP by setting f(x, y) =
.002(1000 − y)y, by inputting the interval of integration as [0, 10], and by
inputting the initial condition y(0) = 1. A graph of the solution is shown in
Figure 3.11. Notice that as t approaches 6, I(t) approaches 1000. And since
I(t) + S(t) = N = 1000, as t approaches 6, S(t) approaches 0.
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Figure 3.11 Numerical Approximation to the IVP:

y′ = .002(1000− y)y; y(0) = 1. �

Example 1 illustrates a common characteristic of all epidemic models based
solely on equations (1) and (2)—or equivalently on equation (3) or (4)—
namely, regardless of how few infectives there are initially, all members of the
population acquire the disease before the epidemic ends. This is a shortcoming
of this particular model. By definition an epidemic ends when there are no
new infectives over a certain period of time. When a real-life epidemic ends
there are still many susceptibles in the population. Therefore, the model we
have just studied must be modified in order to improve the results so they
more closely reflect the results observed in real life. We will study such models
in Section 10.6.

EXERCISES 3.4

1. When an epidemic is discovered, steps are normally taken to prevent
its spread. Suppose health officials begin inoculations at a rate of i′(t)
per unit of time and this procedure is continued until the epidemic ends.
As before, we let I(t) denote the number of infectives at time t and S(t)
denote the number of susceptibles at time t. We denote the number
of people who have been inoculated at time t by i(t). Under these
assumptions,

(5) I(t) + S(t) + i(t) = N for all t.
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In this case, it is assumed that

(6)
dS

dt
= S′(t) = −βS(t)I(t)− i′(t) for all t

where β > 0 is the infection rate. The first term on the right-hand
side of equation (6) represents the rate of decrease in susceptibles due
to contact between susceptibles and infectives while the second term
represents the rate of decrease in susceptibles due to the inoculation
of susceptibles. Differentiating equation (5) and solving the resulting
equation for I ′(t), we find

(7) I ′(t) = −S′(t)− i′(t).

Substituting for S′(t) from equation (6), we obtain

(8) I ′(t) = βS(t)I(t).

Solving equation (5) for S(t) and substituting the result into equa-
tion (8), yields the following differential equation for the number of
infectives

(9) I ′(t) = β(N − i(t)− I(t))I(t).

Recall that an epidemic ends at time t∗ when I(t∗) = 0. In this case,
when the epidemic ends the entire population is divided into two mu-
tually exclusive sets—the infected and the inoculated. Use SOLVEIVP
or your computer software to compute and graph the solution of the
differential equation (9) on the interval [0, 10], if I(0) = 1, β = .002,
N = 500, the inoculation function i(t) = αt (this function indicates
that health personnel are able to inoculate α units of people per unit of
time), and (a) α = 30 and (b) α = 50. In each case, what is the duration
of the epidemic, t∗, and what is the maximum number of infectives at
that time, I(t∗)?

2. Suppose that the inoculation procedure (see Exercise 1) accelerates
over time so that i(t) = t + 30. Then the differential equation for the
number of infectives becomes

(10) I ′(t) = β[N − (t+ 30)t− I(t)]I(t).

Compute and graph numerical solutions of the differential equation (10)
on the interval [0, 10], if I(0) = 1, β = .002, and N = 500. What is the
duration of the epidemic, t∗, and the maximum number of infectives at
that time, I(t∗)?
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3.5 Falling Bodies

On April 28, 1686, Isaac Newton presented and dedicated to the Royal Soci-
ety the first volume of a three volume work which he chose to title Philosophiea
Naturalis Principia Mathematica (Mathematical Principles of Natural Philos-
ophy). This work is almost always referred to simply as the Principia. The
first volume deals mainly with various problems of motion under the idealized
conditions of no friction and no resistance. In Book I of the Principia, Newton
formulated his three laws of motion and in Book III he expanded upon them.

NEWTON’S LAWS OF MOTION

Newton’s three laws of motion are as follows:

First Law of Motion: “A body at rest tends to remain at rest,
while a body in motion tends to remain in motion in a straight line with
constant velocity unless acted upon by an external force.”

Second Law of Motion: “The rate of change of momentum of a body
is proportional to the force acting on the body and is in the direction of
the force.”

Third Law of Motion: “To every action there is an equal and op-
posite reaction.”

If we let m denote the mass of a body and v denote its velocity, then the
momentum of the body is mv. Hence, Newton’s second law of motion may
be expressed mathematically as

(1)
d(mv)

dt
= kF

where k is a constant of proportionality and F is the magnitude of the force
acting on the body. If we make the assumption that the mass of the body is
a constant and that the units of mass, velocity, and force are chosen so that
k = 1, then Newton’s second law becomes

(2) m
dv

dt
= F.

Consider an origin located somewhere above the earth’s surface. Let the
positive axis of a one-dimensional coordinate system extend from the origin
through the gravitational center of the earth. Suppose that at time t = 0 a
body with mass m is initially located at y0 and is traveling with a velocity v0.
See Figure 3.12. Assuming that the body is falling freely in a vacuum and that
it is close enough to the earth’s surface so that the only significant force acting
on the body is the earth’s gravitational attraction, then F = mg, where g is
the gravitational attraction—approximately 32 ft/sec2 in the English system
of measurement and 9.8 m/sec2 in the metric system. Substituting F = mg

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Applications of the Initial Value Problem y′ = f(x, y); y(c) = d 119

in equation (2) and then dividing by m �= 0, we find the velocity of the body
satisfies the initial value problem dv/dt = g; v(0) = v0. Integrating and
satisfying the initial condition, we easily find the solution of this initial value
problem to be v(t) = gt+v0. Notice that the velocity increases with time and
as t→ ∞, v(t) → ∞.

 

0

m

y

Gravitational center
of the earth

At  t = 0
y = y
v = v

0

0

Figure 3.12 A Falling Body.

If we assume that the body is falling freely in air instead of in a vacuum,
then we must make some assumption regarding the retarding force due to
air resistance. Let us assume that the retarding force is proportional to the
velocity of the body. Then the initial value problem for the velocity becomes
dv/dt = g − cv; v(0) = v0, where c > 0 is the constant of proportionality.
Separating variables results in

dv

g − cv
= dt.

Integrating, we find
− ln |g − cv|

c
= t+A,

where A is an arbitrary constant. Multiplying by −c and exponentiating, we
get

|g − cv| = e−c(t+A) = e−cAe−ct = Be−ct

where B is an arbitrary positive constant. By letting B be an arbitrary
constant—positive, negative, or zero—we can remove the absolute value ap-
pearing in this equation. When t = 0, v = v0, so B = g − cv0 and therefore

g − cv = (g − cv0)e
−ct.

Solving for the velocity v, we find

v(t) =
g

c
(1 − e−ct) + v0e

−ct.
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Since c > 0, as t approaches ∞ the velocity v(t) approaches the value g/c, the
terminal velocity—the maximum velocity that the falling body can attain.

Example 1 Velocity of a Body Falling Freely in Air

Assume the equation for the velocity of a body falling freely in air is

dv

dt
= g − cv; v(0) = 20 ft/sec,

where g = 32 ft/sec2 and c = .25. Compute numerically and graph the
solution to this initial value problem on the interval [0, 10]. What is the value
of v(10)? How does this compare with the terminal velocity of v∞ = g/c =
128 ft/sec?

Solution

Associating v(t) with y(x), we ran SOLVEIVP by setting f(x, y) = 32−.25y,
specifying the interval of integration to be [0, 10], and specifying the initial
condition to be y(0) = 20. A graph of the velocity as a function of time over
the first 10 seconds is shown in Figure 3.13. From the table of values for the
numerical solution, we found that v(10) = 117.4931 ft/sec, which is within
8.21% of the terminal velocity.
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Figure 3.13 Numerical Approximation to the IVP:

y′ = 32− .25y; y(0) = 20. �
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EXERCISES 3.5

1. Write the equation for the velocity of a falling body, if the air resist-
ance is proportional to the square of the velocity. Numerically compute
and graph the velocity on the interval [0, 10], if g = 32 ft/sec2, if the
constant of proportionality is c = .25, and if the initial velocity is v(0) =
20 ft/sec. Estimate the terminal velocity in this case.

2. Write the differential equation for the velocity of a falling body, if the
air resistance is proportional to v1.6. Numerically compute and graph
the velocity on the interval [0, 10], if g = 32 ft/sec2, if the constant of
proportionality is c = .25, and if the initial velocity is v(0) = 20 ft/sec.
Estimate the terminal velocity.

3. Write the differential equation for the velocity of a falling body, if the
air resistance is proportional to

√
v. Compute and graph the velocity on

the interval [0, 10], if g = 32 ft/sec2, if the constant of proportionality is
c = .25, and if the initial velocity is v(0) = 20 ft/sec. Is there a terminal
velocity? If so, estimate its value.

4. A parachutist jumps from an airplane, falls freely for 10 seconds and
then opens his parachute. Assume the parachutist’s initial downward
velocity was v(0) = 0 ft/sec, assume the air resistance is proportional to
v1.8, and assume the constant of proportionality without the parachute
is .2 and with the parachute is 1.35. Compute the velocity of the
parachutist 20 seconds after jumping from the airplane. (Hint: You
need to solve two initial value problems. The solution of the first prob-
lem is the velocity of the parachutist for the first 10 seconds and the
solution of the second problem is the velocity of the parachutist for the
second 10 seconds. The final velocity of the first problem is the initial
velocity (initial condition) for the second problem.)

3.6 Mixture Problems

Suppose at time t = 0 a quantity q0 of a substance is present in a container.
Also assume at time t = 0 a fluid containing a concentration cin(t) of the
substance is allowed to enter the container at the rate rin(t) and that the
mixture in the container is kept at a uniform concentration throughout by a
mixing device. Furthermore, assume for t ≥ 0 the mixture in the container
with concentration cout(t) is allowed to escape at the rate rout(t). The problem
is to determine the amount, q(t), of substance in the container at any time.
See Figure 3.14.
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r  (t)

c  (t)

r    (t)

c    (t)
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���
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Figure 3.14 Diagram for a One Tank Mixture Problem.

Since the rate of change of the amount of substance in the container, dq/dt,
equals the rate at which the fluid enters the container times the concentration
of the substance in the entering fluid minus the rate at which the fluid leaves
the container times the concentration of the substance in the container, q(t)
must satisfy the initial value problem

(1)
dq

dt
= rin(t)cin(t)− rout(t)cout(t); q(0) = q0.

Example 1 One Tank Mixture Problem

A 200-gallon capacity tank initially contains a salt solution consisting of
20 lbs of salt dissolved in 165 gallons of water. A salt solution with concen-
tration of 2 lbs/gal enters the tank at the rate of 8 gal/min and the resulting
uniform mixture leaves the tank at a rate of 3 gal/min. Compute and graph
the amount of salt in the tank as a function of time and find the amount of
salt in the tank at the time the tank starts to overflow.

Solution

Let q(t) denote the number of pounds of salt in the tank at time t. Initially
the tank contains 20 lbs of salt, so q(0) = 20 lbs. The rate at which the
solution enters the tank is rin(t) = 8 gal/min and the concentration of the
entering solution is cin(t) = 2 lbs/gal. The rate at which the solution leaves
the tank is rout(t) = 3 gal/min. So the rate at which the tank is filling is
r(t) = rin(t) − rout(t) = 8 gal/min −3 gal/min = 5 gal/min. Let n(t) be the
number of gallons of solution in the tank at time t. Since the tank initially
contains 165 gallons and the rate of increase is 5 gal/min, n(t) = 165 + 5t.
Hence, the concentration of the salt solution in the tank and flowing out of
the tank at time t is cout(t) = q(t)/n(t) = q(t)/(165+5t). So the initial value
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problem which must be solved is

dq

dt
= rin(t)cin(t)− rout(t)cout(t)(2)

= (8 gal/min)(2 lbs/gal)− (3 gal/min)
q(t)

165 + 5t
(lbs/gal)

= 16− 3q(t)

165 + 5t
(lbs/min);

q(0) = 20 lbs.

The tank is full when n(t) = 165 + 5t = 200. Solving for t, we find
t = (200− 165)/5 = 7 minutes.

Associating q(t) with y(x), we used SOLVEIVP to solve the initial value
problem (2) on the interval [0, 7] by setting f(x, y) = 16 − 3y/(165 + 5x),
by inputting the interval of integration as [0, 7], and by inputting the initial
condition y(0) = 20. A graph of the amount of salt in the tank is shown
in Figure 3.15. From the table of values for the numerical solution, we find
q(7) = 123.7934 lbs.
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Figure 3.15 Numerical Approximation to the IVP:

y′ = 16− 3y/(165 + 5x); y(0) = 20. �
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Example 2 Two Tank Mixture Problem

A 150-gallon tank is initially filled with a 60% dye solution. A 10% dye
solution flows into the tank at a rate of 5 gal/min. The mixture flows out
of the tank at the same rate into a 75 gallon tank which was initially filled
with pure water. The mixture in the second tank flows out at the rate of
5 gal/min. Compute and graph the amount of dye in the second tank on the
interval [0, 125]. When is the amount of dye in the second tank a maximum?
What is the maximum amount of dye in the second tank?

Solution

Let q1(t) and q2(t) denote the number of gallons of dye in tanks 1 and 2 at
time t, respectively. A diagram for this example is displayed in Figure 3.16.
The initial number of gallons of dye in tank 1 at time t = 0 is q1(0) =
60% × 150 gal = 90 gal. Since the second tank is initially filled with pure
water, q2(0) = 0 gal.

For tank 1, we have r1 in(t) = r1 out(t) = 5 gal/min, c1 in(t) = 10% = .1,
and c1 out(t) = q1(t)/150. So the number of gallons of dye in tank 1 must
satisfy the differential equation

dq1
dt

= r1 in(t)c1 in(t)− r1 out(t)c1 out(t)

= (5 gal/min)(.1)− (5 gal/min)
( q1
150

)

= (.5 − q1
30

) (gal/min).

r        (t) = 5 gal/min
c        (t)
�����

�����

q  (t)

q  (t)

r       (t) = 5 gal/min
c       (t)
����

����

r       (t) = 5 gal/min

c      (t) = 10%
����

����

1

Tank 1
150 gal

2

Tank 2
75 gal

r        (t) = 5 gal/min

c        (t)

�����

�����

Figure 3.16 Diagram for a Two Tank Mixture Problem.

For tank 2, we have r2 in(t) = r2 out(t) = 5 gal/min, c2 in(t) = q1(t)/150
and c2 out(t) = q2(t)/75. So the number of gallons of dye in tank 2 must
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satisfy the differential equation

dq2(t)

dt
= r2 in(t)c2 in(t)− r2 out(t)c2 out(t)

= (5 gal/min)

(
q1(t)

150

)

− (5 gal/min)

(
q2(t)

75

)

=

(
q1(t)

30
− q2(t)

15

)

(gal/min).

Hence, the number of gallons of dye in tanks 1 and 2 must simultaneously
satisfy the two initial value problems

dq1
dt

= .5− q1
30

; q1(0) = 90(3a)

dq2
dt

=
q1
30

− q2
15

; q2(0) = 0.(3b)

Since the differential equation in (3a) involves the single variable q1 and is
linear, we can solve the initial value problem (3a) explicitly and substitute the
result into (3b). The resulting initial value problem will involve the variable
q2 only. We will then use SOLVEIVP to solve this initial value problem
numerically. (In Chapter 7, we will show how to solve the system of two, first-
order, initial value problems consisting of (3a) and (3b) simultaneously—that
is, we will show how to find q1 and q2 without first solving for q1 explicitly
and substituting into (3b).)

In Chapter 2, we proved that the general solution of the nonhomogeneous
linear first-order differential equation y′ = a(t)y+ b(t) where a(t) and b(t) are
continuous on the interval I is

(4) y(t) = y1(t)(K + v(t))

where K is an arbitrary constant and

y1(t) = e
∫ t a(x) dx and v(t) =

∫ t b(x)

y1(x)
dx.

Equation (3a) is a nonhomogeneous linear differential equation in which y(t) =
q1(t), a(t) = −1/30, and b(t) = .5. Hence,

y1(t) = e−
∫ t dx/30 = e−t/30+C1

where C1 is a constant of integration. Since we need only one constant in the
general solution—which is the constant K—we set C1 = 0. Substituting the
resulting expression for y1(t) into the equation for v(t), yields

v(t) =

∫ t b(x)

y1(x)
dx =

∫ t .5

e−x/30
dx = .5

∫ t

ex/30dx = 15et/30 + C2
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where C2 is a constant of integration. Again since we need only one constant
in the general solution, we set C2 = 0. Substituting our expressions for y1(t)
and v(t) with C1 = C2 = 0 into equation (4), we find the general solution for
equation (3a) to be

q1(t) = y1(t)(K + v(t)) = e−t/30(K + 15et/30) = Ke−t/30 + 15.

Since q1(0) = 90 = K + 15, we have K = 90− 15 = 75. Hence,

q1(t) = 75e−t/30 + 15.

Substituting this expression for q1(t) into the differential equation of (3b), we
find q2 must satisfy the initial value problem

(5)
dq2
dt

= 2.5e−t/30 + .5− q2
15

; q2(0) = 0.

Associating q2(t) with y(x), we used SOLVEIVP to solve the initial value
problem (5) on [0, 125] by setting f(x, y) = 2.5e−x/30+ .5−y/15, by inputting
the interval of integration as [0, 125], and by entering the initial condition
y(0) = 0. A graph of the solution for the number of gallons of dye in tank 2
on the interval [0, 125] is shown in Figure 3.17. From the graph we see that the
maximum number of gallons of dye in the tank occurs when t is approximately
25 minutes. By searching the table of values of the numerical solution near
t = 25 minutes, we find the maximum number of gallons of dye in the tank is
24.545 gallons and that the maximum occured when t = 23.625 minutes.
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Figure 3.17 Numerical Approximation to the IVP:

y′ = 2.5e−x/30 + .5− y/15; y(0) = 0. �
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EXERCISES 3.6

1. The bloodstream carries a drug to an organ at the rate of 1.5 in3/sec
and leaves the organ at the same rate. The organ contains 8 in3 of
blood and the concentration of the drug in the blood entering the organ
is 0.5 g/in3. If at time t = 0 there is no trace of the drug in the organ,
and if we can assume that the organ behaves like a container in which
the blood is uniformly mixed, compute and graph the amount of drug
in the organ over the time interval [0, 10]. When is the amount of drug
in the organ 2 g?

2. An office 12 ft by 10 ft and 8 ft high (the size of some mathematics
professors’ offices) initially contains air with no carbon monoxide. Be-
ginning at time t = 0, cigarette smoke containing 3.5% carbon monoxide
is blown into the office at a rate of .2 ft3/min. Assuming the air in the
room is uniformly mixed and leaves the room at the same rate, at what
time does the amount of carbon monoxide in the air reach .015%? (Pro-
longed exposure to this concentration of carbon monoxide is dangerous.)

3. One of the major problems facing industrialized nations is water pol-
lution. Rivers and lakes become polluted with various types of waste
products which can kill plant and marine life. Once pollution of a river
is stopped, the river will clean itself fairly rapidly. However, as this ex-
ample will illustrate, large lakes require much longer to clean themselves
by the natural process of clean water flowing into the lake and polluted
water flowing out of the lake. If cL is the concentration of pollution in
a lake and V is the volume of the lake, then the total amount of pollu-
tants in the lake is Q = cLV . If r is the rate at which water enters and
leaves a lake and if cin is the concentration of pollutants entering the
lake, then we have

dQ

dt
=
d(cLV )

dt
= rcin − rcL = r(cin − cL).

If we assume the volume of the lake is constant, then dividing by V , we
find the concentration of pollution in the lake, cL, satisfies the differen-
tial equation

dcL
dt

=
r(cin − cL)

V
.

Lake Michigan has a volume of 1180 mi3 and the yearly flow rate is r =
38 mi3/yr. Assuming at time t = 0 the concentration of pollutants in
LakeMichigan is cL(0) = 0.4%, assuming the concentration of pollutants
in the entering water is successfully reduced to 0.05%, and assuming the
water in the lake is well mixed, how many years will it take to reduce
the pollution concentration in Lake Michigan to 0.3%? 0.25%? 0.2%?
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4. Let the subscript e denote Lake Erie and the subscript o denote Lake
Ontario. The volumes of these lakes are Ve = 116 mi3 and Vo = 393 mi3.
Pollution enters Lake Ontario from Lake Erie, from rivers, and from
water run off from surrounding land. Suppose the rate of water entering
Lake Ontario from Lake Erie is re = 85 mi3/yr and the rate of water
entering from non-Erie sources is r = 14 mi3/yr. Assuming the rate at
which water leaves Lake Ontario is ro = re+ r = 99 mi3/yr, the amount
of pollutants in Lake Ontario, Q = coVo, satisfy the differential equation

dQ

dt
=
d(coVo)

dt
= rece + rc− roco

where ce is the concentration of pollutants in Lake Erie and c is the
concentration of pollutants in non-Erie sources. The first term on the
right represents the amount of pollutants entering Ontario from Erie,
the second term represents the amount of pollutants entering Ontario
from non-Erie sources, and the third term represents the amount of
pollutants leaving Ontario through outflow. Assuming the volume of
Lake Ontario, Vo, is constant, we find, by dividing the previous equation
by Vo, that the concentration of pollution in Lake Ontario, co, satisfies
the differential equation

dco
dt

=
rece + rc − roco

Vo
.

Compute and graph the concentration of pollution in Lake Ontario if
co(0) = 0.3%, ce(t) = 0.4%e−t/10 and c(t) = .08%. How many years
will it take for the concentration of pollution in Lake Ontario to reach
0.2%? 0.1%?

3.7 Curves of Pursuit

Interesting problems result when one tries to determine the path that one
object must take in order to pursue, and perhaps capture, a second object
when either or both objects move according to specified constraints.

Exercise 1. A boy attaches a stiff rod of length L to a toy boat. The boy
places the boat at the edge of a rectangular pool at (L, 0) and then moves to
the corner of the pool at (0, 0). As the boy walks along the other edge of the
pool—the y-axis, the boat glides through the water after him. See Figure 3.18.
The path followed by the boat is called a tractrix (Latin tractum, drag).
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Path of Boat
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Figure 3.18 The Tractrix.

The line segment PQ, which represents the stiff rod of length L, is tangent to
the path followed by the boat. So the slope of the line PQ is

(1)
dy

dx
= −

√
L2 − x2

x
.

Graph the tractrix which corresponds to a rod of length L = 10 ft. (Hint:
Solve the initial value problem consisting of the differential equation (1) and
the initial condition y(L) = 0 on the interval [.5, 10].)

Exercise 2. The y-axis and the line x = W > 0 represent the banks of a
river. The river flows in the negative y-direction with speed sr. A boat whose
speed in still water is sb is launched from the point (W, 0). The boat is steered
so that it is always headed toward the origin. See Figure 3.19.

The components of the boat’s velocity in the x-direction and y-direction
are

dx

dt
= −sb cos θ and

dy

dt
= −sr + sb sin θ.

So
dy

dx
=
dy/dt

dx/dt
=

−sr + sb sin θ

−sb cos θ =
−sr + sb(−y/

√
x2 + y2)

−sb(x/
√
x2 + y2)

.

Simplifying, we get

(2)
dy

dx
=
sr
√
x2 + y2 + sby

sbx
.
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Path of Boat
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Figure 3.19 Path of a Boat in a River.

Graph the solutions of the initial value problems consisting of the differential
equation (2) and the initial condition y(W ) = 0 on the interval [0,W ] where
W = .5 mi, sr = 3 mi/hr, and (a) sb = 2 mi/hr, (b) sb = 3 mi/hr, and
(c) sb = 4 mi/hr. In each case, decide if the boat lands on the opposite bank.
In those cases in which the boat does land, tell where it lands. How is the
landing point related to sb versus sr?

Exercise 3. The y-axis and the line x = W > 0 represent the banks of a
river. The river flows in the negative y-direction with speed sr. At time t = 0
a man starts walking from the origin along the negative y-axis with speed
sm. At the same time a boat whose speed in still water is sb is launched from
the point (W, 0). The boat is steered so that it is always headed toward the
man. Draw an appropriate figure for this problem, determine the differential
equation satisfied by the path of the boat, compute and graph the path of
the boat, if W = .5 mi, sr = 3 mi/hr, sm = 1 mi/hr, and (a) sb = 2 mi/hr,
(b) sb = 3 mi/hr, and (c) sb = 4 mi/hr. In each case, decide if the boat lands
on the opposite bank. Tell where the boat lands, when it does land. (Hint:
Use a “moving rectangular coordinate system” with the origin at the man.)

Exercise 4. A rabbit starts at (0, a) and runs along the y-axis in the positive
direction with a constant speed of sr. A dog starts at (b, 0) and pursues the
rabbit with speed sd. The dog runs so that he is always pointed toward the
rabbit. See Figure 3.20.

At time t the rabbit will be at the point (0, a+ srt) and the dog will be at
(x, y). Since the line between these two points is tangent to the path of the
dog, the slope of the line is

dy

dx
=
y − a− srt

x
.

Multiplying by x, we get

(3) xy′ = y − a− srt.
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Path of dog

Line tangent to the path of the dog

x

y

(0, a + s  t)

(0, a)

(b, 0)

(x, y)

sd

sr
r

Figure 3.20 Path of a Dog Pursuing a Rabbit.

From calculus we know the arc length s of the path of the dog satisfies the
differential equation

ds

dt
= −
√
1 + (dy/dx)2

dx

dt
= sd.

The minus sign is due to the fact that s increases as x decreases. Solving for
dt/dx, we have

(4)
dt

dx
= −
√
1 + (y′)2

sd
.

Differentiating (3) with respect to x, we get xy′′ + y′ = y′ − srdt/dx. Solving
this equation for dt/dx, we obtain

(5)
dt

dx
=

−xy′′
sr

.

Equating (4) and (5) results in

(6)
xy′′

sr
=

√
1 + (y′)2

sd
.

Let p = y′. Then p′ = y′′. When t = 0, (x, y) = (b, 0) and p = −a/b.
Substituting for p and p′ in equation (6) and solving for p′, we see that p
satisfies the initial value problem

p′ =
sr
√
1 + p2

xsd
; p(b) =

−a
b
.
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Separating variables and letting R = sr/sd, we find

dp
√
1 + p2

=
Rdx

x
.

Integrating, we get

ln |p+
√
1 + p2| = R ln |x|+ C

where C is the constant of integration. Exponentiating, we obtain

(7) p+
√
1 + p2 = KxR.

Subtracting p and squaring, we find

1 + p2 = K2x2R − 2KpxR + p2.

Eliminating p2 and solving for p, yields

(8) p = y′ =
K2x2R − 1

2KxR
.

The constant K must be chosen to satisfy the initial condition p(b) = −a/b.
Returning to equation (7), solving for K, and setting x = b and p = −a/b, we
see that

(9) K = (−a/b+
√

1 + a2/b2)/bR = (−a+
√
a2 + b2)/bR+1.

The path of the dog is the solution to the initial value problem consisting of
the differential equation (8) where K is given by equation (9) and the initial
condition y(b) = 0. Compute and graph the path of the dog if a = 200 ft,
b = 100 ft, sr = 50 ft/sec, and (a) sd = 40 ft/sec, (b) sd = 50 ft/sec, and
(c) sd = 75 ft/sec. In which case(s) does the dog capture the rabbit? When
and where does the dog catch the rabbit?

3.8 Chemical Reactions

Chemical equations indicate how molecules of substances combine or de-
compose to produce other substances. For example, the chemical equation

2H2 +O2 → 2H2O

states that 2 molecules of hydrogen, H2, combine with 1 molecule of oxygen,
O2, to form 2 molecules of water, H2O. A general chemical equation has the
form

aA+ bB + cC + · · · → pP + qQ + · · ·
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where a, b, c, . . . , p, q, . . . are positive integers. This equation indicates that a
molecules of the substance A, b molecules of the substance B, c molecules of
the substance C, . . . react to form p molecules of the substance P , q molecules
of the substance Q,. . .. The rate at which a substance is formed is called the
velocity of the reaction. In many cases, the law of mass action stated
below applies in determining the velocity of reaction.

The Law of Mass Action

If the temperature is kept constant, the velocity of a chemical reac-
tion is proportional to the product of the concentrations of the reacting
substances.

Recall from elementary chemistry that a mole is the number of grams of
a substance which is equal to the molecular weight of the substance. For
example, 1 mole of hydrogen, H2, has a weight of 2.016 grams, since the
atomic weight of the element hydrogen, H , is 1.008 grams; 1 mole of oxygen,
O2, has a weight of 32 grams, since the atomic weight of the element oxygen,
O, is 16 grams; and 1 mole of water, H2O, has a weight of 2(1.008) + 16 =
18.016 grams.

If we let CA(t), CB(t), CC(t), . . . represent the concentrations of substances
A,B,C, . . . at time t expressed in moles per liter and if y is the number of
moles per liter which have reacted at time t, then the law of mass action states
that the velocity of reaction, dy/dt, satisfies the differential equation

(1)
dy

dt
= k(CA)

a(CB)
b(CC)

c · · ·

where the constant of proportionality k is called the velocity constant. The
sum of the exponents a+ b+ c+ · · · is called the order of the reaction.

Example 1 An Order 2 Chemical Reaction

Consider the order 2 reaction

A+B → P

Suppose two reactants, A and B, are combined in solution and have an initial
concentration CA(0) = 7 moles/liter and CB(0) = 3 moles/liter. Assume the
law of mass action applies and the velocity constant is k = 2 liters/(mole·sec).
a. Numerically solve equation (1) for the number of moles per liter which

have reacted at time t, y(t). (In this case, a = b = 1.)

b. What is the limiting concentration of the product P? (That is, what
is limt→∞ y(t)?)

c. How long does it take to produce one-half of the limiting concentra-
tion? 90% of the limiting concentration?
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d. What is the concentration of substances A and B at time t? That is,
what is CA(t) and CB(t)?

e. What is limt→∞ CA(t) and limt→∞ CB(t)?

Solution

Let y(t) denote the number of moles/liter of the substance P at time t. The
concentration of substance A at time t is CA(t) = CA(0)− y(t) = 7− y(t) and
the concentration of substance B at time t is CB(t) = CB(0)−y(t) = 3−y(t).
Since the concentrations CA and CB are positive and can only decrease as the
reaction proceeds, 0 ≤ CA(t) ≤ 7 and 0 ≤ CB(t) ≤ 3. Thus, we must have
0 ≤ 7 − y ≤ 7 and 0 ≤ 3 − y ≤ 3. So we must have both 0 ≤ y ≤ 7 and
0 ≤ y ≤ 3 which implies 0 ≤ y ≤ 3. According to the law of mass action

dy

dt
= kCA(t)CB(t) = 2(7− y)(3− y).

At time t = 0, we have y(t) = 0, since no reaction has taken place. We ran
SOLVEIVP by setting f(x, y) = 2(7− y)(3 − y), by inputting the interval of
integration as [0, 1], and by inputting the initial condition y(0) = 0.

a. A graph of y(t) on [0, 1] is displayed in Figure 3.21.

0

0.5

1

1.5

2

2.5

3

y(x)

0 0.2 0.4 0.6 0.8 1
x

Figure 3.21 Numerical Approximation to the IVP:

y′ = 2(7− y)(3− y); y(0) = 0.
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b. As noted above 0 ≤ y(t) ≤ 3 and from Figure 3.21 or the corresponding
table of values for the numerical solution, we see that limt→∞ y(t) = 3.

c. From the table of values for the numerical solution we see that y(t) =
50%× 3 = 1.5 moles/liter when t is approximately .06 seconds and we
also see that y(t) = 90%× 3 = 2.7 moles/liter when t is approximately
.24 seconds.

d. As stated earlier CA(t) = 7− y(t) and CB(t) = 3− y(t).

e. Since limt→∞ y(t) = 3, we easily compute

lim
t→∞CA(t) = CA(0)− lim

t→∞ y(t) = 7− 3 = 4 moles/liter

and

lim
t→∞CB(t) = CB(0)− lim

t→∞ y(t) = 3− 3 = 0 moles/liter.

EXERCISES 3.8

1. Assume that the law of mass action applies to the chemical reaction

A + B → P . Suppose the initial concentrations are CA(0) = 6 moles/liter
and CB(0) = 2 moles/liter and that the velocity constant is k =
1 liter/(mole·sec).
a. Find and graph the number of moles per liter, y(t), which have reacted

at time t.

b. What is the limiting concentration of the product P?

c. What is the limiting concentration of the reactant B?

2. The chemical reaction A + B → P satisfies the law of mass action.

Suppose CA(0) = CB(0) = 5 moles/liter and k = 1.5 liters/(mole·sec).
a. Find and graph the number of moles per liter, y(t), which have reacted

at time t.

b. What is limt→∞ y(t)? limt→∞ CA(t)? limt→∞ CB(t)?

3. The chemical reaction A + B + C → P satisfies the law of mass
action. If y(t) is the number of moles per liter which have reacted

at time t; if CA(t), CB(t), and CC(t) are the concentrations of substances
A, B, and C respectively at time t; if CA(0), CB(0), and CC(0) are the
initial concentrations; and if k is the velocity constant; then y(t) satisfies
the initial value problem

y′ = kCA(t)CB(t)CC(t) = k(CA(0)− y)(CB(0)− y)(CC(0)− y); y(0) = 0.

Suppose k = .5 liter/(mole·sec), CA(0) = 8 moles/liter, CB(0) = 5
moles/liter, and CC(0) = 3 moles/liter.
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a. Find and graph y(t) on the interval [0, 5].

b. Find limt→∞ y(t).

c. When is y(t) = .95× limt→∞ y(t)?

4. The chemical reaction A + B + C → P obeys the law of mass action.

Find and graph y(t) on [0, 5], if CA(0) = CB(0) = CC(0) = 6 moles/liter
and k = .3 liter/(mole·sec). (See Exercise 3.)

5. The chemical reaction 2A + B → 2P + Q + R obeys the law of

mass action. Let y(t) be the number of moles per liter of reactant B which
have reacted at time t, if CA(t) and CB(t) are the concentrations of sub-
stances A and B at time t, if CA(0) and CB(0) are the initial concen-

trations, and if k is the velocity constant, then y(t) satisfies the initial

value problem

y′ = k[CA(t)]
2CB(t) = k[CA(0) − 2y]2[CB(0) − y]; y(0) = 0.

Suppose k = 1.5 liter/(mole·sec), CA(0) = 9 moles/liter, and CB(0) =

5 moles/liter.

a. Find and graph y(t) on the interval [0, 5].

b. Find limt→∞ y(t).

c. What is the limiting concentrations of the reactants A and B?

MISCELLANEOUS EXERCISES

1. The error function is usually defined as

erf(x) =
2√
π

∫ x

0

e−t2 dt.

This definition of the error function as an integral is equivalent to the
initial value problem

y′ =
2e−x2

√
π

; y(0) = 0.

Solve this initial value problem on the interval [0, 5] and graph the so-
lution.

2. Suppose the pollution index expressed in parts per million over a 24 hour
period satisfies the differential equation

dP

dt
=

.34− .04t√
50 + 25t− t2

.

At 12 midnight (t = 0) the pollution index is found to be .43 parts per
million. Compute and graph the pollution index for the next 24 hours.
At what time is the pollution index the highest? lowest?
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3. Let T be the absolute temperature of a body and let A be the absolute
temperature of the surrounding medium. According to Stefan’s law
of radiation the rate of change of the temperature of the body is pro-
portional to the difference between the fourth power of the temperature
of the body and the fourth power of the temperature of the surround-
ing medium. Thus, according to Stefan’s law dT/dt = −k(T 4 − A4).
Compute and graph on the interval [0, 20] the temperature T of a body
whose initial temperature is 3000◦K, whose constant of proportionality
is k = 5 × 10−12/((◦K)3-min), and which is surrounded by a medium
with constant temperature A = 500◦K. (◦K denotes degrees Kelvin.
On the Kelvin temperature scale, 0◦K corresponds to absolute zero,
which is −273.15◦C, and one degree Kelvin is the same size as one de-
gree Celsius.)

4. When a periodic voltage E(t) = E0 sinωt is suddenly applied to a coil
wound around an iron core, the magnetic flux, y(t), satisfies the initial
value problem

y′ = −Ay −By3 + E0 sinωt; y(0) = 0

where A, B, E0, and ω are positive constants. Solve this initial value
problem and graph the solution on the interval [−.5, .5] forA = 2, B = 3,
E0 = 2, and ω = 4.

5. A simple model for the spread of a rumor assumes there is a fixed
population size, N , and that each person who has heard the rumor tells
the rumor to m people each day. Some of them will already have heard
the rumor. Let H(t) be the number of people who have heard the rumor
at time t. Each day each person who has heard the rumor will tell it
to m(N − H(t))/N people who have not already heard the rumor, so
H(t) satisfies the differential equation H ′(t) = H(t)m(N − H(t))/N .
Assume N = 500, m = 3, and H(0) = 1. Compute and graph H(t) on
the interval [0, 10]. When is H(t) = 250? What is limt→∞H(t)?

6. Compute and graph on the interval [1, 4] the curve which lies above the
x-axis and has the property that the length of the arc joining any two
points is equal to the area under the arc.

7. In 1913, L. Michaelis and M. Menton developed the following simple
model for chemical enzyme kinetics: dy/dt = −y/(y + 1); y(0) = 1.
Solve and graph the solution to this initial value problem on the interval
[0, 5].

8. The Cycloid The curve traced out by a point P on the circumference
of a circle of radius R as the circle rolls along the x-axis is called a
cycloid. If when θ = 0, the point P is at the origin, then the parametric
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equation of the cycloid is

x = R(θ − sin θ), y = R(1− cos θ)

where θ is the angle, measured in radians, through which the rolling
circle has rotated. A graph of a cycloid is displayed in Figure 3.22.
Galileo Galilei (1564-1642) coined the term “cycloid” and was the first
to conduct a meaningful study of the curve.

x

y

πR 2 πR

2 R

3 πR 4 πR 5 πR0

Figure 3.22 A Graph of the Cycloid.

a. The following theorem is due to the great English architect, astron-
omer, and mathematician Christopher Wren (1632-1723). “The length
of one arch (0 ≤ θ ≤ 2π) of a cycloid is equal to eight times the radius
of the generating circle.” Prove Wren’s theorem.

b. The Italian physicist and mathematician Evangelista Torricelli (1608-
1647) invented the barometer and was a student of Galileo. The follow-
ing theorem is due to Torricelli. “The area under one arch of a cycloid is
three times the area of the generating circle.” Prove Torricelli’s theorem.

9. The Brachistochrone Problem (From the Greek brakhisto khrónos
meaning “shortest time.”) In June, 1696, in Acta Eruditorum Johann
Bernoulli (1667-1748) posed the following challenge problem to other
mathematicians:

“Given two points A and B in a vertical plane, what is the curve traced
out by a point acted on only by gravity, which starts at A and reaches
B in the shortest time.”

Earlier, in 1638, Galileo in his Discourse on Two New Sciences had
tried to solve a similar problem of finding the path of fastest descent
from a point to a wall. Galileo erroneously concluded that the arc of
a circle was the fastest path. However, he had warned earlier in his
Discourse of the possibility of fallacies in his results due to the need for
a “higher science”—perhaps, he meant calculus.

Of course, Johann Bernoulli already knew how to solve the brachis-
tochrone problem before he posed the problem to the mathematical com-
munity at large. Initially, he wanted to impose a six month time limit on
solving the problem. However, Leibniz persuaded him to lengthen the
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time for solution, so that foreign mathematicians would have a better op-
portunity to solve the problem. Bernoulli and Leibniz were deliberately
taunting Newton to solve the problem. According to one Newtonian
scholar, when Newton returned home one evening at about 4 p.m. after
working at the Royal Mint in the Tower of London on the great coinag-
ing, he found a letter from Johann Bernoulli. Newton stayed up all night
in order to solve the problem and mailed the solution by the next post.
By way of comparison, it took Bernoulli two weeks to solve the problem.
In January 1697, the Royal Society published Newton’s solution anony-
mously in the Philosophical Transactions of the Royal Society. In May
1697, Acta Eruditorum published solutions to the brachistochrone prob-
lem by Johann Bernoulli, by Jacob Bernoulli (Johann’s older brother),
by Leibniz, and a Latin translation of Newton’s solution. It was not
until 1988 that de L’Hôspital’s solution was published.

In Section 3.5, Falling Bodies, we found that a body of massm initially
located at y0, traveling with a velocity v0, and close enough to the
earth’s surface so that the only significant force acting on the body is
the earth’s gravitational attraction, g, satisfies the initial value problem
dv/dt = g; v(0) = v0. (See Figure 3.12.) We found the solution of this
initial value problem is v(t) = gt+v0. When the initial velocity is zero—
that is, when v(0) = 0 the solution is (a) v(t) = gt. Since, by definition,
the velocity v = dy/dt and since the mass has initial position y(0) = y0,
the position satisfies the initial value problem dy/dt = gt; y(0) = y0.
The solution of this initial value problem is y(t) = gt2/2+y0. When the
initial velocity is zero, that is, y(0) = 0 the solution is (b) y(t) = gt2/2.
Solving equation (a) for t, substituting the result into equation (b), and
solving the result for v, we find that any mass which is located at the
origin with initial velocity zero, satisfies the equation (c) v =

√
2gy.

Equation (c) is the equation for the velocity of a body falling from the
origin with initial velocity zero in terms of its position.

Now consider the following problem from optics. Suppose a ray of
light travels from point A to point P with velocity v1, then enters a less
dense medium, and travels from P to B with a larger velocity v2. From
Figure 3.23, we see that the total time required for the light to travel
from A to P to B is

T =

√
a2 + x2

v1
+

√
b2 + (c− x)2

v2
.

In 1657, Pierre de Fermat (1601-1665) discovered the principle of least
time, which states that light is able to select its path from A through
P to B so as to minimize the time of travel T . Calculating dT/dx and
setting the result equal to zero, we find

x

v1
√
a2 + x2

=
c− x

v2
√
b2 + (c− x)2

v2
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Figure 3.23 Snell’s Law of Reflection.

or
sinα1

v1
=

sinα2

v2
.

This expression is known as Snell’s Law of Reflection. The Dutch as-
tronomer and mathematicianWillebrord Snellius (1580-1626) discovered
Snell’s Law experimentally in 1621 and stated it in the form sinα1/ sinα2

is a constant. In general, at any point (x, y) on the brachistochrone
(d) sinα/v = k, where k is a constant.

In Figure 3.24 suppose a point mass is capable of selecting a path from
the origin A : (0, 0) to point B in the least possible time.

Tangent

x

y

(0, 0)

(x, y)

A

B

Line

α
β

Figure 3.24 A Brachistochrone Curve.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Applications of the Initial Value Problem y′ = f(x, y); y(c) = d 141

From the geometry of Figure 3.24 and trigonometry, we find that

(e) sinα = cosβ =
1

sec β
=

1

1 + tan2 β
=

1
√
1 + (y′)2

.

From equations (c), (d), and (e) we see that the brachistochrone satisfies
the differential equation

(f) y(1 + (y′)2) = k2/(2g) = K

where K is a positive constant. Verify (1) that the cycloid

x = R(θ − sin θ), y = R(1− cos θ)

satisfies the differential equation (f), (2) that the cycloid passes through
the origin, and (3) that R can be determined so that the cycloid passes
through B : (xB , yB) for any positive values xB and yB.
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Chapter 4

N-th Order Linear Differential
Equations

As we noted earlier, ordinary differential equations are divided into two
distinct classes—linear equations and nonlinear equations. In Chapters 2
and 3, we studied a few differential equations which can be solved explicitly
in terms of elementary functions or which can be written as formulas involv-
ing quadratures. In particular, we found that the solution of the first-order
linear differential equation y′ = a(x)y + b(x) can be written symbolically as
y(x) = y1(x)(K + v(x)) where K is an arbitrary constant,

y1(x) = e
∫

x a(t) dt and v(x) =

∫ x b(t)

y1(t)
dt.

Terms regarding higher order linear differential equations are defined as
follows. An n-th order linear differential equation is any differential
equation of the form

(1) an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a1(x)y
(1)(x) + a0(x)y(x) = b(x)

where an(x) is not identically zero. The functions an(x), an−1(x), . . . , a1(x),
and a0(x), which are all functions of the independent variable x alone, are
called the coefficient functions of (1). If b(x) ≡ 0, then the linear differential
equation (1) is said to be homogeneous. Whereas, if b(x) is not the zero
function, then (1) is said to be nonhomogeneous.

Observe that equation (1) is linear in y and its derivatives. The differ-
ential equation x2y(3) − 2exy(2) + (cosx)y(1) + 7y = tan 4x is a third-order
nonhomogeneous linear differential equation and 4y(2) − 3xy = 0 is a second-
order homogeneous linear differential equation. The second-order differential
equation y(2) + yy(1) − 2y = 0 is not linear because of the term yy(1). The
differential equation (y(2))3 + (sinx)y = 3ex is not linear because of the term
(y(2))3.

In general, for n ≥ 2 the n-th order linear differential equation (1) cannot be
solved explicitly in terms of elementary functions or written as a formula in-
volving quadratures as it can in the case when n = 1. Nonetheless, many phys-
ical phenomena such as mechanical systems and electrical circuits can be mod-

143

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


144 Elementary Differential Equations

elled by n-th order linear differential equations. Consequently, n-th order lin-
ear differential equations are important in the study of physics, engineering,
and other applied sciences. Linear differential equations are “first order”
(“lowest order”) mathematical approximations to a wide variety of physical
problems. In Section 4.1, we discuss the basic theory for n-th order linear
differential equations. We state conditions which ensure the existence and
uniqueness of solutions to (1). When (1) is homogeneous, we prove a super-
position theorem which tells us how to combine solutions to obtain other,
more general, solutions. We define the concept of linear independence for a
set of functions and prove when (1) is homogeneous that there are n linearly
independent solutions and show how to write the general solution in terms
of those linearly independent solutions. Finally, we show how to write the
general solution of (1) when it is nonhomogeneous.

In Section 4.2, we present a brief history of the search for methods to find
roots of polynomial equations. Next, in Section 4.3, we show how to find
the general solution of an n-th order homogeneous linear differential equation
with constant coefficients by calculating the roots of an n-th degree polynomial
equation. Then in Section 4.4, we indicate how to find the general solution of
a nonhomogeneous linear differential equation with constant coefficients using
the method of undetermined coefficients. In Chapter 5, we present the Laplace
transform method for solving nonhomogeneous linear differential equations
with constant coefficients. In Chapter 6, we present several applications whose
solution ultimately requires the solution of some n-th order linear differential
equation with constant coefficients. Later in Chapter 7, which concerns the
solution of systems of n first-order differential equations, we show how to solve
a general n-th order linear differential equation by rewriting it as a system of
n first-order equations.

4.1 Basic Theory

An initial value problem for an n-th order linear differential equation
consists of solving the differential equation

(1) an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a1(x)y
(1)(x) + a0(x)y(x) = b(x)

subject to a set of n constraints, called initial conditions, of the form

(2) y(x0) = c1, y
(1)(x0) = c2, . . . , y

(n−1)(x0) = cn

where c1, c2, . . . , cn are any specified constants and x0 is some specified point.

In Section 2.2, we stated and proved an existence and uniqueness theorem
for the first-order linear initial value problem: y′ = f(x, y); y(c) = d. The
following theorem, which we state without proof, generalizes this theorem to
n-th order linear initial value problems.
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An Existence and Uniqueness Theorem for an n-th Order Linear
Initial Value Problem:

If the functions an(x), an−1(x), . . ., a1(x), a0(x), and b(x) are all continuous
on an interval I and if an(x) �= 0 for any x in I, then there exists a unique
solution on I to the initial value problem consisting of the linear n-th order
differential equation

(1) an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a1(x)y
(1)(x) + a0(x)y(x) = b(x)

and the initial conditions

(2) y(x0) = c1, y
(1)(x0) = c2, . . . , y

(n−1)(x0) = cn

where c1, c2, . . . , cn are any specified constants and x0 is some point in the
interval I.

Observe that the existence and uniqueness theorem guarantees that the
zero function, y(x) ≡ 0, is the unique solution of the initial value problem

an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a1(x)y
(1)(x) + a0(x)y(x) = 0;

y(x0) = 0, y(1)(x0) = 0, . . . , y(n−1)(x0) = 0

on any interval on which the functions an(x), an−1(x), . . . , a1(x), a0(x) are all
continuous and an(x) �= 0. We will need to use this fact later.

Verify that the functions y1(x) = x2 and y2(x) = x3 are two distinct solu-
tions on (−∞,∞) of the initial value problem

(3) x2y′′ − 4xy′ + 6y = 0; y(0) = 0, y′(0) = 0.

The fact that the IVP (3) has two distinct solutions does not violate the ex-
istence and uniqueness theorem, since the IVP (3) does not satisfy all of the
hypotheses of the existence and uniqueness theorem. Notice that the initial
conditions are specified at x0 = 0 and when x = 0 the coefficient of y′′, the
leading coefficient of the differential equation, is a2(x) = x2 = 0. That is,
the hypothesis of the theorem a2(0) �= 0 is not satisfied on any interval I
which contains the point x = 0—which is where the initial conditions are
specified. This example illustrates that if a single hypothesis of the existence
and uniqueness theorem fails to be satisfied, then nothing can be concluded
about the existence of the solution of an initial value problem or about the
uniqueness of a solution when there is one. In general, when a single hypoth-
esis of the existence and uniqueness theorem is not satisfied, then the initial
value problem may have no solution, it may have multiple solutions, or it may
have a single, unique solution.
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Example 1 Analysis of a Differential Equation and Verification of

the Solution of an Initial Value Problem

Analyze the differential equation

(4) y′′ − 3y′ + 2y = 4x2

and verify that

(5) y(x) = 2ex − 3e2x + 2x2 + 6x+ 7

is the unique solution on (−∞,∞) of the initial value problem

(6) y′′ − 3y′ + 2y = 4x2; y(0) = 6, y′(0) = 2.

Solution

The DE (4) is linear and nonhomogeneous. The functions a2(x) = 1,
a1(x) = −3, a0(x) = 2, and b(x) = 4x2 are all defined and continuous
on (−∞,∞) and a2(x) �= 0 on (−∞,∞). Therefore, by the existence and
uniqueness theorem there exists a unique solution to the IVP (6) on the in-
terval (−∞,∞) which satisfies y(x0) = c1 and y′(x0) = c2 for any choice of
the constants x0, c1, and c2.

The function (5) y(x) = 2ex−3e2x+2x2+6x+7 is defined and continuous
on (−∞,∞). Differentiating twice, we find

y′(x) = 2ex − 6e2x + 4x+ 6
and

y′′(x) = 2ex − 12e2x + 4.

Substituting these expressions for y, y′ and y′′ into the DE (4), we see that

y′′ − 3y′ + 2y

= (2ex − 12e2x + 4)− 3(2ex − 6e2x + 4x+ 6) + 2(2ex − 3e2x + 2x2 + 6x+ 7)

= (2− 6 + 4)ex + (−12 + 18− 6)e2x + (4− 18 + 14) + (−12 + 12)x+ 4x2

= 4x2.

Thus, since y′ and y′′, as well as y, are all defined on (−∞,∞), y(x) is a
solution of the DE (4) on (−∞,∞). Evaluating y and y′ at x = 0, we find

y(0) = 2− 3 + 7 = 6 and y′(0) = 2− 6 + 6 = 2.

Thus, the initial conditions specified in the IVP (6) are satisfied. Hence, y(x)
is the unique solution of the IVP (6) on the interval (−∞,∞). �

Example 2 Analysis of a Differential Equation and Verification of

the Solution of an Initial Value Problem

Analyze the differential equation

(7) x2y′′ + xy′ − 4y = 0
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and verify that

(8) y(x) = 2x2 +
1

x2

is the unique solution on (0,∞) of the initial value problem

(9) x2y′′ + xy′ − 4y = 0; y(1) = 3, y′(1) = 2.

Solution

The DE (7) is linear and homogeneous. The functions a2(x) = x2, a1(x) =
x, a0(x) = −4, and b(x) = 0 are all defined and continuous on (−∞,∞) and
a2(x) �= 0 for x �= 0. Since the initial conditions of the IVP (9) are specified
at x0 = 1 ∈ (0,∞), by the existence and uniqueness theorem there exists
a unique solution to the IVP (9) in the interval (0,∞). Differentiating (8)

y(x) = 2x2 +
1

x2
twice, we get

y′(x) = 4x− 2

x3

and

y′′(x) = 4 +
6

x4
.

Substituting these expressions for y, y′, and y′′ into the DE (7), we find

x2y′′ + xy′ − 4y = x2(4 +
6

x4
) + x(4x− 2

x3
)− 4(2x2 +

1

x2
)

= 4x2 +
6

x2
+ 4x2 − 2

x2
− 8x2 − 4

x2

= 0, provided x �= 0.

Since y, y′, and y′′ are defined for x �= 0, y(x) is a solution of the DE (7) on
(−∞, 0) and (0,∞). Evaluating y and y′ at x = 1, yields y(1) = 2 + 1 = 3

and y′(1) = 4 − 2 = 2. Hence, y(x) = 2x2 +
1

x2
is the unique solution of the

IVP (9) on the interval (0,∞). �

Suppose that y1(x) and y2(x) are both solutions of the same differential
equation and suppose that c1 and c2 are two arbitrary constants, then the
sum c1y1(x) + c2y2(x) is called a linear combination of the two solutions.
The following example illustrates that a linear combination of two solutions
of a homogeneous linear differential equation is also a solution.
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Example 3 A Linear Combination of Two Solutions of a Homoge-

neous Linear Differential Equation is a Solution

a. Show that y1(x) = e−2x and y2(x) = ex are solutions on (−∞,∞) of
the homogeneous linear differential equation

(10) y′′ + y′ − 2y = 0.

b. Show that the linear combination y(x) = c1y1(x) + c2y2(x) = c1e
−2x +

c2e
x, where c1 and c2 are arbitrary constants, is also a solution to the

DE (10) on (−∞,∞).

Solution

a. Differentiating y1 = e−2x twice, we find y′1 = −2e−2x and y′′1 = 4e−2x.
Substitution into (10), yields

y′′ + y′ − 2y = (4e−2x) + (−2e−2x)− 2(e−2x) = (4− 2− 2)e−2x = 0.

Since y1, y
′
1, and y

′′
1 are defined on (−∞,∞), y1 = e−2x is a solution of

the DE (10) on (−∞,∞). Likewise, differentiating y2 = ex twice, we
find y′2 = ex and y′′2 = ex. Substitution into equation (10) yields

y′′ + y′ − 2y = (ex) + (ex)− 2(ex) = (1 + 1− 2)ex = 0.

Since y2, y
′
2, and y

′′
2 are defined on (−∞,∞), y2 = ex is a solution of the

DE (10) on (−∞,∞).

b. Differentiating the linear combination y = c1y1 + c2y2 = c1e
−2x + c2e

x

twice, yields
y′ = c1y

′
1 + c2y

′
2 = −2c1e

−2x + c2e
x

and

y′′ = c1y
′′
1 + c2y

′′
2 = 4c1e

−2x + c2e
x.

Substituting into (10), we find

y′′ + y′ − 2y

= (4c1e
−2x + c2e

x) + (−2c1e
−2x + c2e

x)− 2(c1e
−2x + c2e

x)

= c1(4− 2− 2)e−2x + c2(1 + 1− 2)ex

= 0e−2x + 0ex = 0.

Since y1, y
′
1, y

′′
1 , y2, y

′
2, and y

′′
2 are defined and continuous on (−∞,∞),

y(x) = c1y1(x) + c2y2(x) = c1e
−2x + c2e

x is defined and continuous on
(−∞,∞). And since the linear combination y(x) = c1y1(x) + c2y2(x)
satisfies the DE (10) on (−∞,∞) for arbitrary constants c1 and c2, y(x)
is a solution of (10) on (−∞,∞). �
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The following superposition theorem generalizes the result of Example 3 for
homogeneous linear differential equations.

Superposition Theorem

If y1(x), y2(x), . . . , yk(x) are solutions on the interval I of the homogeneous
linear differential equation

(11) an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a1(x)y
(1)(x) + a0(x)y(x) = 0,

then the linear combination y(x) = c1y1(x) + c2y2(x) + · · · + ckyk(x) where
c1, c2, . . . , ck are arbitrary constants is a solution of (11) on I.

Proof: We will prove this theorem for the special case in which k = 2 and
n = 3. Then it will be obvious how to prove the theorem in general. We
assume that y1(x) and y2(x) are solutions on an interval I of the third-order,
homogeneous linear differential equation

(12) a3(x)y
′′′ + a2(x)y

′′ + a1(x)y
′ + a0(x)y = 0.

Since y1(x) is a solution of (12) on I,

a3(x)y
′′′
1 + a2(x)y

′′
1 + a1(x)y

′
1 + a0(x)y1 = 0 for all x ∈ I

and since y2(x) is a solution of (12) on I,

a3(x)y
′′′
2 + a2(x)y

′′
2 + a1(x)y

′
2 + a0(x)y2 = 0 for all x ∈ I.

Differentiating y(x) = c1y1(x) + c2y2(x) three times, we find

y′(x) = c1y
′
1(x) + c2y

′
2(x),

y′′(x) = c1y
′′
1 (x) + c2y

′′
2 (x),

and

y′′′(x) = c1y
′′′
1 (x) + c2y

′′′
2 (x).

Substituting into the left-hand side of (12) for y, y′, y′′, and y′′′, we see that

a3(x)y
′′′ + a2(x)y

′′ + a1(x)y
′ + a0(x)y

= a3(x)[c1y
′′′
1 (x) + c2y

′′′
2 (x)] + a2(x)[c1y

′′
1 (x) + c2y

′′
2 (x)]

+ a1(x)[c1y
′
1(x) + c2y

′
2(x)] + a0(x)[c1y1(x) + c2y2(x)]

= c1[a3(x)y
′′′
1 + a2(x)y

′′
1 + a1(x)y

′
1 + a0(x)y1]

+ c2[a3(x)y
′′′
2 + a2(x)y

′′
2 + a1(x)y

′
2 + a0(x)y2]

= c10 + c20 = 0 for all x ∈ I. �
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For example, y1(x) = e2x and y2(x) = sinx are both solutions of the third-
order homogeneous linear differential equation

(13) y′′′ − 2y′′ + y′ − 2y = 0

on the interval (−∞,∞). Consequently, y(x) = c1e
2x + c2 sinx is a solution

to (13) on (−∞,∞). In particular, z(x) = 3e2x − 5 sinx is a solution of (13)
on (−∞,∞).

The superposition theorem states that any linear combination of solutions
of an n-th order homogeneous linear differential equation is a solution of the
same differential equation. A useful corollary of the superposition theorem
is the following: If y(x) is any solution of an n-th order homogeneous linear
differential equation, then cy(x) is also a solution for any arbitrary constant
c. The superposition theorem only applies to homogeneous linear differential
equations. It does not apply to nonhomogeneous linear equations or nonlinear
equations.

Let {y1(x), y2(x), . . . , ym(x)} be a set of functions defined on an interval I.
The set is linearly dependent on the interval I if there exist constants
c1, c2, . . . , cm not all zero such that

c1y1(x) + c2y2(x) + · · ·+ cmym(x) = 0

for all x ∈ I. Otherwise, the set is linearly independent on the interval
I.

That is, the set of functions {y1(x), y2(x), . . . , ym(x)} is linearly indepen-
dent on the interval I if and only if c1y1(x) + c2y2(x) + · · ·+ cmym(x) = 0 for
all x in I implies c1 = c2 = · · · = cm = 0. In other words, the set of functions
is linearly independent on the interval I if and only if the only way the linear
combination c1y1(x) + c2y2(x) + · · ·+ cmym(x) can be identically zero on the
interval I is for c1 = c2 = · · · = cm = 0.

For example, the following sets of functions are linearly independent on the
interval I = (−∞,∞)—that is, on the entire real line: {1, x, 3x2, x5, −6x10},
{e2x, xe2x, e3x, 5x}, and {sinx, cos 3x, e−x, xex sin 2x}.

The set

{
1

x2
,

1

x− 1
,

1

x+ 1

}

is not linearly independent on (−∞,∞). This

set is linearly independent on each of the intervals (−∞,−1), (−1, 0), (0, 1),
and (1,∞). The set is not linearly independent on any interval which contains
−1, 0, or 1, since some function in the set is not defined at −1, 0, or 1.

The set {2, x, 3 − 4x} is linearly dependent on every interval I, since
(−3) · 2 + (8) · x+ (2) · (3− 4x) = 0 for all real x.

The set {x, |x|} is linearly dependent on the interval (0, 3), since
(−1) · x + (1) · |x| = 0 for all x in (0, 3). But the set {x, |x|} is linearly
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independent on the interval (−3, 3), since c1x + c2|x| = 0 for x = 1 implies
c1 + c2 = 0 and since c1x + c2|x| = 0 for x = −1 implies −c1 + c2 = 0.
The simultaneous solution of c1 + c2 = 0 and −c1 + c2 = 0 is c1 = c2 = 0.
This example illustrates that the set of functions {y1(x), y2(x), . . . , ym(x)}
can be shown to be linearly independent on an interval I by evaluating the
linear combination c1y1(x)+ c2y2(x)+ · · ·+ cmym(x) = 0 at m distinct points
x1, x2, . . . , xm in the interval I and showing that the only solution of the m
simultaneous equations

c1y1(x1) + c2y2(x1) + · · · + cmym(x1) = 0

c1y1(x2) + c2y2(x2) + · · · + cmym(x2) = 0
...

...
...

...
...

...
...
...

c1y1(xm) + c2y2(xm) + · · · + cmym(xm) = 0

is c1 = c2 = · · · = cm = 0.

In order to prove that a set of functions {y1(x), y2(x), . . . , ym(x)} is linearly
dependent on an interval I, we must find explicit constants c1, c2, . . . , cm not
all zero such that c1y1(x) + c2y2(x) + · · ·+ cmym(x) = 0 for all x ∈ I. On the
other hand, to show that a set of functions {y1(x), y2(x), . . . , ym(x)} is linearly
independent on an interval I, we must prove that we cannot find constants
c1, c2, . . . , cm not all zero such that c1y1(x) + c2y2(x) + · · · + cmym(x) = 0
for all x ∈ I. This is usually very difficult to do directly. However, when
y1(x), y2(x), . . . , ym(x) are all solutions of the same homogeneous linear dif-
ferential equation, then, as we shall soon discover, it is fairly easy to check for
linear dependence or linear independence.

Let the functions y1(x), y2(x), . . . , ym(x) all be differentiable at least m− 1
times for all x in some interval I. The Wronskian of y1, y2, . . . , ym on I is
the determinant

W (y1, y2, . . . , ym, x) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

y1 y2 · · · ym
y′1 y′2 · · · y′m
...

...
...

y
(m−1)
1 y

(m−1)
2 · · · y

(m−1)
m

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

The Wronskian is named in honor of Józef Maria Hoëné Wronski (1778-1853),
who was born in Poland, studied mathematics and philosophy in Germany,
and lived much of his life in France. For m = 2 the Wronskian of y1 and y2 is

W (y1, y2, x) =

∣
∣
∣
∣
y1 y2
y′1 y′2

∣
∣
∣
∣ = y1y

′
2 − y′1y2.
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And for m = 3 the Wronskian of y1, y2, and y3 is

W (y1, y2, y3, x) =

∣
∣
∣
∣
∣
∣

y1 y2 y3
y′1 y′2 y′3
y′′1 y′′2 y′′3

∣
∣
∣
∣
∣
∣

= y1y
′
2y

′′
3 + y2y

′
3y

′′
1 + y3y

′
1y

′′
2 − y′′1y

′
2y3 − y′′2y

′
3y1 − y′′3y

′
1y2.

Theorem 4.1 Let the functions y1(x), y2(x), . . . , ym(x) all be differentiable
at least m− 1 times for all x in some interval I. If the functions y1, y2, . . . , ym
are linearly dependent on the interval I, then for all x ∈ I the Wronskian
W (y1, y2, . . . , ym, x) = 0.

Proof: Since by hypothesis the set of functions {y1(x), y2(x), . . . , ym(x)} is
assumed to be linearly dependent on the interval I, there exist constants
c1, c2, . . . , cm not all zero such that

c1y1(x) + c2y2(x) + · · ·+ cmym(x) = 0 for all x ∈ I.

Differentiating this equation m− 1 times, we find for all x ∈ I

c1y
(1)
1 (x) + c2y

(1)
2 (x) + · · · + cmy

(1)
m (x) = 0

...
...

...
...

...
...

...
...

c1y
(m−1)
1 (x) + c2y

(m−1)
2 (x) + · · · + cmy

(m−1)
m (x) = 0.

This system of m equations in the m unknowns c1, c2, . . . , cm may be written
in matrix-vector notation as

(14)

⎛

⎜
⎜
⎜
⎝

y1 y2 · · · ym
y′1 y′2 · · · y′m
...

...
...

y
(m−1)
1 y

(m−1)
2 · · · y(m−1)

m

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

c1
c2
...
cm

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0
0
...
0

⎞

⎟
⎟
⎟
⎠

(If you are unfamiliar with matrix-vector notation, see Section 8.1.) Recall
from linear algebra the theorem which states: “A homogeneous system of
m equation in m unknowns has a nonzero solution if and only if the deter-
minant of the coefficient matrix is zero.” Since we have assumed that not
all of the unknowns (the cis) are zero, equation (14) has a nonzero solu-
tion and, therefore, the determinant of the coefficient matrix is zero—that is,
W (y1, y2, . . . ym, x) = 0 for all x ∈ I. �

The functions y1 = sin 2x and y2 = sinx cosx are linearly dependent on the
interval (−∞,∞), since 1 · y1 − 2 · y2 = 1 · sin 2x − 2 · sinx cosx = 0 for all
x ∈ (−∞,∞). Hence, by Theorem 4.1, we must have W (y1, y2, x) = 0 for all
x ∈ (−∞,∞). Calculating this Wronskian, we find for all x ∈ (−∞,∞)

W (y1, y2, x) =

∣
∣
∣
∣
∣
∣

sin 2x sinx cosx

2 cos 2x − sin2 x+ cos2 x

∣
∣
∣
∣
∣
∣
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= sin 2x(− sin2 x+ cosx2)− 2 cos 2x(sinx cosx)

= (2 sinx cosx)(cos 2x)− 2 sinx cosx cos 2x = 0.

From the study of logic, we know that if the statement “A implies B” is
true, then the statement “not B implies not A” is also true. That is, if “A
implies B” is a theorem, then the contrapositive of the statement, which is
“not B implies not A” is also a theorem. The contrapositive of Theorem 4.1
is the following theorem.

Theorem 4.2 Let the functions y1(x), y2(x), . . . , ym(x) all be differentiable
at least m− 1 times for all x in some interval I. If for some x ∈ I the Wron-
skian W (y1, y2, . . . , ym, x) �= 0, then the functions y1, y2, . . . , ym are linearly
independent on the interval I.

Example 4 Verification of the Linear Independence of Two Differ-

tiable Functions

Show that ex and e2x are linearly independent on the interval (−∞,∞).

Solution

The functions ex and e2x are differentiable on (−∞,∞) and their Wronskian
is

W (ex, e2x, x) =

∣
∣
∣
∣
ex e2x

ex 2e2x

∣
∣
∣
∣ = 2e3x − e3x = e3x �= 0 for all x ∈ (−∞,∞).

Therefore, by Theorem 4.2, the functions ex and e2x are linearly independent
on (−∞,∞). �

Example 5 Verification of the Linear Independence of Three Dif-

ferentiable Functions

Show that the functions 1, x, and x2 are linearly independent on the interval
(−∞,∞).

Solution

The functions 1, x, and x2 are at least twice differentiable on (−∞,∞) and
their Wronskian is

W (1, x, x2, x) =

∣
∣
∣
∣
∣
∣

1 x x2

0 1 2x
0 0 2

∣
∣
∣
∣
∣
∣
= 2 �= 0 for all x ∈ (−∞,∞).

Therefore, by Theorem 4.2, the functions 1, x, and x2 are linearly independent
on (−∞,∞). �

If the Wronskian of a set of functions is zero at every point in an interval,
that does not imply the set of functions is linearly dependent on the interval.
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Consider the functions y1(x) = x3 and y2(x) = |x|3 on the interval (−2, 2).
Differentiating, we find y′1(x) = 3x2 and

y′2(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−3x2, x < 0

0, x = 0

3x2, x > 0

(Verify that y′2(0) exists and has the value zero.) Computing the Wronskian
of {x3, |x|3} on (−2, 0), we find

W (x3, |x|3, x) =
∣
∣
∣
∣
∣
∣

x3 −x3

3x2 −3x2

∣
∣
∣
∣
∣
∣
= −3x5 + 3x5 = 0.

At 0, we get

W (x3, |x|3, 0) =
∣
∣
∣
∣
∣
∣

0 0

0 0

∣
∣
∣
∣
∣
∣
= 0.

And on (0, 2), we see

W (x3, |x|3, x) =
∣
∣
∣
∣
∣
∣

x3 x3

3x2 3x2

∣
∣
∣
∣
∣
∣
= 3x5 − 3x5 = 0.

Hence, W (x3, |x|3, x) = 0 for every x ∈ (−2, 2). Now assume there exist
constants c1 and c2 such that c1y1(x) + c2y2(x) = c1x

3 + c2|x|3 = 0 for all
x ∈ (−2, 2). For x = −1, we must have −c1 + c2 = 0 and for x = 1, we must
have c1+ c2 = 0. Simultaneously solving these two equations in c1 and c2, we
find c1 = c2 = 0, which shows that the set {x3, |x|3} is linearly independent
on (−2, 2). Hence, {x3, |x|3} is a set of functions which is linearly independent
on (−2, 2) and whose Wronskian is identically zero on (−2, 2).

We now prove the following important theorem regarding the relationship
of linearly independent solutions of n-th order homogeneous linear differential
equations and the Wronskian of the solutions.

Theorem 4.3 Let an(x), an−1(x), . . . , a1(x), a0(x) be continuous on the
interval I and let an(x) �= 0 for all x ∈ I. The functions y1(x), y2(x), . . . ,
yn(x) are linearly independent solutions on the interval I of the n-th order
homogeneous linear differential equation

(15) an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a1(x)y
(1)(x) + a0(x)y(x) = 0,

if and only if y1(x), y2(x), . . . , yn(x) are solutions of (15) on I and the Wron-
skian W (y1, y2, . . . , yn, x) �= 0 for some x ∈ I.
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Proof: The “if” portion of this theorem is a special case of Theorem 4.2 in
which the functions y1(x), y2(x), . . . , yn(x) are all known to be solutions of
the same n-th order homogeneous linear differential equation.

We prove the “only if” portion of this theorem by contradiction. Thus, we
assume that the functions y1(x), y2(x), . . . , yn(x) are linearly independent on
the interval I and that the Wronskian W (y1, y2, . . . , yn, x) = 0 for all x ∈ I.
Choose any a ∈ I. By the theorem from linear algebra stated earlier, since
W (y1, y2, . . . , yn, a) = 0 there exists a nonzero solution to the following linear
homogeneous system of n equations in the n unknowns c1, c2, . . . , cn

(16)

c1y1(a) + c2y2(a) + · · · + cnyn(a) = 0

c1y
(1)
1 (a) + c2y

(1)
2 (a) + · · · + cny

(1)
n (a) = 0

...
...

...
...

...
...

...
...

c1y
(n−1)
1 (a) + c2y

(n−1)
2 (a) + · · · + cny

(n−1)
n (a) = 0

Let the nonzero solution be denoted by k1, k2, . . . , kn and consider the linear
combination

(17) y(x) = k1y1(x) + k2y2(x) + · · ·+ knyn(x).

Since y1(x), y2(x), . . . , yn(x) are solutions of (15) on I, by the superposition
theorem y(x) is a solution of (15) on I. Differentiating (17) n− 1 times and
then evaluating (17) and each derivative at x = a, we find from equations (16)
that y(x) satisfies the conditions

(18) y(a) = 0, y(1)(a) = 0, . . . , y(n−1)(a) = 0.

That is, y(x) satisfies the initial value problem consisting of the differen-
tial equation (15) and the initial conditions (18). But by the existence and
uniqueness theorem the unique solution of this initial value problem is the
zero function. Hence,

y(x) = k1y1(x) + k2y2(x) + · · ·+ knyn(x) = 0 for all x ∈ I.

That is, the functions y1(x), y2(x), . . . , yn(x) are linearly dependent on the
interval I, which is a contradiction. �

In effect, Theorem 4.3 says, as illustrated by the proof, “If y1(x), y2(x), . . . ,
yn(x) are solutions on the interval I of the n-th order homogeneous linear
differential equation (15), then either

(1) W (y1, y2, . . . , yn, x) = 0 for all x ∈ I and the solutions are linearly

dependent on I
or

(2) W (y1, y2, . . . , yn, x) �= 0 for all x ∈ I and the solutions are linearly
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independent on I.”

That is, if y1(x), y2(x), . . . , yn(x) are solutions on an interval I of the same
n-th order homogeneous linear differential equation, it is not possible for their
Wronskian to be zero at one point in I and to be nonzero at another point in
I. Hence, to check a set of n solutions to (15) on an interval I to see if they
are linearly dependent on I or linearly independent on I, all we need to do is
to evaluate the Wronskian of the solutions at some convenient point in I and
see if it is zero or not.

Example 6 Determination of Linear Dependence or Linear

Independence

The functions ex, xex, and x2ex are solutions on (−∞,∞) of the third-order
homogeneous linear differential equation

y(3) − 3y(2) + 3y(1) − y = 0.

Determine if they are linearly dependent or linearly independent on (−∞,∞).

Solution

By definition

W (ex, xex, x2ex, x) =

∣
∣
∣
∣
∣
∣

ex xex x2ex

ex (x+ 1)ex (x2 + 2x)ex

ex (x+ 2)ex (x2 + 4x+ 2)ex

∣
∣
∣
∣
∣
∣
.

Computing this Wronskian directly is tedious at best. However, evaluating
the Wronskian at x = 0 ∈ (−∞,∞) and computing, we find easily that

W (ex, xex, x2ex, 0) =

∣
∣
∣
∣
∣
∣

1 0 0
1 1 0
1 2 2

∣
∣
∣
∣
∣
∣
= 2 �= 0.

So the functions ex, xex, and x2ex are linearly independent on (−∞,∞) by
Theorem 4.3. �

Example 7 Determination of Linear Dependence or Linear

Independence

The functions ex, e−x, and sinhx are solutions on (−∞,∞) of the third-
order homogeneous linear differential equation

y(3) + y(2) − y(1) − y = 0.

Determine if they are linearly dependent or linearly independent on (−∞,∞).
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Solution

By definition

W (ex, e−x, sinhx, x) =

∣
∣
∣
∣
∣
∣

ex e−x sinhx
ex −e−x coshx
ex e−x sinhx

∣
∣
∣
∣
∣
∣
.

Evaluating the Wronskian at x = 0 and computing, we find

W (ex, e−x, sinhx, 0) =

∣
∣
∣
∣
∣
∣

1 1 0
1 −1 1
1 1 0

∣
∣
∣
∣
∣
∣
= 0.

So by Theorem 4.3 the functions ex, e−x, and sinhx are linearly dependent
on (−∞,∞). �

The following existence theorem proves that there are at least n linearly
independent solutions on the interval I to the differential equation

(19) an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a1(x)y
(1)(x) + a0(x)y(x) = 0

where an(x), an−1(x), . . . , a1(x), a0(x) are all continuous on the interval I and
an(x) �= 0 for all x ∈ I.

Existence of N Linearly Independent Solutions to N-th Order

Homogeneous Linear Differential Equations

Theorem 4.4 Let an(x), an−1(x), . . . , a1(x), a0(x) be continuous on
the interval I and let an(x) �= 0 for all x ∈ I. There exist n linearly in-
dependent solutions on I of the n-th order homogeneous linear differential
equation

(19) an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a1(x)y
(1)(x) + a0(x)y(x) = 0.

Proof: Let x0 ∈ I. By the existence and uniqueness theorem, there exist
n unique solutions on I, say y1(x), y2(x), . . . , yn(x), of the n initial value
problems consisting of the DE (19) and the following n sets of initial conditions

(20.1) y1(x0) = 1, y
(1)
1 (x0) = 0, y

(2)
1 (x0) = 0, . . . , y

(n−1)
1 (x0) = 0

(20.2) y2(x0) = 0, y
(1)
2 (x0) = 1, y

(2)
2 (x0) = 0, . . . , y

(n−1)
2 (x0) = 0

...
...

...
...

(20.n) yn(x0) = 0, y(1)n (x0) = 0, y(2)n (x0) = 0, . . . , y(n−1)
n (x0) = 1

To prove that the n solutions y1(x), y2(x), . . . , yn(x) of the specified n ini-
tial value problems are linearly independent solutions of the DE (19) on the
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interval I, we examine their Wronskian evaluated at x0 and find

W (y1, y2, . . . , yn, x0) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(x0) y2(x0) · · · yn(x0)
y′1(x0) y′2(x0) · · · y′n(x0)

...
...

. . .
...

y
(n−1)
1 (x0) y

(n−1)
2 (x0) · · · y(n−1)

n (x0)

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1 �= 0.

Hence, by Theorem 4.3 we know that the functions y1(x), y2(x), . . . , yn(x) are
linearly independent solutions of the DE (19) on the interval I. �

By Theorem 4.4 there are at least n linearly independent solutions to the
DE (19) on the interval I. The following representation theorem shows that
there are at most n linearly independent solutions of (19) on I and it provides
a representation for every solution of the DE (19) in terms of any set of n
linearly independent solutions. The following theorem does not say that there
is only one set of n linearly independent solutions—the set specified in the
proof of Theorem 4.4—but that the maximum number of members in any
solution set which is linearly independent on I is n.

A Representation Theorem for N-th Order Homogeneous Linear

Differential Equations

Let an(x), an−1(x), . . . , a1(x), a0(x) be continuous on the interval I and let
an(x) �= 0 for all x ∈ I. If y1(x), y2(x), . . . , yn(x) are linearly independent
solutions on I of the n-th order homogeneous linear differential equation

(21) an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a1(x)y
(1)(x) + a0(x)y(x) = 0,

and if y(x) is any solution of (21) on I, then

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

for suitably chosen constants ci.

Proof: Let y(x) be any solution of the DE (21) on the interval I and let x0 be
any point in I. Consider the function z(x) = c1y1(x)+ c2y2(x)+ · · ·+ cnyn(x)
where the ci are arbitrary constants. By the superposition theorem, z(x) is a
solution of the DE (21) on I. If we can choose the ci so that

(22) z(x0) = y(x0), z
(1)(x0) = y(1)(x0), . . . , z

(n−1)(x0) = y(n−1)(x0),

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


N-th Order Linear Differential Equations 159

then z(x) ≡ y(x) for all x ∈ I, since by the existence and uniqueness theorem
there is only one solution of the DE (21) which satisfies the initial condi-
tions (22). Differentiating the function z(x) successively n−1 times and then
evaluating z(x) and its n−1 derivatives at x0, we obtain the following system
of n equations in the n unknowns ci:

c1y1(x0) + c2y2(x0) + · · · + cnyn(x0) = y(x0)

c1y
(1)
1 (x0) + c2y

(1)
2 (x0) + · · · + cny

(1)
n (x0) = y(1)(x0)

...
...

...
...

...
...

...
...

c1y
(n−1)
1 (x0) + c2y

(n−1)
2 (x0) + · · · + cny

(n−1)
n (x0) = y(n−1)(x0)

Or, in matrix-vector notation,

(23)

⎛

⎜
⎜
⎜
⎝

y1(x0) y2(x0) · · · yn(x0)
y′1(x0) y′2(x0) · · · y′n(x0)

...
...

...

y
(n−1)
1 (x0) y

(n−1)
2 (x0) · · · y(n−1)

n (x0)

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

c1
c2
...
cn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

y(x0)

y(1)(x0)
...

y(n−1)(x0)

⎞

⎟
⎟
⎟
⎠

From linear algebra, we know that this system of equations has a unique so-
lution if and only if the determinant of the square matrix in (23) is nonzero.
Of course, the determinant of the square matrix in (23) is the Wronskian of
y1, y2, . . . , yn evaluated at x0. Since the functions y1(x), y2(x), . . . , yn(x) are
linearly independent on I, their Wronskian evaluated at x0 is nonzero. There-
fore, there exists a unique solution (c1, c2, . . . , cn)

T to (23) and consequently
y(x) ≡ z(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) on the interval I. �

If y1(x), y2(x), . . . , yn(x) are n linearly independent solutions of the n-th
order homogeneous linear differential equation (21) on an interval I, then the
general solution of the DE (21) on I is

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

where the ci are arbitrary constants.

Example 8 General Solution of a Third-Order, Homogeneous Linear

Differential Equation

Given that the functions ex, xex, and x2ex are linearly independent solutions
on (−∞,∞) of the third-order homogeneous linear differential equation y(3)−
3y(2) + 3y(1) − y = 0, write the general solution.

Solution

The general solution of the given differential equation on the interval
(−∞,∞) is y(x) = c1e

x + c2xe
x + c3x

2ex where c1, c2, and c3 are arbitrary
constants. �
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The general n-th order nonhomogeneous linear differential equa-
tion has the form

(24) an(x)y
(n)(x)+an−1(x)y

(n−1)(x)+ · · ·+a1(x)y(1)(x)+a0(x)y(x) = b(x)

where an(x) �= 0 in some interval I and b(x) �= 0 for some x ∈ I. The
associated homogeneous linear differential equation is

(25) an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a1(x)y
(1)(x) + a0(x)y(x) = 0.

Any function yp(x) which satisfies the nonhomogeneous linear DE (24) and
which contains no arbitrary constant is called a particular solution of the
nonhomogeneous equation. For example, yp(x) = 2 is a particular solution of
the nonhomogeneous linear differential equation y′′+4y = 8, since y′′p +4yp =
0 + 4(2) = 8 and yp contains no arbitrary constant.

Example 9 Verification of a Particular Solution

Show that y(x) = x2 − 2x is a particular solution of the nonhomogeneous
linear differential equation

(26) y(3) − 3y(2) + 3y(1) − y = −x2 + 8x− 12.

Solution

Differentiating y(x) = x2 − 2x three times, we find y(1)(x) = 2x − 2,
y(2)(x) = 2, and y(3) = 0. Substituting for y(x) and its derivatives in the
DE (26), we see that

y(3) − 3y(2) + 3y(1) − y = 0− 3(2) + 3(2x− 2)− (x2 − 2x)

= −6 + 6x− 6− x2 + 2x = −x2 + 8x− 12.

Since y(x) satisfies the DE (26) and contains no arbitrary constant, y(x) is a
particular solution of (26).

A Representation Theorem for N-th Order Nonhomogeneous Linear

Differential Equations

If yp(x) is any particular solution on the interval I of the nonhomogeneous
linear differential equation

(24) an(x)y
(n)(x)+an−1(x)y

(n−1)(x)+ · · ·+a1(x)y(1)(x)+a0(x)y(x) = b(x),

and if y1(x), y2(x), . . . , yn(x) are n linearly independent solutions on I of the
associated homogeneous equation

(25) an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a1(x)y
(1)(x) + a0(x)y(x) = 0,

then every solution of the DE (24) on the interval I has the form

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) + yp(x)
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where c1, c2, . . . , cn are suitably chosen constants.

Proof: Let yc(x) = c1y1(x)+c2y2(x)+· · ·+cnyn(x) where the ci are arbitrary
constants and let z(x) be any solution of the nonhomogeneous linear DE (24)
on I. In order to prove this theorem, we must show that it is possible to choose
the ci so that z(x) = yc(x) + yp(x). Since z(x) and yp(x) are both solutions
on the interval I of the nonhomogeneous DE (24), w(x) = z(x) − yp(x) is a
solution on I of the associated homogeneous DE (25). By the representation
theorem for n-th order homogeneous linear differential equations there exist
constants c1, c2, . . . , cn such that

w(x) = z(x)− yp(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x).

Hence, z(x) = yc(x) + yp(x) for suitably chosen constants c1, c2, . . . , cn. �

Let y1(x), y2(x), . . . , yn(x) be n linearly independent solutions on I of the
homogeneous DE (25) associated with the nonhomogeneous DE (24). The lin-
ear combination yc(x) = c1y1(x)+ c2y2(x)+ · · ·+ cnyn(x) where c1, c2, . . . , cn
are arbitrary constants is called the complementary solution of the nonho-
mogeneous DE (24). Observe that the complementary solution is the general
solution of the associated homogeneous equation (25). The general solution
of the nonhomogeneous DE (24) is y(x) = yc(x) + yp(x) where yc(x) is the
complementary solution and yp(x) is any particular solution.

Example 10 General Solution of a Third-Order, Nonhomogeneous

Linear Differential Equation

Write the general solution of the nonhomogeneous linear differential equa-
tion

(26) y(3) − 3y(2) + 3y(1) − y = −x2 + 8x− 12.

Solution

In Example 9, we showed that a particular solution of the DE (26) is
yp(x) = x2 − 2x. And in Example 8, we showed that the general solution
of the associated homogeneous equation y(3) − 3y(2) + 3y(1) − y = 0 is
yc(x) = c1e

x + c2xe
x + c3x

2ex where c1, c2, and c3 are arbitrary constants.
Hence, the general solution of the nonhomogeneous DE (26) is

y(x) = yc(x) + yp(x) = c1e
x + c2xe

x + c3x
2ex + x2 − 2x,

where c1, c2, and c3 are arbitrary constants. �

In order to solve a nonhomogeneous, linear differential equation, we need
to find a complementary solution—which is a linear combination of n
linearly independent solutions of the associated homogeneous equation—and
a particular solution. In this chapter, we will show how to solve a nonhomoge-
neous linear differential equation on the interval (−∞,∞) when the functions

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


162 Elementary Differential Equations

an(x), an−1(x), . . . , a0(x) are all constants. In Chapter 7, we will show how to
write the general n-th order nonhomogeneous linear differential equation (1)
as a system of n first-order differential equations. Then we will be able to gen-
erate a numerical solution to the initial value problem consisting of the initial
conditions (2), and the linear nonhomogeneous differential equation (1) for
arbitrary functions an(x), an−1(x), . . . , a0(x), b(x).

The following is a summary of the results we obtained in this section.

A. If the functions an(x), an−1(x), . . . , a1(x), and a0(x) are all continuous on
the interval I and if an(x) �= 0 for any x in I, then for the homogeneous
n-th order linear differential equation

an(x)y
(n)(x) + an−1(x)y

(n−1)(x) + · · ·+ a1(x)y
(1)(x) + a0(x)y(x) = 0

i. there exists a set containing exactly n linearly independent solutions on

the interval I, say {y1(x), y2(x), . . . , yn(x)},
ii. the general solution of the homogeneous linear differential equation on I

is
yc(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

where c1, c2, . . . , cn are arbitrary constants, and

iii. there exists a unique solution of the homogeneous linear differential

equation which satisfies the initial conditions

y(x0) = k1, y(1)(x0) = k2, . . . , y(n−1)(x0) = kn

where k1, k2, . . . , kn are specified constants and x0 is some point in I.

B. If the functions an(x), an−1(x), . . . , a1(x), a0(x), and b(x) are all contin-
uous on the interval I, if an(x) �= 0 for any x in I, and if b(x) �= 0 for some
x in I, then for the nonhomogeneous n-th order linear differential
equation

an(x)y
(n)(x) + an−1y

(n−1)(x) + · · ·+ a1(x)y
(1)(x) + a0(x)y(x) = b(x)

i. there exists a particular solution of the nonhomogeneous differential

equation on I, say yp(x),

ii. the general solution of the nonhomogeneous differential equation on I is

y(x) = yc(x) + yp(x)

where yc(x) is the general solution of the associated homogeneous equa-

tion, and

iii. there exists a unique solution to nonhomogeneous differential equation

which satisfies the initial conditions

y(x0) = k1, y(1)(x0) = k2, . . . , y(n−1)(x0) = kn

where k1, k2, . . . , kn are specified constants and x0 is some point in I.
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EXERCISES 4.1

In Exercises 1–6 determine the largest interval on which the exis-
tence and uniqueness theorem guarantees the existence of a unique
solution for the given initial value problem.

1. 3y′′ − 2y′ + 4y = x, y(−1) = 2, y′(−1) = 3

2. xy′′′ + xy′ = 4; y(1) = 0, y′(1) = 1, y′′(1) = −1

3. x(x− 3)y′′ + 3y′ = x2; y(1) = 0, y′(1) = 1

4. x(x− 3)y′′ + 3y′ = x2; y(5) = 0, y′(5) = 1

5.
√
1− x y′′ − 4y = sinx; y(−2) = 3, y′(−2) = −1

6. (x2 − 4)y′′ + (lnx)y = xex; y(1) = 1, y′(1) = 2

7. Verify that ex and e−x are both solutions of the differential equation
y′′ − y = 0. Why are sinhx = (ex − e−x)/2 and coshx = (ex + e−x)/2
also solutions?

8. Verify that the complex valued functions eix and e−ix are solutions of
the differential equation y′′+y = 0.Why are sinx = (eix−e−ix)/2i and
cosx = (eix + e−ix)/2 also solutions?

9. Verify that x, x−2, and c1x + c2x
−2 where c1 and c2 are arbitrary

constants are solutions of the differential equation x2y′′ +2xy′ − 2y = 0
for x > 0.

10. Verify that the functions 1 and x2 are linearly independent on (−∞,∞)
and are solutions of the differential equation 2yy′′ − (y′)2 = 0. Is the
linear combination y(x) = c1 + c2x

2 a solution of this differential equa-
tion for arbitrary constants c1 and c2? Why does this not violate the
superposition theorem?

11. Show that the following sets of functions are linearly dependent on
(−∞,∞) by finding constants c1, c2, . . . , cn not all zero such that c1y1+
c2y2 + · · ·+ cnyn = 0.

a. {2x, 3x} b. {1, x, 3x− 4}

c. {1, sin2 x, cos2 x} d. {x, ex, xex, (x+ 2)ex}
12. Use the Wronskian to show that the following sets of functions are

linearly independent on (−∞,∞).

a. {sinx, cosx} b. {sinx, sin 2x}

c. {1, x, x2} d. {ex, e2x, xe2x}
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13. a. Verify that y1 = ex and y2 = e−x are linearly independent solutions

on (−∞,∞) of the homogeneous linear differential equation

(27) y′′ − y = 0.

b. Write the general solution of (27).

c. Find the solution which satisfies the initial conditions y(0) = 0,

y′(0) = 1.

14. a. Verify that y1 = 1, y2 = sinx and y3 = cosx are linearly independent

solutions on (−∞,∞) of the homogeneous linear differential equa-

tion

(28) y′′′ + y′ = 0.

b. Write the general solution of (28).

c. Find the solution which satisfies the initial conditions y(0) = 1,

y′(0) = 0, y′′(0) = −1.

15. a. Verify that y1 = x and y2 = x lnx are linearly independent solutions

on (0,∞) of the homogeneous linear differential equation

(29) x2y′′ − xy′ + y = 0.

b. Write the general solution of (29).

c. Find the solution which satisfies the initial conditions y(1) = 2,

y′(1) = −1.

16. a. Verify that yp = 8 is a particular solution on (−∞,∞) of the non-

homogeneous linear differential equation

(30) y′′ − 4y = −32.

b. Write the associated homogeneous equation.

c. Verify that y1 = e2x and y2 = e−2x are linearly independent solutions

on (−∞,∞) of the associated homogeneous equation.

d. Write the complementary solution for (30).

e. Write the general solution of (30).

f. Find the solution of (30) which satisfies the initial conditions

y(0) = −9, y′(0) = 6.
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17. a. Verify that yp = 3x + 2 is a particular solution on (−∞,∞) of the

nonhomogeneous linear differential equation

(31) y′′ + 9y = 27x+ 18.

b. Write the associated homogeneous equation.

c. Verify that y1 = sin 3x and y2 = cos 3x are linearly independent

solutions on (−∞,∞) of the associated homogeneous equation.

d. Write the complementary solution for (31).

e. Write the general solution of (31).

f. Find the solution of (31) which satisfies the initial conditions

y(0) = 23, y′(0) = 21.

18. a. Verify that yp = x + 1/x is a particular solution on (0,∞) of the

nonhomogeneous, linear differential equation

(32) x2y′′ + xy′ − 4y = −3x− 3/x.

b. Write the associated homogeneous equation.

c. Verify that y1 = x2 and y2 = 1/x2 are linearly independent solutions

on (0,∞) of the associated homogeneous equation.

d. Write the complementary solution for (32).

e. Write the general solution of (32).

f. Find the solution of (32) which satisfies the initial conditions

y(1) = 3, y′(1) = −6.

4.2 Roots of Polynomials

Previously you found roots of polynomials in order to solve word problems
in algebra; to aid in the graphing of polynomials; and to find critical points,
relative maxima, and relative minima of polynomials in calculus. In the next
section, we will see how roots of polynomials enter into the solution of dif-
ferential equations. Furthermore, as you continue to study mathematics you
will encounter a multitude of other occasions on which you will need to find
the roots of a polynomial.
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A polynomial of degree n in one variable x is a function of the form

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where n is a positive integer; an, an−1,. . . , a1, a0 are complex numbers; and
an �= 0. A root of a polynomial is any complex number r such that p(r) = 0.

As we shall see shortly, the history of solving the polynomial equation
p(x) = 0—that is, of finding the roots of the polynomial p(x)—is divided
into two distinct searches. One search consisted of trying to find an explicit
formula for the roots, while the other search consisted of developing techniques
for approximating roots.

In order to truly appreciate the algebra of old, we need to realize that
the symbolism we currently use is approximately four hundred years old—
some symbolism being much more recent. The first printed occurrence of
the + and − sign, for example, appeared in an arithmetic book published by
Johann Widman in 1489. However, the symbols were not used to represent
the operations of addition and subtraction but merely to indicate excess and
deficiency. The signs + and − were used to represent operations by the Dutch
mathematician Giel Vander Hoecke in 1514 and probably by others somewhat
earlier. The equal sign, =, appeared in 1557 in The Whetstone of Witte by
Robert Recorde. Our inequality symbols of < and > are due to Thomas
Harriot in 1631. In 1637 the French mathematician René Descartes introduced
our custom of using letters early in our alphabet to denote constants and
letters late in our alphabet to represent unknowns. Descartes also introduced
our system of exponents—x2 for x · x, x3 for x · x · x, etc.

In 1842, G. H. F. Nesselmann divided the development of algebra into three
stages. The first stage was rhetorical algebra. In rhetorical algebra, problems
were posed and solved using pure prose—no abbreviations or symbolism was
employed. This stage lasted from antiquity until the time of Diophantus
of Alexandria or approximately 250 A.D. The second stage was syncopated
algebra. In this stage, abbreviations were used for some of the quantities and
operations which occurred most frequently. The final stage is called symbolic
algebra. In this stage, the solution of a problem is obtained by purely algebraic
manipulation of mathematical shorthand.

In addition to the changing aspect of algebra, we should also be aware that
different types of numerals and number representation systems were used and
that the various sets of numbers—natural, rational, real, and complex—were
themselves in the process of being developed. The ancient Babylonians, Chi-
nese, Egyptians, Greeks, and Romans each had their own distinct numerals
and systems of representing numbers. The Babylonians used wedge-shaped
characters and base 60. The Egyptians used hieroglyphics. The Greek alpha-
betic numeral system was derived from the initial letters of the number name.
And the Romans also used a letter-based numeral system with which most of
us are familiar. These systems of numeration did not represent numbers com-
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pactly nor were they easy systems in which to develop calculating algorithms.
The Hindu-Arabic numeral system—the system which we, and the majority
of the world, currently use to represent numbers and for computing—was in-
vented by the Hindus and preserved and transmitted to the Western World
by the Arabs. The earliest existing examples of our present numeral system
appeared in the inscriptions of King Asoka who ruled most of India in the
third century B.C. Early examples do not contain a symbol for zero or the
idea of positional notation. Exactly when these crucial ideas were introduced
in India is not certain. But it is clear that they were introduced prior to
800 A.D. It was not until the thirteenth century that our current computing
patterns used in conjunction with the Hindu-Arabic numeral system reached
its present form.

The development of the various sets of numbers proceeded as follows: First,
man invented the natural numbers for counting. Then, he invented the pos-
itive rational numbers for the purpose of measurement. Next, the positive
real numbers were devised to accommodate irrational numbers such as

√
2.

Later, negative numbers were accepted and finally the complex numbers were
devised to incorporate imaginary numbers.

Until the beginning of written history, the natural numbers seem to have
served the purpose of mankind adequately. The idea of unit fractions—that
is, a fraction with numerator one—arose early in both Babylon and Egypt.
About 2000 B.C. the Babylonians conceived the idea of fractions with numer-
ators greater than one. However, no acceptable treatment of fractions which
predates the Egyptian Ahmes Papyrus of approximately 1550 B.C. has yet
been discovered. The followers of Pythagoras (c. 540 B.C.) knew and demon-
strated the incommensurability of the diagonal and the side of a square. That
is, the Pythagoreans knew that

√
2 was irrational. About 375 B.C. Theaete-

tus developed a general theory of quadratic irrationals. The first mention
of negative numbers other than as subtrahends appears in the Arithmetica
of Diophantus in about 275 A.D. where the equation 4x + 20 = 4 is called
absurd since the solution is x = −4. In India, negative numbers were viewed
as distinct entities by at least 628. In his Ars Magna (1545), Cardan first
accepted negative numbers as roots of polynomials. Also, Cardan was the
first person to use the square root of a negative number in computations. He
demonstrated that x = 5 +

√−15 and x = 5 −√−15 were both solutions of
the equation x2 + 40 = 10x. In 1637, Descartes coined the terms real and
imaginary. In 1748, Euler introduced the use of i for

√−1 and in 1832, Gauss
gave the name complex numbers to the quantities a+ bi.

Prior to 1545, mathematicians recognized only positive real numbers as
roots of polynomials. Therefore, to solve a polynomial equation before 1545
meant to find the positive real roots. The linear equation ax = b where a and
b were both positive could be solved both algebraically and geometrically by
early civilizations. The ancient Babylonians (c. 2000 B.C.) knew how to solve
the quadratic equation ax2 + bx+ c = 0 algebraically by both the method of
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completing the square and by substituting into the quadratic formula. They
could also solve certain special cubic equations. The Persian poet, astronomer,
and mathematician Omar Khayyam (c. 1044-1123) was able to geometrically
solve every type of cubic equation for its positive roots. It was not until almost
five hundred years later that the algebraic solution of the cubic equation was
accomplished. Shortly thereafter the algebraic solution of the quartic equation
was achieved also.

About 1515, Scipio del Ferro discovered the algebraic solution of the cubic
equation of the form x3+bx = c. He did not publish his result but revealed his
secret to his pupil Antonio Maria Fior (Florido). In 1530, Zuanne de Tonini
da Coi sent the following two problems to Niccolo Fontana to be solved:

x3 + 3x2 = 5 and x3 + 6x2 + 8x = 1000.

Fontana was also known as Tartaglia (the stammerer) because of a saber
wound he received when he was only thirteen years old at the hands of the
French in the 1512 massacre at Brescia. In 1535, Tartaglia claimed to have
algebraically solved the cubic equation of the form x3+ax2 = c. Florido, who
believed that Tartaglia was merely boasting, challenged Tartaglia to a public
contest. Each contestant was to submit to the other the same number of cubic
equations to be solved within a given period of time. Tartaglia accepted the
challenge. He knew he could defeat his opponent if he submitted only problems
of the type which he could solve, namely, x3 + ax2 = c, and if he could also
solve problems of the type which Florido could solve, namely, x3 + bx = c.
Tartaglia exerted himself and a few days before the scheduled contest he
discovered how to solve problems of the type Florido could solve. Knowing
how to solve both types of cubic equations, whereas his opponent only knew
how to solve one type of cubic equation, Tartaglia triumphed completely.
However, Tartaglia did not publish his method of solution. In 1539, Girolamo
Cardano (Cardan), an unscrupulous man who practiced medicine in Milan,
wrote Tartaglia requesting a meeting. At the meeting Tartaglia, upon having
pledged Cardan to secrecy, revealed his method of solution—at first in cryptic
verse and later in full detail. Cardan admits receiving the solution from
Tartaglia but denies receiving any explanation of the method. In 1545, Cardan
published his Ars Magna in which he reduced the general cubic equation
x3+px2+ qx = r to the form x3+ bx = c and then solved the latter equation.
Tartaglia protested vehemently. But Cardan was ably defended by one of
his students, Ludovico Ferrari, who claimed Cardan received the solution
from Ferro through a third party and that Tartaglia, himself, was guilty of
plagiarizing Ferro’s solution.

In 1540, da Coi proposed a problem to Cardan which required the solution
of the quartic equation x4 +6x2 +36 = 60x. Cardan was unable to solve this
problem, but passed it on to Ferrari. Ferrari solved the problem and in the
process showed how to reduce the solution of all quartic equations of the form
x4 + px2 + qx + r = 0 to the solution of a cubic equation. In effect, Ferrari
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solved the general quartic polynomial x4 + ax3 + bx2 + cx + d = 0, since it
reduces to x4 + px2 + qx+ r = 0 by means of a simple linear transformation.
Cardan included Ferrari’s solution of the quartic equation in his Ars Magna.
Thus, the Ars Magna contains the first published solution of both the general
cubic equation and the general quartic equation although neither was the work
of the author!

In 1803, in 1805, and again in 1813 the Italian physician Paola Ruffini
published inconclusive proofs that the roots of the fifth and higher order
polynomials cannot be written in terms of the coefficients of the polynomial
by means of radicals. This fact was later successfully proven by the Norwegian
mathematician Niels Henrik Abel in 1824.

Sixteenth century Italian mathematicians assumed every polynomial with
rational coefficients had a root. Late in the century, they were aware that a
quadratic polynomial has two roots, a cubic polynomial has three roots, and
a quartic polynomial has four roots. Peter Roth seems to be the first writer to
explicitly state the fundamental theorem of algebra in his Arithmetica philo-
sophica published in 1608. The fundamental theorem of algebra states that
an n-th degree polynomial has n roots. D’Alembert attempted to prove this
theorem in 1746. Euler (1749) and Lagrange also attempted to prove the
theorem. The first rigorous proof is due to Gauss in 1799. A simpler proof
was given in 1849.

The second search for roots of polynomials, and in retrospect the more
fruitful search, consisted of developing techniques for approximating the values
of the roots. As we mentioned earlier, the ancient Babylonians knew in about
2000 B.C. how to solve a quadratic equation algebraically using the quadratic
formula. On a practical level since the quadratic formula involves extracting
a square root, the Babylonians found it necessary to devise a method for
computing a square root. The following scheme for computing the square
root of a positive real number is due to the Babylonians.

Let a be a positive real number and let x1 > 0 be a first approximation
(guess) of the value of

√
a. Either

(1) x1 =
√
a or (2) x1 <

√
a or (3) x1 >

√
a

If (1) x1 =
√
a, we are done.

If (2) x1 <
√
a, then

√
ax1 < a and

√
a < a/x1.

If (3) x1 >
√
a, then

√
ax1 > a and

√
a > a/x1.

Case (2) states if x1 is less than
√
a, then a/x1 is greater than

√
a. While

case (3) states if x1 is greater than
√
a, then a/x1 is less than

√
a. In either

case, both x1 and a/x1 are approximations of
√
a. One is an under estimate

and the other is an over estimate. Notice that the product of x1 and a/x1 is
a. Let x2 denote the average of x1 and a/x1. That is, let

x2 = (x1 + a/x1)/2.
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Since x1 and a/x1 are estimates of
√
a, their average x2 is also an estimate

of
√
a. As before, either x2 =

√
a, or x2 <

√
a, or x2 >

√
a. And if x2 �= √

a,
then

x3 = (x2 + a/x2)/2

will be a new approximation of
√
a. Hence, we obtain the following iteration

procedure for calculating an approximate value for
√
a: Make an initial guess

x1 > 0 which approximates
√
a. Then successively compute

xn+1 = (xn + a/xn)/2

for n = 1, 2, 3, . . . until xn+1 is as good an approximation to
√
a as desired.

Neither we nor the Babylonians proved that for any initial guess x1 > 0, as
n→ +∞, xn → √

a; but it does.

We should also note that the ancient Babylonians knew how to compute
approximate roots of certain cubic polynomials.

In the third century A.D., Chinese mathematicians developed a method
known as fan fa for computing approximate roots of polynomials. In 1303,
Chu Shih-chieh computed roots of polynomials up to degree fourteen using
the method of fan fa. Unaware that the method of fan fa had been invented
in China and in use for nearly fifteen centuries, the English mathematician
W. G. Horner published the equivalent of this method in 1819. In the West
the method is called “Horner’s method.”

After inventing the calculus, Isaac Newton used the derivative of a function
in a procedure which he invented in 1669 to iteratively calculate approximate
roots of the function. As far as we know, Newton used his method, Newton’s
method, to find only the positive root of just one polynomial, x3 − 2x − 5.
Joseph Raphson simplified and improved Newton’s method and published a
new version of the method in 1690. It is the Newton-Raphson method which
is currently often used to find roots of equations. Unfortunately, nineteenth
century textbook writers ignored Raphson’s contribution and the Newton-
Raphson method is commonly called Newton’s method today.

The Newton-Raphson method for finding a root of a differentiable function
f is developed as follows. Let x1 be an initial guess for the unknown value of a
root of f . We approximate the graph of y = f(x) at (x1, f(x1)) by the tangent
line. See Figure 4.1. The equation of the tangent line at (x1, f(x1))—that is,
the equation of the line through the point (x1, f(x1)) with slope f ′(x1)—is

y − f(x1) = f ′(x1)(x− x1).

Provided f ′(x1) �= 0, the tangent line intersects the x-axis at some point, say,
(x2, 0). Substituting x = x2 and y = 0 into the above equation, we find x2
satisfies

−f(x1) = f ′(x1)(x2 − x1).
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Or solving for x2, we get

x2 = x1 − f(x1)/f
′(x1).

The value x2 is a new approximation to a root of f . The process is repeated.

x

y

xx

(x  , f (x  ) )

y  =  f  ( x )

T a n g e n t   L i n e  

2 1

1 1

at  (x  , f (x  ) )1 1

Figure 4.1 The Newton-Raphson Method.

Thus, Newton-Raphson’s method for finding a root of a differentiable func-
tion f is as follows:

1. Make an initial guess, x1, of a root.

2. Then provided f ′(xn) �= 0 iteratively compute

xn+1 = xn − f(xn)/f
′(xn)

until xn+1 is as good an approximation of a root as desired or until a specified
number of iterations have been computed without the partial sequence x1, x2,
. . . , xn+1 appearing to converge to a root.

3. If the partial sequence does not appear to be converging, then the process
can be started over again with a new guess for x1.

Consider the polynomial equation f(x) = x2 − a = 0 where a > 0. Differ-
entiating we get f ′(x) = 2x. So the iterative portion of the Newton-Raphson
method for this function is

xn+1 = xn − f(xn)/f
′(xn) = xn − (x2n − a)/(2xn)

= (x2n + a)/(2xn) = (xn + a/xn)/2.

This is exactly the recursion of the ancient Babylonian technique for comput-
ing a square root.
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Now, consider the general n-th degree polynomial

p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a2x

2 + a1x+ a0

where an �= 0. For any given value of x, computing p(x) as written above
requires n additions and 2n − 1 multiplications—one multiplication each to
successively compute x2 = x · x, x3 = x2 · x, . . . , xn = xn−1 · x and one
multiplication each for ak · xk for k = 1, 2, . . . , n. The polynomial p(x) may
be rewritten in the nested multiplication or Horner form

p(x) = ((. . . ((anx+ an−1)x + an−2)x+ · · ·+ a2)x+ a1)x+ a0.

In this form, n additions are still required but only n multiplications are
required. (The computation of the value in the innermost set of parentheses
requires one multiplication and one addition, the computation of the value
in the next innermost set of parentheses also requires one multiplication and
one addition, and so on.) This is a considerable savings in computing time—
almost a 50% savings—since the operation of multiplication requires much
more computing time than the operation of addition.

For any given value t, we can recursively compute a new list of coefficients
bn−1, bn−2,. . . , b1, b0, R as follows:

(1) bn−1 = an

bn−2 = bn−1t+ an−1

...

b1 = b2t+ a2

b0 = b1t+ a1

R = b0t+ a0

The coefficient bn−2 = bn−1t+ an−1 = ant+ an−1 is the number one gets by
computing the value of the expression in the innermost set of parentheses of
p(t), the coefficient bn−3 = bn−2t+an−2 = (ant+an−1)t+an−2 is the number
one gets by computing the value of the expression in the first two innermost
set of parentheses of p(t), and so on. So R = p(t).

Solving the set of equations (1) for the a’s, we get

an = bn−1

an−1 = bn−2 − bn−1t

...

a2 = b1 − b2t

a1 = b0 − b1t

a0 = R− b0t
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Substituting in p(x) and rearranging algebraically, we find for any t

p(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

= bn−1x
n + (bn−2 − bn−1t)x

n−1 + · · ·+ (b1 − b2t)x
2 + (b0 − b1t)x+

(R− b0t)

= bn−1x
n−1(x− t) + bn−2x

n−2(x− t) + · · ·+ b1x(x− t) + b0(x− t) +R.

Defining q(x) = bn−1x
n−1 + bn−2x

n−2 + · · · + b1x + b0, we see that p(x) =
(x−t)q(x)+R. That is, when p(x) is divided by x−t, the quotient is q(x) and
the remainder is R. If t is a root of p(x), then R = 0 and p(x) = (x− t)q(x).
Additional roots of p(x) can then be found by finding roots of q(x). The
process of computing the coefficients bn−1, bn−2, . . . , b0 of the polynomial
q(x)—which is of degree n− 1—from the coefficients an, an−1, . . . , a0 when
t is a root of p(x) is called deflation.

Horner’s method—which is actually the much more ancient Chinese method,
fan fa—for finding the roots of a polynomial consists of applying the Newton-
Raphson method to polynomials. To apply this method we must be able to
evaluate both p(x) and p′(x) at any point t. Since p(x) = (x − t)q(x) + R,
p′(x) = (x − t)q′(x) + q(x) and therefore p′(t) = q(t). Now p(t) = R can
be evaluated using equation (1) and p′(t) = q(t) can be calculated from the
analogous set of equations for q, namely

(2) cn−2 = bn−1

cn−3 = cn−2t+ bn−2

...

c0 = c1t+ b1

S = c0t+ b0 = q(t) = p′(t).

So, Horner’s method for computing a root of p(x) is as follows:

1. Make an initial guess for the value of a root, t1.

2. Use equations (1) and (2) to compute R = p(tn) and S = p′(tn) for
n = 1, 2, 3, . . . .

3. Provided S �= 0, use Newton-Raphson’s method to compute

tn+1 = tn − p(tn)/p
′(tn) = tn −R/S.

4. If for some n, R is as near zero as desired, then take a root of p(x) to be
tn. If n becomes large, but R is not as near zero as desired, start over
with a different value for t1.
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Comments on Computer Software The software accompanying this
text includes a program named POLYRTS. This program computes all the
roots of a polynomial with complex coefficients of degree less than or equal to
10. It uses the Newton-Raphson method, Horner’s method, and deflation in
conjunction with other techniques to approximate the roots of a polynomial.
Complete instructions for running this program appear in the file CSODE
User’s Guide on the website: cs.indstate.edu/∼roberts/DEq.html. The next
two examples illustrate the typical output of POLYRTS. You should compare
the results you obtain using your software with these results. The following
two MAPLE statements also solve numerically the polynomial equation (3)
appearing in Example 1 below.

polyeqn:= x ∧ 7 + x ∧ 6 + 12 ∗ x ∧ 5− 28 ∗ x ∧ 4− 733 ∗ x ∧ 3+

1011 ∗ x ∧ 2− 1784 ∗ x− 38480 = 0:

factor(polyeqn,complex);

Example 1 Calculation of the Roots of a Polynomial

Find the roots of the polynomial equation

(3) x7 + x6 + 12x5 − 28x4 − 733x3 + 1011x2 − 1784x− 38480 = 0

Solution

We entered the value 7 into POLYRTS for the degree of the polynomial
equation to be solved. Then we input the coefficients of the polynomial—
namely, a7 = 1, a6 = 1, a5 = 12, a4 = −28, a3 = −733, a2 = 1011, a1 =
−1784, and a0 = −38480. The roots of the polynomial as calculated by
POLYRTS appear in Figure 4.2.

Figure 4.2 Zeros of the Polynomial Equation (3).

One zero is computed to be 2.000000 + 3.000000i. The actual zero of the
polynomial corresponding to this computed zero is 2 + 3i. So, in this case,
the approximation is excellent. The second and third zeros computed were
−4.000000 − 1.153824 × 10−11i and −4.000000 + 1.153809 × 10−11i. The
actual zeros of the polynomial corresponding to these roots are −4 and −4.
This is the worst approximation of a zero for this polynomial, but it is not
unacceptable. One thing you must learn is how to interpret results from a
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computer. When a polynomial has repeated real roots—such as, −4, −4—
small, erroneous imaginary parts are often computed. Since 1.15 × 10−11 is
small compared to 4, we can easily surmise that the actual zeros may be −4
and −4. The fourth zero is 2− 3i and the fifth is −1 + 6i. We conclude that
the sixth zero of the polynomial is probably 5 instead of the computed value
of 5 + 2.419410× 10−16i. The seventh zero is −1− 6i. �

Example 2 Calculation of the Roots of a Polynomial

Find the roots of the polynomial equation

(4) x3 + (−7− 3i)x2 + (10 + 15i)x+ 8− 12i = 0.

Solution

We entered 3 for the degree of the polynomial equation to be solved into
POLYRTS. Then we entered the values for the coefficients. The roots of this
polynomial as calculated by POLYRTS are displayed in Figure 4.3. The values
shown should be interpreted as i, 3 + 2i, and 4.

Figure 4.3 Zeros of the Polynomial Equation (4). �

EXERCISES 4.2

In the following exercises use POLYRTS or computer routines
available to you to calculate the roots of appropriate polynomial
equations.

1. In 1225, Leonardo Fibonacci showed in his text Flos that the equation

x3 + 2x2 + 10x = 20

has no solution of the form a +
√
b where a and b are rational num-

bers. Then he obtained the following root by some undisclosed numeri-
cal method.

x = 1o22′7′′42iii33iv4v40vi ≈ 1.3688081075

Find all solutions of the given cubic equation and compare with the
above solution.
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2. Find the roots of the following equations which da Coi sent to Tartaglia
for solution in 1530.

x3 + 3x2 = 5 and x3 + 6x2 + 8x = 1000

3. Find the roots of the following quartic equation which da Coi sent to
Cardan for solution in 1540.

x4 + 6x2 + 36 = 60x

4. In his Ars Magna of 1545 Cardan demonstrated that x = 5 ± √−15
were the solutions of x2 + 40 = 10x. Compare values you obtain with
the values obtained by Cardan.

5. Listed below are some cubic equations which Cardan solved. Compare
the values you obtain with the values obtained by Cardan.

Equation Roots

x3 + 10x = 6x2 + 4 2, 2±√
2

x3 + 21x = 9x2 + 5 5, 2±√
3

x3 + 26x = 12x2 + 12 2, 5±√
19

6. In 1567, Nicolas Petri of Deventer calculated 1 +
√
2 to be the positive

root of the quartic equation

x4 + 6x3 = 6x2 + 30x+ 11

and neglected the negative roots. Find all the roots of this equation and
compare with Petri’s single positive root.

7. About 1600, the French lawyer, politician, and part-time mathemati-
cian, François Viète introduced a numerical method similar to, but more
cumbersome than, Newton’s method for approximating roots of polyno-
mials. Perhaps Viète’s method inspired Newton to invent his method of
1669. Find the roots of the following equations considered by Viète.

x5 − 5x3 + 500x = 7905504

x6 − 15x4 + 85x3 − 225x2 + 274x = 120

8. Evidently, the only equation which Newton, himself, ever solved using
Newton’s method was x3 − 2x− 5 = 0. Newton solved this problem in
1669. Of course, every numerical technique devised since that time has
been used to solve this equation. Solve this cubic equation.

9. Find the roots of the quintic polynomial

p(x) = x5−(13.999+5i)x4+(74.99+55.998i)x3−(159.959+260.982i)x2+

(1.95 + 463.934i)x+ (150− 199.95i).
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4.3 Homogeneous Linear Equations with

Constant Coefficients

Many practical and important physical phenomena can be modelled by n-
th order linear differential equations with constant coefficients. We will now
show how a simple pendulum can be modelled by a second order homogeneous
linear differential equation with constant coefficients.

Simple Pendulum A simple pendulum consists of a rigid straight wire
of negligible mass and length L with a bob of mass m attached to one end.
The other end of the wire is attached to a fixed support. The pendulum is
free to move in a vertical plane. Let θ be the angle the wire makes with
the vertical—the equilibrium position of the system. We will choose θ to be
positive if the wire is to the right of vertical and negative if the wire is to the
left of vertical. See Figure 4.4.

Vertical

L

A

B

m

F  = mg cos θ
F  = mg sin θ

FW

T
N

F  = mgg

θ

θ

Figure 4.4 A Simple Pendulum.

If we neglect resistance due to friction and the medium (usually air) in
which the system is operating, then there are only two forces acting on the
massm: FW , the tension in the wire, which acts along the wire and toward the
support; and Fg = mg, the force of gravity, which acts vertically downward.
The force of gravity may be represented as two forces: one that acts parallel
to FW but in the opposite direction, FN ; and one that acts perpendicular to
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FW , FT . From Figure 4.4 we see that

FN = mg cos θ = −FW and FT = mg sin θ.

The net force that tends to restore the system to equilibrium is FT . If we let
s represent the arc length AB, then applying Newton’s second law of motion
(F = ma), we get

(1) FT = mg sin θ = −md2s

dt2

because −d2s/dt2 is the acceleration along the arc AB. Since s = Lθ,

(2)
d2s

dt2
= L

d2θ

dt2
.

Substituting (2) into (1), we obtain

g sin θ = −Ld
2θ

dt2

or

(3) L
d2θ

dt2
+ g sin θ = 0.

This differential equation is nonlinear due to the function sin θ. The explicit
solution of the DE (3) involves elliptic integrals.

The Maclaurin expansion for sin θ is

sin θ = θ − θ3

3!
+
θ5

5!
− · · · .

For θ small, sin θ is approximately equal to θ (which is written mathematically
as sin θ ≈ θ). Replacing sin θ in equation (3) by θ, we obtain the following
linearized differential equation

(4) L
d2θ

dt2
+ gθ = 0

which approximates the motion of the simple pendulum for θ small.

We could try to solve the DE (4) by trial-and-error. That is, we could try
to guess the form of the solution of (4) which contains one unknown constant
A, differentiate the guessed solution twice, substitute into (4), and see if it is
possible to determine A. For instance, if we guess the solution of (4) has the
form θ = tA. Then differentiating twice, we get

dθ

dt
= AtA−1 and

d2θ

dt2
= A(A − 1)tA−2.
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Substituting into (4), we see that A must satisfy

LA(A− 1)tA−2 + gtA = 0.

There is no constant value A which satisfies this equation for all values of t.
Consequently, there is no solution of the DE (4) of the form θ = tA. Guessing
θ = A sin t or θ = sin(t+A) produces no solution to the DE (4) either. (You
may want to verify this statement.) Next, we seek a solution of (4) of the
form θ = sinAt. Differentiation yields

dθ

dt
= A cosAt and

d2θ

dt2
= −A2 sinAt.

Substituting into the DE (4), we find A must be chosen to satisfy

−LA2 sinAt+ g sinAt = 0 or (−LA2 + g) sinAt = 0.

Hence,
−LA2 + g = 0 or sinAt = 0.

Thus,
A = ±

√
g/L or A = 0.

Notice that the choice A = 0 yields the zero solution, θ = sin 0 ≡ 0, to
the DE (4). The choice A =

√
g/L produces the particular solution θ1 =

sin
√
g/Lt. A second linearly independent solution θ2 = cos

√
g/Lt is ob-

tained by guessing a solution of (4) of the form θ = cosBt and discov-
ering B =

√
g/L. (Use the Wronskian to prove that the functions sinCt

and cosCt where C is an arbitrary constant are linearly independent func-
tions on the interval (−∞,∞).) Since θ1 = sin

√
g/Lt and θ2 = cos

√
g/Lt

are linearly independent on (−∞,∞), the general solution of the DE (4) is
θ(t) = c1 sin

√
g/Lt+ c2 cos

√
g/Lt where c1 and c2 are arbitrary constants.

Now let us consider the n-th order homogeneous linear differential equation

(5) any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a1y
(1)(x) + a0y(x) = 0

with constant coefficients an, an−1, . . . , a1, a0 where an �= 0. By the represen-
tation theorem for n-th order homogeneous linear differential equations, since
the constants an, an−1, . . . , a1, a0 are all continuous functions on the interval
(−∞,∞) and an �= 0, there exists a set containing exactly n linearly inde-
pendent solutions of (5) on (−∞,∞). Our immediate problem, then, is to
determine a set of n linearly independent solutions to (5) on (−∞,∞).

Both Daniel Bernoulli and Leonhard Euler knew how to solve second-order
(n=2) homogeneous linear differential equations with constant coefficients
prior to 1740. Euler was the first to publish his results in 1743. Follow-
ing his approach, we suppose y = erx, where r is an unknown constant (real
or complex), is a solution of (5). Successively differentiating, we find

y(1) = rerx, y(2) = r2erx, . . . , y(n−1) = rn−1erx, y(n) = rnerx.
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Substituting into (5), we get

anr
nerx + an−1r

n−1erx + · · ·+ a1re
rx + a0e

rx = 0.

Factoring erx from each term, leads to

erx(anr
n + an−1r

n−1 + · · ·+ a1r + a0) = 0.

Since erx �= 0 for any x and any constant r, the function y = erx is a solution
to the differential equation (5) if and only if r satisfies the polynomial equation

(6) p(r) = anr
n + an−1r

n−1 + · · ·+ a1r + a0 = 0.

That is, erx is a solution of (5) if and only if r is a root of p(r). Equation (6) is
called the auxiliary equation associated with the differential equation (5).

Distinct Real Roots If the roots r1, r2, . . . , rn of the auxiliary equa-
tion (6) are all real and no two roots are equal, then the functions y1(x) = er1x,
y2(x) = er2x, . . . , yn(x) = ernx form a linearly independent set of real-valued
solutions to (5) on the interval (−∞,∞) and the general solution of (5) on
(−∞,∞) is y(x) = c1y1(x) + c2y2(x) + · · · + cnyn(x) where the ci’s are ar-
bitrary constants. It is clear from the discussion above that the functions
yi(x) = erix are all solutions of (5) on (−∞,∞). All we need to do is verify
that they are linearly independent on (−∞,∞). We may do so by showing
that their Wronskian is nonzero at some x0 ∈ (−∞,∞). By definition

W (y1, y2, . . . , yn, x) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

er1x er2x · · · ernx

r1e
r1x r2e

r2x · · · rne
rnx

...
...

...
rn−1
1 er1x rn−1

2 er2x · · · rn−1
n ernx

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

A judicious choice for x in the Wronskian above is x = 0. Making this choice,
we find

W (y1, y2, . . . , yn, 0) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 · · · 1
r1 r2 · · · rn
...

...
...

rn−1
1 rn−1

2 · · · rn−1
n

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

[(r2−r1)(r3−r1) · · · (rn−r1)]·[(r3−r2)(r4−r2) · · · (rn−r2)] · · · [(rn−1−rn)] �= 0,

since the roots are distinct. The last determinant in the calculation above is
known as the Vandermonde determinant and its value is well known.

For example, to find the general solution of the third-order homogeneous
linear differential equation

(7) 2y′′′ − y′′ − 2y′ + y = 0,
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we write the auxiliary equation

p(r) = 2r3 − r2 − 2r + 1 = 0.

Factoring, we find

p(r) = (r + 1)(r − 1)(2r − 1) = 0.

So the roots of the auxiliary equation are −1, 1, and 1
2 , and three linearly

independent solutions of the DE (7) are

y1(x) = e−x, y2(x) = ex, and y3(x) = ex/2.

Consequently, the general solution of the DE (7) is

y(x) = c1e
−x + c2e

x + c3e
x/2

where c1, c2, and c3 are arbitrary constants.

Repeated Real Roots Consider the differential equation

(8) y′′′ − 6y′′ + 12y′ − 8y = 0.

The auxiliary equation is

p(r) = r3 − 6r2 + 12r − 8 = 0.

Factoring, we find
p(r) = (r − 2)3 = 0.

The roots of this auxiliary equation are r1 = r2 = r3 = 2. Thus, one solution
of the DE (8) is y1(x) = er1x = e2x. However, y2(x) = er2x = e2x = y1(x)
and y3(x) = er3x = e2x = y1(x). That is, y2 and y3 are identical to y1.
Consequently, we have only one solution of the DE (8). So when some roots
of the auxiliary equation are real and equal, the technique of the previous
paragraph will not suffice.

A root s of the auxiliary equation (6), p(r) = 0, is called a root of multi-
plicity k, if the unique factorization of the polynomial p(r) contains the factor
(r − s) exactly k times. The function y(x) = esx will be one member of the
linearly independent solution set; however, for k ≥ 2 we must find k− 1 other
linearly independent solutions corresponding to the root s. To find the addi-
tional linearly independent solutions, we assume that there are k−1 solutions
of the form ym+1 = xmesx, where 1 ≤ m ≤ k−1. We then verify that ym+1(x)
satisfies the differential equation and that the set {y1(x), y2(x), . . . , yk(x)} is
linearly independent on the interval (−∞,∞). The functions ym+1 associated
with the repeated root s are linearly independent, because the functions 1,
x, x2, . . . , xk−1 are linearly independent. The functions ym+1 are also lin-
early independent of all solutions associated with other distinct roots of the
auxiliary equation. This is always the case, but we will not present a proof.
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Returning to our example, we will verify that y2(x) = xe2x and y3(x) =
x2e2x are solutions of the DE (8) and that y1(x) = e2x, y2(x) = xe2x, and
y3(x) = x2e2x are linearly independent on (−∞,∞). Calculating the first,
second, and third derivatives of y2 and y3, we find

y′2 = (1 + 2x)e2x and y′3 = (2x+ 2x2)e2x

y′′2 = (4 + 4x)e2x and y′′3 = (2 + 8x+ 4x2)e2x

y′′′2 = (12 + 8x)e2x and y′′′3 = (12 + 24x+ 8x2)e2x.

Substitution of y2 into (8), yields

y′′′2 −6y′′2+12y′2−8y2 = [(12+8x)−6(4+4x)+12(1+2x)−8x]e2x = 0·e2x = 0.

Hence, y2 is a solution of the DE (8). Substitution of y3 into (8), yields

y′′′3 −6y′′3+12y′3−8y3 = [(12+24x+8x2)−6(2+8x+4x2)+12(2x+2x2)−8x2]e2x

= 0 · e2x = 0.

Thus, y3 is a solution of the DE (8). To verify that y1, y2, and y3 are linearly
independent on (−∞,∞), we examine their Wronskian at x = 0.

W (y1, y2, y3, 0) =

∣
∣
∣
∣
∣
∣

y1(0) y2(0) y3(0)
y′1(0) y′2(0) y′3(0)
y′′1 (0) y′′2 (0) y′′3 (0)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

1 0 0
2 1 0
4 4 2

∣
∣
∣
∣
∣
∣
= 2 �= 0.

Consequently, the set {y1(x), y2(x), y3(x)} is linearly independent on the in-
terval (−∞,∞) and the general solution of the DE (8) on (−∞,∞) is

y(x) = c1e
2x + c2xe

2x + c3x
2e2x

where c1, c2, and c3 are arbitrary constants.

Example 1 Solution of a Homogeneous Linear Differential Equation

with Constant Coefficients

Find the general solution of the fourth-order homogeneous linear differential
equation

(9) y(4) − 2y(2) + y = 0.

Solution

The auxiliary equation corresponding to the DE (9) is

p(r) = r4 − 2r2 + 1 = 0.

Factoring, we find
p(r) = (x+ 1)2(x− 1)2 = 0.
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So the roots of the auxiliary equation are −1, −1, 1, and 1. Hence, the general
solution of the DE (9) on the interval (−∞,∞) is

y(x) = c1e
−x + c2xe

−x + c3e
x + c4xe

x

where c1, c2, c3, and c4 are arbitrary constants. �

Example 2 Solution of a Homogeneous Linear Differential Equation

with Constant Coefficients

Find the general solution of the tenth-order homogeneous linear differential
equation.

y(10) + 3y(9) − 6y(8) − 22y(7) − 3y(6) + 39y(5) + 40y(4) + 12y(3) = 0.

Solution

The auxiliary equation corresponding to this differential equation is

(10) r10 + 3r9 − 6r8 − 22r7 − 3r6 + 39r5 + 40r4 + 12r3 = 0.

Using the computer program POLYRTS, we find the roots of this polynomial
are −3, −1, −1, −1, −1, 0, 0, 0, 2, and 2. That is, −3 is a root of multiplicity
one, −1 is a root of multiplicity four, 0 is a root of multiplicity three, and
2 is a root of multiplicity two. Corresponding to the root −3, we have the
solution

y1 = e−3x.

Corresponding to the root −1 of multiplicity four, we have the four linearly
independent solutions

y2 = e−x, y3 = xe−x, y4 = x2e−x, and y5 = x3e−x.

Corresponding to the root 0 of multiplicity three, we have the three linearly
independent solutions

y6 = e0x = 1, y7 = xe0x = x, and y8 = x2e0x = x2.

And corresponding to the root 2 of multiplicity two, we have the two linearly
independent solutions

y9 = e2x and y10 = xe2x.

The set {y1, y2, . . . , y10} contains ten linearly independent solutions on the
interval (−∞,∞) of the DE (10). Therefore, the general solution of the
DE (10) is

y = c1y1 + c2y2 + c3y3 + · · ·+ c10y10

= c1e
−3x + c2e

−x + c3xe
−x + c4x

2e−x + c5x
3e−x + c61 + c7x+ c8x

2+

c9e
2x + c10xe

2x
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where c1, c2, . . . , c10 are arbitrary constants. �

Complex Roots Recall from calculus that the Taylor series expansions
about x = 0 for ex, cosx, and sinx are

ex =

∞∑

n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

cosx =

∞∑

n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

sinx =
∞∑

n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

Each of these series converges for all x. Substituting ix for x in the expansion
for ex, using the fact that i2 = −1, i3 = −i, i4 = 1, i5 = i, i6 = −1, etc., and
rearranging, we find

eix =
∞∑

n=0

(ix)n

n!

= 1 + ix+
i2x2

2!
+
i3x3

3!
+
i4x4

4!
+
i5x5

5!
+
i6x6

6!
+
i7x7

7!
+ · · ·

= (1− x2

2!
+
x4

4!
− x6

6!
+ · · · ) + i(x− x3

3!
+
x5

5!
− x7

7!
+ · · · )

= cosx+ i sinx.

The identity eix = cosx + i sinx is known as Euler’s formula. If α + iβ
is a root of multiplicity one of the auxiliary equation associated with some
linear differential equation with constant (real or complex) coefficients, then
a solution of the differential equation corresponding to the root α+ iβ is the
complex function

y = e(α+iβ)x = eαxeiβx = eαx(cosβx + i sinβx).

Suppose the complex number α+iβ where β �= 0 and its complex conjugate
α− iβ are both roots of the auxiliary equation associated with a homogeneous
linear differential equation. Two linearly independent, complex solutions cor-
responding to these two roots are

y1 = e(α+iβ)x = eαxeiβx = eαx(cosβx + i sinβx)

y2 = e(α−iβ)x = eαxe−iβx = eαx(cos(−βx) + i sin(−βx))
= eαx(cosβx− i sinβx).
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Hence, the general solution of the differential equation will include the linear
combination

c1y1 + c2y2 = c1e
αx(cosβx+ i sinβx) + c2e

αx(cosβx− i sinβx)

= eαx[(c1 + c2) cosβx+ i(c1 − c2) sinβx]

where c1 and c2 are arbitrary complex constants. Choosing c1 = c2 = 1/2,
we see that y3 = eαx cosβx is a real solution to the differential equation
(since any particular linear combination of solutions is also a solution). And
choosing c1 = −c2 = 1/(2i), we see that y4 = eαx sinβx is also a real solution
of the differential equation. So two real linearly independent solutions on
(−∞,∞) corresponding to the complex conjugate pair of roots α + iβ and
α− iβ are y3 = eαx cosβx and y4 = eαx sinβx. (Can you prove y3 and y4 are
linearly independent? Hint: Calculate their Wronskian.) Therefore, in the
general solution the linear combination of complex solutions c1y1 + c2y2 can
be replaced by the linear combination of real solutions k1y3 + k2y4 where k1
and k2 are arbitrary real constants.

Furthermore, if the complex number α + iβ where β �= 0 and its complex
conjugate α− iβ are both roots of multiplicity k > 0 of the auxiliary equation
associated with a homogeneous linear differential equation, then 2k linearly
independent, real solutions corresponding to these two roots are

y1 = eαx cosβx, y2 = eαx sinβx,
y3 = xeαx cosβx, y4 = xeαx sinβx,

...
...

y2k−1 = xk−1eαx cosβx, y2k = xk−1eαx sinβx

and the general solution of the differential equation will include the linear
combination c1y1 + c2y2 + · · ·+ c2k−1y2k−1 + c2ky2k. This result is important
since the conjugate root theorem states that if the coefficients of an n-th
degree polynomial are all real, then complex roots occur in conjugate pairs.
So if the coefficients of an n-th order linear differential equation are all real
constants, then complex roots of the associated auxiliary equation will always
occur in conjugate pairs, all n linearly independent solutions may be written as
real solutions, and the general solution can be written as a linear combination
of real solutions. It should be noted that if any of the constant coefficients
an, an−1, . . . , a1, a0 of the differential equation (hence, auxiliary equation)
is complex, then it is no longer true that the complex conjugate of a complex
root will also be a root. In this case, the corresponding general solution will
contain some complex components.

Example 3 Real General Solution of a Homogeneous Linear Dif-

ferential Equation

Find the real general solution of the fifth-order linear homogeneous differ-
ential equation

y(5) − 11y(4) + 50y(3) − 94y(2) + 13y(1) + 169y = 0.
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Solution

Using the computer program POLYRTS, we find the roots of the associated
auxiliary equation

r5 − 11r4 + 50r3 − 94r2 + 13r1 + 169 = 0

are −1, 3 + 2i, 3 + 2i, 3− 2i, and 3− 2i. Corresponding to the real root −1,
is the real solution

y1 = e−x.

Corresponding to the double complex root 3 + 2i and the double complex
conjugate root 3− 2i, are the four linearly independent real solutions

y2 = e3x cos 2x, y3 = e3x sin 2x, y4 = xe3x cos 2x, and y5 = xe3x sin 2x.

So the real, general solution to the given differential equation is

y = c1e
−x + c2e

3x cos 2x+ c3e
3x sin 2x+ c4xe

3x cos 2x+ c5xe
3x sin 2x

= c1e
−x + (c2 + c4x)e

3x cos 2x+ (c3 + c5x)e
3x sin 2x. �

EXERCISES 4.3

In Exercises 1–20 determine the real general solution of the given
homogeneous linear differential equations.

1. y′′ − 4y = 0

2. y′′ − 3y′ + 2y = 0

3. y′′ − 4y′ = 0

4. y′′ − 13y′ + 42y = 0

5. y′′ + 2y′ + 2y = 0

6. y′′ + 4y = 0

7. 4y(2) + 4y(1) − 3y = 0

8. y(3) − y(2) + y(1) − y = 0

9. y(3) − 5y(2) + 3y(1) + 9y = 0

10. y(3) − 3y(2) + 3y(1) − y = 0

11. y(3) − 4y(2) + y(1) + 26y = 0

12. y(3) − 4y(2) + 6y(1) − 4y = 0

13. y(4) − 16y = 0
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14. y(4) + 16y = 0

15. y(4) − 4y(3) + 8y(2) − 8y(1) + 4y = 0

16. y(4) − 8y(1) = 0

17. 36y(4) − 12y(3) − 11y(2) + 2y(1) + y = 0

18. y(5) − 3y(4) + 3y(3) − 3y(2) + 2y(1) = 0

19. y(5) − y(4) + y(3) + 35y(2) + 16y(1) − 52y = 0

20. y(8) + 8y(4) + 16y = 0

In Exercises 21–25 assume α and β �= α are real constants.

21. Find the real general solution of y′′ +αy = 0 on (−∞,∞) for a. α > 0,
b. α = 0, and c. α < 0.

22. Find the real general solution of y′′ +αy′ = 0 on (−∞,∞) for a. α �= 0
and b. α = 0.

23. Find the real general solution of y′′ − 2αy′ + α2y = 0 on (−∞,∞) for
α �= 0.

24. Find the real general solution of y′′− (α+β)y′+αβy = 0 on (−∞,∞).

25. Find the real general solution of y′′−2αy′+(α2+β2)y = 0 on (−∞,∞).

26. Let α be a real constant and consider the differential equation
(*) y′′ + 2αy′ + 1 = 0.

a. Write the auxiliary equation associated with (*).

b. Use the quadratic formula to find the roots of the auxiliary equa-
tion.

c. Find the values of α which produce two equal real roots of the
auxiliary equation and write the general solution of (*) in each
case.

d. Find the intervals in which α produces two unequal real roots and
write the general solution of (*) in these intervals.

e. Find the interval in which α produces complex conjugate roots and
write the general solution of (*) for α in this interval.

When c is a complex constant,
decx

dx
= cecx. Consequently, the complex

function y(x) = ecx will be a solution of a homogeneous linear differential
equation with complex coefficients if and only if c is a root of the associated
auxiliary equation, just as is the case when the coefficients are all real.
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In Exercises 27–28 write the auxiliary equation, find its roots, and
then write the complex general solution of the given homogeneous
linear differential equation with constant complex coefficients.

27. y(3) − (3 + 4i)y(2) − (4− 12i)y(1) + 12y = 0

28. y(4) − (3 + i)y(3) + (4 + 3i)y(2) = 0

29. Consider the complex initial value problem (†) y′ − iy = 0; y(0) = 1.

a. Show that y1(x) = eix satisfies the IVP (†) for all x in (−∞,∞).

b. Show that y2(x) = cosx + i sinx satisfies the IVP (†) for all x in
(−∞,∞).

c. Assuming the existence and uniqueness theorem stated in sec-
tion 4.1 applies to the IVP (†) what can you conclude about y1(x) =
eix and y2(x) = cosx + i sinx for all x in (−∞,∞). (Note: This
exercise provides a different proof of Euler’s formula.)

4.4 Nonhomogeneous Linear Equations with

Constant Coefficients

Now let us consider the n-th order nonhomogeneous linear differential equa-
tion

(1) any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a1y
(1)(x) + a0y(x) = b(x)

with constant coefficients an, an−1, . . . , a1, a0 where an �= 0 and b(x) is not
the zero function. Since the constants an, an−1, . . . , a1, a0 are all continuous
functions on the interval (−∞,∞), by the representation theorem for n-th
order nonhomogeneous linear differential equations proven in Section 4.1 there
exists a particular solution, yp(x), of (1) on any interval I on which b(x) is
continuous and the general solution of (1) is y(x) = yc(x)+ yp(x) where yc(x)
is the complementary solution of the associated homogeneous linear equation

(2) any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a1y
(1)(x) + a0y(x) = 0.

We have seen how to solve (2) and find the complementary solution, yc(x),
previously. So the problem of solving (1) reduces to one of finding the partic-
ular solution yp(x). When the nonhomogeneity b(x) is a polynomial function,
an exponential function, a sine or cosine function, or a finite sum or product
of such functions, then the method of undetermined coefficients may be used
to find a particular solution yp(x). That is, when b(x) is a function which
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consists entirely of terms of the form xp, xpeαx, xpeax sin bx, or xpeax cos bx
where p is a nonnegative integer, α is a constant (perhaps complex), and a
and b are real constants, then the method of undetermined coefficients may
be used. When b(x) is not of this form, then one may try to find a particular
solution by the Laplace transform method which we will discuss in Chapter 5.

The Method of Undetermined Coefficients The method of undeter-
mined coefficients for solving the nonhomogeneous linear differential equation
with constant coefficients (1) consists of (i) solving the associated homoge-
neous equation (2), (ii) judiciously guessing the form of the particular so-
lution, yp(x), of the nonhomogeneous equation (1) with the coefficients left
unspecified—hence, the name undetermined coefficients, (iii) differenti-
ating the assumed form of particular solution n times and substituting the
particular solution and its derivatives into (2), and (iv) determining, if pos-
sible, specific values for the unspecified coefficients. If all the coefficients are
determined, then we have guessed the correct form of the particular solu-
tion. If some mathematical anomaly occurs along the way, we have guessed
the wrong form of the particular solution and we must guess again or we
have made an error in the calculations. The following three simple examples
illustrate this method.

Example 1 Solution of a Nonhomogeneous Linear Differential Equa-

tion with Constant Coefficients

Solve the nonhomogeneous linear differential equation

(3) y′′ − 3y′ + 2y = 5.

Solution

The associated homogeneous equation y′′ − 3y′ + 2y = 0 has auxiliary
equation p(r) = r2 − 3r + 2 = 0. Since the two roots of this equation are 1
and 2, the complementary solution of equation (3) is

yc(x) = c1e
x + c2e

2x.

Since the nonhomogeneity b(x) = 5, a constant, we guess that the particular
solution has the form yp(x) = A, where A is an unspecified constant. Dif-
ferentiating yp(x) = A twice, we find y′p(x) = 0 and y′′p (x) = 0. Substituting
yp(x) and its derivatives into equation (3), we find A must satisfy 2A = 5.
Hence, A = 5/2 and a particular solution of (3) is yp(x) = 5/2. Therefore, the
general solution of (3) is

y(x) = c1e
x + c2e

2x +
5

2
. �
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Example 2 Solution of a Nonhomogeneous Linear Differential Equa-

tion with Constant Coefficients

Solve the nonhomogeneous linear differential equation

(4) y′′ − 3y′ + 2y = 4e3x.

Solution

As in Example 1, the auxiliary equation of the associated homogeneous
equation y′′ − 3y′ +2y = 0 has roots 1 and 2. So the complementary solution
of equation (4) is

yc(x) = c1e
x + c2e

2x.

Since the nonhomogeneity b(x) = 4e3x, we guess that the particular solution
has the form yp(x) = Ae3x, where A is an unspecified constant. Differentiating
yp(x) = Ae3x twice, we find y′p(x) = 3Ae3x and y′′p (x) = 9Ae3x. Substituting
yp(x) and its derivatives into equation (4), we find A must satisfy

9Ae3x − 3(3Ae3x) + 2(Ae3x) = 4e3x or 2Ae3x = 4e3x.

Hence, A = 2 and a particular solution of (4) is yp(x) = 2e3x. Therefore, the
general solution of (4) is

y(x) = c1e
x + c2e

2x + 2e3x. �

Example 3 Wrong Initial Guess of the Form of the Particular

Solution

Solve the nonhomogeneous linear differential equation

(5) y′′ − 3y′ + 2y = 4e2x.

Solution

Again, the auxiliary equation of the associated homogeneous linear equa-
tion, y′′ − 3y′ + 2y = 0, has roots 1 and 2. So the complementary solution of
equation (5) is

yc(x) = c1e
x + c2e

2x.

Since the nonhomogeneity b(x) = 4e2x, we guess that the particular solution
has the form yp(x) = Ae2x, where A is an unspecified constant. Differentiating
yp(x) = Ae2x twice, we find y′p(x) = 2Ae2x and y′′p (x) = 4Ae2x. Substituting
yp(x) and its derivatives into equation (5), we find A must satisfy

4Ae2x − 3(2Ae2x) + 2(Ae2x) = 4e2x or 0 = 4e2x.

Since the last equation above is clearly false, there is no particular solution
of (5) of the form we have assumed—namely, yp(x) = Ae2x. We guessed the
wrong form for a particular solution of the DE (5), and the resulting false
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equation is telling us we made the wrong guess. Examining the complemen-
tary solution, yc(x) = c1e

x + c2e
2x, we see that the term Ae2x is already

present in the complementary solution, appearing as c2e
2x. So, of course,

Ae2x is a solution of the associated homogeneous equation (5) and produces
the value zero when substituted into the left-hand side of the nonhomogeneous
equation (6).

We need to guess a different form for a particular solution to the DE (5).
But, what should we guess? Since 2 is a single root of the auxiliary equation
p(r) = r2 − 3r + 2 = 0, the function y(x) = Ae2x is one solution of the
associated homogeneous linear differential equation y′′ − 3y′ + 2y = 0. If 2
were a double root of the auxiliary equation, then two linearly independent
solutions of the associated homogeneous equation would be y1(x) = Ae2x and
y2(x) = Bxe2x. Since 2 is a single root and it is not a double root of the
auxiliary equation, our second guess for the form of a particular solution is
yp(x) = Bxe2x, where B is an unspecified constant which is to be determined.
Differentiating yp(x) = Bxe2x twice, we find

y′p(x) = B(2x+ 1)e2x and y′′p (x) = B(4x+ 4)e2x.

Substituting yp(x) and its derivatives into equation (5), we find B must satisfy

B(4x+ 4)e2x − 3(B(2x+ 1)e2x) + 2(Bxe2x) = 4e2x or Be2x = 4e2x.

So B = 4, and a particular solution of (5) is yp(x) = 4xe2x. Therefore, the
general solution of (5) is y(x) = c1e

x + c2e
2x + 4xe2x. �

From the previous three examples, we have discovered that the form of the
particular solution of a nonhomogeneous differential equation with constant
coefficients depends upon the roots of the auxiliary equation of the associated
homogeneous differential equation as well as the nonhomogeneity itself. The
following three cases delineate this relationship more explicitly.

Form of the Particular Solution of a Nonhomogeneous Linear Differ-

ential Equation with Constant Coefficients Based on the Form of

the Nonhomogeneity

Case 1. If r = 0 is a root of multiplicity k of the auxiliary equation of
the associated homogeneous linear differential equation (2) where k ≥ 0 (Here
k = 0 corresponds to r = 0 not being a root of the auxiliary equation.) and
if b(x) is a polynomial of degree m—that is, if

(6) b(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0

where bm, bm−1, . . . , b1, and b0 are constants and bm �= 0, then there is a
particular solution of the nonhomogeneous linear differential equation (1) of
the form

yp = xk(Amx
m +Am−1x

m−1 + · · ·+A1x+A0)
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where Am, Am−1, . . . , A1, and A0 are unknown constants which are to be
determined so that yp satisfies (1). Determination of the actual values of
these constants requires n differentiations of yp, substitution of yp and its
n derivatives into (1), and then the solution of a resulting system of linear
equations in the m+ 1 unknowns Am, Am−1, . . . , A1, A0.

Case 2. If r = α is a root of multiplicity k (k ≥ 0) of the auxiliary equation
of the associated homogeneous linear differential equation (2) and if b(x) has
the form

(7) b(x) = eαx(bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0)

where α, bm, bm−1, . . . , b1, b0 are constants and bm �= 0, then there is a
particular solution of the nonhomogeneous linear differential equation (1) of
the form

yp = xkeαx(Amx
m +Am−1x

m−1 + · · ·+A1x+A0)

where Am, Am−1, . . . , A1, and A0 are unknown constants to be determined.

Case 3. If r = a+bi and r = a−bi are roots of multiplicity k (k ≥ 0) of the
auxiliary equation of the associated homogeneous linear differential equation
(2) and if b(x) has the form

(8) b(x) = eax(bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0) sin bx

or the form

(9) b(x) = eax(bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0) cos bx,

then there is a particular solution of (1) of the form

yp = xkeax[(Amx
m +Am−1x

m−1 + · · ·+A1x+A0) cos bx+

(Bmx
m +Bm−1x

m−1 + · · ·+B1x+B0) sin bx]

where Am, Am−1, . . . , A1, A0, Bm, Bm−1, . . . , B1, and B0 are unknown
constants which are to be determined. �

When b(x) is a sum of terms of the form (6), (7), (8), or (9)—that is, when
b(x) = b1(x) + b2(x) + · · · + bs(x) where b1(x), b2(x), . . . , bs(x) all have
one of the forms (6), (7), (8), or (9)—it is usually easier, first, to calculate
s particular solutions, ypj (x), 1 ≤ j ≤ s, to the corresponding s separate
nonhomogeneous linear differential equations

any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a1y
(1)(x) + a0y(x) = bj(x).

And then add the s particular solutions to obtain yp(x) = yp1(x) + yp2(x) +
· · ·+ yps(x) which is a particular solution of the original differential equation

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


N-th Order Linear Differential Equations 193

any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a1y
(1)(x) + a0y(x) =

b(x) = b1(x)+b2(x)+ · · ·+bs(x).
The following example illustrates this procedure.

Example 4 General Solution of a Nonhomogeneous Differential

Equation by Superposition

Find the general solution of

(10) y′′ + 3y′ = 4x2 − 2e−3x.

Solution

The associated homogeneous equation is y′′ + 3y′ = 0. And the auxiliary
equation r2 + 3r = 0 has roots 0 and −3. So the complementary solution of
the DE (10) is

yc(x) = c1 + c2e
−3x.

Next, we find two particular solutions yp1(x) and yp2(x) to the two nonho-
mogeneous differential equations:

(11) y′′ + 3y′ = 4x2 = b1(x)

(12) y′′ + 3y′ = −2e−3x = b2(x).

Since b1(x) = 4x2 is of the form (6) and r = 0 is a root of the auxiliary
equation of order k = 1, we seek a particular solution yp1(x) of the DE (11)
of the form

yp1(x) = x1(A2x
2 +A1x+A0) = A2x

3 +A1x
2 +A0x.

Differentiating, we find y′p1
(x) = 3A2x

2+2A1x+A0 and y′′p1
(x) = 6A2x+2A1.

Substituting into the DE (11), we see A2, A1, and A0 must satisfy

(6A2x+ 2A1) + 3(3A2x
2 + 2A1x+A0) = 4x2

or
9A2x

2 + (6A2 + 6A1)x+ (2A1 + 3A0) = 4x2.

Equating coefficients of x2, x, and x0 = 1, we see A2, A1, and A0 must satisfy
the following system of three linear equations simultaneously.

9A2 = 4

6A2 + 6A1 = 0

2A1 + 3A0 = 0.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


194 Elementary Differential Equations

Solving this system, we find A2 =
4

9
, A1 =

−4

9
, and A0 =

8

27
. Consequently,

yp1(x) =
4

9
x3 − 4

9
x2 +

8

27
x.

Since b2(x) = −2e−3x is of the form (7) and r = −3 is a root of the auxiliary
equation of order k = 1, a particular solution yp2(x) of (12) will have the form

yp2(x) = x1e−3x(C) = Cxe−3x.

Differentiating, we get y′p2
(x) = C(−3x+1)e−3x and y′′p2

(x) = C(9x−6)e−3x.
Substituting into the DE (12), we find C must satisfy

C(9x− 6)e−3x + 3C(−3x+ 1)e−3x = −2e−3x or − 3Ce−3x = −2e−3x.

Hence, C =
2

3
and yp2(x) =

2

3
xe−3x.

Adding the particular solutions yp1(x) and yp2(x) of the two nonhomoge-
neous linear differential equations (11) and (12), we find that a particular
solution of the given nonhomogeneous differential equation (10) is

yp(x) = yp1(x) + yp2(x) =
4

9
x3 − 4

9
x2 +

8

27
x+

2

3
xe−3x

and, consequently, the general solution of (10) is

y(x) = yc + yp = c1 + c2e
−3x +

4

9
x3 − 4

9
x2 +

8

27
x+

2

3
xe−3x.

EXERCISES 4.4

Determine the general solution of the following nonhomogeneous
linear differential equations.

1. y′′ + 4y = sinx

2. y′′ + y = x3

3. y′′ + 4y = cos 2x

4. y′′ − y = ex

5. y′′ + 2y′ + y = 3ex − x+ 1

6. y(3) − y(1) = x
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7. y(3) − y(2) + y(1) − y = 4 sinx

8. y(4) − y = e−x

9. y(4) − 6y(3) + 13y(2) − 12y(1) + 4y = 2ex − 4e2x

10. y(4) + 4y(2) = 24x2 − 6x+ 14 + 32 cos 2x

11. y(4) + 2y(2) + y = 3 + cos 2x

12. y(4) − 3y(3) + 3y(2) − y(1) = 6x− 20− 120x2ex

13. y(3) − 6y(2) + 21y(1) − 26y = 36e2x sin 3x

14. y(3) + y(2) − y(1) − y = (2x2 + 4x+ 8) cosx+ (6x2 + 8x+ 12) sinx

15. y(6) − 12y(5) + 63y(4) − 184y(3) + 315y(2) − 300y(1) + 125y =

ex(48 cosx+ 96 sinx)

4.5 Initial Value Problems

The initial value problem for n-th order homogeneous linear dif-
ferential equations with constant coefficients consists of solving the
differential equation

(1) any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a1y
(1)(x) + a0y(x) = 0

where an, an−1, . . . , a1, and a0 are constants and where an �= 0 subject to
the initial conditions

(2) y(x0) = k1, y(1)(x0) = k2, . . . , y
(n−1)(x0) = kn

where k1, k2, . . . , kn are constants.

By the summary theorem stated at the end of Section 4.1, this initial value
problem has a unique solution on the interval (−∞,∞). One way to solve the
initial value problem consisting of equations (1) and (2) is to find the general
solution of (1), using a root finding routine when necessary. The general
solution of (1) will include n arbitrary constants, c1, c2, . . . , cn. The value of
these constants must be determined so that equations (2) are satisfied. This
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requires the solution of a system of n linear equations in the n unknowns, c1,
c2, . . . , cn.

The initial value problem for n-th order nonhomogeneous linear
differential equations with constant coefficients consists of solving the
differential equation

(3) any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a1y
(1)(x) + a0y(x) = b(x)

where an, an−1, . . . , a1, and a0 are constants and where an �= 0 subject to
the initial conditions

(4) y(x0) = k1, y(1)(x0) = k2, . . . , y
(n−1)(x0) = kn.

This initial value problem has a unique solution on the largest interval con-
taining x0 on which the function b(x) is continuous. When b(x) is a linear
combination of terms of the form (6), (7), (8), and (9) of Section 4.4, the
solution of the initial value problem (3)-(4) can be found by calculating the
complementary solution, yc, which will include n arbitrary constants c1, c2,
. . . , cn; by calculating a particular solution, yp, using the method of undeter-
mined coefficients; and then by determining values for the constants c1, c2,
. . . , cn such that y = yc + yp satisfies the equations of (4)—this requires the
solution of a system of n linear equations in n unknowns. In this instance, you
must remember that it is the coefficients of the general solution y = yc+yp and
not the coefficients of the complementary solution yc which must be chosen
to satisfy the initial conditions (4).

A second method for solving the initial value problems (1)-(2) and (3)-
(4) as well as the general initial value problem consisting of the differential
equation y(n)(x) = f(x, y(x), y(1)(x), . . . , y(n−1)(x)) and the initial conditions
y(x0) = k1, y

(1)(x0) = k2, . . . , y
(n−1)(x0) = kn is to rewrite these n-th order

differential equations as a system of n first-order differential equations and
then use the techniques described in Chapter 7 to solve the corresponding
system initial value problem. When an explicit equation for the solution is
not required, the second method of solution is the simplest method to use.
This method will produce the solution of the initial value problem as a set
of ordered pairs (a function) on any finite interval about x0 in which certain
conditions on f , fy, fy(1) , . . . , fy(n−1) are satisfied.

Example 1 Solution of a Nonhomogeneous Initial Value Problem

Solve the initial value problem

(5) y′′ + 3y′ = 4x2 − 2e−3x; y(0) = 1, y′(0) = 0.

Solution

Since the differential equation of this problem is equation (10) of Section 4.4,
we know the general solution is y(x) = yc(x) + yp(x) where yc(x) and yp(x)
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are as calculated in Example 4 of Section 4.4. That is,

y(x) = c1 + c2e
−3x +

4

9
x3 − 4

9
x2 +

8

27
x+

2

3
xe−3x.

Differentiating, we find

y′(x) = −3c2e
−x +

4

3
x2 − 8

9
x+

8

27
+

2

3
(−3x+ 1)e−3x.

The constants c1 and c2 must be chosen so that the initial conditions y(0) = 1
and y′(0) = 0 are satisfied. Hence, c1 and c2 must be chosen to satisfy the
following system of linear equations.

c1 + c2 = 1 (from the condition y(0) = 1)

−3c2 +
8

27
+

2

3
= 0 (from the condition y′(0) = 0)

Solving this system, we find c1 =
55

81
and c2 =

26

81
. Therefore, the solution of

the IVP (5) is

y(x) =
55

81
+

26

81
e−3x +

4

9
x3 − 4

9
x2 +

8

27
x+

2

3
xe−3x.

EXERCISES 4.5

Solve the following initial value problems.

1. y′′ − y′ − 6y = 0; y(0) = 1, y′(0) = −2

2. y′′ + y = 0; y(1) = 1, y′(1) = 0

3. y(3)− 3y(2)− 4y(1)+12y = 0; y(0) = 1, y(1)(0) = 5, y(2)(0) = −1

4. y(3) − 3y(1) − 2y = 0; y(0) = 0, y(1)(0) = 9, y(2)(0) = 0

5. y(4) + 3y(3) + 2y(2) = 0; y(0) = 0, y(1)(0) = 4, y(2)(0) = −6,

y(3)(0) = 14

6. y(4)− 2y(3)+2y(1)− y = 0; y(0) = 1, y(1)(0) = −1, y(2)(0) = −3,

y(3)(0) = 3
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198 Elementary Differential Equations

7. y′′ + y = 10e2x; y(0) = 0, y′(0) = 0

8. y′′ − 4y = 2− 8x; y(0) = 0, y′(0) = 5

9. y(3) − y(2) + y(1) − y = 2ex; y(0) = 1, y(1)(0) = 3, y(2)(0) = −3

10. y(4) + 2y(2) + y = 3x+ 4; y(0) = 0, y(1)(0) = 0, y(2)(0) = 1,

y(3)(0) = 1
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Chapter 5

The Laplace Transform Method

In Sections 4.3 and 4.4 we showed how to solve homogeneous and non-
homogeneous linear differential equations with constant coefficients and in
Section 4.5 we showed how to solve initial value problems in which the dif-
ferential equations were homogeneous or nonhomogeneous linear differential
equations with constant coefficients. The technique consisted of finding the
general solution of the differential equation and then choosing the constants in
the general solution to satisfy the specified initial conditions. In this chapter,
we present the Laplace transform method for solving homogeneous and non-
homogeneous linear differential equations with constant coefficients and their
corresponding initial value problems. We begin by examining the Laplace
transform and its properties.

5.1 The Laplace Transform and Its Properties

The Laplace transform is named in honor of the French mathematician and
astronomer Pierre Simon Marquis de Laplace (1749-1827). Laplace studied
the integral appearing in the definition of the transform in 1779 in conjunction
with his research on probability. However, most of the results and techniques
presented in this chapter were developed by the English electrical engineer
Oliver Heaviside (1850-1925) more than a century later. The Laplace trans-
form is defined as follows.

Let f(x) be a function defined on the interval [0,+∞). The Laplace trans-
form of f(x) is

L[f(x)] =
∫ ∞

0

f(x)e−sx dx = F (s)

provided the improper integral exists for s sufficiently large.

The Laplace transform is an operator which assigns to one function, f(x),
another function, F (s). It can be shown that if the improper integral appear-
ing in the definition converges for some fixed value s0, then it will converge
for all s > s0. For some functions the Laplace transform exists for all real s.
While for other functions the Laplace transform does not exist for any real s.
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200 Elementary Differential Equations

Recall from calculus that the improper integral

∫ ∞

0

g(x) dx is defined to be the limit lim
B→+∞

∫ B

0

g(x) dx,

provided the limit exists. When the limit exists, we say the integral exists
and its value is the limit. When the limit does not exist, we say the integral
does not exist. Consider the improper integral

∫∞
0 e−sxdx. For s = 0, the

function e−sx = 1 and the improper integral diverges, since

∫ ∞

0

1 dx = lim
B→+∞

∫ B

0

1 dx = lim
B→+∞

B = +∞.

For s �= 0,

∫ ∞

0

e−sx dx = lim
B→+∞

∫ B

0

e−sx dx = lim
B→+∞

(
e−sx

−s
∣
∣
∣
∣

B

0

)

= lim
B→+∞

−1

s
(e−sB − 1) =

⎧
⎪⎨

⎪⎩

1

s
, if s > 0

diverges , if s < 0

Instead of writing the limit limB→+∞( )|B0 over and over again, we will de-
note this limit simply by ( )|∞0 . Writing the integrand of the integral under
consideration as 1e−sx, we see that the integral is the Laplace transform of
the function f(x) = 1. Thus, we have shown that

L[1] =
∫ ∞

0

1e−sx dx =
−1

s
(e−sx − 1)

∣
∣
∣
∣

∞

0

=
1

s
, provided s > 0.

Example 1 Find the Laplace transform of f(x) = eax.

Solution

L[eax] =
∫ ∞

0

eaxe−sx dx =

∫ ∞

0

e−(s−a)x dx =
−1

s− a
e−(s−a)x

∣
∣
∣
∣

∞

0

=
1

s− a

provided s > a = s0. If s ≤ a, then L[eax] does not exist. �

Example 2 Calculate the Laplace transform of f(x) = xn, where n

is a positive integer.

Solution

By definition

L[xn] =
∫ ∞

0

xne−sx dx.
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Recall from calculus the following formula for integration by parts

∫ b

a

u dv = uv

∣
∣
∣
∣
∣

b

a

−
∫ b

a

v du.

Letting u = xn and dv = e−sxdx and differentiating and integrating, we find

du = nxn−1dx and v = −1

s
e−sx. Integration by parts, yields

(1)

L[xn] =
∫ ∞

0

xne−sx dx = − xn

s
e−sx

∣
∣
∣
∣

∞

0

+
n

s

∫ ∞

0

xn−1e−sx dx =
n

s
L[xn−1]

provided s > 0.

Letting n = 1, we find

L[x] = 1

s
L[1] = 1

s2
for s > 0.

If n > 1, we repeatedly use the result of equation (1) to obtain

L[xn] = n

s
L[xn−1] =

n(n− 1)

s2
L[xn−2] = · · · = n!

sn
L[1] = n!

sn+1
for s > 0. �

Example 3 Find L[sinbx] =
∫∞
0 (sinbx) e−sx dx.

Solution

We use integration by parts. This time, we let u = sin bx and dv =

e−sxdx. Differentiation and integration yields du = b cos bx and v = −1

s
e−sx.

Consequently,
(2)

L[sin bx] = −1

s
(sin bx)e−sx

∣
∣
∣
∣

∞

0

+
b

s

∫ ∞

0

(cos bx)e−sx dx =
b

s

∫ ∞

0

(cos bx)e−sx dx

provided s > 0. Now, we use integration by parts a second time by letting u =

cos bx and dv = e−sxdx. Then du = −b sin bx and v = −1

s
e−sx. Integrating

the integral appearing on the right-hand side of (2) by parts, we find
(3)

L[sin bx] = b

s

{−1

s
(cos bx)e−sx

∣
∣
∣
∣

∞

0

− b

s

∫ ∞

0

(sin bx)e−sx dx

}

=
b

s2
− b

2

s2
L[sin bx]

provided s > 0. Solving equation (3) algebraically for L[sin bx], we obtain

L[sin bx] = b/s2

1 + b2/s2
=

b

s2 + b2
for s > 0. �
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202 Elementary Differential Equations

In the previous three examples, we used the definition of the Laplace trans-
form to calculate the transform of three different functions—eax, xn, and
sin bx. In elementary calculus, we learned the definition of the derivative of a
function, calculated the derivative of a few functions from the definition, and
then learned rules for the differentiation of the sum, difference, product, and
quotient of two functions. These rules allowed us to differentiate a variety of
functions without explicitly using the definition of the derivative. The opera-
tion of differentiating a function transforms the function f(x) into the function
f ′(x). If the operation of differentiation is denoted by D, then the transforma-
tion can be written as D[f(x)] = f ′(x). The function f ′(x) is the transform of
f(x) under the transformation D. Thus, for example, D[x3] = 3x2. Another
transformation we encountered in calculus was integration. The operation of
integration transforms the function f(x) into the function F (x) =

∫ x
0 f(t) dt.

If we let I denote integration, then this transformation can be written as
I[f(x)] =

∫ x
0
f(t) dt = F (x). For instance, I[x3] = x4/4.

An operator T is linear if for every pair of functions f(x) and g(x) and for
every pair of constants c1 and c2,

T [c1f(x) + c2g(x)] = c1T [f(x)] + c2T [g(x)].

Differentiation and integration are both linear operators. That is, for any
two differentiable functions f(x) and g(x) and any two constants c1 and c2

D[c1f(x) + c2g(x)] = c1D[f(x)] + c2D[g(x)].

Likewise, for any two integrable functions f(x) and g(x) and any two constants
c1 and c2

I[c1f(x) + c2g(x)] = c1I[f(x)] + c2I[g(x)].

We now prove that the Laplace transform is a linear operator. That is,
we prove that if f1(x) and f2(x) are functions which have Laplace transforms
for s > s1 and s > s2, respectively, and if c1 and c2 are constants, then

L[c1f1(x) + c2f2(x)] = c1L[f1(x)] + c2L[f2(x)] for s > max(s1, s2).

Proof: Let s > max(s1, s2). Then, by definition,

L[c1f1(x) + c2f2(x)] =

∫ ∞

0

{c1f1(x) + c2f2(x)}e−sx dx

= c1

∫ ∞

0

f1(x)e
−sx dx + c2

∫ ∞

0

f2(x)e
−sx dx

= c1L[f1(x)] + c2L[f2(x)]. �
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Example 4 Calculate L[4x2+3].

Solution

Using the linearity property of the Laplace transform, we find

L[4x2 + 3] = 4L[x2] + 3L[1] = 4
2

s3
+ 3

1

s
=

8

s3
+

3

s
for s > 0. �

Example 5 Calculate L[sinhbx].

Solution

Since sinh bx =
1

2
ebx − 1

2
e−bx, we find, using the linearity property of the

Laplace transform, that

L[sinh bx] = L[ 1
2
ebx − 1

2
e−bx] =

1

2
L[ebx]− 1

2
L[e−bx]

=
1

2

1

s− b
− 1

2

1

s+ b
=

b

s2 − b2
for s > |b|. �

Another property of Laplace transforms which is useful in calculating the
transform of some functions is the following property which is called the
Translation Property of the Laplace Transform.

If L[f(x)] = F (s) for s > s0, then L[eaxf(x)] = F (s− a) for s > s0 + a.

Proof: By definition and hypothesis,

L[f(x)] =
∫ ∞

0

f(x)e−sx dx = F (s) for s > s0.

Hence,

L[eaxf(x)] =
∫ ∞

0

eaxf(x)e−sx dx

=

∫ ∞

0

f(x)e−(s−a)x dx = F (s− a) for s− a > s0.

That is,

L[eaxf(x)] = F (s− a) for s > s0 + a. �
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204 Elementary Differential Equations

As the following example illustrates, this property allows us to calculate
easily the Laplace transform of the function eaxf(x), if we already know the
transform of f(x).

Example 6 Calculate L[xneax] where n is a positive integer.

Solution

Earlier, we found

L[xn] = n!

sn+1
= F (s) for s > 0.

Using the translation property, we now find

L[xneax] = F (s− a) =
n!

(s− a)n+1
for s > a. �

A function f(x) is piecewise continuous on a finite interval [a,b] if
and only if

(i) f(x) is continuous on [a, b] except at a finite number of points,

(ii) the limits

f(a+) = lim
x→a+

f(x) and f(b−) = lim
x→b−

f(x)

both exist and are finite, and

(iii) if c ∈ (a, b) is a point of discontinuity of f(x), then the following

limits exist and are finite:

f(c−) = lim
x→c−

f(x) and f(c+) = lim
x→c+

f(x).

When the limits in (iii) are equal, f is said to have a removable discon-
tinuity at c.

When the limits in (iii) are unequal, f is said to have a jump discontinuity
at c.

If f(x) is piecewise continuous on a finite interval [a, b] and is continuous
except possibly at the points a = a1 < a2 < · · · < an = b, then f is integrable
on [a, b] and

∫ b

a

f(x) dx =

∫ a2

a1

f(x) dx +

∫ a3

a2

f(x) dx + · · ·+
∫ an

an−1

f(x) dx.
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The function graphed in Figure 5.1 is piecewise continuous on [a, b]. It has
a removable discontinuity at c1 and jump discontinuities at c2 and c3.

�
�

� �� �
� �

Figure 5.1 Graph of a Piecewise Continuous Function.

Example 7 Compute the Laplace transform of the piecewise con-

tinuous function

f(x) =

⎧
⎨

⎩

x, 0 ≤ x < 2

3, 2 ≤ x

Solution

By definition,

(4) L[f(x)] =
∫ ∞

0

f(x)e−sx dx =

∫ 2

0

xe−sx dx+

∫ ∞

2

3e−sx dx.

To calculate the first integral on the right-hand side of equation (4), we use
integrations by parts. Letting u = x and dv = e−sx and differentiating
and integrating, we find du = dx and v = −(1/s)e−sx. Substituting these
expressions into the integration by parts formula, yields

(5)

∫ 2

0

xe−sx dx =
−x
s
e−sx

∣
∣
∣
∣

2

0

+
1

s

∫ 2

0

e−sx dx =
−2

s
e−2s −

{
1

s2
e−sx

∣
∣
∣
∣

2

0

}

=
−2

s
e−2s − 1

s2
[e−2s − 1].

Evaluating the second integral on the right-hand side of equation (4), we find

(6)

∫ ∞

2

3e−sx dx =
−3

s
e−sx

∣
∣
∣
∣

∞

2

=
3

s
e−2s for s > 0.
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206 Elementary Differential Equations

Substituting the results from equations (5) and (6) into (4), we get

L[f(x)] = −2

s
e−2s− 1

s2
[e−2s−1]+

3

s
e−2s =

1

s
e−2s− 1

s2
[e−2s−1] for s > 0. �

Not all functions have a Laplace transform as the following example shows.

Example 8 Show that L[ex2

] =
∫∞
0

ex
2

e−sx dx does not exist.

Solution

Clearly the integral does not exist if s ≤ 0, since the integrand is positive.
Suppose the integral does exist for some s > 0. Then

(7) L[ex2

] =

∫ ∞

0

ex
2

e−sx dx =

∫ 2s

0

ex(x−s) dx+

∫ ∞

2s

ex(x−s) dx.

The first integral on the right-hand side of equation (7) is positive, since the
integrand is positive for all real x and s. For x ≥ 2s, we have x − s ≥ s and
ex(x−s) ≥ esx. Therefore the second integral on the right-hand side of (7)
satisfies the inequality

∫ ∞

2s

ex(x−s) dx ≥
∫ ∞

2s

esx dx = ∞.

Thus, for any s > 0, we have

L[ex2

] =

∫ 2s

0

ex(x−s) dx+

∫ ∞

2s

ex(x−s) dx ≥
∫ ∞

2s

esx dx = ∞.

Consequently, L[ex2

] does not exist. �

For any fixed positive value of s, the factor e−sx, which appears in the
integrand of the definition of the Laplace transform, is a “damping factor”—
a factor which decreases to zero as x increases. Provided the function f(x)
does not “grow too rapidly” as x increases, we expect the defining integral to
converge and, therefore, the Laplace transform to exist. Classes of functions
which do not “grow too rapidly” are said to be of exponential order a, or
simply of exponential order. Such functions are defined as follows.

A function f(x) is of exponential order a as x → +∞ if and only if there
exist positive constants M and x0 and a constant a such that

|f(x)| < Meax for x ≥ x0.

A function which is of exponential order a > 0 as x → +∞ may become
infinite as x→ +∞, but it may not become infinite more rapidly than Meax.
It follows from this definition that all bounded functions are of exponential
order 0 as x → +∞. Also if a < b and f(x) is of exponential order a as
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The Laplace Transform Method 207

x→ +∞, then f(x) is of exponential order b as x→ +∞, since a < b implies
Meax < Mebx. It should be noted that there are functions which are not of
exponential order a as x → +∞ for any a. For instance, the function ex

2

is
not of exponential order a as x → +∞ for any a. As a matter of fact, it can
be shown that for any positive constants a andM , no matter how large, there
exists an x0—which depends upon M and a—such that ex

2

> Meax for all
x > x0.

The following theorem provides sufficient conditions for the existence of
a Laplace transform of a function f(x). These conditions are not necessary
conditions as we shall show in the example following the theorem.

Theorem 5.1 An Existence Theorem for the Laplace Transform

If f(x) is piecewise continuous on [0, b] for all finite b > 0 and if f(x) is of
exponential order a as x → +∞, then the Laplace transform of f(x) exists
for s > a.

Proof: Since f(x) is assumed to be of exponential order a as x→ +∞, there
exist positive constants M and x0 such that |f(x)| < Meax for x > x0. We
rewrite the Laplace transform of f(x) as follows:

(8) L[f(x)] =
∫ ∞

0

f(x)e−sx dx =

∫ x0

0

f(x)e−sx dx+

∫ ∞

x0

f(x)e−sx dx.

The first integral on the right-hand side of equation (8) exists, since f(x) is
piecewise continuous on [0, x0], which implies f(x)e−sx is piecewise continuous
on [0, x0], because e

−sx is continuous on [0, x0]. Since f(x)e−sx is piecewise
continuous on [0, x0], it is integrable on [0, x0]. The absolute value of the
second integral on the right-hand side of equation (8) satisfies

∣
∣
∣
∣

∫ ∞

x0

f(x)e−sx dx

∣
∣
∣
∣ ≤
∫ ∞

x0

|f(x)|e−sx dx < M

∫ ∞

x0

eaxe−sx dx

=
M

a− s
e(a−s)x

∣
∣
∣
∣

∞

x0

=
−M
a− s

e(a−s)x0 provided s > a.

Since the improper integral
∫∞
x0
eaxe−sx dx converges for s > a, the improper

integral
∫∞
x0

|f(x)|e−sx dx converges for s > a by the comparison test for

improper integrals. Since
∫∞
x0

|f(x)|e−sx dx converges for s > a, the integral
∫∞
x0
f(x)e−sx dx converges for s > a. Thus, the second integral on the right-

hand side of equation (8) converges for s > a. Since both improper integrals
on the right-hand side of (8) converge for s > a, the Laplace transform of
f(x), L[f(x)], exists for s > a. �

The function f(x) = 1/
√
x is of exponential order 0 as x → +∞, but it is

not piecewise continuous on [0, b] for any b > 0 since limx→0+ f(x) = +∞.
Thus, f(x) = 1/

√
x does not satisfy the first hypothesis of Theorem 5.1;
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208 Elementary Differential Equations

however, the Laplace transform exists, as the following calculations show. By
definition

L
[

1√
x

]

=

∫ ∞

0

e−sx

√
x
dx.

Making the change of variable t = sx, we find

L
[

1√
x

]

=
1√
s

∫ ∞

0

e−t

√
t
dt =

√
π

s
.

The value of the definite integral on the right-hand side of the last equation
was obtained from a table of integrals.

Early in calculus, you discovered that many functions have the same deriva-
tive. Letting D denote the differential operator as we did earlier, we find that
D[x3] = D[x3 + 1] = D[x3 + C] = 3x2, where C is an arbitrary constant.
Just as many functions have the same derivative, many functions have the
same Laplace transform. At the beginning of this section, we calculated the
Laplace transform of the function f(x) = 1 and found L[f(x)] = 1/s = F (s)
provided s > 0. The Laplace transform of the piecewise continuous function

g(x) =

⎧
⎨

⎩

1, x �= 2

3, x = 2

is

L[g(x)] =
∫ ∞

0

1e−sx dx =

∫ 2

0

1e−sx dx+

∫ ∞

2

1e−sx dx =
1

s
= F (s),

provided s > a. The function g(x) could have been chosen to differ from f(x)
at any finite set of values of x, or even at an infinite set of values such as the set
{1, 2, 3, . . .}. In calculus, you learned if D[f(x)] = D[g(x)] on some interval
[a, b], then f(x) = g(x) + C on [a, b] for some constant C. The following
theorem, which we state without proof, is an analogous theorem for Laplace
transforms.

Theorem 5.2 If f(x) and g(x) are defined and piecewise continuous on [0, b]
for all finite b > 0 and of exponential order a as x → +∞ and if L[f(x)] =
L[g(x)], then f(x) = g(x) at all points x ∈ [0,∞) where f(x) and g(x) are
both continuous.

A consequence of this theorem is that a given Laplace transform, F (s),
cannot have more than one continuous function f(x) defined on [0,∞) which
transforms into F (s). Although there may be many functions g(x) which
transform into F (s), there is only one continuous function defined on [0,∞)
which transforms into F (s). Therefore, by defining the inverse Laplace
transform as follows there is a unique inverse Laplace transform.
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If there exists a continuous function f(x) defined on the interval [0,∞) such
that L[f(x)] = F (s), then f(x) is called the inverse Laplace transform of
F (s) and we write L−1(F (s)) = f(x).

Consider the Laplace transform H(s) = c1F (s) + c2G(s) where c1 and c2
are arbitrary constants. Assume f(x) and g(x) are continuous functions on
[0,∞) which are of exponential order a as x → +∞, and assume f(x) and
g(x) have Laplace transforms F (s) = L[f(x)] and G(s) = L[g(x)]. Since the
Laplace transform is a linear operator,

(9) L[c1f(x) + c2g(x)] = c1L[f(x)] + c2L[g(x)] = c1F (s) + c2G(s).

Taking the inverse Laplace transform of (9), we find

L−1[c1F (s) + c2G(s)] = c1f(x) + c2g(x) = c1L−1[F (s)] + c2L−1[G(s)].

Thus, we have shown that the inverse Laplace transform is a linear
operator.

Just as there are functions f(x) which do not have Laplace transforms (re-

call f(x) = ex
2

does not have a Laplace transform), there are many functions
F (s) which do not have inverse Laplace transforms. For example, F (s) = 1
is a function which, by the definition above, does not have an inverse Laplace
transform, since there is no continuous function f(x) defined on the interval
[0,∞) such that L[f(x)] = 1. However, in Section 5.5, we define and discuss
the Dirac delta function, δ(x). This “function” is not a function on [0,+∞)
in the classical sense. Moreover, it is not continuous on [0,∞). Nonetheless,
in distribution theory, the delta function has the property that L[δ(x)] = 1.
Hence, δ(x) is called the inverse Laplace transform of F (s) = 1.

Table 5.1 contains several functions, f(x), and their corresponding Laplace
transform, F (s). The left column of Table 5.1 contains functions, f(x), which
are continuous on [0,∞) and the corresponding entry in the right column
contains their Laplace transform, F (s). Since each function f(x) is an inverse
Laplace transform of the function F (s) appearing in the corresponding right
column, the left column is labelled f(x) = L−1(F (s)).

In integral calculus, you learned how to integrate rational functions by using
partial fraction decomposition. In order to find inverse Laplace transforms of
rational functions efficiently using a table of Laplace transforms, we need to
know a variation of partial fraction decomposition.

Partial Fraction Expansion for Computing Inverse Laplace

Transforms

Let F (s) = P (s)/Q(s) where P (s) and Q(s) are polynomials with real
coefficients, where P (s) and Q(s) have no common factor, and where the
degree of P (s) is less than the degree of Q(s).
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Table 5.1 Laplace Transforms and Inverse Laplace Transforms

f(x) = L−1(F (s)) F (s) = L[f(x)]

eax
1

s− a
for s > a

1
1

s
for s > 0

xn,
n!

sn+1
for s > 0

n a positive integer

sin bx
b

s2 + b2
for s > 0

cos bx
s

s2 + b2
for s > 0

sinh bx
b

s2 − b2
for s > |b|

cosh bx
s

s2 − b2
for s > |b|

xneax,
n!

(s− a)n+1
for s > a

n a positive integer

eax sin bx
b

(s− a)2 + b2
for s > a

eax cos bx
s− a

(s− a)2 + b2
for s > a

eax sinh bx
b

(s− a)2 − b2
for s > |b|+ a

eax cosh bx
s− a

(s− a)2 − b2
for s > |b|+ a
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A. For Linear Factors

When s − r is a factor of Q(s) exactly n times, the part of the partial
fraction expansion for P (s)/Q(s) corresponding to the term (s− r)n is

A1

s− r
+

A2

(s− r)2
+ · · ·+ An

(s− r)n

where A1, A2, . . . , An are real constants which must be determined.

B. For Irreducible Quadratic Factors

Let (s − a)2 + b2 be a quadratic factor of Q(s) which cannot be factored
into linear factors with real coefficients. When (s − a)2 + b2 is a factor of
Q(s) exactly n times, the part of the partial fraction expansion for P (s)/Q(s)
corresponding to the term (s− a)2 + b2 is

B1(s− a) + C1b

(s− a)2 + b2
+
B2(s− a) + C2b

((s− a)2 + b2)2
+ · · ·+ Bn(s− a) + Cnb

((s− a)2 + b2)n

where B1, B2, . . . , Bn and C1, C2, . . . , Cn are real constants which must be
determined.

Example 9 For F(s) =
2

s(s+1)
, calculate L−1[F(s)].

Solution

The denominator of F (s), which is Q(s) = s(s + 1), has two linear factors
of multiplicity 1, so the partial fraction expansion for F (s) has the form

(10) F (s) =
2

s(s+ 1)
=
A

s
+

B

s+ 1

where A and B are constants to be determined. Multiplying equation (10) by
s(s+ 1), we see A and B must be chosen to satisfy

(11) 2 = A(s+ 1) +Bs.

Setting s = 0 in equation (11), we find A = 2. And setting s = −1 in
equation (11), we see B = −2. Hence,

L[f(x)] = 2

s(s+ 1)
=

2

s
− 2

s+ 1
= 2

(
1

s

)

− 2

(
1

s+ 1

)

.

Since

L[1] = 1

s
and L[e−x] =

1

s+ 1
,

(12) L[f(x)] = 2L[1]− 2L[e−x] = L[2− 2e−x].

Taking the inverse Laplace transform of equation (12), we find f(x) = 2−2e−x.
�
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Example 10 For F(s) =
−2s3 + 3s2 + 37s− 55

(s−4)2(s2 − 4s+13)
, calculate L−1[F(s)].

Solution

The quadratic factor s2 − 4s + 13 appearing in the denominator of F (s)
is irreducible, since its discriminant (−4)2 − 4(1)(13) = 16 − 52 = −36 < 0.
Completing the square, we can rewrite this quadratic factor as

s2 − 4s+ 13 = (s2 − 4s+ 4) + 9 = (s− 2)2 + 32 = (s− a)2 + b2.

Since the linear factor (s−4) appears to the second power in the denominator
of F (s) and the quadratic factor appears to the first power, the partial fraction
expansion for F (s) has the form

(13)
−2s3 + 3s2 + 37s− 55

(s− 4)2(s2 − 4s+ 13)
=

A

s− 4
+

B

(s− 4)2
+
C(s− 2) + 3D

(s− 2)2 + 32
.

Multiplication of (13) by (s− 4)2(s2 − 4s+ 13), yields

(14) −2s3 + 3s2 + 37s− 55 =

A(s− 4)(s2 − 4s+ 13) +B(s2 − 4s+ 13) +C(s− 2)(s− 4)2 + 3D(s− 4)2.

Setting s = 4 in (14), we obtain

−2(4)3 + 3(4)2 + 37(4)− 55 = B(42 − 4(4) + 13) or 13 = 13B.

So B = 1. Substituting B = 1 into (14), and then subtracting s2 − 4s + 13
from both sides of the resulting equation, yields

(15) −2s3+2s2+41s−68 = A(s−4)(s2−4s+13)+C(s−2)(s−4)2+3D(s−4)2.

Letting s = 0 in (15), results in −68 = −52A− 32C + 48D.

Letting s = 2 in (15), results in 6 = −18A+ 12D.

And letting s = 1 in (15), results in −27 = −30A− 9C + 27D.

Solving the last three equations simultaneously, we find A = −3, C = 1, and
D = −4. Hence,

F (s) = −3

(
1

s− 4

)

+
1

(s− 4)2
+

s− 2

(x − 2)2 + 32
− 4

(
3

(x− 2)2 + 32

)

.

Since the inverse Laplace transform is a linear operator

L−1[F (s)] = −3L−1

[
1

s− 4

]

+ L−1

[
1

(s− 4)2

]

+ L−1

[
s− 2

(x − 2)2 + 32

]

− 4L−1

[
3

(x− 2)2 + 32

]

= −3e4x + xe4x + e2x cos 3x− 4e2x sin 3x. �
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As we have discovered, manually calculating the Laplace transform of a
function from the definition can involve using various integration techniques
such as integration by parts, substitution, and so forth, or it can involve look-
ing up definite integrals in a table of integrals. If we have a table of Laplace
transforms available, then manually computing the Laplace transform can
require using the linearity property or translation property of Laplace trans-
forms. To manually calculate the inverse Laplace transform often requires
using partial fraction expansion and the use of a table of Laplace transforms.

Comments on Computer Software Algorithms for calculating the
Laplace transform and the inverse Laplace transform are often included in
computer algebra systems (CAS). What the user needs to know in order to
use such a CAS is the command to use to invoke the Laplace transform or
inverse Laplace transform, the required arguments of the command, and the
syntax for entering the function f(x) or F (s). A CAS will not show the com-
putations used to arrive at the answer, it will just provide the answer. Thus,
if a user specifies the proper syntax to request a CAS to calculate the Laplace
transform of f(x) = x2 sinx the CAS will simply respond

2
−1 + 3s2

(1 + s2)3
.

And if the user specifies the proper syntax to request a CAS to calculate the

inverse Laplace transform of F (s) =
2

s(s+ 1)
, the CAS will respond 2−2e−x.

EXERCISES 5.1

In Exercises 1–6 manually calculate the Laplace transform from
its definition. If you have a CAS available which calculates the
Laplace transform, also use the CAS to calculate the Laplace trans-
forms of Exercises 1–6 and compare those answers to the ones you
obtained by hand.

1. Let a and b be real constants.

a. Calculate L[x sin bx].
b. Use the translation property to calculate L[xeax sin bx].

2. Let a and b be real constants.

a. Calculate L[x cos bx].
b. Use the translation property to calculate L[xeax cos bx].

3. Find L[f(x)] for

f(x) =

⎧
⎨

⎩

0, 0 ≤ x < 3

1, 3 ≤ x
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4. Find L[g(x)] for

g(x) =

⎧
⎨

⎩

1− x, 0 ≤ x < 1

x− 1, 1 ≤ x

5. Find L[h(x)] for

h(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x, 0 ≤ x < 2

−x+ 4, 2 ≤ x < 4

0, 4 ≤ x

6. Find L[k(x)] for

k(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, 0 ≤ x < 1

1, 1 ≤ x < 2

0, 2 ≤ x

7. Use Table 5.1 and the linearity property of Laplace transforms to find
the following transforms.

a. L[5] b. L[e]

c. L[3x− 2] d. L[e−x(2x+ 1)]

e. L[e2x sin 3x− 2 cosx] f. L[e3x+2]

Comments on Computer Software The following two MAPLE
statements may be used to calculate the Laplace transform of f(x) =
x2 sinx.

with(inttrans):

F:=laplace(x ∧ 2 ∗ sin(x), x, s);
The output displayed by MAPLE is

F := 2
−1 + 3s2

(1 + s2)3

The first statement above, with(inttrans):, instructs the computer to
load software for calculating the Laplace transform.

The following four statements calculate the Laplace transform of the
piecewise continuous function of Exercise 4.
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with(inttrans):

g:=piecewise(0 <= x and x < 1, 1− x, 1 <= x, x− 1):

H:=convert(g, Heaviside):

G:=laplace(H, x, s);

The third statement converts the representation of the function g to the
proper format for use with the laplace command. The output is

G :=
1

s
− 1

s2
+

2e(−s)

x2

8. Show that if f(x) and g(x) are both of exponential order a as x→ +∞,
then f(x)− g(x) is also of exponential order a as x→ +∞.

9. For each of the following functions F (s) find a function f(x) such that
L[f(x)] = F (s). That is, for each given function F (s) find an inverse
Laplace transform L−1[F (s)]. If you have a CAS available which cal-
culates the inverse Laplace transform, also use the CAS to calculate
the inverse Laplace transforms of each of the given functions F (s) and
compare those answers to the ones you obtained by hand.

a.
3

s3
b.

4

(s+ 2)2
c.

−2s

s2 + 3

d.
1

s2(s+ 1)
e.

s− 1

s2 − 2s+ 5
f.

2

s2 − 2s+ 5

g.
−4

s(s2 + 1)
h.

2s+ 5

s2 + 2s+ 2
i.

1

s2
+

2

s2 − 1

j.
3s

s2 − 4s+ 3
k.

1

s2 − 4s+ 9
l.

s

s2 − 4s+ 9

Comments on Computer Software The following three MAPLE
statements compute the inverse Laplace transform of

F (s) =
2

s(s+ 1)
=

2

s
− 2

s+ 1

in two different ways.

with(inttrans):

f:=invlaplace(2/(s ∗ (s+ 1)), s, x);

f:=invlaplace(2/s− 2/(s+ 1), s, x);
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The output of the second statement is

f:= 4e(−1/2x) sinh(
1

2
x)

while the output of the third statement is

f:= 2− 2e(−x)

Notice the two results are equal but are expressed differently.

5.2 Using the Laplace Transform and Its Inverse

to Solve Initial Value Problems

The Laplace transform method for solving n-th order linear initial value
problems in which the differential equation is homogeneous or nonhomoge-
neous is a three-step process. First, the differential equation is transformed
by the Laplace transform into an algebraic equation in s and L[y(x)]—the
Laplace transform of the solution of the initial value problem. Next, the
unknown in the algebraic equation L[y(x)] is solved for by algebraic manip-
ulation. And finally, the inverse Laplace transformation is applied to obtain
the solution of the initial value problem. The Laplace transform method
immediately yields the solution of n-th order linear homogeneous and nonho-
mogeneous differential equations and n-th order linear initial value problems
in which the differential equation is homogeneous or nonhomogeneous. That
is, one does not have to (1) find the general solution of the associated homo-
geneous differential equation, (2) find a particular solution to the nonhomo-
geneous differential equation, and (3) add these solutions to get the general
solution. In addition, if the problem is a linear initial value problem, the
initial conditions are incorporated in the transforming equations. Hence, one
does not have to find the general solution and then choose the constants to
satisfy the specified initial equations.

Let us formally calculate the Laplace transform of the derivative of the
function y(x). By definition,

(1) L[y′(x)] =
∫ ∞

0

y′(x)e−sx dx.

Letting u = e−sx and dv = y′(x) dx, and differentiating and integrating, we
find du = −se−sxdx and v = y(x). Then applying the integration by parts
formula to equation (1), yields

L[y′(x)] =
∫ ∞

0

y′(x)e−sx dx = y(x)e−sx

∣
∣
∣
∣

∞

0

+ s

∫ ∞

0

y(x)e−sx dx.
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If y(x) is of exponential order a as x → +∞, then for s > a, y(x)e−sx → 0
as x→ +∞ and, therefore,

L[y′(x)] = −y(0) + sL[y(x)] for s > a.

Next, we formally calculate the Laplace transform of the second derivative
of the function y(x). Again we use integration by parts. This time we set
u = e−sx and dv = y′′(x) dx, and differentiating and integrating, we find
du = −se−sxdx and v = y′(x). Substituting these expressions into the formula
for integration by parts, yields

L[y′′(x)] =
∫ ∞

0

y′′(x)e−sx dx = y′(x)e−sx

∣
∣
∣
∣

∞

0

+ s

∫ ∞

0

y′(x)e−sx dx.

If y′(x) is of exponential order a as x→ +∞, then for s > a, y′(x)e−sx → 0
as x→ +∞ and, therefore,

L[y′′(x)] = −y′(0)− sy(0) + s2L[y(x)] for s > a.

By induction, we obtain the following general formula for the Laplace
transform of the n-th derivative of the function y(x).

Let y(x), y(1)(x), . . . , y(n−1)(x) be continuous on [0,∞) and let y(n)(x) be
piecewise continuous on [0,∞). Furthermore, let y(x), y(1)(x), . . . , y(n)(x)
be of exponential order a. Then, for s > a

(2) L[y(n)(x)] = −y(n−1)(0)− sy(n−2)(0)− · · · − sn−1y(0) + snL[y(x)].

Since the solutions of homogeneous linear differential equations with con-
stant coefficients and all of their derivatives are continuous and of exponential
order a as x→ +∞ for some constant a, equation (2) is valid for the all n-th
order linear homogeneous differential equations with constant coefficients. If,
in addition, the nonhomogeneity b(x) of a nonhomogeneous linear differential
equation with constant coefficients is of exponential order a as x→ +∞, then
b(x) has a Laplace transform and equation (2) is valid for that nonhomoge-
neous differential equation.

The following example illustrates how to use the Laplace transform method
to obtain the general solution of a second-order linear homogeneous differential
equation with constant coefficients.

Example 1 Use the Laplace transform method to solve the homo-

geneous linear differential equation

y′′ + 4y = 0.
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Solution

Apply the Laplace Transform to the Differential Equation

Taking the Laplace transform of given differential equation, we find

L[y′′ + 4y] = L[0].

Using the fact that L[0] = 0 and the linearity property of the Laplace trans-
form, yields

L[y′′(x)] + 4L[y(x)] = 0.

Replacing L[y′′(x)] by the expression we obtain from equation (2) with n = 2,
results in

−y′(0)− sy(0) + s2L[y(x)] + 4L[y(x)] = 0

or

(3) −y′(0)− sy(0) + (s2 + 4)L[y(x)] = 0.

Solve the Algebraic Equation for L[y(x)]
Since specific initial conditions are not given, we let A = y(0) and B = y′(0),

where A and B are arbitrary real constants. Then solving equation (3) for
L[y(x)], we obtain

(4) L[y(x)] = B +As

s2 + 4
.

Apply the Inverse Laplace Transform

Applying the inverse Laplace transform to (4) and using the linearity of the
inverse Laplace transform, results in

y(x) = L−1

[
B +As

s2 + 4

]

= BL−1

[
1

s2 + 4

]

+AL−1

[
s

s2 + 4

]

=
B

2
sin 2x+A cos 2x.

Hence, the general solution of the differential equation y′′ + 4y = 0 is

y(x) = C sin 2x+A cos 2x,

where A and C = B/2 are arbitrary real constants. �

The following example shows how to use the Laplace transform method to
obtain the general solution of a second-order linear nonhomogeneous differen-
tial equation with constant coefficients.
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Example 2 Find the general solution of the nonhomogeneous linear
differential equation

y′′ + y′ − 2y = x2 − 1

using the Laplace transform method.

Solution

Apply the Laplace Transform to the Differential Equation

Successively taking the Laplace transform of the given equation, using the
linearity property of the Laplace transform, replacing L[y′′(x)] by the expres-
sion we obtain from equation (2) with n = 2, and replacing L[y′(x)] by the
expression we obtain from equation (2) with n = 1, results in

L[y′′ + y′ − 2y] = L[x2 − 1]

L[y′′(x)] + L[y′(x)] − 2L[y(x)] = L[x2]− L[1]

(5) (−y′(0)− sy(0) + s2L[y(x)]) + (−y(0) + sL[y(x)]) − 2L[y(x)] = 2

s3
− 1

s
.

Solve the Algebraic Equation for L[y(x)]
Letting A = y(0) and B = y′(0) and solving for L[y(x)], yields

(6) L[y(x)] =
A(s+ 1) +B +

2

s3
− 1

s
s2 + s− 2

=
A(s+ 1) +B

(s+ 2)(s− 1)
+

2

s3(s+ 2)(s− 1)
− 1

s(s+ 2)(s− 1)
.

Expanding the right-hand side of this equation using partial fraction expan-
sion and combining like terms, we find

(7) L[y(x)] = c1
s+ 2

+
c2

s− 1
− 1

4s
− 1

2s2
− 1

s3

where c1 = (4A − 4B − 1)/12 and c2 = (2A + B + 1)/3 are arbitrary real
constants, since A and B are arbitrary real constants.

Apply the Inverse Laplace Transform

Applying the inverse Laplace transform to (7) and using the linearity prop-
erty of the inverse Laplace transform, yields
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(8) y(x) = c1L−1

[
1

s+ 2

]

+ c2L−1

[
1

s− 1

]

− 1

4
L−1

[
1

s

]

−1

2
L−1

[
1

s2

]

− L−1

[
1

s3

]

= c1e
−2x + c2e

x − 1

4
− 1

2
x− 1

2
x2.

Hence, the general solution of the differential equation y′′ + y′ − 2y = x2 − 1
is

y(x) = c1e
−2x + c2e

x − 1

4
− 1

2
x− 1

2
x2

where c1 and c2 are arbitrary real constants. �

The following example illustrates how to use the Laplace transform method
to solve an initial value problem.

Example 3 Find the solution of the initial value problem

y′′ − 4y′ + 5y = 2ex − sin x; y(0) = 1, y′(0) = −1

using the Laplace transform method.

Solution

Apply the Laplace Transform to the Differential Equation

The Laplace transform of the given differential equation is
(9)

(−y′(0)−sy(0)+s2L[y(x)])−4(−y(0)+sL[y(x)])+5L[y(x)] = 2

s− 1
− 1

s2 + 1
.

Solve the Algebraic Equation for L[y(x)]
Substituting the given initial conditions into (9) and solving the resulting

equation for L[y(x)], we find

L[y(x)] =
s− 5 +

2

s− 1
− 1

s2 + 1
s2 − 4s+ 5

=
s4 − 6s3 + 8s2 − 7s+ 8

(s− 1)(s2 + 1)(s2 − 4s+ 5)
.

Using partial fraction expansion, results in

(10) L[y(x)] = 1

s− 1
− 1

8

1

s2 + 1
− 1

8

s

s2 + 1
− 17

8

1

(s− 2)2 + 1
+
1

8

(s− 2)

(s− 2)2 + 1
.
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Apply the Inverse Laplace Transform

Applying the inverse Laplace transform to (10) and using linearity of the
inverse Laplace transform, yields

y(x) = L−1

[
1

s− 1

]

− 1

8
L−1

[
1

s2 + 1

]

− 1

8
L−1

[
s

s2 + 1

]

− 17

8
L−1

[
1

(s− 2)2 + 1

]

+
1

8
L−1

[
s− 2

(s− 2)2 + 1

]

= ex − 1

8
sinx− 1

8
cosx− 17

8
e2x sinx+

1

8
e2x cosx.

Hence, the solution of the given initial value problem is

y(x) = ex − 1

8
sinx− 1

8
cosx− 17

8
e2x sinx+

1

8
e2x cosx. �

Comments on Computer Software Manually using the Laplace trans-
form method to solve a linear differential equation with constant coefficients
or an initial value problem which includes such a differential equation is a
three step process. First, one calculates the Laplace transform of the differ-
ential equation and substitutes for the initial conditions, if any are specified.
Next, one uses partial fraction expansion, a table of Laplace transforms and
their inverses, and some algebraic rearrangement, when necessary, so that the
linearity property of the Laplace transform can be used. Finally, the inverse
Laplace transform is determined. Some computer algebra systems (CAS) in-
clude one or more algorithms for using the Laplace transform method to solve
linear differential equations and initial value problems. In one method of solu-
tion, the user follows the three steps listed above. That is, the user instructs
the CAS to calculate the Laplace transform of the given differential equation
and specifies the initial conditions, if specific values are given. Next, the user
has the CAS perform a partial fraction expansion. And then, the user has the
CAS calculate the inverse Laplace transform to obtain the required solution.
In the second method, the user enters the differential equation and initial
conditions, if any, and instructs the CAS to solve the differential equation
or initial value problem using the Laplace transform method. In this case,
the CAS will not show the step-by-step computations used to arrive at the
answer, it will simply provide the answer, if it can. Thus, if a user specifies
the proper syntax requesting a CAS to use the Laplace transform method to
solve the initial value problem y′′ + 4y = 0; y(0) = 1, y′(0) = −1, then the

CAS will simply respond y(x) = −1

2
sin 2x+ cos 2x.
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EXERCISES 5.2

In Exercises 1–7 use the Laplace transform method to calculate
the general solution of the given differential equation manually. If
you have a CAS available which contains algorithms for using the
Laplace transform method, use them to calculate the solutions of
Exercises 1–7 and compare those answers to the ones you obtained
by hand.

1. y′ − y = 0

2. y′′ − 2y′ + 5y = 0

3. y′ + 2y = 4

4. y′′ − 9y = 2 sin 3x

5. y′′ + 9y = 2 sin 3x

6. y′′ + y′ − 2y = xex − 3x2

7. y(4) − 2y(3) + y(2) = xex − 3x2

In Exercises 8–14 use the Laplace transform method to calculate
the solution of the given initial value problem manually. If you have
a CAS available which contains algorithms for using the Laplace
transform method to solve initial value problems, use them to cal-
culate the solutions of Exercises 8–14 and compare those answers
to the ones you obtained by hand.

8. y′ = ex; y(0) = −1

9. y′ − y = 2ex; y(0) = 1

10. y′′ − 9y = x+ 2; y(0) = −1, y′(0) = 1

11. y′′ + 9y = x+ 2; y(0) = −1, y′(0) = 1

12. y′′ − y′ + 6y = −2 sin 3x; y(0) = 0, y′(0) = −1

13. y′′ − 2y′ + 2y = 1− x2; y(0) = 1, y′(0) = 0

14. y′′′ + 3y′′ + 2y′ = x+ cosx; y(0) = 1, y′(0) = −1, y′′(0) = 2

Comments on Computer Software The following nine MAPLE state-
ments calculate and print the general solution of the nonhomogeneous differ-
ential equation y′′ + y′ − 2y = x2 − 1 which appears in Example 2.

with(inttrans):
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alias(L(y(x)) =laplace(y(x), x, s)):

alias(A = y(0)):

alias(B = D(y)(0)):

DE2:=diff(y(x), x$2)+diff(y(x), x) − 2 ∗ y(x) = x ∧ 2− 1;

laplace(DE2, x, s);

L(y(x))=solve(%, L(y(x)));

convert(%, parfrac, s);

invlaplace(%, s, x);

Unless you give MAPLE instructions to the contrary, it uses its own notation
for items. For example, in the second statement above, we use the alias
command to tell MAPLE to print “L(y(x))” where it would normally print
“laplace(y(x), x, s).” Statement three instructs MAPLE to print “A” instead
of “y(0)” and statement four instructs it to print “B” instead of “D(y)(0),”
which is the MAPLE representation for y′(0). The fifth statement defines
the differential equation. Notice that “diff(y(x), x$2)” is MAPLE’s notation

for
d2y

dx2
= y′′(x) and “diff(y(x), x)” is the notation for

dy

dx
= y′(x). The

sixth statement instructs the computer to calculate and print the Laplace
transform of the differential equation DE2. The printed output is equivalent
to equation (5) of Example 2. Since in MAPLE the % sign refers to the
previous statement, the seventh statement instructs the computer to solve
the result (output) of the previous statement for L(y(x)). The printed output
of the seventh statement is equivalent to equation (6) of Example 2. The
eighth statement instructs MAPLE to perform partial fraction expansion on
the result of the seventh statement. The output of the eighth statement
is equivalent to equation (7). The last statement causes the computer to
calculate the inverse Laplace transform of the output of the eighth statement.
The output of the final statement is equivalent to equation (8)—the general
solution of the given differential equation.

You can find the general solution to other second order differential equa-
tions by changing the definition of the differential equation, DE2, in the fifth
statement. To solve higher order differential equations, you must make addi-
tions as well. Furthermore, you can solve the initial value problem of Exam-
ple 3 by changing the third statement to y(0) := 1:, by changing the fourth
statement to D(y)(0) := −1:, and by changing the fifth statement to DE:=
diff(y(x), x$2) − 4∗diff(y(x), x) + 5 ∗ y(x) = 2∗exp(x)−sin(x);.

The following three MAPLE statements calculate and print the general
solution of the differential equation, DE2, using the Laplace transformmethod
without displaying the results of any intermediate steps.

with(inttrans):

DE2:=diff(y(x), x$2)+diff(y(x), x) − 2 ∗ y(x) = x ∧ 2− 1;
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dsolve({DE2, y(0) = A,D(y)(0) = B}, y(x), method=laplace);

5.3 Convolution and the Laplace Transform

One can often write a function H(s) as the product of two functions F (s)
and G(s) in such a way that both F (s) and G(s) are the Laplace transforms
of known functions, say f(x) and g(x), respectively. That is, one sometimes
encounters the situation in which H(s) = F (s)G(s), where F (s) = L[f(x)]
and G(s) = L[g(x)]. Hence, H(s) = L[f(x)]L[g(x)]. Momentarily, we might
expect that H(s) = L[f(x)]L[g(x)] = L[f(x)g(x)]. Stated verbally, we might
anticipate that the Laplace transform distributes over the multiplication of
two functions. However, we know from calculus that, in general, the integral
of the product of two functions is not equal to the product of the integrals of
the two functions. And since the Laplace transform is defined in terms of an
integral, we should not expect the Laplace transform to distribute over the
multiplication of functions. The following example illustrates that, in general,

L[f(x)]L[g(x)] �= L[f(x)g(x)].
Let f(x) = x and let g(x) = ex. Then

L[f(x)]L[g(x)] = L[x]L[ex] = 1

s2
1

s− 1

and

L[f(x)g(x)] = L[xex] = 1

(s− 1)2
.

Clearly,
L[f(x)]L[g(x)] �= L[f(x)g(x)] for any real s.

Two questions should immediately come to mind: “Is there any function
h(x) such that L[h(x)] = H(s) = L[f(x)]L[g(x)]?” and “If so, how is h(x)
related to f(x) and g(x)?” We shall now answer these two questions.

The convolution of f(x) and g(x) is defined by the equation

(1) f(x) ∗ g(x) =
∫ x

0

f(x− ξ)g(ξ) dξ.

Making the change of variable η = x− ξ in the integral appearing in (1), we
see that

f(x) ∗ g(x) =
∫ x

0

f(x− ξ)g(ξ) dξ = −
∫ 0

x

f(η)g(x − η) dη

=

∫ x

0

g(x− η)f(η) dη = g(x) ∗ f(x).
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Hence, we have shown that the convolution operator is commutative. In-
deed, the convolution operator has many of the same properties as ordinary
multiplication. For instance,

f(x) ∗ (g1(x) + g2(x)) = f(x) ∗ g1(x) + f(x) ∗ g2(x),
f(x) ∗ (g(x) ∗ h(x)) = (f(x) ∗ g(x)) ∗ h(x),

and

f(x) ∗ 0 = 0.

Consequently, the convolution operator may be thought of as a “generalized
multiplication” operator. However, the convolution operator does not have
some of the properties of ordinary multiplication. For example, it is not true
for all functions f(x) that f(x) ∗ 1 = f(x).

Suppose that f(x) and g(x) both have a Laplace transform for s > a. That
is, suppose

L[f(x)] =
∫ ∞

0

f(x)e−sx dx and L[g(x)] =
∫ ∞

0

g(x)e−sx dx

both exist for s > a. By definition,

(2) L[f(x) ∗ g(x)] =
∫ ∞

0

[∫ x

0

f(x− ξ)g(ξ) dξ

]

e−sx dx

provided both integrals exist. The domain of integration, which is the region
above the positive x-axis and below the half-line ξ = x, x ≥ 0, and the order
of integration is shown in Figure 5.2a. Assuming that the order of integration
can be interchanged, we find

(3) L[f(x) ∗ g(x)] =
∫ ∞

0

[∫ ∞

ξ

f(x− ξ)e−sx dx

]

g(ξ) dξ.

See Figure 5.2b. In the innermost integral in equation (3), we make the change
of variable η = x− ξ and thereby obtain

L[f(x) ∗ g(x)] =
∫ ∞

0

[∫ ∞

0

f(η)e−s(ξ+η) dη

]

g(ξ) dξ

=

∫ ∞

0

f(η)e−sη dη

∫ ∞

0

g(ξ)e−sξ dξ

= L[f(x)]L[g(x)].
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Thus, we have proven the following convolution theorem.

If L[f(x)] and L[g(x)] both exist for s > a, then

L[f(x)]L[g(x)] = L[f(x) ∗ g(x)] for s > a.

�
�

ξ

�ξ

ξ

�

��

�

��

ξ =
 �

�� ��	�
�� ���

�
�

ξ

�ξ

ξ

�

��

�

��

ξ =
 �

�� ��	�
�� ���

Figure 5.2 Domain and Order of Integration.

Example 1 Find a function h(x) whose Laplace transform is

H(s) =
1

s2(s + 1)
.

Solution

We can rewrite H(s) as the product

H(s) =
1

s2
1

s+ 1
= F (s)G(s),

where F (s) =
1

s2
= L[x] and G(s) =

1

s+ 1
= L[e−x]. By the convolution

theorem and the commutative property of the convolution operator, we have

h(x) = x ∗ e−x =

∫ x

0

(x− ξ)e−ξ dξ

and

h(x) = e−x ∗ x =

∫ x

0

e−(x−ξ)ξ dξ.

Evaluating the second integral, which is slightly simpler, we find

h(x) = e−x

∫ x

0

ξeξ dξ = e−x
{
[(ξ − 1)eξ]

∣
∣
∣
∣

x

0

}
= e−x[(x−1)ex+1] = x−1+e−x.
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The next example shows how to solve Example 1 using partial fraction
expansion.

Example 2 Use partial fraction expansion to find a function h(x)
whose Laplace transform is

H(s) =
1

s2(s + 1)
.

Solution

By the partial fraction expansion, there exist constants A,B, and C such
that

1

s2(s+ 1)
=
A

s2
+
B

s
+

C

(s+ 1)
.

Multiplying by s2(s+ 1), we obtain

(4) 1 = A(s+ 1) +Bs(s+ 1) + Cs2.

Setting s = 0 in (4), we find 1 = A.

Setting s = −1 in (4), we find 1 = C.

Then setting s = 1, A = 1, and C = 1 in (4), we see that B must satisfy
1 = 2 + 2B + 1. Hence, B = −1 and

L[h(x)] = H(s) =
1

s2(s+ 1)
=

1

s2
+

−1

s
+

1

(s+ 1)
.

Taking the inverse Laplace transform, we obtain

h(x) = L−1

[
1

s2

]

+ L−1

[−1

s

]

+ L−1

[
1

(s+ 1)

]

= x− 1 + e−x. �

Examples 1 and 2 illustrate that using the convolution to find an inverse
Laplace transform is often simpler than using partial fraction expansion.

Example 3 Use the Laplace transform method and the convolution
theorem to solve the initial value problem

y′ + y = x; y(0) = 0.

Solution

Taking the Laplace transform of the given differential equation, we obtain

L[y′ + y] = L[x]
L[y′(x)] + L[y(x)] = L[x]

−y(0) + sL[y(x)] + L[y(x)] = 1

s2
.
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Imposing the initial condition y(0) = 0 and combining like terms, we get

(s+ 1)L[y(x)] = 1

s2
.

Solving for L[y(x)], we find the Laplace transform of the solution, y(x), of the
given initial value problem satisfies

L[y(x)] = 1

s2(s+ 1)
.

Recalling the results from Examples 1 and 2, we see that the solution of the
given initial value problem is

y(x) = x− 1 + e−x. �

EXERCISES 5.3

For each of the following functions H(s), use Laplace transform
information from Table 5.1 and the convolution theorem to find a
function h(x) such that L[h(x)] = H(s). You may use a Computer
Algebra System to solve these exercises by defining the convolution
operator as in equation (1).

1.
1

s(s2 + 9)
2.

1

(s+ 1)(s− 2)

3.
1

(s+ 1)(s− 2)2
4.

1

s(s2 − 2s+ 5)

5.
s

(s− 1)(s2 + 4)
6.

1

s2(s2 − 4)

Comments on Computer Software In Example 1, we calculated the
convolution e−x ∗ x and found e−x ∗ x = x− 1 + e−x. The following MAPLE
statement calculates and prints the convolution of x ∗ e−x.

int((x-xi)∗exp(-xi),xi=0..x);

As expected, the output is e−x + x− 1.

In Exercises 7–14 use the Laplace transform method and the con-
volution theorem to find the solution to the given initial value prob-
lem.

7. y′ − 2y = 6; y(0) = 2

8. y′ + y = ex; y(0) =
5

2
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9. y′′ + 9y = 1; y(0) = 0, y′(0) = 0 (Hint: See Exercise 1.)

10. y′′ + 9y = 18e3x; y(0) = −1, y′(0) = 6

11. y′′ − y′ − 2y = 0; y(0) = 0, y′(0) = 3 (Hint: See Exercise 2.)

12. y′′ − y′ − 2y = x2; y(0) =
11

4
, y′(0) =

1

2

13. y′′ − 2y′ + y = 2 sinx; y(0) = −2, y′(0) = 0

14. y′′′ − y′′ + 4y′ − 4y = 0; y(0) = 0, y′(0) = 5, y′′(0) = 5

(Hint: See Exercise 5.)

15. Show that for any continuous function f(x) and any constant a �= 0,
the solution of the initial value problem

y′′ + a2y = f(x); y(0) = 0, y′(0) = 0

is

y(x) =

{
1

a
sinax

}

∗ f(x) = 1

a

∫ x

0

sin a(x− ξ)f(ξ) dξ

=
1

a

{

sinax

∫ x

0

f(ξ) cos aξ dξ − cos ax

∫ x

0

f(ξ) sin aξ dξ

}

.

16. Show that for any continuous function f(x) and any constant a �= 0,
the solution of the initial value problem

y′′ − a2y = f(x); y(0) = 0, y′(0) = 0

is

y(x) =

{
1

2a
eax
}

∗ f(x)−
{

1

2a
e−ax

}

∗ f(x)

=
1

2a

{

eax
∫ x

0

e−aξf(ξ) dξ − e−ax

∫ x

0

eaξf(ξ) dξ

}

.

17. Show that for any continuous function f(x) and any constant a �= 0,
the solution of the initial value problem

y′′ − 2ay′ + a2y = f(x); y(0) = 0, y′(0) = 0

is

y(x) = {xeax} ∗ f(x) =
∫ x

0

(x− ξ)ea(x−ξ)f(ξ) dξ

= eax
{

x

∫ x

0

e−aξf(ξ) dξ −
∫ x

0

ξe−aξf(ξ) dξ

}

.
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5.4 The Unit Function and

Time-Delay Function

The Laplace transform method is useful not only for solving nonhomo-
geneous linear differential equations and initial value problems with con-
stant coefficients when the nonhomogeneity—which is also called the forc-
ing function—is a solution of some homogeneous linear differential equation
with constant coefficients but also when the forcing function is a discontinuous
function or an impulse function which has a Laplace transform. Forcing func-
tions which are discontinuous functions or impulse functions occur frequently
in electrical and mechanical systems. In this section, we shall consider forcing
functions which are discontinuous functions and in the next section we shall
consider forcing functions which are impulses.

One of the simplest functions which has a jump discontinuity of 1 at
x = c ≥ 0 is the unit step function or the Heaviside function, u(x − c),
which is named in honor of Oliver Heaviside (1850-1925).

The unit step function or Heaviside function is the function

u(x− c) =

⎧
⎨

⎩

0, x < c

1, c ≤ x

Graphs of u(x − 1), 2u(x − 1), and −u(x − 2) are displayed in Figure 5.3.
Other discontinuous step functions can be written as a linear combination of
unit step functions. For instance,

(1) h(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x < 1

2, 1 ≤ x < 2

1, 2 ≤ x

can be written as h(x) = 2u(x − 1)− u(x − 2). Thus, the unit step function
is the basic function for constructing other step functions. A graph of h(x) is
shown in Figure 5.3d.

We easily calculate the Laplace transform of the unit step function as fol-
lows:

L[u(x− c)] =

∫ ∞

0

u(x− c)e−sx dx =

∫ ∞

c

e−sx dx =
e−cx

s
for s > 0.
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Figure 5.3 Graphs of Step Functions.

Using the linearity property of the Laplace transforms, we will be able to
calculate the Laplace transform of any particular step function once it is
written as a linear combination of unit step functions. For example, the
Laplace transform of h(x) = 2u(x− 1)− u(x− 2) is calculated as follows:

L[h(x)] = L[2u(x− 1)−u(x− 2)] = 2L[u(x− 1)]−L[u(x− 2)] =
2e−s

s
− e−2s

s

for s > 0.

Jump discontinuities occur in physical problems such as electrical circuits
which include “on/off” switches. Consider the function g(x) = u(x− c)f(x).
When x < c, u(x−c) = 0, and therefore g(x) = 0. When x ≥ c, u(x−c) = 1,
and consequently g(x) = f(x). That is,
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g(x) = u(x− c)f(x) =

⎧
⎨

⎩

0, x < c

f(x), c ≤ x

Hence, multiplication of the function f(x) by the unit step function u(x− c)
“turns off” the function for x < c and “turns on” the function for x ≥ c.
Graphs of y(x) = cosx and y(x) = u(x− π) cos x are displayed in Figure 5.4.
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Figure 5.4 Graphs of y(x) = cosx and y(x) = u(x− π) cosx.

Observe that the piecewise function

h(x) =

⎧
⎨

⎩

f(x), x < c

g(x), c ≤ x

can be written using unit step functions as

h(x) = f(x)− u(x− c)f(x) + u(x− c)g(x).

For a ≤ x < b the “filter” function [u(x−a)−u(x−b)] when multiplying the
function f(x) “turns off” the function f(x) for x < a, “turns on” the function
f(x) for a ≤ x < b, and “turns off” the function f(x) for b ≤ x. That is,

[u(x− a)− u(x− b)]f(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x < a

f(x), a ≤ x < b

0, b ≤ x

Graphs of cosx, [u(x− π)− u(x− 2π)], and [u(x− π) − u(x− 2π)] cosx are
shown in Figure 5.5.
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Figure 5.5 Graphs of cosx, [u(x− π)− u(x− 2π)], and

[u(x− π)− u(x− 2π)] cosx.

Now suppose that two identical sensing devices are placed at points A and
B which are separated from one another by a relative large distance. Further
suppose that at time x = 0 a signal is sent from point A. Let the signal
received by the sensing device at point A be the function f(x) shown in
Figure 5.6a. Assuming that no distortion or attenuation has occurred, the
signal received by the sensing device at point B will be the function

g(x) =

⎧
⎨

⎩

0, 0 ≤ x < c

f(x− c), c ≤ x,

where c > 0 is the time it takes the signal to travel from point A to point B.
The function g(x) is shown in Figure 5.6b. The function g(x) is called the
c-time delay function of f(x). That is, the function g(x) is the function
f(x) delayed by c units of time. One encounters time-delayed functions in
many physical circumstances. In most physical situations the function f(x)
is defined only for x ≥ 0. We have defined the c-time delay function g(x) of
f(x) so that g(x) = 0 for 0 ≤ x < c, since no disturbance at point B is caused
by the signal sent from point A during the interval of time [0, c). Notice that
g(x) can be defined more concisely by g(x) = u(x− c)f(x− c).
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Figure 5.6 The Function f(x) and Associated c-time Delay Function g(x).

The following theorem is called the Second Translation Property and
provides us with the relationship between the Laplace transform of a function
f(x) and the Laplace transform of the c-time delay function of f(x), which is
u(x− c)f(x− c).

Theorem 5.3 If L[f(x)] exists for s > a ≥ 0 and if c > 0, then

L[u(x− c)f(x− c)] = e−csL[f(x)] for s > a.

Proof: By definition,

L[u(x− c)f(x− c)] =

∫ ∞

0

u(x− c)f(x− c)e−sx dx =

∫ ∞

c

f(x− c)e−sx dx.

Making the change of variable ξ = x− c, we find

L[u(x− c)f(x− c)] =

∫ ∞

0

f(ξ)e−s(ξ+c) dξ

= e−cs

∫ ∞

0

f(ξ)e−sξ dξ = e−csL[f(x)] for s > a.

Example 1 Use the Second Translation Property to calculate the
Laplace transform of

f(x) =

⎧
⎨

⎩

cosx, 0 ≤ x < π

0, π ≤ x

Solution

Using the trigonometric identity cos(x− π) = − cosx, we see that

f(x) = cosx− u(x− π) cos x = cosx+ u(x− π) cos(x− π).

Then taking the Laplace transform, using the linearity property, and the
second translation property, we find

L[f(x)] = L[cos x+ u(x− π) cos(x− π)] = L[cos x] + L[u(x− π) cos(x − π)]

= L[cos x] + e−πsL[cosx] = (1 + e−πs)L[cos x] = (1 + e−πs)s

s2 + 1
.
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Example 2 Use the Second Translation Property to find a function

f(x) whose Laplace transform is
e−πs

s2+4
.

Solution

Since 2
s2+4 is the Laplace transform of sin 2x and since the factor e−πs indi-

cates the function sin 2x should be delayed π units, we calculate the Laplace
transform of 1

2u(x− π) sin 2(x− π) and find

L[ 1
2
u(x− π) sin 2(x− π)] =

1

2
e−πsL[sin 2s] = e−πs

s2 + 4
.

Consequently, f(x) = 1
2u(x−π) sin 2(x−π). Noting that sin(2x−2π) = sin 2x,

we can write f(x) more conventionally as

f(x) =

⎧
⎨

⎩

0, 0 ≤ x < π

1
2 sin 2x, π ≤ x �

Now let us consider finding a solution of the initial value problem

(2) y′′ + y = 2u(x− 1)− u(x− 2) = h(x); y(0) = 0, y′(0) = 1.

In this instance, the forcing function is the step function h(x) of equation (1).
This function is discontinuous at x = 1 and x = 2 and, therefore, is not the
solution of any linear homogeneous differential equation with constant coeffi-
cients. So here we have our first example of an initial value problem which we
cannot solve easily using the method of undetermined coefficients (See Sec-
tion 4.4.). If we were to use the method of undetermined coefficients to solve
this initial value problem, we would have to consider the differential equation
of (2) to be three distinct differential equations defined on the three intervals
(−∞, 1], [1, 2], [2,∞)—see the definition of h(x) given in equation (2). Then
we would have to require that (i) the solution y1(x) on the interval (−∞, 1]
satisfy the given initial conditions, (ii) the solution y2(x) on the interval [1, 2]
satisfy y2(1) = y1(1) and y′2(1) = y′1(1), and (iii) the solution y3(x) on the
interval [2,∞] satisfy y3(2) = y2(2) and y′3(2) = y′2(2). In this manner, we
could obtain a solution,

y(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y1(x), −∞ < x ≤ 1

y2(x), 1 ≤ x ≤ 2

y3(x), 2 ≤ x <∞

of the given initial value problem which would be valid on (−∞,∞). That is,
y(x) and y′(x) would be continuous on (−∞,∞)—in particular at x = 1 and
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x = 2—and y(x) would satisfy the differential equation and initial conditions
of equation (2). Hence, in order to solve the initial value problem (2) using
the method of undetermined coefficients, we would in effect have to solve the
following three initial value problems in succession:

(3a) y′1 + y1 = 0; y1(0) = 0, y′1(0) = 0, for −∞ < x ≤ 1

(3b) y′2 + y2 = 2; y2(1) = y1(1), y′2(1) = y′1(1), for 1 ≤ x ≤ 2

(3c) y′3 + y3 = 1; y3(2) = y2(2), y′3(2) = y′2(2), for 2 ≤ x <∞.

The advantage of the Laplace transform method is that the solution of the
initial value problem (2) can be obtained with one application of the method—
not three separate applications. In addition, it should be noted that the solu-
tion will also simultaneously satisfy equations (3a), (3b), and (3c). And, there-
fore, these equations can serve to check the validity of the Laplace transform
method solution. The following example illustrates how to use the Laplace
transform method to solve the initial value problem (2).

Example 3 Use the Laplace transform method to solve the initial
value problem

(2) y′′ + y = 2u(x− 1)− u(x− 2); y(0) = 0, y′(0) = 1.

Solution

Taking the Laplace transform of the differential equation in (2) and using
the linearity property of the Laplace transform, we get

L[y′′(x)] + L[y(x)] = 2L[u(x− 1)]− L[u(x− 2)]

and

−y′(0)− sy(0) + s2L[y(x)] + L[y(x)] = 2e−s

s
− e−2s

s
.

Imposing the initial conditions of (2) and solving for L[y(x)], we find

(4) L[y(x)] =
2e−s

s
− e−2s

s
+ 1

s2 + 1
=

2e−s

s(s2 + 1)
− e−2s

s(s2 + 1)
+

1

s2 + 1
.

By partial fraction expansion

(5)
1

s(s2 + 1)
=

1

s
− s

s2 + 1
.

From Table 5.1, we see that

L[1] = 1

s
, L[cos x] = s

s2 + 1
, and L[sinx] = 1

s2 + 1
for s > 0.
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Consequently, from equation (5) the Laplace transform of the function

f(x) = 1 − cosx is
1

s(s2 + 1)
. Substituting L[1 − cosx] for

1

s(s2 + 1)
and

L[sinx] for 1

s2 + 1
in equation (4), we obtain

(6) L[y(x)] = 2e−sL[1− cosx]− e−2sL[1 − cosx] + L[sinx].

Applying the second translation property to equation (6), we get

L[y(x)] = L[2u(x−1)(1−cos(x−1))]−L[u(x−2)(1−cos(x−2))]+L[sinx]

= L[2u(x− 1)(1− cos(x− 1))− u(x− 2)(1− cos(x− 2)) + sinx].

Hence,

(7) y(x) = 2u(x− 1)(1− cos(x− 1))− u(x− 2)(1− cos(x − 2)) + sinx

is the solution of the initial value problem (2). Or, writing y(x) in a more
conventional way, we have

y(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sinx, −∞ < x ≤ 1

2− 2 cos(x− 1) + sinx, 1 ≤ x ≤ 2

1− 2 cos(x− 1) + cos(x− 2) + sinx, 2 ≤ x <∞

The reader should verify that this solution simultaneously satisfies equations
(3a), (3b), and (3c).

EXERCISES 5.4

1. Express each of the following functions in terms of unit step functions.

a. f1(x) =

⎧
⎨

⎩

2, 0 ≤ x < 1

1, 1 ≤ x

b. f2(x) =

⎧
⎨

⎩

1, 2 ≤ x < 4

0, otherwise

c. f3(x) =

⎧
⎨

⎩

0, 0 ≤ x < 1

(x− 1)2, 1 ≤ x
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d. f4(x) =

⎧
⎨

⎩

0, 0 ≤ x < 1

x2 − 2x+ 3, 1 ≤ x

e. f5(x) =

⎧
⎨

⎩

0, 0 ≤ x < π

sin 3(x− π), π ≤ x

f. f6(x) =

⎧
⎨

⎩

x, 0 ≤ x < 1

1, 1 ≤ x

g. f7(x) =

⎧
⎨

⎩

x, 0 ≤ x < 1

0, 1 ≤ x

2. Find the Laplace transform of the functions in Exercise 1.

3. Use Theorem 5.3 and Table 5.1 to find an inverse Laplace transform of
the following functions.

a.
e−s

s+ 2
b.

1− e−2s

s2

c.
se−πs

s2 + 9
d.

se−πs

s2 − 9

e.
e−2s

s2 + 2s+ 2
f.

se−3s

s2 + 2s+ 2

g.
e−3s

s2 + 2s− 3
h.

e−s

s2 − 2s+ 1

4. Solve the following initial value problems. The functions fi(x) are as
defined in Exercise 1.

a. y′ + 2y = f1(x); y(0) = 1

b. y′′ − y′ − 2y = f2(x); y(0) = 0, y′(0) = 1

c. y′′ − 2y′ = f3(x); y(0) = 1, y′(0) = 0

d. y′′ − 2y′ + y = f4(x); y(0) = 0, y′(0) = 1

e. y′′ + 4y = f5(x); y(0) = 1, y′(0) = 1

f. y′′ − 4y = f6(x); y(0) = 0, y′(0) = 0

g. y′′ − 4y′ + 5y = f7(x); y(0) = 1, y′(0) = 0
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Comments on Computer Software In Example 3, we solved the initial
value problem y′′ + y = h(x); y(0) = 0, y′(0) = 1, where h(x) is the
piecewise defined function

h(x) =

⎧
⎨

⎩

0, x < 1
2, 1 ≤ x < 2
1, 2 ≤ x

The following ten MAPLE statements also solve this initial value problem and
output some important intermediate results.

with(inttrans):

alias(L(y(x)) =laplace(y(x), x, s)) :

y(0) := 0:

D(y)(0) := 1:

h :=piecewise(x < 1, 0, 1 <= x and x < 2, 2, 2 <= x, 1):

h :=convert(%, Heaviside);

DE:=diff(y(x), x$2) + y(x) = h;

laplace(DE, x, s);

L(y(x)) =solve(%, L(y(x)));

invlaplace(%, s, x);

The third and fourth statements specify the initial condition values. The fifth
statement defines the piecewise function h(x), while the sixth statement tells
the computer to write h(x) in terms of Heaviside functions (unit step func-
tions). MAPLE uses the notation “Heaviside(x− c)” instead of the notation
u(x − c) for the unit step function. The seventh statement defines the dif-
ferential equation to be solved. The eighth statement instructs the computer
to apply the Laplace transform to the differential equation and to substitute
the initial values into the transformed equation. The ninth statement tells
the computer to solve the output of the eighth statement algebraically for
L(y(x)). The last statement causes the computer to calculate the inverse
Laplace transform and to print the solution to the initial value problem. The
solution printed is expressed in terms of Heaviside functions and is equivalent
to equation (7) of Example 3.

5.5 Impulse Function

A force which is of relative large magnitude and which acts on a system for
a relative short period of time is called an impulse force. A golf club striking
a golf ball, a hammer striking a mass suspended on a spring, and a voltage
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source connected to an electrical circuit for a short interval of time are all
examples of impulse forces. A function f(x) which represents an impulse force
is naturally called an impulse function. Since impulse functions represent
impulse forces, impulse functions are zero except for a short interval of time.
Suppose that f(x) is an impulse function and f(x) = 0 except for x1 < x < x2.
Then the integral

If =

∫ ∞

−∞
f(x) dx =

∫ x2

x1

f(x) dx

is called the total impulse of the function f(x) and represents the total force
imparted to the system.

Let us consider the set of impulse step functions dε(x) defined by

dε(x) =

⎧
⎨

⎩

1/ε, 0 < x < ε

0, x ≤ 0 or x ≥ ε

where ε is a small positive constant. A graph of one function dε(x) is shown
in Figure 5.7. Notice that for all ε > 0, the total impulse of dε(x) is

Idε =

∫ ∞

−∞
dε(x) dx =

∫ ε

0

1

ε
dx = 1.

�

�ε

ε
�� � � � ��	ε

Figure 5.7 Graph of the Impulse Step Function dε(x).

We would like to define an idealized impulse function δ(x) to be the limit as
ε→ 0+ of the impulse step functions dε(x) and we would like for the integral
of the idealized step function δ(x) to be the limit as ε→ 0+ of Idε . Thus, we
define

δ(x) = lim
ε→0+

dε(x) =

⎧
⎨

⎩

∞, x = 0

0, x �= 0

Notice that δ(x) is not a function in the usual sense but is a “generalized
function.” The function δ(x) is called the Dirac delta function in honor
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of the British physicist Paul Adrien Maurice Dirac (1902-1982), who won
the Nobel prize in 1933. Laurent Schwartz developed a mathematical theory
called distribution theory in the early 1950s. Within the framework of this
theory, the Dirac delta function is an acceptable generalized function and is
integrable with

(1)

∫ ∞

−∞
δ(x) dx = lim

ε→0+

∫ ∞

−∞
dε(x) dx = 1.

The first integral of equation (1) is not the Riemann integral with which
we are familiar but the generalized integral of distribution theory. Because
of the property of the Dirac delta function exhibited in equation (1), the
“function” δ(x) is often referred to as the unit impulse function. Following
the notation developed earlier for translating functions, we have

δ(x− c) =

⎧
⎨

⎩

∞, x = c

0, x �= c

and ∫ ∞

−∞
δ(x − c) dx = 1.

Let f(x) be a function which is continuous on some interval about x = c.
We shall define the generalized integral of the product of δ(x− c) and f(x) as
follows:

∫ ∞

−∞
δ(x− c)f(x) dx = lim

ε→0+

∫ ∞

−∞
dε(x− c)f(x) dx

= lim
ε→0+

∫ c+ε

c

1

ε
f(x) dx = lim

ε→0+

1

ε
f(ξ)(c+ ε− c)

where c < ξ < c+ ε. The last equality was obtained by using the mean value
theorem for integrals. Since c < ξ < c+ε and f(x) is assumed to be continuous
on some interval about x = c, we have limε→0+ f(ξ) = f(c). Consequently,
in the context of distribution theory, we have for any function f(x) which is
continuous at x = c,

∫ ∞

−∞
δ(x − c)f(x) dx = f(c).

Therefore, letting f(x) = e−sx, we have some justification for defining the
Laplace transform of the Dirac delta function δ(x− c), where c > 0, to be

L[δ(x − c)] =

∫ ∞

0

δ(x− c)e−sx dx = e−sc.

In what follows we will operate with the Dirac delta function, δ(x − c), as
though it were an ordinary function and we will use the properties discussed
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and developed in the preceding paragraphs even though our development of
these properties was not mathematically rigorous. It is perhaps comforting
to know that in the context of distribution theory all these operations and
properties can and have been proven rigorously.

Example 1 Solve the Following Initial Value Problem which has an
Impulse Forcing Function

y′′ + 2y′ + 5y = 3δ(x− 1); y(0) = 0, y′(0) = 0.

Solution

This initial value problem could represent the damped motion of a mass on
a spring which is initially at rest but which is set in motion at time x = 1
by an impulse force. Taking the Laplace transform of the given differential
equation and imposing the initial conditions, we find successively

L[y′′ + 2y′ + 5y] = L[3δ(x − 1)]

L[y′′(x)] + 2L[y′(x)] + 5L[y(x)] = 3e−s

−y′(0)− sy(0) + s2L[y(x)]− 2y(0) + 2sL[y(x)] + 5L[y(x)] = 3e−s

(s2 + 2s+ 5)L[y(x)] = 3e−s.

Solving for L[y(x)] and using information found in Table 5.1, we see

L[y(x)] = 3e−s

s2 + 2s+ 5
=

3e−s

2

2

(s+ 1)2 + 22
=

3

2
e−sL[e−x sin 2x].

Applying Theorem 5.3, yields

L[y(x)] = 3

2
e−sL[e−x sin 2x] = L[ 3

2
u(x− 1)e−(x−1) sin 2(x− 1)].

Hence, the solution of the initial value problem is

y(x) =
3

2
u(x− 1)e−(x−1) sin 2(x− 1) =

⎧
⎪⎨

⎪⎩

0, 0 ≤ x ≤ 1

3

2
e−(x−1) sin 2(x− 1), 1 < x

A graph of this solution is displayed in Figure 5.8. For 0 ≤ x < 1, the
initial value problem is y′′+2y′+5y = 0; y(0) = 0, y′(0) = 0 and it obviously
has the unique solution y(x) ≡ 0, which can easily be seen in Figure 5.8. The
portion of the graph to the right of x = 1 is due to the impulse force which was
applied to the system at the instant x = 1. The “solution” y(x) is continuous

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


The Laplace Transform Method 243

for x ≥ 0 but the first derivative has a jump discontinuity at x = 1 and the
second derivative has an infinite discontinuity there.

3

1

2

0.5

0
1

-0.5

-1

0

y

x

 

54

Figure 5.8 Graph of the Solution y(x) =
3

2
u(x− 1)e−(x−1) sin 2(x− 1). �

Example 2 Solve the Following Initial Value Problem which has an

Impulse Forcing Function

y′′ + 2y′ + 5y = 5δ(x− 2); y(0) = 4, y′(0) = 0.

Solution

The solution process is the same as for Example 1. Taking the Laplace
transform of the given differential equation and imposing the initial conditions,
we find successively

L[y′′ + 2y′ + 5y] = L[5δ(x − 2)]

L[y′′(x)] + 2L[y′(x)] + 5L[y(x)] = 5e−2s

−y′(0)− sy(0) + s2L[y(x)]− 2y(0) + 2sL[y(x)] + 5L[y(x)] = 5e−2s

−4s− 8 + (s2 + 2s+ 5)L[y(x)] = 5e−2s.

Solving for L[y(x)] and using partial fraction expansion and information found
in Table 5.1, we see

L[y(x)] = 5e−2s + 4s+ 8

s2 + 2s+ 5

=
5e−2s

2

2

(s+ 1)2 + 22
+ 4

s+ 1

(s+ 1)2 + 22
+ 2

2

(s+ 1)2 + 22

=
5

2
e−2sL[e−x sin 2x] + 4L[e−x cos 2x] + 2L[e−x sin 2x].
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Applying the second translation property yields

L[y(x)] = L[ 5
2
u(x− 2)e−(x−2) sin 2(x− 2) + 4e−x cos 2x+ 2e−x sin 2x].

Hence, the solution of the initial value problem is

y(x) =
5

2
u(x− 2)e−(x−2) sin 2(x− 2) + 4e−x cos 2x+ 2e−x sin 2x

=

⎧
⎪⎨

⎪⎩

4e−x cos 2x+ 2e−x sin 2x, 0 ≤ x ≤ 2

5

2
e−(x−2) sin 2(x− 2) + 4e−x cos 2x+ 2e−x sin 2x, 2 < x

A graph of this solution is displayed in Figure 5.9. The portion of the graph to
the right of x = 2 is due to the impulse force which was applied to the system
at the instant x = 2. The “solution” y(x) is continuous for x ≥ 0 but the first
derivative has a jump discontinuity at x = 2 and the second derivative has
an infinite discontinuity there. The dotted curve appearing in Figure 5.9 for
x > 2 shows the solution, if no impulse force were applied to the system at
the instant x = 2.

����

�

�

�

	

�

�

�

�


�

�	

Figure 5.9 Graph of the Solution.

y(x) =
5

2
u(x−2)e−(x−2) sin 2(x−2)+4e−x cos 2x+2e−x sin 2x �
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EXERCISES 5.5

Find the solution of the following initial value problems using the
Laplace transform method.

1. y′ + 3y = δ(x− 2); y(0) = 0

2. y′ − 3y = δ(x− 1) + 2u(x− 2); y(0) = 0

3. y′′ + 9y = δ(x − π) + δ(x− 3π); y(0) = 0, y′(0) = 0

4. y′′ − 2y′ + y = 2δ(x− 1); y(0) = 0, y′(0) = 1

5. y′′ − 2y′ + 5y = cosx+ δ(x− π); y(0) = 1, y′(0) = 0

6. y′′ + 4y = δ(x − π) cosx; y(0) = 0, y′(0) = 1

7. y′′ + a2y = δ(x− π)f(x); y(0) = 0, y′(0) = 0

where a is a real constant and f(x) is a function that is continuous on
some interval about the point x = π.

Comments on Computer Software The solution of the initial value
problem

y′′ + 2y′ + 5y = 5δ(x− 2); y(0) = 4, y′(0) = 0

of Example 2 can be computed using the following two MAPLE statements.

DE:=diff(y(x), x$2) + 2∗diff(y(x), x) + 5 ∗ y(x) = 5∗Dirac(x− 2);

dsolve({DE, y(0) = 4, D(y)(0) = 0}, y(x), method=laplace);

The first statement specifies the differential equation to be solved. Observe
that MAPLE uses the notation “Dirac(x − 2)” to represent the Dirac delta
function δ(x − 2). The second statement instructs the computer to use the
Laplace transform method to solve the differential equation using the specified
initial condition values and to print the solution. The printed solution contains
the Heaviside function and is equivalent to the solution of Example 2.

Table 5.2, which appears on the following page, contains a few more func-
tions and “generalized functions,” f(x), in the left column and the corre-
sponding entry in the right column contains their Laplace transform, F (s).
Below Table 5.2 is a list of four properties of Laplace transforms and their
inverse Laplace transforms.
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Table 5.2 Inverse Laplace Transforms and Laplace Transforms

f(x) = L−1(F (s)) F (s) = L[f(x)]

u(x− c), c ≥ 0
e−cs

s
for s > 0

δ(x− c), c ≥ 0 e−cs

f(x) F (s) = L[f(x)]

f(cx), c > 0
1

c
F (
s

c
)

f ′ sF (s)− f(0)

f ′′(x) s2F (s)− sf(0)− f ′(0)

f (n)(x), n a positive integer snF (s)− sn−1f(0)− · · · − f (n−1)(0)

∫ x
0
f(ξ) dξ

F (s)

s

Properties of Laplace Transforms

Linearity Property

af(x) + bg(x), a, b constants aF (s) + bG(s)

Translation Property

eaxf(x) F (s− a)

Second Translation Property

u(x− c)f(x− c), c ≥ 0 e−csF (s)

Convolution Theorem

∫ x
0
f(x− ξ)g(ξ) dξ F (s)G(s)
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Chapter 6

Applications of Linear Differential
Equations with Constant Coefficients

In this chapter we will examine a few linear differential equations with con-
stant coefficients which arise in the study of various physical and electrical
systems. Usually the independent variable, t, will represent time and the de-
pendent variable or solution, y(t), will represent a parameter which describes
the state of the system.

6.1 Second-Order Differential Equations

Second-order linear differential equations provide mathematical models for
various physical phenomena. As a matter of fact, several physical phenomena
often give rise to the same mathematical model. Therefore, it is sometimes
possible to simulate the behavior of an expensive physical system such as an
airplane, automobile, or bridge, etc., by another inexpensive physical system
such as an electrical circuit. In this section, we present the mathematical
models which arise from a simple pendulum, a mass on a spring, and an RLC
electrical circuit and discover that they are all the same model. This leads us
to examine in detail the second order linear differential equation with constant
coefficients.

A Simple Pendulum A simple pendulum consists of a rigid, straight rod
of negligible mass and length � with a bob of massm attached to one end. The
other end of the rod is attached to a fixed support so that the pendulum is
free to move in a vertical plane. Let y denote the angle, expressed in radians,
which the rod makes with the vertical—the equilibrium position of the system.
We arbitrarily choose y to be positive if the rod is to the right of vertical and
negative if the rod is to the left of vertical as shown in Figure 6.1.

We will assume the only forces acting on the pendulum are the force of
gravity and a force due to air resistance which is proportional to the velocity
of the bob. Under these assumptions it can be shown by applying Newton’s
second law of motion that the position of the pendulum satisfies the initial
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value problem

(1) my′′ + cy′ + k sin y = 0; y(0) = c0, y′(0) = c1

where c ≥ 0 is a constant of proportionality, k = mg/�, g is the constant of
acceleration due to gravity, c0 is the initial displacement of the pendulum,
and c1 is the initial velocity of the pendulum.

��������

�

	
	 
�
��� 

�

Figure 6.1 Simple Pendulum.

The differential equation appearing in (1) is nonlinear because of the factor
sin y. An approximation which is made in order to linearize the differential
equation is to replace sin y by y. This approximation is valid for small angles,
say |y| < .1 radians ≈ 5.73◦. So for y small the following linear initial value
problem approximately describes the motion of a simple pendulum

(2) my′′ + cy′ + ky = 0; y(0) = c0, y′(0) = c1.

If there is some external force f(t) acting on the simple pendulum, such as
a weight or main spring in a clock which is mechanically connected to and
driving the rod of the pendulum, then the linearized homogeneous initial value
problem (2) must be replaced by the nonhomogeneous initial value problem

(3) my′′ + cy′ + ky = f(t); y(0) = c0, y′(0) = c1.

Often f(t) is periodic and representable as f(t) = E sinωt where E and ω are
constants.

A Mass on a Spring A spring of natural length L is suspended by one
end from a fixed support. A body of mass m, where m is small compared
to the mass of the spring in order to avoid exceeding the elastic limit of the
spring, is attached to the other end of the spring and the resulting system is
allowed to come to rest at its equilibrium position. Suppose in the equilibrium
position the length of the elongated spring is L+ � where � > 0 and � is small
compared to L. See Figure 6.2. According to Hooke’s law, the elongation
(� > 0) and compression (� < 0) of a spring is directly proportional to the force
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that produces the elongation or compression. (The Englishman Robert Hooke
(1635-1703), a friend of Isaac Newton, first published this result in 1676 as an
anagram and then in detail in 1678. Thus, Hooke discovered Hooke’s law at
about the same time calculus was invented.) In the equilibrium position the
only force acting on the system is the force of gravity, so by Hooke’s law

mg = k�

where k > 0 is the constant of proportionality for the particular spring. For
a given spring, the spring constant k can easily be calculated by attaching a
body of known mass m to the spring and accurately measuring the resulting
elongation �.

�

������� 	
����


�

����������� 	
����


�� �

�

Figure 6.2 Mass on a Spring System.

We arbitrarily choose the equilibrium position to be the origin and choose
the positive direction to be measured vertically downward from the origin.
See Figure 6.2. It has been shown experimentally that as long as the speed at
which the mass is travelling is not too large, the damping force is proportional
to the speed. The damping force is usually due to the resistance caused by
the medium (air, perhaps) in which the system operates or by the resistance
caused by adding some additional component to the system, such as a dashpot.
Applying Newton’s second law of motion to the mass on a spring system with
damping, it can be shown that the position of the mass satisfies the initial
value problem

(4) my′′ + cy′ + ky = 0; y(0) = c0, y′(0) = c1

where c ≥ 0 is a constant (the damping constant), k > 0 is the spring constant,
c0 is the initial location of the mass, and c1 is the initial velocity of the mass.

If there is an external force f(t) acting on the spring-mass system, such
as a motor which vibrates the support or a magnetic field which acts upon
a suspended iron mass, then the homogeneous initial value problem (4) must
be replaced by the nonhomogeneous initial value problem

(5) my′′ + cy′ + ky = f(t); y(0) = c0, y′(0) = c1.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


250 Elementary Differential Equations

The spring-mass mechanical systems (4) and (5) may be set in motion
(i) by pulling the mass downward from its equilibrium position (y(0) =
c0 > 0) and releasing it without imparting any velocity (y′(0) = c1 = 0),
(ii) by lifting the mass upward from its equilibrium position (y(0) = c0 < 0)
and releasing it without imparting any velocity (y′(0) = c1 = 0), (iii) by
applying an instantaneous external force to the mass (say, by hitting the
mass from below with a hammer) and thereby imparting a velocity to the
mass (y′(0) = c1 �= 0) and dislodging the mass from the equilibrium position
(y(0) = c0 = 0), or (iv) by pulling the mass downward or lifting the mass
upward (y(0) = c0 �= 0) and releasing the mass and imparting some velocity
(y′(0) = c1 �= 0).

Electrical Circuits Now let us consider the flow of electric current in
some simple circuits. Table 6.1 contains a list of some common electric circuit
components and quantities, the alphabetic symbols usually used to denote
the numeric value of these components and quantities, the graphic symbols
used to represent components in schematic drawings, and the units associ-
ated with each component or quantity. The units of the components were
named in honor of the following physicists: André Marie Ampère (1775-1836,
French), Charles Augustin De Coulomb (1736-1806, French), Michael Fara-
day (1791-1867, English), Joseph Henry (1797-1878, American), Georg Simon
Ohm (1789-1854, German), and Allessandro Volta (1745-1827, Italian).

Table 6.1 Electric Circuit Components and Quantities

Circuit component Symbol
or

quantity Alphabetic Graphic Unit

Capacitor C Farad (F)

Electric charge q Coulomb (C)
Electric current i Ampere (A)

Electromotive force
Battery E Volt (V)

Generator E sinωt Volt (V)

Inductor L Henry (H)

Resistor R Ohm (Ω)
Time t Seconds (s)

�
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The electric charge, q, and the current, i = dq/dt, are functions of time.
The positive quantities of capacitance, C, inductance, L, and resistance, R,
are also functions of time. However, in many instances these quantities are
nearly constant. So we shall assume C, L, and R are positive constants.

The German physicist Gustav Kirchhoff (1824-1887) stated the following
two laws regarding the behavior of electrical systems:

Kirchhoff’s First Law (Current Law) At any junction in a network,
the sum of the current flowing into the junction is equal to the sum of the
current flowing out of the junction.

Kirchhoff’s Second Law (Voltage Law) The algebraic sum of the
voltage drops around any loop of a network is equal to the algebraic sum of
the impressed electromotive forces around the loop.

And according to the fundamental laws of electricity, the voltage drop across
a resistor is Ri, the voltage drop across a capacitor is q/C, and the voltage
drop across an inductor is Ldi/dt.

The RLC Circuit Consider the simple RLC circuit consisting of a resistor
with resistanceR, an inductor with inductance L, a capacitor with capacitance
C, an electromotive force E(t), and a switch s connected in series as shown
in Figure 6.3. The arrow in the figure provides an orientation for the current
flow in the loop. The current i is positive if it is flowing in the direction of
the arrow and negative if it is flowing in the opposite direction.

�

����

�

�

�

�

�

Figure 6.3 An RLC Series Circuit.

Since there are no junctions in this circuit, we need only apply Kirchhoff’s
second law regarding voltage drops to find

(6) Li′ +Ri+
q

C
= E(t).

Substituting i = dq/dt = q′ into equation (6), we find that the charge on the

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


252 Elementary Differential Equations

capacitor, q, satisfies the differential equation

(7) Lq′′ +Rq′ +
q

C
= E(t).

Appropriate initial conditions are

(8) q(0) = q0 and q′(0) = i(0) = i0.

That is, appropriate initial conditions at some time t = 0 are the initial charge
on the capacitor, q0, and the initial current flowing in the system, i0.

Differentiating equation (6) with respect to t and substituting i = dq/dt =
q′, we see the current, i, satisfies the second order linear differential equation

(9) Li′′ +Ri′ +
i

C
= E′(t).

Appropriate initial conditions for this problem are to specify the initial cur-
rent, i0, and the initial rate of change of the current, i′0, at some time t = 0.
That is, appropriate initial conditions are

(10) i(0) = i0 and i′(0) = i′0.

The initial current, i0, flowing in the circuit and the initial charge, q0, on
the capacitor are physically measurable quantities. But i′0 is not a physically
measurable quantity. However, if at t = 0 we measure i0, q0, and E0 =
E(0), then we can calculate i′0 from equation (6). Substituting t = 0 into
equation (6) and solving for i′0, we find

i′(0) = i′0 =
E0 −Ri0 − q0

C
L

.

Comparing equation (7) with equations (3) and (5), we discover the cor-
respondence between electrical systems and mechanical systems (the simple
pendulum and spring-mass system) displayed in Table 6.2. This correspon-
dence allows us to simulate (model) mechanical systems, such as airplane
wings and suspension bridges—systems which would be expensive to actually
construct—by electrical systems—systems which are relatively inexpensive
to construct. By measuring quantities such as capacitance, inductance, resis-
tance, current, and voltage, we can determine the response of the approximat-
ing electrical system and can thereby infer the response of the hypothetical
mechanical system.
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Table 6.2 Correspondence Between Electrical and Mechanical
Systems

Electrical systems Mechanical systems

L inductance m mass

q charge y displacement

dq/dt = i current dy/dt = v velocity

R resistance c damping

1/C reciprocal of k spring or
capacitance pendulum constant

E(t) electromotive force f(t) driving force

6.1.1 Free Motion

Since the simple pendulum, mass on a spring, and the RLC series circuit
all lead to the initial value problem

(11) ay′′ + by′ + dy = f(t); y(0) = c0, y′(0) = c1

where a > 0, b ≥ 0, and d > 0 are constants, we should examine this initial
value problem in detail.

When there is no external force driving the system—that is, when f(t) = 0
for all t the system is said to execute free motion. In this case the differential
equation of (11) reduces to the homogeneous differential equation

(12) ay′′ + by′ + dy = 0

and the associated auxiliary equation is ar2 + br + d = 0. The two roots of
the auxiliary equation are

(13) r1 =
−b+√

b2 − 4ad

2a
and r2 =

−b−√
b2 − 4ad

2a
.

(Note: These roots can easily be calculated using a root finding routine instead
of using the quadratic formula (13).)
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6.1.1.1 Free Undamped Motion

Furthermore, when there is no damping force acting on the system—that is,
when b = 0 the system executes free undamped motion which is also called
simple harmonic motion. This type of motion occurs if the pendulum or
spring-mass system operates in a vacuum or if all resistance, R, is removed
from the RLC series circuit making the circuit an LC series circuit. Later you
may encounter simple harmonic oscillators (motion) in the study of quantum
mechanics or in the study of the vibration of strings, membranes, and beams.
When f(t) = 0 and b = 0, r1 =

√
d/ai = ωi and r2 = −√d/ai = −ωi, so

the general solution of ay′′ + dy = 0 is

(14) y = A1 sinωt+A2 cosωt

where A1 and A2 are arbitrary constants. We would like to show that equa-
tion (14) may also be written in the equivalent form

(15) y = A sin (ωt+ φ)

where A and φ are arbitrary constants. Applying the trigonometric formula
for the sine of the sum of two angles, ωt and φ, to equation (15), we see

(16) y = A sin (ωt+ φ) = A cosφ sinωt+A sinφ cosωt.

Equating coefficients of sinωt and cosωt in equations (14) and (16), we obtain
the following two relationships between the constants A1 and A2 of (14) and
A and φ of (16)

(17a) A1 = A cosφ

(17b) A2 = A sinφ.

Squaring both equations (17a) and (17b), adding the results, and solving for
A, we find

(18) A =
√
A2

1 +A2
2.

Substituting (18) into (17a) and (17b) and solving for cosφ and sinφ, we see
that φ must simultaneously satisfy

cosφ =
A1√

A2
1 +A2

2

and sinφ =
A2√

A2
1 +A2

2

.

The reason for wanting to write the general solution (14) in the form (15)
is because it is easier to understand the physical significance of the arbitrary
constants A and φ of (15). The constant A is the amplitude of oscillation
and −A ≤ y(t) ≤ A for all t. The constant φ is the phase angle. The phase
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angle is usually chosen with the restriction −π < φ ≤ π. With this restric-
tion when 0 < φ ≤ π, φ is the angle by which (15) y = A sin (ωt+ φ) leads
the function y = A sinωt and φ/ω is the time lead. See Figure 6.4. When
−π < φ < 0, φ is the angle by which y = A sin (ωt+ φ) lags the func-
tion y = A sinωt and φ/ω is the time lag. Since the period of the function
y = A sin (ωt+ φ) is 2π/ω, the period of oscillation of a free undamped
system is P = 2π/ω. The period is the time interval between successive max-
ima (minima) of the system. So for a simple pendulum the period is the time
interval from one time the bob is farthest to the right (left) until the next time
the bob is farthest to the right (left). And for a mass-spring system the pe-
riod is the time interval from one time the mass is at its lowest (highest) point
until the next time the mass is at its lowest (highest) point. The reciprocal of
the period is called the frequency. The frequency F = 1/P = ω/(2π) is the
number of oscillations per unit of time. A pendulum clock which is keeping
perfect time has a frequency of one cycle per second (1c/s).

 

 

 

�
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��
φ/ω
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Figure 6.4 Simple Harmonic Motion.

6.1.1.2 Free Damped Motion

When there is a damping force acting on the system (b �= 0) but no external
force driving the system (f(t) = 0 for all t), the form of the general solution
of equation (12) depends on the sign of the discriminant of the roots and,
consequently, the types of roots of the auxiliary equation.

Case 1. When b2 − 4ad < 0, the system executes damped oscilla-
tory motion. The roots of the auxiliary equation are complex conjugates—
r1 = −α+ωi and r2 = −α−ωi where α = b/(2a) > 0 and ω =

√
4ad− b2/(2a).

So the general solution of (12) is

(19) y(t) = e−αt(A1 sinωt+A2 cosωt)

where A1 and A2 are arbitrary constants. As in the case of free undamped
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motion the solution (19) may be rewritten in the equivalent form

(20) y(t) = Ae−αt sin (ωt+ φ)

where A and φ are arbitrary constants. The factor Ae−αt is called the damp-
ing factor. The factor sin (ωt+ φ) represents periodic, oscillatory motion
with amplitude 1. Since α > 0 and | sin (ωt+ φ)| ≤ 1, y(t) → 0 as t→ ∞. So
the product of the two factors Ae−αt and sin (ωt+ φ) represents oscillatory
motion in which the amplitude of oscillation decreases with increasing time.
The time interval between two successive maxima is still called the period, P ,
and as in the free undamped case P = 2π/ω. See Figure 6.5.
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Figure 6.5 Damped, Oscillatory Motion.

Case 2. When b2 − 4ad = 0, the system is said to be critically damped.
In this case, the roots of the auxiliary equation are real and equal, r1 = r2 =
−b/(2a). So the general solution of (12) is

(21) y = (A+Bt)e−αt

where α = b/(2a) > 0 and A and B are arbitrary constants. Due to the
damping factor e−αt and the fact that α > 0, the solution y(t) → 0 as t→ ∞.
Since the factor A+Bt is linear, the motion is not oscillatory and, in fact, the
solution can cross the t-axis (the time axis) at most once. The graph of (21)
depends on the constants A and B which, of course, are determined by the
initial conditions. Three typical graphs of equation (21)—critically damped
motion—are sketched in Figure 6.6.

Case 3. When b2 − 4ad > 0, the system is said to be overdamped. The
roots of the auxiliary equation are real, distinct, and negative. See equa-
tion (13). So the general solution of (12) is

(22) y(t) = Aer1t +Ber2t.
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Since r1 < 0 and r2 < 0, both er1t and er2t are monotone decreasing functions.
Therefore y(t) → 0 as t → ∞ and no oscillation occurs. The three graphs
shown in Figure 6.6 are also typical of the graph of equation (22)—overdamped
motion.

�

�

�

�

�

�

Figure 6.6 Typical Critically Damped and Overdamped Motion.

Example 1 Equation of Motion of an Undamped Pendulum

An undamped pendulum of length .9 meters (m) with a bob of mass
.2 kilograms (kg) is moved to the left of vertical so that the pendulum makes
an angle of −.6 radians (rads) with the vertical and is released imparting a
velocity of .3 radians/second (rads/s) to the pendulum.

a. Write the equation of motion for the pendulum. (The expression “write
the equation of motion for the pendulum” is another way of saying “write the
general solution of the initial value problem for the pendulum.”)

b. What is the amplitude, period, and frequency of oscillation?

c. What is the phase angle?

Solution

a. On the earth’s surface g = 9.8 meters/second2 (m/s2) is the mean gravi-
tational constant. So the pendulum constant is

k = mg/� = (.2 kg)(9.8 m/s2)/.9 m = 2.178 kg/s2.

Since the pendulum is undamped and there is no forcing function, the
initial value problem which we need to solve is

(23) my′′ + ky = 0; y(0) = −.6 rads, y′(0) = .3 rads/s.
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The roots of the auxiliary equation, mr2 +k = 0, are r1 =
√
k/mi = ωi

and r2 = −√k/mi = −ωi. So the general solution of the differential
equation in (23) is either

y(t) = A1 sinωt+A2 cosωt

where A1 and A2 are constants which are to be chosen to satisfy the
initial conditions or equivalently

y(t) = A sin(ωt+ φ)

where A and φ are constants which are to be chosen to satisfy the initial
conditions.

Differentiating the second form of the general solution of the differ-
ential equation, we see that

y′(t) = ωA cos (ωt+ φ).

In order to satisfy the initial conditions given in (23), the constants A
and φ must be chosen to simultaneously satisfy

y(0) = A sinφ = −.6 rads and y′(0) = ωA cosφ = .3 rads/s.

Dividing the first equation by the second, we find φ must satisfy

sinφ

ω cosφ
=

−.6
.3

= −2 s.

Multiplying by ω =
√
k/m =

√
2.178/.2 = 3.3 rads/s, we see tanφ =

−6.6. So φ = −1.42 radians. Next, solving the equation A sinφ = −.6
for A, yields

A =
−.6
sinφ

=
−.6

sin(−1.42)
=

−.6
−.98865 = .607 rads.

Thus, the equation of motion for this pendulum is

y(t) = A sin (ωt+ φ) = .607 sin (3.3t− 1.42).

b. The amplitude is A = .607 radians.

The period is P = 2π/ω = 2π/3.3 = 1.904 seconds.

The frequency is F = 1/P = .5252 cycles/second.

c. The phase angle is φ = −1.42 radians. �
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Example 2 Equation of Motion of a Damped Mass on a Spring

A .1 kg mass is attached to one end of a spring, the other end is attached to
a fixed support, and the system is allowed to come to rest. In the equilibrium
position the spring is stretched .25 m. The mass is pulled down an additional
.5 m and released without imparting any velocity. If the damping constant of
the system is c = 1 kg/s, write the equation of motion of the system.

Solution

Since the spring is stretched .25 m = � by a mass of .1 kg = m, by Hooke’s
law the spring constant k satisfies mg = k�. Solving for k, we have

k = mg/� = (.1 kg)(9.8 m/s
2
)/(.25 m) = 3.92 kg-m2/s2.

So the equation of motion of this spring-mass system satisfies the initial value
problem

my′′ + cy′ + ky = 0; y(0) = .5 m, y′(0) = 0 m/s

or

.1y′′ + y′ + 3.92y = 0; y(0) = .5 m, y′(0) = 0 m/s.

Using the computer software POLYRTS, we find the roots of the auxiliary
equation .1r2 + r + 3.92 = 0 are r1 = −5 + 3.7683i and r2 = −5 − 3.7683i.
Since the roots are complex conjugate roots, the system is executing damped
oscillatory motion, and the equation of motion is

y(t) = Ae−5t sin (3.7683t+ φ)

where A and φ are constants which are to be determined to satisfy the initial
conditions. Differentiating the equation of motion, we see

y′(t) = Ae−5t[3.7683 cos(3.7683t+ φ)− 5 sin (3.7683t+ φ)].

To satisfy the given initial conditions A and φ must simultaneously satisfy

y(0) = A sinφ = .5 m and y′(0) = A[3.7683 cosφ− 5 sinφ] = 0 m/s.

Dividing the second equation by the first, we see φ must satisfy

3.7683 cotφ− 5 = 0 or cotφ = 5/3.7683 = 1.3269.

So φ = .6458 rads. Solving the equation A sinφ = .5 m for A, we find A =
.5 m/ sin(.6458) = .831 m. Therefore, the equation of motion is

y(t) = .831e−5t sin (3.7683t+ .6458). �
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Example 3 Finding the Equation for the Charge on a Capacitor

Find the equation for the charge, q, on the capacitor and the current flowing
in the RLC series circuit of Figure 6.3, if E = 0V (volts), L = .04H (Henry),
R = 20Ω (Ohms), C = 4×10−4F (Farad), if the initial charge on the capacitor
is q(0) = 2× 10−3F , and if the initial current flowing in the circuit is i(0) =
q′(0) = 0A (amps).

Solution

To find the equation for the charge on the capacitor, we must solve the fol-
lowing initial value problem which results from equations (7)-(8) by replacing
E,L,R,C, q0, and i0 by the values given in the problem.

.04q′′ + 20q′ + 2500q = 0; q(0) = 2× 10−3F, q′(0) = 0A.

Using POLYRTS, we find the roots of the auxiliary equation .04r2 + 20r +
2500 = 0 are r1 = r2 = −250. Since the roots are real and equal, this system
provides an example of critically damped motion and the equation for the
charge on the capacitor (the solution of the differential equation) is

q(t) = (A+Bt)e−250t

where A and B must be chosen to satisfy the given initial conditions. Differ-
entiating, we find

q′(t) = i(t) = (−250A+B − 250Bt)e−250t.

To satisfy the given initial conditions, A and B must be chosen to simultane-
ously satisfy

q(0) = 2× 10−3 = A and q′(0) = i(0) = 0 = −250A+B.

So A = 2 × 10−3 F, B = 250A = .5 F/s, and the charge on the capacitor as
a function of time after the switch is closed is

q(t) = (.002 + .5t)e−250tcoulombs.

And the current flowing in the circuit is

i(t) = q′(t) = −125e−250tamps.

The negative sign in the equation for the current indicates that the current is
flowing in the direction opposite of the arrow in Figure 6.3. �
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EXERCISES 6.1.1

Exercises 1–9 pertain to simple pendulums. In these exercises
assume the angular displacement, y, is small enough so that the
approximation sin y ∼ y is valid and use the linearized initial value
problem (2) to describe the motion of the pendulum. On the earth
g = 9.8 meters/second2 (m/s2) is the mean surface gravitational
constant and on the moon g = 1.62 m/s2.

1. A child whose mass is 40 kilograms (kg) is swinging in a park on a swing
of length 5 meters (m). Assuming air resistance is negligible, calculate
the period and frequency of oscillation.

2. If an undamped pendulum on the earth has a period of 1 second, how
long is the pendulum in meters? How long must a pendulum be in order
to have a period of 2 seconds? How long would an undamped pendulum
need to be on the moon to have a period of 1 second?

3. Does an undamped pendulum of length � with a .2 kg bob oscillate
faster or slower than an undamped pendulum of length � with a .1 kg
bob? If both pendulums are subjected to the same damping, which will
oscillate faster?

4. Two identical undamped pendulums, one on the earth and the other on
the moon, are started with the same initial displacement and velocity.
Which pendulum will oscillate faster? Which pendulum will have the
larger amplitude?

5. An undamped pendulum of length .5 m with a bob of mass .3 kg is
moved to the right of vertical so that the pendulum makes an angle of
1 radian with the vertical and is then released without imparting any
velocity to the pendulum.

a. Write the equation of motion for the pendulum.

b. What is the amplitude and period of oscillation?

c. What is the phase angle?

d. What is the velocity and acceleration of the pendulum when the
bob is at the vertical and headed toward the left? right?

6. An undamped pendulum of length 1/6 m with a bob of mass .2 kg is
started with an angular displacement of .5 radians and released with an
angular velocity of 1 radian/second.

a. Write the equation of motion for the pendulum.

b. What is the amplitude and period of oscillation?
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c. What is the phase angle?

7. A damped pendulum of length .6 m with a bob of mass .5 kg is
started with initial position y(0) = 0 and initial velocity y′(0) =
.2 radians/second in a medium with damping constant c = .5 kg/s.

a. Write the equation of motion. (Hint: Use POLYRTS or your com-
puter software to find the roots of the auxiliary equation.)

b. What is the maximum angular displacement from the vertical?

8. A pendulum of length .2 m with a bob of mass .5 kg oscillates in a
viscous medium. Determine if the pendulum will execute damped oscil-
latory motion, critically damped motion, or overdamped motion for the
following damping constants

a. c = 10 kg/s b. c = 7 kg/s c. c = 5 kg/s

(Hint: Use POLYRTS or your computer software to find the roots of the
auxiliary equation and based on the type of roots determine the type of
motion.)

9. In an experiment a pendulum of length .7 m with a bob of mass
.3 kg oscillating in a viscous medium was observed to execute damped
oscillatory motion. Two successive maxima angular displacements were
measured to be y(t1) = 1/5 radian and y(t2) = 1/6 radian. Find the
damping constant, c, of the medium. (Hint: The time interval between
successive maxima, t2 − t1, is 2π/ω. Write equation (20) for t1 and t2,
divide y(t1) by y(t2), and solve for c.)

Exercises 10–13 pertain to spring-mass systems. Assume the mass
attached to the spring is executing simple harmonic motion—that
is, assume there is no damping so c = 0.

10. a. What is the velocity of the mass at the instant the displacement from
the equilibrium position is a maximum?

b. What is the position of the mass when the velocity is a maximum?

11. A mass m is attached to a spring whose spring constant is 3.2 kg/s2. If
the period of oscillation is 2 seconds, determine the mass m.

12. The top of a spring is attached to a fixed support. A 2 kg mass is
attached to the bottom of the spring. After coming to rest at the equi-
librium position, the mass is pulled down X meters below the equilibrium
position and released with an initial downward velocity of .3 m/s. If the
amplitude of the resulting harmonic motion is .1 m and the period is
1 s, calculate the spring constant k and the distance X.
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13. When a 1 kg mass is attached to a certain spring and the system set
in motion, the period of oscillation is 2 seconds. Later the 1 kg mass is
replaced with an unknown mass m. The new system is set in motion
and the new period is found to be 4 seconds. What is the mass m?

14. A .1 kg mass is attached to a spring, the other end is attached to
a fixed support, and the system is allowed to come to rest. In the
equilibrium position the spring is stretched .05 m. Determine if the
spring-mass system will execute damped oscillatory motion, critically
damped motion, or overdamped motion for the following values of the
damping constant

a. c = 2.8 kg/s b. c = 1.6 kg/s c. c = 3.5 kg/s

(Hint: Use POLYRTS or your computer software to find the roots of the
auxiliary equation and based on the type of roots determine the type of
motion.)

15. A .8 kg mass is attached to one end of a spring. The other end is
attached to the ceiling. The system is allowed to come to rest. In the
equilibrium position the spring is stretched .3 m. The system is to be set
in motion by pulling the mass downward and releasing it. What value
of the damping constant c will result in damped oscillatory motion?
critically damped motion? overdamped motion?

16. A .6 kg mass is attached to the lower end of a spring. The upper end
is attached to a fixed support. When the system is set in motion and
there is no damping the period of oscillation is 2 seconds. When the
damping constant is c kg/s and the system is set in motion the period
of oscillation is 4 seconds. Determine the damping constant c and the
spring constant k.

17. For the following RLC series circuits the electromotive force is zero,
E = 0. In each case, determine if the equation for the charge on the
capacitor, q, represents simple harmonic motion, damped oscillatory
motion, critically damped motion, overdamped motion, or none of these.

R (Ohms) L (Henry) C (Coulomb)
a. 0 0.5 2.0× 10−5

b. 10 0.0 3.0× 10−4

c. 20 0.1 1.0× 10−3

d. 20 0.1 0.5× 10−3

e. 30 0.2 1.0× 10−2

18. If E = 0 in an RLC series circuit, what relationship between the
parameters R, L, and C results in an equation for the charge on the
capacitor which represents simple harmonic motion? damped oscilla-
tory motion? critically damped motion? overdamped motion?
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6.1.2 Forced Motion

Suppose some mechanical or electrical system whose state is represented by
the parameter y(t) is mathematically modelled by the differential equation

(24) ay′′ + by′ + dy = f(t)

where a > 0, b ≥ 0, and d > 0 are constants and f(t) �= 0. Since f(t) �= 0,
the system is said to execute forced motion. We will assume the forcing
function f(t) is periodic. More specifically we will assume f(t) = E sinω∗t,
where E and ω∗ are constants. Other periodic functions such as E cosω∗t
or E sin (ω∗t+ θ) will serve as the forcing function as well as the function
which we have chosen. For a pendulum system the forcing function might
represent a weight or main spring in a clock which is connected to and driving
the pendulum. For a spring-mass system the forcing function might represent
a motor which vibrates the support or a magnetic field which acts upon a
suspended iron mass. For an electrical circuit or network the forcing function
represents the electromotive force applied to the system by a battery or a
generator.

6.1.2.1 Undamped Forced Motion

When there is no damping force (b = 0) and the forcing function f(t) =
E sinω∗t, equation (24) becomes

(25) ay′′ + dy = E sinω∗t.

The general solution of the associated homogeneous equation ay′′ + dy = 0,

yc(t) = A sinωt+B cosωt = C sin (ωt+ φ)

where ω =
√
d/a and A, B, C, and φ are arbitrary constants, is the comple-

mentary solution of equation (25).

Case 1. If ω∗ �= ω, then a particular solution of (25) will have the form

yp(t) = F sinω∗t+G cosω∗t.

Differentiating twice, we find

y′p(t) = ω∗F cosω∗t− ω∗G sinω∗t

and

y′′p (t) = −(ω∗)2F sinω∗t− (ω∗)2G cosω∗t.

Substituting yp and y′′p into equation (25) and rearranging, we see that the
constants F and G must satisfy

F [d− a(ω∗)2] sinω∗t+G[d− a(ω∗)2] cosω∗t = E sinω∗t.
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Since the set {sinω∗t, cosω∗t} is a linearly independent set, we equate coeffi-
cients and find

F =
E

d− a(ω∗)2
and G = 0.

So when ω∗ �= ω, a particular solution of equation (25) is

yp(t) =
E

d− a(ω∗)2
sinω∗t,

and the general solution of equation (25) is

y(t) = yc(t) + yp(t) = A sinωt+B cosωt+
E

d− a(ω∗)2
sinω∗t

where the constants A and B depend on the initial conditions. Notice that
for ω∗ �= ω, the solution, y(t), of equation (25) remains bounded for all time,
t.

Case 2. If ω∗ = ω—that is, if the frequency of the forcing function is
identical to the natural frequency of the system, then a phenomenon known
as resonance occurs and the particular solution of equation (25) will have
the form

yp(t) =Mt sinω∗t+Nt cosω∗t.

Differentiating this equation twice, substituting yp and y′′p into equation (25),
and solving, we getM = 0 and N = −E/(2aω∗). So when ω∗ = ω the general
solution of equation (25) is

y(t) = A sinωt+B cosωt− E

2aω∗ t cosω
∗t.

Due to the factor t cosω∗t, the solution y(t) oscillates with unbounded am-
plitude as t → ∞ regardless of the initial conditions which merely determine
the constants A and B.

6.1.2.2 Damped Forced Motion

When the periodic external force f(t) = E sinω∗t and when there is a
damping force (b �= 0),which is the case for all realizable systems, equation (24)
becomes

(26) ay′′ + by′ + dy = E sinω∗t

where a, b, and d are positive constants and E and ω∗ are constants. In the
previous section, we found that the solution of the associated homogeneous
equation, the complementary solution yc of equation (26), depends on the sign
of b2 − 4ad.

If b2 − 4ad < 0, then

yc(t) = e−αt(A sinωt+B cosωt) = Ce−αt sin (ωt+ φ)
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where α = b/(2a), ω =
√
4ad− b2/(2a), and A, B, C, and φ are arbitrary

constants.

If b2 − 4ad = 0, then
yc(t) = (A+Bt)e−αt

where α = b/(2a) and A and B are arbitrary constants.

If b2 − 4ad > 0, then
yc(t) = Aer1t +Ber2t

where r1 = (−b+√
b2 − 4ad)/(2a) < 0, r2 = (−b−√

b2 − 4ad)/(2a) < 0, and
A and B are arbitrary constants.

Notice that as t → ∞, yc(t) → 0 regardless of the value of the quantity
b2 − 4ad and regardless of the form of the complementary solution yc(t).
Because of this property the term yc(t) of the general solution y(t) = yc(t) +
yp(t) is called the transient solution—the function yc(t) and its effects die
out with increasing time.

There is a particular solution of equation (26) of the form

yp(t) = F sinω∗t+G cosω∗t.

Differentiating twice; substituting yp, y
′
p, and y

′′
p into equation (26); equating

coefficients of sinω∗t and cosω∗t; and solving for F and G it can be shown
that

F =
(d− a(ω∗)2)E

H(ω∗)
and G =

−bω∗E
H(ω∗)

where H(ω∗) = [d− a(ω∗)2]2 + b2(ω∗)2. So a particular solution of equation
(26) is

yp(t) = E[(d− a(ω∗)2) sinω∗t− bω∗ cosω∗t]/H(ω∗)

or equivalently

(27) yp(t) = [E sin (ω∗t+ φ)]/
√
H(ω∗)

where φ simultaneously satisfies

cosφ = (d− a(ω∗)2)/
√
H(ω∗) and sinφ = −bω∗/

√
H(ω∗).

The general solution of equation (26) is y(t) = yc(t) + yp(t). The transient
solution (complementary solution, yc) contains arbitrary constants A and B
which depend upon the initial conditions under which the system was started.
Since the initial conditions affect only the transient solution and since the
transient solution approaches zero after a sufficiently long period of time, the
initial conditions influence the solution of equation (26) only for a “short”
period of time. For all practical purposes after a sufficiently long period of
time the general solution becomes the particular solution. For this reason, the
particular solution is called the steady state solution. Consequently, after
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a sufficiently long period of time the solution depends only on the external
force driving the system and not upon the conditions under which the system
was started—that is, not upon the initial conditions.

We see from equation (27) that the steady state solution is oscillatory with
frequency ω∗—the same frequency as the forcing function f(t)—and with
amplitude A(ω∗) = E/

√
H(ω∗). For 0 < ω∗ < ∞ as ω∗ → 0, A(ω∗) → E/d

and as ω∗ → ∞, A(ω∗) → 0. Also since b > 0, for all positive ω∗, A(ω∗) is
finite. Consequently, when there is damping present in a system (b > 0), the
amplitude of oscillation remains finite; whereas, when there is no damping
in the system (b = 0) and when resonance occurs (ω∗ = ω) the amplitude
of oscillation increases without bound until the system is destroyed. The
amplitude of oscillation A(ω∗) will be a maximum when H(ω∗) is a minimum.
Differentiating H(ω∗) with respect to ω∗, setting the result equal to zero, and
solving for ω∗, we find

ω∗ =

√
ad− b2/2

a
.

When ω∗ has this value the forcing function is said to be in resonance with
the system. Resonance can occur only when ad − b2/2 > 0 which implies
b2 < 2ad < 4ad which in turn implies b2−4ad < 0. Thus, resonance can occur
only if the corresponding free system (f(t) = 0) executes damped oscillatory
motion. Resonance will not occur if the free system executes critically damped
motion or overdamped motion. For damped oscillatory motion the resonance
frequency is

FR =
ω∗

2π
=

√
ad− b2/2

2πa
.

This frequency is less than the frequency of the corresponding free system
which is

F =
ω

2π
=

√
ad− b2/4

2πa
.

EXERCISES 6.1.2

1. A .6 kg mass is attached to one end of a spring. The other end is
attached to a movable support. The support is held fixed and the system
is permitted to come to rest. In the equilibrium position the spring
is stretched .3 meters. The mass is pulled down .2 meters below the
equilibrium position and released without imparting any velocity and
at the same instant a motor starts to drive the support with a force
f(t) = 10 sinω∗t kg-m/s2.

a. What value of ω∗ causes resonance?

b. If ω∗ = 10 cycles/second, what is the general solution?
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c. Suppose damping is added to the system and the damping constant
is computed to be c = .4 kg/s. What is the resonance frequency,
FR?

2. Suppose the equation of motion of some system satisfies the differential
equation

y′′ + cy′ + 15y = 4 sinω∗t.

a. What value of c produces resonance?

b. If c = 4, what value of ω∗ produces resonance?

3. In the RLC series circuit suppose the electromotive force has a constant
value of E.

a. Find the steady state solution for the charge on the capacitor,
qp(t).

b. What is limt→∞ qp(t)?

c. What is limt→∞ i(t)?

4. In the RLC series circuit suppose the electromotive force is f(t) =
E sinω∗t.

a. For R = 0 (an LC series circuit) and ω∗ �= 1/
√
LC, find the

steady state solution for the charge on the capacitor, qp(t). What
is limt→∞ qp(t)?

b. For R = 0 and ω∗ = 1/
√
LC, find the steady state solution for the

charge on the capacitor, qp(t). What is limt→∞ qp(t)?

c. For L = 0 (an RC series circuit) find the steady state solution for
the charge on the capacitor. What is limt→∞ qp(t)?

5. Find the steady state current, ip(t), flowing in an RL series circuit
(C = 0) if

a. f(t) = E, a constant. What is limt→∞ ip(t)?

b. f(t) = E cosω∗t.

6. Find the steady state current, ip(t), for an RLC series circuit if E(t) =
E cosω∗t. For what value of ω∗ will the amplitude of the steady state
current be a maximum?
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6.2 Higher Order Differential Equations

In this section we will present some applications which require the solution
of linear differential equations with constant coefficients of order greater than
two. And we will show how to solve a linear system of differential equations
with constant coefficients by writing the system as a single higher order linear
differential equation with constant coefficients.

A Coupled Spring-Mass System Suppose a mass m1 is attached to
one end of a spring with spring constant k1. The other end of this spring is
attached to a fixed support. A second mass m2 is attached to one end of a
second spring with spring constant k2. The other end of the second spring is
attached to the bottom of mass m1 and the resulting system is permitted to
come to rest in the equilibrium position as shown in Figure 6.7.
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Figure 6.7 A Coupled Spring-Mass System.

For i = 1, 2 let yi represent the vertical displacement of mass mi from its
equilibrium position. As before we will assign downward displacement from
equilibrium to be positive and upward displacement from equilibrium to be
negative. Applying Newton’s second law of motion and assuming no damping
is present, it can be shown that the equations of motion for this coupled
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spring-mass system satisfy the linear system of differential equations

(28a) m1y
′′
1 = −k1y1 + k2(y2 − y1)

(28b) m2y
′′
2 = −k2(y2 − y1).

Solving equation (28a) for y2, we get

(29) y2 =
m1y

′′
1

k2
+ (1 +

k1
k2

)y1.

Differentiating twice, we find

(30) y′′2 =
m1y

(4)
1

k2
+ (1 +

k1
k2

)y′′1 .

Substituting these last two expressions for y2 and y′′2 into equation (28b), we
obtain the following single fourth-order differential equation for y1

m2m1y
(4)
1

k2
+m2(1 +

k1
k2

)y′′1 = −m1y
′′
1 − (k1 + k2)y1 + k2y1

or multiplying by k2 and rearranging

(31) m1m2y
(4)
1 + [m2(k1 + k2) +m1k2]y

′′
1 + k1k2y1 = 0.

Exercise 1. a. For m1 = .2 kg, m2 = .7 kg, k1 = 5 kg-m2/s2, and k2 =
11 kg-m2/s2 find the general solution of equation (31). (Hint: Use POLYRTS
or your computer software to find the roots of the auxiliary equation associated
with equation (31).)

b. Use equation (29) and the answer to part a. to find y2(t).

c. Find the solution to the initial value problem consisting of the system
of two first-order differential equations (28) and the initial conditions:

y1(0) = .1 m, y′1(0) = .3 m/s, y2(0) = −.15 m, and y′2(0) = .4 m/s.

Another Coupled Spring-Mass System A second coupled spring-mass
system which consists of two masses, m1 and m2, connected to two fixed
supports by three springs which have spring constants k1, k2, and k3 is shown
in Figure 6.8. Neglecting the effects of damping, the system of differential
equations which describes the displacements y1 and y2 of masses m1 and m2,
respectively, from their equilibrium positions is

(32a) m1y
′′
1 = −k1y1 + k2(y2 − y1)

(32b) m2y
′′
2 = −k2(y2 − y1)− k3y2.
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Figure 6.8 A Coupled Spring-Mass System.

Exercise 2. For m1 = .4 kg, m2 = .25 kg, k1 = 7 kg-m2/s2, k2 =
6 kg-m2/s2, and k3 = 9 kg-m2/s2 find the solution to the initial value problem
consisting of the system of differential equations (32) and the initial conditions
y1(0) = −.6 m, y′1(0) = .45 m/s, y2(0) = .3 m, and y′2(0) = −.37 m/s. (Hint:
Equation (32a) is the same as equation (28a). Eliminate y2 and y′′2 from
equation (32b) and obtain a fourth order linear differential equation in y1.
Use POLYRTS or your computer software to find the roots of the associated
auxiliary equation. Write the general solution y1, then find y2 and satisfy the
initial conditions.)

A Double Pendulum A double pendulum consists of a bob of mass m1

attached to a fixed support by a rod of length �1 and a second bob of mass m2

attached to the first bob by a rod of length �2 as shown in Figure 6.9. Let y1
and y2 denote the displacement from the vertical of the rods of length �1 and
�2 respectively. Assuming the double pendulum oscillates in a vertical plane
and neglecting the mass of the rods and any damping forces, it can be shown
that the displacements, y1 and y2, satisfy the following system of differential
equations
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(33a) (m1 +m2)�
2
1y

′′
1 +m2�1�2y

′′
2 + (m1 +m2)�1gy1 = 0

(33b) m2�1�2y
′′
1 +m2�

2
2y

′′
2 +m2�2gy2 = 0

where g is the constant of gravitational acceleration.
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Figure 6.9 A Double Pendulum.

Exercise 3. For m1 = .3 kg, m2 = .2 kg, �1 = .5 m, �2 = .25 m, and
g = 9.8 m/s2 solve the system of differential equations (33) subject to the ini-
tial conditions y1(0) = .05 rad, y′1(0) = .15 rad/s, y2(0) = .1 rad, and y′2(0) =
−.2 rad/s. (Hint: Multiply equation (33a) by �2 and multiply equation (33b)
by �1. Subtract one of these new equations from the other to eliminate the
term containing y′′2 as a factor. Solve the resulting equation for y2. Differ-
entiate twice to get y′2 and y′′2 . Substitute the expressions for y2 and y′′2 into
equation (33b) and obtain a fourth order differential equation in y1. Use
POLYRTS or your computer software to find the roots of the associated aux-
iliary equation. Write the general solution y1, then find y2, and finally satisfy
the initial conditions.)

The Path of an Electron In 1897, J. J. Thomson demonstrated the
existence of the electron by determining the ratio of the charge of an electron
to its mass. Let the ratio be R = q/m where q is the charge of an electron
and m is its mass. The position (x, y) of an electron in the plane satisfies the
system of differential equations
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(34a) x′′ = −HRy′ + ER

(34b) y′′ = HRx′

where H is the intensity of the magnetic field and E is the intensity of an
electric field acting on the electron.

Exercise 4. Find the position of an electron as a function of time t, if
HR = 2, if ER = 3, and if the electron is initially at rest at the origin.
That is, solve the system (34) subject to the initial conditions: x(0) = 0,
x′(0) = 0, y(0) = 0, and y′(0) = 0. (Hint: Differentiate (34b) and substi-
tute (34a) into the resulting equation. Then solve the third order differential
equation in y, etc.)

Compartmental Analysis Many complex biological and physical pro-
cesses can be subdivided into several distinct phases. Then the complex pro-
cess can be studied by analyzing each phase individually and the interaction
between the phases. Each phase or stage in the overall process is called a
compartment. It is assumed that material which moves from one compart-
ment to another does so in a negligible amount of time and that the material
itself is immediately dispersed throughout the entire compartment. A closed
compartmental system is one in which there is no input to or output from
any compartment in the system. An open system is one in which there is an
input to or output from at least one compartment in the system. Engineers
sometimes refer to compartmental systems as block diagrams.

Let Y1, Y2, . . . , Yn denote the n separate compartments in a compart-
mental system. Each compartment is assumed to have a constant volume vi
which may vary in size from compartment to compartment. At time t the
concentration of a particular substance S in the compartment Yi is yi(t). It is
assumed that at all times the substance is uniformly distributed throughout
each of the compartments. The rate of change of concentration of the sub-
stance in compartment i at time t, y′i(t), is equal to the sum over all inputs
to the i-th compartment of the concentration of each input times the rate
of flow per volume of the input minus the concentration of the substance in
compartment i, yi(t), times the sum of the rates of flow per volume of output
from the compartment.

As an example, let y1(t), y2(t), and y3(t) denote the concentration of a
substance S in compartments Y1, Y2, and Y3 at time t. And let a, b, c, d, e,
and f be the rates per volume at which the fluids containing the substance
S flow into and out of the compartments of the open compartmental system
shown in Figure 6.10. Also let u denote the constant concentration of the sub-
stance S in the fluid flowing into compartment Y1. Under the assumptions
that the volume of each compartment remains constant, the time for material
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to flow from one compartment to another is negligible, and the fluid in each
compartment has uniform concentration, the concentrations yi satisfy the
following system of differential equations

(35a) y′1 = au+ fy2 − y1b

(35b) y′2 = by1 + ey3 − y2(c+ f)

(35c) y′3 = cy2 − y3(d+ e).

a b c d

f e

Y Y Y321

y ( t ) y ( t ) y ( t )321

Figure 6.10 An Open Compartmental System.

Solving equation (35a) for y2 and differentiating, we find

y2 = (y′1 − au+ by1)/f and y′2 = (y′′1 + by′1)/f.

Substituting these expressions for y2 and y′2 into equation (35b) and multi-
plying by f , we get

y′′1 + by′1 = bfy1 + efy3 − (c+ f)(y′1 − au+ by1).

Solving this equation for y3 and differentiating, we obtain

y3 = [y′′1 + (b+ c+ f)y′1 + bcy1 − (c+ f)au]/(ef)

and

y′3 = [y
(3)
1 + (b+ c+ f)y′′1 + bcy′1]/(ef).

Substituting from the above expressions for y2, y3, and y
′
3 in equation (35c),

we find y1 satisfies the single differential equation
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[y
(3)
1 + (b+ c+ f)y′′1 + bcy′1]/(ef) =

c(y′1 − au+ by1)/f − (d+ e)[y′′1 + (b+ c+ f)y′1 + bcy1 − (c+ f)au]/(ef).

Multiplying by ef and rearranging, we see that y1 satisfies the third-order,
linear differential equation

(36) y
(3)
1 + (b+ c+ d+ e+ f)y′′1 + [b(c+ d+ e) + cd+ f(d+ e)]y′1 + bcdy1 =

[cd+ f(d+ e)]au.

Since the volume of each compartment remains constant, the sum of the input
rates per volume into a compartment must equal the sum of the output rates
per volume from the compartment. So the rates per volume a, b, c, d, e, and
f must also satisfy the equations

a+ f = b (for compartment Y1)

b+ e = c+ f (for compartment Y2)

c = d+ e (for compartment Y3)

Exercise 5. Find the concentration of a substance in each of the compart-
ments of Figure 6.10 as a function of time, if a = 1 min−1, b = 4 min−1, c =
7 min−1, d = 1 min−1, e = 6 min−1, f = 3 min−1, y1(0) = .25, y2(0) = .4,
and y3 = .7. (Hint: Use POLYRTS or your computer software to find the
roots of the auxiliary equation associated with equation (36). Write the gen-
eral solution of equation (36). Then find y2 and y3. And finally, satisfy the
initial conditions.)

Beams and Columns Beams and columns are common structural ele-
ments used in the construction of airplanes, bridges, buildings, and ships. Be-
cause of their importance in construction, beams and columns were studied ex-
tensively by ancient Greek and Roman architects. Galileo and Coulomb both
made contributions to the early theory of the deflection of beams and bending
of columns. However, our modern engineering theory regarding beams and
columns has its origin during the eighteenth century in studies conducted by
Euler and the Bernoullis.

An ideal beam is a long, slender, nonvertical rod which is supported at
one or both ends and which is usually subject to external forces acting on
it. The external forces may act at any point or points along the length of
the beam and thereby cause a displacement of the beam from its unloaded
position. The displacement of a beam from its unloaded position is described
by a fourth-order ordinary differential equation.

Consider a horizontally placed beam which does not rest on an elastic foun-
dation as shown in Figure 6.11. Let x denote the horizontal distance from the
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276 Elementary Differential Equations

left end of the beam of length L and let y(x) denote the vertical downward
deflection of the beam.
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���� �	�


������ �������

�	�


��������

�������

Figure 6.11 Deflection of a Beam.

A fundamental equation of beam theory is

(37)
y′′

[1 + (y′)2]3/2
=

−M
EI

where M is the bending moment, E is Young’s modulus and I is the moment
of area of the cross section about the neutral axis. (I is also sometimes called
the moment of inertia.) Since a beam’s cross section may vary, the moment
of area, I, may not be constant. Two additional fundamental equations from
beam theory are

(38)
dM

dx
= V and

dV

dx
= −w(x)

where V is the shearing force and w(x) is the load on the beam. The fourth-
order differential equation which results from differentiating equation (37)
twice and substituting equations (38), depends upon the assumptions made
regarding y′ and I.

Case 1. If y′ is not assumed to be small relative to 1 (that is, if the bending
of the beam is not small), two differentiations of (37) yield the following
nonlinear fourth-order differential equation for the deflection of the beam

(39)

y(4)F−3/2−9y′y′′y(3)F−5/2−3(y′′)3F−5/2+15(y′)2(y′′)3F−7/2 =
d2

dx2

(−M
EI

)

where F = 1 + (y′)2. The final form of the differential equation to be solved
depends upon whether the moment of area of the cross section, I, is assumed
to be constant or variable.
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Case 2. If y′ is assumed to be small compared to 1 (that is, if the bending
of the beam is small), then (y′)2 is very small compared to 1 and may be
neglected. So equation (37) becomes

(40) y′′ =
−M
EI

.

Differentiating this equation twice, we obtain

y(4) =
d2

dx2

(−M
EI

)

.

a. If, in addition, I is assumed to be constant, then substituting from
equations (38) we obtain the following simple linear fourth-order differential
equation for the deflection of the beam

(41) y(4) =
−1

EI

(
d2M

dx2

)

=
w(x)

EI
.

Once the load, w(x), and the initial or boundary conditions are specified the
deflection of the beam, y(x), at any point can easily be calculated by finding
the general solution of (41) and satisfying the initial or boundary conditions.

b. If I is assumed to be a variable, then one differentiation of (40) followed
by substitution from (38) and (40) yields

(42) y(3) =
MI ′

EI2
− M ′

EI
= −I

′

I
y′′ − V

EI
.

Differentiation of (42) followed by some algebraic rearrangement and substi-
tution from (38) and (41), gives

y(4) = −I
′

I
y(3) +

(
I ′

I

)2

y′′ − I ′′

I
y′′ +

V I ′

EI2
− V ′

EI

= −I
′

I
y(3) − I ′′

I
y′′ +

I ′

I

(
I ′

I
y′′ +

V

EI

)

− V ′

EI

= −2I ′

I
y(3) − I ′′

I
y′′ +

w

EI
.

So if we assume y′ is small compared to 1 and I is a variable, we obtain
the following linear fourth-order differential equation for the deflection of the
beam

(43) y(4) +
2I ′

I
y(3) +

I ′′

I
y′′ =

w

EI
.
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278 Elementary Differential Equations

To solve this differential equation and find the deflection of the beam, we need
to know the load, w(x), the moment of area of the cross section, I(x), and
the initial or boundary conditions. Unless I(x) is an exponential function,
equation (43) will be a linear differential equation with variable coefficients.
The solution of the linear differential equations with variable coefficients is
discussed in Chapter 7. Let us suppose I(x) is an exponential function, say,
I(x) = beax. Then I ′ = abeax, I ′′ = a2beax and upon substitution (43)
reduces to

(44) y(4) + 2ay(3) + a2y(2) =
w(x)

Ebeax
.

If a beam is simply supported at x = 0, then y(0) = 0 and y′′(0) = 0.
The condition y(0) = 0 means the end of the beam is fixed—that is, it cannot
move vertically. The condition y′′(0) = 0 means the beam can rotate about
x = 0 in the plane of deformation. A simply supported end of a beam is
sometimes called a pinned end—see Figure 6.12a. Of course, if a beam is
simply supported at x = L, then y(L) = 0 and y′′(L) = 0.

If a beam is clamped at x = 0, then y(0) = 0 and y′(0) = 0. The condition
y′(0) = 0 means at x = 0 the slope of the beam is zero—that is, at x = 0
the beam is horizontal. A clamped beam is often a built-in beam as shown in
Figure 6.12b. If a beam is built-in at x = L, then y(L) = 0 and y′(L) = 0.
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Figure 6.12 Types of Beam Support at an End.

Exercise 6. Find the equation for the deflection of a horizontal beam of
length L, assuming y′ is small and I is constant (that is, solve equation (41))
under the following conditions:

a. Both ends are simply supported and the load is

i. uniform, w(x) = w0, where w0 is constant ii. w(x) = w0 sin (πx/L)

iii. w(x) = w0 cos (πx/L)

b. The end at x = 0 is simply supported, the end at x = L is clamped, and

the load is

i. w(x) = w0 ii. w(x) = w0 sin (πx/L) iii. w(x) = w0 cos (πx/L)
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c. Both ends are clamped and the load is

i. w(x) = w0 ii. w(x) = w0 sin (πx/L) iii. w(x) = w0 cos (πx/L)

Exercise 7. Find the equation for the deflection of a horizontal beam of
length L = 120 inches, assuming y′ is small, I(x) = 400e−x/L in4, E =
15 × 106 lbs/in2, and the load is uniform, w(x) = w0 where w0 is a con-
stant (that is, solve equation (44)). (Hint: Use POLYRTS or your computer
software to find the complementary solution of equation (44).)

A cantilevered beam is one which is clamped at one end and completely
free at the other end. Suppose a cantilevered beam is clamped at x = 0 and
free at x = L. Then two conditions which must be satisfied by the equation
for the deflection of the beam are y(0) = 0 and y′(0) = 0. Suppose further
that y′ is assumed to be small relative to 1. Then from equations (40) and
(42)—regardless of whether I is constant or variable, we obtain the following
two additional initial conditions

(45) y′′(0) =
−M(0)

EI(0)

and

(46) y(3)(0) = −I
′(0)
I(0)

y′′(0)− M ′(0)
EI(0)

.

The bending moments M(x) for various loads w(x) on a cantilevered beam of
length L are given in Figure 6.13.

Exercise 8. For each of the loads A,B,C,D, and E shown in Figure 6.13 find
the equation for the deflection for a horizontal cantilevered beam of length
L = 240 inches, assuming y′ is small, I(x) = 500e−x/L in4, P = 500 lbs,
d = 50 in, w0 = 60 lbs/in, andE = 25×106 lbs/in2. (Hint: Solve equation (44)
subject to the initial conditions y(0) = 0, y′(0) = 0, and equations (45) and
(46).)

Exercise 9. If y′ is small and the moment of area of the cross section, I, is
constant, then the deflection of a horizontal beam resting on an elastic
foundation satisfies the differential equation

(47) EIy(4) + k2y = w(x)

where E is Young’s modulus, k is the spring constant of the elastic foundation,
and w(x) is the load on the beam. A simple example of such a beam is a single
rail of a railroad track. Find the deflection of a horizontal beam resting on an
elastic foundation if the beam is pinned at x = −L and x = L, if k2/EI = .09,
and if the load is w(x) = w0 cos (πx/L) where w0 is a constant. (Hint: Use
POLYRTS or your computer software to find the complementary solution of
equation (47).)
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Load Diagram Load, w(x) Bending Moment, M(x)

A.

⎧
⎨

⎩

0, x �= L

P, x = L
−P (L− x)

B.

⎧
⎨

⎩

0, x �= d

P, x = d

⎧
⎨

⎩

−P (d− x), 0 ≤ x ≤ d

0, d < x ≤ L

C. w0, a constant −w0[L(L− x) +
x2

2
]

D. w0(1− x

L
) −w0(

L2

6
− Lx

2
+
x2

2
− x3

6L
)

E.
w0x

L
−w0(

L2

3
− Lx

2
+
x3

6L
)

�

�
{

�

�

{

��

����

����

Figure 6.13 Bending Moments for Various Loads on a Cantilevered Beam

of Length L.

An ideal column is a long, slender elastic rod which is held vertically in
place by a support at the base and often by an additional support at the top.
Suppose a weight is placed on the top of the column, thus inducing a force P
on both ends of the column. If P is sufficiently small, then the column will
support the weight and the column will deflect only slightly from the vertical.
However, if P is sufficiently large, then the column cannot support the weight
and will buckle—that is, the column will suddenly bow out from the vertical
with large amplitude.

Consider the column of length L shown in Figure 6.14. Assume the column
is constrained to move in the plane. Let the origin be located at the base of the
column with the positive x-axis directed vertically upward and the positive
y-axis directed to the right. So y(x) represents the lateral displacement of the
column. In the eighteenth century, Euler showed that a column carrying a
load P satisfies the fourth-order linear differential equation

(48) y(4) +
Py(2)

EI
= 0

where E is Young’s modulus and I is the moment of the area of the column’s
cross section. (Here I is assumed to be a positive constant.) Notice that
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regardless of the boundary conditions, y(x) = 0 is a solution of equation (48).
The smallest value for the load P which will cause buckling is called the
critical load or the Euler load.
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Figure 6.14 Buckling of a Column.

Example Find the critical load (Euler load) for a column which is

clamped at the base and pinned at the top.

Solution

Let λ2 = P/EI. Then the auxiliary equation associated with equation (48)
is r4 + λ2r2 = 0. The roots of this equation are r = 0, 0, λi, and −λi. So the
general solution of (48) is

y(x) = A+Bx+ C sinλx +D cosλx.

Differentiating twice, we find

y′(x) = B + λC cosλx− λD sinλx and y′′(x) = −λ2C sinλx − λ2D cosλx.

Since the column is clamped at the base, two boundary conditions are
y(0) = 0 and y′(0) = 0. And since the column is pinned at the top, two
additional boundary conditions are y(L) = 0 and y′′(L) = 0. In order to
satisfy the boundary conditions, the constants A,B,C, and D must be chosen
to simultaneously satisfy the following four equations.
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A+D = 0 (From the condition y(0) = 0)

B + λC = 0 (From the condition y′(0) = 0)

A+BL + C sinλL +D cosλL = 0 (From the condition y(L) = 0)

−λ2C sinλL− λ2D cosλL = 0 (From the condition y′′(L) = 0)

Written in matrix-vector notation, this system becomes
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 1

0 1 λ 0

1 L sinλL cosλL

0 0 −λ2 sinλL −λ2 cosλL

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A

B

C

D

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(If you are unfamiliar with matrix-vector notation, see Section 8.1.) Or sym-
bolically, Mu = 0 where M denotes the 4 × 4 matrix; u denotes the column
vector with entries A,B,C,D; and 0 is the vector of zeroes. Notice that
u = 0 is always a solution of Mu = 0. The solution u = 0 is called the
trivial solution and means A = B = C = D = 0. So corresponding to the
trivial solution, u = 0, of Mu = 0 is the solution y(x) = 0 of equation (48).
The equation Mu = 0 has a nontrivial solution (a nonzero solution) if and
only if the determinant of the matrix M (det M) is zero. For this example,
the condition det M = 0 is the condition

−λ2(−λL cosλL + sinλL) = 0.

Since λ2 = P/EI �= 0, for det M to be zero λ must satisfy

−λL cosλL+ sinλL = 0.

Letting z = λL and dividing by cosλL = cos z, we see z must satisfy

f(z) = −z + tan z = 0.

There are an infinite number of positive solutions of the equation f(z) = 0.
To verify this fact, graph w = z and w = tan z and notice that the graphs
intersect exactly once in each of the intervals ((2n−1)π/2, (2n+1)π/2) for n =
1, 2, 3, . . . . So the smallest positive root of f(z) lies in the interval (π/2, 3π/2).
Using Newton’s method, we find the smallest positive root, accurate to six
decimal places, to be z = λL = 4.493409. Since λ2 = P/EI, the critical load
(Euler load) for a column which is clamped at the base and pinned at the top
is

Pcr = EIλ2 = EI(4.493409/L)2 = 20.190724EI/L2.

Observe that a shorter column can support a larger load without buckling.
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Exercise 10. Find the critical load (Euler load) for a column of length L
supported in the following ways.

a. Base and top pinned.

b. Base and top clamped.

c. Base clamped and top free to move vertically. (The boundary conditions

at the top are y(L) = δ where δ �= 0 and y′′(L) = 0.)
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Chapter 7

Systems of First-Order Differential
Equations

In this chapter we shall attempt to answer the following questions:

“What is a system of first-order differential equations?”

“What is a linear system of first-order differential equations?”

“What is a solution of a system of first-order differential equations?”

“What is an initial value problem for a system of first-order differential
equations?”

“Under what conditions does a solution to a system initial value problem
exist and under what conditions is the solution unique?”

“Where—that is, on what interval or what region—does the solution to a
system initial value problem exist and where is the solution unique?”

“How can an n-th order differential equation be rewritten as an equivalent
system of first-order differential equations?”

7.1 Properties of Systems of Differential
Equations

A system of n first-order differential equations has the form

y′1 = f1(x, y1, y2, . . . , yn)

(1) y′2 = f2(x, y1, y2, . . . , yn)
...

...
...

y′n = fn(x, y1, y2, . . . , yn)

where each dependent variable yi is a real-valued function of the independent
variable x and each fi is a real-valued function of x, y1, y2, . . . , yn.

Systems of differential equations of this type arise naturally when there is
one independent variable, such as time, and several dependent variables, such
as position and velocity in multidimensional space.
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In Chapter 3, we derived a system of two, first-order differential equations
for the quantities, q1(t) and q2(t), of dye in two tanks as a function of time t.
The system was

(2)

dq1
dt

= .5− q1
30

dq2
dt

=
q1
30

− q2
15
.

In this system q1 and q2 are the dependent variables and t is the independent
variable. Recall we were able to solve this system by solving the first equation
explicitly for q1, substituting this result into the second equation and then
solving the resulting differential equation for q2.

In Chapter 6 we solved two coupled spring-mass systems, a double pendu-
lum system, a system for the path of an electron, and systems resulting from
compartmental analysis by rewriting each system as a single higher order dif-
ferential equation. The first coupled spring-mass system was the following
system of two, second-order differential equations

(3)
m1y

′′
1 =− k1y1 + k2(y2 − y1)

m2y
′′
2 =− k2(y2 − y1).

Here m1 and m2 are the masses attached to the springs with spring constants
k1 and k2 respectively and y1 and y2 are the displacements of the masses from
equilibrium. (See Figure 6.7.) We can rewrite this system as a system of first-
order differential equations in the following manner. Let u1 = y1, u2 = y′1,
u3 = y2, and u4 = y′2. So u1 is the position of the first mass and u2 is its
velocity. While u3 is the position of the second mass and u4 is its velocity.
Differentiating u1 = y1, u2 = y′1, u3 = y2, and u4 = y′2 and then substituting
for y1, y

′
1, y2, and y

′
2 in terms of u1, u2, u3, and u4, we find

u′1 = y′1 = u2

u′2 = y′′1 =
−k1y1 + k2(y2 − y1)

m1
=

−k1u1 + k2(u3 − u1)

m1

u′3 = y′2 = u4

u′4 = y′′2 =
−k2(y2 − y1)

m2
=

−k2(u3 − u1)

m2
.

Thus, the system of two, second-order differential equations (3) is equivalent
to the following system of four, first-order differential equations

(4)

u′1 = u2

u′2 =
−k1u1 + k2(u3 − u1)

m1

u′3 = u4

u′4 =
−k2(u3 − u1)

m2
.
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In this instance, the independent variable is time, t, the dependent variables
are u1, u2, u3, and u4 and for i = 1, 2, 3, 4 the functions fi(t, u1, u2, u3, u4)
are

f1(t, u1, u2, u3, u4) = u2

f2(t, u1, u2, u3, u4) =
−k1u1 + k2(u3 − u1)

m1

f3(t, u1, u2, u3, u4) = u4

f4(t, u1, u2, u3, u4) =
−k2(u3 − u1)

m2
.

In Chapter 10, we will show how to solve system (4) numerically given the
initial positions and velocities of the two masses.

The first-order systems (2) and (4) are examples of linear systems. Specif-
ically a linear system of first-order equations is one in which each function fi
is linear in the dependent variables. Stated more precisely:

A linear system of n first-order differential equations has the general
form

(5)

y′1 = a11(x)y1 + a12(x)y2 + · · ·+ a1n(x)yn + b1(x) = f1(x, y1, y2, . . . , yn)

y′2 = a21(x)y1 + a22(x)y2 + · · ·+ a2n(x)yn + b2(x) = f2(x, y1, y2, . . . , yn)

...
...

...
...

...

y′n = an1(x)y1 + an2(x)y2 + · · ·+ ann(x)yn + bn(x) = fn(x, y1, y2, . . . , yn)

where aij(x) and bi(x) are all known, real-valued functions of the independent
variable x.

In system (2), a11(x) = −1/30, a12(x) = 0, b1(x) = .5, a21(x) = 1/30,
a22(x) = −1/15, and b2(x) = 0. In system (4), a11(x) = a13(x) = a14(x) =
b1(x) = 0 and a12(x) = 1; a21(x) = −(k1 + k2)/m1, a22(x) = a24(x) =
b2(x) = 0, and a23(x) = k2/m1; a31(x) = a32(x) = a33(x) = b3(x) = 0
and a34(x) = 1; and a41(x) = k2/m2, a42(x) = a44(x) = b4(x) = 0, and
a43(x) = −k2/m2. Since all aij(x) and all bi(x) in both systems (2) and (4)
are constant, as opposed to variable, these systems are referred to as linear
systems of differential equations with constant coefficients. The following
system is a simple example of a linear system with variable coefficients (a
linear system in which not all of the coefficient functions are constant).

(6)
y′1 = x2y1 − exy2 + 25

y′2 = − 3y1 + (x+ 1/x)y2 + sinx.

Here a11(x) = x2, a12(x) = −ex, b1(x) = 25, a21(x) = −3, a22(x) = x + 1/x,
and b2(x) = sinx.
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In the linear system of n first-order differential equations (5):

If all of the functions bi(x) are identically zero, then the linear system (5)
is said to be homogeneous.

If any bi(x) is not identically equal to zero, then the linear system (5) is
said to be nonhomogeneous.

All systems of first-order differential equations not having the form of sys-
tem (5) are called nonlinear systems.

As an example of a nonlinear system of differential equations, we introduce
the Volterra prey-predator model, one of the fundamental models of mathe-
matical ecology. Let y1(x) represent the prey population at time x and let
y2(x) represent the predator population at time x. In the absence of predators,
the population y1 is assumed to grow according to the Malthusian population
model: dy1/dx = ay1 where a > 0 is the growth rate. The loss of population
due to predation is assumed to be proportional to the number of encounters
between prey and predator—that is, proportional to the product y1y2. Thus,
the rate of change of the prey population becomes dy1/dx = ay1−by1y2 where
b > 0 is a constant which represents the proportion of encounters between the
prey and predators which result in death to the prey. Without the prey to feed
upon, it is assumed that the predators would die off according to the Malthu-
sian population model: dy2/dx = −cy2 where c > 0 is the death rate. Due
to predation, the predator population is assumed to grow at a rate which is
proportional to the number of encounters between prey and predator. Hence,
the rate of change in predator population becomes dy2/dx = −cy2 + dy1y2
where d > 0 is a constant which represents the proportion of encounters be-
tween prey and predator which is beneficial to the predator. Therefore, the
Volterra prey-predator model is

(7)

dy1
dx

= ay1 − by1y2

dy2
dx

= − cy2 + dy1y2

where a, b, c, and d are positive constants. The system (7) is nonlinear due to
the terms −by1y2 and dy1y2.

A system of n first-order differential equations

y′1 = f1(x, y1, y2, . . . , yn)

(1) y′2 = f2(x, y1, y2, . . . , yn)
...

...
...

y′n = fn(x, y1, y2, . . . , yn)

has a solution on the interval I, if there exists a set of n functions {y1(x),
y2(x), . . ., yn(x)} which all have continuous first derivatives on the interval I
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and which satisfy (1) on I. The set of functions {y1(x), y2(x), . . . , yn(x)} is
called a solution of system (1) on the interval I.

For example, the set of two functions {y1(x) = sinx, y2(x) = cosx} is a
solution of the system of two, first-order, linear differential equations

(8)
y′1 = y2 = f1(x, y1, y2)

y′2 = − y1 = f2(x, y1, y2)

on the interval (−∞,∞). (You should verify this fact by showing that the
derivatives of y1(x) = sinx and y2(x) = cosx are both continuous on the in-
terval I = (−∞,∞) and that y′1(x) = y2(x) and y

′
2(x) = −y1(x) for all x ∈ I.)

The set of two functions {z1(x) = A sinx+B cosx, z2(x) = A cosx−B sinx}
where A and B are arbitrary constants is also a solution to the system (8)
on the interval (−∞,∞). Verify this fact. The solution {z1(x), z2(x)} of the
system (8) is the general solution of (8). In Section 8.3, we will show how to
find the general solution of linear systems of first-order equations with con-
stant coefficients. (System (8) is an example of a system of this type.) And
in Chapter 9, we will solve several applications which involve linear systems
with constant coefficients.

An initial value problem for a system of first-order differential equations
consists of solving a system of equations of the form (1) subject to a set of
constraints, called initial conditions (IC), of the form y1(c) = d1, y2(c) =
d2, . . . , yn(c) = dn.

For example, the problem of finding a solution to the system

(8)
y′1 = y2 = f1(x, y1, y2)

y′2 = − y1 = f2(x, y1, y2)

subject to the initial conditions

(9) y1(0) = 2, y2(0) = 3

is an initial value problem. The solution of the initial value problem (8)-(9)
on the interval (−∞,∞) is

{y1(x) = 3 sinx+ 2 cosx, y2(x) = 3 cosx− 2 sinx}.

Verify this fact by showing that y1(x) and y2(x) satisfy the system (8) on the
interval (−∞,∞) and the initial conditions (9).

Notice that in an initial value problem all n conditions to be satisfied are
specified at a single value of the independent variable—the value we have
called c. The problem of solving the system (8) subject to the constraints

(10) y1(0) = 2, y2(π) = 3
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is an example of a boundary value problem. Observe that the constraints for
y1 and y2 are specified at two different values of the independent variable—
namely, 0 and π. Verify that the set

{y1(x) = −3 sinx+ 2 cosx, y2(x) = −3 cosx− 2 sinx}
is a solution of the boundary value problem (8)-(10) on the interval (−∞,∞).

The following Fundamental Existence and Uniqueness Theorem for
System Initial Value Problems is analogous to the fundamental exis-
tence and uniqueness theorem for the scalar initial value problem: y′ =
f(x, y); y(c) = d. In this theorem, R denotes a generalized rectangle in
xy1y2 · · · yn-space.
Theorem 7.1 Let R = {(x, y1, y2, . . . , yn) | α < x < β and γi < yi < δi}
where α, β, γi and δi are all finite real constants. If each of the n func-
tions fi(x, y1, y2, . . . , yn), i = 1, 2, . . . , n is a continuous function of x, y1,
y2, . . . , and yn in R, if each of the n2 partial derivatives ∂fi/∂yj, i, j =
1, 2, . . . , n is a continuous function of x, y1, y2, . . . , and yn in R, and if
(c, d1, d2, . . . , dn) ∈ R, then there exists a unique solution to the system initial
value problem

y′1 = f1(x, y1, y2, . . . , yn)

(11a) y′2 = f2(x, y1, y2, . . . , yn)
...

...
...

y′n = fn(x, y1, y2, . . . , yn)

(11b) y1(c) = d1, y2(c) = d2, . . . , yn(c) = dn

on some interval I = (c− h, c+ h) where I is a subinterval of (α, β).

The hypotheses of the fundamental existence and uniqueness theorem are
sufficient conditions and guarantee the existence of a unique solution to the
initial value problem on some interval of length 2h. An expression for cal-
culating a value for h is not specified by the theorem and so the interval of
existence and uniqueness of the solution may be very small or very large.
Furthermore, the conditions stated in the hypotheses are not necessary con-
ditions. Therefore, if some condition stated in the hypotheses is not fulfilled
(perhaps ∂fi/∂yj is not continuous for a single value of i and j and in only
one particular variable), we cannot conclude a solution to the initial value
problem does not exist or is not unique. It might exist and be unique. It
might exist and not be unique. Or, it might not exist. We essentially have
no information with respect to solving the initial value problem, if the hy-
potheses of the fundamental theorem are not satisfied and little information
concerning the interval of existence and uniqueness, if the hypotheses are sat-
isfied. Finally, observe that the hypotheses of the theorem do not include any
requirements on the functions ∂f1/∂x, ∂f2/∂x, . . . , ∂fn/∂x.
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Example 1 Analyze the following initial value problem.

(12a)

y′1 =
y1y2
2

y′2 =
8

y1

(12b) y1(1) = −2, y2(1) = 4.

Solution

In this example, f1(x, y1, y2) = y1y2/2 and f2(x, y1, y2) = 8/y1. Hence,
∂f1/∂y1 = y2/2, ∂f1/∂y2 = y1/2, ∂f2/∂y1 = −8/y21, and ∂f2/∂y2 = 0.
The functions f1, f2, ∂f1/∂y1, ∂f1/∂y2, ∂f2/∂y1, and ∂f2/∂y2 are all defined
and continuous in any region of xy1y2-space which does not include the plane
y1 = 0—that is, which does not include any point of the form (x, 0, y2). Since
the initial condition for y1 is y1(1) = −2 < 0, we let

R1 = {(x, y1, y2) | −A < x < B, −C < y1 < −ε < 0, and −D < y2 < E}
where A,B,C,D, and E are positive constants which are as large as we choose
and ε is a positive constant which is as small as we choose. Since f1, f2,
∂f1/∂y1, ∂f1/∂y2, ∂f2/∂y1, and ∂f2/∂y2 are all defined and continuous on
R1 and since (1,−2, 4) ∈ R1, there exists a unique solution to the initial value
problem (12) on some interval (1− h, 1 + h). �

The fundamental existence and uniqueness theorem is a “local” theorem
because the solution of the initial value problem is guaranteed to exist and be
unique only on a “small” interval. The following theorem, which we state with-
out proof, is called a Continuation Theorem for System Initial Value
Problems and tells us how far we can extend (continue) the unique solu-
tion of an initial value problem, assuming the hypotheses of the fundamental
theorem are satisfied.

Theorem 7.2 Under the hypotheses of the fundamental existence and unique-
ness theorem, the solution of the initial value problem (11) can be extended
until the boundary of R is reached.

The generalized rectangle R mentioned in the fundamental theorem can be
enlarged in all directions until one of the n+ n2 functions fi, i = 1, 2, . . . , n
or ∂fi/∂yj, i, j = 1, 2, . . . , n is not defined or not continuous on a bounding
“side” of R or until the bounding “side” of R approaches infinity. Thus,
the continuation theorem guarantees the existence of a unique solution to
the initial value problem (11) which extends from one bounding “side” of R
through the initial point (c, d1, d2, . . . , dn), which is in R, to another bounding
“side” of R. The two bounding “sides” may be the same “side.”

According to the continuation theorem the solution to the IVP (12) through
(1,−2, 4) can be extended uniquely until it reaches a boundary of R1. Thus,
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the solution can be extended until at least two of the following six things
occur: x → −A, x → B, y1 → −C, y1 → −ε < 0, y2 → −D, or
y2 → E. Enlarging R1 by letting A, B, C, D, and E approach +∞ and letting
ε→ 0+ (the hypotheses of the fundamental theorem and continuation theorem
regarding fi and ∂fi/∂yj are still valid on the enlarged generalized rectangle),
we find the conditions become x → −∞, x → ∞, y1 → −∞, y1 → 0−,
y2 → −∞, or y2 → ∞. The solution of the IVP (12) is

(13) {y1(x) = −2x2, y2(x) =
4

x
}.

(Verify this fact.) The functions y1(x) and y2(x) and their derivatives are
simultaneously defined and continuous on the intervals (−∞, 0) and (0,∞).
Since c = 1 ∈ (0,∞), the set {y1(x), y2(x)} is a solution to (12) on (0,∞).
From the solution we see that the conditions which limit the interval of ex-
istence and uniqueness in this case are x → ∞, y1 → 0−, and y2 → ∞—the
latter two occur simultaneously as x→ 0+.

Linear system initial value problems—system initial value problems in which
each function fi(x, y1, y2, . . . , yn), i = 1, 2, . . . , n in the system is a linear func-
tion of y1, y2, . . . , yn—are an important special class of initial value problems.
We state a separate existence and uniqueness theorem for linear system ini-
tial value problems due to the special results that can be obtained for these
problems regarding the interval of existence and uniqueness of the solution.

A linear system initial value problem consists of solving the system of
n first-order equations

(14a)

y′1 = a11(x)y1 + a12(x)y2 + · · ·+ a1n(x)yn + b1(x) = f1(x, y1, y2, . . . , yn)

y′2 = a21(x)y1 + a22(x)y2 + · · ·+ a2n(x)yn + b2(x) = f2(x, y1, y2, . . . , yn)

...
...

...
...

...

y′n = an1(x)y1 + an2(x)y2 + · · ·+ ann(x)yn + bn(x) = fn(x, y1, y2, . . . , yn)

subject to the n initial conditions

(14b) y1(c) = d1, y2(c) = d2, . . . , yn(c) = dn.

Calculating the partial derivatives of fi with respect to yj in the linear
system (14a), we find ∂fi/∂yj = aij(x). If the n

2 + n functions aij(x), i, j =
1, 2, . . . , n and bi(x), i = 1, 2, . . . , n are all defined and continuous on some
interval I = (α, β) which contains c, then all of the functions fi and ∂fi/∂yj
will be defined and continuous functions of x, y1, y2, . . . , yn on the generalized
rectangle

R = {(x, y1, y2, . . . , yn) | α < x < β and −∞ < yi <∞ for i = 1, 2, . . . , n}.
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Therefore, by the fundamental existence and uniqueness theorem and by the
continuation theorem for system initial value problems, there exists a unique
solution to the initial value problem (14) on the interval I = (α, β). Hence, we
have the following Fundamental Existence and Uniqueness Theorem
for Linear System Initial Value Problems.

If the functions aij(x), i, j = 1, 2, . . . , n and bi(x), i = 1, 2, . . . , n are all
defined and continuous on the interval I = (α, β) and if c ∈ I, then there
exists a unique solution to the linear system initial value problem (14) on the
interval I.

Notice that this theorem guarantees the existence of a unique solution on
the entire interval I on which the functions aij(x) and bi(x) are all defined
and continuous. This is the major difference between the results which one
can obtain for linear system initial value problems versus nonlinear system
initial value problems. For linear system initial value problems we can explic-
itly determine the interval of existence and uniqueness of the solution from
the problem itself; whereas, for the nonlinear system initial value problem,
we can only conclude that there exists a unique solution on some “small” un-
determined interval centered at x = c. The following example illustrates the
type of result we can obtain for linear system initial value problems.

Example 2 Analyze the linear initial value problem:

(15a)
y′1 = xy1 +

√
x y2 +

2

x− 1
= f1(x, y1, y2)

y′2 = (tanx)y1 − x2y2 +
3

x2 + 1
= f2(x, y1, y2)

(15b) y1(1.5) = −1, y2(1.5) = 2.

Solution

The system (15a) is linear with a11(x) = x, a12(x) =
√
x, b1(x) = 2/(x−1),

a21(x) = tanx, a22(x) = −x2, and b2(x) = 3/(x2 + 1). The functions a11(x),
a22(x), and b2(x) are defined and continuous for all real x—that is, on the
interval J1 = (−∞,∞). The function a12(x) =

√
x is defined and continuous

for x ≥ 0—that is, on J2 = [0,∞). So the interval of existence and uniqueness
I must be a subinterval of J1 ∩J2 = [0,∞). The function b1(x) is defined and
continuous for x �= 1. So b1(x) is defined and continuous on J3 = (−∞, 1)
and J4 = (1,∞). Since J1 ∩ J2 ∩ J3 = [0, 1) and J1 ∩ J2 ∩ J4 = (1,∞), the
interval I will be a subinterval of [0, 1) or (1,∞). Since the initial condition
is specified at c = 1.5 ∈ (1,∞), I must be a subinterval of (1,∞). The
function a21(x) = tanx is defined and continuous for x �= (2n+ 1)π/2 where
n is any integer. So a21(x) is defined and continuous on the intervals Kn =
((2n− 1)π/2, (2n+ 1)π/2). Since the initial condition is specified at c = 1.5
and since 1.5 ∈ (−π/2, π/2), the linear IVP (15) has a unique solution on the
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interval (−π/2, π/2) ∩ (1,∞) = (1, π/2). The interval (1, π/2) is the largest
interval containing c = 1.5 on which the functions aij(x), i, j = 1, 2 and
bi(x), i = 1, 2 are simultaneously defined and continuous.

If the initial conditions were specified at c = 2, then the interval of exis-
tence and uniqueness would be (π/2, 3π/2), since this is the largest interval
containing c = 2 on which all the functions aij(x) and bi(x) are simultane-
ously defined and continuous. If the initial conditions were specified at c = .5,
then the interval of existence and uniqueness would be (0, 1). If the initial
condition were specified at any c < 0, then there would be no solution because
the system (15a) would be undefined at c, since a12(x) =

√
x is undefined for

x < 0. �

EXERCISES 7.1

1. Verify that {y1(x) = 3ex, y2(x) = ex} is a solution on the interval
(−∞,∞) of the system of differential equations

y′1 = 2y1 − 3y2

y′2 = y1 − 2y2

2. Verify that {y1(x) = e−x, y2(x) = e−x} is also a solution on the interval
(−∞,∞) of the system in Exercise 1.

3. Verify that {y1(x) = −e2x(cosx+sinx), y2(x) = e2x cosx} is a solution
on (−∞,∞) of the system of differential equations

y′1 = y1 − 2y2

y′2 = y1 + 3y2

4. Verify that {y1(x) = 3x−2, y2(x) = −2x+3} is a solution on (−∞,∞)
of the system initial value problem

y′1 = y1 + 2y2 + x− 1

y′2 = 3y1 + 2y2 − 5x− 2

y1(0) = −2, y2(0) = 3

5. Consider the system initial value problem

(16a)
y′1 =

2y1
x

− y2
x2

− 3 +
1

x
− 1

x2

y′2 = 2y1 + 1− 6x

(16b) y1(1) = −2, y2(1) = −5.
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a. Is the system of differential equations (16a) linear or nonlinear?

b. Apply the appropriate theorem from this section to determine the
interval on which a unique solution to the IVP (16) exists.

c. Verify that

(17) {y1(x) = −2x, y2(x) = −5x2 + x− 1}
is the solution to the initial value problem (16). What is the largest
interval on which the functions y1(x) and y2(x) of (17) and their deriva-
tives are defined and continuous? Why is this interval not the same
interval as the one which the theorem guarantees existence and unique-
ness of the solution? Is the set {y1(x), y2(x)} a solution of the IVP (16)
on (−∞,∞)? Why or why not?

6. Consider the system initial value problem

(18a)
y′1 =

5y1
x

+
4y2
x

− 2x

y′2 =
−6y1
x

− 5y2
x

+ 5x

(18b) y1(−1) = 3, y2(−1) = −3.

a. Is the system of differential equations (18a) linear or nonlinear?

b. Apply the appropriate theorem from this section to determine the
interval on which a unique solution to the IVP (18) exists.

c. Verify that

(19) {y1(x) = 2x2 + x− 2

x
, y2(x) = −x2 − x+

3

x
}

is the solution to the initial value problem (18). On what intervals are
the functions y1(x) and y2(x) of (19) and their derivatives simultane-
ously defined and continuous? How do these intervals compare with
the interval that the appropriate theorem guarantees the existence of a
unique solution?

7. Consider the system initial value problem

(20a)
y′1 = y1 − 2y1y2 +

1

x+ 2

y′2 = y1 + y2 + y22 − tanx

(20b) y1(0) = 1, y2(0) = 2.

a. Is the system (20a) linear or nonlinear?

b. Applying the appropriate theorem from this section, what can be
said about the interval on which a unique solution to this problem exists?
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8. Consider the system initial value problem

(21a)
y′1 = e−xy2

y′2 = ey1

(21b) y1(0) = 0 y2(0) = 1.

a. Is the system (21a) linear or nonlinear?

b. Applying the appropriate theorem from this section, what can be
said about the interval on which a unique solution to this problem exists?

c. Show that {y1(x) = x, y2(x) = ex} is the solution to the IVP (21).
On what interval is this the solution to the initial value problem?

9. Consider the system initial value problem

(22a)

y′1 =
y1

2− y2
+

y2
x+ 3

y′2 =
y2

2 + y1
− y1
x− 4

(22b) y1(0) = 1, y2(0) = 1.

a. Is system (22a) linear or nonlinear?

b. What can be said about the interval on which a unique solution to
this problem exists?

c. Analyze this initial value problem and complete the following state-
ment. The interval of existence and uniqueness will terminate at the
point x = a if any of the following occurs as x approaches a, x→ ,
x→ , y1(x) → , y1(x) → , y2(x) → , y2(x) → .

10. Consider the system initial value problem

(23a)
y′1 = 2

√
x+ 4 y1y2 − (sinx)y2 + 3ex

y′2 = −y21 + 4
√
5− x y1 − 5 ln 7x

(23b) y1(2) = 3, y2(2) = −6.

a. Is the system (23a) linear or nonlinear?

b. What can be said about the interval on which a unique solution to
this problem exists?

c. Analyze this initial value problem and complete the following state-
ment. The interval of existence and uniqueness will terminate at the
point x = a if any of the following occurs as x approaches a, x→ ,
x→ , y1(x) → , y1(x) → , y2(x) → , y2(x) → .
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7.2 Writing Systems as Equivalent First-Order
Systems

At this point the only question remaining to be answered from the collec-
tion of questions at the beginning of this chapter is, “How can an n-th order
differential equation be rewritten as an equivalent system of first-order dif-
ferential equations?” Perhaps, we should first answer the ultimate question:
“Why is there a need to write an n-th order differential equation as a system
of n first-order differential equations?” The simple reason is because most
computer programs are written to solve the general system initial value prob-
lem (11) and not an n-th order differential equation. The general n-th order
differential equation has the form

(24) y(n) = g(x, y, y(1), . . . , y(n−1)).

Letting u1 = y, u2 = y(1), . . . , un = y(n−1), differentiating each of these
equations, and substituting for y, y(1), . . . , y(n−1) in terms of u1, u2, . . . , un,
we see that equation (24) may be rewritten as the equivalent system

(25)

u′1 = u2 = f1(x, u1, u2, . . . , un)
u′2 = u3 = f2(x, u1, u2, . . . , un)
...

...
...

...
...

u′n−1 = un = fn−1(x, u1, u2, . . . , un)
u′n = g(x, u1, u2, . . . , un) = fn(x, u1, u2, . . . , un).

Observe that this system is a special case of the system (11a). The initial
conditions corresponding to (11b) are u1(c) = d1, u2(c) = d2, . . . , and un(c) =
dn. When we apply the inverse transformation, these conditions in terms of
y and its derivatives become y(c) = d1, y

(1)(c) = d2, y
(2)(c) = d3, . . . , and

y(n−1)(c) = dn. Hence, the general n-th order initial value problem

(26a) y(n) = g(x, y, y(1), . . . , y(n−1))

(26b) y(c) = d1, y
(1)(c) = d2, . . . , y

(n−1)(c) = dn

is equivalent to the system initial value problem

(27a)

u′1 = u2
u′2 = u3
...

...
...

u′n−1 = un
u′n = g(x, u1, u2, . . . , un)
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(27b) u1(c) = d1, u2(c) = d2, . . . , un(c) = dn.

Example 1 Write the n-th order initial value problem

y(4) = 7x2y + y(1)y(3) − ex(y(2))3

y(0) = 1, y(1)(0) = −1, y(2)(0) = −2, y(3)(0) = 4

as an equivalent system initial value problem.

Solution

In this instance, g(x, y, y(1), y(2), y(3)) = 7x2y+ y(1)y(3)− ex(y(2))3. Letting
u1 = y, u2 = y(1), u3 = y(2), and u4 = y(3), we obtain the desired equivalent
system initial value problem

u′1 = u2

u′2 = u3

u′3 = u4

u′4 = 7x2u1 + u2u4 − exu33

u1(0) = 1, u2(0) = −1, u3(0) = −2, u4(0) = 4. �

Notice in system (25) that ∂fi/∂yj = 0 for i = 1, 2, . . . , n − 1 and
j = 1, 2, . . . , n but j �= i + 1. And also ∂fi/∂yi+1 = 1 for i = 1, 2, . . . , n− 1.
Thus, all of the n(n− 1) partial derivatives ∂fi/∂yj i = 1, 2, . . . , n− 1 and
j = 1, 2, . . . , n are defined and continuous functions of x, u1, u2, . . . , un in
all of xu1u2 . . . un-space. Applying the fundamental existence and uniqueness
theorem to system (25), we see that it will have a unique solution on a small
interval about c provided in some generalized rectangle R in xu1u2 . . . un-
space, the function fn(x, u1, u2, . . . , un) = g(x, u1, . . . , un) and the n partial
derivatives ∂fn/∂ui = ∂g/∂ui, i = 1, 2, . . . , n are all continuous functions.
Substituting for u1, u2, . . . , un in terms of y, y(1), . . . , y(n−1), we note that
the initial value problem (26) will have a unique solution on some small inter-
val centered about x = c provided the function g(x, y, y(1), . . . , y(n−1)) and the
partial derivatives ∂g/∂y, ∂g/∂y(1), . . . , ∂g/∂y(n−1) are all continuous func-
tions of x, y, y(1), . . . , y(n) on some generalized rectangleR in xyy(1) . . . y(n−1)-
space. Thus, we have the following Existence and Uniqueness Theorem
for the General n-th Order Initial Value Problem (26).

Theorem 7.3 Let R be the generalized rectangle

{(x, y, y(1), . . . , y(n−1)) | α < x < β and γi < y(i−1) < δi, i = 1, 2, . . . , n}
where α, β, γi, and δi are all finite real constants. If g(x, y, y(1), . . . , y(n−1))
is a continuous function of x, y, y(1), . . . , y(n−1) in R, if ∂g/∂y, ∂g/∂y(1), . . . ,
∂g/∂y(n−1) are all continuous functions of x, y, y(1), . . . , y(n−1) in R, and if
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(c, d1, d2, . . . , dn) ∈ R, then there exists a unique solution to the initial value
problem

(26a) y(n) = g(x, y, y(1), . . . , y(n−1))

(26b) y(c) = d1, y
(1)(c) = d2, . . . , y

(n−1)(c) = dn

on some interval I = (c − h, c + h) where I is a subinterval of (α, β) and
the solution can be continued in a unique manner until the boundary of R is
reached.

Recall that the n-th order differential equation y(n) = g(x, y, y(1), . . . , y(n−1))
is linear if and only if g has the form g(x, y, y(1), . . . , y(n−1)) = a1(x)y +
a2(x)y

(1) + · · · + an(x)y
(n−1) + b(x). So, the linear n-th order initial value

problem

(28a) y(n) = a1(x)y + a2(x)y
(1) + · · ·+ an(x)y

(n−1) + b(x)

(28b) y(c) = d1, y
(1)(c) = d2, . . . , y

(n−1)(c) = dn

is equivalent to the linear system initial value problem

(29a)

u′1 = u2
u′2 = u3
...

...
...

u′n−1 = un
u′n = a1(x)u1 + a2(x)u2 + · · ·+ an(x)un + b(x)

(29b) u1(c) = d1, u2(c) = d2, . . . , un(c) = dn.

Applying the fundamental existence and uniqueness theorem for linear system
initial value problems to system (29), we see that there exists a unique solu-
tion to (29)—equivalently to (28)—on any interval which contains the point
c and on which the functions a1(x), a2(x), . . . , an(x) and b(x) are simultane-
ously defined and continuous. Hence, we have the following Existence and
Uniqueness Theorem for Linear n-th Order Initial Value Problems.

Theorem 7.4 If the functions a1(x), a2(x), . . . , an(x) and b(x) are all defined
and continuous on some interval I which contains the point c, then there exists
a unique solution on the entire interval I to the linear n-th order initial value
problem

(28a) y(n) = a1(x)y + a2(x)y
(1) + · · ·+ an(x)y

(n−1) + b(x)

(28b) y(c) = d1, y
(1)(c) = d2, . . . , y

(n−1)(c) = dn.
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Example 2 Write the third-order, linear initial value problem

(30a) y(3) = (ln(x2 − 4))y + 3e−xy(1) − 2y(2)

sinx
+ x2

(30b) y(2.5) = −3, y(1)(2.5) = 0, y(2)(2.5) = 1.2

as an equivalent first-order system initial value problem and determine the
largest interval on which there exists a unique solution.

Solution

Letting u1 = y, u2 = y(1), and u3 = y(2), we obtain the desired equivalent
linear first-order system initial value problem

u′1 = u2

u′2 = u3

u′3 = (ln (x2 − 4))u1 + 3e−xu2 − 2u3
sinx

+ x2

u1(2.5) = −3, u2(2.5) = 0, u3(2.5) = 1.2.

The function a1(x) = ln(x2−4) is defined and continuous on (−∞,−2) and
(2,∞). The function a2(x) = 3e−x is defined and continuous on (−∞,∞).
The function a3(x) = −2/(sinx) is defined and continuous for x �= nπ where
n is an integer. And the function b(x) = x2 is defined and continuous on
(−∞,∞). Since (2, π) is the largest interval containing c = 2.5 on which
the functions a1(x), a2(x), a3(x), and b(x) are simultaneously defined and
continuous, (2, π) is the largest interval on which a unique solution to the
IVP (30) and the linear system above exists. �

Notice that a linear n-th order differential equation is equivalent to a linear
system of first-order differential equations; likewise, a nonlinear n-th order dif-
ferential equation is equivalent to a nonlinear system of first-order differential
equations. Higher order system initial value problems may also be rewrit-
ten as equivalent first-order system initial value problems as we illustrated at
the beginning of this chapter for the coupled spring-mass system (3). The
following example further demonstrates this technique.

Example 3 In Chapter 6, we saw that the position (x, y) of an electron which
was initially at rest at the origin and subject to a magnetic field of intensity
H and an electric field of intensity E satisfied the second-order system initial
value problem

(31a)
x′′ = −HRy′ + ER

y′′ = HRx′

(31b) x(0) = 0, x′(0) = 0, y(0) = 0, y′(0) = 0.
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Write the second-order system initial value problem (31) as an equivalent
first-order system initial value problem.

Solution

Let u1 = x, u2 = x′, u3 = y, and u4 = y′. So u1 represents the x-coordinate
of the position of the electron and u2 represents the velocity of the electron in
the x-direction. While u3 represents the y-coordinate of the electron and u4
represents its velocity in the y-direction. Differentiating u1, u2, u3, and u4,
substituting into (31a), and then substituting for x, x′, y, and y′ in terms of
u1, u2, u3, and u4, we obtain the following first-order system of four equations
which is equivalent to the system (31a).

(32a)

u′1 = x′ = u2

u′2 = x′′ = −HRy′ + ER = −HRu4 + ER

u′3 = y′ = u4

u′4 = y′′ = HRx′ = HRu2

Substituting for x, x′, y, and y′ in terms of u1, u2, u3, and u4, we see that
the initial conditions which are equivalent to (32b) are

(32b) u1(0) = 0, u2(0) = 0, u3(0) = 0, u4(0) = 0.

Hence, the required equivalent first-order system initial value problem consists
of the system (32a) together with the initial conditions (32b). �

EXERCISES 7.2

In Exercises 1–7 rewrite each of the following initial value prob-
lems as an equivalent first-order system initial value problem.

1. y(4) = −3xy2 + (y(1))3 − exy(2)y(3) + x2 − 1

y(1) = −1, y(1)(1) = 2, y(2)(1) = −3, y(3)(1) = 0

2. my′′ + cy′ + k sin y = 0, where m, c, and k are positive constants

y(0) = 1, y′(0) = −2

3. xy′′ − 3x3y′ + (lnx)y = sinx

y(1) = −1, y′(1) = 0

4. (cos (x − y))y(2) − exy(3) + xy(1) − 4 = 0

y(−3) = 0, y(1)(−3) = 2, y(2)(−3) = 1
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5. y′′ = 2y − 3z′

z′′ = 3y′ − 2z

y(0) = 1, y′(0) = −3, z(0) = −1, z′(0) = 2

6. m1y
′′
1 = −k1y1 + k2(y2 − y1)

m2y
′′
2 = −k2(y2 − y1)− k3y2

where m1, m2, k1, k2, and k3 are positive constants.

y1(0) = 0, y′1(0) = −2, y2(0) = 1, y′2(0) = 0

7. y′ = xy + z

z′′ = −x2y + z′ − 3ex

y(1) = −2, z(1) = 3, z′(1) = 0

8. Specify which initial value problems in Exercises 1-7 are linear and which

are nonlinear.

In Exercises 9–15 determine the largest interval on which there
exists a unique solution to the given initial value problem.

9. y′1 = 3y1 − 2y2

y′2 = −y1 + y2

y1(0) = 1, y2(0) = −1

10. y′1 = (sinx)y1 +
√
x y2 + lnx

y′2 = (tanx)y1 − exy2 + 1

Initial conditions:

(i) y1(1) = 1, y2(1) = −1 (ii) y1(2) = 1, y2(2) = −1

11. y′1 = e−xy1 −
√
x+ 1 y2 + x2

y′2 =
y1

(x− 2)2

Initial conditions:

(i) y1(0) = 0, y2(0) = 1 (ii) y1(3) = 1, y2(3) = 0

12. xy′′ − 3x3y′ + (lnx)y = sinx

y(1) = −1, y′(1) = 0
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13. y′′ = 2y − 3z′

z′′ = 3y′ − 2z

y(0) = 1, y′(0) = −3, z(0) = −1, z′(0) = 2

14. m1y
′′
1 = −k1y1 + k2(y2 − y1)

m2y
′′
2 = −k2(y2 − y1)− k3y2

where m1, m2, k1, k2, and k3 are positive constants.

y1(0) = 0, y′1(0) = −2, y2(0) = 1, y′2(0) = 0

15. y′ = xy + z

z′′ = −x2y + z′ − 3ex

y(1) = −2, z(1) = 3, z′(1) = 0
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Chapter 8

Linear Systems of First-Order
Differential Equations

In this chapter we discuss linear systems of first-order differential equations.
In the first section, Matrices and Vectors, we introduce matrix notation and
terminology, we review some fundamental facts from matrix theory and linear
algebra, and we discuss some computational techniques. In the second section,
Eigenvalues and Eigenvectors, we define the concepts of eigenvalues and eigen-
vectors of a constant matrix, we show how to manually compute eigenvalues
and eigenvectors, and we illustrate how to use computer software to calcu-
late eigenvalues and eigenvectors. In the last section, Linear Systems with
Constant Coefficients, we indicate how to write a system of linear first-order
differential equations with constant coefficients using matrix-vector notation,
we state existence and representation theorems regarding the general solution
of both homogeneous and nonhomogeneous linear systems, and we show how
to write the general solution in terms of eigenvalues and eigenvectors when
the linear system has constant coefficients. In Chapter 9, we examine a few
linear systems with constant coefficients which arise in various physical sys-
tems such as coupled spring-mass systems, pendulum systems, the path of an
electron, and mixture problems.

8.1 Matrices and Vectors

In this section we shall review some facts and computational techniques
from matrix theory and linear algebra. In subsequent sections we will show
how these facts and techniques relate to solving systems of first-order differ-
ential equations.

A matrix is a rectangular array. We will use a bold-faced capital letter
such as A, B, C, . . . to denote a matrix.

If the matrix A has m rows and n columns, we will write A is an m × n
matrix—where m× n is read “m by n.” We also say A has size m× n.

For our purposes the elements or entries of a matrix will be real numbers,
complex numbers, or functions. An element of an m × n matrix A which is
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in the ith row and jth column is denoted by aij . Hence, the matrix A may
be represented in any one of the following three equivalent ways.

A =

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎞

⎟
⎟
⎟
⎠

= (aij)

The 2× 3 matrix

B =

( −1 i 0
−5i 3 −4

)

is called a constant matrix because each entry is a constant.

A square matrix is a matrix with the same number of rows as columns
(m = n). The square, 2× 2 matrix

C =

(
1 3ex

2x sinx

)

in which each element is a function of x is often written as C(x) to indicate
that the entries of the matrix are functions. A column vector is an m × 1
matrix and a row vector is a 1× n matrix. We will denote a column vector
with a bold-faced, lowercase letter such as a, b, c, . . . . The 3× 1 matrix

c =

⎛

⎝
−1
0
3

⎞

⎠

is an example of a constant column vector. And the 2× 1 matrix

d(x) =

(
3x− 1
tanx

)

is an example of a column vector whose entries are functions.

The essential algebraic properties for matrices are stated below.

Two matrices A = (aij) and B = (bij) are equal if and only if

(i) they are the same size

and

(ii) aij = bij for all i and j.

In order to add or subtract two matrices they must necessarily be the same
size.

If A = (aij) and B = (bij) are both m× n matrices, then
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(i) the sum S = A+B is an m×n matrix with elements sij = aij+bij—
that is,

A+B = (aij) + (bij) = (aij + bij)

and

(ii) the difference D = A −B is an m × n matrix with elements dij =
aij − bij—that is,

A−B = (aij)− (bij) = (aij − bij).

For example, if

A =

⎛

⎝
2 −1
0 i
π e

⎞

⎠ and B =

⎛

⎝
3 4√
2 −2
4 0

⎞

⎠ ,

then

A+B =

⎛

⎝
2 + 3 −1 + 4

0 +
√
2 i− 2

π + 4 e+ 0

⎞

⎠ =

⎛

⎝
5 3√
2 i− 2

π + 4 e

⎞

⎠

and

A−B =

⎛

⎝
2− 3 −1− 4

0−√
2 i+ 2

π − 4 e− 0

⎞

⎠ =

⎛

⎝
−1 −5

−√
2 i+ 2

π − 4 e

⎞

⎠ .

From the definition of addition, it is evident that matrix addition is com-
mutative and associative, since addition of real numbers, complex numbers,
and functions is commutative and associative. Thus, if A, B, and C are all
m× n matrices, then

A+B = B+A (matrix addition is commutative)

A+ (B+C) = (A+B) +C (matrix addition is associative)

The zero matrix is any matrix whose elements are all zero. The symbol
0 will be used to denote the zero matrix.

Thus, the 2× 3 zero matrix is

0 =

(
0 0 0
0 0 0

)

and the 2× 1 zero matrix (a zero column vector) is

0 =

(
0
0

)

.

If A is any m× n matrix and 0 is the m× n zero matrix, then

A+ 0 = 0+A = A.
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If α is a real number, a complex number, or a scalar function and if A is
an m× n matrix, then αA is the m× n matrix with elements αaij—that is,

αA = α(aij) = (αaij).

For example,

3

(
4
−x
)

=

(
12
−3x

)

and ex

⎛

⎝
sinx
i cosx

0

⎞

⎠ =

⎛

⎝
ex sinx
iex cosx

0

⎞

⎠ .

For any matrix A, αA = Aα. Hence, the following two distributive laws
are valid for scalar multiplication

α(A+B) = αA+ αB = Aα+Bα = (A+B)α

(α+ β)A = αA+ βA = Aα+Aβ = A(α+ β).

When the number of columns of the matrix A is equal to the number of
rows of the matrix B, the matrix product AB is defined. If A is an m × n
matrix and B is an n × p matrix, then the matrix product AB = C = (cij)
is an m× p matrix with entries

(1) cij =

n∑

k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ ainbnj .

For example, let

A =

(
1 2

−3 5

)

and B =

(−3 1 2
2 0 −3

)

.

Observe that A is a 2 × 2 matrix and B is a 2 × 3 matrix, so the matrix
product AB will be a 2×3 matrix. Using equation (1) to compute each entry
of the product, we find

C =

(
1(−3) + 2(2) 1(1) + 2(0) 1(2) + 2(−3)

−3(−3) + 5(2) −3(1) + 5(0) −3(2) + 5(−3)

)

=

(
1 1 −4

19 −3 −21

)

.

Notice, in this example, that the matrix product BA is undefined, since the
number of columns of B—namely, 3—is not equal to the number of rows of
A—which is 2. Hence, this example illustrates the important fact that matrix
multiplication is not commutative. That is, in general

AB �= BA.

In order for both products AB and BA to exist and be the same size, it
is necessary that A and B both be square matrices of the same size. Even
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then the matrix product AB may not equal the matrix product BA as the
following simple example illustrates. Let

A =

(
0 1
1 0

)

and B =

(
1 0
0 0

)

.

Then

AB =

(
0 1
1 0

)(
1 0
0 0

)

=

(
0(1) + 1(0) 0(0) + 1(0)
1(1) + 0(0) 1(0) + 0(0)

)

=

(
0 0
1 0

)

and

BA =

(
1 0
0 0

)(
0 1
1 0

)

=

(
1(0) + 0(1) 1(1) + 0(0)
0(0) + 0(1) 0(1) + 0(0)

)

=

(
0 1
0 0

)

.

So, even if A and B are both square matrices of the same size, AB need not
equal BA.

Although matrix multiplication is not commutative, it is associative and
both left and right distributive. That is, if A is an n × m matrix, B is an
m× p matrix, and C is a p× q matrix, then

A(BC) = (AB)C.

If A is an n×m matrix, B is an m× p matrix, C is an m× p matrix, and D
is a p× q matrix, then

A(B+C) = AB+AC and (B+C)D = BD+BD.

The n× n identity matrix, I, is the matrix

I =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

If A is any n × n square matrix and I is the n × n identity, then by the
definition of matrix multiplication

AI = IA = A.

Let A be a square matrix of size n. The determinant of A is denoted by
|A| or detA.

For n = 1, we define

|A| = detA = det (a11) = a11.
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For n = 2, we define

|A| = detA = det

(
a11 a12
a21 a22

)

= a11a22 − a21a12.

And for n = 3, we define

|A| = detA = det

⎛

⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠

= a11a22a33 + a12a23a31 + a13a21a32

−a11a23a32 − a12a21a33 − a13a22a31.

We could give a general definition for detA or a recursive definition for detA;
however, since we will only compute detA for A of size n = 1, 2, and 3, the
definitions which we have given will suffice.

We now calculate a few determinants.
∣
∣
∣
∣
−1 2
4 −3

∣
∣
∣
∣ = det

(−1 2
4 −3

)

= (−1)(−3)− (4)(2) = 3− 8 = −5,

∣
∣
∣
∣
x x2

1 2x

∣
∣
∣
∣ = det

(
x x2

1 2x

)

= (x)(2x) − (1)(x2) = 2x2 − x2 = x2,

∣
∣
∣
∣
∣
∣

−1 0 2
3 1 0
4 −2 3

∣
∣
∣
∣
∣
∣
= det

⎛

⎝
−1 0 2
3 1 0
4 −2 3

⎞

⎠

= (−1)(1)(3) + (0)(0)(4) + (2)(3)(−2)

− (−1)(0)(−2)− (0)(3)(3)− (2)(1)(4)

= −3 + 0− 12− 0− 0− 8 = −23,

and
∣
∣
∣
∣
∣
∣

2− λ 3 −1
4 −1− λ 0
1 2 3− λ

∣
∣
∣
∣
∣
∣
= det

⎛

⎝
2− λ 3 −1
4 −1− λ 0
1 2 3− λ

⎞

⎠

= (2 − λ)(−1− λ)(3 − λ) + (3)(0)(1) + (−1)(4)(2)

− (2− λ)(0)(2) − (3)(4)(3− λ)− (−1)(−1− λ)(1)

= (2 − λ)(−1− λ)(3 − λ) + 0− 8− 0− 12(3− λ) + (−1− λ)

= −λ3 + 4λ2 − λ− 6− 8− 36 + 12λ− 1− λ

= −λ3 + 4λ2 + 10λ− 51.
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The set of n simultaneous linear equations

(2)

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...
...

an1x1 + an2x2 + · · · + annxn = bn

in the n unknowns x1, x2, . . . , xn may be rewritten in matrix notation as

(2′) Ax = b

where A is the n× n matrix

A =

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

⎞

⎟
⎟
⎟
⎠

and x and b are the n× 1 column vectors

x =

⎛

⎜
⎜
⎜
⎝

x1
x2
...
xn

⎞

⎟
⎟
⎟
⎠

and b =

⎛

⎜
⎜
⎜
⎝

b1
b2
...
bn

⎞

⎟
⎟
⎟
⎠
.

If b = 0, then systems (2) and (2′) are said to be homogeneous; otherwise,
they are called nonhomogeneous.

The following facts are proven in linear algebra.

If the determinant of A is not zero (if detA �= 0), then there is a unique
solution to the system (2′) Ax = b. In particular, if detA �= 0, the homoge-
neous system Ax = 0 has only the trivial solution, x = 0.

If the determinant of A is zero (if detA = 0), then the system (2′) Ax = b
does not have a solution or it has infinitely many nonunique solutions. If
detA = 0, the homogeneous system Ax = 0 has infinitely many nonzero
solutions in addition to the trivial (zero) solution.

A set ofm constant vectors {y1,y2, . . . ,ym} which are all the same size, say
n× 1, is said to be linearly dependent if there exist constants c1, c2, . . . , cm
at least one of which is nonzero, such that

c1y1 + c2y2 + · · ·+ cmym = 0.

Otherwise, the set {y1,y2, . . . ,ym} is said to be linearly independent. Hence,
the set of vectors {y1,y2, . . . ,ym} is linearly independent if

c1y1 + c2y2 + · · ·+ cmym = 0 implies c1 = c2 = · · · = cm = 0.
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That is, the only way to express the zero vector, 0, as a linear combination
of linearly independent vectors is for all of the coefficients, ci, to be zero.

Now let us consider a set of n constant column vectors each having n com-
ponents, {y1,y2, . . . ,yn}. We will let

y1 =

⎛

⎜
⎜
⎜
⎝

y11
y21
...
yn1

⎞

⎟
⎟
⎟
⎠
, y2 =

⎛

⎜
⎜
⎜
⎝

y12
y22
...
yn2

⎞

⎟
⎟
⎟
⎠
, . . . , yn =

⎛

⎜
⎜
⎜
⎝

y1n
y2n
...
ynn

⎞

⎟
⎟
⎟
⎠
.

Thus, yij denotes the ith component of the jth vector in the set. The set
{y1,y2, . . . ,yn} is linearly dependent if and only if there exist constants
c1, c2, . . . , cn not all zero such that

(3) c1y1 + c2y2 + · · ·+ cnyn = 0.

Hence, the set {y1,y2, . . . ,yn} is linearly dependent if and only if the simul-
taneous homogeneous system of equations

c1y11 + c2y12 + · · · + cny1n = 0
c1y21 + c2y22 + · · · + cny2n = 0
...

...
...

...
...

c1yn1 + c2yn2 + · · · + cnynn = 0

which is equivalent to (3), has a nontrivial solution—a solution in which not
all ci’s are zero. This system may be rewritten in matrix notation as

⎛

⎜
⎜
⎜
⎝

y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
...

yn1 yn2 · · · ynn

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

c1
c2
...
cn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0
0
...
0

⎞

⎟
⎟
⎟
⎠

or more compactly as

(4) Yc = 0

where Y is the n×n matrix whose jth column is the vector yj . As we stated
earlier, a homogeneous system, such as system (4), has a nontrivial solution if
and only if detY = 0. Consequently, we have the following important results:

A set {y1,y2, . . . ,yn} of n constant column vectors each of size n × 1 is
linearly dependent if and only if detY = 0 where Y is the n×n matrix whose
jth column is yj .

Or equivalently, the set {y1,y2, . . . ,yn} is linearly independent if and only
if detY �= 0.
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Example 1 Determine whether the set of vectors

y1 =

⎛

⎝
1
0

−1

⎞

⎠ , y2 =

⎛

⎝
0
1
1

⎞

⎠ , y3 =

⎛

⎝
2
0
1

⎞

⎠

is linearly dependent or linearly independent.

Solution

Forming the matrix Y whose jth column is yj and computing detY, we
find

detY = det

⎛

⎝
1 0 2
0 1 0

−1 1 1

⎞

⎠ = 1 + 0 + 0− 0− 0 + 2 = 3 �= 0.

Therefore, the set of vectors {y1,y2,y3} is linearly independent. �

Let {y1(x),y2(x), . . . ,ym(x)} be a set of vector functions which are all the
same size—say, n× 1. Thus, each component of yj(x) is a function of x. Let

yj(x) =

⎛

⎜
⎜
⎜
⎝

y1j(x)
y2j(x)

...
ynj(x)

⎞

⎟
⎟
⎟
⎠
.

Suppose each vector function yj(x) is defined on the interval [a, b]—that is,
suppose yij(x) is defined on [a, b] for all i = 1, 2, . . . , n and all j = 1, 2, . . . ,m.
The concept of linear dependence and linear independence for vector functions
is then defined as follows:

If there exists a set of scalar constants c1, c2, . . . , cm not all zero such that

c1y1(x) + c2y2(x) + · · ·+ cmym(x) = 0 for all x ∈ [a, b],

then the set of vector functions {y1(x),y2(x), . . . ,ym(x)} is linearly depen-
dent on the interval [a, b].

The set of vector functions {y1(x),y2(x), . . . ,ym(x)} is linearly indepen-
dent on the interval [a, b], if

c1y1(x) + c2y2(x) + · · ·+ cmym(x) = 0 for all x ∈ [a, b]

implies c1 = c2 = · · · = cm = 0.

Determining linear independence or linear dependence of a set of vector
functions on an interval is more complicated than determining linear indepen-
dence or linear dependence for a set of constant vectors. If the set of vector
functions {y1(x),y2(x), . . . ,ym(x)} is linearly dependent on an interval, then
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314 Elementary Differential Equations

it is linearly dependent at each point in the interval. However, if the set is
linearly independent on an interval, it may or may not be linearly independent
at each point in the interval. For example, the two vector functions

y1(x) =

(
x
0

)

and y2(x) =

(
x2

0

)

are linearly independent on any interval [a, b], but these two vectors are lin-
early dependent at every point p ∈ [a, b]. The vectors are linearly dependent
at any nonzero p, since for c1 = p and c2 = −1

c1y1(p) + c2y2(p) = c1

(
p
0

)

+ c2

(
p2

0

)

= p

(
p
0

)

+ (−1)

(
p2

0

)

=

(
p2

0

)

+

(−p2
0

)

=

(
0
0

)

.

The vectors are linearly dependent at p = 0, since for any c1 and c2

c1y1(0) + c2y2(0) = c1

(
0
0

)

+ c2

(
0
0

)

=

(
0
0

)

.

Thus, the set {y1(x),y2(x)} is linearly independent on the interval (−∞,∞),
yet it is linearly dependent at every point in (−∞,∞)!

The following theorem provides a sufficient condition for linear indepen-
dence of vector functions.

Theorem 8.1 Let {y1(x),y2(x), . . . ,yn(x)} be a set of n vector functions of
size n× 1 and let Y(x) be the matrix with jth column yj(x). If detY(x) �= 0
for any x ∈ [a, b], then the set {y1(x),y2(x), . . . ,yn(x)} is linearly indepen-
dent on the interval [a, b].

The converse of this theorem is false as the previous example illustrates,
since the set of vector functions

{(
x
0

)

,

(
x2

0

)}

is linearly independent on any interval [a, b]; yet, for this set

detY = det

(
x x2

0 0

)

= 0 for all x ∈ [a, b].

Example 2 Verify that the set of vector functions
⎧
⎨

⎩

⎛

⎝
ex

0
2ex

⎞

⎠ ,

⎛

⎝
e−x

−e−x

e−x

⎞

⎠ ,

⎛

⎝
2
1
3

⎞

⎠

⎫
⎬

⎭
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is linearly independent on the interval (−∞,∞).

Solution

Forming the matrix Y and computing detY, we find

detY = det

⎛

⎝
ex e−x 2
0 −e−x 1
2ex e−x 3

⎞

⎠

= ex(−e−x)(3) + e−x(1)(2ex) + 2(0)(e−x)

− ex(1)(e−x)− e−x(0)(3)− 2(−e−x)(2ex)

= −3 + 2 + 0− 1− 0 + 4 = 2.

Since detY �= 0 for any x ∈ (−∞,∞), the given set of vector functions is
linearly independent on (−∞,∞). �

EXERCISES 8.1

For Exercises 1–16, let

A =

(−1 2 1
0 3 −4

)

, B =

⎛

⎝
2 −1
0 3
1 0

⎞

⎠ , x =

⎛

⎝
3

−1
2

⎞

⎠ , y =

(
2

−1

)

,

and z =
(
1 −2

)
.

State whether it is possible to compute the given expression or not.
When possible, compute the expression.

1. AB 2. BA 3. Ax 4. Ay

5. Az 6. Bx 7. By 8. Bz

9. xy 10. xz 11. yz 12. zy

13. A+B 14. x+ y 15. Ax+ y 16. By + x
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In Exercises 17–28 compute the determinant of the given matrix.

17. A = (4) 18. B = (−4) 19.

(
3 1
5 −1

)

20.

(√
2 2√
3 3

)

21.

(
1− i −i
i 1 + i

)

22.

(
2− λ 1
3 4− λ

)

23.

(
sinx cosx
cosx − sinx

)

24.

(
e3x e−x

3e3x −e−x

)

25.

⎛

⎝
0 1 −3
2 4 0

−1 0 2

⎞

⎠

26.

⎛

⎝
3 2 1
4 −1 2
0 −2 3

⎞

⎠ 27.

⎛

⎝
x x2 x3

1 2x 3x2

0 2 6x

⎞

⎠ 28.

⎛

⎝
−λ 4 2
3 −2− λ 5

−1 0 1− λ

⎞

⎠

29. Let A be any square matrix of size n × n and let I be the same size
identity matrix. Does (A + λI)2 = A2 + 2λA + λ2I, where A2 = AA
and λ is any scalar? (Hint: Consider the distributive law for (A+λI)2 =
(A+λI)(A+λI) and then the commutative law for scalar multiplication
and multiplication of a matrix by the identity matrix. If you think the
result is not true, give an example which shows equality does not always
hold.)

30. Let A and B be any two square matrices of the same size. Does
(A + B)2 = A2 + 2AB + B2? (Hint: Consider the distributive law
for (A+B)2 = (A+B)(A+B) and the commutativity of AB.)

31. If x1 and x2 are both solutions of Ax = 0 (that is, if Ax1 = 0 and
Ax2 = 0), show that y = c1x1 + c2x2 is a solution of Ax = 0 for every
choice of the scalars c1 and c2.

32. If x1 is a solution of Ax = 0 and x2 is a solution of Ax = b show that
y = cx1 + x2 is a solution of Ax = b for every choice of the scalar c.

In Exercises 33-36 determine whether the given set of vectors is
linearly independent or linearly dependent.

33.

{(
2

−1

)

,

(−6
3

)}

34.

{(
2
1

)

,

(
1
0

)}

35.

⎧
⎨

⎩

⎛

⎝
1
0

−1

⎞

⎠ ,

⎛

⎝
1
1
0

⎞

⎠ ,

⎛

⎝
0
1
1

⎞

⎠

⎫
⎬

⎭
36.

⎧
⎨

⎩

⎛

⎝
1

−1
1

⎞

⎠ ,

⎛

⎝
−1
0
1

⎞

⎠ ,

⎛

⎝
1
1
1

⎞

⎠

⎫
⎬

⎭

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Linear Systems of First-Order Differential Equations 317

In Exercises 37–40 show that the given set of vector functions are
linearly independent on the interval specified.

37.

{(
x
3

)

,

(
x

x− 1

)}

on (−1, 1)

38.

{(
2ex

ex

)

,

(
e3x

−e−3x

)}

on (−∞,∞)

39.

⎧
⎨

⎩

⎛

⎝
e2x

−3e2x

2e2x

⎞

⎠ ,

⎛

⎝
2
3
1

⎞

⎠ ,

⎛

⎝
3x
−x
−2x

⎞

⎠

⎫
⎬

⎭
on (0,∞)

40.

⎧
⎨

⎩

⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
0

sinx
cosx

⎞

⎠ ,

⎛

⎝
0

− cosx
sinx

⎞

⎠

⎫
⎬

⎭
on (−∞,∞)

8.2 Eigenvalues and Eigenvectors

The scalar λ is an eigenvalue (or characteristic value) of the n × n,
constant matrix A and the nonzero n × 1 vector x is an eigenvector (or
characteristic vector) associated with λ if and only if Ax = λx.

Thus, an eigenvector of the matrix A is a nonzero vector which when multi-
plied by A equals some constant, λ, times itself. A vector chosen at random
will generally not have this property. However, if x is a vector such that
Ax = λx, then y = cx also satisfies Ay = λy for any arbitrary constant c,
since Ay = A(cx) = (Ac)x = (cA)x = c(Ax) = cλx = λcx = λy. That is,
if x is an eigenvector of the matrix A associated with the eigenvalue λ, then
so is cx. Hence, eigenvectors are not uniquely determined but are determined
only up to an arbitrary multiplicative constant. If the manner in which the
arbitrary constant is to be chosen is specified, then the eigenvector is said to
be normalized. For example, the eigenvectors x of an n× n matrix A could
be normalized so that (x21 + x22 + · · ·+ x2n)

1/2 = 1 where x1, x2, . . . , xn denote
the components of x.

There is a nonzero vector x which satisfies the equation

(1) Ax = λx

or the equivalent equation Ax− λx = (A− λI)x = 0 if and only if

(2) det (A− λI) = 0.

If A is an n× n constant matrix, then equation (2) is a polynomial of degree
n in λ—called the characteristic polynomial of A. So each n× n matrix
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A has n eigenvalues λ1, λ2, . . . , λn, some of which may be repeated. If λ is
a root of equation (2) m times, then we say λ is an eigenvalue of A with
multiplicity m. Every eigenvalue has at least one associated eigenvector. If
λ is an eigenvalue of multiplicity m > 1, then there are k linearly independent
eigenvectors associated with λ where 1 ≤ k ≤ m. When all the eigenvalues
λ1, λ2, . . . , λn of a matrix A have multiplicity one (that is, when the roots
of equation (2) are distinct), then the associated eigenvectors x1, x2, . . . ,xn

are linearly independent. However, if some eigenvalue of A has multiplicity
m > 1 but fewer than m linearly independent associated eigenvectors, then
there will be fewer than n linearly independent eigenvectors associated with
A. As we shall see, this situation will lead to difficulties when trying to solve
a system of differential equations which involves the matrix A.

Example 1 Find the eigenvalues and associated eigenvectors of the
matrix

A =

(
2 −3
1 −2

)

.

Solution

The characteristic equation of A is det (A− λI) = 0. For the given matrix

det (A− λI) = det

((
2 −3
1 −2

)

− λ

(
1 0
0 1

))

= det

(
2− λ −3
1 −2− λ

)

= (2− λ)(−2− λ) − (1)(−3)

= −4 + λ2 + 3 = λ2 − 1 = 0.

Solving the characteristic equation λ2 − 1 = 0, we see the eigenvalues of A
are λ1 = 1 and λ2 = −1.

An eigenvector x1 of A associated with λ1 = 1 must satisfy the equation

Ax1 = λ1x1 or equivalently Ax1−λ1x1 = (A−λ1I)x1 = 0. Let x1 =

(
x11
x21

)

.

Then x1 must satisfy

(A− λ1I)x1 = (A− I)x1 =

(
2− 1 −3
1 −2− 1

)(
x11
x21

)

=

(
1 −3
1 −3

)(
x11
x21

)

=

(
0
0

)

.

Performing the matrix multiplication, we find that x11 and x21 must simul-
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taneously satisfy the system of equations

x11 − 3x21 = 0

x11 − 3x21 = 0.

Since these equations are identical, we conclude x11 = 3x21 and x21 is arbi-
trary. Choosing x21 = 1, we find an eigenvector associated with the eigenvalue
λ1 = 1 is

x1 =

(
x11
x21

)

=

(
3
1

)

.

As we noted earlier, the vector

cx1 =

(
3c
c

)

where c �= 0 is any arbitrary constant is also an eigenvector of A associated
with the eigenvalue λ1 = 1.

An eigenvector x2 of A associated with λ2 = −1 must satisfy the equation

Ax2 = λ2x2 or Ax2 − λ2x2 = (A− λ2I)x2 = 0. Letting x2 =

(
x12
x22

)

, we see

that x2 must satisfy

(A− λ2I)x2 = (A+ I)x2 =

(
2 + 1 −3
1 −2 + 1

)(
x12
x22

)

=

(
3 −3
1 −1

)(
x12
x22

)

=

(
0
0

)

.

Performing the required matrix multiplication, we see x12 and x22 must satisfy
the system of equations

3x12 − 3x22 = 0

x12 − x22 = 0.

Notice that the first equation of this system is three times the last equation.
So actually there is only one equation—say, x21 − x22 = 0—to be satisfied by
x12 and x22. Hence, x12 = x22 and x22 is arbitrary. Choosing x22 = 1, we
find an eigenvector associated with the eigenvalue λ2 = −1 is

x2 =

(
x12
x22

)

=

(
1
1

)

.

The vector kx2 where k �= 0 is an arbitrary constant is also an eigenvector
associated with the eigenvalue λ2 = −1.

Letting X be the 2×2 matrix whose columns are x1 and x2—that is, letting
X = (x1 x2), we find

detX = det (x1 x2) = det

(
3 1
1 1

)

= 3− 1 = 2 �= 0.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


320 Elementary Differential Equations

Consequently, the eigenvectors x1 and x2 are linearly independent. Earlier,
we stated that eigenvectors associated with distinct eigenvalues are linearly
independent. If we had remembered this fact, it would not have been necessary
to show det X �= 0. �

Example 2 Find the eigenvalues and associated eigenvectors of the
matrix

A =

(
3 1

−1 1

)

.

Solution

The characteristic equation for A is

det (A− λI) = det

((
3 1

−1 1

)

− λ

(
1 0
0 1

))

= det

(
3− λ 1
−1 1− λ

)

= (3− λ)(1 − λ) + 1 = λ2 − 4λ+ 4 = 0.

Solving the characteristic equation λ2 − 4λ + 4 = 0, we find the eigenvalues
of A are λ1 = λ2 = 2. Thus, λ = 2 is a root of multiplicity m = 2 and
there will be one or two linearly independent eigenvectors associated with the
eigenvalue λ = 2.

An eigenvector of A associated with λ = 2 must satisfy Ax = 2x or

(A − 2I)x = 0. Letting x =

(
x1
x2

)

and substituting for A and I, we see

that x1 and x2 must satisfy

(A− 2I)x =

((
3 1

−1 1

)

− 2

(
1 0
0 1

))(
x1
x2

)

=

(
3− 2 1
−1 1− 2

)(
x1
x2

)

=

(
1 1

−1 −1

)(
x1
x2

)

=

(
0
0

)

.

Multiplying, we find x1 and x2 must simultaneously satisfy

x1 + x2 = 0

−x1 − x2 = 0.

Since the second equation is −1 times the first, there is actually only one
equation to be satisfied, say x1 +x2 = 0. Thus, x1 = −x2 and x2 is arbitrary.
Choosing x2 = 1, we find

x =

(
x1
x2

)

=

(−1
1

)

is an eigenvector of A associated with λ = 2. Although for k �= 0, the vector
kx is an eigenvector associated with λ = 2, the vector kx is not linearly
independent from x, since 1(kx) − k(x) = 0. That is, x and kx are linearly
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dependent. Hence, λ = 2 is an eigenvalue of A of multiplicity m = 2 which
has only one associated eigenvector. �

Example 3 Find the eigenvalues and associated eigenvectors of the
matrix

A =

⎛

⎝
1 −1 1

−1 1 1
1 1 1

⎞

⎠ .

Solution

The characteristic equation for the given matrix A is

det (A− λI) = det

⎛

⎝
1− λ −1 1

−1 1− λ 1
1 1 1− λ

⎞

⎠

= (1− λ)3 + (−1)(1)(1) + (1)(−1)(1)

− (1− λ)(1)(1)− (−1)(−1)(1− λ)− (1)(1− λ)(1)

= 1− 3λ+ 3λ2 − λ3 − 1− 1− 1 + λ− 1 + λ− 1 + λ

= −4 + 3λ2 − λ3 = 0.

Since λ3 − 3λ2 + 4 = (λ+ 1)(λ− 2)2, the roots of the characteristic equation
are λ1 = −1 and λ2 = λ3 = 2. Thus, −1 is an eigenvalue of the matrix A
of multiplicity m = 1 and 2 is an eigenvalue of the matrix A of multiplicity
m = 2.

Let

x1 =

⎛

⎝
x11
x21
x31

⎞

⎠

be the eigenvector of A associated with the eigenvalue λ1 = −1. The vector
x1 must satisfy (A− λ1I)x1 = (A+ I)x1 = 0 or
⎛

⎝
1 + 1 −1 1
−1 1 + 1 1
1 1 1 + 1

⎞

⎠

⎛

⎝
x11
x21
x31

⎞

⎠ =

⎛

⎝
2 −1 1

−1 2 1
1 1 2

⎞

⎠

⎛

⎝
x11
x21
x31

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠ .

Multiplying, we see x11, x21, and x31 must simultaneously satisfy the system
of equations

(3)

2x11 − x21 + x31 = 0

−x11 + 2x21 + x31 = 0

x11 + x21 + 2x31 = 0.
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Replacing the first equation in this system by the sum of the first equation and
two times the second equation and also replacing the third equation in this
system by the sum of the second and third equation, we obtain the following
equivalent system of simultaneous equations

3x21 + 3x31 = 0

−x11 + 2x21 + x31 = 0

3x21 + 3x31 = 0.

Since the first and third equations in this system are identical, we have a
system which consists of only two independent equations in three variables. So
the value of one of the variables—x11, x21, or x31—may be selected arbitrarily
and the values of the other two variables can be expressed in terms of that
variable. Solving the first equation for x21 in terms of x31, we find x21 = −x31.
Substituting x21 = −x31 into the second equation and solving for x11, we get
x11 = −x31. That is, system (3) is satisfied by any vector x1 in which the
component x31 is selected arbitrarily, x21 = −x31 and x11 = −x31. Choosing
x31 = 1, we get x21 = −1 and x11 = −1. So an eigenvector of the matrix A
associated with the eigenvalue λ1 = −1 is

x1 =

⎛

⎝
x11
x21
x31

⎞

⎠ =

⎛

⎝
−1
−1
1

⎞

⎠ .

Let

z =

⎛

⎝
z1
z2
z3

⎞

⎠

be an eigenvector of the matrix A associated with the eigenvalue λ = 2. The
vector z must satisfy (A− 2I)z = 0 or
⎛

⎝
1− 2 −1 1
−1 1− 2 1
1 1 1− 2

⎞

⎠

⎛

⎝
z1
z2
z3

⎞

⎠ =

⎛

⎝
−1 −1 1
−1 −1 1
1 1 −1

⎞

⎠

⎛

⎝
z1
z2
z3

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠ .

Multiplying, we see z1, z2, and z3 must simultaneously satisfy the system of
equations

−z1 − z2 + z3 = 0

−z1 − z2 + z3 = 0

z1 + z2 − z3 = 0.

Observe that the first two equations are identical and the third equation is
−1 times the first equation. Thus, this system reduces to the single equation

(4) −z1 − z2 + z3 = 0.
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Hence, the values of two of the three variables z1, z2, and z3 may be cho-
sen arbitrarily and the third is then determined by equation (4). Since two
components of the vector z may be chosen arbitrarily, we make two different
choices of two components in such a manner that the resulting two vectors
are linearly independent. For example, choosing z2 = 1, choosing z3 = 0,
substituting these values into equation (4) and solving for z1, we get z1 = −1.
So one eigenvector of the matrix A associated with the eigenvalue λ = 2 is

x2 =

⎛

⎝
z1
z2
z3

⎞

⎠ =

⎛

⎝
−1
1
0

⎞

⎠ .

Next, choosing z2 = 0, choosing z3 = 1, substituting these values into equa-
tion (4), and solving for z1, we get z1 = 1. Thus, a second eigenvector of the
matrix A associated with the eigenvalue λ = 2 is

x3 =

⎛

⎝
z1
z2
z3

⎞

⎠ =

⎛

⎝
1
0
1

⎞

⎠ .

The following computation shows that the set of eigenvectors {x1,x2,x3}
is linearly independent. Let X be the 3× 3 matrix X = (x1 x2 x3). Then

detX = det

⎛

⎝
−1 −1 1
−1 1 0
1 0 1

⎞

⎠ = −3 �= 0.

Thus, in this example there are two linearly independent eigenvectors associ-
ated with the eigenvalue λ = 2 of multiplicity two. �

Example 4 Find the eigenvalues and associated eigenvectors of the
matrix

A =

(
1 −2
1 3

)

.

Solution

The characteristic equation of the matrix A is

det (A− λI) = det

((
1 −2
1 3

)

− λ

(
1 0
0 1

))

= det

(
1− λ −2

1 3− λ

)

= (1− λ)(3 − λ) + 2 = 3− 4λ+ λ2 + 2 = 5− 4λ+ λ2 = 0.

Solving the quadratic equation λ2 − 4λ+5 = 0, we find the eigenvalues of the
matrix A are λ1 = 2 + i and λ2 = 2− i.
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An eigenvector

x1 =

(
x11
x21

)

of the matrix A corresponding to the eigenvalue λ1 = 2 + i must satisfy

(A− λ1I)x1 =

((
1 −2
1 3

)

− (2 + i)

(
1 0
0 1

))(
x11
x21

)

=

(
1− (2 + i) −2

1 3− (2 + i)

)(
x11
x21

)

=

(−1− i −2
1 1− i

)(
x11
x21

)

=

(
0
0

)

.

Multiplying, we see that x11 and x21 must simultaneously satisfy the system
of equations

(5)
(−1− i)x11 − 2x21 = 0

x11 + (1− i)x21 = 0.

Since det (A−λ1I) = 0, these two equations must be multiples of one another.
(To check this fact, multiply the second equation by (−1− i) and obtain the
first equation.) Consequently, system (5) reduces to a single condition—either
the first equation or the second equation of (5). Hence, one variable x11 or x21
is arbitrary and the other is determined by one equation from (5). Choosing
x21 = 1 and solving the second equation of (5) for x11, we get x11 = −1 + i.
Hence, an eigenvector of the matrixA associated with the eigenvalue λ1 = 2+i
is

x1 =

(
x11
x21

)

=

(−1 + i
1

)

.

Let

x2 =

(
x12
x22

)

be an eigenvector of the matrix A associated with the eigenvalue λ2 = 2− i.
The vector x2 must satisfy

(A− λ2I)x2 =

((
1 −2
1 3

)

− (2− i)

(
1 0
0 1

))(
x12
x22

)

=

(
1− (2− i) −2

1 3− (2− i)

)(
x12
x22

)

=

(−1 + i −2
1 1 + i

)(
x12
x22

)

=

(
0
0

)

.
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Thus, x12 and x22 must simultaneously satisfy

(6)
(−1 + i)x12 − 2x22 = 0

x12 + (1 + i)x22 = 0.

Since det (A − λ2I) = 0 these two equations must also be multiples of one
another. Therefore, either x12 or x22 may be selected arbitrarily and the other
variable then determined from either equation of (6). Choosing x22 = 1 and
solving the second equation of (6) for x12, we get x12 = −1− i. Consequently,
an eigenvector of the matrix A associated with the eigenvalue λ2 = 2− i is

x2 =

(
x12
x22

)

=

(−1− i
1

)

. �

Comments on Computer Software Computer algebra systems (CAS)
often include a routine to numerically compute all eigenvalues and eigenvec-
tors of an n × n matrix with real entries (elements). The input for such
programs is the size, n, of the matrix and the matrix itself. The output from
the program is a set of n eigenvalues and associated eigenvectors. The soft-
ware which accompanies this text contains a program named EIGEN, which
computes the eigenvalues and eigenvectors of an n × n matrix with real en-
tries where 2 ≤ n ≤ 6. Complete instructions for running this program appear
in the file CSODE User’s Guide which can be downloaded from the website:
cs.indstate.edu/∼roberts/DEq.html. The next example shows the typical out-
put of EIGEN. When an eigenvalue has multiplicity m > 1, EIGEN generates
m associated vectors. When the m associated eigenvectors are linearly inde-
pendent the vectors produced by the program are also linearly independent,
as they should be. When an eigenvalue of multiplicity m > 1 does not have
m associated linearly independent eigenvectors, the associated m vectors pro-
duced by EIGEN will not be linearly independent. In general, if there are
k < m linearly independent eigenvectors associated with a particular eigen-
value, k of the m vectors produced by EIGEN will be linearly independent
eigenvectors.

Example 5 Use EIGEN to compute the eigenvalues and associated
eigenvectors of the following matrices. Compare the results with
the results obtained in Examples 1, 2, 3, and 4.

1.

(
2 −3
1 −2

)

2.

(
3 1

−1 1

)

3.

⎛

⎝
1 −1 1

−1 1 1
1 1 1

⎞

⎠ 4.

(
1 −2
1 3

)

Solution

1. We used the computer program EIGEN to calculate the eigenvalues and
associated eigenvectors of the given matrix by setting the size of the
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matrix equal to two and then entering the values for the elements of the
matrix. From Figure 8.1 we see that one eigenvalue is λ1 = 1 + 0i = 1
and the associated eigenvector is

x1 =

(
1.66410+ 0i
.55470 + 0i

)

=

(
1.64410
.55470

)

.

We noted in Example 1 that any vector of the form

x =

(
3c
c

)

where c �= 0 is an eigenvector associated with λ1 = 1. Observe that the
first component of x1 is 3 times the second component of x1. So x1 is
clearly an eigenvector of the given matrix associated with the eigenvalue
λ1 = 1. When we computed an eigenvector associated with λ1 = 1
by hand, we selected c = 1 and got a different eigenvector than the
eigenvector selected by the computer. But this is to be expected, since
eigenvectors are not unique. They are unique only up to an arbitrary
scalar multiple, as we proved earlier. From Figure 8.1 we see that the
second eigenvalue is λ2 = −1 and an associated eigenvector is

x2 =

(
1.80278
1.80278

)

.

In Example 1 the associated eigenvector which we computed manually

was x =

(
1
1

)

. Since the first and second components of x2 are identical,

the vectors x2 and x are both eigenvectors associated with λ2 = −1.
Clearly, x2 = 1.80278x.

Figure 8.1 Eigenvalues and Eigenvectors for Example 5.1.
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2. We used EIGEN to calculate the eigenvalues and associated eigenvectors
of the given matrix by setting the size of the matrix equal to two and
then entering the values for the elements of the matrix. The two eigen-
values and associated eigenvectors computed by EIGEN are displayed
in Figure 8.2. In this case, λ1 = λ2 = 2 as we found in Example 2.
From Figure 8.2 we see that the computer has generated the following
two associated vectors

x1 =

(
.707107

−.707107
)

and x2 =

(
.318453× 1016

−.318453× 1016

)

.

These vectors are linearly dependent, since x2 is a multiple of x1—that
is, x2 = kx1. In Example 2, we found the matrix under consideration
here has only one eigenvector associated with the eigenvalue λ = 2. The

single eigenvector we calculated by hand in Example 2 was x =

(−1
1

)

.

Notice that x1 and x2 are both scalar multiples of x . This example
is intended to show that we can sometimes determine directly from
computer output when eigenvalues of multiplicity m > 1 have fewer
than m linearly independent associated eigenvectors.

Figure 8.2 Eigenvalues and Eigenvectors for Example 5.2.

3. In Example 3 we manually calculated the eigenvalues of the given matrix
to be λ1 = −1, λ2 = 2 and λ3 = 2. And we found the following set of
three linearly independent associated eigenvectors

x1 =

⎛

⎝
−1
−1
1

⎞

⎠ , x2 =

⎛

⎝
−1
1
0

⎞

⎠ , x3 =

⎛

⎝
1
0
1

⎞

⎠ .

Using EIGEN, we found, as shown in Figure 8.3, that the eigenvalues of
the given matrix are −1, 2, 2 and that the associated eigenvectors are
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respectively

z1 =

⎛

⎝
.745356
.745356

−.745356

⎞

⎠ , z2 =

⎛

⎝
.894427

−.447214
.447214

⎞

⎠ , z3 =

⎛

⎝
.311803
.344098
.655902

⎞

⎠ .

Notice that z1 = −.745356x1, but z2 is not a multiple of x2 or x3

and z3 is not a multiple of x2 or x3. The easiest way for us to show
that z2 and z3 are linearly independent eigenvectors associated with the
eigenvalue λ = 2 of multiplicity 2 is to show that the set {z1, z2, z3} is
linearly independent. We do so by computing det (z1 z2 z3) and finding
its value to be −3(.745356)(.447214) = −1 �= 0.

Figure 8.3 Eigenvalues and Eigenvectors for Example 5.3.

4. In Example 4, we manually calculated the eigenvalues of the given
matrix to be λ1 = 2 + i and λ2 = 2 − i. And we found the associ-
ated eigenvectors to be

x1 =

(−1 + i
1

)

and x2 =

(−1− i
1

)

.

When the entries of a matrix are all real, complex eigenvalues and their
associated eigenvectors occur in complex conjugate pairs. Observe in
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this instance λ1 and λ2 are complex conjugate scalars and x1 and x2

are complex conjugate vectors. Results for the given matrix computed
using EIGEN are shown in Figure 8.4. The eigenvalues computed are
identical with those computed by hand, but the associated eigenvectors
are

z1 =

(−1− i
i

)

and z2 =

(−1 + i
−i
)

.

Notice that z1 and z2 are complex conjugate vectors. Also notice z1 =
ix1 and z2 = −ix2.

Figure 8.4 Complex Conjugate Eigenvalues and Eigenvectors

for Example 5.4. �

EXERCISES 8.2

Use EIGEN or your computer software to compute the eigenval-
ues and associated eigenvectors of the following matrices.

1.

(−2 −4
1 3

)

2.

(−3 −1
2 −1

)

3.

⎛

⎝
1 0 1
0 1 −1

−2 0 −1

⎞

⎠ 4.

⎛

⎝
3 1 −1
1 3 −1
3 3 −1

⎞

⎠
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5.

⎛

⎝
7 −1 6

−10 4 −12
−2 1 −1

⎞

⎠ 6.

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠

7.

⎛

⎜
⎜
⎝

1 3 5 7
2 6 10 14
3 9 15 21
6 18 30 42

⎞

⎟
⎟
⎠ 8.

⎛

⎜
⎜
⎜
⎜
⎝

1 3 5 2 4
5 2 4 1 3
4 1 3 5 2
3 5 2 4 1
2 4 1 3 5

⎞

⎟
⎟
⎟
⎟
⎠

8.3 Linear Systems with Constant Coefficients

Numerous physical phenomena can be modelled by systems of first-order
linear differential equations with constant coefficients. We will show how to
model coupled pendulums by such a system.

Coupled Pendulums A pair of identical pendulums with bobs of mass m
and rods of length � are coupled by a spring with spring constant k as shown
in Figure 8.5.

��������

	



�

�

	



2

�

	� 	�

k

Figure 8.5 Coupled Pendulums.

Let y1 and y2 denote the displacement of each pendulum from the vertical
(positive displacement is to the right). When the pendulums are in their
equilibrium positions (y1 = y2 = 0) the spring is horizontal and not stretched
nor compressed. Suppose at some time t, the positive horizontal displacement
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of the bobs are y1 and y2, so that the spring is stretched by the amount y2−y1
and the spring exerts a force of k(y1−y2). Assuming the motion is undamped
and the displacement of the pendulum bobs is small so that the restoring force
due to the weight mg is mgy/�, then the second-order system of equations
satisfied by the displacements of the coupled pendulums is

my′′1 =
−mgy1

�
− k(y1 − y2)

my′′2 =
−mgy2

�
− k(y2 − y1).

Letting u1 = y1 (the position of pendulum 1), u2 = y′1 (the velocity of
pendulum 1), u3 = y2 (the position of pendulum 2), and u4 = y′2 (the ve-
locity of pendulum 2) and differentiating each of these equations, we find

u′1 = y′1

u′2 = y′′1 = −g
�
y1 − k

m
(y1 − y2) = −

(
g

�
+
k

m

)

y1 +
k

m
y2

u′3 = y′2

u′4 = y′′2 = −g
�
y2 − k

m
(y2 − y1) =

k

m
y1 −

(
g

�
+
k

m

)

y2.

Next, replacing y1 by u1, y
′
1 by u2, y2 by u3, and y′2 by u4 on the right-

hand side of the equation above, we obtain the following first-order system of
differential equations

u′1 = u2

u′2 = −
(
g

�
+
k

m

)

u1 +
k

m
u3

u′3 = u4

u′4 =
k

m
u1 −

(
g

�
+
k

m

)

u3.

Written in matrix notation this system of equations is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u′1

u′2

u′3

u′4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

−
(
g

�
+
k

m

)

0
k

m
0

0 0 0 1

k

m
0 −

(
g

�
+
k

m

)

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u1

u2

u3

u4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Observe that the 4× 4 matrix appearing in this system is a constant matrix.
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If y is an n× 1 column vector whose entries are functions of a single inde-
pendent variable x, then the derivative of y, denoted by y′ or dy/dx, is the
n × 1 column vector whose entries are the derivatives of the corresponding
entries of y. That is, if

y(x) =

⎛

⎜
⎜
⎜
⎝

y1(x)
y2(x)
...

yn(x)

⎞

⎟
⎟
⎟
⎠
, then y′(x) =

⎛

⎜
⎜
⎜
⎝

y′1(x)
y′2(x)
...

y′n(x)

⎞

⎟
⎟
⎟
⎠
.

Recall from Chapter 7 that an initial value problem for a system of n
first-order differential equations is the problem of solving the system of n
differential equations

y′1 = f1(x, y1, y2, . . . , yn)

(1a) y′2 = f2(x, y1, y2, . . . , yn)

...
...

...

y′n = fn(x, y1, y2, . . . , yn)

subject to the n constraints

(1b) y1(c) = d1, y2(c) = d2, . . . , yn(c) = dn.

If we let

y =

⎛

⎜
⎜
⎜
⎝

y1
y2
...
yn

⎞

⎟
⎟
⎟
⎠
, f(x,y) =

⎛

⎜
⎜
⎜
⎝

f1(x, y1, y2, . . . , yn)
f2(x, y1, y2, . . . , yn)

...
fn(x, y1, y2, . . . , yn)

⎞

⎟
⎟
⎟
⎠
, and d =

⎛

⎜
⎜
⎜
⎝

d1
d2
...
dn

⎞

⎟
⎟
⎟
⎠
,

then using vector notation we can write the initial value problem (1) more
concisely as

(2) y′ = f(x,y); y(c) = d.

Notice that the vector initial value problem (2) is very similar in appearance
to the scalar initial value problem

(3) y′ = f(x, y); y(c) = d,

which we studied in Chapters 2 and 3. In fact, when n = 1, the vector initial
value problem (2) is exactly the scalar initial value problem (3).
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Also recall from Chapter 7 that a linear system initial value problem is the
problem of solving the system of n linear first-order differential equations

(4a)

y′1 = a11(x)y1 + a12(x)y2 + · · · + a1n(x)yn + b1(x)

y′2 = a21(x)y1 + a22(x)y2 + · · · + a2n(x)yn + b2(x)
...

...
...

...
...

...
...

y′n = an1(x)y1 + an2(x)y2 + · · · + ann(x)yn + bn(x)

subject to the n constraints

(4b) y1(c) = d1, y2(c) = d2, . . . , yn(c) = dn.

If we let y(x), b(x), and d be the n× 1 column vectors

y(x) =

⎛

⎜
⎜
⎜
⎝

y1(x)
y2(x)
...

yn(x)

⎞

⎟
⎟
⎟
⎠
, b(x) =

⎛

⎜
⎜
⎜
⎝

b1(x)
b2(x)
...

bn(x)

⎞

⎟
⎟
⎟
⎠
, d =

⎛

⎜
⎜
⎜
⎝

d1
d2
...
dn

⎞

⎟
⎟
⎟
⎠

and if we let A(x) be the n× n matrix

A(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a11(x) a12(x) · · · a1n(x)

a21(x) a22(x) · · · a2n(x)
...

...
. . .

...
an1(x) an2(x) · · · ann(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

then using matrix notation we can write the linear first-order system initial
value problem (4) more concisely as

(5) y′ = A(x)y + b(x); y(c) = d.

For example, using matrix-vector notation the system of equations

y′1 = 3y1 − 4y2 + x

y′2 = −2y1 + y2 − sinx

can be written as
(
y′1
y′2

)

=

(
3 −4

−2 1

)(
y1
y2

)

+

(
x

− sinx

)

.

The system of linear first-order differential equations

(6) y′ = A(x)y + b(x)

is said to be homogeneous provided b(x) ≡ 0 and nonhomogeneous pro-
vided b(x) �= 0. Thus, a homogeneous linear system is one of the form

(7) y′ = A(x)y.
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The development of the theory for systems of linear first-order differential
equations closely parallels that for n-th order linear differential equations. We
state the following Superposition Theorem for Homogeneous Linear
Systems without proof.

Theorem 8.2 If y1 and y2 are any two solutions of the homogeneous linear
system (7) y′ = A(x)y, then y3 = c1y1 + c2y2 where c1 and c2 are arbitrary
scalar constants is also a solution of (7).

The superposition theorem can easily be generalized to show that if y1,
y2, . . . ,ym are any m solutions of (7) y′ = A(x)y, then y = c1y1 + c2y2 +
· · ·+cmym where c1, c2, . . . , cm are arbitrary scalar constants is also a solution
of the homogeneous system (7).

We state the following Existence Theorem for Homogeneous Linear
Systems without proof.

Theorem 8.3 If A(x) is continuous on some interval (α, β)—that is, if
aij(x) is a continuous function on (α, β) for all i, j = 1, 2, . . . , n, then there
exist n linearly independent solutions of the homogeneous linear system (7)
y′ = A(x)y on the interval (α, β).

The existence theorem just stated tells us there are n linearly independent
solutions y1,y2, . . . ,yn of y′ = A(x)y on the interval (α, β), provided A(x)
is continuous on (α, β).

The following Representation Theorem for Homogeneous Linear
Systems tells us how to write every other solution in terms of y1,y2, . . . ,yn.

Theorem 8.4 If A(x) is continuous on the interval (α, β), if y1,y2, . . . ,yn

are linearly independent solutions of the homogeneous linear system (7) y′ =
A(x)y on (α, β), and if y is any other solution of (7) on (α, β), then there
exist scalar constants c1, c2, . . . , cn such that y(x) = c1y1(x)+ c2y2(x)+ · · ·+
cnyn(x) on (α, β).

When y1,y2, . . . ,yn are linearly independent solutions of the homogeneous
linear system (7) y′ = A(x)y on the interval (α, β), the linear combination
y(x) = c1y1(x) + c2y2(x) + · · · + cnyn(x) where c1, c2, . . . , cn are arbitrary
scalar constants is called the general solution of (7) on (α, β).

Summarizing, the existence theorem says there are at least n linearly inde-
pendent solutions of y′ = A(x)y, and the representation theorem states that
there are at most n linearly independent solutions. Thus, the existence theo-
rem gives us license to seek n linearly independent solutions of y′ = A(x)y,
and the representation theorem tells us how to write the general solution (all
other solutions) in terms of these solutions. So our task in solving y′ = A(x)y
is reduced to one of finding n linearly independent solutions—that is, our task
becomes one of finding a set of n solutions and testing the set for linear inde-
pendence. The following Theorem on Linear Independence of Solutions
of Homogeneous Linear Systems aids in the determination of linear in-
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dependence of solutions.

Theorem 8.5 Let y1(x),y2(x), . . . ,yn(x) be solutions of the homogeneous
linear system (7) y′ = A(x)y on some interval (α, β). The set of func-
tions {y1,y2, . . . ,yn} is linearly independent on (α, β) if and only if for some
x0 ∈ (α, β) the determinant det (y1 y2 · · ·yn) �= 0.

Consequently, to check a set of n solutions {y1(x), y2(x), . . . , yn(x)} of
y′ = A(x)y for linear independence on (α, β), we only need to calculate the
determinant of the matrix whose columns are y1,y2, . . . ,yn evaluated at some
convenient point x0 ∈ (α, β). If det (y1(x0) y2(x0) · · ·yn(x0)) �= 0, then the
solutions are linearly independent; whereas, if the determinant is zero, then
the solutions are linearly dependent.

Example 1 Verify that

y1(x) =

(
1
2x

)

and y2(x) =

(
x
x2

)

are linearly independent solutions of the homogeneous linear system

(8) y′ =

⎛

⎜
⎝

2

x

−1

x2

2 0

⎞

⎟
⎠y = A(x)y

on the interval (0,∞) and write the general solution of (8) on (0,∞).

Solution

Notice that A(x) is not defined for x = 0, but A(x) is defined and con-
tinuous on (−∞, 0) and (0,∞). So by the existence theorem, there are two
linearly independent solutions of (8) on (0,∞).

Differentiating y1, we find

y′
1(x) =

(
0
2

)

.

Multiplying A(x) by y1(x), we get for x �= 0

A(x)y1(x) =

⎛

⎜
⎝

2

x

−1

x2

2 0

⎞

⎟
⎠

⎛

⎝
1

2x

⎞

⎠ =

⎛

⎜
⎝

2

x
(1) +

−1

x2
(2x)

2(1) + 0(2x)

⎞

⎟
⎠

=

⎛

⎜
⎝

2

x
− 2

x

2

⎞

⎟
⎠ =

⎛

⎝
0

2

⎞

⎠ .
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Since y′
1 = A(x)y1 for x �= 0, the vector y1 is a solution of (8) on (0,∞).

Differentiating y2(x), we find

y′
2(x) =

(
1
2x

)

.

Computing A(x)y2(x), we obtain for x �= 0

A(x)y2(x) =

⎛

⎜
⎝

2

x

−1

x2

2 0

⎞

⎟
⎠

⎛

⎝
x

x2

⎞

⎠ =

⎛

⎜
⎝

2

x
(x) +

−1

x2
(x2)

2(x) + 0(x2)

⎞

⎟
⎠

=

⎛

⎝
2− 1

2x

⎞

⎠ =

⎛

⎝
1

2x

⎞

⎠ .

Since y′
2 = A(x)y2 for x �= 0, the vector y2 is a solution of (8) on (0,∞).

To determine whether the set {y1(x),y2(x)} is linearly dependent or lin-
early independent on (0,∞), we compute det (y1(x) y2(x)) at some convenient
point x0 ∈ (0,∞). As a matter of convenience, we decided to choose x0 = 1.
Computing, we get

det (y1(1) y2(1)) = det

(
1 1
2 1

)

= 1− 2 = −1.

Since det (y1(1) y2(1)) = −1 �= 0, the vectors y1 and y2 are linearly indepen-
dent on (0,∞). Therefore, by the representation theorem, the general solution
of (8) on (0,∞) is

y(x) = c1y1(x) + c2y2(x) = c1

(
1
2x

)

+ c2

(
x
x2

)

=

(
c1 + c2x

2c1x+ c2x
2

)

where c1 and c2 are arbitrary scalar constants. �

Now let us consider the nonhomogeneous linear system of equations

(9) y′ = A(x)y + b(x)

where y, y′, and b(x) are n× 1 column vectors; A(x) is an n×n matrix; and
b(x) �= 0.

The system of differential equations

(10) y′ = A(x)y

is called the associated homogeneous system for the nonhomogeneous
system (9) y′ = A(x)y + b(x). Any solution yp(x) of the nonhomogeneous
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system (9) which includes no arbitrary constant is called a particular solu-
tion of (9).

The followingRepresentation Theorem for Nonhomogeneous Linear
Systems tells us how to write the general solution of the nonhomogeneous
linear system (9).

Theorem 8.6 If A(x) is continuous on the interval (α, β), if yp(x) is
any particular solution on (α, β) of the nonhomogeneous linear system
(9) y′ = A(x)y + b(x), and if y1, y2, . . . ,yn are n linearly independent
solutions on the interval (α, β) of the associated homogeneous linear system
(10) y′ = A(x)y, then every solution of the nonhomogeneous system (9) on
(α, β) has the form

(11) y(x) = c1y1 + c2y2 + · · ·+ cnyn + yp

where c1, c2, . . . , cn are scalar constants.

Since every solution of (9) can be written in the form of equation (11),
this equation is called the general solution of the nonhomogeneous sys-
tem (9). The general solution of the associated homogeneous system, namely
yc = c1y1+c2y2+ · · ·+cnyn, is called the complementary solution. Thus,
the general solution of the nonhomogeneous system (9) is y = yc + yp where
yc is the complementary solution and yp is any particular solution of the non-
homogeneous system. So to find the general solution of the nonhomogeneous
system (9) y′ = A(x)y+b(x), we first find the general solution of the associ-
ated homogeneous system (10) y′ = A(x)y, next we find a particular solution
of the nonhomogeneous system (9), and then we add the results.

Example 2 Verify that

yp =

(−x
x2

)

is a particular solution on the interval (0,∞) of the nonhomogeneous
system

(12) y′ =

⎛

⎜
⎝

2

x

−1

x2

2 0

⎞

⎟
⎠y +

⎛

⎝
2

4x

⎞

⎠ = A(x)y + b(x)

and write the general solution of (12) on (0,∞).

Solution

Differentiating yp, we find

y′
p =

(−1
2x

)

.
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Computing A(x)yp + b(x), yields

⎛

⎜
⎝

2

x

−1

x2

2 0

⎞

⎟
⎠

⎛

⎝
−x

x2

⎞

⎠+

⎛

⎝
2

4x

⎞

⎠ =

⎛

⎜
⎝

2

x
(−x) + −1

x2
(x2)

2(−x) + 0(x2)

⎞

⎟
⎠+

⎛

⎝
2

4x

⎞

⎠

=

⎛

⎝
−2− 1 + 2

−2x+ 4x

⎞

⎠ =

⎛

⎝
−1

2x

⎞

⎠ .

Since y′
p = A(x)yp + b(x), the vector yp is a particular solution of (12). In

the previous example, we found the general solution of the associated homo-
geneous equation y′ = A(x)y to be

yc = c1

(
1
2x

)

+ c2

(
x
x2

)

.

Therefore, the general solution of the nonhomogeneous linear system (12) is

y(x) = yc + yp = c1

(
1
2x

)

+ c2

(
x
x2

)

+

(−x
x2

)

=

(
c1 + c2x− x

2c1x+ c2x
2 + x2

)

where c1 and c2 are arbitrary constants. �

Now let us consider the general, homogeneous linear system with constant
coefficients

(13) y′ = Ay

where y and y′ are n × 1 column vectors and A is an n × n matrix of real
numbers. In order to solve an n-th order linear homogeneous differential
equation, we assumed there were solutions of the form y = erx where r is an
unknown constant. By analogy, we seek a solution of (13) of the form

(14) y = verx

where v is an unknown constant vector and r is an unknown scalar constant.
Differentiating (14), we find y′ = rverx. Substituting into (13), we see v and
r must be chosen to satisfy

y′ = Ay or rverx = A(verx) = Averx.

Cancelling the nonzero scalar factor erx, we find the unknowns v and r must
satisfy Av = rv. That is, for (14) y = verx to be a solution of (13), r must
be an eigenvalue of A and v must be an associated eigenvector. Hence, we
immediately have the following theorem.
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Theorem 8.7 If r1, r2, . . . , rn are the eigenvalues (not necessarily distinct)
of an n × n constant matrix A and if v1, v2, . . . ,vn are associated linearly
independent eigenvectors, then the general solution of the homogeneous linear
system y′ = Ay is

(15) y(x) = c1v1e
r1x + c2v2e

r2x + · · ·+ cnvne
rnx

where c1, c2, . . . , cn are arbitrary constants.

If the eigenvalues of A are distinct, then there are n linearly independent
eigenvectors—one eigenvector corresponding to each eigenvalue. Moreover, if
each eigenvalue of multiplicity m > 1 has m associated linearly independent
eigenvectors, then there are a total of n linearly independent eigenvectors. In
either of these cases, we can use the computer software to find the eigenvalues
and associated linearly independent eigenvectors and thereby write the general
solution of (13) y′ = Ay in the form of equation (15). It is only when there
is some eigenvalue of multiplicity m > 1 with fewer than m linearly indepen-
dent associated eigenvectors that we will not be able to write the solution of
(13) y′ = Ay in the form of equation (15). In such a case, other techniques
must be used to find the general solution of (13). These techniques will not
be discussed in this text.

Example 3 Find the general solution of the homogeneous linear
system

(16) y′ =

⎛

⎝
2 0 1
0 1 0
1 0 2

⎞

⎠y.

Solution

We ran EIGEN by setting the size of the matrix equal to 3 and entering
the values for the elements of the given matrix. The output of the program
is displayed in Figure 8.6. From this figure, we see that the eigenvalues are 3,
1, 1 and the associated eigenvectors are respectively

v1 =

⎛

⎝
.707107

0.000000
.707107

⎞

⎠ , v2 =

⎛

⎝
−.707107
0.000000
.707107

⎞

⎠ , and v3 =

⎛

⎝
0
1
0

⎞

⎠ .

We see that the eigenvalue 1 has multiplicity two. Thus, we need to verify that
the associated eigenvectors v2 and v3 are linearly independent. (In general,
suppose u �= 0 and v �= 0 are linearly dependent vectors. Then, by definition
of linearly dependent, there exist constants c1 and c2 not both zero such that
c1u + c2v = 0. If c1 = 0, then we would have c2v = 0 which implies c2 = 0,
since v �= 0. Hence, c1 �= 0, and by a similar argument c2 �= 0. Solving
c1u+ c2v = 0 for u, we find u = −c2v/c1 = kv, where k �= 0. Thus, the only
way in which two nonzero vectors can be linearly dependent is for one of them
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Figure 8.6 Eigenvalues and Eigenvectors of the Matrix in Equation (16).

to be a nonzero scalar multiple of the other.) Since there is no scalar constant
k such that v2 = kv3, we conclude v2 and v3 are linearly independent and,
therefore, the general solution of the linear homogeneous system (16) is

y(x) = c1e
3x

⎛

⎝
.707107
0.000000
.707107

⎞

⎠+ c2e
x

⎛

⎝
−.707107
0.000000
.707107

⎞

⎠+ c3e
x

⎛

⎝
0
1
0

⎞

⎠

where c1, c2, and c3 are arbitrary constants.

You may find it more appealing to write the general solution in the form

y(x) = k1e
3x

⎛

⎝
1
0
1

⎞

⎠+ k2e
x

⎛

⎝
−1
0
1

⎞

⎠+ k3e
x

⎛

⎝
0
1
0

⎞

⎠

where k1, k2, and k3 are arbitrary constants. This representation was ac-
complished by multiplying the eigenvectors v1 and v2 by the scalar constant
1/.707107 to obtain the eigenvectors

w1 =

⎛

⎝
1
0
1

⎞

⎠ and w2 =

⎛

⎝
−1
0
1

⎞

⎠ . �
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In part 4 of Example 5 of Section 8.2, we ran the computer program EIGEN
and found that the eigenvalues of the matrix

A =

(
1 −2
1 3

)

are λ1 = 2 + i, λ2 = 2− i and the associated eigenvectors are

z1 =

(−1− i
i

)

and z2 =

(−1 + i
−i
)

.

Therefore, the general solution of the homogeneous linear system y′ = Ay
may be written as

(17) y(x) = c1e
(2+i)x

(−1− i
i

)

+ c2e
(2−i)x

(−1 + i
−i
)

,

where c1 and c2 are arbitrary constants. The function y(x) of equation (17)
is a complex-valued function of the real variable x. Since the original system
of differential equations, y′ = Ay, is a real system (that is, since all of the
entries of the matrixA are all real numbers), it is desirable to write the general
solution of the system as a real-valued function of x, if possible. The following
theorem specifies conditions under which we can write two real-valued, linearly
independent solutions for y′ = Ay when A has a pair of complex conjugate
eigenvalues.

Theorem 8.8 If A is a constant, real matrix (that is, if A has entries that
are all real and constant) and if λ = α+ iβ where β �= 0 is an eigenvalue of A
with associated eigenvector x = u+ iv, then the linear homogeneous system
y′ = Ay has two real-valued, linearly independent solutions of the form

y1(x) = (eαx cosβx)u− (eαx sinβx)v

y2(x) = (eαx sinβx)u+ (eαx cosβx)v.

Proof: Since λ = α+ iβ is an eigenvalue of A and x = u+ iv is an associated
eigenvector, a complex-valued solution of y′ = Ay is

(18) z(x) = e(α+iβ)x(u+ iv).

Recall that Euler’s formula is eiθ = cos θ + i sin θ. Therefore,

(19) e(α+iβ)x = eαx+iβx = eαxeiβx = eαx(cos βx+ i sinβx).

Substituting (19) into (18) and multiplying, we find

z(x) = eαx(cosβx+ i sinβx)(u+ iv)

= eαx[(cosβx)u− (sinβx)v] + ieαx[(sinβx)u+ (cosβx)v]

= y1(x) + iy2(x).

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


342 Elementary Differential Equations

Since z(x) is a complex-valued solution of y′ = Ay, we have z′(x) = Az or

(20) y′
1 + iy′

2 = A(y1 + iy2) = Ay1 + i(Ay2).

Equating the real parts and the imaginary parts of equation (20), we see that
y′
1 = Ay1 and y′

2 = Ay2. That is, y1 and y2 are both solutions of y′ = Ay.
Clearly, they are real solutions.

We must still show that the solutions y1 and y2 are linearly independent.
By definition, the complex conjugate of λ = α + iβ is λ̄ = α − iβ. Since A
is assumed to have real, constant entries, the characteristic polynomial of A
will have real coefficients. So by the complex conjugate root theorem
if λ = α + iβ is a root of the characteristic polynomial of A, then so is
its complex conjugate λ̄ = α − iβ. The following computations show that
the complex conjugate of x, the vector x̄ = u − iv, is an eigenvector of A
associated with the eigenvalue λ̄. Since λ is an eigenvalue of A and x is
an associated eigenvector, λ and x satisfy Ax = λx. Taking the complex
conjugate of this equation, we find (Ax) = (λx). Since the conjugate of a
product equals the product of the conjugates, Āx̄ = λ̄x̄. Because A has
real entries Ā = A, and we see that λ̄ and x̄ satisfy Ax̄ = λ̄x̄. That is,
λ̄ = α− iβ is an eigenvalue of A and x̄ = u− iv is an associated eigenvector.
Since β �= 0, the eigenvalues λ and λ̄ are distinct and, therefore, the associated
complex-valued solutions

z(x) = e(α+iβ)x(u+ iv) = y1(x) + iy2(x)

and
w(x) = e(α−iβ)x(u− iv) = y1(x) − iy2(x)

are linearly independent. Any two linear combinations of the solutions z(x)
and w(x), c1z(x) + c2w(x) and c3z(x) + c4w(x), where c1, c2, c3, and c4
are complex constants will also be linearly independent solutions provided
c1c4 − c3c2 �= 0. Choosing c1 = c2 = 1/2, one linear combination is

1

2
z(x) +

1

2
w(x) =

1

2
(y1 + iy2) +

1

2
(y1 − iy2) = y1(x).

And choosing c3 = −i/2 and c4 = i/2, a second linear combination is

−i
2
z(x) +

i

2
w(x) =

−i
2
(y1 + iy2) +

i

2
(y1 − iy2) = y2(x).

Since c1c4−c3c2 = (1/2)(i/2)−(−i/2)(1/2) = i/2 �= 0, the eigenvectors y1(x)
and y2(x) are linearly independent solutions of y′ = Ay. �

Now, we use the theorem stated and proved above to produce a real general
solution of the homogeneous linear system

y′ = Ay =

(
1 −2
1 3

)

y.
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Earlier, we had found that one eigenvalue of the matrix A is λ = 2+i = α+βi
and that the associated eigenvector is

z1 =

(−1− i
i

)

=

(−1
0

)

+ i

(−1
1

)

= u+ iv.

By the previous theorem, two real, linearly independent solutions of y′ = Ay
are

y1(x) = e2x cosx

(−1
0

)

− e2x sinx

(−1
1

)

=

(−e2x cosx+ e2x sinx
−e2x sinx

)

and

y2(x) = e2x sinx

(−1
0

)

+ e2x cosx

(−1
1

)

=

(−e2x sinx− e2x cosx
e2x cosx

)

.

Furthermore, the real general solution of y′ = Ay is y(x) = k1y1(x)+k2y2(x)
where k1 and k2 are arbitrary real constants.

Example 4 Find the real general solution of the homogeneous linear
system

(21) y′ =

⎛

⎝
1 4 3
0 1 −1

−1 1 2

⎞

⎠y.

Solution

We ran the computer program EIGEN, setting the size of the matrix to
three and entering the values for the elements of the matrix which appears
in equation (21). The output of the program is shown in Figure 8.7. The
eigenvalues are 1 + 2i = α+ βi, 1− 2i, and 2 and the associated eigenvectors
are

x1 =

⎛

⎝
−.871550
.0115057

−.837032

⎞

⎠+ i

⎛

⎝
1.23254

−0.418516
−0.0230115

⎞

⎠ = u+ iv,

x2 = x̄1, and x3 =

⎛

⎝
.538516
.538516

−.538516

⎞

⎠ .

Hence, the real general solution of (21) is

y(x) = c1[(e
x cos 2x)u−(ex sin 2x)v]+c2[(e

x sin 2x)u+(ex cos 2x)v]+c3e
2xx3.
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Figure 8.7 Eigenvalues and Eigenvectors of the Matrix in Equation (21). �

EXERCISES 8.3

In Exercises 1–4 rewrite each of the linear systems of first-order
differential equations using matrix-vector notation.

1. y′1 = 2y1 − 3y2 + 5ex

y′2 = y1 + 4y2 − 2e−x

2. y′1 = y2 − 2y1 + sin 2x

y′2 = −3y1 + y2 − 2 cos 3x

3. y′1 = 2y2

y′2 = 3y1

y′3 = 2y3 − y1

4. y′1 = 2xy1 − x2y2 + 4x

y′2 = exy1 + 3e−xy2 − cos 3x

5. Consider the homogeneous linear system

(22) y′ =
(
2 −3
1 −2

)

y.

a. Verify that

y1 =

(
3
1

)

ex and y2 =

(
1
1

)

e−x
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are linearly independent solutions of (22).

b. Write the general solution of (22).

c. Verify that

yp =

(
x

2x− 1

)

is a particular solution of the nonhomogeneous linear system

(23) y′ =
(
2 −3
1 −2

)

y +

(
4x− 2
3x

)

.

d. Write the general solution of (23).

6. Consider the homogeneous linear system

(24) y′ =

⎛

⎜
⎜
⎝

5

x

4

x

−6

x

−5

x

⎞

⎟
⎟
⎠y.

a. Verify that

y1 =

(
1

−1

)

x and y2 =

(−2
3

)

x−1

are linearly independent solutions on (0,∞) of (24).

b. Write the general solution of (24).

c. Verify that

yp =

(
2

−1

)

x2

is a particular solution of the nonhomogeneous linear system

(25) y′ =

⎛

⎜
⎜
⎝

5

x

4

x

−6

x

−5

x

⎞

⎟
⎟
⎠y +

⎛

⎝
−2

5

⎞

⎠ x.

d. Write the general solution of (25).
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In Exercises 7–16 find the real general solution of the homoge-
neous linear system y′ = Ay for the given matrix A.

7.

⎛

⎝
2 1 −2
0 3 −2
3 1 −3

⎞

⎠ 8.

⎛

⎝
5 −5 −5

−1 4 2
3 −5 −3

⎞

⎠

9.

⎛

⎝
4 6 6
1 3 2

−1 −4 −3

⎞

⎠ 10.

⎛

⎝
1 2 −3

−3 4 −2
2 0 1

⎞

⎠

11.

⎛

⎝
−2 −1 1
−1 −2 −1
1 −1 −2

⎞

⎠ 12.

⎛

⎝
1 1 2
1 1 2
2 2 4

⎞

⎠

13.

⎛

⎜
⎜
⎝

2 1 0 0
−1 2 0 0
0 0 3 −4
0 0 4 3

⎞

⎟
⎟
⎠ 14.

⎛

⎜
⎜
⎝

0 1 0 0
−3 0 2 0
0 0 0 1
2 0 −5 0

⎞

⎟
⎟
⎠

15.

⎛

⎜
⎜
⎝

3 2 0 0
−2 3 0 0
0 0 1 0
0 0 0 2

⎞

⎟
⎟
⎠ 16.

⎛

⎜
⎜
⎝

0 1 0 1
1 0 −1 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠
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Chapter 9

Applications of Linear Systems with
Constant Coefficients

In this chapter we present several applications which require the solution of
a linear system of first-order differential equations with constant coefficients.

9.1 Coupled Spring-Mass Systems

System 1 Suppose a massm1 is attached to one end of a spring with spring
constant k1. The other end of this spring is attached to a fixed support. A
second mass m2 is attached to one end of a second spring with spring constant
k2. The other end of the second spring is attached to the bottom of mass m1

and the resulting system is allowed to come to rest in the equilibrium position
as shown in Figure 9.1.
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Figure 9.1 A Coupled Spring-Mass System.
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348 Elementary Differential Equations

For i = 1, 2 let yi represent the vertical displacement of mass mi from its
equilibrium position. We will assign downward displacement from equilibrium
to be positive and upward displacement from equilibrium to be negative. Ap-
plying Newton’s second law of motion and assuming no damping is present,
it can be shown that the equations of motion for this coupled spring-mass
system satisfy the following linear system of differential equations

m1y
′′
1 = −k1y1 + k2(y2 − y1)

(1)

m2y
′′
2 = −k2(y2 − y1).

Dividing the first equation in system (1) by m1, dividing the second equation
of system (1) by m2, and letting u1 = y1, u2 = y′1, u3 = y2, and u4 = y′2, we
see we may rewrite (1) as the following equivalent first-order system

u′1 = u2

u′2 =
−k1u1 + k2(u3 − u1)

m1
=

−(k1 + k2)u1
m1

+
k2u3
m1

(2)

u′3 = u4

u′4 =
−k2(u3 − u1)

m2
=
k2u1
m2

− k2u3
m2

.

Next, using matrix-vector notation, we may rewrite (2) as

(3) u′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

−(k1 + k2)

m1
0

k2
m1

0

0 0 0 1

k2
m2

0
−k2
m2

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

u.

Example 1 Write the real general solution of system (3) for m1 =
3 g, m2 = 5 g, k1 = 18 g/s2, and k2 = 3 g/s2.

Solution

For the given values of m1, m2, k1, and k2 system (3) becomes

(4) u′ =

⎛

⎜
⎜
⎝

0 1 0 0
−7 0 1 0
0 0 0 1
.6 0 −.6 0

⎞

⎟
⎟
⎠u.
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Applications of Linear Systems with Constant Coefficients 349

We used the computer program EIGEN to find the eigenvalues and associated
eigenvectors shown in Figure 9.2.

Figure 9.2 Two Pair of Complex Conjugate Eigenvalues and Eigenvectors

of the Constant 4× 4 Matrix in Equation (4).

Using this information, we can write the real general solution of system (4)
as

(5) u(x) = c1[(cos βx)v1 − (sinβx)v2] + c2[(sin βx)v1 + (cosβx)v2]

+c3[(cos γx)v3 − (sin γx)v4] + c4[(sin γx)v3 + (cos γx)v4]

where β = 2.66316, γ = .712450,

v1 =

⎛

⎜
⎜
⎜
⎝

0.375485

0.000000

−0.0347007

0.000000

⎞

⎟
⎟
⎟
⎠
, v2 =

⎛

⎜
⎜
⎜
⎝

0.000000

0.999978

0.000000

−0.0924135

⎞

⎟
⎟
⎟
⎠
,
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350 Elementary Differential Equations

v3 =

⎛

⎜
⎜
⎜
⎝

0.213163

0.000000

1.38394

0.000000

⎞

⎟
⎟
⎟
⎠
, and v4 =

⎛

⎜
⎜
⎝

0.000000
0.151868
0.000000
0.985988

⎞

⎟
⎟
⎠ . �

Example 2 Find the solution to the initial value problem consisting
of the system (4) and the initial conditions u1(0) = 1 cm, u2(0) =
0 cm/s, u3(0) = −2 cm, and u4(0) = 0 cm/s.

Solution

Written in vector notation the given initial conditions are

u(0) =

⎛

⎜
⎜
⎝

1
0

−2
0

⎞

⎟
⎟
⎠ .

Evaluating equation (5)—the general solution to system (4)—at x = 0, we
see that the constants c1, c2, c3 and c4 must satisfy

u(0) = c1v1 + c2v2 + c3v3 + c4v4 = 0

or equivalently

.375485c1 + .213163c3 = 1

.999978c2 + .151868c4 = 0

−.0347007c1 + 1.38394c3 = −2

−.0924135c2 + .985988c4 = 0.

Solving the first and third equations of this set for c1 and c3, we find c1 =
3.43474 and c3 = −1.35903. And solving the second and fourth equations of
this set for c2 and c4, we find c2 = c4 = 0. Hence, the solution of the system (4)
subject to the initial conditions given in this example is equation (5) with
c1 = 3.43474, c2 = 0, c3 = −1.35903, and c4 = 0. Thus, the solution is

u(x) =

⎛

⎜
⎜
⎝

u1(x)
u2(x)
u3(x)
u4(x)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 .28069 cosβx − .289695 cos γx
−3 .43466 sinβx + .206393 sin γx
− .119188 cosβx − 1 .88082 cos γx
.317416 sinβx + 1 .33999 sin γx

⎞

⎟
⎟
⎠

where β = 2.66316 and γ = .712450. A graph of the position of the mass
m1, u1(x), and the position of the mass m2, u3(x), on the interval [0, 30]
is displayed in Figure 9.3. Notice the interesting, oscillatory nature of both
functions.
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Figure 9.3 A Graph of the Positions of the Masses

of a Coupled Spring-Mass System. �

When damping is assumed to be present in the coupled spring-mass system
shown in Figure 9.1, the equations of motion satisfy the following second-order
linear system

(6)
m1y

′′
1 = −k1y1 + k2(y2 − y1)− d1y

′
1

m2y
′′
2 = −k2(y2 − y1)− d2y

′
2

where, as before, y1 and y2 are the displacements of the masses from the
equilibrium positions, m1 and m2 are the masses, and k1 and k2 are the
respective spring constants. The positive constants d1 and d2 are due to the
damping forces and are called the damping constants.

Exercise 1. Write the real general solution for the coupled spring-mass
system (3) for

a. m1 = 5 g, m2 = 10 g, k1 = 10 g/s and k2 = 10 g/s.

b. m1 = 5 g, m2 = 10 g, k1 = 5 g/s and k2 = 10 g/s.

Exercise 2. Find the solution of the initial value problem consisting of the
differential system of Exercise 1. a. subject to the initial conditions u1(0) =
3 cm and u2(0) = u3(0) = u4(0) = 0.

Exercise 3. Let u1 = y1, u2 = y′1, u3 = y2, and u4 = y′2.

a. Write system (6) as an equivalent system of four first-order differential
equations.
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352 Elementary Differential Equations

b. Write the first-order system which is equivalent to (6) in matrix-vector
notation.

c. Use EIGEN or your computer software to find the general solution to the
homogeneous system of part b. form1 = m2 = 10 g, k1 = 5 g/s2, k2 = 10 g/s2

and d1 = d2 = 15 g/s.

System 2 A second coupled spring-mass system which consists of two
masses, m1 and m2, connected to two fixed supports by three springs which
have spring constants k1, k2, and k3 is shown in Figure 9.4.
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Figure 9.4 A Coupled Spring-Mass System.

Neglecting the effects of damping, the system of differential equations which
describes the displacements y1 and y2 of massesm1 andm2, respectively, from
their equilibrium positions is

(7)
m1y

′′
1 = −k1y1 + k2(y2 − y1)

m2y
′′
2 = −k2(y2 − y1)− k3y2.

When damping is assumed to be present in the coupled spring-mass system
shown in Figure 9.4, the equations of motion satisfy the following second-order
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linear system

(8)
m1y

′′
1 = −k1y1 + k2(y2 − y1)− d1y

′
1

m2y
′′
2 = −k2(y2 − y1)− k3y2 − d2y

′
2

where d1 and d2 are the damping constants.

Exercise 4. Let u1 = y1, u2 = y′1, u3 = y2 and u4 = y′2.

a. Write the system (7) as an equivalent system of four first-order differen-
tial equations.

b. Write the first-order system of equations which is equivalent to (7) in
matrix-vector notation.

c. Use EIGEN or your computer software to find the general solution to
the homogeneous system of part b. for m1 = m2 = 2 g, k1 = k3 = 4 g/s2, and
k2 = 6 g/s2.

Exercise 5. a. Write system (8) as an equivalent system of first-order equa-
tions in matrix-vector notation.

b. Use EIGEN or your computer software to find the general solution of
the resulting system for the following cases.

(i) m1 = m2 = 2 g, k1 = k3 = 10 g/s2, k2 = 3 g/s2, and d1 = d2 = 12 g/s.

(ii) m1 = m2 = 1 g, k1 = k3 = 3 g/s2, k2 = 1 g/s2, and d1 = d2 = 4 g/s.

(iii) m1 = m2 = 1 g, k1 = k3 = 2 g/s2, k2 = 1 g/s2, and d1 = d2 = 2 g/s.

9.2 Pendulum Systems

Coupled Pendulums A coupled pendulum system consists of a pair of
identical pendulums with bobs of mass m and rods of length � coupled by a
spring with spring constant k as shown in Figure 9.5. Let y1 and y2 denote
the displacement of the pendulums from vertical (positive displacement is to
the right). Neglecting damping and assuming the displacements y1 and y2 are
small, we showed in Section 8.3 that the displacements satisfy the following
system of second-order differential equations

my′′1 =
−mgy1

�
− k(y1 − y2)

my′′2 =
−mgy2

�
− k(y2 − y1).
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Figure 9.5 Coupled Pendulums.

Also in Section 8.3, we showed by letting u1 = y1, u2 = y′1, u3 = y2, and u4 =
y′2 that the second-order system above can be rewritten in matrix notation as
the following first-order system of differential equations.

(9)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u′1

u′2

u′3

u′4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

−
(
g

�
+
k

m

)

0
k

m
0

0 0 0 1

k

m
0 −

(
g

�
+
k

m

)

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u1

u2

u3

u4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Exercise 6. Use EIGEN or your computer software to find the general solu-
tion of system (9) form = 25 g, � = 50 cm, k = 400 g/s2, and g = 980 cm/s2.

A Double Pendulum A double pendulum consists of a bob of mass m1

attached to a fixed support by a rod of length �1 and a second bob of mass m2

attached to the first bob by a rod of length �2 as shown in Figure 9.6. Let y1
and y2 denote the displacement from the vertical of the rods of length �1 and
�2 respectively. Assuming the double pendulum oscillates in a vertical plane
and neglecting the mass of the rods and any damping forces, it can be shown
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that the displacements, y1 and y2, satisfy the following system of differential
equations

(10)
(m1 +m2)�

2
1y

′′
1 +m2�1�2y

′′
2 + (m1 +m2)�1gy1 = 0

m2�1�2y
′′
1 +m2�

2
2y

′′
2 +m2�2gy2 = 0

where g is the constant of gravitational acceleration.

��������
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Figure 9.6 A Double Pendulum.

Exercise 7. a. Write system (10) as an equivalent system of first-order dif-
ferential equations in matrix notation.

b. Use EIGEN or your computer software to find the general solution of
the resulting system for m1 = 30 g, m2 = 20 g, �1 = 50 cm, �2 = 25 cm,
and g = 980 cm/s2.

9.3 The Path of an Electron

In Chapter 6, we stated that the position (x, y) of an electron which was
initially at rest at the origin and subject to a magnetic field of intensity H
and an electric field of intensity E satisfied the second-order system initial
value problem

(11a)
x′′ = −HRy′ + ER

y′′ = HRx′

(11b) x(0) = 0, x′(0) = 0, y(0) = 0, y′(0) = 0
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where R = q/m is the ratio of the charge of an electron, q, to its mass, m.
Here the independent variable is time, t, and the dependent variables are x
and y. In Chapter 7 we showed how to write a system of first-order differential
equations which is equivalent to system (9) by letting u1 = x, u2 = x′, u3 = y,
and u4 = y′. Hence, in Chapter 7 we found that the following system of four
first-order differential equations is equivalent to (11a)

u′1 = u2

u′2 = −HRu4 + ER

u′3 = u4

u′4 = HRu2.

Using matrix-vector notation, this system may be rewritten as

(12a) u′ =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 −HR
0 0 0 1
0 HR 0 0

⎞

⎟
⎟
⎠u+

⎛

⎜
⎜
⎝

0
ER
0
0

⎞

⎟
⎟
⎠ .

The initial conditions are u1(0) = 0, u2(0) = 0, u3(0) = 0, and u4(0) = 0. Or
in vector notation the initial conditions are

(12b) u(0) = 0.

Example 3 For HR = 2 and ER = 3, solve the nonhomogeneous
initial value problem (12).

Solution

Replacing HR by 2 and ER by 3 in system (12), we see we must solve the
initial value problem

(13a) u′ =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 −2
0 0 0 1
0 2 0 0

⎞

⎟
⎟
⎠u+

⎛

⎜
⎜
⎝

0
3
0
0

⎞

⎟
⎟
⎠ = Au+ b

(13b) u(0) = 0.

In order to solve the nonhomogeneous initial value problem (13), we must first
find the general solution, uc, of the associated homogeneous linear system
u′ = Au. We will do this with the aid of our computer software. Next,
we must find a particular solution, up, of the nonhomogeneous system (13a)
u′ = Au + b. The general solution of (13a) is then u = uc + up. Finally,
we determine values for the constants appearing in the general solution which
will satisfy the initial conditions (13b).
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We ran the computer program EIGEN and found the eigenvalues of A to be
0, 0, and ±2i. We also found the associated linearly independent eigenvectors
to be

v1 =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ , v2 =

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠ , v3 =

⎛

⎜
⎜
⎜
⎝

0.0

−1.0

0.5

0.0

⎞

⎟
⎟
⎟
⎠
+

⎛

⎜
⎜
⎜
⎝

0.5

0.0

0.0

1.0

⎞

⎟
⎟
⎟
⎠
i = r+si, v4 = r−si.

So the complementary solution—that is, the real general solution of the asso-
ciated homogeneous equation u′ = Au—is

(14) uc = c1v1 + c2v2 + c3[(cos 2t)r− (sin 2t)s] + c4[(sin 2t)r+ (cos 2t)s].

We now use the method of undetermined coefficients to find a particular
solution of the nonhomogeneous system of differential equations (13a). We
used this method in Chapter 4 to find particular solutions of n-th order linear
nonhomogeneous differential equations with constant coefficients. Recall that
the method consisted of judiciously guessing the form of the particular solu-
tion with coefficients unknown and then determining specific values for the
unknown coefficients in order to satisfy the differential equation. The method
of undetermined coefficients works only when the matrix A is constant and
the components of the nonhomogeneity b are polynomials, exponential or
sinusoidal functions, or the sums and products of these functions.

Since the vector b of system (13a) is a constant, we attempt to find a
particular solution, up, which is also a constant. Hence, we assume

up =

⎛

⎜
⎜
⎝

α
β
γ
δ

⎞

⎟
⎟
⎠

where α, β, γ, and δ are unknown constants. Differentiating, we find u′
p = 0.

Substituting for up and u′
p in (13a), we see that

u′
p = Aup + b or 0 = Aup + b or Aup = −b.

Computing Aup and setting the result equal to −b, we find α, β, γ, and δ
must simultaneously satisfy

β = 0

−2δ = −3

δ = 0

2β = 0

This is impossible, since we must have both δ = 3/2 and δ = 0. Thus, there
is no particular solution of the form assumed. That is, no constant vector is
a particular solution of (13a).
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Having failed to find a constant particular solution of (13a), we next seek
a particular solution in which each component is a linear function. Thus, we
assume up has the form

up =

⎛

⎜
⎜
⎝

a+ bt
c+ dt
e+ ft
g + ht

⎞

⎟
⎟
⎠

where a, b, c, d, e, f , g, and h are unknown constants. Differentiating, we
have

u′
p =

⎛

⎜
⎜
⎝

b
d
f
h

⎞

⎟
⎟
⎠ .

Substituting for up and u′
p in (13a), u′

p = Aup + b, results in
⎛

⎜
⎜
⎝

b
d
f
h

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 −2
0 0 0 1
0 2 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

a+ bt
c+ dt
e+ ft
g + ht

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

0
3
0
0

⎞

⎟
⎟
⎠

or equivalently

b = c+ dt
d = −2(g + ht) + 3 = (−2g + 3)− 2ht
f = g + ht
h = 2(c+ dt) = 2c+ 2dt.

Equating coefficients in each of these four equations, we find the constants
must simultaneously satisfy

(coefficients of t0) (coefficients of t)
b = c and 0 = d
d = −2g + 3 and 0 = −2h
f = g and 0 = h
h = 2c and 0 = 2d.

Solving these eight equations, we find a and e are arbitrary, b = c = d = h = 0,
and f = g = 3/2. Hence,

up =

⎛

⎜
⎜
⎝

a
0

e+ 3t/2
3/2

⎞

⎟
⎟
⎠

is a particular solution of (13a) for any choice of a and e. Choosing a = e = 0,
we obtain the simple particular solution

(15) up =

⎛

⎜
⎜
⎝

0
0

3t/2
3/2

⎞

⎟
⎟
⎠ .
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The general solution of (13a) is u(t) = uc(t) + up(t), where uc is given by
equation (14) and where up is given by (15). Imposing the initial conditions
(13b) u(0) = 0 requires c1, c2, c3, and c4 to satisfy

u(0) = uc(0) + up(0) = c1v1 + c2v2 + c3r+ c4s+ up(0) = 0.

Or

c1

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠+ c2

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠+ c3

⎛

⎜
⎜
⎝

0
−1
1/2
0

⎞

⎟
⎟
⎠+ c4

⎛

⎜
⎜
⎝

1/2
0
0
1

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

0
0
0

3/2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠ .

Thus, c1, c2, c3 and c4 must simultaneously satisfy

c1 + c4/2 = 0

−c3 = 0

c2 + c3/2 = 0

c4 + 3/2 = 0.

Solving this system of equations, we find c1 = 3/4, c2 = c3 = 0, and c4 =
−3/2. Therefore, the solution of the initial value problem (13) is

u(t) =
3

4
v1 − 3

2
[(sin 2t)r+ (cos 2t)s] + up(t).

Consequently,

u =

⎛

⎜
⎜
⎝

u1
u2
u3
u4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

x
x′

y
y′

⎞

⎟
⎟
⎠ =

3

4

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠− 3

2
sin 2t

⎛

⎜
⎜
⎝

0
−1
1/2
0

⎞

⎟
⎟
⎠− 3

2
cos 2t

⎛

⎜
⎜
⎝

1/2
0
0
1

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

0
0

3t/2
3/2

⎞

⎟
⎟
⎠ .

Or, equivalently

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x(t)

x′(t)

y(t)

y′(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3

4
− 3

4
cos 2t

3

2
sin 2t

−3

4
sin 2t+

3t

2

−3

2
cos 2t+

3

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Hence, the position of the electron in the xy-plane as a function of time, t, is

(x(t), y(t)) = (
3

4
− 3

4
cos 2t,

−3

4
sin 2t+

3t

2
).

A graph of the path of the electron in the xy-plane is displayed in Figure 9.7.
The electron is initially at the origin, travels along the path shown, and reaches
the point (0, 1.5π) in π units of time.
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Figure 9.7 The Path of an Electron.

9.4 Mixture Problems

Many important problems in biology, chemistry, engineering, and physics
can be formulated within the following general framework. Suppose at a
given time t = 0 various containers (tanks, lakes, or rooms, for example) hold
known amounts of a certain substance. Also suppose at time t = 0 any or all
of the following three events occur: A solution (fluid) containing a specified
concentration of the substance begins to flow into one or more containers
in the system from outside the system. A solution begins to flow from one
container in the system to another container. A solution begins to flow out of
the system from some container. The mixture in each container is assumed to
be kept at a uniform, but not necessarily constant, concentration throughout
by a mixing device. The problem is to determine the amount of the substance
in each container as a function of time. For each problem of the type just
described, a system of differential equations to be solved is established using
the following assumptions:

The rate of change of the amount of substance in any container at time
t is equal to the sum over all inputs to the container of the concentration
of each input times the rate of input minus the concentration of the
substance in the particular container times the sum of the rates of flow
of outputs from the container.
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That is, the rate of change of the amount of substance in container k at time
t is

dqk
dt

=
∑

i

ci(t)ri(t)− ck(t)
∑

o

ro(t)

where qk is the amount of substance in container k at time t, ci(t) is the
concentration of the substance in input i and ri(t) is the corresponding rate
of input, ck(t) is the concentration of the substance in container k at time t,
and ro(t) is the rate of output to output o. Here the index of summation i is
over all inputs and the index of summation o is over all outputs.

As an example, suppose at time t = 0 an amount A1 of a particular sub-
stance is present in a solution that fills a container of volume V1 and an amount
A2 of the same substance is present in a solution that fills a second container
of volume V2. Assume the two containers are connected by tubes of negligible
length as shown in Figure 9.8. Further assume at time t = 0, (i) the solution
in the first container which is kept at uniform concentration c1(t) is pumped
into the second container at the constant rate r and (ii) the solution in the
second container which is kept at uniform concentration c2(t) is pumped back
into the first container at the rate r. The problem is to determine the amount
of substance q1(t) in the first container and the amount of substance q2(t) in
the second container as a function of time.

�

�

� �
� �

Figure 9.8 Mixture Problem for Two Interconnected Tanks.

Since the volume of both containers is constant, the concentration of the
substance in the first container is the amount of substance in the container
divided by the volume of the container—that is, c1(t) = q1(t)/V1—and the
concentration of the substance in the second container is c2(t) = q2(t)/V2.
Equating the rate of change of the amount of substance in each container to
the concentration of the substance in the other container times the rate at
which the solution enters the container from the other container minus the
concentration of the substance in the container times the rate at which the
solution leaves the container, we obtain the following system of differential
equations:

dq1
dt

= c2(t)r − c1(t)r = r
q2(t)

V2
− r

q1(t)

V1

dq2
dt

= c1(t)r − c2(t)r = r
q1(t)

V1
− r

q2(t)

V2
.
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Rewriting this system in matrix-vector notation, we see q1 and q2 satisfy

(16a) q′ =

⎛

⎝
q′1

q′2

⎞

⎠ =

⎛

⎜
⎜
⎜
⎝

−r
V1

r

V2

r

V1

−r
V2

⎞

⎟
⎟
⎟
⎠

⎛

⎝
q1

q2

⎞

⎠ .

The initial conditions are q1(0) = A1 and q2(0) = A2 or

(16b) q(0) =

⎛

⎝
q1(0)

q2(0)

⎞

⎠ =

⎛

⎝
A1

A2

⎞

⎠ .

For our next example, suppose two containers are connected by tubes of
negligible length as shown in Figure 9.9. Suppose at time t = 0 an amount
A1 of a substance is present in a solution that fills a container of constant
volume V1 and an amount A2 of the same substance is present in a solution
that fills a container of constant volume V2.

β

γ

� �
� �

α

δ

Figure 9.9 Mixture Problem for Two Interconnected Tanks.

Also assume at time t = 0 that (i) a solution containing a concentration cα
of the substance is allowed to enter the first container from an outside source
at the rate α; (ii) the solution in the first container is kept at a uniform
concentration c1(t) and is pumped into the second container at a constant
rate β; and (iii) the solution in the second container, which is kept at a
uniform concentration c2(t), is pumped back into the first container at the
constant rate γ and is pumped out of the system at the constant rate δ. We
assume both containers are always full. This means the sum of the input rates
to a container must equal the sum of the output rates. Hence, for the system
under consideration the following relationships between the rates of flow must
hold:

(17) α+ γ = β β = γ + δ

(for container 1) (for container 2)

Let q1(t) be the amount of substance in the first container and q2(t) be the
amount of substance in the second container at time t. The concentration of
the substance in the first container is c1(t) = q1(t)/V1 and the concentration

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Applications of Linear Systems with Constant Coefficients 363

of the substance in the second container is c2(t) = q2(t)/V2. Equating the
rate of change of the amount of substance in each container to the sum over
all inputs to the container of the concentration of the input times the rate
of input minus the concentration of the substance in the container times the
sum of the rates of output from the container, we obtain the following system
of differential equations for the mixture system under consideration:

dq1
dt

= cαα+ c2(t)γ − c1(t)β = cαα+ γ
q2
V2

− β
q1
V1

dq2
dt

= c1(t)β − c2(t)(γ + δ) = β
q1
V1

− (γ + δ)
q2
V2
.

Or, writing this system in matrix-vector notation

(18a) q′ =

⎛

⎝
q′1

q′2

⎞

⎠ =

⎛

⎜
⎜
⎜
⎝

−β
V1

γ

V2

β

V1

−(γ + δ)

V2

⎞

⎟
⎟
⎟
⎠

⎛

⎝
q1

q2

⎞

⎠+

⎛

⎝
αcα

0

⎞

⎠ .

The initial conditions for this system are

(18b) q(0) =

⎛

⎝
q1(0)

q2(0)

⎞

⎠ =

⎛

⎝
A1

A2

⎞

⎠ .

Exercise 8. a. Use EIGEN or your computer software to find the general
solution to system (16a) for V1 = 100 gal, V2 = 50 gal, and r = 10 gal/min.

b. Solve the initial value problem (16) for V1, V2, and r as given in part a.,
A1 = 50 lbs, and A2 = 0 lbs. That is, determine values for the arbitrary con-
stants in the general solution for part a. to satisfy the initial conditions (16b)
when A1 = 50 lbs and A2 = 0 lbs.

c. What is limt→∞ q1(t)? What is limt→∞ q2(t)? Are these values the
values you expect from strictly physical considerations?

Exercise 9. a. Find the general solution to the homogeneous system asso-
ciated with the nonhomogeneous system (18a) for α = 15 gal/min, β =
20 gal/min, γ = 5 gal/min, δ = 15 gal/min, V1 = 200 gal, and V2 = 100 gal.

b. Find the general solution of the nonhomogeneous system (18a) for α, β,
γ, δ, V1, and V2 as given in part a. and cα = 1 lb/gal. (Hint: Assume there is
a particular solution of (18a) in which each component is constant.)

c. Find the general solution of the initial value problem (18) for α, β, γ,
δ, V1, and V2, as given in part a., for cα = 1 lb/min, and A1 = 10 lbs and
A2 = 0 lbs.

d. What is limt→∞ q1(t)? What is limt→∞ q2(t)? How does limt→∞ q1(t)/V1
and limt→∞ q2(t)/V2 compare with cα?
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Exercise 10. Tank A is a 200 gallon tank and is initially filled with a brine
solution which contains 50 pounds of salt. Tank B is a 200 gallon tank and
is initially filled with pure water. Pure water flows into tank A from an
outside source at 5 gal/min. Solution from tank A is pumped into tank B at
7 gal/min. Solution from tank B is pumped back into tank A at 2 gal/min
and out of the system at 5 gal/min. Find the amount of salt in each tank as
a function of time. What is the limiting value for the amount of salt in each
tank?

Exercise 11. Tank A is a 100 gallon tank and is initially filled with a brine
solution which contains 30 pounds of salt. Tank B is a 200 gallon tank and is
initially filled with a brine solution which contains 15 pounds of salt. A brine
solution containing 2 pounds of salt per gallon enters tank A from an outside
source at a rate of 5 gal/min. Solution from tank A is pumped into tank B at
a rate of 3 gal/min. Solution from tank B is pumped back into tank A at the
same rate. Solution from tank A is pumped out of the system at the rate of
5 gal/min. Find the amount of salt in each tank as a function of time. What
is the limiting value for the amount of salt in each tank?

Exercise 12. Three tanks are connected as shown in Figure 9.10. Each tank
contains 100 gallons of brine. The rates of flow are α = 10 gal/min, β =
5 gal/min, and γ = 15 gal/min. Find the amount of salt in each tank as a
function of time, if initially tank 1 has 20 pounds, tank 2 has 5 pounds, and
tank 3 has 10 pounds. What is the limiting amount of salt in each tank?

���� � ���� � ���� �

βα

α

γ

Figure 9.10 Mixture Problem for Three Interconnected Tanks.

Exercise 13. Three small ponds each containing 10, 000 gallons of pure water
are formed by a spring rain. Water containing .3 lbs/gal of salt enters pond A
at 10 gal/hr. Water evaporates from pond A at 3 gal/hr and flows into pond
B at 7 gal/hr. Water evaporates from pond B at 2 gal/hr and flows into pond
C at 5 gal/hr. Water evaporates from pond C at 2.5 gal/hr and flows out of
the system at 2.5 gal/hr. Find the amount of salt in each pond as a function
of time. What is the limiting amount of salt in each pond?

Exercise 14. Three 150-gallon tanks initially contain pure water. Brine with
a concentration of 4 lbs/gal flows into tank A at a rate of 10 gal/min. Water
is pumped from tank A into tank B at a rate of 6 gal/min and into tank C at
a rate of 4 gal/min. Water is pumped from tank C into tank B at a rate of
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4 gal/min. And water is pumped out of the system from tank B at the rate
of 10 gal/min. Find the amount of salt in each tank as a function of time.

Pollution in the Great Lakes As we stated earlier, one of the major
problems facing industrialized nations is water pollution. Rivers and lakes
become polluted with various types of waste products such as DDT, mercury,
and phosphorus which kill plant and marine life. Once pollution in a river is
stopped, the river cleans itself fairly rapidly. However, as this example for the
Great Lakes will illustrate, large lakes require much longer to clean themselves
by the natural process of clean water flowing into the lake and polluted water
flowing out. Figure 9.11 shows the Great Lakes, their volumes, and inflow
and outflow rates.

R  = 15

R  = 15

R  = 14

R  = 17R  = 38

r  = 15

r  = 68
r  = 85

r  = 99

r  = 38
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h

m
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M
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Figure 9.11 Volumes (mi3) and Flow Rates (mi3/yr) for the Great Lakes.

A simple mathematical model for pollution in the Great Lakes treats this
system of lakes as a standard, perfect mixing problem. Thus, we make the
following four assumptions:

1. The flow rates are constant. (Of course, these rates are not constant
but variable, since they are affected seasonally by rainfall, snowfall, and
evaporation.)

2. The volume of each lake is constant. (The volumes of the lakes are
variable due to the variation in inflow and outflow rates and seasonal
changes.)

3. Perfect mixing occurs in each lake so that the pollutants are uniformly
distributed throughout the lake. (Pollutants in the lakes are not uni-
formly mixed. Incoming water tends to move from its source to the
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outlet of the lake in a pipeline fashion without mixing. So the clean
up time for the main part of a lake will be less than predicted while
the clean up time for isolated, slow moving portions of the lake will be
longer than predicted.)

4. Pollutants are dissolved in water and enter and leave the lake by in-
flow and outflow. (DDT, for example, is ingested by higher predators
and retained in their body fat. These animals are large and not apt to
leave the lake with the outflow unless they choose to do so. When the
predator dies most of its body fat is consumed by other organisms. So
most DDT remains in the biosphere for an extended period of time. As
a result DDT will remain in a lake in higher quantities than predicted
by the model. Phosphorus, on the other hand, causes “algae bloom”—a
sudden population explosion of algae. Later, the algae dies and settles
to the bottom of the lake removing some phosphorus in the process.
However, this removal is only temporary, since the decaying process
returns the phosphorus to the lake water.)

We will use the following notation and information in deriving the system
of differential equations for the amount of pollution in the Great Lakes.

NON-LAKE
OUTFLOW INFLOW

LAKE SUBSCRIPT VOLUME RATE RATE
(i) (Vi) mi3 (ri) mi3/yr (Ri) mi3/yr

Erie e 116 85 17
Huron h 850 68 15
Michigan m 1180 38 38
Ontario o 393 99 14
Superior s 2900 15 15

Let

qi(t) be the amount of pollutant (DDT, phosphorus, or mercury) in lake
i at time t;

ci(t) be the concentration of pollutant in lake i at time t; and

Ci be the concentration of pollutant in the inflow to lake i.
Since the amount of pollutant in each lake, qi(t), equals the concentration

of pollutant, ci(t), times the volume, Vi, we have for each lake qi(t) = ci(t)Vi.
Using Figure 9.11 to write an equation for the rate of change of the amount
of pollutant in each lake, we find

for Lake Superior

dqs
dt

=
d(csVs)

dt
= RsCs − rscs
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for Lake Michigan

dqm
dt

=
d(cmVm)

dt
= RmCm − rmcm

for Lake Huron

dqh
dt

=
d(chVh)

dt
= RhCh + rscs + rmcm − rhch

for Lake Erie

dqe
dt

=
d(ceVe)

dt
= ReCe + rhch − rece

for Lake Ontario

dqo
dt

=
d(coVo)

dt
= RoCo + rece − roco.

Dividing each of these equations by the volume of the corresponding lake, we
obtain the following system of differential equations for the concentration of
pollution in the Great Lakes

(19)

dcs
dt

=
RsCs − rscs

Vs

dcm
dt

=
RmCm − rmcm

Vm

dch
dt

=
RhCh + rscs + rmcm − rhch

Vh

dce
dt

=
ReCe + rhch − rece

Ve

dco
dt

=
RoCo + rece − roco

Vo
.

Exercise 15. a. Write system (19) using matrix-vector notation. (The answer
will have the form c′ = Ac+ b.)

b. Assume all pollution of the Great Lakes ceases—that is, assume Cs =
Cm = Ch = Ce = Co = 0. Use EIGEN or your computer software to find the
general solution of c′ = Ac where the constant entries of A are calculated
using the information given above for the Great Lakes.

c. Assume the initial concentration of pollution in each lake is .5%—that
is, assume ci(0) = .005. When will the concentration of pollution in each lake
be reduced to .4%? .3%? (Hint: Solve the initial value problem: c′ = Ac;
ci(0) = .005. Then graph the equation for the concentration of pollution in
each lake and determine when the concentration drops below the specified
levels.)
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d. Assume the concentration of pollution entering the Great Lakes from
outside the system is reduced from the current levels to .2%—that is, assume
Cs = Cm = Ch = Ce = Co = .002.

(i) Find the general solution of c′ = Ac + b. (Hint: Assume there is a
particular solution, cp, in which each component is a constant. The general
solution is c = cc + cp where cc is the answer to part b.)

(ii) Now assume the initial concentration of pollution in each lake is ci(0) =
1% = .01. When will the concentration of pollution in each lake be reduced
to .5%? .3%? (Hint: Solve the initial value problem: c′ = Ac + b; ci(0) =
.01. Then graph the equation for the concentration of pollution in each lake
and determine when the concentration of pollution drops below the specified
levels.)
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Chapter 10

Applications of Systems of Equations

In this chapter we initially present techniques for determining the behavior
of solutions to systems of first-order differential equations without first finding
the solutions. To this end, we define and discuss equilibrium points (critical
points), various types of stability and instability, and phase-plane graphs.
Next, we show how to use computer software to solve systems of first-order
differential equations numerically, how to graph the solution components, and
how to produce phase-plane graphs. We also state stability theorems for sys-
tems of first-order differential equations. Throughout this chapter we develop
and discuss a wide variety of models and applications which can be written
as vector initial value problems and then solved numerically.

10.1 Richardson’s Arms Race Model

Throughout recorded history, there have been many discussions regarding
the causes of war. In his account of the Peloponnesian war, written over
two thousand years ago, Thucydides asserted that armaments cause war. He
wrote:

“The real though unavowed cause I believe to have been the growth
of Athenian power, which terrified the Lacedaemonians and forced them
into war.”

The mathematical model of an arms race which we will study in this sec-
tion was developed by Lewis Fry Richardson. He was born at Newcastle-
upon-Tyne, England, on October 11, 1881. Richardson attended Cambridge
University where he was a pupil of Sir J. J. Thomson, the discoverer of the
electron. In 1923, Richardson published his book, Weather Prediction by
Numerical Process. This text is considered a classic work in the field of me-
teorology. In 1926, Richardson was awarded a Doctor of Science degree from
the University of London for his contributions in the fields of meteorology
and physics. The following year he was elected to the Fellowship of the Royal
Society.
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During World War I, Richardson served with an ambulance convoy in
France. While serving in the war, he began to contemplate and write about
the causes of war and how to avoid war. During the mid-1930s, Richardson
developed his model for a two nation arms race. Later, he extended his model
to include n nations and applied this model to the contemporary situation in
Europe. Hoping to avoid an impending war, Richardson submitted an article
on the subject to an American journal and requested its immediate accep-
tance. The editors rejected the article. Shortly after the outbreak of World
War II, Richardson retired. Early in his retirement he continued his research
on the causes of war, but later he abandoned those efforts and returned to his
studies in meteorology. He died on September 30, 1953.

One idea underlying Richardson’s two nation arms race model is the concept
of “mutual fear.” One nation begins to arm itself. The nation’s stated reason
for doing so is for the purpose of self-defense. A second nation, which fears
the first nation, then begins to arm itself, also for the purpose of self-defense.
Due to the “mutual fear” of each nation for the other, the armaments of both
nations continue to increase indefinitely with time. Since no nation has infinite
resources, this situation cannot actually occur. When expenditures for arms
become too large a part of a nation’s budget, the people of that nation force
the government to limit the amount spent on arms and thereby “damp” and
perhaps even “limit” the arms race.

Richardson selected the amount of money spent on arms per year by a
nation as the dependent variable in his arms race model. Stated verbally the
assumptions of his model are

1. Arms expenditures increase because of mutual fear.

2. Societies resist ever-increasing expenditures for arms.

3. Considerations which are independent of the amounts being spent for
arms contribute to the rate of change of the amount spent on arms.

If we let x(t) ≥ 0 and y(t) ≥ 0 represent the amounts spent on arms
per year by two nations in some standard monetary unit, then according to
Richardson’s model, expenditures for arms per year must satisfy the following
system of differential equations

(1)

dx

dt
= Ay − Cx + r

dy

dt
= Bx−Dy + s

where A, B, C, and D are nonnegative real constants and r and s are real
constants (negative, zero, or positive). The term Ay represents the rate of
increase in yearly expenditures for arms by the first nation due to its fear of
the second nation. That is, the rate of increase in yearly expenditures due to
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fear is modelled as the nonnegative constant A times the amount, y, currently
being spent per year by the second nation for arms. The term −Cx repre-
sents the rate of decrease in yearly expenditures for arms by the first nation
due to the resistance of its people to increased spending for arms. Thus, the
rate of decrease in expenditures due to societal resistance is modelled as the
nonpositive constant −C times the amount, x, currently being spent per year
by the first nation for arms. The constant term r represents the underlying
“grievance” which the first nation feels toward the second nation. If r is pos-
itive, then the first nation has a grievance against the second nation which
causes it to increase arms expenditures. If r is negative, the first nation has a
feeling of goodwill toward the second nation and, therefore, tends to decrease
its expenditures for arms. The terms of the second equation of system (1)
can be interpreted in an analogous manner. The system of differential equa-
tions (1) for Richardson’s arms race model asserts that the rate of change in
the amount spent on arms per year by one nation is increased in proportion
to the amount the other nation is currently spending on arms per year, is
decreased in proportion to the amount it is currently spending on arms per
year, and is decreased or increased based on a feeling of goodwill or grievance
against the other nation.

Appropriate initial conditions for Richardson’s arms race model (1) is the
amount spent on arms per year by both nations at a particular time. Suppose
at time t = t0 the first nation spends x(t0) = x0 for arms per year and the
second nation spends y(t0) = y0. Thus, the initial value problem to be solved
is

(2)

dx

dt
= −Cx+Ay + r; x(t0) = x0

dy

dt
= Bx−Dy + s; y(t0) = y0.

Or, written in matrix-vector notation

(2′)
(
x′

y′

)

=

(−C A
B −D

)(
x
y

)

+

(
r
s

)

;

(
x(t0)
y(t0)

)

=

(
x0
y0

)

.

Using the techniques of Chapter 9, a general solution to this initial value
problem can be found (i) by computing the eigenvalues and eigenvectors of the
associated homogeneous system; (ii) by writing the complementary solution
(the solution of the associated homogeneous system); (iii) by calculating a
particular solution to (2′); (iv) by writing the general solution of system (2′),
which is the sum of the complementary solution and the particular solution;
and (v) by determining values for the arbitrary constants appearing in the
general solution which satisfy the given initial conditions. Our general solution
would then depend on the six parameters A, B, C, D, r, and s and on the
initial conditions x0 and y0.
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372 Elementary Differential Equations

However, instead of finding the general solution to (2′), we will use tech-
niques from elementary calculus to answer important questions concerning
the nature of the solutions without first finding the solutions. The first and
most important question to ask is, “Is there an equilibrium point?” By an
equilibrium point, we mean a point (x∗, y∗) which is a constant solution of
(1). At an equilibrium point, the amount spent on arms per year by each
nation remains constant for all time—the first nation always spends x∗ and
the second nation always spends y∗. If there is an equilibrium point, we then
want to answer the question: “Is the equilibrium point stable or unstable?”
That is, we want to know if an initial condition (x0, y0) is sufficiently close to
the equilibrium point, does the associated solution (x(t), y(t)) remain close to
(x∗, y∗) for all time—in which case, we say the equilibrium point is stable—or
does the associated solution move away from the equilibrium point—in which
case, we say the equilibrium point is unstable.

For there to be an equilibrium point (constant solution) for Richardson’s
arms race model, the rate of change of the amount spent for arms per year
by both nations must simultaneously be zero. Thus, we must have dx/dt =
dy/dt = 0. Setting dx/dt = 0 and dy/dt = 0 in system (2), we see that an
equilibrium point (x∗, y∗) must simultaneously satisfy

(3)
L1 : −Cx+Ay + r = 0

L2 : Bx−Dy + s = 0.

If E = CD −AB �= 0, then there is a unique solution to (3)—namely,

(4) x∗ =
rD + sA

E
, y∗ =

Cs+Br

E
.

In discussing Richardson’s arms race model (2), you might think we should
sketch graphs of x and y as functions of time and draw conclusions from
these graphs. However, it is often more informative to look at a “phase-
plane” diagram in which one dependent variable is graphed versus the other
dependent variable. In this instance, we could plot y versus x or x versus y.
The graph in the xy-plane of both L1 and L2 are lines—see equations (3).

Let us assume in the discussion which follows that the parameters A, B,
C, and D are all nonzero. A typical sketch of the graph of L1 for r > 0
is shown in Figure 10.1. The line L1 divides the xy-plane into three sets—
(i) the line L1, itself, on which dx/dt = −Cx + Ay + r = 0, (ii) the half-
plane where dx/dt = −Cx + Ay + r > 0, and (iii) the half-plane where
dx/dt = −Cx+Ay + r < 0.

If we view Richardson’s arms race model (2) as the equations of motion for
a particle in the xy-plane, the first equation in (2), dx/dt = −Cx + Ay + r,
tells us the horizontal component of the velocity and the second equation in
(2), dy/dt = Bx−Dy+s, tells us the vertical component of the velocity. The
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line L1 divides the xy-plane into two half-planes. In one half-plane dx/dt > 0,
so x(t) is increasing in this region and the particle will tend to move to the
right. In the other half-plane dx/dt < 0, so x(t) is decreasing in this region
and the particle will tend to move to the left.

�

�

��� �� 	
�

�� 	 �� ��

�� �� ��� ��

��

Figure 10.1 Graph of L1: −Cx+Ay + r = 0 for A > 0, C > 0, and r > 0.

Let (p, q) be any point below and to the right of the line L1 and let (u, q)
be the corresponding point on L1 as shown in Figure 10.1. Since (u, q) is on
L1, −Cu+Aq + r = 0. At the point (p, q)

dx

dt
= −Cp+Aq + r = −Cp+Aq + r − 0

= −Cp+Aq + r − (−Cu+Aq + r) = −C(p− u).

Since p is to the right of u, p − u > 0 and since we have assumed C > 0,
dx/dt = −C(p − u) < 0 in the half-plane below and to the right of the line
L1. In this region the particle tends to move to the left toward the line L1.
In the half-plane above and to the left of L1, dx/dt > 0 and in this region the
particle tends to move to the right toward the line L1. So the first nation in
the arms race tries, at all times, to adjust its expenditures by moving them
horizontally toward the line L1. (The reader should note that if the point
(u, q) is on the line L1, then dx/dt = 0 but most likely dy/dt �= 0 on L1. If
dy/dt �= 0 at (u, q), the graph of y versus x will cross the line L1 at (u, q).)

A similar argument shows that (i) L2 divides the xy-plane into two half-
planes, (ii) in the half-plane below and to the right of L2, dy/dt > 0 so y(t)
is increasing in this region and the particle tends to move upward toward the
line L2, and (iii) in the half-plane above and to the left of L2, dy/dt < 0,
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374 Elementary Differential Equations

so y(t) is decreasing in this region and the particle tends to move downward
toward the line L2. That is, the second nation in the arms race tries, at all
times, to adjust its expenditures by moving them vertically toward the line
L2.

We wish to examine the limiting behavior of the expenditures for arms in
Richardson’s model. We divide the limiting behavior into three categories and
classify the types of arms races as follows:

1. If x → 0 and y → 0 as t → ∞, then we say the arms race results in
mutual disarmament.

2. If x→ x∗ and y → y∗ as t→ ∞, then we say the arms race is a stable
arms race.

3. If x → ∞ and y → ∞ as t → ∞, then we say there is an unstable
arms race or a runaway arms race.

We will now consider two cases under the assumptions that A, B, C, and
D are nonzero. Solving the equations of L1 and L2 for y (see equations (3)),
we find

y =
Cx

A
− r

A
(for L1)

y =
Bx

D
+

s

D
(for L2).

Thus, the slope of line L1 is C/A and the slope of L2 is B/D.

Case 1. Suppose r = s = 0 and L1 and L2 are not parallel. Since r = s = 0,
the equilibrium point is the origin, (0, 0)—see equations (4). Since L1 and L2

are not parallel, they intersect at the origin and either (a.) the slope of L1 is
larger than the slope of L2 or (b.) the slope of L2 is larger than the slope of L1.
Representative graphs for case 1a. and case 1b. are shown in Figures 10.2a.
and 10.2b., respectively. We numbered the regions in the first quadrant, I, II,
and III, as shown in the figures.
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Figure 10.2 Graphs of Lines L1 and L2 for r = s = 0 and

a. C/A > B/D and b. C/A < B/D.
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Case 1a. In this case, we are assuming r = s = 0 and the slope of L1 is
greater than the slope of L2 (C/A > B/D). Regions I, II, and III refer to
the regions shown in Figure 10.2 a. In region I, dx/dt < 0 and dy/dt > 0.
So if a particle is in region I, it will tend to move to the left and up until
it reaches the line L2. On L2, dx/dt < 0 and dy/dt = 0, so a particle from
region I crosses L2 into region II. If a particle is in region III, dx/dt > 0 and
dy/dt < 0. So a particle in region III tends to move to the right and down
until it reaches the line L1. On L1, dx/dt = 0 and dy/dt < 0, so a particle
from region III crosses L1 into region II. In region II, dx/dt < 0 and dy/dt < 0.
So a particle in region II moves to the left and down. If at some instant in
time the particle were to move from region II to the line L1, then dx/dt = 0
and dy/dt < 0 and the particle would move downward into region II again. A
similar argument holds for any particle in region II which approaches the line
L2. Such a particle would move to the left and return to region II. Thus, any
particle in region II or any particle crossing into region II from either region I
or region III remains in region II and approaches the origin as t→ ∞. Thus,
for any initial conditions x(t0) = x0 ≥ 0, y(t0) = y0 ≥ 0, that is, for any initial
point in the first quadrant, x(t) → 0 and y(t) → 0 as t→ ∞. Hence, Case 1a.
results in mutual disarmament regardless of the initial conditions (the initial
expenditures for arms).

Case 1b. This case is left as an exercise.

Case 2. Suppose r < 0, s < 0 and L1 and L2 are not parallel. Since r < 0
and s < 0 both nations have a permanent underlying feeling of “goodwill”
toward the other nation. Since L1 and L2 are not parallel, they intersect at
an equilibrium point (x∗, y∗) and either (a.) the slope of L1, namely C/A, is
greater than the slope of L2, namely B/D, or (b.) the slope of L1 is less than
the slope of L2 (C/A < B/D).

Case 2a. This case is left as an exercise.

Case 2b. We now consider case where C/A < B/D. Multiplying this in-
equality by AD which is positive, since A and D are assumed to be positive,
we find CD < AB or E = CD−AB < 0. Since A > 0, B > 0, C > 0, D > 0,
r < 0, s < 0 and E< 0, we see from equations (4) that x∗ = (rD+ sA)/E > 0
and y∗ = (Cs + Br)/E > 0. Thus, the equilibrium point (x∗, y∗) lies in the
first quadrant. A sketch of the situation for this particular case and a table
indicating the sign of dx/dt and dy/dt in each region is shown in Figure 10.3.
The arrows in each region indicate the horizontal and vertical direction a
particle in the region will take. Notice that all horizontal arrows point toward
the line L1 while all vertical arrows point toward the line L2.

Let the initial values for arms expenditures be (x0, y0) and assume (x0, y0)
lies in region I of Figure 10.3. In region I, dx/dt > 0 and dy/dt > 0. So a
particle in region I will tend to move to the right and up. That is, the particle
will tend to move farther out in region I. If the particle were to reach the
line L1, dx/dt would be zero but dy/dt would be positive. Hence, at L1 the

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


376 Elementary Differential Equations

particle would be forced back into region I and farther away from (x∗, y∗).
The same holds true for a particle which reaches line L2 from inside region I.
At L2, dy/dt = 0 but dx/dt > 0 so the particle moves back into region I and
away from (x∗, y∗). Hence, a particle in region I remains in region I for all
time and moves away from (x∗, y∗) as time increases. That is, x → ∞ and
y → ∞ as t → ∞. So if the initial arms expenditures are such that (x0, y0)
falls in region I, a runaway arms race results. This example illustrates that
Richardson’s arms race model predicts an unstable arms race can result even
when both nations have a feeling of “goodwill” toward the other nation (r < 0
and s < 0). A runaway arms race occurs if the initial arms expenditures by
both nations are sufficiently large so that (x0, y0) lies in region I.

Region dx/dt dy/dt

I + +

II + −
III − −
IV − +

�

�

���

���

�

�

�

�

��

��	
 �	�

Figure 10.3 Graph of Lines L1 and L2 for r < 0, s < 0 and C/A < B/D.

In region III, dx/dt < 0 and dy/dt < 0. So a particle in region III tends to
move to the left and down in this region, away from (x∗, y∗) and toward the
origin (0, 0). When the initial arms expenditures (x0, y0) lie in region III, it
can be shown that mutual disarmament (total disarmament) always results—
that is, as t→ ∞, x→ 0 and y → 0.

Looking at the arrows in Figure 10.3, we see that a particle in region II
will move to the right and down. Thus, a particle in region II, (i) will move
toward the segment of line L2 between regions I and II, (ii) will move toward
the equilibrium point (x∗, y∗), or (iii) will move toward the segment of line L1

between regions II and III. If a particle which starts in region II moves to the
portion of the line L2 between regions I and II, the particle will proceed into
region I and a runaway arms race will result, because on L2, dx/dt > 0 and
dy/dt = 0. If a particle in region II moves to the equilibrium point (x∗, y∗), it
will remain there. Whereas, if a particle which starts in region II moves to the
portion of the line L1 between regions II and III, the particle will proceed into
region III and mutual disarmament will result, because on L1, dx/dt = 0 and
dy/dt < 0. So when the initial arms expenditures lie in region II, a runaway
arms race may occur, a stable arms race may occur, or mutual disarmament
may occur.
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The results for initial arms expenditures which lie in region IV are similar
to the results for expenditures which lie in region II. A runaway arms race,
a stable arms race, or mutual disarmament may occur depending on where
(x0, y0) lies within region IV.

EXERCISES 10.1

1. Perform an analysis for Case 1b. similar to the analysis performed in the
text for Case 1a. What type of arms race results in this case?

2. Perform an analysis for Case 2a. That is, perform an analysis for
Richardson’s arms race model when r < 0, s < 0 and the slope of
line L1 is greater than the slope of L2 (C/A > B/D). In what quadrant
does the equilibrium point (x∗, y∗) lie? How many distinct regions are
there to consider in the first quadrant? Draw an appropriate figure and
construct a table to aid you in performing your analysis. (Figure 10.3
includes an appropriate figure and table for Case 2b.) What kinds of
arms races can occur in this instance?

3. Perform an analysis for Richardson’s arms race model for r > 0, s > 0
and

a. C/A > B/D (the slope of line L1 is greater than the slope of line

L2.)

b. C/A < B/D (the slope of line L1 is less than the slope of line L2.)

In each case, answer the following questions:

(i) Where is the equilibrium point?

(ii) What kinds of arms races can occur?

4. Perform an analysis for Richardson’s arms race model for r < 0, s > 0
and

a. C/A > B/D and b. C/A < B/D.

Answer the following questions:

(i) Where is the equilibrium point?

(ii) What kinds of arms races can occur?

5. Using the results given in the text and the results of Exercises 1-4
complete the following table by entering the type of arms race that
may occur in each case. (md = mutual disarmament, sar = stable arms
race, rar = runaway arms race)
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r s E = CD−AB Possible Arms Race(s)
0 0 +
0 0 −
− − +
− − −
+ + +
+ + −
− + +
− + −

6. What kinds of arms races can develop if r < 0, s < 0 and lines L1 and
L2 are parallel (C/A = B/D; E = 0)? (Hint: Consider two separate
cases, where L1 is above L2 and vice versa.)

10.2 Phase-Plane Portraits

There are two fundamental subdivisions in the study of differential equa-
tions: (1) quantitative theory and (2) qualitative theory. The object of quanti-
tative theory is (i) to find an explicit solution of a given differential equation or
system of equations, (ii) to express the solution as a finite number of quadra-
tures, or (iii) to compute an approximate solution. At an early stage in the
development of the subject of differential equations, it appears to have been
believed that elementary functions were sufficient for representing the solu-
tions of differential equations which evolved from problems in geometry and
mechanics. However, in 1725, Daniel Bernoulli published results concerning
Riccati’s equation which showed that even a first-order ordinary differential
equation does not necessarily have a solution which is finitely expressible in
terms of elementary functions. In the 1880s, Picard proved that the gen-
eral linear differential equation of order n is not integrable by quadratures.
At about the same time in a series of papers published between 1880 and
1886, Henri Poincaré (1854-1912) initiated the qualitative theory of differ-
ential equations. The object of this theory is to obtain information about
an entire set of solutions without actually solving the differential equation or
system of equations. For example, one tries to determine the behavior of a
solution with respect to that of one of its neighbors. That is, one wants to
know whether or not a solution v(t) which is “near” another solution w(t) at
time t = t0 remains “near” w(t) for all t ≥ t0 for which both v(t) and w(t)
are defined.
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An autonomous system of differential equations has the form

(1)

dx

dt
= f(x, y)

dy

dt
= g(x, y).

System (1) is called autonomous because the functions f and g depend ex-
plicitly only on the dependent variables x and y and not upon the independent
variable t (which often represents time).

In performing a qualitative analysis of an autonomous system of the form (1),
we are interested in answering the following questions:

“Are there any equilibrium points?” That is, “Are there any constant
solutions?”

“Is a particular equilibrium point stable or unstable?”

In Chapter 7, we stated that if f , g, fx, fy, gx, and gy are continuous func-
tions of x and y in some rectangle R in the xy-plane and if (x0, y0) ∈ R, then
there is a unique solution to system (1) which satisfies the initial conditions
x(t0) = x0, y(t0) = y0. Furthermore, the solution can be extended in a unique
manner until the boundary of R is reached. In the discussions which follow,
we will assume that f(x, y) and g(x, y) and their first partial derivatives are
all continuous functions in some rectangle R.

The xy-plane is called the phase-plane. A solution (x(t), y(t)) of (1) traces
out a curve in the phase-plane. This curve is called a trajectory or orbit. A
phase-plane portrait is a sketch of a few trajectories of (1) together with
arrows indicating the direction a particle will flow along the trajectory as t
(time) increases. It follows from the uniqueness of solutions of (1) that at
most one trajectory passes through any point in R. That is, trajectories do
not intersect one another in the phase-plane.

A critical point or equilibrium point of system (1) is a point (x∗, y∗)
where f(x∗, y∗) = g(x∗, y∗) = 0. Hence, by definition, the critical points of
system (1) are determined by simultaneously solving

(2)
f(x, y) = 0

g(x, y) = 0.

A critical point (x∗, y∗) of system (1) is stable if every solution which is
“near” (x∗, y∗) at time t0 exists for all t ≥ t0 and remains “near” (x∗, y∗).
A stable critical point (x∗, y∗) of system (1) is asymptotically stable if
every solution which is “near” (x∗, y∗) at time t0 exists for all t ≥ t0 and
limt→∞ x(t) = x∗ and limt→∞ y(t) = y∗. A stable critical point which is not
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asymptotically stable is said to be neutrally stable. A critical point which
is not stable is called unstable.

In order to better understand the concept of stability and to be able to
sketch trajectories of an autonomous system near a critical point, we first
need to discuss stability and phase-plane portraits for linear systems of the
form

(3)

dX

dt
= AX +BY + r

dY

dt
= CX +DY + s

where A, B, C, D, r, and s are real constants. In many, but not all cases, the
type of stability at the critical point of a nonlinear system is the same as the
type of stability of a corresponding linear system, and near the critical point
the trajectories of the nonlinear system resemble the trajectories of the linear
system.

Suppose (x∗, y∗) is a critical point of the linear system (3). Hence, (x∗, y∗)
simultaneously satisfies

Ax∗ +By∗ + r = 0

Cx∗ +Dy∗ + s = 0.

In order to locate the origin of a new xy-coordinate system at (x∗, y∗) with
x-axis parallel to the X-axis and y-axis parallel to the Y -axis, we make the
changes of variables x = X − x∗ and y = Y − y∗. Differentiating and substi-
tuting into (3), we find

dx

dt
=
dX

dt
= A(x + x∗) +B(y + y∗) + r

= Ax+ By + (Ax∗ +By∗ + r)

= Ax+ By
and

dy

dt
=
dY

dt
= C(x+ x∗) +D(y + y∗) + s

= Cx+Dy + (Cx∗ +Dy∗ + s)

= Cx+Dy.

Next, letting

z =

(
x
y

)

and A =

(
A B
C D

)

we see that the stability of the nonhomogeneous linear system (3) at the
critical point (x∗, y∗) and the behavior of the trajectories of (3) near (x∗, y∗)
is the same as the stability and behavior of the linear homogeneous system

(4)
dz

dt
= Az

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Applications of Systems of Equations 381

at (x, y) = (0, 0). Hence, we need to study only the various types of stability
of system (4) at the origin and the associated behavior of the trajectories near
the origin to understand the stability and behavior of systems of the form (3)
at (x∗, y∗).

In Chapter 8, we saw how to write the general solution of (4) in terms of
the eigenvalues and eigenvectors of the matrix A. The equation Az = 0 has
the unique solution z = 0 if and only if detA �= 0. That is, the origin is the
unique critical point of system (4) if and only if detA �= 0. If detA = 0, there
is a line of critical points which passes through the origin. Throughout, we
will assume detA �= 0. Let us now consider several examples.

Example 1 Determine the type of stability of the origin and sketch
a phase-plane portrait for the system

(5)
x′ = −4x+ y
y′ = 2x− 5y.

Solution

The eigenvalues and associated eigenvectors of the matrix

A =

(−4 1
2 −5

)

are λ1 = −3, λ2 = −6,

v1 =

(
1
1

)

and v2 =

(−1
2

)

.

(Check this by using EIGEN or your computer software to find the eigenvalues
of A and their associated eigenvectors.) So the general solution of (5) is

(6)

(
x(t)
y(t)

)

= c1e
λ1tv1 + c2e

λ2tv2

= c1e
−3t

(
1
1

)

+ c2e
−6t

(−1
2

)

=

(
c1e

−3t − c2e
−6t

c1e
−3t + 2c2e

−6t

)

.

The vector v1 is a vector with its “tail” at the origin and its “head” at the
point (1, 1) in the xy-plane as shown in Figure 10.4. The graph of the vector
equation u = kv1, where k is a parameter, is the line m1, which contains the
vector v1. Likewise, v2 is the vector with its “tail” at the origin and its “head”
at (−1, 2) and the graph of the vector equation w = kv2 is the line m2, which
contains the vector v2. If a particle starts at any point on the line m1 in the
first quadrant, then c2 = 0 and c1 > 0, since x > 0 in the first quadrant. Since
c2 = 0, the particle remains on the line m1 (see the general solution of (5)—
equation (6)). And since λ1 = −3 < 0, the particle moves toward the origin
along the line m1 as t → ∞. If a particle starts at a point on the line m1 in
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the third quadrant, then c2 = 0 and c1 < 0, since x < 0 in the third quadrant.
Because c2 = 0, the particle remains on the line m1 and since λ1 = −3 < 0,
the particle moves toward the origin as t → ∞. By a similar argument, any
particle which starts on the line m2 remains on m2, because c1 = 0, and
proceeds toward the origin as t → ∞, because λ2 = −6 < 0. Suppose a
particle starts at some point not on line m1 or line m2—that is, suppose
c1 �= 0 and c2 �= 0. Since x(t) = c1e

−3t − c2e
−6t → 0 as t → ∞ and since

y(t) = c1e
−3t+2c2e

−6t → 0 as t→ ∞, the particle proceeds toward the origin.
Since e−6t approaches 0 faster than e−3t as t approaches ∞, the trajectories
of particles not on lines m1 and m2 approach (0, 0) asymptotic to the line
m1 as shown in Figure 10.4. In this case, the origin is an asymptotically
stable critical point, since x(t) → 0 and y(t) → 0 as t→ ∞. The phase-plane
portrait of Figure 10.4 is typical of an asymptotically stable node.

-�

�

�

�

�

�

�

-�

-�

�-�

���� �
 �
� �

�

�
�

�
�



��� �


Figure 10.4 Asymptotically Stable Node.

Example 2 Determine the type of stability of the origin and sketch
a phase-plane portrait of the system

(7)
x′ = 4x− y
y′ = −2x+ 5y.

Solution

The eigenvalues and associated eigenvectors of the matrix

A =

(
4 −1

−2 5

)
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are μ1 = 3, μ2 = 6,

v1 =

(
1
1

)

and v2 =

(−1
2

)

.

The eigenvectors of this example are identical to the eigenvectors of Exam-
ple 1, but the eigenvalues have opposite sign. So the phase-plane portrait for
this system looks exactly like the phase-plane portrait for Example 1 (Fig-
ure 10.4) except that the arrows on the trajectories, which indicate the direc-
tion that a particle will take, must be reversed. In this instance, the origin
is an unstable critical point and as t → ∞, the components x(t) → ±∞
and y(t) → ±∞. Figure 10.4 with the direction arrows reversed is a typical
phase-plane portrait for an unstable node. �

Example 3 Determine the type of stability of the origin and sketch
a phase-plane portrait of the system

(8)
x′ = x + y
y′ = 4x− 2y.

Solution

The eigenvalues and associated eigenvectors of the matrix

A =

(
1 1
4 −2

)

are λ1 = −3, λ2 = 2,

v1 =

(
1

−4

)

and v2 =

(
1
1

)

.

Hence, the general solution of (8) is

(
x(t)
y(t)

)

= c1e
λ1tv1 + c2e

λ2tv2

= c1e
−3t

(
1

−4

)

+ c2e
2t

(
1
1

)

=

(
c1e

−3t + c2e
2t

−4c1e
−3t + c2e

2t

)

.

The vector v1 is a vector with its “tail” at the origin and its “head” at (1,−4).
The vector v1 and the line m1 containing v1 is drawn in Figure 10.5. The
vector v2 and the line m2 containing v2 is also drawn in Figure 10.5.
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Figure 10.5 Saddle Point.

If a particle starts at a point on line m1 in the fourth quadrant, then c2 = 0
and c1 > 0, since x > 0 in the fourth quadrant. Since c2 = 0, the particle
remains on the line m1. And since λ1 = −3 < 0, the particle moves toward
the origin as t → ∞ . If a particle starts on line m1 in the second quadrant,
then c2 = 0 and c1 < 0, since x < 0 in the second quadrant. Since c2 = 0, the
particle remains on the line m1 and since λ1 = −3 < 0, the particle moves
toward the origin as t → ∞. Similarly a particle which starts at a point
on line m2 remains on m2, but since λ2 = 2 > 0, the particle moves away
from the origin as t → ∞. Next, suppose a particle starts at some point
not on line m1 or m2—that is, suppose c1 �= 0 and c2 �= 0. As t → ∞,
x(t) = c1e

−3t + c2e
2t → c2e

2t and y(t) = −4c1e
−3t + c2e

2t → c2e
2t. Thus, as

t→ ∞, (
x(t)
y(t)

)

→
(
c2e

2t

c2e
2t

)

= c2e
2t

(
1
1

)

asymptotically. That is, any particle which starts at a point not on line m1 or
m2 approaches the line m2 asymptotically as t→ ∞ . Summarizing, we have
found that a particle which starts on the line m1 moves toward the origin as
t → ∞, while a particle which does not start on m1 ultimately moves away
from the origin and approaches the line m2. In this example, the origin is
an unstable critical point. The phase-plane portrait shown in Figure 10.5
is typical for autonomous systems for which the eigenvalues are real and of
opposite sign. In such cases, the critical point (the origin) is called a saddle
point. �
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Now suppose that λ = α + βi where β �= 0 is an eigenvalue of the real
matrix A and w = u+ iv is an associated eigenvector. We saw in Chapter 8
that the general solution of the system (4) dz/dt = Az can be written as

z = c1{(eαt cosβt)u− (eαt sinβt)v} + c2{(eαt sinβt)u+ (eαt cosβt)v}
where c1 and c2 are arbitrary real constants. Recall that the first and sec-
ond components of z are x(t) and y(t), respectively. Since | sinβt| ≤ 1,
| cosβt| ≤ 1, and u and v are real constant vectors, if α < 0, then as t → ∞,
x(t) → 0 and y(t) → 0 and the origin is an asymptotically stable critical
point. The functions sinβt and cosβt cause the trajectories to rotate about
the origin as they approach forming “spirals.” If α > 0, the trajectories spi-
ral outward away from the origin and the origin is an unstable critical point.
When α = 0, the trajectories are elliptical in appearance with centers at the
origin. In this case, the origin is a neutrally stable critical point. It can be
shown that when the system (4) has complex conjugate eigenvalues λ = α±iβ,
the trajectories are always spirals when α �= 0. The spirals may be elongated
and skewed with respect to the coordinate axes and may spiral clockwise or
counterclockwise about the origin.

Example 4 An Asymptotically Stable Critical Point at the Origin

The eigenvalues of the system

x′ = x− 6y

y′ = 3x− 5y

are λ = −2 ± 3i. Since α = −2 < 0, the origin is an asymptotically
stable critical point and the trajectories spiral inward toward the origin in a
counterclockwise direction as shown in the phase-plane portrait of Figure 10.6.
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Figure 10.6 Asymptotically Stable Spiral Point.
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Example 5 An Asymptotically Unstable Critical Point at the Origin

The eigenvalues of the system

x′ = −x+ 6y

y′ = −3x+ 5y

are λ = 2±3i. Since α = 2 > 0, the origin is an unstable critical point and the
trajectories spiral outward away from the origin in a clockwise direction. The
phase-plane portrait is the same as shown in Figure 10.6 except the direction
arrows on the trajectories must be reversed. �

Example 6 A Neutrally Stable Critical Point at the Origin

The eigenvalues of the system

x′ = x+ 2y

y′ = −5x− y

are λ = ±3i. Since α = 0, the origin is a neutrally stable critical point. In
this case, the origin is called a center. The trajectories are “skewed ellipses”
with centers at the origin. A phase-plane portrait for this system is displayed
in Figure 10.7.
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Figure 10.7 Neutrally Stable Center.

In examining the stability of the critical point at the origin for system (4),
dz/dt = Az, we have assumed that detA �= 0. It follows from this assumption
that λ = 0 cannot be an eigenvalue of the matrix A. For if λ = 0 were
an eigenvalue of A, then λ = 0 would, by definition of an eigenvalue, be

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Applications of Systems of Equations 387

a root of the equation det (A − λI) = 0. But substitution of λ = 0 into
this equation yields the contradiction detA = 0. Consequently, Table 10.1
summarizes the stability properties of the critical point at the origin for the
system (4), dz/dt = Az, in terms of the eigenvalues ofA under the assumption
detA �= 0.

Table 10.1 Stability Properties of the Linear System
dz

dt
= Az when

det A �= 0

Type of
Eigenvalues Stability critical point

λ1, λ2 < 0 Asymptotically stable Node

λ1, λ2 > 0 Unstable Node

λ1 > 0, λ2 < 0 Unstable Saddle point

λ = α± iβ (β �= 0)
α < 0 Asymptotically stable Spiral point
α > 0 Unstable Spiral point

λ = ±iβ (β �= 0) Neutrally stable Center

Now let us consider the autonomous system

(1)

dx

dt
= f(x, y)

dy

dt
= g(x, y)

under the assumption that f(x, y) or g(x, y) is nonlinear. Recall that the
point (x∗, y∗) is a critical point of (1), if f(x∗, y∗) = g(x∗, y∗) = 0. When f
and g have continuous partial derivatives up to order two at (x∗, y∗), then we
have from the two dimensional version of Taylor series expansion for f and g
about (x∗, y∗)

f(x, y) = f(x∗, y∗) + fx(x
∗, y∗)(x− x∗) + fy(x

∗, y∗)(y − y∗) +R1(x, y)

g(x, y) = g(x∗, y∗) + gx(x
∗, y∗)(x− x∗) + gy(x

∗, y∗)(y − y∗) +R2(x, y)
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where Ri(x, y)/
√

(x− x∗)2 + (y − y∗)2 → 0 as (x, y) → (x∗, y∗) for i = 1, 2.
Since f(x∗, y∗) = g(x∗, y∗) = 0, the nonlinear system (1) can be written as

(9)

dx

dt
= fx(x

∗, y∗)(x − x∗) + fy(x
∗, y∗)(y − y∗) +R1(x, y)

dy

dt
= gx(x

∗, y∗)(x − x∗) + gy(x
∗, y∗)(y − y∗) +R2(x, y).

Since the functions Ri(x, y) are “small” when (x, y) is near (x∗, y∗), we antic-
ipate that the stability and type of critical point at (x∗, y∗) for the nonlinear
system (9) will be similar to the stability and type of critical point at (x∗, y∗)
for the linear system

dx

dt
= A(x− x∗) +B(y − y∗)

dy

dt
= C(x− x∗) +D(y − y∗)

where A = fx(x
∗, y∗), B = fy(x

∗, y∗), C = gx(x
∗, y∗), and D = gy(x

∗, y∗).
On letting X = x − x∗ and Y = y − y∗ and noting that dX/dt = dx/dt and
dY/dt = dy/dt, we anticipate that the stability characteristics of the nonlinear
system (1) or (9) near (x∗, y∗) will be similar to the stability characteristics
at (0, 0) of the associated linear system

(10)

dX

dt
= AX +BY

dY

dt
= CX +DY.

In fact, it turns out that the stability characteristics of the nonlinear sys-
tem (9) are the same as the stability characteristics of the associated linear
system (10) with the following two possible exceptions. (i) When the eigen-
values of the linear system (10) are purely imaginary (λ = ±iβ), the neutrally
stable critical point of the associated linear system can become asymptoti-
cally stable, unstable, or remain neutrally stable in the nonlinear system and,
correspondingly, the trajectories can become stable spirals, unstable spirals,
or remain centers. So when the eigenvalues of the associated linear system are
purely imaginary, the stability and behavior of the trajectories of the nonlin-
ear system near (x∗, y∗) must be analyzed on a case-by-case basis. (ii) When
the eigenvalues are equal, the stability properties of the nonlinear system and
the associated linear system remain the same, but the critical point might
change from a node in the linear system to a spiral point in the nonlinear
system.

Example 7 Find all critical points of the nonlinear system

(11)
x′ = x− xy = f(x, y)

y′ = y − xy = g(x, y).
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For each critical point, determine the type of stability (asymptotically stable,
neutrally stable, or unstable) and the type of critical point (node, saddle point,
spiral point, or center).

Solution

Simultaneously solving

(12a) x− xy = x(1 − y) = 0

(12b) y − xy = y(1− x) = 0,

we find from (12a) that x = 0 or y = 1. Substituting x = 0 into (12b), we
get y = 0. So (0, 0) is a critical point of system (11). And substituting y = 1
into (12b) and solving for x, we get x = 1. So (1, 1) is also a critical point
of system (11). Since f(x, y) = x − xy, fx = 1 − y and fy = −x. And since
g(x, y) = y − xy, gx = −y and gy = 1− x.

At (0, 0) the linear system associated with the nonlinear system (11) is

x′ = fx(0, 0)(x− 0) + fy(0, 0)(y − 0) = 1x+ 0y = x

y′ = gx(0, 0)(x− 0) + gy(0, 0)(y − 0) = 0x+ 1y = y.

The eigenvalues of this system, which are the eigenvalues of the matrix

A =

(
1 0
0 1

)

are λ1 = λ2 = 1 > 0. So, from Table 10.1 the origin is an unstable node of
this linear system and an unstable critical point of the nonlinear system (11).

At (1, 1) the linear system associated with the nonlinear system (11) is

x′ = fx(1, 1)(x− 1) + fy(1, 1)(y − 1) = 0(x− 1) + (−1)(y − 1) = (−1)(y − 1)

y′ = gx(1, 1)(x− 1) + gy(1, 1)(y − 1) = (−1)(x− 1) + 0(y − 1) = (−1)(x− 1).

Translating the critical point (1, 1) to the origin by letting X = x − 1 and
Y = y− 1, we are lead to consider the stability characteristics at (0, 0) of the
linear system

X ′ =− Y

Y ′ =−X.

The eigenvalues of this system, which are the eigenvalues of the matrix

A =

(
0 −1

−1 0

)

are λ1 = 1 > 0 and λ2 = −1 < 0. From Table 10.1 the origin is an unstable
saddle point of this linear system; and, therefore, the critical point (1, 1) is an
unstable saddle point of the nonlinear system (11).
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390 Elementary Differential Equations

We used a computer software program to produce the direction field shown
in Figure 10.8a for

dy

dx
=
y′

x′
=
y − xy

x− xy

on the rectangle R = {(x, y)| − 1.5 ≤ x ≤ 2.5 and − 1.5 ≤ y ≤ 2.5}. From
this direction field and the stability properties of system (11) at the critical
points (0, 0) and (1, 1), we were able to sketch the phase-plane portrait shown
in Figure 10.8b for the nonlinear system (11).

�

�

�

�

�

��

���

�

�

Figure 10.8a Direction Field for System (11).
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Figure 10.8b Phase-Plane Portrait for System (11).
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Example 8 Find all critical points of the nonlinear system

(13)
x′ = −y − x3 = f(x, y)

y′ = x− y3 = g(x, y).

For each critical point determine the type of stability and type of critical
point.

Solution

Solving −y − x3 = 0 for y and substituting the result into x − y3 = 0, we
see that the x coordinate of the critical points must satisfy

x− (−x3)3 = x+ x9 = x(1 + x8) = 0.

Since x = 0 is the only real solution of x(1 + x8) = 0, the only critical point
of system (13) is (0, 0).

Calculating first partial derivatives, we find fx = −3x2, fy = −1, gx = 1,
and gy = −3y2. Evaluating these partial derivatives at (0, 0), we find the
associated linear system is

x′ = fx(0, 0)x+ fy(0, 0)y = 0x+ (−1)y = −y
y′ = gx(0, 0)x+ gy(0, 0)y = 1x+ 0y = x.

The eigenvalues of this linear system are λ = ±i, so (0, 0) is a neutrally stable
center of this linear system. Since this is one of the exceptional cases, we
have no information regarding the stability characteristics at the origin of the
nonlinear system (13).

To further analyze system (13), we let r2(t) = x2(t) + y2(t). Thus, r(t)
is the distance of a particle from the origin at time t. Differentiating with
respect to t, we find 2rr′ = 2xx′ + 2yy′. Dividing this equation by 2 and
substituting for x′ and y′ from (13), we find

rr′ = x(−y − x3) + y(x− y3) = −x4 − y4 = −(x4 + y4).

Since for (x, y) �= (0, 0), r =
√
x2 + y2 > 0 and x4 + y4 > 0, the derivative

r′ = −(x4 + y4)/r < 0 for all (x, y) �= (0, 0). That is, for a particle which
is not at the origin, r′ < 0 for all t. So the particle always moves toward
the origin as t increases. Hence, the origin is an asymptotically stable critical
point of the nonlinear system (13) and consequently the origin is a node or
spiral point. From the direction field shown in Figure 10.9 for

dy

dx
=
y′

x′
=

x− y3

−y − x3

it is fairly obvious that the origin is a spiral point and that the trajectories
spiral counterclockwise and inward toward the origin.
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Figure 10.9 Direction Field for System (13).

EXERCISES 10.2

In Exercises 1–8 calculate the eigenvalues of the given linear sys-
tem. Indicate whether the critical point is asymptotically stable,
neutrally stable, or unstable. Specify if the critical point is a node,
saddle point, spiral point, or center.

1. x′ = −2x+ 3y 2. x′ = −x+ 2y

y′ = −x+ 2y y′ = −2x+ 3y

3. x′ = x− 2y 4. x′ = −x− 2y

y′ = 2x− 3y y′ = 5x+ y

5. x′ = −x+ 2y 6. x′ = x− 2y

y′ = −2x− y y′ = 2x+ y

7. x′ = −5x− y + 2 8. x′ = 3x− 2y − 6

y′ = 3x− y − 3 y′ = 4x− y + 2
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In Exercises 9–15 find all real critical points. Compute the eigen-
values of the associated linear system at each critical point. Deter-
mine if the critical point is stable or unstable and, when possible,
specify its type (node, saddle point, or spiral point).

9. x′ = −x+ xy 10. x′ = x+ y

y′ = −y + xy y′ = y + x2

11. x′ = −x+ xy 12. x′ = x+ 1

y′ = y − 2xy y′ = 1− y2

13. x′ = y2 − x2 14. x′ = y − xy

y′ = 1− x y′ = y2 − x2

15. x′ = −x+ xy

y′ = y − xy + y2

16. Consider the nonlinear autonomous system

x′ = y + ax3 + axy2

(14)

y′ = −x+ ay3 + ayx2.

a. Verify that the origin is a critical point of system (14).

b. Write the associated linear system at (0, 0), calculate the eigenvalues of
the linear system and verify that the origin is a neutrally stable center
of the linear system.

c. Define r2(t) = x2(t) + y2(t).

(i) For a < 0, prove dr/dt < 0 provided (x, y) �= (0, 0). Conclude,
therefore, that the origin is an asymptotically stable critical point of the
nonlinear system (14).

(ii) For a > 0, prove dr/dt > 0 provided (x, y) �= (0, 0). Hence, conclude
that the origin is an unstable critical point of the nonlinear system (14).
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10.3 Modified Richardson’s Arms Race Models

Let x(t) ≥ 0 and y(t) ≥ 0 represent the amounts spent per year on arms by
two nations. According to Richardson’s arms race model, the expenditures for
arms per year satisfy the following linear autonomous system of differential
equations

(1)

dx

dt
= Ay − Cx + r

dy

dt
= Bx−Dy + s

where A, B, C, and D are nonnegative, real constants and r and s are real
constants. The term Ay represents the rate of increase in yearly expenditures
for arms by the first nation due to its fear of the second nation. The term
−Cx represents the rate of decrease in yearly expenditures for arms by the first
nation due to the resistance of its people to increased spending for arms. The
constant term r represents the underlying “grievance” which the first nation
feels toward the second nation provided r > 0 or the underlying “feeling of
goodwill” provided r < 0. The terms in the second equation in system (1)
can be interpreted in an analogous manner.

We analyzed the linear arms race model (1) earlier. Suppose that the term
representing the resistance of the first nation’s people to increased spending
for arms, −Cx, is changed to −Cx2 and, likewise, the resistance of the second
nation’s people to increased spending for arms, −Dy, is changed to −Dy2.
Then the nonlinear arms race to be analyzed becomes

(2)

dx

dt
= Ay − Cx2 + r

dy

dt
= Bx−Dy2 + s.

The critical points (x∗, y∗) of (2) simultaneously satisfy

(3a) Ay − Cx2 + r = 0

and

(3b) Bx−Dy2 + s = 0.

For A �= 0, the graph of equation (3a) is a parabola. The vertex of the
parabola is at (0,−r/A), the parabola’s axis of symmetry is the y-axis, and
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the parabola opens upward. For B �= 0, the graph of equation (3b) is also a
parabola. The vertex of this parabola is at (−s/B, 0), its axis of symmetry is
the x-axis, and the parabola opens to the right. Visualizing these parabolas
to be free to slide along the x-axis and y-axis and free to open and close, we
see that it is possible for (2) to have 0, 1, 2, 3 or 4 critical points and we see
that at most two critical points can lie in the first quadrant.

Solving equation (3a) for y yields

(4) y =
Cx2 − r

A
.

Substituting this expression into equation (3b) and rearranging terms, we find
x∗ satisfies the fourth degree equation

(5) C2Dx4 − 2CDrx2 −A2Bx+Dr2 −A2s = 0.

The real, nonnegative critical points of system (2) can be found by using com-
puter software to solve (5) and then substituting the real, nonnegative roots,
x∗, into equation (4). Next, the stability characteristics of the nonlinear sys-
tem (2) at a critical point (x∗, y∗) can often be determined from the stability
characteristics of the associated linear system at (x∗, y∗).

Example 9 A Nonlinear Modified Richardson’s Arms Race Model

Consider the modified arms race model

(6)

dx

dt
= 3y − 2x2 − 1 = f(x, y)

dy

dt
= 8x− y2 − 7 = g(x, y).

a. Find the critical points in the first quadrant.

b. Write the associated linear systems and determine the stability charac-
teristics at each critical point. What are the stability characteristics of
the nonlinear system (6) at each critical point?

Solution

a. System (6) is a special case of system (2) in which A = 3, B = 8, C = 2,
D = 1, r = −1, and s = −7. Substituting these values into equation (5) and
then into (4), we see that the x-coordinate of the critical points of system (6)
must satisfy 4x4 + 4x2 − 72x + 64 = 0 and the y-coordinates must satisfy
y = (2x2+1)/3. Using POLYRTS to calculate the roots of the first equation,
we find x = 1, 2, −1.5±2.39792i. To be in the first quadrant x and y must both
be real and nonnegative. Substituting x = 1 into the equation y = (2x2+1)/3,
we get y = 1. So (1, 1) is a critical point in the first quadrant. Substituting
x = 2 into the equation y = (2x2+1)/3, we get y = 3. Thus, (2, 3) is a second
critical point in the first quadrant.
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b. Calculating first partial derivatives, we see fx = −4x, fy = 3, gx = 8
and gy = −2y.

At (1, 1) the associated linear system is

x′ = fx(1, 1)(x− 1) + fy(1, 1)(y − 1) = −4(x− 1) + 3(y − 1)

y′ = gx(1, 1)(x− 1) + gy(1, 1)(y − 1) = 8(x− 1)− 2(y − 1).

The coefficient matrix of this linear system,

A =

(
fx(1, 1) fy(1, 1)
gx(1, 1) gy(1, 1)

)

=

(−4 3
8 −2

)

has eigenvalues 2 and −8. (Verify this fact by using EIGEN or your computer
software to compute the eigenvalues of A.) Since one eigenvalue is positive
and the other is negative, the critical point (1, 1) is a saddle point of both the
associated linear system and the given nonlinear system (6).

At (2, 3) the associated linear system is

x′ = fx(2, 3)(x− 2) + fy(2, 3)(y − 3) = −8(x− 2) + 3(y − 3)

y′ = gx(2, 3)(x− 2) + gy(2, 3)(y − 3) = 8(x− 2)− 6(y − 3).

The coefficient matrix of this linear system

A =

(−8 3
8 −6

)

has eigenvalues −2 and −12. Since both eigenvalues are negative, the critical
point (2, 3) is an asymptotically stable node of both the associated linear
system and the nonlinear system (6). �

Comments on Computer Software Various computer software pack-
ages include algorithms which numerically solve the system initial value prob-
lem

(7)

y′1 = f1(t, y1, y2, . . . , yn); y1(c) = d1

y′2 = f2(t, y1, y2, . . . , yn); y2(c) = d2
...

...
...

...
...

...
y′n = fn(t, y1, y2, . . . , yn); yn(c) = dn

on the interval [a, b] for c ∈ [a, b] and for 2 ≤ n ≤ N for some given maximum
integer value N . The software accompanying this text contains a program
named SOLVESYS which numerically solves the IVP (7) for a maximum value
of N = 6. Complete instructions for using SOLVESYS appear in CSODE
User’s Guide. After the numerical solution has been calculated you may elect
(i) to print solution components, (ii) to graph any subset of the components
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in any order on a rectangle R where a ≤ t ≤ b and YMIN ≤ y ≤ YMAX and
you select the values for YMIN and YMAX, or (iii) to produce a phase-plane
portrait of yi versus yj for any two distinct components yi and yj on any
rectangle in yjyi-space.

Example 10 Computer Solution of a Nonlinear Modified Richard-
son’s Arms Race Model

Solve the system initial value problem

(8)

dx

dt
= 3y − 2x2 − 1 = f(x, y); x(0) = 2

dy

dt
= 8x− y2 − 7 = g(x, y); y(0) = 0

on the interval [0, 2.5]. Display a graph of x(t) and y(t). Produce a phase-
plane graph of y(t) versus x(t) on the rectangle

R = {(x, y) | 0 ≤ x ≤ 5 and 0 ≤ y ≤ 5}.

Solution

Mathematical Analysis The functions fx = −4x, fy = 3, gx = 8,
and gy = −2y are all defined and continuous on the entire xy-plane. Hence,
according to the existence and uniqueness theorem and the continuation theo-
rem presented in Chapter 7, the system initial value problem (8) has a unique
solution on some interval I centered about c = 0 and this solution can be ex-
tended uniquely until either x(t) → ±∞ or y(t) → ±∞. Since the functions
x(t) and y(t) have physical significance only for x(t) ≥ 0 and y(t) ≥ 0, we will
stop the numerical integration if x(t) or y(t) becomes negative.

Computer Solution We input the two functions defining the system,
f(x, y) and g(x, y); the interval of integration [0, 2.5]; and the initial conditions
x(0) = 2 and y(0) = 0 into our computer software. After the integration was
completed, we indicated we wanted to graph x(t) and y(t) on the rectangle
R = {(t, x) | 0 ≤ t ≤ 2.5 and 0 ≤ x ≤ 5}. The resulting graph is displayed in
Figure 10.10. The graph of x(t) starts at a height of 2, decreases to nearly 1,
and then increases to 1.87154. The graph of y(t) starts at a height of 0 and
steadily increases to 2.743162.

Since we wanted to produce a phase-plane graph of y versus x, we indicated
to our computer software SOLVESYS that we wanted x(t) assigned to the
horizontal axis and y(t) assigned to the vertical axis and that we wanted to
display the graph on the rectangle R where 0 ≤ x ≤ 5 and 0 ≤ y ≤ 5. The
resulting phase-plane graph of y versus x is shown in Figure 10.11. The arrow
heads, point, and point coordinates which appear in this figure were added to
the output of SOLVESYS using illustrating software.
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Figure 10.10 Graph of the Solution of System (8).
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Figure 10.11 Phase-Plane Plot of y versus x for System (8).
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We were able to produce the phase-plane portrait of y versus x shown
in Figure 10.12 by using our software PORTRAIT to solve the nine initial
value problems consisting of system (8) and the following set of nine initial
conditions on the interval [0, 2.5] and plotting the results on the same graph.
The initial conditions are
(i) x(0) = 0, y(0) = 2.5; (ii) x(0) = 0, y(0) = 3; (iii) x(0) = 0, y(0) = 5;
(iv) x(0) = 1.5, y(0) = 0; (v) x(0) = 2, y(0) = 0; (vi) x(0) = 5, y(0) = 0;
(vii) x(0) = 5, y(0) = 3; (viii) x(0) = 1, y(0) = 5; and (ix) x(0) = 3, y(0) = 5.
The arrow heads, points, and points coordinates which appear in Figure 10.12
were added to the output of PORTRAIT using illustrating software.
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Figure 10.12 Phase-Plane Portrait for System (8).

Comments on Computer Software For 1 ≤ i ≤ 10, PORTRAIT will
attempt to solve numerically the i initial value problems consisting of the
autonomous, two component system initial value problem

dy1
dx

= f1(y1, y2)

dy2
dx

= f2(y1, y2)

and the initial conditions y1(ci) = d1i, y2(ci) = d2i on the interval [ai, bi]
where ci ∈ [ai, bi]. After the solution of an initial value problem has been
calculated, you may elect for any initial value problem already solved (i) to
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print the solution components on the monitor, (ii) to graph any subset
of the solution components in a rectangle R where ai ≤ x ≤ bi and
YMIN ≤ y ≤ YMAX where you select the values for YMIN and YMAX,
(iii) to produce a phase-plane portrait of any subset of IVPs already solved
on any rectangle, (iv) to rerun the most recent initial value problem using a
different interval of integration or initial conditions, or (v) input the initial
conditions for the next initial value problem to be solved. Complete instruc-
tions for using PORTRAIT appear in the file PORTRAIT User’s Guide which
can be downloaded from the website: cs.indstate.edu/∼roberts/DEq.html.

EXERCISES 10.3

1. Consider the nonlinear Richardson’s arms race model

dx

dt
= 5y − x2 + 5

(9)
dy

dt
= 4x− y2 − 4.

a. Find the critical point in the first quadrant.

b. Write the associated linear system and determine the stability charac-
teristics at the critical point. What can you conclude about the stability
of the nonlinear system (9) at the critical point?

c. Use PORTRAIT to solve the system initial value problems consisting of
system (9) and the following five initial conditions on the interval [0, 2]:
(i) x(0) = 0, y(0) = 7; (ii) x(0) = 2, y(0) = 1; (iii) x(0) = 5, y(0) = 0;
(iv) x(0) = 7, y(0) = 0; (v) x(0) = 7, y(0) = 7.
Display a phase-plane portrait of y versus x on the rectangle with
0 ≤ x ≤ 10 and 0 ≤ y ≤ 10.

2. Consider the following nonlinear arms race model

dx

dt
= y − x2 − 4

(10)
dy

dt
= 4x− y2 − 4.

a. Find the critical point in the first quadrant.

b. Write the associated linear system and calculate the eigenvalues. What
can you say about the stability of the associated linear system based
on the eigenvalues? What can you conclude about the stability of the
nonlinear system (10) at the critical point?
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c. Use PORTRAIT to solve the system initial value problems consisting
of system (10) and the following four initial conditions on the interval
[0, 4]:
(i) x(0) = 1.8, y(0) = 1.8; (ii) x(0) = 1, y(0) = 4; (iii) x(0) = 3,
y(0) = 1; (iv) x(0) = 3, y(0) = 4.
Graph the phase-plane portrait of y versus x on the rectangle with
0 ≤ x ≤ 5 and 0 ≤ y ≤ 5. What do you infer about the stability of the
nonlinear system (10) from these results?

3. Consider the nonlinear arms race model

dx

dt
= 9y − x2 − 9

(11)
dy

dt
= 4x− y2 − 8.

a. Find the critical points in the first quadrant.

b. Write the associated linear systems and determine the stability char-
acteristics of each critical point. What can you conclude about the
stability of the nonlinear system (11) at each critical point?

c. Use PORTRAIT to solve the system initial value problems consisting
of (11) and the following seven initial conditions on the interval [0, 2]:
(i) x(0) = 1, y(0) = 1; (ii) x(0) = 2, y(0) = 3; (iii) x(0) = 4, y(0) = 0;
(iv) x(0) = 4, y(0) = 3; (v) x(0) = 4, y(0) = 5; (vi) x(0) = 6, y(0) = 3;
(vii) x(0) = 6, y(0) = 6.
Display the phase-plane graph of y versus x on the rectangle with 0 ≤
x ≤ 10 and 0 ≤ y ≤ 10.

4. Consider the following modification of Richardson’s arms race model

dx

dt
= Ay − Cx+ r

(12)
dy

dt
= Bx−Dy2 + s

where A, B, C, and D are positive real constants and r and s are real
constants. Here each nation’s fear of the other nation is modelled as
being proportional to the amount the other nation spends annually for
arms. The resistance of the first nation’s people to increased spending for
arms is modelled as being proportional to the amount spent yearly for
arms, while the resistance of the second nation’s people to increased spend-
ing for arms is modelled as being proportional to the square of the amount
spent yearly for arms.
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a. What is the graph of Ay − Cx + r = 0? What is the graph of
Bx − Dy2 + s = 0? How many critical points can system (12) have?
What is the maximum number of critical points system (12) can have
in the first quadrant?

b. Write a single equation which the x-coordinate of a critical point must
satisfy.

c. (i) Find the critical points in the first quadrant of the system

(13)

dx

dt
= 3y − x− 1

dy

dt
= x− y2 − 1.

(ii) Write the associated linear system and determine the stability
characteristics at each critical point. What can you conclude about
the stability of the nonlinear system (13) at each critical point?

(iii) Use PORTRAIT to solve system (13) and the following six initial
conditions on the interval [0, 2]:
(i) x(0) = 1, y(0) = 1; (ii) x(0) = 0, y(0) = 4; (iii) x(0) = 3, y(0) = 0;
(iv) x(0) = 4, y(0) = 0; (v) x(0) = 7, y(0) = 0; (vi) x(0) = 3, y(0) = 5.
Display the phase-plane graph of y versus x on the rectangle with
0 ≤ x ≤ 10 and 0 ≤ y ≤ 5.

5. Consider the following modification of Richardson’s arms race model

dx

dt
= Ay2 − Cx+ r

(14)
dy

dt
= Bx2 −Dy + s

where A, B, C, and D are positive real constants and r and s are real
constants. Here the fear of each nation for the other is modelled as being

proportional to the square of the other nation’s yearly expenditures for

arms.

a. What is the graph of Ay2 − Cx + r = 0? What is the graph of
Bx2 − Dy + s = 0? How many critical points can system (14) have?
What is the maximum number of critical points system (14) can have
in the first quadrant?

b. Write a single equation which the x-coordinate of the critical point must
satisfy.
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c. (i) Find the critical point in the first quadrant of the system

(15)

dx

dt
= y2 − 4x+ 4

dy

dt
= x2 − 5y − 5.

(ii) Write the associated linear system and determine the stability
characteristics at the critical point. What can you conclude about the
stability of the nonlinear system (15) at the critical point?

(iii) Use PORTRAIT to solve system (15) and the following five initial
conditions on the interval [0, 2]:
(i) x(0) = 0, y(0) = 3; (ii) x(0) = 0, y(0) = 7; (iii) x(0) = 3, y(0) = 0;
(iv) x(0) = 3, y(0) = 10; (v) x(0) = 7, y(0) = 10.
Graph the phase-plane graph of y versus x on the rectangle with
0 ≤ x ≤ 10 and 0 ≤ y ≤ 10.

d. (i) Find the critical point in the first quadrant of the system

(16)

dx

dt
= y2 − 4x+ 4

dy

dt
= x2 − 4y + 4.

(ii) Write the associated linear system and calculate the eigenvalues.
What can you say about the stability of this linear system? What can
you conclude about the stability of the nonlinear system (16) at the
critical point?

(iii) Solve the system initial value problems consisting of system (16)
and the following initial conditions on the interval [0, 3]:
(i) x(0) = 0, y(0) = 0; (ii) x(0) = 0, y(0) = 4; (iii) x(0) = 3, y(0) = 0;
(iv) x(0) = 3, y(0) = 4.
Display y versus x on the rectangle with 0 ≤ x ≤ 5 and 0 ≤ y ≤ 5.
What do you infer about the stability of the nonlinear system (16) from
these results?

Additional Information Needed to Solve Exercises 6 and 7

Recall that a homogeneous system of n linear first-order differential equa-
tions with constant coefficients can be written in matrix-vector notation as

(17) y′ = Ay

where y is an n × 1 vector and A is an n × n constant matrix. The origin,
y = 0, is a critical point of this system. We state the following theorem
regarding the stability of the critical point at the origin.
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Stability Theorem

(1) If the eigenvalues of A all have negative real part, then the origin is an
asymptotically stable critical point of the linear system (17).

(2) If any eigenvalue of A has positive real part, then the origin is an
unstable critical point of the linear system (17).

(3) Suppose the eigenvalues of A all have nonpositive real part and suppose
those eigenvalues which have zero real part are purely imaginary eigenvalues.
That is, suppose the eigenvalues which have zero real part are of the form
iβ where β �= 0. If every purely imaginary eigenvalue of multiplicity k has
k linearly independent eigenvectors, then the origin is a stable critical point
of system (17). Whereas, if any purely imaginary eigenvalue of multiplicity
k has fewer than k linearly independent eigenvectors, then the origin is an
unstable critical point of system (17).

The stability characteristics of the nonhomogeneous system of n linear first-
order differential equations

(18) z′ = Az+ b

at the critical point z∗, which satisfies Az∗ +b = 0, is the same as the stabil-
ity characteristics of the homogeneous linear system y′ = Ay at the origin,
since the linear transformation y = z − z∗ transforms the nonhomogeneous
system (18) into the homogeneous system (17).

One possible extension of Richardson’s arms race model from a system for
two nations to a system for three nations is

(19)

dy1
dt

= −c1y1 + a12y2 + a13y3 + r1

dy2
dt

= a21y1 − c2y2 + a23y3 + r2

dy3
dt

= a31y1 + a32y2 − c3y3 + r3

where aij and ci are nonnegative real constants and ri are any real constants.
In system (19) y1, y2, and y3 are the yearly amounts spent by nations 1,
2, and 3 for arms; the terms aijyj represent the rate of increase in yearly
expenditures for arms by nation i due to its fear of nation j; the terms −ciyi
represent the rate of decrease in yearly expenditures for arms by nation i due
to the resistance of its people to increased spending for arms; and ri represents
the collective underlying “goodwill” or “grievance” which nation i feels toward
the other two nations.
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6. a. Suppose in system (19) c1 = c2 = c3 = 1 and aij = 2 for all appropriate
values of i and j. Is the critical point of system (19) stable or unstable?
(Hint: Write system (19) in matrix-vector form, use EIGEN or your
computer software to calculate the eigenvalues of the appropriate 3× 3
constant matrix A, and use the stability theorem to determine the an-
swer to the question.)

b. Suppose in system (19) c1 = c2 = c3 = 3 and aij = 1. Is the critical
point of system (19) stable or unstable?

7. Suppose in system (19) that nation 3 is a pacifist nation. This situation
can be represented by setting a31 = a32 = 0.

a. Let c1 = c2 = c3 = 1 and a12 = a13 = a21 = a23 = 2.

(i) Determine if the critical point of system (19) is stable or unstable.

(ii) For r1 = r2 = 2 and r3 = −1 solve the system initial value problem

consisting of system (19) and the initial conditions y1(0) = 4,

y2(0) = 4, y3(0) = 2 on the interval [0, 3]. Display y1(t), y2(t),

and y3(t) on the same graph. Produce phase-plane graphs of y2

versus y1, y3 versus y1, and y3 versus y2.

b. Do parts (i) and (ii) of part a. for c1 = c2 = c3 = 2 and a12 = a13 =
a21 = a23 = 1.

10.4 Lanchester’s Combat Models

In 1916, during World War I, F. W. Lanchester authored the book Aircraft
in Warfare: The Dawn of the Fourth Arm. In the text, Lanchester described
some simple mathematical models for the then emerging art of air warfare.
More recently, these models have been extended to general combat situations
and are referred to as Lanchester’s combat models.

In the elementary combat models, two forces are engaged in combat. Let
x(t) and y(t) denote the number of combatants in the “x-force” and “y-force”
respectively. The principle underlying Lanchester’s combat models is that the
rate of change of the number of combatants is equal to the reinforcement
rate minus the operational loss rate minus the combat loss rate. The
reinforcement rate is the rate at which new combatants enter or withdraw
from the battle. The operational loss rate refers to noncombat losses due
to such things as disease, accident, desertion, etc. Lanchester proposed that
the operational loss rate be modelled as being proportional to the number of
combatants. This assumption appears to be too simplistic. The combat loss
rate is the rate at which combatants are killed in battle.
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A “conventional force” is one which operates in the open and one whose
members are all within the “kill range” of the enemy. As soon as the con-
ventional force suffers a loss, the enemy concentrates its fire on the remaining
conventional combatants. Thus, the combat loss rate of a conventional force
is proportional to the number of the enemy. The constant of proportionality
is called the “combat effectiveness coefficient.”

The Lanchester model for two conventional forces engaged in battle is

(1)

dx

dt
= f(t)−Ax−By

dy

dt
= g(t)− Cy −Dx

where A, B, C, and D are nonnegative constants; where f(t) is the reinforce-
ment rate, Ax is the operational loss rate, and By is the combat loss rate of
the x-force; and where g(t) is the reinforcement rate, Cy is the operational
loss rate, and Dx is the combat loss rate of the y-force. Here, B is the com-
bat effectiveness coefficient for the y-force and D is the combat effectiveness
coefficient of the x-force.

First, let us consider the simplest case of system (1)—the case in which the
battle takes place so rapidly that no reinforcements arrive, f(t) = g(t) = 0,
and no operational losses occur, A = C = 0. Thus, we wish to consider the
linear autonomous system

(2)

dx

dt
= −By

dy

dt
= −Dx.

Solving −By = 0 and −Dx = 0 simultaneously, we see that the origin is
the only critical point of system (2). The coefficient matrix of the linear
autonomous system (2)

A =

(
0 −B

−D 0

)

has eigenvalues λ = ±√
BD. (Verify this fact.) Since one eigenvalue is positive

and the other is negative, the origin is a saddle point of system (2).

The trajectories, (x(t), y(t)), of system (2) satisfy the first-order differential
equation

(3)
dy

dx
=

dy/dt

dx/dt
=

−Dx
−By .

Let x0 > 0 and y0 > 0 be the number of combatants of the two forces at the
start (t = 0) of the battle. Separating variables in equation (3) and integrating
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from the initial point (x0, y0) to (x(t), y(t)), we find

B

∫ y(t)

y0

y dy = D

∫ x(t)

x0

x dx

and, therefore,
B(y2(t)− y20) = D(x2(t)− x20).

So

(4) By2(t)−Dx2(t) = By20 −Dx20 ≡ K

whereK is a constant. ForK �= 0 the graph of equation (4) is a hyperbola and
for K = 0 the graph of equation (4) is two lines which intersect at the origin.
The trajectories in the first quadrant defined by equation (4) are sketched in
Figure 10.13. The direction (x(t), y(t)) moves along the hyperbolas (4) as t
increases, which is indicated by the arrows in Figure 10.13, was determined
by noting in system (2) that dx/dt < 0 and dy/dt < 0 for x > 0 and y > 0.
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Figure 10.13 Phase-Plane Portrait of Lanchester’s Combat Model
for Two Conventional Forces with No Reinforcements
and No Operational Losses.

We will say that one force “wins” the battle, if the other force vanishes first.
We see from equation (4) that the y-force wins if K > 0; the x-force wins if
K < 0; and there is a tie if K = 0. IfK > 0, the x-force vanishes (x = 0) when
y =

√
K/B. Thus, for K > 0 the strength of the y-force at the end of the

battle is
√
K/B. Likewise, if K < 0, the y-force vanishes (the x-force wins the
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battle) and at the end of the battle the strength of the x-force is x =
√−K/D.

In order to win the battle, the y-force seeks to establish conditions under
which the inequality K = By20 −Dx20 > 0 or By20 > Dx20 holds. This can be
accomplished by increasing its combat effectiveness coefficient, B—perhaps
by using more powerful or more accurate weapons—or by increasing its initial
number of combatants, y0. Notice that doubling B causes By20 to double
while doubling y0 causes By20 to quadruple. Since the initial strengths of the
opposing forces, x0 and y0, appear quadratically in equation (4) and, hence,
effect the outcome of the battle in a quadratic manner, equation (4) is known
as “Lanchester’s square law.”

A “guerrilla force” is one which is invisible to its enemy. When the enemy
fires into a region containing the guerrilla force, the enemy does not know when
a kill occurs, so the enemy is unable to concentrate its fire on the remaining
guerrillas. It is reasonable to assume that the combat loss rate of a guerrilla
force is jointly proportional to the number of guerrillas and the number of the
enemy, since the probability that the enemy kills a guerrilla increases as the
number of guerrillas in a given region increases and it increases as the number
of enemy firing into the region increases. Thus, the Lanchester model for a
conventional force, x, engaged in battle with a guerrilla force, y, is

(5)

dx

dt
= f(t)− Ax−By

dy

dt
= g(t)− Cy −Dxy

where A, B, C, and D are nonnegative constants; where f(t) is the reinforce-
ment rate, Ax is the operational loss rate, and By is the combat loss rate of
the conventional force, x; and where g(t) is the reinforcement rate, Cy is the
operational loss rate, and Dxy is the combat loss rate for the guerrilla force,
y.

Let us now consider a conventional force and a guerrilla force engaged in
a battle in which no reinforcements occur, f(t) = g(t) = 0, and in which no
operational losses occur, A = C = 0. That is, let us consider the nonlinear
autonomous system

(6)

dx

dt
= −By

dy

dt
= −Dxy.

Dividing the second equation of (6) by the first, we see that

dy

dx
=

dy/dt

dx/dt
=

−Dxy
−By =

Dx

B
.
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Multiplying by B dx and integrating from (x0, y0) to (x(t), y(t)), we find

B

∫ y(t)

y0

dy = D

∫ x(t)

x0

x dx

or

B(y(t)− y0) =
D(x2(t)− x20)

2
.

Hence,

(7) By(t)− Dx2(t)

2
= By0 − Dx20

2
≡ K

whereK is a constant. The graph of equation (7) is a one-parameter (K is the
parameter) family of parabolas with the y-axis as the axis of symmetry, with
vertex at (0,K/B), and which opens upward. The trajectories in the first
quadrant defined by equation (7) are sketched in Figure 10.14. For K > 0,
the guerrilla force, y, wins the battle and at the end of the battle the number
of combatants in the y-force is K/B. For K = 0, there is a tie—that is, for
some t∗ > 0, x(t∗) = y(t∗) = 0. For K < 0, the conventional force, x, wins the
battle and at the end of the battle the number of combatants in the x-force
is
√−2K/D.
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Figure 10.14 Phase-Plane Portrait of Lanchester’s Combat Model

for a Conventional Force Versus a Guerrilla Force

with No Reinforcements and No Operational Losses.
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EXERCISES 10.4

1. Suppose two conventional forces are engaged in a battle in which each force
reinforces its combatants at a constant rate and no operational losses occur.
The Lanchester model for this battle is

(8)

dx

dt
= r −By

dy

dt
= s−Dx

where the positive constants r and s are the reinforcement rates of the x-force
and y-force and By and Dx are the combat loss rates for the x-force and
y-force, respectively.

a. For r = 3, s = 1, B = 2, and D = .75 use SOLVESYS or your
computer software to solve the following three initial value problems
on the interval [0, 5]:

(i) x(0) = 1.5, y(0) = 1.754 (ii) x(0) = 1.5, y(0) = 1.5

(iii) x(0) = 0, y(0) = 0

(Note: The numbers in this example have been scaled so that x, y, r,
and s can represent hundreds, thousands, or tens of thousands, etc.,
combatants. Interpret the time as being in days.)

b. For each initial value problem in part a. determine (i) which force
wins the battle, (ii) the time the battle is over, and (iii) the number
of combatants in the winning force at the end of the battle.

2. Use SOLVESYS or your computer software to solve the Lanchester combat
model

(9)

dx

dt
= (3 − .2t)− .1x− 2y

dy

dt
= (1 + .3t)− .05y − .75x

for two conventional forces engaged in battle for the three initial conditions:

(i) x(0) = 1.5, y(0) = 1.75 (ii) x(0) = 1.5, y(0) = 1.5

(iii) x(0) = 0, y(0) = 0

In each case, determine (a) which force wins the battle, (b) the time the
battle is over, and (c) the number of combatants in the winning force at the
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end of the battle. In this engagement, the x-force is being reinforced at the
decreasing rate f(t) = 3 − .2t, their operational loss rate is .1x, and their
combat loss rate is 2y. The y-force is being reinforced at the increasing rate
g(t) = 1+ .3t, their operational loss rate is .05y, and their combat loss rate is
.75x.

3. Use SOLVESYS or your computer software to solve the Lanchester combat
model

(10)

dx

dt
= 2− x− 2y

dy

dt
= 1− .2y − .2xy

for a conventional force, x, versus a guerrilla force, y, on the interval [0, 5] for
the initial conditions (i) x(0) = 0, y(0) = 0 and (ii) x(0) = 4, y(0) = 1. In
each case, decide which force wins the battle, when victory occurs, and the
number of combatants in the winning force at the time of victory.

4. The Lanchesterian model for two guerrilla forces engaged in battle is

(11)

dx

dt
= f(t)−Ax−Bxy

dy

dt
= g(t)− Cy −Dxy

where A, B, C, and D are nonnegative constants and where f(t) and g(t) are
the reinforcement rates, Ax and Cy are the operational loss rates, and Bxy
and Dxy are the combat loss rates.

a. Write the system of equations for two guerrilla forces engaged in combat

when there are no reinforcements and no operational losses.

b. Divide one equation of your system by the other equation to obtain a

differential equation in x and y.

c. Find the general solution to the differential equation of part b. That is,

find the trajectories of the system.

d. Sketch a phase-plane portrait for the system in the first quadrant.

e. For each force determine conditions which ensure victory and determine the

number of combatants in the winning force at the end of the battle. Specify

conditions under which there is a tie.
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5. Use SOLVESYS or your computer software to solve the Lanchester combat
model

(12)

dx

dt
= 2− .5x− .5xy

dy

dt
= 1− .2y − .25xy

for two guerrilla forces engaged in battle on the interval [0, 5] for the initial
conditions:

(i) x(0) = 0, y(0) = 0 (ii) x(0) = 0, y(0) = 6

(iii) x(0) = 5, y(0) = 0 and (iv) x(0) = 5, y(0) = 6

In each case, display a phase-plane graph of y versus x. Do you think either
force will ever win?

10.5 Models for Interacting Species

We examined the Malthusian model and the logistic model (Verhulst-Pearl
model) for population growth of a single species in Chapter 3. In this sec-
tion, we will examine several models which attempt to represent population
dynamics when two or more species interact in the same environment.

Volterra-Lotka Prey-Predator Model

The first model which we will study is named in honor of the American
scientist and statistician Alfred Lotka and the Italian mathematician Vito
Volterra. Both men studied this model at about the same time and arrived at
similar conclusions. This particular model serves as the cornerstone for the
study of population dynamics for interacting species.

On March 2, 1880, Alfred James Lotka (1880-1949) was born in Lemberg,
Austria, to American parents. He received his elementary and secondary
education in France. In 1901, he was granted a B.Sc. degree by Bingham
University in England. During 1901-2, Lotka pursued graduate studies at the
University of Leipzig in Germany. In 1902, he moved to the United States and
worked as a chemist for the General Chemical Company until 1908. During
1908-9 he was an assistant in physics at Cornell University. In 1909, Cornell
University granted him an M.A. degree. He worked briefly as an examiner
for the U.S. Patent Office and from 1909-11 he was a physicist for the U.S.
Bureau of Standards. In 1912, Lotka received his D.Sc. degree from Bingham
University. He then returned to work for the General Chemical Company
from 1914-19. In 1924, he joined the statistical bureau of the Metropolitan
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Life Insurance Company in New York City. He remained there until his death
on December 5, 1949.

Alfred Lotka was the first person to systematically analyze the wide variety
of relationships which occur between two interacting species and to formulate
and study mathematical models to represent those interactions. Some of the
models which we are about to study appeared in his 1925 book, Elements of
Physical Biology.

The Italian mathematician Vito Volterra (1860-1940) independently con-
structed the same basic prey-predator population model as Lotka and arrived
at many of the same conclusions. Volterra was born on May 3, 1860, in An-
cona, Italy. He began studying geometry at age 11 and calculus at age 14.
In 1882, he received his doctorate in physics from the University of Pisa. His
first appointment was as professor of mechanics and mathematics at Pisa.
Later, he was a faculty member of the University of Rome for a period of
thirty years. Volterra’s major contributions to mathematics are in the areas
of functional analysis and integral equations. The following is an account of
the events which led Volterra to his formulation of the prey-predator model.

From 1910 to 1923, Humberto D’Ancona collected data on the number
of each species of fish sold in the markets of Trieste, Fiume, and Venice.
D’Ancona assumed that the relative numbers of the various species available
at the markets indicated the relative numbers of the species in the Adriatic
Sea. He noticed that the percentage of predator fish (sharks, skates, rays,
etc.) in the total fish population was higher during and immediately after
World War I (1914-18). He concluded that the reduction in fishing due to
the war caused the change in the ratio of predators to prey. He reasoned
that during the war the ratio was close to its natural state and that the
decrease in this ratio before and after the war was due to fishing. D’Ancona
hypothesized that the reduction in the level of fishing due to the war caused
an increase in the number of prey fish which in turn caused a larger increase
in the number of predator fish—thus, accounting for the increased percentage
of predators. However, he could not give biological or ecological reasons why
fishing should be more beneficial to prey than to their predators. D’Ancona
requested his father-in-law, Vito Volterra, to construct some mathematical
models to explain the situation. In a few months, Volterra formulated a set
of models for the population dynamics for two or more interacting species.

The following sequence of assumptions and reasoning may be similar to
those which led both Lotka and Volterra to their elementary prey-predator
model. Let x(t) be the population (number) of prey at time t and let y(t) be
the population of predators at time t.

Assumption 1 The rates of change of the populations depends only on x
and y.

This assumption means the prey-predator population dynamics can be mod-
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elled by an autonomous system of differential equations of the form

(1)

dx

dt
= f(x, y)

dy

dt
= g(x, y).

Assumption 2 The functions f and g are quadratic in x and y.

This assumption means the functions f and g have the following forms

(2) f(x, y) = A+Bx + Cx2 +Dy + Ey2 +Hxy

and

(3) g(x, y) = K + Lx+Mx2 +Ny + Py2 +Qxy

where A, B, C, D, E, H , K, L, M , N , P , and Q are all real constants.

Assumption 3 If one species is not present, there is no change in its
population.

Stated mathematically, this assumption is (i) if x = 0, then f(0, y) = 0 and
(ii) if y = 0, g(x, 0) = 0. Setting x = 0 and f(0, y) = 0 in equation (2) leads
to the requirement 0 = A + Dy + Ey2 for all y. Thus, A = D = E = 0.
Likewise, setting y = 0 and g(x, 0) = 0 in equation (3), yields the requirement
0 = K + Lx+Mx2 for all x. Thus, K = L =M = 0.

Summarizing to this point, assumptions 1, 2, and 3 result in a system of
the form

(4)
dx

dt
= Bx+ Cx2 +Hxy = f(x, y)

(5)
dy

dt
= Ny + Py2 +Qxy = g(x, y).

Assumption 4 An increase in the prey population increases the growth
rate of the predators.

Mathematically, this assumption is gx(x, y) > 0 for all x, y. Since from
equation (5) gx = Qy, this assumption means Q is positive for y positive.

Assumption 5 An increase in the predator population decreases the
growth rate of the prey.

This assumption is fy(x, y) < 0 for all x, y. Since from equation (4) fy =
Hx, this assumption means H is negative for x positive.

Assumption 6 If there are no predators, then the prey population in-
creases according to the Malthusian law.
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Thus, if y = 0, then f(x, 0) > 0 and f(x, 0) = rx where r is positive. From
equation (4), this assumption leads to the requirement

f(x, 0) = Bx+ Cx2 = rx.

Hence, B = r, a positive constant, and C = 0.

Assumption 7 If there are no prey, then the predator population decreases
according to the Malthusian law.

Mathematically, this assumption is: if x = 0, then g(0, y) < 0 and g(0, y) =
−sy, where s is positive. From equation (5), this assumption leads to the
requirement

g(0, y) = Ny + Py2 = −sy.
Hence, N = −s, where s is positive, and P = 0.

These seven assumptions yield theVolterra-Lotka prey-predator model

(6)

dx

dt
= rx −Hxy = f(x, y)

dy

dt
= −sy +Qxy = g(x, y)

where r, s, H and Q are all positive constants. Solving the two equations

rx −Hxy = x(r −Hy) = 0

−sy +Qxy = y(−s+Qx) = 0

simultaneously, we see that system (6) has two critical points—namely, (0, 0)
and (s/Q, r/H).

Let us now consider initial conditions (x0, y0) where x0 ≥ 0 and y0 ≥ 0. If
x0 = 0, then the solution of system (6) is (x(t), y(t)) = (0, y0e

−st). That is, if
x0 = 0, then the y-axis is a trajectory in the phase-plane and a solution which
starts on the y-axis remains on the y-axis and moves toward the origin. Notice
that this result is a consequence of assumption 7 which says: “In the absence
of prey, the predator population decreases according to the Malthusian law.”
Likewise, if y0 = 0, the solution to system (6) is (x(t), y(t)) = (x0e

rt, 0). Thus,
if y0 = 0, the x-axis is a trajectory in the phase-plane and a solution which
starts on the x-axis remains on the x-axis and moves away from the origin.
Observe that this result is a consequence of assumption 6. Since trajectories
in the phase-plane cannot intersect one another and since the x-axis and the
y-axis are both trajectories, any trajectory which begins in the first quadrant
must remain in the first quadrant for all time.

Calculating first partial derivatives of f and g of system (6), we find fx =
r − Hy, fy = −Hx, gx = Qy, and gy = −s + Qx. At the critical point
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(s/Q, r/H) the associated linear system has coefficient matrix

A =

(
fx(s/Q, r/H) fy(s/Q, r/H)
gx(s/Q, r/H) gy(s/Q, r/H)

)

=

(
0 −sH/Q

Qr/H 0

)

.

The eigenvalues of this matrix are λ = ±√−rs = ±i√rs, so (s/Q, r/H) is a
neutrally stable center of the associated linear system. Consequently, without
any further analysis, we cannot tell if this critical point remains a stable center
or becomes a stable or unstable spiral point of the nonlinear system (6).

A trajectory (x(t), y(t)) of an autonomous system is said to be periodic,
if for some positive T , (x(t + T ), y(t+ T )) = (x(t), y(t)) for all t.

Volterra summarized his findings for the prey-predator model (6) in three
basic principles. First, based on the assumption that the coefficients of growth,
r and s, and the coefficients of interaction, H and Q, remain constant, he
was able to prove that “the trajectories of the nonlinear system (6)
are closed, periodic trajectories which enclose the critical point
(s/Q, r/H).” That is, the critical point (s/Q, r/H) of the nonlinear sys-
tem (6) remains a stable center and the prey and predator populations vary
periodically. The period T depends only on the coefficients r, s, H , and Q
and on the initial conditions x0 > 0 and y0 > 0.

Let (x(t), y(t)) be a periodic solution of (6) with period T > 0. The average
number of prey x̄ and the average number of predators ȳ over the period T is

x̄ =
1

T

∫ T

0

x(t) dt ȳ =
1

T

∫ T

0

y(t) dt.

Volterra’s second principle, also based on the assumption that r, s, H , and Q
remain constant, is that x̄ = s/Q and ȳ = r/H . Thus, his second principle,
the law of conservation of averages, says that “the average values of
x(t) and y(t) over the period T is equal to their critical point values.”
This law is fairly easy to verify as the following computations show. Dividing
the first equation of system (6) by x and integrating from 0 to T , we obtain

∫ T

0

x′(t)
x(t)

dt = lnx(t)

∣
∣
∣
∣
∣

T

0

= lnx(T )− lnx(0) =

∫ T

0

(r −Hy) dt.

Since x is periodic with period T , we have x(T ) = x(0) and lnx(T ) = lnx(0);
therefore, ∫ T

0

(r −Hy) dt = 0.

Consequently,

rT = H

∫ T

0

y dt or ȳ =
1

T

∫ T

0

y dt =
r

H
.

Dividing the second equation of system (6) by y and proceeding as above, we
also find x̄ = s/Q.
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We are now ready to determine the effect of fishing on the prey-predator
model (6). The simplest model which includes the effects of fishing (harvest-
ing) assumes indiscriminate, constant-effort harvesting in which fisher-
men keep whatever fish they catch. Therefore, in indiscriminate, constant-
effort harvesting it is assumed that the number of fish harvested (caught) of
each species is proportional to the population of that species. The prey-
predator model with indiscriminate, constant-effort harvesting is

(7)

dx

dt
= rx−Hxy − hx = (r − h)x−Hxy

dy

dt
= −sy +Qxy − hy = (−s− h)y +Qxy

where h, the harvesting coefficient, is a positive constant. For r − h > 0
(i.e., for h < r) system (7) is the same as system (6) with r replaced by
r − h and −s replaced by −s − h. So, the critical point in the first quad-
rant of system (7) is at ((s + h)/Q, (r − h)/H). Since h > 0, we see that
(s + h)/Q > s/Q and (r − h)/H < r/H . Thus, we arrive at Volterra’s
third principle which states: “Indiscriminate, constant-effort harvest-
ing increases the average prey population and decreases the av-
erage predator population.” This third principle substantiates the con-
clusion reached by D’Ancona—namely, that the predator population, on the
average, increases when fishing decreases and decreases when fishing increases
and, conversely, the prey population, on the average, decreases when fishing
decreases and increases when fishing increases.

Since its initial formulation, the Volterra-Lotka prey-predator model has
been supported and challenged by many ecologists and biologists. Critics
of the model cite the fact that most prey-predator systems found in nature
tend to an equilibrium state. However, this model is a good model for the
prey-predator fish system of the Adriatic Sea, since these fish do not compete
within their own species for available resources. This model also adequately
represents population dynamics for other prey-predator systems in which the
individual populations do not compete within their own species for resources.
Shortly, we will examine systems which include terms to reflect internal com-
petition.

Example 11 Computer Solution of a Volterra-Lotka Prey-Predator
System

Solve the Volterra-Lotka prey-predator system

dx

dt
= x− .5xy

dy

dt
= −2y + .25xy
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on the interval [0, 5] for the initial conditions x(0) = 10, y(0) = 5. Display
x(t) and y(t) on the same graph over the interval [0, 5]. Produce a phase-plane
graph of y versus x.

Solution

We input the two functions defining the system, f(x, y) = x − .5xy and
g(x, y) = −2y + .25xy, into our computer software. Then, we input the
interval of integration [0, 5] and the initial conditions x(0) = 10 and y(0) = 5.
After the integration was completed, we indicated we wanted to graph x(t)
and y(t) on the interval [0, 5] with 0 ≤ y ≤ 20. The resulting graph is displayed
in Figure 10.15. In this graph, the solution x(t) lies above the solution y(t).

Since we wanted to produce a phase-plane graph of y versus x, we indicated
to our software that we wanted x(t) assigned to the horizontal axis and y(t)
assigned to the vertical axis and that we wanted to display the graph on the
rectangle where 0 ≤ x ≤ 20 and 0 ≤ y ≤ 10. The resulting phase-plane graph
of y versus x is shown in Figure 10.16.
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Figure 10.15 Graph of the Solution of a Volterra-Lotka Prey-Predator
System.
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Figure 10.16 Phase-Plane Plot of Predator Population
Versus Prey Population.

EXERCISE

1. a. Use SOLVESYS or your computer software to solve the prey-predator
initial value problem

dx

dt
= 2x− .5xy; x(0) = 2

dy

dt
= −2y + xy; y(0) = 3.5

on the interval [0, 4]. Assume that the unit of time is measured in years
and the unit of population is measured in thousands. What is the period,
T ? What is the minimum and maximum population of the prey, x, and the
predators, y? What is the average prey and predator population?

b. Solve the indiscriminate, constant-effort harvesting, prey-predator initial
value problem

dx

dt
= 2x− .5xy − .3x; x(0) = 2

dy

dt
= −2y + xy − .3y; y(0) = 3.5

on the interval [0, 4]. What is the period, T ? How does this period compare
with the period for part a? What is the minimum and maximum population
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for the prey and predators? How do these values compare with the correspond-
ing answers in part a? What is the average prey and predator population?
How do these values compare with the corresponding answers in part a?

Modified Prey-Predator Models

In this section, we will consider several modifications to the Volterra-Lotka
prey-predator model.

Internal Prey Competition Model First, suppose that in the absence
of a predator the prey population grows so rapidly that internal competition
within the prey population for important resources such as food and living
space becomes a factor. This internal competition can be modelled by chang-
ing the assumption of Malthusian population growth for the prey (assump-
tion 6 of the previous section) to logistic population growth. The resulting
prey-predator model with internal prey competition is

(1)

dx

dt
= rx − Cx2 −Hxy

dy

dt
= −sy +Qxy

where r, H , C, s, and Q are positive constants.

Internal Prey and Internal Predator Competition with Harvest-
ing Model Now, suppose that in the absence of the other population both
the prey and predator populations obey the logistic law model and that each
population is harvested. The system of differential equations to be investi-
gated then becomes

(2)

dx

dt
= rx − Cx2 −Hxy − h1x

dy

dt
= −sy − Py2 +Qxy − h2y

where r, C, H , h1, s, P , Q, and h2 are all nonnegative constants. Notice that
the Volterra-Lotka prey-predator system, the Volterra-Lotka prey-predator
system with harvesting, and the prey-predator system with internal prey com-
petition are all special cases of this system and may be obtained by setting
various combinations of the constants equal to zero. Consequently, system (2)
is the most general model for prey-predator population dynamics that we have
encountered thus far.

Three Species Models Depending upon the assumptions made, there
are several ways to formulate a system of differential equations to represent
the population dynamics for three interacting species.

First of all, suppose a species with population y1 is prey for two other species
with populations y2 and y3. Suppose the species with population y2 is prey
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for the species with population y3. And suppose no other predation occurs.
Further, suppose the population growth for each species, in the absence of
the other species, satisfies the Malthusian law. The system of differential
equations to be studied under these assumptions is

(3)

dy1
dt

= ay1 − by1y2 − cy1y3

dy2
dt

= −dy2 + ey1y2 − fy2y3

dy3
dt

= −gy3 + hy1y3 + iy2y3

where a, b, c, d, e, f , g, h, and i are positive constants.

M. Braun discussed the following system of differential equations for rep-
resenting the population dynamics for three interacting species which live on
the island of Komodo in Malaysia. One species with population y1 is a plant.
A second species with population y2 is a mammal. And the third species
with population y3 is a reptile. The plants are prey for the mammals and the
mammals are prey for the reptiles. No other predation occurs. In the absence
of the mammals, the plants are assumed to grow according to the logistic
law, since they compete with one another for space in which to grow. In the
absence of the plants, the mammals are assumed to die out according to the
Malthusian law. And in the absence of the mammals, the reptiles are also
assumed to die out according to the Malthusian law. Hence, the population
dynamics for these three interacting species is represented by the system of
differential equations

(4)

dy1
dt

= ay1 − by21 − cy1y2

dy2
dt

= −dy2 + ey1y2 − fy2y3

dy3
dt

= −gy3 + hy2y3

where a, b, c, d, e, f , g, and h are positive constants.

Next, suppose that one species preys upon the adults of a second species but
not upon the young of that species. This situation can occur when the young
prey are protected in some manner—perhaps by their coloration, by their
smaller size, by their living quarters, or simply by the physical intervention
of the adults. The model for this prey-predator system with protected young
prey leads to a system of differential equations with three components.

Let y1 denote the number of young prey, y2 denote the number of adult
prey, and y3 denote the number of predators. Thus, the total prey population
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at time t is y1(t)+y2(t). We assume the birth rate for the prey is proportional
to the number of adult prey—that is, we assume a Malthusian type of growth
for the prey. We assume the number of young prey maturing to adulthood is
proportional to the number of young prey. And we assume the death rate for
the young prey is proportional to the number of young prey. Hence, the rate
of change for the number of young prey is

(5a)
dy1
dt

= ay2 − by1 − cy1

where a, b, and c are positive constants—constants of proportionality for
the processes of birth, maturation, and death. Next, we assume the adult
prey population increases due to the maturation of the young into adults, so
dy2/dt includes the term by1 to reflect the maturation process. We assume
the death rate of the adult population due to causes other than predation to
be proportional to the number of adults, so dy2/dt includes the term −dy2
to model the death of adults. And we model the predation by including the
term −ey2y3. Thus, the equation for the rate of change of the adult prey
population is

(5b)
dy2
dt

= by1 − dy2 − ey2y3

where b, d, and e are positive constants—constants of proportionality for the
processes of maturation, death, and predation. We assume the death rate
for the predator population is proportional to the number of predators, so
dy3/dt includes the term −fy3. In other words, we assume the Malthusian
law holds for the predators. We also assume the rate of increase in the number
of predators due to predation can be modelled as gy2y3. Thus, the equation
for the rate of change of the predator population is

(5c)
dy3
dt

= −fy3 + gy2y3

where f and g are positive constants—constants of proportionality for the
processes of death and predation. Consequently, a three component system
of differential equations for modelling a prey-predator system in which
the young prey are protected is

(5)

dy1
dt

= ay2 − by1 − cy1

dy2
dt

= by1 − dy2 − ey2y3

dy3
dt

= −fy3 + gy2y3

where a, b, c, d, e, f , and g are positive constants.
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EXERCISES

1. Find and classify all critical points of the prey-predator model with internal
prey competition, system (1). Which critical points are in the first quadrant?

2. Use SOLVESYS or your computer software to solve the prey-predator
model with internal prey competition, system (1), for the initial conditions
x(0) = 3, y(0) = 2 on the interval [0, 5] for r = 2, H = .5, s = 2, Q = 1, and
(i) C = 1.5 and (ii) C = .5.

For cases (i) and (ii):

a. Display a graph of x(t) and y(t) on [0, 5].

b. Display a phase-plane graph of y versus x.

Answer the following questions for cases (i) and (ii):

Is the solution periodic?

What happens to the prey population, x(t), as t increases?

What happens to the predator population, y(t), as t increases?

Where are the critical points (x∗, y∗) with x∗ ≥ 0 and y∗ ≥ 0?

What do you think happens for any initial condition (x0, y0) where x0 > 0
and y0 > 0?

3. Without using any computer software, decide how the results of exercise 2
will be affected in the following cases:

a. Only the prey population is harvested with harvesting coefficient
h1 < r = 2. That is, for constants as given in exercise 2, what is the ef-
fect of adding the term −h1x to the first equation of system (1)?

b. Only the predator population is harvested with harvesting coefficient h2.
That is, for constants as given in exercise 2, what is the effect of adding the
term −h2y to the second equation of system (1)?

c. Both prey and predator populations are harvested with harvesting coef-
ficients h1 and h2, respectively.

4. a. For h1 = h2 = 0 find and classify all critical points of the internal prey
and internal predator competition with harvesting model, system (2), in the
first quadrant.

b. For h1 �= 0 and h2 �= 0 find and classify all critical points of system (2)
in the first quadrant.

c. How does harvesting affect the prey and predator populations? Is the
answer the same as for the Volterra-Lotka prey-predator model?

5. Use computer software to solve the internal prey and internal predator com-
petition with harvesting model, system (2), for the initial conditions x(0) = 3,
y(0) = 2 on the interval [0, 5] for r = 3, C = 2, H = s = P = Q = 1, and the
following five values for the harvesting coefficients:
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a. h1 = h2 = 0 b. h1 = 1, h2 = 0 c. h1 = 0, h2 = 1 d. h1 = h2 = .5
e. h1 = h2 = .25

For each case,

(i) Display a graph of x(t) and y(t) on the interval [0, 5].

(ii) Display a phase-plane graph of y versus x.

(iii) What happens to x(t) and y(t) as t increases?

6. Use SOLVESYS or other computer software to solve the three species
model, system (3), for the initial conditions y1(0) = 5, y2(0) = 4, y3(0) = 3
on the interval [0, 5] for the following values of the constants.

a. a = d = g = 1, b = c = e = .25 and f = h = i = .1

b. a = d = g = 1, b = f = h = i = .1 and c = e = .25

In each case, display a single graph showing y1(t), y2(t), and y3(t) on the
interval [0, 5]. What happens to y1(t), y2(t), and y3(t) as t increases?

7. a. Find the critical points of the three species model, system (4).

b. Use computer software to solve system (4) for the initial conditions
y1(0) = 1, y2(0) = 1, y3(0) = 1 on the interval [0, 6] for the following values
of the constants.

(i) a = 2, b = c = d = e = f = g = h = 1

(ii) a = 2, b = .5, c = d = e = f = g = h = 1

In each case, display a single graph showing y1(t), y2(t) and y3(t) on the
interval [0, 6]. What happens to y1(t), y2(t), and y3(t) as t increases?

8. a. Find the critical points of the prey-predator model in which the young
prey are protected, system (5).

b. Use computer software to solve system (5) for the initial conditions
y1(0) = 1, y2(0) = 1, y3(0) = 1 on the interval [0, 10] for the following values
of the constants.

(i) a = 2, b = c = d = .5, e = f = g = 1

(ii) a = 2, b = c = d = e = f = g = 1

In each case, display a single graph showing y1(t), y2(t), and y3(t) on the
interval [0, 10]. What happens to y1(t), y2(t), and y3(t) as t increases?

Leslie’s Prey-Predator Model

In 1948, P. H. Leslie proposed the following prey-predator model

(1)

dx

dt
= ax− bx2 − cxy

dy

dt
= dy − ey2

x
.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Applications of Systems of Equations 425

The first equation in system (1) for the rate of change of the prey popula-
tion, x, is the same as the Volterra-Lotka prey-predator model with internal
prey competition. That is, in the absence of predation the prey population
is assumed to grow according to the logistic law model and has maximum
population size b/a. The second equation in system (1) for the rate of change
of the predator population, y, resembles the logistic law equation except the
second term has been modified to take into account the density of the prey.
If y/x = d/e, the predator population is at its equilibrium value. If there
are many prey per predator, y/x is small (y/x < d/e) and, therefore, the
predator population grows nearly exponentially. And if there are few prey
per predator, y/x is large (y/x > d/e) and the predator population decreases.

EXERCISE

1. a. Find the critical point of Leslie’s prey-predator model, system (1) in the
first quadrant and determine if it is stable or unstable.

b. Use computer software to solve system (1) with a = 2, b = e = .5,
c = d = 1 on the interval [0, 5] for the initial conditions x(0) = 1, y(0) = 1.
Display a single graph showing x(t) and y(t). Display a phase-plane graph of
y versus x. Estimate limt→∞ x(t) and limt→∞ y(t).

Leslie-Gower Prey-Predator Model

In 1960, P. H. Leslie and J. C. Gower studied the following prey-predator
model

(1)

dx

dt
= ax− cxy

dy

dt
= dy − ey2

x

where x is the prey population, y is the predator population and a, c, d, and
e are positive constants. The first equation of this system is the same as in
the Volterra-Lotka prey-predator model. Thus, in the absence of predators
the prey population is assumed to grow according to the Malthusian law.

EXERCISE

1. Use computer software to solve the Leslie-Gower prey-predator model,
system (1), with a = 1, c = .1, d = 1, and e = 2.5 on the interval [0, 6]
for initial populations of x(0) = 80 and y(0) = 20. Display a graph of x(t)
and y(t) and display a phase-plane graph of y versus x. Estimate limt→∞ x(t)
and limt→∞ y(t).

A Different Uptake Function

Thus far, we have assumed that the rate of change of the prey population,
x, due to predation by the predator population, y, is proportional to the
product xy. However, since the predator population’s collective appetite and
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food requirement can be satisfied when there is an abundance of prey, when x
is large relative to y, the rate of change in the prey population should approach
a function which is proportional to y alone. It has been suggested that the
uptake function xy of the Volterra-Lotka prey-predator model be replaced
by the uptake function xy/(1 + kx). Thus, the new prey-predator model to
be considered is

(1)

dx

dt
= ax− bxy

1 + kx

dy

dt
= −cy + dxy

1 + kx

where a, b, c, d, and k are positive constants.

EXERCISES

1. a. Find the critical point of the system

(2)

dx

dt
= 4x− 8xy

1 + 2x

dy

dt
= −2y +

8xy

1 + 2x

in the first quadrant.

b. Determine the stability characteristics of the critical point.

c. Use computer software to solve system (2) on the interval [0, 5] for the
initial conditions x(0) = 1, y(0) = 1. Display a single graph with x(t) and y(t)
on the interval [0, 5] and display a phase-plane graph of y versus x. Estimate
limt→∞ x(t) and limt→∞ y(t).

2. In the absence of predators, the prey population of system (2) grows
according to the Malthusian law. Suppose this growth assumption is changed
to logistic law growth and the prey-predator system becomes

(3)

dx

dt
= 4x− 4x2 − 8xy

1 + 2x

dy

dt
= −2y +

8xy

1 + 2x
.

a. Find the critical point of system (3) in the first quadrant. How does it
compare with the critical point of system (2)?

b. Determine the stability characteristics of the critical point of system (3).

c. Use computer software to solve system (3) on the interval [0, 5] for the
initial conditions x(0) = 1, y(0) = 1. Display a graph of x(t) and y(t) and a
phase-plane graph of y versus x. Estimate limt→∞ x(t) and limt→∞ y(t).
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3. Use SOLVESYS or your computer software to solve the prey-predator
system

(4)

dx

dt
= 4x− 4x2 − 16xy

1 + 4x

dy

dt
= −2y +

16xy

1 + 4x

on the interval [0, 10] for the following initial conditions:

a. x(0) = .25, y(0) = .4 b. x(0) = .25, y(0) = .675

c. x(0) = .25, y(0) = 1

In each case, produce a phase-plane graph of y versus x. What do you notice
about the phase-plane graphs?

May’s Prey-Predator Model

The following prey-predator model was proposed by R. M. May

(1)

dx

dt
= ax− bx2 − cxy

x+ k

dy

dt
= dy − ey2

x
.

As before, x is the prey population, y is the predator population, and a, b, c,
d, e and k are positive constants.

EXERCISE

1. Use computer software to solve system (1) with a = c = 12, b = 1.2,
d = e = 2, and k = 1 on the interval [0, 5] for the following initial conditions:

a. x(0) = 2, y(0) = 1 b. x(0) = 2, y(0) = 1.35 c. x(0) = 2, y(0) = 2

In each case, produce a phase-plane graph of y versus x. What do you notice
about the phase-plane graphs?

Competing Species Models

Two similar species sometimes compete with one another for the same lim-
ited food supply and living space. Thus, each species removes from the en-
vironment resources that promote the growth of the other. This situation
usually occurs when two different species of predators are in competition with
one another for the same prey. For this reason the models to be discussed
are sometimes called competitive hunters models. When two predator
species compete with one another, one species nearly always becomes extinct
while the other, more efficient species, survives. This biological phenomenon
is called the principle of competitive exclusion.
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Let us make the following assumptions regarding two competing species
with population sizes x and y.

1. There is sufficient prey to sustain any level of the predator populations.

2. The rates of change of the predator populations depend quadratically
on x and y.

3. If one predator species is absent, there is no change in its population
size.

4. In the absence of one predator species, the other predator species will
grow according to the Malthusian law.

These assumptions lead to the competitive hunters model

(1)

dx

dt
= Ax−Bxy

dy

dt
= Cy −Dxy

where A, B, C, and D are positive constants.

If the growth assumption is changed from the Malthusian law to the logistic
law, then the competitive hunters model becomes

(2)

dx

dt
= ax− bxy − rx2

dy

dt
= cy − dxy − sy2

where a, b, c, d, r and s are positive constants.

EXERCISES

1. a. Show that the competitive hunters model, system (1), has critical points
at (0, 0) and (C/D,A/B).

b. Show that both critical points are unstable.

c. Show if x > C/D and y < A/B, then the x population will increase
indefinitely and the y population will become extinct.

d. Show if x < C/D and y > A/B, then the x population will become
extinct and the y population will increase indefinitely.

2. Use computer software to solve the competitive hunters model, system (1),
with A = 2, B = 1, C = 3, and D = 1 on the interval [0, 5] for the following
initial conditions:

a. x(0) = 1, y(0) = .5 b. x(0) = 1.5, y(0) = .5 c. x(0) = 10, y(0) = 9

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Applications of Systems of Equations 429

d. x(0) = 10, y(0) = 8

In each case, determine which species becomes extinct.

3. Show that the logistic law, competitive hunters model, system (2), has
critical points at (0, 0), (0, c/s), (a/r, 0), and (p/D, q/D) where p = as − bc,
q = cr − ad, and D = rs− bd.

4. Consider the competitive hunters model

(3)

dx

dt
= 2x− 4xy − 4x2

dy

dt
= 2y − 2xy − 2y2.

a. Find the critical points of system (3) in the first quadrant.

b. Use computer software to solve system (3) on the interval [0, 5] for the
following initial conditions:

(i) x(0) = .3, y(0) = .1 (ii) x(0) = 2, y(0) = .1

In each case, estimate limt→∞ x(t) and limt→∞ y(t) and determine which
species becomes extinct.

5. a. Find the critical points of the competitive hunters model

(4)

dx

dt
= 4x− .5xy − .2x2

dy

dt
= 4y − .25xy − y2

3
.

b. Use SOLVESYS or your computer software to solve system (4) on the
interval [0, 5] for the initial conditions:

(i) x(0) = .1, y(0) = 1 (ii) x(0) = 1, y(0) = .1 (iii) x(0) = 20, y(0) = 5

(iv) x(0) = 20, y(0) = 10

In each case, estimate limt→∞ x(t) and limt→∞ y(t) and determine which
species becomes extinct.

6. a. Find the critical points of the competitive hunters model

(5)

dx

dt
= 2x− 2xy − 2x2

dy

dt
= 4y − 2xy − 6y2.

b. Use computer software to solve system (5) on the interval [0, 5] for the
initial conditions:
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(i) x(0) = .1, y(0) = .1 (ii) x(0) = .1, y(0) = 1 (iii) x(0) = 1, y(0) = .1

(iv) x(0) = 1, y(0) = 1

In each case, estimate limt→∞ x(t) and limt→∞ y(t). Does either species be-
come extinct?

7. This exercise is designed to illustrate the radical changes which constant-
effort harvesting of one of the competing species can bring about. One of
the species, for example, might have a fur which humans find very desirable.
Consider the following competitive hunters model in which the x species is
harvested with positive harvesting constant H .

(6)

dx

dt
= 10x− xy − x2 −Hx

dy

dt
= 8y − xy − 2y2.

For a. H = 0, b. H = 4, and c. H = 8

(i) Find the critical points of system (6) in the first quadrant and determine
the stability characteristics of each.

(ii) Use SOLVESYS or your computer software to solve system (6) on the
interval [0, 5] for the initial conditions:

1. x(0) = 1, y(0) = 1 2. x(0) = 1, y(0) = 10 3. x(0) = 10, y(0) = 1

4. x(0) = 10, y(0) = 10

For each initial condition estimate limt→∞ x(t) and limt→∞ y(t) and determine
which, if any, species becomes extinct.

10.6 Epidemics

In Chapter 3, we briefly discussed the history of epidemics and epidemiology,
the scientific study of epidemics. We also introduced and studied some of the
simpler models for epidemics there. In this section, we will formulate and
analyze a few somewhat more complicated models for epidemics.

One underlying assumption which we shall make throughout this section
is that the population which can contract the disease has a constant size N .
That is, we will assume there are no births or immigrations to increase the
population size and no emigrations to decrease the population size. Since the
time span of many epidemics, such as the flu, is short in comparison to the life
span of an individual, the assumption of a constant population size is fairly
reasonable. Next, we assume the population is divided into three mutually
exclusive sets:
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1. The susceptibles is the set of individuals who do not have the disease
at time t but who may become infected at some later time.

2. The infectives is the set of individuals at time t who are infected with
and capable of transmitting the disease.

3. The removeds is the set of individuals who have been removed at time
t either by death, by recovering and obtaining immunity, or by being
isolated for treatment.

We will denote the number of susceptibles, infectives, and removeds at time t
by S(t), I(t), and R(t), respectively. Under the assumptions we have made

(1) S(t) + I(t) +R(t) = N for all time t.

An assumption which was first made in 1906 by William Hamer, and which
has been included in every deterministic epidemic model ever since, is that the
rate of change of the number of susceptibles is proportional to the product of
the number of susceptibles and the number of infectives. Thus, it is assumed
that

(2)
dS

dt
= −βS(t)I(t) for all t

where the positive constant of proportionality β is called the infection rate.
The product S(t)I(t) represents the rate of contact between susceptibles and
infectives while the product βS(t)I(t) represents the proportion of contacts
which result in the infection of susceptibles.

Next, we assume that the rate of change of the removeds is proportional to
the number of infectives. Thus, we assume

(3)
dR

dt
= rI(t) for all t

where the positive constant r is called the removal rate.

Solving equation (1) for I, we get I = N − S − R and differentiating, we
find upon substitution from (2) and (3)

dI

dt
= −dS

dt
− dR

dt
= βS(t)I(t) − rI(t) = (βS(t)− r)I(t).

Hence, a system of three first-order differential equations for modelling an
epidemic is

(4)

dS

dt
= −βSI

dI

dt
= (βS − r)I

dR

dt
= rI
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where β and r are positive constants. Appropriate initial conditions for this
system are the initial number of susceptibles S(0) = S0 > 0, the initial number
of infectives I(0) = I0 > 0, and the initial number of removeds R(0) = R0 = 0.

By analyzing the equations of system (4), we can determine some interesting
general facts regarding this epidemic model. Since β > 0, S(t) ≥ 0, and
I(t) ≥ 0, we have dS/dt = −βSI ≤ 0 for all t. In fact, dS/dt < 0 unless S = 0
or I = 0. Because dS/dt < 0, the number of susceptibles, S(t), is a strictly
decreasing function of time until S becomes 0 or I becomes 0. Likewise, since
r > 0 and I(t) ≥ 0, we have dR/dt = rI ≥ 0 and, in fact, dR/dt > 0 unless
I = 0. So the number of removeds is a strictly increasing function of time
until the number of infectives becomes 0. Since I(t) ≥ 0 the sign of the rate
of change of the number of infectives, dI/dt = (βS − r)I, depends on the
sign of βS − r. Let us assume I �= 0. When βS − r > 0 (that is, when
S > r/β), we have dI/dt > 0 and the number of infectives increases. When
βS − r < 0 (that is, when S < r/β), we have dI/dt < 0 and the number of
infectives decreases. The quantity p = r/β is called the relative removal
rate. Since S(t) is a strictly decreasing function, 0 ≤ S(t) ≤ S0 where S0

is the initial number of susceptibles. If S0 is less than p = r/β, no epidemic
occurs since dI/dt = (βS−r)I ≤ (βS0−r)I < 0 which implies I(t) is a strictly
decreasing function. That is, if S0 < r/β, the number of infectives decreases
monotonically to zero from the initial value of I0. On the other hand, if
S0 > r/β, the number of infectives increases from the initial value of I0 to a
maximum value which occurs when the number of susceptibles has decreased
to the value r/β at some time t∗ > 0. For t > t∗, it follows that S(t) < r/β
and the number of infectives decreases. This result is what epidemiologists
call the threshold phenomenon. That is, there is a critical value which the
number of initial susceptibles must exceed before an epidemic can occur. The
threshold theorem for system (4) stated below was proven by W. O. Kermak
and A. G. McKendrick in 1927:

Threshold Theorem for Epidemics, System (4)

If S0 < r/β, then I(t) decreases monotonically to zero.

If S0 > r/β, then I(t) increases monotonically to a maximum value and
then decreases monotonically to zero. The limit, limt→∞ S(t), exists and is
the unique solution, x, of

(5) S0e
−β(N−x)/r = x.

In order to prevent epidemics, medical personnel try to decrease the number
of susceptibles S or to increase the critical value r/β. This is sometimes
accomplished by inoculation and by early detection of the disease followed by
quarantine procedures.
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Example 12 Computer Solution of an Epidemic Model

Solve the epidemic model

(6)

dS

dt
= −.005SI

dI

dt
= .005SI − .7I

dR

dt
= .7I

on the interval 0 ≤ t ≤ 10 days for the initial conditions

(i) S0 = 500, I0 = 5, R0 = 0 (ii) S0 = 100, I0 = 100, R0 = 0

In each case, display S, I, and R on a single graph and display a phase-plane
graph of I versus S.

Solution

(i) Identifying S with y1, I with y2, and R with y3, we ran SOLVESYS by
setting n = 3, f1(t, y1, y2, y3) = −.005y1y2, f2(t, y1, y2, y3) = .005y1y2− .7y2,
and f3(t, y1, y2, y3) = .7y2. We input the interval of integration as [0, 10]
and input the initial conditions: y1(0) = 500, y2(0) = 5, and y3(0) = 0.
After integration was completed, the graph of S, I, and R on the rectangle
0 ≤ t ≤ 10 and 0 ≤ S, I, R ≤ 500 shown in Figure 10.17 was displayed on the
monitor. Notice that S decreases monotonically from 500 to approximately 15
and R increases monotonically from 0 to 485. Also observe that I increases
monotonically from 5 to a maximum value of approximately 190 when t is
approximately 3 days and then I decreases monotonically to 5 as t approaches
10 days. Since I increases before decreasing, an epidemic occurs.

Since we still wanted to display a phase-plane graph of I versus S, we
indicated to SOLVESYS that we wanted S(t) assigned to the horizontal axis
and I(t) assigned to the vertical axis and that we wanted the graph displayed
on the rectangle 0 ≤ S ≤ 500 and 0 ≤ I ≤ 200. This phase-plane graph is
shown in Figure 10.18. Observe from the graph that S approaches 15 as I
approaches 0. Substituting S0 = 500, β = .005, N = S0 + I0 + R0 = 505,
x = 15, and r = .7 into the left-hand side of equation (5), we find

S0e
−β(N−x)/r = 500e−3.5 = 15.099.

Since this value is approximately x, we have verified that the limiting value
of the number of susceptibles at the end of the epidemic is approximately 15.
That is, limt→∞ S(t) = 15. Thus, for this epidemic model, system (6) with
initial conditions (i), we have verified equation (5) of the threshold theorem.
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Figure 10.17 A Graph of S(t), I(t), and R(t) for System (6)
for Initial Conditions (i).

�

���

���

���

���

���

���

��

�

�

�

������

Figure 10.18 A Phase-Plane Graph of I versus S for System (6)

for Initial Conditions (i).
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(ii) Since we now wanted to solve the same system of differential equations
with different initial conditions, we entered the new initial conditions: S(0) =
100, I(0) = 100, and R(0) = 0. A graph of S, I, and R is displayed in
Figure 10.19. Notice that S decreases monotonically from the value of 100 to
approximately 30, I decreases monotonically from the value of 100 to nearly 0,
and R increases monotonically from 0 to approximately 170. Since I decreases
monotonically to 0, no epidemic occurs in this instance. Verify that x = 30 is
the approximate solution of equation (5) for the given initial values. Hence, in
this case, as I → 0, S → 30. Thus, there are 30 susceptibles remaining when
the epidemic ends. A phase-plane graph of I versus S is shown in Figure 10.20.
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Figure 10.19 A Graph of S(t), I(t), and R(t) for System (6)

for Initial Conditions (ii).
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Figure 10.20 A Phase-Plane Graph of I versus S for System (6)

for Initial Conditions (ii).
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EXERCISES 10.6

1. Consider the epidemic model

(7)

dS

dt
= −.01SI

dI

dt
= .01SI − 3I

dR

dt
= 3I

a. Calculate the relative removal rate for this model.

b. Use SOLVESYS or your computer software to solve system (7) on the
interval [0, 5] where t is in days for the initial conditions:

(i) S0 = 300, I0 = 10, R0 = 0 (ii) S0 = 500, I0 = 10, R0 = 0

In each case, display S, I, and R on a single graph and display a phase-plane
graph of I versus S.

c. From the solution or phase-plane graph of I versus S for system (7) for
the initial conditions (i) and (ii), estimate the remaining number of suscepti-
bles at the end of the epidemic. That is, estimate S∞ = limt→∞ S(t) which
is approximately S(5) and verify that S∞ satisfies equation (5).

2. Suppose when an epidemic begins medical personnel inoculate members
of the susceptible group at a rate α which is proportional to the number of
susceptibles. Then at each instant in time αS individuals are subtracted from
the susceptible group and added to the removed group. So one model for an
epidemic with inoculation is

dS

dt
= −βSI − αS

dI

dt
= βSI − rI

dR

dt
= rI + αS

where α, β, and r are positive constants.
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Use computer software to solve the following epidemic with inoculation
model

dS

dt
= −.01SI − .1S

dI

dt
= .01SI − 3I

dR

dt
= 3I + .1S

on the interval [0, 5] where t is in days for the initial conditions:

(i) S0 = 300, I0 = 10, R0 = 0 (ii) S0 = 500, I0 = 10, R0 = 0

In each case, display S, I, and R on a single graph and display a phase-plane
graph of I versus S. Compare your results with the results of exercise 1. Does
an epidemic occur in case (ii) as it did in exercise 1? What is limt→∞ S(t) in
each case?

3. A rapidly increasing number of infectives can frighten members of the
susceptible group and cause them to aggressively seek inoculation. So suppose
that the inoculation rate is proportional to the product of the number of
susceptibles and the number of infectives instead of simply proportional to the
number of susceptibles. In this case, a model for an epidemic with inoculation
is

dS

dt
= −βSI − αSI

dI

dt
= βSI − rI

dR

dt
= rI + αSI

where α, β, and r are positive constants.

Use computer software to solve the following epidemic with inoculation
model

dS

dt
= −.01SI − .05SI

dI

dt
= .01SI − 3I

dR

dt
= 3I + .05SI

on the interval [0, 5] where t is in days for the initial conditions:

(i) S0 = 300, I0 = 10, R0 = 0 (ii) S0 = 500, I0 = 10, R0 = 0
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Display a graph with S, I, and R. Does an epidemic occur in case (ii)? In
each case, what is limt→∞ S(t)?

4. If the disease is deadly, then the fear of the members of the susceptible
group might increase the inoculation rate to the point that it is proportional
to the product of the number of susceptibles and the square of the number of
infectives. In this instance, a model for an epidemic with inoculation is

dS

dt
= −βSI − αSI2

dI

dt
= βSI − rI

dR

dt
= rI + αSI2

where α, β, and r are positive constants.

Solve the following epidemic with inoculation model

dS

dt
= −.01SI − .05SI2

dI

dt
= .01SI − 3I

dR

dt
= 3I + .05SI2

on the interval [0, 5] where t is in days for the initial conditions S0 = 500,
I0 = 10, R0 = 0. Display a graph with S, I, and R. Does an epidemic occur?
What is limt→∞ S(t)?

5. The virus AIDS, or acquired immune deficiency syndrome, had no name
when it first appeared in the United States in the late 1970s. The new disease
was identified in 1981 but was not isolated and named until 1984. The AIDS
virus is spread almost exclusively through sexual contact or blood contact.
Today with the careful screening of all blood donations, there is little risk of
contracting AIDS through blood transfusion. At present, there is no cure for
AIDS. The disease seems to have begun in the United States in the homo-
sexual male population and has since spread to the bisexual male population,
the heterosexual male population and the heterosexual female population.
Seventy-three percent of the AIDS victims in the United States are sexually
active homosexual and bisexual males and 1% of the victims are sexually
active heterosexuals. According to the Centers for Disease Control and Pre-
vention, by the end of 2002 there were an estimated 877,275 cases of AIDS in
the adult and adolescent population in the United States and an additional
9300 cases of AIDS in children under age 13. Of the adult cases, 718,002 were
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males and 159,271 were females. It is estimated that by the end of 2002, that
a total of 501,669 Americans had died of AIDS, which includes 496,354 adults
and adolescents and 5316 children under the age of 15. Stated in terms of
percentages, more than 56.5% percent of the adult and adolescent American
population who contracted AIDS prior to the end of 2002 had died by the end
of 2002.

The following model for the spread of AIDS through sexual contact assumes
the rate of increase in infection of a particular group is equal to a sum of terms
each of which is proportional to the product of the number of members in the
interacting groups which can lead to infection minus the removals. At time t
let

S1 be the number of homosexual males

S2 be the number of bisexual males

S3 be the number of heterosexual males

S4 be the number of heterosexual females

y1 be the number of homosexual males infected with AIDS

y2 be the number of bisexual males infected with AIDS

y3 be the number of heterosexual males infected with AIDS

y4 be the number of heterosexual females infected with AIDS

A model for the spread of AIDS within these groups through sexual contact
is

(8)

y′1 = a1y1(S1 − y1) + a2y2(S1 − y1)− r1y1

y′2 = b1(S2 − y2) + b2y2(S2 − y2) + b3y4(S2 − y2)− r2y2

y′3 = cy4(S3 − y3)− r3y3

y′4 = d1y2(S4 − y4) + d2y3(S4 − y4)− r4y4

where a1, a2, b1, b2, b3, c, d1, d2, r1, r2, r3, and r4 are positive constants. The
constants ri are the removal rates for populations yi. The term a1y1(S1 − y1)
represents the rate of increase in infection in the homosexual male population
due to sexual contact between infected homosexual males y1 and uninfected
homosexual males (S1 − y1). The term a2y2(S1 − y1) represents the rate of
increase in infection in the homosexual male population due to sexual contact
between infected bisexual males y2 and uninfected homosexual males (S1−y1),
and so forth.

a. Show if all removal rates are zero (that is, if r1 = r2 = r3 = r4 = 0),
the only critical points are (y1, y2, y3, y4) = (0, 0, 0, 0) and (y1, y2, y3, y4) =
(S1, S2, S3, S4). That is, if there are no removals due to death, isolation, or
recovery, then either no one has AIDS or eventually everyone contracts AIDS.
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b. Use computer software to solve system (8) on the interval [0, 1] for
S1 = 100, S2 = 50, S3 = 1000, S4 = 1300, a1 = .1, a2 = b1 = .05,
b2 = b3 = c = d1 = d2 = .01, and r1 = r2 = r3 = r4 = .02 for the ini-
tial conditions y1(0) = 1, y2(0) = y3(0) = y4(0) = 0. Display y1, y2, y3, and
y4 on a single graph.

10.7 Pendulums

In this section, we will determine critical points for several kinds of pendu-
lums and pendulum systems and study their behavior by examining phase-
plane graphs. Since electrical and other mechanical systems give rise to similar
systems of differential equations, the results which we obtain here for pendu-
lums will apply to those electrical and mechanical systems also.

Simple Pendulum A simple pendulum consists of a rigid, straight rod of
negligible mass and length � with a bob of mass m attached at one end. The
other end of the rod is attached to a fixed support, S, so that the pendulum
is free to move in a vertical plane. Let y denote the angle (in radians) which
the rod makes with the vertical extending downward from S—an equilibrium
position of the system. We arbitrarily choose y to be positive if the rod is to
the right of the downward vertical and negative if the rod is to the left of the
downward vertical as shown in Figure 10.21.

��������
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�

Figure 10.21 Simple Pendulum.

We will assume the only forces acting on the pendulum are the force of
gravity, a force due to air resistance which is proportional to the angular
velocity of the bob, and an external force, f(t), acting on the pendulum
system. Under these assumptions it can be shown by applying Newton’s
second law of motion that the position of the pendulum satisfies the initial
value problem

(1) my′′ + cy′ + k sin y = f(t); y(0) = c0, y′(0) = c1
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where c ≥ 0 is a constant of proportionality, k = mg/�, g is the constant
of acceleration due to gravity, c0 is the initial angular displacement of the
pendulum from the downward vertical, and c1 is the initial angular velocity
of the pendulum.

Linearized Simple Pendulum with No Damping and No Forcing
Function

If we assume there is no damping (c = 0) and no forcing function (f(t) = 0),
then the differential equation of (1) becomes

my′′ +
mg

�
sin y = 0.

Dividing this equation by m and choosing � = g in magnitude, we obtain the
nonlinear differential equation

(2) y′′ + sin y = 0.

This equation is nonlinear because of the factor sin y. The Taylor series ex-
pansion of sin y about y = 0 is

sin y = y − y3

3!
+
y5

5!
− y7

7!
+ · · · .

From this expansion, we see that an approximation which can be made in
order to linearize the differential equation (2) is to replace sin y by y. This
approximation is valid only for small angles, say |y| < .1 radians = 5.73◦. So
for small y, the solution of the linear initial value problem

(3) y′′ + y = 0; y(0) = c0, y′(0) = c1

approximately describes the motion of a simple pendulum. Letting y1 = y
and y2 = y′, we can rewrite the initial value problem (3) as the following
equivalent vector initial value problem

(4)
y′1 = y2; y1(0) = c0

y′2 = −y1; y2(0) = c1.

In system (4), y1 is the angular displacement of the pendulum and y2 is its
angular velocity. Thus, y1(t) is the solution of the IVP (3) and y2(t) is the
derivative of the solution. Simultaneously setting y2 = 0 and −y1 = 0, we find
that the only critical point of system (4) is the origin. The general solution
of (4) is

y1(t) = c0 cos t+ c1 sin t

y2(t) = −c0 sin t+ c1 cos t.
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(Verify this fact.) Since this solution is periodic with period 2π, the origin
is a neutrally stable critical point. A phase-plane graph of y2 versus y1 (the
angular velocity of the pendulum versus its angular displacement) for the ini-
tial conditions: (i) y1(0) = 0, y2(0) = 1.5, (ii) y1(0) = 0, y2(0) = 2, and
(iii) y1(0) = 0, y2(0) = 2.5 is shown in Figure 10.22. The given initial con-
ditions correspond to the pendulum being at rest in the downward vertical
position at time t = 0 and being struck sharply to impart an initial angular
velocity. The maximum angular displacement, max |y1(t)|, for the given three
initial conditions is 1.5, 2, and 2.5, respectively. Notice that these values are
much larger than .1—the maximum value for which we assumed the approxi-
mation of sin y by y to be valid. The reason for choosing initial conditions so
large that max |y1(t)| is much larger than .1 is so that the linear approxima-
tion sin y ≈ y is not valid. Then we can compare the solutions of the linear
system (4) with the solutions of the corresponding nonlinear system (6) which
we obtain next.
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Figure 10.22 Phase-Plane Portrait for System (4).

Simple Pendulum with No Damping and No Forcing Function

If we assume there is no damping (c = 0) and no forcing function (f(t) = 0)
and if we choose � = g in magnitude, then the equation of motion for a simple
pendulum is

(5) y′′ + sin y = 0; y(0) = c0, y′(0) = c1.

The general solution of this initial value problem involves elliptic integrals.
Letting y1 = y and y2 = y′ as before, we can rewrite (5) as

(6)
y′1 = y2; y1(0) = c0

y′2 = − sin y1; y2(0) = c1.

Simultaneously setting y2 = 0 and − sin y1 = 0, we find system (6) has an
infinite number of critical points located at (nπ, 0) where n is any integer.
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Physically the critical points (2nπ, 0) correspond to the pendulum being at
rest (y2 = y′ = 0) and hanging vertically downward from the support S,
(y1 = y = 2nπ). Likewise, the physical interpretation of the critical points
((2n + 1)π, 0) is that the pendulum is at rest (y2 = 0) balanced vertically
above the support S, (y1 = (2n + 1)π). From these physical considera-
tions we deduce that the critical points (2nπ, 0) are stable and the critical
points ((2n + 1)π, 0) are unstable. Displayed in Figure 10.23 is a phase-
plane graph of y2 versus y1 for system (6) for the initial conditions y1(0) = 0
and (i) y2(0) = 1.5, (ii) y2(0) = 2, (iii) y2(0) = 2.5, (iv) y2(0) = −2, and
(v) y2(0) = −2.5. From this figure we see that if the pendulum is at rest in a
vertically downward position at time t = 0 and is struck sharply from the left
side imparting an angular velocity of 1.5 (y′(0) = 1.5), then the pendulum
executes periodic motion (harmonic motion) about the stable critical point
(0, 0). If the initial angular velocity is 2, then the pendulum swings to the
right (y′(0) = 2 > 0) and balances itself vertically above the support. That
is, the solution approaches the unstable critical point (π, 0). (Of course, this
is not apt to happen in any laboratory experiment!) If the initial angular
velocity is 3, then the pendulum rotates indefinitely in a counterclockwise di-
rection about the support. The pendulum has the smallest angular velocity
when it is vertically above the support and it has the largest angular veloc-
ity when it is vertically below the support. When y2(0) = −2 the pendulum
swings to the left and balances itself above the support. And when y2(0) = −3
the pendulum rotates indefinitely in a clockwise direction about the support.
Compare these results with those obtained previously when the linear ap-
proximation sin y ≈ y was made—that is, compare Figures 10.22 and 10.23.
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Figure 10.23 Phase-Plane Portrait for System (6).

Simple Pendulum with Damping but No Forcing Function

If we assume there is a damping force due to air resistance or friction at
the point of suspension which is proportional to the angular velocity (c �= 0)
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and if we assume there is no forcing function (f(t) = 0), then the differential
equation (1) for the motion of a simple pendulum is

my′′ + cy′ +
mg

�
sin y = 0.

Dividing this equation by m, choosing � = g in magnitude, and setting C =
c/m, this equation becomes

y′′ + Cy′ + sin y = 0.

Letting y1 = y and y2 = y′, we obtain the following equivalent system of
first-order equations

(7)
y′1 = y2

y′2 = − sin y1 − Cy2.

Simple Pendulum with Constant Forcing Function

If we assume the forcing function f(t) = a, a constant, then from (1) the
equation of motion for the pendulum is

my′′ + cy′ +
mg

�
sin y = a.

Dividing this equation by m, setting � = g in magnitude, and letting C = c/m
and A = a/m, we can write this equation as

y′′ + Cy′ + sin y = A

or as the equivalent first-order system

(8)
y′1 = y2

y′2 = − sin y1 − Cy2 +A

where y1 = y and y2 = y′.

Variable Length Pendulum A variable length pendulum consists of a
mass m attached to one end of an inextensible string (a string which does
not stretch). The string is pulled over some support, S, such as a thin rod.
The length of the pendulum, �(t), can be varied with time by pulling on the
string. A diagram of a variable length pendulum is shown in Figure 10.24.
As before we let y denote the angle the pendulum makes with the downward
vertical from the support S. The equation of motion for this pendulum is

(9) m�(t)y′′ + (2m�′(t) + c�(t))y′ +mg sin y = f(t)

where m is the mass of the bob, �(t) is the length of the pendulum, c is
the damping constant, g is the gravitational constant, and f(t) is the forcing
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function. Dividing by m�(t) and letting y1 = y and y2 = y′, we can rewrite
(9) as the following equivalent first-order system

(10)

y′1 = y2

y′2 = −(2
�′(t)
�(t)

+
c

m
)y2 − g

�(t)
sin y1 +

f(t)

m�(t)
.
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Figure 10.24 Variable Length Pendulum.

Foucault Pendulum The French astronomer and physicist, Jean Bernard
Léon Foucault is, perhaps, best remembered as the first person to demonstrate
the rotation of the earth without using a point of reference outside the earth—
such as stars or the sun. In 1851, Foucault suspended a 62 pound ball on a
220 feet long steel wire from the dome of the Pantheon in Paris. A pin
protruded from the bottom of the ball and was adjusted to draw a mark
through a circle of wet sand beneath the ball. Foucault pulled the ball to
one side of the circle of sand and released it. With each swing the pendulum
made a mark in the sand and appeared to rotate in a clockwise direction.
(The pendulum only appears to change its plane of oscillation while swinging.
It is actually the floor under the pendulum that moves counterclockwise due
to the rotation of the earth.) Thus, Foucault demonstrated his prediction
that the pendulum would revolve approximately 270◦ in a 24 hour period and
proved that the earth revolved. Foucault presented an intuitive explanation
for the motion of his pendulum.

When damping is absent or compensated for, the equations of motion of a
Foucault pendulum are

(11)

x′′ = 2ωy′ sinφ− gx

�

y′′ = −2ωx′ sinφ− gy

�

where ω = 7.29×10−5 rads/sec is the angular velocity of the earth’s rotation,
φ is the latitude of the pendulum, g = 9.8 m/sec2 is the gravitational constant,
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and � is the length of the pendulum. The x-axis and y-axis form a rectangular
coordinate system on the floor beneath the suspended pendulum. The origin
of the coordinate system lies directly below the equilibrium position of the
pendulum.

Spring Pendulum A spring pendulum consists of a spring of natural
length L0 suspended by one end from a fixed support S. A bob of mass m is
attached to the other end of the spring. We assume the spring is stiff enough
to remain straight and free to move in a vertical plane. Let L(t) be the length
of the spring at time t and let θ(t) be the angle (in radians) the spring makes
with the downward vertical from S. See Figure 10.25.
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Figure 10.25 Spring Pendulum.

If the spring obeys Hooke’s law with spring constant k, then applying New-
ton’s second law of motion along and perpendicular to the spring it can be
shown that L and θ simultaneously satisfy the two second-order differential
equations

(12)
L′′ − L(θ′)2 − g cos θ +

k(L− L0)

m
= 0

Lθ′′ + 2L′θ′ + g sin θ = 0.

Letting y1 = L(t), y2 = L′(t), y3 = θ(t), and y4 = θ′(t), we can rewrite
system (12) as the following system of four first-order differential equations

(13)

y′1 = y2

y′2 = y1y
2
4 + g cos y3 − k(y1 − L0)

m

y′3 = y4

y′4 =
−2y2y4 − g sin y3

y1
.
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A spring pendulum has two “natural frequencies.” The first frequency ω1 =√
g/L0 corresponds to the natural frequency of the pendulum with the spring

replaced by a rod of fixed length, L0. The second frequency ω2 =
√
k/m

corresponds to the natural frequency of a spring-mass system which oscillates
vertically without swinging back and forth.

EXERCISES 10.7

1. All solutions of system (4), the linearized simple pendulum model with
no damping and no forcing function, are periodic with period 2π. For initial
conditions y1(0) = 0 and −2 < y2(0) < 2 the solutions of system (6) are
periodic. Is the period 2π or does the period vary with y2(0)? Find out
by using SOLVESYS or your computer software to solve system (6) on the
interval [0, 10] for y1(0) = 0 and (a) y2(0) = .1 and (b) y2(0) = 1.9. Print
solution values for y1(t) on the monitor and determine the period or graph
y1(t) and estimate the period.

2. a. Determine the critical points of system (7), the simple pendulum model
with damping but no forcing function. Are they the same as for system (6)?

b. Use SOLVESYS or your computer software to solve system (7) on the
interval [0, 10] for C = .1, y1(0) = 0, and (i) y2(0) = 2, (ii) y2(0) = 2.5,
and (iii) y2(0) = 3. In each case, display a phase-plane graph of y2 versus
y1. Does the solution corresponding to initial conditions (i) approach the
unstable critical point (π, 0) as it did in the undamped case? Give a physical
interpretation for the phase-plane graph for the initial conditions (ii) and
(iii). What critical point does the solution approach? What does this mean
the pendulum has done?

c. Solve system (7) on the interval [0, 10] for C = .5, y1(0) = 0, and
(i) y2(0) = 3 and (ii) y2(0) = 3.5. In each case, display a phase-plane graph
of y2 versus y1 and interpret the results physically.

3. a. Show that for |A| < 1 the critical points of system (8), the simple
pendulum with constant forcing function model, are (cn, 0) and (dn, 0) where
cn = 2nπ+arcsinA, dn = (2n+ 1)π− arcsinA, and n is any integer. So, for
|A| < 1 and A �= 0 the critical points are not equally spaced along the y1-axis.
Show that as A → 1−, cn → (2nπ + π/2)−, and dn → (2nπ + π/2)+—that
is, as A approaches 1 from below, the critical points (cn, 0) move toward
(2nπ + π/2, 0) from the left and the critical points (dn, 0) move toward
(2nπ + π/2, 0) from the right.

b. Show that for |A| > 1 system (8) has no critical points.

4. Numerically solve system (8), the simple pendulum with constant forcing
function model, on the interval [0, 10] when there is no damping (C = 0)
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for (a) A = −.5 and (b) A = −1 for the initial conditions y1(0) = 0 and
(i) y2(0) = 2.5 and (ii) y2(0) = 3.5. Display a phase-plane graph of y2 versus
y1 for each solution.

5. Solve system (8), the simple pendulum with constant forcing function
model, on the interval [0, 10] when C = .5 for (a) A = −.5 and (b) A = −1
for the initial conditions y1(0) = 0 and (i) y2(0) = 2.5 and (ii) y2(0) = 3.5.
Display a phase-plane graph of y2 versus y1 for each solution.

6.Use computer software to solve system (10), the variable length pendulum
model, on the interval [0, 10] with no damping (c = 0) and no forcing func-
tion (f(t) = 0) for the initial conditions y1(0) = 0, y2(0) = 1.5 for �(t) =
g(1 + .1 sinωt) where (i) ω = .5, (ii) ω = .75, and (iii) ω = .9. In each case,
display a graph of y1(t). Is the solution periodic? Display a phase-plane graph
of y2 versus y1.

7. Numerically solve system (10), the variable length pendulum model, on the
interval [0, 10] with no forcing function (f(t) = 0), with damping coefficient
c = .1m, and with �(t) = g(1+ .1 sin t) for the initial conditions y1(0) = 0 and
(i) y2(0) = 1.5 and (ii) y2(0) = 2.5. Display graphs of y1(t) and phase-plane
graphs of y2 versus y1.

8. Solve system (10), the variable length pendulum model, on the interval
[0, 10] for the initial conditions y1(0) = 0 and y2(0) = 2.5 when �(t) =
g(1 + .1 sin t), when (i) c = 0 and (ii) c = .1m, and f(t) = mg sinβt where
(a) β = .5 and (b) β = 1. Display graphs of y1(t) and phase-plane graphs of
y2 versus y1.

9. Let y1 = x, y2 = x′, y3 = y, and y4 = y′. Write system (11), the Foucault
pendulum model, as a system of four first-order differential equations. Nu-
merically solve the resulting system on the interval [0, 10] for initial conditions
y1(0) = 1, y2(0) = 0, y3(0) = 0, and y4(0) = 0 if � = 9.8 m and (a) φ = 0◦,
(b) φ = 45◦, (c) φ = −45◦, (d) φ = 60◦, and (e) φ = 90◦. The period of a
pendulum with length � = 9.8 m is 2π, or approximately 6.28 seconds. From
the value of y3(6.28) estimate how long it will take the plane of swing of the
pendulum to appear to rotate 360◦ in cases (a)-(e).

10. When the spring pendulum is at rest in the equilibrium position y1 =
L0 +mg/k and y2 = y3 = y4 = 0. Solve system (13) on the interval [0, 10] for
L0 = 1.02 decimeters, g = .98 decimeters/second2, and m/k = 1 second2 for
the following initial conditions:

(i) y1(0) = 2, y2(0) = 0, y3(0) = .1, and y4(0) = 0.
(The spring pendulum is set into motion by pulling the mass to the right
so that θ = .1 radian and then releasing the mass without compressing
or elongating the spring.)
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(ii) y1(0) = 2.1, y2(0) = 0, y3(0) = .05, and y4(0) = 0.
(The spring pendulum is set into motion by pulling the mass down
.1 decimeter from its equilibrium position and moving it to the right so
that θ = .05 radians and then releasing the mass.)

For both sets of initial conditions display a graph of the length of the spring
as a function of time—y1(t) = L(t); display a graph of the angle the spring
makes with the vertical as a function of time—y3(t) = θ(t); display a phase-
plane graph of y2 versus y1; and display a phase-plane graph of y4 versus y3.
Is the motion of the spring pendulum periodic?

10.8 Duffing’s Equation

(Nonlinear Spring-Mass Systems)

In Chapter 6 we saw that the equation of motion for a mass on a spring
which satisfied Hooke’s law (a linear spring) is

(1) my′′ + ky = 0

where m is the mass and k > 0 is the spring constant. The restoring force
for linear springs is ky. Springs which do not obey Hooke’s law are called
nonlinear springs. The restoring force for hard nonlinear springs is ky+py3

where p > 0 while the restoring force for soft nonlinear springs is ky − py3.
Thus, the equation of motion for a nonlinear spring is

(2) my′′ + ky + py3 = 0

where m and k are positive constants and p �= 0. Adding an external force of
the form a sinωt to drive the spring-mass system, we obtain the equation

(3) my′′ + ky + py3 = a sinωt.

Dividing by m, letting K = k/m, P = p/m and A = a/m, we obtain Duffing’s
equation for the motion of a nonlinear spring with a periodic forcing function

(4) y′′ +Ky + Py3 = A sinωt.

Including a damping term which is proportional to the velocity of the mass,
yields

(5) y′′ + Cy′ +Ky + Py3 = A sinωt

where the damping constant is C ≥ 0.
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EXERCISE 10.8

1. Let y1 = y and y2 = y′ and write equation (5) as an equivalent system of
two first-order differential equations.

For each of the following cases, display a graph of y1(t) = y(t) on [0, 10]
and display a phase-plane graph of y2 versus y1.

a. Let P = 0 (a linear spring) and K = A = ω = 1. Use SOLVESYS
or your computer software to solve the system on the interval [0, 10] for
the initial conditions y1(0) = 1 and y2(0) = 0 with damping constants
(i) C = 0 (no damping) and (ii) C = .5.

b. Let P = .1 (a hard nonlinear spring) and K = A = ω = 1. Numerically
solve the system on the interval [0, 10] for the initial conditions y1(0) = 1
and y2(0) = 0 with damping constants (i) C = 0 and (ii) C = .5.

c. Let P = −.1 (a soft nonlinear spring) and K = A = ω = 1. Solve
the system on the interval [0, 10] for the initial conditions y1(0) = 1 and
y2(0) = 0 with damping constants (i) C = 0 and (ii) C = .5.

10.9 Van Der Pol’s Equation

In 1921, E. V. Appleton and B. van der Pol initiated research on the oscil-
lations produced by electrical circuits which contain triode generators. Their
research led to the study of the following nonlinear differential equation, now
known as van der Pol’s equation

(1) x′′ + ε(x2 − 1)x′ + x = 0.

During 1926-27, van der Pol developed methods for solving equation (1). The
original electrical circuits studied by Appleton and van der Pol in the 1920s
contained vacuum tubes. Today circuits which produce similar oscillations
occur on semiconductor devices. Van der Pol’s equation also arises quite
often in nonlinear mechanics.

Letting y1 = x and y2 = x′, we can rewrite equation (1) as the following
equivalent system of two first-order equations

(2)
y′1 = y2

y′2 = −ε(y21 − 1)y2 − y1.
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EXERCISE 10.9

1. Numerically solve system (2) on the interval [0, 10] for (a) ε = .5 and
(b) ε = 2 for the initial conditions y2(0) = 0 and (i) y1(0) = .5, (ii) y1(0) = 2,
and (iii) y1(0) = 3. In each case, display a phase-plane graph of y2 versus
y1. Notice in cases (a) and (b) there is a periodic solution to van der Pol’s
equation. This periodic solution is called a limit cycle, since solutions which
begin inside the periodic solution “spiral outward” toward the periodic solu-
tion and solutions which begin outside the periodic solution “spiral inward”
toward the periodic solution.

10.10 Mixture Problems

We introduced and studied mixture problems in Chapters 3 and 9. Recall
the following underlying assumptions for solving mixture problems:

The rate of change of the amount of substance in any container at time
t is equal to the sum over all inputs to the container of the concentration
of each input times the rate of input minus the concentration of the
substance in the particular container times the sum of the rates of flow
of outputs from the container.

Example 13 A Three Pond Mixture Problem

Three small ponds containing 200 gallons of pure water are formed by a
spring rain. Water containing .73 lbs/gallon of salt enters pond A at the
rate of 100 gal/hr. Water evaporates from pond A at the rate of 30 gal/hr
and flows into pond B at 70 gal/hr. Water evaporates from pond B at
20 gal/hr and flows into pond C at 50 gal/hr. Water evaporates from pond
C at 25 gal/hr and flows out of the system at 25 gal/hr. Find the amount of
salt in each pond as a function of time. What is the limiting amount of salt
in each pond?

Solution

Let y1(t) be the amount of salt in pond A at time t. The concentration of
salt in the inflow to pond A is ci = .73 lbs/gal and the inflow rate is ri =
100 gal/hr. Since the evaporation rate plus the outflow rate is also 100 gal/hr,
the volume of pond A remains constant. Hence, the concentration of salt in
the outflow from pond A to pond B at any time is co = y1(t)/200 (lbs/gal).
Applying our underlying principle to pond A, we find

y′1(t) = ciri − coro

where the outflow rate from pond A to pond B is ro = 70 gal/hr. Thus, the
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amount of salt in pond A satisfies

y′1(t) = (.73)(100)−
( y1
200

)
(70) = 73− .35y1.

A similar analysis shows that the amount of salt, y2(t), in pond B satisfies

y′2(t) =
( y1
200

)
(70)−

( y2
200

)
(50) = .35y1 − .25y2

and the amount of salt, y3(t), in pond C satisfies

y′3(t) =
( y2
200

)
(50)−

( y3
200

)
(25) = .25y2 − .125y3.

Initially, all three ponds contain no salt, so the initial conditions are y1(0) =
0, y2(0) = 0, and y3(0) = 0. We used SOLVESYS to solve the system initial
value problem

(1)

y′1 = 73− .35y1; y1(0) = 0

y′2 = .35y1 − .25y2; y2(0) = 0

y′3 = .25y2 − .125y3; y3(0) = 0

on the interval [0, 20]. A graph showing the amount of salt in each pond on
the interval [0, 20] is shown in Figure 10.26.
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Figure 10.26 Solution Graph for System (1).
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The amount of salt in pond A begins to increase first. The amount of salt
in pond B begins to increase next and finally the amount of salt in pond
C begins to increase. Equating the right-hand sides of the three differential
equations in system (1) to zero, we find the critical point of system (1) to be
(208.57, 292, 584). This critical point is asymptotically stable, so as t → ∞,
y1 → 208.57, y2 → 292 and y3 → 584.

Pollution in the Great Lakes In Chapter 9 we derived the following
equations for the concentration of pollution in the Great Lakes. (See equa-
tion 19 and the accompanying table of constants in Chapter 9.)

(2)

y′1 =
15C1 − 15y1

2900

y′2 =
38C2 − 38y2

1180

y′3 =
15C3 + 15y1 + 38y2 − 68y3

850

y′4 =
17C4 + 68y3 − 85y4

116

y′5 =
14C5 + 85y4 − 99y5

393

Here yi(t) is the concentration of pollution in lake i at time t and Ci is the con-
centration of pollutant in the inflow to lake i. Subscript 1 corresponds to Lake
Superior, subscript 2 corresponds to Lake Michigan, subscript 3 corresponds
to Lake Huron, subscript 4 corresponds to Lake Erie, and subscript 5 corre-
sponds to Lake Ontario. In system (2) the unit of measure of the independent
variable, x (time), is years.

EXERCISE 10.10

1. Solve system (2) on the interval [0, 200] assuming all the Great Lakes have
the same initial pollution concentration of yi(0) = .5% and

a. the inflow concentration of pollutant for all lakes is reduced to Ci = .2%.

b. the inflow concentration of pollutant for all lakes is reduced to zero—
Ci = 0.

(Enter yi(0) as .5 and enter Ci as .2 or 0, so your results will be expressed in
percent. Otherwise, you may experience some numerical difficulties.)
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Display a graph for the concentration of pollution in all lakes for both cases
and compare the results.

In each case, how long does it take for the concentration of pollution in Lake
Ontario to be reduced to .3%? Which lake has its level of pollution reduced
to .25% first? last?

10.11 The Restricted Three-Body Problem

The general n-body problem of celestial mechanics is to determine the po-
sition and velocity of n homogeneous spherical bodies for all time, given their
initial positions and velocities. Although no general closed form solution to
this problem exists, much is known regarding various special cases when n is
small. The two-body problem for spheres of finite size was solved by Isaac
Newton in about 1685. A discussion of this problem as well as the first treat-
ment of the three-body problem appears in Book I of Newton’s Principia.
The restricted three-body problem considers the properties of motion of an
infinitesimally small body when it is attracted by two finite bodies which re-
volve in circles about their center of mass and when the infinitesimally small
body remains in the plane of motion of the other two bodies. This problem
was first discussed by Joseph Louis Lagrange (1736-1813) in his prize winning
memoir Essai sur le Problme des Trois Corps, which he submitted to the Paris
Academy of Sciences in 1772.

For our purposes we can think of the infinitesimally small mass as a satellite,
space-station, or spaceship and the two large bodies as the earth and moon or
as the Sun and Jupiter. To be specific, let us consider an earth-moon-spaceship
system. Let E denote the mass of the earth and M denote the mass of the
moon. The unit of mass is chosen to be the sum of the masses of the earth and
moon—hence, E +M = 1. It is customary to let μ represent the mass of the
smaller of the two large bodies, so μ =M . The distance between the two large
masses—E andM , in this instance—is selected as the unit of length. The unit
of time is chosen so that the gravitational constant is 1. This choice means
the two large bodies complete one circular revolution in 2π units of time. We
will present the equations of motion of the infinitesimally small body (the
spaceship) in a special two-dimensional rectangular coordinate system—the
barycentric coordinate system. The origin of this system is at the center
of mass of the earth and moon. The x-axis passes through the gravitational
centers of the earth and moon. In this coordinate system, the earth is located
at (−μ, 0) and the moon is located at (1−μ, 0). The location of the spaceship
is (x(t), y(t)). See Figure 10.27.
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Figure 10.27 The Restricted Three-Body Problem

and Associated Critical Points.

Using Newton’s second law of motion and the inverse square law of motion,
it can be shown that the equations of motion for the spaceship are

(1)

x′′ = 2y′ + x− (1− μ)(x + μ)

r3
− μ(x − 1 + μ)

s3

y′′ = −2x′ + y − (1− μ)y

r3
− μy

s3

where r = ((x + μ)2 + y2)1/2 and s = ((x − 1 + μ)2 + y2)1/2. Thus, r is
the distance of the spaceship from the earth and s is its distance from the
moon. If we let y1 = x, y2 = x′, y3 = y, and y4 = y′, we obtain the following
equivalent system of four first-order equations

(2.1) y′1 = y2

(2.2) y′2 = 2y4 + y1 − (1− μ)(y1 + μ)

((y1 + μ)2 + y23)
3/2

− μ(y1 − 1 + μ)

((y1 − 1 + μ)2 + y23)
3/2

(2.3) y′3 = y4

(2.4) y′4 = −2y2 +

[

1− 1− μ

((y1 + μ)2 + y23)
3/2

− μ

((y1 − 1 + μ)2 + y23)
3/2

]

y3.
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456 Elementary Differential Equations

The critical points of system (2) can be found by setting the right-hand sides
of equations (2.1)-(2.4) equal to zero. Doing so, we find from (2.1) that y2 = 0
and from (2.3) that y4 = 0. Substituting y2 = 0 into the right-hand side of
equation (2.4), we see either (i) y3 = 0 or (ii) the quantity in square brackets
in (2.4) is zero. Assuming (i) y3 = 0 and substituting into the right-hand side
of (2.2), we find y1 must satisfy

(3) f(z) = z − (1− μ)(z + μ)

|z + μ|3 − μ(z + μ− 1)

|z + μ− 1|3 = 0

for (y1, 0, 0, 0) to be a critical point of system (2). The function f(z) is defined
and continuous on (−∞,∞) for z �= −μ and z �= 1 − μ. At z = −μ and
z = 1 − μ, the function f(z) has a vertical asymptote. Figure 10.28 is a
graph of f(z) on the interval [−2.5, 2.5] for μ = .012129. Notice that f(z) has
three real zeros—one in the interval (−∞,−μ), since limt→−∞ f(z) = −∞;
one in the interval (−μ, 1 − μ); and one in the interval (1 − μ,∞), since
limt→∞ f(z) = ∞.
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Figure 10.28 A Graph of Equation (3) for μ = .012129.

For z < −μ, |z+μ| = −(z+μ) and |z+μ−1| = −(z+μ−1). Substituting
these expressions into equation (3), multiplying by (z + μ)2(z + μ − 1)2 and
simplifying, we find z must satisfy the quintic equation

(4) z5 + 2(2μ− 1)z4 + (6μ2 − 6μ+ 1)z3 + (4μ3 − 6μ2 + 2μ+ 1)z2

+(μ4 − 2μ3 + μ2 + 4μ− 2)z + (3μ2 − 3μ+ 1) = 0.
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For μ = .012129 this equation is

(5) z5 − 1.951484z4+ .9281087z3 + 1.023382z2− 1.951340z+ .9640543 = 0.

We used the computer program POLYRTS to solve this equation. There
is one real root, a = −1.00505, and two pairs of complex conjugate roots.
Thus, system (2) has a critical point at (y1, y2, y3, y4) = (−1.00505, 0, 0, 0).
This critical point is represented in the xy-plane (the y1y3-plane) shown in
Figure 10.27 by L1 : (a, 0).

For−μ < z < 1−μ, |z+μ| = z+μ and |z+μ−1| = −(z+μ−1). Substituting
these expressions into equation (3), multiplying by (z + μ)2(z + μ − 1)2 and
simplifying, we see z must satisfy

(6) z5 + 2(2μ− 1)z4 + (6μ2 − 6μ+ 1)z3 + (4μ3 − 6μ2 + 4μ− 1)z2

+(μ4 − 2μ3 + 5μ2 − 4μ+ 2)z + (2μ3 − 3μ2 + 3μ− 1) = 0.

For μ = .012129, this equation is

(7) z5 − 1.951484z4+ .9281087z3 − .9523595z2+ 1.952216z− .9640508 = 0.

We used POLYRTS to solve equation (7). We found a single real root of
b = .837022 and two pairs of complex conjugate roots. Hence, there is a
critical point of system (2) at (b, 0, 0, 0). This critical point is represented in
the y1y3-plane shown in Figure 10.27 by L2 : (b, 0).

For z > 1 − μ, |z + μ| = z + μ and |z + μ − 1| = z + μ − 1. Substituting
into equation (3) and simplifying, we find z must satisfy

(8) z5 + 2(2μ− 1)z4 + (6μ2 − 6μ+ 1)z3 + (4μ3 − 6μ2 + 2μ− 1)z2

+(μ4 − 2μ3 + μ2 − 4μ+ 2)z − (3μ2 − 3μ+ 1) = 0.

For μ = .012129 this equation is

(9) z5 − 1.951484z4+ .9281087z3 − .9766175z2+ 1.951628z− .9640543 = 0.

Using POLYRTS to solve equation (9), we found the single real root c =
1.15560 and two pairs of complex conjugate roots. The critical point (c, 0, 0, 0)
of system (2) is represented in Figure 10.27 by L3 : (c, 0).

The three critical points of system (2) corresponding to the points L1, L2,
and L3 of Figure 10.27 were first discovered by Leonhard Euler (1707-1783).
They are all unstable critical points. In 1772, Lagrange discovered the stable
critical points L4 and L5 shown in Figure 10.27. The three points E, M , and
L4 form an equilateral triangle as do the three points E, M , and L5. Hence,
L4 is located at ((1− 2μ)/2,

√
3/2) and L5 is located at ((1− 2μ)/2,−√

3/2)
in y1y3-space.
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EXERCISES 10.11

1. Verify that ((1 − 2μ)/2, 0, ±√
3/2, 0) are critical points of system (2).

2. Find the y1-coordinate of L1, L2, and L3 for the Sun-Jupiter system given
that μ = .001. (The Trojan asteroids drift around the stable critical points
L4 and L5 of the Sun-Jupiter system.)

3. Generate numerical solutions to system (2) on the interval [0, 10] for the
initial conditions:

a. Near L1 with zero velocity: y2(0) = y3(0) = y4(0) = 0
(i) y1(0) = −1.1 (ii) y1(0) = −.9

b. Near L2 with zero velocity: y2(0) = y3(0) = y4(0) = 0
(i) y1(0) = .8 (ii) y1(0) = .9

c. Near L3 with zero velocity: y2(0) = y3(0) = y4(0) = 0
(i) y1(0) = 1.1 (ii) y1(0) = 1.2

d. Near L4 with zero velocity: y1(0) = .5, y2(0) = 0, y3(0) = .9, y4(0) = 0

In each case, display a phase-plane graph of y3 versus y1 (y versus x). What
happens to the spaceship in each instance? (All five points L1, L2, L3, L4,
and L5 have been considered as sites for locating permanent space stations.
Which locations do you think would be better? Why?)

4. In this example a spaceship is initially on the side of the earth opposite the
moon. The pilot shuts off the rocket engines to begin a non-powered flight.
The purpose of the exercise is to see the effects of “burnout” position and
velocity on the trajectory of the spaceship. Numerically solve system (2) with
μ = .012129 on the interval [0, 50] for the following three initial conditions:

a. y1(0) = −1.2625, y2(0) = 0, y3(0) = 0, y4(0) = 1.05

b. y1(0) = −1.26, y2(0) = 0, y3(0) = 0, y4(0) = 1.05

c. y1(0) = −1.2625, y2(0) = 0, y3(0) = 0, y4(0) = 1.00

For the initial conditions a., b., and c. display a phase-plane graph of y3 versus
y1. Compare the three graphs. What do you conclude? Is the initial position
of the spaceship very important? Is the initial velocity of the spaceship very
important?

(Note: The specified accuracy of the numerical integration technique is
very important also. Use a good double precision integration routine to solve
system (2) with a prescribed accuracy of at least 10−12.)
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Appendix A

Numerical Solution of the Initial Value

Problem: y′ = f(x,y); y(c) = d

The oldest and simplest algorithm for generating a numerical approxima-
tion to a solution of a differential equation was developed by Leonhard Euler
in 1768. Given a specific point (x0, y0) on the solution of the differential equa-
tion y′ = f(x, y), Euler wrote the equation for the tangent line to the solution
through (x0, y0)—namely, y = y0 + f(x0, y0)(x − x0). To obtain an approxi-
mation to the solution through (x0, y0) at x1, Euler took a small step along
the tangent line and arrived at the approximation y1 = y0+f(x0, y0)(x1−x0)
to the solution at x1, y(x1). Continuing to generate points successively in
this manner and by connecting the points (x0, y0), (x1, y1), (x2, y2), . . . in
succession, Euler produced a polygonal path which approximated the so-
lution. This first numerical algorithm for solving the initial value problem
y′ = f(x, y); y(x0) = y0 is called Euler’s method or, due to its particular
geometric construction, the tangent line method.

Euler’s method is a single-step method. In single-step methods, only one
solution value, (x0, y0), is required to produce the next approximate solution
value. On the other hand, multistep methods require two or more previous
solution values to produce the next approximate solution value. In 1883, more
than a century after Euler developed the first single-step method, the English
mathematicians Francis Bashforth (1819-1912) and John Couch Adams (1819-
1892) published an article on the theory of capillary action which included
multistep methods that were both explicit methods and implicit methods. In
1895, the German mathematician Carl David Tolmé Runge (1856-1927) wrote
an article in which he developed two single-step methods. The second-order
method was based on the midpoint rule while the third-order method was
based on the trapezoidal rule. In an article which appeared in 1900, Karl
Heun (1859-1929) improved Runge’s results by increasing the order of the
method to four. And in 1901, Martin Wilhelm Kutta (1867-1944) completed
the derivation for the fourth-order methods by finding the complete set of
eight equations the coefficients must satisfy. He also specified the values for
the coefficients of the classic fourth-order Runge-Kutta method and those of
a fifth-order method.
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Prior to 1900, most calculations were performed by hand with paper and
pencil. Euler’s method and Runge-Kutta methods are single-step methods.
Euler’s method is of order one and requires only one f function evaluation
per step. The classic Runge-Kutta method is fourth-order and requires four
f function evaluations per step. Adams-Bashforth, Adams-Moulton, and
predictor-corrector methods require only two f function evaluations per step;
however, since these methods are multistep methods, they require starting
values obtained by some other method. By the 1930s significant numerical
integration techniques had been developed; however, their effective implemen-
tation was severely limited by the need to perform the computations by hand
or with the aid of primitive mechanical calculators.

In the late nineteenth century and early twentieth century, several com-
mercially viable mechanical calculators capable of adding, subtracting, multi-
plying, and dividing were invented and manufactured. Electric motor driven
calculators began to appear as early as 1900. These mechanical and electrical
computing devices improved the speed and accuracy of generating numerical
solutions of simple differential equations. In 1936, the German civil engineer
Konrad Zuse (1910-1995) built the first mechanical binary computer, the Z1,
in the living room of his parents’ home. From 1942 to 1946 the first large
scale, general purpose electronic computer was designed and built by John
W. Mauchly (1907-1980) and J. Presper Eckert (1919-1995) at the University
of Pennsylvania. The computer was named ENIAC, which is an acronym
for “Electronic Numerical Integrator and Computer.” ENIAC, which used
vacuum tube technology, was operated from 1946 to 1955. After many tech-
nological inventions such as the transistor and integrated circuitry, the first
hand-held, battery-powered, pocket calculator capable of performing addition,
subtraction, multiplication, and division was introduced by Texas Instruments
in 1967. The first scientific pocket calculator, the HP-35, was produced in 1972
by Hewlett Packard.

In the 1960s and 1970s several sophisticated computer programs were de-
veloped to solve differential equations numerically. Since then significant ad-
vances in graphical display capabilities have occurred also. Consequently, at
the present time there are many computer software packages available to gen-
erate numerical solutions of differential equations and to graphically display
the results.

In this appendix, we present some of the simpler single-step, multistep, and
predictor-corrector methods for computing numerical approximations to the
solution of the initial value problem

(1) y′ = f(x, y); y(x0) = y0

and for estimating the error of the computed approximations. We discuss the
advantages and disadvantages of each type of method. Then we present and
discuss desirable features for computer software to solve the IVP (1). Next,
we explain how to use computer software to generate a numerical approxi-
mation to the solution of the first-order IVP (1). Finally, we illustrate and
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interpret the various kinds of results which computer software may produce.
Furthermore, we reiterate the importance of performing a thorough mathe-
matical analysis, which includes applying the fundamental theorems to the
problem, prior to generating a numerical approximation.

Before we start generating numerical approximations to the solution of the
IVP (1), we need to have a basic understanding of how a digital computer
represents and processes numbers. First of all, it is impossible to represent all
real numbers exactly in a digital computer. In most cases, a digital computer
represents and stores real numbers as floating-point quantities using a scheme
similar to scientific notation. Since a digital computer is a finite device, only
a finite set of rational numbers can be represented exactly and they
are not equally spaced throughout the range of representable values. When at-
tempting to perform an arithmetic operation whose result would be a number
whose magnitude is larger than the largest number representable on the com-
puter overflow occurs and most computers terminate execution immediately.
Likewise, underflow occurs and execution is terminated when attempting to
perform an arithmetic operation whose result would be a number whose mag-
nitude is less than the smallest nonzero number representable. In addition,
contrary to your experience with real numbers, the floating-point operations
of addition and multiplication are not commutative and the distributive law
fails to hold.

When a number which the computer cannot represent exactly is entered
into the computer or is calculated within the computer, the computer selects
the nearest number in its representable set by rounding-off or chopping-off
the number. The error created by rounding or chopping after the final digit
is called the round-off error. For example, suppose we have a calculator
which uses base 10 and has four digits accuracy. If our calculator rounds,
it represents 2/3 as .6667; whereas, if our calculator chops, it represents 2/3
as .6666. Now suppose that our calculator actually rounds and we use it to
compute

x2 − 4

9

x− 2

3
for x = .6666. Calculating, we get

(.6666)2 − .4444

.6666− .6667
=
.4444− .4444

−.0001 = 0.

Factoring and cancelling before using our calculator, we find

x2 − 4

9

x− 2

3

=
(x− 2

3
)(x+

2

3
)

x− 2

3

= x+
2

3
.

Then using our calculator to evaluate this last expression with x = .6666, we
obtain .6666 + .6667 = 1.333. This example illustrates that round-off error
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can create some very serious computing problems. Round-off error depends
upon the computer and the coding of the algorithm. In general, round-off
error is difficult to analyze and, indeed, somewhat unpredictable. In order to
minimize round-off error, it is a good idea to use high precision arithmetic
and to reduce the number of computations as much as possible.

Throughout this appendix, we will let φ(x) denote the unique, explicit
solution of the initial value problem (1) y′ = f(x, y); y(x0) = y0 on the
interval I which contains x0. By the fundamental existence and uniqueness
theorem and the continuation theorem requiring that f and fy be continuous
in some finite rectangle in the xy-plane will guarantee that the IVP (1) has a
unique solution φ(x) on some interval I containing x0. Recall that the solution
φ(x) must be defined, continuous, and differentiable at least once on the
interval I; that φ(x) must satisfy the differential equation φ′(x) = f(x, φ(x))
on I; and that φ(x) must satisfy the initial condition φ(x0) = y0.

A “numerical solution” of the IVP (1) is a discrete approximation of the
solution. A numerical solution is, in fact, a finite set of ordered pairs of rational
numbers, (xi, yi) for i = 0, 1, 2, . . . , n, whose first coordinates, xi, are distinct
points in the interval I and whose second coordinates, yi, are approximations
to the solution φ at xi—that is, yi ≈ φ(xi). A numerical method for solving
the IVP (1) is an algorithm which chooses points xi in I such that x0 < x1 <
x2 < · · · < xn and determines corresponding values y0, y1, y2, . . . , yn such
that yi approximates φ(xi). Figure A.1 illustrates the relationship between the
solution φ(x) of the IVP (1) and a numerical approximation F = {(xi, yi) | i =
0, 1, . . . , n}. The solution φ(x) is represented by the solid curve which appears
in Figure A.1. The numerical approximation is represented by the set of dots
{(xi, yi) | i = 0, 1, . . . , n} which appear in the graph.
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Figure A.1 Solution φ(x) of the IVP(1) and a Numerical Approximation.

Several different measures of error are used when specifying the accuracy
of a numerical solution. Three are defined below.

The absolute error at xi is |φ(xi)− yi|.
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The relative error at xi is |φ(xi)− yi|/|φ(xi)| provided φ(xi) �= 0.

The percentage relative error at xi is 100×|φ(xi)−yi|/|φ(xi)| provided
φ(xi) �= 0.

Observe that the absolute error at xi is the vertical distance between the
points (xi, φ(xi)) and (xi, yi). See Figure A.1.

Most differential equations and initial value problems cannot be
solved explicitly or implicitly; and, therefore, we must be satisfied
with obtaining a numerical approximation to the solution. Thus, we
need to know how to generate a numerical approximation to the solution of
the IVP (1) y′ = f(x, y); y(x0) = y0. In the differential equation y′ = f(x, y)
replace y′ by dy/dx, multiply by dx, and integrate both sides of the resulting
equation from x0 to x to obtain

∫ x

x0

dy =

∫ x

x0

f(t, y(t)) dt or y(x)− y(x0) =

∫ x

x0

f(t, y(t)) dt.

Adding y(x0) = y0 to the last equation, we find the symbolic solution to the
IVP (1) on [x0, x] to be

(2) y(x) = y0 +

∫ x

x0

f(t, y(t)) dt.

When f(x, y) in (1) is a function of the independent variable alone—that
is, when the initial value problem is y′ = f(x); y(x0) = y0—we can approx-
imate the function f(x) on the interval [x0, x1], where x1 is a specific point,
by step functions or some polynomial in x, say p1(x), and then using this
approximation integrate (2) over [x0, x1] to obtain an approximation y1 to
the solution φ(x1). Next, we approximate f(x) on [x1, x2] by some function
p2(x) and integrate over [x1, x2] to obtain y2 = y1 +

∫ x2

x1
p2(t) dt which is an

approximation to the solution φ(x2), and so on.

When f(x, y) in (1) is a function of the dependent variable y, the value of
the approximate solution y1 at x1 depends on the unknown solution φ(x) on
the interval [x0, x1] and the function f(x, y) on the rectangle

R1 = {(x, y) | x0 ≤ x ≤ x1, y ∈ {φ(x) |x0 ≤ x ≤ x1}}.
Thus, we must approximate φ(x) on [x0, x1] and f(x, y) on R1 in order to
be able to integrate (2) over the interval [x0, x1] and obtain an approximate
solution y1. In this case, additional approximate values y2, . . . , yn are obtained
in a like manner.

Now suppose we have generated the numerical approximations (x0, y0),
(x1, y1), . . . , (xn, yn). If the algorithm for generating the numerical approx-
imation at xn+1 depends only on (xn, yn) and our approximation of f(x, y)
at (xn, yn), then the algorithm is called a single-step, one-step, stepwise,
or starting method. On the other hand, if the algorithm for generating
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the numerical approximation at xn+1 depends on (xn, yn), (xn−1, yn−1),. . .,
(xn−m, yn−m) where m ≥ 1, then the procedure for generating the numerical
approximation is known as a multistep or continuing method.

A.1 Single-Step Methods

For single-step methods, it is convenient to symbolize the numerical approx-
imation to the exact solution y = φ(x) of the IVP (1) y′ = f(x, y); y(x0) = y0
by the recursive formula

(3) yn+1 = yn + ψ(xn, yn, hn)

where hn = xn+1 − xn. The quantity hn is called the stepsize at xn and it
can vary with each step. However, for computations performed by hand it is
usually best to keep the stepsize constant—that is, set hn = h, a constant,
for n = 0, 1, . . ..

A.1.1 Taylor Series Method

If y(x) hasm+1 continuous derivatives on an interval I containing x0, then
by Taylor’s formula with remainder,

(4) y(x) = y(xn) + y(1)(xn)(x − xn) +
y(2)(xn)

2
(x− xn)

2 + · · ·

+
y(m)(xn)

m!
(x − xn)

m +
y(m+1)(ξ)

(m+ 1)!
(x − xn)

m+1

where ξ is between x and xn. In particular, if y(x) is a solution to the IVP (1)
and y(x) has m+1 continuous derivatives, then from the differential equation
in (1)

y(1)(xn) = f(xn, y(xn))

and by repeated implicit differentiation and use of the chain rule, we obtain

y(2)(xn) = f (1)(xn, y(xn)) = fx + fyy
(1) = fx + fyf

y(3)(xn) = f (2)(xn, y(xn)) = fxx + fxyy
(1) + (fyx + fyyy

(1))y(1) + fyy
(2)

= fxx + 2fxyf + fyyf
2 + fxfy + f2

y f

where f (1) denotes df/dx, where f (2) denotes d2f/dx2, and where f and its
partial derivatives are all evaluated at (xn, y(xn)). We could continue in this
manner and eventually write any derivative of y evaluated at xn, y

(k)(xn), up
to and including orderm+1, in terms of f and its partial derivatives evaluated
at (xn, y(xn)). However, it is apparent that the evaluation of each successive
higher order derivative by this technique usually becomes increasingly difficult
unless the function f is very simple. Hence, one chooses m in equation (4) to
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be reasonably small and approximates y(xn+1) by

(5) yn+1 = yn + f(xn, yn)hn +
f (1)(xn, yn)

2
h2n + · · ·+ f (m−1)(xn, yn)

m!
hmn .

This single-step method of numerical approximation to the solution of the
IVP (1) is known as the Taylor series expansion method of order m
and the discretization error, truncation error, or formula error for this
method is given by

(6) En =
f (m)(ξ, y(ξ))

(m+ 1)!
hm+1
n

where ξ ∈ (xn, xn+1).

If all calculations were performed with infinite precision, discretization error
would be the only error present. Local discretization error is the error
that would be made in one step, if the previous values were exact and there
were no round-off error. Ignoring round-off error, global discretization
error is the difference between the solution φ(x) of the IVP (1) and the
numerical approximation at xn—that is, the global discretization error is en =
yn − φ(xn).

A derivation of the series that bears his name was published by the En-
glish mathematician Brook Taylor (1685-1731) in 1715. However, the Scottish
mathematician James Gregory (1638-1675) seems to have discovered the se-
ries more than forty years before Taylor published it. And Johann Bernoulli
had published a similar result in 1694. The series was published without
any discussion of convergence and without giving the truncation error term—
equation (6).

Example 1 Third-Order Taylor Series Approximation to the

Solution of the IVP: y′ = y + x; y(0) = 1

a. Find an approximate solution to the initial value problem

(7) y′ = y + x = f(x, y); y(0) = 1

on the interval [0, 1] by using a Taylor series expansion of order 3 and a
constant stepsize hn = .1.

b. Estimate the maximum local discretization error on the interval [0, 1].

Solution

a. From the differential equation in (7), we see that

y(1) = f(x, y) = y + x, so f(xn, yn) = yn + xn.
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Differentiating the equation y(1) = f(x, y) = y + x three times, we find

f (1)(x, y) = y(1) + 1 = y + x+ 1, so f (1)(xn, yn) = yn + xn + 1

f (2)(x, y) = y(1) + 1 = y + x+ 1, so f (2)(xn, yn) = yn + xn + 1

f (3)(x, y) = y(1) + 1 = y + x+ 1, so f (3)(xn, yn) = yn + xn + 1.

Substituting these expressions into equation (5) withm = 3 and hn = .1,
we obtain the recursive formula

yn+1 = yn + (yn + xn)(.1) +
yn + xn + 1

2
(.01) +

yn + xn + 1

6
(.001)

= .00516667+ .105167xn + 1.10517yn.

In this case, each constant was rounded to six significant digits. The
following table is the third-order Taylor series approximation to the
IVP (7) on the interval [0, 1] obtained using a constant stepsize of h = .1.
All calculations were performed using six significant digits.

Third-Order Taylor Series Approximation
to the IVP: y′ = y + x; y(0) = 1 on [0,1]
with Stepsize h = .1

xn yn

.0 1.00000

.1 1.11034

.2 1.24279

.3 1.39969

.4 1.58361

.5 1.79739

.6 2.04417

.7 2.32742

.8 2.65098

.9 3.01908
1.0 3.43641

b. The differential equation of the IVP (7) is linear and, in this instance, we
can find the exact solution. Therefore, we could use the exact solution
when estimating the maximum local discretization error. However, since
we will not normally be able to obtain the exact solution, we will do what
one must usually do in practice. We will use the information obtained
from the numerical approximation to estimate the error. Examining
the Taylor series numerical approximation values above, we see that
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|y| < 3.45 for x ∈ [0, 1]. For x ∈ [0, 1], we assume that |y| < 7 (which is
slightly more than twice the largest y value appearing above) and using
the triangle inequality, we see that

(8) |f (3)(x, y)| ≤ |y|+ |x|+ 1 < 9 for x ∈ [0, 1].

Using this upper bound in equation (6) with m = 3 and hn = .1, we
obtain the following estimate for the maximum local discretization error
on the interval [0, 1].

|E| ≤ 1

4!
max
0≤x≤1

|f (3)(x, y)|(.1)4 < 1

4!
9(.1)4 < .0000375. �

The following example illustrates how to estimate an appropriate stepsize
for a Taylor series approximation given a specific accuracy requirement per
step.

Example 2 Stepsize Selection for the Third-Order Taylor Series

Method

When using a Taylor series expansion of order 3 with constant stepsize h
to approximate the solution of the IVP (7) y′ = y + x; y(0) = 1 on the
interval [0, 1], how small must the stepsize be in order to ensure six decimal
place accuracy per step?

Solution

Setting m = 3 in equation (6), taking the absolute value of the resulting
equation, and using the inequality (8), we find on the interval [0, 1] that the
local discretization error satisfies

|E| ≤ 1

4!
max
0≤x≤1

|f (3)(x, y)|h4 < 1

4!
(9)h4.

If we require h to satisfy

(9) |E| < 1

4!
(9)h4 < .5× 10−6,

then the local discretization error will have six decimal place accuracy. Solving
the right-hand inequality in (9) for h, we find

h < (
4

3
× 10−6)

1
4 < 0.033.

Hence, any constant stepsize less than 0.033 will achieve the desired accuracy
per step. �

The computational disadvantage of using a Taylor series expansion to ap-
proximate the solution to an initial value problem is fairly obvious. For any
given function f(x, y) one must calculate the derivatives f (1), f (2), . . . , f (m−1)
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and then evaluate all of theses derivatives at (xn, yn). However, the Taylor
series expansion is of theoretical value, since most other numerical approxima-
tion schemes were derived by attempting to achieve a given order of accuracy
without having to calculate higher order derivatives. As a matter of fact, an
approximation technique is said to be of orderm, if the local discretization er-
ror is proportional to the local discretization error of a Taylor series expansion
of order m. Hence, when developing a numerical approximation scheme, the
object is to produce an error which is proportional to hm+1 without having
to compute any derivatives of f(x, y).

A.1.2 Runge-Kutta Methods

Among the more popular single-step numerical approximation methods are
those developed by the German mathematicians Carl David Tolmé Runge
(1856-1927), Karl Heun (1859-1929), and Martin Wilhelm Kutta (1867-1944).
Runge was an applied mathematician who studied spectral lines of elements
and Diophantine equations. He devised and published his numerical technique
in 1895. In 1900, Karl Heun published a paper concerning the improvement
of Runge’s method and in 1901 Kutta extended Runge’s method to systems
of equations. Kutta is also well-known for his contributions to airfoil theory.

Improved Euler’s Method In deriving Euler’s method for approximat-
ing the solution of the IVP (1) y′ = f(x, y); y(x0) = y0, we noted that the
IVP (1) is equivalent to the integral equation

y(x) = y0 +

∫ x

x0

f(t, y(t)) dt

and we replaced the integrand f(t, y(t)) over the entire interval [x0, x1] by
its approximate value at the left endpoint, f(x0, y0). Upon integrating from
x0 to x1, we obtained Euler’s formula for approximating the solution to the
IVP (1) at x1. A more accurate approximation may be obtained, if, instead of
approximating the integrand by its approximate value at the left endpoint of
the interval of integration, we approximate it by the average of its approximate
values at the left endpoint and the right endpoint. Thus, when solving the
general IVP y′ = f(x, y); y(xn) = yn on the interval [xn, xn+1] which is
equivalent to the integral equation

(10) y(xn+1) = yn +

∫ xn+1

xn

f(t, y(t)) dt

we replace the integrand f(t, y(t)) by the constant

1

2
(f(xn, yn) + f(xn+1, yn+1)).

Substituting this expression into (10) and integrating, we obtain the following
expression for the approximation of the solution to the IVP (1) at xn+1:

yn+1 = yn +
1

2
(f(xn, yn) + f(xn+1, yn+1))(xn+1 − xn).
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This equation involves the unknown yn+1 as an argument of f on the right-
hand side; and, therefore, will generally be difficult or impossible to solve
explicitly for yn+1. Instead of trying to solve this equation for yn+1, we simply
replace the yn+1 appearing on the right-hand side by the approximation we
obtain using Euler’s method—namely, yn+1 = yn+f(xn, yn)(xn+1−xn). The
following recursive formula which results is known as the improved Euler’s
method, the second-order Runge-Kutta method, or the Heun method
for producing an approximation to the solution of the IVP (1):

(11) yn+1 = yn +
1

2
[f(xn, yn) + f(xn+1, yn + f(xn, yn)hn)]hn

where hn = (xn+1 − xn). The local discretization error for this method is

(12) EI
n = − 1

12
f (2)(ξ, y(ξ))h3n = − 1

12
y(3)(ξ)h3n

where hn = (xn+1 −xn). Thus, the local discretization error for the improved
Euler’s method is proportional to the cube of the stepsize; whereas, the local
discretization error for Euler’s method is proportional to the square of the
stepsize. The greater accuracy of the improved Euler’s method must be paid
for by an increase in the total number of computations which must be per-
formed and the number of f function evaluations per step. Notice that f must
be evaluated twice for each step when using the improved Euler’s method;
whereas, f is only evaluated once per step when using Euler’s method.

Example 3 Improved Euler’s Approximation of the Solution

to the IVP: y′ = y + x; y(0) = 1

a. Find an approximate solution to the initial value problem

(7) y′ = y + x = f(x, y); y(0) = 1

on the interval [0, 1] using the improved Euler’s method and a constant stepsize
h = .1.

b. Use equation (12) to estimate the maximum local discretization error on
[0, 1].

Solution

a. Table A.1 is the improved Euler’s approximation to the IVP (7) on the
interval [0, 1] obtained using a constant stepsize of h = .1. The value S1 =
f(xn, yn) = yn + xn is an approximation to the slope to the exact solution
of (7) at xn (the left endpoint of the interval of integration [xn, xn+1]). And
S2 = f(xn+1, yn + f(xn, yn)h) = yn + f(xn, yn)h+ xn+1 is an approximation
to the slope of the exact solution at xn+1 (the right endpoint of the interval
of integration). All calculations were performed using six significant digits.
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b. We shall assume, as we did in the Taylor series expansion example, that
|y(x)| < 7 on [0, 1]. Since y(3) = y + x + 1 and since h = .1, we see from
equation (12) that the maximum local discretization error on [0, 1] satisfies

|EI
n| = |φ(xn)− yn| ≤ 1

12
h3 max

x∈[0,1]
|y(3)| ≤ 1

12
(.1)3(9) ≈ .00075.

Table A.1 Improved Euler’s Approximation to the IVP

(7) y′ = y + x; y(0) = 1 on [0,1] with Stepsize h = .1

yn+1 = yn+

n xn yn S1 S2
h

2
(S1 + S2)

h

2
(S1 + S2)

0 .0 1.0 1.0 1.2 .11 1.11
1 .1 1.11 1.21 1.431 .13205 1.24205
2 .2 1.24205 1.44205 1.68625 .156415 1.39846
3 .3 1.39846 1.69846 1.96831 .183339 1.58180
4 .4 1.58180 1.98180 2.27998 .213089 1.79489
5 .5 1.79489 2.29489 2.62438 .245963 2.04085
6 .6 2.04085 2.64085 3.00494 .282289 2.32314
7 .7 2.32314 3.02314 3.42546 .322430 2.64557
8 .8 2.64557 3.44557 3.89013 .366785 3.01236
9 .9 3.01236 3.91236 4.40359 .415797 3.42815

10 1.0 3.42815

Analyzing the form of the recursive formula (11) might lead one to try to
devise a more general recursion of the form

(13) yn+1 = yn + [af(xn, yn) + bf(xn + chn, yn + df(xn, yn)hn)]hn

in which the constants a, b, c, and d are to be determined in such a manner
that (13) will agree with a Taylor series expansion of as high an order as
possible. As we have seen the Taylor series expansion for y(xn+1) about xn is

y(x) = y(xn) + fhn +
1

2
(fx + fyf)h

2
n+(14)

1

6
(fxx + 2fxyf + fyyf

2 + fxfy + f2
y f)h

3
n +O(h4n)

where f and its partial derivative are all evaluated at (xn, yn) and O(h4n)
indicates that the error made by omitting the remainder of the terms in the
expansion is proportional to the fourth power of the stepsize.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Numerical Solution of the IVP: y′ = f(x, y); y(c) = d 471

Let k1 = f(xn, yn) and k2 = f(xn + chn, yn + dk1hn). Using the Taylor
series expansion for a function of two variables to expand k2 about (xn, yn),
we obtain

k2 = f(xn + chn, yn + dk1hn) = f(xn, yn) + chnfx + dk1hnfy+(15)

c2h2n
2

fxx + cdh2nk1fxy +
d2h2nk

2
1

2
fyy +O(h3).

Substituting k1 = f into (15), substituting the resulting equation into (13),
and rearranging in ascending powers of hn, we find

yn+1 = yn + (a+ b)fhn + b(cfx + dfyf)h
2
n+(16)

b(
c2

2
fxx + cdffxy +

d2

2
f2fyy)h

3
n +O(h4n).

Comparing (14) with (16), we see that for the corresponding coefficients of
hn and h2n to agree, we must have

(17) a+ b = 1, bc =
1

2
, and bd =

1

2
.

Thus, we have three equations in four unknowns. Hence, we might hope to
be able to choose the constants in such a manner that the coefficients of h3n
in (14) and (16) agree. However, for these coefficients to agree we must have

bc2

2
=

1

6
, bcd =

1

3
,

bd2

2
=

1

6
, and fxfy + f2

yf = 0.

Obviously, the last equality is not satisfied by all functions f .
There are an infinite number of solutions to the simultaneous equations (17).

The choice a = 1
2 , b = 1

2 , c = 1, and d = 1 yields the improved Euler’s
method (11). Choosing a = 0, b = 1, c = 1

2 , and d = 1
2 results in the following

recursion which is known as the modified Euler’s method:

(18) yn+1 = yn + f(xn +
1

2
hn, yn +

1

2
f(xn, yn)hn)hn.

Fourth-Order Runge-Kutta Method If one tries to develop a general
recursion of the form

yn+1 = yn + hn[a1f(xn, yn) + a2f(xn + b1hn, yn + b1hnk1)+(19)

a3f(xn + b2hn, yn + b2hnk2) + a4f(xn + b3hn, yn + b3hnk3)]

where k1 = f(xn, yn) and ki = f(xn + bi−1hn, yn + bi−1hnki−1) for i = 2, 3, 4
by determining the constants a1, a2, a3, a4, b1, b2, and b3 in such a manner that
(19) will agree with a Taylor series expansion of as high an order as possible,
one obtains a system of algebraic equations in the constants. In this case, as
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before, there are an infinite number of solutions to the system of equations.
The choice of constants which leads to the classical fourth-order Runge-Kutta
recursion is

a1 = a4 =
1

6
, a2 = a3 =

1

3
, b1 = b2 =

1

2
, and b3 = 1.

One usually finds the recursion for yn+1 written as

k1 = f(xn, yn)

k2 = f(xn +
hn
2
, yn +

hnk1
2

)

k3 = f(xn +
hn
2
, yn +

hnk2
2

)

k4 = f(xn + hn, yn + hnk3)

(20) yn+1 = yn + hn
(k1 + 2k2 + 2k3 + k4)

6
.

Hence, the fourth-order Runge-Kutta method may be viewed as a weighted
average of four approximate values of the slope of the exact solution f(t, φ(t))
at different points within the interval of integration [xn, xn+1]. The value k1
is an approximation of the slope of the exact solution at the left endpoint
of the interval of integration. The value k2 is an approximation of the slope
of the exact solution at the midpoint of the interval of integration which is
obtained by using Euler’s method to approximate φ(xn + hn/2). The value
k3 is another approximation of the slope at the midpoint of the interval of
integration. And k4 is an approximation of the slope at the right endpoint
xn+1. The local discretization error of the fourth-order Runge-Kutta method
is proportional to h5n and if f is a function of x alone, then the fourth-order
Runge-Kutta recursion (20) reduces to Simpson’s rule. Because of its relative
high order of accuracy, the fourth-order Runge-Kutta method is one of the
most commonly used single-step methods.

Example 4 Fourth-Order Runge-Kutta Approximation of

the Solution to the IVP: y′ = y + x; y(0) = 1

Find an approximate solution to the initial value problem

(7) y′ = y + x = f(x, y); y(0) = 1

on the interval [0, 1] using the fourth-order Runge-Kutta method and a con-
stant stepsize h = .1.

Solution

Table A.2 contains the fourth-order Runge-Kutta approximation to the
IVP (7) on the interval [0, 1] obtained using a constant stepsize of h = .1.
All calculations were performed using six significant digits.
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Table A.2 Fourth-Order Runge-Kutta Approximation to the IVP

(7) y′ = y + x; y(0) = 1 on [0,1] with Stepsize h = .1

h(k1 + 2k2+
xn yn k1 k2 k3 k4 2k3 + k4)/6

.0 1.0 1.0 1.1 1.105 1.2105 .110341

.1 1.11034 1.21034 1.32086 1.32638 1.44298 .132463

.2 1.24280 1.44280 1.56494 1.57105 1.69991 .156911

.3 1.39971 1.69971 1.83470 1.84145 1.98386 .183931

.4 1.58364 1.98364 2.13283 2.14028 2.29767 .213792

.5 1.79744 2.29744 2.46231 2.47055 2.64449 .246794

.6 2.04423 2.64423 2.82644 2.83555 3.02778 .283266

.7 2.32750 3.02750 3.22887 3.23894 3.45139 .323574

.8 2.65107 3.45107 3.67362 3.68475 3.91954 .368122

.9 3.01919 3.91919 4.16515 4.17745 4.43694 .417355
1.0 3.43655

A tabular comparison of the methods we have used in this section to ap-
proximate the solution of the IVP (7) y′ = y + x; y(0) = 1 on the interval
[0, 1] with a constant stepsize of h = .1 is displayed in Table A.3. From this
table it is obvious the fourth-order Runge-Kutta method is the most accu-
rate method for approximating the solution to this particular initial value
problem. However, since the fourth-order Runge-Kutta method requires four
f function evaluations per step while the improved Euler’s method requires
two f function evaluations per step and Euler’s method only requires one f
function evaluation per step, the fourth-order Runge-Kutta method required
approximately twice the computing time of the improved Euler’s method and
four times the computing time of Euler’s method. Consequently, one might
anticipate that the approximation to the solution of the IVP (7) generated
using Euler’s method with a constant stepsize h = .025, using the improved
Euler’s method with h = .05, and using the fourth-order Runge-Kutta method
with h = .1 would require approximately the same amount of computing time
and have approximately the same accuracy, since each method would then re-
quire 40 evaluations of the function f . Performing the necessary calculations,
we obtain the results shown in Table A.4.
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Table A.3 Approximations to the Solution of the IVP

(7) y′ = y + x; y(0) = 1 on [0,1] with Stepsize h = .1

Taylor Improved
Series Euler’s Euler’s Fourth-Order Exact

xn Order 3 Method Method Runge-Kutta Solution

.0 1.0 1.0 1.0 1.0 1.0

.1 1.11034 1.1 1.11 1.11034 1.11034

.2 1.24279 1.22 1.24205 1.24280 1.24281

.3 1.39969 1.362 1.39846 1.39971 1.39972

.4 1.58361 1.5282 1.58180 1.58364 1.58365

.5 1.79739 1.72102 1.79489 1.79744 1.79744

.6 2.04417 1.94312 2.04085 2.04423 2.04424

.7 2.32742 2.19743 2.32314 2.32750 2.32751

.8 2.65098 2.48718 2.64557 2.65107 2.65108

.9 3.01908 2.81590 3.01236 3.01919 3.01921
1.0 3.43641 3.18748 3.48215 3.43655 3.43656

Table A.4 Approximations of the IVP (7) y′ = y + x; y(0) = 1

Euler Improved Euler Runge-Kutta Exact
xn h = .025 h = .05 h = .1 Solution

.0 1.0 1.0 1.0 1.0

.1 1.10762 1.11025 1.11034 1.11034

.2 1.23680 1.24261 1.24280 1.24281

.3 1.38977 1.39939 1.39971 1.39972

.4 1.56900 1.58317 1.58364 1.58365

.5 1.77722 1.79678 1.79744 1.79744

.6 2.01743 2.04335 2.04423 2.04424

.7 2.29297 2.32637 2.32750 2.32751

.8 2.60749 2.64964 2.65107 2.65108

.9 2.96504 3.01742 3.01919 3.01921
1.0 3.37009 3.43437 3.43655 3.43656
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These results illustrate that it is not only the number of f function evaluations
which are used in producing an approximation to the solution but also the
manner in which these function evaluations are combined which ultimately
determines the accuracy of the approximate solution.

Stepsize Selection When the solution of an initial value problem is in-
creasing or decreasing “slowly” a “large” stepsize may be taken by a nu-
merical approximation technique. However, when the solution is increasing
or decreasing “rapidly” a “small” stepsize must be taken by the numerical
method in order to maintain accuracy. Stepsize control techniques usually
involve comparing current local error estimates with previous local error esti-
mates (absolute error or relative error estimates). Single-step methods have
no computational difficulty in selecting an appropriate stepsize except for the
initial step, since there is no previous results with which to compare. If the
initial stepsize selected is too large, then the lack of accuracy which occurs at
the first step will corrupt the accuracy of the entire numerical approximation.
Therefore, most initial stepsize selection algorithms are very conservative and
tend to select a stepsize which is somewhat smaller than actually required.

Many computer software packages permit the user to select the first stepsize.
However, most users, including experienced users, often have no real informed
idea as to what the best first stepsize should be. A software program which
depends on the user’s best guess of the first stepsize to start a numerical
approximation method is not reliable. In many of our previous examples, we
selected a constant stepsize of h = .1. If the computer we are using represents
numbers internally as a power of the base 2, we have, in some respect, made
a bad choice for the stepsize, since .1 cannot be represented exactly in that
computer. Observe that

(.1)10 = (0.0001100110011 . . .)2 = (0.0121212 . . .)4

= (0.063146314 . . .)8 = (0.1999999 . . .)16

where the subscript denotes the base. Rounding-off or chopping-off any of
these infinite expansions after a specified number of digits and then adding
ten of the same rounded or chopped numbers does not result in the number
1 exactly!

One technique which has been used to select stepsize, either initially or at
each step, is to take the step twice with two different order numerical approx-
imation methods and compare the results. If the results compare favorably,
then the step is accepted. If not, the stepsize is decreased, two approximations
obtained using the smaller stepsize are made and compared, etc.

A numerical approximation method which selects the stepsize to be used
at each step is called an adaptive method. One of the more popular
adaptive, single-step methods was published in 1968 and 1969 by Erwin
Fehlberg in two NASA Technical Reports, R287 and R315. In these re-
ports Fehlberg developed adaptive Runge-Kutta methods ranging in order
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from 2 to 9. In his procedure, two Runge-Kutta methods of different or-
der are run simultaneously. The user specifies the desired upper bound for
the local discretization error. At each step, the algorithm produces an esti-
mate yn+1 of the exact solution. A second and more accurate method uses
the same function evaluations as the first method plus one or two additional
function evaluations to produce a more accurate estimate zn+1 of the ex-
act solution. The difference |zn+1 − yn+1| yields an estimate of the local
discretization error. If the prescribed error bound is satisfied, the step is
taken and a new stepsize is estimated for the next step. If the prescribed
error bound is not satisfied, the stepsize is reduced and another attempt
is made to satisfy the error bound using the smaller stepsize. In 1974,
L. F. Shampine and H. A. Watts implemented the Runge-Kutta-Fehlberg
4(5) method, RKF45. This method requires six function evaluations per each
successful step. Four function values are combined to produce a fourth-order
Runge-Kutta estimate yn+1 and all six function values are combined to pro-
duce a fifth-order Runge-Kutta estimate zn+1. The RKF45 numerical approxi-
mation method is available in several commercial computer software packages.

EXERCISES A.1

1. Consider the initial value problem y′ = x2 − y; y(0) = 1.

a. Derive the Taylor series expansion formula of order 3 for this
initial value problem.

b. Use the formula derived in part a. and a constant stepsize h = .1
to calculate an approximate solution on the interval [0, 1].

c. Estimate the maximum discretization error per step on the interval
[0, 1] for the stepsize h = .1.

d. How small must the stepsize be in order to ensure six decimal
place accuracy per step?

2. a. Compute an approximate solution to the initial value problem

y′ = x2 − y; y(0) = 1 on the interval [0, 1] using Euler’s method

and a constant stepsize of h = .1.

b. Find an upper bound for the total discretization error at x = 1.

c. How small must the stepsize be to ensure six decimal place
accuracy per step?

d. How small must the stepsize be to ensure six decimal place
accuracy over the interval [0, 1]?

3. Use the improved Euler’s formula with a stepsize h = .1 to generate a
numerical approximation to the solution of the IVP y′ = x2−y; y(0) = 1
on the interval [0, 1].
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4. Use the modified Euler’s formula with a stepsize h = .1 to generate a
numerical approximation to the solution of the IVP y′ = x2−y; y(0) = 1
on the interval [0, 1].

5. Use the fourth-order Runge-Kutta formula with a stepsize h = .1
to generate a numerical approximation to the solution of the IVP y′ =
x2 − y; y(0) = 1 on the interval [0, 1].

6. a. Find the exact solution of the initial value problem y′ = x2 − y;

y(0) = 1.

b. Compare the various approximate solutions generated in Exercises 1-

5 with each other and the exact solution by producing a table of

values.

7. Consider the general recursive formula (13). Suppose that in addition
to satisfying equations (17), we require that the coefficients of f2fyy in
equations (14) and (16) be equal. What is the solution of the resulting
system of four equations in the four unknowns a, b, c, and d?

8. Generate numerical solutions to the IVP y′ = y/x + 2; y(1) = 1 on
the interval [1, 2] with a stepsize of h = .05 using

a. Euler’s method.

b. improved Euler’s method.

c. modified Euler’s method.

d. the fourth-order Runge-Kutta method.

e. Find the explicit solution of the IVP y′ = y/x + 2; y(1) = 1. On

what interval does the solution exist?

f. Produce a table of values comparing the numerical solution values

generated in parts a-d with the exact solution values on the interval

[1, 2].

A.2 Multistep Methods

Let z(x) be a function which is defined on some interval containing the
points x0, x1, . . . , xn. It is well known that there exists only one polyno-
mial, p(x), of degree less than or equal to n for which p(xi) = z(xi) for
i = 0, 1, . . . , n. The polynomial p(x) is called the interpolating polyno-
mial. There are many ways to write an expression for the interpolating poly-
nomial; however, we shall not present any of those expressions here. We are
only interested in the fact that an interpolating polynomial exists and that it
is unique.

Consider again the IVP (1) y′ = f(x, y); y(x0) = y0. Suppose that we
have used some single-step method to produce the approximations yi to the
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exact solution φ(xi) for i = 1, 2, . . . , n, where the xi’s are equally spaced. Each
single-step method computes y′i = f(xi, yi) in order to produce yi. Henceforth,
let y′i = f(xi, yi) = fi. In deriving single-step methods, we integrated the
differential equation y′ = f(x, y) of the IVP (1) over the interval [xn, xn+1] to
obtain the integral equation

y(xn+1) = y(xn) +

∫ xn+1

xn

f(t, y(t)) dt

and then we approximated f on the interval [xn, xn+1] and integrated. Mul-
tistep methods are usually derived by integrating the differential equation
y′ = f(x, y) from xn−p to xn+q where p, q ≥ 0 and by approximating the
integrand f on the interval [xn−p, xn+q] by the interpolating polynomial p(x)
which interpolates f at the m + 1 points xr−m, xr−m+1, . . . , xr−1, xr, where
r = n or r = n+ 1. See Figure A.2. If r = n, the resulting formula is said to
be open; whereas, if r = n+ 1, the resulting formula is called closed. Open
formulas are explicit formulas for yn+1. Closed formulas, on the other hand,
are implicit formulas for yn+1.

Figure A.2 Multistep Integration Diagram for r = n.
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A.2.1 Adams-Bashforth Methods

The English mathematician and astronomer John Couch Adams (1819-
1892) introduced multistep methods prior to the introduction of Runge-Kutta
methods. Adams is perhaps better known as an astronomer than a mathe-
matician. In 1845, he predicted the existence and orbit of a new planet—the
planet Neptune. His prediction was based upon an analysis of the perturba-
tions of the orbit of Uranus. In 1882, J. C. Adams and Francis Bashforth
published the Adams-Bashforth methods for numerical integration in an ar-
ticle on the theory of capillary action.

Choosing r = n, p = 0, and q = 1 results in a set of formulas which are
known as Adams-Bashforth formulas. Determining the interpolating poly-
nomial for the first few values of m and integrating results in the following
formulas and their local discretization errors. In each case ξ ∈ (xm−n, xn).
The formula for m = 0 is a single-step method—Euler’s method. Notice that
each method utilizes f evaluated at m+1 points and has a local discretization
error of order hm+2. Hence, each formula requires m+ 1 starting values.

m Adams-Bashforth Formulas Error

0 yn+1 = yn + hfn
h2y(2)(ξ)

2

1 yn+1 = yn +
h(3fn − fn−1)

2

5h3y(3)(ξ)

12

2 yn+1 = yn +
h(23fn − 16fn−1 + 5fn−2)

12

9h4y(4)(ξ)

24

3 yn+1 = yn +
h(55fn − 59fn−1 + 37fn−2 − 9fn−3)

24

251h5y(5)(ξ)

720

Example 5 Adams-Bashforth Approximations of the Solution

to the IVP: y′ = y + x; y(0) = 1

Find an approximate solution to the initial value problem

(7) y′ = y + x = f(x, y); y(0) = 1

on the interval [0, 1] using a constant stepsize h = .1 and Adams-Bashforth
formulas for m = 1, 2, 3. Use starting values obtained from the fourth-order
Runge-Kutta method.
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Solution

Table A.5 contains the Adams-Bashforth approximations for m = 1, 2, 3 to
the solution of the IVP (7) on the interval [0, 1] obtained using a constant
stepsize of h = .1. For m = 1 the initial condition, y(0) = 1, and one
fourth-order Runge-Kutta value y1 = 1.11034 were used to start the Adams-
Bashforth method. For m = 2 the initial condition, y(0) = 1, and two fourth-
order Runge-Kutta values y1 = 1.11034 and y2 = 1.24280 were used to start
the Adams-Bashforth method.

Table A.5 Adams-Bashforth Approximations to the Solution of

(7) y′ = y + x; y(0) = 1 on [0,1] with Stepsize h = .1

Runge-Kutta Adams-Bashforth Formulas
Starting m = 1 m = 2 m = 3 Exact

xn Values yn yn yn Solution

.0 1.0 1.0

.1 1.11034 1.11034

.2 1.24280 1.24189 1.24281

.3 1.39971 1.39766 1.39963 1.39972

.4 1.58021 1.58345 1.58364 1.58365

.5 1.79236 1.79711 1.79742 1.79744

.6 2.03720 2.04374 2.04420 2.04424

.7 2.31816 2.32682 2.32745 2.32751

.8 2.63903 2.65018 2.65100 2.65108

.9 3.00397 3.01804 3.01911 3.01921
1.0 3.41762 3.43509 3.43644 3.43656

A.2.2 Nystrom Methods

A set of formulas called Nystrom formulas results by selecting r = n, p = 1,
and q = 1. These formulas were derived by the Finnish mathematician E. J.
Nystrom and published in 1925. The formula for m = 0—which is the same
as the formula for m = 1—is known as the midpoint rule and has a local
discretization error of h3y(3)(ξ)/6, where ξ ∈ (xn−1, xn+1). The midpoint rule
has the simplicity of Euler’s method and has a smaller local error; however, it
requires one starting value and is generally less stable than Euler’s method.
(The term “stable” is discussed in Section A.3.) After calculating the inter-
polating polynomial and integrating one obtains the following formulas.
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m Nystrom Formulas

0 yn+1 = yn−1 + 2hfn

1 yn+1 = yn−1 + 2hfn

2 yn+1 = yn−1 +
h(7fn − 2fn−1 + fn−2)

3

3 yn+1 = yn−1 +
h(8fn − 5fn−1 + 4fn−2 − fn−3)

3

A.2.3 Adams-Moulton Methods

The Adams-Bashforth methods and the Nystrom methods employ polyno-
mials which interpolate f at xn and the preceding points xn−1, . . . , xn−m.
If we find an interpolating polynomial which interpolates f at xn−1, xn, . . . ,
xn−m and integrate from xn to xn+1, we obtain a set of formulas known as
Adams-Moulton formulas. In our notation r = n+ 1, p = 0, and q = 1. The
first few Adams-Moulton formulas and their associated local discretization
errors follow.

m Adams-Moulton formulas Error

0 yn+1 = yn +
h(fn+1 + fn)

2

h3y(3)(ξ)

12

1 yn+1 = yn +
h(5fn+1 + 8fn − fn−1)

12

h4y(4)(ξ)

24

2 yn+1 = yn +
h(9fn+1 + 19fn − 5fn−1 + fn−2)

12

19h5y(5)(ξ)

720

In each case ξ ∈ (xm−n, xn+1). All of these formulas are implicit formu-
las for yn+1, since yn+1 appears on the right-hand side of each equation in
fn+1 = f(xn+1, yn+1). The formula for m = 0 is called the trapezoidal
scheme. Forest Ray Moulton (1872-1952) was an American astronomer who
improved the Adams formula substantially while computing numerical solu-
tions to ballistic problems during World War I.
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EXERCISES A.2

1. a. Compute a numerical approximation to the initial value problem

y′ = x2 − y; y(0) = 1 on the interval [0, 1] using the Adams-

Bashforth formula for m = 1. Use a constant stepsize h = .1 and

use the exact solution values for starting values.

b. Estimate the maximum local discretization error on the interval
[0, 1].

c. How small must the stepsize be to ensure six decimal place accuracy
per step?

2. a. Use the midpoint rule and a stepsize h = .1 to compute a numerical

approximation to the initial value problem y′ = x2 − y; y(0) = 1

on the interval [0, 1]. Use the exact solution values for starting

values.

b. Estimate the maximum local discretization error on the interval
[0, 1].

c. How small must the stepsize be to ensure six decimal place accuracy
per step?

3. Consider the initial value problem y′ = x2 − y; y(0) = 1.

a. For the given initial value problem solve the Adams-Moulton for-
mula for m = 0 explicitly for yn+1.

b. Use the formula derived in part a. to produce a numerical solution
to the given initial value problem on the interval [0, 1] using a
stepsize of h = .1.

4. Make a table of values and compare the numerical approximations
produced in Exercises 1-3 with the exact solution of the initial value
problem y′ = x2 − y; y(0) = 1 on the interval [0, 1].

A.3 Predictor-Corrector Methods

The Adams-Moulton formulas of the previous section are implicit formulas.
In general, f(x, y) will be nonlinear and it will be impossible to solve the
implicit formula explicitly for yn+1. However, we can try to determine yn+1

by iteration. That is, we obtain, in some manner, a first approximation to
yn+1, call it y

<0>
n+1 , and then we successively calculate f<k>

n+1 = f(xn+1, y
<k>
n+1 )

and use this approximation of fn+1 in the implicit formula to successively
calculate y<k+1>

n+1 for k = 0, 1, . . . . Under fairly general conditions on the
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function f , it can be shown that for sufficiently small values of the stepsize h,
the sequence< y<k>

n+1 >∞
k=1 converges to a solution yn+1 of the implicit formula

and that the solution yn+1 is unique. [Note that yn+1 will be the solution of the
implicit formula; but, in general, it will not be the solution of the differential
equation at xn+1, φ(xn+1).] An explicit formula that is used to obtain the
first approximation, y<0>

n+1 , is called a predictor formula and an implicit

formula used in the iteration procedure to calculate y<k>
n+1 for k = 1, 2, . . . is

called a corrector formula. One usually chooses the predictor and corrector
formulas of the iteration procedure so that the order of the local discretization
error of each formula is nearly the same. Generally, the corrector formula is
chosen so that the local error is smaller than the local error of the predictor
formula. Both single-step and multistep predictor-corrector methods may be
devised.

A simple single-step, predictor-corrector method, for instance, might em-
ploy Euler’s formula for the predictor and the trapezoidal scheme (Adams-
Moulton formula with m = 0) for the corrector. Hence, one would have the
following iteration procedure:

y<0>
n+1 = yn + hfn(xn, yn)(21p)

y<k>
n+1 = yn +

h(f(xn+1, y
<k−1>
n+1 ) + f(xn, yn))

2
, k = 1, 2, . . .(21c)

The local discretization error for the predictor formula (21p) is h2y(2)(ξ)/2
and the local error of the correction formula (21c) is h3y(3)(ξ)/12.

The following multistep, predictor-corrector, iteration procedure was de-
rived and published in 1926 by the American mathematician William E. Milne
(1890-1971). The explicit predictor formula was derived by choosing r = n,
p = 3, q = 1, and m = 3 and the implicit corrector was derived by choosing
r = n+ 1, p = 2, q = 1, and m = 2 or m = 3 (which yield the same formula).
Hence, the Milne predictor-corrector iteration is

y<0>
n+1 = yn−3 +

4h(2fn − fn−1 + 2fn−2)

3
(22p)

y<k>
n+1 = yn−1 +

h(f(xn+1, y
<k−1>
n+1 ) + 4fn + fn−1)

3
, k = 1, 2, . . .(22c)

The local discretization error of each of these formulas is of order h5.

Another commonly used predictor-corrector method for which each formula
has local error of order h5 but a slightly smaller error coefficient than Milne’s
method employs the Adams-Bashforth formula with m = 3 as the predictor
and the Adams-Moulton formula with m = 2 as the corrector. This iteration

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


484 Elementary Differential Equations

procedure is

y<0>
n+1 = yn +

h(55fn − 59fn−1 + 37fn−2 − 9fn−3)

24

(23p)

y<k>
n+1 = yn +

h(9f(xn+1, y
<k−1>
n+1 ) + 19fn − 5fn−1 + fn−2)

24
, k = 1, 2, . . .

(23c)

In order to approximate the solution of an initial value problem using a
predictor-corrector algorithm, one needs to specify (1) the stepsize, h, to be
taken; (2) the maximum absolute iteration error, E = |y<k>

n+1 −y<k−1>
n+1 |, or the

maximum relative iteration error, ε = |y<k>
n+1 − y<k−1>

n+1 |/|y<k>
n+1 |, to be allowed

per step; (3) the maximum number of iterations, K, to be taken per step; and
(4) what to do if K is reached before the error requirement E or ε is satisfied.
And, of course, if the predictor-corrector algorithm being utilized involves
a multistep formula, one must obtain starting values using some single-step
method. In selecting the stepsize, the maximum iteration error per step, and
the maximum number of iterations per step, one must keep in mind that these
are not independent but are related through the algorithm local error formula
which in turn depends upon the differential equation. Usually, the maximum
iteration error desired per step is chosen, the maximum number of iterations
per step is set at a small number—often two or three, and the stepsize is then
determined so that it is consistent with the maximum iteration error, the
maximum number of iterations per step, the algorithm, and the differential
equation.

Using the predictor-corrector formulas (21), (22), and (23), we generated
numerical approximations to the solution of the IVP (7) y′ = y+ x; y(0) = 1
on the interval [0, 1] using a constant stepsize h = .1. Where necessary (for
equations (22) and (23)), we used the exact solution values as the starting
values. We set the maximum absolute iteration error, E, equal to 5 × 10−6

and recorded the number of iterations per step, k, required to achieve this
accuracy. The results of our calculations are shown in Table A.6. Observe
that the single-step predictor-corrector formula (21) is not able to maintain
accuracy with four iterations per step while the multistep predictor-corrector
formulas (22) and (23) are able to do so with only two iterations per step.

Convergence and Instability A numerical method for approximating
a solution to an initial value problem is said to be convergent if, assuming
there is no round-off error, the numerical approximation approaches the exact
solution as the stepsize approaches zero. All the numerical methods presented
in this text are convergent. However, this does not mean that as the stepsize
approaches zero, the numerical approximation will always approach the exact
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Table A.6 Predictor-Corrector Approximations to the Solution of

(7) y′ = y + x; y(0) = 1 on [0,1] with Stepsize h = .1

Equations (21) Equations (22) Equations (23) Exact
xn yn k yn k yn k Solution

.0 1.00000

.1 1.11053 4 1.11034

.2 1.24321 4 1.24281

.3 1.40039 4 1.39972

.4 1.58464 4 1.58365 2 1.58365 2 1.58365

.5 1.79882 4 1.79744 2 1.79744 2 1.79744

.6 2.04606 4 2.04424 2 2.04424 2 2.04424

.7 2.32985 4 2.32751 2 2.32751 2 2.32751

.8 2.65405 4 2.65108 2 2.65108 2 2.65108

.9 3.02290 4 3.01921 2 3.01921 2 3.01921
1.0 3.44109 4 3.43656 2 3.43657 2 3.43656

solution, since round-off error will always be present. Sometimes the error
of a numerical approximation turns out to be larger than predicted by the
local discretization error estimate. And, furthermore as the stepsize is de-
creased, the error for a particular fixed value of the independent variable may
become larger instead of smaller. This phenomenon is known as numerical
instability. Numerical instability is a property of both the numerical method
and the initial value problem. That is, a numerical method may be unstable
for some initial value problems and stable for others. Numerical instability
usually arises because a first-order differential equation is approximated by
a second or higher order difference equation. The approximating difference
equation will have two or more solutions—the fundamental solution which
approximates the exact solution of the initial value problem, and one or more
parasitic solutions. The parasitic solutions are so named because they “feed”
upon the errors (both round-off and local discretization errors) of the numer-
ical approximation method. If the parasitic solutions remain “small” relative
to the fundamental solution, then the numerical method is stable; whereas,
if a parasitic solution becomes “large” relative to the fundamental solution,
then the numerical method is unstable. For h sufficiently small, single-step
methods do not exhibit any numerical instability for any initial value prob-
lems. On the other hand, multistep methods may be unstable for some initial
value problems for a particular range of values of the stepsize or for all step-
size. In practice, one chooses a particular numerical method and produces
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a numerical approximation for two or more reasonably “small” stepsizes. If
the approximations produced are essentially the same, then the numerical
method is probably stable for the problem under consideration and the re-
sults are probably reasonably good also. If the results are not similar, then
one should reduce the stepsize further. If dissimilar results persist, then the
numerical method is probably unstable for the problem under consideration
and a different numerical method should be employed.

Example 6 Numerical Instability

Use Euler’s method (yn+1 = yn+hfn) and the midpoint rule (yn+1 = yn−1+
2hfn) with a constant stepsize h = .1 to produce numerical approximations
on the interval [0, 2.4] to the initial value problem y′ = −3y + 1; y(0) = 1.
Compare the numerical results with the exact solution.

Solution

We easily find the exact solution of the given linear initial value problem to
be y(x) = (2e−3x + 1)/3. Table A.7 contains the values of the exact solution,
Euler’s approximation, Euler’s approximation minus the exact solution, the
midpoint rule approximation, and the midpoint rule approximation minus the
exact solution. Notice that near the initial value, x0 = 0, the midpoint rule
approximation is more accurate than the Euler’s method approximation. This
is due to the fact that the midpoint rule has a smaller local discretization error.
But notice that as x increases, the error of the midpoint rule approximation
increases rapidly. This occurs because the parasitic solution associated with
the midpoint rule is beginning to overwhelm the fundamental solution. For
x > .8 the Euler’s approximation is more accurate than the midpoint rule
approximation. �

In summary, single-step methods, such as the fourth-order Runge-Kutta
method, have the advantages of being self-starting, numerically stable, and
requiring a small amount of computer storage. They have the disadvantages
of requiring multiple function evaluations per step and providing no error es-
timates except for Runge-Kutta-Fehlberg methods. Multistep methods have
the advantage of requiring only one function evaluation per step but have the
disadvantages of requiring starting values, occasionally being numerically un-
stable, providing no error estimate, and requiring more computer storage than
single-step methods. Predictor-corrector methods provide error estimates at
each step and require only a few function evaluations per step. The amount of
computer storage and the numerical stability of predictor-corrector algorithms
depend upon whether the formulas employed are single-step or multistep.

Many people prefer to use a fourth or higher order single-step method such
as a Runge-Kutta method to numerically solve simple initial value problems
on a one-time basis over a “small” interval. Such a method is usually selected
because it is self-starting and numerically stable but—most usually—because
the user has a better understanding of and confidence in such a method.
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Table A.7 Euler and Midpoint Rule Approximations to the IVP

y′ = −3y+ 1; y(0) = 1 on the Interval [0,2.4] with h = .1

Exact
Solution Euler’s Method Midpoint Rule

xn φ(xn) yn yn − φ(xn) yn yn − φ(xn)

.0 1.000000 1.000000 .000000 1.000000 .000000

.2 .699208 .870000 .170792 .703673 .004465

.4 .534129 .596300 .062171 .540668 .006539

.6 .443533 .462187 .018654 .452303 .008770

.8 .393812 .396472 .002660 .406768 .013868
1.0 .366525 .364271 −.002254 .387669 .021144
1.2 .351549 .348493 −.003056 .388130 .036581
1.4 .343330 .340762 −.002568 .408319 .064989
1.6 .338820 .336973 −.001847 .455502 .116682
1.8 .336344 .355117 −.001227 .546665 .210321
2.0 .334986 .334207 −.000779 .714628 .379642
2.2 .334241 .333762 −.000479 1.019856 .685615
2.4 .333831 .333543 −.000288 1.572232 1.238401

However, when a numerical method is to be used to solve the same or similar
complex initial value problems many times or the solution is to be produced
over a “large” interval, then some form of a multistep, predictor-corrector
method should be chosen. Such a method of solution should be selected
because it normally requires less computing time to produce a given accuracy
and because an estimate of the error at each step is built into the method.

In this appendix, we presented several single-step, multistep, and predictor-
corrector methods for approximating the solution of an initial value problem.
In our examples, we always used a constant stepsize; however, commercially
available software permits the user to specify the initial value problem, the
interval on which it is to be solved, and an error bound—either absolute or
relative error. If the solution values vary by orders of magnitude, then it is
more appropriate to specify a relative error bound. It is essential that the soft-
ware you choose to use have an automatic stepsize selection and error control
routine. In addition, the software should have the following features as well.
If the algorithm is a multistep method, the software should determine the
necessary starting values itself. If the algorithm is a variable-order method,
which Adams and predictor-corrector methods sometimes are, then the algo-
rithm should select and change the order of the method automatically. Also
the software should calculate approximate values of the solution at any set of
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points the user chooses rather than just at points selected by the algorithm
during its integration procedure.
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Answers to Selected Exercises

Chapter 1 Introduction

Exercises 1.2 Definitions and Terminology

Linear or
Order Nonlinear

1. 1 Linear
3. 1 Nonlinear
5. 1 Nonlinear
7. 1 Linear
9. 2 Nonlinear
11. 2 Linear
13. 3 Nonlinear

15. (−∞,−1), (1,∞) 17. y = 0

19. a. No, y = 1/x is not differentiable at 0.

b. Yes, y = 1/x is differentiable on (0,∞) and satisfies the differential
equation on (0,∞).

c. Yes, y = 1/x is differentiable on (−∞, 0) and satisfies the differen-
tial equation on (−∞, 0).

21. a. No, y =
√
x is not defined and not differentiable on (−1, 0).

b. Yes, y =
√
x is differentiable on (0,∞) and satisfies the differential

equation on (0,∞).

c. No, y =
√
x is not defined and not differentiable on (−∞, 0).

Intervals on which the solution exists.

23. (−∞, 0), (0,∞) 25. (0,∞) 27. (−∞, 0), (0,∞)

29. y1 is a solution on (−∞,∞). y2 is a solution on (0,∞).

31. r = −3 33. r = −1 35. r = 1/2 37. r = −4, r = −1

39. a. r = 0 b. r = 2/29 c. r = 1/29

489
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Exercises 1.3 Solutions and Problems

7. a. y = 2x lnx/ ln 2

b. No unique solution. There are an infinite number of solutions of
the form y = c1x ln x where c1 is arbitrary.

c. No solution.

9. y = 2x− x2 + x3

Exercises 1.4 A Nobel Prize Winning Application

1. 59.5%; 35.8%; 675.7 years 3. 133 1
3 grams; 2.4 years

5. Approximately 3941 years before 1950 or 1991 B.C.

Chapter 2 The Initial Value Problem: y′ = f(x,y); y(c) = d

Exercises 2.1 Direction Fields

1. A↔ b, B ↔ a 3. E ↔ e, F ↔ f 5. I ↔ j, J ↔ i

7. The direction field is defined in the entire xy-plane. The function
y = 0 is a solution on (−∞,∞). In the first and third quadrants, the
solutions are strictly increasing and in the second and fourth quadrants,
the solutions are strictly decreasing. Thus, relative minima occur on the
positive y-axis and relative maxima occur on the negative y-axis. If a
solution is positive for x > 0, then y(x) → +∞ as x → +∞. If a solu-
tion is negative for x > 0, then y(x) → −∞ as x → +∞. If a solution
is positive for x < 0, then y(x) → +∞ as x → −∞. If a solution is
negative for x < 0, then y(x) → −∞ as x→ −∞.

9. The direction field is undefined on the y-axis where x = 0. The function
y = 0 is a solution for x �= 0. In the first and third quadrants the
solutions are strictly increasing and in the second and fourth quadrants
the solutions are strictly decreasing. If a solution is positive for x > 0,
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then y(x) → +∞ as x → +∞. If a solution is negative for x > 0,
then y(x) → −∞ as x → +∞. If a solution is positive for x < 0, then
y(x) → +∞ as x → −∞. If a solution is negative for x < 0, then
y(x) → −∞ as x→ −∞.

11. The functions y = 0 and y = 3 are solutions. For y > 3 solutions are
strictly increasing and asymptotic to y = 3 as x → −∞. For 0 < y < 3
solutions are strictly decreasing, asymptotic to y = 3 as x → −∞ and
asymptotic to y = 0 as x → +∞. For y < 0 solutions are strictly
decreasing and asymptotic to y = 0 as x→ +∞.

13. The function y = 0 is a solution. All other solutions are increasing.
There are no relative minima or relative maxima. Solutions below y =
0 are asymptotic to y = 0 as x → +∞. Solutions above y = 0 are
asymptotic to y = 0 as x→ −∞.

15. The direction field is undefined for y ≤ −x. Solutions increase for
y > −x + 1 and decrease for −x < y < −x + 1. Relative minima
occur where y = −x+ 1.

17. The direction field is undefined on and outside the circle x2 + y2 = 15.
All solutions inside the circle are strictly increasing.

Exercises 2.2 Fundamental Theorems

1. (−3, d) and (5, d) for all d 3. (0, d) for all d and (c, 0) for all c

5. (c, d) for all c and −2 < d < 1 7. (c, 0) for all c

9. (c, 2) and (c,−2) for all c. 11. (c, 1) for all c

13. (c, d) where c ≥ 0 and d < 4 and (c, d) where c ≤ 0 and d > 4

15. (−∞,∞) 17. (−∞,∞) 19. (−∞,∞) 21. (π/2, 3π/2)

23. (0, 2) 27. No 31. No, because fy is undefined at (6,−9).

Exercises 2.3 Solution of Simple First-Order Differential Equations

Exercises 2.3.1 Solution of y′ = g(x)

1. y = 2
3x

3/2 + C (0,∞) 3. y = 2 ln |x− 3|+ C (−∞, 3), (3,∞)

5. y = ln |x+ 1|+ C (−∞,−1), (1,∞) 7. x ln x− x+ C (0,∞)
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9. y = − cot(x/2) + C (2nπ, 2(n+ 1)π) where n is an integer.

11. y = Arctanx+ C (−∞,∞)

13. y = ln |x+
√
x2 − 1|+ C (−∞,−1), (1,∞)

15. y = 1
2 ln |x2 − 4x+ 5|+ 7Arctan (x− 2) + C (−∞,∞)

17. y = 3
2x

2 + x− 1
2 ; (−∞,∞) 19. y = −2 cosx− 1 ; (−∞,∞)

21. y = 1 + ln |x− 1| ; (1,∞)

23. y = 1 + 1
2 ln 3 +

1
2 ln

∣
∣
∣
∣
x− 1

x+ 1

∣
∣
∣
∣ ; (1,∞)

25. y = − ln | cosx| ; (−π/2, π/2)

Exercises 2.3.2 Solution of the Separable Equation y′ = g(x)/h(y)

1. y = 2x3/3 + C 3. 1 + s2t2 = Cs2 5. e−y = −ex + C

7. y = Cex
3/3+x 9. Cy

√
1 + x2 = 1 11. x lnx+ ln | ln y| = x+ C

13. y = −e3x ; (−∞,∞) 15. y = 1 + e−x ; (−∞,∞)

17. y = −2x ; (−∞, 0) 19. y = 2/(1 + e2x) ; (−∞,∞)

21. y = − ln(
x2

2
+ 1); (−∞,∞) 23. r = r0e

−2t2 ; (−∞,∞)

Exercises 2.3.3 Solution of the Linear Equation y′ = a(x)y + b(x)

1. y = e3x; (−∞,∞) 3. y = x4 + Cx3; (−∞, 0), (0,∞)

5. i = 2 + Ce−t (−∞,∞)

7. y = C sinx− cosx for x �= nπ where n is an integer.

9. r =
θ2

6
+
C

θ4
(−∞, 0), (0,∞) 11. y = (5e4x − 1)/4 ; (−∞,∞)

13. y = −2x ; (−∞, 0) 15. y = x(1 +
∫ x
−1

sin t2

t
dt); (−∞, 0)

17. y = (x− π/2) sinx ; (0, π) 21. 40◦F 23. A

25. x2 − y2 = C 27. y = x(C − x) 29. y3 = 1− Ce−x2/2
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Exercises 2.4 Numerical Solution

Exercises 2.4.1 Euler’s Method

1. a.

Euler’s
xn Method

.0 1.000000

.1 .900000

.2 .811000

.3 .733900

.4 .669510

.5 .618559

.6 .581703

.7 .559533

.8 .552579

.9 .561321
1.0 .586189

b. |y10 − y(1)| ≤ .081606(e− 1) < .140222

c. h ≤ 10−3/
√
1.632121 ≈ .000783

d. h ≤ 10−6/(1.632121(e− 1)) ≈ .000000357

Exercises 2.4.2 Pitfalls of Numerical Methods

1. The given differential equation is linear with a(x) = 0 and b(x) =
1/(x− 1). These functions are both continuous on the intervals (−∞, 1)
and (1,∞). Since 0 ∈ (−∞, 1) and the differential equation is linear,
the solution exists and is unique on the interval (−∞, 1). [Note: The
unique, explicit solution on (−∞, 1) is y = ln |x− 1|+ 1. ]

3. The differential equation is linear with a(x) = 1/x and b(x) = 0.
Since a(x) and b(x) are both continuous on (−∞, 0) and (0,∞) and
since −1 ∈ (−∞, 0), there exists a unique solution to both initial value
problems on the interval (−∞, 0).

a. The unique, explicit solution on (−∞, 0) is y = −x.
b. The unique, explicit solution on (−∞, 0) is y = x.
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5. The given differential equation is nonlinear. The functions f(x, y) = y2

and fy(x, y) = 2y are continuous on the entire plane, so there exists a
unique solution until x→ −∞, x→ +∞, y → −∞, or y → +∞.

a. The unique, explicit solution on (−∞, 0) is y = −1/x.

b. The unique, explicit solution on (−∞,∞) is y = 0.

c. The unique, explicit solution on (−∞, 3) is y = −1/(x− 3).

7. The differential equation is nonlinear and f(x, y) = −3x2/(2y) and
fy(x, y) = 3x2/(2y2) are both continuous for y �= 0.

a. and b. Thus, there exists a unique solution until x → −∞,
x→ +∞, y → +∞, or y → 0+.

d. Hence, there exists a unique solution until x→ −∞, x→ +∞,
y → 0−, or y → −∞.

a. The unique, explicit solution on (−∞, 0) is y =
√−x3.

b. The unique, explicit solution on (−∞, 3
√−3/4) is y =

√−x3 − 3/4.

c. There is no solution, because the differential equation is undefined
for y = 0.

d. The unique, explicit solution on (−∞, 0) is y = −√−x3.
9. The differential equation is nonlinear and f(x, y) = 3xy1/3 is continu-

ous on the entire plane, so a solution exists until x→ −∞, x→ +∞,
y → −∞, or y → +∞. The function fy(x, y) = xy−2/3 is continuous
for y �= 0.

a., b., c., and e. The solution exists and is unique at least until y = 0
where multiple solutions may exist.

d. The solution exists, but it may not be unique.

a. The unique, explicit solution on (−∞,∞) is
y = (x2 + (9/4)1/3 − 1)3/2.

b. The unique, explicit solution on (−∞, 0) is y = −x3.
c. The unique, explicit solution on (−∞,−

√
1− (1/4)1/3) is

y = (x2 + (1/4)1/3 − 1)3/2.

d. The solution is not unique. The function y = 0 is a solution on
(−∞,∞) and y = ±(x2 − 1)3/2 are solutions on (−∞,−1).

e. The unique, explicit solution on (−∞, 0) is y = x3.

11. The differential equation is nonlinear and f(x, y) = y/(y − x) and
fy(x, y) = −x/(y − x)2 are both continuous for x �= y.

a., c., and d. Thus, the solution exists and is unique until the solution
reaches the line y = x.
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b. There is no solution, because the differential equation is undefined
at (1, 1).

a. The unique solution on (0,∞) is y = 2x.

c. The unique solution on (0,∞) is y = 0.

d. The unique solution on (−∞,∞) is y = x−√
x2 + 3.

13. The differential equation is nonlinear. The function f(x, y) = x
√

1− y2

is real and continuous for −1 ≤ y ≤ 1, so a solution exists so long as it
remains in {(x, y)| − 1 ≤ y ≤ 1}. Since fy(x, y) = −xy/

√
1− y2 is real

and continuous for −1 < y < 1, the solution exists and is unique so long
as it remains in {(x, y)| − 1 ≤ y ≤ 1}. If the solution reaches y = 1 or
y = −1, it may no longer be unique.

a. The solution is not unique. Both y = 1 and y = sin(x
2+π
2 ) are

solutions on (−∞,∞).

b. The unique solution on (−∞,∞) is y = sin(x
2

2 + arcsin .9).

c. The unique solution on (−∞,∞) is y = sin(x
2

2 + π
6 ).

d. The unique solution on (−∞,∞) is y = sin(x
2

2 ).

Chapter 3 APPLICATIONS OF THE INITIAL VALUE

PROBLEM: y′ = f(x,y); y(c) = d

Exercises 3.1 Calculus Revisited

1. .8413004 3. .1393828

5. Does not exist. (Note that the integral is an improper integral.)

7. 1.118413 9. .1857833 11. .9096077 13. 1.352778

15. .8818989 17. 1.54787 19. 8.933486 21. 1.586823

23. a. 4.235612π = 13.30657 b. 2.878877π = 9.0442589

25. a. 4.591169π = 14.42358 b. 12.00143π = 37.70360

27. a. Sx = 86.96795π = 273.2179 Vx = 400π/3 ≈ 418.879

b. Sy = 75.08322π = 235.8809 Vy = 320π/3 ≈ 335.1032
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29. a. Sx = 24.83054π = 78.00744 Vx = 12.58826π = 39.54720

b. Sy = 11.909792π = 37.415715 Vy = 6.294044π = 19.77332

31. a. Vx = .4561457π = 1.433024 b. Vy = .178585π = .5610416

33. a. Vx = 2.355243π = 7.399214 b. Vy = .9472964π = 2.976019

35. A = 12π3 ≈ 372.07532 s = 24.439576

37. A = 18.84954 s = 16 39. A = 12.56623 s = 99.95802

41. A = 8.337780 si = 2.682437 s0 = 10.68242 43. 78.53941

45. A = 20π ≈ 62.83185 s = 28.36161

47. A = 2π ≈ 6.283186 s = 16 49. s = 39.47825

Exercises 3.2 Learning Theory Models

1. y(t) = A+ Ce−kt

3. 15.8 min., 41.6 min. Both values are larger than the values in Example 1.

Exercises 3.3 Population Models

1. P (t) = (2.5× 108)10
t−1650

300 where t is the calendar year. 2250.

3. 2.1× 108 people = 210 million people

year 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900
prediction 5.31 7.19 9.71 13.05 17.43 23.09 30.28 39.21 49.99 62.55 76.63

5. a. limt→+∞ P (t) appears to approach approximately 450.

b. limt→+∞ P (t) appears to approach approximately 300.

c. limt→+∞ P (t) = 0.

7. a. P (t) decreases. b. P (t) increases.
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Exercises 3.4 Simple Epidemic Models

1. a. Duration t∗ ≈ 9.84; I(t∗) ≈ 205

b. Duration t∗ ≈ 8.48; I(t∗) ≈ 76

Exercises 3.5 Falling Bodies

1. dv/dt = g − cv2. Terminal velocity ≈ 11.31 ft/sec.

3. dv/dt = g − c
√
v. No terminal velocity.

Exercises 3.6 Mixture Problems

1. About 3.7 sec 3. 10.4 years, 17.3 years, 26.3 years

Exercises 3.7 Curves of Pursuit

3. a. The boat lands .25 miles below the man.

b. and c. The boat lands at the man.

Exercises 3.8 Chemical Reactions

1. b. 2 moles/liter c. 0 moles/liter

3. b. 3 moles/liter c. .376 sec

5. b. 4.5 moles/liter

c. limt→∞ CA = 4.5 moles/liter limt→∞ CB = .5 moles/liter

Miscellaneous Exercises

5. 2.07 days 500
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Chapter 4 N-TH ORDER LINEAR DIFFERENTIAL

EQUATIONS

Exercises 4.1 Basic Theory

1. (−∞,∞) 3. (0, 3) 5. (−∞, 1)

7. Because they are linear combinations of the solutions ex and e−x.

11. a. c1 = −3, c2 = 2 b. c1 = 4, c2 = −3, c3 = 1

c. c1 = 1, c2 = c3 = −1 d. c1 = 0, c2 = −2, c3 = −1, c4 = 1

13. b. y = c1e
x + c2e

−x c. y =
1

2
ex − 1

2
e−x

15. b. y = c1x+ c2x lnx c. y = 2x− 3x lnx

17. b. y′′ + 9y = 0 d. yc = c1 sin 3x+ c2 cos 3x

e. y = c1 sin 3x+ c2 cos 3x+3x+2 f. y = 6 sin 3x+21 cos3x+3x+2

Exercises 4.2 Roots of Polynomials

1. x1 = 1.36881, x2 = −1.68440 + 3.43133i, x3 = −1.68440− 3.43133i

3. x1 = .644399, x2 = −1.87214+ 3.81014i, x3 = −1.87214− 3.81014i,

x4 = 3.09987

7. a. 7.42445± 22.7486i, −19.4245± 14.0689i, 24

b. 1, 1.50473± .516223i, 1.01797± 2.60909i, −6.04539

9. 1 + i, 1 + i, 4− 3i, 4 + 3i, 3.999 + 3i

Exercises 4.3 Homogeneous Linear Equations with Constant

Coefficients

1. y = c1e
−2x + c2e

2x

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Answers to Selected Exercises 499

3. y = c1 + c2e
4x

5. y = c1e
−x cosx+ c2e

−x sinx

7. y = c1e
.5x + c2e

−1.5x

9. y = c1e
−x + (c2 + c3x)e

3x

11. y = c1e
−2x + c2e

3x cos 2x+ c3e
3x sin 2x

13. y = c1 cos 2x+ c2 sin 2x+ c3e
−2x + c4e

2x

15. y = (c1 + c2x)e
x cosx+ (c3 + c4x)e

x sinx

17. y = (c1 + c2x)e
x/2 + (c3 + c4x)e

−x/3

19. y = c1e
x + (c2 + c3x)e

−2x + c4e
2x cos 3x+ c5e

2x sin 3x

21. a. y = c1 cos(
√
αx) + c2 sin(

√
αx) b. y = c1 + c2x

c. y = c1e
√−αx + c2e

−√−αx

23. y = (c1 + c2x)e
αx

25. y = c1e
−αx cosβx + c2e

−αx sinβx

27. r3 − (3 + 4i)r2 − (4− 12i)r + 12 = 0; 2i, 2i, 3;

y = c1e
2ix+c2xe

2ix+c3e
3x = (c1+c2x) cos 2x+i(c1+c2x) sin 2x+c3e

3x

29. We conclude eix = cosx+ i sinx for all x ∈ (−∞,∞).

Exercises 4.4 Nonhomogeneous Linear Equations with Constant

Coefficients

1. y = c1 cos 2x+ c2 sin 2x

3. y = c1 cos 2x+ c2 sin 2x+ x
4 sin 2x

5. y = c1e
−x + c2xe

−x + 3− x+ 3ex/4

7. y = c1e
x + c2 cosx+ c3 sinx+ x cosx− x sinx

9. y = (c1 + c2x)e
x + (c3 + c4x)e

2x + x2ex − 2x2e2x

11. y = (c1 + c2x) cosx+ (c3 + c4x) sin x+ 3 + 1
9 cos 2x

13. y = c1e
2x + c2e

2x cos 3x+ c3e
2x sin 3x− 2xe2x sin 3x
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15. y = (c1+ c2x+ c3x
2)e2x cosx+(c4+ c5x+ c6x

2)e2x sinx− 1806
2105e

x cosx+

768
2105e

x sinx

Exercises 4.5 Initial Value Problems

1. y = e−2x

3. y = −e−2x + 3e2x − e3x

5. y = 2(x+ e2x − e−2x)

7. y = −2 cosx− 4 sinx+ 2e2x

9. y = −2ex + 3 cosx+ 4 sinx+ xex

Chapter 5 THE LAPLACE TRANSFORM METHOD

Exercises 5.1 The Laplace Transform and Its Properties

1. a. 2bs/(s2 + b2)2, s > 0 b. 2b(s− a)/((s− a)2 + b2)2, s > a

3. e−3s/s 5. (e−4s − 2e−2s + 1)/s2

7.
a. 5/s b. e/s

c. 3/s2 − 2/s d. 2/(s+ 1)2 + 1/(s+ 1)

e. 2/(s2 − 4s+ 13)− 2s/(s2 + 1) f. e2/(s− 3)
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9. a. 3x2/2 b. 4xe−2x

c. −2x cos
√
3x d. e−x + x− 1

e. ex cos 2x f. ex sin 2x

g. 4(cosx− 1) h. 2e−x cosx+ 3e−x sinx

i. x+ 2 sinhx j. 3e2x coshx

k. (e2x sin
√
5x)/

√
5 l. (e2x cos

√
5x) + 2(e2x sin

√
5x)/

√
5

Exercises 5.2 Using the Laplace Transform and Its Inverse to Solve

Initial Value Problems

1. y = Aex

3. y = Ae−2x + 2

5. y = A cos 3x+B sin 3x− 1

3
x cos 3x

7. y = Aex +Bxex + C +Dx− x2ex + x3ex/6− 9x2 − 2x3 − x4/4

9. y = ex + 2xex

11. y = (−33 cos3x+ 8 sin 3x+ 3x+ 6)/27

13. y = ex cosx− x2/2− x

Exercises 5.3 Convolution and the Laplace Transform

1. h(x) = (1 − cos 3x)/9

3. h(x) = [(3x− 1)e2x + e−x]/9

5. h(x) = (2 sin 2x− cos 2x+ ex)/5

7. y = −3 + 5e2x

9. y = (1− cos 3x)/9

11. y = e2x − e−x

13. y = 3xex − 3ex + cosx
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Exercises 5.4 The Unit Function and Time-Delay Function

1. a. f1(x) = 2u(x)− u(x− 1)

b. f2(x) = u(x− 2)− u(x− 4)

c. f3(x) = u(x− 1)(x− 1)2

d. f4(x) = u(x− 1)(x2 − 2x+ 3)

e. f5(x) = u(x− π) sin 3(x− π)

f. f6(x) = u(x)x + u(x− 1)(x− 1)

g. f7(x) = [u(x)− u(x− 1)]x

3. a. u(x− 1)e−2(x−1)

b. x− u(x− 2)(x− 2)

c. u(x− π) cos 3(x− π)

d. u(x− π) cosh 3(x− π)

e. u(x− 2)e−(x−2) sin(x− 2)

f. u(x− 3)e−(x−3)[cos(x− 3)− sin(x− 3)]

g. u(x− 3)(ex−3 − e−3(x−3))/4

h. u(x− 1)(x− 1)ex−1

Exercises 5.5 Impulse Function

1. y = u(x− 2)e−3(x−2)

3. y = [u(x− π) sin 3(x− π)− u(x− 3π) sin 3(x− 3π)]/3

5. y = [10u(x− π)ex−π sin 2(x− π) + 4 cosx− 2 sinx+ 16ex cos 2x

−7ex sin 2x]/20

7. y = [f(π)u(x− π) sin ax]/a
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Chapter 6 APPLICATIONS OF LINEAR

DIFFERENTIAL EQUATIONS WITH

CONSTANT COEFFICIENTS

Exercises 6.1 Second-Order Differential Equations

Exercises 6.1.1 Free Motion

1. P = 4.49 sec F = .22 cycles/sec

3. The period of oscillation of both undamped pendula is ω =
√
g/�,

which is independent of the mass of the bob. That is, the undamped
pendula oscillate at the same rate. If both pendula are subject to the
same damping, then the one with the larger bob oscillates faster.

5. a. y = sin(
√
19.6t+ π/2) b. A = 1 P = 1.42 sec

c. φ = π/2 = 90◦

d. y′ = −4.43 rad/sec, y′′ = 0; y′ = 4.43 rad/sec, y′′ = 0

7. a. y = .499e−.5t sin(4.01t) b. .041 rad

9. c = .0651 kg/sec 11. m = .8 kg 13. m = 4 kg

15. c < 9.1447616 kg/sec, c = 9.1447616 kg/sec, c > 9.1447616 kg/sec

17. a. simple harmonic motion b. overdamped motion

c. critically damped motion d. damped oscillatory motion

e. overdamped oscillatory motion

Exercises 6.1.2 Forced Motion

1. a. ω∗ = 5.715476 cycles/sec

b. y = .043307 sin(5.715476t) + .2 cos(5.715476t)− .247524 sin10t

c. FR = .9065468 cycles/sec
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3. a. qp(t) = EC b. EC c. 0

5. a. ip(t) = E(1− eRt/L)/R, limt→+∞ ip(t) = E/R

b. ip(t) = E(Lω∗ sinω∗t+R cosω∗t)/(R2 + (Lω∗)2)

Exercises 6.2 Higher Order Differential Equations

1. a. y1 = c1 cos(2.07302t) + c2 sin(2.07302t) + c3 cos(9.56122t)

+c4 sin(9.56122t)

b. y2 = 1.3764107c1 cos(2.07302t) + 1.3764107c2 sin(2.07302t)

−.2075804c3 cos(9.56122t)− .2075804c4 sin(9.56122t)

c. c1 = −.0815925, c2 = .140808, c3 = .1815925,

c4 = .0008474028

3. y1 = .0567167 cos(3.94038t) + .0184145 sin(3.94038t)

−.0067167 cos(9.08148t) + .0085272 sin(9.08148t)

y2 = .0743975 cos(3.94038t) + .0241549 sin(3.94038t)

+.0256022 cos(9.08148t)− .0325033 sin(9.08148t)

5. y1 = c1e
−.366290t + c2e

−4.84005t + c3e
−15.7937t + u

y2 = 1.211237c1e
−.366290t − .2666667c2e

−4.84005t − 3.666667c3e
−15.7937t

+u

y3 = 1.278117c1e
−.366290t − .9074786c2e

−4.84005t + 2.388889c3e
−15.7937t

+u

7. y = c1 + c2x+ c3e
x/120 + c4xe

x/120 + 1.2× 10−6w0x
2ex/120

9. y = c1e
.387298x cos(.387298x) + c2e

.387298x sin(.387298x)

+c3e
−.387298x cos(.387298x) + c4e

−.387298x sin(.387298x)

+
w0L

4 cos(πx/L)

EIπ2(π2 − .09L2)
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Chapter 7 SYSTEMS OF FIRST-ORDER

DIFFERENTIAL EQUATIONS

Exercises 7.1 Properties of Systems of Differential Equations

5. a. linear b. (0,∞)

c. (−∞,∞) Because y1, y2, y
′
1, and y

′
2 are all defined and continuous

at x = 0, but the system of differential equations (25) is not defined
at x = 0. No, because the initial value problem (25) is undefined at
x = 0.

7. a. nonlinear

b. There is a solution on some subinterval of (−π/2, π/2) containing
the point x = 0.

9. a. nonlinear

b. There is a solution on some subinterval of (−3, 4) containing the
point x = 0.

c. x→ −3+, x→ 4−, y1 → −2+, y1 → +∞, y2 → −∞, y2 → 2−.

Exercises 7.2 Writing Systems As Equivalent First-Order Systems

1. Let u1 = y, u2 = y(1), u3 = y(2), and u4 = y(3). Then

u′1 = u2
u′2 = u3
u′3 = u4
u′4 = −3xu21 + u32 − exu3u4 + x2 − 1

u1(1) = −1, u2(1) = 2, u3(1) = −3, u4(1) = 0

2. Let u1 = y and u2 = y′. Then

u′1 = u2

u′2 = − c

m
u2 − k

m
sinu1

u1(0) = 1, u2(0) = −2
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5. Let u1 = y, u2 = y′, u3 = z, and u4 = z′. Then

u′1 = u2
u′2 = 2u1 − 3u4
u′3 = u4
u′4 = 3u2 − 2u3

u1(0) = 1, u2(0) = −3, u3(0) = −1, u4(0) = 2

7. Let u1 = y, u2 = z, and u3 = z′. Then

u′1 = xu1 + u2
u′2 = u3
u′3 = −x2u1 + u3 − 3ex

u1(1) = −2, u2(1) = 3, u3(1) = 0

9. (−∞,∞) 10. (i) (0, π/2) (ii) (π/2, 3π/2)

11. (i) (−1, 2) (ii) (2,∞) 12. (0,∞) 13. (−∞,∞)

14. (−∞,∞) 15. (−∞,∞)

Chapter 8 LINEAR SYSTEMS OF FIRST-ORDER

DIFFERENTIAL EQUATIONS

Exercises 8.1 Matrices and Vectors

1.

( −1 7
−4 9

)

3.

( −3
−11

)

5. Cannot compute.

7.

⎛

⎝
5

−3
2

⎞

⎠ 9. Cannot compute. 11.

(
2 −4

−1 2

)

13. Cannot compute. 15.

( −1
−12

)

17. 4 19. −8 21. 1

23. −1 25. −16 27. 2x3 29. Yes 33. Linearly dependent

35. Linearly dependent
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Exercises 8.2 Eigenvalues and Eigenvectors

1. λ1 = −1, λ2 = 2, v1 =

(−1.78885
.447214

)

, v2 =

(
1.49071

−1.49071

)

3. λ1 = 1, λ2 = i, λ3 = −i, v1 =

⎛

⎝
0
1
0

⎞

⎠ , v2 =

⎛

⎝
.5− .5i

−.5 + .5i
i

⎞

⎠ ,

v3 =

⎛

⎝
.5 + .5i

−.5− .5i
−i

⎞

⎠

5. λ1 = 5, λ2 = 3, λ3 = 2, v1 =

⎛

⎝
−.870022
1.74004
.580015

⎞

⎠ , v2 =

⎛

⎝
3.08415

−6.16831
−3.08415

⎞

⎠ ,

v3 =

⎛

⎝
−4.47214
4.47214
4.47214

⎞

⎠

7. λ1 = 0, λ2 = 64, λ3 = 0, λ4 = 0, v1 =

⎛

⎜
⎜
⎝

−.995495
.031603
.047405
.094809

⎞

⎟
⎟
⎠ ,

v2 =

⎛

⎜
⎜
⎝

−.164805
−.329610
−.494415
−.988829

⎞

⎟
⎟
⎠ , v3 =

⎛

⎜
⎜
⎝

−.044944
−.157303
.764045

−.471910

⎞

⎟
⎟
⎠ , v4 =

⎛

⎜
⎜
⎝

−4.00895
1.03203
.048052
.096093

⎞

⎟
⎟
⎠

Exercises 8.3 Linear Systems with Constant Coefficients

1.

(
y′1
y′2

)

=

(
2 −3
1 4

)(
y1
y2

)

+

(
5ex

−2e−x

)

3.

⎛

⎝
y′1
y′2
y′3

⎞

⎠ =

⎛

⎝
0 2 0
3 0 0

−1 0 2

⎞

⎠

⎛

⎝
y1
y2
y3

⎞

⎠

5. b. y(x) = c1y1(x) + c2y2 d. y(x) = c1y1(x) + c2y2 + yp(x)

7. y = c1

⎛

⎝
−.408248
−.408248
−.816497

⎞

⎠ e−x + c2

⎛

⎝
1.73205
1.73205
1.73205

⎞

⎠ ex + c3

⎛

⎝
1.41421
2.82843
1.41421

⎞

⎠ e2x
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9. y = c1

⎛

⎝
1.66410
.55470
.55470

⎞

⎠ e4x + c2

⎛

⎝
0

1.20185
−1.20185

⎞

⎠ ex + c3

⎛

⎝
−1.2
−.4
1.4

⎞

⎠ e−x

11. y = c1

⎛

⎝
−.894427
−.447214
−.447214

⎞

⎠ e−3x+ c2

⎛

⎝
.745356

−.745356
.745356

⎞

⎠+ c3

⎛

⎝
−.511827
.244087
.755913

⎞

⎠ e−3x

13.

y = c1{e2x cosx

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠− e2x sinx

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠}

+ c2{e2x sinx

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠+ e2x cosx

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠}

+ c3{e3x cos 4x

⎛

⎜
⎜
⎝

0
0

−1
0

⎞

⎟
⎟
⎠− e3x sin 4x

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠}

+ c4{e3x sin 4x

⎛

⎜
⎜
⎝

0
0

−1
0

⎞

⎟
⎟
⎠+ e3x cos 4x

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠}

=

⎛

⎜
⎜
⎝

c1e
2x cosx+ c2e

2x sinx
−c1e2x sinx+ c2e

2x cosx
−c3e3x cos 4x− c4e

3x sin 4x
−c3e3x sin 4x+ c4e

3x cos 4x

⎞

⎟
⎟
⎠

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Answers to Selected Exercises 509

15.

y = c1{e3x cos 2x

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠− e3x sin 2x

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠}

+ c2{e3x sin 2x

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠+ e3x cos 2x

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠}

+ c3

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠ e

x + c4

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ e

2x =

⎛

⎜
⎜
⎝

c1e
3x cos 2x+ c2e

3x sin 2x
−c1e3x sin 2x+ c2e

3x cos 2x
c3e

x

c4e
2x

⎞

⎟
⎟
⎠

Chapter 9 APPLICATIONS OF LINEAR SYSTEMS

WITH CONSTANT COEFFICIENTS

Exercises 9.1 Coupled Spring-Mass Systems

1. a.

u = c1{cos 2.13578x

⎛

⎜
⎜
⎝

−.467992
.000000
.131401
.000000

⎞

⎟
⎟
⎠− sin 2.13578x

⎛

⎜
⎜
⎝

.000000
−.999527
.000000
.280644

⎞

⎟
⎟
⎠}

+ c2{sin 2.13578x

⎛

⎜
⎜
⎝

−.467992
.000000
.131401
.000000

⎞

⎟
⎟
⎠+ cos 2.13578x

⎛

⎜
⎜
⎝

.000000
−.999527
.000000
.280644

⎞

⎟
⎟
⎠}

+ c3{cos .662153x

⎛

⎜
⎜
⎝

.732913

.000000
1.30515
.000000

⎞

⎟
⎟
⎠− sin .662153x

⎛

⎜
⎜
⎝

.000000

.485301

.000000

.864212

⎞

⎟
⎟
⎠}

+ c4{sin .662153x

⎛

⎜
⎜
⎝

.732913

.000000
1.30515
.000000

⎞

⎟
⎟
⎠+ cos .662153x

⎛

⎜
⎜
⎝

.000000

.485301

.000000

.864212

⎞

⎟
⎟
⎠}
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1. b. u = c1[(cosβx)v1 − (sinβx)v2] + c2[(sinβx)v1 + (cosβx)v2]

+ c3[(cos γx)v3 − (sin γx)v4] + c4[(sin γx)v3 + (cos γx)v4]

where β = 1.93185, γ = .517638 and

v1 =

⎛

⎜
⎜
⎝

−.517362
.000000
.189368
.000000

⎞

⎟
⎟
⎠ , v2 =

⎛

⎜
⎜
⎝

.000000
−.999466
.000000
.365830

⎞

⎟
⎟
⎠ ,

v3 =

⎛

⎜
⎜
⎝

1.11595
0.00000
1.52442
0.00000

⎞

⎟
⎟
⎠ , and v4 =

⎛

⎜
⎜
⎝

.000000

.577659

.000000

.789096

⎞

⎟
⎟
⎠

3. a. u′1 = u2

u′2 = − (k1 + k2)u1
m1

− d1u2
m1

+
k2u3
m1

u′3 = u4

u′4 =
k2u1
m2

− k2u3
m2

− d2u4
m2

3. b.

u′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

−k1 + k2
m1

− d1
m1

k2
m1

0

0 0 0 1

k2
m2

0 − k2
m2

− d2
m2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

u

3. c.
u = c1[(e

αx cosβx)v1 − (eαx sinβx)v2]

+c2[(e
αx sinβx)v1 + (eαx cosβx)v2] + c3e

axv3 + c4e
bxv4

where α = −.75, β = 1.31083, a = −.164102, b = −1.33590 and

v1 =

⎛

⎜
⎜
⎝

−.571024
.000000
.445842
.000000

⎞

⎟
⎟
⎠ , v2 =

⎛

⎜
⎜
⎝

.326715
−.993552
−.255092
.775742

⎞

⎟
⎟
⎠ , v3 =

⎛

⎜
⎜
⎝

−.512927
.0841723

−.656944
.167806

⎞

⎟
⎟
⎠ , and

v4 =

⎛

⎜
⎜
⎝

−.422975
.565052

−.541737
.723705

⎞

⎟
⎟
⎠
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5. a.

u′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

−k1 + k2
m1

− d1
m1

k2
m1

0

0 0 0 1

k2
m2

0 −k2 + k3
m2

− d2
m2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

u

5. b. (i)

u = c1e
−2x

⎛

⎜
⎜
⎝

.161444
−.322888
−.161444
.322888

⎞

⎟
⎟
⎠+c2e

−4x

⎛

⎜
⎜
⎝

−.433951
1.73580
.433951

−1.73580

⎞

⎟
⎟
⎠+c3e

−x

⎛

⎜
⎜
⎝

.170219
−.170219
.170219

−.170219

⎞

⎟
⎟
⎠

+c4e
−5x

⎛

⎜
⎜
⎝

−.163779
.818897

−.163779
.818897

⎞

⎟
⎟
⎠

5. b. (ii)

u = c1[e
−2x cosx

⎛

⎜
⎜
⎝

.16

.00
−.16
.00

⎞

⎟
⎟
⎠− e−2x sinx

⎛

⎜
⎜
⎝

−.32
.80
.32

−.80

⎞

⎟
⎟
⎠]

+ c2[e
−2x sinx

⎛

⎜
⎜
⎝

.16

.00
−.16
.00

⎞

⎟
⎟
⎠+ e−2x cosx

⎛

⎜
⎜
⎝

−.32
.80
.32

−.80

⎞

⎟
⎟
⎠]

+ c3e
−x

⎛

⎜
⎜
⎝

.307729
−.307729
.307729

−.307729

⎞

⎟
⎟
⎠+ c4e

−3x

⎛

⎜
⎜
⎝

−.359035
1.07711
−.359035
1.07711

⎞

⎟
⎟
⎠

5. b. (iii)

u = c1[(e
αx cosβx)v1 − (eαx sinβx)v2] + c2[(e

αx sinβx)v1 + (eαx cosβx)v2]

+ c3[(e
γx cos δx)v3 − (eγx sin δx)v4] + c4[(e

γx sin δx)v3 + (eγx cos δx)v4]
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where α = −1, β = 1.73205, γ = −1, δ = 1, and

v1 =

⎛

⎜
⎜
⎝

.360288

.000000
−.360288
.000000

⎞

⎟
⎟
⎠ , v2 =

⎛

⎜
⎜
⎝

−.208013
.832050
.208013

−.832050

⎞

⎟
⎟
⎠ ,

v3 =

⎛

⎜
⎜
⎝

.300463

.000000

.300463

.000000

⎞

⎟
⎟
⎠ , and v4 =

⎛

⎜
⎜
⎝

−.300463
.600925

−.300463
.600925

⎞

⎟
⎟
⎠

Exercises 9.2 Pendulum Systems

7. a. Let u1 = y1, u2 = y′1, u3 = y2, and u4 = y′2. Then

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u′1

u′2

u′3

u′4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

−
(
g

�1
+

m2

m1�1

)

0
m2

m1�1
0

0 0 0 1

g

�2
+

m2

m1�2
0 −

(
g

�2
+

m2

m1�2

)

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u1

u2

u3

u4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

7. b. u = c1[(cosβx)v1 − (sinβx)v2] + c2[(sinβx)v1 + (cosβx)v2]

+ c3[(cos γx)v3 − (sin γx)v4] + c4[(sin γx)v3 + (cos γx)v4]

where β = 4.42568, γ = 6.26525 and

v1 =

⎛

⎜
⎜
⎝

−.0399569
.0000000

−.0798053
.0000000

⎞

⎟
⎟
⎠ , v2 =

⎛

⎜
⎜
⎝

.000000
−.176837
.000000

−.353193

⎞

⎟
⎟
⎠ ,

v3 =

⎛

⎜
⎜
⎝

−.000152981
0.000000
0.225342
0.000000

⎞

⎟
⎟
⎠ , and v4 =

⎛

⎜
⎜
⎝

0.00000
−0.000958463
0.00000
1.41182

⎞

⎟
⎟
⎠
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Exercises 9.4 Mixture Problems

9. a. qc = c1e
−.0633975t

(
.806898
.590690

)

+ c2e
−.236603t

(−.357759
.977416

)

9. b. q = qc +

(
200
100

)

9. c. q = −221.49499e−.0633975t

(
.806898
.590690

)

+31.542932e−.236603t

(−.357759
.977416

)

+

(
200
100

)

9. d. 200 lbs. 100 lbs. They are equal.

11. q(t) =

(
q1(t)
q2(t)

)

= 88.721e−.0863104t

(−.921753
.387778

)

+420.797e−.00868956t

(−.209652
−.996690

)

+

(
200
400

)

Limiting amounts: Tank A, 200 lbs.; Tank B, 400 lbs.

13.

q(t) =

⎛

⎝
qA(t)
qB(t)
qC(t)

⎞

⎠ = −37333.35e−.00025t

⎛

⎝
0
0
1

⎞

⎠−21000e−.0005t

⎛

⎝
0
1

−2

⎞

⎠

−4285.71e−.0007t

⎛

⎝
1

−3.5
3.88889

⎞

⎠+

⎛

⎝
4285.71
6000.00
12000.00

⎞

⎠

Limiting amounts:

Lake A, 4285.71 lbs.; Lake B, 6000 lbs.; Lake C, 12, 000 lbs.

15. a.
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c′s

c′m

c′h

c′e

c′o

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− rs
Vs

0 0 0 0

0 − rm
Vm

0 0 0

rs
Vh

rm
Vh

− rh
Vh

0 0

0 0
rh
Ve

− re
Ve

0

0 0 0
re
Vo

− ro
Vo

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cs

cm

ch

ce

co

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

RsCs

Vs

RmCm

Vm

RhCh

Vh

ReCe

Ve

RoCo

Vo

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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15. b.

cc(t) = k1e
−.251908t

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0
0
1

⎞

⎟
⎟
⎟
⎟
⎠

+ k2e
−.732759t

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0
1

−.449796

⎞

⎟
⎟
⎟
⎟
⎠

+ k3e
−.08t

⎛

⎜
⎜
⎜
⎜
⎝

0
0
1

.898045
1.12987

⎞

⎟
⎟
⎟
⎟
⎠

+ k4e
−.00517241t

⎛

⎜
⎜
⎜
⎜
⎝

1
0

.235837

.190011

.166561

⎞

⎟
⎟
⎟
⎟
⎠

+ k5e
−.0322034t

⎛

⎜
⎜
⎜
⎜
⎝

0
1

.935336

.782666

.770484

⎞

⎟
⎟
⎟
⎟
⎠

15. c. Time for
Pollution to Reach

.4% .3%

Superior 43 years 99 years
Michigan 7 years 16 years
Huron 12 years 25 years
Erie 3 years 16 years
Ontario 5 years 14 years

15. d. (i)

c(t) = cc(t) +

⎛

⎜
⎜
⎜
⎜
⎝

.002

.002

.002

.002

.002

⎞

⎟
⎟
⎟
⎟
⎠

15. d. Time for
Pollution to Reach

.4% .3%

Superior 190 years 403 years
Michigan 31 years 65 years
Huron 49 years 140 years
Erie 39 years 72 years
Ontario 36 years 104 years
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Chapter 10 APPLICATIONS OF SYSTEMS OF

EQUATIONS

Exercises 10.1 Richardson’s Arms Race Model

1. Unstable arms race

3. a. (i) equilibrium point in first quadrant (ii) stable arms race

b. (i) equilibrium point in third quadrant (ii) unstable arms race
5.

r s E Possible Arms Race(s)
0 0 + md
0 0 − rar
− − + md
− − − md, sar, rar
+ + + sar
+ + − rar
− + + md, sar
− + − md, sar, rar

Exercises 10.2 Phase-Plane Portraits

1. λ1 = 1, λ2 = −1, unstable saddle point

3. λ1 = −1, λ2 = −1, asymptotically stable node

5. λ = −1± 2i, asymptotically stable spiral point

7. λ1 = −2, λ2 = −4, asymptotically stable node

9. Asymptotically stable node at (0, 0); unstable saddle point at (1, 1)

11. Unstable saddle point at (0, 0); neutrally stable center at (
1

2
, 1)

13. Asymptotically stable spiral point at (1, 1); unstable saddle point at

(1,−1)

15. Unstable saddle point at (0, 0); asymptotically stable node at (0,−1);

unstable spiral point at (2, 1)
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516 Elementary Differential Equations

Exercises 10.3 Modified Richardson’s Arms Race Models

1. a. (5, 4)

b. The associated linear system

x′ = −10(x− 5) + 5(y − 4)
y′ = 4(x− 5)− 8(y − 4)

has an asymptotically stable node at (5, 4). Therefore, (5, 4) is an

asymptotically stable critical point of the nonlinear system (9).

3. a. (3, 2), (4.22457, 2.98300)

b. At (3, 2) the associated linear system

x′ = −6(x− 3) + 9(y − 2)
y′ = 4(x− 3)− 4(y − 2)

has an unstable saddle point. So (3, 2) is an unstable critical point of

the nonlinear system (11).

At (4.22457, 2.98300) the associated linear system

x′ = −8.44914(x− 4.22457) + 9(y − 2.98300)
y′ = 4(x− 4.22457)− 5.966(y− 2.98300)

has an asymptotically stable node. So (4.22457, 2.98300) is an asymp-

totically stable node of the nonlinear system (11).

5. a. A parabola with vertex at (r/C, 0), axis of symmetry the x-axis, and

opens to the right. A parabola with vertex at (0, s/D), axis of sym-

metry the y-axis, and opens upward. Four. Two.

b. AB2x4 + 2ABsx2 − CD2x+As2 + rD2 = 0

c. (i) (5, 4)

(ii) The associated linear system

x′ = −4(x− 5) + 8(y − 4)
y′ = 10(x− 5)− 5(y − 4)

has an unstable saddle point at (5, 4). So (5, 4) is an unstable

critical point of the nonlinear system (15).
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d. (i) (2, 2)

(ii) The associated linear system is

x′ = −4(x− 2) + 4(y − 2)
y′ = 4(x− 2)− 4(y − 2).

The eigenvalues of the associated linear system are 0 and −8.

Nothing. Nothing.

(iii) The critical point is unstable.

7. a. (i) unstable b. (i) stable

Exercises 10.4 Lanchester’s Combat Models

1. b.
Winner Time Over Number of Remaining

(Days) Winning Combatants
(i) y 1.975 2.35
(ii) x 2.76 3.78
(iii) x .995 2.66

3.
Winner Time Over Number of Remaining

(Days) Winning Combatants
(i) y 1.885 1.47
(ii) y 1.85 1.70

5. No

Exercises 10.5 Models for Interacting Species

Volterra-Lotka Prey-Predator Model
1. a. T = 3.148 years

minimum maximum average
x 1.7500 2.2727 2
y 3.5000 4.5455 4

b. T = 3.18 years—slightly longer than T for part a.

minimum maximum average
x 1.9952 2.6343 2.3
y 2.8800 3.9791 3.4

Minimum, maximum, and average prey population increase; while mini-
mum, maximum, and average predator population decrease.
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Modified Prey-Predator Models

1. The critical point (0, 0) is a saddle point.

The critical point (
r

C
, 0) is in the first quadrant. If Qr − Cs < 0, then

(
r

C
, 0) is an asymptotically stable node. If Qr − Cs > 0, then (

r

C
, 0) is a

saddle point.

If Qr − Cs < 0, then the critical point (
s

Q
,
Qr − Cs

QH
) is in the fourth

quadrant and is a saddle point. If Qr − Cs ≥ 0, then the critical point

(
s

Q
,
Qr − Cs

QH
) is in the first quadrant and is an asymptotically stable node

provided C2s − 4Q(Qr − Cs) ≥ 0; otherwise, the critical point is an asymp-
totically stable spiral point.

3. a. The average predator population decreases.

b. The average prey population increases.

c. The average prey population increases and the average predator popu-

lation decreases.

5. (iii)
As t increases a b c d e

x(t) → 1.34 1 1.34 1.15 1.36
y(t) → 0.34 0 0.00 0.00 0.00

7. a. (0, 0, 0), (
a

b
, 0, 0), (0,

g

h
,
−d
f

), (
d

e
,
ae− bd

ce
, 0)

(
ah− cg

bh
,
g

h
,
aeh− bdh− ceg

bfh
)

b.
As t increases (i) (ii)

y1(t) → 1.15 1.9
y2(t) → .93 1.1
y3(t) → .11 .9

Leslie’s Prey-Predator Model

1. a. (
ae

be+ cd
,

ad

be+ cd
); stable node

b. limt→∞ x(t) = .8 limt→∞ y(t) = 1.6

Leslie-Gower Prey-Predator Model

1. a. limt→∞ x(t) ≈ 26 limt→∞ y(t) ≈ 10
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A Different Uptake Function

1. a. (
1

2
, 1) b. unstable spiral point

c. limt→+∞ x(t) = 0 limt→+∞ y(t) = 0

3. The solution of case a. spirals outward toward the solution of case b. The

solution of case c. spirals inward toward the solution of case b.

May’s Prey-Predator Model

1. The solution of case a. spirals inward toward the solution of case b. The

solution of case c. spirals outward toward the solution of case b.

Competing Species Models

5. a. (80/7, 24/7)

b.
(i) (ii) (iii) (iv)

limt→∞ x(t) ≈ 0 20 20 0
limt→∞ y(t) ≈ 12 0 0 12
extinct species x y y x

7. a. (i) None
(ii) 1− 4 limt→∞ x(t) = 10 limt→∞ y(t) = 0, y becomes extinct.

b. (i) (4, 2) (ii) 1− 4 limt→∞ x(t) = 4 limt→∞ y(t) = 2

c. (i) None
(ii) 1− 4 limt→∞ x(t) = 0 limt→∞ y(t) = 4, x becomes extinct.

Exercises 10.6 Epidemics

1. a. 300 c. (i) S(5) = 232 (ii) S(5) = 150

3. Yes (i) S(5) = 148 (ii) S(5) = 114

Exercises 10.7 Pendulums

1. The period varies with y2(0).

9. y′1 = y2
y′2 = 2ωy4 sinφ− gy1/�
y′3 = y4
y′4 = −2ωy2 sinφ− gy3/�
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where y1 = x, y2 = x′, y3 = y, and y4 = y′.

a. y3(6.28) = 0, The plane of oscillation does not appear to rotate.

b. y3(6.28) = −3.238823E − 04; 1.41 days

c. y3(6.28) = 3.238823E − 04; 1.41 days

d. y3(6.28) = −3.966742E − 04; 1.15 days

e. y3(6.28) = −4.580397E − 04; .998 days

Exercises 10.8 Duffing’s Equation

1. y′1 = y2

y′2 = −Ky1 − Py31 − Cy2 +A sinωt

Exercises 10.10 Mixture Problems

Pollution in the Great Lakes

1. Pollution in Lake Ontario less than .3%: a. 41 years b. 13.6 years

Pollution Level Reduced to .25%

first last
a. Lake Michigan Lake Superior
b. Lake Michigan Lake Superior

Exercises 10.11 The Restricted Three-Body Problem

3. L4 or L5 would be better sites for space stations, since they are stable

critical points. L1, L2, and L3 are unstable critical points.

Appendix A Numerical Solution of the Initial Value

Problem y′ = f(x,y); y(c) = d

Exercises A.1

1. a.

yn+1 = h3n/3+(1−hn+h2n/2−h3n/6)yn+(h2n−h3n/3)xn+(hn−h2n/2+h3n/6)x2n

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Answers to Selected Exercises 521

1. c. En ≤ .000004167 d. h ≤ .059

1. b. 3. 5.
Taylor Series Improved Fourth-Order Exact

xn Order 3 Euler Runge-Kutta Solution

.0 1.000000 1.000000 1.000000 1.000000

.1 .905167 .905500 .905163 .905163

.2 .821277 .821928 .821270 .821269

.3 .749192 .750145 .749182 .749182

.4 .689692 .690931 .689681 .689680

.5 .643483 .644992 .643470 .643469

.6 .611203 .612968 .611189 .611188

.7 .593430 .595436 .593416 .593415

.8 .590687 .592920 .590672 .590671

.9 .603447 .605892 .603431 .603430
1.0 .632137 .634782 .632121 .632121

7. a =
1

4
, b =

3

4
, c = d =

2

3

Exercises A.2

1. b. .000417 c. .010626

3. a. yn+1 = [yn(2 − h) + h(x2n + x2n+1)]/(2 + h)

1. a. 3. b.
Adams- Adams-

Bashforth Moulton Exact
xn m = 0 m = 0 solution

.0 1.000000

.1 .905238 .905163

.2 .820888 .821406 .821269

.3 .748513 .749367 .749182

.4 .688781 .689904 .689680

.5 .642389 .643722 .643469

.6 .609970 .611463 .611188

.7 .592094 .593705 .593415

.8 .589278 .590971 .590671

.9 .601991 .603736 .603430
1.0 .630656 .632427 .632121

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


www.konkur.in

Telegram: @uni_k

http://taylorandfrancis.com
https://t.me/uni_k


References

Bailey, N. T. J. The Mathematical Theory of Infectious Disease and Its
Applications, Hafner Press, New York, 1975.

Barrow, D. et al. Solving Differential Equations with Maple V Release 4,
Brooks/Cole Publishing Company, Pacific Grove, CA, 1998.

Bell, E. T. The Development of Mathematics, 2nd ed., McGraw-Hill, New
York, 1945.

Bender, E. A. An Introduction to Mathematical Modeling, John Wiley & Sons,
Inc., New York, 1978.

Birkhoff, G., and Rota, G.-C. Ordinary Differential Equations, 2nd ed.,
Springer-Verlag, New York, 1983.

Borrelli, R. L., and Coleman, C. S. Differential Equations: A Modeling
Approach, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987.

Boyce, W. E., and DiPrima, R. C. Elementary Differential Equations
and Boundary Value Problems, 7th ed., John Wiley & Sons, Inc., New York,
2001.

Boyer, C. B. A History of Mathematics, Princeton University Press, Princeton,
NJ, 1985.

Braun, M. Differential Equations and Their Applications, Springer-Verlag,
New York, 1983.

Coddington, E. A., and Levinson, N. Theory of Ordinary Differential Equa-
tions, McGraw-Hill, Inc., New York, 1955.

Danby, J. M. A. Computing Applications to Differential Equations, Reston
Publishing Co., Reston, VA, 1985.

Edwards, C. H. The Historical Development of the Calculus, Springer-Verlag,
New York, 1979.

Eves, H. Great Moments in Mathematics after 1650, The Mathematical
Association of America, 1983.

Eves, H. Great Moments in Mathematics before 1650, The Mathematical
Association of America, 1983.

523

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


524 Elementary Differential Equations

Garvin, F. The Maple Book, Chapman & Hall/CRC, Boca Raton, FL, 2002.

James, I. Remarkable Mathematicians, Cambridge University Press, Cam-
bridge, UK, 2002.

Kermack, W. D., and McKendrick, A. G. “A contribution to the mathematical
theory of epidemics,” Journal of the Royal Statistical Society, 115(1927), 700-
721.

Lanchester, F. W. Aircraft in Warfare, the Dawn of the Fourth Arm, Tiptree,
Constable and Co., Ltd., UK, 1916.

Leslie, P. H. “Some further notes on the use of matrices in population math-
ematics,” Biometrika, 35(1948), 213-245.

Leslie, P. H., and Gower, J. C. “The properties of a stochastic model for the
predator-prey type of interaction between two species,” Biometrika, 46(1960),
219-234.

May, R. M. Stability and Complexity in Model Ecosystems, Princeton Univer-
sity Press, Princeton, NJ, 1973.

May, R. M. “Biological populations with non-overlapping generations: stable
points, stable cycles and chaos,” Science, 186(1974), 645-647.

McCarty, G. Calculator Calculus, Page-Ficklin Publications, Palo Alto, CA,
1975.

Nagle, R. K., and Saff, E. B. Fundamentals of Differential Equations, The
Benjamin/Cummings Publishing Co., Inc., Redwood City, CA, 1989.

Olinick, M. An Introduction to Mathematical Models in the Social and Life
Sciences, Addison-Wesley Publishing Co., Reading, MA, 1978.

Priestley, W. M. Calculus: An Historical Approach, Springer-Verlag, New
York, 1979.

Rainville, E. D., and Bedient, P. E. Elementary Differential Equations, 7th ed.,
Macmillan Publishing Co., Inc., New York, 1989.

Richardson, L. F. “Generalized foreign policy,” British Journal of Psychology
Monographs Supplements, 23(1939).

Roberts, C. E. Ordinary Differential Equations: A Computational Approach,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

Ross, S. L. Introduction to Ordinary Differential Equations, 4th ed., John
Wiley & Sons, Inc., New York, 1989.

Shampine, L. F., and Gordon, M. K. Computer Solution of Ordinary Differ-
ential Equations, W. F. Freeman and Company, San Francisco, 1975.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


References 525

Simmons, G. F. Differential Equations with Applications and Historical Notes,
McGraw-Hill, Inc., New York, 1972.

Smith, D. A. Interface: Calculus and the Computer, Houghton Mifflin Co.,
Boston, MA, 1976.

Smith, D. E. History of Mathematics, Vols. 1 and 2, Dover Publications, Inc.,
New York, 1958.

Suzuki, J. A History of Mathematics, Prentice-Hall, Inc., Upper Saddle River,
NJ, 2002.

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


www.konkur.in

Telegram: @uni_k

http://taylorandfrancis.com
https://t.me/uni_k


Index

A
Abel, Niels Henrik, 169
absolute error, 462
Adams, John Couch, 73, 459, 479
Adams-Bashforth formulas, 479
Adams-Bashforth methods, 479–480
Adams-Moulton formulas, 481
Adams-Moulton methods, 481
adaptive method, 475
AIDS, 438–440
Ampère, André Marie, 250
amplitude of oscillation, 254
analytic geometry, 1–2
antiderivative, 3, 93
arc length
curve given parametrically, 97
polar coordinates, 97
rectangular coordinates, 96

Archimedes, 1
area
between two curves, 96–97
curve given parametrically, 97
polar coordinates, 97
surface of revolution, 96
under a curve, 95

arms race
runaway, 374
stable, 374
unstable, 374

associated homogeneous linear
differential equation, 160

associated homogeneous system,
336

asymptotically stable critical point,
379, 382, 385

asymptotically stable node, 382

asymptotically unstable critical
point, 386

autonomous system of differential
equations, 379

auxiliary equation, 180
complex roots, 184–186
distinct real roots, 180–181
repeated real roots, 181–184

B
Barrow, Isaac, 2
barycentric coordinate system, 454
Bashforth, Francis, 74, 459, 479
beam
cantilevered, 279
clamped, 278
ideal, 275
pinned end, 278
simply supported, 278

Bernoulli, Daniel, 5, 114, 179, 378
Bernoulli, Jacques, 72
Bernoulli, Johann, 76, 138, 465
Bernoulli’s equation, 72
block diagram, 273
boundary conditions, 21–22
boundary value problem, 21–25
Brachistochrone Problem, 138–141

C
c-time delay function, 233
Cardano (Cardan), Girolamo,
167–169, 176

cardioid, 99
carrying capacity, 109
Cauchy, Augustin-Louis, 4
center, 386

527

www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


528 Elementary Differential Equations

characteristic polynomial, 317
characteristic value, 317
characteristic vector, 317
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353–354

coupled spring-mass system,
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www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Index 529

E
Eckert, J. Presper, 74, 460
EIGEN, 325, 327, 329
eigenvalue, 317
multiplicity m, 318

eigenvector, 317
normalized, 317

electrical circuits, 250–253
electron
path of, 272–273, 355–360

ENIAC, 74, 460
epicycloid, 103
epidemic models, 113–117, 430–440
with inoculation, 436–438

epitrochoid, 104
equality of matrices, 306
equilibrium point, 379
error
absolute, 462
discretization, 76
formula, 76
percentage relative, 463
relative, 463
round-off, 461
truncation, 76

essential parameters, 18
Euler, Leonhard, 73, 78, 167, 179,
457, 459

Euler load, 281
Euler’s formula, 79, 184
Euler’s method, 77–78, 459
improved, 468–470
modified, 471

existence and uniqueness theorem
linear first-order initial value
problem, 51

linear n-th order initial value
problem, 145, 299

n-th order initial value problem,
298

existence of n linearly independent
solutions to n-th order homogen-
eous linear equations, 157

existence theorem for the Laplace
transform, 207

existence theorems, 42, 45, 145
first-order initial value problem,
33

homogeneous linear system, 334
explicit solution, 58
exponential order, 206

F
falling bodies, 118–121
family of solutions, 17
one-parameter, 17
two-parameter, 18

fan fa, 170, 173
Faraday, Michael, 250
Fehlberg, Erwin, 475
Fermat, Pierre de, 1–2, 102, 139
Ferrari, Ludovico, 168
Ferro, Scipio del, 168
Fibonacci, Leonardo, 175
Fior (Florido), Antonio Maria, 168
first-order initial value problem, 33
linear, 50
nonlinear, 50

folium of Descartes, 102–103
Fontana, Niccolo (Tartaglia), 168,
176

forced motion, 264–267
damped, 265–267
undamped, 264–265

forcing function, 230
formula error, 76, 465
Foucault, Jean Bernard Léon, 445
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www.konkur.in

Telegram: @uni_k

https://t.me/uni_k


Index 531

I
ideal beam, 275
ideal column, 280
identity matrix, 309
implicit solution, 58
improved Euler’s method, 468–470
impulse force, 239
impulse function, 240
independent variable, 6
indiscriminate, constant-effort
harvesting, 417
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